

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	IronPython 2.7.2b1 documentation

IronPython Documentation contents

	What’s New in Python
	What’s New in Python 2.7
	The Future for Python 2.x

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes
	Interpreter Changes

	Optimizations

	New and Improved Modules
	New module: importlib

	New module: sysconfig

	ttk: Themed Widgets for Tk

	Updated module: unittest

	Updated module: ElementTree 1.3

	Build and C API Changes
	Capsules

	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: FreeBSD

	Other Changes and Fixes

	Porting to Python 2.7

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process
	New Issue Tracker: Roundup

	New Documentation Format: reStructuredText Using Sphinx

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers
	The fractions Module

	Other Language Changes
	Optimizations

	Interpreter Changes

	New and Improved Modules
	The ast module

	The future_builtins module

	The json module: JavaScript Object Notation

	The plistlib module: A Property-List Parser

	ctypes Enhancements

	Improved SSL Support

	Deprecations and Removals

	Build and C API Changes
	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: IRIX

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes
	Interactive Interpreter Changes

	Optimizations

	New, Improved, and Removed Modules
	The ctypes package

	The ElementTree package

	The hashlib package

	The sqlite3 package

	The wsgiref package

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type
	Why is Decimal needed?

	The Decimal type

	The Context type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes
	Optimizations

	New, Improved, and Deprecated Modules
	cookielib

	doctest

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes
	String Changes

	Optimizations

	New, Improved, and Deprecated Modules
	Date/Time Type

	The optparse Module

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes
	Port-Specific Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes
	Old and New Classes

	Descriptors

	Multiple Inheritance: The Diamond Rule

	Attribute Access

	Related Links

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes
	Minor Language Changes

	Changes to Built-in Functions

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules
	SAX2 Support

	DOM Support

	Relationship to PyXML

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

	The Python Tutorial
	1. Whetting Your Appetite

	2. Using the Python Interpreter
	2.1. Invoking the Interpreter
	2.1.1. Argument Passing

	2.1.2. Interactive Mode

	2.2. The Interpreter and Its Environment
	2.2.1. Error Handling

	2.2.2. Executable Python Scripts

	2.2.3. Source Code Encoding

	2.2.4. The Interactive Startup File

	3. An Informal Introduction to Python
	3.1. Using Python as a Calculator
	3.1.1. Numbers

	3.1.2. Strings

	3.1.3. Unicode Strings

	3.1.4. Lists

	3.2. First Steps Towards Programming

	4. More Control Flow Tools
	4.1. if Statements

	4.2. for Statements

	4.3. The range() Function

	4.4. break and continue Statements, and else Clauses on Loops

	4.5. pass Statements

	4.6. Defining Functions

	4.7. More on Defining Functions
	4.7.1. Default Argument Values

	4.7.2. Keyword Arguments

	4.7.3. Arbitrary Argument Lists

	4.7.4. Unpacking Argument Lists

	4.7.5. Lambda Forms

	4.7.6. Documentation Strings

	4.8. Intermezzo: Coding Style

	5. Data Structures
	5.1. More on Lists
	5.1.1. Using Lists as Stacks

	5.1.2. Using Lists as Queues

	5.1.3. Functional Programming Tools

	5.1.4. List Comprehensions

	5.1.5. Nested List Comprehensions

	5.2. The del statement

	5.3. Tuples and Sequences

	5.4. Sets

	5.5. Dictionaries

	5.6. Looping Techniques

	5.7. More on Conditions

	5.8. Comparing Sequences and Other Types

	6. Modules
	6.1. More on Modules
	6.1.1. Executing modules as scripts

	6.1.2. The Module Search Path

	6.1.3. “Compiled” Python files

	6.2. Standard Modules

	6.3. The dir() Function

	6.4. Packages
	6.4.1. Importing * From a Package

	6.4.2. Intra-package References

	6.4.3. Packages in Multiple Directories

	7. Input and Output
	7.1. Fancier Output Formatting
	7.1.1. Old string formatting

	7.2. Reading and Writing Files
	7.2.1. Methods of File Objects

	7.2.2. The pickle Module

	8. Errors and Exceptions
	8.1. Syntax Errors

	8.2. Exceptions

	8.3. Handling Exceptions

	8.4. Raising Exceptions

	8.5. User-defined Exceptions

	8.6. Defining Clean-up Actions

	8.7. Predefined Clean-up Actions

	9. Classes
	9.1. A Word About Names and Objects

	9.2. Python Scopes and Namespaces

	9.3. A First Look at Classes
	9.3.1. Class Definition Syntax

	9.3.2. Class Objects

	9.3.3. Instance Objects

	9.3.4. Method Objects

	9.4. Random Remarks

	9.5. Inheritance
	9.5.1. Multiple Inheritance

	9.6. Private Variables

	9.7. Odds and Ends

	9.8. Exceptions Are Classes Too

	9.9. Iterators

	9.10. Generators

	9.11. Generator Expressions

	10. Brief Tour of the Standard Library
	10.1. Operating System Interface

	10.2. File Wildcards

	10.3. Command Line Arguments

	10.4. Error Output Redirection and Program Termination

	10.5. String Pattern Matching

	10.6. Mathematics

	10.7. Internet Access

	10.8. Dates and Times

	10.9. Data Compression

	10.10. Performance Measurement

	10.11. Quality Control

	10.12. Batteries Included

	11. Brief Tour of the Standard Library – Part II
	11.1. Output Formatting

	11.2. Templating

	11.3. Working with Binary Data Record Layouts

	11.4. Multi-threading

	11.5. Logging

	11.6. Weak References

	11.7. Tools for Working with Lists

	11.8. Decimal Floating Point Arithmetic

	12. What Now?

	13. Interactive Input Editing and History Substitution
	13.1. Line Editing

	13.2. History Substitution

	13.3. Key Bindings

	13.4. Alternatives to the Interactive Interpreter

	14. Floating Point Arithmetic: Issues and Limitations
	14.1. Representation Error

	Python Setup and Usage
	1. Command line and environment
	1.1. Command line
	1.1.1. Interface options

	1.1.2. Generic options

	1.1.3. Miscellaneous options

	1.1.4. Options you shouldn’t use

	1.2. Environment variables
	1.2.1. Debug-mode variables

	2. Using Python on Unix platforms
	2.1. Getting and installing the latest version of Python
	2.1.1. On Linux

	2.1.2. On FreeBSD and OpenBSD

	2.1.3. On OpenSolaris

	2.2. Building Python

	2.3. Python-related paths and files

	2.4. Miscellaneous

	2.5. Editors

	3. Using Python on Windows
	3.1. Installing Python

	3.2. Alternative bundles

	3.3. Configuring Python
	3.3.1. Excursus: Setting environment variables

	3.3.2. Finding the Python executable

	3.3.3. Finding modules

	3.3.4. Executing scripts

	3.4. Additional modules
	3.4.1. PyWin32

	3.4.2. Py2exe

	3.4.3. WConio

	3.5. Compiling Python on Windows

	3.6. Other resources

	4. Using Python on a Macintosh
	4.1. Getting and Installing MacPython
	4.1.1. How to run a Python script

	4.1.2. Running scripts with a GUI

	4.1.3. Configuration

	4.2. The IDE

	4.3. Installing Additional Python Packages

	4.4. GUI Programming on the Mac

	4.5. Distributing Python Applications on the Mac

	4.6. Application Scripting

	4.7. Other Resources

	The Python Language Reference
	1. Introduction
	1.1. Alternate Implementations

	1.2. Notation

	2. Lexical analysis
	2.1. Line structure
	2.1.1. Logical lines

	2.1.2. Physical lines

	2.1.3. Comments

	2.1.4. Encoding declarations

	2.1.5. Explicit line joining

	2.1.6. Implicit line joining

	2.1.7. Blank lines

	2.1.8. Indentation

	2.1.9. Whitespace between tokens

	2.2. Other tokens

	2.3. Identifiers and keywords
	2.3.1. Keywords

	2.3.2. Reserved classes of identifiers

	2.4. Literals
	2.4.1. String literals

	2.4.2. String literal concatenation

	2.4.3. Numeric literals

	2.4.4. Integer and long integer literals

	2.4.5. Floating point literals

	2.4.6. Imaginary literals

	2.5. Operators

	2.6. Delimiters

	3. Data model
	3.1. Objects, values and types

	3.2. The standard type hierarchy

	3.3. New-style and classic classes

	3.4. Special method names
	3.4.1. Basic customization

	3.4.2. Customizing attribute access
	3.4.2.1. More attribute access for new-style classes

	3.4.2.2. Implementing Descriptors

	3.4.2.3. Invoking Descriptors

	3.4.2.4. __slots__

	3.4.3. Customizing class creation

	3.4.4. Customizing instance and subclass checks

	3.4.5. Emulating callable objects

	3.4.6. Emulating container types

	3.4.7. Additional methods for emulation of sequence types

	3.4.8. Emulating numeric types

	3.4.9. Coercion rules

	3.4.10. With Statement Context Managers

	3.4.11. Special method lookup for old-style classes

	3.4.12. Special method lookup for new-style classes

	4. Execution model
	4.1. Naming and binding
	4.1.1. Interaction with dynamic features

	4.2. Exceptions

	5. Expressions
	5.1. Arithmetic conversions

	5.2. Atoms
	5.2.1. Identifiers (Names)

	5.2.2. Literals

	5.2.3. Parenthesized forms

	5.2.4. List displays

	5.2.5. Displays for sets and dictionaries

	5.2.6. Generator expressions

	5.2.7. Dictionary displays

	5.2.8. Set displays

	5.2.9. String conversions

	5.2.10. Yield expressions

	5.3. Primaries
	5.3.1. Attribute references

	5.3.2. Subscriptions

	5.3.3. Slicings

	5.3.4. Calls

	5.4. The power operator

	5.5. Unary arithmetic and bitwise operations

	5.6. Binary arithmetic operations

	5.7. Shifting operations

	5.8. Binary bitwise operations

	5.9. Comparisons

	5.10. Boolean operations

	5.11. Conditional Expressions

	5.12. Lambdas

	5.13. Expression lists

	5.14. Evaluation order

	5.15. Summary

	6. Simple statements
	6.1. Expression statements

	6.2. Assignment statements
	6.2.1. Augmented assignment statements

	6.3. The assert statement

	6.4. The pass statement

	6.5. The del statement

	6.6. The print statement

	6.7. The return statement

	6.8. The yield statement

	6.9. The raise statement

	6.10. The break statement

	6.11. The continue statement

	6.12. The import statement
	6.12.1. Future statements

	6.13. The global statement

	6.14. The exec statement

	7. Compound statements
	7.1. The if statement

	7.2. The while statement

	7.3. The for statement

	7.4. The try statement

	7.5. The with statement

	7.6. Function definitions

	7.7. Class definitions

	8. Top-level components
	8.1. Complete Python programs

	8.2. File input

	8.3. Interactive input

	8.4. Expression input

	9. Full Grammar specification

	The Python Standard Library
	1. Introduction

	2. Built-in Functions

	3. Non-essential Built-in Functions

	4. Built-in Constants
	4.1. Constants added by the site module

	5. Built-in Types
	5.1. Truth Value Testing

	5.2. Boolean Operations — and, or, not

	5.3. Comparisons

	5.4. Numeric Types — int, float, long, complex
	5.4.1. Bit-string Operations on Integer Types

	5.4.2. Additional Methods on Integer Types

	5.4.3. Additional Methods on Float

	5.5. Iterator Types
	5.5.1. Generator Types

	5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange
	5.6.1. String Methods

	5.6.2. String Formatting Operations

	5.6.3. XRange Type

	5.6.4. Mutable Sequence Types

	5.7. Set Types — set, frozenset

	5.8. Mapping Types — dict
	5.8.1. Dictionary view objects

	5.9. File Objects

	5.10. memoryview type

	5.11. Context Manager Types

	5.12. Other Built-in Types
	5.12.1. Modules

	5.12.2. Classes and Class Instances

	5.12.3. Functions

	5.12.4. Methods

	5.12.5. Code Objects

	5.12.6. Type Objects

	5.12.7. The Null Object

	5.12.8. The Ellipsis Object

	5.12.9. Boolean Values

	5.12.10. Internal Objects

	5.13. Special Attributes

	6. Built-in Exceptions
	6.1. Exception hierarchy

	7. String Services
	7.1. string — Common string operations
	7.1.1. String constants

	7.1.2. String Formatting

	7.1.3. Format String Syntax
	7.1.3.1. Format Specification Mini-Language

	7.1.3.2. Format examples

	7.1.4. Template strings

	7.1.5. String functions

	7.1.6. Deprecated string functions

	7.2. re — Regular expression operations
	7.2.1. Regular Expression Syntax

	7.2.2. Matching vs Searching

	7.2.3. Module Contents

	7.2.4. Regular Expression Objects

	7.2.5. Match Objects

	7.2.6. Examples
	7.2.6.1. Checking For a Pair

	7.2.6.2. Simulating scanf()

	7.2.6.3. Avoiding recursion

	7.2.6.4. search() vs. match()

	7.2.6.5. Making a Phonebook

	7.2.6.6. Text Munging

	7.2.6.7. Finding all Adverbs

	7.2.6.8. Finding all Adverbs and their Positions

	7.2.6.9. Raw String Notation

	7.3. struct — Interpret strings as packed binary data
	7.3.1. Functions and Exceptions

	7.3.2. Format Strings
	7.3.2.1. Byte Order, Size, and Alignment

	7.3.2.2. Format Characters

	7.3.2.3. Examples

	7.3.3. Classes

	7.4. difflib — Helpers for computing deltas
	7.4.1. SequenceMatcher Objects

	7.4.2. SequenceMatcher Examples

	7.4.3. Differ Objects

	7.4.4. Differ Example

	7.4.5. A command-line interface to difflib

	7.5. StringIO — Read and write strings as files

	7.6. cStringIO — Faster version of StringIO

	7.7. textwrap — Text wrapping and filling

	7.8. codecs — Codec registry and base classes
	7.8.1. Codec Base Classes
	7.8.1.1. Codec Objects

	7.8.1.2. IncrementalEncoder Objects

	7.8.1.3. IncrementalDecoder Objects

	7.8.1.4. StreamWriter Objects

	7.8.1.5. StreamReader Objects

	7.8.1.6. StreamReaderWriter Objects

	7.8.1.7. StreamRecoder Objects

	7.8.2. Encodings and Unicode

	7.8.3. Standard Encodings

	7.8.4. encodings.idna — Internationalized Domain Names in Applications

	7.8.5. encodings.utf_8_sig — UTF-8 codec with BOM signature

	7.9. unicodedata — Unicode Database

	7.10. stringprep — Internet String Preparation

	7.11. fpformat — Floating point conversions

	8. Data Types
	8.1. datetime — Basic date and time types
	8.1.1. Available Types

	8.1.2. timedelta Objects

	8.1.3. date Objects

	8.1.4. datetime Objects

	8.1.5. time Objects

	8.1.6. tzinfo Objects

	8.1.7. strftime() and strptime() Behavior

	8.2. calendar — General calendar-related functions

	8.3. collections — High-performance container datatypes
	8.3.1. Counter objects

	8.3.2. deque objects
	8.3.2.1. deque Recipes

	8.3.3. defaultdict objects
	8.3.3.1. defaultdict Examples

	8.3.4. namedtuple() Factory Function for Tuples with Named Fields

	8.3.5. OrderedDict objects
	8.3.5.1. OrderedDict Examples and Recipes

	8.3.6. ABCs - abstract base classes

	8.4. heapq — Heap queue algorithm
	8.4.1. Basic Examples

	8.4.2. Priority Queue Implementation Notes

	8.4.3. Theory

	8.5. bisect — Array bisection algorithm
	8.5.1. Searching Sorted Lists

	8.5.2. Other Examples

	8.6. array — Efficient arrays of numeric values

	8.7. sets — Unordered collections of unique elements
	8.7.1. Set Objects

	8.7.2. Example

	8.7.3. Protocol for automatic conversion to immutable

	8.7.4. Comparison to the built-in set types

	8.8. sched — Event scheduler
	8.8.1. Scheduler Objects

	8.9. mutex — Mutual exclusion support
	8.9.1. Mutex Objects

	8.10. queue — A synchronized queue class
	8.10.1. Queue Objects

	8.11. weakref — Weak references
	8.11.1. Weak Reference Objects

	8.11.2. Example

	8.12. UserDict — Class wrapper for dictionary objects

	8.13. UserList — Class wrapper for list objects

	8.14. UserString — Class wrapper for string objects

	8.15. types — Names for built-in types

	8.16. new — Creation of runtime internal objects

	8.17. copy — Shallow and deep copy operations

	8.18. pprint — Data pretty printer
	8.18.1. PrettyPrinter Objects

	8.18.2. pprint Example

	8.19. repr — Alternate repr() implementation
	8.19.1. Repr Objects

	8.19.2. Subclassing Repr Objects

	9. Numeric and Mathematical Modules
	9.1. numbers — Numeric abstract base classes
	9.1.1. The numeric tower

	9.1.2. Notes for type implementors
	9.1.2.1. Adding More Numeric ABCs

	9.1.2.2. Implementing the arithmetic operations

	9.2. math — Mathematical functions
	9.2.1. Number-theoretic and representation functions

	9.2.2. Power and logarithmic functions

	9.2.3. Trigonometric functions

	9.2.4. Angular conversion

	9.2.5. Hyperbolic functions

	9.2.6. Special functions

	9.2.7. Constants

	9.3. cmath — Mathematical functions for complex numbers
	9.3.1. Conversions to and from polar coordinates

	9.3.2. Power and logarithmic functions

	9.3.3. Trigonometric functions

	9.3.4. Hyperbolic functions

	9.3.5. Classification functions

	9.3.6. Constants

	9.4. decimal — Decimal fixed point and floating point arithmetic
	9.4.1. Quick-start Tutorial

	9.4.2. Decimal objects
	9.4.2.1. Logical operands

	9.4.3. Context objects

	9.4.4. Signals

	9.4.5. Floating Point Notes
	9.4.5.1. Mitigating round-off error with increased precision

	9.4.5.2. Special values

	9.4.6. Working with threads

	9.4.7. Recipes

	9.4.8. Decimal FAQ

	9.5. fractions — Rational numbers

	9.6. random — Generate pseudo-random numbers

	9.7. itertools — Functions creating iterators for efficient looping
	9.7.1. Itertool functions

	9.7.2. Recipes

	9.8. functools — Higher order functions and operations on callable objects
	9.8.1. partial Objects

	9.9. operator — Standard operators as functions
	9.9.1. Mapping Operators to Functions

	10. File and Directory Access
	10.1. os.path — Common pathname manipulations

	10.2. fileinput — Iterate over lines from multiple input streams

	10.3. stat — Interpreting stat() results

	10.4. statvfs — Constants used with os.statvfs()

	10.5. filecmp — File and Directory Comparisons
	10.5.1. The dircmp class

	10.6. tempfile — Generate temporary files and directories

	10.7. glob — Unix style pathname pattern expansion

	10.8. fnmatch — Unix filename pattern matching

	10.9. linecache — Random access to text lines

	10.10. shutil — High-level file operations
	10.10.1. Directory and files operations
	10.10.1.1. copytree example

	10.10.2. Archives operations
	10.10.2.1. Archiving example

	10.11. dircache — Cached directory listings

	10.12. macpath — Mac OS 9 path manipulation functions

	11. Data Persistence
	11.1. pickle — Python object serialization
	11.1.1. Relationship to other Python modules

	11.1.2. Data stream format

	11.1.3. Usage

	11.1.4. What can be pickled and unpickled?

	11.1.5. The pickle protocol
	11.1.5.1. Pickling and unpickling normal class instances

	11.1.5.2. Pickling and unpickling extension types

	11.1.5.3. Pickling and unpickling external objects

	11.1.6. Subclassing Unpicklers

	11.1.7. Example

	11.2. cPickle — A faster pickle

	11.3. copy_reg — Register pickle support functions

	11.4. shelve — Python object persistence
	11.4.1. Restrictions

	11.4.2. Example

	11.5. marshal — Internal Python object serialization

	11.6. anydbm — Generic access to DBM-style databases

	11.7. whichdb — Guess which DBM module created a database

	11.8. dbm — Simple “database” interface

	11.9. gdbm — GNU’s reinterpretation of dbm

	11.10. dbhash — DBM-style interface to the BSD database library
	11.10.1. Database Objects

	11.11. bsddb — Interface to Berkeley DB library
	11.11.1. Hash, BTree and Record Objects

	11.12. dumbdbm — Portable DBM implementation
	11.12.1. Dumbdbm Objects

	11.13. sqlite3 — DB-API 2.0 interface for SQLite databases
	11.13.1. Module functions and constants

	11.13.2. Connection Objects

	11.13.3. Cursor Objects

	11.13.4. Row Objects

	11.13.5. SQLite and Python types
	11.13.5.1. Introduction

	11.13.5.2. Using adapters to store additional Python types in SQLite databases
	11.13.5.2.1. Letting your object adapt itself

	11.13.5.2.2. Registering an adapter callable

	11.13.5.3. Converting SQLite values to custom Python types

	11.13.5.4. Default adapters and converters

	11.13.6. Controlling Transactions

	11.13.7. Using sqlite3 efficiently
	11.13.7.1. Using shortcut methods

	11.13.7.2. Accessing columns by name instead of by index

	11.13.7.3. Using the connection as a context manager

	11.13.8. Common issues
	11.13.8.1. Multithreading

	12. Data Compression and Archiving
	12.1. zlib — Compression compatible with gzip

	12.2. gzip — Support for gzip files
	12.2.1. Examples of usage

	12.3. bz2 — Compression compatible with bzip2
	12.3.1. (De)compression of files

	12.3.2. Sequential (de)compression

	12.3.3. One-shot (de)compression

	12.4. zipfile — Work with ZIP archives
	12.4.1. ZipFile Objects

	12.4.2. PyZipFile Objects

	12.4.3. ZipInfo Objects

	12.5. tarfile — Read and write tar archive files
	12.5.1. TarFile Objects

	12.5.2. TarInfo Objects

	12.5.3. Examples

	12.5.4. Supported tar formats

	12.5.5. Unicode issues

	13. File Formats
	13.1. csv — CSV File Reading and Writing
	13.1.1. Module Contents

	13.1.2. Dialects and Formatting Parameters

	13.1.3. Reader Objects

	13.1.4. Writer Objects

	13.1.5. Examples

	13.2. ConfigParser — Configuration file parser
	13.2.1. RawConfigParser Objects

	13.2.2. ConfigParser Objects

	13.2.3. SafeConfigParser Objects

	13.2.4. Examples

	13.3. robotparser — Parser for robots.txt

	13.4. netrc — netrc file processing
	13.4.1. netrc Objects

	13.5. xdrlib — Encode and decode XDR data
	13.5.1. Packer Objects

	13.5.2. Unpacker Objects

	13.5.3. Exceptions

	13.6. plistlib — Generate and parse Mac OS X .plist files
	13.6.1. Examples

	14. Cryptographic Services
	14.1. hashlib — Secure hashes and message digests

	14.2. hmac — Keyed-Hashing for Message Authentication

	14.3. md5 — MD5 message digest algorithm

	14.4. sha — SHA-1 message digest algorithm

	15. Generic Operating System Services
	15.1. os — Miscellaneous operating system interfaces
	15.1.1. Process Parameters

	15.1.2. File Object Creation

	15.1.3. File Descriptor Operations
	15.1.3.1. open() flag constants

	15.1.4. Files and Directories

	15.1.5. Process Management

	15.1.6. Miscellaneous System Information

	15.1.7. Miscellaneous Functions

	15.2. io — Core tools for working with streams
	15.2.1. Module Interface

	15.2.2. I/O Base Classes

	15.2.3. Raw File I/O

	15.2.4. Buffered Streams

	15.2.5. Text I/O

	15.2.6. Advanced topics
	15.2.6.1. Performance
	15.2.6.1.1. Binary I/O

	15.2.6.1.2. Text I/O

	15.2.6.2. Multi-threading

	15.2.6.3. Reentrancy

	15.3. time — Time access and conversions

	15.4. argparse — Parser for command-line options, arguments and sub-commands
	15.4.1. Example
	15.4.1.1. Creating a parser

	15.4.1.2. Adding arguments

	15.4.1.3. Parsing arguments

	15.4.2. ArgumentParser objects
	15.4.2.1. description

	15.4.2.2. epilog

	15.4.2.3. add_help

	15.4.2.4. prefix_chars

	15.4.2.5. fromfile_prefix_chars

	15.4.2.6. argument_default

	15.4.2.7. parents

	15.4.2.8. formatter_class

	15.4.2.9. conflict_handler

	15.4.2.10. prog

	15.4.2.11. usage

	15.4.3. The add_argument() method
	15.4.3.1. name or flags

	15.4.3.2. action

	15.4.3.3. nargs

	15.4.3.4. const

	15.4.3.5. default

	15.4.3.6. type

	15.4.3.7. choices

	15.4.3.8. required

	15.4.3.9. help

	15.4.3.10. metavar

	15.4.3.11. dest

	15.4.4. The parse_args() method
	15.4.4.1. Option value syntax

	15.4.4.2. Invalid arguments

	15.4.4.3. Arguments containing "-"

	15.4.4.4. Argument abbreviations

	15.4.4.5. Beyond sys.argv

	15.4.4.6. The Namespace object

	15.4.5. Other utilities
	15.4.5.1. Sub-commands

	15.4.5.2. FileType objects

	15.4.5.3. Argument groups

	15.4.5.4. Mutual exclusion

	15.4.5.5. Parser defaults

	15.4.5.6. Printing help

	15.4.5.7. Partial parsing

	15.4.5.8. Customizing file parsing

	15.4.5.9. Exiting methods

	15.4.6. Upgrading optparse code

	15.5. optparse — Parser for command line options
	15.5.1. Background
	15.5.1.1. Terminology

	15.5.1.2. What are options for?

	15.5.1.3. What are positional arguments for?

	15.5.2. Tutorial
	15.5.2.1. Understanding option actions

	15.5.2.2. The store action

	15.5.2.3. Handling boolean (flag) options

	15.5.2.4. Other actions

	15.5.2.5. Default values

	15.5.2.6. Generating help
	15.5.2.6.1. Grouping Options

	15.5.2.7. Printing a version string

	15.5.2.8. How optparse handles errors

	15.5.2.9. Putting it all together

	15.5.3. Reference Guide
	15.5.3.1. Creating the parser

	15.5.3.2. Populating the parser

	15.5.3.3. Defining options

	15.5.3.4. Option attributes

	15.5.3.5. Standard option actions

	15.5.3.6. Standard option types

	15.5.3.7. Parsing arguments

	15.5.3.8. Querying and manipulating your option parser

	15.5.3.9. Conflicts between options

	15.5.3.10. Cleanup

	15.5.3.11. Other methods

	15.5.4. Option Callbacks
	15.5.4.1. Defining a callback option

	15.5.4.2. How callbacks are called

	15.5.4.3. Raising errors in a callback

	15.5.4.4. Callback example 1: trivial callback

	15.5.4.5. Callback example 2: check option order

	15.5.4.6. Callback example 3: check option order (generalized)

	15.5.4.7. Callback example 4: check arbitrary condition

	15.5.4.8. Callback example 5: fixed arguments

	15.5.4.9. Callback example 6: variable arguments

	15.5.5. Extending optparse
	15.5.5.1. Adding new types

	15.5.5.2. Adding new actions

	15.6. getopt — C-style parser for command line options

	15.7. logging — Logging facility for Python
	15.7.1. Logger Objects

	15.7.2. Handler Objects

	15.7.3. Formatter Objects

	15.7.4. Filter Objects

	15.7.5. LogRecord Objects

	15.7.6. LogRecord attributes

	15.7.7. LoggerAdapter Objects

	15.7.8. Thread Safety

	15.7.9. Module-Level Functions

	15.7.10. Integration with the warnings module

	15.8. logging.config — Logging configuration
	15.8.1. Configuration functions

	15.8.2. Configuration dictionary schema
	15.8.2.1. Dictionary Schema Details

	15.8.2.2. Incremental Configuration

	15.8.2.3. Object connections

	15.8.2.4. User-defined objects

	15.8.2.5. Access to external objects

	15.8.2.6. Access to internal objects

	15.8.3. Configuration file format

	15.9. logging.handlers — Logging handlers
	15.9.1. StreamHandler

	15.9.2. FileHandler

	15.9.3. NullHandler

	15.9.4. WatchedFileHandler

	15.9.5. RotatingFileHandler

	15.9.6. TimedRotatingFileHandler

	15.9.7. SocketHandler

	15.9.8. DatagramHandler

	15.9.9. SysLogHandler

	15.9.10. NTEventLogHandler

	15.9.11. SMTPHandler

	15.9.12. MemoryHandler

	15.9.13. HTTPHandler

	15.10. getpass — Portable password input

	15.11. curses — Terminal handling for character-cell displays
	15.11.1. Functions

	15.11.2. Window Objects

	15.11.3. Constants

	15.12. curses.textpad — Text input widget for curses programs
	15.12.1. Textbox objects

	15.13. curses.wrapper — Terminal handler for curses programs

	15.14. curses.ascii — Utilities for ASCII characters

	15.15. curses.panel — A panel stack extension for curses
	15.15.1. Functions

	15.15.2. Panel Objects

	15.16. platform — Access to underlying platform’s identifying data
	15.16.1. Cross Platform

	15.16.2. Java Platform

	15.16.3. Windows Platform
	15.16.3.1. Win95/98 specific

	15.16.4. Mac OS Platform

	15.16.5. Unix Platforms

	15.17. errno — Standard errno system symbols

	15.18. ctypes — A foreign function library for Python
	15.18.1. ctypes tutorial
	15.18.1.1. Loading dynamic link libraries

	15.18.1.2. Accessing functions from loaded dlls

	15.18.1.3. Calling functions

	15.18.1.4. Fundamental data types

	15.18.1.5. Calling functions, continued

	15.18.1.6. Calling functions with your own custom data types

	15.18.1.7. Specifying the required argument types (function prototypes)

	15.18.1.8. Return types

	15.18.1.9. Passing pointers (or: passing parameters by reference)

	15.18.1.10. Structures and unions

	15.18.1.11. Structure/union alignment and byte order

	15.18.1.12. Bit fields in structures and unions

	15.18.1.13. Arrays

	15.18.1.14. Pointers

	15.18.1.15. Type conversions

	15.18.1.16. Incomplete Types

	15.18.1.17. Callback functions

	15.18.1.18. Accessing values exported from dlls

	15.18.1.19. Surprises

	15.18.1.20. Variable-sized data types

	15.18.2. ctypes reference
	15.18.2.1. Finding shared libraries

	15.18.2.2. Loading shared libraries

	15.18.2.3. Foreign functions

	15.18.2.4. Function prototypes

	15.18.2.5. Utility functions

	15.18.2.6. Data types

	15.18.2.7. Fundamental data types

	15.18.2.8. Structured data types

	15.18.2.9. Arrays and pointers

	16. Optional Operating System Services
	16.1. select — Waiting for I/O completion
	16.1.1. Edge and Level Trigger Polling (epoll) Objects

	16.1.2. Polling Objects

	16.1.3. Kqueue Objects

	16.1.4. Kevent Objects

	16.2. threading — Higher-level threading interface
	16.2.1. Thread Objects

	16.2.2. Lock Objects

	16.2.3. RLock Objects

	16.2.4. Condition Objects

	16.2.5. Semaphore Objects
	16.2.5.1. Semaphore Example

	16.2.6. Event Objects

	16.2.7. Timer Objects

	16.2.8. Using locks, conditions, and semaphores in the with statement

	16.2.9. Importing in threaded code

	16.3. thread — Multiple threads of control

	16.4. dummy_threading — Drop-in replacement for the threading module

	16.5. dummy_thread — Drop-in replacement for the thread module

	16.6. multiprocessing — Process-based “threading” interface
	16.6.1. Introduction
	16.6.1.1. The Process class

	16.6.1.2. Exchanging objects between processes

	16.6.1.3. Synchronization between processes

	16.6.1.4. Sharing state between processes

	16.6.1.5. Using a pool of workers

	16.6.2. Reference
	16.6.2.1. Process and exceptions

	16.6.2.2. Pipes and Queues

	16.6.2.3. Miscellaneous

	16.6.2.4. Connection Objects

	16.6.2.5. Synchronization primitives

	16.6.2.6. Shared ctypes Objects
	16.6.2.6.1. The multiprocessing.sharedctypes module

	16.6.2.7. Managers
	16.6.2.7.1. Namespace objects

	16.6.2.7.2. Customized managers

	16.6.2.7.3. Using a remote manager

	16.6.2.8. Proxy Objects
	16.6.2.8.1. Cleanup

	16.6.2.9. Process Pools

	16.6.2.10. Listeners and Clients
	16.6.2.10.1. Address Formats

	16.6.2.11. Authentication keys

	16.6.2.12. Logging

	16.6.2.13. The multiprocessing.dummy module

	16.6.3. Programming guidelines
	16.6.3.1. All platforms

	16.6.3.2. Windows

	16.6.4. Examples

	16.7. mmap — Memory-mapped file support

	16.8. readline — GNU readline interface
	16.8.1. Example

	16.9. rlcompleter — Completion function for GNU readline
	16.9.1. Completer Objects

	17. Interprocess Communication and Networking
	17.1. subprocess — Subprocess management
	17.1.1. Using the subprocess Module
	17.1.1.1. Convenience Functions

	17.1.1.2. Exceptions

	17.1.1.3. Security

	17.1.2. Popen Objects

	17.1.3. Windows Popen Helpers
	17.1.3.1. Constants

	17.1.4. Replacing Older Functions with the subprocess Module
	17.1.4.1. Replacing /bin/sh shell backquote

	17.1.4.2. Replacing shell pipeline

	17.1.4.3. Replacing os.system()

	17.1.4.4. Replacing the os.spawn family

	17.1.4.5. Replacing os.popen(), os.popen2(), os.popen3()

	17.1.4.6. Replacing functions from the popen2 module

	17.1.5. Notes
	17.1.5.1. Converting an argument sequence to a string on Windows

	17.2. socket — Low-level networking interface
	17.2.1. Socket Objects

	17.2.2. Example

	17.3. ssl — TLS/SSL wrapper for socket objects
	17.3.1. Functions, Constants, and Exceptions

	17.3.2. SSLSocket Objects

	17.3.3. Certificates

	17.3.4. Examples
	17.3.4.1. Testing for SSL support

	17.3.4.2. Client-side operation

	17.3.4.3. Server-side operation

	17.4. signal — Set handlers for asynchronous events
	17.4.1. Example

	17.5. popen2 — Subprocesses with accessible I/O streams
	17.5.1. Popen3 and Popen4 Objects

	17.5.2. Flow Control Issues

	17.6. asyncore — Asynchronous socket handler
	17.6.1. asyncore Example basic HTTP client

	17.6.2. asyncore Example basic echo server

	17.7. asynchat — Asynchronous socket command/response handler
	17.7.1. asynchat - Auxiliary Classes

	17.7.2. asynchat Example

	18. Internet Data Handling
	18.1. email — An email and MIME handling package
	18.1.1. email: Representing an email message

	18.1.2. email: Parsing email messages
	18.1.2.1. FeedParser API

	18.1.2.2. Parser class API

	18.1.2.3. Additional notes

	18.1.3. email: Generating MIME documents

	18.1.4. email: Creating email and MIME objects from scratch

	18.1.5. email: Internationalized headers

	18.1.6. email: Representing character sets

	18.1.7. email: Encoders

	18.1.8. email: Exception and Defect classes

	18.1.9. email: Miscellaneous utilities

	18.1.10. email: Iterators

	18.1.11. email: Examples

	18.1.12. Package History

	18.1.13. Differences from mimelib

	18.2. json — JSON encoder and decoder
	18.2.1. Basic Usage

	18.2.2. Encoders and decoders

	18.3. mailcap — Mailcap file handling

	18.4. mailbox — Manipulate mailboxes in various formats
	18.4.1. Mailbox objects
	18.4.1.1. Maildir

	18.4.1.2. mbox

	18.4.1.3. MH

	18.4.1.4. Babyl

	18.4.1.5. MMDF

	18.4.2. Message objects
	18.4.2.1. MaildirMessage

	18.4.2.2. mboxMessage

	18.4.2.3. MHMessage

	18.4.2.4. BabylMessage

	18.4.2.5. MMDFMessage

	18.4.3. Exceptions

	18.4.4. Deprecated classes and methods

	18.4.5. Examples

	18.5. mhlib — Access to MH mailboxes
	18.5.1. MH Objects

	18.5.2. Folder Objects

	18.5.3. Message Objects

	18.6. mimetools — Tools for parsing MIME messages
	18.6.1. Additional Methods of Message Objects

	18.7. mimetypes — Map filenames to MIME types
	18.7.1. MimeTypes Objects

	18.8. MimeWriter — Generic MIME file writer
	18.8.1. MimeWriter Objects

	18.9. mimify — MIME processing of mail messages

	18.10. multifile — Support for files containing distinct parts
	18.10.1. MultiFile Objects

	18.10.2. MultiFile Example

	18.11. rfc822 — Parse RFC 2822 mail headers
	18.11.1. Message Objects

	18.11.2. AddressList Objects

	18.12. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

	18.13. binhex — Encode and decode binhex4 files
	18.13.1. Notes

	18.14. binascii — Convert between binary and ASCII

	18.15. quopri — Encode and decode MIME quoted-printable data

	18.16. uu — Encode and decode uuencode files

	19. Structured Markup Processing Tools
	19.1. HTMLParser — Simple HTML and XHTML parser
	19.1.1. Example HTML Parser Application

	19.2. sgmllib — Simple SGML parser

	19.3. htmllib — A parser for HTML documents
	19.3.1. HTMLParser Objects

	19.4. htmlentitydefs — Definitions of HTML general entities

	19.5. xml.parsers.expat — Fast XML parsing using Expat
	19.5.1. XMLParser Objects

	19.5.2. ExpatError Exceptions

	19.5.3. Example

	19.5.4. Content Model Descriptions

	19.5.5. Expat error constants

	19.6. xml.dom — The Document Object Model API
	19.6.1. Module Contents

	19.6.2. Objects in the DOM
	19.6.2.1. DOMImplementation Objects

	19.6.2.2. Node Objects

	19.6.2.3. NodeList Objects

	19.6.2.4. DocumentType Objects

	19.6.2.5. Document Objects

	19.6.2.6. Element Objects

	19.6.2.7. Attr Objects

	19.6.2.8. NamedNodeMap Objects

	19.6.2.9. Comment Objects

	19.6.2.10. Text and CDATASection Objects

	19.6.2.11. ProcessingInstruction Objects

	19.6.2.12. Exceptions

	19.6.3. Conformance
	19.6.3.1. Type Mapping

	19.6.3.2. Accessor Methods

	19.7. xml.dom.minidom — Lightweight DOM implementation
	19.7.1. DOM Objects

	19.7.2. DOM Example

	19.7.3. minidom and the DOM standard

	19.8. xml.dom.pulldom — Support for building partial DOM trees
	19.8.1. DOMEventStream Objects

	19.9. xml.sax — Support for SAX2 parsers
	19.9.1. SAXException Objects

	19.10. xml.sax.handler — Base classes for SAX handlers
	19.10.1. ContentHandler Objects

	19.10.2. DTDHandler Objects

	19.10.3. EntityResolver Objects

	19.10.4. ErrorHandler Objects

	19.11. xml.sax.saxutils — SAX Utilities

	19.12. xml.sax.xmlreader — Interface for XML parsers
	19.12.1. XMLReader Objects

	19.12.2. IncrementalParser Objects

	19.12.3. Locator Objects

	19.12.4. InputSource Objects

	19.12.5. The Attributes Interface

	19.12.6. The AttributesNS Interface

	19.13. xml.etree.ElementTree — The ElementTree XML API
	19.13.1. Functions

	19.13.2. Element Objects

	19.13.3. ElementTree Objects

	19.13.4. QName Objects

	19.13.5. TreeBuilder Objects

	19.13.6. XMLParser Objects

	20. Internet Protocols and Support
	20.1. webbrowser — Convenient Web-browser controller
	20.1.1. Browser Controller Objects

	20.2. cgi — Common Gateway Interface support
	20.2.1. Introduction

	20.2.2. Using the cgi module

	20.2.3. Higher Level Interface

	20.2.4. Old classes

	20.2.5. Functions

	20.2.6. Caring about security

	20.2.7. Installing your CGI script on a Unix system

	20.2.8. Testing your CGI script

	20.2.9. Debugging CGI scripts

	20.2.10. Common problems and solutions

	20.3. cgitb — Traceback manager for CGI scripts

	20.4. wsgiref — WSGI Utilities and Reference Implementation
	20.4.1. wsgiref.util – WSGI environment utilities

	20.4.2. wsgiref.headers – WSGI response header tools

	20.4.3. wsgiref.simple_server – a simple WSGI HTTP server

	20.4.4. wsgiref.validate — WSGI conformance checker

	20.4.5. wsgiref.handlers – server/gateway base classes

	20.4.6. Examples

	20.5. urllib — Open arbitrary resources by URL
	20.5.1. High-level interface

	20.5.2. Utility functions

	20.5.3. URL Opener objects

	20.5.4. urllib Restrictions

	20.5.5. Examples

	20.6. urllib2 — extensible library for opening URLs
	20.6.1. Request Objects

	20.6.2. OpenerDirector Objects

	20.6.3. BaseHandler Objects

	20.6.4. HTTPRedirectHandler Objects

	20.6.5. HTTPCookieProcessor Objects

	20.6.6. ProxyHandler Objects

	20.6.7. HTTPPasswordMgr Objects

	20.6.8. AbstractBasicAuthHandler Objects

	20.6.9. HTTPBasicAuthHandler Objects

	20.6.10. ProxyBasicAuthHandler Objects

	20.6.11. AbstractDigestAuthHandler Objects

	20.6.12. HTTPDigestAuthHandler Objects

	20.6.13. ProxyDigestAuthHandler Objects

	20.6.14. HTTPHandler Objects

	20.6.15. HTTPSHandler Objects

	20.6.16. FileHandler Objects

	20.6.17. FTPHandler Objects

	20.6.18. CacheFTPHandler Objects

	20.6.19. UnknownHandler Objects

	20.6.20. HTTPErrorProcessor Objects

	20.6.21. Examples

	20.7. httplib — HTTP protocol client
	20.7.1. HTTPConnection Objects

	20.7.2. HTTPResponse Objects

	20.7.3. Examples

	20.8. ftplib — FTP protocol client
	20.8.1. FTP Objects

	20.8.2. FTP_TLS Objects

	20.9. poplib — POP3 protocol client
	20.9.1. POP3 Objects

	20.9.2. POP3 Example

	20.10. imaplib — IMAP4 protocol client
	20.10.1. IMAP4 Objects

	20.10.2. IMAP4 Example

	20.11. nntplib — NNTP protocol client
	20.11.1. NNTP Objects

	20.12. smtplib — SMTP protocol client
	20.12.1. SMTP Objects

	20.12.2. SMTP Example

	20.13. smtpd — SMTP Server
	20.13.1. SMTPServer Objects

	20.13.2. DebuggingServer Objects

	20.13.3. PureProxy Objects

	20.13.4. MailmanProxy Objects

	20.14. telnetlib — Telnet client
	20.14.1. Telnet Objects

	20.14.2. Telnet Example

	20.15. uuid — UUID objects according to RFC 4122
	20.15.1. Example

	20.16. urlparse — Parse URLs into components
	20.16.1. Results of urlparse() and urlsplit()

	20.17. SocketServer — A framework for network servers
	20.17.1. Server Creation Notes

	20.17.2. Server Objects

	20.17.3. RequestHandler Objects

	20.17.4. Examples
	20.17.4.1. SocketServer.TCPServer Example

	20.17.4.2. SocketServer.UDPServer Example

	20.17.4.3. Asynchronous Mixins

	20.18. BaseHTTPServer — Basic HTTP server
	20.18.1. More examples

	20.19. SimpleHTTPServer — Simple HTTP request handler

	20.20. CGIHTTPServer — CGI-capable HTTP request handler

	20.21. cookielib — Cookie handling for HTTP clients
	20.21.1. CookieJar and FileCookieJar Objects

	20.21.2. FileCookieJar subclasses and co-operation with web browsers

	20.21.3. CookiePolicy Objects

	20.21.4. DefaultCookiePolicy Objects

	20.21.5. Cookie Objects

	20.21.6. Examples

	20.22. Cookie — HTTP state management
	20.22.1. Cookie Objects

	20.22.2. Morsel Objects

	20.22.3. Example

	20.23. xmlrpclib — XML-RPC client access
	20.23.1. ServerProxy Objects

	20.23.2. Boolean Objects

	20.23.3. DateTime Objects

	20.23.4. Binary Objects

	20.23.5. Fault Objects

	20.23.6. ProtocolError Objects

	20.23.7. MultiCall Objects

	20.23.8. Convenience Functions

	20.23.9. Example of Client Usage

	20.23.10. Example of Client and Server Usage

	20.24. SimpleXMLRPCServer — Basic XML-RPC server
	20.24.1. SimpleXMLRPCServer Objects
	20.24.1.1. SimpleXMLRPCServer Example

	20.24.2. CGIXMLRPCRequestHandler

	20.25. DocXMLRPCServer — Self-documenting XML-RPC server
	20.25.1. DocXMLRPCServer Objects

	20.25.2. DocCGIXMLRPCRequestHandler

	21. Multimedia Services
	21.1. audioop — Manipulate raw audio data

	21.2. imageop — Manipulate raw image data

	21.3. aifc — Read and write AIFF and AIFC files

	21.4. sunau — Read and write Sun AU files
	21.4.1. AU_read Objects

	21.4.2. AU_write Objects

	21.5. wave — Read and write WAV files
	21.5.1. Wave_read Objects

	21.5.2. Wave_write Objects

	21.6. chunk — Read IFF chunked data

	21.7. colorsys — Conversions between color systems

	21.8. imghdr — Determine the type of an image

	21.9. sndhdr — Determine type of sound file

	21.10. ossaudiodev — Access to OSS-compatible audio devices
	21.10.1. Audio Device Objects

	21.10.2. Mixer Device Objects

	22. Internationalization
	22.1. gettext — Multilingual internationalization services
	22.1.1. GNU gettext API

	22.1.2. Class-based API
	22.1.2.1. The NullTranslations class

	22.1.2.2. The GNUTranslations class

	22.1.2.3. Solaris message catalog support

	22.1.2.4. The Catalog constructor

	22.1.3. Internationalizing your programs and modules
	22.1.3.1. Localizing your module

	22.1.3.2. Localizing your application

	22.1.3.3. Changing languages on the fly

	22.1.3.4. Deferred translations

	22.1.3.5. gettext() vs. lgettext()

	22.1.4. Acknowledgements

	22.2. locale — Internationalization services
	22.2.1. Background, details, hints, tips and caveats

	22.2.2. For extension writers and programs that embed Python

	22.2.3. Access to message catalogs

	23. Program Frameworks
	23.1. cmd — Support for line-oriented command interpreters
	23.1.1. Cmd Objects

	23.2. shlex — Simple lexical analysis
	23.2.1. shlex Objects

	23.2.2. Parsing Rules

	24. Graphical User Interfaces with Tk
	24.1. Tkinter — Python interface to Tcl/Tk
	24.1.1. Tkinter Modules

	24.1.2. Tkinter Life Preserver
	24.1.2.1. How To Use This Section

	24.1.2.2. A Simple Hello World Program

	24.1.3. A (Very) Quick Look at Tcl/Tk

	24.1.4. Mapping Basic Tk into Tkinter

	24.1.5. How Tk and Tkinter are Related

	24.1.6. Handy Reference
	24.1.6.1. Setting Options

	24.1.6.2. The Packer

	24.1.6.3. Packer Options

	24.1.6.4. Coupling Widget Variables

	24.1.6.5. The Window Manager

	24.1.6.6. Tk Option Data Types

	24.1.6.7. Bindings and Events

	24.1.6.8. The index Parameter

	24.1.6.9. Images

	24.2. ttk — Tk themed widgets
	24.2.1. Using Ttk

	24.2.2. Ttk Widgets

	24.2.3. Widget
	24.2.3.1. Standard Options

	24.2.3.2. Scrollable Widget Options

	24.2.3.3. Label Options

	24.2.3.4. Compatibility Options

	24.2.3.5. Widget States

	24.2.3.6. ttk.Widget

	24.2.4. Combobox
	24.2.4.1. Options

	24.2.4.2. Virtual events

	24.2.4.3. ttk.Combobox

	24.2.5. Notebook
	24.2.5.1. Options

	24.2.5.2. Tab Options

	24.2.5.3. Tab Identifiers

	24.2.5.4. Virtual Events

	24.2.5.5. ttk.Notebook

	24.2.6. Progressbar
	24.2.6.1. Options

	24.2.6.2. ttk.Progressbar

	24.2.7. Separator
	24.2.7.1. Options

	24.2.8. Sizegrip
	24.2.8.1. Platform-specific notes

	24.2.8.2. Bugs

	24.2.9. Treeview
	24.2.9.1. Options

	24.2.9.2. Item Options

	24.2.9.3. Tag Options

	24.2.9.4. Column Identifiers

	24.2.9.5. Virtual Events

	24.2.9.6. ttk.Treeview

	24.2.10. Ttk Styling
	24.2.10.1. Layouts

	24.3. Tix — Extension widgets for Tk
	24.3.1. Using Tix

	24.3.2. Tix Widgets
	24.3.2.1. Basic Widgets

	24.3.2.2. File Selectors

	24.3.2.3. Hierarchical ListBox

	24.3.2.4. Tabular ListBox

	24.3.2.5. Manager Widgets

	24.3.2.6. Image Types

	24.3.2.7. Miscellaneous Widgets

	24.3.2.8. Form Geometry Manager

	24.3.3. Tix Commands

	24.4. ScrolledText — Scrolled Text Widget

	24.5. turtle — Turtle graphics for Tk
	24.5.1. Introduction

	24.5.2. Overview over available Turtle and Screen methods
	24.5.2.1. Turtle methods

	24.5.2.2. Methods of TurtleScreen/Screen

	24.5.3. Methods of RawTurtle/Turtle and corresponding functions
	24.5.3.1. Turtle motion

	24.5.3.2. Tell Turtle’s state

	24.5.3.3. Settings for measurement

	24.5.3.4. Pen control
	24.5.3.4.1. Drawing state

	24.5.3.4.2. Color control

	24.5.3.4.3. Filling

	24.5.3.4.4. More drawing control

	24.5.3.5. Turtle state
	24.5.3.5.1. Visibility

	24.5.3.5.2. Appearance

	24.5.3.6. Using events

	24.5.3.7. Special Turtle methods

	24.5.3.8. Excursus about the use of compound shapes

	24.5.4. Methods of TurtleScreen/Screen and corresponding functions
	24.5.4.1. Window control

	24.5.4.2. Animation control

	24.5.4.3. Using screen events

	24.5.4.4. Settings and special methods

	24.5.4.5. Methods specific to Screen, not inherited from TurtleScreen

	24.5.5. The public classes of the module turtle

	24.5.6. Help and configuration
	24.5.6.1. How to use help

	24.5.6.2. Translation of docstrings into different languages

	24.5.6.3. How to configure Screen and Turtles

	24.5.7. Demo scripts

	24.6. IDLE
	24.6.1. Menus
	24.6.1.1. File menu

	24.6.1.2. Edit menu

	24.6.1.3. Windows menu

	24.6.1.4. Debug menu (in the Python Shell window only)

	24.6.2. Basic editing and navigation
	24.6.2.1. Automatic indentation

	24.6.2.2. Python Shell window

	24.6.3. Syntax colors

	24.6.4. Startup
	24.6.4.1. Command line usage

	24.7. Other Graphical User Interface Packages

	25. Development Tools
	25.1. pydoc — Documentation generator and online help system

	25.2. doctest — Test interactive Python examples
	25.2.1. Simple Usage: Checking Examples in Docstrings

	25.2.2. Simple Usage: Checking Examples in a Text File

	25.2.3. How It Works
	25.2.3.1. Which Docstrings Are Examined?

	25.2.3.2. How are Docstring Examples Recognized?

	25.2.3.3. What’s the Execution Context?

	25.2.3.4. What About Exceptions?

	25.2.3.5. Option Flags and Directives

	25.2.3.6. Warnings

	25.2.4. Basic API

	25.2.5. Unittest API

	25.2.6. Advanced API
	25.2.6.1. DocTest Objects

	25.2.6.2. Example Objects

	25.2.6.3. DocTestFinder objects

	25.2.6.4. DocTestParser objects

	25.2.6.5. DocTestRunner objects

	25.2.6.6. OutputChecker objects

	25.2.7. Debugging

	25.2.8. Soapbox

	25.3. unittest — Unit testing framework
	25.3.1. Basic example

	25.3.2. Command-Line Interface
	25.3.2.1. Command-line options

	25.3.3. Test Discovery

	25.3.4. Organizing test code

	25.3.5. Re-using old test code

	25.3.6. Skipping tests and expected failures

	25.3.7. Classes and functions
	25.3.7.1. Test cases
	25.3.7.1.1. Deprecated aliases

	25.3.7.2. Grouping tests

	25.3.7.3. Loading and running tests
	25.3.7.3.1. load_tests Protocol

	25.3.8. Class and Module Fixtures
	25.3.8.1. setUpClass and tearDownClass

	25.3.8.2. setUpModule and tearDownModule

	25.3.9. Signal Handling

	25.4. 2to3 - Automated Python 2 to 3 code translation
	25.4.1. Using 2to3

	25.4.2. Fixers

	25.4.3. lib2to3 - 2to3’s library

	25.5. test — Regression tests package for Python
	25.5.1. Writing Unit Tests for the test package

	25.5.2. Running tests using the command-line interface

	25.6. test.test_support — Utility functions for tests

	26. Debugging and Profiling
	26.1. bdb — Debugger framework

	26.2. pdb — The Python Debugger

	26.3. Debugger Commands

	26.4. The Python Profilers
	26.4.1. Introduction to the profilers

	26.4.2. Instant User’s Manual

	26.4.3. What Is Deterministic Profiling?

	26.4.4. Reference Manual – profile and cProfile
	26.4.4.1. The Stats Class

	26.4.5. Limitations

	26.4.6. Calibration

	26.4.7. Extensions — Deriving Better Profilers

	26.5. hotshot — High performance logging profiler
	26.5.1. Profile Objects

	26.5.2. Using hotshot data

	26.5.3. Example Usage

	26.6. timeit — Measure execution time of small code snippets
	26.6.1. Command Line Interface

	26.6.2. Examples

	26.7. trace — Trace or track Python statement execution
	26.7.1. Command-Line Usage
	26.7.1.1. Main options

	26.7.1.2. Modifiers

	26.7.1.3. Filters

	26.7.2. Programmatic Interface

	27. Python Runtime Services
	27.1. sys — System-specific parameters and functions

	27.2. sysconfig — Provide access to Python’s configuration information
	27.2.1. Configuration variables

	27.2.2. Installation paths

	27.2.3. Other functions

	27.3. __builtin__ — Built-in objects

	27.4. future_builtins — Python 3 builtins

	27.5. __main__ — Top-level script environment

	27.6. warnings — Warning control
	27.6.1. Warning Categories

	27.6.2. The Warnings Filter
	27.6.2.1. Default Warning Filters

	27.6.3. Temporarily Suppressing Warnings

	27.6.4. Testing Warnings

	27.6.5. Updating Code For New Versions of Python

	27.6.6. Available Functions

	27.6.7. Available Context Managers

	27.7. contextlib — Utilities for with-statement contexts

	27.8. abc — Abstract Base Classes

	27.9. atexit — Exit handlers
	27.9.1. atexit Example

	27.10. traceback — Print or retrieve a stack traceback
	27.10.1. Traceback Examples

	27.11. __future__ — Future statement definitions

	27.12. gc — Garbage Collector interface

	27.13. inspect — Inspect live objects
	27.13.1. Types and members

	27.13.2. Retrieving source code

	27.13.3. Classes and functions

	27.13.4. The interpreter stack

	27.14. site — Site-specific configuration hook

	27.15. user — User-specific configuration hook

	27.16. fpectl — Floating point exception control
	27.16.1. Example

	27.16.2. Limitations and other considerations

	27.17. distutils — Building and installing Python modules

	28. Custom Python Interpreters
	28.1. code — Interpreter base classes
	28.1.1. Interactive Interpreter Objects

	28.1.2. Interactive Console Objects

	28.2. codeop — Compile Python code

	29. Restricted Execution
	29.1. rexec — Restricted execution framework
	29.1.1. RExec Objects

	29.1.2. Defining restricted environments

	29.1.3. An example

	29.2. Bastion — Restricting access to objects

	30. Importing Modules
	30.1. imp — Access the import internals
	30.1.1. Examples

	30.2. importlib – Convenience wrappers for __import__()

	30.3. imputil — Import utilities
	30.3.1. Examples

	30.4. zipimport — Import modules from Zip archives
	30.4.1. zipimporter Objects

	30.4.2. Examples

	30.5. pkgutil — Package extension utility

	30.6. modulefinder — Find modules used by a script
	30.6.1. Example usage of ModuleFinder

	30.7. runpy — Locating and executing Python modules

	31. Python Language Services
	31.1. parser — Access Python parse trees
	31.1.1. Creating ST Objects

	31.1.2. Converting ST Objects

	31.1.3. Queries on ST Objects

	31.1.4. Exceptions and Error Handling

	31.1.5. ST Objects

	31.1.6. Example: Emulation of compile()

	31.2. Abstract Syntax Trees
	31.2.1. Node classes

	31.2.2. Abstract Grammar

	31.2.3. ast Helpers

	31.3. symtable — Access to the compiler’s symbol tables
	31.3.1. Generating Symbol Tables

	31.3.2. Examining Symbol Tables

	31.4. symbol — Constants used with Python parse trees

	31.5. token — Constants used with Python parse trees

	31.6. keyword — Testing for Python keywords

	31.7. tokenize — Tokenizer for Python source

	31.8. tabnanny — Detection of ambiguous indentation

	31.9. pyclbr — Python class browser support
	31.9.1. Class Objects

	31.9.2. Function Objects

	31.10. py_compile — Compile Python source files

	31.11. compileall — Byte-compile Python libraries
	31.11.1. Command-line use

	31.11.2. Public functions

	31.12. dis — Disassembler for Python bytecode
	31.12.1. Python Bytecode Instructions

	31.13. pickletools — Tools for pickle developers

	32. Python compiler package
	32.1. The basic interface

	32.2. Limitations

	32.3. Python Abstract Syntax
	32.3.1. AST Nodes

	32.3.2. Assignment nodes

	32.3.3. Examples

	32.4. Using Visitors to Walk ASTs

	32.5. Bytecode Generation

	33. Miscellaneous Services
	33.1. formatter — Generic output formatting
	33.1.1. The Formatter Interface

	33.1.2. Formatter Implementations

	33.1.3. The Writer Interface

	33.1.4. Writer Implementations

	34. MS Windows Specific Services
	34.1. msilib — Read and write Microsoft Installer files
	34.1.1. Database Objects

	34.1.2. View Objects

	34.1.3. Summary Information Objects

	34.1.4. Record Objects

	34.1.5. Errors

	34.1.6. CAB Objects

	34.1.7. Directory Objects

	34.1.8. Features

	34.1.9. GUI classes

	34.1.10. Precomputed tables

	34.2. msvcrt – Useful routines from the MS VC++ runtime
	34.2.1. File Operations

	34.2.2. Console I/O

	34.2.3. Other Functions

	34.3. _winreg – Windows registry access
	34.3.1. Constants
	34.3.1.1. HKEY_* Constants

	34.3.1.2. Access Rights
	34.3.1.2.1. 64-bit Specific

	34.3.1.3. Value Types

	34.3.2. Registry Handle Objects

	34.4. winsound — Sound-playing interface for Windows

	35. Unix Specific Services
	35.1. posix — The most common POSIX system calls
	35.1.1. Large File Support

	35.1.2. Notable Module Contents

	35.2. pwd — The password database

	35.3. spwd — The shadow password database

	35.4. grp — The group database

	35.5. crypt — Function to check Unix passwords

	35.6. dl — Call C functions in shared objects
	35.6.1. Dl Objects

	35.7. termios — POSIX style tty control
	35.7.1. Example

	35.8. tty — Terminal control functions

	35.9. pty — Pseudo-terminal utilities

	35.10. fcntl — The fcntl() and ioctl() system calls

	35.11. pipes — Interface to shell pipelines
	35.11.1. Template Objects

	35.12. posixfile — File-like objects with locking support

	35.13. resource — Resource usage information
	35.13.1. Resource Limits

	35.13.2. Resource Usage

	35.14. nis — Interface to Sun’s NIS (Yellow Pages)

	35.15. syslog — Unix syslog library routines
	35.15.1. Examples
	35.15.1.1. Simple example

	35.16. commands — Utilities for running commands

	36. Mac OS X specific services
	36.1. ic — Access to the Mac OS X Internet Config
	36.1.1. IC Objects

	36.2. MacOS — Access to Mac OS interpreter features

	36.3. macostools — Convenience routines for file manipulation

	36.4. findertools — The finder‘s Apple Events interface

	36.5. EasyDialogs — Basic Macintosh dialogs
	36.5.1. ProgressBar Objects

	36.6. FrameWork — Interactive application framework
	36.6.1. Application Objects

	36.6.2. Window Objects

	36.6.3. ControlsWindow Object

	36.6.4. ScrolledWindow Object

	36.6.5. DialogWindow Objects

	36.7. autoGIL — Global Interpreter Lock handling in event loops

	36.8. Mac OS Toolbox Modules
	36.8.1. Carbon.AE — Apple Events

	36.8.2. Carbon.AH — Apple Help

	36.8.3. Carbon.App — Appearance Manager

	36.8.4. Carbon.Appearance — Appearance Manager constants

	36.8.5. Carbon.CF — Core Foundation

	36.8.6. Carbon.CG — Core Graphics

	36.8.7. Carbon.CarbonEvt — Carbon Event Manager

	36.8.8. Carbon.CarbonEvents — Carbon Event Manager constants

	36.8.9. Carbon.Cm — Component Manager

	36.8.10. Carbon.Components — Component Manager constants

	36.8.11. Carbon.ControlAccessor — Control Manager accssors

	36.8.12. Carbon.Controls — Control Manager constants

	36.8.13. Carbon.CoreFounation — CoreFounation constants

	36.8.14. Carbon.CoreGraphics — CoreGraphics constants

	36.8.15. Carbon.Ctl — Control Manager

	36.8.16. Carbon.Dialogs — Dialog Manager constants

	36.8.17. Carbon.Dlg — Dialog Manager

	36.8.18. Carbon.Drag — Drag and Drop Manager

	36.8.19. Carbon.Dragconst — Drag and Drop Manager constants

	36.8.20. Carbon.Events — Event Manager constants

	36.8.21. Carbon.Evt — Event Manager

	36.8.22. Carbon.File — File Manager

	36.8.23. Carbon.Files — File Manager constants

	36.8.24. Carbon.Fm — Font Manager

	36.8.25. Carbon.Folder — Folder Manager

	36.8.26. Carbon.Folders — Folder Manager constants

	36.8.27. Carbon.Fonts — Font Manager constants

	36.8.28. Carbon.Help — Help Manager

	36.8.29. Carbon.IBCarbon — Carbon InterfaceBuilder

	36.8.30. Carbon.IBCarbonRuntime — Carbon InterfaceBuilder constants

	36.8.31. Carbon.Icn — Carbon Icon Manager

	36.8.32. Carbon.Icons — Carbon Icon Manager constants

	36.8.33. Carbon.Launch — Carbon Launch Services

	36.8.34. Carbon.LaunchServices — Carbon Launch Services constants

	36.8.35. Carbon.List — List Manager

	36.8.36. Carbon.Lists — List Manager constants

	36.8.37. Carbon.MacHelp — Help Manager constants

	36.8.38. Carbon.MediaDescr — Parsers and generators for Quicktime Media descriptors

	36.8.39. Carbon.Menu — Menu Manager

	36.8.40. Carbon.Menus — Menu Manager constants

	36.8.41. Carbon.Mlte — MultiLingual Text Editor

	36.8.42. Carbon.OSA — Carbon OSA Interface

	36.8.43. Carbon.OSAconst — Carbon OSA Interface constants

	36.8.44. Carbon.QDOffscreen — QuickDraw Offscreen constants

	36.8.45. Carbon.Qd — QuickDraw

	36.8.46. Carbon.Qdoffs — QuickDraw Offscreen

	36.8.47. Carbon.Qt — QuickTime

	36.8.48. Carbon.QuickDraw — QuickDraw constants

	36.8.49. Carbon.QuickTime — QuickTime constants

	36.8.50. Carbon.Res — Resource Manager and Handles

	36.8.51. Carbon.Resources — Resource Manager and Handles constants

	36.8.52. Carbon.Scrap — Scrap Manager

	36.8.53. Carbon.Snd — Sound Manager

	36.8.54. Carbon.Sound — Sound Manager constants

	36.8.55. Carbon.TE — TextEdit

	36.8.56. Carbon.TextEdit — TextEdit constants

	36.8.57. Carbon.Win — Window Manager

	36.8.58. Carbon.Windows — Window Manager constants

	36.9. ColorPicker — Color selection dialog

	37. MacPython OSA Modules
	37.1. gensuitemodule — Generate OSA stub packages

	37.2. aetools — OSA client support

	37.3. aepack — Conversion between Python variables and AppleEvent data containers

	37.4. aetypes — AppleEvent objects

	37.5. MiniAEFrame — Open Scripting Architecture server support
	37.5.1. AEServer Objects

	38. SGI IRIX Specific Services
	38.1. al — Audio functions on the SGI
	38.1.1. Configuration Objects

	38.1.2. Port Objects

	38.2. AL — Constants used with the al module

	38.3. cd — CD-ROM access on SGI systems
	38.3.1. Player Objects

	38.3.2. Parser Objects

	38.4. fl — FORMS library for graphical user interfaces
	38.4.1. Functions Defined in Module fl

	38.4.2. Form Objects

	38.4.3. FORMS Objects

	38.5. FL — Constants used with the fl module

	38.6. flp — Functions for loading stored FORMS designs

	38.7. fm — Font Manager interface

	38.8. gl — Graphics Library interface

	38.9. DEVICE — Constants used with the gl module

	38.10. GL — Constants used with the gl module

	38.11. imgfile — Support for SGI imglib files

	38.12. jpeg — Read and write JPEG files

	39. SunOS Specific Services
	39.1. sunaudiodev — Access to Sun audio hardware
	39.1.1. Audio Device Objects

	39.2. SUNAUDIODEV — Constants used with sunaudiodev

	40. Undocumented Modules
	40.1. Miscellaneous useful utilities

	40.2. Platform specific modules

	40.3. Multimedia

	40.4. Undocumented Mac OS modules
	40.4.1. applesingle — AppleSingle decoder

	40.4.2. buildtools — Helper module for BuildApplet and Friends

	40.4.3. cfmfile — Code Fragment Resource module

	40.4.4. icopen — Internet Config replacement for open()

	40.4.5. macerrors — Mac OS Errors

	40.4.6. macresource — Locate script resources

	40.4.7. Nav — NavServices calls

	40.4.8. PixMapWrapper — Wrapper for PixMap objects

	40.4.9. videoreader — Read QuickTime movies

	40.4.10. W — Widgets built on FrameWork

	40.5. Obsolete

	40.6. SGI-specific Extension modules

	Extending and Embedding the Python Interpreter
	1. Extending Python with C or C++
	1.1. A Simple Example

	1.2. Intermezzo: Errors and Exceptions

	1.3. Back to the Example

	1.4. The Module’s Method Table and Initialization Function

	1.5. Compilation and Linkage

	1.6. Calling Python Functions from C

	1.7. Extracting Parameters in Extension Functions

	1.8. Keyword Parameters for Extension Functions

	1.9. Building Arbitrary Values

	1.10. Reference Counts
	1.10.1. Reference Counting in Python

	1.10.2. Ownership Rules

	1.10.3. Thin Ice

	1.10.4. NULL Pointers

	1.11. Writing Extensions in C++

	1.12. Providing a C API for an Extension Module

	2. Defining New Types
	2.1. The Basics
	2.1.1. Adding data and methods to the Basic example

	2.1.2. Providing finer control over data attributes

	2.1.3. Supporting cyclic garbage collection

	2.1.4. Subclassing other types

	2.2. Type Methods
	2.2.1. Finalization and De-allocation

	2.2.2. Object Presentation

	2.2.3. Attribute Management
	2.2.3.1. Generic Attribute Management

	2.2.3.2. Type-specific Attribute Management

	2.2.4. Object Comparison

	2.2.5. Abstract Protocol Support

	2.2.6. Weak Reference Support

	2.2.7. More Suggestions

	3. Building C and C++ Extensions with distutils
	3.1. Distributing your extension modules

	4. Building C and C++ Extensions on Windows
	4.1. A Cookbook Approach

	4.2. Differences Between Unix and Windows

	4.3. Using DLLs in Practice

	5. Embedding Python in Another Application
	5.1. Very High Level Embedding

	5.2. Beyond Very High Level Embedding: An overview

	5.3. Pure Embedding

	5.4. Extending Embedded Python

	5.5. Embedding Python in C++

	5.6. Linking Requirements

	IronPython .NET API Reference Manual
	1. Extending IronPython with C#
	1.1. A Simple Example

	2. Parsing and Tokenizing

	Distributing Python Modules
	1. An Introduction to Distutils
	1.1. Concepts & Terminology

	1.2. A Simple Example

	1.3. General Python terminology

	1.4. Distutils-specific terminology

	2. Writing the Setup Script
	2.1. Listing whole packages

	2.2. Listing individual modules

	2.3. Describing extension modules
	2.3.1. Extension names and packages

	2.3.2. Extension source files

	2.3.3. Preprocessor options

	2.3.4. Library options

	2.3.5. Other options

	2.4. Relationships between Distributions and Packages

	2.5. Installing Scripts

	2.6. Installing Package Data

	2.7. Installing Additional Files

	2.8. Additional meta-data

	2.9. Debugging the setup script

	3. Writing the Setup Configuration File

	4. Creating a Source Distribution
	4.1. Specifying the files to distribute

	4.2. Manifest-related options

	4.3. The MANIFEST.in template
	4.3.1. Principle

	4.3.2. Commands

	5. Creating Built Distributions
	5.1. Creating dumb built distributions

	5.2. Creating RPM packages

	5.3. Creating Windows Installers

	5.4. Cross-compiling on Windows
	5.4.1. The Postinstallation script

	5.5. Vista User Access Control (UAC)

	6. Registering with the Package Index
	6.1. The .pypirc file

	7. Uploading Packages to the Package Index
	7.1. PyPI package display

	8. Examples
	8.1. Pure Python distribution (by module)

	8.2. Pure Python distribution (by package)

	8.3. Single extension module

	9. Extending Distutils
	9.1. Integrating new commands

	9.2. Adding new distribution types

	10. Command Reference
	10.1. Installing modules: the install command family
	10.1.1. install_data

	10.1.2. install_scripts

	11. API Reference
	11.1. distutils.core — Core Distutils functionality

	11.2. distutils.ccompiler — CCompiler base class

	11.3. distutils.unixccompiler — Unix C Compiler

	11.4. distutils.msvccompiler — Microsoft Compiler

	11.5. distutils.bcppcompiler — Borland Compiler

	11.6. distutils.cygwincompiler — Cygwin Compiler

	11.7. distutils.emxccompiler — OS/2 EMX Compiler

	11.8. distutils.archive_util — Archiving utilities

	11.9. distutils.dep_util — Dependency checking

	11.10. distutils.dir_util — Directory tree operations

	11.11. distutils.file_util — Single file operations

	11.12. distutils.util — Miscellaneous other utility functions

	11.13. distutils.dist — The Distribution class

	11.14. distutils.extension — The Extension class

	11.15. distutils.debug — Distutils debug mode

	11.16. distutils.errors — Distutils exceptions

	11.17. distutils.fancy_getopt — Wrapper around the standard getopt module

	11.18. distutils.filelist — The FileList class

	11.19. distutils.log — Simple PEP 282-style logging

	11.20. distutils.spawn — Spawn a sub-process

	11.21. distutils.sysconfig — System configuration information

	11.22. distutils.text_file — The TextFile class

	11.23. distutils.version — Version number classes

	11.24. distutils.cmd — Abstract base class for Distutils commands

	11.25. Creating a new Distutils command

	11.26. distutils.command — Individual Distutils commands

	11.27. distutils.command.bdist — Build a binary installer

	11.28. distutils.command.bdist_packager — Abstract base class for packagers

	11.29. distutils.command.bdist_dumb — Build a “dumb” installer

	11.30. distutils.command.bdist_msi — Build a Microsoft Installer binary package

	11.31. distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SRPM

	11.32. distutils.command.bdist_wininst — Build a Windows installer

	11.33. distutils.command.sdist — Build a source distribution

	11.34. distutils.command.build — Build all files of a package

	11.35. distutils.command.build_clib — Build any C libraries in a package

	11.36. distutils.command.build_ext — Build any extensions in a package

	11.37. distutils.command.build_py — Build the .py/.pyc files of a package

	11.38. distutils.command.build_scripts — Build the scripts of a package

	11.39. distutils.command.clean — Clean a package build area

	11.40. distutils.command.config — Perform package configuration

	11.41. distutils.command.install — Install a package

	11.42. distutils.command.install_data — Install data files from a package

	11.43. distutils.command.install_headers — Install C/C++ header files from a package

	11.44. distutils.command.install_lib — Install library files from a package

	11.45. distutils.command.install_scripts — Install script files from a package

	11.46. distutils.command.register — Register a module with the Python Package Index

	11.47. distutils.command.check — Check the meta-data of a package

	Installing Python Modules
	Introduction
	Best case: trivial installation

	The new standard: Distutils

	Standard Build and Install
	Platform variations

	Splitting the job up

	How building works

	How installation works

	Alternate Installation
	Alternate installation: the home scheme

	Alternate installation: Unix (the prefix scheme)

	Alternate installation: Windows (the prefix scheme)

	Custom Installation
	Modifying Python’s Search Path

	Distutils Configuration Files
	Location and names of config files

	Syntax of config files

	Building Extensions: Tips and Tricks
	Tweaking compiler/linker flags

	Using non-Microsoft compilers on Windows
	Borland/CodeGear C++

	GNU C / Cygwin / MinGW
	Older Versions of Python and MinGW

	Documenting Python
	1. Introduction

	2. Style Guide
	2.1. Affirmative Tone

	2.2. Economy of Expression

	2.3. Code Examples

	2.4. Code Equivalents

	2.5. Audience

	3. reStructuredText Primer
	3.1. Paragraphs

	3.2. Inline markup

	3.3. Lists and Quotes

	3.4. Source Code

	3.5. Hyperlinks
	3.5.1. External links

	3.5.2. Internal links

	3.6. Sections

	3.7. Explicit Markup

	3.8. Directives

	3.9. Footnotes

	3.10. Comments

	3.11. Source encoding

	3.12. Gotchas

	4. Additional Markup Constructs
	4.1. Meta-information markup

	4.2. Module-specific markup

	4.3. Information units

	4.4. Showing code examples

	4.5. Inline markup

	4.6. Cross-linking markup

	4.7. Paragraph-level markup

	4.8. Table-of-contents markup

	4.9. Index-generating markup

	4.10. Grammar production displays

	4.11. Substitutions

	5. Differences to the LaTeX markup
	5.1. Inline markup

	5.2. Information units

	5.3. Structure

	6. Building the documentation
	6.1. Using make

	6.2. Without make

	Python HOWTOs
	Python Advocacy HOWTO
	Reasons to Use Python
	Programmability

	Prototyping

	Simplicity and Ease of Understanding

	Java Integration

	Arguments and Rebuttals

	Useful Resources

	Porting Extension Modules to 3.0
	Conditional compilation

	Changes to Object APIs
	str/unicode Unification

	long/int Unification

	Module initialization and state

	Other options

	Curses Programming with Python
	What is curses?
	The Python curses module

	Starting and ending a curses application

	Windows and Pads

	Displaying Text
	Attributes and Color

	User Input

	For More Information

	Descriptor HowTo Guide
	Abstract

	Definition and Introduction

	Descriptor Protocol

	Invoking Descriptors

	Descriptor Example

	Properties

	Functions and Methods

	Static Methods and Class Methods

	Idioms and Anti-Idioms in Python
	Language Constructs You Should Not Use
	from module import *
	Inside Function Definitions

	At Module Level

	When It Is Just Fine

	Unadorned exec, execfile() and friends

	from module import name1, name2

	except:

	Exceptions

	Using the Batteries

	Using Backslash to Continue Statements

	Functional Programming HOWTO
	Introduction
	Formal provability

	Modularity

	Ease of debugging and testing

	Composability

	Iterators
	Data Types That Support Iterators

	Generator expressions and list comprehensions

	Generators
	Passing values into a generator

	Built-in functions

	Small functions and the lambda expression

	The itertools module
	Creating new iterators

	Calling functions on elements

	Selecting elements

	Grouping elements

	The functools module
	The operator module

	The functional module

	Revision History and Acknowledgements

	References
	General

	Python-specific

	Python documentation

	Logging HOWTO
	Basic Logging Tutorial
	When to use logging

	A simple example

	Logging to a file

	Logging from multiple modules

	Logging variable data

	Changing the format of displayed messages

	Displaying the date/time in messages

	Next Steps

	Advanced Logging Tutorial
	Loggers

	Handlers

	Formatters

	Configuring Logging

	What happens if no configuration is provided

	Configuring Logging for a Library

	Logging Levels
	Custom Levels

	Useful Handlers

	Exceptions raised during logging

	Using arbitrary objects as messages

	Optimization

	Logging Cookbook
	Using logging in multiple modules

	Multiple handlers and formatters

	Logging to multiple destinations

	Configuration server example

	Sending and receiving logging events across a network

	Adding contextual information to your logging output
	Using LoggerAdapters to impart contextual information

	Using Filters to impart contextual information

	Logging to a single file from multiple processes

	Using file rotation

	Regular Expression HOWTO
	Introduction

	Simple Patterns
	Matching Characters

	Repeating Things

	Using Regular Expressions
	Compiling Regular Expressions

	The Backslash Plague

	Performing Matches

	Module-Level Functions

	Compilation Flags

	More Pattern Power
	More Metacharacters

	Grouping

	Non-capturing and Named Groups

	Lookahead Assertions

	Modifying Strings
	Splitting Strings

	Search and Replace

	Common Problems
	Use String Methods

	match() versus search()

	Greedy versus Non-Greedy

	Using re.VERBOSE

	Feedback

	Socket Programming HOWTO
	Sockets
	History

	Creating a Socket
	IPC

	Using a Socket
	Binary Data

	Disconnecting
	When Sockets Die

	Non-blocking Sockets
	Performance

	Sorting HOW TO
	Sorting Basics

	Key Functions

	Operator Module Functions

	Ascending and Descending

	Sort Stability and Complex Sorts

	The Old Way Using Decorate-Sort-Undecorate

	The Old Way Using the cmp Parameter

	Odd and Ends

	Unicode HOWTO
	Introduction to Unicode
	History of Character Codes

	Definitions

	Encodings

	References

	Python 2.x’s Unicode Support
	The Unicode Type

	Unicode Literals in Python Source Code

	Unicode Properties

	References

	Reading and Writing Unicode Data
	Unicode filenames

	Tips for Writing Unicode-aware Programs

	References

	Revision History and Acknowledgements

	HOWTO Fetch Internet Resources Using urllib2
	Introduction

	Fetching URLs
	Data

	Headers

	Handling Exceptions
	URLError

	HTTPError
	Error Codes

	Wrapping it Up
	Number 1

	Number 2

	info and geturl

	Openers and Handlers

	Basic Authentication

	Proxies

	Sockets and Layers

	Footnotes

	HOWTO Use Python in the web
	The Low-Level View
	Common Gateway Interface
	Simple script for testing CGI

	Setting up CGI on your own server

	Common problems with CGI scripts

	mod_python

	FastCGI and SCGI
	Setting up FastCGI

	mod_wsgi

	Step back: WSGI
	WSGI Servers

	Case study: MoinMoin

	Model-View-Controller

	Ingredients for Websites
	Templates

	Data persistence

	Frameworks
	Some notable frameworks
	Django

	TurboGears

	Zope

	Other notable frameworks

	Python Frequently Asked Questions
	General Python FAQ
	General Information

	Python in the real world

	Upgrading Python

	Programming FAQ
	General Questions

	Core Language

	Numbers and strings

	Sequences (Tuples/Lists)

	Dictionaries

	Objects

	Modules

	Design and History FAQ
	Why does Python use indentation for grouping of statements?

	Why am I getting strange results with simple arithmetic operations?

	Why are floating point calculations so inaccurate?

	Why are Python strings immutable?

	Why must ‘self’ be used explicitly in method definitions and calls?

	Why can’t I use an assignment in an expression?

	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?

	Why is join() a string method instead of a list or tuple method?

	How fast are exceptions?

	Why isn’t there a switch or case statement in Python?

	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

	Why can’t lambda forms contain statements?

	Can Python be compiled to machine code, C or some other language?

	How does Python manage memory?

	Why isn’t all memory freed when Python exits?

	Why are there separate tuple and list data types?

	How are lists implemented?

	How are dictionaries implemented?

	Why must dictionary keys be immutable?

	Why doesn’t list.sort() return the sorted list?

	How do you specify and enforce an interface spec in Python?

	Why are default values shared between objects?

	Why is there no goto?

	Why can’t raw strings (r-strings) end with a backslash?

	Why doesn’t Python have a “with” statement for attribute assignments?

	Why are colons required for the if/while/def/class statements?

	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions

	Common tasks

	Threads

	Input and Output

	Network/Internet Programming

	Databases

	Mathematics and Numerics

	Extending/Embedding FAQ
	Can I create my own functions in C?

	Can I create my own functions in C++?

	Writing C is hard; are there any alternatives?

	How can I execute arbitrary Python statements from C?

	How can I evaluate an arbitrary Python expression from C?

	How do I extract C values from a Python object?

	How do I use Py_BuildValue() to create a tuple of arbitrary length?

	How do I call an object’s method from C?

	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

	How do I access a module written in Python from C?

	How do I interface to C++ objects from Python?

	I added a module using the Setup file and the make fails; why?

	How do I debug an extension?

	I want to compile a Python module on my Linux system, but some files are missing. Why?

	What does “SystemError: _PyImport_FixupExtension: module yourmodule not loaded” mean?

	How do I tell “incomplete input” from “invalid input”?

	How do I find undefined g++ symbols __builtin_new or __pure_virtual?

	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	When importing module X, why do I get “undefined symbol: PyUnicodeUCS2*”?

	Python on Windows FAQ
	How do I run a Python program under Windows?

	How do I make Python scripts executable?

	Why does Python sometimes take so long to start?

	Where is Freeze for Windows?

	Is a *.pyd file the same as a DLL?

	How can I embed Python into a Windows application?

	How do I use Python for CGI?

	How do I keep editors from inserting tabs into my Python source?

	How do I check for a keypress without blocking?

	How do I emulate os.kill() in Windows?

	Why does os.path.isdir() fail on NT shared directories?

	cgi.py (or other CGI programming) doesn’t work sometimes on NT or win95!

	Why doesn’t os.popen() work in PythonWin on NT?

	Why doesn’t os.popen()/win32pipe.popen() work on Win9x?

	PyRun_SimpleFile() crashes on Windows but not on Unix; why?

	Importing _tkinter fails on Windows 95/98: why?

	How do I extract the downloaded documentation on Windows?

	Missing cw3215mt.dll (or missing cw3215.dll)

	Warning about CTL3D32 version from installer

	Graphic User Interface FAQ
	What platform-independent GUI toolkits exist for Python?

	What platform-specific GUI toolkits exist for Python?

	Tkinter questions

	“Why is Python Installed on my Computer?” FAQ
	What is Python?

	Why is Python installed on my machine?

	Can I delete Python?

	Glossary

	About these documents
	Contributors to the Python Documentation

	Reporting Bugs
	Documentation bugs

	Using the Python issue tracker

	Copyright

	History and License
	History of IronPython

	Terms and conditions for accessing or otherwise using IronPython

	Licenses and Acknowledgements for Incorporated Software
	zlib.net

	History of Python

	Terms and conditions for accessing or otherwise using Python

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister

	Sockets

	Floating point exception control

	MD5 message digest algorithm

	Asynchronous socket services

	Cookie management

	Profiling

	Execution tracing

	UUencode and UUdecode functions

	XML Remote Procedure Calls

	test_epoll

	Select kqueue

	strtod and dtoa

	OpenSSL

	expat

	libffi

	zlib

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

What’s New in Python

The “What’s New in Python” series of essays takes tours through the most
important changes between major Python versions. They are a “must read” for
anyone wishing to stay up-to-date after a new release.

	What’s New in Python 2.7
	The Future for Python 2.x

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes

	New and Improved Modules

	Build and C API Changes

	Other Changes and Fixes

	Porting to Python 2.7

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process

	PEP 343: The ‘with’ statement

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers

	Other Language Changes

	New and Improved Modules

	Deprecations and Removals

	Build and C API Changes

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes

	New, Improved, and Removed Modules

	Build and C API Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes

	New, Improved, and Deprecated Modules

	Build and C API Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes

	New, Improved, and Deprecated Modules

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.7

	Author:	A.M. Kuchling (amk at amk.ca)

	Release:	2.7.2b1

	Date:	November 07, 2013

This article explains the new features in Python 2.7. Python 2.7 was released
on July 3, 2010.

Numeric handling has been improved in many ways, for both
floating-point numbers and for the Decimal class.
There are some useful additions to the standard library, such as a
greatly enhanced unittest module, the argparse module
for parsing command-line options, convenient OrderedDict
and Counter classes in the collections module,
and many other improvements.

Python 2.7 is planned to be the last of the 2.x releases, so we worked
on making it a good release for the long term. To help with porting
to Python 3, several new features from the Python 3.x series have been
included in 2.7.

This article doesn’t attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.7 at
http://docs.python.org. If you want to understand the rationale for
the design and implementation, refer to the PEP for a particular new
feature or the issue on http://bugs.python.org in which a change was
discussed. Whenever possible, “What’s New in Python” links to the
bug/patch item for each change.

The Future for Python 2.x

Python 2.7 is intended to be the last major release in the 2.x series.
The Python maintainers are planning to focus their future efforts on
the Python 3.x series.

This means that 2.7 will remain in place for a long time, running
production systems that have not been ported to Python 3.x.
Two consequences of the long-term significance of 2.7 are:

	It’s very likely the 2.7 release will have a longer period of
maintenance compared to earlier 2.x versions. Python 2.7 will
continue to be maintained while the transition to 3.x continues, and
the developers are planning to support Python 2.7 with bug-fix
releases beyond the typical two years.

	A policy decision was made to silence warnings only of interest to
developers. DeprecationWarning and its
descendants are now ignored unless otherwise requested, preventing
users from seeing warnings triggered by an application. This change
was also made in the branch that will become Python 3.2. (Discussed
on stdlib-sig and carried out in issue 7319 [http://bugs.python.org/issue7319].)

In previous releases, DeprecationWarning messages were
enabled by default, providing Python developers with a clear
indication of where their code may break in a future major version
of Python.

However, there are increasingly many users of Python-based
applications who are not directly involved in the development of
those applications. DeprecationWarning messages are
irrelevant to such users, making them worry about an application
that’s actually working correctly and burdening application developers
with responding to these concerns.

You can re-enable display of DeprecationWarning messages by
running Python with the -Wdefault (short form:
-Wd) switch, or by setting the PYTHONWARNINGS
environment variable to "default" (or "d") before running
Python. Python code can also re-enable them
by calling warnings.simplefilter('default').

Python 3.1 Features

Much as Python 2.6 incorporated features from Python 3.0,
version 2.7 incorporates some of the new features
in Python 3.1. The 2.x series continues to provide tools
for migrating to the 3.x series.

A partial list of 3.1 features that were backported to 2.7:

	The syntax for set literals ({1,2,3} is a mutable set).

	Dictionary and set comprehensions ({i: i*2 for i in range(3)}).

	Multiple context managers in a single with statement.

	A new version of the io library, rewritten in C for performance.

	The ordered-dictionary type described in PEP 372: Adding an Ordered Dictionary to collections.

	The new "," format specifier described in PEP 378: Format Specifier for Thousands Separator.

	The memoryview object.

	A small subset of the importlib module,
described below.

	The repr() of a float x is shorter in many cases: it’s now
based on the shortest decimal string that’s guaranteed to round back
to x. As in previous versions of Python, it’s guaranteed that
float(repr(x)) recovers x.

	Float-to-string and string-to-float conversions are correctly rounded.
The round() function is also now correctly rounded.

	The PyCapsule type, used to provide a C API for extension modules.

	The PyLong_AsLongAndOverflow() C API function.

Other new Python3-mode warnings include:

	operator.isCallable() and operator.sequenceIncludes(),
which are not supported in 3.x, now trigger warnings.

	The -3 switch now automatically
enables the -Qwarn switch that causes warnings
about using classic division with integers and long integers.

PEP 372: Adding an Ordered Dictionary to collections

Regular Python dictionaries iterate over key/value pairs in arbitrary order.
Over the years, a number of authors have written alternative implementations
that remember the order that the keys were originally inserted. Based on
the experiences from those implementations, 2.7 introduces a new
OrderedDict class in the collections module.

The OrderedDict API provides the same interface as regular
dictionaries but iterates over keys and values in a guaranteed order
depending on when a key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion
position is left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

The popitem() method has an optional last
argument that defaults to True. If last is True, the most recently
added key is returned and removed; if it’s False, the
oldest key is selected:

>>> od = OrderedDict([(x,0) for x in range(20)])
>>> od.popitem()
(19, 0)
>>> od.popitem()
(18, 0)
>>> od.popitem(last=False)
(0, 0)
>>> od.popitem(last=False)
(1, 0)

Comparing two ordered dictionaries checks both the keys and values,
and requires that the insertion order was the same:

>>> od1 = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> od2 = OrderedDict([('third', 3),
... ('first', 1),
... ('second', 2)])
>>> od1 == od2
False
>>> # Move 'third' key to the end
>>> del od2['third']; od2['third'] = 3
>>> od1 == od2
True

Comparing an OrderedDict with a regular dictionary
ignores the insertion order and just compares the keys and values.

How does the OrderedDict work? It maintains a
doubly-linked list of keys, appending new keys to the list as they’re inserted.
A secondary dictionary maps keys to their corresponding list node, so
deletion doesn’t have to traverse the entire linked list and therefore
remains O(1).

The standard library now supports use of ordered dictionaries in several
modules.

	The ConfigParser module uses them by default, meaning that
configuration files can now be read, modified, and then written back
in their original order.

	The _asdict() method for
collections.namedtuple() now returns an ordered dictionary with the
values appearing in the same order as the underlying tuple indices.

	The json module’s JSONDecoder class
constructor was extended with an object_pairs_hook parameter to
allow OrderedDict instances to be built by the decoder.
Support was also added for third-party tools like
PyYAML [http://pyyaml.org/].

See also

	PEP 372 [http://www.python.org/dev/peps/pep-0372] - Adding an ordered dictionary to collections

	PEP written by Armin Ronacher and Raymond Hettinger;
implemented by Raymond Hettinger.

PEP 378: Format Specifier for Thousands Separator

To make program output more readable, it can be useful to add
separators to large numbers, rendering them as
18,446,744,073,709,551,616 instead of 18446744073709551616.

The fully general solution for doing this is the locale module,
which can use different separators (”,” in North America, ”.” in
Europe) and different grouping sizes, but locale is complicated
to use and unsuitable for multi-threaded applications where different
threads are producing output for different locales.

Therefore, a simple comma-grouping mechanism has been added to the
mini-language used by the str.format() method. When
formatting a floating-point number, simply include a comma between the
width and the precision:

>>> '{:20,.2f}'.format(18446744073709551616.0)
'18,446,744,073,709,551,616.00'

When formatting an integer, include the comma after the width:

>>> '{:20,d}'.format(18446744073709551616)
'18,446,744,073,709,551,616'

This mechanism is not adaptable at all; commas are always used as the
separator and the grouping is always into three-digit groups. The
comma-formatting mechanism isn’t as general as the locale
module, but it’s easier to use.

See also

	PEP 378 [http://www.python.org/dev/peps/pep-0378] - Format Specifier for Thousands Separator

	PEP written by Raymond Hettinger; implemented by Eric Smith.

PEP 389: The argparse Module for Parsing Command Lines

The argparse module for parsing command-line arguments was
added as a more powerful replacement for the
optparse module.

This means Python now supports three different modules for parsing
command-line arguments: getopt, optparse, and
argparse. The getopt module closely resembles the C
library’s getopt() function, so it remains useful if you’re writing a
Python prototype that will eventually be rewritten in C.
optparse becomes redundant, but there are no plans to remove it
because there are many scripts still using it, and there’s no
automated way to update these scripts. (Making the argparse
API consistent with optparse‘s interface was discussed but
rejected as too messy and difficult.)

In short, if you’re writing a new script and don’t need to worry
about compatibility with earlier versions of Python, use
argparse instead of optparse.

Here’s an example:

import argparse

parser = argparse.ArgumentParser(description='Command-line example.')

Add optional switches
parser.add_argument('-v', action='store_true', dest='is_verbose',
 help='produce verbose output')
parser.add_argument('-o', action='store', dest='output',
 metavar='FILE',
 help='direct output to FILE instead of stdout')
parser.add_argument('-C', action='store', type=int, dest='context',
 metavar='NUM', default=0,
 help='display NUM lines of added context')

Allow any number of additional arguments.
parser.add_argument(nargs='*', action='store', dest='inputs',
 help='input filenames (default is stdin)')

args = parser.parse_args()
print args.__dict__

Unless you override it, -h and --help switches
are automatically added, and produce neatly formatted output:

-> ./python.exe argparse-example.py --help
usage: argparse-example.py [-h] [-v] [-o FILE] [-C NUM] [inputs [inputs ...]]

Command-line example.

positional arguments:
 inputs input filenames (default is stdin)

optional arguments:
 -h, --help show this help message and exit
 -v produce verbose output
 -o FILE direct output to FILE instead of stdout
 -C NUM display NUM lines of added context

As with optparse, the command-line switches and arguments
are returned as an object with attributes named by the dest parameters:

-> ./python.exe argparse-example.py -v
{'output': None,
 'is_verbose': True,
 'context': 0,
 'inputs': []}

-> ./python.exe argparse-example.py -v -o /tmp/output -C 4 file1 file2
{'output': '/tmp/output',
 'is_verbose': True,
 'context': 4,
 'inputs': ['file1', 'file2']}

argparse has much fancier validation than optparse; you
can specify an exact number of arguments as an integer, 0 or more
arguments by passing '*', 1 or more by passing '+', or an
optional argument with '?'. A top-level parser can contain
sub-parsers to define subcommands that have different sets of
switches, as in svn commit, svn checkout, etc. You can
specify an argument’s type as FileType, which will
automatically open files for you and understands that '-' means
standard input or output.

See also

	argparse documentation

	The documentation page of the argparse module.

	Upgrading optparse code

	Part of the Python documentation, describing how to convert
code that uses optparse.

	PEP 389 [http://www.python.org/dev/peps/pep-0389] - argparse - New Command Line Parsing Module

	PEP written and implemented by Steven Bethard.

PEP 391: Dictionary-Based Configuration For Logging

The logging module is very flexible; applications can define
a tree of logging subsystems, and each logger in this tree can filter
out certain messages, format them differently, and direct messages to
a varying number of handlers.

All this flexibility can require a lot of configuration. You can
write Python statements to create objects and set their properties,
but a complex set-up requires verbose but boring code.
logging also supports a fileConfig()
function that parses a file, but the file format doesn’t support
configuring filters, and it’s messier to generate programmatically.

Python 2.7 adds a dictConfig() function that
uses a dictionary to configure logging. There are many ways to
produce a dictionary from different sources: construct one with code;
parse a file containing JSON; or use a YAML parsing library if one is
installed. For more information see Configuration functions.

The following example configures two loggers, the root logger and a
logger named “network”. Messages sent to the root logger will be
sent to the system log using the syslog protocol, and messages
to the “network” logger will be written to a network.log file
that will be rotated once the log reaches 1MB.

import logging
import logging.config

configdict = {
 'version': 1, # Configuration schema in use; must be 1 for now
 'formatters': {
 'standard': {
 'format': ('%(asctime)s %(name)-15s '
 '%(levelname)-8s %(message)s')}},

 'handlers': {'netlog': {'backupCount': 10,
 'class': 'logging.handlers.RotatingFileHandler',
 'filename': '/logs/network.log',
 'formatter': 'standard',
 'level': 'INFO',
 'maxBytes': 1000000},
 'syslog': {'class': 'logging.handlers.SysLogHandler',
 'formatter': 'standard',
 'level': 'ERROR'}},

 # Specify all the subordinate loggers
 'loggers': {
 'network': {
 'handlers': ['netlog']
 }
 },
 # Specify properties of the root logger
 'root': {
 'handlers': ['syslog']
 },
}

Set up configuration
logging.config.dictConfig(configdict)

As an example, log two error messages
logger = logging.getLogger('/')
logger.error('Database not found')

netlogger = logging.getLogger('network')
netlogger.error('Connection failed')

Three smaller enhancements to the logging module, all
implemented by Vinay Sajip, are:

	The SysLogHandler class now supports
syslogging over TCP. The constructor has a socktype parameter
giving the type of socket to use, either socket.SOCK_DGRAM
for UDP or socket.SOCK_STREAM for TCP. The default
protocol remains UDP.

	Logger instances gained a getChild()
method that retrieves a descendant logger using a relative path.
For example, once you retrieve a logger by doing log = getLogger('app'),
calling log.getChild('network.listen') is equivalent to
getLogger('app.network.listen').

	The LoggerAdapter class gained a
isEnabledFor() method that takes a
level and returns whether the underlying logger would
process a message of that level of importance.

See also

	PEP 391 [http://www.python.org/dev/peps/pep-0391] - Dictionary-Based Configuration For Logging

	PEP written and implemented by Vinay Sajip.

PEP 3106: Dictionary Views

The dictionary methods keys(), values(), and
items() are different in Python 3.x. They return an object
called a view instead of a fully materialized list.

It’s not possible to change the return values of keys(),
values(), and items() in Python 2.7 because
too much code would break. Instead the 3.x versions were added
under the new names viewkeys(), viewvalues(),
and viewitems().

>>> d = dict((i*10, chr(65+i)) for i in range(26))
>>> d
{0: 'A', 130: 'N', 10: 'B', 140: 'O', 20: ..., 250: 'Z'}
>>> d.viewkeys()
dict_keys([0, 130, 10, 140, 20, 150, 30, ..., 250])

Views can be iterated over, but the key and item views also behave
like sets. The & operator performs intersection, and |
performs a union:

>>> d1 = dict((i*10, chr(65+i)) for i in range(26))
>>> d2 = dict((i**.5, i) for i in range(1000))
>>> d1.viewkeys() & d2.viewkeys()
set([0.0, 10.0, 20.0, 30.0])
>>> d1.viewkeys() | range(0, 30)
set([0, 1, 130, 3, 4, 5, 6, ..., 120, 250])

The view keeps track of the dictionary and its contents change as the
dictionary is modified:

>>> vk = d.viewkeys()
>>> vk
dict_keys([0, 130, 10, ..., 250])
>>> d[260] = '&'
>>> vk
dict_keys([0, 130, 260, 10, ..., 250])

However, note that you can’t add or remove keys while you’re iterating
over the view:

>>> for k in vk:
... d[k*2] = k
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

You can use the view methods in Python 2.x code, and the 2to3
converter will change them to the standard keys(),
values(), and items() methods.

See also

	PEP 3106 [http://www.python.org/dev/peps/pep-3106] - Revamping dict.keys(), .values() and .items()

	PEP written by Guido van Rossum.
Backported to 2.7 by Alexandre Vassalotti; issue 1967 [http://bugs.python.org/issue1967].

PEP 3137: The memoryview Object

The memoryview object provides a view of another object’s
memory content that matches the bytes type’s interface.

>>> import string
>>> m = memoryview(string.letters)
>>> m
<memory at 0x37f850>
>>> len(m) # Returns length of underlying object
52
>>> m[0], m[25], m[26] # Indexing returns one byte
('a', 'z', 'A')
>>> m2 = m[0:26] # Slicing returns another memoryview
>>> m2
<memory at 0x37f080>

The content of the view can be converted to a string of bytes or
a list of integers:

>>> m2.tobytes()
'abcdefghijklmnopqrstuvwxyz'
>>> m2.tolist()
[97, 98, 99, 100, 101, 102, 103, ... 121, 122]
>>>

memoryview objects allow modifying the underlying object if
it’s a mutable object.

>>> m2[0] = 75
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> b = bytearray(string.letters) # Creating a mutable object
>>> b
bytearray(b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')
>>> mb = memoryview(b)
>>> mb[0] = '*' # Assign to view, changing the bytearray.
>>> b[0:5] # The bytearray has been changed.
bytearray(b'*bcde')
>>>

See also

	PEP 3137 [http://www.python.org/dev/peps/pep-3137] - Immutable Bytes and Mutable Buffer

	PEP written by Guido van Rossum.
Implemented by Travis Oliphant, Antoine Pitrou and others.
Backported to 2.7 by Antoine Pitrou; issue 2396 [http://bugs.python.org/issue2396].

Other Language Changes

Some smaller changes made to the core Python language are:

	The syntax for set literals has been backported from Python 3.x.
Curly brackets are used to surround the contents of the resulting
mutable set; set literals are
distinguished from dictionaries by not containing colons and values.
{} continues to represent an empty dictionary; use
set() for an empty set.

>>> {1, 2, 3, 4, 5}
set([1, 2, 3, 4, 5])
>>> set() # empty set
set([])
>>> {} # empty dict
{}

Backported by Alexandre Vassalotti; issue 2335 [http://bugs.python.org/issue2335].

	Dictionary and set comprehensions are another feature backported from
3.x, generalizing list/generator comprehensions to use
the literal syntax for sets and dictionaries.

>>> {x: x*x for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
>>> {('a'*x) for x in range(6)}
set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'])

Backported by Alexandre Vassalotti; issue 2333 [http://bugs.python.org/issue2333].

	The with statement can now use multiple context managers
in one statement. Context managers are processed from left to right
and each one is treated as beginning a new with statement.
This means that:

with A() as a, B() as b:
 ... suite of statements ...

is equivalent to:

with A() as a:
 with B() as b:
 ... suite of statements ...

The contextlib.nested() function provides a very similar
function, so it’s no longer necessary and has been deprecated.

(Proposed in http://codereview.appspot.com/53094; implemented by
Georg Brandl.)

	Conversions between floating-point numbers and strings are
now correctly rounded on most platforms. These conversions occur
in many different places: str() on
floats and complex numbers; the float and complex
constructors;
numeric formatting; serializing and
deserializing floats and complex numbers using the
marshal, pickle
and json modules;
parsing of float and imaginary literals in Python code;
and Decimal-to-float conversion.

Related to this, the repr() of a floating-point number x
now returns a result based on the shortest decimal string that’s
guaranteed to round back to x under correct rounding (with
round-half-to-even rounding mode). Previously it gave a string
based on rounding x to 17 decimal digits.

The rounding library responsible for this improvement works on
Windows and on Unix platforms using the gcc, icc, or suncc
compilers. There may be a small number of platforms where correct
operation of this code cannot be guaranteed, so the code is not
used on such systems. You can find out which code is being used
by checking sys.float_repr_style, which will be short
if the new code is in use and legacy if it isn’t.

Implemented by Eric Smith and Mark Dickinson, using David Gay’s
dtoa.c library; issue 7117 [http://bugs.python.org/issue7117].

	Conversions from long integers and regular integers to floating
point now round differently, returning the floating-point number
closest to the number. This doesn’t matter for small integers that
can be converted exactly, but for large numbers that will
unavoidably lose precision, Python 2.7 now approximates more
closely. For example, Python 2.6 computed the following:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935283e+20
>>> n - long(float(n))
65535L

Python 2.7’s floating-point result is larger, but much closer to the
true value:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935289e+20
>>> n - long(float(n))
-1L

(Implemented by Mark Dickinson; issue 3166 [http://bugs.python.org/issue3166].)

Integer division is also more accurate in its rounding behaviours. (Also
implemented by Mark Dickinson; issue 1811 [http://bugs.python.org/issue1811].)

	Implicit coercion for complex numbers has been removed; the interpreter
will no longer ever attempt to call a __coerce__() method on complex
objects. (Removed by Meador Inge and Mark Dickinson; issue 5211 [http://bugs.python.org/issue5211].)

	The str.format() method now supports automatic numbering of the replacement
fields. This makes using str.format() more closely resemble using
%s formatting:

>>> '{}:{}:{}'.format(2009, 04, 'Sunday')
'2009:4:Sunday'
>>> '{}:{}:{day}'.format(2009, 4, day='Sunday')
'2009:4:Sunday'

The auto-numbering takes the fields from left to right, so the first {...}
specifier will use the first argument to str.format(), the next
specifier will use the next argument, and so on. You can’t mix auto-numbering
and explicit numbering – either number all of your specifier fields or none
of them – but you can mix auto-numbering and named fields, as in the second
example above. (Contributed by Eric Smith; issue 5237 [http://bugs.python.org/issue5237].)

Complex numbers now correctly support usage with format(),
and default to being right-aligned.
Specifying a precision or comma-separation applies to both the real
and imaginary parts of the number, but a specified field width and
alignment is applied to the whole of the resulting 1.5+3j
output. (Contributed by Eric Smith; issue 1588 [http://bugs.python.org/issue1588] and issue 7988 [http://bugs.python.org/issue7988].)

The ‘F’ format code now always formats its output using uppercase characters,
so it will now produce ‘INF’ and ‘NAN’.
(Contributed by Eric Smith; issue 3382 [http://bugs.python.org/issue3382].)

A low-level change: the object.__format__() method now triggers
a PendingDeprecationWarning if it’s passed a format string,
because the __format__() method for object converts
the object to a string representation and formats that. Previously
the method silently applied the format string to the string
representation, but that could hide mistakes in Python code. If
you’re supplying formatting information such as an alignment or
precision, presumably you’re expecting the formatting to be applied
in some object-specific way. (Fixed by Eric Smith; issue 7994 [http://bugs.python.org/issue7994].)

	The int() and long() types gained a bit_length
method that returns the number of bits necessary to represent
its argument in binary:

>>> n = 37
>>> bin(n)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124

(Contributed by Fredrik Johansson and Victor Stinner; issue 3439 [http://bugs.python.org/issue3439].)

	The import statement will no longer try a relative import
if an absolute import (e.g. from .os import sep) fails. This
fixes a bug, but could possibly break certain import
statements that were only working by accident. (Fixed by Meador Inge;
issue 7902 [http://bugs.python.org/issue7902].)

	It’s now possible for a subclass of the built-in unicode type
to override the __unicode__() method. (Implemented by
Victor Stinner; issue 1583863 [http://bugs.python.org/issue1583863].)

	The bytearray type’s translate() method now accepts
None as its first argument. (Fixed by Georg Brandl;
issue 4759 [http://bugs.python.org/issue4759].)

	When using @classmethod and @staticmethod to wrap
methods as class or static methods, the wrapper object now
exposes the wrapped function as their __func__ attribute.
(Contributed by Amaury Forgeot d’Arc, after a suggestion by
George Sakkis; issue 5982 [http://bugs.python.org/issue5982].)

	When a restricted set of attributes were set using __slots__,
deleting an unset attribute would not raise AttributeError
as you would expect. Fixed by Benjamin Peterson; issue 7604 [http://bugs.python.org/issue7604].)

	Two new encodings are now supported: “cp720”, used primarily for
Arabic text; and “cp858”, a variant of CP 850 that adds the euro
symbol. (CP720 contributed by Alexander Belchenko and Amaury
Forgeot d’Arc in issue 1616979 [http://bugs.python.org/issue1616979]; CP858 contributed by Tim Hatch in
issue 8016 [http://bugs.python.org/issue8016].)

	The file object will now set the filename attribute
on the IOError exception when trying to open a directory
on POSIX platforms (noted by Jan Kaliszewski; issue 4764 [http://bugs.python.org/issue4764]), and
now explicitly checks for and forbids writing to read-only file objects
instead of trusting the C library to catch and report the error
(fixed by Stefan Krah; issue 5677 [http://bugs.python.org/issue5677]).

	The Python tokenizer now translates line endings itself, so the
compile() built-in function now accepts code using any
line-ending convention. Additionally, it no longer requires that the
code end in a newline.

	Extra parentheses in function definitions are illegal in Python 3.x,
meaning that you get a syntax error from def f((x)): pass. In
Python3-warning mode, Python 2.7 will now warn about this odd usage.
(Noted by James Lingard; issue 7362 [http://bugs.python.org/issue7362].)

	It’s now possible to create weak references to old-style class
objects. New-style classes were always weak-referenceable. (Fixed
by Antoine Pitrou; issue 8268 [http://bugs.python.org/issue8268].)

	When a module object is garbage-collected, the module’s dictionary is
now only cleared if no one else is holding a reference to the
dictionary (issue 7140 [http://bugs.python.org/issue7140]).

Interpreter Changes

A new environment variable, PYTHONWARNINGS,
allows controlling warnings. It should be set to a string
containing warning settings, equivalent to those
used with the -W switch, separated by commas.
(Contributed by Brian Curtin; issue 7301 [http://bugs.python.org/issue7301].)

For example, the following setting will print warnings every time
they occur, but turn warnings from the Cookie module into an
error. (The exact syntax for setting an environment variable varies
across operating systems and shells.)

export PYTHONWARNINGS=all,error:::Cookie:0

Optimizations

Several performance enhancements have been added:

	A new opcode was added to perform the initial setup for
with statements, looking up the __enter__() and
__exit__() methods. (Contributed by Benjamin Peterson.)

	The garbage collector now performs better for one common usage
pattern: when many objects are being allocated without deallocating
any of them. This would previously take quadratic
time for garbage collection, but now the number of full garbage collections
is reduced as the number of objects on the heap grows.
The new logic only performs a full garbage collection pass when
the middle generation has been collected 10 times and when the
number of survivor objects from the middle generation exceeds 10% of
the number of objects in the oldest generation. (Suggested by Martin
von Löwis and implemented by Antoine Pitrou; issue 4074 [http://bugs.python.org/issue4074].)

	The garbage collector tries to avoid tracking simple containers
which can’t be part of a cycle. In Python 2.7, this is now true for
tuples and dicts containing atomic types (such as ints, strings,
etc.). Transitively, a dict containing tuples of atomic types won’t
be tracked either. This helps reduce the cost of each
garbage collection by decreasing the number of objects to be
considered and traversed by the collector.
(Contributed by Antoine Pitrou; issue 4688 [http://bugs.python.org/issue4688].)

	Long integers are now stored internally either in base 2**15 or in base
2**30, the base being determined at build time. Previously, they
were always stored in base 2**15. Using base 2**30 gives
significant performance improvements on 64-bit machines, but
benchmark results on 32-bit machines have been mixed. Therefore,
the default is to use base 2**30 on 64-bit machines and base 2**15
on 32-bit machines; on Unix, there’s a new configure option
--enable-big-digits that can be used to override this default.

Apart from the performance improvements this change should be
invisible to end users, with one exception: for testing and
debugging purposes there’s a new structseq sys.long_info that
provides information about the internal format, giving the number of
bits per digit and the size in bytes of the C type used to store
each digit:

>>> import sys
>>> sys.long_info
sys.long_info(bits_per_digit=30, sizeof_digit=4)

(Contributed by Mark Dickinson; issue 4258 [http://bugs.python.org/issue4258].)

Another set of changes made long objects a few bytes smaller: 2 bytes
smaller on 32-bit systems and 6 bytes on 64-bit.
(Contributed by Mark Dickinson; issue 5260 [http://bugs.python.org/issue5260].)

	The division algorithm for long integers has been made faster
by tightening the inner loop, doing shifts instead of multiplications,
and fixing an unnecessary extra iteration.
Various benchmarks show speedups of between 50% and 150% for long
integer divisions and modulo operations.
(Contributed by Mark Dickinson; issue 5512 [http://bugs.python.org/issue5512].)
Bitwise operations are also significantly faster (initial patch by
Gregory Smith; issue 1087418 [http://bugs.python.org/issue1087418]).

	The implementation of % checks for the left-side operand being
a Python string and special-cases it; this results in a 1-3%
performance increase for applications that frequently use %
with strings, such as templating libraries.
(Implemented by Collin Winter; issue 5176 [http://bugs.python.org/issue5176].)

	List comprehensions with an if condition are compiled into
faster bytecode. (Patch by Antoine Pitrou, back-ported to 2.7
by Jeffrey Yasskin; issue 4715 [http://bugs.python.org/issue4715].)

	Converting an integer or long integer to a decimal string was made
faster by special-casing base 10 instead of using a generalized
conversion function that supports arbitrary bases.
(Patch by Gawain Bolton; issue 6713 [http://bugs.python.org/issue6713].)

	The split(), replace(), rindex(),
rpartition(), and rsplit() methods of string-like types
(strings, Unicode strings, and bytearray objects) now use a
fast reverse-search algorithm instead of a character-by-character
scan. This is sometimes faster by a factor of 10. (Added by
Florent Xicluna; issue 7462 [http://bugs.python.org/issue7462] and issue 7622 [http://bugs.python.org/issue7622].)

	The pickle and cPickle modules now automatically
intern the strings used for attribute names, reducing memory usage
of the objects resulting from unpickling. (Contributed by Jake
McGuire; issue 5084 [http://bugs.python.org/issue5084].)

	The cPickle module now special-cases dictionaries,
nearly halving the time required to pickle them.
(Contributed by Collin Winter; issue 5670 [http://bugs.python.org/issue5670].)

New and Improved Modules

As in every release, Python’s standard library received a number of
enhancements and bug fixes. Here’s a partial list of the most notable
changes, sorted alphabetically by module name. Consult the
Misc/NEWS file in the source tree for a more complete list of
changes, or look through the Subversion logs for all the details.

	The bdb module’s base debugging class Bdb
gained a feature for skipping modules. The constructor
now takes an iterable containing glob-style patterns such as
django.*; the debugger will not step into stack frames
from a module that matches one of these patterns.
(Contributed by Maru Newby after a suggestion by
Senthil Kumaran; issue 5142 [http://bugs.python.org/issue5142].)

	The binascii module now supports the buffer API, so it can be
used with memoryview instances and other similar buffer objects.
(Backported from 3.x by Florent Xicluna; issue 7703 [http://bugs.python.org/issue7703].)

	Updated module: the bsddb module has been updated from 4.7.2devel9
to version 4.8.4 of
the pybsddb package [http://www.jcea.es/programacion/pybsddb.htm].
The new version features better Python 3.x compatibility, various bug fixes,
and adds several new BerkeleyDB flags and methods.
(Updated by Jesús Cea Avión; issue 8156 [http://bugs.python.org/issue8156]. The pybsddb
changelog can be read at http://hg.jcea.es/pybsddb/file/tip/ChangeLog.)

	The bz2 module’s BZ2File now supports the context
management protocol, so you can write with bz2.BZ2File(...) as f:.
(Contributed by Hagen Fürstenau; issue 3860 [http://bugs.python.org/issue3860].)

	New class: the Counter class in the collections
module is useful for tallying data. Counter instances
behave mostly like dictionaries but return zero for missing keys instead of
raising a KeyError:

>>> from collections import Counter
>>> c = Counter()
>>> for letter in 'here is a sample of english text':
... c[letter] += 1
...
>>> c
Counter({' ': 6, 'e': 5, 's': 3, 'a': 2, 'i': 2, 'h': 2,
'l': 2, 't': 2, 'g': 1, 'f': 1, 'm': 1, 'o': 1, 'n': 1,
'p': 1, 'r': 1, 'x': 1})
>>> c['e']
5
>>> c['z']
0

There are three additional Counter methods.
most_common() returns the N most common
elements and their counts. elements()
returns an iterator over the contained elements, repeating each
element as many times as its count.
subtract() takes an iterable and
subtracts one for each element instead of adding; if the argument is
a dictionary or another Counter, the counts are
subtracted.

>>> c.most_common(5)
[(' ', 6), ('e', 5), ('s', 3), ('a', 2), ('i', 2)]
>>> c.elements() ->
 'a', 'a', ' ', ' ', ' ', ' ', ' ', ' ',
 'e', 'e', 'e', 'e', 'e', 'g', 'f', 'i', 'i',
 'h', 'h', 'm', 'l', 'l', 'o', 'n', 'p', 's',
 's', 's', 'r', 't', 't', 'x'
>>> c['e']
5
>>> c.subtract('very heavy on the letter e')
>>> c['e'] # Count is now lower
-1

Contributed by Raymond Hettinger; issue 1696199 [http://bugs.python.org/issue1696199].

New class: OrderedDict is described in the earlier
section PEP 372: Adding an Ordered Dictionary to collections.

New method: The deque data type now has a
count() method that returns the number of
contained elements equal to the supplied argument x, and a
reverse() method that reverses the elements
of the deque in-place. deque also exposes its maximum
length as the read-only maxlen attribute.
(Both features added by Raymond Hettinger.)

The namedtuple class now has an optional rename parameter.
If rename is true, field names that are invalid because they’ve
been repeated or aren’t legal Python identifiers will be
renamed to legal names that are derived from the field’s
position within the list of fields:

>>> from collections import namedtuple
>>> T = namedtuple('T', ['field1', '$illegal', 'for', 'field2'], rename=True)
>>> T._fields
('field1', '_1', '_2', 'field2')

(Added by Raymond Hettinger; issue 1818 [http://bugs.python.org/issue1818].)

Finally, the Mapping abstract base class now
returns NotImplemented if a mapping is compared to
another type that isn’t a Mapping.
(Fixed by Daniel Stutzbach; issue 8729 [http://bugs.python.org/issue8729].)

	Constructors for the parsing classes in the ConfigParser module now
take a allow_no_value parameter, defaulting to false; if true,
options without values will be allowed. For example:

>>> import ConfigParser, StringIO
>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-bdb
... """
>>> config = ConfigParser.RawConfigParser(allow_no_value=True)
>>> config.readfp(StringIO.StringIO(sample_config))
>>> config.get('mysqld', 'user')
'mysql'
>>> print config.get('mysqld', 'skip-bdb')
None
>>> print config.get('mysqld', 'unknown')
Traceback (most recent call last):
 ...
NoOptionError: No option 'unknown' in section: 'mysqld'

(Contributed by Mats Kindahl; issue 7005 [http://bugs.python.org/issue7005].)

	Deprecated function: contextlib.nested(), which allows
handling more than one context manager with a single with
statement, has been deprecated, because the with statement
now supports multiple context managers.

	The cookielib module now ignores cookies that have an invalid
version field, one that doesn’t contain an integer value. (Fixed by
John J. Lee; issue 3924 [http://bugs.python.org/issue3924].)

	The copy module’s deepcopy() function will now
correctly copy bound instance methods. (Implemented by
Robert Collins; issue 1515 [http://bugs.python.org/issue1515].)

	The ctypes module now always converts None to a C NULL
pointer for arguments declared as pointers. (Changed by Thomas
Heller; issue 4606 [http://bugs.python.org/issue4606].) The underlying libffi library [http://sourceware.org/libffi/] has been updated to version
3.0.9, containing various fixes for different platforms. (Updated
by Matthias Klose; issue 8142 [http://bugs.python.org/issue8142].)

	New method: the datetime module’s timedelta class
gained a total_seconds() method that returns the
number of seconds in the duration. (Contributed by Brian Quinlan; issue 5788 [http://bugs.python.org/issue5788].)

	New method: the Decimal class gained a
from_float() class method that performs an exact
conversion of a floating-point number to a Decimal.
This exact conversion strives for the
closest decimal approximation to the floating-point representation’s value;
the resulting decimal value will therefore still include the inaccuracy,
if any.
For example, Decimal.from_float(0.1) returns
Decimal('0.1000000000000000055511151231257827021181583404541015625').
(Implemented by Raymond Hettinger; issue 4796 [http://bugs.python.org/issue4796].)

Comparing instances of Decimal with floating-point
numbers now produces sensible results based on the numeric values
of the operands. Previously such comparisons would fall back to
Python’s default rules for comparing objects, which produced arbitrary
results based on their type. Note that you still cannot combine
Decimal and floating-point in other operations such as addition,
since you should be explicitly choosing how to convert between float and
Decimal. (Fixed by Mark Dickinson; issue 2531 [http://bugs.python.org/issue2531].)

The constructor for Decimal now accepts
floating-point numbers (added by Raymond Hettinger; issue 8257 [http://bugs.python.org/issue8257])
and non-European Unicode characters such as Arabic-Indic digits
(contributed by Mark Dickinson; issue 6595 [http://bugs.python.org/issue6595]).

Most of the methods of the Context class now accept integers
as well as Decimal instances; the only exceptions are the
canonical() and is_canonical()
methods. (Patch by Juan José Conti; issue 7633 [http://bugs.python.org/issue7633].)

When using Decimal instances with a string’s
format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which is
more sensible for numeric types. (Changed by Mark Dickinson; issue 6857 [http://bugs.python.org/issue6857].)

Comparisons involving a signaling NaN value (or sNAN) now signal
InvalidOperation instead of silently returning a true or
false value depending on the comparison operator. Quiet NaN values
(or NaN) are now hashable. (Fixed by Mark Dickinson;
issue 7279 [http://bugs.python.org/issue7279].)

	The difflib module now produces output that is more
compatible with modern diff/patch tools
through one small change, using a tab character instead of spaces as
a separator in the header giving the filename. (Fixed by Anatoly
Techtonik; issue 7585 [http://bugs.python.org/issue7585].)

	The Distutils sdist command now always regenerates the
MANIFEST file, since even if the MANIFEST.in or
setup.py files haven’t been modified, the user might have
created some new files that should be included.
(Fixed by Tarek Ziadé; issue 8688 [http://bugs.python.org/issue8688].)

	The doctest module’s IGNORE_EXCEPTION_DETAIL flag
will now ignore the name of the module containing the exception
being tested. (Patch by Lennart Regebro; issue 7490 [http://bugs.python.org/issue7490].)

	The email module’s Message class will
now accept a Unicode-valued payload, automatically converting the
payload to the encoding specified by output_charset.
(Added by R. David Murray; issue 1368247 [http://bugs.python.org/issue1368247].)

	The Fraction class now accepts a single float or
Decimal instance, or two rational numbers, as
arguments to its constructor. (Implemented by Mark Dickinson;
rationals added in issue 5812 [http://bugs.python.org/issue5812], and float/decimal in
issue 8294 [http://bugs.python.org/issue8294].)

Ordering comparisons (<, <=, >, >=) between
fractions and complex numbers now raise a TypeError.
This fixes an oversight, making the Fraction
match the other numeric types.

	New class: FTP_TLS in
the ftplib module provides secure FTP
connections using TLS encapsulation of authentication as well as
subsequent control and data transfers.
(Contributed by Giampaolo Rodola; issue 2054 [http://bugs.python.org/issue2054].)

The storbinary() method for binary uploads can now restart
uploads thanks to an added rest parameter (patch by Pablo Mouzo;
issue 6845 [http://bugs.python.org/issue6845].)

	New class decorator: total_ordering() in the functools
module takes a class that defines an __eq__() method and one of
__lt__(), __le__(), __gt__(), or __ge__(),
and generates the missing comparison methods. Since the
__cmp__() method is being deprecated in Python 3.x,
this decorator makes it easier to define ordered classes.
(Added by Raymond Hettinger; issue 5479 [http://bugs.python.org/issue5479].)

New function: cmp_to_key() will take an old-style comparison
function that expects two arguments and return a new callable that
can be used as the key parameter to functions such as
sorted(), min() and max(), etc. The primary
intended use is to help with making code compatible with Python 3.x.
(Added by Raymond Hettinger.)

	New function: the gc module’s is_tracked() returns
true if a given instance is tracked by the garbage collector, false
otherwise. (Contributed by Antoine Pitrou; issue 4688 [http://bugs.python.org/issue4688].)

	The gzip module’s GzipFile now supports the context
management protocol, so you can write with gzip.GzipFile(...) as f:
(contributed by Hagen Fürstenau; issue 3860 [http://bugs.python.org/issue3860]), and it now implements
the io.BufferedIOBase ABC, so you can wrap it with
io.BufferedReader for faster processing
(contributed by Nir Aides; issue 7471 [http://bugs.python.org/issue7471]).
It’s also now possible to override the modification time
recorded in a gzipped file by providing an optional timestamp to
the constructor. (Contributed by Jacques Frechet; issue 4272 [http://bugs.python.org/issue4272].)

Files in gzip format can be padded with trailing zero bytes; the
gzip module will now consume these trailing bytes. (Fixed by
Tadek Pietraszek and Brian Curtin; issue 2846 [http://bugs.python.org/issue2846].)

	New attribute: the hashlib module now has an algorithms
attribute containing a tuple naming the supported algorithms.
In Python 2.7, hashlib.algorithms contains
('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512').
(Contributed by Carl Chenet; issue 7418 [http://bugs.python.org/issue7418].)

	The default HTTPResponse class used by the httplib module now
supports buffering, resulting in much faster reading of HTTP responses.
(Contributed by Kristján Valur Jónsson; issue 4879 [http://bugs.python.org/issue4879].)

The HTTPConnection and HTTPSConnection classes
now support a source_address parameter, a (host, port) 2-tuple
giving the source address that will be used for the connection.
(Contributed by Eldon Ziegler; issue 3972 [http://bugs.python.org/issue3972].)

	The ihooks module now supports relative imports. Note that
ihooks is an older module for customizing imports,
superseded by the imputil module added in Python 2.0.
(Relative import support added by Neil Schemenauer.)

	The imaplib module now supports IPv6 addresses.
(Contributed by Derek Morr; issue 1655 [http://bugs.python.org/issue1655].)

	New function: the inspect module’s getcallargs()
takes a callable and its positional and keyword arguments,
and figures out which of the callable’s parameters will receive each argument,
returning a dictionary mapping argument names to their values. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{'a': 1, 'b': 2, 'pos': (3,), 'named': {}}
>>> getcallargs(f, a=2, x=4)
{'a': 2, 'b': 1, 'pos': (), 'named': {'x': 4}}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

Contributed by George Sakkis; issue 3135 [http://bugs.python.org/issue3135].

	Updated module: The io library has been upgraded to the version shipped with
Python 3.1. For 3.1, the I/O library was entirely rewritten in C
and is 2 to 20 times faster depending on the task being performed. The
original Python version was renamed to the _pyio module.

One minor resulting change: the io.TextIOBase class now
has an errors attribute giving the error setting
used for encoding and decoding errors (one of 'strict', 'replace',
'ignore').

The io.FileIO class now raises an OSError when passed
an invalid file descriptor. (Implemented by Benjamin Peterson;
issue 4991 [http://bugs.python.org/issue4991].) The truncate() method now preserves the
file position; previously it would change the file position to the
end of the new file. (Fixed by Pascal Chambon; issue 6939 [http://bugs.python.org/issue6939].)

	New function: itertools.compress(data, selectors) takes two
iterators. Elements of data are returned if the corresponding
value in selectors is true:

itertools.compress('ABCDEF', [1,0,1,0,1,1]) =>
 A, C, E, F

New function: itertools.combinations_with_replacement(iter, r)
returns all the possible r-length combinations of elements from the
iterable iter. Unlike combinations(), individual elements
can be repeated in the generated combinations:

itertools.combinations_with_replacement('abc', 2) =>
 ('a', 'a'), ('a', 'b'), ('a', 'c'),
 ('b', 'b'), ('b', 'c'), ('c', 'c')

Note that elements are treated as unique depending on their position
in the input, not their actual values.

The itertools.count() function now has a step argument that
allows incrementing by values other than 1. count() also
now allows keyword arguments, and using non-integer values such as
floats or Decimal instances. (Implemented by Raymond
Hettinger; issue 5032 [http://bugs.python.org/issue5032].)

itertools.combinations() and itertools.product()
previously raised ValueError for values of r larger than
the input iterable. This was deemed a specification error, so they
now return an empty iterator. (Fixed by Raymond Hettinger; issue 4816 [http://bugs.python.org/issue4816].)

	Updated module: The json module was upgraded to version 2.0.9 of the
simplejson package, which includes a C extension that makes
encoding and decoding faster.
(Contributed by Bob Ippolito; issue 4136 [http://bugs.python.org/issue4136].)

To support the new collections.OrderedDict type, json.load()
now has an optional object_pairs_hook parameter that will be called
with any object literal that decodes to a list of pairs.
(Contributed by Raymond Hettinger; issue 5381 [http://bugs.python.org/issue5381].)

	The mailbox module’s Maildir class now records the
timestamp on the directories it reads, and only re-reads them if the
modification time has subsequently changed. This improves
performance by avoiding unneeded directory scans. (Fixed by
A.M. Kuchling and Antoine Pitrou; issue 1607951 [http://bugs.python.org/issue1607951], issue 6896 [http://bugs.python.org/issue6896].)

	New functions: the math module gained
erf() and erfc() for the error function and the complementary error function,
expm1() which computes e**x - 1 with more precision than
using exp() and subtracting 1,
gamma() for the Gamma function, and
lgamma() for the natural log of the Gamma function.
(Contributed by Mark Dickinson and nirinA raseliarison; issue 3366 [http://bugs.python.org/issue3366].)

	The multiprocessing module’s Manager* classes
can now be passed a callable that will be called whenever
a subprocess is started, along with a set of arguments that will be
passed to the callable.
(Contributed by lekma; issue 5585 [http://bugs.python.org/issue5585].)

The Pool class, which controls a pool of worker processes,
now has an optional maxtasksperchild parameter. Worker processes
will perform the specified number of tasks and then exit, causing the
Pool to start a new worker. This is useful if tasks may leak
memory or other resources, or if some tasks will cause the worker to
become very large.
(Contributed by Charles Cazabon; issue 6963 [http://bugs.python.org/issue6963].)

	The nntplib module now supports IPv6 addresses.
(Contributed by Derek Morr; issue 1664 [http://bugs.python.org/issue1664].)

	New functions: the os module wraps the following POSIX system
calls: getresgid() and getresuid(), which return the
real, effective, and saved GIDs and UIDs;
setresgid() and setresuid(), which set
real, effective, and saved GIDs and UIDs to new values;
initgroups(), which initialize the group access list
for the current process. (GID/UID functions
contributed by Travis H.; issue 6508 [http://bugs.python.org/issue6508]. Support for initgroups added
by Jean-Paul Calderone; issue 7333 [http://bugs.python.org/issue7333].)

The os.fork() function now re-initializes the import lock in
the child process; this fixes problems on Solaris when fork()
is called from a thread. (Fixed by Zsolt Cserna; issue 7242 [http://bugs.python.org/issue7242].)

	In the os.path module, the normpath() and
abspath() functions now preserve Unicode; if their input path
is a Unicode string, the return value is also a Unicode string.
(normpath() fixed by Matt Giuca in issue 5827 [http://bugs.python.org/issue5827];
abspath() fixed by Ezio Melotti in issue 3426 [http://bugs.python.org/issue3426].)

	The pydoc module now has help for the various symbols that Python
uses. You can now do help('<<') or help('@'), for example.
(Contributed by David Laban; issue 4739 [http://bugs.python.org/issue4739].)

	The re module’s split(), sub(), and subn()
now accept an optional flags argument, for consistency with the
other functions in the module. (Added by Gregory P. Smith.)

	New function: run_path() in the runpy module
will execute the code at a provided path argument. path can be
the path of a Python source file (example.py), a compiled
bytecode file (example.pyc), a directory
(./package/), or a zip archive (example.zip). If a
directory or zip path is provided, it will be added to the front of
sys.path and the module __main__ will be imported. It’s
expected that the directory or zip contains a __main__.py;
if it doesn’t, some other __main__.py might be imported from
a location later in sys.path. This makes more of the machinery
of runpy available to scripts that want to mimic the way
Python’s command line processes an explicit path name.
(Added by Nick Coghlan; issue 6816 [http://bugs.python.org/issue6816].)

	New function: in the shutil module, make_archive()
takes a filename, archive type (zip or tar-format), and a directory
path, and creates an archive containing the directory’s contents.
(Added by Tarek Ziadé.)

shutil‘s copyfile() and copytree()
functions now raise a SpecialFileError exception when
asked to copy a named pipe. Previously the code would treat
named pipes like a regular file by opening them for reading, and
this would block indefinitely. (Fixed by Antoine Pitrou; issue 3002 [http://bugs.python.org/issue3002].)

	The signal module no longer re-installs the signal handler
unless this is truly necessary, which fixes a bug that could make it
impossible to catch the EINTR signal robustly. (Fixed by
Charles-Francois Natali; issue 8354 [http://bugs.python.org/issue8354].)

	New functions: in the site module, three new functions
return various site- and user-specific paths.
getsitepackages() returns a list containing all
global site-packages directories,
getusersitepackages() returns the path of the user’s
site-packages directory, and
getuserbase() returns the value of the USER_BASE
environment variable, giving the path to a directory that can be used
to store data.
(Contributed by Tarek Ziadé; issue 6693 [http://bugs.python.org/issue6693].)

The site module now reports exceptions occurring
when the sitecustomize module is imported, and will no longer
catch and swallow the KeyboardInterrupt exception. (Fixed by
Victor Stinner; issue 3137 [http://bugs.python.org/issue3137].)

	The create_connection() function
gained a source_address parameter, a (host, port) 2-tuple
giving the source address that will be used for the connection.
(Contributed by Eldon Ziegler; issue 3972 [http://bugs.python.org/issue3972].)

The recv_into() and recvfrom_into()
methods will now write into objects that support the buffer API, most usefully
the bytearray and memoryview objects. (Implemented by
Antoine Pitrou; issue 8104 [http://bugs.python.org/issue8104].)

	The SocketServer module’s TCPServer class now
supports socket timeouts and disabling the Nagle algorithm.
The disable_nagle_algorithm class attribute
defaults to False; if overridden to be True,
new request connections will have the TCP_NODELAY option set to
prevent buffering many small sends into a single TCP packet.
The timeout class attribute can hold
a timeout in seconds that will be applied to the request socket; if
no request is received within that time, handle_timeout()
will be called and handle_request() will return.
(Contributed by Kristján Valur Jónsson; issue 6192 [http://bugs.python.org/issue6192] and issue 6267 [http://bugs.python.org/issue6267].)

	Updated module: the sqlite3 module has been updated to
version 2.6.0 of the pysqlite package [http://code.google.com/p/pysqlite/]. Version 2.6.0 includes a number of bugfixes, and adds
the ability to load SQLite extensions from shared libraries.
Call the enable_load_extension(True) method to enable extensions,
and then call load_extension() to load a particular shared library.
(Updated by Gerhard Häring.)

	The ssl module’s SSLSocket objects now support the
buffer API, which fixed a test suite failure (fix by Antoine Pitrou;
issue 7133 [http://bugs.python.org/issue7133]) and automatically set
OpenSSL’s SSL_MODE_AUTO_RETRY, which will prevent an error
code being returned from recv() operations that trigger an SSL
renegotiation (fix by Antoine Pitrou; issue 8222 [http://bugs.python.org/issue8222]).

The ssl.wrap_socket() constructor function now takes a
ciphers argument that’s a string listing the encryption algorithms
to be allowed; the format of the string is described
in the OpenSSL documentation [http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT].
(Added by Antoine Pitrou; issue 8322 [http://bugs.python.org/issue8322].)

Another change makes the extension load all of OpenSSL’s ciphers and
digest algorithms so that they’re all available. Some SSL
certificates couldn’t be verified, reporting an “unknown algorithm”
error. (Reported by Beda Kosata, and fixed by Antoine Pitrou;
issue 8484 [http://bugs.python.org/issue8484].)

The version of OpenSSL being used is now available as the module
attributes ssl.OPENSSL_VERSION (a string),
ssl.OPENSSL_VERSION_INFO (a 5-tuple), and
ssl.OPENSSL_VERSION_NUMBER (an integer). (Added by Antoine
Pitrou; issue 8321 [http://bugs.python.org/issue8321].)

	The struct module will no longer silently ignore overflow
errors when a value is too large for a particular integer format
code (one of bBhHiIlLqQ); it now always raises a
struct.error exception. (Changed by Mark Dickinson;
issue 1523 [http://bugs.python.org/issue1523].) The pack() function will also
attempt to use __index__() to convert and pack non-integers
before trying the __int__() method or reporting an error.
(Changed by Mark Dickinson; issue 8300 [http://bugs.python.org/issue8300].)

	New function: the subprocess module’s
check_output() runs a command with a specified set of arguments
and returns the command’s output as a string when the command runs without
error, or raises a CalledProcessError exception otherwise.

>>> subprocess.check_output(['df', '-h', '.'])
'Filesystem Size Used Avail Capacity Mounted on\n
/dev/disk0s2 52G 49G 3.0G 94% /\n'

>>> subprocess.check_output(['df', '-h', '/bogus'])
 ...
subprocess.CalledProcessError: Command '['df', '-h', '/bogus']' returned non-zero exit status 1

(Contributed by Gregory P. Smith.)

The subprocess module will now retry its internal system calls
on receiving an EINTR signal. (Reported by several people; final
patch by Gregory P. Smith in issue 1068268 [http://bugs.python.org/issue1068268].)

	New function: is_declared_global() in the symtable module
returns true for variables that are explicitly declared to be global,
false for ones that are implicitly global.
(Contributed by Jeremy Hylton.)

	The syslog module will now use the value of sys.argv[0] as the
identifier instead of the previous default value of 'python'.
(Changed by Sean Reifschneider; issue 8451 [http://bugs.python.org/issue8451].)

	The sys.version_info value is now a named tuple, with attributes
named major, minor, micro,
releaselevel, and serial. (Contributed by Ross
Light; issue 4285 [http://bugs.python.org/issue4285].)

sys.getwindowsversion() also returns a named tuple,
with attributes named major, minor, build,
platform, service_pack, service_pack_major,
service_pack_minor, suite_mask, and
product_type. (Contributed by Brian Curtin; issue 7766 [http://bugs.python.org/issue7766].)

	The tarfile module’s default error handling has changed, to
no longer suppress fatal errors. The default error level was previously 0,
which meant that errors would only result in a message being written to the
debug log, but because the debug log is not activated by default,
these errors go unnoticed. The default error level is now 1,
which raises an exception if there’s an error.
(Changed by Lars Gustäbel; issue 7357 [http://bugs.python.org/issue7357].)

tarfile now supports filtering the TarInfo
objects being added to a tar file. When you call add(),
you may supply an optional filter argument
that’s a callable. The filter callable will be passed the
TarInfo for every file being added, and can modify and return it.
If the callable returns None, the file will be excluded from the
resulting archive. This is more powerful than the existing
exclude argument, which has therefore been deprecated.
(Added by Lars Gustäbel; issue 6856 [http://bugs.python.org/issue6856].)
The TarFile class also now supports the context manager protocol.
(Added by Lars Gustäbel; issue 7232 [http://bugs.python.org/issue7232].)

	The wait() method of the threading.Event class
now returns the internal flag on exit. This means the method will usually
return true because wait() is supposed to block until the
internal flag becomes true. The return value will only be false if
a timeout was provided and the operation timed out.
(Contributed by Tim Lesher; issue 1674032 [http://bugs.python.org/issue1674032].)

	The Unicode database provided by the unicodedata module is
now used internally to determine which characters are numeric,
whitespace, or represent line breaks. The database also
includes information from the Unihan.txt data file (patch
by Anders Chrigström and Amaury Forgeot d’Arc; issue 1571184 [http://bugs.python.org/issue1571184])
and has been updated to version 5.2.0 (updated by
Florent Xicluna; issue 8024 [http://bugs.python.org/issue8024]).

	The urlparse module’s urlsplit() now handles
unknown URL schemes in a fashion compliant with RFC 3986 [http://tools.ietf.org/html/rfc3986.html]: if the
URL is of the form "<something>://...", the text before the
:// is treated as the scheme, even if it’s a made-up scheme that
the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5
will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it
returns a named tuple instead of a standard tuple.)

The urlparse module also supports IPv6 literal addresses as defined by
RFC 2732 [http://tools.ietf.org/html/rfc2732.html] (contributed by Senthil Kumaran; issue 2987 [http://bugs.python.org/issue2987]).

>>> urlparse.urlparse('http://[1080::8:800:200C:417A]/foo')
ParseResult(scheme='http', netloc='[1080::8:800:200C:417A]',
 path='/foo', params='', query='', fragment='')

	New class: the WeakSet class in the weakref
module is a set that only holds weak references to its elements; elements
will be removed once there are no references pointing to them.
(Originally implemented in Python 3.x by Raymond Hettinger, and backported
to 2.7 by Michael Foord.)

	The ElementTree library, xml.etree, no longer escapes
ampersands and angle brackets when outputting an XML processing
instruction (which looks like <?xml-stylesheet href="#style1"?>)
or comment (which looks like <!-- comment -->).
(Patch by Neil Muller; issue 2746 [http://bugs.python.org/issue2746].)

	The XML-RPC client and server, provided by the xmlrpclib and
SimpleXMLRPCServer modules, have improved performance by
supporting HTTP/1.1 keep-alive and by optionally using gzip encoding
to compress the XML being exchanged. The gzip compression is
controlled by the encode_threshold attribute of
SimpleXMLRPCRequestHandler, which contains a size in bytes;
responses larger than this will be compressed.
(Contributed by Kristján Valur Jónsson; issue 6267 [http://bugs.python.org/issue6267].)

	The zipfile module’s ZipFile now supports the context
management protocol, so you can write with zipfile.ZipFile(...) as f:.
(Contributed by Brian Curtin; issue 5511 [http://bugs.python.org/issue5511].)

zipfile now also supports archiving empty directories and
extracts them correctly. (Fixed by Kuba Wieczorek; issue 4710 [http://bugs.python.org/issue4710].)
Reading files out of an archive is faster, and interleaving
read() and readline() now works correctly.
(Contributed by Nir Aides; issue 7610 [http://bugs.python.org/issue7610].)

The is_zipfile() function now
accepts a file object, in addition to the path names accepted in earlier
versions. (Contributed by Gabriel Genellina; issue 4756 [http://bugs.python.org/issue4756].)

The writestr() method now has an optional compress_type parameter
that lets you override the default compression method specified in the
ZipFile constructor. (Contributed by Ronald Oussoren;
issue 6003 [http://bugs.python.org/issue6003].)

New module: importlib

Python 3.1 includes the importlib package, a re-implementation
of the logic underlying Python’s import statement.
importlib is useful for implementors of Python interpreters and
to users who wish to write new importers that can participate in the
import process. Python 2.7 doesn’t contain the complete
importlib package, but instead has a tiny subset that contains
a single function, import_module().

import_module(name, package=None) imports a module. name is
a string containing the module or package’s name. It’s possible to do
relative imports by providing a string that begins with a .
character, such as ..utils.errors. For relative imports, the
package argument must be provided and is the name of the package that
will be used as the anchor for
the relative import. import_module() both inserts the imported
module into sys.modules and returns the module object.

Here are some examples:

>>> from importlib import import_module
>>> anydbm = import_module('anydbm') # Standard absolute import
>>> anydbm
<module 'anydbm' from '/p/python/Lib/anydbm.py'>
>>> # Relative import
>>> file_util = import_module('..file_util', 'distutils.command')
>>> file_util
<module 'distutils.file_util' from '/python/Lib/distutils/file_util.pyc'>

importlib was implemented by Brett Cannon and introduced in
Python 3.1.

New module: sysconfig

The sysconfig module has been pulled out of the Distutils
package, becoming a new top-level module in its own right.
sysconfig provides functions for getting information about
Python’s build process: compiler switches, installation paths, the
platform name, and whether Python is running from its source
directory.

Some of the functions in the module are:

	get_config_var() returns variables from Python’s
Makefile and the pyconfig.h file.

	get_config_vars() returns a dictionary containing
all of the configuration variables.

	get_path() returns the configured path for
a particular type of module: the standard library,
site-specific modules, platform-specific modules, etc.

	is_python_build() returns true if you’re running a
binary from a Python source tree, and false otherwise.

Consult the sysconfig documentation for more details and for
a complete list of functions.

The Distutils package and sysconfig are now maintained by Tarek
Ziadé, who has also started a Distutils2 package (source repository at
http://hg.python.org/distutils2/) for developing a next-generation
version of Distutils.

ttk: Themed Widgets for Tk

Tcl/Tk 8.5 includes a set of themed widgets that re-implement basic Tk
widgets but have a more customizable appearance and can therefore more
closely resemble the native platform’s widgets. This widget
set was originally called Tile, but was renamed to Ttk (for “themed Tk”)
on being added to Tcl/Tck release 8.5.

To learn more, read the ttk module documentation. You may also
wish to read the Tcl/Tk manual page describing the
Ttk theme engine, available at
http://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm. Some
screenshots of the Python/Ttk code in use are at
http://code.google.com/p/python-ttk/wiki/Screenshots.

The ttk module was written by Guilherme Polo and added in
issue 2983 [http://bugs.python.org/issue2983]. An alternate version called Tile.py, written by
Martin Franklin and maintained by Kevin Walzer, was proposed for
inclusion in issue 2618 [http://bugs.python.org/issue2618], but the authors argued that Guilherme
Polo’s work was more comprehensive.

Updated module: unittest

The unittest module was greatly enhanced; many
new features were added. Most of these features were implemented
by Michael Foord, unless otherwise noted. The enhanced version of
the module is downloadable separately for use with Python versions 2.4 to 2.6,
packaged as the unittest2 package, from
http://pypi.python.org/pypi/unittest2.

When used from the command line, the module can automatically discover
tests. It’s not as fancy as py.test [http://pytest.org] or
nose [http://code.google.com/p/python-nose/], but provides a simple way
to run tests kept within a set of package directories. For example,
the following command will search the test/ subdirectory for
any importable test files named test*.py:

python -m unittest discover -s test

Consult the unittest module documentation for more details.
(Developed in issue 6001 [http://bugs.python.org/issue6001].)

The main() function supports some other new options:

	-b or --buffer will buffer the standard output
and standard error streams during each test. If the test passes,
any resulting output will be discarded; on failure, the buffered
output will be displayed.

	-c or --catch will cause the control-C interrupt
to be handled more gracefully. Instead of interrupting the test
process immediately, the currently running test will be completed
and then the partial results up to the interruption will be reported.
If you’re impatient, a second press of control-C will cause an immediate
interruption.

This control-C handler tries to avoid causing problems when the code
being tested or the tests being run have defined a signal handler of
their own, by noticing that a signal handler was already set and
calling it. If this doesn’t work for you, there’s a
removeHandler() decorator that can be used to mark tests that
should have the control-C handling disabled.

	-f or --failfast makes
test execution stop immediately when a test fails instead of
continuing to execute further tests. (Suggested by Cliff Dyer and
implemented by Michael Foord; issue 8074 [http://bugs.python.org/issue8074].)

The progress messages now show ‘x’ for expected failures
and ‘u’ for unexpected successes when run in verbose mode.
(Contributed by Benjamin Peterson.)

Test cases can raise the SkipTest exception to skip a
test (issue 1034053 [http://bugs.python.org/issue1034053]).

The error messages for assertEqual(),
assertTrue(), and assertFalse()
failures now provide more information. If you set the
longMessage attribute of your TestCase classes to
True, both the standard error message and any additional message you
provide will be printed for failures. (Added by Michael Foord; issue 5663 [http://bugs.python.org/issue5663].)

The assertRaises() method now
returns a context handler when called without providing a callable
object to run. For example, you can write this:

with self.assertRaises(KeyError):
 {}['foo']

(Implemented by Antoine Pitrou; issue 4444 [http://bugs.python.org/issue4444].)

Module- and class-level setup and teardown fixtures are now supported.
Modules can contain setUpModule() and tearDownModule()
functions. Classes can have setUpClass() and
tearDownClass() methods that must be defined as class methods
(using @classmethod or equivalent). These functions and
methods are invoked when the test runner switches to a test case in a
different module or class.

The methods addCleanup() and
doCleanups() were added.
addCleanup() lets you add cleanup functions that
will be called unconditionally (after setUp() if
setUp() fails, otherwise after tearDown()). This allows
for much simpler resource allocation and deallocation during tests
(issue 5679 [http://bugs.python.org/issue5679]).

A number of new methods were added that provide more specialized
tests. Many of these methods were written by Google engineers
for use in their test suites; Gregory P. Smith, Michael Foord, and
GvR worked on merging them into Python’s version of unittest.

	assertIsNone() and assertIsNotNone() take one
expression and verify that the result is or is not None.

	assertIs() and assertIsNot()
take two values and check whether the two values evaluate to the same object or not.
(Added by Michael Foord; issue 2578 [http://bugs.python.org/issue2578].)

	assertIsInstance() and
assertNotIsInstance() check whether
the resulting object is an instance of a particular class, or of
one of a tuple of classes. (Added by Georg Brandl; issue 7031 [http://bugs.python.org/issue7031].)

	assertGreater(), assertGreaterEqual(),
assertLess(), and assertLessEqual() compare
two quantities.

	assertMultiLineEqual() compares two strings, and if they’re
not equal, displays a helpful comparison that highlights the
differences in the two strings. This comparison is now used by
default when Unicode strings are compared with assertEqual().

	assertRegexpMatches() and
assertNotRegexpMatches() checks whether the
first argument is a string matching or not matching the regular
expression provided as the second argument (issue 8038 [http://bugs.python.org/issue8038]).

	assertRaisesRegexp() checks whether a particular exception
is raised, and then also checks that the string representation of
the exception matches the provided regular expression.

	assertIn() and assertNotIn()
tests whether first is or is not in second.

	assertItemsEqual() tests whether two provided sequences
contain the same elements.

	assertSetEqual() compares whether two sets are equal, and
only reports the differences between the sets in case of error.

	Similarly, assertListEqual() and assertTupleEqual()
compare the specified types and explain any differences without necessarily
printing their full values; these methods are now used by default
when comparing lists and tuples using assertEqual().
More generally, assertSequenceEqual() compares two sequences
and can optionally check whether both sequences are of a
particular type.

	assertDictEqual() compares two dictionaries and reports the
differences; it’s now used by default when you compare two dictionaries
using assertEqual(). assertDictContainsSubset() checks whether
all of the key/value pairs in first are found in second.

	assertAlmostEqual() and assertNotAlmostEqual() test
whether first and second are approximately equal. This method
can either round their difference to an optionally-specified number
of places (the default is 7) and compare it to zero, or require
the difference to be smaller than a supplied delta value.

	loadTestsFromName() properly honors the
suiteClass attribute of
the TestLoader. (Fixed by Mark Roddy; issue 6866 [http://bugs.python.org/issue6866].)

	A new hook lets you extend the assertEqual() method to handle
new data types. The addTypeEqualityFunc() method takes a type
object and a function. The function will be used when both of the
objects being compared are of the specified type. This function
should compare the two objects and raise an exception if they don’t
match; it’s a good idea for the function to provide additional
information about why the two objects aren’t matching, much as the new
sequence comparison methods do.

unittest.main() now takes an optional exit argument. If
False, main() doesn’t call sys.exit(), allowing
main() to be used from the interactive interpreter.
(Contributed by J. Pablo Fernández; issue 3379 [http://bugs.python.org/issue3379].)

TestResult has new startTestRun() and
stopTestRun() methods that are called immediately before
and after a test run. (Contributed by Robert Collins; issue 5728 [http://bugs.python.org/issue5728].)

With all these changes, the unittest.py was becoming awkwardly
large, so the module was turned into a package and the code split into
several files (by Benjamin Peterson). This doesn’t affect how the
module is imported or used.

See also

	http://www.voidspace.org.uk/python/articles/unittest2.shtml

	Describes the new features, how to use them, and the
rationale for various design decisions. (By Michael Foord.)

Updated module: ElementTree 1.3

The version of the ElementTree library included with Python was updated to
version 1.3. Some of the new features are:

	The various parsing functions now take a parser keyword argument
giving an XMLParser instance that will
be used. This makes it possible to override the file’s internal encoding:

p = ET.XMLParser(encoding='utf-8')
t = ET.XML("""<root/>""", parser=p)

Errors in parsing XML now raise a ParseError exception, whose
instances have a position attribute
containing a (line, column) tuple giving the location of the problem.

	ElementTree’s code for converting trees to a string has been
significantly reworked, making it roughly twice as fast in many
cases. The ElementTree write() and Element
write() methods now have a method parameter that can be
“xml” (the default), “html”, or “text”. HTML mode will output empty
elements as <empty></empty> instead of <empty/>, and text
mode will skip over elements and only output the text chunks. If
you set the tag attribute of an element to None but
leave its children in place, the element will be omitted when the
tree is written out, so you don’t need to do more extensive rearrangement
to remove a single element.

Namespace handling has also been improved. All xmlns:<whatever>
declarations are now output on the root element, not scattered throughout
the resulting XML. You can set the default namespace for a tree
by setting the default_namespace attribute and can
register new prefixes with register_namespace(). In XML mode,
you can use the true/false xml_declaration parameter to suppress the
XML declaration.

	New Element method: extend() appends the items from a
sequence to the element’s children. Elements themselves behave like
sequences, so it’s easy to move children from one element to
another:

from xml.etree import ElementTree as ET

t = ET.XML("""<list>
 <item>1</item> <item>2</item> <item>3</item>
</list>""")
new = ET.XML('<root/>')
new.extend(t)

Outputs <root><item>1</item>...</root>
print ET.tostring(new)

	New Element method: iter() yields the children of the
element as a generator. It’s also possible to write for child in
elem: to loop over an element’s children. The existing method
getiterator() is now deprecated, as is getchildren()
which constructs and returns a list of children.

	New Element method: itertext() yields all chunks of
text that are descendants of the element. For example:

t = ET.XML("""<list>
 <item>1</item> <item>2</item> <item>3</item>
</list>""")

Outputs ['\n ', '1', ' ', '2', ' ', '3', '\n']
print list(t.itertext())

	Deprecated: using an element as a Boolean (i.e., if elem:) would
return true if the element had any children, or false if there were
no children. This behaviour is confusing – None is false, but
so is a childless element? – so it will now trigger a
FutureWarning. In your code, you should be explicit: write
len(elem) != 0 if you’re interested in the number of children,
or elem is not None.

Fredrik Lundh develops ElementTree and produced the 1.3 version;
you can read his article describing 1.3 at
http://effbot.org/zone/elementtree-13-intro.htm.
Florent Xicluna updated the version included with
Python, after discussions on python-dev and in issue 6472 [http://bugs.python.org/issue6472].)

Build and C API Changes

Changes to Python’s build process and to the C API include:

	The latest release of the GNU Debugger, GDB 7, can be scripted
using Python [http://sourceware.org/gdb/current/onlinedocs/gdb/Python.html].
When you begin debugging an executable program P, GDB will look for
a file named P-gdb.py and automatically read it. Dave Malcolm
contributed a python-gdb.py that adds a number of
commands useful when debugging Python itself. For example,
py-up and py-down go up or down one Python stack frame,
which usually corresponds to several C stack frames. py-print
prints the value of a Python variable, and py-bt prints the
Python stack trace. (Added as a result of issue 8032 [http://bugs.python.org/issue8032].)

	If you use the .gdbinit file provided with Python,
the “pyo” macro in the 2.7 version now works correctly when the thread being
debugged doesn’t hold the GIL; the macro now acquires it before printing.
(Contributed by Victor Stinner; issue 3632 [http://bugs.python.org/issue3632].)

	Py_AddPendingCall() is now thread-safe, letting any
worker thread submit notifications to the main Python thread. This
is particularly useful for asynchronous IO operations.
(Contributed by Kristján Valur Jónsson; issue 4293 [http://bugs.python.org/issue4293].)

	New function: PyCode_NewEmpty() creates an empty code object;
only the filename, function name, and first line number are required.
This is useful for extension modules that are attempting to
construct a more useful traceback stack. Previously such
extensions needed to call PyCode_New(), which had many
more arguments. (Added by Jeffrey Yasskin.)

	New function: PyErr_NewExceptionWithDoc() creates a new
exception class, just as the existing PyErr_NewException() does,
but takes an extra char * argument containing the docstring for the
new exception class. (Added by ‘lekma’ on the Python bug tracker;
issue 7033 [http://bugs.python.org/issue7033].)

	New function: PyFrame_GetLineNumber() takes a frame object
and returns the line number that the frame is currently executing.
Previously code would need to get the index of the bytecode
instruction currently executing, and then look up the line number
corresponding to that address. (Added by Jeffrey Yasskin.)

	New functions: PyLong_AsLongAndOverflow() and
PyLong_AsLongLongAndOverflow() approximates a Python long
integer as a C long or long long.
If the number is too large to fit into
the output type, an overflow flag is set and returned to the caller.
(Contributed by Case Van Horsen; issue 7528 [http://bugs.python.org/issue7528] and issue 7767 [http://bugs.python.org/issue7767].)

	New function: stemming from the rewrite of string-to-float conversion,
a new PyOS_string_to_double() function was added. The old
PyOS_ascii_strtod() and PyOS_ascii_atof() functions
are now deprecated.

	New function: PySys_SetArgvEx() sets the value of
sys.argv and can optionally update sys.path to include the
directory containing the script named by sys.argv[0] depending
on the value of an updatepath parameter.

This function was added to close a security hole for applications
that embed Python. The old function, PySys_SetArgv(), would
always update sys.path, and sometimes it would add the current
directory. This meant that, if you ran an application embedding
Python in a directory controlled by someone else, attackers could
put a Trojan-horse module in the directory (say, a file named
os.py) that your application would then import and run.

If you maintain a C/C++ application that embeds Python, check
whether you’re calling PySys_SetArgv() and carefully consider
whether the application should be using PySys_SetArgvEx()
with updatepath set to false.

Security issue reported as CVE-2008-5983 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983];
discussed in issue 5753 [http://bugs.python.org/issue5753], and fixed by Antoine Pitrou.

	New macros: the Python header files now define the following macros:
Py_ISALNUM,
Py_ISALPHA,
Py_ISDIGIT,
Py_ISLOWER,
Py_ISSPACE,
Py_ISUPPER,
Py_ISXDIGIT,
Py_TOLOWER, and Py_TOUPPER.
All of these functions are analogous to the C
standard macros for classifying characters, but ignore the current
locale setting, because in
several places Python needs to analyze characters in a
locale-independent way. (Added by Eric Smith;
issue 5793 [http://bugs.python.org/issue5793].)

	Removed function: PyEval_CallObject is now only available
as a macro. A function version was being kept around to preserve
ABI linking compatibility, but that was in 1997; it can certainly be
deleted by now. (Removed by Antoine Pitrou; issue 8276 [http://bugs.python.org/issue8276].)

	New format codes: the PyFormat_FromString(),
PyFormat_FromStringV(), and PyErr_Format() functions now
accept %lld and %llu format codes for displaying
C’s long long types.
(Contributed by Mark Dickinson; issue 7228 [http://bugs.python.org/issue7228].)

	The complicated interaction between threads and process forking has
been changed. Previously, the child process created by
os.fork() might fail because the child is created with only a
single thread running, the thread performing the os.fork().
If other threads were holding a lock, such as Python’s import lock,
when the fork was performed, the lock would still be marked as
“held” in the new process. But in the child process nothing would
ever release the lock, since the other threads weren’t replicated,
and the child process would no longer be able to perform imports.

Python 2.7 acquires the import lock before performing an
os.fork(), and will also clean up any locks created using the
threading module. C extension modules that have internal
locks, or that call fork() themselves, will not benefit
from this clean-up.

(Fixed by Thomas Wouters; issue 1590864 [http://bugs.python.org/issue1590864].)

	The Py_Finalize() function now calls the internal
threading._shutdown() function; this prevents some exceptions from
being raised when an interpreter shuts down.
(Patch by Adam Olsen; issue 1722344 [http://bugs.python.org/issue1722344].)

	When using the PyMemberDef structure to define attributes
of a type, Python will no longer let you try to delete or set a
T_STRING_INPLACE attribute.

	Global symbols defined by the ctypes module are now prefixed
with Py, or with _ctypes. (Implemented by Thomas
Heller; issue 3102 [http://bugs.python.org/issue3102].)

	New configure option: the --with-system-expat switch allows
building the pyexpat module to use the system Expat library.
(Contributed by Arfrever Frehtes Taifersar Arahesis; issue 7609 [http://bugs.python.org/issue7609].)

	New configure option: the
--with-valgrind option will now disable the pymalloc
allocator, which is difficult for the Valgrind memory-error detector
to analyze correctly.
Valgrind will therefore be better at detecting memory leaks and
overruns. (Contributed by James Henstridge; issue 2422 [http://bugs.python.org/issue2422].)

	New configure option: you can now supply an empty string to
--with-dbmliborder= in order to disable all of the various
DBM modules. (Added by Arfrever Frehtes Taifersar Arahesis;
issue 6491 [http://bugs.python.org/issue6491].)

	The configure script now checks for floating-point rounding bugs
on certain 32-bit Intel chips and defines a X87_DOUBLE_ROUNDING
preprocessor definition. No code currently uses this definition,
but it’s available if anyone wishes to use it.
(Added by Mark Dickinson; issue 2937 [http://bugs.python.org/issue2937].)

configure also now sets a LDCXXSHARED Makefile
variable for supporting C++ linking. (Contributed by Arfrever
Frehtes Taifersar Arahesis; issue 1222585 [http://bugs.python.org/issue1222585].)

	The build process now creates the necessary files for pkg-config
support. (Contributed by Clinton Roy; issue 3585 [http://bugs.python.org/issue3585].)

	The build process now supports Subversion 1.7. (Contributed by
Arfrever Frehtes Taifersar Arahesis; issue 6094 [http://bugs.python.org/issue6094].)

Capsules

Python 3.1 adds a new C datatype, PyCapsule, for providing a
C API to an extension module. A capsule is essentially the holder of
a C void * pointer, and is made available as a module attribute; for
example, the socket module’s API is exposed as socket.CAPI,
and unicodedata exposes ucnhash_CAPI. Other extensions
can import the module, access its dictionary to get the capsule
object, and then get the void * pointer, which will usually point
to an array of pointers to the module’s various API functions.

There is an existing data type already used for this,
PyCObject, but it doesn’t provide type safety. Evil code
written in pure Python could cause a segmentation fault by taking a
PyCObject from module A and somehow substituting it for the
PyCObject in module B. Capsules know their own name,
and getting the pointer requires providing the name:

void *vtable;

if (!PyCapsule_IsValid(capsule, "mymodule.CAPI") {
 PyErr_SetString(PyExc_ValueError, "argument type invalid");
 return NULL;
}

vtable = PyCapsule_GetPointer(capsule, "mymodule.CAPI");

You are assured that vtable points to whatever you’re expecting.
If a different capsule was passed in, PyCapsule_IsValid() would
detect the mismatched name and return false. Refer to
Providing a C API for an Extension Module for more information on using these objects.

Python 2.7 now uses capsules internally to provide various
extension-module APIs, but the PyCObject_AsVoidPtr() was
modified to handle capsules, preserving compile-time compatibility
with the CObject interface. Use of
PyCObject_AsVoidPtr() will signal a
PendingDeprecationWarning, which is silent by default.

Implemented in Python 3.1 and backported to 2.7 by Larry Hastings;
discussed in issue 5630 [http://bugs.python.org/issue5630].

Port-Specific Changes: Windows

	The msvcrt module now contains some constants from
the crtassem.h header file:
CRT_ASSEMBLY_VERSION,
VC_ASSEMBLY_PUBLICKEYTOKEN,
and LIBRARIES_ASSEMBLY_NAME_PREFIX.
(Contributed by David Cournapeau; issue 4365 [http://bugs.python.org/issue4365].)

	The _winreg module for accessing the registry now implements
the CreateKeyEx() and DeleteKeyEx()
functions, extended versions of previously-supported functions that
take several extra arguments. The DisableReflectionKey(),
EnableReflectionKey(), and QueryReflectionKey()
were also tested and documented.
(Implemented by Brian Curtin: issue 7347 [http://bugs.python.org/issue7347].)

	The new _beginthreadex() API is used to start threads, and
the native thread-local storage functions are now used.
(Contributed by Kristján Valur Jónsson; issue 3582 [http://bugs.python.org/issue3582].)

	The os.kill() function now works on Windows. The signal value
can be the constants CTRL_C_EVENT,
CTRL_BREAK_EVENT, or any integer. The first two constants
will send Control-C and Control-Break keystroke events to
subprocesses; any other value will use the TerminateProcess()
API. (Contributed by Miki Tebeka; issue 1220212 [http://bugs.python.org/issue1220212].)

	The os.listdir() function now correctly fails
for an empty path. (Fixed by Hirokazu Yamamoto; issue 5913 [http://bugs.python.org/issue5913].)

	The mimelib module will now read the MIME database from
the Windows registry when initializing.
(Patch by Gabriel Genellina; issue 4969 [http://bugs.python.org/issue4969].)

Port-Specific Changes: Mac OS X

	The path /Library/Python/2.7/site-packages is now appended to
sys.path, in order to share added packages between the system
installation and a user-installed copy of the same version.
(Changed by Ronald Oussoren; issue 4865 [http://bugs.python.org/issue4865].)

Port-Specific Changes: FreeBSD

	FreeBSD 7.1’s SO_SETFIB constant, used with
getsockopt()/setsockopt() to select an
alternate routing table, is now available in the socket
module. (Added by Kyle VanderBeek; issue 8235 [http://bugs.python.org/issue8235].)

Other Changes and Fixes

	Two benchmark scripts, iobench and ccbench, were
added to the Tools directory. iobench measures the
speed of the built-in file I/O objects returned by open()
while performing various operations, and ccbench is a
concurrency benchmark that tries to measure computing throughput,
thread switching latency, and IO processing bandwidth when
performing several tasks using a varying number of threads.

	The Tools/i18n/msgfmt.py script now understands plural
forms in .po files. (Fixed by Martin von Löwis;
issue 5464 [http://bugs.python.org/issue5464].)

	When importing a module from a .pyc or .pyo file
with an existing .py counterpart, the co_filename
attributes of the resulting code objects are overwritten when the
original filename is obsolete. This can happen if the file has been
renamed, moved, or is accessed through different paths. (Patch by
Ziga Seilnacht and Jean-Paul Calderone; issue 1180193 [http://bugs.python.org/issue1180193].)

	The regrtest.py script now takes a --randseed=
switch that takes an integer that will be used as the random seed
for the -r option that executes tests in random order.
The -r option also reports the seed that was used
(Added by Collin Winter.)

	Another regrtest.py switch is -j, which
takes an integer specifying how many tests run in parallel. This
allows reducing the total runtime on multi-core machines.
This option is compatible with several other options, including the
-R switch which is known to produce long runtimes.
(Added by Antoine Pitrou, issue 6152 [http://bugs.python.org/issue6152].) This can also be used
with a new -F switch that runs selected tests in a loop
until they fail. (Added by Antoine Pitrou; issue 7312 [http://bugs.python.org/issue7312].)

	When executed as a script, the py_compile.py module now
accepts '-' as an argument, which will read standard input for
the list of filenames to be compiled. (Contributed by Piotr
Ożarowski; issue 8233 [http://bugs.python.org/issue8233].)

Porting to Python 2.7

This section lists previously described changes and other bugfixes
that may require changes to your code:

	The range() function processes its arguments more
consistently; it will now call __int__() on non-float,
non-integer arguments that are supplied to it. (Fixed by Alexander
Belopolsky; issue 1533 [http://bugs.python.org/issue1533].)

	The string format() method changed the default precision used
for floating-point and complex numbers from 6 decimal
places to 12, which matches the precision used by str().
(Changed by Eric Smith; issue 5920 [http://bugs.python.org/issue5920].)

	Because of an optimization for the with statement, the special
methods __enter__() and __exit__() must belong to the object’s
type, and cannot be directly attached to the object’s instance. This
affects new-style classes (derived from object) and C extension
types. (issue 6101 [http://bugs.python.org/issue6101].)

	Due to a bug in Python 2.6, the exc_value parameter to
__exit__() methods was often the string representation of the
exception, not an instance. This was fixed in 2.7, so exc_value
will be an instance as expected. (Fixed by Florent Xicluna;
issue 7853 [http://bugs.python.org/issue7853].)

	When a restricted set of attributes were set using __slots__,
deleting an unset attribute would not raise AttributeError
as you would expect. Fixed by Benjamin Peterson; issue 7604 [http://bugs.python.org/issue7604].)

In the standard library:

	Operations with datetime instances that resulted in a year
falling outside the supported range didn’t always raise
OverflowError. Such errors are now checked more carefully
and will now raise the exception. (Reported by Mark Leander, patch
by Anand B. Pillai and Alexander Belopolsky; issue 7150 [http://bugs.python.org/issue7150].)

	When using Decimal instances with a string’s
format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which might
change the output of your programs.
(Changed by Mark Dickinson; issue 6857 [http://bugs.python.org/issue6857].)

Comparisons involving a signaling NaN value (or sNAN) now signal
InvalidOperation instead of silently returning a true or
false value depending on the comparison operator. Quiet NaN values
(or NaN) are now hashable. (Fixed by Mark Dickinson;
issue 7279 [http://bugs.python.org/issue7279].)

	The ElementTree library, xml.etree, no longer escapes
ampersands and angle brackets when outputting an XML processing
instruction (which looks like <?xml-stylesheet href=”#style1”?>)
or comment (which looks like <!– comment –>).
(Patch by Neil Muller; issue 2746 [http://bugs.python.org/issue2746].)

	The readline() method of StringIO objects now does
nothing when a negative length is requested, as other file-like
objects do. (issue 7348 [http://bugs.python.org/issue7348]).

	The syslog module will now use the value of sys.argv[0] as the
identifier instead of the previous default value of 'python'.
(Changed by Sean Reifschneider; issue 8451 [http://bugs.python.org/issue8451].)

	The tarfile module’s default error handling has changed, to
no longer suppress fatal errors. The default error level was previously 0,
which meant that errors would only result in a message being written to the
debug log, but because the debug log is not activated by default,
these errors go unnoticed. The default error level is now 1,
which raises an exception if there’s an error.
(Changed by Lars Gustäbel; issue 7357 [http://bugs.python.org/issue7357].)

	The urlparse module’s urlsplit() now handles
unknown URL schemes in a fashion compliant with RFC 3986 [http://tools.ietf.org/html/rfc3986.html]: if the
URL is of the form "<something>://...", the text before the
:// is treated as the scheme, even if it’s a made-up scheme that
the module doesn’t know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5
will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it
returns a named tuple instead of a standard tuple.)

For C extensions:

	C extensions that use integer format codes with the PyArg_Parse*
family of functions will now raise a TypeError exception
instead of triggering a DeprecationWarning (issue 5080 [http://bugs.python.org/issue5080]).

	Use the new PyOS_string_to_double() function instead of the old
PyOS_ascii_strtod() and PyOS_ascii_atof() functions,
which are now deprecated.

For applications that embed Python:

	The PySys_SetArgvEx() function was added, letting
applications close a security hole when the existing
PySys_SetArgv() function was used. Check whether you’re
calling PySys_SetArgv() and carefully consider whether the
application should be using PySys_SetArgvEx() with
updatepath set to false.

Acknowledgements

The author would like to thank the following people for offering
suggestions, corrections and assistance with various drafts of this
article: Nick Coghlan, Philip Jenvey, Ryan Lovett, R. David Murray,
Hugh Secker-Walker.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.6

	Author:	A.M. Kuchling (amk at amk.ca)

	Release:	2.7.2b1

	Date:	November 07, 2013

This article explains the new features in Python 2.6, released on October 1
2008. The release schedule is described in PEP 361 [http://www.python.org/dev/peps/pep-0361].

The major theme of Python 2.6 is preparing the migration path to
Python 3.0, a major redesign of the language. Whenever possible,
Python 2.6 incorporates new features and syntax from 3.0 while
remaining compatible with existing code by not removing older features
or syntax. When it’s not possible to do that, Python 2.6 tries to do
what it can, adding compatibility functions in a
future_builtins module and a -3 switch to warn about
usages that will become unsupported in 3.0.

Some significant new packages have been added to the standard library,
such as the multiprocessing and json modules, but
there aren’t many new features that aren’t related to Python 3.0 in
some way.

Python 2.6 also sees a number of improvements and bugfixes throughout
the source. A search through the change logs finds there were 259
patches applied and 612 bugs fixed between Python 2.5 and 2.6. Both
figures are likely to be underestimates.

This article doesn’t attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.6. If
you want to understand the rationale for the design and
implementation, refer to the PEP for a particular new feature.
Whenever possible, “What’s New in Python” links to the bug/patch item
for each change.

Python 3.0

The development cycle for Python versions 2.6 and 3.0 was
synchronized, with the alpha and beta releases for both versions being
made on the same days. The development of 3.0 has influenced many
features in 2.6.

Python 3.0 is a far-ranging redesign of Python that breaks
compatibility with the 2.x series. This means that existing Python
code will need some conversion in order to run on
Python 3.0. However, not all the changes in 3.0 necessarily break
compatibility. In cases where new features won’t cause existing code
to break, they’ve been backported to 2.6 and are described in this
document in the appropriate place. Some of the 3.0-derived features
are:

	A __complex__() method for converting objects to a complex number.

	Alternate syntax for catching exceptions: except TypeError as exc.

	The addition of functools.reduce() as a synonym for the built-in
reduce() function.

Python 3.0 adds several new built-in functions and changes the
semantics of some existing builtins. Functions that are new in 3.0
such as bin() have simply been added to Python 2.6, but existing
builtins haven’t been changed; instead, the future_builtins
module has versions with the new 3.0 semantics. Code written to be
compatible with 3.0 can do from future_builtins import hex, map as
necessary.

A new command-line switch, -3, enables warnings
about features that will be removed in Python 3.0. You can run code
with this switch to see how much work will be necessary to port
code to 3.0. The value of this switch is available
to Python code as the boolean variable sys.py3kwarning,
and to C extension code as Py_Py3kWarningFlag.

See also

The 3xxx series of PEPs, which contains proposals for Python 3.0.
PEP 3000 [http://www.python.org/dev/peps/pep-3000] describes the development process for Python 3.0.
Start with PEP 3100 [http://www.python.org/dev/peps/pep-3100] that describes the general goals for Python
3.0, and then explore the higher-numbered PEPS that propose
specific features.

Changes to the Development Process

While 2.6 was being developed, the Python development process
underwent two significant changes: we switched from SourceForge’s
issue tracker to a customized Roundup installation, and the
documentation was converted from LaTeX to reStructuredText.

New Issue Tracker: Roundup

For a long time, the Python developers had been growing increasingly
annoyed by SourceForge’s bug tracker. SourceForge’s hosted solution
doesn’t permit much customization; for example, it wasn’t possible to
customize the life cycle of issues.

The infrastructure committee of the Python Software Foundation
therefore posted a call for issue trackers, asking volunteers to set
up different products and import some of the bugs and patches from
SourceForge. Four different trackers were examined: Jira [http://www.atlassian.com/software/jira/],
Launchpad [http://www.launchpad.net],
Roundup [http://roundup.sourceforge.net/], and
Trac [http://trac.edgewall.org/].
The committee eventually settled on Jira
and Roundup as the two candidates. Jira is a commercial product that
offers no-cost hosted instances to free-software projects; Roundup
is an open-source project that requires volunteers
to administer it and a server to host it.

After posting a call for volunteers, a new Roundup installation was
set up at http://bugs.python.org. One installation of Roundup can
host multiple trackers, and this server now also hosts issue trackers
for Jython and for the Python web site. It will surely find
other uses in the future. Where possible,
this edition of “What’s New in Python” links to the bug/patch
item for each change.

Hosting of the Python bug tracker is kindly provided by
Upfront Systems [http://www.upfrontsystems.co.za/]
of Stellenbosch, South Africa. Martin von Loewis put a
lot of effort into importing existing bugs and patches from
SourceForge; his scripts for this import operation are at
http://svn.python.org/view/tracker/importer/ and may be useful to
other projects wishing to move from SourceForge to Roundup.

See also

	http://bugs.python.org

	The Python bug tracker.

	http://bugs.jython.org:

	The Jython bug tracker.

	http://roundup.sourceforge.net/

	Roundup downloads and documentation.

	http://svn.python.org/view/tracker/importer/

	Martin von Loewis’s conversion scripts.

New Documentation Format: reStructuredText Using Sphinx

The Python documentation was written using LaTeX since the project
started around 1989. In the 1980s and early 1990s, most documentation
was printed out for later study, not viewed online. LaTeX was widely
used because it provided attractive printed output while remaining
straightforward to write once the basic rules of the markup were
learned.

Today LaTeX is still used for writing publications destined for
printing, but the landscape for programming tools has shifted. We no
longer print out reams of documentation; instead, we browse through it
online and HTML has become the most important format to support.
Unfortunately, converting LaTeX to HTML is fairly complicated and Fred
L. Drake Jr., the long-time Python documentation editor, spent a lot
of time maintaining the conversion process. Occasionally people would
suggest converting the documentation into SGML and later XML, but
performing a good conversion is a major task and no one ever committed
the time required to finish the job.

During the 2.6 development cycle, Georg Brandl put a lot of effort
into building a new toolchain for processing the documentation. The
resulting package is called Sphinx, and is available from
http://sphinx.pocoo.org/.

Sphinx concentrates on HTML output, producing attractively styled and
modern HTML; printed output is still supported through conversion to
LaTeX. The input format is reStructuredText, a markup syntax
supporting custom extensions and directives that is commonly used in
the Python community.

Sphinx is a standalone package that can be used for writing, and
almost two dozen other projects
(listed on the Sphinx web site [http://sphinx.pocoo.org/examples.html])
have adopted Sphinx as their documentation tool.

See also

	Documenting Python

	Describes how to write for Python’s documentation.

	Sphinx [http://sphinx.pocoo.org/]

	Documentation and code for the Sphinx toolchain.

	Docutils [http://docutils.sf.net]

	The underlying reStructuredText parser and toolset.

PEP 343: The ‘with’ statement

The previous version, Python 2.5, added the ‘with‘
statement as an optional feature, to be enabled by a from __future__
import with_statement directive. In 2.6 the statement no longer needs to
be specially enabled; this means that with is now always a
keyword. The rest of this section is a copy of the corresponding
section from the “What’s New in Python 2.5” document; if you’re
familiar with the ‘with‘ statement
from Python 2.5, you can skip this section.

The ‘with‘ statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I’ll discuss the statement as it will commonly be used. In the next
section, I’ll examine the implementation details and show how to write objects
for use with this statement.

The ‘with‘ statement is a control-flow structure whose basic
structure is:

with expression [as variable]:
 with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol (that is, has __enter__() and __exit__()
methods).

The object’s __enter__() is called before with-block is executed and
therefore can run set-up code. It also may return a value that is bound to the
name variable, if given. (Note carefully that variable is not assigned
the result of expression.)

After execution of the with-block is finished, the object’s __exit__()
method is called, even if the block raised an exception, and can therefore run
clean-up code.

Some standard Python objects now support the context management protocol and can
be used with the ‘with‘ statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
 for line in f:
 print line
 ... more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the for loop raised an exception part-
way through the block.

Note

In this case, f is the same object created by open(), because
file.__enter__() returns self.

The threading module’s locks and condition variables also support the
‘with‘ statement:

lock = threading.Lock()
with lock:
 # Critical section of code
 ...

The lock is acquired before the block is executed and always released once the
block is complete.

The localcontext() function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578')
print v.sqrt()

with localcontext(Context(prec=16)):
 # All code in this block uses a precision of 16 digits.
 # The original context is restored on exiting the block.
 print v.sqrt()

Writing Context Managers

Under the hood, the ‘with‘ statement is fairly complicated. Most
people will only use ‘with‘ in company with existing objects and
don’t need to know these details, so you can skip the rest of this section if
you like. Authors of new objects will need to understand the details of the
underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

	The expression is evaluated and should result in an object called a “context
manager”. The context manager must have __enter__() and __exit__()
methods.

	The context manager’s __enter__() method is called. The value returned
is assigned to VAR. If no as VAR clause is present, the value is simply
discarded.

	The code in BLOCK is executed.

	If BLOCK raises an exception, the context manager’s __exit__() method
is called with three arguments, the exception details (type, value, traceback,
the same values returned by sys.exc_info(), which can also be None
if no exception occurred). The method’s return value controls whether an exception
is re-raised: any false value re-raises the exception, and True will result
in suppressing it. You’ll only rarely want to suppress the exception, because
if you do the author of the code containing the ‘with‘ statement will
never realize anything went wrong.

	If BLOCK didn’t raise an exception, the __exit__() method is still
called, but type, value, and traceback are all None.

Let’s think through an example. I won’t present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See
any database textbook for more information.)

Let’s assume there’s an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
 cursor.execute('insert into ...')
 cursor.execute('delete from ...')
 # ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there’s an exception. Here’s the basic interface for
DatabaseConnection that I’ll assume:

class DatabaseConnection:
 # Database interface
 def cursor(self):
 "Returns a cursor object and starts a new transaction"
 def commit(self):
 "Commits current transaction"
 def rollback(self):
 "Rolls back current transaction"

The __enter__() method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to
their ‘with‘ statement to bind the cursor to a variable name.

class DatabaseConnection:
 ...
 def __enter__(self):
 # Code to start a new transaction
 cursor = self.cursor()
 return cursor

The __exit__() method is the most complicated because it’s where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function,
returning the default value of None. None is false, so the exception
will be re-raised automatically. If you wished, you could be more explicit and
add a return statement at the marked location.

class DatabaseConnection:
 ...
 def __exit__(self, type, value, tb):
 if tb is None:
 # No exception, so commit
 self.commit()
 else:
 # Exception occurred, so rollback.
 self.rollback()
 # return False

The contextlib module

The contextlib module provides some functions and a decorator that
are useful when writing objects for use with the ‘with‘ statement.

The decorator is called contextmanager(), and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__() method, and the value yielded will be the method’s return
value that will get bound to the variable in the ‘with‘ statement’s
as clause, if any. The code after the yield will be
executed in the __exit__() method. Any exception raised in the block will
be raised by the yield statement.

Using this decorator, our database example from the previous section
could be written as:

from contextlib import contextmanager

@contextmanager
def db_transaction(connection):
 cursor = connection.cursor()
 try:
 yield cursor
 except:
 connection.rollback()
 raise
 else:
 connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:
 ...

The contextlib module also has a nested(mgr1, mgr2, ...) function
that combines a number of context managers so you don’t need to write nested
‘with‘ statements. In this example, the single ‘with‘
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):
 ...

Finally, the closing() function returns its argument so that it can be
bound to a variable, and calls the argument’s .close() method at the end
of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
 for line in f:
 sys.stdout.write(line)

See also

	PEP 343 [http://www.python.org/dev/peps/pep-0343] - The “with” statement

	PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland,
Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a
‘with‘ statement, which can be helpful in learning how the statement
works.

The documentation for the contextlib module.

PEP 366: Explicit Relative Imports From a Main Module

Python’s -m switch allows running a module as a script.
When you ran a module that was located inside a package, relative
imports didn’t work correctly.

The fix for Python 2.6 adds a __package__ attribute to
modules. When this attribute is present, relative imports will be
relative to the value of this attribute instead of the
__name__ attribute.

PEP 302-style importers can then set __package__ as necessary.
The runpy module that implements the -m switch now
does this, so relative imports will now work correctly in scripts
running from inside a package.

PEP 370: Per-user site-packages Directory

When you run Python, the module search path sys.path usually
includes a directory whose path ends in "site-packages". This
directory is intended to hold locally-installed packages available to
all users using a machine or a particular site installation.

Python 2.6 introduces a convention for user-specific site directories.
The directory varies depending on the platform:

	Unix and Mac OS X: ~/.local/

	Windows: %APPDATA%/Python

Within this directory, there will be version-specific subdirectories,
such as lib/python2.6/site-packages on Unix/Mac OS and
Python26/site-packages on Windows.

If you don’t like the default directory, it can be overridden by an
environment variable. PYTHONUSERBASE sets the root
directory used for all Python versions supporting this feature. On
Windows, the directory for application-specific data can be changed by
setting the APPDATA environment variable. You can also
modify the site.py file for your Python installation.

The feature can be disabled entirely by running Python with the
-s option or setting the PYTHONNOUSERSITE
environment variable.

See also

	PEP 370 [http://www.python.org/dev/peps/pep-0370] - Per-user site-packages Directory

	PEP written and implemented by Christian Heimes.

PEP 371: The multiprocessing Package

The new multiprocessing package lets Python programs create new
processes that will perform a computation and return a result to the
parent. The parent and child processes can communicate using queues
and pipes, synchronize their operations using locks and semaphores,
and can share simple arrays of data.

The multiprocessing module started out as an exact emulation of
the threading module using processes instead of threads. That
goal was discarded along the path to Python 2.6, but the general
approach of the module is still similar. The fundamental class
is the Process, which is passed a callable object and
a collection of arguments. The start() method
sets the callable running in a subprocess, after which you can call
the is_alive() method to check whether the subprocess is still running
and the join() method to wait for the process to exit.

Here’s a simple example where the subprocess will calculate a
factorial. The function doing the calculation is written strangely so
that it takes significantly longer when the input argument is a
multiple of 4.

import time
from multiprocessing import Process, Queue

def factorial(queue, N):
 "Compute a factorial."
 # If N is a multiple of 4, this function will take much longer.
 if (N % 4) == 0:
 time.sleep(.05 * N/4)

 # Calculate the result
 fact = 1L
 for i in range(1, N+1):
 fact = fact * i

 # Put the result on the queue
 queue.put(fact)

if __name__ == '__main__':
 queue = Queue()

 N = 5

 p = Process(target=factorial, args=(queue, N))
 p.start()
 p.join()

 result = queue.get()
 print 'Factorial', N, '=', result

A Queue is used to communicate the input parameter N and
the result. The Queue object is stored in a global variable.
The child process will use the value of the variable when the child
was created; because it’s a Queue, parent and child can use
the object to communicate. (If the parent were to change the value of
the global variable, the child’s value would be unaffected, and vice
versa.)

Two other classes, Pool and Manager, provide
higher-level interfaces. Pool will create a fixed number of
worker processes, and requests can then be distributed to the workers
by calling apply() or apply_async() to add a single request,
and map() or map_async() to add a number of
requests. The following code uses a Pool to spread requests
across 5 worker processes and retrieve a list of results:

from multiprocessing import Pool

def factorial(N, dictionary):
 "Compute a factorial."
 ...
p = Pool(5)
result = p.map(factorial, range(1, 1000, 10))
for v in result:
 print v

This produces the following output:

1
39916800
51090942171709440000
8222838654177922817725562880000000
33452526613163807108170062053440751665152000000000
...

The other high-level interface, the Manager class, creates a
separate server process that can hold master copies of Python data
structures. Other processes can then access and modify these data
structures using proxy objects. The following example creates a
shared dictionary by calling the dict() method; the worker
processes then insert values into the dictionary. (Locking is not
done for you automatically, which doesn’t matter in this example.
Manager‘s methods also include Lock(), RLock(),
and Semaphore() to create shared locks.)

import time
from multiprocessing import Pool, Manager

def factorial(N, dictionary):
 "Compute a factorial."
 # Calculate the result
 fact = 1L
 for i in range(1, N+1):
 fact = fact * i

 # Store result in dictionary
 dictionary[N] = fact

if __name__ == '__main__':
 p = Pool(5)
 mgr = Manager()
 d = mgr.dict() # Create shared dictionary

 # Run tasks using the pool
 for N in range(1, 1000, 10):
 p.apply_async(factorial, (N, d))

 # Mark pool as closed -- no more tasks can be added.
 p.close()

 # Wait for tasks to exit
 p.join()

 # Output results
 for k, v in sorted(d.items()):
 print k, v

This will produce the output:

1 1
11 39916800
21 51090942171709440000
31 8222838654177922817725562880000000
41 33452526613163807108170062053440751665152000000000
51 15511187532873822802242430164693032110632597200169861120000...

See also

The documentation for the multiprocessing module.

	PEP 371 [http://www.python.org/dev/peps/pep-0371] - Addition of the multiprocessing package

	PEP written by Jesse Noller and Richard Oudkerk;
implemented by Richard Oudkerk and Jesse Noller.

PEP 3101: Advanced String Formatting

In Python 3.0, the % operator is supplemented by a more powerful string
formatting method, format(). Support for the str.format() method
has been backported to Python 2.6.

In 2.6, both 8-bit and Unicode strings have a .format() method that
treats the string as a template and takes the arguments to be formatted.
The formatting template uses curly brackets ({, }) as special characters:

>>> # Substitute positional argument 0 into the string.
>>> "User ID: {0}".format("root")
'User ID: root'
>>> # Use the named keyword arguments
>>> "User ID: {uid} Last seen: {last_login}".format(
... uid="root",
... last_login = "5 Mar 2008 07:20")
'User ID: root Last seen: 5 Mar 2008 07:20'

Curly brackets can be escaped by doubling them:

>>> "Empty dict: {{}}".format()
"Empty dict: {}"

Field names can be integers indicating positional arguments, such as
{0}, {1}, etc. or names of keyword arguments. You can also
supply compound field names that read attributes or access dictionary keys:

>>> import sys
>>> print 'Platform: {0.platform}\nPython version: {0.version}'.format(sys)
Platform: darwin
Python version: 2.6a1+ (trunk:61261M, Mar 5 2008, 20:29:41)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)]'

>>> import mimetypes
>>> 'Content-type: {0[.mp4]}'.format(mimetypes.types_map)
'Content-type: video/mp4'

Note that when using dictionary-style notation such as [.mp4], you
don’t need to put any quotation marks around the string; it will look
up the value using .mp4 as the key. Strings beginning with a
number will be converted to an integer. You can’t write more
complicated expressions inside a format string.

So far we’ve shown how to specify which field to substitute into the
resulting string. The precise formatting used is also controllable by
adding a colon followed by a format specifier. For example:

>>> # Field 0: left justify, pad to 15 characters
>>> # Field 1: right justify, pad to 6 characters
>>> fmt = '{0:15} ${1:>6}'
>>> fmt.format('Registration', 35)
'Registration $ 35'
>>> fmt.format('Tutorial', 50)
'Tutorial $ 50'
>>> fmt.format('Banquet', 125)
'Banquet $ 125'

Format specifiers can reference other fields through nesting:

>>> fmt = '{0:{1}}'
>>> width = 15
>>> fmt.format('Invoice #1234', width)
'Invoice #1234 '
>>> width = 35
>>> fmt.format('Invoice #1234', width)
'Invoice #1234 '

The alignment of a field within the desired width can be specified:

	Character
	Effect

	< (default)
	Left-align

	>
	Right-align

	^
	Center

	=
	(For numeric types only) Pad after the sign.

Format specifiers can also include a presentation type, which
controls how the value is formatted. For example, floating-point numbers
can be formatted as a general number or in exponential notation:

>>> '{0:g}'.format(3.75)
'3.75'
>>> '{0:e}'.format(3.75)
'3.750000e+00'

A variety of presentation types are available. Consult the 2.6
documentation for a complete list; here’s a sample:

	b
	Binary. Outputs the number in base 2.

	c
	Character. Converts the integer to the corresponding Unicode character
before printing.

	d
	Decimal Integer. Outputs the number in base 10.

	o
	Octal format. Outputs the number in base 8.

	x
	Hex format. Outputs the number in base 16, using lower-case letters for
the digits above 9.

	e
	Exponent notation. Prints the number in scientific notation using the
letter ‘e’ to indicate the exponent.

	g
	General format. This prints the number as a fixed-point number, unless
the number is too large, in which case it switches to ‘e’ exponent
notation.

	n
	Number. This is the same as ‘g’ (for floats) or ‘d’ (for integers),
except that it uses the current locale setting to insert the appropriate
number separator characters.

	%
	Percentage. Multiplies the number by 100 and displays in fixed (‘f’)
format, followed by a percent sign.

Classes and types can define a __format__() method to control how they’re
formatted. It receives a single argument, the format specifier:

def __format__(self, format_spec):
 if isinstance(format_spec, unicode):
 return unicode(str(self))
 else:
 return str(self)

There’s also a format() builtin that will format a single
value. It calls the type’s __format__() method with the
provided specifier:

>>> format(75.6564, '.2f')
'75.66'

See also

	Format String Syntax

	The reference documentation for format fields.

	PEP 3101 [http://www.python.org/dev/peps/pep-3101] - Advanced String Formatting

	PEP written by Talin. Implemented by Eric Smith.

PEP 3105: print As a Function

The print statement becomes the print() function in Python 3.0.
Making print() a function makes it possible to replace the function
by doing def print(...) or importing a new function from somewhere else.

Python 2.6 has a __future__ import that removes print as language
syntax, letting you use the functional form instead. For example:

>>> from __future__ import print_function
>>> print('# of entries', len(dictionary), file=sys.stderr)

The signature of the new function is:

def print(*args, sep=' ', end='\n', file=None)

The parameters are:

	args: positional arguments whose values will be printed out.

	sep: the separator, which will be printed between arguments.

	end: the ending text, which will be printed after all of the
arguments have been output.

	file: the file object to which the output will be sent.

See also

	PEP 3105 [http://www.python.org/dev/peps/pep-3105] - Make print a function

	PEP written by Georg Brandl.

PEP 3110: Exception-Handling Changes

One error that Python programmers occasionally make
is writing the following code:

try:
 ...
except TypeError, ValueError: # Wrong!
 ...

The author is probably trying to catch both TypeError and
ValueError exceptions, but this code actually does something
different: it will catch TypeError and bind the resulting
exception object to the local name "ValueError". The
ValueError exception will not be caught at all. The correct
code specifies a tuple of exceptions:

try:
 ...
except (TypeError, ValueError):
 ...

This error happens because the use of the comma here is ambiguous:
does it indicate two different nodes in the parse tree, or a single
node that’s a tuple?

Python 3.0 makes this unambiguous by replacing the comma with the word
“as”. To catch an exception and store the exception object in the
variable exc, you must write:

try:
 ...
except TypeError as exc:
 ...

Python 3.0 will only support the use of “as”, and therefore interprets
the first example as catching two different exceptions. Python 2.6
supports both the comma and “as”, so existing code will continue to
work. We therefore suggest using “as” when writing new Python code
that will only be executed with 2.6.

See also

	PEP 3110 [http://www.python.org/dev/peps/pep-3110] - Catching Exceptions in Python 3000

	PEP written and implemented by Collin Winter.

PEP 3112: Byte Literals

Python 3.0 adopts Unicode as the language’s fundamental string type and
denotes 8-bit literals differently, either as b'string'
or using a bytes constructor. For future compatibility,
Python 2.6 adds bytes as a synonym for the str type,
and it also supports the b'' notation.

The 2.6 str differs from 3.0’s bytes type in various
ways; most notably, the constructor is completely different. In 3.0,
bytes([65, 66, 67]) is 3 elements long, containing the bytes
representing ABC; in 2.6, bytes([65, 66, 67]) returns the
12-byte string representing the str() of the list.

The primary use of bytes in 2.6 will be to write tests of
object type such as isinstance(x, bytes). This will help the 2to3
converter, which can’t tell whether 2.x code intends strings to
contain either characters or 8-bit bytes; you can now
use either bytes or str to represent your intention
exactly, and the resulting code will also be correct in Python 3.0.

There’s also a __future__ import that causes all string literals
to become Unicode strings. This means that \u escape sequences
can be used to include Unicode characters:

from __future__ import unicode_literals

s = ('\u751f\u3080\u304e\u3000\u751f\u3054'
 '\u3081\u3000\u751f\u305f\u307e\u3054')

print len(s) # 12 Unicode characters

At the C level, Python 3.0 will rename the existing 8-bit
string type, called PyStringObject in Python 2.x,
to PyBytesObject. Python 2.6 uses #define
to support using the names PyBytesObject(),
PyBytes_Check(), PyBytes_FromStringAndSize(),
and all the other functions and macros used with strings.

Instances of the bytes type are immutable just
as strings are. A new bytearray type stores a mutable
sequence of bytes:

>>> bytearray([65, 66, 67])
bytearray(b'ABC')
>>> b = bytearray(u'\u21ef\u3244', 'utf-8')
>>> b
bytearray(b'\xe2\x87\xaf\xe3\x89\x84')
>>> b[0] = '\xe3'
>>> b
bytearray(b'\xe3\x87\xaf\xe3\x89\x84')
>>> unicode(str(b), 'utf-8')
u'\u31ef \u3244'

Byte arrays support most of the methods of string types, such as
startswith()/endswith(), find()/rfind(),
and some of the methods of lists, such as append(),
pop(), and reverse().

>>> b = bytearray('ABC')
>>> b.append('d')
>>> b.append(ord('e'))
>>> b
bytearray(b'ABCde')

There’s also a corresponding C API, with
PyByteArray_FromObject(),
PyByteArray_FromStringAndSize(),
and various other functions.

See also

	PEP 3112 [http://www.python.org/dev/peps/pep-3112] - Bytes literals in Python 3000

	PEP written by Jason Orendorff; backported to 2.6 by Christian Heimes.

PEP 3116: New I/O Library

Python’s built-in file objects support a number of methods, but
file-like objects don’t necessarily support all of them. Objects that
imitate files usually support read() and write(), but they
may not support readline(), for example. Python 3.0 introduces
a layered I/O library in the io module that separates buffering
and text-handling features from the fundamental read and write
operations.

There are three levels of abstract base classes provided by
the io module:

	RawIOBase defines raw I/O operations: read(),
readinto(),
write(), seek(), tell(), truncate(),
and close().
Most of the methods of this class will often map to a single system call.
There are also readable(), writable(), and seekable()
methods for determining what operations a given object will allow.

Python 3.0 has concrete implementations of this class for files and
sockets, but Python 2.6 hasn’t restructured its file and socket objects
in this way.

	BufferedIOBase is an abstract base class that
buffers data in memory to reduce the number of
system calls used, making I/O processing more efficient.
It supports all of the methods of RawIOBase,
and adds a raw attribute holding the underlying raw object.

There are five concrete classes implementing this ABC.
BufferedWriter and BufferedReader are for objects
that support write-only or read-only usage that have a seek()
method for random access. BufferedRandom objects support
read and write access upon the same underlying stream, and
BufferedRWPair is for objects such as TTYs that have both
read and write operations acting upon unconnected streams of data.
The BytesIO class supports reading, writing, and seeking
over an in-memory buffer.

	TextIOBase: Provides functions for reading and writing
strings (remember, strings will be Unicode in Python 3.0),
and supporting universal newlines. TextIOBase defines
the readline() method and supports iteration upon
objects.

There are two concrete implementations. TextIOWrapper
wraps a buffered I/O object, supporting all of the methods for
text I/O and adding a buffer attribute for access
to the underlying object. StringIO simply buffers
everything in memory without ever writing anything to disk.

(In Python 2.6, io.StringIO is implemented in
pure Python, so it’s pretty slow. You should therefore stick with the
existing StringIO module or cStringIO for now. At some
point Python 3.0’s io module will be rewritten into C for speed,
and perhaps the C implementation will be backported to the 2.x releases.)

In Python 2.6, the underlying implementations haven’t been
restructured to build on top of the io module’s classes. The
module is being provided to make it easier to write code that’s
forward-compatible with 3.0, and to save developers the effort of writing
their own implementations of buffering and text I/O.

See also

	PEP 3116 [http://www.python.org/dev/peps/pep-3116] - New I/O

	PEP written by Daniel Stutzbach, Mike Verdone, and Guido van Rossum.
Code by Guido van Rossum, Georg Brandl, Walter Doerwald,
Jeremy Hylton, Martin von Loewis, Tony Lownds, and others.

PEP 3118: Revised Buffer Protocol

The buffer protocol is a C-level API that lets Python types
exchange pointers into their internal representations. A
memory-mapped file can be viewed as a buffer of characters, for
example, and this lets another module such as re
treat memory-mapped files as a string of characters to be searched.

The primary users of the buffer protocol are numeric-processing
packages such as NumPy, which expose the internal representation
of arrays so that callers can write data directly into an array instead
of going through a slower API. This PEP updates the buffer protocol in light of experience
from NumPy development, adding a number of new features
such as indicating the shape of an array or locking a memory region.

The most important new C API function is
PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags), which
takes an object and a set of flags, and fills in the
Py_buffer structure with information
about the object’s memory representation. Objects
can use this operation to lock memory in place
while an external caller could be modifying the contents,
so there’s a corresponding PyBuffer_Release(Py_buffer *view) to
indicate that the external caller is done.

The flags argument to PyObject_GetBuffer() specifies
constraints upon the memory returned. Some examples are:

	PyBUF_WRITABLE indicates that the memory must be writable.

	PyBUF_LOCK requests a read-only or exclusive lock on the memory.

	PyBUF_C_CONTIGUOUS and PyBUF_F_CONTIGUOUS
requests a C-contiguous (last dimension varies the fastest) or
Fortran-contiguous (first dimension varies the fastest) array layout.

Two new argument codes for PyArg_ParseTuple(),
s* and z*, return locked buffer objects for a parameter.

See also

	PEP 3118 [http://www.python.org/dev/peps/pep-3118] - Revising the buffer protocol

	PEP written by Travis Oliphant and Carl Banks; implemented by
Travis Oliphant.

PEP 3119: Abstract Base Classes

Some object-oriented languages such as Java support interfaces,
declaring that a class has a given set of methods or supports a given
access protocol. Abstract Base Classes (or ABCs) are an equivalent
feature for Python. The ABC support consists of an abc module
containing a metaclass called ABCMeta, special handling of
this metaclass by the isinstance() and issubclass()
builtins, and a collection of basic ABCs that the Python developers
think will be widely useful. Future versions of Python will probably
add more ABCs.

Let’s say you have a particular class and wish to know whether it supports
dictionary-style access. The phrase “dictionary-style” is vague, however.
It probably means that accessing items with obj[1] works.
Does it imply that setting items with obj[2] = value works?
Or that the object will have keys(), values(), and items()
methods? What about the iterative variants such as iterkeys()? copy()
and update()? Iterating over the object with iter()?

The Python 2.6 collections module includes a number of
different ABCs that represent these distinctions. Iterable
indicates that a class defines __iter__(), and
Container means the class defines a __contains__()
method and therefore supports x in y expressions. The basic
dictionary interface of getting items, setting items, and
keys(), values(), and items(), is defined by the
MutableMapping ABC.

You can derive your own classes from a particular ABC
to indicate they support that ABC’s interface:

import collections

class Storage(collections.MutableMapping):
 ...

Alternatively, you could write the class without deriving from
the desired ABC and instead register the class by
calling the ABC’s register() method:

import collections

class Storage:
 ...

collections.MutableMapping.register(Storage)

For classes that you write, deriving from the ABC is probably clearer.
The register() method is useful when you’ve written a new
ABC that can describe an existing type or class, or if you want
to declare that some third-party class implements an ABC.
For example, if you defined a PrintableType ABC,
it’s legal to do:

Register Python's types
PrintableType.register(int)
PrintableType.register(float)
PrintableType.register(str)

Classes should obey the semantics specified by an ABC, but
Python can’t check this; it’s up to the class author to
understand the ABC’s requirements and to implement the code accordingly.

To check whether an object supports a particular interface, you can
now write:

def func(d):
 if not isinstance(d, collections.MutableMapping):
 raise ValueError("Mapping object expected, not %r" % d)

Don’t feel that you must now begin writing lots of checks as in the
above example. Python has a strong tradition of duck-typing, where
explicit type-checking is never done and code simply calls methods on
an object, trusting that those methods will be there and raising an
exception if they aren’t. Be judicious in checking for ABCs and only
do it where it’s absolutely necessary.

You can write your own ABCs by using abc.ABCMeta as the
metaclass in a class definition:

from abc import ABCMeta, abstractmethod

class Drawable():
 __metaclass__ = ABCMeta

 @abstractmethod
 def draw(self, x, y, scale=1.0):
 pass

 def draw_doubled(self, x, y):
 self.draw(x, y, scale=2.0)

class Square(Drawable):
 def draw(self, x, y, scale):
 ...

In the Drawable ABC above, the draw_doubled() method
renders the object at twice its size and can be implemented in terms
of other methods described in Drawable. Classes implementing
this ABC therefore don’t need to provide their own implementation
of draw_doubled(), though they can do so. An implementation
of draw() is necessary, though; the ABC can’t provide
a useful generic implementation.

You can apply the @abstractmethod decorator to methods such as
draw() that must be implemented; Python will then raise an
exception for classes that don’t define the method.
Note that the exception is only raised when you actually
try to create an instance of a subclass lacking the method:

>>> class Circle(Drawable):
... pass
...
>>> c = Circle()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Circle with abstract methods draw
>>>

Abstract data attributes can be declared using the
@abstractproperty decorator:

from abc import abstractproperty
...

@abstractproperty
def readonly(self):
 return self._x

Subclasses must then define a readonly() property.

See also

	PEP 3119 [http://www.python.org/dev/peps/pep-3119] - Introducing Abstract Base Classes

	PEP written by Guido van Rossum and Talin.
Implemented by Guido van Rossum.
Backported to 2.6 by Benjamin Aranguren, with Alex Martelli.

PEP 3127: Integer Literal Support and Syntax

Python 3.0 changes the syntax for octal (base-8) integer literals,
prefixing them with “0o” or “0O” instead of a leading zero, and adds
support for binary (base-2) integer literals, signalled by a “0b” or
“0B” prefix.

Python 2.6 doesn’t drop support for a leading 0 signalling
an octal number, but it does add support for “0o” and “0b”:

>>> 0o21, 2*8 + 1
(17, 17)
>>> 0b101111
47

The oct() builtin still returns numbers
prefixed with a leading zero, and a new bin()
builtin returns the binary representation for a number:

>>> oct(42)
'052'
>>> future_builtins.oct(42)
'0o52'
>>> bin(173)
'0b10101101'

The int() and long() builtins will now accept the “0o”
and “0b” prefixes when base-8 or base-2 are requested, or when the
base argument is zero (signalling that the base used should be
determined from the string):

>>> int ('0o52', 0)
42
>>> int('1101', 2)
13
>>> int('0b1101', 2)
13
>>> int('0b1101', 0)
13

See also

	PEP 3127 [http://www.python.org/dev/peps/pep-3127] - Integer Literal Support and Syntax

	PEP written by Patrick Maupin; backported to 2.6 by
Eric Smith.

PEP 3129: Class Decorators

Decorators have been extended from functions to classes. It’s now legal to
write:

@foo
@bar
class A:
 pass

This is equivalent to:

class A:
 pass

A = foo(bar(A))

See also

	PEP 3129 [http://www.python.org/dev/peps/pep-3129] - Class Decorators

	PEP written by Collin Winter.

PEP 3141: A Type Hierarchy for Numbers

Python 3.0 adds several abstract base classes for numeric types
inspired by Scheme’s numeric tower. These classes were backported to
2.6 as the numbers module.

The most general ABC is Number. It defines no operations at
all, and only exists to allow checking if an object is a number by
doing isinstance(obj, Number).

Complex is a subclass of Number. Complex numbers
can undergo the basic operations of addition, subtraction,
multiplication, division, and exponentiation, and you can retrieve the
real and imaginary parts and obtain a number’s conjugate. Python’s built-in
complex type is an implementation of Complex.

Real further derives from Complex, and adds
operations that only work on real numbers: floor(), trunc(),
rounding, taking the remainder mod N, floor division,
and comparisons.

Rational numbers derive from Real, have
numerator and denominator properties, and can be
converted to floats. Python 2.6 adds a simple rational-number class,
Fraction, in the fractions module. (It’s called
Fraction instead of Rational to avoid
a name clash with numbers.Rational.)

Integral numbers derive from Rational, and
can be shifted left and right with << and >>,
combined using bitwise operations such as & and |,
and can be used as array indexes and slice boundaries.

In Python 3.0, the PEP slightly redefines the existing builtins
round(), math.floor(), math.ceil(), and adds a new
one, math.trunc(), that’s been backported to Python 2.6.
math.trunc() rounds toward zero, returning the closest
Integral that’s between the function’s argument and zero.

See also

	PEP 3141 [http://www.python.org/dev/peps/pep-3141] - A Type Hierarchy for Numbers

	PEP written by Jeffrey Yasskin.

Scheme’s numerical tower [http://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html#Numerical-Tower], from the Guile manual.

Scheme’s number datatypes [http://schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2] from the R5RS Scheme specification.

The fractions Module

To fill out the hierarchy of numeric types, the fractions
module provides a rational-number class. Rational numbers store their
values as a numerator and denominator forming a fraction, and can
exactly represent numbers such as 2/3 that floating-point numbers
can only approximate.

The Fraction constructor takes two Integral values
that will be the numerator and denominator of the resulting fraction.

>>> from fractions import Fraction
>>> a = Fraction(2, 3)
>>> b = Fraction(2, 5)
>>> float(a), float(b)
(0.66666666666666663, 0.40000000000000002)
>>> a+b
Fraction(16, 15)
>>> a/b
Fraction(5, 3)

For converting floating-point numbers to rationals,
the float type now has an as_integer_ratio() method that returns
the numerator and denominator for a fraction that evaluates to the same
floating-point value:

>>> (2.5) .as_integer_ratio()
(5, 2)
>>> (3.1415) .as_integer_ratio()
(7074029114692207L, 2251799813685248L)
>>> (1./3) .as_integer_ratio()
(6004799503160661L, 18014398509481984L)

Note that values that can only be approximated by floating-point
numbers, such as 1./3, are not simplified to the number being
approximated; the fraction attempts to match the floating-point value
exactly.

The fractions module is based upon an implementation by Sjoerd
Mullender that was in Python’s Demo/classes/ directory for a
long time. This implementation was significantly updated by Jeffrey
Yasskin.

Other Language Changes

Some smaller changes made to the core Python language are:

	Directories and zip archives containing a __main__.py file
can now be executed directly by passing their name to the
interpreter. The directory or zip archive is automatically inserted
as the first entry in sys.path. (Suggestion and initial patch by
Andy Chu, subsequently revised by Phillip J. Eby and Nick Coghlan;
issue 1739468 [http://bugs.python.org/issue1739468].)

	The hasattr() function was catching and ignoring all errors,
under the assumption that they meant a __getattr__() method
was failing somehow and the return value of hasattr() would
therefore be False. This logic shouldn’t be applied to
KeyboardInterrupt and SystemExit, however; Python 2.6
will no longer discard such exceptions when hasattr()
encounters them. (Fixed by Benjamin Peterson; issue 2196 [http://bugs.python.org/issue2196].)

	When calling a function using the ** syntax to provide keyword
arguments, you are no longer required to use a Python dictionary;
any mapping will now work:

>>> def f(**kw):
... print sorted(kw)
...
>>> ud=UserDict.UserDict()
>>> ud['a'] = 1
>>> ud['b'] = 'string'
>>> f(**ud)
['a', 'b']

(Contributed by Alexander Belopolsky; issue 1686487 [http://bugs.python.org/issue1686487].)

It’s also become legal to provide keyword arguments after a *args argument
to a function call.

>>> def f(*args, **kw):
... print args, kw
...
>>> f(1,2,3, *(4,5,6), keyword=13)
(1, 2, 3, 4, 5, 6) {'keyword': 13}

Previously this would have been a syntax error.
(Contributed by Amaury Forgeot d’Arc; issue 3473 [http://bugs.python.org/issue3473].)

	A new builtin, next(iterator, [default]) returns the next item
from the specified iterator. If the default argument is supplied,
it will be returned if iterator has been exhausted; otherwise,
the StopIteration exception will be raised. (Backported
in issue 2719 [http://bugs.python.org/issue2719].)

	Tuples now have index() and count() methods matching the
list type’s index() and count() methods:

>>> t = (0,1,2,3,4,0,1,2)
>>> t.index(3)
3
>>> t.count(0)
2

(Contributed by Raymond Hettinger)

	The built-in types now have improved support for extended slicing syntax,
accepting various combinations of (start, stop, step).
Previously, the support was partial and certain corner cases wouldn’t work.
(Implemented by Thomas Wouters.)

	Properties now have three attributes, getter, setter
and deleter, that are decorators providing useful shortcuts
for adding a getter, setter or deleter function to an existing
property. You would use them like this:

class C(object):
 @property
 def x(self):
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

class D(C):
 @C.x.getter
 def x(self):
 return self._x * 2

 @x.setter
 def x(self, value):
 self._x = value / 2

	Several methods of the built-in set types now accept multiple iterables:
intersection(),
intersection_update(),
union(), update(),
difference() and difference_update().

>>> s=set('1234567890')
>>> s.intersection('abc123', 'cdf246') # Intersection between all inputs
set(['2'])
>>> s.difference('246', '789')
set(['1', '0', '3', '5'])

(Contributed by Raymond Hettinger.)

	Many floating-point features were added. The float() function
will now turn the string nan into an
IEEE 754 Not A Number value, and +inf and -inf into
positive or negative infinity. This works on any platform with
IEEE 754 semantics. (Contributed by Christian Heimes; issue 1635 [http://bugs.python.org/issue1635].)

Other functions in the math module, isinf() and
isnan(), return true if their floating-point argument is
infinite or Not A Number. (issue 1640 [http://bugs.python.org/issue1640])

Conversion functions were added to convert floating-point numbers
into hexadecimal strings (issue 3008 [http://bugs.python.org/issue3008]). These functions
convert floats to and from a string representation without
introducing rounding errors from the conversion between decimal and
binary. Floats have a hex() method that returns a string
representation, and the float.fromhex() method converts a string
back into a number:

>>> a = 3.75
>>> a.hex()
'0x1.e000000000000p+1'
>>> float.fromhex('0x1.e000000000000p+1')
3.75
>>> b=1./3
>>> b.hex()
'0x1.5555555555555p-2'

	A numerical nicety: when creating a complex number from two floats
on systems that support signed zeros (-0 and +0), the
complex() constructor will now preserve the sign
of the zero. (Fixed by Mark T. Dickinson; issue 1507 [http://bugs.python.org/issue1507].)

	Classes that inherit a __hash__() method from a parent class
can set __hash__ = None to indicate that the class isn’t
hashable. This will make hash(obj) raise a TypeError
and the class will not be indicated as implementing the
Hashable ABC.

You should do this when you’ve defined a __cmp__() or
__eq__() method that compares objects by their value rather
than by identity. All objects have a default hash method that uses
id(obj) as the hash value. There’s no tidy way to remove the
__hash__() method inherited from a parent class, so
assigning None was implemented as an override. At the
C level, extensions can set tp_hash to
PyObject_HashNotImplemented().
(Fixed by Nick Coghlan and Amaury Forgeot d’Arc; issue 2235 [http://bugs.python.org/issue2235].)

	The GeneratorExit exception now subclasses
BaseException instead of Exception. This means
that an exception handler that does except Exception:
will not inadvertently catch GeneratorExit.
(Contributed by Chad Austin; issue 1537 [http://bugs.python.org/issue1537].)

	Generator objects now have a gi_code attribute that refers to
the original code object backing the generator.
(Contributed by Collin Winter; issue 1473257 [http://bugs.python.org/issue1473257].)

	The compile() built-in function now accepts keyword arguments
as well as positional parameters. (Contributed by Thomas Wouters;
issue 1444529 [http://bugs.python.org/issue1444529].)

	The complex() constructor now accepts strings containing
parenthesized complex numbers, meaning that complex(repr(cplx))
will now round-trip values. For example, complex('(3+4j)')
now returns the value (3+4j). (issue 1491866 [http://bugs.python.org/issue1491866])

	The string translate() method now accepts None as the
translation table parameter, which is treated as the identity
transformation. This makes it easier to carry out operations
that only delete characters. (Contributed by Bengt Richter and
implemented by Raymond Hettinger; issue 1193128 [http://bugs.python.org/issue1193128].)

	The built-in dir() function now checks for a __dir__()
method on the objects it receives. This method must return a list
of strings containing the names of valid attributes for the object,
and lets the object control the value that dir() produces.
Objects that have __getattr__() or __getattribute__()
methods can use this to advertise pseudo-attributes they will honor.
(issue 1591665 [http://bugs.python.org/issue1591665])

	Instance method objects have new attributes for the object and function
comprising the method; the new synonym for im_self is
__self__, and im_func is also available as __func__.
The old names are still supported in Python 2.6, but are gone in 3.0.

	An obscure change: when you use the locals() function inside a
class statement, the resulting dictionary no longer returns free
variables. (Free variables, in this case, are variables referenced in the
class statement that aren’t attributes of the class.)

Optimizations

	The warnings module has been rewritten in C. This makes
it possible to invoke warnings from the parser, and may also
make the interpreter’s startup faster.
(Contributed by Neal Norwitz and Brett Cannon; issue 1631171 [http://bugs.python.org/issue1631171].)

	Type objects now have a cache of methods that can reduce
the work required to find the correct method implementation
for a particular class; once cached, the interpreter doesn’t need to
traverse base classes to figure out the right method to call.
The cache is cleared if a base class or the class itself is modified,
so the cache should remain correct even in the face of Python’s dynamic
nature.
(Original optimization implemented by Armin Rigo, updated for
Python 2.6 by Kevin Jacobs; issue 1700288 [http://bugs.python.org/issue1700288].)

By default, this change is only applied to types that are included with
the Python core. Extension modules may not necessarily be compatible with
this cache,
so they must explicitly add Py_TPFLAGS_HAVE_VERSION_TAG
to the module’s tp_flags field to enable the method cache.
(To be compatible with the method cache, the extension module’s code
must not directly access and modify the tp_dict member of
any of the types it implements. Most modules don’t do this,
but it’s impossible for the Python interpreter to determine that.
See issue 1878 [http://bugs.python.org/issue1878] for some discussion.)

	Function calls that use keyword arguments are significantly faster
by doing a quick pointer comparison, usually saving the time of a
full string comparison. (Contributed by Raymond Hettinger, after an
initial implementation by Antoine Pitrou; issue 1819 [http://bugs.python.org/issue1819].)

	All of the functions in the struct module have been rewritten in
C, thanks to work at the Need For Speed sprint.
(Contributed by Raymond Hettinger.)

	Some of the standard built-in types now set a bit in their type
objects. This speeds up checking whether an object is a subclass of
one of these types. (Contributed by Neal Norwitz.)

	Unicode strings now use faster code for detecting
whitespace and line breaks; this speeds up the split() method
by about 25% and splitlines() by 35%.
(Contributed by Antoine Pitrou.) Memory usage is reduced
by using pymalloc for the Unicode string’s data.

	The with statement now stores the __exit__() method on the stack,
producing a small speedup. (Implemented by Jeffrey Yasskin.)

	To reduce memory usage, the garbage collector will now clear internal
free lists when garbage-collecting the highest generation of objects.
This may return memory to the operating system sooner.

Interpreter Changes

Two command-line options have been reserved for use by other Python
implementations. The -J switch has been reserved for use by
Jython for Jython-specific options, such as switches that are passed to
the underlying JVM. -X has been reserved for options
specific to a particular implementation of Python such as CPython,
Jython, or IronPython. If either option is used with Python 2.6, the
interpreter will report that the option isn’t currently used.

Python can now be prevented from writing .pyc or .pyo
files by supplying the -B switch to the Python interpreter,
or by setting the PYTHONDONTWRITEBYTECODE environment
variable before running the interpreter. This setting is available to
Python programs as the sys.dont_write_bytecode variable, and
Python code can change the value to modify the interpreter’s
behaviour. (Contributed by Neal Norwitz and Georg Brandl.)

The encoding used for standard input, output, and standard error can
be specified by setting the PYTHONIOENCODING environment
variable before running the interpreter. The value should be a string
in the form <encoding> or <encoding>:<errorhandler>.
The encoding part specifies the encoding’s name, e.g. utf-8 or
latin-1; the optional errorhandler part specifies
what to do with characters that can’t be handled by the encoding,
and should be one of “error”, “ignore”, or “replace”. (Contributed
by Martin von Loewis.)

New and Improved Modules

As in every release, Python’s standard library received a number of
enhancements and bug fixes. Here’s a partial list of the most notable
changes, sorted alphabetically by module name. Consult the
Misc/NEWS file in the source tree for a more complete list of
changes, or look through the Subversion logs for all the details.

	The asyncore and asynchat modules are
being actively maintained again, and a number of patches and bugfixes
were applied. (Maintained by Josiah Carlson; see issue 1736190 [http://bugs.python.org/issue1736190] for
one patch.)

	The bsddb module also has a new maintainer, Jesús Cea Avion, and the package
is now available as a standalone package. The web page for the package is
www.jcea.es/programacion/pybsddb.htm [http://www.jcea.es/programacion/pybsddb.htm].
The plan is to remove the package from the standard library
in Python 3.0, because its pace of releases is much more frequent than
Python’s.

The bsddb.dbshelve module now uses the highest pickling protocol
available, instead of restricting itself to protocol 1.
(Contributed by W. Barnes.)

	The cgi module will now read variables from the query string
of an HTTP POST request. This makes it possible to use form actions
with URLs that include query strings such as
“/cgi-bin/add.py?category=1”. (Contributed by Alexandre Fiori and
Nubis; issue 1817 [http://bugs.python.org/issue1817].)

The parse_qs() and parse_qsl() functions have been
relocated from the cgi module to the urlparse module.
The versions still available in the cgi module will
trigger PendingDeprecationWarning messages in 2.6
(issue 600362 [http://bugs.python.org/issue600362]).

	The cmath module underwent extensive revision,
contributed by Mark Dickinson and Christian Heimes.
Five new functions were added:

	polar() converts a complex number to polar form, returning
the modulus and argument of the complex number.

	rect() does the opposite, turning a modulus, argument pair
back into the corresponding complex number.

	phase() returns the argument (also called the angle) of a complex
number.

	isnan() returns True if either
the real or imaginary part of its argument is a NaN.

	isinf() returns True if either the real or imaginary part of
its argument is infinite.

The revisions also improved the numerical soundness of the
cmath module. For all functions, the real and imaginary
parts of the results are accurate to within a few units of least
precision (ulps) whenever possible. See issue 1381 [http://bugs.python.org/issue1381] for the
details. The branch cuts for asinh(), atanh(): and
atan() have also been corrected.

The tests for the module have been greatly expanded; nearly 2000 new
test cases exercise the algebraic functions.

On IEEE 754 platforms, the cmath module now handles IEEE 754
special values and floating-point exceptions in a manner consistent
with Annex ‘G’ of the C99 standard.

	A new data type in the collections module: namedtuple(typename,
fieldnames) is a factory function that creates subclasses of the standard tuple
whose fields are accessible by name as well as index. For example:

>>> var_type = collections.namedtuple('variable',
... 'id name type size')
>>> # Names are separated by spaces or commas.
>>> # 'id, name, type, size' would also work.
>>> var_type._fields
('id', 'name', 'type', 'size')

>>> var = var_type(1, 'frequency', 'int', 4)
>>> print var[0], var.id # Equivalent
1 1
>>> print var[2], var.type # Equivalent
int int
>>> var._asdict()
{'size': 4, 'type': 'int', 'id': 1, 'name': 'frequency'}
>>> v2 = var._replace(name='amplitude')
>>> v2
variable(id=1, name='amplitude', type='int', size=4)

Several places in the standard library that returned tuples have
been modified to return namedtuple instances. For example,
the Decimal.as_tuple() method now returns a named tuple with
sign, digits, and exponent fields.

(Contributed by Raymond Hettinger.)

	Another change to the collections module is that the
deque type now supports an optional maxlen parameter;
if supplied, the deque’s size will be restricted to no more
than maxlen items. Adding more items to a full deque causes
old items to be discarded.

>>> from collections import deque
>>> dq=deque(maxlen=3)
>>> dq
deque([], maxlen=3)
>>> dq.append(1) ; dq.append(2) ; dq.append(3)
>>> dq
deque([1, 2, 3], maxlen=3)
>>> dq.append(4)
>>> dq
deque([2, 3, 4], maxlen=3)

(Contributed by Raymond Hettinger.)

	The Cookie module’s Morsel objects now support an
httponly attribute. In some browsers. cookies with this attribute
set cannot be accessed or manipulated by JavaScript code.
(Contributed by Arvin Schnell; issue 1638033 [http://bugs.python.org/issue1638033].)

	A new window method in the curses module,
chgat(), changes the display attributes for a certain number of
characters on a single line. (Contributed by Fabian Kreutz.)

Boldface text starting at y=0,x=21
and affecting the rest of the line.
stdscr.chgat(0, 21, curses.A_BOLD)

The Textbox class in the curses.textpad module
now supports editing in insert mode as well as overwrite mode.
Insert mode is enabled by supplying a true value for the insert_mode
parameter when creating the Textbox instance.

	The datetime module’s strftime() methods now support a
%f format code that expands to the number of microseconds in the
object, zero-padded on
the left to six places. (Contributed by Skip Montanaro; issue 1158 [http://bugs.python.org/issue1158].)

	The decimal module was updated to version 1.66 of
the General Decimal Specification [http://www2.hursley.ibm.com/decimal/decarith.html]. New features
include some methods for some basic mathematical functions such as
exp() and log10():

>>> Decimal(1).exp()
Decimal("2.718281828459045235360287471")
>>> Decimal("2.7182818").ln()
Decimal("0.9999999895305022877376682436")
>>> Decimal(1000).log10()
Decimal("3")

The as_tuple() method of Decimal objects now returns a
named tuple with sign, digits, and exponent fields.

(Implemented by Facundo Batista and Mark Dickinson. Named tuple
support added by Raymond Hettinger.)

	The difflib module’s SequenceMatcher class
now returns named tuples representing matches,
with a, b, and size attributes.
(Contributed by Raymond Hettinger.)

	An optional timeout parameter, specifying a timeout measured in
seconds, was added to the ftplib.FTP class constructor as
well as the connect() method. (Added by Facundo Batista.)
Also, the FTP class’s storbinary() and
storlines() now take an optional callback parameter that
will be called with each block of data after the data has been sent.
(Contributed by Phil Schwartz; issue 1221598 [http://bugs.python.org/issue1221598].)

	The reduce() built-in function is also available in the
functools module. In Python 3.0, the builtin has been
dropped and reduce() is only available from functools;
currently there are no plans to drop the builtin in the 2.x series.
(Patched by Christian Heimes; issue 1739906 [http://bugs.python.org/issue1739906].)

	When possible, the getpass module will now use
/dev/tty to print a prompt message and read the password,
falling back to standard error and standard input. If the
password may be echoed to the terminal, a warning is printed before
the prompt is displayed. (Contributed by Gregory P. Smith.)

	The glob.glob() function can now return Unicode filenames if
a Unicode path was used and Unicode filenames are matched within the
directory. (issue 1001604 [http://bugs.python.org/issue1001604])

	A new function in the heapq module, merge(iter1, iter2, ...),
takes any number of iterables returning data in sorted
order, and returns a new generator that returns the contents of all
the iterators, also in sorted order. For example:

>>> list(heapq.merge([1, 3, 5, 9], [2, 8, 16]))
[1, 2, 3, 5, 8, 9, 16]

Another new function, heappushpop(heap, item),
pushes item onto heap, then pops off and returns the smallest item.
This is more efficient than making a call to heappush() and then
heappop().

heapq is now implemented to only use less-than comparison,
instead of the less-than-or-equal comparison it previously used.
This makes heapq‘s usage of a type match the
list.sort() method.
(Contributed by Raymond Hettinger.)

	An optional timeout parameter, specifying a timeout measured in
seconds, was added to the httplib.HTTPConnection and
HTTPSConnection class constructors. (Added by Facundo
Batista.)

	Most of the inspect module’s functions, such as
getmoduleinfo() and getargs(), now return named tuples.
In addition to behaving like tuples, the elements of the return value
can also be accessed as attributes.
(Contributed by Raymond Hettinger.)

Some new functions in the module include
isgenerator(), isgeneratorfunction(),
and isabstract().

	The itertools module gained several new functions.

izip_longest(iter1, iter2, ...[, fillvalue]) makes tuples from
each of the elements; if some of the iterables are shorter than
others, the missing values are set to fillvalue. For example:

>>> tuple(itertools.izip_longest([1,2,3], [1,2,3,4,5]))
((1, 1), (2, 2), (3, 3), (None, 4), (None, 5))

product(iter1, iter2, ..., [repeat=N]) returns the Cartesian product
of the supplied iterables, a set of tuples containing
every possible combination of the elements returned from each iterable.

>>> list(itertools.product([1,2,3], [4,5,6]))
[(1, 4), (1, 5), (1, 6),
 (2, 4), (2, 5), (2, 6),
 (3, 4), (3, 5), (3, 6)]

The optional repeat keyword argument is used for taking the
product of an iterable or a set of iterables with themselves,
repeated N times. With a single iterable argument, N-tuples
are returned:

>>> list(itertools.product([1,2], repeat=3))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
 (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

With two iterables, 2N-tuples are returned.

>>> list(itertools.product([1,2], [3,4], repeat=2))
[(1, 3, 1, 3), (1, 3, 1, 4), (1, 3, 2, 3), (1, 3, 2, 4),
 (1, 4, 1, 3), (1, 4, 1, 4), (1, 4, 2, 3), (1, 4, 2, 4),
 (2, 3, 1, 3), (2, 3, 1, 4), (2, 3, 2, 3), (2, 3, 2, 4),
 (2, 4, 1, 3), (2, 4, 1, 4), (2, 4, 2, 3), (2, 4, 2, 4)]

combinations(iterable, r) returns sub-sequences of length r from
the elements of iterable.

>>> list(itertools.combinations('123', 2))
[('1', '2'), ('1', '3'), ('2', '3')]
>>> list(itertools.combinations('123', 3))
[('1', '2', '3')]
>>> list(itertools.combinations('1234', 3))
[('1', '2', '3'), ('1', '2', '4'),
 ('1', '3', '4'), ('2', '3', '4')]

permutations(iter[, r]) returns all the permutations of length r of
the iterable’s elements. If r is not specified, it will default to the
number of elements produced by the iterable.

>>> list(itertools.permutations([1,2,3,4], 2))
[(1, 2), (1, 3), (1, 4),
 (2, 1), (2, 3), (2, 4),
 (3, 1), (3, 2), (3, 4),
 (4, 1), (4, 2), (4, 3)]

itertools.chain(*iterables) is an existing function in
itertools that gained a new constructor in Python 2.6.
itertools.chain.from_iterable(iterable) takes a single
iterable that should return other iterables. chain() will
then return all the elements of the first iterable, then
all the elements of the second, and so on.

>>> list(itertools.chain.from_iterable([[1,2,3], [4,5,6]]))
[1, 2, 3, 4, 5, 6]

(All contributed by Raymond Hettinger.)

	The logging module’s FileHandler class
and its subclasses WatchedFileHandler, RotatingFileHandler,
and TimedRotatingFileHandler now
have an optional delay parameter to their constructors. If delay
is true, opening of the log file is deferred until the first
emit() call is made. (Contributed by Vinay Sajip.)

TimedRotatingFileHandler also has a utc constructor
parameter. If the argument is true, UTC time will be used
in determining when midnight occurs and in generating filenames;
otherwise local time will be used.

	Several new functions were added to the math module:

	isinf() and isnan() determine whether a given float
is a (positive or negative) infinity or a NaN (Not a Number), respectively.

	copysign() copies the sign bit of an IEEE 754 number,
returning the absolute value of x combined with the sign bit of
y. For example, math.copysign(1, -0.0) returns -1.0.
(Contributed by Christian Heimes.)

	factorial() computes the factorial of a number.
(Contributed by Raymond Hettinger; issue 2138 [http://bugs.python.org/issue2138].)

	fsum() adds up the stream of numbers from an iterable,
and is careful to avoid loss of precision through using partial sums.
(Contributed by Jean Brouwers, Raymond Hettinger, and Mark Dickinson;
issue 2819 [http://bugs.python.org/issue2819].)

	acosh(), asinh()
and atanh() compute the inverse hyperbolic functions.

	log1p() returns the natural logarithm of 1+x
(base e).

	trunc() rounds a number toward zero, returning the closest
Integral that’s between the function’s argument and zero.
Added as part of the backport of
PEP 3141’s type hierarchy for numbers.

	The math module has been improved to give more consistent
behaviour across platforms, especially with respect to handling of
floating-point exceptions and IEEE 754 special values.

Whenever possible, the module follows the recommendations of the C99
standard about 754’s special values. For example, sqrt(-1.)
should now give a ValueError across almost all platforms,
while sqrt(float('NaN')) should return a NaN on all IEEE 754
platforms. Where Annex ‘F’ of the C99 standard recommends signaling
‘divide-by-zero’ or ‘invalid’, Python will raise ValueError.
Where Annex ‘F’ of the C99 standard recommends signaling ‘overflow’,
Python will raise OverflowError. (See issue 711019 [http://bugs.python.org/issue711019] and
issue 1640 [http://bugs.python.org/issue1640].)

(Contributed by Christian Heimes and Mark Dickinson.)

	mmap objects now have a rfind() method that searches for a
substring beginning at the end of the string and searching
backwards. The find() method also gained an end parameter
giving an index at which to stop searching.
(Contributed by John Lenton.)

	The operator module gained a
methodcaller() function that takes a name and an optional
set of arguments, returning a callable that will call
the named function on any arguments passed to it. For example:

>>> # Equivalent to lambda s: s.replace('old', 'new')
>>> replacer = operator.methodcaller('replace', 'old', 'new')
>>> replacer('old wine in old bottles')
'new wine in new bottles'

(Contributed by Georg Brandl, after a suggestion by Gregory Petrosyan.)

The attrgetter() function now accepts dotted names and performs
the corresponding attribute lookups:

>>> inst_name = operator.attrgetter(
... '__class__.__name__')
>>> inst_name('')
'str'
>>> inst_name(help)
'_Helper'

(Contributed by Georg Brandl, after a suggestion by Barry Warsaw.)

	The os module now wraps several new system calls.
fchmod(fd, mode) and fchown(fd, uid, gid) change the mode
and ownership of an opened file, and lchmod(path, mode) changes
the mode of a symlink. (Contributed by Georg Brandl and Christian
Heimes.)

chflags() and lchflags() are wrappers for the
corresponding system calls (where they’re available), changing the
flags set on a file. Constants for the flag values are defined in
the stat module; some possible values include
UF_IMMUTABLE to signal the file may not be changed and
UF_APPEND to indicate that data can only be appended to the
file. (Contributed by M. Levinson.)

os.closerange(low, high) efficiently closes all file descriptors
from low to high, ignoring any errors and not including high itself.
This function is now used by the subprocess module to make starting
processes faster. (Contributed by Georg Brandl; issue 1663329 [http://bugs.python.org/issue1663329].)

	The os.environ object’s clear() method will now unset the
environment variables using os.unsetenv() in addition to clearing
the object’s keys. (Contributed by Martin Horcicka; issue 1181 [http://bugs.python.org/issue1181].)

	The os.walk() function now has a followlinks parameter. If
set to True, it will follow symlinks pointing to directories and
visit the directory’s contents. For backward compatibility, the
parameter’s default value is false. Note that the function can fall
into an infinite recursion if there’s a symlink that points to a
parent directory. (issue 1273829 [http://bugs.python.org/issue1273829])

	In the os.path module, the splitext() function
has been changed to not split on leading period characters.
This produces better results when operating on Unix’s dot-files.
For example, os.path.splitext('.ipython')
now returns ('.ipython', '') instead of ('', '.ipython').
(issue 1115886 [http://bugs.python.org/issue1115886])

A new function, os.path.relpath(path, start='.'), returns a relative path
from the start path, if it’s supplied, or from the current
working directory to the destination path. (Contributed by
Richard Barran; issue 1339796 [http://bugs.python.org/issue1339796].)

On Windows, os.path.expandvars() will now expand environment variables
given in the form “%var%”, and “~user” will be expanded into the
user’s home directory path. (Contributed by Josiah Carlson;
issue 957650 [http://bugs.python.org/issue957650].)

	The Python debugger provided by the pdb module
gained a new command: “run” restarts the Python program being debugged
and can optionally take new command-line arguments for the program.
(Contributed by Rocky Bernstein; issue 1393667 [http://bugs.python.org/issue1393667].)

	The pdb.post_mortem() function, used to begin debugging a
traceback, will now use the traceback returned by sys.exc_info()
if no traceback is supplied. (Contributed by Facundo Batista;
issue 1106316 [http://bugs.python.org/issue1106316].)

	The pickletools module now has an optimize() function
that takes a string containing a pickle and removes some unused
opcodes, returning a shorter pickle that contains the same data structure.
(Contributed by Raymond Hettinger.)

	A get_data() function was added to the pkgutil
module that returns the contents of resource files included
with an installed Python package. For example:

>>> import pkgutil
>>> print pkgutil.get_data('test', 'exception_hierarchy.txt')
BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StandardError
 ...

(Contributed by Paul Moore; issue 2439 [http://bugs.python.org/issue2439].)

	The pyexpat module’s Parser objects now allow setting
their buffer_size attribute to change the size of the buffer
used to hold character data.
(Contributed by Achim Gaedke; issue 1137 [http://bugs.python.org/issue1137].)

	The Queue module now provides queue variants that retrieve entries
in different orders. The PriorityQueue class stores
queued items in a heap and retrieves them in priority order,
and LifoQueue retrieves the most recently added entries first,
meaning that it behaves like a stack.
(Contributed by Raymond Hettinger.)

	The random module’s Random objects can
now be pickled on a 32-bit system and unpickled on a 64-bit
system, and vice versa. Unfortunately, this change also means
that Python 2.6’s Random objects can’t be unpickled correctly
on earlier versions of Python.
(Contributed by Shawn Ligocki; issue 1727780 [http://bugs.python.org/issue1727780].)

The new triangular(low, high, mode) function returns random
numbers following a triangular distribution. The returned values
are between low and high, not including high itself, and
with mode as the most frequently occurring value
in the distribution. (Contributed by Wladmir van der Laan and
Raymond Hettinger; issue 1681432 [http://bugs.python.org/issue1681432].)

	Long regular expression searches carried out by the re
module will check for signals being delivered, so
time-consuming searches can now be interrupted.
(Contributed by Josh Hoyt and Ralf Schmitt; issue 846388 [http://bugs.python.org/issue846388].)

The regular expression module is implemented by compiling bytecodes
for a tiny regex-specific virtual machine. Untrusted code
could create malicious strings of bytecode directly and cause crashes,
so Python 2.6 includes a verifier for the regex bytecode.
(Contributed by Guido van Rossum from work for Google App Engine;
issue 3487 [http://bugs.python.org/issue3487].)

	The rlcompleter module’s Completer.complete() method
will now ignore exceptions triggered while evaluating a name.
(Fixed by Lorenz Quack; issue 2250 [http://bugs.python.org/issue2250].)

	The sched module’s scheduler instances now
have a read-only queue attribute that returns the
contents of the scheduler’s queue, represented as a list of
named tuples with the fields (time, priority, action, argument).
(Contributed by Raymond Hettinger; issue 1861 [http://bugs.python.org/issue1861].)

	The select module now has wrapper functions
for the Linux epoll() and BSD kqueue() system calls.
modify() method was added to the existing poll
objects; pollobj.modify(fd, eventmask) takes a file descriptor
or file object and an event mask, modifying the recorded event mask
for that file.
(Contributed by Christian Heimes; issue 1657 [http://bugs.python.org/issue1657].)

	The shutil.copytree() function now has an optional ignore argument
that takes a callable object. This callable will receive each directory path
and a list of the directory’s contents, and returns a list of names that
will be ignored, not copied.

The shutil module also provides an ignore_patterns()
function for use with this new parameter. ignore_patterns()
takes an arbitrary number of glob-style patterns and returns a
callable that will ignore any files and directories that match any
of these patterns. The following example copies a directory tree,
but skips both .svn directories and Emacs backup files,
which have names ending with ‘~’:

shutil.copytree('Doc/library', '/tmp/library',
 ignore=shutil.ignore_patterns('*~', '.svn'))

(Contributed by Tarek Ziadé; issue 2663 [http://bugs.python.org/issue2663].)

	Integrating signal handling with GUI handling event loops
like those used by Tkinter or GTk+ has long been a problem; most
software ends up polling, waking up every fraction of a second to check
if any GUI events have occurred.
The signal module can now make this more efficient.
Calling signal.set_wakeup_fd(fd) sets a file descriptor
to be used; when a signal is received, a byte is written to that
file descriptor. There’s also a C-level function,
PySignal_SetWakeupFd(), for setting the descriptor.

Event loops will use this by opening a pipe to create two descriptors,
one for reading and one for writing. The writable descriptor
will be passed to set_wakeup_fd(), and the readable descriptor
will be added to the list of descriptors monitored by the event loop via
select() or poll().
On receiving a signal, a byte will be written and the main event loop
will be woken up, avoiding the need to poll.

(Contributed by Adam Olsen; issue 1583 [http://bugs.python.org/issue1583].)

The siginterrupt() function is now available from Python code,
and allows changing whether signals can interrupt system calls or not.
(Contributed by Ralf Schmitt.)

The setitimer() and getitimer() functions have also been
added (where they’re available). setitimer()
allows setting interval timers that will cause a signal to be
delivered to the process after a specified time, measured in
wall-clock time, consumed process time, or combined process+system
time. (Contributed by Guilherme Polo; issue 2240 [http://bugs.python.org/issue2240].)

	The smtplib module now supports SMTP over SSL thanks to the
addition of the SMTP_SSL class. This class supports an
interface identical to the existing SMTP class.
(Contributed by Monty Taylor.) Both class constructors also have an
optional timeout parameter that specifies a timeout for the
initial connection attempt, measured in seconds. (Contributed by
Facundo Batista.)

An implementation of the LMTP protocol (RFC 2033 [http://tools.ietf.org/html/rfc2033.html]) was also added
to the module. LMTP is used in place of SMTP when transferring
e-mail between agents that don’t manage a mail queue. (LMTP
implemented by Leif Hedstrom; issue 957003 [http://bugs.python.org/issue957003].)

SMTP.starttls() now complies with RFC 3207 [http://tools.ietf.org/html/rfc3207.html] and forgets any
knowledge obtained from the server not obtained from the TLS
negotiation itself. (Patch contributed by Bill Fenner;
issue 829951 [http://bugs.python.org/issue829951].)

	The socket module now supports TIPC (http://tipc.sf.net),
a high-performance non-IP-based protocol designed for use in clustered
environments. TIPC addresses are 4- or 5-tuples.
(Contributed by Alberto Bertogli; issue 1646 [http://bugs.python.org/issue1646].)

A new function, create_connection(), takes an address and
connects to it using an optional timeout value, returning the
connected socket object. This function also looks up the address’s
type and connects to it using IPv4 or IPv6 as appropriate. Changing
your code to use create_connection() instead of
socket(socket.AF_INET, ...) may be all that’s required to make
your code work with IPv6.

	The base classes in the SocketServer module now support
calling a handle_timeout() method after a span of inactivity
specified by the server’s timeout attribute. (Contributed
by Michael Pomraning.) The serve_forever() method
now takes an optional poll interval measured in seconds,
controlling how often the server will check for a shutdown request.
(Contributed by Pedro Werneck and Jeffrey Yasskin;
issue 742598 [http://bugs.python.org/issue742598], issue 1193577 [http://bugs.python.org/issue1193577].)

	The sqlite3 module, maintained by Gerhard Haering,
has been updated from version 2.3.2 in Python 2.5 to
version 2.4.1.

	The struct module now supports the C99 _Bool type,
using the format character '?'.
(Contributed by David Remahl.)

	The Popen objects provided by the subprocess module
now have terminate(), kill(), and send_signal() methods.
On Windows, send_signal() only supports the SIGTERM
signal, and all these methods are aliases for the Win32 API function
TerminateProcess().
(Contributed by Christian Heimes.)

	A new variable in the sys module, float_info, is an
object containing information derived from the float.h file
about the platform’s floating-point support. Attributes of this
object include mant_dig (number of digits in the mantissa),
epsilon (smallest difference between 1.0 and the next
largest value representable), and several others. (Contributed by
Christian Heimes; issue 1534 [http://bugs.python.org/issue1534].)

Another new variable, dont_write_bytecode, controls whether Python
writes any .pyc or .pyo files on importing a module.
If this variable is true, the compiled files are not written. The
variable is initially set on start-up by supplying the -B
switch to the Python interpreter, or by setting the
PYTHONDONTWRITEBYTECODE environment variable before
running the interpreter. Python code can subsequently
change the value of this variable to control whether bytecode files
are written or not.
(Contributed by Neal Norwitz and Georg Brandl.)

Information about the command-line arguments supplied to the Python
interpreter is available by reading attributes of a named
tuple available as sys.flags. For example, the verbose
attribute is true if Python
was executed in verbose mode, debug is true in debugging mode, etc.
These attributes are all read-only.
(Contributed by Christian Heimes.)

A new function, getsizeof(), takes a Python object and returns
the amount of memory used by the object, measured in bytes. Built-in
objects return correct results; third-party extensions may not,
but can define a __sizeof__() method to return the
object’s size.
(Contributed by Robert Schuppenies; issue 2898 [http://bugs.python.org/issue2898].)

It’s now possible to determine the current profiler and tracer functions
by calling sys.getprofile() and sys.gettrace().
(Contributed by Georg Brandl; issue 1648 [http://bugs.python.org/issue1648].)

	The tarfile module now supports POSIX.1-2001 (pax) tarfiles in
addition to the POSIX.1-1988 (ustar) and GNU tar formats that were
already supported. The default format is GNU tar; specify the
format parameter to open a file using a different format:

tar = tarfile.open("output.tar", "w",
 format=tarfile.PAX_FORMAT)

The new encoding and errors parameters specify an encoding and
an error handling scheme for character conversions. 'strict',
'ignore', and 'replace' are the three standard ways Python can
handle errors,;
'utf-8' is a special value that replaces bad characters with
their UTF-8 representation. (Character conversions occur because the
PAX format supports Unicode filenames, defaulting to UTF-8 encoding.)

The TarFile.add() method now accepts an exclude argument that’s
a function that can be used to exclude certain filenames from
an archive.
The function must take a filename and return true if the file
should be excluded or false if it should be archived.
The function is applied to both the name initially passed to add()
and to the names of files in recursively-added directories.

(All changes contributed by Lars Gustäbel).

	An optional timeout parameter was added to the
telnetlib.Telnet class constructor, specifying a timeout
measured in seconds. (Added by Facundo Batista.)

	The tempfile.NamedTemporaryFile class usually deletes
the temporary file it created when the file is closed. This
behaviour can now be changed by passing delete=False to the
constructor. (Contributed by Damien Miller; issue 1537850 [http://bugs.python.org/issue1537850].)

A new class, SpooledTemporaryFile, behaves like
a temporary file but stores its data in memory until a maximum size is
exceeded. On reaching that limit, the contents will be written to
an on-disk temporary file. (Contributed by Dustin J. Mitchell.)

The NamedTemporaryFile and SpooledTemporaryFile classes
both work as context managers, so you can write
with tempfile.NamedTemporaryFile() as tmp:
(Contributed by Alexander Belopolsky; issue 2021 [http://bugs.python.org/issue2021].)

	The test.test_support module gained a number
of context managers useful for writing tests.
EnvironmentVarGuard() is a
context manager that temporarily changes environment variables and
automatically restores them to their old values.

Another context manager, TransientResource, can surround calls
to resources that may or may not be available; it will catch and
ignore a specified list of exceptions. For example,
a network test may ignore certain failures when connecting to an
external web site:

with test_support.TransientResource(IOError,
 errno=errno.ETIMEDOUT):
 f = urllib.urlopen('https://sf.net')
 ...

Finally, check_warnings() resets the warning module’s
warning filters and returns an object that will record all warning
messages triggered (issue 3781 [http://bugs.python.org/issue3781]):

with test_support.check_warnings() as wrec:
 warnings.simplefilter("always")
 # ... code that triggers a warning ...
 assert str(wrec.message) == "function is outdated"
 assert len(wrec.warnings) == 1, "Multiple warnings raised"

(Contributed by Brett Cannon.)

	The textwrap module can now preserve existing whitespace
at the beginnings and ends of the newly-created lines
by specifying drop_whitespace=False
as an argument:

>>> S = """This sentence has a bunch of
... extra whitespace."""
>>> print textwrap.fill(S, width=15)
This sentence
has a bunch
of extra
whitespace.
>>> print textwrap.fill(S, drop_whitespace=False, width=15)
This sentence
 has a bunch
 of extra
 whitespace.
>>>

(Contributed by Dwayne Bailey; issue 1581073 [http://bugs.python.org/issue1581073].)

	The threading module API is being changed to use properties
such as daemon instead of setDaemon() and
isDaemon() methods, and some methods have been renamed to use
underscores instead of camel-case; for example, the
activeCount() method is renamed to active_count(). Both
the 2.6 and 3.0 versions of the module support the same properties
and renamed methods, but don’t remove the old methods. No date has been set
for the deprecation of the old APIs in Python 3.x; the old APIs won’t
be removed in any 2.x version.
(Carried out by several people, most notably Benjamin Peterson.)

The threading module’s Thread objects
gained an ident property that returns the thread’s
identifier, a nonzero integer. (Contributed by Gregory P. Smith;
issue 2871 [http://bugs.python.org/issue2871].)

	The timeit module now accepts callables as well as strings
for the statement being timed and for the setup code.
Two convenience functions were added for creating
Timer instances:
repeat(stmt, setup, time, repeat, number) and
timeit(stmt, setup, time, number) create an instance and call
the corresponding method. (Contributed by Erik Demaine;
issue 1533909 [http://bugs.python.org/issue1533909].)

	The Tkinter module now accepts lists and tuples for options,
separating the elements by spaces before passing the resulting value to
Tcl/Tk.
(Contributed by Guilherme Polo; issue 2906 [http://bugs.python.org/issue2906].)

	The turtle module for turtle graphics was greatly enhanced by
Gregor Lingl. New features in the module include:

	Better animation of turtle movement and rotation.

	Control over turtle movement using the new delay(),
tracer(), and speed() methods.

	The ability to set new shapes for the turtle, and to
define a new coordinate system.

	Turtles now have an undo() method that can roll back actions.

	Simple support for reacting to input events such as mouse and keyboard
activity, making it possible to write simple games.

	A turtle.cfg file can be used to customize the starting appearance
of the turtle’s screen.

	The module’s docstrings can be replaced by new docstrings that have been
translated into another language.

(issue 1513695 [http://bugs.python.org/issue1513695])

	An optional timeout parameter was added to the
urllib.urlopen() function and the
urllib.ftpwrapper class constructor, as well as the
urllib2.urlopen() function. The parameter specifies a timeout
measured in seconds. For example:

>>> u = urllib2.urlopen("http://slow.example.com",
 timeout=3)
Traceback (most recent call last):
 ...
urllib2.URLError: <urlopen error timed out>
>>>

(Added by Facundo Batista.)

	The Unicode database provided by the unicodedata module
has been updated to version 5.1.0. (Updated by
Martin von Loewis; issue 3811 [http://bugs.python.org/issue3811].)

	The warnings module’s formatwarning() and showwarning()
gained an optional line argument that can be used to supply the
line of source code. (Added as part of issue 1631171 [http://bugs.python.org/issue1631171], which re-implemented
part of the warnings module in C code.)

A new function, catch_warnings(), is a context manager
intended for testing purposes that lets you temporarily modify the
warning filters and then restore their original values (issue 3781 [http://bugs.python.org/issue3781]).

	The XML-RPC SimpleXMLRPCServer and DocXMLRPCServer
classes can now be prevented from immediately opening and binding to
their socket by passing True as the bind_and_activate
constructor parameter. This can be used to modify the instance’s
allow_reuse_address attribute before calling the
server_bind() and server_activate() methods to
open the socket and begin listening for connections.
(Contributed by Peter Parente; issue 1599845 [http://bugs.python.org/issue1599845].)

SimpleXMLRPCServer also has a _send_traceback_header
attribute; if true, the exception and formatted traceback are returned
as HTTP headers “X-Exception” and “X-Traceback”. This feature is
for debugging purposes only and should not be used on production servers
because the tracebacks might reveal passwords or other sensitive
information. (Contributed by Alan McIntyre as part of his
project for Google’s Summer of Code 2007.)

	The xmlrpclib module no longer automatically converts
datetime.date and datetime.time to the
xmlrpclib.DateTime type; the conversion semantics were
not necessarily correct for all applications. Code using
xmlrpclib should convert date and time
instances. (issue 1330538 [http://bugs.python.org/issue1330538]) The code can also handle
dates before 1900 (contributed by Ralf Schmitt; issue 2014 [http://bugs.python.org/issue2014])
and 64-bit integers represented by using <i8> in XML-RPC responses
(contributed by Riku Lindblad; issue 2985 [http://bugs.python.org/issue2985]).

	The zipfile module’s ZipFile class now has
extract() and extractall() methods that will unpack
a single file or all the files in the archive to the current directory, or
to a specified directory:

z = zipfile.ZipFile('python-251.zip')

Unpack a single file, writing it relative
to the /tmp directory.
z.extract('Python/sysmodule.c', '/tmp')

Unpack all the files in the archive.
z.extractall()

(Contributed by Alan McIntyre; issue 467924 [http://bugs.python.org/issue467924].)

The open(), read() and extract() methods can now
take either a filename or a ZipInfo object. This is useful when an
archive accidentally contains a duplicated filename.
(Contributed by Graham Horler; issue 1775025 [http://bugs.python.org/issue1775025].)

Finally, zipfile now supports using Unicode filenames
for archived files. (Contributed by Alexey Borzenkov; issue 1734346 [http://bugs.python.org/issue1734346].)

The ast module

The ast module provides an Abstract Syntax Tree
representation of Python code, and Armin Ronacher
contributed a set of helper functions that perform a variety of
common tasks. These will be useful for HTML templating
packages, code analyzers, and similar tools that process
Python code.

The parse() function takes an expression and returns an AST.
The dump() function outputs a representation of a tree, suitable
for debugging:

import ast

t = ast.parse("""
d = {}
for i in 'abcdefghijklm':
 d[i + i] = ord(i) - ord('a') + 1
print d
""")
print ast.dump(t)

This outputs a deeply nested tree:

Module(body=[
 Assign(targets=[
 Name(id='d', ctx=Store())
], value=Dict(keys=[], values=[]))
 For(target=Name(id='i', ctx=Store()),
 iter=Str(s='abcdefghijklm'), body=[
 Assign(targets=[
 Subscript(value=
 Name(id='d', ctx=Load()),
 slice=
 Index(value=
 BinOp(left=Name(id='i', ctx=Load()), op=Add(),
 right=Name(id='i', ctx=Load()))), ctx=Store())
], value=
 BinOp(left=
 BinOp(left=
 Call(func=
 Name(id='ord', ctx=Load()), args=[
 Name(id='i', ctx=Load())
], keywords=[], starargs=None, kwargs=None),
 op=Sub(), right=Call(func=
 Name(id='ord', ctx=Load()), args=[
 Str(s='a')
], keywords=[], starargs=None, kwargs=None)),
 op=Add(), right=Num(n=1)))
], orelse=[])
 Print(dest=None, values=[
 Name(id='d', ctx=Load())
], nl=True)
])

The literal_eval() method takes a string or an AST
representing a literal expression, parses and evaluates it, and
returns the resulting value. A literal expression is a Python
expression containing only strings, numbers, dictionaries,
etc. but no statements or function calls. If you need to
evaluate an expression but cannot accept the security risk of using an
eval() call, literal_eval() will handle it safely:

>>> literal = '("a", "b", {2:4, 3:8, 1:2})'
>>> print ast.literal_eval(literal)
('a', 'b', {1: 2, 2: 4, 3: 8})
>>> print ast.literal_eval('"a" + "b"')
Traceback (most recent call last):
 ...
ValueError: malformed string

The module also includes NodeVisitor and
NodeTransformer classes for traversing and modifying an AST,
and functions for common transformations such as changing line
numbers.

The future_builtins module

Python 3.0 makes many changes to the repertoire of built-in
functions, and most of the changes can’t be introduced in the Python
2.x series because they would break compatibility.
The future_builtins module provides versions
of these built-in functions that can be imported when writing
3.0-compatible code.

The functions in this module currently include:

	ascii(obj): equivalent to repr(). In Python 3.0,
repr() will return a Unicode string, while ascii() will
return a pure ASCII bytestring.

	filter(predicate, iterable),
map(func, iterable1, ...): the 3.0 versions
return iterators, unlike the 2.x builtins which return lists.

	hex(value), oct(value): instead of calling the
__hex__() or __oct__() methods, these versions will
call the __index__() method and convert the result to hexadecimal
or octal. oct() will use the new 0o notation for its
result.

The json module: JavaScript Object Notation

The new json module supports the encoding and decoding of Python types in
JSON (Javascript Object Notation). JSON is a lightweight interchange format
often used in web applications. For more information about JSON, see
http://www.json.org.

json comes with support for decoding and encoding most built-in Python
types. The following example encodes and decodes a dictionary:

>>> import json
>>> data = {"spam" : "foo", "parrot" : 42}
>>> in_json = json.dumps(data) # Encode the data
>>> in_json
'{"parrot": 42, "spam": "foo"}'
>>> json.loads(in_json) # Decode into a Python object
{"spam" : "foo", "parrot" : 42}

It’s also possible to write your own decoders and encoders to support
more types. Pretty-printing of the JSON strings is also supported.

json (originally called simplejson) was written by Bob
Ippolito.

The plistlib module: A Property-List Parser

The .plist format is commonly used on Mac OS X to
store basic data types (numbers, strings, lists,
and dictionaries) by serializing them into an XML-based format.
It resembles the XML-RPC serialization of data types.

Despite being primarily used on Mac OS X, the format
has nothing Mac-specific about it and the Python implementation works
on any platform that Python supports, so the plistlib module
has been promoted to the standard library.

Using the module is simple:

import sys
import plistlib
import datetime

Create data structure
data_struct = dict(lastAccessed=datetime.datetime.now(),
 version=1,
 categories=('Personal','Shared','Private'))

Create string containing XML.
plist_str = plistlib.writePlistToString(data_struct)
new_struct = plistlib.readPlistFromString(plist_str)
print data_struct
print new_struct

Write data structure to a file and read it back.
plistlib.writePlist(data_struct, '/tmp/customizations.plist')
new_struct = plistlib.readPlist('/tmp/customizations.plist')

read/writePlist accepts file-like objects as well as paths.
plistlib.writePlist(data_struct, sys.stdout)

ctypes Enhancements

Thomas Heller continued to maintain and enhance the
ctypes module.

ctypes now supports a c_bool datatype
that represents the C99 bool type. (Contributed by David Remahl;
issue 1649190 [http://bugs.python.org/issue1649190].)

The ctypes string, buffer and array types have improved
support for extended slicing syntax,
where various combinations of (start, stop, step) are supplied.
(Implemented by Thomas Wouters.)

All ctypes data types now support
from_buffer() and from_buffer_copy()
methods that create a ctypes instance based on a
provided buffer object. from_buffer_copy() copies
the contents of the object,
while from_buffer() will share the same memory area.

A new calling convention tells ctypes to clear the errno or
Win32 LastError variables at the outset of each wrapped call.
(Implemented by Thomas Heller; issue 1798 [http://bugs.python.org/issue1798].)

You can now retrieve the Unix errno variable after a function
call. When creating a wrapped function, you can supply
use_errno=True as a keyword parameter to the DLL() function
and then call the module-level methods set_errno() and
get_errno() to set and retrieve the error value.

The Win32 LastError variable is similarly supported by
the DLL(), OleDLL(), and WinDLL() functions.
You supply use_last_error=True as a keyword parameter
and then call the module-level methods set_last_error()
and get_last_error().

The byref() function, used to retrieve a pointer to a ctypes
instance, now has an optional offset parameter that is a byte
count that will be added to the returned pointer.

Improved SSL Support

Bill Janssen made extensive improvements to Python 2.6’s support for
the Secure Sockets Layer by adding a new module, ssl, that’s
built atop the OpenSSL [http://www.openssl.org/] library.
This new module provides more control over the protocol negotiated,
the X.509 certificates used, and has better support for writing SSL
servers (as opposed to clients) in Python. The existing SSL support
in the socket module hasn’t been removed and continues to work,
though it will be removed in Python 3.0.

To use the new module, you must first create a TCP connection in the
usual way and then pass it to the ssl.wrap_socket() function.
It’s possible to specify whether a certificate is required, and to
obtain certificate info by calling the getpeercert() method.

See also

The documentation for the ssl module.

Deprecations and Removals

	String exceptions have been removed. Attempting to use them raises a
TypeError.

	Changes to the Exception interface
as dictated by PEP 352 [http://www.python.org/dev/peps/pep-0352] continue to be made. For 2.6,
the message attribute is being deprecated in favor of the
args attribute.

	(3.0-warning mode) Python 3.0 will feature a reorganized standard
library that will drop many outdated modules and rename others.
Python 2.6 running in 3.0-warning mode will warn about these modules
when they are imported.

The list of deprecated modules is:
audiodev,
bgenlocations,
buildtools,
bundlebuilder,
Canvas,
compiler,
dircache,
dl,
fpformat,
gensuitemodule,
ihooks,
imageop,
imgfile,
linuxaudiodev,
mhlib,
mimetools,
multifile,
new,
pure,
statvfs,
sunaudiodev,
test.testall, and
toaiff.

	The gopherlib module has been removed.

	The MimeWriter module and mimify module
have been deprecated; use the email
package instead.

	The md5 module has been deprecated; use the hashlib module
instead.

	The posixfile module has been deprecated; fcntl.lockf()
provides better locking.

	The popen2 module has been deprecated; use the subprocess
module.

	The rgbimg module has been removed.

	The sets module has been deprecated; it’s better to
use the built-in set and frozenset types.

	The sha module has been deprecated; use the hashlib module
instead.

Build and C API Changes

Changes to Python’s build process and to the C API include:

	Python now must be compiled with C89 compilers (after 19
years!). This means that the Python source tree has dropped its
own implementations of memmove() and strerror(), which
are in the C89 standard library.

	Python 2.6 can be built with Microsoft Visual Studio 2008 (version
9.0), and this is the new default compiler. See the
PCbuild directory for the build files. (Implemented by
Christian Heimes.)

	On Mac OS X, Python 2.6 can be compiled as a 4-way universal build.
The configure script
can take a --with-universal-archs=[32-bit|64-bit|all]
switch, controlling whether the binaries are built for 32-bit
architectures (x86, PowerPC), 64-bit (x86-64 and PPC-64), or both.
(Contributed by Ronald Oussoren.)

	The BerkeleyDB module now has a C API object, available as
bsddb.db.api. This object can be used by other C extensions
that wish to use the bsddb module for their own purposes.
(Contributed by Duncan Grisby.)

	The new buffer interface, previously described in
the PEP 3118 section,
adds PyObject_GetBuffer() and PyBuffer_Release(),
as well as a few other functions.

	Python’s use of the C stdio library is now thread-safe, or at least
as thread-safe as the underlying library is. A long-standing potential
bug occurred if one thread closed a file object while another thread
was reading from or writing to the object. In 2.6 file objects
have a reference count, manipulated by the
PyFile_IncUseCount() and PyFile_DecUseCount()
functions. File objects can’t be closed unless the reference count
is zero. PyFile_IncUseCount() should be called while the GIL
is still held, before carrying out an I/O operation using the
FILE * pointer, and PyFile_DecUseCount() should be called
immediately after the GIL is re-acquired.
(Contributed by Antoine Pitrou and Gregory P. Smith.)

	Importing modules simultaneously in two different threads no longer
deadlocks; it will now raise an ImportError. A new API
function, PyImport_ImportModuleNoBlock(), will look for a
module in sys.modules first, then try to import it after
acquiring an import lock. If the import lock is held by another
thread, an ImportError is raised.
(Contributed by Christian Heimes.)

	Several functions return information about the platform’s
floating-point support. PyFloat_GetMax() returns
the maximum representable floating point value,
and PyFloat_GetMin() returns the minimum
positive value. PyFloat_GetInfo() returns an object
containing more information from the float.h file, such as
"mant_dig" (number of digits in the mantissa), "epsilon"
(smallest difference between 1.0 and the next largest value
representable), and several others.
(Contributed by Christian Heimes; issue 1534 [http://bugs.python.org/issue1534].)

	C functions and methods that use
PyComplex_AsCComplex() will now accept arguments that
have a __complex__() method. In particular, the functions in the
cmath module will now accept objects with this method.
This is a backport of a Python 3.0 change.
(Contributed by Mark Dickinson; issue 1675423 [http://bugs.python.org/issue1675423].)

	Python’s C API now includes two functions for case-insensitive string
comparisons, PyOS_stricmp(char*, char*)
and PyOS_strnicmp(char*, char*, Py_ssize_t).
(Contributed by Christian Heimes; issue 1635 [http://bugs.python.org/issue1635].)

	Many C extensions define their own little macro for adding
integers and strings to the module’s dictionary in the
init* function. Python 2.6 finally defines standard macros
for adding values to a module, PyModule_AddStringMacro
and PyModule_AddIntMacro(). (Contributed by
Christian Heimes.)

	Some macros were renamed in both 3.0 and 2.6 to make it clearer that
they are macros,
not functions. Py_Size() became Py_SIZE(),
Py_Type() became Py_TYPE(), and
Py_Refcnt() became Py_REFCNT().
The mixed-case macros are still available
in Python 2.6 for backward compatibility.
(issue 1629 [http://bugs.python.org/issue1629])

	Distutils now places C extensions it builds in a
different directory when running on a debug version of Python.
(Contributed by Collin Winter; issue 1530959 [http://bugs.python.org/issue1530959].)

	Several basic data types, such as integers and strings, maintain
internal free lists of objects that can be re-used. The data
structures for these free lists now follow a naming convention: the
variable is always named free_list, the counter is always named
numfree, and a macro Py<typename>_MAXFREELIST is
always defined.

	A new Makefile target, “make patchcheck”, prepares the Python source tree
for making a patch: it fixes trailing whitespace in all modified
.py files, checks whether the documentation has been changed,
and reports whether the Misc/ACKS and Misc/NEWS files
have been updated.
(Contributed by Brett Cannon.)

Another new target, “make profile-opt”, compiles a Python binary
using GCC’s profile-guided optimization. It compiles Python with
profiling enabled, runs the test suite to obtain a set of profiling
results, and then compiles using these results for optimization.
(Contributed by Gregory P. Smith.)

Port-Specific Changes: Windows

	The support for Windows 95, 98, ME and NT4 has been dropped.
Python 2.6 requires at least Windows 2000 SP4.

	The new default compiler on Windows is Visual Studio 2008 (version
9.0). The build directories for Visual Studio 2003 (version 7.1) and
2005 (version 8.0) were moved into the PC/ directory. The new
PCbuild directory supports cross compilation for X64, debug
builds and Profile Guided Optimization (PGO). PGO builds are roughly
10% faster than normal builds. (Contributed by Christian Heimes
with help from Amaury Forgeot d’Arc and Martin von Loewis.)

	The msvcrt module now supports
both the normal and wide char variants of the console I/O
API. The getwch() function reads a keypress and returns a Unicode
value, as does the getwche() function. The putwch() function
takes a Unicode character and writes it to the console.
(Contributed by Christian Heimes.)

	os.path.expandvars() will now expand environment variables in
the form “%var%”, and “~user” will be expanded into the user’s home
directory path. (Contributed by Josiah Carlson; issue 957650 [http://bugs.python.org/issue957650].)

	The socket module’s socket objects now have an
ioctl() method that provides a limited interface to the
WSAIoctl() system interface.

	The _winreg module now has a function,
ExpandEnvironmentStrings(),
that expands environment variable references such as %NAME%
in an input string. The handle objects provided by this
module now support the context protocol, so they can be used
in with statements. (Contributed by Christian Heimes.)

_winreg also has better support for x64 systems,
exposing the DisableReflectionKey(), EnableReflectionKey(),
and QueryReflectionKey() functions, which enable and disable
registry reflection for 32-bit processes running on 64-bit systems.
(issue 1753245 [http://bugs.python.org/issue1753245])

	The msilib module’s Record object
gained GetInteger() and GetString() methods that
return field values as an integer or a string.
(Contributed by Floris Bruynooghe; issue 2125 [http://bugs.python.org/issue2125].)

Port-Specific Changes: Mac OS X

	When compiling a framework build of Python, you can now specify the
framework name to be used by providing the
--with-framework-name= option to the
configure script.

	The macfs module has been removed. This in turn required the
macostools.touched() function to be removed because it depended on the
macfs module. (issue 1490190 [http://bugs.python.org/issue1490190])

	Many other Mac OS modules have been deprecated and will removed in
Python 3.0:
_builtinSuites,
aepack,
aetools,
aetypes,
applesingle,
appletrawmain,
appletrunner,
argvemulator,
Audio_mac,
autoGIL,
Carbon,
cfmfile,
CodeWarrior,
ColorPicker,
EasyDialogs,
Explorer,
Finder,
FrameWork,
findertools,
ic,
icglue,
icopen,
macerrors,
MacOS,
macfs,
macostools,
macresource,
MiniAEFrame,
Nav,
Netscape,
OSATerminology,
pimp,
PixMapWrapper,
StdSuites,
SystemEvents,
Terminal, and
terminalcommand.

Port-Specific Changes: IRIX

A number of old IRIX-specific modules were deprecated and will
be removed in Python 3.0:
al and AL,
cd,
cddb,
cdplayer,
CL and cl,
DEVICE,
ERRNO,
FILE,
FL and fl,
flp,
fm,
GET,
GLWS,
GL and gl,
IN,
IOCTL,
jpeg,
panelparser,
readcd,
SV and sv,
torgb,
videoreader, and
WAIT.

Porting to Python 2.6

This section lists previously described changes and other bugfixes
that may require changes to your code:

	Classes that aren’t supposed to be hashable should
set __hash__ = None in their definitions to indicate
the fact.

	String exceptions have been removed. Attempting to use them raises a
TypeError.

	The __init__() method of collections.deque
now clears any existing contents of the deque
before adding elements from the iterable. This change makes the
behavior match list.__init__().

	object.__init__() previously accepted arbitrary arguments and
keyword arguments, ignoring them. In Python 2.6, this is no longer
allowed and will result in a TypeError. This will affect
__init__() methods that end up calling the corresponding
method on object (perhaps through using super()).
See issue 1683368 [http://bugs.python.org/issue1683368] for discussion.

	The Decimal constructor now accepts leading and trailing
whitespace when passed a string. Previously it would raise an
InvalidOperation exception. On the other hand, the
create_decimal() method of Context objects now
explicitly disallows extra whitespace, raising a
ConversionSyntax exception.

	Due to an implementation accident, if you passed a file path to
the built-in __import__() function, it would actually import
the specified file. This was never intended to work, however, and
the implementation now explicitly checks for this case and raises
an ImportError.

	C API: the PyImport_Import() and PyImport_ImportModule()
functions now default to absolute imports, not relative imports.
This will affect C extensions that import other modules.

	C API: extension data types that shouldn’t be hashable
should define their tp_hash slot to
PyObject_HashNotImplemented().

	The socket module exception socket.error now inherits
from IOError. Previously it wasn’t a subclass of
StandardError but now it is, through IOError.
(Implemented by Gregory P. Smith; issue 1706815 [http://bugs.python.org/issue1706815].)

	The xmlrpclib module no longer automatically converts
datetime.date and datetime.time to the
xmlrpclib.DateTime type; the conversion semantics were
not necessarily correct for all applications. Code using
xmlrpclib should convert date and time
instances. (issue 1330538 [http://bugs.python.org/issue1330538])

	(3.0-warning mode) The Exception class now warns
when accessed using slicing or index access; having
Exception behave like a tuple is being phased out.

	(3.0-warning mode) inequality comparisons between two dictionaries
or two objects that don’t implement comparison methods are reported
as warnings. dict1 == dict2 still works, but dict1 < dict2
is being phased out.

Comparisons between cells, which are an implementation detail of Python’s
scoping rules, also cause warnings because such comparisons are forbidden
entirely in 3.0.

Acknowledgements

The author would like to thank the following people for offering
suggestions, corrections and assistance with various drafts of this
article: Georg Brandl, Steve Brown, Nick Coghlan, Ralph Corderoy,
Jim Jewett, Kent Johnson, Chris Lambacher, Martin Michlmayr,
Antoine Pitrou, Brian Warner.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.5

	Author:	A.M. Kuchling

This article explains the new features in Python 2.5. The final release of
Python 2.5 is scheduled for August 2006; PEP 356 [http://www.python.org/dev/peps/pep-0356] describes the planned
release schedule.

The changes in Python 2.5 are an interesting mix of language and library
improvements. The library enhancements will be more important to Python’s user
community, I think, because several widely-useful packages were added. New
modules include ElementTree for XML processing (xml.etree),
the SQLite database module (sqlite), and the ctypes
module for calling C functions.

The language changes are of middling significance. Some pleasant new features
were added, but most of them aren’t features that you’ll use every day.
Conditional expressions were finally added to the language using a novel syntax;
see section PEP 308: Conditional Expressions. The new ‘with‘ statement will make
writing cleanup code easier (section PEP 343: The ‘with’ statement). Values can now be passed
into generators (section PEP 342: New Generator Features). Imports are now visible as either
absolute or relative (section PEP 328: Absolute and Relative Imports). Some corner cases of exception
handling are handled better (section PEP 341: Unified try/except/finally). All these improvements
are worthwhile, but they’re improvements to one specific language feature or
another; none of them are broad modifications to Python’s semantics.

As well as the language and library additions, other improvements and bugfixes
were made throughout the source tree. A search through the SVN change logs
finds there were 353 patches applied and 458 bugs fixed between Python 2.4 and
2.5. (Both figures are likely to be underestimates.)

This article doesn’t try to be a complete specification of the new features;
instead changes are briefly introduced using helpful examples. For full
details, you should always refer to the documentation for Python 2.5 at
http://docs.python.org. If you want to understand the complete implementation
and design rationale, refer to the PEP for a particular new feature.

Comments, suggestions, and error reports for this document are welcome; please
e-mail them to the author or open a bug in the Python bug tracker.

PEP 308: Conditional Expressions

For a long time, people have been requesting a way to write conditional
expressions, which are expressions that return value A or value B depending on
whether a Boolean value is true or false. A conditional expression lets you
write a single assignment statement that has the same effect as the following:

if condition:
 x = true_value
else:
 x = false_value

There have been endless tedious discussions of syntax on both python-dev and
comp.lang.python. A vote was even held that found the majority of voters wanted
conditional expressions in some form, but there was no syntax that was preferred
by a clear majority. Candidates included C’s cond ? true_v : false_v, if
cond then true_v else false_v, and 16 other variations.

Guido van Rossum eventually chose a surprising syntax:

x = true_value if condition else false_value

Evaluation is still lazy as in existing Boolean expressions, so the order of
evaluation jumps around a bit. The condition expression in the middle is
evaluated first, and the true_value expression is evaluated only if the
condition was true. Similarly, the false_value expression is only evaluated
when the condition is false.

This syntax may seem strange and backwards; why does the condition go in the
middle of the expression, and not in the front as in C’s c ? x : y? The
decision was checked by applying the new syntax to the modules in the standard
library and seeing how the resulting code read. In many cases where a
conditional expression is used, one value seems to be the ‘common case’ and one
value is an ‘exceptional case’, used only on rarer occasions when the condition
isn’t met. The conditional syntax makes this pattern a bit more obvious:

contents = ((doc + '\n') if doc else '')

I read the above statement as meaning “here contents is usually assigned a
value of doc+'\n'; sometimes doc is empty, in which special case an empty
string is returned.” I doubt I will use conditional expressions very often
where there isn’t a clear common and uncommon case.

There was some discussion of whether the language should require surrounding
conditional expressions with parentheses. The decision was made to not
require parentheses in the Python language’s grammar, but as a matter of style I
think you should always use them. Consider these two statements:

First version -- no parens
level = 1 if logging else 0

Second version -- with parens
level = (1 if logging else 0)

In the first version, I think a reader’s eye might group the statement into
‘level = 1’, ‘if logging’, ‘else 0’, and think that the condition decides
whether the assignment to level is performed. The second version reads
better, in my opinion, because it makes it clear that the assignment is always
performed and the choice is being made between two values.

Another reason for including the brackets: a few odd combinations of list
comprehensions and lambdas could look like incorrect conditional expressions.
See PEP 308 [http://www.python.org/dev/peps/pep-0308] for some examples. If you put parentheses around your
conditional expressions, you won’t run into this case.

See also

	PEP 308 [http://www.python.org/dev/peps/pep-0308] - Conditional Expressions

	PEP written by Guido van Rossum and Raymond D. Hettinger; implemented by Thomas
Wouters.

PEP 309: Partial Function Application

The functools module is intended to contain tools for functional-style
programming.

One useful tool in this module is the partial() function. For programs
written in a functional style, you’ll sometimes want to construct variants of
existing functions that have some of the parameters filled in. Consider a
Python function f(a, b, c); you could create a new function g(b, c) that
was equivalent to f(1, b, c). This is called “partial function
application”.

partial() takes the arguments (function, arg1, arg2, ... kwarg1=value1,
kwarg2=value2). The resulting object is callable, so you can just call it to
invoke function with the filled-in arguments.

Here’s a small but realistic example:

import functools

def log (message, subsystem):
 "Write the contents of 'message' to the specified subsystem."
 print '%s: %s' % (subsystem, message)
 ...

server_log = functools.partial(log, subsystem='server')
server_log('Unable to open socket')

Here’s another example, from a program that uses PyGTK. Here a context-
sensitive pop-up menu is being constructed dynamically. The callback provided
for the menu option is a partially applied version of the open_item()
method, where the first argument has been provided.

...
class Application:
 def open_item(self, path):
 ...
 def init (self):
 open_func = functools.partial(self.open_item, item_path)
 popup_menu.append(("Open", open_func, 1))

Another function in the functools module is the
update_wrapper(wrapper, wrapped)() function that helps you write well-
behaved decorators. update_wrapper() copies the name, module, and
docstring attribute to a wrapper function so that tracebacks inside the wrapped
function are easier to understand. For example, you might write:

def my_decorator(f):
 def wrapper(*args, **kwds):
 print 'Calling decorated function'
 return f(*args, **kwds)
 functools.update_wrapper(wrapper, f)
 return wrapper

wraps() is a decorator that can be used inside your own decorators to copy
the wrapped function’s information. An alternate version of the previous
example would be:

def my_decorator(f):
 @functools.wraps(f)
 def wrapper(*args, **kwds):
 print 'Calling decorated function'
 return f(*args, **kwds)
 return wrapper

See also

	PEP 309 [http://www.python.org/dev/peps/pep-0309] - Partial Function Application

	PEP proposed and written by Peter Harris; implemented by Hye-Shik Chang and Nick
Coghlan, with adaptations by Raymond Hettinger.

PEP 314: Metadata for Python Software Packages v1.1

Some simple dependency support was added to Distutils. The setup()
function now has requires, provides, and obsoletes keyword
parameters. When you build a source distribution using the sdist command,
the dependency information will be recorded in the PKG-INFO file.

Another new keyword parameter is download_url, which should be set to a URL
for the package’s source code. This means it’s now possible to look up an entry
in the package index, determine the dependencies for a package, and download the
required packages.

VERSION = '1.0'
setup(name='PyPackage',
 version=VERSION,
 requires=['numarray', 'zlib (>=1.1.4)'],
 obsoletes=['OldPackage']
 download_url=('http://www.example.com/pypackage/dist/pkg-%s.tar.gz'
 % VERSION),
)

Another new enhancement to the Python package index at
http://cheeseshop.python.org is storing source and binary archives for a
package. The new upload Distutils command will upload a package to
the repository.

Before a package can be uploaded, you must be able to build a distribution using
the sdist Distutils command. Once that works, you can run python
setup.py upload to add your package to the PyPI archive. Optionally you can
GPG-sign the package by supplying the --sign and --identity
options.

Package uploading was implemented by Martin von Löwis and Richard Jones.

See also

	PEP 314 [http://www.python.org/dev/peps/pep-0314] - Metadata for Python Software Packages v1.1

	PEP proposed and written by A.M. Kuchling, Richard Jones, and Fred Drake;
implemented by Richard Jones and Fred Drake.

PEP 328: Absolute and Relative Imports

The simpler part of PEP 328 was implemented in Python 2.4: parentheses could now
be used to enclose the names imported from a module using the from ... import
... statement, making it easier to import many different names.

The more complicated part has been implemented in Python 2.5: importing a module
can be specified to use absolute or package-relative imports. The plan is to
move toward making absolute imports the default in future versions of Python.

Let’s say you have a package directory like this:

pkg/
pkg/__init__.py
pkg/main.py
pkg/string.py

This defines a package named pkg containing the pkg.main and
pkg.string submodules.

Consider the code in the main.py module. What happens if it executes
the statement import string? In Python 2.4 and earlier, it will first look
in the package’s directory to perform a relative import, finds
pkg/string.py, imports the contents of that file as the
pkg.string module, and that module is bound to the name string in the
pkg.main module’s namespace.

That’s fine if pkg.string was what you wanted. But what if you wanted
Python’s standard string module? There’s no clean way to ignore
pkg.string and look for the standard module; generally you had to look at
the contents of sys.modules, which is slightly unclean. Holger Krekel’s
py.std package provides a tidier way to perform imports from the standard
library, import py ; py.std.string.join(), but that package isn’t available
on all Python installations.

Reading code which relies on relative imports is also less clear, because a
reader may be confused about which module, string or pkg.string,
is intended to be used. Python users soon learned not to duplicate the names of
standard library modules in the names of their packages’ submodules, but you
can’t protect against having your submodule’s name being used for a new module
added in a future version of Python.

In Python 2.5, you can switch import‘s behaviour to absolute imports
using a from __future__ import absolute_import directive. This absolute-
import behaviour will become the default in a future version (probably Python
2.7). Once absolute imports are the default, import string will always
find the standard library’s version. It’s suggested that users should begin
using absolute imports as much as possible, so it’s preferable to begin writing
from pkg import string in your code.

Relative imports are still possible by adding a leading period to the module
name when using the from ... import form:

Import names from pkg.string
from .string import name1, name2
Import pkg.string
from . import string

This imports the string module relative to the current package, so in
pkg.main this will import name1 and name2 from pkg.string.
Additional leading periods perform the relative import starting from the parent
of the current package. For example, code in the A.B.C module can do:

from . import D # Imports A.B.D
from .. import E # Imports A.E
from ..F import G # Imports A.F.G

Leading periods cannot be used with the import modname form of the import
statement, only the from ... import form.

See also

	PEP 328 [http://www.python.org/dev/peps/pep-0328] - Imports: Multi-Line and Absolute/Relative

	PEP written by Aahz; implemented by Thomas Wouters.

	http://codespeak.net/py/current/doc/index.html

	The py library by Holger Krekel, which contains the py.std package.

PEP 338: Executing Modules as Scripts

The -m switch added in Python 2.4 to execute a module as a script
gained a few more abilities. Instead of being implemented in C code inside the
Python interpreter, the switch now uses an implementation in a new module,
runpy.

The runpy module implements a more sophisticated import mechanism so that
it’s now possible to run modules in a package such as pychecker.checker.
The module also supports alternative import mechanisms such as the
zipimport module. This means you can add a .zip archive’s path to
sys.path and then use the -m switch to execute code from the
archive.

See also

	PEP 338 [http://www.python.org/dev/peps/pep-0338] - Executing modules as scripts

	PEP written and implemented by Nick Coghlan.

PEP 341: Unified try/except/finally

Until Python 2.5, the try statement came in two flavours. You could
use a finally block to ensure that code is always executed, or one or
more except blocks to catch specific exceptions. You couldn’t
combine both except blocks and a finally block, because
generating the right bytecode for the combined version was complicated and it
wasn’t clear what the semantics of the combined statement should be.

Guido van Rossum spent some time working with Java, which does support the
equivalent of combining except blocks and a finally block,
and this clarified what the statement should mean. In Python 2.5, you can now
write:

try:
 block-1 ...
except Exception1:
 handler-1 ...
except Exception2:
 handler-2 ...
else:
 else-block
finally:
 final-block

The code in block-1 is executed. If the code raises an exception, the various
except blocks are tested: if the exception is of class
Exception1, handler-1 is executed; otherwise if it’s of class
Exception2, handler-2 is executed, and so forth. If no exception is
raised, the else-block is executed.

No matter what happened previously, the final-block is executed once the code
block is complete and any raised exceptions handled. Even if there’s an error in
an exception handler or the else-block and a new exception is raised, the code
in the final-block is still run.

See also

	PEP 341 [http://www.python.org/dev/peps/pep-0341] - Unifying try-except and try-finally

	PEP written by Georg Brandl; implementation by Thomas Lee.

PEP 342: New Generator Features

Python 2.5 adds a simple way to pass values into a generator. As introduced in
Python 2.3, generators only produce output; once a generator’s code was invoked
to create an iterator, there was no way to pass any new information into the
function when its execution is resumed. Sometimes the ability to pass in some
information would be useful. Hackish solutions to this include making the
generator’s code look at a global variable and then changing the global
variable’s value, or passing in some mutable object that callers then modify.

To refresh your memory of basic generators, here’s a simple example:

def counter (maximum):
 i = 0
 while i < maximum:
 yield i
 i += 1

When you call counter(10), the result is an iterator that returns the values
from 0 up to 9. On encountering the yield statement, the iterator
returns the provided value and suspends the function’s execution, preserving the
local variables. Execution resumes on the following call to the iterator’s
next() method, picking up after the yield statement.

In Python 2.3, yield was a statement; it didn’t return any value. In
2.5, yield is now an expression, returning a value that can be
assigned to a variable or otherwise operated on:

val = (yield i)

I recommend that you always put parentheses around a yield expression
when you’re doing something with the returned value, as in the above example.
The parentheses aren’t always necessary, but it’s easier to always add them
instead of having to remember when they’re needed.

(PEP 342 [http://www.python.org/dev/peps/pep-0342] explains the exact rules, which are that a yield-expression must always be parenthesized except when it occurs at the top-level
expression on the right-hand side of an assignment. This means you can write
val = yield i but have to use parentheses when there’s an operation, as in
val = (yield i) + 12.)

Values are sent into a generator by calling its send(value)() method. The
generator’s code is then resumed and the yield expression returns the
specified value. If the regular next() method is called, the
yield returns None.

Here’s the previous example, modified to allow changing the value of the
internal counter.

def counter (maximum):
 i = 0
 while i < maximum:
 val = (yield i)
 # If value provided, change counter
 if val is not None:
 i = val
 else:
 i += 1

And here’s an example of changing the counter:

>>> it = counter(10)
>>> print it.next()
0
>>> print it.next()
1
>>> print it.send(8)
8
>>> print it.next()
9
>>> print it.next()
Traceback (most recent call last):
 File "t.py", line 15, in ?
 print it.next()
StopIteration

yield will usually return None, so you should always check
for this case. Don’t just use its value in expressions unless you’re sure that
the send() method will be the only method used to resume your generator
function.

In addition to send(), there are two other new methods on generators:

	throw(type, value=None, traceback=None)() is used to raise an exception
inside the generator; the exception is raised by the yield expression
where the generator’s execution is paused.

	close() raises a new GeneratorExit exception inside the generator
to terminate the iteration. On receiving this exception, the generator’s code
must either raise GeneratorExit or StopIteration. Catching the
GeneratorExit exception and returning a value is illegal and will trigger
a RuntimeError; if the function raises some other exception, that
exception is propagated to the caller. close() will also be called by
Python’s garbage collector when the generator is garbage-collected.

If you need to run cleanup code when a GeneratorExit occurs, I suggest
using a try: ... finally: suite instead of catching GeneratorExit.

The cumulative effect of these changes is to turn generators from one-way
producers of information into both producers and consumers.

Generators also become coroutines, a more generalized form of subroutines.
Subroutines are entered at one point and exited at another point (the top of the
function, and a return statement), but coroutines can be entered,
exited, and resumed at many different points (the yield statements).
We’ll have to figure out patterns for using coroutines effectively in Python.

The addition of the close() method has one side effect that isn’t obvious.
close() is called when a generator is garbage-collected, so this means the
generator’s code gets one last chance to run before the generator is destroyed.
This last chance means that try...finally statements in generators can now
be guaranteed to work; the finally clause will now always get a
chance to run. The syntactic restriction that you couldn’t mix yield
statements with a try...finally suite has therefore been removed. This
seems like a minor bit of language trivia, but using generators and
try...finally is actually necessary in order to implement the
with statement described by PEP 343. I’ll look at this new statement
in the following section.

Another even more esoteric effect of this change: previously, the
gi_frame attribute of a generator was always a frame object. It’s now
possible for gi_frame to be None once the generator has been
exhausted.

See also

	PEP 342 [http://www.python.org/dev/peps/pep-0342] - Coroutines via Enhanced Generators

	PEP written by Guido van Rossum and Phillip J. Eby; implemented by Phillip J.
Eby. Includes examples of some fancier uses of generators as coroutines.

Earlier versions of these features were proposed in PEP 288 [http://www.python.org/dev/peps/pep-0288] by Raymond
Hettinger and PEP 325 [http://www.python.org/dev/peps/pep-0325] by Samuele Pedroni.

	http://en.wikipedia.org/wiki/Coroutine

	The Wikipedia entry for coroutines.

	http://www.sidhe.org/~dan/blog/archives/000178.html

	An explanation of coroutines from a Perl point of view, written by Dan Sugalski.

PEP 343: The ‘with’ statement

The ‘with‘ statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I’ll discuss the statement as it will commonly be used. In the next
section, I’ll examine the implementation details and show how to write objects
for use with this statement.

The ‘with‘ statement is a new control-flow structure whose basic
structure is:

with expression [as variable]:
 with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol (that is, has __enter__() and __exit__()
methods.

The object’s __enter__() is called before with-block is executed and
therefore can run set-up code. It also may return a value that is bound to the
name variable, if given. (Note carefully that variable is not assigned
the result of expression.)

After execution of the with-block is finished, the object’s __exit__()
method is called, even if the block raised an exception, and can therefore run
clean-up code.

To enable the statement in Python 2.5, you need to add the following directive
to your module:

from __future__ import with_statement

The statement will always be enabled in Python 2.6.

Some standard Python objects now support the context management protocol and can
be used with the ‘with‘ statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
 for line in f:
 print line
 ... more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the for loop raised an exception part-
way through the block.

Note

In this case, f is the same object created by open(), because
file.__enter__() returns self.

The threading module’s locks and condition variables also support the
‘with‘ statement:

lock = threading.Lock()
with lock:
 # Critical section of code
 ...

The lock is acquired before the block is executed and always released once the
block is complete.

The new localcontext() function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578')
print v.sqrt()

with localcontext(Context(prec=16)):
 # All code in this block uses a precision of 16 digits.
 # The original context is restored on exiting the block.
 print v.sqrt()

Writing Context Managers

Under the hood, the ‘with‘ statement is fairly complicated. Most
people will only use ‘with‘ in company with existing objects and
don’t need to know these details, so you can skip the rest of this section if
you like. Authors of new objects will need to understand the details of the
underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

	The expression is evaluated and should result in an object called a “context
manager”. The context manager must have __enter__() and __exit__()
methods.

	The context manager’s __enter__() method is called. The value returned
is assigned to VAR. If no 'as VAR' clause is present, the value is simply
discarded.

	The code in BLOCK is executed.

	If BLOCK raises an exception, the __exit__(type, value, traceback)()
is called with the exception details, the same values returned by
sys.exc_info(). The method’s return value controls whether the exception
is re-raised: any false value re-raises the exception, and True will result
in suppressing it. You’ll only rarely want to suppress the exception, because
if you do the author of the code containing the ‘with‘ statement will
never realize anything went wrong.

	If BLOCK didn’t raise an exception, the __exit__() method is still
called, but type, value, and traceback are all None.

Let’s think through an example. I won’t present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See
any database textbook for more information.)

Let’s assume there’s an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
 cursor.execute('insert into ...')
 cursor.execute('delete from ...')
 # ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there’s an exception. Here’s the basic interface for
DatabaseConnection that I’ll assume:

class DatabaseConnection:
 # Database interface
 def cursor (self):
 "Returns a cursor object and starts a new transaction"
 def commit (self):
 "Commits current transaction"
 def rollback (self):
 "Rolls back current transaction"

The __enter__() method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to
their ‘with‘ statement to bind the cursor to a variable name.

class DatabaseConnection:
 ...
 def __enter__ (self):
 # Code to start a new transaction
 cursor = self.cursor()
 return cursor

The __exit__() method is the most complicated because it’s where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function,
returning the default value of None. None is false, so the exception
will be re-raised automatically. If you wished, you could be more explicit and
add a return statement at the marked location.

class DatabaseConnection:
 ...
 def __exit__ (self, type, value, tb):
 if tb is None:
 # No exception, so commit
 self.commit()
 else:
 # Exception occurred, so rollback.
 self.rollback()
 # return False

The contextlib module

The new contextlib module provides some functions and a decorator that
are useful for writing objects for use with the ‘with‘ statement.

The decorator is called contextmanager(), and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__() method, and the value yielded will be the method’s return
value that will get bound to the variable in the ‘with‘ statement’s
as clause, if any. The code after the yield will be
executed in the __exit__() method. Any exception raised in the block will
be raised by the yield statement.

Our database example from the previous section could be written using this
decorator as:

from contextlib import contextmanager

@contextmanager
def db_transaction (connection):
 cursor = connection.cursor()
 try:
 yield cursor
 except:
 connection.rollback()
 raise
 else:
 connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:
 ...

The contextlib module also has a nested(mgr1, mgr2, ...)() function
that combines a number of context managers so you don’t need to write nested
‘with‘ statements. In this example, the single ‘with‘
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):
 ...

Finally, the closing(object)() function returns object so that it can be
bound to a variable, and calls object.close at the end of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
 for line in f:
 sys.stdout.write(line)

See also

	PEP 343 [http://www.python.org/dev/peps/pep-0343] - The “with” statement

	PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland,
Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a
‘with‘ statement, which can be helpful in learning how the statement
works.

The documentation for the contextlib module.

PEP 352: Exceptions as New-Style Classes

Exception classes can now be new-style classes, not just classic classes, and
the built-in Exception class and all the standard built-in exceptions
(NameError, ValueError, etc.) are now new-style classes.

The inheritance hierarchy for exceptions has been rearranged a bit. In 2.5, the
inheritance relationships are:

BaseException # New in Python 2.5
|- KeyboardInterrupt
|- SystemExit
|- Exception
 |- (all other current built-in exceptions)

This rearrangement was done because people often want to catch all exceptions
that indicate program errors. KeyboardInterrupt and SystemExit
aren’t errors, though, and usually represent an explicit action such as the user
hitting Control-C or code calling sys.exit(). A bare except: will
catch all exceptions, so you commonly need to list KeyboardInterrupt and
SystemExit in order to re-raise them. The usual pattern is:

try:
 ...
except (KeyboardInterrupt, SystemExit):
 raise
except:
 # Log error...
 # Continue running program...

In Python 2.5, you can now write except Exception to achieve the same
result, catching all the exceptions that usually indicate errors but leaving
KeyboardInterrupt and SystemExit alone. As in previous versions,
a bare except: still catches all exceptions.

The goal for Python 3.0 is to require any class raised as an exception to derive
from BaseException or some descendant of BaseException, and future
releases in the Python 2.x series may begin to enforce this constraint.
Therefore, I suggest you begin making all your exception classes derive from
Exception now. It’s been suggested that the bare except: form should
be removed in Python 3.0, but Guido van Rossum hasn’t decided whether to do this
or not.

Raising of strings as exceptions, as in the statement raise "Error
occurred", is deprecated in Python 2.5 and will trigger a warning. The aim is
to be able to remove the string-exception feature in a few releases.

See also

	PEP 352 [http://www.python.org/dev/peps/pep-0352] - Required Superclass for Exceptions

	PEP written by Brett Cannon and Guido van Rossum; implemented by Brett Cannon.

PEP 353: Using ssize_t as the index type

A wide-ranging change to Python’s C API, using a new Py_ssize_t type
definition instead of int, will permit the interpreter to handle more
data on 64-bit platforms. This change doesn’t affect Python’s capacity on 32-bit
platforms.

Various pieces of the Python interpreter used C’s int type to store
sizes or counts; for example, the number of items in a list or tuple were stored
in an int. The C compilers for most 64-bit platforms still define
int as a 32-bit type, so that meant that lists could only hold up to
2**31 - 1 = 2147483647 items. (There are actually a few different
programming models that 64-bit C compilers can use – see
http://www.unix.org/version2/whatsnew/lp64_wp.html for a discussion – but the
most commonly available model leaves int as 32 bits.)

A limit of 2147483647 items doesn’t really matter on a 32-bit platform because
you’ll run out of memory before hitting the length limit. Each list item
requires space for a pointer, which is 4 bytes, plus space for a
PyObject representing the item. 2147483647*4 is already more bytes
than a 32-bit address space can contain.

It’s possible to address that much memory on a 64-bit platform, however. The
pointers for a list that size would only require 16 GiB of space, so it’s not
unreasonable that Python programmers might construct lists that large.
Therefore, the Python interpreter had to be changed to use some type other than
int, and this will be a 64-bit type on 64-bit platforms. The change
will cause incompatibilities on 64-bit machines, so it was deemed worth making
the transition now, while the number of 64-bit users is still relatively small.
(In 5 or 10 years, we may all be on 64-bit machines, and the transition would
be more painful then.)

This change most strongly affects authors of C extension modules. Python
strings and container types such as lists and tuples now use
Py_ssize_t to store their size. Functions such as
PyList_Size() now return Py_ssize_t. Code in extension modules
may therefore need to have some variables changed to Py_ssize_t.

The PyArg_ParseTuple() and Py_BuildValue() functions have a new
conversion code, n, for Py_ssize_t. PyArg_ParseTuple()‘s
s# and t# still output int by default, but you can define the
macro PY_SSIZE_T_CLEAN before including Python.h to make
them return Py_ssize_t.

PEP 353 [http://www.python.org/dev/peps/pep-0353] has a section on conversion guidelines that extension authors should
read to learn about supporting 64-bit platforms.

See also

	PEP 353 [http://www.python.org/dev/peps/pep-0353] - Using ssize_t as the index type

	PEP written and implemented by Martin von Löwis.

PEP 357: The ‘__index__’ method

The NumPy developers had a problem that could only be solved by adding a new
special method, __index__(). When using slice notation, as in
[start:stop:step], the values of the start, stop, and step indexes
must all be either integers or long integers. NumPy defines a variety of
specialized integer types corresponding to unsigned and signed integers of 8,
16, 32, and 64 bits, but there was no way to signal that these types could be
used as slice indexes.

Slicing can’t just use the existing __int__() method because that method
is also used to implement coercion to integers. If slicing used
__int__(), floating-point numbers would also become legal slice indexes
and that’s clearly an undesirable behaviour.

Instead, a new special method called __index__() was added. It takes no
arguments and returns an integer giving the slice index to use. For example:

class C:
 def __index__ (self):
 return self.value

The return value must be either a Python integer or long integer. The
interpreter will check that the type returned is correct, and raises a
TypeError if this requirement isn’t met.

A corresponding nb_index slot was added to the C-level
PyNumberMethods structure to let C extensions implement this protocol.
PyNumber_Index(obj)() can be used in extension code to call the
__index__() function and retrieve its result.

See also

	PEP 357 [http://www.python.org/dev/peps/pep-0357] - Allowing Any Object to be Used for Slicing

	PEP written and implemented by Travis Oliphant.

Other Language Changes

Here are all of the changes that Python 2.5 makes to the core Python language.

	The dict type has a new hook for letting subclasses provide a default
value when a key isn’t contained in the dictionary. When a key isn’t found, the
dictionary’s __missing__(key)() method will be called. This hook is used
to implement the new defaultdict class in the collections
module. The following example defines a dictionary that returns zero for any
missing key:

class zerodict (dict):
 def __missing__ (self, key):
 return 0

d = zerodict({1:1, 2:2})
print d[1], d[2] # Prints 1, 2
print d[3], d[4] # Prints 0, 0

	Both 8-bit and Unicode strings have new partition(sep)() and
rpartition(sep)() methods that simplify a common use case.

The find(S)() method is often used to get an index which is then used to
slice the string and obtain the pieces that are before and after the separator.
partition(sep)() condenses this pattern into a single method call that
returns a 3-tuple containing the substring before the separator, the separator
itself, and the substring after the separator. If the separator isn’t found,
the first element of the tuple is the entire string and the other two elements
are empty. rpartition(sep)() also returns a 3-tuple but starts searching
from the end of the string; the r stands for ‘reverse’.

Some examples:

>>> ('http://www.python.org').partition('://')
('http', '://', 'www.python.org')
>>> ('file:/usr/share/doc/index.html').partition('://')
('file:/usr/share/doc/index.html', '', '')
>>> (u'Subject: a quick question').partition(':')
(u'Subject', u':', u' a quick question')
>>> 'www.python.org'.rpartition('.')
('www.python', '.', 'org')
>>> 'www.python.org'.rpartition(':')
('', '', 'www.python.org')

(Implemented by Fredrik Lundh following a suggestion by Raymond Hettinger.)

	The startswith() and endswith() methods of string types now accept
tuples of strings to check for.

def is_image_file (filename):
 return filename.endswith(('.gif', '.jpg', '.tiff'))

(Implemented by Georg Brandl following a suggestion by Tom Lynn.)

	The min() and max() built-in functions gained a key keyword
parameter analogous to the key argument for sort(). This parameter
supplies a function that takes a single argument and is called for every value
in the list; min()/max() will return the element with the
smallest/largest return value from this function. For example, to find the
longest string in a list, you can do:

L = ['medium', 'longest', 'short']
Prints 'longest'
print max(L, key=len)
Prints 'short', because lexicographically 'short' has the largest value
print max(L)

(Contributed by Steven Bethard and Raymond Hettinger.)

	Two new built-in functions, any() and all(), evaluate whether an
iterator contains any true or false values. any() returns True
if any value returned by the iterator is true; otherwise it will return
False. all() returns True only if all of the values
returned by the iterator evaluate as true. (Suggested by Guido van Rossum, and
implemented by Raymond Hettinger.)

	The result of a class’s __hash__() method can now be either a long
integer or a regular integer. If a long integer is returned, the hash of that
value is taken. In earlier versions the hash value was required to be a
regular integer, but in 2.5 the id() built-in was changed to always
return non-negative numbers, and users often seem to use id(self) in
__hash__() methods (though this is discouraged).

	ASCII is now the default encoding for modules. It’s now a syntax error if a
module contains string literals with 8-bit characters but doesn’t have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error. See PEP 263 [http://www.python.org/dev/peps/pep-0263] for how to declare a module’s encoding; for example, you
might add a line like this near the top of the source file:

-*- coding: latin1 -*-

	A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can’t be converted to Unicode
using the default ASCII encoding. The result of the comparison is false:

>>> chr(128) == unichr(128) # Can't convert chr(128) to Unicode
__main__:1: UnicodeWarning: Unicode equal comparison failed
 to convert both arguments to Unicode - interpreting them
 as being unequal
False
>>> chr(127) == unichr(127) # chr(127) can be converted
True

Previously this would raise a UnicodeDecodeError exception, but in 2.5
this could result in puzzling problems when accessing a dictionary. If you
looked up unichr(128) and chr(128) was being used as a key, you’d get a
UnicodeDecodeError exception. Other changes in 2.5 resulted in this
exception being raised instead of suppressed by the code in dictobject.c
that implements dictionaries.

Raising an exception for such a comparison is strictly correct, but the change
might have broken code, so instead UnicodeWarning was introduced.

(Implemented by Marc-André Lemburg.)

	One error that Python programmers sometimes make is forgetting to include an
__init__.py module in a package directory. Debugging this mistake can be
confusing, and usually requires running Python with the -v switch to
log all the paths searched. In Python 2.5, a new ImportWarning warning is
triggered when an import would have picked up a directory as a package but no
__init__.py was found. This warning is silently ignored by default;
provide the -Wd option when running the Python executable to display
the warning message. (Implemented by Thomas Wouters.)

	The list of base classes in a class definition can now be empty. As an
example, this is now legal:

class C():
 pass

(Implemented by Brett Cannon.)

Interactive Interpreter Changes

In the interactive interpreter, quit and exit have long been strings so
that new users get a somewhat helpful message when they try to quit:

>>> quit
'Use Ctrl-D (i.e. EOF) to exit.'

In Python 2.5, quit and exit are now objects that still produce string
representations of themselves, but are also callable. Newbies who try quit()
or exit() will now exit the interpreter as they expect. (Implemented by
Georg Brandl.)

The Python executable now accepts the standard long options --help
and --version; on Windows, it also accepts the /? option
for displaying a help message. (Implemented by Georg Brandl.)

Optimizations

Several of the optimizations were developed at the NeedForSpeed sprint, an event
held in Reykjavik, Iceland, from May 21–28 2006. The sprint focused on speed
enhancements to the CPython implementation and was funded by EWT LLC with local
support from CCP Games. Those optimizations added at this sprint are specially
marked in the following list.

	When they were introduced in Python 2.4, the built-in set and
frozenset types were built on top of Python’s dictionary type. In 2.5
the internal data structure has been customized for implementing sets, and as a
result sets will use a third less memory and are somewhat faster. (Implemented
by Raymond Hettinger.)

	The speed of some Unicode operations, such as finding substrings, string
splitting, and character map encoding and decoding, has been improved.
(Substring search and splitting improvements were added by Fredrik Lundh and
Andrew Dalke at the NeedForSpeed sprint. Character maps were improved by Walter
Dörwald and Martin von Löwis.)

	The long(str, base)() function is now faster on long digit strings
because fewer intermediate results are calculated. The peak is for strings of
around 800–1000 digits where the function is 6 times faster. (Contributed by
Alan McIntyre and committed at the NeedForSpeed sprint.)

	It’s now illegal to mix iterating over a file with for line in file and
calling the file object’s read()/readline()/readlines()
methods. Iteration uses an internal buffer and the read*() methods
don’t use that buffer. Instead they would return the data following the
buffer, causing the data to appear out of order. Mixing iteration and these
methods will now trigger a ValueError from the read*() method.
(Implemented by Thomas Wouters.)

	The struct module now compiles structure format strings into an
internal representation and caches this representation, yielding a 20% speedup.
(Contributed by Bob Ippolito at the NeedForSpeed sprint.)

	The re module got a 1 or 2% speedup by switching to Python’s allocator
functions instead of the system’s malloc() and free().
(Contributed by Jack Diederich at the NeedForSpeed sprint.)

	The code generator’s peephole optimizer now performs simple constant folding
in expressions. If you write something like a = 2+3, the code generator
will do the arithmetic and produce code corresponding to a = 5. (Proposed
and implemented by Raymond Hettinger.)

	Function calls are now faster because code objects now keep the most recently
finished frame (a “zombie frame”) in an internal field of the code object,
reusing it the next time the code object is invoked. (Original patch by Michael
Hudson, modified by Armin Rigo and Richard Jones; committed at the NeedForSpeed
sprint.) Frame objects are also slightly smaller, which may improve cache
locality and reduce memory usage a bit. (Contributed by Neal Norwitz.)

	Python’s built-in exceptions are now new-style classes, a change that speeds
up instantiation considerably. Exception handling in Python 2.5 is therefore
about 30% faster than in 2.4. (Contributed by Richard Jones, Georg Brandl and
Sean Reifschneider at the NeedForSpeed sprint.)

	Importing now caches the paths tried, recording whether they exist or not so
that the interpreter makes fewer open() and stat() calls on
startup. (Contributed by Martin von Löwis and Georg Brandl.)

New, Improved, and Removed Modules

The standard library received many enhancements and bug fixes in Python 2.5.
Here’s a partial list of the most notable changes, sorted alphabetically by
module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the SVN logs for all the details.

	The audioop module now supports the a-LAW encoding, and the code for
u-LAW encoding has been improved. (Contributed by Lars Immisch.)

	The codecs module gained support for incremental codecs. The
codec.lookup() function now returns a CodecInfo instance instead
of a tuple. CodecInfo instances behave like a 4-tuple to preserve
backward compatibility but also have the attributes encode,
decode, incrementalencoder, incrementaldecoder,
streamwriter, and streamreader. Incremental codecs can receive
input and produce output in multiple chunks; the output is the same as if the
entire input was fed to the non-incremental codec. See the codecs module
documentation for details. (Designed and implemented by Walter Dörwald.)

	The collections module gained a new type, defaultdict, that
subclasses the standard dict type. The new type mostly behaves like a
dictionary but constructs a default value when a key isn’t present,
automatically adding it to the dictionary for the requested key value.

The first argument to defaultdict‘s constructor is a factory function
that gets called whenever a key is requested but not found. This factory
function receives no arguments, so you can use built-in type constructors such
as list() or int(). For example, you can make an index of words
based on their initial letter like this:

words = """Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la diritta via era smarrita""".lower().split()

index = defaultdict(list)

for w in words:
 init_letter = w[0]
 index[init_letter].append(w)

Printing index results in the following output:

defaultdict(<type 'list'>, {'c': ['cammin', 'che'], 'e': ['era'],
 'd': ['del', 'di', 'diritta'], 'm': ['mezzo', 'mi'],
 'l': ['la'], 'o': ['oscura'], 'n': ['nel', 'nostra'],
 'p': ['per'], 's': ['selva', 'smarrita'],
 'r': ['ritrovai'], 'u': ['una'], 'v': ['vita', 'via']}

(Contributed by Guido van Rossum.)

	The deque double-ended queue type supplied by the collections
module now has a remove(value)() method that removes the first occurrence
of value in the queue, raising ValueError if the value isn’t found.
(Contributed by Raymond Hettinger.)

	New module: The contextlib module contains helper functions for use
with the new ‘with‘ statement. See section The contextlib module
for more about this module.

	New module: The cProfile module is a C implementation of the existing
profile module that has much lower overhead. The module’s interface is
the same as profile: you run cProfile.run('main()') to profile a
function, can save profile data to a file, etc. It’s not yet known if the
Hotshot profiler, which is also written in C but doesn’t match the
profile module’s interface, will continue to be maintained in future
versions of Python. (Contributed by Armin Rigo.)

Also, the pstats module for analyzing the data measured by the profiler
now supports directing the output to any file object by supplying a stream
argument to the Stats constructor. (Contributed by Skip Montanaro.)

	The csv module, which parses files in comma-separated value format,
received several enhancements and a number of bugfixes. You can now set the
maximum size in bytes of a field by calling the
csv.field_size_limit(new_limit)() function; omitting the new_limit
argument will return the currently-set limit. The reader class now has
a line_num attribute that counts the number of physical lines read from
the source; records can span multiple physical lines, so line_num is not
the same as the number of records read.

The CSV parser is now stricter about multi-line quoted fields. Previously, if a
line ended within a quoted field without a terminating newline character, a
newline would be inserted into the returned field. This behavior caused problems
when reading files that contained carriage return characters within fields, so
the code was changed to return the field without inserting newlines. As a
consequence, if newlines embedded within fields are important, the input should
be split into lines in a manner that preserves the newline characters.

(Contributed by Skip Montanaro and Andrew McNamara.)

	The datetime class in the datetime module now has a
strptime(string, format)() method for parsing date strings, contributed
by Josh Spoerri. It uses the same format characters as time.strptime() and
time.strftime():

from datetime import datetime

ts = datetime.strptime('10:13:15 2006-03-07',
 '%H:%M:%S %Y-%m-%d')

	The SequenceMatcher.get_matching_blocks() method in the difflib
module now guarantees to return a minimal list of blocks describing matching
subsequences. Previously, the algorithm would occasionally break a block of
matching elements into two list entries. (Enhancement by Tim Peters.)

	The doctest module gained a SKIP option that keeps an example from
being executed at all. This is intended for code snippets that are usage
examples intended for the reader and aren’t actually test cases.

An encoding parameter was added to the testfile() function and the
DocFileSuite class to specify the file’s encoding. This makes it
easier to use non-ASCII characters in tests contained within a docstring.
(Contributed by Bjorn Tillenius.)

	The email package has been updated to version 4.0. (Contributed by
Barry Warsaw.)

	The fileinput module was made more flexible. Unicode filenames are now
supported, and a mode parameter that defaults to "r" was added to the
input() function to allow opening files in binary or universal-newline
mode. Another new parameter, openhook, lets you use a function other than
open() to open the input files. Once you’re iterating over the set of
files, the FileInput object’s new fileno() returns the file
descriptor for the currently opened file. (Contributed by Georg Brandl.)

	In the gc module, the new get_count() function returns a 3-tuple
containing the current collection counts for the three GC generations. This is
accounting information for the garbage collector; when these counts reach a
specified threshold, a garbage collection sweep will be made. The existing
gc.collect() function now takes an optional generation argument of 0, 1,
or 2 to specify which generation to collect. (Contributed by Barry Warsaw.)

	The nsmallest() and nlargest() functions in the heapq
module now support a key keyword parameter similar to the one provided by
the min()/max() functions and the sort() methods. For
example:

>>> import heapq
>>> L = ["short", 'medium', 'longest', 'longer still']
>>> heapq.nsmallest(2, L) # Return two lowest elements, lexicographically
['longer still', 'longest']
>>> heapq.nsmallest(2, L, key=len) # Return two shortest elements
['short', 'medium']

(Contributed by Raymond Hettinger.)

	The itertools.islice() function now accepts None for the start and
step arguments. This makes it more compatible with the attributes of slice
objects, so that you can now write the following:

s = slice(5) # Create slice object
itertools.islice(iterable, s.start, s.stop, s.step)

(Contributed by Raymond Hettinger.)

	The format() function in the locale module has been modified and
two new functions were added, format_string() and currency().

The format() function’s val parameter could previously be a string as
long as no more than one %char specifier appeared; now the parameter must be
exactly one %char specifier with no surrounding text. An optional monetary
parameter was also added which, if True, will use the locale’s rules for
formatting currency in placing a separator between groups of three digits.

To format strings with multiple %char specifiers, use the new
format_string() function that works like format() but also supports
mixing %char specifiers with arbitrary text.

A new currency() function was also added that formats a number according
to the current locale’s settings.

(Contributed by Georg Brandl.)

	The mailbox module underwent a massive rewrite to add the capability to
modify mailboxes in addition to reading them. A new set of classes that include
mbox, MH, and Maildir are used to read mailboxes, and
have an add(message)() method to add messages, remove(key)() to
remove messages, and lock()/unlock() to lock/unlock the mailbox.
The following example converts a maildir-format mailbox into an mbox-format
one:

import mailbox

'factory=None' uses email.Message.Message as the class representing
individual messages.
src = mailbox.Maildir('maildir', factory=None)
dest = mailbox.mbox('/tmp/mbox')

for msg in src:
 dest.add(msg)

(Contributed by Gregory K. Johnson. Funding was provided by Google’s 2005
Summer of Code.)

	New module: the msilib module allows creating Microsoft Installer
.msi files and CAB files. Some support for reading the .msi
database is also included. (Contributed by Martin von Löwis.)

	The nis module now supports accessing domains other than the system
default domain by supplying a domain argument to the nis.match() and
nis.maps() functions. (Contributed by Ben Bell.)

	The operator module’s itemgetter() and attrgetter()
functions now support multiple fields. A call such as
operator.attrgetter('a', 'b') will return a function that retrieves the
a and b attributes. Combining this new feature with the
sort() method’s key parameter lets you easily sort lists using
multiple fields. (Contributed by Raymond Hettinger.)

	The optparse module was updated to version 1.5.1 of the Optik library.
The OptionParser class gained an epilog attribute, a string
that will be printed after the help message, and a destroy() method to
break reference cycles created by the object. (Contributed by Greg Ward.)

	The os module underwent several changes. The stat_float_times
variable now defaults to true, meaning that os.stat() will now return time
values as floats. (This doesn’t necessarily mean that os.stat() will
return times that are precise to fractions of a second; not all systems support
such precision.)

Constants named os.SEEK_SET, os.SEEK_CUR, and
os.SEEK_END have been added; these are the parameters to the
os.lseek() function. Two new constants for locking are
os.O_SHLOCK and os.O_EXLOCK.

Two new functions, wait3() and wait4(), were added. They’re similar
the waitpid() function which waits for a child process to exit and returns
a tuple of the process ID and its exit status, but wait3() and
wait4() return additional information. wait3() doesn’t take a
process ID as input, so it waits for any child process to exit and returns a
3-tuple of process-id, exit-status, resource-usage as returned from the
resource.getrusage() function. wait4(pid)() does take a process ID.
(Contributed by Chad J. Schroeder.)

On FreeBSD, the os.stat() function now returns times with nanosecond
resolution, and the returned object now has st_gen and
st_birthtime. The st_flags member is also available, if the
platform supports it. (Contributed by Antti Louko and Diego Pettenò.)

	The Python debugger provided by the pdb module can now store lists of
commands to execute when a breakpoint is reached and execution stops. Once
breakpoint #1 has been created, enter commands 1 and enter a series of
commands to be executed, finishing the list with end. The command list can
include commands that resume execution, such as continue or next.
(Contributed by Grégoire Dooms.)

	The pickle and cPickle modules no longer accept a return value
of None from the __reduce__() method; the method must return a tuple
of arguments instead. The ability to return None was deprecated in Python
2.4, so this completes the removal of the feature.

	The pkgutil module, containing various utility functions for finding
packages, was enhanced to support PEP 302’s import hooks and now also works for
packages stored in ZIP-format archives. (Contributed by Phillip J. Eby.)

	The pybench benchmark suite by Marc-André Lemburg is now included in the
Tools/pybench directory. The pybench suite is an improvement on the
commonly used pystone.py program because pybench provides a more
detailed measurement of the interpreter’s speed. It times particular operations
such as function calls, tuple slicing, method lookups, and numeric operations,
instead of performing many different operations and reducing the result to a
single number as pystone.py does.

	The pyexpat module now uses version 2.0 of the Expat parser.
(Contributed by Trent Mick.)

	The Queue class provided by the Queue module gained two new
methods. join() blocks until all items in the queue have been retrieved
and all processing work on the items have been completed. Worker threads call
the other new method, task_done(), to signal that processing for an item
has been completed. (Contributed by Raymond Hettinger.)

	The old regex and regsub modules, which have been deprecated
ever since Python 2.0, have finally been deleted. Other deleted modules:
statcache, tzparse, whrandom.

	Also deleted: the lib-old directory, which includes ancient modules
such as dircmp and ni, was removed. lib-old wasn’t on the
default sys.path, so unless your programs explicitly added the directory to
sys.path, this removal shouldn’t affect your code.

	The rlcompleter module is no longer dependent on importing the
readline module and therefore now works on non-Unix platforms. (Patch
from Robert Kiendl.)

	The SimpleXMLRPCServer and DocXMLRPCServer classes now have a
rpc_paths attribute that constrains XML-RPC operations to a limited set
of URL paths; the default is to allow only '/' and '/RPC2'. Setting
rpc_paths to None or an empty tuple disables this path checking.

	The socket module now supports AF_NETLINK sockets on Linux,
thanks to a patch from Philippe Biondi. Netlink sockets are a Linux-specific
mechanism for communications between a user-space process and kernel code; an
introductory article about them is at http://www.linuxjournal.com/article/7356.
In Python code, netlink addresses are represented as a tuple of 2 integers,
(pid, group_mask).

Two new methods on socket objects, recv_into(buffer)() and
recvfrom_into(buffer)(), store the received data in an object that
supports the buffer protocol instead of returning the data as a string. This
means you can put the data directly into an array or a memory-mapped file.

Socket objects also gained getfamily(), gettype(), and
getproto() accessor methods to retrieve the family, type, and protocol
values for the socket.

	New module: the spwd module provides functions for accessing the shadow
password database on systems that support shadow passwords.

	The struct is now faster because it compiles format strings into
Struct objects with pack() and unpack() methods. This is
similar to how the re module lets you create compiled regular expression
objects. You can still use the module-level pack() and unpack()
functions; they’ll create Struct objects and cache them. Or you can
use Struct instances directly:

s = struct.Struct('ih3s')

data = s.pack(1972, 187, 'abc')
year, number, name = s.unpack(data)

You can also pack and unpack data to and from buffer objects directly using the
pack_into(buffer, offset, v1, v2, ...)() and unpack_from(buffer,
offset)() methods. This lets you store data directly into an array or a memory-
mapped file.

(Struct objects were implemented by Bob Ippolito at the NeedForSpeed
sprint. Support for buffer objects was added by Martin Blais, also at the
NeedForSpeed sprint.)

	The Python developers switched from CVS to Subversion during the 2.5
development process. Information about the exact build version is available as
the sys.subversion variable, a 3-tuple of (interpreter-name, branch-name,
revision-range). For example, at the time of writing my copy of 2.5 was
reporting ('CPython', 'trunk', '45313:45315').

This information is also available to C extensions via the
Py_GetBuildInfo() function that returns a string of build information
like this: "trunk:45355:45356M, Apr 13 2006, 07:42:19". (Contributed by
Barry Warsaw.)

	Another new function, sys._current_frames(), returns the current stack
frames for all running threads as a dictionary mapping thread identifiers to the
topmost stack frame currently active in that thread at the time the function is
called. (Contributed by Tim Peters.)

	The TarFile class in the tarfile module now has an
extractall() method that extracts all members from the archive into the
current working directory. It’s also possible to set a different directory as
the extraction target, and to unpack only a subset of the archive’s members.

The compression used for a tarfile opened in stream mode can now be autodetected
using the mode 'r|*'. (Contributed by Lars Gustäbel.)

	The threading module now lets you set the stack size used when new
threads are created. The stack_size([*size*])() function returns the
currently configured stack size, and supplying the optional size parameter
sets a new value. Not all platforms support changing the stack size, but
Windows, POSIX threading, and OS/2 all do. (Contributed by Andrew MacIntyre.)

	The unicodedata module has been updated to use version 4.1.0 of the
Unicode character database. Version 3.2.0 is required by some specifications,
so it’s still available as unicodedata.ucd_3_2_0.

	New module: the uuid module generates universally unique identifiers
(UUIDs) according to RFC 4122 [http://tools.ietf.org/html/rfc4122.html]. The RFC defines several different UUID
versions that are generated from a starting string, from system properties, or
purely randomly. This module contains a UUID class and functions
named uuid1(), uuid3(), uuid4(), and uuid5() to
generate different versions of UUID. (Version 2 UUIDs are not specified in
RFC 4122 [http://tools.ietf.org/html/rfc4122.html] and are not supported by this module.)

>>> import uuid
>>> # make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

>>> # make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>> # make a random UUID
>>> uuid.uuid4()
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

(Contributed by Ka-Ping Yee.)

	The weakref module’s WeakKeyDictionary and
WeakValueDictionary types gained new methods for iterating over the
weak references contained in the dictionary. iterkeyrefs() and
keyrefs() methods were added to WeakKeyDictionary, and
itervaluerefs() and valuerefs() were added to
WeakValueDictionary. (Contributed by Fred L. Drake, Jr.)

	The webbrowser module received a number of enhancements. It’s now
usable as a script with python -m webbrowser, taking a URL as the argument;
there are a number of switches to control the behaviour (-n for a new
browser window, -t for a new tab). New module-level functions,
open_new() and open_new_tab(), were added to support this. The
module’s open() function supports an additional feature, an autoraise
parameter that signals whether to raise the open window when possible. A number
of additional browsers were added to the supported list such as Firefox, Opera,
Konqueror, and elinks. (Contributed by Oleg Broytmann and Georg Brandl.)

	The xmlrpclib module now supports returning datetime objects
for the XML-RPC date type. Supply use_datetime=True to the loads()
function or the Unmarshaller class to enable this feature. (Contributed
by Skip Montanaro.)

	The zipfile module now supports the ZIP64 version of the format,
meaning that a .zip archive can now be larger than 4 GiB and can contain
individual files larger than 4 GiB. (Contributed by Ronald Oussoren.)

	The zlib module’s Compress and Decompress objects now
support a copy() method that makes a copy of the object’s internal state
and returns a new Compress or Decompress object.
(Contributed by Chris AtLee.)

The ctypes package

The ctypes package, written by Thomas Heller, has been added to the
standard library. ctypes lets you call arbitrary functions in shared
libraries or DLLs. Long-time users may remember the dl module, which
provides functions for loading shared libraries and calling functions in them.
The ctypes package is much fancier.

To load a shared library or DLL, you must create an instance of the
CDLL class and provide the name or path of the shared library or DLL.
Once that’s done, you can call arbitrary functions by accessing them as
attributes of the CDLL object.

import ctypes

libc = ctypes.CDLL('libc.so.6')
result = libc.printf("Line of output\n")

Type constructors for the various C types are provided: c_int(),
c_float(), c_double(), c_char_p() (equivalent to char
*), and so forth. Unlike Python’s types, the C versions are all mutable; you
can assign to their value attribute to change the wrapped value. Python
integers and strings will be automatically converted to the corresponding C
types, but for other types you must call the correct type constructor. (And I
mean must; getting it wrong will often result in the interpreter crashing
with a segmentation fault.)

You shouldn’t use c_char_p() with a Python string when the C function will
be modifying the memory area, because Python strings are supposed to be
immutable; breaking this rule will cause puzzling bugs. When you need a
modifiable memory area, use create_string_buffer():

s = "this is a string"
buf = ctypes.create_string_buffer(s)
libc.strfry(buf)

C functions are assumed to return integers, but you can set the restype
attribute of the function object to change this:

>>> libc.atof('2.71828')
-1783957616
>>> libc.atof.restype = ctypes.c_double
>>> libc.atof('2.71828')
2.71828

ctypes also provides a wrapper for Python’s C API as the
ctypes.pythonapi object. This object does not release the global
interpreter lock before calling a function, because the lock must be held when
calling into the interpreter’s code. There’s a py_object() type
constructor that will create a PyObject * pointer. A simple usage:

import ctypes

d = {}
ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d),
 ctypes.py_object("abc"), ctypes.py_object(1))
d is now {'abc', 1}.

Don’t forget to use py_object(); if it’s omitted you end up with a
segmentation fault.

ctypes has been around for a while, but people still write and
distribution hand-coded extension modules because you can’t rely on
ctypes being present. Perhaps developers will begin to write Python
wrappers atop a library accessed through ctypes instead of extension
modules, now that ctypes is included with core Python.

See also

	http://starship.python.net/crew/theller/ctypes/

	The ctypes web page, with a tutorial, reference, and FAQ.

The documentation for the ctypes module.

The ElementTree package

A subset of Fredrik Lundh’s ElementTree library for processing XML has been
added to the standard library as xml.etree. The available modules are
ElementTree, ElementPath, and ElementInclude from
ElementTree 1.2.6. The cElementTree accelerator module is also
included.

The rest of this section will provide a brief overview of using ElementTree.
Full documentation for ElementTree is available at
http://effbot.org/zone/element-index.htm.

ElementTree represents an XML document as a tree of element nodes. The text
content of the document is stored as the text and tail
attributes of (This is one of the major differences between ElementTree and
the Document Object Model; in the DOM there are many different types of node,
including TextNode.)

The most commonly used parsing function is parse(), that takes either a
string (assumed to contain a filename) or a file-like object and returns an
ElementTree instance:

from xml.etree import ElementTree as ET

tree = ET.parse('ex-1.xml')

feed = urllib.urlopen(
 'http://planet.python.org/rss10.xml')
tree = ET.parse(feed)

Once you have an ElementTree instance, you can call its getroot()
method to get the root Element node.

There’s also an XML() function that takes a string literal and returns an
Element node (not an ElementTree). This function provides a
tidy way to incorporate XML fragments, approaching the convenience of an XML
literal:

svg = ET.XML("""<svg width="10px" version="1.0">
 </svg>""")
svg.set('height', '320px')
svg.append(elem1)

Each XML element supports some dictionary-like and some list-like access
methods. Dictionary-like operations are used to access attribute values, and
list-like operations are used to access child nodes.

	Operation
	Result

	elem[n]
	Returns n’th child element.

	elem[m:n]
	Returns list of m’th through n’th child
elements.

	len(elem)
	Returns number of child elements.

	list(elem)
	Returns list of child elements.

	elem.append(elem2)
	Adds elem2 as a child.

	elem.insert(index, elem2)
	Inserts elem2 at the specified location.

	del elem[n]
	Deletes n’th child element.

	elem.keys()
	Returns list of attribute names.

	elem.get(name)
	Returns value of attribute name.

	elem.set(name, value)
	Sets new value for attribute name.

	elem.attrib
	Retrieves the dictionary containing
attributes.

	del elem.attrib[name]
	Deletes attribute name.

Comments and processing instructions are also represented as Element
nodes. To check if a node is a comment or processing instructions:

if elem.tag is ET.Comment:
 ...
elif elem.tag is ET.ProcessingInstruction:
 ...

To generate XML output, you should call the ElementTree.write() method.
Like parse(), it can take either a string or a file-like object:

Encoding is US-ASCII
tree.write('output.xml')

Encoding is UTF-8
f = open('output.xml', 'w')
tree.write(f, encoding='utf-8')

(Caution: the default encoding used for output is ASCII. For general XML work,
where an element’s name may contain arbitrary Unicode characters, ASCII isn’t a
very useful encoding because it will raise an exception if an element’s name
contains any characters with values greater than 127. Therefore, it’s best to
specify a different encoding such as UTF-8 that can handle any Unicode
character.)

This section is only a partial description of the ElementTree interfaces. Please
read the package’s official documentation for more details.

See also

	http://effbot.org/zone/element-index.htm

	Official documentation for ElementTree.

The hashlib package

A new hashlib module, written by Gregory P. Smith, has been added to
replace the md5 and sha modules. hashlib adds support for
additional secure hashes (SHA-224, SHA-256, SHA-384, and SHA-512). When
available, the module uses OpenSSL for fast platform optimized implementations
of algorithms.

The old md5 and sha modules still exist as wrappers around hashlib
to preserve backwards compatibility. The new module’s interface is very close
to that of the old modules, but not identical. The most significant difference
is that the constructor functions for creating new hashing objects are named
differently.

Old versions
h = md5.md5()
h = md5.new()

New version
h = hashlib.md5()

Old versions
h = sha.sha()
h = sha.new()

New version
h = hashlib.sha1()

Hash that weren't previously available
h = hashlib.sha224()
h = hashlib.sha256()
h = hashlib.sha384()
h = hashlib.sha512()

Alternative form
h = hashlib.new('md5') # Provide algorithm as a string

Once a hash object has been created, its methods are the same as before:
update(string)() hashes the specified string into the current digest
state, digest() and hexdigest() return the digest value as a binary
string or a string of hex digits, and copy() returns a new hashing object
with the same digest state.

See also

The documentation for the hashlib module.

The sqlite3 package

The pysqlite module (http://www.pysqlite.org), a wrapper for the SQLite embedded
database, has been added to the standard library under the package name
sqlite3.

SQLite is a C library that provides a lightweight disk-based database that
doesn’t require a separate server process and allows accessing the database
using a nonstandard variant of the SQL query language. Some applications can use
SQLite for internal data storage. It’s also possible to prototype an
application using SQLite and then port the code to a larger database such as
PostgreSQL or Oracle.

pysqlite was written by Gerhard Häring and provides a SQL interface compliant
with the DB-API 2.0 specification described by PEP 249 [http://www.python.org/dev/peps/pep-0249].

If you’re compiling the Python source yourself, note that the source tree
doesn’t include the SQLite code, only the wrapper module. You’ll need to have
the SQLite libraries and headers installed before compiling Python, and the
build process will compile the module when the necessary headers are available.

To use the module, you must first create a Connection object that
represents the database. Here the data will be stored in the
/tmp/example file:

conn = sqlite3.connect('/tmp/example')

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object
and call its execute() method to perform SQL commands:

c = conn.cursor()

Create table
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')

Insert a row of data
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")

Usually your SQL operations will need to use values from Python variables. You
shouldn’t assemble your query using Python’s string operations because doing so
is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder
wherever you want to use a value, and then provide a tuple of values as the
second argument to the cursor’s execute() method. (Other database modules
may use a different placeholder, such as %s or :1.) For example:

Never do this -- insecure!
symbol = 'IBM'
c.execute("... where symbol = '%s'" % symbol)

Do this instead
t = (symbol,)
c.execute('select * from stocks where symbol=?', t)

Larger example
for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
 ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
 ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
):
 c.execute('insert into stocks values (?,?,?,?,?)', t)

To retrieve data after executing a SELECT statement, you can either treat the
cursor as an iterator, call the cursor’s fetchone() method to retrieve a
single matching row, or call fetchall() to get a list of the matching
rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute('select * from stocks order by price')
>>> for row in c:
... print row
...
(u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
>>>

For more information about the SQL dialect supported by SQLite, see
http://www.sqlite.org.

See also

	http://www.pysqlite.org

	The pysqlite web page.

	http://www.sqlite.org

	The SQLite web page; the documentation describes the syntax and the available
data types for the supported SQL dialect.

The documentation for the sqlite3 module.

	PEP 249 [http://www.python.org/dev/peps/pep-0249] - Database API Specification 2.0

	PEP written by Marc-André Lemburg.

The wsgiref package

The Web Server Gateway Interface (WSGI) v1.0 defines a standard interface
between web servers and Python web applications and is described in PEP 333 [http://www.python.org/dev/peps/pep-0333].
The wsgiref package is a reference implementation of the WSGI
specification.

The package includes a basic HTTP server that will run a WSGI application; this
server is useful for debugging but isn’t intended for production use. Setting
up a server takes only a few lines of code:

from wsgiref import simple_server

wsgi_app = ...

host = ''
port = 8000
httpd = simple_server.make_server(host, port, wsgi_app)
httpd.serve_forever()

See also

	http://www.wsgi.org

	A central web site for WSGI-related resources.

	PEP 333 [http://www.python.org/dev/peps/pep-0333] - Python Web Server Gateway Interface v1.0

	PEP written by Phillip J. Eby.

Build and C API Changes

Changes to Python’s build process and to the C API include:

	The Python source tree was converted from CVS to Subversion, in a complex
migration procedure that was supervised and flawlessly carried out by Martin von
Löwis. The procedure was developed as PEP 347 [http://www.python.org/dev/peps/pep-0347].

	Coverity, a company that markets a source code analysis tool called Prevent,
provided the results of their examination of the Python source code. The
analysis found about 60 bugs that were quickly fixed. Many of the bugs were
refcounting problems, often occurring in error-handling code. See
http://scan.coverity.com for the statistics.

	The largest change to the C API came from PEP 353 [http://www.python.org/dev/peps/pep-0353], which modifies the
interpreter to use a Py_ssize_t type definition instead of
int. See the earlier section PEP 353: Using ssize_t as the index type for a discussion of this
change.

	The design of the bytecode compiler has changed a great deal, no longer
generating bytecode by traversing the parse tree. Instead the parse tree is
converted to an abstract syntax tree (or AST), and it is the abstract syntax
tree that’s traversed to produce the bytecode.

It’s possible for Python code to obtain AST objects by using the
compile() built-in and specifying _ast.PyCF_ONLY_AST as the value of
the flags parameter:

from _ast import PyCF_ONLY_AST
ast = compile("""a=0
for i in range(10):
 a += i
""", "<string>", 'exec', PyCF_ONLY_AST)

assignment = ast.body[0]
for_loop = ast.body[1]

No official documentation has been written for the AST code yet, but PEP 339 [http://www.python.org/dev/peps/pep-0339]
discusses the design. To start learning about the code, read the definition of
the various AST nodes in Parser/Python.asdl. A Python script reads this
file and generates a set of C structure definitions in
Include/Python-ast.h. The PyParser_ASTFromString() and
PyParser_ASTFromFile(), defined in Include/pythonrun.h, take
Python source as input and return the root of an AST representing the contents.
This AST can then be turned into a code object by PyAST_Compile(). For
more information, read the source code, and then ask questions on python-dev.

The AST code was developed under Jeremy Hylton’s management, and implemented by
(in alphabetical order) Brett Cannon, Nick Coghlan, Grant Edwards, John
Ehresman, Kurt Kaiser, Neal Norwitz, Tim Peters, Armin Rigo, and Neil
Schemenauer, plus the participants in a number of AST sprints at conferences
such as PyCon.

	Evan Jones’s patch to obmalloc, first described in a talk at PyCon DC 2005,
was applied. Python 2.4 allocated small objects in 256K-sized arenas, but never
freed arenas. With this patch, Python will free arenas when they’re empty. The
net effect is that on some platforms, when you allocate many objects, Python’s
memory usage may actually drop when you delete them and the memory may be
returned to the operating system. (Implemented by Evan Jones, and reworked by
Tim Peters.)

Note that this change means extension modules must be more careful when
allocating memory. Python’s API has many different functions for allocating
memory that are grouped into families. For example, PyMem_Malloc(),
PyMem_Realloc(), and PyMem_Free() are one family that allocates
raw memory, while PyObject_Malloc(), PyObject_Realloc(), and
PyObject_Free() are another family that’s supposed to be used for
creating Python objects.

Previously these different families all reduced to the platform’s
malloc() and free() functions. This meant it didn’t matter if
you got things wrong and allocated memory with the PyMem() function but
freed it with the PyObject() function. With 2.5’s changes to obmalloc,
these families now do different things and mismatches will probably result in a
segfault. You should carefully test your C extension modules with Python 2.5.

	The built-in set types now have an official C API. Call PySet_New()
and PyFrozenSet_New() to create a new set, PySet_Add() and
PySet_Discard() to add and remove elements, and PySet_Contains()
and PySet_Size() to examine the set’s state. (Contributed by Raymond
Hettinger.)

	C code can now obtain information about the exact revision of the Python
interpreter by calling the Py_GetBuildInfo() function that returns a
string of build information like this: "trunk:45355:45356M, Apr 13 2006,
07:42:19". (Contributed by Barry Warsaw.)

	Two new macros can be used to indicate C functions that are local to the
current file so that a faster calling convention can be used.
Py_LOCAL(type)() declares the function as returning a value of the
specified type and uses a fast-calling qualifier.
Py_LOCAL_INLINE(type)() does the same thing and also requests the
function be inlined. If PY_LOCAL_AGGRESSIVE() is defined before
python.h is included, a set of more aggressive optimizations are enabled
for the module; you should benchmark the results to find out if these
optimizations actually make the code faster. (Contributed by Fredrik Lundh at
the NeedForSpeed sprint.)

	PyErr_NewException(name, base, dict)() can now accept a tuple of base
classes as its base argument. (Contributed by Georg Brandl.)

	The PyErr_Warn() function for issuing warnings is now deprecated in
favour of PyErr_WarnEx(category, message, stacklevel)() which lets you
specify the number of stack frames separating this function and the caller. A
stacklevel of 1 is the function calling PyErr_WarnEx(), 2 is the
function above that, and so forth. (Added by Neal Norwitz.)

	The CPython interpreter is still written in C, but the code can now be
compiled with a C++ compiler without errors. (Implemented by Anthony Baxter,
Martin von Löwis, Skip Montanaro.)

	The PyRange_New() function was removed. It was never documented, never
used in the core code, and had dangerously lax error checking. In the unlikely
case that your extensions were using it, you can replace it by something like
the following:

range = PyObject_CallFunction((PyObject*) &PyRange_Type, "lll",
 start, stop, step);

Port-Specific Changes

	MacOS X (10.3 and higher): dynamic loading of modules now uses the
dlopen() function instead of MacOS-specific functions.

	MacOS X: an --enable-universalsdk switch was added to the
configure script that compiles the interpreter as a universal binary
able to run on both PowerPC and Intel processors. (Contributed by Ronald
Oussoren; issue 2573 [http://bugs.python.org/issue2573].)

	Windows: .dll is no longer supported as a filename extension for
extension modules. .pyd is now the only filename extension that will be
searched for.

Porting to Python 2.5

This section lists previously described changes that may require changes to your
code:

	ASCII is now the default encoding for modules. It’s now a syntax error if a
module contains string literals with 8-bit characters but doesn’t have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error.

	Previously, the gi_frame attribute of a generator was always a frame
object. Because of the PEP 342 [http://www.python.org/dev/peps/pep-0342] changes described in section PEP 342: New Generator Features,
it’s now possible for gi_frame to be None.

	A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can’t be converted to Unicode
using the default ASCII encoding. Previously such comparisons would raise a
UnicodeDecodeError exception.

	Library: the csv module is now stricter about multi-line quoted fields.
If your files contain newlines embedded within fields, the input should be split
into lines in a manner which preserves the newline characters.

	Library: the locale module’s format() function’s would
previously accept any string as long as no more than one %char specifier
appeared. In Python 2.5, the argument must be exactly one %char specifier with
no surrounding text.

	Library: The pickle and cPickle modules no longer accept a
return value of None from the __reduce__() method; the method must
return a tuple of arguments instead. The modules also no longer accept the
deprecated bin keyword parameter.

	Library: The SimpleXMLRPCServer and DocXMLRPCServer classes now
have a rpc_paths attribute that constrains XML-RPC operations to a
limited set of URL paths; the default is to allow only '/' and '/RPC2'.
Setting rpc_paths to None or an empty tuple disables this path
checking.

	C API: Many functions now use Py_ssize_t instead of int to
allow processing more data on 64-bit machines. Extension code may need to make
the same change to avoid warnings and to support 64-bit machines. See the
earlier section PEP 353: Using ssize_t as the index type for a discussion of this change.

	C API: The obmalloc changes mean that you must be careful to not mix usage
of the PyMem_*() and PyObject_*() families of functions. Memory
allocated with one family’s *_Malloc() must be freed with the
corresponding family’s *_Free() function.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Georg Brandl,
Nick Coghlan, Phillip J. Eby, Lars Gustäbel, Raymond Hettinger, Ralf W. Grosse-
Kunstleve, Kent Johnson, Iain Lowe, Martin von Löwis, Fredrik Lundh, Andrew
McNamara, Skip Montanaro, Gustavo Niemeyer, Paul Prescod, James Pryor, Mike
Rovner, Scott Weikart, Barry Warsaw, Thomas Wouters.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.4

	Author:	A.M. Kuchling

This article explains the new features in Python 2.4.1, released on March 30,
2005.

Python 2.4 is a medium-sized release. It doesn’t introduce as many changes as
the radical Python 2.2, but introduces more features than the conservative 2.3
release. The most significant new language features are function decorators and
generator expressions; most other changes are to the standard library.

According to the CVS change logs, there were 481 patches applied and 502 bugs
fixed between Python 2.3 and 2.4. Both figures are likely to be underestimates.

This article doesn’t attempt to provide a complete specification of every single
new feature, but instead provides a brief introduction to each feature. For
full details, you should refer to the documentation for Python 2.4, such as the
Python Library Reference and the Python Reference Manual. Often you will be
referred to the PEP for a particular new feature for explanations of the
implementation and design rationale.

PEP 218: Built-In Set Objects

Python 2.3 introduced the sets module. C implementations of set data
types have now been added to the Python core as two new built-in types,
set(iterable)() and frozenset(iterable)(). They provide high speed
operations for membership testing, for eliminating duplicates from sequences,
and for mathematical operations like unions, intersections, differences, and
symmetric differences.

>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> ''.join(a) # convert back into a string
'arbcd'

>>> b = set('alacazam') # form a second set
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])

>>> a.add('z') # add a new element
>>> a.update('wxy') # add multiple new elements
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'x', 'z'])
>>> a.remove('x') # take one element out
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'z'])

The frozenset() type is an immutable version of set(). Since it is
immutable and hashable, it may be used as a dictionary key or as a member of
another set.

The sets module remains in the standard library, and may be useful if you
wish to subclass the Set or ImmutableSet classes. There are
currently no plans to deprecate the module.

See also

	PEP 218 [http://www.python.org/dev/peps/pep-0218] - Adding a Built-In Set Object Type

	Originally proposed by Greg Wilson and ultimately implemented by Raymond
Hettinger.

PEP 237: Unifying Long Integers and Integers

The lengthy transition process for this PEP, begun in Python 2.2, takes another
step forward in Python 2.4. In 2.3, certain integer operations that would
behave differently after int/long unification triggered FutureWarning
warnings and returned values limited to 32 or 64 bits (depending on your
platform). In 2.4, these expressions no longer produce a warning and instead
produce a different result that’s usually a long integer.

The problematic expressions are primarily left shifts and lengthy hexadecimal
and octal constants. For example, 2 << 32 results in a warning in 2.3,
evaluating to 0 on 32-bit platforms. In Python 2.4, this expression now returns
the correct answer, 8589934592.

See also

	PEP 237 [http://www.python.org/dev/peps/pep-0237] - Unifying Long Integers and Integers

	Original PEP written by Moshe Zadka and GvR. The changes for 2.4 were
implemented by Kalle Svensson.

PEP 289: Generator Expressions

The iterator feature introduced in Python 2.2 and the itertools module
make it easier to write programs that loop through large data sets without
having the entire data set in memory at one time. List comprehensions don’t fit
into this picture very well because they produce a Python list object containing
all of the items. This unavoidably pulls all of the objects into memory, which
can be a problem if your data set is very large. When trying to write a
functionally-styled program, it would be natural to write something like:

links = [link for link in get_all_links() if not link.followed]
for link in links:
 ...

instead of

for link in get_all_links():
 if link.followed:
 continue
 ...

The first form is more concise and perhaps more readable, but if you’re dealing
with a large number of link objects you’d have to write the second form to avoid
having all link objects in memory at the same time.

Generator expressions work similarly to list comprehensions but don’t
materialize the entire list; instead they create a generator that will return
elements one by one. The above example could be written as:

links = (link for link in get_all_links() if not link.followed)
for link in links:
 ...

Generator expressions always have to be written inside parentheses, as in the
above example. The parentheses signalling a function call also count, so if you
want to create an iterator that will be immediately passed to a function you
could write:

print sum(obj.count for obj in list_all_objects())

Generator expressions differ from list comprehensions in various small ways.
Most notably, the loop variable (obj in the above example) is not accessible
outside of the generator expression. List comprehensions leave the variable
assigned to its last value; future versions of Python will change this, making
list comprehensions match generator expressions in this respect.

See also

	PEP 289 [http://www.python.org/dev/peps/pep-0289] - Generator Expressions

	Proposed by Raymond Hettinger and implemented by Jiwon Seo with early efforts
steered by Hye-Shik Chang.

PEP 292: Simpler String Substitutions

Some new classes in the standard library provide an alternative mechanism for
substituting variables into strings; this style of substitution may be better
for applications where untrained users need to edit templates.

The usual way of substituting variables by name is the % operator:

>>> '%(page)i: %(title)s' % {'page':2, 'title': 'The Best of Times'}
'2: The Best of Times'

When writing the template string, it can be easy to forget the i or s
after the closing parenthesis. This isn’t a big problem if the template is in a
Python module, because you run the code, get an “Unsupported format character”
ValueError, and fix the problem. However, consider an application such
as Mailman where template strings or translations are being edited by users who
aren’t aware of the Python language. The format string’s syntax is complicated
to explain to such users, and if they make a mistake, it’s difficult to provide
helpful feedback to them.

PEP 292 adds a Template class to the string module that uses
$ to indicate a substitution:

>>> import string
>>> t = string.Template('$page: $title')
>>> t.substitute({'page':2, 'title': 'The Best of Times'})
'2: The Best of Times'

If a key is missing from the dictionary, the substitute() method will
raise a KeyError. There’s also a safe_substitute() method that
ignores missing keys:

>>> t = string.Template('$page: $title')
>>> t.safe_substitute({'page':3})
'3: $title'

See also

	PEP 292 [http://www.python.org/dev/peps/pep-0292] - Simpler String Substitutions

	Written and implemented by Barry Warsaw.

PEP 318: Decorators for Functions and Methods

Python 2.2 extended Python’s object model by adding static methods and class
methods, but it didn’t extend Python’s syntax to provide any new way of defining
static or class methods. Instead, you had to write a def statement
in the usual way, and pass the resulting method to a staticmethod() or
classmethod() function that would wrap up the function as a method of the
new type. Your code would look like this:

class C:
 def meth (cls):
 ...

 meth = classmethod(meth) # Rebind name to wrapped-up class method

If the method was very long, it would be easy to miss or forget the
classmethod() invocation after the function body.

The intention was always to add some syntax to make such definitions more
readable, but at the time of 2.2’s release a good syntax was not obvious. Today
a good syntax still isn’t obvious but users are asking for easier access to
the feature; a new syntactic feature has been added to meet this need.

The new feature is called “function decorators”. The name comes from the idea
that classmethod(), staticmethod(), and friends are storing
additional information on a function object; they’re decorating functions with
more details.

The notation borrows from Java and uses the '@' character as an indicator.
Using the new syntax, the example above would be written:

class C:

 @classmethod
 def meth (cls):
 ...

The @classmethod is shorthand for the meth=classmethod(meth) assignment.
More generally, if you have the following:

@A
@B
@C
def f ():
 ...

It’s equivalent to the following pre-decorator code:

def f(): ...
f = A(B(C(f)))

Decorators must come on the line before a function definition, one decorator per
line, and can’t be on the same line as the def statement, meaning that @A def
f(): ... is illegal. You can only decorate function definitions, either at
the module level or inside a class; you can’t decorate class definitions.

A decorator is just a function that takes the function to be decorated as an
argument and returns either the same function or some new object. The return
value of the decorator need not be callable (though it typically is), unless
further decorators will be applied to the result. It’s easy to write your own
decorators. The following simple example just sets an attribute on the function
object:

>>> def deco(func):
... func.attr = 'decorated'
... return func
...
>>> @deco
... def f(): pass
...
>>> f
<function f at 0x402ef0d4>
>>> f.attr
'decorated'
>>>

As a slightly more realistic example, the following decorator checks that the
supplied argument is an integer:

def require_int (func):
 def wrapper (arg):
 assert isinstance(arg, int)
 return func(arg)

 return wrapper

@require_int
def p1 (arg):
 print arg

@require_int
def p2(arg):
 print arg*2

An example in PEP 318 [http://www.python.org/dev/peps/pep-0318] contains a fancier version of this idea that lets you
both specify the required type and check the returned type.

Decorator functions can take arguments. If arguments are supplied, your
decorator function is called with only those arguments and must return a new
decorator function; this function must take a single function and return a
function, as previously described. In other words, @A @B @C(args) becomes:

def f(): ...
_deco = C(args)
f = A(B(_deco(f)))

Getting this right can be slightly brain-bending, but it’s not too difficult.

A small related change makes the func_name attribute of functions
writable. This attribute is used to display function names in tracebacks, so
decorators should change the name of any new function that’s constructed and
returned.

See also

	PEP 318 [http://www.python.org/dev/peps/pep-0318] - Decorators for Functions, Methods and Classes

	Written by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several people
wrote patches implementing function decorators, but the one that was actually
checked in was patch #979728, written by Mark Russell.

	http://www.python.org/moin/PythonDecoratorLibrary

	This Wiki page contains several examples of decorators.

PEP 322: Reverse Iteration

A new built-in function, reversed(seq)(), takes a sequence and returns an
iterator that loops over the elements of the sequence in reverse order.

>>> for i in reversed(xrange(1,4)):
... print i
...
3
2
1

Compared to extended slicing, such as range(1,4)[::-1], reversed() is
easier to read, runs faster, and uses substantially less memory.

Note that reversed() only accepts sequences, not arbitrary iterators. If
you want to reverse an iterator, first convert it to a list with list().

>>> input = open('/etc/passwd', 'r')
>>> for line in reversed(list(input)):
... print line
...
root:*:0:0:System Administrator:/var/root:/bin/tcsh
 ...

See also

	PEP 322 [http://www.python.org/dev/peps/pep-0322] - Reverse Iteration

	Written and implemented by Raymond Hettinger.

PEP 324: New subprocess Module

The standard library provides a number of ways to execute a subprocess, offering
different features and different levels of complexity.
os.system(command)() is easy to use, but slow (it runs a shell process
which executes the command) and dangerous (you have to be careful about escaping
the shell’s metacharacters). The popen2 module offers classes that can
capture standard output and standard error from the subprocess, but the naming
is confusing. The subprocess module cleans this up, providing a unified
interface that offers all the features you might need.

Instead of popen2‘s collection of classes, subprocess contains a
single class called Popen whose constructor supports a number of
different keyword arguments.

class Popen(args, bufsize=0, executable=None,
 stdin=None, stdout=None, stderr=None,
 preexec_fn=None, close_fds=False, shell=False,
 cwd=None, env=None, universal_newlines=False,
 startupinfo=None, creationflags=0):

args is commonly a sequence of strings that will be the arguments to the
program executed as the subprocess. (If the shell argument is true, args
can be a string which will then be passed on to the shell for interpretation,
just as os.system() does.)

stdin, stdout, and stderr specify what the subprocess’s input, output, and
error streams will be. You can provide a file object or a file descriptor, or
you can use the constant subprocess.PIPE to create a pipe between the
subprocess and the parent.

The constructor has a number of handy options:

	close_fds requests that all file descriptors be closed before running the
subprocess.

	cwd specifies the working directory in which the subprocess will be executed
(defaulting to whatever the parent’s working directory is).

	env is a dictionary specifying environment variables.

	preexec_fn is a function that gets called before the child is started.

	universal_newlines opens the child’s input and output using Python’s
universal newline feature.

Once you’ve created the Popen instance, you can call its wait()
method to pause until the subprocess has exited, poll() to check if it’s
exited without pausing, or communicate(data)() to send the string data
to the subprocess’s standard input. communicate(data)() then reads any
data that the subprocess has sent to its standard output or standard error,
returning a tuple (stdout_data, stderr_data).

call() is a shortcut that passes its arguments along to the Popen
constructor, waits for the command to complete, and returns the status code of
the subprocess. It can serve as a safer analog to os.system():

sts = subprocess.call(['dpkg', '-i', '/tmp/new-package.deb'])
if sts == 0:
 # Success
 ...
else:
 # dpkg returned an error
 ...

The command is invoked without use of the shell. If you really do want to use
the shell, you can add shell=True as a keyword argument and provide a string
instead of a sequence:

sts = subprocess.call('dpkg -i /tmp/new-package.deb', shell=True)

The PEP takes various examples of shell and Python code and shows how they’d be
translated into Python code that uses subprocess. Reading this section
of the PEP is highly recommended.

See also

	PEP 324 [http://www.python.org/dev/peps/pep-0324] - subprocess - New process module

	Written and implemented by Peter Åstrand, with assistance from Fredrik Lundh and
others.

PEP 327: Decimal Data Type

Python has always supported floating-point (FP) numbers, based on the underlying
C double type, as a data type. However, while most programming
languages provide a floating-point type, many people (even programmers) are
unaware that floating-point numbers don’t represent certain decimal fractions
accurately. The new Decimal type can represent these fractions
accurately, up to a user-specified precision limit.

Why is Decimal needed?

The limitations arise from the representation used for floating-point numbers.
FP numbers are made up of three components:

	The sign, which is positive or negative.

	The mantissa, which is a single-digit binary number followed by a fractional
part. For example, 1.01 in base-2 notation is 1 + 0/2 + 1/4, or 1.25 in
decimal notation.

	The exponent, which tells where the decimal point is located in the number
represented.

For example, the number 1.25 has positive sign, a mantissa value of 1.01 (in
binary), and an exponent of 0 (the decimal point doesn’t need to be shifted).
The number 5 has the same sign and mantissa, but the exponent is 2 because the
mantissa is multiplied by 4 (2 to the power of the exponent 2); 1.25 * 4 equals
5.

Modern systems usually provide floating-point support that conforms to a
standard called IEEE 754. C’s double type is usually implemented as a
64-bit IEEE 754 number, which uses 52 bits of space for the mantissa. This
means that numbers can only be specified to 52 bits of precision. If you’re
trying to represent numbers whose expansion repeats endlessly, the expansion is
cut off after 52 bits. Unfortunately, most software needs to produce output in
base 10, and common fractions in base 10 are often repeating decimals in binary.
For example, 1.1 decimal is binary 1.0001100110011 ...; .1 = 1/16 + 1/32 +
1/256 plus an infinite number of additional terms. IEEE 754 has to chop off
that infinitely repeated decimal after 52 digits, so the representation is
slightly inaccurate.

Sometimes you can see this inaccuracy when the number is printed:

>>> 1.1
1.1000000000000001

The inaccuracy isn’t always visible when you print the number because the FP-to-
decimal-string conversion is provided by the C library, and most C libraries try
to produce sensible output. Even if it’s not displayed, however, the inaccuracy
is still there and subsequent operations can magnify the error.

For many applications this doesn’t matter. If I’m plotting points and
displaying them on my monitor, the difference between 1.1 and 1.1000000000000001
is too small to be visible. Reports often limit output to a certain number of
decimal places, and if you round the number to two or three or even eight
decimal places, the error is never apparent. However, for applications where it
does matter, it’s a lot of work to implement your own custom arithmetic
routines.

Hence, the Decimal type was created.

The Decimal type

A new module, decimal, was added to Python’s standard library. It
contains two classes, Decimal and Context. Decimal
instances represent numbers, and Context instances are used to wrap up
various settings such as the precision and default rounding mode.

Decimal instances are immutable, like regular Python integers and FP
numbers; once it’s been created, you can’t change the value an instance
represents. Decimal instances can be created from integers or
strings:

>>> import decimal
>>> decimal.Decimal(1972)
Decimal("1972")
>>> decimal.Decimal("1.1")
Decimal("1.1")

You can also provide tuples containing the sign, the mantissa represented as a
tuple of decimal digits, and the exponent:

>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")

Cautionary note: the sign bit is a Boolean value, so 0 is positive and 1 is
negative.

Converting from floating-point numbers poses a bit of a problem: should the FP
number representing 1.1 turn into the decimal number for exactly 1.1, or for 1.1
plus whatever inaccuracies are introduced? The decision was to dodge the issue
and leave such a conversion out of the API. Instead, you should convert the
floating-point number into a string using the desired precision and pass the
string to the Decimal constructor:

>>> f = 1.1
>>> decimal.Decimal(str(f))
Decimal("1.1")
>>> decimal.Decimal('%.12f' % f)
Decimal("1.100000000000")

Once you have Decimal instances, you can perform the usual mathematical
operations on them. One limitation: exponentiation requires an integer
exponent:

>>> a = decimal.Decimal('35.72')
>>> b = decimal.Decimal('1.73')
>>> a+b
Decimal("37.45")
>>> a-b
Decimal("33.99")
>>> a*b
Decimal("61.7956")
>>> a/b
Decimal("20.64739884393063583815028902")
>>> a ** 2
Decimal("1275.9184")
>>> a**b
Traceback (most recent call last):
 ...
decimal.InvalidOperation: x ** (non-integer)

You can combine Decimal instances with integers, but not with floating-
point numbers:

>>> a + 4
Decimal("39.72")
>>> a + 4.5
Traceback (most recent call last):
 ...
TypeError: You can interact Decimal only with int, long or Decimal data types.
>>>

Decimal numbers can be used with the math and cmath
modules, but note that they’ll be immediately converted to floating-point
numbers before the operation is performed, resulting in a possible loss of
precision and accuracy. You’ll also get back a regular floating-point number
and not a Decimal.

>>> import math, cmath
>>> d = decimal.Decimal('123456789012.345')
>>> math.sqrt(d)
351364.18288201344
>>> cmath.sqrt(-d)
351364.18288201344j

Decimal instances have a sqrt() method that returns a
Decimal, but if you need other things such as trigonometric functions
you’ll have to implement them.

>>> d.sqrt()
Decimal("351364.1828820134592177245001")

The Context type

Instances of the Context class encapsulate several settings for
decimal operations:

	prec is the precision, the number of decimal places.

	rounding specifies the rounding mode. The decimal module has
constants for the various possibilities: ROUND_DOWN,
ROUND_CEILING, ROUND_HALF_EVEN, and various others.

	traps is a dictionary specifying what happens on encountering certain
error conditions: either an exception is raised or a value is returned. Some
examples of error conditions are division by zero, loss of precision, and
overflow.

There’s a thread-local default context available by calling getcontext();
you can change the properties of this context to alter the default precision,
rounding, or trap handling. The following example shows the effect of changing
the precision of the default context:

>>> decimal.getcontext().prec
28
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857143")

The default action for error conditions is selectable; the module can either
return a special value such as infinity or not-a-number, or exceptions can be
raised:

>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):
 ...
decimal.DivisionByZero: x / 0
>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")
>>>

The Context instance also has various methods for formatting numbers
such as to_eng_string() and to_sci_string().

For more information, see the documentation for the decimal module, which
includes a quick-start tutorial and a reference.

See also

	PEP 327 [http://www.python.org/dev/peps/pep-0327] - Decimal Data Type

	Written by Facundo Batista and implemented by Facundo Batista, Eric Price,
Raymond Hettinger, Aahz, and Tim Peters.

	http://www.lahey.com/float.htm

	The article uses Fortran code to illustrate many of the problems that floating-
point inaccuracy can cause.

	http://www2.hursley.ibm.com/decimal/

	A description of a decimal-based representation. This representation is being
proposed as a standard, and underlies the new Python decimal type. Much of this
material was written by Mike Cowlishaw, designer of the Rexx language.

PEP 328: Multi-line Imports

One language change is a small syntactic tweak aimed at making it easier to
import many names from a module. In a from module import names statement,
names is a sequence of names separated by commas. If the sequence is very
long, you can either write multiple imports from the same module, or you can use
backslashes to escape the line endings like this:

from SimpleXMLRPCServer import SimpleXMLRPCServer,\
 SimpleXMLRPCRequestHandler,\
 CGIXMLRPCRequestHandler,\
 resolve_dotted_attribute

The syntactic change in Python 2.4 simply allows putting the names within
parentheses. Python ignores newlines within a parenthesized expression, so the
backslashes are no longer needed:

from SimpleXMLRPCServer import (SimpleXMLRPCServer,
 SimpleXMLRPCRequestHandler,
 CGIXMLRPCRequestHandler,
 resolve_dotted_attribute)

The PEP also proposes that all import statements be absolute imports,
with a leading . character to indicate a relative import. This part of the
PEP was not implemented for Python 2.4, but was completed for Python 2.5.

See also

	PEP 328 [http://www.python.org/dev/peps/pep-0328] - Imports: Multi-Line and Absolute/Relative

	Written by Aahz. Multi-line imports were implemented by Dima Dorfman.

PEP 331: Locale-Independent Float/String Conversions

The locale modules lets Python software select various conversions and
display conventions that are localized to a particular country or language.
However, the module was careful to not change the numeric locale because various
functions in Python’s implementation required that the numeric locale remain set
to the 'C' locale. Often this was because the code was using the C
library’s atof() function.

Not setting the numeric locale caused trouble for extensions that used third-
party C libraries, however, because they wouldn’t have the correct locale set.
The motivating example was GTK+, whose user interface widgets weren’t displaying
numbers in the current locale.

The solution described in the PEP is to add three new functions to the Python
API that perform ASCII-only conversions, ignoring the locale setting:

	PyOS_ascii_strtod(str, ptr)() and PyOS_ascii_atof(str, ptr)()
both convert a string to a C double.

	PyOS_ascii_formatd(buffer, buf_len, format, d)() converts a
double to an ASCII string.

The code for these functions came from the GLib library
(http://library.gnome.org/devel/glib/stable/), whose developers kindly
relicensed the relevant functions and donated them to the Python Software
Foundation. The locale module can now change the numeric locale,
letting extensions such as GTK+ produce the correct results.

See also

	PEP 331 [http://www.python.org/dev/peps/pep-0331] - Locale-Independent Float/String Conversions

	Written by Christian R. Reis, and implemented by Gustavo Carneiro.

Other Language Changes

Here are all of the changes that Python 2.4 makes to the core Python language.

	Decorators for functions and methods were added (PEP 318 [http://www.python.org/dev/peps/pep-0318]).

	Built-in set() and frozenset() types were added (PEP 218 [http://www.python.org/dev/peps/pep-0218]).
Other new built-ins include the reversed(seq)() function (PEP 322 [http://www.python.org/dev/peps/pep-0322]).

	Generator expressions were added (PEP 289 [http://www.python.org/dev/peps/pep-0289]).

	Certain numeric expressions no longer return values restricted to 32 or 64
bits (PEP 237 [http://www.python.org/dev/peps/pep-0237]).

	You can now put parentheses around the list of names in a from module import
names statement (PEP 328 [http://www.python.org/dev/peps/pep-0328]).

	The dict.update() method now accepts the same argument forms as the
dict constructor. This includes any mapping, any iterable of key/value
pairs, and keyword arguments. (Contributed by Raymond Hettinger.)

	The string methods ljust(), rjust(), and center() now take
an optional argument for specifying a fill character other than a space.
(Contributed by Raymond Hettinger.)

	Strings also gained an rsplit() method that works like the split()
method but splits from the end of the string. (Contributed by Sean
Reifschneider.)

>>> 'www.python.org'.split('.', 1)
['www', 'python.org']
'www.python.org'.rsplit('.', 1)
['www.python', 'org']

	Three keyword parameters, cmp, key, and reverse, were added to the
sort() method of lists. These parameters make some common usages of
sort() simpler. All of these parameters are optional.

For the cmp parameter, the value should be a comparison function that takes
two parameters and returns -1, 0, or +1 depending on how the parameters compare.
This function will then be used to sort the list. Previously this was the only
parameter that could be provided to sort().

key should be a single-parameter function that takes a list element and
returns a comparison key for the element. The list is then sorted using the
comparison keys. The following example sorts a list case-insensitively:

>>> L = ['A', 'b', 'c', 'D']
>>> L.sort() # Case-sensitive sort
>>> L
['A', 'D', 'b', 'c']
>>> # Using 'key' parameter to sort list
>>> L.sort(key=lambda x: x.lower())
>>> L
['A', 'b', 'c', 'D']
>>> # Old-fashioned way
>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L
['A', 'b', 'c', 'D']

The last example, which uses the cmp parameter, is the old way to perform a
case-insensitive sort. It works but is slower than using a key parameter.
Using key calls lower() method once for each element in the list while
using cmp will call it twice for each comparison, so using key saves on
invocations of the lower() method.

For simple key functions and comparison functions, it is often possible to avoid
a lambda expression by using an unbound method instead. For example,
the above case-insensitive sort is best written as:

>>> L.sort(key=str.lower)
>>> L
['A', 'b', 'c', 'D']

Finally, the reverse parameter takes a Boolean value. If the value is true,
the list will be sorted into reverse order. Instead of L.sort() ;
L.reverse(), you can now write L.sort(reverse=True).

The results of sorting are now guaranteed to be stable. This means that two
entries with equal keys will be returned in the same order as they were input.
For example, you can sort a list of people by name, and then sort the list by
age, resulting in a list sorted by age where people with the same age are in
name-sorted order.

(All changes to sort() contributed by Raymond Hettinger.)

	There is a new built-in function sorted(iterable)() that works like the
in-place list.sort() method but can be used in expressions. The
differences are:

	the input may be any iterable;

	a newly formed copy is sorted, leaving the original intact; and

	the expression returns the new sorted copy

>>> L = [9,7,8,3,2,4,1,6,5]
>>> [10+i for i in sorted(L)] # usable in a list comprehension
[11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> L # original is left unchanged
[9,7,8,3,2,4,1,6,5]
>>> sorted('Monty Python') # any iterable may be an input
[' ', 'M', 'P', 'h', 'n', 'n', 'o', 'o', 't', 't', 'y', 'y']

>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
... print k, v
...
black 4
blue 2
green 3
red 1
yellow 5

(Contributed by Raymond Hettinger.)

	Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

	The interpreter gained a new switch, -m, that takes a name, searches
for the corresponding module on sys.path, and runs the module as a script.
For example, you can now run the Python profiler with python -m profile.
(Contributed by Nick Coghlan.)

	The eval(expr, globals, locals)() and execfile(filename, globals,
locals)() functions and the exec statement now accept any mapping type
for the locals parameter. Previously this had to be a regular Python
dictionary. (Contributed by Raymond Hettinger.)

	The zip() built-in function and itertools.izip() now return an
empty list if called with no arguments. Previously they raised a
TypeError exception. This makes them more suitable for use with variable
length argument lists:

>>> def transpose(array):
... return zip(*array)
...
>>> transpose([(1,2,3), (4,5,6)])
[(1, 4), (2, 5), (3, 6)]
>>> transpose([])
[]

(Contributed by Raymond Hettinger.)

	Encountering a failure while importing a module no longer leaves a partially-
initialized module object in sys.modules. The incomplete module object left
behind would fool further imports of the same module into succeeding, leading to
confusing errors. (Fixed by Tim Peters.)

	None is now a constant; code that binds a new value to the name
None is now a syntax error. (Contributed by Raymond Hettinger.)

Optimizations

	The inner loops for list and tuple slicing were optimized and now run about
one-third faster. The inner loops for dictionaries were also optimized,
resulting in performance boosts for keys(), values(), items(),
iterkeys(), itervalues(), and iteritems(). (Contributed by
Raymond Hettinger.)

	The machinery for growing and shrinking lists was optimized for speed and for
space efficiency. Appending and popping from lists now runs faster due to more
efficient code paths and less frequent use of the underlying system
realloc(). List comprehensions also benefit. list.extend() was
also optimized and no longer converts its argument into a temporary list before
extending the base list. (Contributed by Raymond Hettinger.)

	list(), tuple(), map(), filter(), and zip() now
run several times faster with non-sequence arguments that supply a
__len__() method. (Contributed by Raymond Hettinger.)

	The methods list.__getitem__(), dict.__getitem__(), and
dict.__contains__() are are now implemented as method_descriptor
objects rather than wrapper_descriptor objects. This form of access
doubles their performance and makes them more suitable for use as arguments to
functionals: map(mydict.__getitem__, keylist). (Contributed by Raymond
Hettinger.)

	Added a new opcode, LIST_APPEND, that simplifies the generated bytecode
for list comprehensions and speeds them up by about a third. (Contributed by
Raymond Hettinger.)

	The peephole bytecode optimizer has been improved to produce shorter, faster
bytecode; remarkably, the resulting bytecode is more readable. (Enhanced by
Raymond Hettinger.)

	String concatenations in statements of the form s = s + "abc" and s +=
"abc" are now performed more efficiently in certain circumstances. This
optimization won’t be present in other Python implementations such as Jython, so
you shouldn’t rely on it; using the join() method of strings is still
recommended when you want to efficiently glue a large number of strings
together. (Contributed by Armin Rigo.)

The net result of the 2.4 optimizations is that Python 2.4 runs the pystone
benchmark around 5% faster than Python 2.3 and 35% faster than Python 2.2.
(pystone is not a particularly good benchmark, but it’s the most commonly used
measurement of Python’s performance. Your own applications may show greater or
smaller benefits from Python 2.4.)

New, Improved, and Deprecated Modules

As usual, Python’s standard library received a number of enhancements and bug
fixes. Here’s a partial list of the most notable changes, sorted alphabetically
by module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

	The asyncore module’s loop() function now has a count parameter
that lets you perform a limited number of passes through the polling loop. The
default is still to loop forever.

	The base64 module now has more complete RFC 3548 support for Base64,
Base32, and Base16 encoding and decoding, including optional case folding and
optional alternative alphabets. (Contributed by Barry Warsaw.)

	The bisect module now has an underlying C implementation for improved
performance. (Contributed by Dmitry Vasiliev.)

	The CJKCodecs collections of East Asian codecs, maintained by Hye-Shik Chang,
was integrated into 2.4. The new encodings are:

	Chinese (PRC): gb2312, gbk, gb18030, big5hkscs, hz

	Chinese (ROC): big5, cp950

	
	Japanese: cp932, euc-jis-2004, euc-jp, euc-jisx0213, iso-2022-jp,

	iso-2022-jp-1, iso-2022-jp-2, iso-2022-jp-3, iso-2022-jp-ext, iso-2022-jp-2004,
shift-jis, shift-jisx0213, shift-jis-2004

	Korean: cp949, euc-kr, johab, iso-2022-kr

	Some other new encodings were added: HP Roman8, ISO_8859-11, ISO_8859-16,
PCTP-154, and TIS-620.

	The UTF-8 and UTF-16 codecs now cope better with receiving partial input.
Previously the StreamReader class would try to read more data, making
it impossible to resume decoding from the stream. The read() method will
now return as much data as it can and future calls will resume decoding where
previous ones left off. (Implemented by Walter Dörwald.)

	There is a new collections module for various specialized collection
datatypes. Currently it contains just one type, deque, a double-
ended queue that supports efficiently adding and removing elements from either
end:

>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> 'h' in d # search the deque
True

Several modules, such as the Queue and threading modules, now take
advantage of collections.deque for improved performance. (Contributed
by Raymond Hettinger.)

	The ConfigParser classes have been enhanced slightly. The read()
method now returns a list of the files that were successfully parsed, and the
set() method raises TypeError if passed a value argument that
isn’t a string. (Contributed by John Belmonte and David Goodger.)

	The curses module now supports the ncurses extension
use_default_colors(). On platforms where the terminal supports
transparency, this makes it possible to use a transparent background.
(Contributed by Jörg Lehmann.)

	The difflib module now includes an HtmlDiff class that creates
an HTML table showing a side by side comparison of two versions of a text.
(Contributed by Dan Gass.)

	The email package was updated to version 3.0, which dropped various
deprecated APIs and removes support for Python versions earlier than 2.3. The
3.0 version of the package uses a new incremental parser for MIME messages,
available in the email.FeedParser module. The new parser doesn’t require
reading the entire message into memory, and doesn’t raise exceptions if a
message is malformed; instead it records any problems in the defect
attribute of the message. (Developed by Anthony Baxter, Barry Warsaw, Thomas
Wouters, and others.)

	The heapq module has been converted to C. The resulting tenfold
improvement in speed makes the module suitable for handling high volumes of
data. In addition, the module has two new functions nlargest() and
nsmallest() that use heaps to find the N largest or smallest values in a
dataset without the expense of a full sort. (Contributed by Raymond Hettinger.)

	The httplib module now contains constants for HTTP status codes defined
in various HTTP-related RFC documents. Constants have names such as
OK, CREATED, CONTINUE, and
MOVED_PERMANENTLY; use pydoc to get a full list. (Contributed by
Andrew Eland.)

	The imaplib module now supports IMAP’s THREAD command (contributed by
Yves Dionne) and new deleteacl() and myrights() methods (contributed
by Arnaud Mazin).

	The itertools module gained a groupby(iterable[, *func*])()
function. iterable is something that can be iterated over to return a stream
of elements, and the optional func parameter is a function that takes an
element and returns a key value; if omitted, the key is simply the element
itself. groupby() then groups the elements into subsequences which have
matching values of the key, and returns a series of 2-tuples containing the key
value and an iterator over the subsequence.

Here’s an example to make this clearer. The key function simply returns
whether a number is even or odd, so the result of groupby() is to return
consecutive runs of odd or even numbers.

>>> import itertools
>>> L = [2, 4, 6, 7, 8, 9, 11, 12, 14]
>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
... print key_val, list(it)
...
0 [2, 4, 6]
1 [7]
0 [8]
1 [9, 11]
0 [12, 14]
>>>

groupby() is typically used with sorted input. The logic for
groupby() is similar to the Unix uniq filter which makes it handy for
eliminating, counting, or identifying duplicate elements:

>>> word = 'abracadabra'
>>> letters = sorted(word) # Turn string into a sorted list of letters
>>> letters
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'c', 'd', 'r', 'r']
>>> for k, g in itertools.groupby(letters):
... print k, list(g)
...
a ['a', 'a', 'a', 'a', 'a']
b ['b', 'b']
c ['c']
d ['d']
r ['r', 'r']
>>> # List unique letters
>>> [k for k, g in groupby(letters)]
['a', 'b', 'c', 'd', 'r']
>>> # Count letter occurrences
>>> [(k, len(list(g))) for k, g in groupby(letters)]
[('a', 5), ('b', 2), ('c', 1), ('d', 1), ('r', 2)]

(Contributed by Hye-Shik Chang.)

	itertools also gained a function named tee(iterator, N)() that
returns N independent iterators that replicate iterator. If N is omitted,
the default is 2.

>>> L = [1,2,3]
>>> i1, i2 = itertools.tee(L)
>>> i1,i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at 0x402c2090>)
>>> list(i1) # Run the first iterator to exhaustion
[1, 2, 3]
>>> list(i2) # Run the second iterator to exhaustion
[1, 2, 3]

Note that tee() has to keep copies of the values returned by the
iterator; in the worst case, it may need to keep all of them. This should
therefore be used carefully if the leading iterator can run far ahead of the
trailing iterator in a long stream of inputs. If the separation is large, then
you might as well use list() instead. When the iterators track closely
with one another, tee() is ideal. Possible applications include
bookmarking, windowing, or lookahead iterators. (Contributed by Raymond
Hettinger.)

	A number of functions were added to the locale module, such as
bind_textdomain_codeset() to specify a particular encoding and a family of
l*gettext() functions that return messages in the chosen encoding.
(Contributed by Gustavo Niemeyer.)

	Some keyword arguments were added to the logging package’s
basicConfig() function to simplify log configuration. The default
behavior is to log messages to standard error, but various keyword arguments can
be specified to log to a particular file, change the logging format, or set the
logging level. For example:

import logging
logging.basicConfig(filename='/var/log/application.log',
 level=0, # Log all messages
 format='%(levelname):%(process):%(thread):%(message)')

Other additions to the logging package include a log(level, msg)()
convenience method, as well as a TimedRotatingFileHandler class that
rotates its log files at a timed interval. The module already had
RotatingFileHandler, which rotated logs once the file exceeded a
certain size. Both classes derive from a new BaseRotatingHandler class
that can be used to implement other rotating handlers.

(Changes implemented by Vinay Sajip.)

	The marshal module now shares interned strings on unpacking a data
structure. This may shrink the size of certain pickle strings, but the primary
effect is to make .pyc files significantly smaller. (Contributed by
Martin von Löwis.)

	The nntplib module’s NNTP class gained description() and
descriptions() methods to retrieve newsgroup descriptions for a single
group or for a range of groups. (Contributed by Jürgen A. Erhard.)

	Two new functions were added to the operator module,
attrgetter(attr)() and itemgetter(index)(). Both functions return
callables that take a single argument and return the corresponding attribute or
item; these callables make excellent data extractors when used with map()
or sorted(). For example:

>>> L = [('c', 2), ('d', 1), ('a', 4), ('b', 3)]
>>> map(operator.itemgetter(0), L)
['c', 'd', 'a', 'b']
>>> map(operator.itemgetter(1), L)
[2, 1, 4, 3]
>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second tuple item
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

(Contributed by Raymond Hettinger.)

	The optparse module was updated in various ways. The module now passes
its messages through gettext.gettext(), making it possible to
internationalize Optik’s help and error messages. Help messages for options can
now include the string '%default', which will be replaced by the option’s
default value. (Contributed by Greg Ward.)

	The long-term plan is to deprecate the rfc822 module in some future
Python release in favor of the email package. To this end, the
email.Utils.formatdate() function has been changed to make it usable as a
replacement for rfc822.formatdate(). You may want to write new e-mail
processing code with this in mind. (Change implemented by Anthony Baxter.)

	A new urandom(n)() function was added to the os module, returning
a string containing n bytes of random data. This function provides access to
platform-specific sources of randomness such as /dev/urandom on Linux or
the Windows CryptoAPI. (Contributed by Trevor Perrin.)

	Another new function: os.path.lexists(path)() returns true if the file
specified by path exists, whether or not it’s a symbolic link. This differs
from the existing os.path.exists(path)() function, which returns false if
path is a symlink that points to a destination that doesn’t exist.
(Contributed by Beni Cherniavsky.)

	A new getsid() function was added to the posix module that
underlies the os module. (Contributed by J. Raynor.)

	The poplib module now supports POP over SSL. (Contributed by Hector
Urtubia.)

	The profile module can now profile C extension functions. (Contributed
by Nick Bastin.)

	The random module has a new method called getrandbits(N)() that
returns a long integer N bits in length. The existing randrange()
method now uses getrandbits() where appropriate, making generation of
arbitrarily large random numbers more efficient. (Contributed by Raymond
Hettinger.)

	The regular expression language accepted by the re module was extended
with simple conditional expressions, written as (?(group)A|B). group is
either a numeric group ID or a group name defined with (?P<group>...)
earlier in the expression. If the specified group matched, the regular
expression pattern A will be tested against the string; if the group didn’t
match, the pattern B will be used instead. (Contributed by Gustavo Niemeyer.)

	The re module is also no longer recursive, thanks to a massive amount
of work by Gustavo Niemeyer. In a recursive regular expression engine, certain
patterns result in a large amount of C stack space being consumed, and it was
possible to overflow the stack. For example, if you matched a 30000-byte string
of a characters against the expression (a|b)+, one stack frame was
consumed per character. Python 2.3 tried to check for stack overflow and raise
a RuntimeError exception, but certain patterns could sidestep the
checking and if you were unlucky Python could segfault. Python 2.4’s regular
expression engine can match this pattern without problems.

	The signal module now performs tighter error-checking on the parameters
to the signal.signal() function. For example, you can’t set a handler on
the SIGKILL signal; previous versions of Python would quietly accept
this, but 2.4 will raise a RuntimeError exception.

	Two new functions were added to the socket module. socketpair()
returns a pair of connected sockets and getservbyport(port)() looks up the
service name for a given port number. (Contributed by Dave Cole and Barry
Warsaw.)

	The sys.exitfunc() function has been deprecated. Code should be using
the existing atexit module, which correctly handles calling multiple exit
functions. Eventually sys.exitfunc() will become a purely internal
interface, accessed only by atexit.

	The tarfile module now generates GNU-format tar files by default.
(Contributed by Lars Gustaebel.)

	The threading module now has an elegantly simple way to support
thread-local data. The module contains a local class whose attribute
values are local to different threads.

import threading

data = threading.local()
data.number = 42
data.url = ('www.python.org', 80)

Other threads can assign and retrieve their own values for the number
and url attributes. You can subclass local to initialize
attributes or to add methods. (Contributed by Jim Fulton.)

	The timeit module now automatically disables periodic garbage
collection during the timing loop. This change makes consecutive timings more
comparable. (Contributed by Raymond Hettinger.)

	The weakref module now supports a wider variety of objects including
Python functions, class instances, sets, frozensets, deques, arrays, files,
sockets, and regular expression pattern objects. (Contributed by Raymond
Hettinger.)

	The xmlrpclib module now supports a multi-call extension for
transmitting multiple XML-RPC calls in a single HTTP operation. (Contributed by
Brian Quinlan.)

	The mpz, rotor, and xreadlines modules have been
removed.

cookielib

The cookielib library supports client-side handling for HTTP cookies,
mirroring the Cookie module’s server-side cookie support. Cookies are
stored in cookie jars; the library transparently stores cookies offered by the
web server in the cookie jar, and fetches the cookie from the jar when
connecting to the server. As in web browsers, policy objects control whether
cookies are accepted or not.

In order to store cookies across sessions, two implementations of cookie jars
are provided: one that stores cookies in the Netscape format so applications can
use the Mozilla or Lynx cookie files, and one that stores cookies in the same
format as the Perl libwww library.

urllib2 has been changed to interact with cookielib:
HTTPCookieProcessor manages a cookie jar that is used when accessing
URLs.

This module was contributed by John J. Lee.

doctest

The doctest module underwent considerable refactoring thanks to Edward
Loper and Tim Peters. Testing can still be as simple as running
doctest.testmod(), but the refactorings allow customizing the module’s
operation in various ways

The new DocTestFinder class extracts the tests from a given object’s
docstrings:

def f (x, y):
 """>>> f(2,2)
4
>>> f(3,2)
6
 """
 return x*y

finder = doctest.DocTestFinder()

Get list of DocTest instances
tests = finder.find(f)

The new DocTestRunner class then runs individual tests and can produce
a summary of the results:

runner = doctest.DocTestRunner()
for t in tests:
 tried, failed = runner.run(t)

runner.summarize(verbose=1)

The above example produces the following output:

1 items passed all tests:
 2 tests in f
2 tests in 1 items.
2 passed and 0 failed.
Test passed.

DocTestRunner uses an instance of the OutputChecker class to
compare the expected output with the actual output. This class takes a number
of different flags that customize its behaviour; ambitious users can also write
a completely new subclass of OutputChecker.

The default output checker provides a number of handy features. For example,
with the doctest.ELLIPSIS option flag, an ellipsis (...) in the
expected output matches any substring, making it easier to accommodate outputs
that vary in minor ways:

def o (n):
 """>>> o(1)
<__main__.C instance at 0x...>
>>>
"""

Another special string, <BLANKLINE>, matches a blank line:

def p (n):
 """>>> p(1)
<BLANKLINE>
>>>
"""

Another new capability is producing a diff-style display of the output by
specifying the doctest.REPORT_UDIFF (unified diffs),
doctest.REPORT_CDIFF (context diffs), or doctest.REPORT_NDIFF
(delta-style) option flags. For example:

def g (n):
 """>>> g(4)
here
is
a
lengthy
>>>"""
 L = 'here is a rather lengthy list of words'.split()
 for word in L[:n]:
 print word

Running the above function’s tests with doctest.REPORT_UDIFF specified,
you get the following output:

**
File "t.py", line 15, in g
Failed example:
 g(4)
Differences (unified diff with -expected +actual):
 @@ -2,3 +2,3 @@
 is
 a
 -lengthy
 +rather
**

Build and C API Changes

Some of the changes to Python’s build process and to the C API are:

	Three new convenience macros were added for common return values from
extension functions: Py_RETURN_NONE, Py_RETURN_TRUE, and
Py_RETURN_FALSE. (Contributed by Brett Cannon.)

	Another new macro, Py_CLEAR(obj), decreases the reference count of
obj and sets obj to the null pointer. (Contributed by Jim Fulton.)

	A new function, PyTuple_Pack(N, obj1, obj2, ..., objN)(), constructs
tuples from a variable length argument list of Python objects. (Contributed by
Raymond Hettinger.)

	A new function, PyDict_Contains(d, k)(), implements fast dictionary
lookups without masking exceptions raised during the look-up process.
(Contributed by Raymond Hettinger.)

	The Py_IS_NAN(X) macro returns 1 if its float or double argument
X is a NaN. (Contributed by Tim Peters.)

	C code can avoid unnecessary locking by using the new
PyEval_ThreadsInitialized() function to tell if any thread operations
have been performed. If this function returns false, no lock operations are
needed. (Contributed by Nick Coghlan.)

	A new function, PyArg_VaParseTupleAndKeywords(), is the same as
PyArg_ParseTupleAndKeywords() but takes a va_list instead of a
number of arguments. (Contributed by Greg Chapman.)

	A new method flag, METH_COEXISTS, allows a function defined in slots
to co-exist with a PyCFunction having the same name. This can halve
the access time for a method such as set.__contains__(). (Contributed by
Raymond Hettinger.)

	Python can now be built with additional profiling for the interpreter itself,
intended as an aid to people developing the Python core. Providing
----enable-profiling to the configure script will let you
profile the interpreter with gprof, and providing the
----with-tsc switch enables profiling using the Pentium’s Time-Stamp-
Counter register. Note that the ----with-tsc switch is slightly
misnamed, because the profiling feature also works on the PowerPC platform,
though that processor architecture doesn’t call that register “the TSC
register”. (Contributed by Jeremy Hylton.)

	The tracebackobject type has been renamed to
PyTracebackObject.

Port-Specific Changes

	The Windows port now builds under MSVC++ 7.1 as well as version 6.
(Contributed by Martin von Löwis.)

Porting to Python 2.4

This section lists previously described changes that may require changes to your
code:

	Left shifts and hexadecimal/octal constants that are too large no longer
trigger a FutureWarning and return a value limited to 32 or 64 bits;
instead they return a long integer.

	Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

	The zip() built-in function and itertools.izip() now return an
empty list instead of raising a TypeError exception if called with no
arguments.

	You can no longer compare the date and datetime instances
provided by the datetime module. Two instances of different classes
will now always be unequal, and relative comparisons (<, >) will raise
a TypeError.

	dircache.listdir() now passes exceptions to the caller instead of
returning empty lists.

	LexicalHandler.startDTD() used to receive the public and system IDs in
the wrong order. This has been corrected; applications relying on the wrong
order need to be fixed.

	fcntl.ioctl() now warns if the mutate argument is omitted and
relevant.

	The tarfile module now generates GNU-format tar files by default.

	Encountering a failure while importing a module no longer leaves a partially-
initialized module object in sys.modules.

	None is now a constant; code that binds a new value to the name
None is now a syntax error.

	The signals.signal() function now raises a RuntimeError exception
for certain illegal values; previously these errors would pass silently. For
example, you can no longer set a handler on the SIGKILL signal.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Koray Can, Hye-
Shik Chang, Michael Dyck, Raymond Hettinger, Brian Hurt, Hamish Lawson, Fredrik
Lundh, Sean Reifschneider, Sadruddin Rejeb.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.3

	Author:	A.M. Kuchling

This article explains the new features in Python 2.3. Python 2.3 was released
on July 29, 2003.

The main themes for Python 2.3 are polishing some of the features added in 2.2,
adding various small but useful enhancements to the core language, and expanding
the standard library. The new object model introduced in the previous version
has benefited from 18 months of bugfixes and from optimization efforts that have
improved the performance of new-style classes. A few new built-in functions
have been added such as sum() and enumerate(). The in
operator can now be used for substring searches (e.g. "ab" in "abc" returns
True).

Some of the many new library features include Boolean, set, heap, and date/time
data types, the ability to import modules from ZIP-format archives, metadata
support for the long-awaited Python catalog, an updated version of IDLE, and
modules for logging messages, wrapping text, parsing CSV files, processing
command-line options, using BerkeleyDB databases... the list of new and
enhanced modules is lengthy.

This article doesn’t attempt to provide a complete specification of the new
features, but instead provides a convenient overview. For full details, you
should refer to the documentation for Python 2.3, such as the Python Library
Reference and the Python Reference Manual. If you want to understand the
complete implementation and design rationale, refer to the PEP for a particular
new feature.

PEP 218: A Standard Set Datatype

The new sets module contains an implementation of a set datatype. The
Set class is for mutable sets, sets that can have members added and
removed. The ImmutableSet class is for sets that can’t be modified,
and instances of ImmutableSet can therefore be used as dictionary keys.
Sets are built on top of dictionaries, so the elements within a set must be
hashable.

Here’s a simple example:

>>> import sets
>>> S = sets.Set([1,2,3])
>>> S
Set([1, 2, 3])
>>> 1 in S
True
>>> 0 in S
False
>>> S.add(5)
>>> S.remove(3)
>>> S
Set([1, 2, 5])
>>>

The union and intersection of sets can be computed with the union() and
intersection() methods; an alternative notation uses the bitwise operators
& and |. Mutable sets also have in-place versions of these methods,
union_update() and intersection_update().

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([4,5,6])
>>> S1.union(S2)
Set([1, 2, 3, 4, 5, 6])
>>> S1 | S2 # Alternative notation
Set([1, 2, 3, 4, 5, 6])
>>> S1.intersection(S2)
Set([])
>>> S1 & S2 # Alternative notation
Set([])
>>> S1.union_update(S2)
>>> S1
Set([1, 2, 3, 4, 5, 6])
>>>

It’s also possible to take the symmetric difference of two sets. This is the
set of all elements in the union that aren’t in the intersection. Another way
of putting it is that the symmetric difference contains all elements that are in
exactly one set. Again, there’s an alternative notation (^), and an in-
place version with the ungainly name symmetric_difference_update().

>>> S1 = sets.Set([1,2,3,4])
>>> S2 = sets.Set([3,4,5,6])
>>> S1.symmetric_difference(S2)
Set([1, 2, 5, 6])
>>> S1 ^ S2
Set([1, 2, 5, 6])
>>>

There are also issubset() and issuperset() methods for checking
whether one set is a subset or superset of another:

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([2,3])
>>> S2.issubset(S1)
True
>>> S1.issubset(S2)
False
>>> S1.issuperset(S2)
True
>>>

See also

	PEP 218 [http://www.python.org/dev/peps/pep-0218] - Adding a Built-In Set Object Type

	PEP written by Greg V. Wilson. Implemented by Greg V. Wilson, Alex Martelli, and
GvR.

PEP 255: Simple Generators

In Python 2.2, generators were added as an optional feature, to be enabled by a
from __future__ import generators directive. In 2.3 generators no longer
need to be specially enabled, and are now always present; this means that
yield is now always a keyword. The rest of this section is a copy of
the description of generators from the “What’s New in Python 2.2” document; if
you read it back when Python 2.2 came out, you can skip the rest of this
section.

You’re doubtless familiar with how function calls work in Python or C. When you
call a function, it gets a private namespace where its local variables are
created. When the function reaches a return statement, the local
variables are destroyed and the resulting value is returned to the caller. A
later call to the same function will get a fresh new set of local variables.
But, what if the local variables weren’t thrown away on exiting a function?
What if you could later resume the function where it left off? This is what
generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

A new keyword, yield, was introduced for generators. Any function
containing a yield statement is a generator function; this is
detected by Python’s bytecode compiler which compiles the function specially as
a result.

When you call a generator function, it doesn’t return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield statement, the generator outputs the value of i,
similar to a return statement. The big difference between
yield and a return statement is that on reaching a
yield the generator’s state of execution is suspended and local
variables are preserved. On the next call to the generator’s .next()
method, the function will resume executing immediately after the
yield statement. (For complicated reasons, the yield
statement isn’t allowed inside the try block of a try...finally statement; read PEP 255 [http://www.python.org/dev/peps/pep-0255] for a full explanation of the
interaction between yield and exceptions.)

Here’s a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "stdin", line 1, in ?
 File "stdin", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used
without a value, and signals the end of the procession of values; afterwards the
generator cannot return any further values. return with a value, such
as return 5, is a syntax error inside a generator function. The end of the
generator’s results can also be indicated by raising StopIteration
manually, or by just letting the flow of execution fall off the bottom of the
function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
would be much messier. Lib/test/test_generators.py contains a number of
more interesting examples. The simplest one implements an in-order traversal of
a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x
 yield t.label
 for x in inorder(t.right):
 yield x

Two other examples in Lib/test/test_generators.py produce solutions for
the N-Queens problem (placing N queens on an NxN chess board so that no
queen threatens another) and the Knight’s Tour (a route that takes a knight to
every square of an NxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon
(http://www.cs.arizona.edu/icon/), where the idea of generators is central. In
Icon, every expression and function call behaves like a generator. One example
from “An Overview of the Icon Programming Language” at
http://www.cs.arizona.edu/icon/docs/ipd266.htm gives an idea of what this looks
like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon the find() function returns the indexes at which the substring
“or” is found: 3, 23, 33. In the if statement, i is first
assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon
retries it with the second value of 23. 23 is greater than 5, so the comparison
now succeeds, and the code prints the value 23 to the screen.

Python doesn’t go nearly as far as Icon in adopting generators as a central
concept. Generators are considered part of the core Python language, but
learning or using them isn’t compulsory; if they don’t solve any problems that
you have, feel free to ignore them. One novel feature of Python’s interface as
compared to Icon’s is that a generator’s state is represented as a concrete
object (the iterator) that can be passed around to other functions or stored in
a data structure.

See also

	PEP 255 [http://www.python.org/dev/peps/pep-0255] - Simple Generators

	Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly
by Neil Schemenauer and Tim Peters, with other fixes from the Python Labs crew.

PEP 263: Source Code Encodings

Python source files can now be declared as being in different character set
encodings. Encodings are declared by including a specially formatted comment in
the first or second line of the source file. For example, a UTF-8 file can be
declared with:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Without such an encoding declaration, the default encoding used is 7-bit ASCII.
Executing or importing modules that contain string literals with 8-bit
characters and have no encoding declaration will result in a
DeprecationWarning being signalled by Python 2.3; in 2.4 this will be a
syntax error.

The encoding declaration only affects Unicode string literals, which will be
converted to Unicode using the specified encoding. Note that Python identifiers
are still restricted to ASCII characters, so you can’t have variable names that
use characters outside of the usual alphanumerics.

See also

	PEP 263 [http://www.python.org/dev/peps/pep-0263] - Defining Python Source Code Encodings

	Written by Marc-André Lemburg and Martin von Löwis; implemented by Suzuki Hisao
and Martin von Löwis.

PEP 273: Importing Modules from ZIP Archives

The new zipimport module adds support for importing modules from a ZIP-
format archive. You don’t need to import the module explicitly; it will be
automatically imported if a ZIP archive’s filename is added to sys.path.
For example:

amk@nyman:~/src/python$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
 Length Date Time Name
 -------- ---- ---- ----
 8467 11-26-02 22:30 jwzthreading.py
 -------- -------
 8467 1 file
amk@nyman:~/src/python$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip') # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
'/tmp/example.zip/jwzthreading.py'
>>>

An entry in sys.path can now be the filename of a ZIP archive. The ZIP
archive can contain any kind of files, but only files named *.py,
*.pyc, or *.pyo can be imported. If an archive only contains
*.py files, Python will not attempt to modify the archive by adding the
corresponding *.pyc file, meaning that if a ZIP archive doesn’t contain
*.pyc files, importing may be rather slow.

A path within the archive can also be specified to only import from a
subdirectory; for example, the path /tmp/example.zip/lib/ would only
import from the lib/ subdirectory within the archive.

See also

	PEP 273 [http://www.python.org/dev/peps/pep-0273] - Import Modules from Zip Archives

	Written by James C. Ahlstrom, who also provided an implementation. Python 2.3
follows the specification in PEP 273 [http://www.python.org/dev/peps/pep-0273], but uses an implementation written by
Just van Rossum that uses the import hooks described in PEP 302 [http://www.python.org/dev/peps/pep-0302]. See section
PEP 302: New Import Hooks for a description of the new import hooks.

PEP 277: Unicode file name support for Windows NT

On Windows NT, 2000, and XP, the system stores file names as Unicode strings.
Traditionally, Python has represented file names as byte strings, which is
inadequate because it renders some file names inaccessible.

Python now allows using arbitrary Unicode strings (within the limitations of the
file system) for all functions that expect file names, most notably the
open() built-in function. If a Unicode string is passed to
os.listdir(), Python now returns a list of Unicode strings. A new
function, os.getcwdu(), returns the current directory as a Unicode string.

Byte strings still work as file names, and on Windows Python will transparently
convert them to Unicode using the mbcs encoding.

Other systems also allow Unicode strings as file names but convert them to byte
strings before passing them to the system, which can cause a UnicodeError
to be raised. Applications can test whether arbitrary Unicode strings are
supported as file names by checking os.path.supports_unicode_filenames,
a Boolean value.

Under MacOS, os.listdir() may now return Unicode filenames.

See also

	PEP 277 [http://www.python.org/dev/peps/pep-0277] - Unicode file name support for Windows NT

	Written by Neil Hodgson; implemented by Neil Hodgson, Martin von Löwis, and Mark
Hammond.

PEP 278: Universal Newline Support

The three major operating systems used today are Microsoft Windows, Apple’s
Macintosh OS, and the various Unix derivatives. A minor irritation of cross-
platform work is that these three platforms all use different characters to
mark the ends of lines in text files. Unix uses the linefeed (ASCII character
10), MacOS uses the carriage return (ASCII character 13), and Windows uses a
two-character sequence of a carriage return plus a newline.

Python’s file objects can now support end of line conventions other than the one
followed by the platform on which Python is running. Opening a file with the
mode 'U' or 'rU' will open a file for reading in universal newline mode.
All three line ending conventions will be translated to a '\n' in the
strings returned by the various file methods such as read() and
readline().

Universal newline support is also used when importing modules and when executing
a file with the execfile() function. This means that Python modules can
be shared between all three operating systems without needing to convert the
line-endings.

This feature can be disabled when compiling Python by specifying the
--without-universal-newlines switch when running Python’s
configure script.

See also

	PEP 278 [http://www.python.org/dev/peps/pep-0278] - Universal Newline Support

	Written and implemented by Jack Jansen.

PEP 279: enumerate()

A new built-in function, enumerate(), will make certain loops a bit
clearer. enumerate(thing), where thing is either an iterator or a
sequence, returns a iterator that will return (0, thing[0]), (1,
thing[1]), (2, thing[2]), and so forth.

A common idiom to change every element of a list looks like this:

for i in range(len(L)):
 item = L[i]
 # ... compute some result based on item ...
 L[i] = result

This can be rewritten using enumerate() as:

for i, item in enumerate(L):
 # ... compute some result based on item ...
 L[i] = result

See also

	PEP 279 [http://www.python.org/dev/peps/pep-0279] - The enumerate() built-in function

	Written and implemented by Raymond D. Hettinger.

PEP 282: The logging Package

A standard package for writing logs, logging, has been added to Python
2.3. It provides a powerful and flexible mechanism for generating logging
output which can then be filtered and processed in various ways. A
configuration file written in a standard format can be used to control the
logging behavior of a program. Python includes handlers that will write log
records to standard error or to a file or socket, send them to the system log,
or even e-mail them to a particular address; of course, it’s also possible to
write your own handler classes.

The Logger class is the primary class. Most application code will deal
with one or more Logger objects, each one used by a particular
subsystem of the application. Each Logger is identified by a name, and
names are organized into a hierarchy using . as the component separator.
For example, you might have Logger instances named server,
server.auth and server.network. The latter two instances are below
server in the hierarchy. This means that if you turn up the verbosity for
server or direct server messages to a different handler, the changes
will also apply to records logged to server.auth and server.network.
There’s also a root Logger that’s the parent of all other loggers.

For simple uses, the logging package contains some convenience functions
that always use the root log:

import logging

logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

In the default configuration, informational and debugging messages are
suppressed and the output is sent to standard error. You can enable the display
of informational and debugging messages by calling the setLevel() method
on the root logger.

Notice the warning() call’s use of string formatting operators; all of the
functions for logging messages take the arguments (msg, arg1, arg2, ...) and
log the string resulting from msg % (arg1, arg2, ...).

There’s also an exception() function that records the most recent
traceback. Any of the other functions will also record the traceback if you
specify a true value for the keyword argument exc_info.

def f():
 try: 1/0
 except: logging.exception('Problem recorded')

f()

This produces the following output:

ERROR:root:Problem recorded
Traceback (most recent call last):
 File "t.py", line 6, in f
 1/0
ZeroDivisionError: integer division or modulo by zero

Slightly more advanced programs will use a logger other than the root logger.
The getLogger(name)() function is used to get a particular log, creating
it if it doesn’t exist yet. getLogger(None)() returns the root logger.

log = logging.getLogger('server')
 ...
log.info('Listening on port %i', port)
 ...
log.critical('Disk full')
 ...

Log records are usually propagated up the hierarchy, so a message logged to
server.auth is also seen by server and root, but a Logger
can prevent this by setting its propagate attribute to False.

There are more classes provided by the logging package that can be
customized. When a Logger instance is told to log a message, it
creates a LogRecord instance that is sent to any number of different
Handler instances. Loggers and handlers can also have an attached list
of filters, and each filter can cause the LogRecord to be ignored or
can modify the record before passing it along. When they’re finally output,
LogRecord instances are converted to text by a Formatter
class. All of these classes can be replaced by your own specially-written
classes.

With all of these features the logging package should provide enough
flexibility for even the most complicated applications. This is only an
incomplete overview of its features, so please see the package’s reference
documentation for all of the details. Reading PEP 282 [http://www.python.org/dev/peps/pep-0282] will also be helpful.

See also

	PEP 282 [http://www.python.org/dev/peps/pep-0282] - A Logging System

	Written by Vinay Sajip and Trent Mick; implemented by Vinay Sajip.

PEP 285: A Boolean Type

A Boolean type was added to Python 2.3. Two new constants were added to the
__builtin__ module, True and False. (True and
False constants were added to the built-ins in Python 2.2.1, but the
2.2.1 versions are simply set to integer values of 1 and 0 and aren’t a
different type.)

The type object for this new type is named bool; the constructor for it
takes any Python value and converts it to True or False.

>>> bool(1)
True
>>> bool(0)
False
>>> bool([])
False
>>> bool((1,))
True

Most of the standard library modules and built-in functions have been changed to
return Booleans.

>>> obj = []
>>> hasattr(obj, 'append')
True
>>> isinstance(obj, list)
True
>>> isinstance(obj, tuple)
False

Python’s Booleans were added with the primary goal of making code clearer. For
example, if you’re reading a function and encounter the statement return 1,
you might wonder whether the 1 represents a Boolean truth value, an index,
or a coefficient that multiplies some other quantity. If the statement is
return True, however, the meaning of the return value is quite clear.

Python’s Booleans were not added for the sake of strict type-checking. A very
strict language such as Pascal would also prevent you performing arithmetic with
Booleans, and would require that the expression in an if statement
always evaluate to a Boolean result. Python is not this strict and never will
be, as PEP 285 [http://www.python.org/dev/peps/pep-0285] explicitly says. This means you can still use any expression
in an if statement, even ones that evaluate to a list or tuple or
some random object. The Boolean type is a subclass of the int class so
that arithmetic using a Boolean still works.

>>> True + 1
2
>>> False + 1
1
>>> False * 75
0
>>> True * 75
75

To sum up True and False in a sentence: they’re alternative
ways to spell the integer values 1 and 0, with the single difference that
str() and repr() return the strings 'True' and 'False'
instead of '1' and '0'.

See also

	PEP 285 [http://www.python.org/dev/peps/pep-0285] - Adding a bool type

	Written and implemented by GvR.

PEP 293: Codec Error Handling Callbacks

When encoding a Unicode string into a byte string, unencodable characters may be
encountered. So far, Python has allowed specifying the error processing as
either “strict” (raising UnicodeError), “ignore” (skipping the
character), or “replace” (using a question mark in the output string), with
“strict” being the default behavior. It may be desirable to specify alternative
processing of such errors, such as inserting an XML character reference or HTML
entity reference into the converted string.

Python now has a flexible framework to add different processing strategies. New
error handlers can be added with codecs.register_error(), and codecs then
can access the error handler with codecs.lookup_error(). An equivalent C
API has been added for codecs written in C. The error handler gets the necessary
state information such as the string being converted, the position in the string
where the error was detected, and the target encoding. The handler can then
either raise an exception or return a replacement string.

Two additional error handlers have been implemented using this framework:
“backslashreplace” uses Python backslash quoting to represent unencodable
characters and “xmlcharrefreplace” emits XML character references.

See also

	PEP 293 [http://www.python.org/dev/peps/pep-0293] - Codec Error Handling Callbacks

	Written and implemented by Walter Dörwald.

PEP 301: Package Index and Metadata for Distutils

Support for the long-requested Python catalog makes its first appearance in 2.3.

The heart of the catalog is the new Distutils register command.
Running python setup.py register will collect the metadata describing a
package, such as its name, version, maintainer, description, &c., and send it to
a central catalog server. The resulting catalog is available from
http://www.python.org/pypi.

To make the catalog a bit more useful, a new optional classifiers keyword
argument has been added to the Distutils setup() function. A list of
Trove [http://catb.org/~esr/trove/]-style strings can be supplied to help
classify the software.

Here’s an example setup.py with classifiers, written to be compatible
with older versions of the Distutils:

from distutils import core
kw = {'name': "Quixote",
 'version': "0.5.1",
 'description': "A highly Pythonic Web application framework",
 # ...
 }

if (hasattr(core, 'setup_keywords') and
 'classifiers' in core.setup_keywords):
 kw['classifiers'] = \
 ['Topic :: Internet :: WWW/HTTP :: Dynamic Content',
 'Environment :: No Input/Output (Daemon)',
 'Intended Audience :: Developers'],

core.setup(**kw)

The full list of classifiers can be obtained by running python setup.py
register --list-classifiers.

See also

	PEP 301 [http://www.python.org/dev/peps/pep-0301] - Package Index and Metadata for Distutils

	Written and implemented by Richard Jones.

PEP 302: New Import Hooks

While it’s been possible to write custom import hooks ever since the
ihooks module was introduced in Python 1.3, no one has ever been really
happy with it because writing new import hooks is difficult and messy. There
have been various proposed alternatives such as the imputil and iu
modules, but none of them has ever gained much acceptance, and none of them were
easily usable from C code.

PEP 302 [http://www.python.org/dev/peps/pep-0302] borrows ideas from its predecessors, especially from Gordon
McMillan’s iu module. Three new items are added to the sys
module:

	sys.path_hooks is a list of callable objects; most often they’ll be
classes. Each callable takes a string containing a path and either returns an
importer object that will handle imports from this path or raises an
ImportError exception if it can’t handle this path.

	sys.path_importer_cache caches importer objects for each path, so
sys.path_hooks will only need to be traversed once for each path.

	sys.meta_path is a list of importer objects that will be traversed before
sys.path is checked. This list is initially empty, but user code can add
objects to it. Additional built-in and frozen modules can be imported by an
object added to this list.

Importer objects must have a single method, find_module(fullname,
path=None)(). fullname will be a module or package name, e.g. string or
distutils.core. find_module() must return a loader object that has a
single method, load_module(fullname)(), that creates and returns the
corresponding module object.

Pseudo-code for Python’s new import logic, therefore, looks something like this
(simplified a bit; see PEP 302 [http://www.python.org/dev/peps/pep-0302] for the full details):

for mp in sys.meta_path:
 loader = mp(fullname)
 if loader is not None:
 <module> = loader.load_module(fullname)

for path in sys.path:
 for hook in sys.path_hooks:
 try:
 importer = hook(path)
 except ImportError:
 # ImportError, so try the other path hooks
 pass
 else:
 loader = importer.find_module(fullname)
 <module> = loader.load_module(fullname)

Not found!
raise ImportError

See also

	PEP 302 [http://www.python.org/dev/peps/pep-0302] - New Import Hooks

	Written by Just van Rossum and Paul Moore. Implemented by Just van Rossum.

PEP 305: Comma-separated Files

Comma-separated files are a format frequently used for exporting data from
databases and spreadsheets. Python 2.3 adds a parser for comma-separated files.

Comma-separated format is deceptively simple at first glance:

Costs,150,200,3.95

Read a line and call line.split(','): what could be simpler? But toss in
string data that can contain commas, and things get more complicated:

"Costs",150,200,3.95,"Includes taxes, shipping, and sundry items"

A big ugly regular expression can parse this, but using the new csv
package is much simpler:

import csv

input = open('datafile', 'rb')
reader = csv.reader(input)
for line in reader:
 print line

The reader() function takes a number of different options. The field
separator isn’t limited to the comma and can be changed to any character, and so
can the quoting and line-ending characters.

Different dialects of comma-separated files can be defined and registered;
currently there are two dialects, both used by Microsoft Excel. A separate
csv.writer class will generate comma-separated files from a succession
of tuples or lists, quoting strings that contain the delimiter.

See also

	PEP 305 [http://www.python.org/dev/peps/pep-0305] - CSV File API

	Written and implemented by Kevin Altis, Dave Cole, Andrew McNamara, Skip
Montanaro, Cliff Wells.

PEP 307: Pickle Enhancements

The pickle and cPickle modules received some attention during the
2.3 development cycle. In 2.2, new-style classes could be pickled without
difficulty, but they weren’t pickled very compactly; PEP 307 [http://www.python.org/dev/peps/pep-0307] quotes a trivial
example where a new-style class results in a pickled string three times longer
than that for a classic class.

The solution was to invent a new pickle protocol. The pickle.dumps()
function has supported a text-or-binary flag for a long time. In 2.3, this
flag is redefined from a Boolean to an integer: 0 is the old text-mode pickle
format, 1 is the old binary format, and now 2 is a new 2.3-specific format. A
new constant, pickle.HIGHEST_PROTOCOL, can be used to select the
fanciest protocol available.

Unpickling is no longer considered a safe operation. 2.2’s pickle
provided hooks for trying to prevent unsafe classes from being unpickled
(specifically, a __safe_for_unpickling__ attribute), but none of this
code was ever audited and therefore it’s all been ripped out in 2.3. You should
not unpickle untrusted data in any version of Python.

To reduce the pickling overhead for new-style classes, a new interface for
customizing pickling was added using three special methods:
__getstate__(), __setstate__(), and __getnewargs__(). Consult
PEP 307 [http://www.python.org/dev/peps/pep-0307] for the full semantics of these methods.

As a way to compress pickles yet further, it’s now possible to use integer codes
instead of long strings to identify pickled classes. The Python Software
Foundation will maintain a list of standardized codes; there’s also a range of
codes for private use. Currently no codes have been specified.

See also

	PEP 307 [http://www.python.org/dev/peps/pep-0307] - Extensions to the pickle protocol

	Written and implemented by Guido van Rossum and Tim Peters.

Extended Slices

Ever since Python 1.4, the slicing syntax has supported an optional third “step”
or “stride” argument. For example, these are all legal Python syntax:
L[1:10:2], L[:-1:1], L[::-1]. This was added to Python at the
request of the developers of Numerical Python, which uses the third argument
extensively. However, Python’s built-in list, tuple, and string sequence types
have never supported this feature, raising a TypeError if you tried it.
Michael Hudson contributed a patch to fix this shortcoming.

For example, you can now easily extract the elements of a list that have even
indexes:

>>> L = range(10)
>>> L[::2]
[0, 2, 4, 6, 8]

Negative values also work to make a copy of the same list in reverse order:

>>> L[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

This also works for tuples, arrays, and strings:

>>> s='abcd'
>>> s[::2]
'ac'
>>> s[::-1]
'dcba'

If you have a mutable sequence such as a list or an array you can assign to or
delete an extended slice, but there are some differences between assignment to
extended and regular slices. Assignment to a regular slice can be used to
change the length of the sequence:

>>> a = range(3)
>>> a
[0, 1, 2]
>>> a[1:3] = [4, 5, 6]
>>> a
[0, 4, 5, 6]

Extended slices aren’t this flexible. When assigning to an extended slice, the
list on the right hand side of the statement must contain the same number of
items as the slice it is replacing:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> a[::2] = [0, -1]
>>> a
[0, 1, -1, 3]
>>> a[::2] = [0,1,2]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: attempt to assign sequence of size 3 to extended slice of size 2

Deletion is more straightforward:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> del a[::2]
>>> a
[1, 3]

One can also now pass slice objects to the __getitem__() methods of the
built-in sequences:

>>> range(10).__getitem__(slice(0, 5, 2))
[0, 2, 4]

Or use slice objects directly in subscripts:

>>> range(10)[slice(0, 5, 2)]
[0, 2, 4]

To simplify implementing sequences that support extended slicing, slice objects
now have a method indices(length)() which, given the length of a sequence,
returns a (start, stop, step) tuple that can be passed directly to
range(). indices() handles omitted and out-of-bounds indices in a
manner consistent with regular slices (and this innocuous phrase hides a welter
of confusing details!). The method is intended to be used like this:

class FakeSeq:
 ...
 def calc_item(self, i):
 ...
 def __getitem__(self, item):
 if isinstance(item, slice):
 indices = item.indices(len(self))
 return FakeSeq([self.calc_item(i) for i in range(*indices)])
 else:
 return self.calc_item(i)

From this example you can also see that the built-in slice object is
now the type object for the slice type, and is no longer a function. This is
consistent with Python 2.2, where int, str, etc., underwent
the same change.

Other Language Changes

Here are all of the changes that Python 2.3 makes to the core Python language.

	The yield statement is now always a keyword, as described in
section PEP 255: Simple Generators of this document.

	A new built-in function enumerate() was added, as described in section
PEP 279: enumerate() of this document.

	Two new constants, True and False were added along with the
built-in bool type, as described in section PEP 285: A Boolean Type of this
document.

	The int() type constructor will now return a long integer instead of
raising an OverflowError when a string or floating-point number is too
large to fit into an integer. This can lead to the paradoxical result that
isinstance(int(expression), int) is false, but that seems unlikely to cause
problems in practice.

	Built-in types now support the extended slicing syntax, as described in
section Extended Slices of this document.

	A new built-in function, sum(iterable, start=0)(), adds up the numeric
items in the iterable object and returns their sum. sum() only accepts
numbers, meaning that you can’t use it to concatenate a bunch of strings.
(Contributed by Alex Martelli.)

	list.insert(pos, value) used to insert value at the front of the list
when pos was negative. The behaviour has now been changed to be consistent
with slice indexing, so when pos is -1 the value will be inserted before the
last element, and so forth.

	list.index(value), which searches for value within the list and returns
its index, now takes optional start and stop arguments to limit the search
to only part of the list.

	Dictionaries have a new method, pop(key[, *default*])(), that returns
the value corresponding to key and removes that key/value pair from the
dictionary. If the requested key isn’t present in the dictionary, default is
returned if it’s specified and KeyError raised if it isn’t.

>>> d = {1:2}
>>> d
{1: 2}
>>> d.pop(4)
Traceback (most recent call last):
 File "stdin", line 1, in ?
KeyError: 4
>>> d.pop(1)
2
>>> d.pop(1)
Traceback (most recent call last):
 File "stdin", line 1, in ?
KeyError: 'pop(): dictionary is empty'
>>> d
{}
>>>

There’s also a new class method, dict.fromkeys(iterable, value)(), that
creates a dictionary with keys taken from the supplied iterator iterable and
all values set to value, defaulting to None.

(Patches contributed by Raymond Hettinger.)

Also, the dict() constructor now accepts keyword arguments to simplify
creating small dictionaries:

>>> dict(red=1, blue=2, green=3, black=4)
{'blue': 2, 'black': 4, 'green': 3, 'red': 1}

(Contributed by Just van Rossum.)

	The assert statement no longer checks the __debug__ flag, so
you can no longer disable assertions by assigning to __debug__. Running
Python with the -O switch will still generate code that doesn’t
execute any assertions.

	Most type objects are now callable, so you can use them to create new objects
such as functions, classes, and modules. (This means that the new module
can be deprecated in a future Python version, because you can now use the type
objects available in the types module.) For example, you can create a new
module object with the following code:

>>> import types
>>> m = types.ModuleType('abc','docstring')
>>> m
<module 'abc' (built-in)>
>>> m.__doc__
'docstring'

	A new warning, PendingDeprecationWarning was added to indicate features
which are in the process of being deprecated. The warning will not be printed
by default. To check for use of features that will be deprecated in the future,
supply -Walways::PendingDeprecationWarning:: on the command line or
use warnings.filterwarnings().

	The process of deprecating string-based exceptions, as in raise "Error
occurred", has begun. Raising a string will now trigger
PendingDeprecationWarning.

	Using None as a variable name will now result in a SyntaxWarning
warning. In a future version of Python, None may finally become a keyword.

	The xreadlines() method of file objects, introduced in Python 2.1, is no
longer necessary because files now behave as their own iterator.
xreadlines() was originally introduced as a faster way to loop over all
the lines in a file, but now you can simply write for line in file_obj.
File objects also have a new read-only encoding attribute that gives the
encoding used by the file; Unicode strings written to the file will be
automatically converted to bytes using the given encoding.

	The method resolution order used by new-style classes has changed, though
you’ll only notice the difference if you have a really complicated inheritance
hierarchy. Classic classes are unaffected by this change. Python 2.2
originally used a topological sort of a class’s ancestors, but 2.3 now uses the
C3 algorithm as described in the paper “A Monotonic Superclass Linearization
for Dylan” [http://www.webcom.com/haahr/dylan/linearization-oopsla96.html]. To
understand the motivation for this change, read Michele Simionato’s article
“Python 2.3 Method Resolution Order” [http://www.python.org/2.3/mro.html], or
read the thread on python-dev starting with the message at
http://mail.python.org/pipermail/python-dev/2002-October/029035.html. Samuele
Pedroni first pointed out the problem and also implemented the fix by coding the
C3 algorithm.

	Python runs multithreaded programs by switching between threads after
executing N bytecodes. The default value for N has been increased from 10 to
100 bytecodes, speeding up single-threaded applications by reducing the
switching overhead. Some multithreaded applications may suffer slower response
time, but that’s easily fixed by setting the limit back to a lower number using
sys.setcheckinterval(N)(). The limit can be retrieved with the new
sys.getcheckinterval() function.

	One minor but far-reaching change is that the names of extension types defined
by the modules included with Python now contain the module and a '.' in
front of the type name. For example, in Python 2.2, if you created a socket and
printed its __class__, you’d get this output:

>>> s = socket.socket()
>>> s.__class__
<type 'socket'>

In 2.3, you get this:

>>> s.__class__
<type '_socket.socket'>

	One of the noted incompatibilities between old- and new-style classes has been
removed: you can now assign to the __name__ and __bases__
attributes of new-style classes. There are some restrictions on what can be
assigned to __bases__ along the lines of those relating to assigning to
an instance’s __class__ attribute.

String Changes

	The in operator now works differently for strings. Previously, when
evaluating X in Y where X and Y are strings, X could only be a single
character. That’s now changed; X can be a string of any length, and X in Y
will return True if X is a substring of Y. If X is the empty
string, the result is always True.

>>> 'ab' in 'abcd'
True
>>> 'ad' in 'abcd'
False
>>> '' in 'abcd'
True

Note that this doesn’t tell you where the substring starts; if you need that
information, use the find() string method.

	The strip(), lstrip(), and rstrip() string methods now have
an optional argument for specifying the characters to strip. The default is
still to remove all whitespace characters:

>>> ' abc '.strip()
'abc'
>>> '><><abc<><><>'.strip('<>')
'abc'
>>> '><><abc<><><>\n'.strip('<>')
'abc<><><>\n'
>>> u'\u4000\u4001abc\u4000'.strip(u'\u4000')
u'\u4001abc'
>>>

(Suggested by Simon Brunning and implemented by Walter Dörwald.)

	The startswith() and endswith() string methods now accept negative
numbers for the start and end parameters.

	Another new string method is zfill(), originally a function in the
string module. zfill() pads a numeric string with zeros on the
left until it’s the specified width. Note that the % operator is still more
flexible and powerful than zfill().

>>> '45'.zfill(4)
'0045'
>>> '12345'.zfill(4)
'12345'
>>> 'goofy'.zfill(6)
'0goofy'

(Contributed by Walter Dörwald.)

	A new type object, basestring, has been added. Both 8-bit strings and
Unicode strings inherit from this type, so isinstance(obj, basestring) will
return True for either kind of string. It’s a completely abstract
type, so you can’t create basestring instances.

	Interned strings are no longer immortal and will now be garbage-collected in
the usual way when the only reference to them is from the internal dictionary of
interned strings. (Implemented by Oren Tirosh.)

Optimizations

	The creation of new-style class instances has been made much faster; they’re
now faster than classic classes!

	The sort() method of list objects has been extensively rewritten by Tim
Peters, and the implementation is significantly faster.

	Multiplication of large long integers is now much faster thanks to an
implementation of Karatsuba multiplication, an algorithm that scales better than
the O(n*n) required for the grade-school multiplication algorithm. (Original
patch by Christopher A. Craig, and significantly reworked by Tim Peters.)

	The SET_LINENO opcode is now gone. This may provide a small speed
increase, depending on your compiler’s idiosyncrasies. See section
Other Changes and Fixes for a longer explanation. (Removed by Michael Hudson.)

	xrange() objects now have their own iterator, making for i in
xrange(n) slightly faster than for i in range(n). (Patch by Raymond
Hettinger.)

	A number of small rearrangements have been made in various hotspots to improve
performance, such as inlining a function or removing some code. (Implemented
mostly by GvR, but lots of people have contributed single changes.)

The net result of the 2.3 optimizations is that Python 2.3 runs the pystone
benchmark around 25% faster than Python 2.2.

New, Improved, and Deprecated Modules

As usual, Python’s standard library received a number of enhancements and bug
fixes. Here’s a partial list of the most notable changes, sorted alphabetically
by module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

	The array module now supports arrays of Unicode characters using the
'u' format character. Arrays also now support using the += assignment
operator to add another array’s contents, and the *= assignment operator to
repeat an array. (Contributed by Jason Orendorff.)

	The bsddb module has been replaced by version 4.1.6 of the PyBSDDB [http://pybsddb.sourceforge.net] package, providing a more complete interface
to the transactional features of the BerkeleyDB library.

The old version of the module has been renamed to bsddb185 and is no
longer built automatically; you’ll have to edit Modules/Setup to enable
it. Note that the new bsddb package is intended to be compatible with
the old module, so be sure to file bugs if you discover any incompatibilities.
When upgrading to Python 2.3, if the new interpreter is compiled with a new
version of the underlying BerkeleyDB library, you will almost certainly have to
convert your database files to the new version. You can do this fairly easily
with the new scripts db2pickle.py and pickle2db.py which you
will find in the distribution’s Tools/scripts directory. If you’ve
already been using the PyBSDDB package and importing it as bsddb3, you
will have to change your import statements to import it as bsddb.

	The new bz2 module is an interface to the bz2 data compression library.
bz2-compressed data is usually smaller than corresponding zlib-compressed data. (Contributed by Gustavo Niemeyer.)

	A set of standard date/time types has been added in the new datetime
module. See the following section for more details.

	The Distutils Extension class now supports an extra constructor
argument named depends for listing additional source files that an extension
depends on. This lets Distutils recompile the module if any of the dependency
files are modified. For example, if sampmodule.c includes the header
file sample.h, you would create the Extension object like
this:

ext = Extension("samp",
 sources=["sampmodule.c"],
 depends=["sample.h"])

Modifying sample.h would then cause the module to be recompiled.
(Contributed by Jeremy Hylton.)

	Other minor changes to Distutils: it now checks for the CC,
CFLAGS, CPP, LDFLAGS, and CPPFLAGS
environment variables, using them to override the settings in Python’s
configuration (contributed by Robert Weber).

	Previously the doctest module would only search the docstrings of
public methods and functions for test cases, but it now also examines private
ones as well. The DocTestSuite(() function creates a
unittest.TestSuite object from a set of doctest tests.

	The new gc.get_referents(object)() function returns a list of all the
objects referenced by object.

	The getopt module gained a new function, gnu_getopt(), that
supports the same arguments as the existing getopt() function but uses
GNU-style scanning mode. The existing getopt() stops processing options as
soon as a non-option argument is encountered, but in GNU-style mode processing
continues, meaning that options and arguments can be mixed. For example:

>>> getopt.getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename')], ['output', '-v'])
>>> getopt.gnu_getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename'), ('-v', '')], ['output'])

(Contributed by Peter Åstrand.)

	The grp, pwd, and resource modules now return enhanced
tuples:

>>> import grp
>>> g = grp.getgrnam('amk')
>>> g.gr_name, g.gr_gid
('amk', 500)

	The gzip module can now handle files exceeding 2 GiB.

	The new heapq module contains an implementation of a heap queue
algorithm. A heap is an array-like data structure that keeps items in a
partially sorted order such that, for every index k, heap[k] <=
heap[2*k+1] and heap[k] <= heap[2*k+2]. This makes it quick to remove the
smallest item, and inserting a new item while maintaining the heap property is
O(lg n). (See http://www.nist.gov/dads/HTML/priorityque.html for more
information about the priority queue data structure.)

The heapq module provides heappush() and heappop() functions
for adding and removing items while maintaining the heap property on top of some
other mutable Python sequence type. Here’s an example that uses a Python list:

>>> import heapq
>>> heap = []
>>> for item in [3, 7, 5, 11, 1]:
... heapq.heappush(heap, item)
...
>>> heap
[1, 3, 5, 11, 7]
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
3
>>> heap
[5, 7, 11]

(Contributed by Kevin O’Connor.)

	The IDLE integrated development environment has been updated using the code
from the IDLEfork project (http://idlefork.sf.net). The most notable feature is
that the code being developed is now executed in a subprocess, meaning that
there’s no longer any need for manual reload() operations. IDLE’s core code
has been incorporated into the standard library as the idlelib package.

	The imaplib module now supports IMAP over SSL. (Contributed by Piers
Lauder and Tino Lange.)

	The itertools contains a number of useful functions for use with
iterators, inspired by various functions provided by the ML and Haskell
languages. For example, itertools.ifilter(predicate, iterator) returns all
elements in the iterator for which the function predicate() returns
True, and itertools.repeat(obj, N) returns obj N times.
There are a number of other functions in the module; see the package’s reference
documentation for details.
(Contributed by Raymond Hettinger.)

	Two new functions in the math module, degrees(rads)() and
radians(degs)(), convert between radians and degrees. Other functions in
the math module such as math.sin() and math.cos() have always
required input values measured in radians. Also, an optional base argument
was added to math.log() to make it easier to compute logarithms for bases
other than e and 10. (Contributed by Raymond Hettinger.)

	Several new POSIX functions (getpgid(), killpg(), lchown(),
loadavg(), major(), makedev(), minor(), and
mknod()) were added to the posix module that underlies the
os module. (Contributed by Gustavo Niemeyer, Geert Jansen, and Denis S.
Otkidach.)

	In the os module, the *stat() family of functions can now report
fractions of a second in a timestamp. Such time stamps are represented as
floats, similar to the value returned by time.time().

During testing, it was found that some applications will break if time stamps
are floats. For compatibility, when using the tuple interface of the
stat_result time stamps will be represented as integers. When using
named fields (a feature first introduced in Python 2.2), time stamps are still
represented as integers, unless os.stat_float_times() is invoked to enable
float return values:

>>> os.stat("/tmp").st_mtime
1034791200
>>> os.stat_float_times(True)
>>> os.stat("/tmp").st_mtime
1034791200.6335014

In Python 2.4, the default will change to always returning floats.

Application developers should enable this feature only if all their libraries
work properly when confronted with floating point time stamps, or if they use
the tuple API. If used, the feature should be activated on an application level
instead of trying to enable it on a per-use basis.

	The optparse module contains a new parser for command-line arguments
that can convert option values to a particular Python type and will
automatically generate a usage message. See the following section for more
details.

	The old and never-documented linuxaudiodev module has been deprecated,
and a new version named ossaudiodev has been added. The module was
renamed because the OSS sound drivers can be used on platforms other than Linux,
and the interface has also been tidied and brought up to date in various ways.
(Contributed by Greg Ward and Nicholas FitzRoy-Dale.)

	The new platform module contains a number of functions that try to
determine various properties of the platform you’re running on. There are
functions for getting the architecture, CPU type, the Windows OS version, and
even the Linux distribution version. (Contributed by Marc-André Lemburg.)

	The parser objects provided by the pyexpat module can now optionally
buffer character data, resulting in fewer calls to your character data handler
and therefore faster performance. Setting the parser object’s
buffer_text attribute to True will enable buffering.

	The sample(population, k)() function was added to the random
module. population is a sequence or xrange object containing the
elements of a population, and sample() chooses k elements from the
population without replacing chosen elements. k can be any value up to
len(population). For example:

>>> days = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'St', 'Sn']
>>> random.sample(days, 3) # Choose 3 elements
['St', 'Sn', 'Th']
>>> random.sample(days, 7) # Choose 7 elements
['Tu', 'Th', 'Mo', 'We', 'St', 'Fr', 'Sn']
>>> random.sample(days, 7) # Choose 7 again
['We', 'Mo', 'Sn', 'Fr', 'Tu', 'St', 'Th']
>>> random.sample(days, 8) # Can't choose eight
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "random.py", line 414, in sample
 raise ValueError, "sample larger than population"
ValueError: sample larger than population
>>> random.sample(xrange(1,10000,2), 10) # Choose ten odd nos. under 10000
[3407, 3805, 1505, 7023, 2401, 2267, 9733, 3151, 8083, 9195]

The random module now uses a new algorithm, the Mersenne Twister,
implemented in C. It’s faster and more extensively studied than the previous
algorithm.

(All changes contributed by Raymond Hettinger.)

	The readline module also gained a number of new functions:
get_history_item(), get_current_history_length(), and
redisplay().

	The rexec and Bastion modules have been declared dead, and
attempts to import them will fail with a RuntimeError. New-style classes
provide new ways to break out of the restricted execution environment provided
by rexec, and no one has interest in fixing them or time to do so. If
you have applications using rexec, rewrite them to use something else.

(Sticking with Python 2.2 or 2.1 will not make your applications any safer
because there are known bugs in the rexec module in those versions. To
repeat: if you’re using rexec, stop using it immediately.)

	The rotor module has been deprecated because the algorithm it uses for
encryption is not believed to be secure. If you need encryption, use one of the
several AES Python modules that are available separately.

	The shutil module gained a move(src, dest)() function that
recursively moves a file or directory to a new location.

	Support for more advanced POSIX signal handling was added to the signal
but then removed again as it proved impossible to make it work reliably across
platforms.

	The socket module now supports timeouts. You can call the
settimeout(t)() method on a socket object to set a timeout of t seconds.
Subsequent socket operations that take longer than t seconds to complete will
abort and raise a socket.timeout exception.

The original timeout implementation was by Tim O’Malley. Michael Gilfix
integrated it into the Python socket module and shepherded it through a
lengthy review. After the code was checked in, Guido van Rossum rewrote parts
of it. (This is a good example of a collaborative development process in
action.)

	On Windows, the socket module now ships with Secure Sockets Layer
(SSL) support.

	The value of the C PYTHON_API_VERSION macro is now exposed at the
Python level as sys.api_version. The current exception can be cleared by
calling the new sys.exc_clear() function.

	The new tarfile module allows reading from and writing to
tar-format archive files. (Contributed by Lars Gustäbel.)

	The new textwrap module contains functions for wrapping strings
containing paragraphs of text. The wrap(text, width)() function takes a
string and returns a list containing the text split into lines of no more than
the chosen width. The fill(text, width)() function returns a single
string, reformatted to fit into lines no longer than the chosen width. (As you
can guess, fill() is built on top of wrap(). For example:

>>> import textwrap
>>> paragraph = "Not a whit, we defy augury: ... more text ..."
>>> textwrap.wrap(paragraph, 60)
["Not a whit, we defy augury: there's a special providence in",
 "the fall of a sparrow. If it be now, 'tis not to come; if it",
 ...]
>>> print textwrap.fill(paragraph, 35)
Not a whit, we defy augury: there's
a special providence in the fall of
a sparrow. If it be now, 'tis not
to come; if it be not to come, it
will be now; if it be not now, yet
it will come: the readiness is all.
>>>

The module also contains a TextWrapper class that actually implements
the text wrapping strategy. Both the TextWrapper class and the
wrap() and fill() functions support a number of additional keyword
arguments for fine-tuning the formatting; consult the module’s documentation
for details. (Contributed by Greg Ward.)

	The thread and threading modules now have companion modules,
dummy_thread and dummy_threading, that provide a do-nothing
implementation of the thread module’s interface for platforms where
threads are not supported. The intention is to simplify thread-aware modules
(ones that don’t rely on threads to run) by putting the following code at the
top:

try:
 import threading as _threading
except ImportError:
 import dummy_threading as _threading

In this example, _threading is used as the module name to make it clear
that the module being used is not necessarily the actual threading
module. Code can call functions and use classes in _threading whether or
not threads are supported, avoiding an if statement and making the
code slightly clearer. This module will not magically make multithreaded code
run without threads; code that waits for another thread to return or to do
something will simply hang forever.

	The time module’s strptime() function has long been an annoyance
because it uses the platform C library’s strptime() implementation, and
different platforms sometimes have odd bugs. Brett Cannon contributed a
portable implementation that’s written in pure Python and should behave
identically on all platforms.

	The new timeit module helps measure how long snippets of Python code
take to execute. The timeit.py file can be run directly from the
command line, or the module’s Timer class can be imported and used
directly. Here’s a short example that figures out whether it’s faster to
convert an 8-bit string to Unicode by appending an empty Unicode string to it or
by using the unicode() function:

import timeit

timer1 = timeit.Timer('unicode("abc")')
timer2 = timeit.Timer('"abc" + u""')

Run three trials
print timer1.repeat(repeat=3, number=100000)
print timer2.repeat(repeat=3, number=100000)

On my laptop this outputs:
[0.36831796169281006, 0.37441694736480713, 0.35304892063140869]
[0.17574405670166016, 0.18193507194519043, 0.17565798759460449]

	The Tix module has received various bug fixes and updates for the
current version of the Tix package.

	The Tkinter module now works with a thread-enabled version of Tcl.
Tcl’s threading model requires that widgets only be accessed from the thread in
which they’re created; accesses from another thread can cause Tcl to panic. For
certain Tcl interfaces, Tkinter will now automatically avoid this when a
widget is accessed from a different thread by marshalling a command, passing it
to the correct thread, and waiting for the results. Other interfaces can’t be
handled automatically but Tkinter will now raise an exception on such an
access so that you can at least find out about the problem. See
http://mail.python.org/pipermail/python-dev/2002-December/031107.html for a more
detailed explanation of this change. (Implemented by Martin von Löwis.)

	Calling Tcl methods through _tkinter no longer returns only strings.
Instead, if Tcl returns other objects those objects are converted to their
Python equivalent, if one exists, or wrapped with a _tkinter.Tcl_Obj
object if no Python equivalent exists. This behavior can be controlled through
the wantobjects() method of tkapp objects.

When using _tkinter through the Tkinter module (as most Tkinter
applications will), this feature is always activated. It should not cause
compatibility problems, since Tkinter would always convert string results to
Python types where possible.

If any incompatibilities are found, the old behavior can be restored by setting
the wantobjects variable in the Tkinter module to false before
creating the first tkapp object.

import Tkinter
Tkinter.wantobjects = 0

Any breakage caused by this change should be reported as a bug.

	The UserDict module has a new DictMixin class which defines
all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be
substitutable for dictionaries, such as the classes in the shelve
module.

Adding the mix-in as a superclass provides the full dictionary interface
whenever the class defines __getitem__(), __setitem__(),
__delitem__(), and keys(). For example:

>>> import UserDict
>>> class SeqDict(UserDict.DictMixin):
... """Dictionary lookalike implemented with lists."""
... def __init__(self):
... self.keylist = []
... self.valuelist = []
... def __getitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... return self.valuelist[i]
... def __setitem__(self, key, value):
... try:
... i = self.keylist.index(key)
... self.valuelist[i] = value
... except ValueError:
... self.keylist.append(key)
... self.valuelist.append(value)
... def __delitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... self.keylist.pop(i)
... self.valuelist.pop(i)
... def keys(self):
... return list(self.keylist)
...
>>> s = SeqDict()
>>> dir(s) # See that other dictionary methods are implemented
['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
 '__init__', '__iter__', '__len__', '__module__', '__repr__',
 '__setitem__', 'clear', 'get', 'has_key', 'items', 'iteritems',
 'iterkeys', 'itervalues', 'keylist', 'keys', 'pop', 'popitem',
 'setdefault', 'update', 'valuelist', 'values']

(Contributed by Raymond Hettinger.)

	The DOM implementation in xml.dom.minidom can now generate XML output
in a particular encoding by providing an optional encoding argument to the
toxml() and toprettyxml() methods of DOM nodes.

	The xmlrpclib module now supports an XML-RPC extension for handling nil
data values such as Python’s None. Nil values are always supported on
unmarshalling an XML-RPC response. To generate requests containing None,
you must supply a true value for the allow_none parameter when creating a
Marshaller instance.

	The new DocXMLRPCServer module allows writing self-documenting XML-RPC
servers. Run it in demo mode (as a program) to see it in action. Pointing the
Web browser to the RPC server produces pydoc-style documentation; pointing
xmlrpclib to the server allows invoking the actual methods. (Contributed by
Brian Quinlan.)

	Support for internationalized domain names (RFCs 3454, 3490, 3491, and 3492)
has been added. The “idna” encoding can be used to convert between a Unicode
domain name and the ASCII-compatible encoding (ACE) of that name.

>{}>{}> u"www.Alliancefrançaise.nu".encode("idna")
'www.xn--alliancefranaise-npb.nu'

The socket module has also been extended to transparently convert
Unicode hostnames to the ACE version before passing them to the C library.
Modules that deal with hostnames such as httplib and ftplib)
also support Unicode host names; httplib also sends HTTP Host
headers using the ACE version of the domain name. urllib supports
Unicode URLs with non-ASCII host names as long as the path part of the URL
is ASCII only.

To implement this change, the stringprep module, the mkstringprep
tool and the punycode encoding have been added.

Date/Time Type

Date and time types suitable for expressing timestamps were added as the
datetime module. The types don’t support different calendars or many
fancy features, and just stick to the basics of representing time.

The three primary types are: date, representing a day, month, and year;
time, consisting of hour, minute, and second; and datetime,
which contains all the attributes of both date and time.
There’s also a timedelta class representing differences between two
points in time, and time zone logic is implemented by classes inheriting from
the abstract tzinfo class.

You can create instances of date and time by either supplying
keyword arguments to the appropriate constructor, e.g.
datetime.date(year=1972, month=10, day=15), or by using one of a number of
class methods. For example, the date.today() class method returns the
current local date.

Once created, instances of the date/time classes are all immutable. There are a
number of methods for producing formatted strings from objects:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now.isoformat()
'2002-12-30T21:27:03.994956'
>>> now.ctime() # Only available on date, datetime
'Mon Dec 30 21:27:03 2002'
>>> now.strftime('%Y %d %b')
'2002 30 Dec'

The replace() method allows modifying one or more fields of a
date or datetime instance, returning a new instance:

>>> d = datetime.datetime.now()
>>> d
datetime.datetime(2002, 12, 30, 22, 15, 38, 827738)
>>> d.replace(year=2001, hour = 12)
datetime.datetime(2001, 12, 30, 12, 15, 38, 827738)
>>>

Instances can be compared, hashed, and converted to strings (the result is the
same as that of isoformat()). date and datetime
instances can be subtracted from each other, and added to timedelta
instances. The largest missing feature is that there’s no standard library
support for parsing strings and getting back a date or
datetime.

For more information, refer to the module’s reference documentation.
(Contributed by Tim Peters.)

The optparse Module

The getopt module provides simple parsing of command-line arguments. The
new optparse module (originally named Optik) provides more elaborate
command-line parsing that follows the Unix conventions, automatically creates
the output for --help, and can perform different actions for different
options.

You start by creating an instance of OptionParser and telling it what
your program’s options are.

import sys
from optparse import OptionParser

op = OptionParser()
op.add_option('-i', '--input',
 action='store', type='string', dest='input',
 help='set input filename')
op.add_option('-l', '--length',
 action='store', type='int', dest='length',
 help='set maximum length of output')

Parsing a command line is then done by calling the parse_args() method.

options, args = op.parse_args(sys.argv[1:])
print options
print args

This returns an object containing all of the option values, and a list of
strings containing the remaining arguments.

Invoking the script with the various arguments now works as you’d expect it to.
Note that the length argument is automatically converted to an integer.

$./python opt.py -i data arg1
<Values at 0x400cad4c: {'input': 'data', 'length': None}>
['arg1']
$./python opt.py --input=data --length=4
<Values at 0x400cad2c: {'input': 'data', 'length': 4}>
[]
$

The help message is automatically generated for you:

$./python opt.py --help
usage: opt.py [options]

options:
 -h, --help show this help message and exit
 -iINPUT, --input=INPUT
 set input filename
 -lLENGTH, --length=LENGTH
 set maximum length of output
$

See the module’s documentation for more details.

Optik was written by Greg Ward, with suggestions from the readers of the Getopt
SIG.

Pymalloc: A Specialized Object Allocator

Pymalloc, a specialized object allocator written by Vladimir Marangozov, was a
feature added to Python 2.1. Pymalloc is intended to be faster than the system
malloc() and to have less memory overhead for allocation patterns typical
of Python programs. The allocator uses C’s malloc() function to get large
pools of memory and then fulfills smaller memory requests from these pools.

In 2.1 and 2.2, pymalloc was an experimental feature and wasn’t enabled by
default; you had to explicitly enable it when compiling Python by providing the
--with-pymalloc option to the configure script. In 2.3,
pymalloc has had further enhancements and is now enabled by default; you’ll have
to supply --without-pymalloc to disable it.

This change is transparent to code written in Python; however, pymalloc may
expose bugs in C extensions. Authors of C extension modules should test their
code with pymalloc enabled, because some incorrect code may cause core dumps at
runtime.

There’s one particularly common error that causes problems. There are a number
of memory allocation functions in Python’s C API that have previously just been
aliases for the C library’s malloc() and free(), meaning that if
you accidentally called mismatched functions the error wouldn’t be noticeable.
When the object allocator is enabled, these functions aren’t aliases of
malloc() and free() any more, and calling the wrong function to
free memory may get you a core dump. For example, if memory was allocated using
PyObject_Malloc(), it has to be freed using PyObject_Free(), not
free(). A few modules included with Python fell afoul of this and had to
be fixed; doubtless there are more third-party modules that will have the same
problem.

As part of this change, the confusing multiple interfaces for allocating memory
have been consolidated down into two API families. Memory allocated with one
family must not be manipulated with functions from the other family. There is
one family for allocating chunks of memory and another family of functions
specifically for allocating Python objects.

	To allocate and free an undistinguished chunk of memory use the “raw memory”
family: PyMem_Malloc(), PyMem_Realloc(), and PyMem_Free().

	The “object memory” family is the interface to the pymalloc facility described
above and is biased towards a large number of “small” allocations:
PyObject_Malloc(), PyObject_Realloc(), and PyObject_Free().

	To allocate and free Python objects, use the “object” family
PyObject_New(), PyObject_NewVar(), and PyObject_Del().

Thanks to lots of work by Tim Peters, pymalloc in 2.3 also provides debugging
features to catch memory overwrites and doubled frees in both extension modules
and in the interpreter itself. To enable this support, compile a debugging
version of the Python interpreter by running configure with
--with-pydebug.

To aid extension writers, a header file Misc/pymemcompat.h is
distributed with the source to Python 2.3 that allows Python extensions to use
the 2.3 interfaces to memory allocation while compiling against any version of
Python since 1.5.2. You would copy the file from Python’s source distribution
and bundle it with the source of your extension.

See also

	http://svn.python.org/view/python/trunk/Objects/obmalloc.c

	For the full details of the pymalloc implementation, see the comments at
the top of the file Objects/obmalloc.c in the Python source code.
The above link points to the file within the python.org SVN browser.

Build and C API Changes

Changes to Python’s build process and to the C API include:

	The cycle detection implementation used by the garbage collection has proven
to be stable, so it’s now been made mandatory. You can no longer compile Python
without it, and the --with-cycle-gc switch to configure has
been removed.

	Python can now optionally be built as a shared library
(libpython2.3.so) by supplying --enable-shared when running
Python’s configure script. (Contributed by Ondrej Palkovsky.)

	The DL_EXPORT and DL_IMPORT macros are now deprecated.
Initialization functions for Python extension modules should now be declared
using the new macro PyMODINIT_FUNC, while the Python core will
generally use the PyAPI_FUNC and PyAPI_DATA macros.

	The interpreter can be compiled without any docstrings for the built-in
functions and modules by supplying --without-doc-strings to the
configure script. This makes the Python executable about 10% smaller,
but will also mean that you can’t get help for Python’s built-ins. (Contributed
by Gustavo Niemeyer.)

	The PyArg_NoArgs() macro is now deprecated, and code that uses it
should be changed. For Python 2.2 and later, the method definition table can
specify the METH_NOARGS flag, signalling that there are no arguments,
and the argument checking can then be removed. If compatibility with pre-2.2
versions of Python is important, the code could use PyArg_ParseTuple(args,
"") instead, but this will be slower than using METH_NOARGS.

	PyArg_ParseTuple() accepts new format characters for various sizes of
unsigned integers: B for unsigned char, H for unsigned
short int, I for unsigned int, and K for unsigned
long long.

	A new function, PyObject_DelItemString(mapping, char *key)() was added
as shorthand for PyObject_DelItem(mapping, PyString_New(key)).

	File objects now manage their internal string buffer differently, increasing
it exponentially when needed. This results in the benchmark tests in
Lib/test/test_bufio.py speeding up considerably (from 57 seconds to 1.7
seconds, according to one measurement).

	It’s now possible to define class and static methods for a C extension type by
setting either the METH_CLASS or METH_STATIC flags in a
method’s PyMethodDef structure.

	Python now includes a copy of the Expat XML parser’s source code, removing any
dependence on a system version or local installation of Expat.

	If you dynamically allocate type objects in your extension, you should be
aware of a change in the rules relating to the __module__ and
__name__ attributes. In summary, you will want to ensure the type’s
dictionary contains a '__module__' key; making the module name the part of
the type name leading up to the final period will no longer have the desired
effect. For more detail, read the API reference documentation or the source.

Port-Specific Changes

Support for a port to IBM’s OS/2 using the EMX runtime environment was merged
into the main Python source tree. EMX is a POSIX emulation layer over the OS/2
system APIs. The Python port for EMX tries to support all the POSIX-like
capability exposed by the EMX runtime, and mostly succeeds; fork() and
fcntl() are restricted by the limitations of the underlying emulation
layer. The standard OS/2 port, which uses IBM’s Visual Age compiler, also
gained support for case-sensitive import semantics as part of the integration of
the EMX port into CVS. (Contributed by Andrew MacIntyre.)

On MacOS, most toolbox modules have been weaklinked to improve backward
compatibility. This means that modules will no longer fail to load if a single
routine is missing on the current OS version. Instead calling the missing
routine will raise an exception. (Contributed by Jack Jansen.)

The RPM spec files, found in the Misc/RPM/ directory in the Python
source distribution, were updated for 2.3. (Contributed by Sean Reifschneider.)

Other new platforms now supported by Python include AtheOS
(http://www.atheos.cx/), GNU/Hurd, and OpenVMS.

Other Changes and Fixes

As usual, there were a bunch of other improvements and bugfixes scattered
throughout the source tree. A search through the CVS change logs finds there
were 523 patches applied and 514 bugs fixed between Python 2.2 and 2.3. Both
figures are likely to be underestimates.

Some of the more notable changes are:

	If the PYTHONINSPECT environment variable is set, the Python
interpreter will enter the interactive prompt after running a Python program, as
if Python had been invoked with the -i option. The environment
variable can be set before running the Python interpreter, or it can be set by
the Python program as part of its execution.

	The regrtest.py script now provides a way to allow “all resources
except foo.” A resource name passed to the -u option can now be
prefixed with a hyphen ('-') to mean “remove this resource.” For example,
the option ‘-uall,-bsddb‘ could be used to enable the use of all resources
except bsddb.

	The tools used to build the documentation now work under Cygwin as well as
Unix.

	The SET_LINENO opcode has been removed. Back in the mists of time, this
opcode was needed to produce line numbers in tracebacks and support trace
functions (for, e.g., pdb). Since Python 1.5, the line numbers in
tracebacks have been computed using a different mechanism that works with
“python -O”. For Python 2.3 Michael Hudson implemented a similar scheme to
determine when to call the trace function, removing the need for SET_LINENO
entirely.

It would be difficult to detect any resulting difference from Python code, apart
from a slight speed up when Python is run without -O.

C extensions that access the f_lineno field of frame objects should
instead call PyCode_Addr2Line(f->f_code, f->f_lasti). This will have the
added effect of making the code work as desired under “python -O” in earlier
versions of Python.

A nifty new feature is that trace functions can now assign to the
f_lineno attribute of frame objects, changing the line that will be
executed next. A jump command has been added to the pdb debugger
taking advantage of this new feature. (Implemented by Richie Hindle.)

Porting to Python 2.3

This section lists previously described changes that may require changes to your
code:

	yield is now always a keyword; if it’s used as a variable name in
your code, a different name must be chosen.

	For strings X and Y, X in Y now works if X is more than one
character long.

	The int() type constructor will now return a long integer instead of
raising an OverflowError when a string or floating-point number is too
large to fit into an integer.

	If you have Unicode strings that contain 8-bit characters, you must declare
the file’s encoding (UTF-8, Latin-1, or whatever) by adding a comment to the top
of the file. See section PEP 263: Source Code Encodings for more information.

	Calling Tcl methods through _tkinter no longer returns only strings.
Instead, if Tcl returns other objects those objects are converted to their
Python equivalent, if one exists, or wrapped with a _tkinter.Tcl_Obj
object if no Python equivalent exists.

	Large octal and hex literals such as 0xffffffff now trigger a
FutureWarning. Currently they’re stored as 32-bit numbers and result in a
negative value, but in Python 2.4 they’ll become positive long integers.

There are a few ways to fix this warning. If you really need a positive number,
just add an L to the end of the literal. If you’re trying to get a 32-bit
integer with low bits set and have previously used an expression such as ~(1
<< 31), it’s probably clearest to start with all bits set and clear the
desired upper bits. For example, to clear just the top bit (bit 31), you could
write 0xffffffffL &~(1L<<31).

	You can no longer disable assertions by assigning to __debug__.

	The Distutils setup() function has gained various new keyword arguments
such as depends. Old versions of the Distutils will abort if passed unknown
keywords. A solution is to check for the presence of the new
get_distutil_options() function in your setup.py and only uses the
new keywords with a version of the Distutils that supports them:

from distutils import core

kw = {'sources': 'foo.c', ...}
if hasattr(core, 'get_distutil_options'):
 kw['depends'] = ['foo.h']
ext = Extension(**kw)

	Using None as a variable name will now result in a SyntaxWarning
warning.

	Names of extension types defined by the modules included with Python now
contain the module and a '.' in front of the type name.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Jeff Bauer,
Simon Brunning, Brett Cannon, Michael Chermside, Andrew Dalke, Scott David
Daniels, Fred L. Drake, Jr., David Fraser, Kelly Gerber, Raymond Hettinger,
Michael Hudson, Chris Lambert, Detlef Lannert, Martin von Löwis, Andrew
MacIntyre, Lalo Martins, Chad Netzer, Gustavo Niemeyer, Neal Norwitz, Hans
Nowak, Chris Reedy, Francesco Ricciardi, Vinay Sajip, Neil Schemenauer, Roman
Suzi, Jason Tishler, Just van Rossum.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.2

	Author:	A.M. Kuchling

Introduction

This article explains the new features in Python 2.2.2, released on October 14,
2002. Python 2.2.2 is a bugfix release of Python 2.2, originally released on
December 21, 2001.

Python 2.2 can be thought of as the “cleanup release”. There are some features
such as generators and iterators that are completely new, but most of the
changes, significant and far-reaching though they may be, are aimed at cleaning
up irregularities and dark corners of the language design.

This article doesn’t attempt to provide a complete specification of the new
features, but instead provides a convenient overview. For full details, you
should refer to the documentation for Python 2.2, such as the Python Library
Reference [http://www.python.org/doc/2.2/lib/lib.html] and the Python
Reference Manual [http://www.python.org/doc/2.2/ref/ref.html]. If you want to
understand the complete implementation and design rationale for a change, refer
to the PEP for a particular new feature.

PEPs 252 and 253: Type and Class Changes

The largest and most far-reaching changes in Python 2.2 are to Python’s model of
objects and classes. The changes should be backward compatible, so it’s likely
that your code will continue to run unchanged, but the changes provide some
amazing new capabilities. Before beginning this, the longest and most
complicated section of this article, I’ll provide an overview of the changes and
offer some comments.

A long time ago I wrote a Web page listing flaws in Python’s design. One of the
most significant flaws was that it’s impossible to subclass Python types
implemented in C. In particular, it’s not possible to subclass built-in types,
so you can’t just subclass, say, lists in order to add a single useful method to
them. The UserList module provides a class that supports all of the
methods of lists and that can be subclassed further, but there’s lots of C code
that expects a regular Python list and won’t accept a UserList
instance.

Python 2.2 fixes this, and in the process adds some exciting new capabilities.
A brief summary:

	You can subclass built-in types such as lists and even integers, and your
subclasses should work in every place that requires the original type.

	It’s now possible to define static and class methods, in addition to the
instance methods available in previous versions of Python.

	It’s also possible to automatically call methods on accessing or setting an
instance attribute by using a new mechanism called properties. Many uses
of __getattr__() can be rewritten to use properties instead, making the
resulting code simpler and faster. As a small side benefit, attributes can now
have docstrings, too.

	The list of legal attributes for an instance can be limited to a particular
set using slots, making it possible to safeguard against typos and
perhaps make more optimizations possible in future versions of Python.

Some users have voiced concern about all these changes. Sure, they say, the new
features are neat and lend themselves to all sorts of tricks that weren’t
possible in previous versions of Python, but they also make the language more
complicated. Some people have said that they’ve always recommended Python for
its simplicity, and feel that its simplicity is being lost.

Personally, I think there’s no need to worry. Many of the new features are
quite esoteric, and you can write a lot of Python code without ever needed to be
aware of them. Writing a simple class is no more difficult than it ever was, so
you don’t need to bother learning or teaching them unless they’re actually
needed. Some very complicated tasks that were previously only possible from C
will now be possible in pure Python, and to my mind that’s all for the better.

I’m not going to attempt to cover every single corner case and small change that
were required to make the new features work. Instead this section will paint
only the broad strokes. See section Related Links, “Related Links”, for
further sources of information about Python 2.2’s new object model.

Old and New Classes

First, you should know that Python 2.2 really has two kinds of classes: classic
or old-style classes, and new-style classes. The old-style class model is
exactly the same as the class model in earlier versions of Python. All the new
features described in this section apply only to new-style classes. This
divergence isn’t intended to last forever; eventually old-style classes will be
dropped, possibly in Python 3.0.

So how do you define a new-style class? You do it by subclassing an existing
new-style class. Most of Python’s built-in types, such as integers, lists,
dictionaries, and even files, are new-style classes now. A new-style class
named object, the base class for all built-in types, has also been
added so if no built-in type is suitable, you can just subclass
object:

class C(object):
 def __init__ (self):
 ...
 ...

This means that class statements that don’t have any base classes are
always classic classes in Python 2.2. (Actually you can also change this by
setting a module-level variable named __metaclass__ — see PEP 253 [http://www.python.org/dev/peps/pep-0253]
for the details — but it’s easier to just subclass object.)

The type objects for the built-in types are available as built-ins, named using
a clever trick. Python has always had built-in functions named int(),
float(), and str(). In 2.2, they aren’t functions any more, but
type objects that behave as factories when called.

>>> int
<type 'int'>
>>> int('123')
123

To make the set of types complete, new type objects such as dict() and
file() have been added. Here’s a more interesting example, adding a
lock() method to file objects:

class LockableFile(file):
 def lock (self, operation, length=0, start=0, whence=0):
 import fcntl
 return fcntl.lockf(self.fileno(), operation,
 length, start, whence)

The now-obsolete posixfile module contained a class that emulated all of
a file object’s methods and also added a lock() method, but this class
couldn’t be passed to internal functions that expected a built-in file,
something which is possible with our new LockableFile.

Descriptors

In previous versions of Python, there was no consistent way to discover what
attributes and methods were supported by an object. There were some informal
conventions, such as defining __members__ and __methods__
attributes that were lists of names, but often the author of an extension type
or a class wouldn’t bother to define them. You could fall back on inspecting
the __dict__ of an object, but when class inheritance or an arbitrary
__getattr__() hook were in use this could still be inaccurate.

The one big idea underlying the new class model is that an API for describing
the attributes of an object using descriptors has been formalized.
Descriptors specify the value of an attribute, stating whether it’s a method or
a field. With the descriptor API, static methods and class methods become
possible, as well as more exotic constructs.

Attribute descriptors are objects that live inside class objects, and have a few
attributes of their own:

	__name__ is the attribute’s name.

	__doc__ is the attribute’s docstring.

	__get__(object)() is a method that retrieves the attribute value from
object.

	__set__(object, value)() sets the attribute on object to value.

	__delete__(object, value)() deletes the value attribute of object.

For example, when you write obj.x, the steps that Python actually performs
are:

descriptor = obj.__class__.x
descriptor.__get__(obj)

For methods, descriptor.__get__() returns a temporary object that’s
callable, and wraps up the instance and the method to be called on it. This is
also why static methods and class methods are now possible; they have
descriptors that wrap up just the method, or the method and the class. As a
brief explanation of these new kinds of methods, static methods aren’t passed
the instance, and therefore resemble regular functions. Class methods are
passed the class of the object, but not the object itself. Static and class
methods are defined like this:

class C(object):
 def f(arg1, arg2):
 ...
 f = staticmethod(f)

 def g(cls, arg1, arg2):
 ...
 g = classmethod(g)

The staticmethod() function takes the function f(), and returns it
wrapped up in a descriptor so it can be stored in the class object. You might
expect there to be special syntax for creating such methods (def static f,
defstatic f(), or something like that) but no such syntax has been defined
yet; that’s been left for future versions of Python.

More new features, such as slots and properties, are also implemented as new
kinds of descriptors, and it’s not difficult to write a descriptor class that
does something novel. For example, it would be possible to write a descriptor
class that made it possible to write Eiffel-style preconditions and
postconditions for a method. A class that used this feature might be defined
like this:

from eiffel import eiffelmethod

class C(object):
 def f(self, arg1, arg2):
 # The actual function
 ...
 def pre_f(self):
 # Check preconditions
 ...
 def post_f(self):
 # Check postconditions
 ...

 f = eiffelmethod(f, pre_f, post_f)

Note that a person using the new eiffelmethod() doesn’t have to understand
anything about descriptors. This is why I think the new features don’t increase
the basic complexity of the language. There will be a few wizards who need to
know about it in order to write eiffelmethod() or the ZODB or whatever,
but most users will just write code on top of the resulting libraries and ignore
the implementation details.

Multiple Inheritance: The Diamond Rule

Multiple inheritance has also been made more useful through changing the rules
under which names are resolved. Consider this set of classes (diagram taken
from PEP 253 [http://www.python.org/dev/peps/pep-0253] by Guido van Rossum):

 class A:
 ^ ^ def save(self): ...
 / \
 / \
 / \
 / \
class B class C:
 ^ ^ def save(self): ...
 \ /
 \ /
 \ /
 \ /
 class D

The lookup rule for classic classes is simple but not very smart; the base
classes are searched depth-first, going from left to right. A reference to
D.save() will search the classes D, B, and then
A, where save() would be found and returned. C.save()
would never be found at all. This is bad, because if C‘s save()
method is saving some internal state specific to C, not calling it will
result in that state never getting saved.

New-style classes follow a different algorithm that’s a bit more complicated to
explain, but does the right thing in this situation. (Note that Python 2.3
changes this algorithm to one that produces the same results in most cases, but
produces more useful results for really complicated inheritance graphs.)

	List all the base classes, following the classic lookup rule and include a
class multiple times if it’s visited repeatedly. In the above example, the list
of visited classes is [D, B, A, C,
A].

	Scan the list for duplicated classes. If any are found, remove all but one
occurrence, leaving the last one in the list. In the above example, the list
becomes [D, B, C, A] after dropping
duplicates.

Following this rule, referring to D.save() will return C.save(),
which is the behaviour we’re after. This lookup rule is the same as the one
followed by Common Lisp. A new built-in function, super(), provides a way
to get at a class’s superclasses without having to reimplement Python’s
algorithm. The most commonly used form will be super(class, obj)(), which
returns a bound superclass object (not the actual class object). This form
will be used in methods to call a method in the superclass; for example,
D‘s save() method would look like this:

class D (B,C):
 def save (self):
 # Call superclass .save()
 super(D, self).save()
 # Save D's private information here
 ...

super() can also return unbound superclass objects when called as
super(class)() or super(class1, class2)(), but this probably won’t
often be useful.

Attribute Access

A fair number of sophisticated Python classes define hooks for attribute access
using __getattr__(); most commonly this is done for convenience, to make
code more readable by automatically mapping an attribute access such as
obj.parent into a method call such as obj.get_parent. Python 2.2 adds
some new ways of controlling attribute access.

First, __getattr__(attr_name)() is still supported by new-style classes,
and nothing about it has changed. As before, it will be called when an attempt
is made to access obj.foo and no attribute named foo is found in the
instance’s dictionary.

New-style classes also support a new method,
__getattribute__(attr_name)(). The difference between the two methods is
that __getattribute__() is always called whenever any attribute is
accessed, while the old __getattr__() is only called if foo isn’t
found in the instance’s dictionary.

However, Python 2.2’s support for properties will often be a simpler way
to trap attribute references. Writing a __getattr__() method is
complicated because to avoid recursion you can’t use regular attribute accesses
inside them, and instead have to mess around with the contents of
__dict__. __getattr__() methods also end up being called by Python
when it checks for other methods such as __repr__() or __coerce__(),
and so have to be written with this in mind. Finally, calling a function on
every attribute access results in a sizable performance loss.

property is a new built-in type that packages up three functions that
get, set, or delete an attribute, and a docstring. For example, if you want to
define a size attribute that’s computed, but also settable, you could
write:

class C(object):
 def get_size (self):
 result = ... computation ...
 return result
 def set_size (self, size):
 ... compute something based on the size
 and set internal state appropriately ...

 # Define a property. The 'delete this attribute'
 # method is defined as None, so the attribute
 # can't be deleted.
 size = property(get_size, set_size,
 None,
 "Storage size of this instance")

That is certainly clearer and easier to write than a pair of
__getattr__()/__setattr__() methods that check for the size
attribute and handle it specially while retrieving all other attributes from the
instance’s __dict__. Accesses to size are also the only ones
which have to perform the work of calling a function, so references to other
attributes run at their usual speed.

Finally, it’s possible to constrain the list of attributes that can be
referenced on an object using the new __slots__ class attribute. Python
objects are usually very dynamic; at any time it’s possible to define a new
attribute on an instance by just doing obj.new_attr=1. A new-style class
can define a class attribute named __slots__ to limit the legal
attributes to a particular set of names. An example will make this clear:

>>> class C(object):
... __slots__ = ('template', 'name')
...
>>> obj = C()
>>> print obj.template
None
>>> obj.template = 'Test'
>>> print obj.template
Test
>>> obj.newattr = None
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'C' object has no attribute 'newattr'

Note how you get an AttributeError on the attempt to assign to an
attribute not listed in __slots__.

Related Links

This section has just been a quick overview of the new features, giving enough
of an explanation to start you programming, but many details have been
simplified or ignored. Where should you go to get a more complete picture?

http://www.python.org/2.2/descrintro.html is a lengthy tutorial introduction to
the descriptor features, written by Guido van Rossum. If my description has
whetted your appetite, go read this tutorial next, because it goes into much
more detail about the new features while still remaining quite easy to read.

Next, there are two relevant PEPs, PEP 252 [http://www.python.org/dev/peps/pep-0252] and PEP 253 [http://www.python.org/dev/peps/pep-0253]. PEP 252 [http://www.python.org/dev/peps/pep-0252] is
titled “Making Types Look More Like Classes”, and covers the descriptor API.
PEP 253 [http://www.python.org/dev/peps/pep-0253] is titled “Subtyping Built-in Types”, and describes the changes to
type objects that make it possible to subtype built-in objects. PEP 253 [http://www.python.org/dev/peps/pep-0253] is
the more complicated PEP of the two, and at a few points the necessary
explanations of types and meta-types may cause your head to explode. Both PEPs
were written and implemented by Guido van Rossum, with substantial assistance
from the rest of the Zope Corp. team.

Finally, there’s the ultimate authority: the source code. Most of the machinery
for the type handling is in Objects/typeobject.c, but you should only
resort to it after all other avenues have been exhausted, including posting a
question to python-list or python-dev.

PEP 234: Iterators

Another significant addition to 2.2 is an iteration interface at both the C and
Python levels. Objects can define how they can be looped over by callers.

In Python versions up to 2.1, the usual way to make for item in obj work is
to define a __getitem__() method that looks something like this:

def __getitem__(self, index):
 return <next item>

__getitem__() is more properly used to define an indexing operation on an
object so that you can write obj[5] to retrieve the sixth element. It’s a
bit misleading when you’re using this only to support for loops.
Consider some file-like object that wants to be looped over; the index
parameter is essentially meaningless, as the class probably assumes that a
series of __getitem__() calls will be made with index incrementing by
one each time. In other words, the presence of the __getitem__() method
doesn’t mean that using file[5] to randomly access the sixth element will
work, though it really should.

In Python 2.2, iteration can be implemented separately, and __getitem__()
methods can be limited to classes that really do support random access. The
basic idea of iterators is simple. A new built-in function, iter(obj)()
or iter(C, sentinel), is used to get an iterator. iter(obj)() returns
an iterator for the object obj, while iter(C, sentinel) returns an
iterator that will invoke the callable object C until it returns sentinel to
signal that the iterator is done.

Python classes can define an __iter__() method, which should create and
return a new iterator for the object; if the object is its own iterator, this
method can just return self. In particular, iterators will usually be their
own iterators. Extension types implemented in C can implement a tp_iter
function in order to return an iterator, and extension types that want to behave
as iterators can define a tp_iternext function.

So, after all this, what do iterators actually do? They have one required
method, next(), which takes no arguments and returns the next value. When
there are no more values to be returned, calling next() should raise the
StopIteration exception.

>>> L = [1,2,3]
>>> i = iter(L)
>>> print i
<iterator object at 0x8116870>
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

In 2.2, Python’s for statement no longer expects a sequence; it
expects something for which iter() will return an iterator. For backward
compatibility and convenience, an iterator is automatically constructed for
sequences that don’t implement __iter__() or a tp_iter slot, so
for i in [1,2,3] will still work. Wherever the Python interpreter loops
over a sequence, it’s been changed to use the iterator protocol. This means you
can do things like this:

>>> L = [1,2,3]
>>> i = iter(L)
>>> a,b,c = i
>>> a,b,c
(1, 2, 3)

Iterator support has been added to some of Python’s basic types. Calling
iter() on a dictionary will return an iterator which loops over its keys:

>>> m = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6,
... 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12}
>>> for key in m: print key, m[key]
...
Mar 3
Feb 2
Aug 8
Sep 9
May 5
Jun 6
Jul 7
Jan 1
Apr 4
Nov 11
Dec 12
Oct 10

That’s just the default behaviour. If you want to iterate over keys, values, or
key/value pairs, you can explicitly call the iterkeys(),
itervalues(), or iteritems() methods to get an appropriate iterator.
In a minor related change, the in operator now works on dictionaries,
so key in dict is now equivalent to dict.has_key(key).

Files also provide an iterator, which calls the readline() method until
there are no more lines in the file. This means you can now read each line of a
file using code like this:

for line in file:
 # do something for each line
 ...

Note that you can only go forward in an iterator; there’s no way to get the
previous element, reset the iterator, or make a copy of it. An iterator object
could provide such additional capabilities, but the iterator protocol only
requires a next() method.

See also

	PEP 234 [http://www.python.org/dev/peps/pep-0234] - Iterators

	Written by Ka-Ping Yee and GvR; implemented by the Python Labs crew, mostly by
GvR and Tim Peters.

PEP 255: Simple Generators

Generators are another new feature, one that interacts with the introduction of
iterators.

You’re doubtless familiar with how function calls work in Python or C. When you
call a function, it gets a private namespace where its local variables are
created. When the function reaches a return statement, the local
variables are destroyed and the resulting value is returned to the caller. A
later call to the same function will get a fresh new set of local variables.
But, what if the local variables weren’t thrown away on exiting a function?
What if you could later resume the function where it left off? This is what
generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

A new keyword, yield, was introduced for generators. Any function
containing a yield statement is a generator function; this is
detected by Python’s bytecode compiler which compiles the function specially as
a result. Because a new keyword was introduced, generators must be explicitly
enabled in a module by including a from __future__ import generators
statement near the top of the module’s source code. In Python 2.3 this
statement will become unnecessary.

When you call a generator function, it doesn’t return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield statement, the generator outputs the value of i,
similar to a return statement. The big difference between
yield and a return statement is that on reaching a
yield the generator’s state of execution is suspended and local
variables are preserved. On the next call to the generator’s next() method,
the function will resume executing immediately after the yield
statement. (For complicated reasons, the yield statement isn’t
allowed inside the try block of a try...finally statement; read PEP 255 [http://www.python.org/dev/peps/pep-0255] for a full explanation of the
interaction between yield and exceptions.)

Here’s a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used
without a value, and signals the end of the procession of values; afterwards the
generator cannot return any further values. return with a value, such
as return 5, is a syntax error inside a generator function. The end of the
generator’s results can also be indicated by raising StopIteration
manually, or by just letting the flow of execution fall off the bottom of the
function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
would be much messier. Lib/test/test_generators.py contains a number of
more interesting examples. The simplest one implements an in-order traversal of
a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x
 yield t.label
 for x in inorder(t.right):
 yield x

Two other examples in Lib/test/test_generators.py produce solutions for
the N-Queens problem (placing N queens on an NxN chess board so that no
queen threatens another) and the Knight’s Tour (a route that takes a knight to
every square of an NxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon
(http://www.cs.arizona.edu/icon/), where the idea of generators is central. In
Icon, every expression and function call behaves like a generator. One example
from “An Overview of the Icon Programming Language” at
http://www.cs.arizona.edu/icon/docs/ipd266.htm gives an idea of what this looks
like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon the find() function returns the indexes at which the substring
“or” is found: 3, 23, 33. In the if statement, i is first
assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon
retries it with the second value of 23. 23 is greater than 5, so the comparison
now succeeds, and the code prints the value 23 to the screen.

Python doesn’t go nearly as far as Icon in adopting generators as a central
concept. Generators are considered a new part of the core Python language, but
learning or using them isn’t compulsory; if they don’t solve any problems that
you have, feel free to ignore them. One novel feature of Python’s interface as
compared to Icon’s is that a generator’s state is represented as a concrete
object (the iterator) that can be passed around to other functions or stored in
a data structure.

See also

	PEP 255 [http://www.python.org/dev/peps/pep-0255] - Simple Generators

	Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly
by Neil Schemenauer and Tim Peters, with other fixes from the Python Labs crew.

PEP 237: Unifying Long Integers and Integers

In recent versions, the distinction between regular integers, which are 32-bit
values on most machines, and long integers, which can be of arbitrary size, was
becoming an annoyance. For example, on platforms that support files larger than
2**32 bytes, the tell() method of file objects has to return a long
integer. However, there were various bits of Python that expected plain integers
and would raise an error if a long integer was provided instead. For example,
in Python 1.5, only regular integers could be used as a slice index, and
'abc'[1L:] would raise a TypeError exception with the message ‘slice
index must be int’.

Python 2.2 will shift values from short to long integers as required. The ‘L’
suffix is no longer needed to indicate a long integer literal, as now the
compiler will choose the appropriate type. (Using the ‘L’ suffix will be
discouraged in future 2.x versions of Python, triggering a warning in Python
2.4, and probably dropped in Python 3.0.) Many operations that used to raise an
OverflowError will now return a long integer as their result. For
example:

>>> 1234567890123
1234567890123L
>>> 2 ** 64
18446744073709551616L

In most cases, integers and long integers will now be treated identically. You
can still distinguish them with the type() built-in function, but that’s
rarely needed.

See also

	PEP 237 [http://www.python.org/dev/peps/pep-0237] - Unifying Long Integers and Integers

	Written by Moshe Zadka and Guido van Rossum. Implemented mostly by Guido van
Rossum.

PEP 238: Changing the Division Operator

The most controversial change in Python 2.2 heralds the start of an effort to
fix an old design flaw that’s been in Python from the beginning. Currently
Python’s division operator, /, behaves like C’s division operator when
presented with two integer arguments: it returns an integer result that’s
truncated down when there would be a fractional part. For example, 3/2 is
1, not 1.5, and (-1)/2 is -1, not -0.5. This means that the results of
division can vary unexpectedly depending on the type of the two operands and
because Python is dynamically typed, it can be difficult to determine the
possible types of the operands.

(The controversy is over whether this is really a design flaw, and whether
it’s worth breaking existing code to fix this. It’s caused endless discussions
on python-dev, and in July 2001 erupted into an storm of acidly sarcastic
postings on comp.lang.python. I won’t argue for either side here
and will stick to describing what’s implemented in 2.2. Read PEP 238 [http://www.python.org/dev/peps/pep-0238] for a
summary of arguments and counter-arguments.)

Because this change might break code, it’s being introduced very gradually.
Python 2.2 begins the transition, but the switch won’t be complete until Python
3.0.

First, I’ll borrow some terminology from PEP 238 [http://www.python.org/dev/peps/pep-0238]. “True division” is the
division that most non-programmers are familiar with: 3/2 is 1.5, 1/4 is 0.25,
and so forth. “Floor division” is what Python’s / operator currently does
when given integer operands; the result is the floor of the value returned by
true division. “Classic division” is the current mixed behaviour of /; it
returns the result of floor division when the operands are integers, and returns
the result of true division when one of the operands is a floating-point number.

Here are the changes 2.2 introduces:

	A new operator, //, is the floor division operator. (Yes, we know it looks
like C++’s comment symbol.) // always performs floor division no matter
what the types of its operands are, so 1 // 2 is 0 and 1.0 // 2.0 is
also 0.0.

// is always available in Python 2.2; you don’t need to enable it using a
__future__ statement.

	By including a from __future__ import division in a module, the /
operator will be changed to return the result of true division, so 1/2 is
0.5. Without the __future__ statement, / still means classic division.
The default meaning of / will not change until Python 3.0.

	Classes can define methods called __truediv__() and __floordiv__()
to overload the two division operators. At the C level, there are also slots in
the PyNumberMethods structure so extension types can define the two
operators.

	Python 2.2 supports some command-line arguments for testing whether code will
works with the changed division semantics. Running python with -Q
warn will cause a warning to be issued whenever division is applied to two
integers. You can use this to find code that’s affected by the change and fix
it. By default, Python 2.2 will simply perform classic division without a
warning; the warning will be turned on by default in Python 2.3.

See also

	PEP 238 [http://www.python.org/dev/peps/pep-0238] - Changing the Division Operator

	Written by Moshe Zadka and Guido van Rossum. Implemented by Guido van Rossum..

Unicode Changes

Python’s Unicode support has been enhanced a bit in 2.2. Unicode strings are
usually stored as UCS-2, as 16-bit unsigned integers. Python 2.2 can also be
compiled to use UCS-4, 32-bit unsigned integers, as its internal encoding by
supplying --enable-unicode=ucs4 to the configure script. (It’s also
possible to specify --disable-unicode to completely disable Unicode
support.)

When built to use UCS-4 (a “wide Python”), the interpreter can natively handle
Unicode characters from U+000000 to U+110000, so the range of legal values for
the unichr() function is expanded accordingly. Using an interpreter
compiled to use UCS-2 (a “narrow Python”), values greater than 65535 will still
cause unichr() to raise a ValueError exception. This is all
described in PEP 261 [http://www.python.org/dev/peps/pep-0261], “Support for ‘wide’ Unicode characters”; consult it for
further details.

Another change is simpler to explain. Since their introduction, Unicode strings
have supported an encode() method to convert the string to a selected
encoding such as UTF-8 or Latin-1. A symmetric decode([*encoding*])()
method has been added to 8-bit strings (though not to Unicode strings) in 2.2.
decode() assumes that the string is in the specified encoding and decodes
it, returning whatever is returned by the codec.

Using this new feature, codecs have been added for tasks not directly related to
Unicode. For example, codecs have been added for uu-encoding, MIME’s base64
encoding, and compression with the zlib module:

>>> s = """Here is a lengthy piece of redundant, overly verbose,
... and repetitive text.
... """
>>> data = s.encode('zlib')
>>> data
'x\x9c\r\xc9\xc1\r\x80 \x10\x04\xc0?Ul...'
>>> data.decode('zlib')
'Here is a lengthy piece of redundant, overly verbose,\nand repetitive text.\n'
>>> print s.encode('uu')
begin 666 <data>
M2&5R92!I<R!A(&QE;F=T:'D@<&EE8V4@;V8@<F5D=6YD86YT+"!O=F5R;'D@
>=F5R8F]S92P*86YD(')E<&5T:71I=F4@=&5X="X*

end
>>> "sheesh".encode('rot-13')
'furrfu'

To convert a class instance to Unicode, a __unicode__() method can be
defined by a class, analogous to __str__().

encode(), decode(), and __unicode__() were implemented by
Marc-André Lemburg. The changes to support using UCS-4 internally were
implemented by Fredrik Lundh and Martin von Löwis.

See also

	PEP 261 [http://www.python.org/dev/peps/pep-0261] - Support for ‘wide’ Unicode characters

	Written by Paul Prescod.

PEP 227: Nested Scopes

In Python 2.1, statically nested scopes were added as an optional feature, to be
enabled by a from __future__ import nested_scopes directive. In 2.2 nested
scopes no longer need to be specially enabled, and are now always present. The
rest of this section is a copy of the description of nested scopes from my
“What’s New in Python 2.1” document; if you read it when 2.1 came out, you can
skip the rest of this section.

The largest change introduced in Python 2.1, and made complete in 2.2, is to
Python’s scoping rules. In Python 2.0, at any given time there are at most
three namespaces used to look up variable names: local, module-level, and the
built-in namespace. This often surprised people because it didn’t match their
intuitive expectations. For example, a nested recursive function definition
doesn’t work:

def f():
 ...
 def g(value):
 ...
 return g(value-1) + 1
 ...

The function g() will always raise a NameError exception, because
the binding of the name g isn’t in either its local namespace or in the
module-level namespace. This isn’t much of a problem in practice (how often do
you recursively define interior functions like this?), but this also made using
the lambda statement clumsier, and this was a problem in practice.
In code which uses lambda you can often find local variables being
copied by passing them as the default values of arguments.

def find(self, name):
 "Return list of any entries equal to 'name'"
 L = filter(lambda x, name=name: x == name,
 self.list_attribute)
 return L

The readability of Python code written in a strongly functional style suffers
greatly as a result.

The most significant change to Python 2.2 is that static scoping has been added
to the language to fix this problem. As a first effect, the name=name
default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment,
or the def, class, or import statements),
references to the variable will be looked up in the local namespace of the
enclosing scope. A more detailed explanation of the rules, and a dissection of
the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same
variable name is used both at the module level and as a local variable within a
function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first
place.

One side effect of the change is that the from module import * and
exec statements have been made illegal inside a function scope under
certain conditions. The Python reference manual has said all along that from
module import * is only legal at the top level of a module, but the CPython
interpreter has never enforced this before. As part of the implementation of
nested scopes, the compiler which turns Python source into bytecodes has to
generate different code to access variables in a containing scope. from
module import * and exec make it impossible for the compiler to
figure this out, because they add names to the local namespace that are
unknowable at compile time. Therefore, if a function contains function
definitions or lambda expressions with free variables, the compiler
will flag this by raising a SyntaxError exception.

To make the preceding explanation a bit clearer, here’s an example:

x = 1
def f():
 # The next line is a syntax error
 exec 'x=2'
 def g():
 return x

Line 4 containing the exec statement is a syntax error, since
exec would define a new local variable named x whose value should
be accessed by g().

This shouldn’t be much of a limitation, since exec is rarely used in
most Python code (and when it is used, it’s often a sign of a poor design
anyway).

See also

	PEP 227 [http://www.python.org/dev/peps/pep-0227] - Statically Nested Scopes

	Written and implemented by Jeremy Hylton.

New and Improved Modules

	The xmlrpclib module was contributed to the standard library by Fredrik
Lundh, providing support for writing XML-RPC clients. XML-RPC is a simple
remote procedure call protocol built on top of HTTP and XML. For example, the
following snippet retrieves a list of RSS channels from the O’Reilly Network,
and then lists the recent headlines for one channel:

import xmlrpclib
s = xmlrpclib.Server(
 'http://www.oreillynet.com/meerkat/xml-rpc/server.php')
channels = s.meerkat.getChannels()
channels is a list of dictionaries, like this:
[{'id': 4, 'title': 'Freshmeat Daily News'}
{'id': 190, 'title': '32Bits Online'},
{'id': 4549, 'title': '3DGamers'}, ...]

Get the items for one channel
items = s.meerkat.getItems({'channel': 4})

'items' is another list of dictionaries, like this:
[{'link': 'http://freshmeat.net/releases/52719/',
'description': 'A utility which converts HTML to XSL FO.',
'title': 'html2fo 0.3 (Default)'}, ...]

The SimpleXMLRPCServer module makes it easy to create straightforward
XML-RPC servers. See http://www.xmlrpc.com/ for more information about XML-RPC.

	The new hmac module implements the HMAC algorithm described by
RFC 2104 [http://tools.ietf.org/html/rfc2104.html]. (Contributed by Gerhard Häring.)

	Several functions that originally returned lengthy tuples now return pseudo-
sequences that still behave like tuples but also have mnemonic attributes such
as memberst_mtime or tm_year. The enhanced functions include
stat(), fstat(), statvfs(), and fstatvfs() in the
os module, and localtime(), gmtime(), and strptime() in
the time module.

For example, to obtain a file’s size using the old tuples, you’d end up writing
something like file_size = os.stat(filename)[stat.ST_SIZE], but now this can
be written more clearly as file_size = os.stat(filename).st_size.

The original patch for this feature was contributed by Nick Mathewson.

	The Python profiler has been extensively reworked and various errors in its
output have been corrected. (Contributed by Fred L. Drake, Jr. and Tim Peters.)

	The socket module can be compiled to support IPv6; specify the
--enable-ipv6 option to Python’s configure script. (Contributed by
Jun-ichiro “itojun” Hagino.)

	Two new format characters were added to the struct module for 64-bit
integers on platforms that support the C long long type. q is for
a signed 64-bit integer, and Q is for an unsigned one. The value is
returned in Python’s long integer type. (Contributed by Tim Peters.)

	In the interpreter’s interactive mode, there’s a new built-in function
help() that uses the pydoc module introduced in Python 2.1 to
provide interactive help. help(object) displays any available help text
about object. help() with no argument puts you in an online help
utility, where you can enter the names of functions, classes, or modules to read
their help text. (Contributed by Guido van Rossum, using Ka-Ping Yee’s
pydoc module.)

	Various bugfixes and performance improvements have been made to the SRE engine
underlying the re module. For example, the re.sub() and
re.split() functions have been rewritten in C. Another contributed patch
speeds up certain Unicode character ranges by a factor of two, and a new
finditer() method that returns an iterator over all the non-overlapping
matches in a given string. (SRE is maintained by Fredrik Lundh. The
BIGCHARSET patch was contributed by Martin von Löwis.)

	The smtplib module now supports RFC 2487 [http://tools.ietf.org/html/rfc2487.html], “Secure SMTP over TLS”, so
it’s now possible to encrypt the SMTP traffic between a Python program and the
mail transport agent being handed a message. smtplib also supports SMTP
authentication. (Contributed by Gerhard Häring.)

	The imaplib module, maintained by Piers Lauder, has support for several
new extensions: the NAMESPACE extension defined in RFC 2342 [http://tools.ietf.org/html/rfc2342.html], SORT, GETACL and
SETACL. (Contributed by Anthony Baxter and Michel Pelletier.)

	The rfc822 module’s parsing of email addresses is now compliant with
RFC 2822 [http://tools.ietf.org/html/rfc2822.html], an update to RFC 822 [http://tools.ietf.org/html/rfc822.html]. (The module’s name is not going to be
changed to rfc2822.) A new package, email, has also been added for
parsing and generating e-mail messages. (Contributed by Barry Warsaw, and
arising out of his work on Mailman.)

	The difflib module now contains a new Differ class for
producing human-readable lists of changes (a “delta”) between two sequences of
lines of text. There are also two generator functions, ndiff() and
restore(), which respectively return a delta from two sequences, or one of
the original sequences from a delta. (Grunt work contributed by David Goodger,
from ndiff.py code by Tim Peters who then did the generatorization.)

	New constants ascii_letters, ascii_lowercase, and
ascii_uppercase were added to the string module. There were
several modules in the standard library that used string.letters to
mean the ranges A-Za-z, but that assumption is incorrect when locales are in
use, because string.letters varies depending on the set of legal
characters defined by the current locale. The buggy modules have all been fixed
to use ascii_letters instead. (Reported by an unknown person; fixed by
Fred L. Drake, Jr.)

	The mimetypes module now makes it easier to use alternative MIME-type
databases by the addition of a MimeTypes class, which takes a list of
filenames to be parsed. (Contributed by Fred L. Drake, Jr.)

	A Timer class was added to the threading module that allows
scheduling an activity to happen at some future time. (Contributed by Itamar
Shtull-Trauring.)

Interpreter Changes and Fixes

Some of the changes only affect people who deal with the Python interpreter at
the C level because they’re writing Python extension modules, embedding the
interpreter, or just hacking on the interpreter itself. If you only write Python
code, none of the changes described here will affect you very much.

	Profiling and tracing functions can now be implemented in C, which can operate
at much higher speeds than Python-based functions and should reduce the overhead
of profiling and tracing. This will be of interest to authors of development
environments for Python. Two new C functions were added to Python’s API,
PyEval_SetProfile() and PyEval_SetTrace(). The existing
sys.setprofile() and sys.settrace() functions still exist, and have
simply been changed to use the new C-level interface. (Contributed by Fred L.
Drake, Jr.)

	Another low-level API, primarily of interest to implementors of Python
debuggers and development tools, was added. PyInterpreterState_Head() and
PyInterpreterState_Next() let a caller walk through all the existing
interpreter objects; PyInterpreterState_ThreadHead() and
PyThreadState_Next() allow looping over all the thread states for a given
interpreter. (Contributed by David Beazley.)

	The C-level interface to the garbage collector has been changed to make it
easier to write extension types that support garbage collection and to debug
misuses of the functions. Various functions have slightly different semantics,
so a bunch of functions had to be renamed. Extensions that use the old API will
still compile but will not participate in garbage collection, so updating them
for 2.2 should be considered fairly high priority.

To upgrade an extension module to the new API, perform the following steps:

	Rename Py_TPFLAGS_GC() to PyTPFLAGS_HAVE_GC().

	
	Use PyObject_GC_New() or PyObject_GC_NewVar() to allocate

	objects, and PyObject_GC_Del() to deallocate them.

	
	Rename PyObject_GC_Init() to PyObject_GC_Track() and

	PyObject_GC_Fini() to PyObject_GC_UnTrack().

	Remove PyGC_HEAD_SIZE() from object size calculations.

	Remove calls to PyObject_AS_GC() and PyObject_FROM_GC().

	A new et format sequence was added to PyArg_ParseTuple(); et
takes both a parameter and an encoding name, and converts the parameter to the
given encoding if the parameter turns out to be a Unicode string, or leaves it
alone if it’s an 8-bit string, assuming it to already be in the desired
encoding. This differs from the es format character, which assumes that
8-bit strings are in Python’s default ASCII encoding and converts them to the
specified new encoding. (Contributed by M.-A. Lemburg, and used for the MBCS
support on Windows described in the following section.)

	A different argument parsing function, PyArg_UnpackTuple(), has been
added that’s simpler and presumably faster. Instead of specifying a format
string, the caller simply gives the minimum and maximum number of arguments
expected, and a set of pointers to PyObject* variables that will be
filled in with argument values.

	Two new flags METH_NOARGS and METH_O are available in method
definition tables to simplify implementation of methods with no arguments or a
single untyped argument. Calling such methods is more efficient than calling a
corresponding method that uses METH_VARARGS. Also, the old
METH_OLDARGS style of writing C methods is now officially deprecated.

	Two new wrapper functions, PyOS_snprintf() and PyOS_vsnprintf()
were added to provide cross-platform implementations for the relatively new
snprintf() and vsnprintf() C lib APIs. In contrast to the standard
sprintf() and vsprintf() functions, the Python versions check the
bounds of the buffer used to protect against buffer overruns. (Contributed by
M.-A. Lemburg.)

	The _PyTuple_Resize() function has lost an unused parameter, so now it
takes 2 parameters instead of 3. The third argument was never used, and can
simply be discarded when porting code from earlier versions to Python 2.2.

Other Changes and Fixes

As usual there were a bunch of other improvements and bugfixes scattered
throughout the source tree. A search through the CVS change logs finds there
were 527 patches applied and 683 bugs fixed between Python 2.1 and 2.2; 2.2.1
applied 139 patches and fixed 143 bugs; 2.2.2 applied 106 patches and fixed 82
bugs. These figures are likely to be underestimates.

Some of the more notable changes are:

	The code for the MacOS port for Python, maintained by Jack Jansen, is now kept
in the main Python CVS tree, and many changes have been made to support MacOS X.

The most significant change is the ability to build Python as a framework,
enabled by supplying the --enable-framework option to the configure
script when compiling Python. According to Jack Jansen, “This installs a self-
contained Python installation plus the OS X framework “glue” into
/Library/Frameworks/Python.framework (or another location of choice).
For now there is little immediate added benefit to this (actually, there is the
disadvantage that you have to change your PATH to be able to find Python), but
it is the basis for creating a full-blown Python application, porting the
MacPython IDE, possibly using Python as a standard OSA scripting language and
much more.”

Most of the MacPython toolbox modules, which interface to MacOS APIs such as
windowing, QuickTime, scripting, etc. have been ported to OS X, but they’ve been
left commented out in setup.py. People who want to experiment with
these modules can uncomment them manually.

	Keyword arguments passed to built-in functions that don’t take them now cause a
TypeError exception to be raised, with the message “function takes no
keyword arguments”.

	Weak references, added in Python 2.1 as an extension module, are now part of
the core because they’re used in the implementation of new-style classes. The
ReferenceError exception has therefore moved from the weakref
module to become a built-in exception.

	A new script, Tools/scripts/cleanfuture.py by Tim Peters,
automatically removes obsolete __future__ statements from Python source
code.

	An additional flags argument has been added to the built-in function
compile(), so the behaviour of __future__ statements can now be
correctly observed in simulated shells, such as those presented by IDLE and
other development environments. This is described in PEP 264 [http://www.python.org/dev/peps/pep-0264]. (Contributed
by Michael Hudson.)

	The new license introduced with Python 1.6 wasn’t GPL-compatible. This is
fixed by some minor textual changes to the 2.2 license, so it’s now legal to
embed Python inside a GPLed program again. Note that Python itself is not
GPLed, but instead is under a license that’s essentially equivalent to the BSD
license, same as it always was. The license changes were also applied to the
Python 2.0.1 and 2.1.1 releases.

	When presented with a Unicode filename on Windows, Python will now convert it
to an MBCS encoded string, as used by the Microsoft file APIs. As MBCS is
explicitly used by the file APIs, Python’s choice of ASCII as the default
encoding turns out to be an annoyance. On Unix, the locale’s character set is
used if locale.nl_langinfo(CODESET)() is available. (Windows support was
contributed by Mark Hammond with assistance from Marc-André Lemburg. Unix
support was added by Martin von Löwis.)

	Large file support is now enabled on Windows. (Contributed by Tim Peters.)

	The Tools/scripts/ftpmirror.py script now parses a .netrc
file, if you have one. (Contributed by Mike Romberg.)

	Some features of the object returned by the xrange() function are now
deprecated, and trigger warnings when they’re accessed; they’ll disappear in
Python 2.3. xrange objects tried to pretend they were full sequence
types by supporting slicing, sequence multiplication, and the in
operator, but these features were rarely used and therefore buggy. The
tolist() method and the start, stop, and step
attributes are also being deprecated. At the C level, the fourth argument to
the PyRange_New() function, repeat, has also been deprecated.

	There were a bunch of patches to the dictionary implementation, mostly to fix
potential core dumps if a dictionary contains objects that sneakily changed
their hash value, or mutated the dictionary they were contained in. For a while
python-dev fell into a gentle rhythm of Michael Hudson finding a case that
dumped core, Tim Peters fixing the bug, Michael finding another case, and round
and round it went.

	On Windows, Python can now be compiled with Borland C thanks to a number of
patches contributed by Stephen Hansen, though the result isn’t fully functional
yet. (But this is progress...)

	Another Windows enhancement: Wise Solutions generously offered PythonLabs use
of their InstallerMaster 8.1 system. Earlier PythonLabs Windows installers used
Wise 5.0a, which was beginning to show its age. (Packaged up by Tim Peters.)

	Files ending in .pyw can now be imported on Windows. .pyw is a
Windows-only thing, used to indicate that a script needs to be run using
PYTHONW.EXE instead of PYTHON.EXE in order to prevent a DOS console from popping
up to display the output. This patch makes it possible to import such scripts,
in case they’re also usable as modules. (Implemented by David Bolen.)

	On platforms where Python uses the C dlopen() function to load
extension modules, it’s now possible to set the flags used by dlopen()
using the sys.getdlopenflags() and sys.setdlopenflags() functions.
(Contributed by Bram Stolk.)

	The pow() built-in function no longer supports 3 arguments when
floating-point numbers are supplied. pow(x, y, z) returns (x**y) % z,
but this is never useful for floating point numbers, and the final result varies
unpredictably depending on the platform. A call such as pow(2.0, 8.0, 7.0)
will now raise a TypeError exception.

Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Fred Bremmer,
Keith Briggs, Andrew Dalke, Fred L. Drake, Jr., Carel Fellinger, David Goodger,
Mark Hammond, Stephen Hansen, Michael Hudson, Jack Jansen, Marc-André Lemburg,
Martin von Löwis, Fredrik Lundh, Michael McLay, Nick Mathewson, Paul Moore,
Gustavo Niemeyer, Don O’Donnell, Joonas Paalasma, Tim Peters, Jens Quade, Tom
Reinhardt, Neil Schemenauer, Guido van Rossum, Greg Ward, Edward Welbourne.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.1

	Author:	A.M. Kuchling

Introduction

This article explains the new features in Python 2.1. While there aren’t as
many changes in 2.1 as there were in Python 2.0, there are still some pleasant
surprises in store. 2.1 is the first release to be steered through the use of
Python Enhancement Proposals, or PEPs, so most of the sizable changes have
accompanying PEPs that provide more complete documentation and a design
rationale for the change. This article doesn’t attempt to document the new
features completely, but simply provides an overview of the new features for
Python programmers. Refer to the Python 2.1 documentation, or to the specific
PEP, for more details about any new feature that particularly interests you.

One recent goal of the Python development team has been to accelerate the pace
of new releases, with a new release coming every 6 to 9 months. 2.1 is the first
release to come out at this faster pace, with the first alpha appearing in
January, 3 months after the final version of 2.0 was released.

The final release of Python 2.1 was made on April 17, 2001.

PEP 227: Nested Scopes

The largest change in Python 2.1 is to Python’s scoping rules. In Python 2.0,
at any given time there are at most three namespaces used to look up variable
names: local, module-level, and the built-in namespace. This often surprised
people because it didn’t match their intuitive expectations. For example, a
nested recursive function definition doesn’t work:

def f():
 ...
 def g(value):
 ...
 return g(value-1) + 1
 ...

The function g() will always raise a NameError exception, because
the binding of the name g isn’t in either its local namespace or in the
module-level namespace. This isn’t much of a problem in practice (how often do
you recursively define interior functions like this?), but this also made using
the lambda statement clumsier, and this was a problem in practice.
In code which uses lambda you can often find local variables being
copied by passing them as the default values of arguments.

def find(self, name):
 "Return list of any entries equal to 'name'"
 L = filter(lambda x, name=name: x == name,
 self.list_attribute)
 return L

The readability of Python code written in a strongly functional style suffers
greatly as a result.

The most significant change to Python 2.1 is that static scoping has been added
to the language to fix this problem. As a first effect, the name=name
default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment,
or the def, class, or import statements),
references to the variable will be looked up in the local namespace of the
enclosing scope. A more detailed explanation of the rules, and a dissection of
the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same
variable name is used both at the module level and as a local variable within a
function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first
place.

One side effect of the change is that the from module import * and
exec statements have been made illegal inside a function scope under
certain conditions. The Python reference manual has said all along that from
module import * is only legal at the top level of a module, but the CPython
interpreter has never enforced this before. As part of the implementation of
nested scopes, the compiler which turns Python source into bytecodes has to
generate different code to access variables in a containing scope. from
module import * and exec make it impossible for the compiler to
figure this out, because they add names to the local namespace that are
unknowable at compile time. Therefore, if a function contains function
definitions or lambda expressions with free variables, the compiler
will flag this by raising a SyntaxError exception.

To make the preceding explanation a bit clearer, here’s an example:

x = 1
def f():
 # The next line is a syntax error
 exec 'x=2'
 def g():
 return x

Line 4 containing the exec statement is a syntax error, since
exec would define a new local variable named x whose value should
be accessed by g().

This shouldn’t be much of a limitation, since exec is rarely used in
most Python code (and when it is used, it’s often a sign of a poor design
anyway).

Compatibility concerns have led to nested scopes being introduced gradually; in
Python 2.1, they aren’t enabled by default, but can be turned on within a module
by using a future statement as described in PEP 236. (See the following section
for further discussion of PEP 236.) In Python 2.2, nested scopes will become
the default and there will be no way to turn them off, but users will have had
all of 2.1’s lifetime to fix any breakage resulting from their introduction.

See also

	PEP 227 [http://www.python.org/dev/peps/pep-0227] - Statically Nested Scopes

	Written and implemented by Jeremy Hylton.

PEP 236: __future__ Directives

The reaction to nested scopes was widespread concern about the dangers of
breaking code with the 2.1 release, and it was strong enough to make the
Pythoneers take a more conservative approach. This approach consists of
introducing a convention for enabling optional functionality in release N that
will become compulsory in release N+1.

The syntax uses a from...import statement using the reserved module name
__future__. Nested scopes can be enabled by the following statement:

from __future__ import nested_scopes

While it looks like a normal import statement, it’s not; there are
strict rules on where such a future statement can be put. They can only be at
the top of a module, and must precede any Python code or regular
import statements. This is because such statements can affect how
the Python bytecode compiler parses code and generates bytecode, so they must
precede any statement that will result in bytecodes being produced.

See also

	PEP 236 [http://www.python.org/dev/peps/pep-0236] - Back to the __future__

	Written by Tim Peters, and primarily implemented by Jeremy Hylton.

PEP 207: Rich Comparisons

In earlier versions, Python’s support for implementing comparisons on user-
defined classes and extension types was quite simple. Classes could implement a
__cmp__() method that was given two instances of a class, and could only
return 0 if they were equal or +1 or -1 if they weren’t; the method couldn’t
raise an exception or return anything other than a Boolean value. Users of
Numeric Python often found this model too weak and restrictive, because in the
number-crunching programs that numeric Python is used for, it would be more
useful to be able to perform elementwise comparisons of two matrices, returning
a matrix containing the results of a given comparison for each element. If the
two matrices are of different sizes, then the compare has to be able to raise an
exception to signal the error.

In Python 2.1, rich comparisons were added in order to support this need.
Python classes can now individually overload each of the <, <=, >,
>=, ==, and != operations. The new magic method names are:

	Operation
	Method name

	<
	__lt__()

	<=
	__le__()

	>
	__gt__()

	>=
	__ge__()

	==
	__eq__()

	!=
	__ne__()

(The magic methods are named after the corresponding Fortran operators .LT..
.LE., &c. Numeric programmers are almost certainly quite familiar with
these names and will find them easy to remember.)

Each of these magic methods is of the form method(self, other), where
self will be the object on the left-hand side of the operator, while
other will be the object on the right-hand side. For example, the
expression A < B will cause A.__lt__(B) to be called.

Each of these magic methods can return anything at all: a Boolean, a matrix, a
list, or any other Python object. Alternatively they can raise an exception if
the comparison is impossible, inconsistent, or otherwise meaningless.

The built-in cmp(A,B)() function can use the rich comparison machinery,
and now accepts an optional argument specifying which comparison operation to
use; this is given as one of the strings "<", "<=", ">", ">=",
"==", or "!=". If called without the optional third argument,
cmp() will only return -1, 0, or +1 as in previous versions of Python;
otherwise it will call the appropriate method and can return any Python object.

There are also corresponding changes of interest to C programmers; there’s a new
slot tp_richcmp in type objects and an API for performing a given rich
comparison. I won’t cover the C API here, but will refer you to PEP 207, or to
2.1’s C API documentation, for the full list of related functions.

See also

	PEP 207 [http://www.python.org/dev/peps/pep-0207] - Rich Comparisions

	Written by Guido van Rossum, heavily based on earlier work by David Ascher, and
implemented by Guido van Rossum.

PEP 230: Warning Framework

Over its 10 years of existence, Python has accumulated a certain number of
obsolete modules and features along the way. It’s difficult to know when a
feature is safe to remove, since there’s no way of knowing how much code uses it
— perhaps no programs depend on the feature, or perhaps many do. To enable
removing old features in a more structured way, a warning framework was added.
When the Python developers want to get rid of a feature, it will first trigger a
warning in the next version of Python. The following Python version can then
drop the feature, and users will have had a full release cycle to remove uses of
the old feature.

Python 2.1 adds the warning framework to be used in this scheme. It adds a
warnings module that provide functions to issue warnings, and to filter
out warnings that you don’t want to be displayed. Third-party modules can also
use this framework to deprecate old features that they no longer wish to
support.

For example, in Python 2.1 the regex module is deprecated, so importing
it causes a warning to be printed:

>>> import regex
__main__:1: DeprecationWarning: the regex module
 is deprecated; please use the re module
>>>

Warnings can be issued by calling the warnings.warn() function:

warnings.warn("feature X no longer supported")

The first parameter is the warning message; an additional optional parameters
can be used to specify a particular warning category.

Filters can be added to disable certain warnings; a regular expression pattern
can be applied to the message or to the module name in order to suppress a
warning. For example, you may have a program that uses the regex module
and not want to spare the time to convert it to use the re module right
now. The warning can be suppressed by calling

import warnings
warnings.filterwarnings(action = 'ignore',
 message='.*regex module is deprecated',
 category=DeprecationWarning,
 module = '__main__')

This adds a filter that will apply only to warnings of the class
DeprecationWarning triggered in the __main__ module, and applies
a regular expression to only match the message about the regex module
being deprecated, and will cause such warnings to be ignored. Warnings can also
be printed only once, printed every time the offending code is executed, or
turned into exceptions that will cause the program to stop (unless the
exceptions are caught in the usual way, of course).

Functions were also added to Python’s C API for issuing warnings; refer to PEP
230 or to Python’s API documentation for the details.

See also

	PEP 5 [http://www.python.org/dev/peps/pep-0005] - Guidelines for Language Evolution

	Written by Paul Prescod, to specify procedures to be followed when removing old
features from Python. The policy described in this PEP hasn’t been officially
adopted, but the eventual policy probably won’t be too different from Prescod’s
proposal.

	PEP 230 [http://www.python.org/dev/peps/pep-0230] - Warning Framework

	Written and implemented by Guido van Rossum.

PEP 229: New Build System

When compiling Python, the user had to go in and edit the Modules/Setup
file in order to enable various additional modules; the default set is
relatively small and limited to modules that compile on most Unix platforms.
This means that on Unix platforms with many more features, most notably Linux,
Python installations often don’t contain all useful modules they could.

Python 2.0 added the Distutils, a set of modules for distributing and installing
extensions. In Python 2.1, the Distutils are used to compile much of the
standard library of extension modules, autodetecting which ones are supported on
the current machine. It’s hoped that this will make Python installations easier
and more featureful.

Instead of having to edit the Modules/Setup file in order to enable
modules, a setup.py script in the top directory of the Python source
distribution is run at build time, and attempts to discover which modules can be
enabled by examining the modules and header files on the system. If a module is
configured in Modules/Setup, the setup.py script won’t attempt
to compile that module and will defer to the Modules/Setup file’s
contents. This provides a way to specific any strange command-line flags or
libraries that are required for a specific platform.

In another far-reaching change to the build mechanism, Neil Schemenauer
restructured things so Python now uses a single makefile that isn’t recursive,
instead of makefiles in the top directory and in each of the Python/,
Parser/, Objects/, and Modules/ subdirectories. This
makes building Python faster and also makes hacking the Makefiles clearer and
simpler.

See also

	PEP 229 [http://www.python.org/dev/peps/pep-0229] - Using Distutils to Build Python

	Written and implemented by A.M. Kuchling.

PEP 205: Weak References

Weak references, available through the weakref module, are a minor but
useful new data type in the Python programmer’s toolbox.

Storing a reference to an object (say, in a dictionary or a list) has the side
effect of keeping that object alive forever. There are a few specific cases
where this behaviour is undesirable, object caches being the most common one,
and another being circular references in data structures such as trees.

For example, consider a memoizing function that caches the results of another
function f(x)() by storing the function’s argument and its result in a
dictionary:

_cache = {}
def memoize(x):
 if _cache.has_key(x):
 return _cache[x]

 retval = f(x)

 # Cache the returned object
 _cache[x] = retval

 return retval

This version works for simple things such as integers, but it has a side effect;
the _cache dictionary holds a reference to the return values, so they’ll
never be deallocated until the Python process exits and cleans up This isn’t
very noticeable for integers, but if f() returns an object, or a data
structure that takes up a lot of memory, this can be a problem.

Weak references provide a way to implement a cache that won’t keep objects alive
beyond their time. If an object is only accessible through weak references, the
object will be deallocated and the weak references will now indicate that the
object it referred to no longer exists. A weak reference to an object obj is
created by calling wr = weakref.ref(obj). The object being referred to is
returned by calling the weak reference as if it were a function: wr(). It
will return the referenced object, or None if the object no longer exists.

This makes it possible to write a memoize() function whose cache doesn’t
keep objects alive, by storing weak references in the cache.

_cache = {}
def memoize(x):
 if _cache.has_key(x):
 obj = _cache[x]()
 # If weak reference object still exists,
 # return it
 if obj is not None: return obj

 retval = f(x)

 # Cache a weak reference
 _cache[x] = weakref.ref(retval)

 return retval

The weakref module also allows creating proxy objects which behave like
weak references — an object referenced only by proxy objects is deallocated –
but instead of requiring an explicit call to retrieve the object, the proxy
transparently forwards all operations to the object as long as the object still
exists. If the object is deallocated, attempting to use a proxy will cause a
weakref.ReferenceError exception to be raised.

proxy = weakref.proxy(obj)
proxy.attr # Equivalent to obj.attr
proxy.meth() # Equivalent to obj.meth()
del obj
proxy.attr # raises weakref.ReferenceError

See also

	PEP 205 [http://www.python.org/dev/peps/pep-0205] - Weak References

	Written and implemented by Fred L. Drake, Jr.

PEP 232: Function Attributes

In Python 2.1, functions can now have arbitrary information attached to them.
People were often using docstrings to hold information about functions and
methods, because the __doc__ attribute was the only way of attaching any
information to a function. For example, in the Zope Web application server,
functions are marked as safe for public access by having a docstring, and in
John Aycock’s SPARK parsing framework, docstrings hold parts of the BNF grammar
to be parsed. This overloading is unfortunate, since docstrings are really
intended to hold a function’s documentation; for example, it means you can’t
properly document functions intended for private use in Zope.

Arbitrary attributes can now be set and retrieved on functions using the regular
Python syntax:

def f(): pass

f.publish = 1
f.secure = 1
f.grammar = "A ::= B (C D)*"

The dictionary containing attributes can be accessed as the function’s
__dict__. Unlike the __dict__ attribute of class instances, in
functions you can actually assign a new dictionary to __dict__, though
the new value is restricted to a regular Python dictionary; you can’t be
tricky and set it to a UserDict instance, or any other random object
that behaves like a mapping.

See also

	PEP 232 [http://www.python.org/dev/peps/pep-0232] - Function Attributes

	Written and implemented by Barry Warsaw.

PEP 235: Importing Modules on Case-Insensitive Platforms

Some operating systems have filesystems that are case-insensitive, MacOS and
Windows being the primary examples; on these systems, it’s impossible to
distinguish the filenames FILE.PY and file.py, even though they do store
the file’s name in its original case (they’re case-preserving, too).

In Python 2.1, the import statement will work to simulate case-
sensitivity on case-insensitive platforms. Python will now search for the first
case-sensitive match by default, raising an ImportError if no such file
is found, so import file will not import a module named FILE.PY. Case-
insensitive matching can be requested by setting the PYTHONCASEOK
environment variable before starting the Python interpreter.

PEP 217: Interactive Display Hook

When using the Python interpreter interactively, the output of commands is
displayed using the built-in repr() function. In Python 2.1, the variable
sys.displayhook() can be set to a callable object which will be called
instead of repr(). For example, you can set it to a special pretty-
printing function:

>>> # Create a recursive data structure
... L = [1,2,3]
>>> L.append(L)
>>> L # Show Python's default output
[1, 2, 3, [...]]
>>> # Use pprint.pprint() as the display function
... import sys, pprint
>>> sys.displayhook = pprint.pprint
>>> L
[1, 2, 3, <Recursion on list with id=135143996>]
>>>

See also

	PEP 217 [http://www.python.org/dev/peps/pep-0217] - Display Hook for Interactive Use

	Written and implemented by Moshe Zadka.

PEP 208: New Coercion Model

How numeric coercion is done at the C level was significantly modified. This
will only affect the authors of C extensions to Python, allowing them more
flexibility in writing extension types that support numeric operations.

Extension types can now set the type flag Py_TPFLAGS_CHECKTYPES in their
PyTypeObject structure to indicate that they support the new coercion model.
In such extension types, the numeric slot functions can no longer assume that
they’ll be passed two arguments of the same type; instead they may be passed two
arguments of differing types, and can then perform their own internal coercion.
If the slot function is passed a type it can’t handle, it can indicate the
failure by returning a reference to the Py_NotImplemented singleton value.
The numeric functions of the other type will then be tried, and perhaps they can
handle the operation; if the other type also returns Py_NotImplemented, then
a TypeError will be raised. Numeric methods written in Python can also
return Py_NotImplemented, causing the interpreter to act as if the method
did not exist (perhaps raising a TypeError, perhaps trying another
object’s numeric methods).

See also

	PEP 208 [http://www.python.org/dev/peps/pep-0208] - Reworking the Coercion Model

	Written and implemented by Neil Schemenauer, heavily based upon earlier work by
Marc-André Lemburg. Read this to understand the fine points of how numeric
operations will now be processed at the C level.

PEP 241: Metadata in Python Packages

A common complaint from Python users is that there’s no single catalog of all
the Python modules in existence. T. Middleton’s Vaults of Parnassus at
http://www.vex.net/parnassus/ are the largest catalog of Python modules, but
registering software at the Vaults is optional, and many people don’t bother.

As a first small step toward fixing the problem, Python software packaged using
the Distutils sdist command will include a file named
PKG-INFO containing information about the package such as its name,
version, and author (metadata, in cataloguing terminology). PEP 241 contains
the full list of fields that can be present in the PKG-INFO file. As
people began to package their software using Python 2.1, more and more packages
will include metadata, making it possible to build automated cataloguing systems
and experiment with them. With the result experience, perhaps it’ll be possible
to design a really good catalog and then build support for it into Python 2.2.
For example, the Distutils sdist and bdist_* commands
could support a upload option that would automatically upload your
package to a catalog server.

You can start creating packages containing PKG-INFO even if you’re not
using Python 2.1, since a new release of the Distutils will be made for users of
earlier Python versions. Version 1.0.2 of the Distutils includes the changes
described in PEP 241, as well as various bugfixes and enhancements. It will be
available from the Distutils SIG at http://www.python.org/sigs/distutils-sig/.

See also

	PEP 241 [http://www.python.org/dev/peps/pep-0241] - Metadata for Python Software Packages

	Written and implemented by A.M. Kuchling.

	PEP 243 [http://www.python.org/dev/peps/pep-0243] - Module Repository Upload Mechanism

	Written by Sean Reifschneider, this draft PEP describes a proposed mechanism for
uploading Python packages to a central server.

New and Improved Modules

	Ka-Ping Yee contributed two new modules: inspect.py, a module for
getting information about live Python code, and pydoc.py, a module for
interactively converting docstrings to HTML or text. As a bonus,
Tools/scripts/pydoc, which is now automatically installed, uses
pydoc.py to display documentation given a Python module, package, or
class name. For example, pydoc xml.dom displays the following:

Python Library Documentation: package xml.dom in xml

NAME
 xml.dom - W3C Document Object Model implementation for Python.

FILE
 /usr/local/lib/python2.1/xml/dom/__init__.pyc

DESCRIPTION
 The Python mapping of the Document Object Model is documented in the
 Python Library Reference in the section on the xml.dom package.

 This package contains the following modules:
 ...

pydoc also includes a Tk-based interactive help browser. pydoc
quickly becomes addictive; try it out!

	Two different modules for unit testing were added to the standard library.
The doctest module, contributed by Tim Peters, provides a testing
framework based on running embedded examples in docstrings and comparing the
results against the expected output. PyUnit, contributed by Steve Purcell, is a
unit testing framework inspired by JUnit, which was in turn an adaptation of
Kent Beck’s Smalltalk testing framework. See http://pyunit.sourceforge.net/ for
more information about PyUnit.

	The difflib module contains a class, SequenceMatcher, which
compares two sequences and computes the changes required to transform one
sequence into the other. For example, this module can be used to write a tool
similar to the Unix diff program, and in fact the sample program
Tools/scripts/ndiff.py demonstrates how to write such a script.

	curses.panel, a wrapper for the panel library, part of ncurses and of
SYSV curses, was contributed by Thomas Gellekum. The panel library provides
windows with the additional feature of depth. Windows can be moved higher or
lower in the depth ordering, and the panel library figures out where panels
overlap and which sections are visible.

	The PyXML package has gone through a few releases since Python 2.0, and Python
2.1 includes an updated version of the xml package. Some of the
noteworthy changes include support for Expat 1.2 and later versions, the ability
for Expat parsers to handle files in any encoding supported by Python, and
various bugfixes for SAX, DOM, and the minidom module.

	Ping also contributed another hook for handling uncaught exceptions.
sys.excepthook() can be set to a callable object. When an exception isn’t
caught by any try...except blocks, the exception will be
passed to sys.excepthook(), which can then do whatever it likes. At the
Ninth Python Conference, Ping demonstrated an application for this hook:
printing an extended traceback that not only lists the stack frames, but also
lists the function arguments and the local variables for each frame.

	Various functions in the time module, such as asctime() and
localtime(), require a floating point argument containing the time in
seconds since the epoch. The most common use of these functions is to work with
the current time, so the floating point argument has been made optional; when a
value isn’t provided, the current time will be used. For example, log file
entries usually need a string containing the current time; in Python 2.1,
time.asctime() can be used, instead of the lengthier
time.asctime(time.localtime(time.time())) that was previously required.

This change was proposed and implemented by Thomas Wouters.

	The ftplib module now defaults to retrieving files in passive mode,
because passive mode is more likely to work from behind a firewall. This
request came from the Debian bug tracking system, since other Debian packages
use ftplib to retrieve files and then don’t work from behind a firewall.
It’s deemed unlikely that this will cause problems for anyone, because Netscape
defaults to passive mode and few people complain, but if passive mode is
unsuitable for your application or network setup, call set_pasv(0)() on
FTP objects to disable passive mode.

	Support for raw socket access has been added to the socket module,
contributed by Grant Edwards.

	The pstats module now contains a simple interactive statistics browser
for displaying timing profiles for Python programs, invoked when the module is
run as a script. Contributed by Eric S. Raymond.

	A new implementation-dependent function, sys._getframe([depth])(), has
been added to return a given frame object from the current call stack.
sys._getframe() returns the frame at the top of the call stack; if the
optional integer argument depth is supplied, the function returns the frame
that is depth calls below the top of the stack. For example,
sys._getframe(1) returns the caller’s frame object.

This function is only present in CPython, not in Jython or the .NET
implementation. Use it for debugging, and resist the temptation to put it into
production code.

Other Changes and Fixes

There were relatively few smaller changes made in Python 2.1 due to the shorter
release cycle. A search through the CVS change logs turns up 117 patches
applied, and 136 bugs fixed; both figures are likely to be underestimates. Some
of the more notable changes are:

	A specialized object allocator is now optionally available, that should be
faster than the system malloc() and have less memory overhead. The
allocator uses C’s malloc() function to get large pools of memory, and
then fulfills smaller memory requests from these pools. It can be enabled by
providing the --with-pymalloc option to the configure
script; see Objects/obmalloc.c for the implementation details.

Authors of C extension modules should test their code with the object allocator
enabled, because some incorrect code may break, causing core dumps at runtime.
There are a bunch of memory allocation functions in Python’s C API that have
previously been just aliases for the C library’s malloc() and
free(), meaning that if you accidentally called mismatched functions, the
error wouldn’t be noticeable. When the object allocator is enabled, these
functions aren’t aliases of malloc() and free() any more, and
calling the wrong function to free memory will get you a core dump. For
example, if memory was allocated using PyMem_New(), it has to be freed
using PyMem_Del(), not free(). A few modules included with Python
fell afoul of this and had to be fixed; doubtless there are more third-party
modules that will have the same problem.

The object allocator was contributed by Vladimir Marangozov.

	The speed of line-oriented file I/O has been improved because people often
complain about its lack of speed, and because it’s often been used as a naïve
benchmark. The readline() method of file objects has therefore been
rewritten to be much faster. The exact amount of the speedup will vary from
platform to platform depending on how slow the C library’s getc() was, but
is around 66%, and potentially much faster on some particular operating systems.
Tim Peters did much of the benchmarking and coding for this change, motivated by
a discussion in comp.lang.python.

A new module and method for file objects was also added, contributed by Jeff
Epler. The new method, xreadlines(), is similar to the existing
xrange() built-in. xreadlines() returns an opaque sequence object
that only supports being iterated over, reading a line on every iteration but
not reading the entire file into memory as the existing readlines() method
does. You’d use it like this:

for line in sys.stdin.xreadlines():
 # ... do something for each line ...
 ...

For a fuller discussion of the line I/O changes, see the python-dev summary for
January 1-15, 2001 at http://www.python.org/dev/summary/2001-01-1/.

	A new method, popitem(), was added to dictionaries to enable
destructively iterating through the contents of a dictionary; this can be faster
for large dictionaries because there’s no need to construct a list containing
all the keys or values. D.popitem() removes a random (key, value) pair
from the dictionary D and returns it as a 2-tuple. This was implemented
mostly by Tim Peters and Guido van Rossum, after a suggestion and preliminary
patch by Moshe Zadka.

	Modules can now control which names are imported when from module import *
is used, by defining an __all__ attribute containing a list of names that
will be imported. One common complaint is that if the module imports other
modules such as sys or string, from module import * will add
them to the importing module’s namespace. To fix this, simply list the public
names in __all__:

List public names
__all__ = ['Database', 'open']

A stricter version of this patch was first suggested and implemented by Ben
Wolfson, but after some python-dev discussion, a weaker final version was
checked in.

	Applying repr() to strings previously used octal escapes for
non-printable characters; for example, a newline was '\012'. This was a
vestigial trace of Python’s C ancestry, but today octal is of very little
practical use. Ka-Ping Yee suggested using hex escapes instead of octal ones,
and using the \n, \t, \r escapes for the appropriate characters,
and implemented this new formatting.

	Syntax errors detected at compile-time can now raise exceptions containing the
filename and line number of the error, a pleasant side effect of the compiler
reorganization done by Jeremy Hylton.

	C extensions which import other modules have been changed to use
PyImport_ImportModule(), which means that they will use any import hooks
that have been installed. This is also encouraged for third-party extensions
that need to import some other module from C code.

	The size of the Unicode character database was shrunk by another 340K thanks
to Fredrik Lundh.

	Some new ports were contributed: MacOS X (by Steven Majewski), Cygwin (by
Jason Tishler); RISCOS (by Dietmar Schwertberger); Unixware 7 (by Billy G.
Allie).

And there’s the usual list of minor bugfixes, minor memory leaks, docstring
edits, and other tweaks, too lengthy to be worth itemizing; see the CVS logs for
the full details if you want them.

Acknowledgements

The author would like to thank the following people for offering suggestions on
various drafts of this article: Graeme Cross, David Goodger, Jay Graves, Michael
Hudson, Marc-André Lemburg, Fredrik Lundh, Neil Schemenauer, Thomas Wouters.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	What’s New in Python

What’s New in Python 2.0

	Author:	A.M. Kuchling and Moshe Zadka

Introduction

A new release of Python, version 2.0, was released on October 16, 2000. This
article covers the exciting new features in 2.0, highlights some other useful
changes, and points out a few incompatible changes that may require rewriting
code.

Python’s development never completely stops between releases, and a steady flow
of bug fixes and improvements are always being submitted. A host of minor fixes,
a few optimizations, additional docstrings, and better error messages went into
2.0; to list them all would be impossible, but they’re certainly significant.
Consult the publicly-available CVS logs if you want to see the full list. This
progress is due to the five developers working for PythonLabs are now getting
paid to spend their days fixing bugs, and also due to the improved communication
resulting from moving to SourceForge.

What About Python 1.6?

Python 1.6 can be thought of as the Contractual Obligations Python release.
After the core development team left CNRI in May 2000, CNRI requested that a 1.6
release be created, containing all the work on Python that had been performed at
CNRI. Python 1.6 therefore represents the state of the CVS tree as of May 2000,
with the most significant new feature being Unicode support. Development
continued after May, of course, so the 1.6 tree received a few fixes to ensure
that it’s forward-compatible with Python 2.0. 1.6 is therefore part of Python’s
evolution, and not a side branch.

So, should you take much interest in Python 1.6? Probably not. The 1.6final
and 2.0beta1 releases were made on the same day (September 5, 2000), the plan
being to finalize Python 2.0 within a month or so. If you have applications to
maintain, there seems little point in breaking things by moving to 1.6, fixing
them, and then having another round of breakage within a month by moving to 2.0;
you’re better off just going straight to 2.0. Most of the really interesting
features described in this document are only in 2.0, because a lot of work was
done between May and September.

New Development Process

The most important change in Python 2.0 may not be to the code at all, but to
how Python is developed: in May 2000 the Python developers began using the tools
made available by SourceForge for storing source code, tracking bug reports,
and managing the queue of patch submissions. To report bugs or submit patches
for Python 2.0, use the bug tracking and patch manager tools available from
Python’s project page, located at http://sourceforge.net/projects/python/.

The most important of the services now hosted at SourceForge is the Python CVS
tree, the version-controlled repository containing the source code for Python.
Previously, there were roughly 7 or so people who had write access to the CVS
tree, and all patches had to be inspected and checked in by one of the people on
this short list. Obviously, this wasn’t very scalable. By moving the CVS tree
to SourceForge, it became possible to grant write access to more people; as of
September 2000 there were 27 people able to check in changes, a fourfold
increase. This makes possible large-scale changes that wouldn’t be attempted if
they’d have to be filtered through the small group of core developers. For
example, one day Peter Schneider-Kamp took it into his head to drop K&R C
compatibility and convert the C source for Python to ANSI C. After getting
approval on the python-dev mailing list, he launched into a flurry of checkins
that lasted about a week, other developers joined in to help, and the job was
done. If there were only 5 people with write access, probably that task would
have been viewed as “nice, but not worth the time and effort needed” and it
would never have gotten done.

The shift to using SourceForge’s services has resulted in a remarkable increase
in the speed of development. Patches now get submitted, commented on, revised
by people other than the original submitter, and bounced back and forth between
people until the patch is deemed worth checking in. Bugs are tracked in one
central location and can be assigned to a specific person for fixing, and we can
count the number of open bugs to measure progress. This didn’t come without a
cost: developers now have more e-mail to deal with, more mailing lists to
follow, and special tools had to be written for the new environment. For
example, SourceForge sends default patch and bug notification e-mail messages
that are completely unhelpful, so Ka-Ping Yee wrote an HTML screen-scraper that
sends more useful messages.

The ease of adding code caused a few initial growing pains, such as code was
checked in before it was ready or without getting clear agreement from the
developer group. The approval process that has emerged is somewhat similar to
that used by the Apache group. Developers can vote +1, +0, -0, or -1 on a patch;
+1 and -1 denote acceptance or rejection, while +0 and -0 mean the developer is
mostly indifferent to the change, though with a slight positive or negative
slant. The most significant change from the Apache model is that the voting is
essentially advisory, letting Guido van Rossum, who has Benevolent Dictator For
Life status, know what the general opinion is. He can still ignore the result of
a vote, and approve or reject a change even if the community disagrees with him.

Producing an actual patch is the last step in adding a new feature, and is
usually easy compared to the earlier task of coming up with a good design.
Discussions of new features can often explode into lengthy mailing list threads,
making the discussion hard to follow, and no one can read every posting to
python-dev. Therefore, a relatively formal process has been set up to write
Python Enhancement Proposals (PEPs), modelled on the Internet RFC process. PEPs
are draft documents that describe a proposed new feature, and are continually
revised until the community reaches a consensus, either accepting or rejecting
the proposal. Quoting from the introduction to PEP 1, “PEP Purpose and
Guidelines”:

PEP stands for Python Enhancement Proposal. A PEP is a design document
providing information to the Python community, or describing a new feature for
Python. The PEP should provide a concise technical specification of the feature
and a rationale for the feature.

We intend PEPs to be the primary mechanisms for proposing new features, for
collecting community input on an issue, and for documenting the design decisions
that have gone into Python. The PEP author is responsible for building
consensus within the community and documenting dissenting opinions.

Read the rest of PEP 1 for the details of the PEP editorial process, style, and
format. PEPs are kept in the Python CVS tree on SourceForge, though they’re not
part of the Python 2.0 distribution, and are also available in HTML form from
http://www.python.org/peps/. As of September 2000, there are 25 PEPS, ranging
from PEP 201, “Lockstep Iteration”, to PEP 225, “Elementwise/Objectwise
Operators”.

Unicode

The largest new feature in Python 2.0 is a new fundamental data type: Unicode
strings. Unicode uses 16-bit numbers to represent characters instead of the
8-bit number used by ASCII, meaning that 65,536 distinct characters can be
supported.

The final interface for Unicode support was arrived at through countless often-
stormy discussions on the python-dev mailing list, and mostly implemented by
Marc-André Lemburg, based on a Unicode string type implementation by Fredrik
Lundh. A detailed explanation of the interface was written up as PEP 100 [http://www.python.org/dev/peps/pep-0100],
“Python Unicode Integration”. This article will simply cover the most
significant points about the Unicode interfaces.

In Python source code, Unicode strings are written as u"string". Arbitrary
Unicode characters can be written using a new escape sequence, \uHHHH, where
HHHH is a 4-digit hexadecimal number from 0000 to FFFF. The existing
\xHHHH escape sequence can also be used, and octal escapes can be used for
characters up to U+01FF, which is represented by \777.

Unicode strings, just like regular strings, are an immutable sequence type.
They can be indexed and sliced, but not modified in place. Unicode strings have
an encode([encoding]) method that returns an 8-bit string in the desired
encoding. Encodings are named by strings, such as 'ascii', 'utf-8',
'iso-8859-1', or whatever. A codec API is defined for implementing and
registering new encodings that are then available throughout a Python program.
If an encoding isn’t specified, the default encoding is usually 7-bit ASCII,
though it can be changed for your Python installation by calling the
sys.setdefaultencoding(encoding)() function in a customised version of
site.py.

Combining 8-bit and Unicode strings always coerces to Unicode, using the default
ASCII encoding; the result of 'a' + u'bc' is u'abc'.

New built-in functions have been added, and existing built-ins modified to
support Unicode:

	unichr(ch) returns a Unicode string 1 character long, containing the
character ch.

	ord(u), where u is a 1-character regular or Unicode string, returns the
number of the character as an integer.

	unicode(string [, encoding] [, errors]) creates a Unicode string
from an 8-bit string. encoding is a string naming the encoding to use. The
errors parameter specifies the treatment of characters that are invalid for
the current encoding; passing 'strict' as the value causes an exception to
be raised on any encoding error, while 'ignore' causes errors to be silently
ignored and 'replace' uses U+FFFD, the official replacement character, in
case of any problems.

	The exec statement, and various built-ins such as eval(),
getattr(), and setattr() will also accept Unicode strings as well as
regular strings. (It’s possible that the process of fixing this missed some
built-ins; if you find a built-in function that accepts strings but doesn’t
accept Unicode strings at all, please report it as a bug.)

A new module, unicodedata, provides an interface to Unicode character
properties. For example, unicodedata.category(u'A') returns the 2-character
string ‘Lu’, the ‘L’ denoting it’s a letter, and ‘u’ meaning that it’s
uppercase. unicodedata.bidirectional(u'\u0660') returns ‘AN’, meaning that
U+0660 is an Arabic number.

The codecs module contains functions to look up existing encodings and
register new ones. Unless you want to implement a new encoding, you’ll most
often use the codecs.lookup(encoding)() function, which returns a
4-element tuple: (encode_func, decode_func, stream_reader, stream_writer).

	encode_func is a function that takes a Unicode string, and returns a 2-tuple
(string, length). string is an 8-bit string containing a portion (perhaps
all) of the Unicode string converted into the given encoding, and length tells
you how much of the Unicode string was converted.

	decode_func is the opposite of encode_func, taking an 8-bit string and
returning a 2-tuple (ustring, length), consisting of the resulting Unicode
string ustring and the integer length telling how much of the 8-bit string
was consumed.

	stream_reader is a class that supports decoding input from a stream.
stream_reader(file_obj) returns an object that supports the read(),
readline(), and readlines() methods. These methods will all
translate from the given encoding and return Unicode strings.

	stream_writer, similarly, is a class that supports encoding output to a
stream. stream_writer(file_obj) returns an object that supports the
write() and writelines() methods. These methods expect Unicode
strings, translating them to the given encoding on output.

For example, the following code writes a Unicode string into a file, encoding
it as UTF-8:

import codecs

unistr = u'\u0660\u2000ab ...'

(UTF8_encode, UTF8_decode,
 UTF8_streamreader, UTF8_streamwriter) = codecs.lookup('UTF-8')

output = UTF8_streamwriter(open('/tmp/output', 'wb'))
output.write(unistr)
output.close()

The following code would then read UTF-8 input from the file:

input = UTF8_streamreader(open('/tmp/output', 'rb'))
print repr(input.read())
input.close()

Unicode-aware regular expressions are available through the re module,
which has a new underlying implementation called SRE written by Fredrik Lundh of
Secret Labs AB.

A -U command line option was added which causes the Python compiler to
interpret all string literals as Unicode string literals. This is intended to be
used in testing and future-proofing your Python code, since some future version
of Python may drop support for 8-bit strings and provide only Unicode strings.

List Comprehensions

Lists are a workhorse data type in Python, and many programs manipulate a list
at some point. Two common operations on lists are to loop over them, and either
pick out the elements that meet a certain criterion, or apply some function to
each element. For example, given a list of strings, you might want to pull out
all the strings containing a given substring, or strip off trailing whitespace
from each line.

The existing map() and filter() functions can be used for this
purpose, but they require a function as one of their arguments. This is fine if
there’s an existing built-in function that can be passed directly, but if there
isn’t, you have to create a little function to do the required work, and
Python’s scoping rules make the result ugly if the little function needs
additional information. Take the first example in the previous paragraph,
finding all the strings in the list containing a given substring. You could
write the following to do it:

Given the list L, make a list of all strings
containing the substring S.
sublist = filter(lambda s, substring=S:
 string.find(s, substring) != -1,
 L)

Because of Python’s scoping rules, a default argument is used so that the
anonymous function created by the lambda statement knows what
substring is being searched for. List comprehensions make this cleaner:

sublist = [s for s in L if string.find(s, S) != -1]

List comprehensions have the form:

[expression for expr in sequence1
 for expr2 in sequence2 ...
 for exprN in sequenceN
 if condition]

The for...in clauses contain the sequences to be
iterated over. The sequences do not have to be the same length, because they
are not iterated over in parallel, but from left to right; this is explained
more clearly in the following paragraphs. The elements of the generated list
will be the successive values of expression. The final if clause
is optional; if present, expression is only evaluated and added to the result
if condition is true.

To make the semantics very clear, a list comprehension is equivalent to the
following Python code:

for expr1 in sequence1:
 for expr2 in sequence2:
 ...
 for exprN in sequenceN:
 if (condition):
 # Append the value of
 # the expression to the
 # resulting list.

This means that when there are multiple for...in
clauses, the resulting list will be equal to the product of the lengths of all
the sequences. If you have two lists of length 3, the output list is 9 elements
long:

seq1 = 'abc'
seq2 = (1,2,3)
>>> [(x,y) for x in seq1 for y in seq2]
[('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), ('c', 1),
('c', 2), ('c', 3)]

To avoid introducing an ambiguity into Python’s grammar, if expression is
creating a tuple, it must be surrounded with parentheses. The first list
comprehension below is a syntax error, while the second one is correct:

Syntax error
[x,y for x in seq1 for y in seq2]
Correct
[(x,y) for x in seq1 for y in seq2]

The idea of list comprehensions originally comes from the functional programming
language Haskell (http://www.haskell.org). Greg Ewing argued most effectively
for adding them to Python and wrote the initial list comprehension patch, which
was then discussed for a seemingly endless time on the python-dev mailing list
and kept up-to-date by Skip Montanaro.

Augmented Assignment

Augmented assignment operators, another long-requested feature, have been added
to Python 2.0. Augmented assignment operators include +=, -=, *=,
and so forth. For example, the statement a += 2 increments the value of the
variable a by 2, equivalent to the slightly lengthier a = a + 2.

The full list of supported assignment operators is +=, -=, *=,
/=, %=, **=, &=, |=, ^=, >>=, and <<=. Python
classes can override the augmented assignment operators by defining methods
named __iadd__(), __isub__(), etc. For example, the following
Number class stores a number and supports using += to create a new
instance with an incremented value.

class Number:
 def __init__(self, value):
 self.value = value
 def __iadd__(self, increment):
 return Number(self.value + increment)

n = Number(5)
n += 3
print n.value

The __iadd__() special method is called with the value of the increment,
and should return a new instance with an appropriately modified value; this
return value is bound as the new value of the variable on the left-hand side.

Augmented assignment operators were first introduced in the C programming
language, and most C-derived languages, such as awk, C++, Java, Perl,
and PHP also support them. The augmented assignment patch was implemented by
Thomas Wouters.

String Methods

Until now string-manipulation functionality was in the string module,
which was usually a front-end for the strop module written in C. The
addition of Unicode posed a difficulty for the strop module, because the
functions would all need to be rewritten in order to accept either 8-bit or
Unicode strings. For functions such as string.replace(), which takes 3
string arguments, that means eight possible permutations, and correspondingly
complicated code.

Instead, Python 2.0 pushes the problem onto the string type, making string
manipulation functionality available through methods on both 8-bit strings and
Unicode strings.

>>> 'andrew'.capitalize()
'Andrew'
>>> 'hostname'.replace('os', 'linux')
'hlinuxtname'
>>> 'moshe'.find('sh')
2

One thing that hasn’t changed, a noteworthy April Fools’ joke notwithstanding,
is that Python strings are immutable. Thus, the string methods return new
strings, and do not modify the string on which they operate.

The old string module is still around for backwards compatibility, but it
mostly acts as a front-end to the new string methods.

Two methods which have no parallel in pre-2.0 versions, although they did exist
in JPython for quite some time, are startswith() and endswith().
s.startswith(t) is equivalent to s[:len(t)] == t, while
s.endswith(t) is equivalent to s[-len(t):] == t.

One other method which deserves special mention is join(). The
join() method of a string receives one parameter, a sequence of strings,
and is equivalent to the string.join() function from the old string
module, with the arguments reversed. In other words, s.join(seq) is
equivalent to the old string.join(seq, s).

Garbage Collection of Cycles

The C implementation of Python uses reference counting to implement garbage
collection. Every Python object maintains a count of the number of references
pointing to itself, and adjusts the count as references are created or
destroyed. Once the reference count reaches zero, the object is no longer
accessible, since you need to have a reference to an object to access it, and if
the count is zero, no references exist any longer.

Reference counting has some pleasant properties: it’s easy to understand and
implement, and the resulting implementation is portable, fairly fast, and reacts
well with other libraries that implement their own memory handling schemes. The
major problem with reference counting is that it sometimes doesn’t realise that
objects are no longer accessible, resulting in a memory leak. This happens when
there are cycles of references.

Consider the simplest possible cycle, a class instance which has a reference to
itself:

instance = SomeClass()
instance.myself = instance

After the above two lines of code have been executed, the reference count of
instance is 2; one reference is from the variable named 'instance', and
the other is from the myself attribute of the instance.

If the next line of code is del instance, what happens? The reference count
of instance is decreased by 1, so it has a reference count of 1; the
reference in the myself attribute still exists. Yet the instance is no
longer accessible through Python code, and it could be deleted. Several objects
can participate in a cycle if they have references to each other, causing all of
the objects to be leaked.

Python 2.0 fixes this problem by periodically executing a cycle detection
algorithm which looks for inaccessible cycles and deletes the objects involved.
A new gc module provides functions to perform a garbage collection,
obtain debugging statistics, and tuning the collector’s parameters.

Running the cycle detection algorithm takes some time, and therefore will result
in some additional overhead. It is hoped that after we’ve gotten experience
with the cycle collection from using 2.0, Python 2.1 will be able to minimize
the overhead with careful tuning. It’s not yet obvious how much performance is
lost, because benchmarking this is tricky and depends crucially on how often the
program creates and destroys objects. The detection of cycles can be disabled
when Python is compiled, if you can’t afford even a tiny speed penalty or
suspect that the cycle collection is buggy, by specifying the
--without-cycle-gc switch when running the configure
script.

Several people tackled this problem and contributed to a solution. An early
implementation of the cycle detection approach was written by Toby Kelsey. The
current algorithm was suggested by Eric Tiedemann during a visit to CNRI, and
Guido van Rossum and Neil Schemenauer wrote two different implementations, which
were later integrated by Neil. Lots of other people offered suggestions along
the way; the March 2000 archives of the python-dev mailing list contain most of
the relevant discussion, especially in the threads titled “Reference cycle
collection for Python” and “Finalization again”.

Other Core Changes

Various minor changes have been made to Python’s syntax and built-in functions.
None of the changes are very far-reaching, but they’re handy conveniences.

Minor Language Changes

A new syntax makes it more convenient to call a given function with a tuple of
arguments and/or a dictionary of keyword arguments. In Python 1.5 and earlier,
you’d use the apply() built-in function: apply(f, args, kw) calls the
function f() with the argument tuple args and the keyword arguments in
the dictionary kw. apply() is the same in 2.0, but thanks to a patch
from Greg Ewing, f(*args, **kw) as a shorter and clearer way to achieve the
same effect. This syntax is symmetrical with the syntax for defining
functions:

def f(*args, **kw):
 # args is a tuple of positional args,
 # kw is a dictionary of keyword args
 ...

The print statement can now have its output directed to a file-like
object by following the print with >> file, similar to the
redirection operator in Unix shells. Previously you’d either have to use the
write() method of the file-like object, which lacks the convenience and
simplicity of print, or you could assign a new value to
sys.stdout and then restore the old value. For sending output to standard
error, it’s much easier to write this:

print >> sys.stderr, "Warning: action field not supplied"

Modules can now be renamed on importing them, using the syntax import module
as name or from module import name as othername. The patch was submitted
by Thomas Wouters.

A new format style is available when using the % operator; ‘%r’ will insert
the repr() of its argument. This was also added from symmetry
considerations, this time for symmetry with the existing ‘%s’ format style,
which inserts the str() of its argument. For example, '%r %s' % ('abc',
'abc') returns a string containing 'abc' abc.

Previously there was no way to implement a class that overrode Python’s built-in
in operator and implemented a custom version. obj in seq returns
true if obj is present in the sequence seq; Python computes this by simply
trying every index of the sequence until either obj is found or an
IndexError is encountered. Moshe Zadka contributed a patch which adds a
__contains__() magic method for providing a custom implementation for
in. Additionally, new built-in objects written in C can define what
in means for them via a new slot in the sequence protocol.

Earlier versions of Python used a recursive algorithm for deleting objects.
Deeply nested data structures could cause the interpreter to fill up the C stack
and crash; Christian Tismer rewrote the deletion logic to fix this problem. On
a related note, comparing recursive objects recursed infinitely and crashed;
Jeremy Hylton rewrote the code to no longer crash, producing a useful result
instead. For example, after this code:

a = []
b = []
a.append(a)
b.append(b)

The comparison a==b returns true, because the two recursive data structures
are isomorphic. See the thread “trashcan and PR#7” in the April 2000 archives of
the python-dev mailing list for the discussion leading up to this
implementation, and some useful relevant links. Note that comparisons can now
also raise exceptions. In earlier versions of Python, a comparison operation
such as cmp(a,b) would always produce an answer, even if a user-defined
__cmp__() method encountered an error, since the resulting exception would
simply be silently swallowed.

Work has been done on porting Python to 64-bit Windows on the Itanium processor,
mostly by Trent Mick of ActiveState. (Confusingly, sys.platform is still
'win32' on Win64 because it seems that for ease of porting, MS Visual C++
treats code as 32 bit on Itanium.) PythonWin also supports Windows CE; see the
Python CE page at http://pythonce.sourceforge.net/ for more information.

Another new platform is Darwin/MacOS X; initial support for it is in Python 2.0.
Dynamic loading works, if you specify “configure –with-dyld –with-suffix=.x”.
Consult the README in the Python source distribution for more instructions.

An attempt has been made to alleviate one of Python’s warts, the often-confusing
NameError exception when code refers to a local variable before the
variable has been assigned a value. For example, the following code raises an
exception on the print statement in both 1.5.2 and 2.0; in 1.5.2 a
NameError exception is raised, while 2.0 raises a new
UnboundLocalError exception. UnboundLocalError is a subclass of
NameError, so any existing code that expects NameError to be
raised should still work.

def f():
 print "i=",i
 i = i + 1
f()

Two new exceptions, TabError and IndentationError, have been
introduced. They’re both subclasses of SyntaxError, and are raised when
Python code is found to be improperly indented.

Changes to Built-in Functions

A new built-in, zip(seq1, seq2, ...)(), has been added. zip()
returns a list of tuples where each tuple contains the i-th element from each of
the argument sequences. The difference between zip() and map(None,
seq1, seq2) is that map() pads the sequences with None if the
sequences aren’t all of the same length, while zip() truncates the
returned list to the length of the shortest argument sequence.

The int() and long() functions now accept an optional “base”
parameter when the first argument is a string. int('123', 10) returns 123,
while int('123', 16) returns 291. int(123, 16) raises a
TypeError exception with the message “can’t convert non-string with
explicit base”.

A new variable holding more detailed version information has been added to the
sys module. sys.version_info is a tuple (major, minor, micro,
level, serial) For example, in a hypothetical 2.0.1beta1, sys.version_info
would be (2, 0, 1, 'beta', 1). level is a string such as "alpha",
"beta", or "final" for a final release.

Dictionaries have an odd new method, setdefault(key, default)(), which
behaves similarly to the existing get() method. However, if the key is
missing, setdefault() both returns the value of default as get()
would do, and also inserts it into the dictionary as the value for key. Thus,
the following lines of code:

if dict.has_key(key): return dict[key]
else:
 dict[key] = []
 return dict[key]

can be reduced to a single return dict.setdefault(key, []) statement.

The interpreter sets a maximum recursion depth in order to catch runaway
recursion before filling the C stack and causing a core dump or GPF..
Previously this limit was fixed when you compiled Python, but in 2.0 the maximum
recursion depth can be read and modified using sys.getrecursionlimit() and
sys.setrecursionlimit(). The default value is 1000, and a rough maximum
value for a given platform can be found by running a new script,
Misc/find_recursionlimit.py.

Porting to 2.0

New Python releases try hard to be compatible with previous releases, and the
record has been pretty good. However, some changes are considered useful
enough, usually because they fix initial design decisions that turned out to be
actively mistaken, that breaking backward compatibility can’t always be avoided.
This section lists the changes in Python 2.0 that may cause old Python code to
break.

The change which will probably break the most code is tightening up the
arguments accepted by some methods. Some methods would take multiple arguments
and treat them as a tuple, particularly various list methods such as
append() and insert(). In earlier versions of Python, if L is
a list, L.append(1,2) appends the tuple (1,2) to the list. In Python
2.0 this causes a TypeError exception to be raised, with the message:
‘append requires exactly 1 argument; 2 given’. The fix is to simply add an
extra set of parentheses to pass both values as a tuple: L.append((1,2)).

The earlier versions of these methods were more forgiving because they used an
old function in Python’s C interface to parse their arguments; 2.0 modernizes
them to use PyArg_ParseTuple(), the current argument parsing function,
which provides more helpful error messages and treats multi-argument calls as
errors. If you absolutely must use 2.0 but can’t fix your code, you can edit
Objects/listobject.c and define the preprocessor symbol
NO_STRICT_LIST_APPEND to preserve the old behaviour; this isn’t recommended.

Some of the functions in the socket module are still forgiving in this
way. For example, socket.connect(('hostname', 25))() is the correct
form, passing a tuple representing an IP address, but socket.connect(
'hostname', 25)() also works. socket.connect_ex() and socket.bind()
are similarly easy-going. 2.0alpha1 tightened these functions up, but because
the documentation actually used the erroneous multiple argument form, many
people wrote code which would break with the stricter checking. GvR backed out
the changes in the face of public reaction, so for the socket module, the
documentation was fixed and the multiple argument form is simply marked as
deprecated; it will be tightened up again in a future Python version.

The \x escape in string literals now takes exactly 2 hex digits. Previously
it would consume all the hex digits following the ‘x’ and take the lowest 8 bits
of the result, so \x123456 was equivalent to \x56.

The AttributeError and NameError exceptions have a more friendly
error message, whose text will be something like 'Spam' instance has no
attribute 'eggs' or name 'eggs' is not defined. Previously the error
message was just the missing attribute name eggs, and code written to take
advantage of this fact will break in 2.0.

Some work has been done to make integers and long integers a bit more
interchangeable. In 1.5.2, large-file support was added for Solaris, to allow
reading files larger than 2 GiB; this made the tell() method of file
objects return a long integer instead of a regular integer. Some code would
subtract two file offsets and attempt to use the result to multiply a sequence
or slice a string, but this raised a TypeError. In 2.0, long integers
can be used to multiply or slice a sequence, and it’ll behave as you’d
intuitively expect it to; 3L * 'abc' produces ‘abcabcabc’, and
(0,1,2,3)[2L:4L] produces (2,3). Long integers can also be used in various
contexts where previously only integers were accepted, such as in the
seek() method of file objects, and in the formats supported by the %
operator (%d, %i, %x, etc.). For example, "%d" % 2L**64 will
produce the string 18446744073709551616.

The subtlest long integer change of all is that the str() of a long
integer no longer has a trailing ‘L’ character, though repr() still
includes it. The ‘L’ annoyed many people who wanted to print long integers that
looked just like regular integers, since they had to go out of their way to chop
off the character. This is no longer a problem in 2.0, but code which does
str(longval)[:-1] and assumes the ‘L’ is there, will now lose the final
digit.

Taking the repr() of a float now uses a different formatting precision
than str(). repr() uses %.17g format string for C’s
sprintf(), while str() uses %.12g as before. The effect is that
repr() may occasionally show more decimal places than str(), for
certain numbers. For example, the number 8.1 can’t be represented exactly in
binary, so repr(8.1) is '8.0999999999999996', while str(8.1) is
'8.1'.

The -X command-line option, which turned all standard exceptions into
strings instead of classes, has been removed; the standard exceptions will now
always be classes. The exceptions module containing the standard
exceptions was translated from Python to a built-in C module, written by Barry
Warsaw and Fredrik Lundh.

Extending/Embedding Changes

Some of the changes are under the covers, and will only be apparent to people
writing C extension modules or embedding a Python interpreter in a larger
application. If you aren’t dealing with Python’s C API, you can safely skip
this section.

The version number of the Python C API was incremented, so C extensions compiled
for 1.5.2 must be recompiled in order to work with 2.0. On Windows, it’s not
possible for Python 2.0 to import a third party extension built for Python 1.5.x
due to how Windows DLLs work, so Python will raise an exception and the import
will fail.

Users of Jim Fulton’s ExtensionClass module will be pleased to find out that
hooks have been added so that ExtensionClasses are now supported by
isinstance() and issubclass(). This means you no longer have to
remember to write code such as if type(obj) == myExtensionClass, but can use
the more natural if isinstance(obj, myExtensionClass).

The Python/importdl.c file, which was a mass of #ifdefs to support
dynamic loading on many different platforms, was cleaned up and reorganised by
Greg Stein. importdl.c is now quite small, and platform-specific code
has been moved into a bunch of Python/dynload_*.c files. Another
cleanup: there were also a number of my*.h files in the Include/
directory that held various portability hacks; they’ve been merged into a single
file, Include/pyport.h.

Vladimir Marangozov’s long-awaited malloc restructuring was completed, to make
it easy to have the Python interpreter use a custom allocator instead of C’s
standard malloc(). For documentation, read the comments in
Include/pymem.h and Include/objimpl.h. For the lengthy
discussions during which the interface was hammered out, see the Web archives of
the ‘patches’ and ‘python-dev’ lists at python.org.

Recent versions of the GUSI development environment for MacOS support POSIX
threads. Therefore, Python’s POSIX threading support now works on the
Macintosh. Threading support using the user-space GNU pth library was also
contributed.

Threading support on Windows was enhanced, too. Windows supports thread locks
that use kernel objects only in case of contention; in the common case when
there’s no contention, they use simpler functions which are an order of
magnitude faster. A threaded version of Python 1.5.2 on NT is twice as slow as
an unthreaded version; with the 2.0 changes, the difference is only 10%. These
improvements were contributed by Yakov Markovitch.

Python 2.0’s source now uses only ANSI C prototypes, so compiling Python now
requires an ANSI C compiler, and can no longer be done using a compiler that
only supports K&R C.

Previously the Python virtual machine used 16-bit numbers in its bytecode,
limiting the size of source files. In particular, this affected the maximum
size of literal lists and dictionaries in Python source; occasionally people who
are generating Python code would run into this limit. A patch by Charles G.
Waldman raises the limit from 2^16 to 2^{32}.

Three new convenience functions intended for adding constants to a module’s
dictionary at module initialization time were added: PyModule_AddObject(),
PyModule_AddIntConstant(), and PyModule_AddStringConstant(). Each
of these functions takes a module object, a null-terminated C string containing
the name to be added, and a third argument for the value to be assigned to the
name. This third argument is, respectively, a Python object, a C long, or a C
string.

A wrapper API was added for Unix-style signal handlers. PyOS_getsig() gets
a signal handler and PyOS_setsig() will set a new handler.

Distutils: Making Modules Easy to Install

Before Python 2.0, installing modules was a tedious affair – there was no way
to figure out automatically where Python is installed, or what compiler options
to use for extension modules. Software authors had to go through an arduous
ritual of editing Makefiles and configuration files, which only really work on
Unix and leave Windows and MacOS unsupported. Python users faced wildly
differing installation instructions which varied between different extension
packages, which made administering a Python installation something of a chore.

The SIG for distribution utilities, shepherded by Greg Ward, has created the
Distutils, a system to make package installation much easier. They form the
distutils package, a new part of Python’s standard library. In the best
case, installing a Python module from source will require the same steps: first
you simply mean unpack the tarball or zip archive, and the run “python
setup.py install”. The platform will be automatically detected, the compiler
will be recognized, C extension modules will be compiled, and the distribution
installed into the proper directory. Optional command-line arguments provide
more control over the installation process, the distutils package offers many
places to override defaults – separating the build from the install, building
or installing in non-default directories, and more.

In order to use the Distutils, you need to write a setup.py script. For
the simple case, when the software contains only .py files, a minimal
setup.py can be just a few lines long:

from distutils.core import setup
setup (name = "foo", version = "1.0",
 py_modules = ["module1", "module2"])

The setup.py file isn’t much more complicated if the software consists
of a few packages:

from distutils.core import setup
setup (name = "foo", version = "1.0",
 packages = ["package", "package.subpackage"])

A C extension can be the most complicated case; here’s an example taken from
the PyXML package:

from distutils.core import setup, Extension

expat_extension = Extension('xml.parsers.pyexpat',
 define_macros = [('XML_NS', None)],
 include_dirs = ['extensions/expat/xmltok',
 'extensions/expat/xmlparse'],
 sources = ['extensions/pyexpat.c',
 'extensions/expat/xmltok/xmltok.c',
 'extensions/expat/xmltok/xmlrole.c',]
)
setup (name = "PyXML", version = "0.5.4",
 ext_modules =[expat_extension])

The Distutils can also take care of creating source and binary distributions.
The “sdist” command, run by “python setup.py sdist‘, builds a source
distribution such as foo-1.0.tar.gz. Adding new commands isn’t
difficult, “bdist_rpm” and “bdist_wininst” commands have already been
contributed to create an RPM distribution and a Windows installer for the
software, respectively. Commands to create other distribution formats such as
Debian packages and Solaris .pkg files are in various stages of
development.

All this is documented in a new manual, Distributing Python Modules, that
joins the basic set of Python documentation.

XML Modules

Python 1.5.2 included a simple XML parser in the form of the xmllib
module, contributed by Sjoerd Mullender. Since 1.5.2’s release, two different
interfaces for processing XML have become common: SAX2 (version 2 of the Simple
API for XML) provides an event-driven interface with some similarities to
xmllib, and the DOM (Document Object Model) provides a tree-based
interface, transforming an XML document into a tree of nodes that can be
traversed and modified. Python 2.0 includes a SAX2 interface and a stripped-
down DOM interface as part of the xml package. Here we will give a brief
overview of these new interfaces; consult the Python documentation or the source
code for complete details. The Python XML SIG is also working on improved
documentation.

SAX2 Support

SAX defines an event-driven interface for parsing XML. To use SAX, you must
write a SAX handler class. Handler classes inherit from various classes
provided by SAX, and override various methods that will then be called by the
XML parser. For example, the startElement() and endElement()
methods are called for every starting and end tag encountered by the parser, the
characters() method is called for every chunk of character data, and so
forth.

The advantage of the event-driven approach is that the whole document doesn’t
have to be resident in memory at any one time, which matters if you are
processing really huge documents. However, writing the SAX handler class can
get very complicated if you’re trying to modify the document structure in some
elaborate way.

For example, this little example program defines a handler that prints a message
for every starting and ending tag, and then parses the file hamlet.xml
using it:

from xml import sax

class SimpleHandler(sax.ContentHandler):
 def startElement(self, name, attrs):
 print 'Start of element:', name, attrs.keys()

 def endElement(self, name):
 print 'End of element:', name

Create a parser object
parser = sax.make_parser()

Tell it what handler to use
handler = SimpleHandler()
parser.setContentHandler(handler)

Parse a file!
parser.parse('hamlet.xml')

For more information, consult the Python documentation, or the XML HOWTO at
http://pyxml.sourceforge.net/topics/howto/xml-howto.html.

DOM Support

The Document Object Model is a tree-based representation for an XML document. A
top-level Document instance is the root of the tree, and has a single
child which is the top-level Element instance. This Element
has children nodes representing character data and any sub-elements, which may
have further children of their own, and so forth. Using the DOM you can
traverse the resulting tree any way you like, access element and attribute
values, insert and delete nodes, and convert the tree back into XML.

The DOM is useful for modifying XML documents, because you can create a DOM
tree, modify it by adding new nodes or rearranging subtrees, and then produce a
new XML document as output. You can also construct a DOM tree manually and
convert it to XML, which can be a more flexible way of producing XML output than
simply writing <tag1>...</tag1> to a file.

The DOM implementation included with Python lives in the xml.dom.minidom
module. It’s a lightweight implementation of the Level 1 DOM with support for
XML namespaces. The parse() and parseString() convenience
functions are provided for generating a DOM tree:

from xml.dom import minidom
doc = minidom.parse('hamlet.xml')

doc is a Document instance. Document, like all the other
DOM classes such as Element and Text, is a subclass of the
Node base class. All the nodes in a DOM tree therefore support certain
common methods, such as toxml() which returns a string containing the XML
representation of the node and its children. Each class also has special
methods of its own; for example, Element and Document
instances have a method to find all child elements with a given tag name.
Continuing from the previous 2-line example:

perslist = doc.getElementsByTagName('PERSONA')
print perslist[0].toxml()
print perslist[1].toxml()

For the Hamlet XML file, the above few lines output:

<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>

The root element of the document is available as doc.documentElement, and
its children can be easily modified by deleting, adding, or removing nodes:

root = doc.documentElement

Remove the first child
root.removeChild(root.childNodes[0])

Move the new first child to the end
root.appendChild(root.childNodes[0])

Insert the new first child (originally,
the third child) before the 20th child.
root.insertBefore(root.childNodes[0], root.childNodes[20])

Again, I will refer you to the Python documentation for a complete listing of
the different Node classes and their various methods.

Relationship to PyXML

The XML Special Interest Group has been working on XML-related Python code for a
while. Its code distribution, called PyXML, is available from the SIG’s Web
pages at http://www.python.org/sigs/xml-sig/. The PyXML distribution also used
the package name xml. If you’ve written programs that used PyXML, you’re
probably wondering about its compatibility with the 2.0 xml package.

The answer is that Python 2.0’s xml package isn’t compatible with PyXML,
but can be made compatible by installing a recent version PyXML. Many
applications can get by with the XML support that is included with Python 2.0,
but more complicated applications will require that the full PyXML package will
be installed. When installed, PyXML versions 0.6.0 or greater will replace the
xml package shipped with Python, and will be a strict superset of the
standard package, adding a bunch of additional features. Some of the additional
features in PyXML include:

	4DOM, a full DOM implementation from FourThought, Inc.

	The xmlproc validating parser, written by Lars Marius Garshol.

	The sgmlop parser accelerator module, written by Fredrik Lundh.

Module changes

Lots of improvements and bugfixes were made to Python’s extensive standard
library; some of the affected modules include readline,
ConfigParser, cgi, calendar, posix, readline,
xmllib, aifc, chunk, wave, random, shelve,
and nntplib. Consult the CVS logs for the exact patch-by-patch details.

Brian Gallew contributed OpenSSL support for the socket module. OpenSSL
is an implementation of the Secure Socket Layer, which encrypts the data being
sent over a socket. When compiling Python, you can edit Modules/Setup
to include SSL support, which adds an additional function to the socket
module: socket.ssl(socket, keyfile, certfile)(), which takes a socket
object and returns an SSL socket. The httplib and urllib modules
were also changed to support https:// URLs, though no one has implemented
FTP or SMTP over SSL.

The httplib module has been rewritten by Greg Stein to support HTTP/1.1.
Backward compatibility with the 1.5 version of httplib is provided,
though using HTTP/1.1 features such as pipelining will require rewriting code to
use a different set of interfaces.

The Tkinter module now supports Tcl/Tk version 8.1, 8.2, or 8.3, and
support for the older 7.x versions has been dropped. The Tkinter module now
supports displaying Unicode strings in Tk widgets. Also, Fredrik Lundh
contributed an optimization which makes operations like create_line and
create_polygon much faster, especially when using lots of coordinates.

The curses module has been greatly extended, starting from Oliver
Andrich’s enhanced version, to provide many additional functions from ncurses
and SYSV curses, such as colour, alternative character set support, pads, and
mouse support. This means the module is no longer compatible with operating
systems that only have BSD curses, but there don’t seem to be any currently
maintained OSes that fall into this category.

As mentioned in the earlier discussion of 2.0’s Unicode support, the underlying
implementation of the regular expressions provided by the re module has
been changed. SRE, a new regular expression engine written by Fredrik Lundh and
partially funded by Hewlett Packard, supports matching against both 8-bit
strings and Unicode strings.

New modules

A number of new modules were added. We’ll simply list them with brief
descriptions; consult the 2.0 documentation for the details of a particular
module.

	atexit: For registering functions to be called before the Python
interpreter exits. Code that currently sets sys.exitfunc directly should be
changed to use the atexit module instead, importing atexit and
calling atexit.register() with the function to be called on exit.
(Contributed by Skip Montanaro.)

	codecs, encodings, unicodedata: Added as part of the new
Unicode support.

	filecmp: Supersedes the old cmp, cmpcache and
dircmp modules, which have now become deprecated. (Contributed by Gordon
MacMillan and Moshe Zadka.)

	gettext: This module provides internationalization (I18N) and
localization (L10N) support for Python programs by providing an interface to the
GNU gettext message catalog library. (Integrated by Barry Warsaw, from separate
contributions by Martin von Löwis, Peter Funk, and James Henstridge.)

	linuxaudiodev: Support for the /dev/audio device on Linux, a
twin to the existing sunaudiodev module. (Contributed by Peter Bosch,
with fixes by Jeremy Hylton.)

	mmap: An interface to memory-mapped files on both Windows and Unix. A
file’s contents can be mapped directly into memory, at which point it behaves
like a mutable string, so its contents can be read and modified. They can even
be passed to functions that expect ordinary strings, such as the re
module. (Contributed by Sam Rushing, with some extensions by A.M. Kuchling.)

	pyexpat: An interface to the Expat XML parser. (Contributed by Paul
Prescod.)

	robotparser: Parse a robots.txt file, which is used for writing
Web spiders that politely avoid certain areas of a Web site. The parser accepts
the contents of a robots.txt file, builds a set of rules from it, and
can then answer questions about the fetchability of a given URL. (Contributed
by Skip Montanaro.)

	tabnanny: A module/script to check Python source code for ambiguous
indentation. (Contributed by Tim Peters.)

	UserString: A base class useful for deriving objects that behave like
strings.

	webbrowser: A module that provides a platform independent way to launch
a web browser on a specific URL. For each platform, various browsers are tried
in a specific order. The user can alter which browser is launched by setting the
BROWSER environment variable. (Originally inspired by Eric S. Raymond’s patch
to urllib which added similar functionality, but the final module comes
from code originally implemented by Fred Drake as
Tools/idle/BrowserControl.py, and adapted for the standard library by
Fred.)

	_winreg: An interface to the Windows registry. _winreg is an
adaptation of functions that have been part of PythonWin since 1995, but has now
been added to the core distribution, and enhanced to support Unicode.
_winreg was written by Bill Tutt and Mark Hammond.

	zipfile: A module for reading and writing ZIP-format archives. These
are archives produced by PKZIP on DOS/Windows or zip on
Unix, not to be confused with gzip-format files (which are
supported by the gzip module) (Contributed by James C. Ahlstrom.)

	imputil: A module that provides a simpler way for writing customised
import hooks, in comparison to the existing ihooks module. (Implemented
by Greg Stein, with much discussion on python-dev along the way.)

IDLE Improvements

IDLE is the official Python cross-platform IDE, written using Tkinter. Python
2.0 includes IDLE 0.6, which adds a number of new features and improvements. A
partial list:

	UI improvements and optimizations, especially in the area of syntax
highlighting and auto-indentation.

	The class browser now shows more information, such as the top level functions
in a module.

	Tab width is now a user settable option. When opening an existing Python file,
IDLE automatically detects the indentation conventions, and adapts.

	There is now support for calling browsers on various platforms, used to open
the Python documentation in a browser.

	IDLE now has a command line, which is largely similar to the vanilla Python
interpreter.

	Call tips were added in many places.

	IDLE can now be installed as a package.

	In the editor window, there is now a line/column bar at the bottom.

	Three new keystroke commands: Check module (Alt-F5), Import module (F5) and
Run script (Ctrl-F5).

Deleted and Deprecated Modules

A few modules have been dropped because they’re obsolete, or because there are
now better ways to do the same thing. The stdwin module is gone; it was
for a platform-independent windowing toolkit that’s no longer developed.

A number of modules have been moved to the lib-old subdirectory:
cmp, cmpcache, dircmp, dump, find,
grep, packmail, poly, util, whatsound,
zmod. If you have code which relies on a module that’s been moved to
lib-old, you can simply add that directory to sys.path to get them
back, but you’re encouraged to update any code that uses these modules.

Acknowledgements

The authors would like to thank the following people for offering suggestions on
various drafts of this article: David Bolen, Mark Hammond, Gregg Hauser, Jeremy
Hylton, Fredrik Lundh, Detlef Lannert, Aahz Maruch, Skip Montanaro, Vladimir
Marangozov, Tobias Polzin, Guido van Rossum, Neil Schemenauer, and Russ Schmidt.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

The Python Tutorial

	Release:	2.7

	Date:	November 07, 2013

Python is an easy to learn, powerful programming language. It has efficient
high-level data structures and a simple but effective approach to
object-oriented programming. Python’s elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available
in source or binary form for all major platforms from the Python Web site,
http://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types
implemented in C or C++ (or other languages callable from C). Python is also
suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and
features of the Python language and system. It helps to have a Python
interpreter handy for hands-on experience, but all examples are self-contained,
so the tutorial can be read off-line as well.

For a description of standard objects and modules, see The Python Standard Library.
The Python Language Reference gives a more formal definition of the language. To write
extensions in C or C++, read IronPython .NET API Reference Manual and
c-api-index. There are also several books covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single
feature, or even every commonly used feature. Instead, it introduces many of
Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and
write Python modules and programs, and you will be ready to learn more about the
various Python library modules described in The Python Standard Library.

The Glossary is also worth going through.

	1. Whetting Your Appetite

	2. Using the Python Interpreter
	2.1. Invoking the Interpreter
	2.1.1. Argument Passing

	2.1.2. Interactive Mode

	2.2. The Interpreter and Its Environment
	2.2.1. Error Handling

	2.2.2. Executable Python Scripts

	2.2.3. Source Code Encoding

	2.2.4. The Interactive Startup File

	3. An Informal Introduction to Python
	3.1. Using Python as a Calculator
	3.1.1. Numbers

	3.1.2. Strings

	3.1.3. Unicode Strings

	3.1.4. Lists

	3.2. First Steps Towards Programming

	4. More Control Flow Tools
	4.1. if Statements

	4.2. for Statements

	4.3. The range() Function

	4.4. break and continue Statements, and else Clauses on Loops

	4.5. pass Statements

	4.6. Defining Functions

	4.7. More on Defining Functions
	4.7.1. Default Argument Values

	4.7.2. Keyword Arguments

	4.7.3. Arbitrary Argument Lists

	4.7.4. Unpacking Argument Lists

	4.7.5. Lambda Forms

	4.7.6. Documentation Strings

	4.8. Intermezzo: Coding Style

	5. Data Structures
	5.1. More on Lists
	5.1.1. Using Lists as Stacks

	5.1.2. Using Lists as Queues

	5.1.3. Functional Programming Tools

	5.1.4. List Comprehensions

	5.1.5. Nested List Comprehensions

	5.2. The del statement

	5.3. Tuples and Sequences

	5.4. Sets

	5.5. Dictionaries

	5.6. Looping Techniques

	5.7. More on Conditions

	5.8. Comparing Sequences and Other Types

	6. Modules
	6.1. More on Modules
	6.1.1. Executing modules as scripts

	6.1.2. The Module Search Path

	6.1.3. “Compiled” Python files

	6.2. Standard Modules

	6.3. The dir() Function

	6.4. Packages
	6.4.1. Importing * From a Package

	6.4.2. Intra-package References

	6.4.3. Packages in Multiple Directories

	7. Input and Output
	7.1. Fancier Output Formatting
	7.1.1. Old string formatting

	7.2. Reading and Writing Files
	7.2.1. Methods of File Objects

	7.2.2. The pickle Module

	8. Errors and Exceptions
	8.1. Syntax Errors

	8.2. Exceptions

	8.3. Handling Exceptions

	8.4. Raising Exceptions

	8.5. User-defined Exceptions

	8.6. Defining Clean-up Actions

	8.7. Predefined Clean-up Actions

	9. Classes
	9.1. A Word About Names and Objects

	9.2. Python Scopes and Namespaces

	9.3. A First Look at Classes
	9.3.1. Class Definition Syntax

	9.3.2. Class Objects

	9.3.3. Instance Objects

	9.3.4. Method Objects

	9.4. Random Remarks

	9.5. Inheritance
	9.5.1. Multiple Inheritance

	9.6. Private Variables

	9.7. Odds and Ends

	9.8. Exceptions Are Classes Too

	9.9. Iterators

	9.10. Generators

	9.11. Generator Expressions

	10. Brief Tour of the Standard Library
	10.1. Operating System Interface

	10.2. File Wildcards

	10.3. Command Line Arguments

	10.4. Error Output Redirection and Program Termination

	10.5. String Pattern Matching

	10.6. Mathematics

	10.7. Internet Access

	10.8. Dates and Times

	10.9. Data Compression

	10.10. Performance Measurement

	10.11. Quality Control

	10.12. Batteries Included

	11. Brief Tour of the Standard Library – Part II
	11.1. Output Formatting

	11.2. Templating

	11.3. Working with Binary Data Record Layouts

	11.4. Multi-threading

	11.5. Logging

	11.6. Weak References

	11.7. Tools for Working with Lists

	11.8. Decimal Floating Point Arithmetic

	12. What Now?

	13. Interactive Input Editing and History Substitution
	13.1. Line Editing

	13.2. History Substitution

	13.3. Key Bindings

	13.4. Alternatives to the Interactive Interpreter

	14. Floating Point Arithmetic: Issues and Limitations
	14.1. Representation Error

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

1. Whetting Your Appetite

If you do much work on computers, eventually you find that there’s some task
you’d like to automate. For example, you may wish to perform a
search-and-replace over a large number of text files, or rename and rearrange a
bunch of photo files in a complicated way. Perhaps you’d like to write a small
custom database, or a specialized GUI application, or a simple game.

If you’re a professional software developer, you may have to work with several
C/C++/Java libraries but find the usual write/compile/test/re-compile cycle is
too slow. Perhaps you’re writing a test suite for such a library and find
writing the testing code a tedious task. Or maybe you’ve written a program that
could use an extension language, and you don’t want to design and implement a
whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these
tasks, but shell scripts are best at moving around files and changing text data,
not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft
program. Python is simpler to use, available on Windows, Mac OS X, and Unix
operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much
more structure and support for large programs than shell scripts or batch files
can offer. On the other hand, Python also offers much more error checking than
C, and, being a very-high-level language, it has high-level data types built
in, such as flexible arrays and dictionaries. Because of its more general data
types Python is applicable to a much larger problem domain than Awk or even
Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other
Python programs. It comes with a large collection of standard modules that you
can use as the basis of your programs — or as examples to start learning to
program in Python. Some of these modules provide things like file I/O, system
calls, sockets, and even interfaces to graphical user interface toolkits like
Tk.

Python is an interpreted language, which can save you considerable time during
program development because no compilation and linking is necessary. The
interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written
in Python are typically much shorter than equivalent C, C++, or Java programs,
for several reasons:

	the high-level data types allow you to express complex operations in a single
statement;

	statement grouping is done by indentation instead of beginning and ending
brackets;

	no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new
built-in function or module to the interpreter, either to perform critical
operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library).
Once you are really hooked, you can link the Python interpreter into an
application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying
Circus” and has nothing to do with reptiles. Making references to Monty
Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some
more detail. Since the best way to learn a language is to use it, the tutorial
invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This
is rather mundane information, but essential for trying out the examples shown
later.

The rest of the tutorial introduces various features of the Python language and
system through examples, beginning with simple expressions, statements and data
types, through functions and modules, and finally touching upon advanced
concepts like exceptions and user-defined classes.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

2. Using the Python Interpreter

2.1. Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on
those machines where it is available; putting /usr/local/bin in your
Unix shell’s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is
an installation option, other places are possible; check with your local Python
guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines, the Python installation is usually placed in
C:\Python27, though you can change this when you’re running the
installer. To add this directory to your path, you can type the following
command into the command prompt in a DOS box:

set path=%path%;C:\python27

Typing an end-of-file character (Control-D on Unix, Control-Z on
Windows) at the primary prompt causes the interpreter to exit with a zero exit
status. If that doesn’t work, you can exit the interpreter by typing the
following command: quit().

The interpreter’s line-editing features usually aren’t very sophisticated. On
Unix, whoever installed the interpreter may have enabled support for the GNU
readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is
supported is typing Control-P to the first Python prompt you get. If it beeps,
you have command line editing; see Appendix Interactive Input Editing and History Substitution for an
introduction to the keys. If nothing appears to happen, or if ^P is echoed,
command line editing isn’t available; you’ll only be able to use backspace to
remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard
input connected to a tty device, it reads and executes commands interactively;
when called with a file name argument or with a file as standard input, it reads
and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ...,
which executes the statement(s) in command, analogous to the shell’s
-c option. Since Python statements often contain spaces or other
characters that are special to the shell, it is usually advised to quote
command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using
python -m module [arg] ..., which executes the source file for module as
if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script
and enter interactive mode afterwards. This can be done by passing -i
before the script. (This does not work if the script is read from standard
input, for the same reason as explained in the previous paragraph.)

2.1.1. Argument Passing

When known to the interpreter, the script name and additional arguments
thereafter are turned into a list of strings and assigned to the argv
variable in the sys module. You can access this list by executing import
sys. The length of the list is at least one; when no script and no arguments
are given, sys.argv[0] is an empty string. When the script name is given as
'-' (meaning standard input), sys.argv[0] is set to '-'. When
-c command is used, sys.argv[0] is set to '-c'. When
-m module is used, sys.argv[0] is set to the full name of the
located module. Options found after -c command or -m
module are not consumed by the Python interpreter’s option processing but
left in sys.argv for the command or module to handle.

2.1.2. Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive
mode. In this mode it prompts for the next command with the primary prompt,
usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (...). The interpreter
prints a welcome message stating its version number and a copyright notice
before printing the first prompt:

python
Python 2.7 (#1, Feb 28 2010, 00:02:06)
Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an
example, take a look at this if statement:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!

2.2. The Interpreter and Its Environment

2.2.1. Error Handling

When an error occurs, the interpreter prints an error message and a stack trace.
In interactive mode, it then returns to the primary prompt; when input came from
a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by an except clause in a try statement
are not errors in this context.) Some errors are unconditionally fatal and
cause an exit with a nonzero exit; this applies to internal inconsistencies and
some cases of running out of memory. All error messages are written to the
standard error stream; normal output from executed commands is written to
standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or
secondary prompt cancels the input and returns to the primary prompt. [1]
Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a try
statement.

2.2.2. Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like
shell scripts, by putting the line

#! /usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning
of the script and giving the file an executable mode. The #! must be the
first two characters of the file. On some platforms, this first line must end
with a Unix-style line ending ('\n'), not a Windows ('\r\n') line
ending. Note that the hash, or pound, character, '#', is used to start a
comment in Python.

The script can be given an executable mode, or permission, using the
chmod command:

$ chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python
installer automatically associates .py files with python.exe so that
a double-click on a Python file will run it as a script. The extension can
also be .pyw, in that case, the console window that normally appears is
suppressed.

2.2.3. Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The
best way to do it is to put one more special comment line right after the #!
line to define the source file encoding:

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as
having the encoding encoding, and it will be possible to directly write
Unicode string literals in the selected encoding. The list of possible
encodings can be found in the Python Library Reference, in the section on
codecs.

For example, to write Unicode literals including the Euro currency symbol, the
ISO-8859-15 encoding can be used, with the Euro symbol having the ordinal value
164. This script will print the value 8364 (the Unicode codepoint corresponding
to the Euro symbol) and then exit:

-*- coding: iso-8859-15 -*-

currency = u"€"
print ord(currency)

If your editor supports saving files as UTF-8 with a UTF-8 byte order mark
(aka BOM), you can use that instead of an encoding declaration. IDLE supports
this capability if Options/General/Default Source Encoding/UTF-8 is set.
Notice that this signature is not understood in older Python releases (2.2 and
earlier), and also not understood by the operating system for script files with
#! lines (only used on Unix systems).

By using UTF-8 (either through the signature or an encoding declaration),
characters of most languages in the world can be used simultaneously in string
literals and comments. Using non-ASCII characters in identifiers is not
supported. To display all these characters properly, your editor must recognize
that the file is UTF-8, and it must use a font that supports all the characters
in the file.

2.2.4. The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard
commands executed every time the interpreter is started. You can do this by
setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to the .profile
feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands
from a script, and not when /dev/tty is given as the explicit source of
commands (which otherwise behaves like an interactive session). It is executed
in the same namespace where interactive commands are executed, so that objects
that it defines or imports can be used without qualification in the interactive
session. You can also change the prompts sys.ps1 and sys.ps2 in this
file.

If you want to read an additional start-up file from the current directory, you
can program this in the global start-up file using code like if
os.path.isfile('.pythonrc.py'): execfile('.pythonrc.py'). If you want to use
the startup file in a script, you must do this explicitly in the script:

import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):
 execfile(filename)

Footnotes

	[1]	A problem with the GNU Readline package may prevent this.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

3. An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or
absence of prompts (>>> and ...): to repeat the example, you must type
everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a
line by itself in an example means you must type a blank line; this is used to
end a multi-line command.

Many of the examples in this manual, even those entered at the interactive
prompt, include comments. Comments in Python start with the hash character,
#, and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string
literal. A hash character within a string literal is just a hash character.
Since comments are to clarify code and are not interpreted by Python, they may
be omitted when typing in examples.

Some examples:

this is the first comment
SPAM = 1 # and this is the second comment
 # ... and now a third!
STRING = "# This is not a comment."

3.1. Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the
primary prompt, >>>. (It shouldn’t take long.)

3.1.1. Numbers

The interpreter acts as a simple calculator: you can type an expression at it
and it will write the value. Expression syntax is straightforward: the
operators +, -, * and / work just like in most other languages
(for example, Pascal or C); parentheses can be used for grouping. For example:

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

The equal sign ('=') is used to assign a value to a variable. Afterwards, no
result is displayed before the next interactive prompt:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

Variables must be “defined” (assigned a value) before they can be used, or an
error will occur:

>>> # try to access an undefined variable
... n
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands
convert the integer operand to floating point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix
of j or J. Complex numbers with a nonzero real component are written as
(real+imagj), or can be created with the complex(real, imag) function.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real
and imaginary part. To extract these parts from a complex number z, use
z.real and z.imag.

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to floating point and integer (float(),
int() and long()) don’t work for complex numbers — there is no one
correct way to convert a complex number to a real number. Use abs(z) to get
its magnitude (as a float) or z.real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: can't convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0

In interactive mode, the last printed expression is assigned to the variable
_. This means that when you are using Python as a desk calculator, it is
somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly
assign a value to it — you would create an independent local variable with the
same name masking the built-in variable with its magic behavior.

3.1.2. Strings

Besides numbers, Python can also manipulate strings, which can be expressed in
several ways. They can be enclosed in single quotes or double quotes:

>>> 'spam eggs'
'spam eggs'
>>> 'doesn\'t'
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'

The interpreter prints the result of string operations in the same way as they
are typed for input: inside quotes, and with quotes and other funny characters
escaped by backslashes, to show the precise value. The string is enclosed in
double quotes if the string contains a single quote and no double quotes, else
it’s enclosed in single quotes. The print statement produces a more
readable output for such input strings.

String literals can span multiple lines in several ways. Continuation lines can
be used, with a backslash as the last character on the line indicating that the
next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\
 Note that whitespace at the beginning of the line is\
 significant."

print hello

Note that newlines still need to be embedded in the string using \n – the
newline following the trailing backslash is discarded. This example would print
the following:

This is a rather long string containing
several lines of text just as you would do in C.
 Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or
'''. End of lines do not need to be escaped when using triple-quotes, but
they will be included in the string.

print """
Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to
"""

produces the following output:

Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to

If we make the string literal a “raw” string, \n sequences are not converted
to newlines, but the backslash at the end of the line, and the newline character
in the source, are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

The interpreter prints the result of string operations in the same way as they
are typed for input: inside quotes, and with quotes and other funny characters
escaped by backslashes, to show the precise value. The string is enclosed in
double quotes if the string contains a single quote and no double quotes, else
it’s enclosed in single quotes. (The print statement, described
later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and
repeated with *:

>>> word = 'Help' + 'A'
>>> word
'HelpA'
>>> '<' + word*5 + '>'
'<HelpAHelpAHelpAHelpAHelpA>'

Two string literals next to each other are automatically concatenated; the first
line above could also have been written word = 'Help' 'A'; this only works
with two literals, not with arbitrary string expressions:

>>> 'str' 'ing' # <- This is ok
'string'
>>> 'str'.strip() + 'ing' # <- This is ok
'string'
>>> 'str'.strip() 'ing' # <- This is invalid
 File "<stdin>", line 1, in ?
 'str'.strip() 'ing'
 ^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string
has subscript (index) 0. There is no separate character type; a character is
simply a string of size one. Like in Icon, substrings can be specified with the
slice notation: two indices separated by a colon.

>>> word[4]
'A'
>>> word[0:2]
'He'
>>> word[2:4]
'lp'

Slice indices have useful defaults; an omitted first index defaults to zero, an
omitted second index defaults to the size of the string being sliced.

>>> word[:2] # The first two characters
'He'
>>> word[2:] # Everything except the first two characters
'lpA'

Unlike a C string, Python strings cannot be changed. Assigning to an indexed
position in the string results in an error:

>>> word[0] = 'x'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
>>> word[:1] = 'Splat'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object does not support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> 'x' + word[1:]
'xelpA'
>>> 'Splat' + word[4]
'SplatA'

Here’s a useful invariant of slice operations: s[:i] + s[i:] equals s.

>>> word[:2] + word[2:]
'HelpA'
>>> word[:3] + word[3:]
'HelpA'

Degenerate slice indices are handled gracefully: an index that is too large is
replaced by the string size, an upper bound smaller than the lower bound returns
an empty string.

>>> word[1:100]
'elpA'
>>> word[10:]
''
>>> word[2:1]
''

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character
'A'
>>> word[-2] # The last-but-one character
'p'
>>> word[-2:] # The last two characters
'pA'
>>> word[:-2] # Everything except the last two characters
'Hel'

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
'H'

Out-of-range negative slice indices are truncated, but don’t try this for
single-element (non-slice) indices:

>>> word[-100:]
'HelpA'
>>> word[-10] # error
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: string index out of range

One way to remember how slices work is to think of the indices as pointing
between characters, with the left edge of the first character numbered 0.
Then the right edge of the last character of a string of n characters has
index n, for example:

 +---+---+---+---+---+
 | H | e | l | p | A |
 +---+---+---+---+---+
 0 1 2 3 4 5
-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string;
the second row gives the corresponding negative indices. The slice from i to
j consists of all characters between the edges labeled i and j,
respectively.

For non-negative indices, the length of a slice is the difference of the
indices, if both are within bounds. For example, the length of word[1:3] is
2.

The built-in function len() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

See also

	Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange

	Strings, and the Unicode strings described in the next section, are
examples of sequence types, and support the common operations supported
by such types.

	String Methods

	Both strings and Unicode strings support a large number of methods for
basic transformations and searching.

	String Formatting

	Information about string formatting with str.format() is described
here.

	String Formatting Operations

	The old formatting operations invoked when strings and Unicode strings are
the left operand of the % operator are described in more detail here.

3.1.3. Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to
the programmer: the Unicode object. It can be used to store and manipulate
Unicode data (see http://www.unicode.org/) and integrates well with the existing
string objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every
script used in modern and ancient texts. Previously, there were only 256
possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much
confusion especially with respect to internationalization (usually written as
i18n — 'i' + 18 characters + 'n') of software. Unicode solves
these problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal
strings:

>>> u'Hello World !'
u'Hello World !'

The small 'u' in front of the quote indicates that a Unicode string is
supposed to be created. If you want to include special characters in the string,
you can do so by using the Python Unicode-Escape encoding. The following
example shows how:

>>> u'Hello\u0020World !'
u'Hello World !'

The escape sequence \u0020 indicates to insert the Unicode character with
the ordinal value 0x0020 (the space character) at the given position.

Other characters are interpreted by using their respective ordinal values
directly as Unicode ordinals. If you have literal strings in the standard
Latin-1 encoding that is used in many Western countries, you will find it
convenient that the lower 256 characters of Unicode are the same as the 256
characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You
have to prefix the opening quote with ‘ur’ to have Python use the
Raw-Unicode-Escape encoding. It will only apply the above \uXXXX
conversion if there is an uneven number of backslashes in front of the small
‘u’.

>>> ur'Hello\u0020World !'
u'Hello World !'
>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !'

The raw mode is most useful when you have to enter lots of backslashes, as can
be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways
of creating Unicode strings on the basis of a known encoding.

The built-in function unicode() provides access to all registered Unicode
codecs (COders and DECoders). Some of the more well known encodings which these
codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter two
are variable-length encodings that store each Unicode character in one or more
bytes. The default encoding is normally set to ASCII, which passes through
characters in the range 0 to 127 and rejects any other characters with an error.
When a Unicode string is printed, written to a file, or converted with
str(), conversion takes place using this default encoding.

>>> u"abc"
u'abc'
>>> str(u"abc")
'abc'
>>> u"äöü"
u'\xe4\xf6\xfc'
>>> str(u"äöü")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding,
Unicode objects provide an encode() method that takes one argument, the
name of the encoding. Lowercase names for encodings are preferred.

>>> u"äöü".encode('utf-8')
'\xc3\xa4\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding
Unicode string from it, you can use the unicode() function with the
encoding name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xe4\xf6\xfc'

3.1.4. Lists

Python knows a number of compound data types, used to group together other
values. The most versatile is the list, which can be written as a list of
comma-separated values (items) between square brackets. List items need not all
have the same type.

>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced,
concatenated and so on:

>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
['eggs', 100]
>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boo!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boo!']

All slice operations return a new list containing the requested elements. This
means that the following slice returns a shallow copy of the list a:

>>> a[:]
['spam', 'eggs', 100, 1234]

Unlike strings, which are immutable, it is possible to change individual
elements of a list:

>>> a
['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam', 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of the
list or clear it entirely:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = ['bletch', 'xyzzy']
>>> a
[123, 'bletch', 'xyzzy', 1234]
>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[:] = []
>>> a
[]

The built-in function len() also applies to lists:

>>> a = ['a', 'b', 'c', 'd']
>>> len(a)
4

It is possible to nest lists (create lists containing other lists), for
example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append('xtra') # See section 5.1
>>> p
[1, [2, 3, 'xtra'], 4]
>>> q
[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same
object! We’ll come back to object semantics later.

3.2. First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two
together. For instance, we can write an initial sub-sequence of the Fibonacci
series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

This example introduces several new features.

	The first line contains a multiple assignment: the variables a and b
simultaneously get the new values 0 and 1. On the last line this is used again,
demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions
are evaluated from the left to the right.

	The while loop executes as long as the condition (here: b < 10)
remains true. In Python, like in C, any non-zero integer value is true; zero is
false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison operators
are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to)
and != (not equal to).

	The body of the loop is indented: indentation is Python’s way of grouping
statements. Python does not (yet!) provide an intelligent input line editing
facility, so you have to type a tab or space(s) for each indented line. In
practice you will prepare more complicated input for Python with a text editor;
most text editors have an auto-indent facility. When a compound statement is
entered interactively, it must be followed by a blank line to indicate
completion (since the parser cannot guess when you have typed the last line).
Note that each line within a basic block must be indented by the same amount.

	The print statement writes the value of the expression(s) it is
given. It differs from just writing the expression you want to write (as we did
earlier in the calculator examples) in the way it handles multiple expressions
and strings. Strings are printed without quotes, and a space is inserted
between items, so you can format things nicely, like this:

>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if
the last line was not completed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

4. More Control Flow Tools

Besides the while statement just introduced, Python knows the usual
control flow statements known from other languages, with some twists.

4.1. if Statements

Perhaps the most well-known statement type is the if statement. For
example:

>>> x = int(raw_input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print 'Negative changed to zero'
... elif x == 0:
... print 'Zero'
... elif x == 1:
... print 'Single'
... else:
... print 'More'
...
More

There can be zero or more elif parts, and the else part is
optional. The keyword ‘elif‘ is short for ‘else if’, and is useful
to avoid excessive indentation. An if ... elif ...
elif ... sequence is a substitute for the switch or
case statements found in other languages.

4.2. for Statements

The for statement in Python differs a bit from what you may be used
to in C or Pascal. Rather than always iterating over an arithmetic progression
of numbers (like in Pascal), or giving the user the ability to define both the
iteration step and halting condition (as C), Python’s for statement
iterates over the items of any sequence (a list or a string), in the order that
they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... a = ['cat', 'window', 'defenestrate']
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can
only happen for mutable sequence types, such as lists). If you need to modify
the list you are iterating over (for example, to duplicate selected items) you
must iterate over a copy. The slice notation makes this particularly
convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
['defenestrate', 'cat', 'window', 'defenestrate']

4.3. The range() Function

If you do need to iterate over a sequence of numbers, the built-in function
range() comes in handy. It generates lists containing arithmetic
progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates
a list of 10 values, the legal indices for items of a sequence of length 10. It
is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range() and
len() as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate()
function, see Looping Techniques.

4.4. break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing
for or while loop.

The continue statement, also borrowed from C, continues with the next
iteration of the loop.

Loop statements may have an else clause; it is executed when the loop
terminates through exhaustion of the list (with for) or when the
condition becomes false (with while), but not when the loop is
terminated by a break statement. This is exemplified by the
following loop, which searches for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, 'equals', x, '*', n/x
... break
... else:
... # loop fell through without finding a factor
... print n, 'is a prime number'
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

4.5. pass Statements

The pass statement does nothing. It can be used when a statement is
required syntactically but the program requires no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
... pass
...

Another place pass can be used is as a place-holder for a function or
conditional body when you are working on new code, allowing you to keep thinking
at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
... pass # Remember to implement this!
...

4.6. Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary
boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print a,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be
followed by the function name and the parenthesized list of formal parameters.
The statements that form the body of the function start at the next line, and
must be indented.

The first statement of the function body can optionally be a string literal;
this string literal is the function’s documentation string, or docstring.
(More about docstrings can be found in the section Documentation Strings.)
There are tools which use docstrings to automatically produce online or printed
documentation, or to let the user interactively browse through code; it’s good
practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local
variables of the function. More precisely, all variable assignments in a
function store the value in the local symbol table; whereas variable references
first look in the local symbol table, then in the local symbol tables of
enclosing functions, then in the global symbol table, and finally in the table
of built-in names. Thus, global variables cannot be directly assigned a value
within a function (unless named in a global statement), although they
may be referenced.

The actual parameters (arguments) to a function call are introduced in the local
symbol table of the called function when it is called; thus, arguments are
passed using call by value (where the value is always an object reference,
not the value of the object). [1] When a function calls another function, a new
local symbol table is created for that call.

A function definition introduces the function name in the current symbol table.
The value of the function name has a type that is recognized by the interpreter
as a user-defined function. This value can be assigned to another name which
can then also be used as a function. This serves as a general renaming
mechanism:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but
a procedure since it doesn’t return a value. In fact, even functions without a
return statement do return a value, albeit a rather boring one. This
value is called None (it’s a built-in name). Writing the value None is
normally suppressed by the interpreter if it would be the only value written.
You can see it if you really want to using print:

>>> fib(0)
>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the
Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

	The return statement returns with a value from a function.
return without an expression argument returns None. Falling off
the end of a function also returns None.

	The statement result.append(a) calls a method of the list object
result. A method is a function that ‘belongs’ to an object and is named
obj.methodname, where obj is some object (this may be an expression),
and methodname is the name of a method that is defined by the object’s type.
Different types define different methods. Methods of different types may have
the same name without causing ambiguity. (It is possible to define your own
object types and methods, using classes, see Classes)
The method append() shown in the example is defined for list objects; it
adds a new element at the end of the list. In this example it is equivalent to
result = result + [a], but more efficient.

4.7. More on Defining Functions

It is also possible to define functions with a variable number of arguments.
There are three forms, which can be combined.

4.7.1. Default Argument Values

The most useful form is to specify a default value for one or more arguments.
This creates a function that can be called with fewer arguments than it is
defined to allow. For example:

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
 while True:
 ok = raw_input(prompt)
 if ok in ('y', 'ye', 'yes'):
 return True
 if ok in ('n', 'no', 'nop', 'nope'):
 return False
 retries = retries - 1
 if retries < 0:
 raise IOError('refusenik user')
 print complaint

This function can be called in several ways:

	giving only the mandatory argument:
ask_ok('Do you really want to quit?')

	giving one of the optional arguments:
ask_ok('OK to overwrite the file?', 2)

	or even giving all arguments:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')

This example also introduces the in keyword. This tests whether or
not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the
defining scope, so that

i = 5

def f(arg=i):
 print arg

i = 6
f()

will print 5.

Important warning: The default value is evaluated only once. This makes a
difference when the default is a mutable object such as a list, dictionary, or
instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
 L.append(a)
 return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can
write the function like this instead:

def f(a, L=None):
 if L is None:
 L = []
 L.append(a)
 return L

4.7.2. Keyword Arguments

Functions can also be called using keyword arguments of the form keyword =
value. For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
 print "-- This parrot wouldn't", action,
 print "if you put", voltage, "volts through it."
 print "-- Lovely plumage, the", type
 print "-- It's", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = 'VOOOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')
parrot('a million', 'bereft of life', 'jump')

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor='John Cleese') # unknown keyword

In general, an argument list must have any positional arguments followed by any
keyword arguments, where the keywords must be chosen from the formal parameter
names. It’s not important whether a formal parameter has a default value or
not. No argument may receive a value more than once — formal parameter names
corresponding to positional arguments cannot be used as keywords in the same
calls. Here’s an example that fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form **name is present, it receives a
dictionary (see Mapping Types — dict) containing all keyword arguments except for
those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which
receives a tuple containing the positional arguments beyond the formal parameter
list. (*name must occur before **name.) For example, if we define a
function like this:

def cheeseshop(kind, *arguments, **keywords):
 print "-- Do you have any", kind, "?"
 print "-- I'm sorry, we're all out of", kind
 for arg in arguments:
 print arg
 print "-" * 40
 keys = sorted(keywords.keys())
 for kw in keys:
 print kw, ":", keywords[kw]

It could be called like this:

cheeseshop("Limburger", "It's very runny, sir.",
 "It's really very, VERY runny, sir.",
 shopkeeper='Michael Palin',
 client="John Cleese",
 sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the list of keyword argument names is created by sorting the result
of the keywords dictionary’s keys() method before printing its contents;
if this is not done, the order in which the arguments are printed is undefined.

4.7.3. Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be
called with an arbitrary number of arguments. These arguments will be wrapped
up in a tuple (see Tuples and Sequences). Before the variable number of arguments,
zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):
 file.write(separator.join(args))

4.7.4. Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple
but need to be unpacked for a function call requiring separate positional
arguments. For instance, the built-in range() function expects separate
start and stop arguments. If they are not available separately, write the
function call with the *-operator to unpack the arguments out of a list
or tuple:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>> def parrot(voltage, state='a stiff', action='voom'):
... print "-- This parrot wouldn't", action,
... print "if you put", voltage, "volts through it.",
... print "E's", state, "!"
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

4.7.5. Lambda Forms

By popular demand, a few features commonly found in functional programming
languages like Lisp have been added to Python. With the lambda
keyword, small anonymous functions can be created. Here’s a function that
returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can be
used wherever function objects are required. They are syntactically restricted
to a single expression. Semantically, they are just syntactic sugar for a
normal function definition. Like nested function definitions, lambda forms can
reference variables from the containing scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

4.7.6. Documentation Strings

There are emerging conventions about the content and formatting of documentation
strings.

The first line should always be a short, concise summary of the object’s
purpose. For brevity, it should not explicitly state the object’s name or type,
since these are available by other means (except if the name happens to be a
verb describing a function’s operation). This line should begin with a capital
letter and end with a period.

If there are more lines in the documentation string, the second line should be
blank, visually separating the summary from the rest of the description. The
following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in
Python, so tools that process documentation have to strip indentation if
desired. This is done using the following convention. The first non-blank line
after the first line of the string determines the amount of indentation for
the entire documentation string. (We can’t use the first line since it is
generally adjacent to the string’s opening quotes so its indentation is not
apparent in the string literal.) Whitespace “equivalent” to this indentation is
then stripped from the start of all lines of the string. Lines that are
indented less should not occur, but if they occur all their leading whitespace
should be stripped. Equivalence of whitespace should be tested after expansion
of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

 No, really, it doesn't do anything.

4.8. Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a
good time to talk about coding style. Most languages can be written (or more
concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting
a nice coding style helps tremendously for that.

For Python, PEP 8 [http://www.python.org/dev/peps/pep-0008] has emerged as the style guide that most projects adhere to;
it promotes a very readable and eye-pleasing coding style. Every Python
developer should read it at some point; here are the most important points
extracted for you:

	Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater
nesting depth) and large indentation (easier to read). Tabs introduce
confusion, and are best left out.

	Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several
code files side-by-side on larger displays.

	Use blank lines to separate functions and classes, and larger blocks of
code inside functions.

	When possible, put comments on a line of their own.

	Use docstrings.

	Use spaces around operators and after commas, but not directly inside
bracketing constructs: a = f(1, 2) + g(3, 4).

	Name your classes and functions consistently; the convention is to use
CamelCase for classes and lower_case_with_underscores for functions
and methods. Always use self as the name for the first method argument
(see A First Look at Classes for more on classes and methods).

	Don’t use fancy encodings if your code is meant to be used in international
environments. Plain ASCII works best in any case.

Footnotes

	[1]	Actually, call by object reference would be a better description,
since if a mutable object is passed, the caller will see any changes the
callee makes to it (items inserted into a list).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

5. Data Structures

This chapter describes some things you’ve learned about already in more detail,
and adds some new things as well.

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list
objects:

	
list.append(x)

	Add an item to the end of the list; equivalent to a[len(a):] = [x].

	
list.extend(L)

	Extend the list by appending all the items in the given list; equivalent to
a[len(a):] = L.

	
list.insert(i, x)

	Insert an item at a given position. The first argument is the index of the
element before which to insert, so a.insert(0, x) inserts at the front of
the list, and a.insert(len(a), x) is equivalent to a.append(x).

	
list.remove(x)

	Remove the first item from the list whose value is x. It is an error if there
is no such item.

	
list.pop([i])

	Remove the item at the given position in the list, and return it. If no index
is specified, a.pop() removes and returns the last item in the list. (The
square brackets around the i in the method signature denote that the parameter
is optional, not that you should type square brackets at that position. You
will see this notation frequently in the Python Library Reference.)

	
list.index(x)

	Return the index in the list of the first item whose value is x. It is an
error if there is no such item.

	
list.count(x)

	Return the number of times x appears in the list.

	
list.sort()

	Sort the items of the list, in place.

	
list.reverse()

	Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count('x')
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1. Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last
element added is the first element retrieved (“last-in, first-out”). To add an
item to the top of the stack, use append(). To retrieve an item from the
top of the stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2. Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is
the first element retrieved (“first-in, first-out”); however, lists are not
efficient for this purpose. While appends and pops from the end of list are
fast, doing inserts or pops from the beginning of a list is slow (because all
of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to
have fast appends and pops from both ends. For example:

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

5.1.3. Functional Programming Tools

There are three built-in functions that are very useful when used with lists:
filter(), map(), and reduce().

filter(function, sequence) returns a sequence consisting of those items from
the sequence for which function(item) is true. If sequence is a
string or tuple, the result will be of the same type;
otherwise, it is always a list. For example, to compute primes up
to 25:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

map(function, sequence) calls function(item) for each of the sequence’s
items and returns a list of the return values. For example, to compute some
cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many
arguments as there are sequences and is called with the corresponding item from
each sequence (or None if some sequence is shorter than another). For
example:

>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

reduce(function, sequence) returns a single value constructed by calling the
binary function function on the first two items of the sequence, then on the
result and the next item, and so on. For example, to compute the sum of the
numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence
is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the
starting value is returned for an empty sequence, and the function is first
applied to the starting value and the first sequence item, then to the result
and the next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

Don’t use this example’s definition of sum(): since summing numbers is
such a common need, a built-in function sum(sequence) is already provided,
and works exactly like this.

New in version 2.3.

5.1.4. List Comprehensions

List comprehensions provide a concise way to create lists without resorting to
use of map(), filter() and/or lambda. The resulting list
definition tends often to be clearer than lists built using those constructs.
Each list comprehension consists of an expression followed by a for
clause, then zero or more for or if clauses. The result
will be a list resulting from evaluating the expression in the context of the
for and if clauses which follow it. If the expression
would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples
 File "<stdin>", line 1, in ?
 [x, x**2 for x in vec]
 ^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

List comprehensions are much more flexible than map() and can be applied
to complex expressions and nested functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.5. Nested List Comprehensions

If you’ve got the stomach for it, list comprehensions can be nested. They are a
powerful tool but – like all powerful tools – they need to be used carefully,
if at all.

Consider the following example of a 3x3 matrix held as a list containing three
lists, one list per row:

>>> mat = [
... [1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
...]

Now, if you wanted to swap rows and columns, you could use a list
comprehension:

>>> print [[row[i] for row in mat] for i in [0, 1, 2]]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Special care has to be taken for the nested list comprehension:

To avoid apprehension when nesting list comprehensions, read from right to
left.

A more verbose version of this snippet shows the flow explicitly:

for i in [0, 1, 2]:
 for row in mat:
 print row[i],
 print

In real world, you should prefer built-in functions to complex flow statements.
The zip() function would do a great job for this use case:

>>> zip(*mat)
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2. The del statement

There is a way to remove an item from a list given its index instead of its
value: the del statement. This differs from the pop() method
which returns a value. The del statement can also be used to remove
slices from a list or clear the entire list (which we did earlier by assignment
of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value
is assigned to it). We’ll find other uses for del later.

5.3. Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and
slicing operations. They are two examples of sequence data types (see
Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange). Since Python is an evolving language, other sequence data
types may be added. There is also another standard sequence data type: the
tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested
tuples are interpreted correctly; they may be input with or without surrounding
parentheses, although often parentheses are necessary anyway (if the tuple is
part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee records
from a database, etc. Tuples, like strings, are immutable: it is not possible
to assign to the individual items of a tuple (you can simulate much of the same
effect with slicing and concatenation, though). It is also possible to create
tuples which contain mutable objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the
syntax has some extra quirks to accommodate these. Empty tuples are constructed
by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value
in parentheses). Ugly, but effective. For example:

>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

The statement t = 12345, 54321, 'hello!' is an example of tuple packing:
the values 12345, 54321 and 'hello!' are packed together in a tuple.
The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking and works for any
sequence on the right-hand side. Sequence unpacking requires the list of
variables on the left to have the same number of elements as the length of the
sequence. Note that multiple assignment is really just a combination of tuple
packing and sequence unpacking.

5.4. Sets

Python also includes a data type for sets. A set is an unordered collection
with no duplicate elements. Basic uses include membership testing and
eliminating duplicate entries. Set objects also support mathematical operations
like union, intersection, difference, and symmetric difference.

Here is a brief demonstration:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> fruit = set(basket) # create a set without duplicates
>>> fruit
set(['orange', 'pear', 'apple', 'banana'])
>>> 'orange' in fruit # fast membership testing
True
>>> 'crabgrass' in fruit
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])

5.5. Dictionaries

Another useful data type built into Python is the dictionary (see
Mapping Types — dict). Dictionaries are sometimes found in other languages as
“associative memories” or “associative arrays”. Unlike sequences, which are
indexed by a range of numbers, dictionaries are indexed by keys, which can be
any immutable type; strings and numbers can always be keys. Tuples can be used
as keys if they contain only strings, numbers, or tuples; if a tuple contains
any mutable object either directly or indirectly, it cannot be used as a key.
You can’t use lists as keys, since lists can be modified in place using index
assignments, slice assignments, or methods like append() and
extend().

It is best to think of a dictionary as an unordered set of key: value pairs,
with the requirement that the keys are unique (within one dictionary). A pair of
braces creates an empty dictionary: {}. Placing a comma-separated list of
key:value pairs within the braces adds initial key:value pairs to the
dictionary; this is also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a key:value
pair with del. If you store using a key that is already in use, the old
value associated with that key is forgotten. It is an error to extract a value
using a non-existent key.

The keys() method of a dictionary object returns a list of all the keys
used in the dictionary, in arbitrary order (if you want it sorted, just apply
the sorted() function to it). To check whether a single key is in the
dictionary, use the in keyword.

Here is a small example using a dictionary:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> 'guido' in tel
True

The dict() constructor builds dictionaries directly from lists of
key-value pairs stored as tuples. When the pairs form a pattern, list
comprehensions can compactly specify the key-value list.

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}
>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even
better suited for the task of supplying key-values pairs to the dict()
constructor.

When the keys are simple strings, it is sometimes easier to specify pairs using
keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

5.6. Looping Techniques

When looping through dictionaries, the key and corresponding value can be
retrieved at the same time using the iteritems() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can
be retrieved at the same time using the enumerate() function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print i, v
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired
with the zip() function.

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print 'What is your {0}? It is {1}.'.format(q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward
direction and then call the reversed() function.

>>> for i in reversed(xrange(1,10,2)):
... print i
...
9
7
5
3
1

To loop over a sequence in sorted order, use the sorted() function which
returns a new sorted list while leaving the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print f
...
apple
banana
orange
pear

5.7. More on Conditions

The conditions used in while and if statements can contain any
operators, not just comparisons.

The comparison operators in and not in check whether a value occurs
(does not occur) in a sequence. The operators is and is not compare
whether two objects are really the same object; this only matters for mutable
objects like lists. All comparison operators have the same priority, which is
lower than that of all numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is
less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and
the outcome of a comparison (or of any other Boolean expression) may be negated
with not. These have lower priorities than comparison operators; between
them, not has the highest priority and or the lowest, so that A and
not B or C is equivalent to (A and (not B)) or C. As always, parentheses
can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit
operators: their arguments are evaluated from left to right, and evaluation
stops as soon as the outcome is determined. For example, if A and C are
true but B is false, A and B and C does not evaluate the expression
C. When used as a general value and not as a Boolean, the return value of a
short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression
to a variable. For example,

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

Note that in Python, unlike C, assignment cannot occur inside expressions. C
programmers may grumble about this, but it avoids a common class of problems
encountered in C programs: typing = in an expression when == was
intended.

5.8. Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type.
The comparison uses lexicographical ordering: first the first two items are
compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either
sequence is exhausted. If two items to be compared are themselves sequences of
the same type, the lexicographical comparison is carried out recursively. If
all items of two sequences compare equal, the sequences are considered equal.
If one sequence is an initial sub-sequence of the other, the shorter sequence is
the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between
sequences of the same type:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types is legal. The outcome is
deterministic but arbitrary: the types are ordered by their name. Thus, a list
is always smaller than a string, a string is always smaller than a tuple, etc.
[1] Mixed numeric types are compared according to their numeric value, so 0
equals 0.0, etc.

Footnotes

	[1]	The rules for comparing objects of different types should not be relied upon;
they may change in a future version of the language.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

6. Modules

If you quit from the Python interpreter and enter it again, the definitions you
have made (functions and variables) are lost. Therefore, if you want to write a
somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This
is known as creating a script. As your program gets longer, you may want to
split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its
definition into each program.

To support this, Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is called a
module; definitions from a module can be imported into other modules or into
the main module (the collection of variables that you have access to in a
script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name
is the module name with the suffix .py appended. Within a module, the
module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file
called fibo.py in the current directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print b,
 a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result

Now enter the Python interpreter and import this module with the following
command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in
the current symbol table; it only enters the module name fibo there. Using
the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1. More on Modules

A module can contain executable statements as well as function definitions.
These statements are intended to initialize the module. They are executed only
the first time the module is imported somewhere. [1]

Each module has its own private symbol table, which is used as the global symbol
table by all functions defined in the module. Thus, the author of a module can
use global variables in the module without worrying about accidental clashes
with a user’s global variables. On the other hand, if you know what you are
doing you can touch a module’s global variables with the same notation used to
refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all
import statements at the beginning of a module (or script, for that
matter). The imported module names are placed in the importing module’s global
symbol table.

There is a variant of the import statement that imports names from a
module directly into the importing module’s symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the
local symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

Note that in general the practice of importing * from a module or package is
frowned upon, since it often causes poorly readable code. However, it is okay to
use it to save typing in interactive sessions.

Note

For efficiency reasons, each module is only imported once per interpreter
session. Therefore, if you change your modules, you must restart the
interpreter – or, if it’s just one module you want to test interactively,
use reload(), e.g. reload(modulename).

6.1.1. Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with
the __name__ set to "__main__". That means that by adding this code at
the end of your module:

if __name__ == "__main__":
 import sys
 fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module,
because the code that parses the command line only runs if the module is
executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or
for testing purposes (running the module as a script executes a test suite).

6.1.2. The Module Search Path

When a module named spam is imported, the interpreter searches for a file
named spam.py in the current directory, and then in the list of
directories specified by the environment variable PYTHONPATH. This
has the same syntax as the shell variable PATH, that is, a list of
directory names. When PYTHONPATH is not set, or when the file is not
found there, the search continues in an installation-dependent default path; on
Unix, this is usually .:/usr/local/lib/python.

Actually, modules are searched in the list of directories given by the variable
sys.path which is initialized from the directory containing the input script
(or the current directory), PYTHONPATH and the installation- dependent
default. This allows Python programs that know what they’re doing to modify or
replace the module search path. Note that because the directory containing the
script being run is on the search path, it is important that the script not have
the same name as a standard module, or Python will attempt to load the script as
a module when that module is imported. This will generally be an error. See
section Standard Modules for more information.

6.1.3. “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot
of standard modules, if a file called spam.pyc exists in the directory
where spam.py is found, this is assumed to contain an
already-“byte-compiled” version of the module spam. The modification time
of the version of spam.py used to create spam.pyc is recorded in
spam.pyc, and the .pyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create the spam.pyc file.
Whenever spam.py is successfully compiled, an attempt is made to write
the compiled version to spam.pyc. It is not an error if this attempt
fails; if for any reason the file is not written completely, the resulting
spam.pyc file will be recognized as invalid and thus ignored later. The
contents of the spam.pyc file are platform independent, so a Python
module directory can be shared by machines of different architectures.

Some tips for experts:

	When the Python interpreter is invoked with the -O flag, optimized
code is generated and stored in .pyo files. The optimizer currently
doesn’t help much; it only removes assert statements. When
-O is used, all bytecode is optimized; .pyc files are
ignored and .py files are compiled to optimized bytecode.

	Passing two -O flags to the Python interpreter (-OO) will
cause the bytecode compiler to perform optimizations that could in some rare
cases result in malfunctioning programs. Currently only __doc__ strings are
removed from the bytecode, resulting in more compact .pyo files. Since
some programs may rely on having these available, you should only use this
option if you know what you’re doing.

	A program doesn’t run any faster when it is read from a .pyc or
.pyo file than when it is read from a .py file; the only thing
that’s faster about .pyc or .pyo files is the speed with which
they are loaded.

	When a script is run by giving its name on the command line, the bytecode for
the script is never written to a .pyc or .pyo file. Thus, the
startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also
possible to name a .pyc or .pyo file directly on the command
line.

	It is possible to have a file called spam.pyc (or spam.pyo
when -O is used) without a file spam.py for the same module.
This can be used to distribute a library of Python code in a form that is
moderately hard to reverse engineer.

	The module compileall can create .pyc files (or .pyo
files when -O is used) for all modules in a directory.

6.2. Standard Modules

Python comes with a library of standard modules, described in a separate
document, the Python Library Reference (“Library Reference” hereafter). Some
modules are built into the interpreter; these provide access to operations that
are not part of the core of the language but are nevertheless built in, either
for efficiency or to provide access to operating system primitives such as
system calls. The set of such modules is a configuration option which also
depends on the underlying platform For example, the winreg module is only
provided on Windows systems. One particular module deserves some attention:
sys, which is built into every Python interpreter. The variables
sys.ps1 and sys.ps2 define the strings used as primary and secondary
prompts:

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print 'Yuck!'
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determines the interpreter’s
search path for modules. It is initialized to a default path taken from the
environment variable PYTHONPATH, or from a built-in default if
PYTHONPATH is not set. You can modify it using standard list
operations:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3. The dir() Function

The built-in function dir() is used to find out which names a module
defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__',
 '__stdin__', '__stdout__', '_getframe', 'api_version', 'argv',
 'builtin_module_names', 'byteorder', 'callstats', 'copyright',
 'displayhook', 'exc_clear', 'exc_info', 'exc_type', 'excepthook',
 'exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getdlopenflags',
 'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxunicode',
 'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache',
 'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval', 'setdlopenflags',
 'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout',
 'version', 'version_info', 'warnoptions']

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__doc__', '__file__', '__name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you
want a list of those, they are defined in the standard module
__builtin__:

>>> import __builtin__
>>> dir(__builtin__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'DeprecationWarning',
 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
 'FloatingPointError', 'FutureWarning', 'IOError', 'ImportError',
 'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
 'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
 'NotImplementedError', 'OSError', 'OverflowError',
 'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
 'RuntimeWarning', 'StandardError', 'StopIteration', 'SyntaxError',
 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
 'UserWarning', 'ValueError', 'Warning', 'WindowsError',
 'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__',
 '__name__', 'abs', 'apply', 'basestring', 'bool', 'buffer',
 'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile',
 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',
 'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float',
 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex',
 'id', 'input', 'int', 'intern', 'isinstance', 'issubclass', 'iter',
 'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'memoryview',
 'min', 'object', 'oct', 'open', 'ord', 'pow', 'property', 'quit', 'range',
 'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round', 'set',
 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',
 'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

6.4. Packages

Packages are a way of structuring Python’s module namespace by using “dotted
module names”. For example, the module name A.B designates a submodule
named B in a package named A. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global
variable names, the use of dotted module names saves the authors of multi-module
packages like NumPy or the Python Imaging Library from having to worry about
each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform
handling of sound files and sound data. There are many different sound file
formats (usually recognized by their extension, for example: .wav,
.aiff, .au), so you may need to create and maintain a growing
collection of modules for the conversion between the various file formats.
There are also many different operations you might want to perform on sound data
(such as mixing, adding echo, applying an equalizer function, creating an
artificial stereo effect), so in addition you will be writing a never-ending
stream of modules to perform these operations. Here’s a possible structure for
your package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package
 __init__.py Initialize the sound package
 formats/ Subpackage for file format conversions
 __init__.py
 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py
 auread.py
 auwrite.py
 ...
 effects/ Subpackage for sound effects
 __init__.py
 echo.py
 surround.py
 reverse.py
 ...
 filters/ Subpackage for filters
 __init__.py
 equalizer.py
 vocoder.py
 karaoke.py
 ...

When importing the package, Python searches through the directories on
sys.path looking for the package subdirectory.

The __init__.py files are required to make Python treat the directories
as containing packages; this is done to prevent directories with a common name,
such as string, from unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, __init__.py can just be
an empty file, but it can also execute initialization code for the package or
set the __all__ variable, described later.

Users of the package can import individual modules from the package, for
example:

import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with
its full name.

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submodule echo, and makes it available without its
package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function
echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a
submodule (or subpackage) of the package, or some other name defined in the
package, like a function, class or variable. The import statement first
tests whether the item is defined in the package; if not, it assumes it is a
module and attempts to load it. If it fails to find it, an ImportError
exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item
except for the last must be a package; the last item can be a module or a
package but can’t be a class or function or variable defined in the previous
item.

6.4.1. Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally,
one would hope that this somehow goes out to the filesystem, finds which
submodules are present in the package, and imports them all. This could take a
long time and importing sub-modules might have unwanted side-effects that should
only happen when the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the
package. The import statement uses the following convention: if a package’s
__init__.py code defines a list named __all__, it is taken to be the
list of module names that should be imported when from package import * is
encountered. It is up to the package author to keep this list up-to-date when a
new version of the package is released. Package authors may also decide not to
support it, if they don’t see a use for importing * from their package. For
example, the file sounds/effects/__init__.py could contain the following
code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three
named submodules of the sound package.

If __all__ is not defined, the statement from sound.effects import *
does not import all submodules from the package sound.effects into the
current namespace; it only ensures that the package sound.effects has
been imported (possibly running any initialization code in __init__.py)
and then imports whatever names are defined in the package. This includes any
names defined (and submodules explicitly loaded) by __init__.py. It
also includes any submodules of the package that were explicitly loaded by
previous import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the
current namespace because they are defined in the sound.effects package
when the from...import statement is executed. (This also works when
__all__ is defined.)

Although certain modules are designed to export only names that follow certain
patterns when you use import *, it is still considered bad practise in
production code.

Remember, there is nothing wrong with using from Package import
specific_submodule! In fact, this is the recommended notation unless the
importing module needs to use submodules with the same name from different
packages.

6.4.2. Intra-package References

The submodules often need to refer to each other. For example, the
surround module might use the echo module. In fact, such
references are so common that the import statement first looks in the
containing package before looking in the standard module search path. Thus, the
surround module can simply use import echo or from echo import
echofilter. If the imported module is not found in the current package (the
package of which the current module is a submodule), the import
statement looks for a top-level module with the given name.

When packages are structured into subpackages (as with the sound package
in the example), you can use absolute imports to refer to submodules of siblings
packages. For example, if the module sound.filters.vocoder needs to use
the echo module in the sound.effects package, it can use from
sound.effects import echo.

Starting with Python 2.5, in addition to the implicit relative imports described
above, you can write explicit relative imports with the from module import
name form of import statement. These explicit relative imports use leading
dots to indicate the current and parent packages involved in the relative
import. From the surround module for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that both explicit and implicit relative imports are based on the name of
the current module. Since the name of the main module is always "__main__",
modules intended for use as the main module of a Python application should
always use absolute imports.

6.4.3. Packages in Multiple Directories

Packages support one more special attribute, __path__. This is
initialized to be a list containing the name of the directory holding the
package’s __init__.py before the code in that file is executed. This
variable can be modified; doing so affects future searches for modules and
subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of
modules found in a package.

Footnotes

	[1]	In fact function definitions are also ‘statements’ that are ‘executed’; the
execution of a module-level function enters the function name in the module’s
global symbol table.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

7. Input and Output

There are several ways to present the output of a program; data can be printed
in a human-readable form, or written to a file for future use. This chapter will
discuss some of the possibilities.

7.1. Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and
the print statement. (A third way is using the write() method
of file objects; the standard output file can be referenced as sys.stdout.
See the Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply
printing space-separated values. There are two ways to format your output; the
first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any layout you can imagine. The
string types have some methods that perform useful operations for padding
strings to a given column width; these will be discussed shortly. The second
way is to use the str.format() method.

The string module contains a Template class which offers
yet another way to substitute values into strings.

One question remains, of course: how do you convert values to strings? Luckily,
Python has ways to convert any value to a string: pass it to the repr()
or str() functions.

The str() function is meant to return representations of values which are
fairly human-readable, while repr() is meant to generate representations
which can be read by the interpreter (or will force a SyntaxError if
there is not equivalent syntax). For objects which don’t have a particular
representation for human consumption, str() will return the same value as
repr(). Many values, such as numbers or structures like lists and
dictionaries, have the same representation using either function. Strings and
floating point numbers, in particular, have two distinct representations.

Some examples:

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1.0/7.0)
'0.142857142857'
>>> repr(1.0/7.0)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
... print repr(x).rjust(2), repr(x*x).rjust(3),
... # Note trailing comma on previous line
... print repr(x*x*x).rjust(4)
...
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000

>>> for x in range(1,11):
... print '{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x)
...
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000

(Note that in the first example, one space between each column was added by the
way print works: it always adds spaces between its arguments.)

This example demonstrates the str.rjust() method of string
objects, which right-justifies a string in a field of a given width by padding
it with spaces on the left. There are similar methods str.ljust() and
str.center(). These methods do not write anything, they just return a
new string. If the input string is too long, they don’t truncate it, but
return it unchanged; this will mess up your column lay-out but that’s usually
better than the alternative, which would be lying about a value. (If you
really want truncation you can always add a slice operation, as in
x.ljust(n)[:n].)

There is another method, str.zfill(), which pads a numeric string on the
left with zeros. It understands about plus and minus signs:

>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'

Basic usage of the str.format() method looks like this:

>>> print 'We are the {} who say "{}!"'.format('knights', 'Ni')
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with
the objects passed into the str.format() method. A number in the
brackets refers to the position of the object passed into the
str.format() method.

>>> print '{0} and {1}'.format('spam', 'eggs')
spam and eggs
>>> print '{1} and {0}'.format('spam', 'eggs')
eggs and spam

If keyword arguments are used in the str.format() method, their values
are referred to by using the name of the argument.

>>> print 'This {food} is {adjective}.'.format(
... food='spam', adjective='absolutely horrible')
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print 'The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',
... other='Georg')
The story of Bill, Manfred, and Georg.

'!s' (apply str()) and '!r' (apply repr()) can be used to
convert the value before it is formatted.

>>> import math
>>> print 'The value of PI is approximately {}.'.format(math.pi)
The value of PI is approximately 3.14159265359.
>>> print 'The value of PI is approximately {!r}.'.format(math.pi)
The value of PI is approximately 3.141592653589793.

An optional ':' and format specifier can follow the field name. This allows
greater control over how the value is formatted. The following example
rounds Pi to three places after the decimal.

>>> import math
>>> print 'The value of PI is approximately {0:.3f}.'.format(math.pi)
The value of PI is approximately 3.142.

Passing an integer after the ':' will cause that field to be a minimum
number of characters wide. This is useful for making tables pretty.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
... print '{0:10} ==> {1:10d}'.format(name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it
would be nice if you could reference the variables to be formatted by name
instead of by position. This can be done by simply passing the dict and using
square brackets '[]' to access the keys

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '
... 'Dcab: {0[Dcab]:d}'.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the ‘**’
notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format(**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function
vars(), which returns a dictionary containing all local variables.

For a complete overview of string formatting with str.format(), see
Format String Syntax.

7.1.1. Old string formatting

The % operator can also be used for string formatting. It interprets the
left argument much like a sprintf()-style format string to be applied
to the right argument, and returns the string resulting from this formatting
operation. For example:

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

Since str.format() is quite new, a lot of Python code still uses the %
operator. However, because this old style of formatting will eventually be
removed from the language, str.format() should generally be used.

More information can be found in the String Formatting Operations section.

7.2. Reading and Writing Files

open() returns a file object, and is most commonly used with two
arguments: open(filename, mode).

>>> f = open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is
another string containing a few characters describing the way in which the file
will be used. mode can be 'r' when the file will only be read, 'w'
for only writing (an existing file with the same name will be erased), and
'a' opens the file for appending; any data written to the file is
automatically added to the end. 'r+' opens the file for both reading and
writing. The mode argument is optional; 'r' will be assumed if it’s
omitted.

On Windows, 'b' appended to the mode opens the file in binary mode, so there
are also modes like 'rb', 'wb', and 'r+b'. Python on Windows makes
a distinction between text and binary files; the end-of-line characters in text
files are automatically altered slightly when data is read or written. This
behind-the-scenes modification to file data is fine for ASCII text files, but
it’ll corrupt binary data like that in JPEG or EXE files. Be
very careful to use binary mode when reading and writing such files. On Unix,
it doesn’t hurt to append a 'b' to the mode, so you can use it
platform-independently for all binary files.

7.2.1. Methods of File Objects

The rest of the examples in this section will assume that a file object called
f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of
data and returns it as a string. size is an optional numeric argument. When
size is omitted or negative, the entire contents of the file will be read and
returned; it’s your problem if the file is twice as large as your machine’s
memory. Otherwise, at most size bytes are read and returned. If the end of
the file has been reached, f.read() will return an empty string ("").

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the file; a newline character (\n)
is left at the end of the string, and is only omitted on the last line of the
file if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the file
has been reached, while a blank line is represented by '\n', a string
containing only a single newline.

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

f.readlines() returns a list containing all the lines of data in the file.
If given an optional parameter sizehint, it reads that many bytes from the
file and enough more to complete a line, and returns the lines from that. This
is often used to allow efficient reading of a large file by lines, but without
having to load the entire file in memory. Only complete lines will be returned.

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n']

An alternative approach to reading lines is to loop over the file object. This is
memory efficient, fast, and leads to simpler code:

>>> for line in f:
 print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained
control. Since the two approaches manage line buffering differently, they
should not be mixed.

f.write(string) writes the contents of string to the file, returning
None.

>>> f.write('This is a test\n')

To write something other than a string, it needs to be converted to a string
first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object’s current position in the
file, measured in bytes from the beginning of the file. To change the file
object’s position, use f.seek(offset, from_what). The position is computed
from adding offset to a reference point; the reference point is selected by
the from_what argument. A from_what value of 0 measures from the beginning
of the file, 1 uses the current file position, and 2 uses the end of the file as
the reference point. from_what can be omitted and defaults to 0, using the
beginning of the file as the reference point.

>>> f = open('/tmp/workfile', 'r+')
>>> f.write('0123456789abcdef')
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
'd'

When you’re done with a file, call f.close() to close it and free up any
system resources taken up by the open file. After calling f.close(),
attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

It is good practice to use the with keyword when dealing with file
objects. This has the advantage that the file is properly closed after its
suite finishes, even if an exception is raised on the way. It is also much
shorter than writing equivalent try-finally blocks:

>>> with open('/tmp/workfile', 'r') as f:
... read_data = f.read()
>>> f.closed
True

File objects have some additional methods, such as isatty() and
truncate() which are less frequently used; consult the Library
Reference for a complete guide to file objects.

7.2.2. The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more
effort, since the read() method only returns strings, which will have to
be passed to a function like int(), which takes a string like '123'
and returns its numeric value 123. However, when you want to save more complex
data types like lists, dictionaries, or class instances, things get a lot more
complicated.

Rather than have users be constantly writing and debugging code to save
complicated data types, Python provides a standard module called pickle.
This is an amazing module that can take almost any Python object (even some
forms of Python code!), and convert it to a string representation; this process
is called pickling. Reconstructing the object from the string
representation is called unpickling. Between pickling and unpickling,
the string representing the object may have been stored in a file or data, or
sent over a network connection to some distant machine.

If you have an object x, and a file object f that’s been opened for
writing, the simplest way to pickle the object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened
for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you
don’t want to write the pickled data to a file; consult the complete
documentation for pickle in the Python Library Reference.)

pickle is the standard way to make Python objects which can be stored and
reused by other programs or by a future invocation of the same program; the
technical term for this is a persistent object. Because pickle is
so widely used, many authors who write Python extensions take care to ensure
that new data types such as matrices can be properly pickled and unpickled.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

8. Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried
out the examples you have probably seen some. There are (at least) two
distinguishable kinds of errors: syntax errors and exceptions.

8.1. Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of
complaint you get while you are still learning Python:

>>> while True print 'Hello world'
 File "<stdin>", line 1, in ?
 while True print 'Hello world'
 ^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at
the earliest point in the line where the error was detected. The error is
caused by (or at least detected at) the token preceding the arrow: in the
example, the error is detected at the keyword print, since a colon
(':') is missing before it. File name and line number are printed so you
know where to look in case the input came from a script.

8.2. Exceptions

Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it. Errors detected during execution
are called exceptions and are not unconditionally fatal: you will soon learn
how to handle them in Python programs. Most exceptions are not handled by
programs, however, and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

The last line of the error message indicates what happened. Exceptions come in
different types, and the type is printed as part of the message: the types in
the example are ZeroDivisionError, NameError and TypeError.
The string printed as the exception type is the name of the built-in exception
that occurred. This is true for all built-in exceptions, but need not be true
for user-defined exceptions (although it is a useful convention). Standard
exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what
caused it.

The preceding part of the error message shows the context where the exception
happened, in the form of a stack traceback. In general it contains a stack
traceback listing source lines; however, it will not display lines read from
standard input.

Built-in Exceptions lists the built-in exceptions and their meanings.

8.3. Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the
following example, which asks the user for input until a valid integer has been
entered, but allows the user to interrupt the program (using Control-C or
whatever the operating system supports); note that a user-generated interruption
is signalled by raising the KeyboardInterrupt exception.

>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

The try statement works as follows.

	First, the try clause (the statement(s) between the try and
except keywords) is executed.

	If no exception occurs, the except clause is skipped and execution of the
try statement is finished.

	If an exception occurs during execution of the try clause, the rest of the
clause is skipped. Then if its type matches the exception named after the
except keyword, the except clause is executed, and then execution
continues after the try statement.

	If an exception occurs which does not match the exception named in the except
clause, it is passed on to outer try statements; if no handler is
found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify
handlers for different exceptions. At most one handler will be executed.
Handlers only handle exceptions that occur in the corresponding try clause, not
in other handlers of the same try statement. An except clause may
name multiple exceptions as a parenthesized tuple, for example:

... except (RuntimeError, TypeError, NameError):
... pass

The last except clause may omit the exception name(s), to serve as a wildcard.
Use this with extreme caution, since it is easy to mask a real programming error
in this way! It can also be used to print an error message and then re-raise
the exception (allowing a caller to handle the exception as well):

import sys

try:
 f = open('myfile.txt')
 s = f.readline()
 i = int(s.strip())
except IOError as (errno, strerror):
 print "I/O error({0}): {1}".format(errno, strerror)
except ValueError:
 print "Could not convert data to an integer."
except:
 print "Unexpected error:", sys.exc_info()[0]
 raise

The try ... except statement has an optional else
clause, which, when present, must follow all except clauses. It is useful for
code that must be executed if the try clause does not raise an exception. For
example:

for arg in sys.argv[1:]:
 try:
 f = open(arg, 'r')
 except IOError:
 print 'cannot open', arg
 else:
 print arg, 'has', len(f.readlines()), 'lines'
 f.close()

The use of the else clause is better than adding additional code to
the try clause because it avoids accidentally catching an exception
that wasn’t raised by the code being protected by the try ...
except statement.

When an exception occurs, it may have an associated value, also known as the
exception’s argument. The presence and type of the argument depend on the
exception type.

The except clause may specify a variable after the exception name (or tuple).
The variable is bound to an exception instance with the arguments stored in
instance.args. For convenience, the exception instance defines
__str__() so the arguments can be printed directly without having to
reference .args.

One may also instantiate an exception first before raising it and add any
attributes to it as desired.

>>> try:
... raise Exception('spam', 'eggs')
... except Exception as inst:
... print type(inst) # the exception instance
... print inst.args # arguments stored in .args
... print inst # __str__ allows args to printed directly
... x, y = inst # __getitem__ allows args to be unpacked directly
... print 'x =', x
... print 'y =', y
...
<type 'exceptions.Exception'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (‘detail’) of
the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the
try clause, but also if they occur inside functions that are called (even
indirectly) in the try clause. For example:

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as detail:
... print 'Handling run-time error:', detail
...
Handling run-time error: integer division or modulo by zero

8.4. Raising Exceptions

The raise statement allows the programmer to force a specified
exception to occur. For example:

>>> raise NameError('HiThere')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: HiThere

The sole argument to raise indicates the exception to be raised.
This must be either an exception instance or an exception class (a class that
derives from Exception).

If you need to determine whether an exception was raised but don’t intend to
handle it, a simpler form of the raise statement allows you to
re-raise the exception:

>>> try:
... raise NameError('HiThere')
... except NameError:
... print 'An exception flew by!'
... raise
...
An exception flew by!
Traceback (most recent call last):
 File "<stdin>", line 2, in ?
NameError: HiThere

8.5. User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see
Classes for more about Python classes). Exceptions should typically
be derived from the Exception class, either directly or indirectly. For
example:

>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError as e:
... print 'My exception occurred, value:', e.value
...
My exception occurred, value: 4
>>> raise MyError('oops!')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'

In this example, the default __init__() of Exception has been
overridden. The new behavior simply creates the value attribute. This
replaces the default behavior of creating the args attribute.

Exception classes can be defined which do anything any other class can do, but
are usually kept simple, often only offering a number of attributes that allow
information about the error to be extracted by handlers for the exception. When
creating a module that can raise several distinct errors, a common practice is
to create a base class for exceptions defined by that module, and subclass that
to create specific exception classes for different error conditions:

class Error(Exception):
 """Base class for exceptions in this module."""
 pass

class InputError(Error):
 """Exception raised for errors in the input.

 Attributes:
 expr -- input expression in which the error occurred
 msg -- explanation of the error
 """

 def __init__(self, expr, msg):
 self.expr = expr
 self.msg = msg

class TransitionError(Error):
 """Raised when an operation attempts a state transition that's not
 allowed.

 Attributes:
 prev -- state at beginning of transition
 next -- attempted new state
 msg -- explanation of why the specific transition is not allowed
 """

 def __init__(self, prev, next, msg):
 self.prev = prev
 self.next = next
 self.msg = msg

Most exceptions are defined with names that end in “Error,” similar to the
naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may
occur in functions they define. More information on classes is presented in
chapter Classes.

8.6. Defining Clean-up Actions

The try statement has another optional clause which is intended to
define clean-up actions that must be executed under all circumstances. For
example:

>>> try:
... raise KeyboardInterrupt
... finally:
... print 'Goodbye, world!'
...
Goodbye, world!
KeyboardInterrupt

A finally clause is always executed before leaving the try
statement, whether an exception has occurred or not. When an exception has
occurred in the try clause and has not been handled by an
except clause (or it has occurred in a except or
else clause), it is re-raised after the finally clause has
been executed. The finally clause is also executed “on the way out”
when any other clause of the try statement is left via a
break, continue or return statement. A more
complicated example (having except and finally clauses in
the same try statement works as of Python 2.5):

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print "division by zero!"
... else:
... print "result is", result
... finally:
... print "executing finally clause"
...
>>> divide(2, 1)
result is 2
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The
TypeError raised by dividing two strings is not handled by the
except clause and therefore re-raised after the finally
clause has been executed.

In real world applications, the finally clause is useful for
releasing external resources (such as files or network connections), regardless
of whether the use of the resource was successful.

8.7. Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object
is no longer needed, regardless of whether or not the operation using the object
succeeded or failed. Look at the following example, which tries to open a file
and print its contents to the screen.

for line in open("myfile.txt"):
 print line

The problem with this code is that it leaves the file open for an indeterminate
amount of time after the code has finished executing. This is not an issue in
simple scripts, but can be a problem for larger applications. The
with statement allows objects like files to be used in a way that
ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
 for line in f:
 print line

After the statement is executed, the file f is always closed, even if a
problem was encountered while processing the lines. Other objects which provide
predefined clean-up actions will indicate this in their documentation.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

9. Classes

Compared with other programming languages, Python’s class mechanism adds classes
with a minimum of new syntax and semantics. It is a mixture of the class
mechanisms found in C++ and Modula-3. Python classes provide all the standard
features of Object Oriented Programming: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base
class or classes, and a method can call the method of a base class with the same
name. Objects can contain arbitrary amounts and kinds of data. As is true for
modules, classes partake of the dynamic nature of Python: they are created at
runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are
public (except see below Private Variables), and all member functions are
virtual. As in Modula-3, there are no shorthands for referencing the object’s
members from its methods: the method function is declared with an explicit first
argument representing the object, which is provided implicitly by the call. As
in Smalltalk, classes themselves are objects. This provides semantics for
importing and renaming. Unlike C++ and Modula-3, built-in types can be used as
base classes for extension by the user. Also, like in C++, most built-in
operators with special syntax (arithmetic operators, subscripting etc.) can be
redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make
occasional use of Smalltalk and C++ terms. I would use Modula-3 terms, since
its object-oriented semantics are closer to those of Python than C++, but I
expect that few readers have heard of it.)

9.1. A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound
to the same object. This is known as aliasing in other languages. This is
usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has a possibly surprising effect on the semantics of Python code
involving mutable objects such as lists, dictionaries, and most other types.
This is usually used to the benefit of the program, since aliases behave like
pointers in some respects. For example, passing an object is cheap since only a
pointer is passed by the implementation; and if a function modifies an object
passed as an argument, the caller will see the change — this eliminates the
need for two different argument passing mechanisms as in Pascal.

9.2. Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s
scope rules. Class definitions play some neat tricks with namespaces, and you
need to know how scopes and namespaces work to fully understand what’s going on.
Incidentally, knowledge about this subject is useful for any advanced Python
programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently
implemented as Python dictionaries, but that’s normally not noticeable in any
way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (containing functions such as abs(), and
built-in exception names); the global names in a module; and the local names in
a function invocation. In a sense the set of attributes of an object also form
a namespace. The important thing to know about namespaces is that there is
absolutely no relation between names in different namespaces; for instance, two
different modules may both define a function maximize without confusion —
users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for
example, in the expression z.real, real is an attribute of the object
z. Strictly speaking, references to names in modules are attribute
references: in the expression modname.funcname, modname is a module
object and funcname is an attribute of it. In this case there happens to be
a straightforward mapping between the module’s attributes and the global names
defined in the module: they share the same namespace! [1]

Attributes may be read-only or writable. In the latter case, assignment to
attributes is possible. Module attributes are writable: you can write
modname.the_answer = 42. Writable attributes may also be deleted with the
del statement. For example, del modname.the_answer will remove
the attribute the_answer from the object named by modname.

Namespaces are created at different moments and have different lifetimes. The
namespace containing the built-in names is created when the Python interpreter
starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last
until the interpreter quits. The statements executed by the top-level
invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own
global namespace. (The built-in names actually also live in a module; this is
called __builtin__.)

The local namespace for a function is created when the function is called, and
deleted when the function returns or raises an exception that is not handled
within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own
local namespace.

A scope is a textual region of a Python program where a namespace is directly
accessible. “Directly accessible” here means that an unqualified reference to a
name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any
time during execution, there are at least three nested scopes whose namespaces
are directly accessible:

	the innermost scope, which is searched first, contains the local names

	the scopes of any enclosing functions, which are searched starting with the
nearest enclosing scope, contains non-local, but also non-global names

	the next-to-last scope contains the current module’s global names

	the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to
the middle scope containing the module’s global names. Otherwise, all variables
found outside of the innermost scope are read-only (an attempt to write to such
a variable will simply create a new local variable in the innermost scope,
leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current
function. Outside functions, the local scope references the same namespace as
the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global
scope of a function defined in a module is that module’s namespace, no matter
from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the
language definition is evolving towards static name resolution, at “compile”
time, so don’t rely on dynamic name resolution! (In fact, local variables are
already determined statically.)

A special quirk of Python is that – if no global statement is in
effect – assignments to names always go into the innermost scope. Assignments
do not copy data — they just bind names to objects. The same is true for
deletions: the statement del x removes the binding of x from the
namespace referenced by the local scope. In fact, all operations that introduce
new names use the local scope: in particular, import statements and
function definitions bind the module or function name in the local scope. (The
global statement can be used to indicate that particular variables
live in the global scope.)

9.3. A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some
new semantics.

9.3.1. Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
 <statement-1>
 .
 .
 .
 <statement-N>

Class definitions, like function definitions (def statements) must be
executed before they have any effect. (You could conceivably place a class
definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function
definitions, but other statements are allowed, and sometimes useful — we’ll
come back to this later. The function definitions inside a class normally have
a peculiar form of argument list, dictated by the calling conventions for
methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the
local scope — thus, all assignments to local variables go into this new
namespace. In particular, function definitions bind the name of the new
function here.

When a class definition is left normally (via the end), a class object is
created. This is basically a wrapper around the contents of the namespace
created by the class definition; we’ll learn more about class objects in the
next section. The original local scope (the one in effect just before the class
definition was entered) is reinstated, and the class object is bound here to the
class name given in the class definition header (ClassName in the
example).

9.3.2. Class Objects

Class objects support two kinds of operations: attribute references and
instantiation.

Attribute references use the standard syntax used for all attribute references
in Python: obj.name. Valid attribute names are all the names that were in
the class’s namespace when the class object was created. So, if the class
definition looked like this:

class MyClass:
 """A simple example class"""
 i = 12345
 def f(self):
 return 'hello world'

then MyClass.i and MyClass.f are valid attribute references, returning
an integer and a function object, respectively. Class attributes can also be
assigned to, so you can change the value of MyClass.i by assignment.
__doc__ is also a valid attribute, returning the docstring belonging to
the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class
object is a parameterless function that returns a new instance of the class.
For example (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local
variable x.

The instantiation operation (“calling” a class object) creates an empty object.
Many classes like to create objects with instances customized to a specific
initial state. Therefore a class may define a special method named
__init__(), like this:

def __init__(self):
 self.data = []

When a class defines an __init__() method, class instantiation
automatically invokes __init__() for the newly-created class instance. So
in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the __init__() method may have arguments for greater
flexibility. In that case, arguments given to the class instantiation operator
are passed on to __init__(). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3. Instance Objects

Now what can we do with instance objects? The only operations understood by
instance objects are attribute references. There are two kinds of valid
attribute names, data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data
members” in C++. Data attributes need not be declared; like local variables,
they spring into existence when they are first assigned to. For example, if
x is the instance of MyClass created above, the following piece of
code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:
 x.counter = x.counter * 2
print x.counter
del x.counter

The other kind of instance attribute reference is a method. A method is a
function that “belongs to” an object. (In Python, the term method is not unique
to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on.
However, in the following discussion, we’ll use the term method exclusively to
mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition,
all attributes of a class that are function objects define corresponding
methods of its instances. So in our example, x.f is a valid method
reference, since MyClass.f is a function, but x.i is not, since
MyClass.i is not. But x.f is not the same thing as MyClass.f — it
is a method object, not a function object.

9.3.4. Method Objects

Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string 'hello world'.
However, it is not necessary to call a method right away: x.f is a method
object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
 print xf()

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that
x.f() was called without an argument above, even though the function
definition for f() specified an argument. What happened to the argument?
Surely Python raises an exception when a function that requires an argument is
called without any — even if the argument isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is
that the object is passed as the first argument of the function. In our
example, the call x.f() is exactly equivalent to MyClass.f(x). In
general, calling a method with a list of n arguments is equivalent to calling
the corresponding function with an argument list that is created by inserting
the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can
perhaps clarify matters. When an instance attribute is referenced that isn’t a
data attribute, its class is searched. If the name denotes a valid class
attribute that is a function object, a method object is created by packing
(pointers to) the instance object and the function object just found together in
an abstract object: this is the method object. When the method object is called
with an argument list, a new argument list is constructed from the instance
object and the argument list, and the function object is called with this new
argument list.

9.4. Random Remarks

Data attributes override method attributes with the same name; to avoid
accidental name conflicts, which may cause hard-to-find bugs in large programs,
it is wise to use some kind of convention that minimizes the chance of
conflicts. Possible conventions include capitalizing method names, prefixing
data attribute names with a small unique string (perhaps just an underscore), or
using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users
(“clients”) of an object. In other words, classes are not usable to implement
pure abstract data types. In fact, nothing in Python makes it possible to
enforce data hiding — it is all based upon convention. (On the other hand,
the Python implementation, written in C, can completely hide implementation
details and control access to an object if necessary; this can be used by
extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants
maintained by the methods by stamping on their data attributes. Note that
clients may add data attributes of their own to an instance object without
affecting the validity of the methods, as long as name conflicts are avoided —
again, a naming convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from
within methods. I find that this actually increases the readability of methods:
there is no chance of confusing local variables and instance variables when
glancing through a method.

Often, the first argument of a method is called self. This is nothing more
than a convention: the name self has absolutely no special meaning to
Python. Note, however, that by not following the convention your code may be
less readable to other Python programmers, and it is also conceivable that a
class browser program might be written that relies upon such a convention.

Any function object that is a class attribute defines a method for instances of
that class. It is not necessary that the function definition is textually
enclosed in the class definition: assigning a function object to a local
variable in the class is also ok. For example:

Function defined outside the class
def f1(self, x, y):
 return min(x, x+y)

class C:
 f = f1
 def g(self):
 return 'hello world'
 h = g

Now f, g and h are all attributes of class C that refer to
function objects, and consequently they are all methods of instances of
C — h being exactly equivalent to g. Note that this practice
usually only serves to confuse the reader of a program.

Methods may call other methods by using method attributes of the self
argument:

class Bag:
 def __init__(self):
 self.data = []
 def add(self, x):
 self.data.append(x)
 def addtwice(self, x):
 self.add(x)
 self.add(x)

Methods may reference global names in the same way as ordinary functions. The
global scope associated with a method is the module containing the class
definition. (The class itself is never used as a global scope.) While one
rarely encounters a good reason for using global data in a method, there are
many legitimate uses of the global scope: for one thing, functions and modules
imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself
defined in this global scope, and in the next section we’ll find some good
reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type).
It is stored as object.__class__.

9.5. Inheritance

Of course, a language feature would not be worthy of the name “class” without
supporting inheritance. The syntax for a derived class definition looks like
this:

class DerivedClassName(BaseClassName):
 <statement-1>
 .
 .
 .
 <statement-N>

The name BaseClassName must be defined in a scope containing the
derived class definition. In place of a base class name, other arbitrary
expressions are also allowed. This can be useful, for example, when the base
class is defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class.
When the class object is constructed, the base class is remembered. This is
used for resolving attribute references: if a requested attribute is not found
in the class, the search proceeds to look in the base class. This rule is
applied recursively if the base class itself is derived from some other class.

There’s nothing special about instantiation of derived classes:
DerivedClassName() creates a new instance of the class. Method references
are resolved as follows: the corresponding class attribute is searched,
descending down the chain of base classes if necessary, and the method reference
is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods
have no special privileges when calling other methods of the same object, a
method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++
programmers: all methods in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than
simply replace the base class method of the same name. There is a simple way to
call the base class method directly: just call BaseClassName.methodname(self,
arguments). This is occasionally useful to clients as well. (Note that this
only works if the base class is accessible as BaseClassName in the global
scope.)

Python has two built-in functions that work with inheritance:

	Use isinstance() to check an instance’s type: isinstance(obj, int)
will be True only if obj.__class__ is int or some class
derived from int.

	Use issubclass() to check class inheritance: issubclass(bool, int)
is True since bool is a subclass of int. However,
issubclass(unicode, str) is False since unicode is not a
subclass of str (they only share a common ancestor,
basestring).

9.5.1. Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class
definition with multiple base classes looks like this:

class DerivedClassName(Base1, Base2, Base3):
 <statement-1>
 .
 .
 .
 <statement-N>

For old-style classes, the only rule is depth-first, left-to-right. Thus, if an
attribute is not found in DerivedClassName, it is searched in
Base1, then (recursively) in the base classes of Base1, and
only if it is not found there, it is searched in Base2, and so on.

(To some people breadth first — searching Base2 and Base3
before the base classes of Base1 — looks more natural. However, this
would require you to know whether a particular attribute of Base1 is
actually defined in Base1 or in one of its base classes before you can
figure out the consequences of a name conflict with an attribute of
Base2. The depth-first rule makes no differences between direct and
inherited attributes of Base1.)

For new-style classes, the method resolution order changes dynamically
to support cooperative calls to super(). This approach is known in some
other multiple-inheritance languages as call-next-method and is more powerful
than the super call found in single-inheritance languages.

With new-style classes, dynamic ordering is necessary because all cases of
multiple inheritance exhibit one or more diamond relationships (where at
least one of the parent classes can be accessed through multiple paths from the
bottommost class). For example, all new-style classes inherit from
object, so any case of multiple inheritance provides more than one path
to reach object. To keep the base classes from being accessed more
than once, the dynamic algorithm linearizes the search order in a way that
preserves the left-to-right ordering specified in each class, that calls each
parent only once, and that is monotonic (meaning that a class can be subclassed
without affecting the precedence order of its parents). Taken together, these
properties make it possible to design reliable and extensible classes with
multiple inheritance. For more detail, see
http://www.python.org/download/releases/2.3/mro/.

9.6. Private Variables

“Private” instance variables that cannot be accessed except from inside an
object don’t exist in Python. However, there is a convention that is followed
by most Python code: a name prefixed with an underscore (e.g. _spam) should
be treated as a non-public part of the API (whether it is a function, a method
or a data member). It should be considered an implementation detail and subject
to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name
clashes of names with names defined by subclasses), there is limited support for
such a mechanism, called name mangling. Any identifier of the form
__spam (at least two leading underscores, at most one trailing underscore)
is textually replaced with _classname__spam, where classname is the
current class name with leading underscore(s) stripped. This mangling is done
without regard to the syntactic position of the identifier, as long as it
occurs within the definition of a class.

Note that the mangling rules are designed mostly to avoid accidents; it still is
possible to access or modify a variable that is considered private. This can
even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec, eval() or execfile() does not
consider the classname of the invoking class to be the current class; this is
similar to the effect of the global statement, the effect of which is
likewise restricted to code that is byte-compiled together. The same
restriction applies to getattr(), setattr() and delattr(), as well
as when referencing __dict__ directly.

9.7. Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C
“struct”, bundling together a few named data items. An empty class definition
will do nicely:

class Employee:
 pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be
passed a class that emulates the methods of that data type instead. For
instance, if you have a function that formats some data from a file object, you
can define a class with methods read() and readline() that get the
data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.im_self is the instance
object with the method m(), and m.im_func is the function object
corresponding to the method.

9.8. Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism
it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a
class derived from it. The second form is a shorthand for:

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is
the same class or a base class thereof (but not the other way around — an
except clause listing a derived class is not compatible with a base class). For
example, the following code will print B, C, D in that order:

class B:
 pass
class C(B):
 pass
class D(C):
 pass

for c in [B, C, D]:
 try:
 raise c()
 except D:
 print "D"
 except C:
 print "C"
 except B:
 print "B"

Note that if the except clauses were reversed (with except B first), it
would have printed B, B, B — the first matching except clause is triggered.

When an error message is printed for an unhandled exception, the exception’s
class name is printed, then a colon and a space, and finally the instance
converted to a string using the built-in function str().

9.9. Iterators

By now you have probably noticed that most container objects can be looped over
using a for statement:

for element in [1, 2, 3]:
 print element
for element in (1, 2, 3):
 print element
for key in {'one':1, 'two':2}:
 print key
for char in "123":
 print char
for line in open("myfile.txt"):
 print line

This style of access is clear, concise, and convenient. The use of iterators
pervades and unifies Python. Behind the scenes, the for statement
calls iter() on the container object. The function returns an iterator
object that defines the method next() which accesses elements in the
container one at a time. When there are no more elements, next() raises a
StopIteration exception which tells the for loop to terminate.
This example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
'a'
>>> it.next()
'b'
>>> it.next()
'c'
>>> it.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add
iterator behavior to your classes. Define an __iter__() method which
returns an object with a next() method. If the class defines
next(), then __iter__() can just return self:

class Reverse:
 """Iterator for looping over a sequence backwards."""
 def __init__(self, data):
 self.data = data
 self.index = len(data)
 def __iter__(self):
 return self
 def next(self):
 if self.index == 0:
 raise StopIteration
 self.index = self.index - 1
 return self.data[self.index]

>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print char
...
m
a
p
s

9.10. Generators

Generators are a simple and powerful tool for creating iterators. They
are written like regular functions but use the yield statement
whenever they want to return data. Each time next() is called, the
generator resumes where it left-off (it remembers all the data values and which
statement was last executed). An example shows that generators can be trivially
easy to create:

def reverse(data):
 for index in range(len(data)-1, -1, -1):
 yield data[index]

>>> for char in reverse('golf'):
... print char
...
f
l
o
g

Anything that can be done with generators can also be done with class based
iterators as described in the previous section. What makes generators so
compact is that the __iter__() and next() methods are created
automatically.

Another key feature is that the local variables and execution state are
automatically saved between calls. This made the function easier to write and
much more clear than an approach using instance variables like self.index
and self.data.

In addition to automatic method creation and saving program state, when
generators terminate, they automatically raise StopIteration. In
combination, these features make it easy to create iterators with no more effort
than writing a regular function.

9.11. Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax
similar to list comprehensions but with parentheses instead of brackets. These
expressions are designed for situations where the generator is used right away
by an enclosing function. Generator expressions are more compact but less
versatile than full generator definitions and tend to be more memory friendly
than equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1,-1,-1))
['f', 'l', 'o', 'g']

Footnotes

	[1]	Except for one thing. Module objects have a secret read-only attribute called
__dict__ which returns the dictionary used to implement the module’s
namespace; the name __dict__ is an attribute but not a global name.
Obviously, using this violates the abstraction of namespace implementation, and
should be restricted to things like post-mortem debuggers.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

10. Brief Tour of the Standard Library

10.1. Operating System Interface

The os module provides dozens of functions for interacting with the
operating system:

>>> import os
>>> os.getcwd() # Return the current working directory
'C:\\Python26'
>>> os.chdir('/server/accesslogs') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

Be sure to use the import os style instead of from os import *. This
will keep os.open() from shadowing the built-in open() function which
operates much differently.

The built-in dir() and help() functions are useful as interactive
aids for working with large modules like os:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>

For daily file and directory management tasks, the shutil module provides
a higher level interface that is easier to use:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move('/build/executables', 'installdir')

10.2. File Wildcards

The glob module provides a function for making file lists from directory
wildcard searches:

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

10.3. Command Line Arguments

Common utility scripts often need to process command line arguments. These
arguments are stored in the sys module’s argv attribute as a list. For
instance the following output results from running python demo.py one two
three at the command line:

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix
getopt() function. More powerful and flexible command line processing is
provided by the argparse module.

10.4. Error Output Redirection and Program Termination

The sys module also has attributes for stdin, stdout, and stderr.
The latter is useful for emitting warnings and error messages to make them
visible even when stdout has been redirected:

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

The most direct way to terminate a script is to use sys.exit().

10.5. String Pattern Matching

The re module provides regular expression tools for advanced string
processing. For complex matching and manipulation, regular expressions offer
succinct, optimized solutions:

>>> import re
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'

When only simple capabilities are needed, string methods are preferred because
they are easier to read and debug:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6. Mathematics

The math module gives access to the underlying C library functions for
floating point math:

>>> import math
>>> math.cos(math.pi / 4.0)
0.70710678118654757
>>> math.log(1024, 2)
10.0

The random module provides tools for making random selections:

>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

10.7. Internet Access

There are a number of modules for accessing the internet and processing internet
protocols. Two of the simplest are urllib2 for retrieving data from urls
and smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):
... if 'EST' in line or 'EDT' in line: # look for Eastern Time
... print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP('localhost')
>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
... """To: jcaesar@example.org
... From: soothsayer@example.org
...
... Beware the Ides of March.
... """)
>>> server.quit()

(Note that the second example needs a mailserver running on localhost.)

10.8. Dates and Times

The datetime module supplies classes for manipulating dates and times in
both simple and complex ways. While date and time arithmetic is supported, the
focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone
aware.

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9. Data Compression

Common data archiving and compression formats are directly supported by modules
including: zlib, gzip, bz2, zipfile and
tarfile.

>>> import zlib
>>> s = 'witch which has which witches wrist watch'
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
'witch which has which witches wrist watch'
>>> zlib.crc32(s)
226805979

10.10. Performance Measurement

Some Python users develop a deep interest in knowing the relative performance of
different approaches to the same problem. Python provides a measurement tool
that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature
instead of the traditional approach to swapping arguments. The timeit
module quickly demonstrates a modest performance advantage:

>>> from timeit import Timer
>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791

In contrast to timeit‘s fine level of granularity, the profile and
pstats modules provide tools for identifying time critical sections in
larger blocks of code.

10.11. Quality Control

One approach for developing high quality software is to write tests for each
function as it is developed and to run those tests frequently during the
development process.

The doctest module provides a tool for scanning a module and validating
tests embedded in a program’s docstrings. Test construction is as simple as
cutting-and-pasting a typical call along with its results into the docstring.
This improves the documentation by providing the user with an example and it
allows the doctest module to make sure the code remains true to the
documentation:

def average(values):
 """Computes the arithmetic mean of a list of numbers.

 >>> print average([20, 30, 70])
 40.0
 """
 return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module,
but it allows a more comprehensive set of tests to be maintained in a separate
file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

 def test_average(self):
 self.assertEqual(average([20, 30, 70]), 40.0)
 self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
 self.assertRaises(ZeroDivisionError, average, [])
 self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12. Batteries Included

Python has a “batteries included” philosophy. This is best seen through the
sophisticated and robust capabilities of its larger packages. For example:

	The xmlrpclib and SimpleXMLRPCServer modules make implementing
remote procedure calls into an almost trivial task. Despite the modules
names, no direct knowledge or handling of XML is needed.

	The email package is a library for managing email messages, including
MIME and other RFC 2822-based message documents. Unlike smtplib and
poplib which actually send and receive messages, the email package has
a complete toolset for building or decoding complex message structures
(including attachments) and for implementing internet encoding and header
protocols.

	The xml.dom and xml.sax packages provide robust support for
parsing this popular data interchange format. Likewise, the csv module
supports direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between Python
applications and other tools.

	Internationalization is supported by a number of modules including
gettext, locale, and the codecs package.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

11. Brief Tour of the Standard Library – Part II

This second tour covers more advanced modules that support professional
programming needs. These modules rarely occur in small scripts.

11.1. Output Formatting

The repr module provides a version of repr() customized for
abbreviated displays of large or deeply nested containers:

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

The pprint module offers more sophisticated control over printing both
built-in and user defined objects in a way that is readable by the interpreter.
When the result is longer than one line, the “pretty printer” adds line breaks
and indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
... 'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
 'white',
 ['green', 'red']],
 [['magenta', 'yellow'],
 'blue']]]

The textwrap module formats paragraphs of text to fit a given screen
width:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The locale module accesses a database of culture specific data formats.
The grouping attribute of locale’s format function provides a direct way of
formatting numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format_string("%s%.*f", (conv['currency_symbol'],
... conv['frac_digits'], x), grouping=True)
'$1,234,567.80'

11.2. Templating

The string module includes a versatile Template class with a
simplified syntax suitable for editing by end-users. This allows users to
customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers
(alphanumeric characters and underscores). Surrounding the placeholder with
braces allows it to be followed by more alphanumeric letters with no intervening
spaces. Writing $$ creates a single escaped $:

>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

The substitute() method raises a KeyError when a placeholder is not
supplied in a dictionary or a keyword argument. For mail-merge style
applications, user supplied data may be incomplete and the
safe_substitute() method may be more appropriate — it will leave
placeholders unchanged if data is missing:

>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
 . . .
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch
renaming utility for a photo browser may elect to use percent signs for
placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
... delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print '{0} --> {1}'.format(filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details
of multiple output formats. This makes it possible to substitute custom
templates for XML files, plain text reports, and HTML web reports.

11.3. Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for
working with variable length binary record formats. The following example shows
how to loop through header information in a ZIP file without using the
zipfile module. Pack codes "H" and "I" represent two and four
byte unsigned numbers respectively. The "<" indicates that they are
standard size and in little-endian byte order:

import struct

data = open('myfile.zip', 'rb').read()
start = 0
for i in range(3): # show the first 3 file headers
 start += 14
 fields = struct.unpack('<IIIHH', data[start:start+16])
 crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

 start += 16
 filename = data[start:start+filenamesize]
 start += filenamesize
 extra = data[start:start+extra_size]
 print filename, hex(crc32), comp_size, uncomp_size

 start += extra_size + comp_size # skip to the next header

11.4. Multi-threading

Threading is a technique for decoupling tasks which are not sequentially
dependent. Threads can be used to improve the responsiveness of applications
that accept user input while other tasks run in the background. A related use
case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run
tasks in background while the main program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):
 def __init__(self, infile, outfile):
 threading.Thread.__init__(self)
 self.infile = infile
 self.outfile = outfile
 def run(self):
 f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
 f.write(self.infile)
 f.close()
 print 'Finished background zip of: ', self.infile

background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'

background.join() # Wait for the background task to finish
print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads
that share data or other resources. To that end, the threading module provides
a number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that
are difficult to reproduce. So, the preferred approach to task coordination is
to concentrate all access to a resource in a single thread and then use the
Queue module to feed that thread with requests from other threads.
Applications using Queue.Queue objects for inter-thread communication
and coordination are easier to design, more readable, and more reliable.

11.5. Logging

The logging module offers a full featured and flexible logging system.
At its simplest, log messages are sent to a file or to sys.stderr:

import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output
is sent to standard error. Other output options include routing messages
through email, datagrams, sockets, or to an HTTP Server. New filters can select
different routing based on message priority: DEBUG, INFO,
WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from
a user editable configuration file for customized logging without altering the
application.

11.6. Weak References

Python does automatic memory management (reference counting for most objects and
garbage collection to eliminate cycles). The memory is freed shortly
after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need
to track objects only as long as they are being used by something else.
Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a
reference. When the object is no longer needed, it is automatically removed
from a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d['primary'] = a # does not create a reference
>>> d['primary'] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d['primary'] # entry was automatically removed
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 d['primary'] # entry was automatically removed
 File "C:/python26/lib/weakref.py", line 46, in __getitem__
 o = self.data[key]()
KeyError: 'primary'

11.7. Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However,
sometimes there is a need for alternative implementations with different
performance trade-offs.

The array module provides an array() object that is like a list
that stores only homogeneous data and stores it more compactly. The following
example shows an array of numbers stored as two byte unsigned binary numbers
(typecode "H") rather than the usual 16 bytes per entry for regular lists of
Python int objects:

>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])

The collections module provides a deque() object that is like a
list with faster appends and pops from the left side but slower lookups in the
middle. These objects are well suited for implementing queues and breadth first
tree searches:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1

unsearched = deque([starting_node])
def breadth_first_search(unsearched):
 node = unsearched.popleft()
 for m in gen_moves(node):
 if is_goal(m):
 return m
 unsearched.append(m)

In addition to alternative list implementations, the library also offers other
tools such as the bisect module with functions for manipulating sorted
lists:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapq module provides functions for implementing heaps based on
regular lists. The lowest valued entry is always kept at position zero. This
is useful for applications which repeatedly access the smallest element but do
not want to run a full list sort:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

11.8. Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal
floating point arithmetic. Compared to the built-in float
implementation of binary floating point, the class is especially helpful for

	financial applications and other uses which require exact decimal
representation,

	control over precision,

	control over rounding to meet legal or regulatory requirements,

	tracking of significant decimal places, or

	applications where the user expects the results to match calculations done by
hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different
results in decimal floating point and binary floating point. The difference
becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *
>>> x = Decimal('0.70') * Decimal('1.05')
>>> x
Decimal('0.7350')
>>> x.quantize(Decimal('0.01')) # round to nearest cent
Decimal('0.74')
>>> round(.70 * 1.05, 2) # same calculation with floats
0.73

The Decimal result keeps a trailing zero, automatically inferring four
place significance from multiplicands with two place significance. Decimal
reproduces mathematics as done by hand and avoids issues that can arise when
binary floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo
calculations and equality tests that are unsuitable for binary floating point:

>>> Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

12. What Now?

Reading this tutorial has probably reinforced your interest in using Python —
you should be eager to apply Python to solving your real-world problems. Where
should you go to learn more?

This tutorial is part of Python’s documentation set. Some other documents in
the set are:

	The Python Standard Library:

You should browse through this manual, which gives complete (though terse)
reference material about types, functions, and the modules in the standard
library. The standard Python distribution includes a lot of additional code.
There are modules to read Unix mailboxes, retrieve documents via HTTP, generate
random numbers, parse command-line options, write CGI programs, compress data,
and many other tasks. Skimming through the Library Reference will give you an
idea of what’s available.

	Installing Python Modules explains how to install external modules written by other
Python users.

	The Python Language Reference: A detailed explanation of Python’s syntax and
semantics. It’s heavy reading, but is useful as a complete guide to the
language itself.

More Python resources:

	http://www.python.org: The major Python Web site. It contains code,
documentation, and pointers to Python-related pages around the Web. This Web
site is mirrored in various places around the world, such as Europe, Japan, and
Australia; a mirror may be faster than the main site, depending on your
geographical location.

	http://docs.python.org: Fast access to Python’s documentation.

	http://pypi.python.org: The Python Package Index, previously also nicknamed
the Cheese Shop, is an index of user-created Python modules that are available
for download. Once you begin releasing code, you can register it here so that
others can find it.

	http://aspn.activestate.com/ASPN/Python/Cookbook/: The Python Cookbook is a
sizable collection of code examples, larger modules, and useful scripts.
Particularly notable contributions are collected in a book also titled Python
Cookbook (O’Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you can post to the newsgroup
comp.lang.python, or send them to the mailing list at
python-list@python.org. The newsgroup and mailing list are gatewayed, so
messages posted to one will automatically be forwarded to the other. There are
around 120 postings a day (with peaks up to several hundred), asking (and
answering) questions, suggesting new features, and announcing new modules.
Before posting, be sure to check the list of Frequently Asked Questions [http://www.python.org/doc/faq/] (also called the FAQ), or look for it in the
Misc/ directory of the Python source distribution. Mailing list
archives are available at http://mail.python.org/pipermail/. The FAQ answers
many of the questions that come up again and again, and may already contain the
solution for your problem.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

13. Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input
line and history substitution, similar to facilities found in the Korn shell and
the GNU Bash shell. This is implemented using the GNU Readline [http://tiswww.case.edu/php/chet/readline/rltop.html] library,
which supports Emacs-style and vi-style editing. This library has its own
documentation which I won’t duplicate here; however, the basics are easily
explained. The interactive editing and history described here are optionally
available in the Unix and Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’s
PythonWin package or the Tk-based environment, IDLE, distributed with Python.
The command line history recall which operates within DOS boxes on NT and some
other DOS and Windows flavors is yet another beast.

13.1. Line Editing

If supported, input line editing is active whenever the interpreter prints a
primary or secondary prompt. The current line can be edited using the
conventional Emacs control characters. The most important of these are:
C-A (Control-A) moves the cursor to the beginning of the line, C-E
to the end, C-B moves it one position to the left, C-F to the
right. Backspace erases the character to the left of the cursor, C-D the
character to its right. C-K kills (erases) the rest of the line to the
right of the cursor, C-Y yanks back the last killed string.
C-underscore undoes the last change you made; it can be repeated for
cumulative effect.

13.2. History Substitution

History substitution works as follows. All non-empty input lines issued are
saved in a history buffer, and when a new prompt is given you are positioned on
a new line at the bottom of this buffer. C-P moves one line up (back) in
the history buffer, C-N moves one down. Any line in the history buffer
can be edited; an asterisk appears in front of the prompt to mark a line as
modified. Pressing the Return key passes the current line to the
interpreter. C-R starts an incremental reverse search; C-S starts
a forward search.

13.3. Key Bindings

The key bindings and some other parameters of the Readline library can be
customized by placing commands in an initialization file called
~/.inputrc. Key bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab
character instead of Readline’s default filename completion function. If you
insist, you can override this by putting

Tab: complete

in your ~/.inputrc. (Of course, this makes it harder to type indented
continuation lines if you’re accustomed to using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To
enable it in the interpreter’s interactive mode, add the following to your
startup file: [1]

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the
Tab key twice suggests completions; it looks at Python statement names,
the current local variables, and the available module names. For dotted
expressions such as string.a, it will evaluate the expression up to the
final '.' and then suggest completions from the attributes of the resulting
object. Note that this may execute application-defined code if an object with a
__getattr__() method is part of the expression.

A more capable startup file might look like this example. Note that this
deletes the names it creates once they are no longer needed; this is done since
the startup file is executed in the same namespace as the interactive commands,
and removing the names avoids creating side effects in the interactive
environment. You may find it convenient to keep some of the imported modules,
such as os, which turn out to be needed in most sessions with the
interpreter.

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).
#
Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=~/.pystartup" in bash.

import atexit
import os
import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
 import readline
 readline.write_history_file(historyPath)

if os.path.exists(historyPath):
 readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4. Alternatives to the Interactive Interpreter

This facility is an enormous step forward compared to earlier versions of the
interpreter; however, some wishes are left: It would be nice if the proper
indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter’s
symbol table. A command to check (or even suggest) matching parentheses,
quotes, etc., would also be useful.

One alternative enhanced interactive interpreter that has been around for quite
some time is IPython [http://ipython.scipy.org/], which features tab completion, object exploration and
advanced history management. It can also be thoroughly customized and embedded
into other applications. Another similar enhanced interactive environment is
bpython [http://www.bpython-interpreter.org/].

Footnotes

	[1]	Python will execute the contents of a file identified by the
PYTHONSTARTUP environment variable when you start an interactive
interpreter.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Tutorial

14. Floating Point Arithmetic: Issues and Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary)
fractions. For example, the decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only
real difference being that the first is written in base 10 fractional notation,
and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary
fractions. A consequence is that, in general, the decimal floating-point
numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction
1/3. You can approximate that as a base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result
will never be exactly 1/3, but will be an increasingly better approximation of
1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the
decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base
2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation.

On a typical machine running Python, there are 53 bits of precision available
for a Python float, so the value stored internally when you enter the decimal
number 0.1 is the binary fraction

0.00011001100110011001100110011001100110011001100110011010

which is close to, but not exactly equal to, 1/10.

It’s easy to forget that the stored value is an approximation to the original
decimal fraction, because of the way that floats are displayed at the
interpreter prompt. Python only prints a decimal approximation to the true
decimal value of the binary approximation stored by the machine. If Python
were to print the true decimal value of the binary approximation stored for
0.1, it would have to display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

That is more digits than most people find useful, so Python keeps the number
of digits manageable by displaying a rounded value instead

>>> 0.1
0.1

It’s important to realize that this is, in a real sense, an illusion: the value
in the machine is not exactly 1/10, you’re simply rounding the display of the
true machine value. This fact becomes apparent as soon as you try to do
arithmetic with these values

>>> 0.1 + 0.2
0.30000000000000004

Note that this is in the very nature of binary floating-point: this is not a
bug in Python, and it is not a bug in your code either. You’ll see the same
kind of thing in all languages that support your hardware’s floating-point
arithmetic (although some languages may not display the difference by
default, or in all output modes).

Other surprises follow from this one. For example, if you try to round the
value 2.675 to two decimal places, you get this

>>> round(2.675, 2)
2.67

The documentation for the built-in round() function says that it rounds
to the nearest value, rounding ties away from zero. Since the decimal fraction
2.675 is exactly halfway between 2.67 and 2.68, you might expect the result
here to be (a binary approximation to) 2.68. It’s not, because when the
decimal string 2.675 is converted to a binary floating-point number, it’s
again replaced with a binary approximation, whose exact value is

2.67499999999999982236431605997495353221893310546875

Since this approximation is slightly closer to 2.67 than to 2.68, it’s rounded
down.

If you’re in a situation where you care which way your decimal halfway-cases
are rounded, you should consider using the decimal module.
Incidentally, the decimal module also provides a nice way to “see” the
exact value that’s stored in any particular Python float

>>> from decimal import Decimal
>>> Decimal(2.675)
Decimal('2.67499999999999982236431605997495353221893310546875')

Another consequence is that since 0.1 is not exactly 1/10, summing ten values
of 0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.9999999999999999

Binary floating-point arithmetic holds many surprises like this. The problem
with “0.1” is explained in precise detail below, in the “Representation Error”
section. See The Perils of Floating Point [http://www.lahey.com/float.htm]
for a more complete account of other common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly
wary of floating-point! The errors in Python float operations are inherited
from the floating-point hardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That’s more than adequate for most
tasks, but you do need to keep in mind that it’s not decimal arithmetic, and
that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point
arithmetic you’ll see the result you expect in the end if you simply round the
display of your final results to the number of decimal digits you expect. For
fine control over how a float is displayed see the str.format() method’s
format specifiers in Format String Syntax.

14.1. Representation Error

This section explains the “0.1” example in detail, and shows how you can
perform an exact analysis of cases like this yourself. Basic familiarity with
binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually)
decimal fractions cannot be represented exactly as binary (base 2) fractions.
This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many
others) often won’t display the exact decimal number you expect:

>>> 0.1 + 0.2
0.30000000000000004

Why is that? 1/10 and 2/10 are not exactly representable as a binary
fraction. Almost all machines today (July 2010) use IEEE-754 floating point
arithmetic, and almost all platforms map Python floats to IEEE-754 “double
precision”. 754 doubles contain 53 bits of precision, so on input the computer
strives to convert 0.1 to the closest fraction it can of the form J/2**N
where J is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53),
the best value for N is 56:

>>> 2**52
4503599627370496
>>> 2**53
9007199254740992
>>> 2**56/10
7205759403792793

That is, 56 is the only value for N that leaves J with exactly 53 bits.
The best possible value for J is then that quotient rounded:

>>> q, r = divmod(2**56, 10)
>>> r
6

Since the remainder is more than half of 10, the best approximation is obtained
by rounding up:

>>> q+1
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is
that over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10;
if we had not rounded up, the quotient would have been a little bit smaller
than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given
above, the best 754 double approximation it can get:

>>> .1 * 2**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of
its 30 most significant decimal digits:

>>> 7205759403792794 * 10**30 // 2**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to
the decimal value 0.100000000000000005551115123125. In versions prior to
Python 2.7 and Python 3.1, Python rounded this value to 17 significant digits,
giving ‘0.10000000000000001’. In current versions, Python displays a value
based on the shortest decimal fraction that rounds correctly back to the true
binary value, resulting simply in ‘0.1’.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Python Setup and Usage

This part of the documentation is devoted to general information on the setup
of the Python environment on different platform, the invocation of the
interpreter and things that make working with Python easier.

	1. Command line and environment
	1.1. Command line
	1.1.1. Interface options

	1.1.2. Generic options

	1.1.3. Miscellaneous options

	1.1.4. Options you shouldn’t use

	1.2. Environment variables
	1.2.1. Debug-mode variables

	2. Using Python on Unix platforms
	2.1. Getting and installing the latest version of Python
	2.1.1. On Linux

	2.1.2. On FreeBSD and OpenBSD

	2.1.3. On OpenSolaris

	2.2. Building Python

	2.3. Python-related paths and files

	2.4. Miscellaneous

	2.5. Editors

	3. Using Python on Windows
	3.1. Installing Python

	3.2. Alternative bundles

	3.3. Configuring Python
	3.3.1. Excursus: Setting environment variables

	3.3.2. Finding the Python executable

	3.3.3. Finding modules

	3.3.4. Executing scripts

	3.4. Additional modules
	3.4.1. PyWin32

	3.4.2. Py2exe

	3.4.3. WConio

	3.5. Compiling Python on Windows

	3.6. Other resources

	4. Using Python on a Macintosh
	4.1. Getting and Installing MacPython
	4.1.1. How to run a Python script

	4.1.2. Running scripts with a GUI

	4.1.3. Configuration

	4.2. The IDE

	4.3. Installing Additional Python Packages

	4.4. GUI Programming on the Mac

	4.5. Distributing Python Applications on the Mac

	4.6. Application Scripting

	4.7. Other Resources

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Setup and Usage

1. Command line and environment

The CPython interpreter scans the command line and the environment for various
settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See
Alternate Implementations for further resources.

1.1. Command line

When invoking Python, you may specify any of these options:

python [-BdEiOQsStuUvVWxX3?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

python myscript.py

1.1.1. Interface options

The interpreter interface resembles that of the UNIX shell, but provides some
additional methods of invocation:

	When called with standard input connected to a tty device, it prompts for
commands and executes them until an EOF (an end-of-file character, you can
produce that with Ctrl-D on UNIX or Ctrl-Z, Enter on Windows) is read.

	When called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

	When called with a directory name argument, it reads and executes an
appropriately named script from that directory.

	When called with -c command, it executes the Python statement(s) given as
command. Here command may contain multiple statements separated by
newlines. Leading whitespace is significant in Python statements!

	When called with -m module-name, the given module is located on the
Python module path and executed as a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter,
all consecutive arguments will end up in sys.argv – note that the first
element, subscript zero (sys.argv[0]), is a string reflecting the program’s
source.

	
-c <command>

	Execute the Python code in command. command can be one or more
statements separated by newlines, with significant leading whitespace as in
normal module code.

If this option is given, the first element of sys.argv will be
"-c" and the current directory will be added to the start of
sys.path (allowing modules in that directory to be imported as top
level modules).

	
-m <module-name>

	Search sys.path for the named module and execute its contents as
the __main__ module.

Since the argument is a module name, you must not give a file extension
(.py). The module-name should be a valid Python module name, but
the implementation may not always enforce this (e.g. it may allow you to
use a name that includes a hyphen).

Package names are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main__ as
the main module. This behaviour is deliberately similar to the handling
of directories and zipfiles that are passed to the interpreter as the
script argument.

Note

This option cannot be used with built-in modules and extension modules
written in C, since they do not have Python module files. However, it
can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sys.argv will be the
full path to the module file. As with the -c option, the current
directory will be added to the start of sys.path.

Many standard library modules contain code that is invoked on their execution
as a script. An example is the timeit module:

python -mtimeit -s 'setup here' 'benchmarked code here'
python -mtimeit -h # for details

See also

runpy.run_module()
 Equivalent functionality directly available to Python code

PEP 338 [http://www.python.org/dev/peps/pep-0338] – Executing modules as scripts

New in version 2.4.

Changed in version 2.5: The named module can now be located inside a package.

Changed in version 2.7: Supply the package name to run a __main__ submodule.
sys.argv[0] is now set to "-m" while searching for the module
(it was previously incorrectly set to "-c")

	
-

	Read commands from standard input (sys.stdin). If standard input is
a terminal, -i is implied.

If this option is given, the first element of sys.argv will be
"-" and the current directory will be added to the start of
sys.path.

	
<script>

	Execute the Python code contained in script, which must be a filesystem
path (absolute or relative) referring to either a Python file, a directory
containing a __main__.py file, or a zipfile containing a
__main__.py file.

If this option is given, the first element of sys.argv will be the
script name as given on the command line.

If the script name refers directly to a Python file, the directory
containing that file is added to the start of sys.path, and the
file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is
added to the start of sys.path and the __main__.py file in
that location is executed as the __main__ module.

Changed in version 2.5: Directories and zipfiles containing a __main__.py file at the top
level are now considered valid Python scripts.

If no interface option is given, -i is implied, sys.argv[0] is
an empty string ("") and the current directory will be added to the
start of sys.path.

See also

Invoking the Interpreter

1.1.2. Generic options

	
-?

	
-h

	
--help

	Print a short description of all command line options.

Changed in version 2.5: The --help variant.

	
-V

	
--version

	Print the Python version number and exit. Example output could be:

Python 2.5.1

Changed in version 2.5: The --version variant.

1.1.3. Miscellaneous options

	
-B

	If given, Python won’t try to write .pyc or .pyo files on the
import of source modules. See also PYTHONDONTWRITEBYTECODE.

New in version 2.6.

	
-d

	Turn on parser debugging output (for wizards only, depending on compilation
options). See also PYTHONDEBUG.

	
-E

	Ignore all PYTHON* environment variables, e.g.
PYTHONPATH and PYTHONHOME, that might be set.

New in version 2.2.

	
-i

	When a script is passed as first argument or the -c option is used,
enter interactive mode after executing the script or the command, even when
sys.stdin does not appear to be a terminal. The
PYTHONSTARTUP file is not read.

This can be useful to inspect global variables or a stack trace when a script
raises an exception. See also PYTHONINSPECT.

	
-O

	Turn on basic optimizations. This changes the filename extension for
compiled (bytecode) files from .pyc to .pyo. See also
PYTHONOPTIMIZE.

	
-OO

	Discard docstrings in addition to the -O optimizations.

	
-Q <arg>

	Division control. The argument must be one of the following:

	old

	division of int/int and long/long return an int or long (default)

	new

	new division semantics, i.e. division of int/int and long/long returns a
float

	warn

	old division semantics with a warning for int/int and long/long

	warnall

	old division semantics with a warning for all uses of the division operator

See also

Tools/scripts/fixdiv.py
 for a use of warnall

PEP 238 [http://www.python.org/dev/peps/pep-0238] – Changing the division operator

	
-s

	Don’t add user site directory to sys.path

New in version 2.6.

See also

PEP 370 [http://www.python.org/dev/peps/pep-0370] – Per user site-packages directory

	
-S

	Disable the import of the module site and the site-dependent
manipulations of sys.path that it entails.

	
-t

	Issue a warning when a source file mixes tabs and spaces for indentation in a
way that makes it depend on the worth of a tab expressed in spaces. Issue an
error when the option is given twice (-tt).

	
-u

	Force stdin, stdout and stderr to be totally unbuffered. On systems where it
matters, also put stdin, stdout and stderr in binary mode.

Note that there is internal buffering in file.readlines() and
File Objects (for line in sys.stdin) which is not influenced
by this option. To work around this, you will want to use
file.readline() inside a while 1: loop.

See also PYTHONUNBUFFERED.

	
-v

	Print a message each time a module is initialized, showing the place
(filename or built-in module) from which it is loaded. When given twice
(-vv), print a message for each file that is checked for when
searching for a module. Also provides information on module cleanup at exit.
See also PYTHONVERBOSE.

	
-W arg

	Warning control. Python’s warning machinery by default prints warning
messages to sys.stderr. A typical warning message has the following
form:

file:line: category: message

By default, each warning is printed once for each source line where it
occurs. This option controls how often warnings are printed.

Multiple -W options may be given; when a warning matches more than
one option, the action for the last matching option is performed. Invalid
-W options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Starting from Python 2.7, DeprecationWarning and its descendants
are ignored by default. The -Wd option can be used to re-enable
them.

Warnings can also be controlled from within a Python program using the
warnings module.

The simplest form of argument is one of the following action strings (or a
unique abbreviation) by themselves:

	ignore

	Ignore all warnings.

	default

	Explicitly request the default behavior (printing each warning once per
source line).

	all

	Print a warning each time it occurs (this may generate many messages if a
warning is triggered repeatedly for the same source line, such as inside a
loop).

	module

	Print each warning only the first time it occurs in each module.

	once

	Print each warning only the first time it occurs in the program.

	error

	Raise an exception instead of printing a warning message.

The full form of argument is:

action:message:category:module:line

Here, action is as explained above but only applies to messages that match
the remaining fields. Empty fields match all values; trailing empty fields
may be omitted. The message field matches the start of the warning message
printed; this match is case-insensitive. The category field matches the
warning category. This must be a class name; the match tests whether the
actual warning category of the message is a subclass of the specified warning
category. The full class name must be given. The module field matches the
(fully-qualified) module name; this match is case-sensitive. The line
field matches the line number, where zero matches all line numbers and is
thus equivalent to an omitted line number.

See also

warnings – the warnings module

PEP 230 [http://www.python.org/dev/peps/pep-0230] – Warning framework

PYTHONWARNINGS

	
-x

	Skip the first line of the source, allowing use of non-Unix forms of
#!cmd. This is intended for a DOS specific hack only.

Note

The line numbers in error messages will be off by one.

	
-3

	Warn about Python 3.x incompatibilities which cannot be fixed trivially by
2to3. Among these are:

	dict.has_key()

	apply()

	callable()

	coerce()

	execfile()

	reduce()

	reload()

Using these will emit a DeprecationWarning.

New in version 2.6.

1.1.4. Options you shouldn’t use

	
-J

	Reserved for use by Jython [http://jython.org].

	
-U

	Turns all string literals into unicodes globally. Do not be tempted to use
this option as it will probably break your world. It also produces
.pyc files with a different magic number than normal. Instead, you can
enable unicode literals on a per-module basis by using:

from __future__ import unicode_literals

at the top of the file. See __future__ for details.

	
-X

	Reserved for alternative implementations of Python to use for their own
purposes.

1.2. Environment variables

These environment variables influence Python’s behavior.

	
PYTHONHOME

	Change the location of the standard Python libraries. By default, the
libraries are searched in prefix/lib/pythonversion and
exec_prefix/lib/pythonversion, where prefix and
exec_prefix are installation-dependent directories, both defaulting
to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces
both prefix and exec_prefix. To specify different values
for these, set PYTHONHOME to prefix:exec_prefix.

	
PYTHONPATH

	Augment the default search path for module files. The format is the same as
the shell’s PATH: one or more directory pathnames separated by
os.pathsep (e.g. colons on Unix or semicolons on Windows).
Non-existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries
may refer to zipfiles containing pure Python modules (in either source or
compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with
prefix/lib/pythonversion (see PYTHONHOME above). It
is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of
PYTHONPATH as described above under
Interface options. The search path can be manipulated from
within a Python program as the variable sys.path.

	
PYTHONSTARTUP

	If this is the name of a readable file, the Python commands in that file are
executed before the first prompt is displayed in interactive mode. The file
is executed in the same namespace where interactive commands are executed so
that objects defined or imported in it can be used without qualification in
the interactive session. You can also change the prompts sys.ps1 and
sys.ps2 in this file.

	
PYTHONY2K

	Set this to a non-empty string to cause the time module to require
dates specified as strings to include 4-digit years, otherwise 2-digit years
are converted based on rules described in the time module
documentation.

	
PYTHONOPTIMIZE

	If this is set to a non-empty string it is equivalent to specifying the
-O option. If set to an integer, it is equivalent to specifying
-O multiple times.

	
PYTHONDEBUG

	If this is set to a non-empty string it is equivalent to specifying the
-d option. If set to an integer, it is equivalent to specifying
-d multiple times.

	
PYTHONINSPECT

	If this is set to a non-empty string it is equivalent to specifying the
-i option.

This variable can also be modified by Python code using os.environ
to force inspect mode on program termination.

	
PYTHONUNBUFFERED

	If this is set to a non-empty string it is equivalent to specifying the
-u option.

	
PYTHONVERBOSE

	If this is set to a non-empty string it is equivalent to specifying the
-v option. If set to an integer, it is equivalent to specifying
-v multiple times.

	
PYTHONCASEOK

	If this is set, Python ignores case in import statements. This
only works on Windows.

	
PYTHONDONTWRITEBYTECODE

	If this is set, Python won’t try to write .pyc or .pyo files on the
import of source modules.

New in version 2.6.

	
PYTHONIOENCODING

	Overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. The :errorhandler part is optional and
has the same meaning as in str.encode().

New in version 2.6.

	
PYTHONNOUSERSITE

	If this is set, Python won’t add the user site directory to sys.path

New in version 2.6.

See also

PEP 370 [http://www.python.org/dev/peps/pep-0370] – Per user site-packages directory

	
PYTHONUSERBASE

	Sets the base directory for the user site directory

New in version 2.6.

See also

PEP 370 [http://www.python.org/dev/peps/pep-0370] – Per user site-packages directory

	
PYTHONEXECUTABLE

	If this environment variable is set, sys.argv[0] will be set to its
value instead of the value got through the C runtime. Only works on
Mac OS X.

	
PYTHONWARNINGS

	This is equivalent to the -W option. If set to a comma
separated string, it is equivalent to specifying -W multiple
times.

1.2.1. Debug-mode variables

Setting these variables only has an effect in a debug build of Python, that is,
if Python was configured with the --with-pydebug build option.

	
PYTHONTHREADDEBUG

	If set, Python will print threading debug info.

Changed in version 2.6: Previously, this variable was called THREADDEBUG.

	
PYTHONDUMPREFS

	If set, Python will dump objects and reference counts still alive after
shutting down the interpreter.

	
PYTHONMALLOCSTATS

	If set, Python will print memory allocation statistics every time a new
object arena is created, and on shutdown.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Setup and Usage

2. Using Python on Unix platforms

2.1. Getting and installing the latest version of Python

2.1.1. On Linux

Python comes preinstalled on most Linux distributions, and is available as a
package on all others. However there are certain features you might want to use
that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as
well, you can easily make packages for your own distro. Have a look at the
following links:

See also

	http://www.linux.com/articles/60383

	for Debian users

	http://linuxmafia.com/pub/linux/suse-linux-internals/chapter35.html

	for OpenSuse users

	http://docs.fedoraproject.org/drafts/rpm-guide-en/ch-creating-rpms.html

	for Fedora users

	http://www.slackbook.org/html/package-management-making-packages.html

	for Slackware users

2.1.2. On FreeBSD and OpenBSD

	FreeBSD users, to add the package use:

pkg_add -r python

	OpenBSD users use:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture here>/python-<version>.tgz

For example i386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3. On OpenSolaris

To install the newest Python versions on OpenSolaris, install blastwave
(http://www.blastwave.org/howto.html) and type “pkg_get -i python” at the
prompt.

2.2. Building Python

If you want to compile CPython yourself, first thing you should do is get the
source [http://python.org/download/source/]. You can download either the
latest release’s source or just grab a fresh checkout [http://www.python.org/dev/faq/#how-do-i-get-a-checkout-of-the-repository-read-only-and-read-write].

The build process consists the usual

./configure
make
make install

invocations. Configuration options and caveats for specific Unix platforms are
extensively documented in the README file in the root of the Python
source tree.

Warning

make install can overwrite or masquerade the python binary.
make altinstall is therefore recommended instead of make install
since it only installs exec_prefix/bin/pythonversion.

2.3. Python-related paths and files

These are subject to difference depending on local installation conventions;
prefix (${prefix}) and exec_prefix (${exec_prefix})
are installation-dependent and should be interpreted as for GNU software; they
may be the same.

For example, on most Linux systems, the default for both is /usr.

	File/directory
	Meaning

	exec_prefix/bin/python
	Recommended location of the interpreter.

	prefix/lib/pythonversion,
exec_prefix/lib/pythonversion
	Recommended locations of the directories
containing the standard modules.

	prefix/include/pythonversion,
exec_prefix/include/pythonversion
	Recommended locations of the directories
containing the include files needed for
developing Python extensions and
embedding the interpreter.

	~/.pythonrc.py
	User-specific initialization file loaded
by the user module; not used by default
or by most applications.

2.4. Miscellaneous

To easily use Python scripts on Unix, you need to make them executable,
e.g. with

$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is
usually

#!/usr/bin/env python

which searches for the Python interpreter in the whole PATH. However,
some Unices may not have the env command, so you may need to hardcode
/usr/bin/python as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5. Editors

Vim and Emacs are excellent editors which support Python very well. For more
information on how to code in Python in these editors, look at:

	http://www.vim.org/scripts/script.php?script_id=790

	http://sourceforge.net/projects/python-mode

Geany is an excellent IDE with support for a lot of languages. For more
information, read: http://geany.uvena.de/

Komodo edit is another extremely good IDE. It also has support for a lot of
languages. For more information, read:
http://www.activestate.com/store/productdetail.aspx?prdGuid=20f4ed15-6684-4118-a78b-d37ff4058c5f

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Setup and Usage

3. Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should
know about when using Python on Microsoft Windows.

3.1. Installing Python

Unlike most Unix systems and services, Windows does not require Python natively
and thus does not pre-install a version of Python. However, the CPython team
has compiled Windows installers (MSI packages) with every release [http://www.python.org/download/releases/] for many years.

With ongoing development of Python, some platforms that used to be supported
earlier are no longer supported (due to the lack of users or developers).
Check PEP 11 [http://www.python.org/dev/peps/pep-0011] for details on all unsupported platforms.

	DOS and Windows 3.x are deprecated since Python 2.0 and code specific to these
systems was removed in Python 2.1.

	Up to 2.5, Python was still compatible with Windows 95, 98 and ME (but already
raised a deprecation warning on installation). For Python 2.6 (and all
following releases), this support was dropped and new releases are just
expected to work on the Windows NT family.

	Windows CE [http://pythonce.sourceforge.net/] is still supported.

	The Cygwin [http://cygwin.com/] installer offers to install the Python
interpreter [http://cygwin.com/packages/python] as well; it is located under
“Interpreters.” (cf. Cygwin package source [ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python], Maintainer releases [http://www.tishler.net/jason/software/python/])

See Python for Windows (and DOS) [http://www.python.org/download/windows/]
for detailed information about platforms with precompiled installers.

See also

	Python on XP [http://www.richarddooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/]

	“7 Minutes to “Hello World!””
by Richard Dooling, 2006

	Installing on Windows [http://diveintopython.org/installing_python/windows.html]

	in “Dive into Python: Python from novice to pro [http://diveintopython.org/index.html]”
by Mark Pilgrim, 2004,
ISBN 1-59059-356-1

	For Windows users [http://swaroopch.com/text/Byte_of_Python:Installing_Python#For_Windows_users]

	in “Installing Python”
in “A Byte of Python [http://www.byteofpython.info]”
by Swaroop C H, 2003

3.2. Alternative bundles

Besides the standard CPython distribution, there are modified packages including
additional functionality. The following is a list of popular versions and their
key features:

	ActivePython [http://www.activestate.com/Products/activepython/]

	Installer with multi-platform compatibility, documentation, PyWin32

	Enthought Python Distribution [http://www.enthought.com/products/epd.php]

	Popular modules (such as PyWin32) with their respective documentation, tool
suite for building extensible Python applications

Notice that these packages are likely to install older versions of Python.

3.3. Configuring Python

In order to run Python flawlessly, you might have to change certain environment
settings in Windows.

3.3.1. Excursus: Setting environment variables

Windows has a built-in dialog for changing environment variables (following
guide applies to XP classical view): Right-click the icon for your machine
(usually located on your Desktop and called “My Computer”) and choose
Properties there. Then, open the Advanced tab
and click the Environment Variables button.

In short, your path is:

My Computer
‣ Properties
‣ Advanced
‣ Environment Variables

In this dialog, you can add or modify User and System variables. To change
System variables, you need non-restricted access to your machine
(i.e. Administrator rights).

Another way of adding variables to your environment is using the set
command:

set PYTHONPATH=%PYTHONPATH%;C:\My_python_lib

To make this setting permanent, you could add the corresponding command line to
your autoexec.bat. msconfig is a graphical interface to this
file.

Viewing environment variables can also be done more straight-forward: The
command prompt will expand strings wrapped into percent signs automatically:

echo %PATH%

Consult set /? for details on this behaviour.

See also

	http://support.microsoft.com/kb/100843

	Environment variables in Windows NT

	http://support.microsoft.com/kb/310519

	How To Manage Environment Variables in Windows XP

	http://www.chem.gla.ac.uk/~louis/software/faq/q1.html

	Setting Environment variables, Louis J. Farrugia

3.3.2. Finding the Python executable

Besides using the automatically created start menu entry for the Python
interpreter, you might want to start Python in the DOS prompt. To make this
work, you need to set your %PATH% environment variable to include the
directory of your Python distribution, delimited by a semicolon from other
entries. An example variable could look like this (assuming the first two
entries are Windows’ default):

C:\WINDOWS\system32;C:\WINDOWS;C:\Python25

Typing python on your command prompt will now fire up the Python
interpreter. Thus, you can also execute your scripts with command line options,
see Command line documentation.

3.3.3. Finding modules

Python usually stores its library (and thereby your site-packages folder) in the
installation directory. So, if you had installed Python to
C:\Python\, the default library would reside in
C:\Python\Lib\ and third-party modules should be stored in
C:\Python\Lib\site-packages\.

This is how sys.path is populated on Windows:

	An empty entry is added at the start, which corresponds to the current
directory.

	If the environment variable PYTHONPATH exists, as described in
Environment variables, its entries are added next. Note that on Windows,
paths in this variable must be separated by semicolons, to distinguish them
from the colon used in drive identifiers (C:\ etc.).

	Additional “application paths” can be added in the registry as subkeys of
\SOFTWARE\Python\PythonCore\version\PythonPath under both the
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE hives. Subkeys which have
semicolon-delimited path strings as their default value will cause each path
to be added to sys.path. (Note that all known installers only use
HKLM, so HKCU is typically empty.)

	If the environment variable PYTHONHOME is set, it is assumed as
“Python Home”. Otherwise, the path of the main Python executable is used to
locate a “landmark file” (Lib\os.py) to deduce the “Python Home”. If a
Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core
Python path is constructed from the PythonPath stored in the registry.

	If the Python Home cannot be located, no PYTHONPATH is specified in
the environment, and no registry entries can be found, a default path with
relative entries is used (e.g. .\Lib;.\plat-win, etc).

The end result of all this is:

	When running python.exe, or any other .exe in the main Python
directory (either an installed version, or directly from the PCbuild
directory), the core path is deduced, and the core paths in the registry are
ignored. Other “application paths” in the registry are always read.

	When Python is hosted in another .exe (different directory, embedded via COM,
etc), the “Python Home” will not be deduced, so the core path from the
registry is used. Other “application paths” in the registry are always read.

	If Python can’t find its home and there is no registry (eg, frozen .exe, some
very strange installation setup) you get a path with some default, but
relative, paths.

3.3.4. Executing scripts

Python scripts (files with the extension .py) will be executed by
python.exe by default. This executable opens a terminal, which stays
open even if the program uses a GUI. If you do not want this to happen, use the
extension .pyw which will cause the script to be executed by
pythonw.exe by default (both executables are located in the top-level
of your Python installation directory). This suppresses the terminal window on
startup.

You can also make all .py scripts execute with pythonw.exe,
setting this through the usual facilities, for example (might require
administrative rights):

	Launch a command prompt.

	Associate the correct file group with .py scripts:

assoc .py=Python.File

	Redirect all Python files to the new executable:

ftype Python.File=C:\Path\to\pythonw.exe "%1" %*

3.4. Additional modules

Even though Python aims to be portable among all platforms, there are features
that are unique to Windows. A couple of modules, both in the standard library
and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in
MS Windows Specific Services.

3.4.1. PyWin32

The PyWin32 [http://python.net/crew/mhammond/win32/] module by Mark Hammond
is a collection of modules for advanced Windows-specific support. This includes
utilities for:

	Component Object Model [http://www.microsoft.com/com/] (COM)

	Win32 API calls

	Registry

	Event log

	Microsoft Foundation Classes [http://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx] (MFC)
user interfaces

PythonWin [http://web.archive.org/web/20060524042422/http://www.python.org/windows/pythonwin/] is a sample MFC application
shipped with PyWin32. It is an embeddable IDE with a built-in debugger.

See also

	Win32 How Do I...? [http://timgolden.me.uk/python/win32_how_do_i.html]

	by Tim Golden

	Python and COM [http://www.boddie.org.uk/python/COM.html]

	by David and Paul Boddie

3.4.2. Py2exe

Py2exe [http://www.py2exe.org/] is a distutils extension (see
Extending Distutils) which wraps Python scripts into executable Windows
programs (*.exe files). When you have done this, you can distribute
your application without requiring your users to install Python.

3.4.3. WConio

Since Python’s advanced terminal handling layer, curses, is restricted to
Unix-like systems, there is a library exclusive to Windows as well: Windows
Console I/O for Python.

WConio [http://newcenturycomputers.net/projects/wconio.html] is a wrapper for
Turbo-C’s CONIO.H, used to create text user interfaces.

3.5. Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the
source [http://python.org/download/source/]. You can download either the
latest release’s source or just grab a fresh checkout [http://www.python.org/dev/faq/#how-do-i-get-a-checkout-of-the-repository-read-only-and-read-write].

For Microsoft Visual C++, which is the compiler with which official Python
releases are built, the source tree contains solutions/project files. View the
readme.txt in their respective directories:

	Directory
	MSVC version
	Visual Studio version

	PC/VC6/
	6.0
	97

	PC/VS7.1/
	7.1
	2003

	PC/VS8.0/
	8.0
	2005

	PCbuild/
	9.0
	2008

Note that not all of these build directories are fully supported. Read the
release notes to see which compiler version the official releases for your
version are built with.

Check PC/readme.txt for general information on the build process.

For extension modules, consult Building C and C++ Extensions on Windows.

See also

	Python + Windows + distutils + SWIG + gcc MinGW [http://sebsauvage.net/python/mingw.html]

	or “Creating Python extensions in C/C++ with SWIG and compiling them with
MinGW gcc under Windows” or “Installing Python extension with distutils
and without Microsoft Visual C++” by Sébastien Sauvage, 2003

	MingW – Python extensions [http://oldwiki.mingw.org/index.php/Python%20extensions]

	by Trent Apted et al, 2007

3.6. Other resources

See also

	Python Programming On Win32 [http://www.oreilly.com/catalog/pythonwin32/]

	“Help for Windows Programmers”
by Mark Hammond and Andy Robinson, O’Reilly Media, 2000,
ISBN 1-56592-621-8

	A Python for Windows Tutorial [http://www.imladris.com/Scripts/PythonForWindows.html]

	by Amanda Birmingham, 2004

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Setup and Usage

4. Using Python on a Macintosh

	Author:	Bob Savage <bobsavage@mac.com>

Python on a Macintosh running Mac OS X is in principle very similar to Python on
any other Unix platform, but there are a number of additional features such as
the IDE and the Package Manager that are worth pointing out.

The Mac-specific modules are documented in Mac OS X specific services.

Python on Mac OS 9 or earlier can be quite different from Python on Unix or
Windows, but is beyond the scope of this manual, as that platform is no longer
supported, starting with Python 2.4. See http://www.cwi.nl/~jack/macpython for
installers for the latest 2.3 release for Mac OS 9 and related documentation.

4.1. Getting and Installing MacPython

Mac OS X 10.5 comes with Python 2.5.1 pre-installed by Apple. If you wish, you
are invited to install the most recent version of Python from the Python website
(http://www.python.org). A current “universal binary” build of Python, which
runs natively on the Mac’s new Intel and legacy PPC CPU’s, is available there.

What you get after installing is a number of things:

	A MacPython 2.5 folder in your Applications folder. In here
you find IDLE, the development environment that is a standard part of official
Python distributions; PythonLauncher, which handles double-clicking Python
scripts from the Finder; and the “Build Applet” tool, which allows you to
package Python scripts as standalone applications on your system.

	A framework /Library/Frameworks/Python.framework, which includes the
Python executable and libraries. The installer adds this location to your shell
path. To uninstall MacPython, you can simply remove these three things. A
symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in
/System/Library/Frameworks/Python.framework and /usr/bin/python,
respectively. You should never modify or delete these, as they are
Apple-controlled and are used by Apple- or third-party software. Remember that
if you choose to install a newer Python version from python.org, you will have
two different but functional Python installations on your computer, so it will
be important that your paths and usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you
are completely new to Python you should start reading the tutorial introduction
in that document.

If you are familiar with Python on other Unix platforms you should read the
section on running Python scripts from the Unix shell.

4.1.1. How to run a Python script

Your best way to get started with Python on Mac OS X is through the IDLE
integrated development environment, see section The IDE and use the Help menu
when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from
the Finder you first need an editor to create your script. Mac OS X comes with a
number of standard Unix command line editors, vim and
emacs among them. If you want a more Mac-like editor,
BBEdit or TextWrangler from Bare Bones Software (see
http://www.barebones.com/products/bbedit/index.shtml) are good choices, as is
TextMate (see http://macromates.com/). Other editors include
Gvim (http://macvim.org) and Aquamacs
(http://aquamacs.org/).

To run your script from the Terminal window you must make sure that
/usr/local/bin is in your shell search path.

To run your script from the Finder you have two options:

	Drag it to PythonLauncher

	Select PythonLauncher as the default application to open your
script (or any .py script) through the finder Info window and double-click it.
PythonLauncher has various preferences to control how your script is
launched. Option-dragging allows you to change these for one invocation, or use
its Preferences menu to change things globally.

4.1.2. Running scripts with a GUI

With older versions of Python, there is one Mac OS X quirk that you need to be
aware of: programs that talk to the Aqua window manager (in other words,
anything that has a GUI) need to be run in a special way. Use pythonw
instead of python to start such scripts.

With Python 2.5, you can use either python or pythonw.

4.1.3. Configuration

Python on OS X honors all standard Unix environment variables such as
PYTHONPATH, but setting these variables for programs started from the
Finder is non-standard as the Finder does not read your .profile or
.cshrc at startup. You need to create a file ~
/.MacOSX/environment.plist. See Apple’s Technical Document QA1067 for details.

For more information on installation Python packages in MacPython, see section
Installing Additional Python Packages.

4.2. The IDE

MacPython ships with the standard IDLE development environment. A good
introduction to using IDLE can be found at
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

4.3. Installing Additional Python Packages

There are several methods to install additional Python packages:

	http://pythonmac.org/packages/ contains selected compiled packages for Python
2.5, 2.4, and 2.3.

	Packages can be installed via the standard Python distutils mode (python
setup.py install).

	Many packages can also be installed via the setuptools extension.

4.4. GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is
the foundation of most modern Mac development. Information on PyObjC is
available from http://pyobjc.sourceforge.net.

The standard Python GUI toolkit is Tkinter, based on the cross-platform
Tk toolkit (http://www.tcl.tk). An Aqua-native version of Tk is bundled with OS
X by Apple, and the latest version can be downloaded and installed from
http://www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on
Mac OS X. Packages and documentation are available from http://www.wxpython.org.

PyQt is another popular cross-platform GUI toolkit that runs natively on Mac
OS X. More information can be found at
http://www.riverbankcomputing.co.uk/software/pyqt/intro.

4.5. Distributing Python Applications on the Mac

The “Build Applet” tool that is placed in the MacPython 2.5 folder is fine for
packaging small Python scripts on your own machine to run as a standard Mac
application. This tool, however, is not robust enough to distribute Python
applications to other users.

The standard tool for deploying standalone Python applications on the Mac is
py2app. More information on installing and using py2app can be found
at http://undefined.org/python/#py2app.

4.6. Application Scripting

Python can also be used to script other Mac applications via Apple’s Open
Scripting Architecture (OSA); see http://appscript.sourceforge.net. Appscript is
a high-level, user-friendly Apple event bridge that allows you to control
scriptable Mac OS X applications using ordinary Python scripts. Appscript makes
Python a serious alternative to Apple’s own AppleScript language for
automating your Mac. A related package, PyOSA, is an OSA language component
for the Python scripting language, allowing Python code to be executed by any
OSA-enabled application (Script Editor, Mail, iTunes, etc.). PyOSA makes Python
a full peer to AppleScript.

4.7. Other Resources

The MacPython mailing list is an excellent support resource for Python users and
developers on the Mac:

http://www.python.org/community/sigs/current/pythonmac-sig/

Another useful resource is the MacPython wiki:

http://wiki.python.org/moin/MacPython

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

The Python Language Reference

	Release:	2.7

	Date:	November 07, 2013

This reference manual describes the syntax and “core semantics” of the
language. It is terse, but attempts to be exact and complete. The semantics of
non-essential built-in object types and of the built-in functions and modules
are described in The Python Standard Library. For an informal introduction to the
language, see The Python Tutorial. For C or C++ programmers, two additional
manuals exist: IronPython .NET API Reference Manual describes the high-level picture of how to
write a Python extension module, and the c-api-index describes the
interfaces available to C/C++ programmers in detail.

	1. Introduction
	1.1. Alternate Implementations

	1.2. Notation

	2. Lexical analysis
	2.1. Line structure

	2.2. Other tokens

	2.3. Identifiers and keywords

	2.4. Literals

	2.5. Operators

	2.6. Delimiters

	3. Data model
	3.1. Objects, values and types

	3.2. The standard type hierarchy

	3.3. New-style and classic classes

	3.4. Special method names

	4. Execution model
	4.1. Naming and binding

	4.2. Exceptions

	5. Expressions
	5.1. Arithmetic conversions

	5.2. Atoms

	5.3. Primaries

	5.4. The power operator

	5.5. Unary arithmetic and bitwise operations

	5.6. Binary arithmetic operations

	5.7. Shifting operations

	5.8. Binary bitwise operations

	5.9. Comparisons

	5.10. Boolean operations

	5.11. Conditional Expressions

	5.12. Lambdas

	5.13. Expression lists

	5.14. Evaluation order

	5.15. Summary

	6. Simple statements
	6.1. Expression statements

	6.2. Assignment statements

	6.3. The assert statement

	6.4. The pass statement

	6.5. The del statement

	6.6. The print statement

	6.7. The return statement

	6.8. The yield statement

	6.9. The raise statement

	6.10. The break statement

	6.11. The continue statement

	6.12. The import statement

	6.13. The global statement

	6.14. The exec statement

	7. Compound statements
	7.1. The if statement

	7.2. The while statement

	7.3. The for statement

	7.4. The try statement

	7.5. The with statement

	7.6. Function definitions

	7.7. Class definitions

	8. Top-level components
	8.1. Complete Python programs

	8.2. File input

	8.3. Interactive input

	8.4. Expression input

	9. Full Grammar specification

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

1. Introduction

This reference manual describes the Python programming language. It is not
intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather
than formal specifications for everything except syntax and lexical analysis.
This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and
tried to re-implement Python from this document alone, you might have to guess
things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise
rules about a particular area of the language are, you should definitely be able
to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine
:-).

It is dangerous to add too many implementation details to a language reference
document — the implementation may change, and other implementations of the
same language may work differently. On the other hand, there is currently only
one Python implementation in widespread use (although alternate implementations
exist), and its particular quirks are sometimes worth being mentioned,
especially where the implementation imposes additional limitations. Therefore,
you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard
modules. These are documented in The Python Standard Library. A few built-in modules
are mentioned when they interact in a significant way with the language
definition.

1.1. Alternate Implementations

Though there is one Python implementation which is by far the most popular,
there are some alternate implementations which are of particular interest to
different audiences.

Known implementations include:

	CPython

	This is the original and most-maintained implementation of Python, written in C.
New language features generally appear here first.

	Jython

	Python implemented in Java. This implementation can be used as a scripting
language for Java applications, or can be used to create applications using the
Java class libraries. It is also often used to create tests for Java libraries.
More information can be found at the Jython website [http://www.jython.org/].

	Python for .NET

	This implementation actually uses the CPython implementation, but is a managed
.NET application and makes .NET libraries available. It was created by Brian
Lloyd. For more information, see the Python for .NET home page [http://pythonnet.sourceforge.net].

	IronPython

	An alternate Python for .NET. Unlike Python.NET, this is a complete Python
implementation that generates IL, and compiles Python code directly to .NET
assemblies. It was created by Jim Hugunin, the original creator of Jython. For
more information, see the IronPython website [http://www.ironpython.com/].

	PyPy

	An implementation of Python written completely in Python. It supports several
advanced features not found in other implementations like stackless support
and a Just in Time compiler. One of the goals of the project is to encourage
experimentation with the language itself by making it easier to modify the
interpreter (since it is written in Python). Additional information is
available on the PyPy project’s home page [http://pypy.org/].

Each of these implementations varies in some way from the language as documented
in this manual, or introduces specific information beyond what’s covered in the
standard Python documentation. Please refer to the implementation-specific
documentation to determine what else you need to know about the specific
implementation you’re using.

1.2. Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar
notation. This uses the following style of definition:

name ::= lc_letter (lc_letter | "_")*
lc_letter ::= "a"..."z"

The first line says that a name is an lc_letter followed by a sequence
of zero or more lc_letters and underscores. An lc_letter in turn is
any of the single characters 'a' through 'z'. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and
::=. A vertical bar (|) is used to separate alternatives; it is the
least binding operator in this notation. A star (*) means zero or more
repetitions of the preceding item; likewise, a plus (+) means one or more
repetitions, and a phrase enclosed in square brackets ([]) means zero or
one occurrences (in other words, the enclosed phrase is optional). The *
and + operators bind as tightly as possible; parentheses are used for
grouping. Literal strings are enclosed in quotes. White space is only
meaningful to separate tokens. Rules are normally contained on a single line;
rules with many alternatives may be formatted alternatively with each line after
the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used:
Two literal characters separated by three dots mean a choice of any single
character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<...>) gives an informal description of the symbol
defined; e.g., this could be used to describe the notion of ‘control character’
if needed.

Even though the notation used is almost the same, there is a big difference
between the meaning of lexical and syntactic definitions: a lexical definition
operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis.
All uses of BNF in the next chapter (“Lexical Analysis”) are lexical
definitions; uses in subsequent chapters are syntactic definitions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

2. Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of
tokens, generated by the lexical analyzer. This chapter describes how the
lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text.

New in version 2.3: An encoding declaration can be used to indicate that string literals and
comments use an encoding different from ASCII.

For compatibility with older versions, Python only warns if it finds 8-bit
characters; those warnings should be corrected by either declaring an explicit
encoding, or using escape sequences if those bytes are binary data, instead of
characters.

The run-time character set depends on the I/O devices connected to the program
but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character
set for 8-bit characters is ISO Latin-1 (an ASCII superset that covers most
western languages that use the Latin alphabet), but it is possible that in the
future Unicode text editors will become common. These generally use the UTF-8
encoding, which is also an ASCII superset, but with very different use for the
characters with ordinals 128-255. While there is no consensus on this subject
yet, it is unwise to assume either Latin-1 or UTF-8, even though the current
implementation appears to favor Latin-1. This applies both to the source
character set and the run-time character set.

2.1. Line structure

A Python program is divided into a number of logical lines.

2.1.1. Logical lines

The end of a logical line is represented by the token NEWLINE. Statements
cannot cross logical line boundaries except where NEWLINE is allowed by the
syntax (e.g., between statements in compound statements). A logical line is
constructed from one or more physical lines by following the explicit or
implicit line joining rules.

2.1.2. Physical lines

A physical line is a sequence of characters terminated by an end-of-line
sequence. In source files, any of the standard platform line termination
sequences can be used - the Unix form using ASCII LF (linefeed), the Windows
form using the ASCII sequence CR LF (return followed by linefeed), or the old
Macintosh form using the ASCII CR (return) character. All of these forms can be
used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using
the standard C conventions for newline characters (the \n character,
representing ASCII LF, is the line terminator).

2.1.3. Comments

A comment starts with a hash character (#) that is not part of a string
literal, and ends at the end of the physical line. A comment signifies the end
of the logical line unless the implicit line joining rules are invoked. Comments
are ignored by the syntax; they are not tokens.

2.1.4. Encoding declarations

If a comment in the first or second line of the Python script matches the
regular expression coding[=:]\s*([-\w.]+), this comment is processed as an
encoding declaration; the first group of this expression names the encoding of
the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of
the file are the UTF-8 byte-order mark ('\xef\xbb\xbf'), the declared file
encoding is UTF-8 (this is supported, among others, by Microsoft’s
notepad).

If an encoding is declared, the encoding name must be recognized by Python. The
encoding is used for all lexical analysis, in particular to find the end of a
string, and to interpret the contents of Unicode literals. String literals are
converted to Unicode for syntactical analysis, then converted back to their
original encoding before interpretation starts. The encoding declaration must
appear on a line of its own.

2.1.5. Explicit line joining

Two or more physical lines may be joined into logical lines using backslash
characters (\), as follows: when a physical line ends in a backslash that is
not part of a string literal or comment, it is joined with the following forming
a single logical line, deleting the backslash and the following end-of-line
character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
 and 1 <= day <= 31 and 0 <= hour < 24 \
 and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
 return 1

A line ending in a backslash cannot carry a comment. A backslash does not
continue a comment. A backslash does not continue a token except for string
literals (i.e., tokens other than string literals cannot be split across
physical lines using a backslash). A backslash is illegal elsewhere on a line
outside a string literal.

2.1.6. Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over
more than one physical line without using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
 'April', 'Mei', 'Juni', # Dutch names
 'Juli', 'Augustus', 'September', # for the months
 'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the
continuation lines is not important. Blank continuation lines are allowed.
There is no NEWLINE token between implicit continuation lines. Implicitly
continued lines can also occur within triple-quoted strings (see below); in that
case they cannot carry comments.

2.1.7. Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a
comment, is ignored (i.e., no NEWLINE token is generated). During interactive
input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an
entirely blank logical line (i.e. one containing not even whitespace or a
comment) terminates a multi-line statement.

2.1.8. Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used
to compute the indentation level of the line, which in turn is used to determine
the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that
the total number of characters up to and including the replacement is a multiple
of eight (this is intended to be the same rule as used by Unix). The total
number of spaces preceding the first non-blank character then determines the
line’s indentation. Indentation cannot be split over multiple physical lines
using backslashes; the whitespace up to the first backslash determines the
indentation.

Cross-platform compatibility note: because of the nature of text editors on
non-UNIX platforms, it is unwise to use a mixture of spaces and tabs for the
indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored
for the indentation calculations above. Formfeed characters occurring elsewhere
in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and
DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack;
this will never be popped off again. The numbers pushed on the stack will
always be strictly increasing from bottom to top. At the beginning of each
logical line, the line’s indentation level is compared to the top of the stack.
If it is equal, nothing happens. If it is larger, it is pushed on the stack, and
one INDENT token is generated. If it is smaller, it must be one of the
numbers occurring on the stack; all numbers on the stack that are larger are
popped off, and for each number popped off a DEDENT token is generated. At the
end of the file, a DEDENT token is generated for each number remaining on the
stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python
code:

def perm(l):
 # Compute the list of all permutations of l
 if len(l) <= 1:
 return [l]
 r = []
 for i in range(len(l)):
 s = l[:i] + l[i+1:]
 p = perm(s)
 for x in p:
 r.append(l[i:i+1] + x)
 return r

The following example shows various indentation errors:

 def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
 s = l[:i] + l[i+1:]
 p = perm(l[:i] + l[i+1:]) # error: unexpected indent
 for x in p:
 r.append(l[i:i+1] + x)
 return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last
error is found by the lexical analyzer — the indentation of return r does
not match a level popped off the stack.)

2.1.9. Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace
characters space, tab and formfeed can be used interchangeably to separate
tokens. Whitespace is needed between two tokens only if their concatenation
could otherwise be interpreted as a different token (e.g., ab is one token, but
a b is two tokens).

2.2. Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist:
identifiers, keywords, literals, operators, and delimiters. Whitespace
characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest
possible string that forms a legal token, when read from left to right.

2.3. Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical
definitions:

identifier ::= (letter|"_") (letter | digit | "_")*
letter ::= lowercase | uppercase
lowercase ::= "a"..."z"
uppercase ::= "A"..."Z"
digit ::= "0"..."9"

Identifiers are unlimited in length. Case is significant.

2.3.1. Keywords

The following identifiers are used as reserved words, or keywords of the
language, and cannot be used as ordinary identifiers. They must be spelled
exactly as written here:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Changed in version 2.4: None became a constant and is now recognized by the compiler as a name
for the built-in object None. Although it is not a keyword, you cannot
assign a different object to it.

Changed in version 2.5: Both as and with are only recognized when the
with_statement future feature has been enabled. It will always be enabled in
Python 2.6. See section The with statement for details. Note that using as
and with as identifiers will always issue a warning, even when the
with_statement future directive is not in effect.

2.3.2. Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These
classes are identified by the patterns of leading and trailing underscore
characters:

	_*

	Not imported by from module import *. The special identifier _ is used
in the interactive interpreter to store the result of the last evaluation; it is
stored in the __builtin__ module. When not in interactive mode, _
has no special meaning and is not defined. See section The import statement.

Note

The name _ is often used in conjunction with internationalization;
refer to the documentation for the gettext module for more
information on this convention.

	__*__

	System-defined names. These names are defined by the interpreter and its
implementation (including the standard library). Current system names are
discussed in the Special method names section and elsewhere. More will likely
be defined in future versions of Python. Any use of __*__ names, in
any context, that does not follow explicitly documented use, is subject to
breakage without warning.

	__*

	Class-private names. Names in this category, when used within the context of a
class definition, are re-written to use a mangled form to help avoid name
clashes between “private” attributes of base and derived classes. See section
Identifiers (Names).

2.4. Literals

Literals are notations for constant values of some built-in types.

2.4.1. String literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"
 | "b" | "B" | "br" | "Br" | "bR" | "BR"
shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring ::= "'''" longstringitem* "'''"
 | '"""' longstringitem* '"""'
shortstringitem ::= shortstringchar | escapeseq
longstringitem ::= longstringchar | escapeseq
shortstringchar ::= <any source character except "\" or newline or the quote>
longstringchar ::= <any source character except "\">
escapeseq ::= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace
is not allowed between the stringprefix and the rest of the string
literal. The source character set is defined by the encoding declaration; it is
ASCII if no encoding declaration is given in the source file; see section
Encoding declarations.

In plain English: String literals can be enclosed in matching single quotes
(') or double quotes ("). They can also be enclosed in matching groups
of three single or double quotes (these are generally referred to as
triple-quoted strings). The backslash (\) character is used to escape
characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character. String literals may optionally be prefixed with
a letter 'r' or 'R'; such strings are called raw strings and use
different rules for interpreting backslash escape sequences. A prefix of
'u' or 'U' makes the string a Unicode string. Unicode strings use the
Unicode character set as defined by the Unicode Consortium and ISO 10646. Some
additional escape sequences, described below, are available in Unicode strings.
A prefix of 'b' or 'B' is ignored in Python 2; it indicates that the
literal should become a bytes literal in Python 3 (e.g. when code is
automatically converted with 2to3). A 'u' or 'b' prefix may be followed
by an 'r' prefix.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are
retained), except that three unescaped quotes in a row terminate the string. (A
“quote” is the character used to open the string, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in strings are
interpreted according to rules similar to those used by Standard C. The
recognized escape sequences are:

	Escape Sequence
	Meaning
	Notes

	\newline
	Ignored
	

	\\
	Backslash (\)
	

	\'
	Single quote (')
	

	\"
	Double quote (")
	

	\a
	ASCII Bell (BEL)
	

	\b
	ASCII Backspace (BS)
	

	\f
	ASCII Formfeed (FF)
	

	\n
	ASCII Linefeed (LF)
	

	\N{name}
	Character named name in the
Unicode database (Unicode only)
	

	\r
	ASCII Carriage Return (CR)
	

	\t
	ASCII Horizontal Tab (TAB)
	

	\uxxxx
	Character with 16-bit hex value
xxxx (Unicode only)
	(1)

	\Uxxxxxxxx
	Character with 32-bit hex value
xxxxxxxx (Unicode only)
	(2)

	\v
	ASCII Vertical Tab (VT)
	

	\ooo
	Character with octal value
ooo
	(3,5)

	\xhh
	Character with hex value hh
	(4,5)

Notes:

	Individual code units which form parts of a surrogate pair can be encoded using
this escape sequence.

	Any Unicode character can be encoded this way, but characters outside the Basic
Multilingual Plane (BMP) will be encoded using a surrogate pair if Python is
compiled to use 16-bit code units (the default). Individual code units which
form parts of a surrogate pair can be encoded using this escape sequence.

	As in Standard C, up to three octal digits are accepted.

	Unlike in Standard C, exactly two hex digits are required.

	In a string literal, hexadecimal and octal escapes denote the byte with the
given value; it is not necessary that the byte encodes a character in the source
character set. In a Unicode literal, these escapes denote a Unicode character
with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string
unchanged, i.e., the backslash is left in the string. (This behavior is
useful when debugging: if an escape sequence is mistyped, the resulting output
is more easily recognized as broken.) It is also important to note that the
escape sequences marked as “(Unicode only)” in the table above fall into the
category of unrecognized escapes for non-Unicode string literals.

When an 'r' or 'R' prefix is present, a character following a backslash
is included in the string without change, and all backslashes are left in the
string. For example, the string literal r"\n" consists of two characters:
a backslash and a lowercase 'n'. String quotes can be escaped with a
backslash, but the backslash remains in the string; for example, r"\"" is a
valid string literal consisting of two characters: a backslash and a double
quote; r"\" is not a valid string literal (even a raw string cannot end in
an odd number of backslashes). Specifically, a raw string cannot end in a
single backslash (since the backslash would escape the following quote
character). Note also that a single backslash followed by a newline is
interpreted as those two characters as part of the string, not as a line
continuation.

When an 'r' or 'R' prefix is used in conjunction with a 'u' or
'U' prefix, then the \uXXXX and \UXXXXXXXX escape sequences are
processed while all other backslashes are left in the string. For example,
the string literal ur"\u0062\n" consists of three Unicode characters: ‘LATIN
SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN SMALL LETTER N’. Backslashes can
be escaped with a preceding backslash; however, both remain in the string. As a
result, \uXXXX escape sequences are only recognized when there are an odd
number of backslashes.

2.4.2. String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using
different quoting conventions, are allowed, and their meaning is the same as
their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes
needed, to split long strings conveniently across long lines, or even to add
comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
 "[A-Za-z0-9_]*" # letter, digit or underscore
)

Note that this feature is defined at the syntactical level, but implemented at
compile time. The ‘+’ operator must be used to concatenate string expressions
at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings).

2.4.3. Numeric literals

There are four types of numeric literals: plain integers, long integers,
floating point numbers, and imaginary numbers. There are no complex literals
(complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is
actually an expression composed of the unary operator ‘-‘ and the literal
1.

2.4.4. Integer and long integer literals

Integer and long integer literals are described by the following lexical
definitions:

longinteger ::= integer ("l" | "L")
integer ::= decimalinteger | octinteger | hexinteger | bininteger
decimalinteger ::= nonzerodigit digit* | "0"
octinteger ::= "0" ("o" | "O") octdigit+ | "0" octdigit+
hexinteger ::= "0" ("x" | "X") hexdigit+
bininteger ::= "0" ("b" | "B") bindigit+
nonzerodigit ::= "1"..."9"
octdigit ::= "0"..."7"
bindigit ::= "0" | "1"
hexdigit ::= digit | "a"..."f" | "A"..."F"

Although both lower case 'l' and upper case 'L' are allowed as suffix
for long integers, it is strongly recommended to always use 'L', since the
letter 'l' looks too much like the digit '1'.

Plain integer literals that are above the largest representable plain integer
(e.g., 2147483647 when using 32-bit arithmetic) are accepted as if they were
long integers instead. [1] There is no limit for long integer literals apart
from what can be stored in available memory.

Some examples of plain integer literals (first row) and long integer literals
(second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L
 79228162514264337593543950336 0xdeadbeef

2.4.5. Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart "."
exponentfloat ::= (intpart | pointfloat) exponent
intpart ::= digit+
fraction ::= "." digit+
exponent ::= ("e" | "E") ["+" | "-"] digit+

Note that the integer and exponent parts of floating point numbers can look like
octal integers, but are interpreted using radix 10. For example, 077e010 is
legal, and denotes the same number as 77e10. The allowed range of floating
point literals is implementation-dependent. Some examples of floating point
literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like -1 is
actually an expression composed of the unary operator - and the literal
1.

2.4.6. Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | intpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex
numbers are represented as a pair of floating point numbers and have the same
restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4j). Some examples of
imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5. Operators

The following tokens are operators:

+ - * ** / // %
<< >> & | ^ ~
< > <= >= == != <>

The comparison operators <> and != are alternate spellings of the same
operator. != is the preferred spelling; <> is obsolescent.

2.6. Delimiters

The following tokens serve as delimiters in the grammar:

() [] { } @
, : . ` = ;
+= -= *= /= //= %=
&= |= ^= >>= <<= **=

The period can also occur in floating-point and imaginary literals. A sequence
of three periods has a special meaning as an ellipsis in slices. The second half
of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other
tokens or are otherwise significant to the lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their
occurrence outside string literals and comments is an unconditional error:

$?

Footnotes

	[1]	In versions of Python prior to 2.4, octal and hexadecimal literals in the range
just above the largest representable plain integer but below the largest
unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were
taken as the negative plain integer obtained by subtracting 4294967296 from
their unsigned value.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

3. Data model

3.1. Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program
is represented by objects or by relations between objects. (In a sense, and in
conformance to Von Neumann’s model of a “stored program computer,” code is also
represented by objects.)

Every object has an identity, a type and a value. An object’s identity never
changes once it has been created; you may think of it as the object’s address in
memory. The ‘is‘ operator compares the identity of two objects; the
id() function returns an integer representing its identity (currently
implemented as its address). An object’s type is also unchangeable. [1]
An object’s type determines the operations that the object supports (e.g., “does
it have a length?”) and also defines the possible values for objects of that
type. The type() function returns an object’s type (which is an object
itself). The value of some objects can change. Objects whose value can
change are said to be mutable; objects whose value is unchangeable once they
are created are called immutable. (The value of an immutable container object
that contains a reference to a mutable object can change when the latter’s value
is changed; however the container is still considered immutable, because the
collection of objects it contains cannot be changed. So, immutability is not
strictly the same as having an unchangeable value, it is more subtle.) An
object’s mutability is determined by its type; for instance, numbers, strings
and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable
they may be garbage-collected. An implementation is allowed to postpone garbage
collection or omit it altogether — it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that
are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon
as they become unreachable, but is not guaranteed to collect garbage
containing circular references. See the documentation of the gc
module for information on controlling the collection of cyclic garbage.
Other implementations act differently and CPython may change.
Do not depend on immediate finalization of objects when they become
unreachable (ex: always close files).

Note that the use of the implementation’s tracing or debugging facilities may
keep objects alive that would normally be collectable. Also note that catching
an exception with a ‘try...except‘ statement may keep
objects alive.

Some objects contain references to “external” resources such as open files or
windows. It is understood that these resources are freed when the object is
garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource,
usually a close() method. Programs are strongly recommended to explicitly
close such objects. The ‘try...finally‘ statement
provides a convenient way to do this.

Some objects contain references to other objects; these are called containers.
Examples of containers are tuples, lists and dictionaries. The references are
part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects;
however, when we talk about the mutability of a container, only the identities
of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if
that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of
object identity is affected in some sense: for immutable types, operations that
compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g.,
after a = 1; b = 1, a and b may or may not refer to the same object
with the value one, depending on the implementation, but after c = []; d =
[], c and d are guaranteed to refer to two different, unique, newly
created empty lists. (Note that c = d = [] assigns the same object to both
c and d.)

3.2. The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules
(written in C, Java, or other languages, depending on the implementation) can
define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special
attributes.’ These are attributes that provide access to the implementation and
are not intended for general use. Their definition may change in the future.

	None

	This type has a single value. There is a single object with this value. This
object is accessed through the built-in name None. It is used to signify the
absence of a value in many situations, e.g., it is returned from functions that
don’t explicitly return anything. Its truth value is false.

	NotImplemented

	This type has a single value. There is a single object with this value. This
object is accessed through the built-in name NotImplemented. Numeric methods
and rich comparison methods may return this value if they do not implement the
operation for the operands provided. (The interpreter will then try the
reflected operation, or some other fallback, depending on the operator.) Its
truth value is true.

	Ellipsis

	This type has a single value. There is a single object with this value. This
object is accessed through the built-in name Ellipsis. It is used to
indicate the presence of the ... syntax in a slice. Its truth value is
true.

	numbers.Number

	These are created by numeric literals and returned as results by arithmetic
operators and arithmetic built-in functions. Numeric objects are immutable;
once created their value never changes. Python numbers are of course strongly
related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

Python distinguishes between integers, floating point numbers, and complex
numbers:

	numbers.Integral

	These represent elements from the mathematical set of integers (positive and
negative).

There are three types of integers:

	Plain integers

	These represent numbers in the range -2147483648 through 2147483647.
(The range may be larger on machines with a larger natural word size,
but not smaller.) When the result of an operation would fall outside
this range, the result is normally returned as a long integer (in some
cases, the exception OverflowError is raised instead). For the
purpose of shift and mask operations, integers are assumed to have a
binary, 2’s complement notation using 32 or more bits, and hiding no
bits from the user (i.e., all 4294967296 different bit patterns
correspond to different values).

	Long integers

	These represent numbers in an unlimited range, subject to available
(virtual) memory only. For the purpose of shift and mask operations, a
binary representation is assumed, and negative numbers are represented
in a variant of 2’s complement which gives the illusion of an infinite
string of sign bits extending to the left.

	Booleans

	These represent the truth values False and True. The two objects
representing the values False and True are the only Boolean objects.
The Boolean type is a subtype of plain integers, and Boolean values
behave like the values 0 and 1, respectively, in almost all contexts,
the exception being that when converted to a string, the strings
"False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most
meaningful interpretation of shift and mask operations involving negative
integers and the least surprises when switching between the plain and long
integer domains. Any operation, if it yields a result in the plain
integer domain, will yield the same result in the long integer domain or
when using mixed operands. The switch between domains is transparent to
the programmer.

	numbers.Real (float)

	These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java
implementation) for the accepted range and handling of overflow. Python does not
support single-precision floating point numbers; the savings in processor and
memory usage that are usually the reason for using these is dwarfed by the
overhead of using objects in Python, so there is no reason to complicate the
language with two kinds of floating point numbers.

	numbers.Complex

	These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers.
The real and imaginary parts of a complex number z can be retrieved through
the read-only attributes z.real and z.imag.

	Sequences

	These represent finite ordered sets indexed by non-negative numbers. The
built-in function len() returns the number of items of a sequence. When
the length of a sequence is n, the index set contains the numbers 0, 1,
..., n-1. Item i of sequence a is selected by a[i].

Sequences also support slicing: a[i:j] selects all items with index k such
that i <= k < j. When used as an expression, a slice is a
sequence of the same type. This implies that the index set is renumbered so
that it starts at 0.

Some sequences also support “extended slicing” with a third “step” parameter:
a[i:j:k] selects all items of a with index x where x = i + n*k, n
>= 0 and i <= x < j.

Sequences are distinguished according to their mutability:

	Immutable sequences

	An object of an immutable sequence type cannot change once it is created. (If
the object contains references to other objects, these other objects may be
mutable and may be changed; however, the collection of objects directly
referenced by an immutable object cannot change.)

The following types are immutable sequences:

	Strings

	The items of a string are characters. There is no separate character type; a
character is represented by a string of one item. Characters represent (at
least) 8-bit bytes. The built-in functions chr() and ord() convert
between characters and nonnegative integers representing the byte values. Bytes
with the values 0-127 usually represent the corresponding ASCII values, but the
interpretation of values is up to the program. The string data type is also
used to represent arrays of bytes, e.g., to hold data read from a file.

(On systems whose native character set is not ASCII, strings may use EBCDIC in
their internal representation, provided the functions chr() and
ord() implement a mapping between ASCII and EBCDIC, and string comparison
preserves the ASCII order. Or perhaps someone can propose a better rule?)

	Unicode

	The items of a Unicode object are Unicode code units. A Unicode code unit is
represented by a Unicode object of one item and can hold either a 16-bit or
32-bit value representing a Unicode ordinal (the maximum value for the ordinal
is given in sys.maxunicode, and depends on how Python is configured at
compile time). Surrogate pairs may be present in the Unicode object, and will
be reported as two separate items. The built-in functions unichr() and
ord() convert between code units and nonnegative integers representing the
Unicode ordinals as defined in the Unicode Standard 3.0. Conversion from and to
other encodings are possible through the Unicode method encode() and the
built-in function unicode().

	Tuples

	The items of a tuple are arbitrary Python objects. Tuples of two or more items
are formed by comma-separated lists of expressions. A tuple of one item (a
‘singleton’) can be formed by affixing a comma to an expression (an expression
by itself does not create a tuple, since parentheses must be usable for grouping
of expressions). An empty tuple can be formed by an empty pair of parentheses.

	Mutable sequences

	Mutable sequences can be changed after they are created. The subscription and
slicing notations can be used as the target of assignment and del
(delete) statements.

There are currently two intrinsic mutable sequence types:

	Lists

	The items of a list are arbitrary Python objects. Lists are formed by placing a
comma-separated list of expressions in square brackets. (Note that there are no
special cases needed to form lists of length 0 or 1.)

	Byte Arrays

	A bytearray object is a mutable array. They are created by the built-in
bytearray() constructor. Aside from being mutable (and hence
unhashable), byte arrays otherwise provide the same interface and
functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable
sequence type.

	Set types

	These represent unordered, finite sets of unique, immutable objects. As such,
they cannot be indexed by any subscript. However, they can be iterated over, and
the built-in function len() returns the number of items in a set. Common
uses for sets are fast membership testing, removing duplicates from a sequence,
and computing mathematical operations such as intersection, union, difference,
and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note
that numeric types obey the normal rules for numeric comparison: if two numbers
compare equal (e.g., 1 and 1.0), only one of them can be contained in a
set.

There are currently two intrinsic set types:

	Sets

	These represent a mutable set. They are created by the built-in set()
constructor and can be modified afterwards by several methods, such as
add().

	Frozen sets

	These represent an immutable set. They are created by the built-in
frozenset() constructor. As a frozenset is immutable and
hashable, it can be used again as an element of another set, or as
a dictionary key.

	Mappings

	These represent finite sets of objects indexed by arbitrary index sets. The
subscript notation a[k] selects the item indexed by k from the mapping
a; this can be used in expressions and as the target of assignments or
del statements. The built-in function len() returns the number
of items in a mapping.

There is currently a single intrinsic mapping type:

	Dictionaries

	These represent finite sets of objects indexed by nearly arbitrary values. The
only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by
object identity, the reason being that the efficient implementation of
dictionaries requires a key’s hash value to remain constant. Numeric types used
for keys obey the normal rules for numeric comparison: if two numbers compare
equal (e.g., 1 and 1.0) then they can be used interchangeably to index
the same dictionary entry.

Dictionaries are mutable; they can be created by the {...} notation (see
section Dictionary displays).

The extension modules dbm, gdbm, and bsddb provide
additional examples of mapping types.

	Callable types

	These are the types to which the function call operation (see section
Calls) can be applied:

	User-defined functions

	A user-defined function object is created by a function definition (see
section Function definitions). It should be called with an argument list
containing the same number of items as the function’s formal parameter
list.

Special attributes:

	Attribute
	Meaning
	

	func_doc
	The function’s documentation
string, or None if
unavailable
	Writable

	__doc__
	Another way of spelling
func_doc
	Writable

	func_name
	The function’s name
	Writable

	__name__
	Another way of spelling
func_name
	Writable

	__module__
	The name of the module the
function was defined in, or
None if unavailable.
	Writable

	func_defaults
	A tuple containing default
argument values for those
arguments that have defaults,
or None if no arguments
have a default value
	Writable

	func_code
	The code object representing
the compiled function body.
	Writable

	func_globals
	A reference to the dictionary
that holds the function’s
global variables — the
global namespace of the
module in which the function
was defined.
	Read-only

	func_dict
	The namespace supporting
arbitrary function
attributes.
	Writable

	func_closure
	None or a tuple of cells
that contain bindings for the
function’s free variables.
	Read-only

Most of the attributes labelled “Writable” check the type of the assigned value.

Changed in version 2.4: func_name is now writable.

Function objects also support getting and setting arbitrary attributes, which
can be used, for example, to attach metadata to functions. Regular attribute
dot-notation is used to get and set such attributes. Note that the current
implementation only supports function attributes on user-defined functions.
Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its
code object; see the description of internal types below.

	User-defined methods

	A user-defined method object combines a class, a class instance (or None)
and any callable object (normally a user-defined function).

Special read-only attributes: im_self is the class instance object,
im_func is the function object; im_class is the class of
im_self for bound methods or the class that asked for the method for
unbound methods; __doc__ is the method’s documentation (same as
im_func.__doc__); __name__ is the method name (same as
im_func.__name__); __module__ is the name of the module the method
was defined in, or None if unavailable.

Changed in version 2.2: im_self used to refer to the class that defined the method.

Changed in version 2.6: For 3.0 forward-compatibility, im_func is also available as
__func__, and im_self as __self__.

Methods also support accessing (but not setting) the arbitrary function
attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class
(perhaps via an instance of that class), if that attribute is a user-defined
function object, an unbound user-defined method object, or a class method
object. When the attribute is a user-defined method object, a new method object
is only created if the class from which it is being retrieved is the same as, or
a derived class of, the class stored in the original method object; otherwise,
the original method object is used as it is.

When a user-defined method object is created by retrieving a user-defined
function object from a class, its im_self attribute is None
and the method object is said to be unbound. When one is created by
retrieving a user-defined function object from a class via one of its
instances, its im_self attribute is the instance, and the method
object is said to be bound. In either case, the new method’s
im_class attribute is the class from which the retrieval takes
place, and its im_func attribute is the original function object.

When a user-defined method object is created by retrieving another method object
from a class or instance, the behaviour is the same as for a function object,
except that the im_func attribute of the new instance is not the
original method object but its im_func attribute.

When a user-defined method object is created by retrieving a class method object
from a class or instance, its im_self attribute is the class itself (the
same as the im_class attribute), and its im_func attribute is
the function object underlying the class method.

When an unbound user-defined method object is called, the underlying function
(im_func) is called, with the restriction that the first argument must
be an instance of the proper class (im_class) or of a derived class
thereof.

When a bound user-defined method object is called, the underlying function
(im_func) is called, inserting the class instance (im_self) in
front of the argument list. For instance, when C is a class which
contains a definition for a function f(), and x is an instance of
C, calling x.f(1) is equivalent to calling C.f(x, 1).

When a user-defined method object is derived from a class method object, the
“class instance” stored in im_self will actually be the class itself, so
that calling either x.f(1) or C.f(1) is equivalent to calling f(C,1)
where f is the underlying function.

Note that the transformation from function object to (unbound or bound) method
object happens each time the attribute is retrieved from the class or instance.
In some cases, a fruitful optimization is to assign the attribute to a local
variable and call that local variable. Also notice that this transformation only
happens for user-defined functions; other callable objects (and all non-callable
objects) are retrieved without transformation. It is also important to note
that user-defined functions which are attributes of a class instance are not
converted to bound methods; this only happens when the function is an
attribute of the class.

	Generator functions

	A function or method which uses the yield statement (see section
The yield statement) is called a generator
function. Such a function, when called, always returns an iterator object
which can be used to execute the body of the function: calling the iterator’s
next() method will cause the function to execute until it provides a value
using the yield statement. When the function executes a
return statement or falls off the end, a StopIteration
exception is raised and the iterator will have reached the end of the set of
values to be returned.

	Built-in functions

	A built-in function object is a wrapper around a C function. Examples of
built-in functions are len() and math.sin() (math is a
standard built-in module). The number and type of the arguments are
determined by the C function. Special read-only attributes:
__doc__ is the function’s documentation string, or None if
unavailable; __name__ is the function’s name; __self__ is
set to None (but see the next item); __module__ is the name of
the module the function was defined in or None if unavailable.

	Built-in methods

	This is really a different disguise of a built-in function, this time containing
an object passed to the C function as an implicit extra argument. An example of
a built-in method is alist.append(), assuming alist is a list object. In
this case, the special read-only attribute __self__ is set to the object
denoted by alist.

	Class Types

	Class types, or “new-style classes,” are callable. These objects normally act
as factories for new instances of themselves, but variations are possible for
class types that override __new__(). The arguments of the call are passed
to __new__() and, in the typical case, to __init__() to initialize
the new instance.

	Classic Classes

	Class objects are described below. When a class object is called, a new class
instance (also described below) is created and returned. This implies a call to
the class’s __init__() method if it has one. Any arguments are passed on
to the __init__() method. If there is no __init__() method, the
class must be called without arguments.

	Class instances

	Class instances are described below. Class instances are callable only when the
class has a __call__() method; x(arguments) is a shorthand for
x.__call__(arguments).

	Modules

	Modules are imported by the import statement (see section
The import statement). A module object has a
namespace implemented by a dictionary object (this is the dictionary referenced
by the func_globals attribute of functions defined in the module). Attribute
references are translated to lookups in this dictionary, e.g., m.x is
equivalent to m.__dict__["x"]. A module object does not contain the code
object used to initialize the module (since it isn’t needed once the
initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x =
1 is equivalent to m.__dict__["x"] = 1.

Special read-only attribute: __dict__ is the module’s namespace as a
dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module
dictionary will be cleared when the module falls out of scope even if the
dictionary still has live references. To avoid this, copy the dictionary
or keep the module around while using its dictionary directly.

Predefined (writable) attributes: __name__ is the module’s name;
__doc__ is the module’s documentation string, or None if
unavailable; __file__ is the pathname of the file from which the module
was loaded, if it was loaded from a file. The __file__ attribute is not
present for C modules that are statically linked into the interpreter; for
extension modules loaded dynamically from a shared library, it is the pathname
of the shared library file.

	Classes

	Both class types (new-style classes) and class objects (old-style/classic
classes) are typically created by class definitions (see section
Class definitions). A class has a namespace implemented by a dictionary object.
Class attribute references are translated to lookups in this dictionary, e.g.,
C.x is translated to C.__dict__["x"] (although for new-style classes
in particular there are a number of hooks which allow for other means of
locating attributes). When the attribute name is not found there, the
attribute search continues in the base classes. For old-style classes, the
search is depth-first, left-to-right in the order of occurrence in the base
class list. New-style classes use the more complex C3 method resolution
order which behaves correctly even in the presence of ‘diamond’
inheritance structures where there are multiple inheritance paths
leading back to a common ancestor. Additional details on the C3 MRO used by
new-style classes can be found in the documentation accompanying the
2.3 release at http://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a
user-defined function object or an unbound user-defined method object whose
associated class is either C or one of its base classes, it is
transformed into an unbound user-defined method object whose im_class
attribute is C. When it would yield a class method object, it is
transformed into a bound user-defined method object whose im_class
and im_self attributes are both C. When it would yield a
static method object, it is transformed into the object wrapped by the static
method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained in
its __dict__ (note that only new-style classes support descriptors).

Class attribute assignments update the class’s dictionary, never the dictionary
of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name__ is the class name; __module__ is
the module name in which the class was defined; __dict__ is the
dictionary containing the class’s namespace; __bases__ is a tuple
(possibly empty or a singleton) containing the base classes, in the order of
their occurrence in the base class list; __doc__ is the class’s
documentation string, or None if undefined.

	Class instances

	A class instance is created by calling a class object (see above). A class
instance has a namespace implemented as a dictionary which is the first place in
which attribute references are searched. When an attribute is not found there,
and the instance’s class has an attribute by that name, the search continues
with the class attributes. If a class attribute is found that is a user-defined
function object or an unbound user-defined method object whose associated class
is the class (call it C) of the instance for which the attribute
reference was initiated or one of its bases, it is transformed into a bound
user-defined method object whose im_class attribute is C and
whose im_self attribute is the instance. Static method and class method
objects are also transformed, as if they had been retrieved from class
C; see above under “Classes”. See section Implementing Descriptors for
another way in which attributes of a class retrieved via its instances may
differ from the objects actually stored in the class’s __dict__. If no
class attribute is found, and the object’s class has a __getattr__()
method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a
class’s dictionary. If the class has a __setattr__() or
__delattr__() method, this is called instead of updating the instance
dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have
methods with certain special names. See section Special method names.

Special attributes: __dict__ is the attribute dictionary;
__class__ is the instance’s class.

	Files

	A file object represents an open file. File objects are created by the
open() built-in function, and also by os.popen(),
os.fdopen(), and the makefile() method of socket objects (and
perhaps by other functions or methods provided by extension modules). The
objects sys.stdin, sys.stdout and sys.stderr are initialized to
file objects corresponding to the interpreter’s standard input, output and
error streams. See File Objects for complete documentation of
file objects.

	Internal types

	A few types used internally by the interpreter are exposed to the user. Their
definitions may change with future versions of the interpreter, but they are
mentioned here for completeness.

	Code objects

	Code objects represent byte-compiled executable Python code, or bytecode.
The difference between a code object and a function object is that the function
object contains an explicit reference to the function’s globals (the module in
which it was defined), while a code object contains no context; also the default
argument values are stored in the function object, not in the code object
(because they represent values calculated at run-time). Unlike function
objects, code objects are immutable and contain no references (directly or
indirectly) to mutable objects.

Special read-only attributes: co_name gives the function name;
co_argcount is the number of positional arguments (including arguments
with default values); co_nlocals is the number of local variables used
by the function (including arguments); co_varnames is a tuple containing
the names of the local variables (starting with the argument names);
co_cellvars is a tuple containing the names of local variables that are
referenced by nested functions; co_freevars is a tuple containing the
names of free variables; co_code is a string representing the sequence
of bytecode instructions; co_consts is a tuple containing the literals
used by the bytecode; co_names is a tuple containing the names used by
the bytecode; co_filename is the filename from which the code was
compiled; co_firstlineno is the first line number of the function;
co_lnotab is a string encoding the mapping from bytecode offsets to
line numbers (for details see the source code of the interpreter);
co_stacksize is the required stack size (including local variables);
co_flags is an integer encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if
the function uses the *arguments syntax to accept an arbitrary number of
positional arguments; bit 0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set
if the function is a generator.

Future feature declarations (from __future__ import division) also use bits
in co_flags to indicate whether a code object was compiled with a
particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1000 were used in earlier
versions of Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is
the documentation string of the function, or None if undefined.

	Frame objects

	Frame objects represent execution frames. They may occur in traceback objects
(see below).

Special read-only attributes: f_back is to the previous stack frame
(towards the caller), or None if this is the bottom stack frame;
f_code is the code object being executed in this frame; f_locals
is the dictionary used to look up local variables; f_globals is used for
global variables; f_builtins is used for built-in (intrinsic) names;
f_restricted is a flag indicating whether the function is executing in
restricted execution mode; f_lasti gives the precise instruction (this
is an index into the bytecode string of the code object).

Special writable attributes: f_trace, if not None, is a function
called at the start of each source code line (this is used by the debugger);
f_exc_type, f_exc_value, f_exc_traceback represent the
last exception raised in the parent frame provided another exception was ever
raised in the current frame (in all other cases they are None); f_lineno
is the current line number of the frame — writing to this from within a trace
function jumps to the given line (only for the bottom-most frame). A debugger
can implement a Jump command (aka Set Next Statement) by writing to f_lineno.

	Traceback objects

	Traceback objects represent a stack trace of an exception. A traceback object
is created when an exception occurs. When the search for an exception handler
unwinds the execution stack, at each unwound level a traceback object is
inserted in front of the current traceback. When an exception handler is
entered, the stack trace is made available to the program. (See section
The try statement.) It is accessible as sys.exc_traceback,
and also as the third item of the tuple returned by sys.exc_info(). The
latter is the preferred interface, since it works correctly when the program is
using multiple threads. When the program contains no suitable handler, the stack
trace is written (nicely formatted) to the standard error stream; if the
interpreter is interactive, it is also made available to the user as
sys.last_traceback.

Special read-only attributes: tb_next is the next level in the stack
trace (towards the frame where the exception occurred), or None if there is
no next level; tb_frame points to the execution frame of the current
level; tb_lineno gives the line number where the exception occurred;
tb_lasti indicates the precise instruction. The line number and last
instruction in the traceback may differ from the line number of its frame object
if the exception occurred in a try statement with no matching except
clause or with a finally clause.

	Slice objects

	Slice objects are used to represent slices when extended slice syntax is used.
This is a slice using two colons, or multiple slices or ellipses separated by
commas, e.g., a[i:j:step], a[i:j, k:l], or a[..., i:j]. They are
also created by the built-in slice() function.

Special read-only attributes: start is the lower bound; stop is
the upper bound; step is the step value; each is None if omitted.
These attributes can have any type.

Slice objects support one method:

	
slice.indices(self, length)

	This method takes a single integer argument length and computes information
about the extended slice that the slice object would describe if applied to a
sequence of length items. It returns a tuple of three integers; respectively
these are the start and stop indices and the step or stride length of the
slice. Missing or out-of-bounds indices are handled in a manner consistent with
regular slices.

New in version 2.3.

	Static method objects

	Static method objects provide a way of defeating the transformation of function
objects to method objects described above. A static method object is a wrapper
around any other object, usually a user-defined method object. When a static
method object is retrieved from a class or a class instance, the object actually
returned is the wrapped object, which is not subject to any further
transformation. Static method objects are not themselves callable, although the
objects they wrap usually are. Static method objects are created by the built-in
staticmethod() constructor.

	Class method objects

	A class method object, like a static method object, is a wrapper around another
object that alters the way in which that object is retrieved from classes and
class instances. The behaviour of class method objects upon such retrieval is
described above, under “User-defined methods”. Class method objects are created
by the built-in classmethod() constructor.

3.3. New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.

Up to Python 2.1, old-style classes were the only flavour available to the user.
The concept of (old-style) class is unrelated to the concept of type: if x is
an instance of an old-style class, then x.__class__ designates the class of
x, but type(x) is always <type 'instance'>. This reflects the fact
that all old-style instances, independently of their class, are implemented with
a single built-in type, called instance.

New-style classes were introduced in Python 2.2 to unify classes and types. A
new-style class is neither more nor less than a user-defined type. If x is an
instance of a new-style class, then type(x) is typically the same as
x.__class__ (although this is not guaranteed - a new-style class instance is
permitted to override the value returned for x.__class__).

The major motivation for introducing new-style classes is to provide a unified
object model with a full meta-model. It also has a number of practical
benefits, like the ability to subclass most built-in types, or the introduction
of “descriptors”, which enable computed properties.

For compatibility reasons, classes are still old-style by default. New-style
classes are created by specifying another new-style class (i.e. a type) as a
parent class, or the “top-level type” object if no other parent is
needed. The behaviour of new-style classes differs from that of old-style
classes in a number of important details in addition to what type()
returns. Some of these changes are fundamental to the new object model, like
the way special methods are invoked. Others are “fixes” that could not be
implemented before for compatibility concerns, like the method resolution order
in case of multiple inheritance.

While this manual aims to provide comprehensive coverage of Python’s class
mechanics, it may still be lacking in some areas when it comes to its coverage
of new-style classes. Please see http://www.python.org/doc/newstyle/ for
sources of additional information.

Old-style classes are removed in Python 3.0, leaving only the semantics of
new-style classes.

3.4. Special method names

A class can implement certain operations that are invoked by special syntax
(such as arithmetic operations or subscripting and slicing) by defining methods
with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language
operators. For instance, if a class defines a method named __getitem__(),
and x is an instance of this class, then x[i] is roughly equivalent
to x.__getitem__(i) for old-style classes and type(x).__getitem__(x, i)
for new-style classes. Except where mentioned, attempts to execute an
operation raise an exception when no appropriate method is defined (typically
AttributeError or TypeError).

When implementing a class that emulates any built-in type, it is important that
the emulation only be implemented to the degree that it makes sense for the
object being modelled. For example, some sequences may work well with retrieval
of individual elements, but extracting a slice may not make sense. (One example
of this is the NodeList interface in the W3C’s Document Object Model.)

3.4.1. Basic customization

	
object.__new__(cls[, ...])

	Called to create a new instance of class cls. __new__() is a static
method (special-cased so you need not declare it as such) that takes the class
of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the
class). The return value of __new__() should be the new object instance
(usually an instance of cls).

Typical implementations create a new instance of the class by invoking the
superclass’s __new__() method using super(currentclass,
cls).__new__(cls[, ...]) with appropriate arguments and then modifying the
newly-created instance as necessary before returning it.

If __new__() returns an instance of cls, then the new instance’s
__init__() method will be invoked like __init__(self[, ...]), where
self is the new instance and the remaining arguments are the same as were
passed to __new__().

If __new__() does not return an instance of cls, then the new instance’s
__init__() method will not be invoked.

__new__() is intended mainly to allow subclasses of immutable types (like
int, str, or tuple) to customize instance creation. It is also commonly
overridden in custom metaclasses in order to customize class creation.

	
object.__init__(self[, ...])

	Called when the instance is created. The arguments are those passed to the
class constructor expression. If a base class has an __init__() method,
the derived class’s __init__() method, if any, must explicitly call it to
ensure proper initialization of the base class part of the instance; for
example: BaseClass.__init__(self, [args...]). As a special constraint on
constructors, no value may be returned; doing so will cause a TypeError
to be raised at runtime.

	
object.__del__(self)

	Called when the instance is about to be destroyed. This is also called a
destructor. If a base class has a __del__() method, the derived class’s
__del__() method, if any, must explicitly call it to ensure proper
deletion of the base class part of the instance. Note that it is possible
(though not recommended!) for the __del__() method to postpone destruction
of the instance by creating a new reference to it. It may then be called at a
later time when this new reference is deleted. It is not guaranteed that
__del__() methods are called for objects that still exist when the
interpreter exits.

Note

del x doesn’t directly call x.__del__() — the former decrements
the reference count for x by one, and the latter is only called when
x‘s reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include:
circular references between objects (e.g., a doubly-linked list or a tree
data structure with parent and child pointers); a reference to the object
on the stack frame of a function that caught an exception (the traceback
stored in sys.exc_traceback keeps the stack frame alive); or a
reference to the object on the stack frame that raised an unhandled
exception in interactive mode (the traceback stored in
sys.last_traceback keeps the stack frame alive). The first situation
can only be remedied by explicitly breaking the cycles; the latter two
situations can be resolved by storing None in sys.exc_traceback or
sys.last_traceback. Circular references which are garbage are
detected when the option cycle detector is enabled (it’s on by default),
but can only be cleaned up if there are no Python-level __del__()
methods involved. Refer to the documentation for the gc module for
more information about how __del__() methods are handled by the
cycle detector, particularly the description of the garbage value.

Warning

Due to the precarious circumstances under which __del__() methods are
invoked, exceptions that occur during their execution are ignored, and a warning
is printed to sys.stderr instead. Also, when __del__() is invoked in
response to a module being deleted (e.g., when execution of the program is
done), other globals referenced by the __del__() method may already have
been deleted or in the process of being torn down (e.g. the import
machinery shutting down). For this reason, __del__() methods
should do the absolute
minimum needed to maintain external invariants. Starting with version 1.5,
Python guarantees that globals whose name begins with a single underscore are
deleted from their module before other globals are deleted; if no other
references to such globals exist, this may help in assuring that imported
modules are still available at the time when the __del__() method is
called.

	
object.__repr__(self)

	Called by the repr() built-in function and by string conversions (reverse
quotes) to compute the “official” string representation of an object. If at all
possible, this should look like a valid Python expression that could be used to
recreate an object with the same value (given an appropriate environment). If
this is not possible, a string of the form <...some useful description...>
should be returned. The return value must be a string object. If a class
defines __repr__() but not __str__(), then __repr__() is also
used when an “informal” string representation of instances of that class is
required.

This is typically used for debugging, so it is important that the representation
is information-rich and unambiguous.

	
object.__str__(self)

	Called by the str() built-in function and by the print
statement to compute the “informal” string representation of an object. This
differs from __repr__() in that it does not have to be a valid Python
expression: a more convenient or concise representation may be used instead.
The return value must be a string object.

	
object.__lt__(self, other)

	
object.__le__(self, other)

	
object.__eq__(self, other)

	
object.__ne__(self, other)

	
object.__gt__(self, other)

	
object.__ge__(self, other)

	
New in version 2.1.

These are the so-called “rich comparison” methods, and are called for comparison
operators in preference to __cmp__() below. The correspondence between
operator symbols and method names is as follows: x<y calls x.__lt__(y),
x<=y calls x.__le__(y), x==y calls x.__eq__(y), x!=y and
x<>y call x.__ne__(y), x>y calls x.__gt__(y), and x>=y calls
x.__ge__(y).

A rich comparison method may return the singleton NotImplemented if it does
not implement the operation for a given pair of arguments. By convention,
False and True are returned for a successful comparison. However, these
methods can return any value, so if the comparison operator is used in a Boolean
context (e.g., in the condition of an if statement), Python will call
bool() on the value to determine if the result is true or false.

There are no implied relationships among the comparison operators. The truth
of x==y does not imply that x!=y is false. Accordingly, when
defining __eq__(), one should also define __ne__() so that the
operators will behave as expected. See the paragraph on __hash__() for
some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the
left argument does not support the operation but the right argument does);
rather, __lt__() and __gt__() are each other’s reflection,
__le__() and __ge__() are each other’s reflection, and
__eq__() and __ne__() are their own reflection.

Arguments to rich comparison methods are never coerced.

To automatically generate ordering operations from a single root operation,
see functools.total_ordering().

	
object.__cmp__(self, other)

	Called by comparison operations if rich comparison (see above) is not
defined. Should return a negative integer if self < other, zero if
self == other, a positive integer if self > other. If no
__cmp__(), __eq__() or __ne__() operation is defined, class
instances are compared by object identity (“address”). See also the
description of __hash__() for some important notes on creating
hashable objects which support custom comparison operations and are
usable as dictionary keys. (Note: the restriction that exceptions are not
propagated by __cmp__() has been removed since Python 1.5.)

	
object.__rcmp__(self, other)

	
Changed in version 2.1: No longer supported.

	
object.__hash__(self)

	Called by built-in function hash() and for operations on members of
hashed collections including set, frozenset, and
dict. __hash__() should return an integer. The only required
property is that objects which compare equal have the same hash value; it is
advised to somehow mix together (e.g. using exclusive or) the hash values for
the components of the object that also play a part in comparison of objects.

If a class does not define a __cmp__() or __eq__() method it
should not define a __hash__() operation either; if it defines
__cmp__() or __eq__() but not __hash__(), its instances
will not be usable in hashed collections. If a class defines mutable objects
and implements a __cmp__() or __eq__() method, it should not
implement __hash__(), since hashable collection implementations require
that a object’s hash value is immutable (if the object’s hash value changes,
it will be in the wrong hash bucket).

User-defined classes have __cmp__() and __hash__() methods
by default; with them, all objects compare unequal (except with themselves)
and x.__hash__() returns id(x).

Classes which inherit a __hash__() method from a parent class but
change the meaning of __cmp__() or __eq__() such that the hash
value returned is no longer appropriate (e.g. by switching to a value-based
concept of equality instead of the default identity based equality) can
explicitly flag themselves as being unhashable by setting __hash__ = None
in the class definition. Doing so means that not only will instances of the
class raise an appropriate TypeError when a program attempts to
retrieve their hash value, but they will also be correctly identified as
unhashable when checking isinstance(obj, collections.Hashable) (unlike
classes which define their own __hash__() to explicitly raise
TypeError).

Changed in version 2.5: __hash__() may now also return a long integer object; the 32-bit
integer is then derived from the hash of that object.

Changed in version 2.6: __hash__ may now be set to None to explicitly flag
instances of a class as unhashable.

	
object.__nonzero__(self)

	Called to implement truth value testing and the built-in operation bool();
should return False or True, or their integer equivalents 0 or
1. When this method is not defined, __len__() is called, if it is
defined, and the object is considered true if its result is nonzero.
If a class defines neither __len__() nor __nonzero__(), all its
instances are considered true.

	
object.__unicode__(self)

	Called to implement unicode() built-in; should return a Unicode object.
When this method is not defined, string conversion is attempted, and the result
of string conversion is converted to Unicode using the system default encoding.

3.4.2. Customizing attribute access

The following methods can be defined to customize the meaning of attribute
access (use of, assignment to, or deletion of x.name) for class instances.

	
object.__getattr__(self, name)

	Called when an attribute lookup has not found the attribute in the usual places
(i.e. it is not an instance attribute nor is it found in the class tree for
self). name is the attribute name. This method should return the
(computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism,
__getattr__() is not called. (This is an intentional asymmetry between
__getattr__() and __setattr__().) This is done both for efficiency
reasons and because otherwise __getattr__() would have no way to access
other attributes of the instance. Note that at least for instance variables,
you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the
__getattribute__() method below for a way to actually get total control in
new-style classes.

	
object.__setattr__(self, name, value)

	Called when an attribute assignment is attempted. This is called instead of the
normal mechanism (i.e. store the value in the instance dictionary). name is
the attribute name, value is the value to be assigned to it.

If __setattr__() wants to assign to an instance attribute, it should not
simply execute self.name = value — this would cause a recursive call to
itself. Instead, it should insert the value in the dictionary of instance
attributes, e.g., self.__dict__[name] = value. For new-style classes,
rather than accessing the instance dictionary, it should call the base class
method with the same name, for example, object.__setattr__(self, name,
value).

	
object.__delattr__(self, name)

	Like __setattr__() but for attribute deletion instead of assignment. This
should only be implemented if del obj.name is meaningful for the object.

3.4.2.1. More attribute access for new-style classes

The following methods only apply to new-style classes.

	
object.__getattribute__(self, name)

	Called unconditionally to implement attribute accesses for instances of the
class. If the class also defines __getattr__(), the latter will not be
called unless __getattribute__() either calls it explicitly or raises an
AttributeError. This method should return the (computed) attribute value
or raise an AttributeError exception. In order to avoid infinite
recursion in this method, its implementation should always call the base class
method with the same name to access any attributes it needs, for example,
object.__getattribute__(self, name).

Note

This method may still be bypassed when looking up special methods as the
result of implicit invocation via language syntax or built-in functions.
See Special method lookup for new-style classes.

3.4.2.2. Implementing Descriptors

The following methods only apply when an instance of the class containing the
method (a so-called descriptor class) appears in an owner class (the
descriptor must be in either the owner’s class dictionary or in the class
dictionary for one of its parents). In the examples below, “the attribute”
refers to the attribute whose name is the key of the property in the owner
class’ __dict__.

	
object.__get__(self, instance, owner)

	Called to get the attribute of the owner class (class attribute access) or of an
instance of that class (instance attribute access). owner is always the owner
class, while instance is the instance that the attribute was accessed through,
or None when the attribute is accessed through the owner. This method
should return the (computed) attribute value or raise an AttributeError
exception.

	
object.__set__(self, instance, value)

	Called to set the attribute on an instance instance of the owner class to a
new value, value.

	
object.__delete__(self, instance)

	Called to delete the attribute on an instance instance of the owner class.

3.4.2.3. Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one
whose attribute access has been overridden by methods in the descriptor
protocol: __get__(), __set__(), and __delete__(). If any of
those methods are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the
attribute from an object’s dictionary. For instance, a.x has a lookup chain
starting with a.__dict__['x'], then type(a).__dict__['x'], and
continuing through the base classes of type(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor
methods, then Python may override the default behavior and invoke the descriptor
method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called. Note that descriptors
are only invoked for new style objects or classes (ones that subclass
object() or type()).

The starting point for descriptor invocation is a binding, a.x. How the
arguments are assembled depends on a:

	Direct Call

	The simplest and least common call is when user code directly invokes a
descriptor method: x.__get__(a).

	Instance Binding

	If binding to a new-style object instance, a.x is transformed into the call:
type(a).__dict__['x'].__get__(a, type(a)).

	Class Binding

	If binding to a new-style class, A.x is transformed into the call:
A.__dict__['x'].__get__(None, A).

	Super Binding

	If a is an instance of super, then the binding super(B,
obj).m() searches obj.__class__.__mro__ for the base class A
immediately preceding B and then invokes the descriptor with the call:
A.__dict__['m'].__get__(obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on the
which descriptor methods are defined. A descriptor can define any combination
of __get__(), __set__() and __delete__(). If it does not
define __get__(), then accessing the attribute will return the descriptor
object itself unless there is a value in the object’s instance dictionary. If
the descriptor defines __set__() and/or __delete__(), it is a data
descriptor; if it defines neither, it is a non-data descriptor. Normally, data
descriptors define both __get__() and __set__(), while non-data
descriptors have just the __get__() method. Data descriptors with
__set__() and __get__() defined always override a redefinition in an
instance dictionary. In contrast, non-data descriptors can be overridden by
instances.

Python methods (including staticmethod() and classmethod()) are
implemented as non-data descriptors. Accordingly, instances can redefine and
override methods. This allows individual instances to acquire behaviors that
differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly,
instances cannot override the behavior of a property.

3.4.2.4. __slots__

By default, instances of both old and new-style classes have a dictionary for
attribute storage. This wastes space for objects having very few instance
variables. The space consumption can become acute when creating large numbers
of instances.

The default can be overridden by defining __slots__ in a new-style class
definition. The __slots__ declaration takes a sequence of instance variables
and reserves just enough space in each instance to hold a value for each
variable. Space is saved because __dict__ is not created for each instance.

	
__slots__

	This class variable can be assigned a string, iterable, or sequence of strings
with variable names used by instances. If defined in a new-style class,
__slots__ reserves space for the declared variables and prevents the automatic
creation of __dict__ and __weakref__ for each instance.

New in version 2.2.

Notes on using __slots__

	When inheriting from a class without __slots__, the __dict__ attribute of
that class will always be accessible, so a __slots__ definition in the
subclass is meaningless.

	Without a __dict__ variable, instances cannot be assigned new variables not
listed in the __slots__ definition. Attempts to assign to an unlisted
variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add '__dict__' to the sequence of strings in the
__slots__ declaration.

Changed in version 2.3: Previously, adding '__dict__' to the __slots__ declaration would not
enable the assignment of new attributes not specifically listed in the sequence
of instance variable names.

	Without a __weakref__ variable for each instance, classes defining
__slots__ do not support weak references to its instances. If weak reference
support is needed, then add '__weakref__' to the sequence of strings in the
__slots__ declaration.

Changed in version 2.3: Previously, adding '__weakref__' to the __slots__ declaration would not
enable support for weak references.

	__slots__ are implemented at the class level by creating descriptors
(Implementing Descriptors) for each variable name. As a result, class attributes
cannot be used to set default values for instance variables defined by
__slots__; otherwise, the class attribute would overwrite the descriptor
assignment.

	The action of a __slots__ declaration is limited to the class where it is
defined. As a result, subclasses will have a __dict__ unless they also define
__slots__ (which must only contain names of any additional slots).

	If a class defines a slot also defined in a base class, the instance variable
defined by the base class slot is inaccessible (except by retrieving its
descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

	Nonempty __slots__ does not work for classes derived from “variable-length”
built-in types such as long, str and tuple.

	Any non-string iterable may be assigned to __slots__. Mappings may also be
used; however, in the future, special meaning may be assigned to the values
corresponding to each key.

	__class__ assignment works only if both classes have the same __slots__.

Changed in version 2.6: Previously, __class__ assignment raised an error if either new or old class
had __slots__.

3.4.3. Customizing class creation

By default, new-style classes are constructed using type(). A class
definition is read into a separate namespace and the value of class name is
bound to the result of type(name, bases, dict).

When the class definition is read, if __metaclass__ is defined then the
callable assigned to it will be called instead of type(). This allows
classes or functions to be written which monitor or alter the class creation
process:

	Modifying the class dictionary prior to the class being created.

	Returning an instance of another class – essentially performing the role of a
factory function.

These steps will have to be performed in the metaclass’s __new__() method
– type.__new__() can then be called from this method to create a class
with different properties. This example adds a new element to the class
dictionary before creating the class:

class metacls(type):
 def __new__(mcs, name, bases, dict):
 dict['foo'] = 'metacls was here'
 return type.__new__(mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for
example defining a custom __call__() method in the metaclass allows custom
behavior when the class is called, e.g. not always creating a new instance.

	
__metaclass__

	This variable can be any callable accepting arguments for name, bases,
and dict. Upon class creation, the callable is used instead of the built-in
type().

New in version 2.2.

The appropriate metaclass is determined by the following precedence rules:

	If dict['__metaclass__'] exists, it is used.

	Otherwise, if there is at least one base class, its metaclass is used (this
looks for a __class__ attribute first and if not found, uses its type).

	Otherwise, if a global variable named __metaclass__ exists, it is used.

	Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been
explored including logging, interface checking, automatic delegation, automatic
property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.4.4. Customizing instance and subclass checks

New in version 2.6.

The following methods are used to override the default behavior of the
isinstance() and issubclass() built-in functions.

In particular, the metaclass abc.ABCMeta implements these methods in
order to allow the addition of Abstract Base Classes (ABCs) as “virtual base
classes” to any class or type (including built-in types), including other
ABCs.

	
class.__instancecheck__(self, instance)

	Return true if instance should be considered a (direct or indirect)
instance of class. If defined, called to implement isinstance(instance,
class).

	
class.__subclasscheck__(self, subclass)

	Return true if subclass should be considered a (direct or indirect)
subclass of class. If defined, called to implement issubclass(subclass,
class).

Note that these methods are looked up on the type (metaclass) of a class. They
cannot be defined as class methods in the actual class. This is consistent with
the lookup of special methods that are called on instances, only in this
case the instance is itself a class.

See also

	PEP 3119 [http://www.python.org/dev/peps/pep-3119] - Introducing Abstract Base Classes

	Includes the specification for customizing isinstance() and
issubclass() behavior through __instancecheck__() and
__subclasscheck__(), with motivation for this functionality in the
context of adding Abstract Base Classes (see the abc module) to the
language.

3.4.5. Emulating callable objects

	
object.__call__(self[, args...])

	Called when the instance is “called” as a function; if this method is defined,
x(arg1, arg2, ...) is a shorthand for x.__call__(arg1, arg2, ...).

3.4.6. Emulating container types

The following methods can be defined to implement container objects. Containers
usually are sequences (such as lists or tuples) or mappings (like dictionaries),
but can represent other containers as well. The first set of methods is used
either to emulate a sequence or to emulate a mapping; the difference is that for
a sequence, the allowable keys should be the integers k for which 0 <= k <
N where N is the length of the sequence, or slice objects, which define a
range of items. (For backwards compatibility, the method __getslice__()
(see below) can also be defined to handle simple, but not extended slices.) It
is also recommended that mappings provide the methods keys(),
values(), items(), has_key(), get(), clear(),
setdefault(), iterkeys(), itervalues(), iteritems(),
pop(), popitem(), copy(), and update() behaving similar
to those for Python’s standard dictionary objects. The UserDict module
provides a DictMixin class to help create those methods from a base set
of __getitem__(), __setitem__(), __delitem__(), and
keys(). Mutable sequences should provide methods append(),
count(), index(), extend(), insert(), pop(),
remove(), reverse() and sort(), like Python standard list
objects. Finally, sequence types should implement addition (meaning
concatenation) and multiplication (meaning repetition) by defining the methods
__add__(), __radd__(), __iadd__(), __mul__(),
__rmul__() and __imul__() described below; they should not define
__coerce__() or other numerical operators. It is recommended that both
mappings and sequences implement the __contains__() method to allow
efficient use of the in operator; for mappings, in should be equivalent
of has_key(); for sequences, it should search through the values. It is
further recommended that both mappings and sequences implement the
__iter__() method to allow efficient iteration through the container; for
mappings, __iter__() should be the same as iterkeys(); for
sequences, it should iterate through the values.

	
object.__len__(self)

	Called to implement the built-in function len(). Should return the length
of the object, an integer >= 0. Also, an object that doesn’t define a
__nonzero__() method and whose __len__() method returns zero is
considered to be false in a Boolean context.

	
object.__getitem__(self, key)

	Called to implement evaluation of self[key]. For sequence types, the
accepted keys should be integers and slice objects. Note that the special
interpretation of negative indexes (if the class wishes to emulate a sequence
type) is up to the __getitem__() method. If key is of an inappropriate
type, TypeError may be raised; if of a value outside the set of indexes
for the sequence (after any special interpretation of negative values),
IndexError should be raised. For mapping types, if key is missing (not
in the container), KeyError should be raised.

Note

for loops expect that an IndexError will be raised for illegal
indexes to allow proper detection of the end of the sequence.

	
object.__setitem__(self, key, value)

	Called to implement assignment to self[key]. Same note as for
__getitem__(). This should only be implemented for mappings if the
objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised
for improper key values as for the __getitem__() method.

	
object.__delitem__(self, key)

	Called to implement deletion of self[key]. Same note as for
__getitem__(). This should only be implemented for mappings if the
objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key
values as for the __getitem__() method.

	
object.__iter__(self)

	This method is called when an iterator is required for a container. This method
should return a new iterator object that can iterate over all the objects in the
container. For mappings, it should iterate over the keys of the container, and
should also be made available as the method iterkeys().

Iterator objects also need to implement this method; they are required to return
themselves. For more information on iterator objects, see Iterator Types.

	
object.__reversed__(self)

	Called (if present) by the reversed() built-in to implement
reverse iteration. It should return a new iterator object that iterates
over all the objects in the container in reverse order.

If the __reversed__() method is not provided, the reversed()
built-in will fall back to using the sequence protocol (__len__() and
__getitem__()). Objects that support the sequence protocol should
only provide __reversed__() if they can provide an implementation
that is more efficient than the one provided by reversed().

New in version 2.6.

The membership test operators (in and not in) are normally
implemented as an iteration through a sequence. However, container objects can
supply the following special method with a more efficient implementation, which
also does not require the object be a sequence.

	
object.__contains__(self, item)

	Called to implement membership test operators. Should return true if item
is in self, false otherwise. For mapping objects, this should consider the
keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__(), the membership test first
tries iteration via __iter__(), then the old sequence iteration
protocol via __getitem__(), see this section in the language
reference.

3.4.7. Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence
objects. Immutable sequences methods should at most only define
__getslice__(); mutable sequences might define all three methods.

	
object.__getslice__(self, i, j)

	
Deprecated since version 2.0: Support slice objects as parameters to the __getitem__() method.
(However, built-in types in CPython currently still implement
__getslice__(). Therefore, you have to override it in derived
classes when implementing slicing.)

Called to implement evaluation of self[i:j]. The returned object should be
of the same type as self. Note that missing i or j in the slice
expression are replaced by zero or sys.maxint, respectively. If negative
indexes are used in the slice, the length of the sequence is added to that
index. If the instance does not implement the __len__() method, an
AttributeError is raised. No guarantee is made that indexes adjusted this
way are not still negative. Indexes which are greater than the length of the
sequence are not modified. If no __getslice__() is found, a slice object
is created instead, and passed to __getitem__() instead.

	
object.__setslice__(self, i, j, sequence)

	Called to implement assignment to self[i:j]. Same notes for i and j as
for __getslice__().

This method is deprecated. If no __setslice__() is found, or for extended
slicing of the form self[i:j:k], a slice object is created, and passed to
__setitem__(), instead of __setslice__() being called.

	
object.__delslice__(self, i, j)

	Called to implement deletion of self[i:j]. Same notes for i and j as for
__getslice__(). This method is deprecated. If no __delslice__() is
found, or for extended slicing of the form self[i:j:k], a slice object is
created, and passed to __delitem__(), instead of __delslice__()
being called.

Notice that these methods are only invoked when a single slice with a single
colon is used, and the slice method is available. For slice operations
involving extended slice notation, or in absence of the slice methods,
__getitem__(), __setitem__() or __delitem__() is called with a
slice object as argument.

The following example demonstrate how to make your program or module compatible
with earlier versions of Python (assuming that methods __getitem__(),
__setitem__() and __delitem__() support slice objects as
arguments):

class MyClass:
 ...
 def __getitem__(self, index):
 ...
 def __setitem__(self, index, value):
 ...
 def __delitem__(self, index):
 ...

 if sys.version_info < (2, 0):
 # They won't be defined if version is at least 2.0 final

 def __getslice__(self, i, j):
 return self[max(0, i):max(0, j):]
 def __setslice__(self, i, j, seq):
 self[max(0, i):max(0, j):] = seq
 def __delslice__(self, i, j):
 del self[max(0, i):max(0, j):]
 ...

Note the calls to max(); these are necessary because of the handling of
negative indices before the __*slice__() methods are called. When
negative indexes are used, the __*item__() methods receive them as
provided, but the __*slice__() methods get a “cooked” form of the index
values. For each negative index value, the length of the sequence is added to
the index before calling the method (which may still result in a negative
index); this is the customary handling of negative indexes by the built-in
sequence types, and the __*item__() methods are expected to do this as
well. However, since they should already be doing that, negative indexes cannot
be passed in; they must be constrained to the bounds of the sequence before
being passed to the __*item__() methods. Calling max(0, i)
conveniently returns the proper value.

3.4.8. Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods
corresponding to operations that are not supported by the particular kind of
number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

	
object.__add__(self, other)

	
object.__sub__(self, other)

	
object.__mul__(self, other)

	
object.__floordiv__(self, other)

	
object.__mod__(self, other)

	
object.__divmod__(self, other)

	
object.__pow__(self, other[, modulo])

	
object.__lshift__(self, other)

	
object.__rshift__(self, other)

	
object.__and__(self, other)

	
object.__xor__(self, other)

	
object.__or__(self, other)

	These methods are called to implement the binary arithmetic operations (+,
-, *, //, %, divmod(), pow(), **, <<,
>>, &, ^, |). For instance, to evaluate the expression
x + y, where x is an instance of a class that has an __add__()
method, x.__add__(y) is called. The __divmod__() method should be the
equivalent to using __floordiv__() and __mod__(); it should not be
related to __truediv__() (described below). Note that __pow__()
should be defined to accept an optional third argument if the ternary version of
the built-in pow() function is to be supported.

If one of those methods does not support the operation with the supplied
arguments, it should return NotImplemented.

	
object.__div__(self, other)

	
object.__truediv__(self, other)

	The division operator (/) is implemented by these methods. The
__truediv__() method is used when __future__.division is in effect,
otherwise __div__() is used. If only one of these two methods is defined,
the object will not support division in the alternate context; TypeError
will be raised instead.

	
object.__radd__(self, other)

	
object.__rsub__(self, other)

	
object.__rmul__(self, other)

	
object.__rdiv__(self, other)

	
object.__rtruediv__(self, other)

	
object.__rfloordiv__(self, other)

	
object.__rmod__(self, other)

	
object.__rdivmod__(self, other)

	
object.__rpow__(self, other)

	
object.__rlshift__(self, other)

	
object.__rrshift__(self, other)

	
object.__rand__(self, other)

	
object.__rxor__(self, other)

	
object.__ror__(self, other)

	These methods are called to implement the binary arithmetic operations (+,
-, *, /, %, divmod(), pow(), **, <<, >>,
&, ^, |) with reflected (swapped) operands. These functions are
only called if the left operand does not support the corresponding operation and
the operands are of different types. [2] For instance, to evaluate the
expression x - y, where y is an instance of a class that has an
__rsub__() method, y.__rsub__(x) is called if x.__sub__(y) returns
NotImplemented.

Note that ternary pow() will not try calling __rpow__() (the
coercion rules would become too complicated).

Note

If the right operand’s type is a subclass of the left operand’s type and that
subclass provides the reflected method for the operation, this method will be
called before the left operand’s non-reflected method. This behavior allows
subclasses to override their ancestors’ operations.

	
object.__iadd__(self, other)

	
object.__isub__(self, other)

	
object.__imul__(self, other)

	
object.__idiv__(self, other)

	
object.__itruediv__(self, other)

	
object.__ifloordiv__(self, other)

	
object.__imod__(self, other)

	
object.__ipow__(self, other[, modulo])

	
object.__ilshift__(self, other)

	
object.__irshift__(self, other)

	
object.__iand__(self, other)

	
object.__ixor__(self, other)

	
object.__ior__(self, other)

	These methods are called to implement the augmented arithmetic assignments
(+=, -=, *=, /=, //=, %=, **=, <<=, >>=,
&=, ^=, |=). These methods should attempt to do the operation
in-place (modifying self) and return the result (which could be, but does
not have to be, self). If a specific method is not defined, the augmented
assignment falls back to the normal methods. For instance, to execute the
statement x += y, where x is an instance of a class that has an
__iadd__() method, x.__iadd__(y) is called. If x is an instance
of a class that does not define a __iadd__() method, x.__add__(y)
and y.__radd__(x) are considered, as with the evaluation of x + y.

	
object.__neg__(self)

	
object.__pos__(self)

	
object.__abs__(self)

	
object.__invert__(self)

	Called to implement the unary arithmetic operations (-, +, abs()
and ~).

	
object.__complex__(self)

	
object.__int__(self)

	
object.__long__(self)

	
object.__float__(self)

	Called to implement the built-in functions complex(), int(),
long(), and float(). Should return a value of the appropriate type.

	
object.__oct__(self)

	
object.__hex__(self)

	Called to implement the built-in functions oct() and hex(). Should
return a string value.

	
object.__index__(self)

	Called to implement operator.index(). Also called whenever Python needs
an integer object (such as in slicing). Must return an integer (int or long).

New in version 2.5.

	
object.__coerce__(self, other)

	Called to implement “mixed-mode” numeric arithmetic. Should either return a
2-tuple containing self and other converted to a common numeric type, or
None if conversion is impossible. When the common type would be the type of
other, it is sufficient to return None, since the interpreter will also
ask the other object to attempt a coercion (but sometimes, if the implementation
of the other type cannot be changed, it is useful to do the conversion to the
other type here). A return value of NotImplemented is equivalent to
returning None.

3.4.9. Coercion rules

This section used to document the rules for coercion. As the language has
evolved, the coercion rules have become hard to document precisely; documenting
what one version of one particular implementation does is undesirable. Instead,
here are some informal guidelines regarding coercion. In Python 3.0, coercion
will not be supported.

	If the left operand of a % operator is a string or Unicode object, no coercion
takes place and the string formatting operation is invoked instead.

	It is no longer recommended to define a coercion operation. Mixed-mode
operations on types that don’t define coercion pass the original arguments to
the operation.

	New-style classes (those derived from object) never invoke the
__coerce__() method in response to a binary operator; the only time
__coerce__() is invoked is when the built-in function coerce() is
called.

	For most intents and purposes, an operator that returns NotImplemented is
treated the same as one that is not implemented at all.

	Below, __op__() and __rop__() are used to signify the generic method
names corresponding to an operator; __iop__() is used for the
corresponding in-place operator. For example, for the operator ‘+‘,
__add__() and __radd__() are used for the left and right variant of
the binary operator, and __iadd__() for the in-place variant.

	For objects x and y, first x.__op__(y) is tried. If this is not
implemented or returns NotImplemented, y.__rop__(x) is tried. If this
is also not implemented or returns NotImplemented, a TypeError
exception is raised. But see the following exception:

	Exception to the previous item: if the left operand is an instance of a built-in
type or a new-style class, and the right operand is an instance of a proper
subclass of that type or class and overrides the base’s __rop__() method,
the right operand’s __rop__() method is tried before the left operand’s
__op__() method.

This is done so that a subclass can completely override binary operators.
Otherwise, the left operand’s __op__() method would always accept the
right operand: when an instance of a given class is expected, an instance of a
subclass of that class is always acceptable.

	When either operand type defines a coercion, this coercion is called before that
type’s __op__() or __rop__() method is called, but no sooner. If
the coercion returns an object of a different type for the operand whose
coercion is invoked, part of the process is redone using the new object.

	When an in-place operator (like ‘+=‘) is used, if the left operand
implements __iop__(), it is invoked without any coercion. When the
operation falls back to __op__() and/or __rop__(), the normal
coercion rules apply.

	In x + y, if x is a sequence that implements sequence concatenation,
sequence concatenation is invoked.

	In x * y, if one operator is a sequence that implements sequence
repetition, and the other is an integer (int or long),
sequence repetition is invoked.

	Rich comparisons (implemented by methods __eq__() and so on) never use
coercion. Three-way comparison (implemented by __cmp__()) does use
coercion under the same conditions as other binary operations use it.

	In the current implementation, the built-in numeric types int,
long, float, and complex do not use coercion.
All these types implement a __coerce__() method, for use by the built-in
coerce() function.

Changed in version 2.7.

3.4.10. With Statement Context Managers

New in version 2.5.

A context manager is an object that defines the runtime context to be
established when executing a with statement. The context manager
handles the entry into, and the exit from, the desired runtime context for the
execution of the block of code. Context managers are normally invoked using the
with statement (described in section The with statement), but can also be
used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of
global state, locking and unlocking resources, closing opened files, etc.

For more information on context managers, see Context Manager Types.

	
object.__enter__(self)

	Enter the runtime context related to this object. The with statement
will bind this method’s return value to the target(s) specified in the
as clause of the statement, if any.

	
object.__exit__(self, exc_type, exc_value, traceback)

	Exit the runtime context related to this object. The parameters describe the
exception that caused the context to be exited. If the context was exited
without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception
(i.e., prevent it from being propagated), it should return a true value.
Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__() methods should not reraise the passed-in exception;
this is the caller’s responsibility.

See also

	PEP 0343 [http://www.python.org/dev/peps/pep-0343] - The “with” statement

	The specification, background, and examples for the Python with
statement.

3.4.11. Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the
same way as any other method or attribute. This is the case regardless of
whether the method is being looked up explicitly as in x.__getitem__(i)
or implicitly as in x[i].

This behaviour means that special methods may exhibit different behaviour
for different instances of a single old-style class if the appropriate
special attributes are set differently:

>>> class C:
... pass
...
>>> c1 = C()
>>> c2 = C()
>>> c1.__len__ = lambda: 5
>>> c2.__len__ = lambda: 9
>>> len(c1)
5
>>> len(c2)
9

3.4.12. Special method lookup for new-style classes

For new-style classes, implicit invocations of special methods are only guaranteed
to work correctly if defined on an object’s type, not in the object’s instance
dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):
... pass
...
>>> c = C()
>>> c.__len__ = lambda: 5
>>> len(c)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such
as __hash__() and __repr__() that are implemented by all objects,
including type objects. If the implicit lookup of these methods used the
conventional lookup process, they would fail when invoked on the type object
itself:

>>> 1 .__hash__() == hash(1)
True
>>> int.__hash__() == hash(int)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is
sometimes referred to as ‘metaclass confusion’, and is avoided by bypassing
the instance when looking up special methods:

>>> type(1).__hash__(1) == hash(1)
True
>>> type(int).__hash__(int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of
correctness, implicit special method lookup generally also bypasses the
__getattribute__() method even of the object’s metaclass:

>>> class Meta(type):
... def __getattribute__(*args):
... print "Metaclass getattribute invoked"
... return type.__getattribute__(*args)
...
>>> class C(object):
... __metaclass__ = Meta
... def __len__(self):
... return 10
... def __getattribute__(*args):
... print "Class getattribute invoked"
... return object.__getattribute__(*args)
...
>>> c = C()
>>> c.__len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__(c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassing the __getattribute__() machinery in this fashion
provides significant scope for speed optimisations within the
interpreter, at the cost of some flexibility in the handling of
special methods (the special method must be set on the class
object itself in order to be consistently invoked by the interpreter).

Footnotes

	[1]	It is possible in some cases to change an object’s type, under certain
controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

	[2]	For operands of the same type, it is assumed that if the non-reflected method
(such as __add__()) fails the operation is not supported, which is why the
reflected method is not called.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

4. Execution model

4.1. Naming and binding

Names refer to objects. Names are introduced by name binding operations.
Each occurrence of a name in the program text refers to the binding of
that name established in the innermost function block containing the use.

A block is a piece of Python program text that is executed as a unit.
The following are blocks: a module, a function body, and a class definition.
Each command typed interactively is a block. A script file (a file given as
standard input to the interpreter or specified on the interpreter command line
the first argument) is a code block. A script command (a command specified on
the interpreter command line with the ‘-c‘ option) is a code block. The
file read by the built-in function execfile() is a code block. The string
argument passed to the built-in function eval() and to the exec
statement is a code block. The expression read and evaluated by the built-in
function input() is a code block.

A code block is executed in an execution frame. A frame contains some
administrative information (used for debugging) and determines where and how
execution continues after the code block’s execution has completed.

A scope defines the visibility of a name within a block. If a local
variable is defined in a block, its scope includes that block. If the
definition occurs in a function block, the scope extends to any blocks contained
within the defining one, unless a contained block introduces a different binding
for the name. The scope of names defined in a class block is limited to the
class block; it does not extend to the code blocks of methods – this includes
generator expressions since they are implemented using a function scope. This
means that the following will fail:

class A:
 a = 42
 b = list(a + i for i in range(10))

When a name is used in a code block, it is resolved using the nearest enclosing
scope. The set of all such scopes visible to a code block is called the block’s
environment.

If a name is bound in a block, it is a local variable of that block. If a name
is bound at the module level, it is a global variable. (The variables of the
module code block are local and global.) If a variable is used in a code block
but not defined there, it is a free variable.

When a name is not found at all, a NameError exception is raised. If the
name refers to a local variable that has not been bound, a
UnboundLocalError exception is raised. UnboundLocalError is a
subclass of NameError.

The following constructs bind names: formal parameters to functions,
import statements, class and function definitions (these bind the
class or function name in the defining block), and targets that are identifiers
if occurring in an assignment, for loop header, in the second
position of an except clause header or after as in a
with statement. The import statement
of the form from ... import * binds all names defined in the imported
module, except those beginning with an underscore. This form may only be used
at the module level.

A target occurring in a del statement is also considered bound for
this purpose (though the actual semantics are to unbind the name). It is
illegal to unbind a name that is referenced by an enclosing scope; the compiler
will report a SyntaxError.

Each assignment or import statement occurs within a block defined by a class or
function definition or at the module level (the top-level code block).

If a name binding operation occurs anywhere within a code block, all uses of the
name within the block are treated as references to the current block. This can
lead to errors when a name is used within a block before it is bound. This rule
is subtle. Python lacks declarations and allows name binding operations to
occur anywhere within a code block. The local variables of a code block can be
determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in
the statement refer to the binding of that name in the top-level namespace.
Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins
namespace, the namespace of the module __builtin__. The global namespace
is searched first. If the name is not found there, the builtins namespace is
searched. The global statement must precede all uses of the name.

The builtins namespace associated with the execution of a code block is actually
found by looking up the name __builtins__ in its global namespace; this
should be a dictionary or a module (in the latter case the module’s dictionary
is used). By default, when in the __main__ module, __builtins__ is
the built-in module __builtin__ (note: no ‘s’); when in any other module,
__builtins__ is an alias for the dictionary of the __builtin__ module
itself. __builtins__ can be set to a user-created dictionary to create a
weak form of restricted execution.

CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation
detail. Users wanting to override values in the builtins namespace should
import the __builtin__ (no ‘s’) module and modify its
attributes appropriately.

The namespace for a module is automatically created the first time a module is
imported. The main module for a script is always called __main__.

The global statement has the same scope as a name binding operation
in the same block. If the nearest enclosing scope for a free variable contains
a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names.
These references follow the normal rules for name resolution. The namespace of
the class definition becomes the attribute dictionary of the class. Names
defined at the class scope are not visible in methods.

4.1.1. Interaction with dynamic features

There are several cases where Python statements are illegal when used in
conjunction with nested scopes that contain free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the
name. An error will be reported at compile time.

If the wild card form of import — import * — is used in a function and
the function contains or is a nested block with free variables, the compiler
will raise a SyntaxError.

If exec is used in a function and the function contains or is a
nested block with free variables, the compiler will raise a SyntaxError
unless the exec explicitly specifies the local namespace for the
exec. (In other words, exec obj would be illegal, but exec obj
in ns would be legal.)

The eval(), execfile(), and input() functions and the
exec statement do not have access to the full environment for
resolving names. Names may be resolved in the local and global namespaces of
the caller. Free variables are not resolved in the nearest enclosing namespace,
but in the global namespace. [1] The exec statement and the
eval() and execfile() functions have optional arguments to override
the global and local namespace. If only one namespace is specified, it is used
for both.

4.2. Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code
block in order to handle errors or other exceptional conditions. An exception
is raised at the point where the error is detected; it may be handled by the
surrounding code block or by any code block that directly or indirectly invoked
the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error
(such as division by zero). A Python program can also explicitly raise an
exception with the raise statement. Exception handlers are specified
with the try ... except statement. The finally
clause of such a statement can be used to specify cleanup code which does not
handle the exception, but is executed whether an exception occurred or not in
the preceding code.

Python uses the “termination” model of error handling: an exception handler can
find out what happened and continue execution at an outer level, but it cannot
repair the cause of the error and retry the failing operation (except by
re-entering the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of
the program, or returns to its interactive main loop. In either case, it prints
a stack backtrace, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is
selected depending on the class of the instance: it must reference the class of
the instance or a base class thereof. The instance can be received by the
handler and can carry additional information about the exceptional condition.

Exceptions can also be identified by strings, in which case the
except clause is selected by object identity. An arbitrary value can
be raised along with the identifying string which can be passed to the handler.

Note

Messages to exceptions are not part of the Python API. Their contents may
change from one version of Python to the next without warning and should not be
relied on by code which will run under multiple versions of the interpreter.

See also the description of the try statement in section The try statement
and raise statement in section The raise statement.

Footnotes

	[1]	This limitation occurs because the code that is executed by these operations is
not available at the time the module is compiled.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

5. Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will
be used to describe syntax, not lexical analysis. When (one alternative of) a
syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form of name are the same
as for othername.

5.1. Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric
arguments are converted to a common type,” the arguments are coerced using the
coercion rules listed at Coercion rules. If both arguments are standard
numeric types, the following coercions are applied:

	If either argument is a complex number, the other is converted to complex;

	otherwise, if either argument is a floating point number, the other is
converted to floating point;

	otherwise, if either argument is a long integer, the other is converted to
long integer;

	otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument
to the ‘%’ operator). Extensions can define their own coercions.

5.2. Atoms

Atoms are the most basic elements of expressions. The simplest atoms are
identifiers or literals. Forms enclosed in reverse quotes or in parentheses,
brackets or braces are also categorized syntactically as atoms. The syntax for
atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display
 | generator_expression | dict_display | set_display
 | string_conversion | yield_atom

5.2.1. Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords
for lexical definition and section Naming and binding for documentation of naming and
binding.

When the name is bound to an object, evaluation of the atom yields that object.
When a name is not bound, an attempt to evaluate it raises a NameError
exception.

Private name mangling: When an identifier that textually occurs in a class
definition begins with two or more underscore characters and does not end in two
or more underscores, it is considered a private name of that class.
Private names are transformed to a longer form before code is generated for
them. The transformation inserts the class name in front of the name, with
leading underscores removed, and a single underscore inserted in front of the
class name. For example, the identifier __spam occurring in a class named
Ham will be transformed to _Ham__spam. This transformation is
independent of the syntactical context in which the identifier is used. If the
transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores,
no transformation is done.

5.2.2. Literals

Python supports string literals and various numeric literals:

literal ::= stringliteral | integer | longinteger
 | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer,
long integer, floating point number, complex number) with the given value. The
value may be approximated in the case of floating point and imaginary (complex)
literals. See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity
is less important than its value. Multiple evaluations of literals with the
same value (either the same occurrence in the program text or a different
occurrence) may obtain the same object or a different object with the same
value.

5.2.3. Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if
the list contains at least one comma, it yields a tuple; otherwise, it yields
the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are
immutable, the rules for literals apply (i.e., two occurrences of the empty
tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the
comma operator. The exception is the empty tuple, for which parentheses are
required — allowing unparenthesized “nothing” in expressions would cause
ambiguities and allow common typos to pass uncaught.

5.2.4. List displays

A list display is a possibly empty series of expressions enclosed in square
brackets:

list_display ::= "[" [expression_list | list_comprehension] "]"
list_comprehension ::= expression list_for
list_for ::= "for" target_list "in" old_expression_list [list_iter]
old_expression_list ::= old_expression [("," old_expression)+ [","]]
old_expression ::= or_test | old_lambda_form
list_iter ::= list_for | list_if
list_if ::= "if" old_expression [list_iter]

A list display yields a new list object. Its contents are specified by
providing either a list of expressions or a list comprehension. When a
comma-separated list of expressions is supplied, its elements are evaluated from
left to right and placed into the list object in that order. When a list
comprehension is supplied, it consists of a single expression followed by at
least one for clause and zero or more for or if
clauses. In this case, the elements of the new list are those that would be
produced by considering each of the for or if clauses a
block, nesting from left to right, and evaluating the expression to produce a
list element each time the innermost block is reached [1].

5.2.5. Displays for sets and dictionaries

For constructing a set or a dictionary Python provides special syntax
called “displays”, each of them in two flavors:

	either the container contents are listed explicitly, or

	they are computed via a set of looping and filtering instructions, called a
comprehension.

Common syntax elements for comprehensions are:

comprehension ::= expression comp_for
comp_for ::= "for" target_list "in" or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= "if" expression_nocond [comp_iter]

The comprehension consists of a single expression followed by at least one
for clause and zero or more for or if clauses.
In this case, the elements of the new container are those that would be produced
by considering each of the for or if clauses a block,
nesting from left to right, and evaluating the expression to produce an element
each time the innermost block is reached.

Note that the comprehension is executed in a separate scope, so names assigned
to in the target list don’t “leak” in the enclosing scope.

5.2.6. Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as
for comprehensions, except that it is enclosed in parentheses instead of
brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the
__next__() method is called for generator object (in the same fashion as
normal generators). However, the leftmost for clause is immediately
evaluated, so that an error produced by it can be seen before any other possible
error in the code that handles the generator expression. Subsequent
for clauses cannot be evaluated immediately since they may depend on
the previous for loop. For example: (x*y for x in range(10) for y
in bar(x)).

The parentheses can be omitted on calls with only one argument. See section
Calls for the detail.

5.2.7. Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in
curly braces:

dict_display ::= "{" [key_datum_list | dict_comprehension] "}"
key_datum_list ::= key_datum ("," key_datum)* [","]
key_datum ::= expression ":" expression
dict_comprehension ::= expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated
from left to right to define the entries of the dictionary: each key object is
used as a key into the dictionary to store the corresponding datum. This means
that you can specify the same key multiple times in the key/datum list, and the
final dictionary’s value for that key will be the last one given.

A dict comprehension, in contrast to list and set comprehensions, needs two
expressions separated with a colon followed by the usual “for” and “if” clauses.
When the comprehension is run, the resulting key and value elements are inserted
in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section
The standard type hierarchy. (To summarize, the key type should be hashable, which excludes
all mutable objects.) Clashes between duplicate keys are not detected; the last
datum (textually rightmost in the display) stored for a given key value
prevails.

5.2.8. Set displays

A set display is denoted by curly braces and distinguishable from dictionary
displays by the lack of colons separating keys and values:

set_display ::= "{" (expression_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by
either a sequence of expressions or a comprehension. When a comma-separated
list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is
constructed from the elements resulting from the comprehension.

An empty set cannot be constructed with {}; this literal constructs an empty
dictionary.

5.2.9. String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward)
quotes:

string_conversion ::= "'" expression_list "'"

A string conversion evaluates the contained expression list and converts the
resulting object into a string according to rules specific to its type.

If the object is a string, a number, None, or a tuple, list or dictionary
containing only objects whose type is one of these, the resulting string is a
valid Python expression which can be passed to the built-in function
eval() to yield an expression with the same value (or an approximation, if
floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny”
characters to escape sequences that are safe to print.)

Recursive objects (for example, lists or dictionaries that contain a reference
to themselves, directly or indirectly) use ... to indicate a recursive
reference, and the result cannot be passed to eval() to get an equal value
(SyntaxError will be raised instead).

The built-in function repr() performs exactly the same conversion in its
argument as enclosing it in parentheses and reverse quotes does. The built-in
function str() performs a similar but more user-friendly conversion.

5.2.10. Yield expressions

yield_atom ::= "(" yield_expression ")"
yield_expression ::= "yield" [expression_list]

New in version 2.5.

The yield expression is only used when defining a generator function,
and can only be used in the body of a function definition. Using a
yield expression in a function definition is sufficient to cause that
definition to create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a
generator. That generator then controls the execution of a generator function.
The execution starts when one of the generator’s methods is called. At that
time, the execution proceeds to the first yield expression, where it
is suspended again, returning the value of expression_list to
generator’s caller. By suspended we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, and
the internal evaluation stack. When the execution is resumed by calling one of
the generator’s methods, the function can proceed exactly as if the
yield expression was just another external call. The value of the
yield expression after resuming depends on the method which resumed
the execution.

All of this makes generator functions quite similar to coroutines; they yield
multiple times, they have more than one entry point and their execution can be
suspended. The only difference is that a generator function cannot control
where should the execution continue after it yields; the control is always
transferred to the generator’s caller.

The following generator’s methods can be used to control the execution of a
generator function:

	
generator.next()

	Starts the execution of a generator function or resumes it at the last executed
yield expression. When a generator function is resumed with a
next() method, the current yield expression always evaluates to
None. The execution then continues to the next yield
expression, where the generator is suspended again, and the value of the
expression_list is returned to next()‘s caller. If the generator
exits without yielding another value, a StopIteration exception is
raised.

	
generator.send(value)

	Resumes the execution and “sends” a value into the generator function. The
value argument becomes the result of the current yield
expression. The send() method returns the next value yielded by the
generator, or raises StopIteration if the generator exits without
yielding another value. When send() is called to start the generator, it
must be called with None as the argument, because there is no
yield expression that could receive the value.

	
generator.throw(type[, value[, traceback]])

	Raises an exception of type type at the point where generator was paused,
and returns the next value yielded by the generator function. If the generator
exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or
raises a different exception, then that exception propagates to the caller.

	
generator.close()

	Raises a GeneratorExit at the point where the generator function was
paused. If the generator function then raises StopIteration (by exiting
normally, or due to already being closed) or GeneratorExit (by not
catching the exception), close returns to its caller. If the generator yields a
value, a RuntimeError is raised. If the generator raises any other
exception, it is propagated to the caller. close() does nothing if the
generator has already exited due to an exception or normal exit.

Here is a simple example that demonstrates the behavior of generators and
generator functions:

>>> def echo(value=None):
... print "Execution starts when 'next()' is called for the first time."
... try:
... while True:
... try:
... value = (yield value)
... except Exception, e:
... value = e
... finally:
... print "Don't forget to clean up when 'close()' is called."
...
>>> generator = echo(1)
>>> print generator.next()
Execution starts when 'next()' is called for the first time.
1
>>> print generator.next()
None
>>> print generator.send(2)
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

See also

	PEP 0342 [http://www.python.org/dev/peps/pep-0342] - Coroutines via Enhanced Generators

	The proposal to enhance the API and syntax of generators, making them usable as
simple coroutines.

5.3. Primaries

Primaries represent the most tightly bound operations of the language. Their
syntax is:

primary ::= atom | attributeref | subscription | slicing | call

5.3.1. Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute
references, e.g., a module, list, or an instance. This object is then asked to
produce the attribute whose name is the identifier. If this attribute is not
available, the exception AttributeError is raised. Otherwise, the type
and value of the object produced is determined by the object. Multiple
evaluations of the same attribute reference may yield different objects.

5.3.2. Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping
(dictionary) object:

subscription ::= primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object
whose value is one of the keys of the mapping, and the subscription selects the
value in the mapping that corresponds to that key. (The expression list is a
tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain
integer. If this value is negative, the length of the sequence is added to it
(so that, e.g., x[-1] selects the last item of x.) The resulting value
must be a nonnegative integer less than the number of items in the sequence, and
the subscription selects the item whose index is that value (counting from
zero).

A string’s items are characters. A character is not a separate data type but a
string of exactly one character.

5.3.3. Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple
or list). Slicings may be used as expressions or as targets in assignment or
del statements. The syntax for a slicing:

slicing ::= simple_slicing | extended_slicing
simple_slicing ::= primary "[" short_slice "]"
extended_slicing ::= primary "[" slice_list "]"
slice_list ::= slice_item ("," slice_item)* [","]
slice_item ::= expression | proper_slice | ellipsis
proper_slice ::= short_slice | long_slice
short_slice ::= [lower_bound] ":" [upper_bound]
long_slice ::= short_slice ":" [stride]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression
ellipsis ::= "..."

There is ambiguity in the formal syntax here: anything that looks like an
expression list also looks like a slice list, so any subscription can be
interpreted as a slicing. Rather than further complicating the syntax, this is
disambiguated by defining that in this case the interpretation as a subscription
takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice nor ellipses). Similarly, when the slice
list has exactly one short slice and no trailing comma, the interpretation as a
simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to
a sequence object. The lower and upper bound expressions, if present, must
evaluate to plain integers; defaults are zero and the sys.maxint,
respectively. If either bound is negative, the sequence’s length is added to
it. The slicing now selects all items with index k such that i <= k < j
where i and j are the specified lower and upper bounds. This may be an
empty sequence. It is not an error if i or j lie outside the range of valid
indexes (such items don’t exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate
to a mapping object, and it is indexed with a key that is constructed from the
slice list, as follows. If the slice list contains at least one comma, the key
is a tuple containing the conversion of the slice items; otherwise, the
conversion of the lone slice item is the key. The conversion of a slice item
that is an expression is that expression. The conversion of an ellipsis slice
item is the built-in Ellipsis object. The conversion of a proper slice is a
slice object (see section The standard type hierarchy) whose start, stop and
step attributes are the values of the expressions given as lower bound,
upper bound and stride, respectively, substituting None for missing
expressions.

5.3.4. Calls

A call calls a callable object (e.g., a function) with a possibly empty series
of arguments:

call ::= primary "(" [argument_list [","]
 | expression genexpr_for] ")"
argument_list ::= positional_arguments ["," keyword_arguments]
 ["," "*" expression] ["," keyword_arguments]
 ["," "**" expression]
 | keyword_arguments ["," "*" expression]
 ["," "**" expression]
 | "*" expression ["," "*" expression] ["," "**" expression]
 | "**" expression
positional_arguments ::= expression ("," expression)*
keyword_arguments ::= keyword_item ("," keyword_item)*
keyword_item ::= identifier "=" expression

A trailing comma may be present after the positional and keyword arguments but
does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in
functions, methods of built-in objects, class objects, methods of class
instances, and certain class instances themselves are callable; extensions may
define additional callable object types). All argument expressions are
evaluated before the call is attempted. Please refer to section Function definitions
for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional
arguments, as follows. First, a list of unfilled slots is created for the
formal parameters. If there are N positional arguments, they are placed in the
first N slots. Next, for each keyword argument, the identifier is used to
determine the corresponding slot (if the identifier is the same as the first
formal parameter name, the first slot is used, and so on). If the slot is
already filled, a TypeError exception is raised. Otherwise, the value of
the argument is placed in the slot, filling it (even if the expression is
None, it fills the slot). When all arguments have been processed, the slots
that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is
defined; thus, a mutable object such as a list or dictionary used as default
value will be shared by all calls that don’t specify an argument value for the
corresponding slot; this should usually be avoided.) If there are any unfilled
slots for which no default value is specified, a TypeError exception is
raised. Otherwise, the list of filled slots is used as the argument list for
the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters
do not have names, even if they are ‘named’ for the purpose of documentation,
and which therefore cannot be supplied by keyword. In CPython, this is the
case for functions implemented in C that use PyArg_ParseTuple() to
parse their arguments.

If there are more positional arguments than there are formal parameter slots, a
TypeError exception is raised, unless a formal parameter using the syntax
*identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no
excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a
TypeError exception is raised, unless a formal parameter using the syntax
**identifier is present; in this case, that formal parameter receives a
dictionary containing the excess keyword arguments (using the keywords as keys
and the argument values as corresponding values), or a (new) empty dictionary if
there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must
evaluate to a sequence. Elements from this sequence are treated as if they were
additional positional arguments; if there are positional arguments x1,...,
xN, and expression evaluates to a sequence y1, ..., yM, this is
equivalent to a call with M+N positional arguments x1, ..., xN, y1, ...,
yM.

A consequence of this is that although the *expression syntax may appear
after some keyword arguments, it is processed before the keyword arguments
(and the **expression argument, if any – see below). So:

>>> def f(a, b):
... print a, b
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: f() got multiple values for keyword argument 'a'
>>> f(1, *(2,))
1 2

It is unusual for both keyword arguments and the *expression syntax to be
used in the same call, so in practice this confusion does not arise.

If the syntax **expression appears in the function call, expression must
evaluate to a mapping, the contents of which are treated as additional keyword
arguments. In the case of a keyword appearing in both expression and as an
explicit keyword argument, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be
used as positional argument slots or as keyword argument names. Formal
parameters using the syntax (sublist) cannot be used as keyword argument
names; the outermost sublist corresponds to a single unnamed argument slot, and
the argument value is assigned to the sublist using the usual tuple assignment
rules after all other parameter processing is done.

A call always returns some value, possibly None, unless it raises an
exception. How this value is computed depends on the type of the callable
object.

If it is—

	a user-defined function:

	The code block for the function is executed, passing it the argument list. The
first thing the code block will do is bind the formal parameters to the
arguments; this is described in section Function definitions. When the code block
executes a return statement, this specifies the return value of the
function call.

	a built-in function or method:

	The result is up to the interpreter; see Built-in Functions for the
descriptions of built-in functions and methods.

	a class object:

	A new instance of that class is returned.

	a class instance method:

	The corresponding user-defined function is called, with an argument list that is
one longer than the argument list of the call: the instance becomes the first
argument.

	a class instance:

	The class must define a __call__() method; the effect is then the same as
if that method was called.

5.4. The power operator

The power operator binds more tightly than unary operators on its left; it binds
less tightly than unary operators on its right. The syntax is:

power ::= primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators
are evaluated from right to left (this does not constrain the evaluation order
for the operands): -1**2 results in -1.

The power operator has the same semantics as the built-in pow() function,
when called with two arguments: it yields its left argument raised to the power
of its right argument. The numeric arguments are first converted to a common
type. The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators
apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For
example, 10**2 returns 100, but 10**-2 returns 0.01. (This last
feature was added in Python 2.2. In Python 2.1 and before, if both arguments
were of integer types and the second argument was negative, an exception was
raised).

Raising 0.0 to a negative power results in a ZeroDivisionError.
Raising a negative number to a fractional power results in a ValueError.

5.5. Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument.

The unary + (plus) operator yields its numeric argument unchanged.

The unary ~ (invert) operator yields the bitwise inversion of its plain or
long integer argument. The bitwise inversion of x is defined as
-(x+1). It only applies to integral numbers.

In all three cases, if the argument does not have the proper type, a
TypeError exception is raised.

5.6. Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note
that some of these operations also apply to certain non-numeric types. Apart
from the power operator, there are only two levels, one for multiplicative
operators and one for additive operators:

m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr
 | m_expr "%" u_expr
a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The
arguments must either both be numbers, or one argument must be an integer (plain
or long) and the other must be a sequence. In the former case, the numbers are
converted to a common type and then multiplied together. In the latter case,
sequence repetition is performed; a negative repetition factor yields an empty
sequence.

The / (division) and // (floor division) operators yield the quotient of
their arguments. The numeric arguments are first converted to a common type.
Plain or long integer division yields an integer of the same type; the result is
that of mathematical division with the ‘floor’ function applied to the result.
Division by zero raises the ZeroDivisionError exception.

The % (modulo) operator yields the remainder from the division of the first
argument by the second. The numeric arguments are first converted to a common
type. A zero right argument raises the ZeroDivisionError exception. The
arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34
(since 3.14 equals 4*0.7 + 0.34.) The modulo operator always yields a
result with the same sign as its second operand (or zero); the absolute value of
the result is strictly smaller than the absolute value of the second operand
[2].

The integer division and modulo operators are connected by the following
identity: x == (x/y)*y + (x%y). Integer division and modulo are also
connected with the built-in function divmod(): divmod(x, y) == (x/y,
x%y). These identities don’t hold for floating point numbers; there similar
identities hold approximately where x/y is replaced by floor(x/y) or
floor(x/y) - 1 [3].

In addition to performing the modulo operation on numbers, the % operator is
also overloaded by string and unicode objects to perform string formatting (also
known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section String Formatting Operations.

Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod()
function are no longer defined for complex numbers. Instead, convert to a
floating point number using the abs() function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments
must either both be numbers or both sequences of the same type. In the former
case, the numbers are converted to a common type and then added together. In
the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The
numeric arguments are first converted to a common type.

5.7. Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are
converted to a common type. They shift the first argument to the left or right
by the number of bits given by the second argument.

A right shift by n bits is defined as division by pow(2, n). A left shift
by n bits is defined as multiplication with pow(2, n). Negative shift
counts raise a ValueError exception.

Note

In the current implementation, the right-hand operand is required
to be at most sys.maxsize. If the right-hand operand is larger than
sys.maxsize an OverflowError exception is raised.

5.8. Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr "&" shift_expr
xor_expr ::= and_expr | xor_expr "^" and_expr
or_expr ::= xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain
or long integers. The arguments are converted to a common type.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which
must be plain or long integers. The arguments are converted to a common type.

The | operator yields the bitwise (inclusive) OR of its arguments, which
must be plain or long integers. The arguments are converted to a common type.

5.9. Comparisons

Unlike C, all comparison operations in Python have the same priority, which is
lower than that of any arithmetic, shifting or bitwise operation. Also unlike
C, expressions like a < b < c have the interpretation that is conventional
in mathematics:

comparison ::= or_expr (comp_operator or_expr)*
comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="
 | "is" ["not"] | ["not"] "in"

Comparisons yield boolean values: True or False.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to
x < y and y <= z, except that y is evaluated only once (but in both
cases z is not evaluated at all when x < y is found to be false).

Formally, if a, b, c, ..., y, z are expressions and op1, op2, ...,
opN are comparison operators, then a op1 b op2 c ... y opN z is equivalent
to a op1 b and b op2 c and ... y opN z, except that each expression is
evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and
c, so that, e.g., x < y > z is perfectly legal (though perhaps not
pretty).

The forms <> and != are equivalent; for consistency with C, != is
preferred; where != is mentioned below <> is also accepted. The <>
spelling is considered obsolescent.

The operators <, >, ==, >=, <=, and != compare the
values of two objects. The objects need not have the same type. If both are
numbers, they are converted to a common type. Otherwise, objects of different
types always compare unequal, and are ordered consistently but arbitrarily.
You can control comparison behavior of objects of non-built-in types by defining
a __cmp__ method or rich comparison methods like __gt__, described in
section Special method names.

(This unusual definition of comparison was used to simplify the definition of
operations like sorting and the in and not in operators.
In the future, the comparison rules for objects of different types are likely to
change.)

Comparison of objects of the same type depends on the type:

	Numbers are compared arithmetically.

	Strings are compared lexicographically using the numeric equivalents (the
result of the built-in function ord()) of their characters. Unicode and
8-bit strings are fully interoperable in this behavior. [4]

	Tuples and lists are compared lexicographically using comparison of
corresponding elements. This means that to compare equal, each element must
compare equal and the two sequences must be of the same type and have the same
length.

If not equal, the sequences are ordered the same as their first differing
elements. For example, cmp([1,2,x], [1,2,y]) returns the same as
cmp(x,y). If the corresponding element does not exist, the shorter sequence
is ordered first (for example, [1,2] < [1,2,3]).

	Mappings (dictionaries) compare equal if and only if their sorted (key, value)
lists compare equal. [5] Outcomes other than equality are resolved
consistently, but are not otherwise defined. [6]

	Most other objects of built-in types compare unequal unless they are the same
object; the choice whether one object is considered smaller or larger than
another one is made arbitrarily but consistently within one execution of a
program.

The operators in and not in test for collection
membership. x in s evaluates to true if x is a member of the collection
s, and false otherwise. x not in s returns the negation of x in s.
The collection membership test has traditionally been bound to sequences; an
object is a member of a collection if the collection is a sequence and contains
an element equal to that object. However, it make sense for many other object
types to support membership tests without being a sequence. In particular,
dictionaries (for keys) and sets support membership testing.

For the list and tuple types, x in y is true if and only if there exists an
index i such that x == y[i] is true.

For the Unicode and string types, x in y is true if and only if x is a
substring of y. An equivalent test is y.find(x) != -1. Note, x and y
need not be the same type; consequently, u'ab' in 'abc' will return
True. Empty strings are always considered to be a substring of any other
string, so "" in "abc" will return True.

Changed in version 2.3: Previously, x was required to be a string of length 1.

For user-defined classes which define the __contains__() method, x in
y is true if and only if y.__contains__(x) is true.

For user-defined classes which do not define __contains__() but do define
__iter__(), x in y is true if some value z with x == z is
produced while iterating over y. If an exception is raised during the
iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines
__getitem__(), x in y is true if and only if there is a non-negative
integer index i such that x == y[i], and all lower integer indices do not
raise IndexError exception. (If any other exception is raised, it is as
if in raised that exception).

The operator not in is defined to have the inverse true value of
in.

The operators is and is not test for object identity: x
is y is true if and only if x and y are the same object. x is not y
yields the inverse truth value. [7]

5.10. Boolean operations

or_test ::= and_test | or_test "or" and_test
and_test ::= not_test | and_test "and" not_test
not_test ::= comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by
control flow statements, the following values are interpreted as false:
False, None, numeric zero of all types, and empty strings and containers
(including strings, tuples, lists, dictionaries, sets and frozensets). All
other values are interpreted as true. (See the __nonzero__()
special method for a way to change this.)

The operator not yields True if its argument is false, False
otherwise.

The expression x and y first evaluates x; if x is false, its value is
returned; otherwise, y is evaluated and the resulting value is returned.

The expression x or y first evaluates x; if x is true, its value is
returned; otherwise, y is evaluated and the resulting value is returned.

(Note that neither and nor or restrict the value and type
they return to False and True, but rather return the last evaluated
argument. This is sometimes useful, e.g., if s is a string that should be
replaced by a default value if it is empty, the expression s or 'foo' yields
the desired value. Because not has to invent a value anyway, it does
not bother to return a value of the same type as its argument, so e.g., not
'foo' yields False, not ''.)

5.11. Conditional Expressions

New in version 2.5.

conditional_expression ::= or_test ["if" or_test "else" expression]
expression ::= conditional_expression | lambda_form

Conditional expressions (sometimes called a “ternary operator”) have the lowest
priority of all Python operations.

The expression x if C else y first evaluates the condition, C (not x);
if C is true, x is evaluated and its value is returned; otherwise, y is
evaluated and its value is returned.

See PEP 308 [http://www.python.org/dev/peps/pep-0308] for more details about conditional expressions.

5.12. Lambdas

lambda_form ::= "lambda" [parameter_list]: expression
old_lambda_form ::= "lambda" [parameter_list]: old_expression

Lambda forms (lambda expressions) have the same syntactic position as
expressions. They are a shorthand to create anonymous functions; the expression
lambda arguments: expression yields a function object. The unnamed object
behaves like a function object defined with

def name(arguments):
 return expression

See section Function definitions for the syntax of parameter lists. Note that
functions created with lambda forms cannot contain statements.

5.13. Expression lists

expression_list ::= expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of
the tuple is the number of expressions in the list. The expressions are
evaluated from left to right.

The trailing comma is required only to create a single tuple (a.k.a. a
singleton); it is optional in all other cases. A single expression without a
trailing comma doesn’t create a tuple, but rather yields the value of that
expression. (To create an empty tuple, use an empty pair of parentheses:
().)

5.14. Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an
assignment, the right-hand side is evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of
their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

5.15. Summary

The following table summarizes the operator precedences in Python, from lowest
precedence (least binding) to highest precedence (most binding). Operators in
the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for
comparisons, including tests, which all have the same precedence and chain from
left to right — see section Comparisons — and exponentiation, which
groups from right to left).

	Operator
	Description

	lambda
	Lambda expression

	if – else
	Conditional expression

	or
	Boolean OR

	and
	Boolean AND

	not x
	Boolean NOT

	in, not in,
is, is not, <,
<=, >, >=, <>, !=, ==
	Comparisons, including membership
tests and identity tests,

	|
	Bitwise OR

	^
	Bitwise XOR

	&
	Bitwise AND

	<<, >>
	Shifts

	+, -
	Addition and subtraction

	*, /, //, %
	Multiplication, division, remainder
[8]

	+x, -x, ~x
	Positive, negative, bitwise NOT

	**
	Exponentiation [9]

	x[index], x[index:index],
x(arguments...), x.attribute
	Subscription, slicing,
call, attribute reference

	(expressions...),
[expressions...],
{key:datum...},
`expressions...`
	Binding or tuple display,
list display,
dictionary display,
string conversion

Footnotes

	[1]	In Python 2.3 and later releases, a list comprehension “leaks” the control
variables of each for it contains into the containing scope. However, this
behavior is deprecated, and relying on it will not work in Python 3.0

	[2]	While abs(x%y) < abs(y) is true mathematically, for floats it may not be
true numerically due to roundoff. For example, and assuming a platform on which
a Python float is an IEEE 754 double-precision number, in order that -1e-100 %
1e100 have the same sign as 1e100, the computed result is -1e-100 +
1e100, which is numerically exactly equal to 1e100. The function
math.fmod() returns a result whose sign matches the sign of the
first argument instead, and so returns -1e-100 in this case. Which approach
is more appropriate depends on the application.

	[3]	If x is very close to an exact integer multiple of y, it’s possible for
floor(x/y) to be one larger than (x-x%y)/y due to rounding. In such
cases, Python returns the latter result, in order to preserve that
divmod(x,y)[0] * y + x % y be very close to x.

	[4]	While comparisons between unicode strings make sense at the byte
level, they may be counter-intuitive to users. For example, the
strings u"\u00C7" and u"\u0043\u0327" compare differently,
even though they both represent the same unicode character (LATIN
CAPITAL LETTER C WITH CEDILLA). To compare strings in a human
recognizable way, compare using unicodedata.normalize().

	[5]	The implementation computes this efficiently, without constructing lists or
sorting.

	[6]	Earlier versions of Python used lexicographic comparison of the sorted (key,
value) lists, but this was very expensive for the common case of comparing for
equality. An even earlier version of Python compared dictionaries by identity
only, but this caused surprises because people expected to be able to test a
dictionary for emptiness by comparing it to {}.

	[7]	Due to automatic garbage-collection, free lists, and the dynamic nature of
descriptors, you may notice seemingly unusual behaviour in certain uses of
the is operator, like those involving comparisons between instance
methods, or constants. Check their documentation for more info.

	[8]	The % operator is also used for string formatting; the same
precedence applies.

	[9]	The power operator ** binds less tightly than an arithmetic or
bitwise unary operator on its right, that is, 2**-1 is 0.5.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

6. Simple statements

Simple statements are comprised within a single logical line. Several simple
statements may occur on a single line separated by semicolons. The syntax for
simple statements is:

simple_stmt ::= expression_stmt
 | assert_stmt
 | assignment_stmt
 | augmented_assignment_stmt
 | pass_stmt
 | del_stmt
 | print_stmt
 | return_stmt
 | yield_stmt
 | raise_stmt
 | break_stmt
 | continue_stmt
 | import_stmt
 | global_stmt
 | exec_stmt

6.1. Expression statements

Expression statements are used (mostly interactively) to compute and write a
value, or (usually) to call a procedure (a function that returns no meaningful
result; in Python, procedures return the value None). Other uses of
expression statements are allowed and occasionally useful. The syntax for an
expression statement is:

expression_stmt ::= expression_list

An expression statement evaluates the expression list (which may be a single
expression).

In interactive mode, if the value is not None, it is converted to a string
using the built-in repr() function and the resulting string is written to
standard output (see section The print statement) on a line by itself. (Expression
statements yielding None are not written, so that procedure calls do not
cause any output.)

6.2. Assignment statements

Assignment statements are used to (re)bind names to values and to modify
attributes or items of mutable objects:

assignment_stmt ::= (target_list "=")+ (expression_list | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier
 | "(" target_list ")"
 | "[" target_list "]"
 | attributeref
 | subscription
 | slicing

(See section Primaries for the syntax definitions for the last three
symbols.)

An assignment statement evaluates the expression list (remember that this can be
a single expression or a comma-separated list, the latter yielding a tuple) and
assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list).
When a target is part of a mutable object (an attribute reference, subscription
or slicing), the mutable object must ultimately perform the assignment and
decide about its validity, and may raise an exception if the assignment is
unacceptable. The rules observed by various types and the exceptions raised are
given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list is recursively defined as follows.

	If the target list is a single target: The object is assigned to that target.

	If the target list is a comma-separated list of targets: The object must be an
iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

	If the target is an identifier (name):

	If the name does not occur in a global statement in the current
code block: the name is bound to the object in the current local namespace.

	Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count
for the object previously bound to the name to reach zero, causing the object to
be deallocated and its destructor (if it has one) to be called.

	If the target is a target list enclosed in parentheses or in square brackets:
The object must be an iterable with the same number of items as there are
targets in the target list, and its items are assigned, from left to right,
to the corresponding targets.

	If the target is an attribute reference: The primary expression in the
reference is evaluated. It should yield an object with assignable attributes;
if this is not the case, TypeError is raised. That object is then
asked to assign the assigned object to the given attribute; if it cannot
perform the assignment, it raises an exception (usually but not necessarily
AttributeError).

Note: If the object is a class instance and the attribute reference occurs on
both sides of the assignment operator, the RHS expression, a.x can access
either an instance attribute or (if no instance attribute exists) a class
attribute. The LHS target a.x is always set as an instance attribute,
creating it if necessary. Thus, the two occurrences of a.x do not
necessarily refer to the same attribute: if the RHS expression refers to a
class attribute, the LHS creates a new instance attribute as the target of the
assignment:

class Cls:
 x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as
properties created with property().

	If the target is a subscription: The primary expression in the reference is
evaluated. It should yield either a mutable sequence object (such as a list) or
a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must
yield a plain integer. If it is negative, the sequence’s length is added to it.
The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with
that index. If the index is out of range, IndexError is raised
(assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must
have a type compatible with the mapping’s key type, and the mapping is then
asked to create a key/datum pair which maps the subscript to the assigned
object. This can either replace an existing key/value pair with the same key
value, or insert a new key/value pair (if no key with the same value existed).

	If the target is a slicing: The primary expression in the reference is
evaluated. It should yield a mutable sequence object (such as a list). The
assigned object should be a sequence object of the same type. Next, the lower
and upper bound expressions are evaluated, insofar they are present; defaults
are zero and the sequence’s length. The bounds should evaluate to (small)
integers. If either bound is negative, the sequence’s length is added to it.
The resulting bounds are clipped to lie between zero and the sequence’s length,
inclusive. Finally, the sequence object is asked to replace the slice with the
items of the assigned sequence. The length of the slice may be different from
the length of the assigned sequence, thus changing the length of the target
sequence, if the object allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same
as for expressions, and invalid syntax is rejected during the code generation
phase, causing less detailed error messages.

WARNING: Although the definition of assignment implies that overlaps between the
left-hand side and the right-hand side are ‘safe’ (for example a, b = b, a
swaps two variables), overlaps within the collection of assigned-to variables
are not safe! For instance, the following program prints [0, 2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.2.1. Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary
operation and an assignment statement:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="
 | ">>=" | "<<=" | "&=" | "^=" | "|="

(See section Primaries for the syntax definitions for the last three
symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment
statements, cannot be an unpacking) and the expression list, performs the binary
operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x +
1 to achieve a similar, but not exactly equal effect. In the augmented
version, x is only evaluated once. Also, when possible, the actual operation
is performed in-place, meaning that rather than creating a new object and
assigning that to the target, the old object is modified instead.

With the exception of assigning to tuples and multiple targets in a single
statement, the assignment done by augmented assignment statements is handled the
same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is
the same as the normal binary operations.

For targets which are attribute references, the same caveat about class
and instance attributes applies as for regular assignments.

6.3. The assert statement

Assert statements are a convenient way to insert debugging assertions into a
program:

assert_stmt ::= "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if __debug__:
 if not expression: raise AssertionError

The extended form, assert expression1, expression2, is equivalent to

if __debug__:
 if not expression1: raise AssertionError(expression2)

These equivalences assume that __debug__ and AssertionError refer to
the built-in variables with those names. In the current implementation, the
built-in variable __debug__ is True under normal circumstances,
False when optimization is requested (command line option -O). The current
code generator emits no code for an assert statement when optimization is
requested at compile time. Note that it is unnecessary to include the source
code for the expression that failed in the error message; it will be displayed
as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable
is determined when the interpreter starts.

6.4. The pass statement

pass_stmt ::= "pass"

pass is a null operation — when it is executed, nothing happens.
It is useful as a placeholder when a statement is required syntactically, but no
code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5. The del statement

del_stmt ::= "del" target_list

Deletion is recursively defined very similar to the way assignment is defined.
Rather that spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global
namespace, depending on whether the name occurs in a global statement
in the same code block. If the name is unbound, a NameError exception
will be raised.

It is illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

Deletion of attribute references, subscriptions and slicings is passed to the
primary object involved; deletion of a slicing is in general equivalent to
assignment of an empty slice of the right type (but even this is determined by
the sliced object).

6.6. The print statement

print_stmt ::= "print" ([expression ("," expression)* [","]]
 | ">>" expression [("," expression)+ [","]])

print evaluates each expression in turn and writes the resulting
object to standard output (see below). If an object is not a string, it is
first converted to a string using the rules for string conversions. The
(resulting or original) string is then written. A space is written before each
object is (converted and) written, unless the output system believes it is
positioned at the beginning of a line. This is the case (1) when no characters
have yet been written to standard output, (2) when the last character written to
standard output is a whitespace character except ' ', or (3) when the last
write operation on standard output was not a print statement.
(In some cases it may be functional to write an empty string to standard output
for this reason.)

Note

Objects which act like file objects but which are not the built-in file objects
often do not properly emulate this aspect of the file object’s behavior, so it
is best not to rely on this.

A '\n' character is written at the end, unless the print
statement ends with a comma. This is the only action if the statement contains
just the keyword print.

Standard output is defined as the file object named stdout in the built-in
module sys. If no such object exists, or if it does not have a
write() method, a RuntimeError exception is raised.

print also has an extended form, defined by the second portion of the
syntax described above. This form is sometimes referred to as “print
chevron.” In this form, the first expression after the >> must evaluate to a
“file-like” object, specifically an object that has a write() method as
described above. With this extended form, the subsequent expressions are
printed to this file object. If the first expression evaluates to None,
then sys.stdout is used as the file for output.

6.7. The return statement

return_stmt ::= "return" [expression_list]

return may only occur syntactically nested in a function definition,
not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or
None) as return value.

When return passes control out of a try statement with a
finally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement is not allowed to
include an expression_list. In that context, a bare return
indicates that the generator is done and will cause StopIteration to be
raised.

6.8. The yield statement

yield_stmt ::= yield_expression

The yield statement is only used when defining a generator function,
and is only used in the body of the generator function. Using a yield
statement in a function definition is sufficient to cause that definition to
create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator
iterator, or more commonly, a generator. The body of the generator function is
executed by calling the generator’s next() method repeatedly until it
raises an exception.

When a yield statement is executed, the state of the generator is
frozen and the value of expression_list is returned to next()‘s
caller. By “frozen” we mean that all local state is retained, including the
current bindings of local variables, the instruction pointer, and the internal
evaluation stack: enough information is saved so that the next time next()
is invoked, the function can proceed exactly as if the yield
statement were just another external call.

As of Python version 2.5, the yield statement is now allowed in the
try clause of a try ... finally construct. If
the generator is not resumed before it is finalized (by reaching a zero
reference count or by being garbage collected), the generator-iterator’s
close() method will be called, allowing any pending finally
clauses to execute.

Note

In Python 2.2, the yield statement was only allowed when the
generators feature has been enabled. This __future__
import statement was used to enable the feature:

from __future__ import generators

See also

	PEP 0255 [http://www.python.org/dev/peps/pep-0255] - Simple Generators

	The proposal for adding generators and the yield statement to Python.

	PEP 0342 [http://www.python.org/dev/peps/pep-0342] - Coroutines via Enhanced Generators

	The proposal that, among other generator enhancements, proposed allowing
yield to appear inside a try ... finally block.

6.9. The raise statement

raise_stmt ::= "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last exception
that was active in the current scope. If no exception is active in the current
scope, a TypeError exception is raised indicating that this is an error
(if running under IDLE, a Queue.Empty exception is raised instead).

Otherwise, raise evaluates the expressions to get three objects,
using None as the value of omitted expressions. The first two objects are
used to determine the type and value of the exception.

If the first object is an instance, the type of the exception is the class of
the instance, the instance itself is the value, and the second object must be
None.

If the first object is a class, it becomes the type of the exception. The second
object is used to determine the exception value: If it is an instance of the
class, the instance becomes the exception value. If the second object is a
tuple, it is used as the argument list for the class constructor; if it is
None, an empty argument list is used, and any other object is treated as a
single argument to the constructor. The instance so created by calling the
constructor is used as the exception value.

If a third object is present and not None, it must be a traceback object
(see section The standard type hierarchy), and it is substituted instead of the current
location as the place where the exception occurred. If the third object is
present and not a traceback object or None, a TypeError exception is
raised. The three-expression form of raise is useful to re-raise an
exception transparently in an except clause, but raise with no
expressions should be preferred if the exception to be re-raised was the most
recently active exception in the current scope.

Additional information on exceptions can be found in section Exceptions,
and information about handling exceptions is in section The try statement.

6.10. The break statement

break_stmt ::= "break"

break may only occur syntactically nested in a for or
while loop, but not nested in a function or class definition within
that loop.

It terminates the nearest enclosing loop, skipping the optional else
clause if the loop has one.

If a for loop is terminated by break, the loop control
target keeps its current value.

When break passes control out of a try statement with a
finally clause, that finally clause is executed before
really leaving the loop.

6.11. The continue statement

continue_stmt ::= "continue"

continue may only occur syntactically nested in a for or
while loop, but not nested in a function or class definition or
finally clause within that loop. It continues with the next
cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a
finally clause, that finally clause is executed before
really starting the next loop cycle.

6.12. The import statement

import_stmt ::= "import" module ["as" name] ("," module ["as" name])*
 | "from" relative_module "import" identifier ["as" name]
 ("," identifier ["as" name])*
 | "from" relative_module "import" "(" identifier ["as" name]
 ("," identifier ["as" name])* [","] ")"
 | "from" module "import" "*"
module ::= (identifier ".")* identifier
relative_module ::= "."* module | "."+
name ::= identifier

Import statements are executed in two steps: (1) find a module, and initialize
it if necessary; (2) define a name or names in the local namespace (of the scope
where the import statement occurs). The statement comes in two
forms differing on whether it uses the from keyword. The first form
(without from) repeats these steps for each identifier in the list.
The form with from performs step (1) once, and then performs step
(2) repeatedly.

To understand how step (1) occurs, one must first understand how Python handles
hierarchical naming of modules. To help organize modules and provide a
hierarchy in naming, Python has a concept of packages. A package can contain
other packages and modules while modules cannot contain other modules or
packages. From a file system perspective, packages are directories and modules
are files. The original specification for packages [http://www.python.org/doc/essays/packages.html] is still available to read,
although minor details have changed since the writing of that document.

Once the name of the module is known (unless otherwise specified, the term
“module” will refer to both packages and modules), searching
for the module or package can begin. The first place checked is
sys.modules, the cache of all modules that have been imported
previously. If the module is found there then it is used in step (2) of import.

If the module is not found in the cache, then sys.meta_path is searched
(the specification for sys.meta_path can be found in PEP 302 [http://www.python.org/dev/peps/pep-0302]).
The object is a list of finder objects which are queried in order as to
whether they know how to load the module by calling their find_module()
method with the name of the module. If the module happens to be contained
within a package (as denoted by the existence of a dot in the name), then a
second argument to find_module() is given as the value of the
__path__ attribute from the parent package (everything up to the last
dot in the name of the module being imported). If a finder can find the module
it returns a loader (discussed later) or returns None.

If none of the finders on sys.meta_path are able to find the module
then some implicitly defined finders are queried. Implementations of Python
vary in what implicit meta path finders are defined. The one they all do
define, though, is one that handles sys.path_hooks,
sys.path_importer_cache, and sys.path.

The implicit finder searches for the requested module in the “paths” specified
in one of two places (“paths” do not have to be file system paths). If the
module being imported is supposed to be contained within a package then the
second argument passed to find_module(), __path__ on the parent
package, is used as the source of paths. If the module is not contained in a
package then sys.path is used as the source of paths.

Once the source of paths is chosen it is iterated over to find a finder that
can handle that path. The dict at sys.path_importer_cache caches
finders for paths and is checked for a finder. If the path does not have a
finder cached then sys.path_hooks is searched by calling each object in
the list with a single argument of the path, returning a finder or raises
ImportError. If a finder is returned then it is cached in
sys.path_importer_cache and then used for that path entry. If no finder
can be found but the path exists then a value of None is
stored in sys.path_importer_cache to signify that an implicit,
file-based finder that handles modules stored as individual files should be
used for that path. If the path does not exist then a finder which always
returns None is placed in the cache for the path.

If no finder can find the module then ImportError is raised. Otherwise
some finder returned a loader whose load_module() method is called with
the name of the module to load (see PEP 302 [http://www.python.org/dev/peps/pep-0302] for the original definition of
loaders). A loader has several responsibilities to perform on a module it
loads. First, if the module already exists in sys.modules (a
possibility if the loader is called outside of the import machinery) then it
is to use that module for initialization and not a new module. But if the
module does not exist in sys.modules then it is to be added to that
dict before initialization begins. If an error occurs during loading of the
module and it was added to sys.modules it is to be removed from the
dict. If an error occurs but the module was already in sys.modules it
is left in the dict.

The loader must set several attributes on the module. __name__ is to be
set to the name of the module. __file__ is to be the “path” to the file
unless the module is built-in (and thus listed in
sys.builtin_module_names) in which case the attribute is not set.
If what is being imported is a package then __path__ is to be set to a
list of paths to be searched when looking for modules and packages contained
within the package being imported. __package__ is optional but should
be set to the name of package that contains the module or package (the empty
string is used for module not contained in a package). __loader__ is
also optional but should be set to the loader object that is loading the
module.

If an error occurs during loading then the loader raises ImportError if
some other exception is not already being propagated. Otherwise the loader
returns the module that was loaded and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form of import statement binds the module name in the local
namespace to the module object, and then goes on to import the next identifier,
if any. If the module name is followed by as, the name following
as is used as the local name for the module.

The from form does not bind the module name: it goes through the list
of identifiers, looks each one of them up in the module found in step (1), and
binds the name in the local namespace to the object thus found. As with the
first form of import, an alternate local name can be supplied by
specifying “as localname”. If a name is not found,
ImportError is raised. If the list of identifiers is replaced by a star
('*'), all public names defined in the module are bound in the local
namespace of the import statement..

The public names defined by a module are determined by checking the module’s
namespace for a variable named __all__; if defined, it must be a sequence of
strings which are names defined or imported by that module. The names given in
__all__ are all considered public and are required to exist. If __all__
is not defined, the set of public names includes all names found in the module’s
namespace which do not begin with an underscore character ('_').
__all__ should contain the entire public API. It is intended to avoid
accidentally exporting items that are not part of the API (such as library
modules which were imported and used within the module).

The from form with * may only occur in a module scope. If the
wild card form of import — import * — is used in a function and the
function contains or is a nested block with free variables, the compiler will
raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute
name of the module. When a module or package is contained within another
package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the
specified module or package after from you can specify how high to
traverse up the current package hierarchy without specifying exact names. One
leading dot means the current package where the module making the import
exists. Two dots means up one package level. Three dots is up two levels, etc.
So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg.mod. If you execute from ..subpkg2
import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod.
The specification for relative imports is contained within PEP 328 [http://www.python.org/dev/peps/pep-0328].

importlib.import_module() is provided to support applications that
determine which modules need to be loaded dynamically.

6.12.1. Future statements

A future statement is a directive to the compiler that a particular
module should be compiled using syntax or semantics that will be available in a
specified future release of Python. The future statement is intended to ease
migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before
the release in which the feature becomes standard.

future_statement ::= "from" "__future__" "import" feature ["as" name]
 ("," feature ["as" name])*
 | "from" "__future__" "import" "(" feature ["as" name]
 ("," feature ["as" name])* [","] ")"
feature ::= identifier
name ::= identifier

A future statement must appear near the top of the module. The only lines that
can appear before a future statement are:

	the module docstring (if any),

	comments,

	blank lines, and

	other future statements.

The features recognized by Python 2.6 are unicode_literals,
print_function, absolute_import, division, generators,
nested_scopes and with_statement. generators, with_statement,
nested_scopes are redundant in Python version 2.6 and above because they are
always enabled.

A future statement is recognized and treated specially at compile time: Changes
to the semantics of core constructs are often implemented by generating
different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler
may need to parse the module differently. Such decisions cannot be pushed off
until runtime.

For any given release, the compiler knows which feature names have been defined,
and raises a compile-time error if a future statement contains a feature not
known to it.

The direct runtime semantics are the same as for any import statement: there is
a standard module __future__, described later, and it will be imported in
the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the
future statement.

Note that there is nothing special about the statement:

import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no
special semantics or syntax restrictions.

Code compiled by an exec statement or calls to the built-in functions
compile() and execfile() that occur in a module M containing
a future statement will, by default, use the new syntax or semantics associated
with the future statement. This can, starting with Python 2.2 be controlled by
optional arguments to compile() — see the documentation of that function
for details.

A future statement typed at an interactive interpreter prompt will take effect
for the rest of the interpreter session. If an interpreter is started with the
-i option, is passed a script name to execute, and the script includes
a future statement, it will be in effect in the interactive session started
after the script is executed.

See also

	PEP 236 [http://www.python.org/dev/peps/pep-0236] - Back to the __future__

	The original proposal for the __future__ mechanism.

6.13. The global statement

global_stmt ::= "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire
current code block. It means that the listed identifiers are to be interpreted
as globals. It would be impossible to assign to a global variable without
global, although free variables may refer to globals without being
declared global.

Names listed in a global statement must not be used in the same code
block textually preceding that global statement.

Names listed in a global statement must not be defined as formal
parameters or in a for loop control target, class
definition, function definition, or import statement.

CPython implementation detail: The current implementation does not enforce the latter two restrictions, but
programs should not abuse this freedom, as future implementations may enforce
them or silently change the meaning of the program.

Programmer’s note: the global is a directive to the parser. It
applies only to code parsed at the same time as the global statement.
In particular, a global statement contained in an exec
statement does not affect the code block containing the exec
statement, and code contained in an exec statement is unaffected by
global statements in the code containing the exec
statement. The same applies to the eval(), execfile() and
compile() functions.

6.14. The exec statement

exec_stmt ::= "exec" or_expr ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression
should evaluate to either a string, an open file object, or a code object. If
it is a string, the string is parsed as a suite of Python statements which is
then executed (unless a syntax error occurs). [1] If it is an open file, the file
is parsed until EOF and executed. If it is a code object, it is simply
executed. In all cases, the code that’s executed is expected to be valid as
file input (see section File input). Be aware that the
return and yield statements may not be used outside of
function definitions even within the context of code passed to the
exec statement.

In all cases, if the optional parts are omitted, the code is executed in the
current scope. If only the first expression after in is specified,
it should be a dictionary, which will be used for both the global and the local
variables. If two expressions are given, they are used for the global and local
variables, respectively. If provided, locals can be any mapping object.

Changed in version 2.4: Formerly, locals was required to be a dictionary.

As a side effect, an implementation may insert additional keys into the
dictionaries given besides those corresponding to variable names set by the
executed code. For example, the current implementation may add a reference to
the dictionary of the built-in module __builtin__ under the key
__builtins__ (!).

Programmer’s hints: dynamic evaluation of expressions is supported by the
built-in function eval(). The built-in functions globals() and
locals() return the current global and local dictionary, respectively,
which may be useful to pass around for use by exec.

Footnotes

	[1]	Note that the parser only accepts the Unix-style end of line convention.
If you are reading the code from a file, make sure to use universal
newline mode to convert Windows or Mac-style newlines.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

7. Compound statements

Compound statements contain (groups of) other statements; they affect or control
the execution of those other statements in some way. In general, compound
statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

The if, while and for statements implement
traditional control flow constructs. try specifies exception
handlers and/or cleanup code for a group of statements. Function and class
definitions are also syntactically compound statements.

Compound statements consist of one or more ‘clauses.’ A clause consists of a
header and a ‘suite.’ The clause headers of a particular compound statement are
all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements
controlled by a clause. A suite can be one or more semicolon-separated simple
statements on the same line as the header, following the header’s colon, or it
can be one or more indented statements on subsequent lines. Only the latter
form of suite can contain nested compound statements; the following is illegal,
mostly because it wouldn’t be clear to which if clause a following
else clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so
that in the following example, either all or none of the print
statements are executed:

if x < y < z: print x; print y; print z

Summarizing:

compound_stmt ::= if_stmt
 | while_stmt
 | for_stmt
 | try_stmt
 | with_stmt
 | funcdef
 | classdef
 | decorated
suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt
stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a
DEDENT. Also note that optional continuation clauses always begin with a
keyword that cannot start a statement, thus there are no ambiguities (the
‘dangling else‘ problem is solved in Python by requiring nested
if statements to be indented).

The formatting of the grammar rules in the following sections places each clause
on a separate line for clarity.

7.1. The if statement

The if statement is used for conditional execution:

if_stmt ::= "if" expression ":" suite
 ("elif" expression ":" suite)*
 ["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one
until one is found to be true (see section Boolean operations for the definition of
true and false); then that suite is executed (and no other part of the
if statement is executed or evaluated). If all expressions are
false, the suite of the else clause, if present, is executed.

7.2. The while statement

The while statement is used for repeated execution as long as an
expression is true:

while_stmt ::= "while" expression ":" suite
 ["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first
suite; if the expression is false (which may be the first time it is tested) the
suite of the else clause, if present, is executed and the loop
terminates.

A break statement executed in the first suite terminates the loop
without executing the else clause’s suite. A continue
statement executed in the first suite skips the rest of the suite and goes back
to testing the expression.

7.3. The for statement

The for statement is used to iterate over the elements of a sequence
(such as a string, tuple or list) or other iterable object:

for_stmt ::= "for" target_list "in" expression_list ":" suite
 ["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An
iterator is created for the result of the expression_list. The suite is
then executed once for each item provided by the iterator, in the order of
ascending indices. Each item in turn is assigned to the target list using the
standard rules for assignments, and then the suite is executed. When the items
are exhausted (which is immediately when the sequence is empty), the suite in
the else clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop
without executing the else clause’s suite. A continue
statement executed in the first suite skips the rest of the suite and continues
with the next item, or with the else clause if there was no next
item.

The suite may assign to the variable(s) in the target list; this does not affect
the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is
empty, it will not have been assigned to at all by the loop. Hint: the built-in
function range() returns a sequence of integers suitable to emulate the
effect of Pascal’s for i := a to b do; e.g., range(3) returns the list
[0, 1, 2].

Note

There is a subtlety when the sequence is being modified by the loop (this can
only occur for mutable sequences, i.e. lists). An internal counter is used to
keep track of which item is used next, and this is incremented on each
iteration. When this counter has reached the length of the sequence the loop
terminates. This means that if the suite deletes the current (or a previous)
item from the sequence, the next item will be skipped (since it gets the index
of the current item which has already been treated). Likewise, if the suite
inserts an item in the sequence before the current item, the current item will
be treated again the next time through the loop. This can lead to nasty bugs
that can be avoided by making a temporary copy using a slice of the whole
sequence, e.g.,

for x in a[:]:
 if x < 0: a.remove(x)

7.4. The try statement

The try statement specifies exception handlers and/or cleanup code
for a group of statements:

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= "try" ":" suite
 ("except" [expression [("as" | ",") target]] ":" suite)+
 ["else" ":" suite]
 ["finally" ":" suite]
try2_stmt ::= "try" ":" suite
 "finally" ":" suite

Changed in version 2.5: In previous versions of Python, try...except...finally did not work. try...except had to be
nested in try...finally.

The except clause(s) specify one or more exception handlers. When no
exception occurs in the try clause, no exception handler is executed.
When an exception occurs in the try suite, a search for an exception
handler is started. This search inspects the except clauses in turn until one
is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an
expression, that expression is evaluated, and the clause matches the exception
if the resulting object is “compatible” with the exception. An object is
compatible with an exception if it is the class or a base class of the exception
object, a tuple containing an item compatible with the exception, or, in the
(deprecated) case of string exceptions, is the raised string itself (note that
the object identities must match, i.e. it must be the same string object, not
just a string with the same value).

If no except clause matches the exception, the search for an exception handler
continues in the surrounding code and on the invocation stack. [1]

If the evaluation of an expression in the header of an except clause raises an
exception, the original search for a handler is canceled and a search starts for
the new exception in the surrounding code and on the call stack (it is treated
as if the entire try statement raised the exception).

When a matching except clause is found, the exception is assigned to the target
specified in that except clause, if present, and the except clause’s suite is
executed. All except clauses must have an executable block. When the end of
this block is reached, execution continues normally after the entire try
statement. (This means that if two nested handlers exist for the same
exception, and the exception occurs in the try clause of the inner handler, the
outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are
assigned to three variables in the sys module: sys.exc_type receives
the object identifying the exception; sys.exc_value receives the exception’s
parameter; sys.exc_traceback receives a traceback object (see section
The standard type hierarchy) identifying the point in the program where the exception
occurred. These details are also available through the sys.exc_info()
function, which returns a tuple (exc_type, exc_value, exc_traceback). Use
of the corresponding variables is deprecated in favor of this function, since
their use is unsafe in a threaded program. As of Python 1.5, the variables are
restored to their previous values (before the call) when returning from a
function that handled an exception.

The optional else clause is executed if and when control flows off
the end of the try clause. [2] Exceptions in the else
clause are not handled by the preceding except clauses.

If finally is present, it specifies a ‘cleanup’ handler. The
try clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is
not handled, the exception is temporarily saved. The finally clause
is executed. If there is a saved exception, it is re-raised at the end of the
finally clause. If the finally clause raises another
exception or executes a return or break statement, the
saved exception is lost. The exception information is not available to the
program during execution of the finally clause.

When a return, break or continue statement is
executed in the try suite of a try...finally
statement, the finally clause is also executed ‘on the way out.’ A
continue statement is illegal in the finally clause. (The
reason is a problem with the current implementation — this restriction may be
lifted in the future).

Additional information on exceptions can be found in section Exceptions,
and information on using the raise statement to generate exceptions
may be found in section The raise statement.

7.5. The with statement

New in version 2.5.

The with statement is used to wrap the execution of a block with
methods defined by a context manager (see section With Statement Context Managers). This
allows common try...except...finally usage
patterns to be encapsulated for convenient reuse.

with_stmt ::= "with" with_item ("," with_item)* ":" suite
with_item ::= expression ["as" target]

The execution of the with statement with one “item” proceeds as follows:

	The context expression (the expression given in the with_item) is
evaluated to obtain a context manager.

	The context manager’s __exit__() is loaded for later use.

	The context manager’s __enter__() method is invoked.

	If a target was included in the with statement, the return value
from __enter__() is assigned to it.

Note

The with statement guarantees that if the __enter__() method
returns without an error, then __exit__() will always be called. Thus, if
an error occurs during the assignment to the target list, it will be treated the
same as an error occurring within the suite would be. See step 6 below.

	The suite is executed.

	The context manager’s __exit__() method is invoked. If an exception
caused the suite to be exited, its type, value, and traceback are passed as
arguments to __exit__(). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value from the
__exit__() method was false, the exception is reraised. If the return
value was true, the exception is suppressed, and execution continues with the
statement following the with statement.

If the suite was exited for any reason other than an exception, the return value
from __exit__() is ignored, and execution proceeds at the normal location
for the kind of exit that was taken.

With more than one item, the context managers are processed as if multiple
with statements were nested:

with A() as a, B() as b:
 suite

is equivalent to

with A() as a:
 with B() as b:
 suite

Note

In Python 2.5, the with statement is only allowed when the
with_statement feature has been enabled. It is always enabled in
Python 2.6.

Changed in version 2.7: Support for multiple context expressions.

See also

	PEP 0343 [http://www.python.org/dev/peps/pep-0343] - The “with” statement

	The specification, background, and examples for the Python with
statement.

7.6. Function definitions

A function definition defines a user-defined function object (see section
The standard type hierarchy):

decorated ::= decorators (classdef | funcdef)
decorators ::= decorator+
decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE
funcdef ::= "def" funcname "(" [parameter_list] ")" ":" suite
dotted_name ::= identifier ("." identifier)*
parameter_list ::= (defparameter ",")*
 ("*" identifier [, "**" identifier]
 | "**" identifier
 | defparameter [","])
defparameter ::= parameter ["=" expression]
sublist ::= parameter ("," parameter)* [","]
parameter ::= identifier | "(" sublist ")"
funcname ::= identifier

A function definition is an executable statement. Its execution binds the
function name in the current local namespace to a function object (a wrapper
around the executable code for the function). This function object contains a
reference to the current global namespace as the global namespace to be used
when the function is called.

The function definition does not execute the function body; this gets executed
only when the function is called. [3]

A function definition may be wrapped by one or more decorator expressions.
Decorator expressions are evaluated when the function is defined, in the scope
that contains the function definition. The result must be a callable, which is
invoked with the function object as the only argument. The returned value is
bound to the function name instead of the function object. Multiple decorators
are applied in nested fashion. For example, the following code:

@f1(arg)
@f2
def func(): pass

is equivalent to:

def func(): pass
func = f1(arg)(f2(func))

When one or more top-level parameters have the form parameter =
expression, the function is said to have “default parameter values.” For a
parameter with a default value, the corresponding argument may be omitted from a
call, in which case the parameter’s default value is substituted. If a
parameter has a default value, all following parameters must also have a default
value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is
executed. This means that the expression is evaluated once, when the function
is defined, and that that same “pre-computed” value is used for each call. This
is especially important to understand when a default parameter is a mutable
object, such as a list or a dictionary: if the function modifies the object
(e.g. by appending an item to a list), the default value is in effect modified.
This is generally not what was intended. A way around this is to use None
as the default, and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None):
 if penguin is None:
 penguin = []
 penguin.append("property of the zoo")
 return penguin

Function call semantics are described in more detail in section Calls. A
function call always assigns values to all parameters mentioned in the parameter
list, either from position arguments, from keyword arguments, or from default
values. If the form “*identifier” is present, it is initialized to a tuple
receiving any excess positional parameters, defaulting to the empty tuple. If
the form “**identifier” is present, it is initialized to a new dictionary
receiving any excess keyword arguments, defaulting to a new empty dictionary.

It is also possible to create anonymous functions (functions not bound to a
name), for immediate use in expressions. This uses lambda forms, described in
section Lambdas. Note that the lambda form is merely a shorthand for a
simplified function definition; a function defined in a “def”
statement can be passed around or assigned to another name just like a function
defined by a lambda form. The “def” form is actually more powerful
since it allows the execution of multiple statements.

Programmer’s note: Functions are first-class objects. A “def” form
executed inside a function definition defines a local function that can be
returned or passed around. Free variables used in the nested function can
access the local variables of the function containing the def. See section
Naming and binding for details.

7.7. Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= "class" classname [inheritance] ":" suite
inheritance ::= "(" [expression_list] ")"
classname ::= identifier

A class definition is an executable statement. It first evaluates the
inheritance list, if present. Each item in the inheritance list should evaluate
to a class object or class type which allows subclassing. The class’s suite is
then executed in a new execution frame (see section Naming and binding), using a
newly created local namespace and the original global namespace. (Usually, the
suite contains only function definitions.) When the class’s suite finishes
execution, its execution frame is discarded but its local namespace is
saved. [4] A class object is then created using the inheritance list for the
base classes and the saved local namespace for the attribute dictionary. The
class name is bound to this class object in the original local namespace.

Programmer’s note: Variables defined in the class definition are class
variables; they are shared by all instances. To create instance variables, they
can be set in a method with self.name = value. Both class and instance
variables are accessible through the notation “self.name”, and an instance
variable hides a class variable with the same name when accessed in this way.
Class variables can be used as defaults for instance variables, but using
mutable values there can lead to unexpected results. For new-style
classes, descriptors can be used to create instance variables with different
implementation details.

Class definitions, like function definitions, may be wrapped by one or more
decorator expressions. The evaluation rules for the decorator
expressions are the same as for functions. The result must be a class object,
which is then bound to the class name.

Footnotes

	[1]	The exception is propagated to the invocation stack only if there is no
finally clause that negates the exception.

	[2]	Currently, control “flows off the end” except in the case of an exception or the
execution of a return, continue, or break
statement.

	[3]	A string literal appearing as the first statement in the function body is
transformed into the function’s __doc__ attribute and therefore the
function’s docstring.

	[4]	A string literal appearing as the first statement in the class body is
transformed into the namespace’s __doc__ item and therefore the class’s
docstring.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

8. Top-level components

The Python interpreter can get its input from a number of sources: from a script
passed to it as standard input or as program argument, typed in interactively,
from a module source file, etc. This chapter gives the syntax used in these
cases.

8.1. Complete Python programs

While a language specification need not prescribe how the language interpreter
is invoked, it is useful to have a notion of a complete Python program. A
complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized,
except for sys (various system services), __builtin__ (built-in
functions, exceptions and None) and __main__. The latter is used to
provide the local and global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in
the next section.

The interpreter may also be invoked in interactive mode; in this case, it does
not read and execute a complete program but reads and executes one statement
(possibly compound) at a time. The initial environment is identical to that of
a complete program; each statement is executed in the namespace of
__main__.

Under Unix, a complete program can be passed to the interpreter in three forms:
with the -c string command line option, as a file passed as the
first command line argument, or as standard input. If the file or standard input
is a tty device, the interpreter enters interactive mode; otherwise, it executes
the file as a complete program.

8.2. File input

All input read from non-interactive files has the same form:

file_input ::= (NEWLINE | statement)*

This syntax is used in the following situations:

	when parsing a complete Python program (from a file or from a string);

	when parsing a module;

	when parsing a string passed to the exec statement;

8.3. Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in
interactive mode; this is needed to help the parser detect the end of the input.

8.4. Expression input

There are two forms of expression input. Both ignore leading whitespace. The
string argument to eval() must have the following form:

eval_input ::= expression_list NEWLINE*

The input line read by input() must have the following form:

input_input ::= expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in
function raw_input() or the readline() method of file objects.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Language Reference

9. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used
to parse Python source files:

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

The Python Standard Library

	Release:	2.7

	Date:	November 07, 2013

While The Python Language Reference describes the exact syntax and
semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also
describes some of the optional components that are commonly included
in Python distributions.

Python’s standard library is very extensive, offering a wide range of
facilities as indicated by the long table of contents listed below. The
library contains built-in modules (written in C) that provide access to
system functionality such as file I/O that would otherwise be
inaccessible to Python programmers, as well as modules written in Python
that provide standardized solutions for many problems that occur in
everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes
the entire standard library and often also include many additional
components. For Unix-like operating systems Python is normally provided
as a collection of packages, so it may be necessary to use the packaging
tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is a growing collection of
several thousand components (from individual programs and modules to
packages and entire application development frameworks), available from
the Python Package Index [http://pypi.python.org/pypi].

	1. Introduction

	2. Built-in Functions

	3. Non-essential Built-in Functions

	4. Built-in Constants
	4.1. Constants added by the site module

	5. Built-in Types
	5.1. Truth Value Testing

	5.2. Boolean Operations — and, or, not

	5.3. Comparisons

	5.4. Numeric Types — int, float, long, complex

	5.5. Iterator Types

	5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange

	5.7. Set Types — set, frozenset

	5.8. Mapping Types — dict

	5.9. File Objects

	5.10. memoryview type

	5.11. Context Manager Types

	5.12. Other Built-in Types

	5.13. Special Attributes

	6. Built-in Exceptions
	6.1. Exception hierarchy

	7. String Services
	7.1. string — Common string operations

	7.2. re — Regular expression operations

	7.3. struct — Interpret strings as packed binary data

	7.4. difflib — Helpers for computing deltas

	7.5. StringIO — Read and write strings as files

	7.6. cStringIO — Faster version of StringIO

	7.7. textwrap — Text wrapping and filling

	7.8. codecs — Codec registry and base classes

	7.9. unicodedata — Unicode Database

	7.10. stringprep — Internet String Preparation

	7.11. fpformat — Floating point conversions

	8. Data Types
	8.1. datetime — Basic date and time types

	8.2. calendar — General calendar-related functions

	8.3. collections — High-performance container datatypes

	8.4. heapq — Heap queue algorithm

	8.5. bisect — Array bisection algorithm

	8.6. array — Efficient arrays of numeric values

	8.7. sets — Unordered collections of unique elements

	8.8. sched — Event scheduler

	8.9. mutex — Mutual exclusion support

	8.10. queue — A synchronized queue class

	8.11. weakref — Weak references

	8.12. UserDict — Class wrapper for dictionary objects

	8.13. UserList — Class wrapper for list objects

	8.14. UserString — Class wrapper for string objects

	8.15. types — Names for built-in types

	8.16. new — Creation of runtime internal objects

	8.17. copy — Shallow and deep copy operations

	8.18. pprint — Data pretty printer

	8.19. repr — Alternate repr() implementation

	9. Numeric and Mathematical Modules
	9.1. numbers — Numeric abstract base classes

	9.2. math — Mathematical functions

	9.3. cmath — Mathematical functions for complex numbers

	9.4. decimal — Decimal fixed point and floating point arithmetic

	9.5. fractions — Rational numbers

	9.6. random — Generate pseudo-random numbers

	9.7. itertools — Functions creating iterators for efficient looping

	9.8. functools — Higher order functions and operations on callable objects

	9.9. operator — Standard operators as functions

	10. File and Directory Access
	10.1. os.path — Common pathname manipulations

	10.2. fileinput — Iterate over lines from multiple input streams

	10.3. stat — Interpreting stat() results

	10.4. statvfs — Constants used with os.statvfs()

	10.5. filecmp — File and Directory Comparisons

	10.6. tempfile — Generate temporary files and directories

	10.7. glob — Unix style pathname pattern expansion

	10.8. fnmatch — Unix filename pattern matching

	10.9. linecache — Random access to text lines

	10.10. shutil — High-level file operations

	10.11. dircache — Cached directory listings

	10.12. macpath — Mac OS 9 path manipulation functions

	11. Data Persistence
	11.1. pickle — Python object serialization

	11.2. cPickle — A faster pickle

	11.3. copy_reg — Register pickle support functions

	11.4. shelve — Python object persistence

	11.5. marshal — Internal Python object serialization

	11.6. anydbm — Generic access to DBM-style databases

	11.7. whichdb — Guess which DBM module created a database

	11.8. dbm — Simple “database” interface

	11.9. gdbm — GNU’s reinterpretation of dbm

	11.10. dbhash — DBM-style interface to the BSD database library

	11.11. bsddb — Interface to Berkeley DB library

	11.12. dumbdbm — Portable DBM implementation

	11.13. sqlite3 — DB-API 2.0 interface for SQLite databases

	12. Data Compression and Archiving
	12.1. zlib — Compression compatible with gzip

	12.2. gzip — Support for gzip files

	12.3. bz2 — Compression compatible with bzip2

	12.4. zipfile — Work with ZIP archives

	12.5. tarfile — Read and write tar archive files

	13. File Formats
	13.1. csv — CSV File Reading and Writing

	13.2. ConfigParser — Configuration file parser

	13.3. robotparser — Parser for robots.txt

	13.4. netrc — netrc file processing

	13.5. xdrlib — Encode and decode XDR data

	13.6. plistlib — Generate and parse Mac OS X .plist files

	14. Cryptographic Services
	14.1. hashlib — Secure hashes and message digests

	14.2. hmac — Keyed-Hashing for Message Authentication

	14.3. md5 — MD5 message digest algorithm

	14.4. sha — SHA-1 message digest algorithm

	15. Generic Operating System Services
	15.1. os — Miscellaneous operating system interfaces

	15.2. io — Core tools for working with streams

	15.3. time — Time access and conversions

	15.4. argparse — Parser for command-line options, arguments and sub-commands

	15.5. optparse — Parser for command line options

	15.6. getopt — C-style parser for command line options

	15.7. logging — Logging facility for Python

	15.8. logging.config — Logging configuration

	15.9. logging.handlers — Logging handlers

	15.10. getpass — Portable password input

	15.11. curses — Terminal handling for character-cell displays

	15.12. curses.textpad — Text input widget for curses programs

	15.13. curses.wrapper — Terminal handler for curses programs

	15.14. curses.ascii — Utilities for ASCII characters

	15.15. curses.panel — A panel stack extension for curses

	15.16. platform — Access to underlying platform’s identifying data

	15.17. errno — Standard errno system symbols

	15.18. ctypes — A foreign function library for Python

	16. Optional Operating System Services
	16.1. select — Waiting for I/O completion

	16.2. threading — Higher-level threading interface

	16.3. thread — Multiple threads of control

	16.4. dummy_threading — Drop-in replacement for the threading module

	16.5. dummy_thread — Drop-in replacement for the thread module

	16.6. multiprocessing — Process-based “threading” interface

	16.7. mmap — Memory-mapped file support

	16.8. readline — GNU readline interface

	16.9. rlcompleter — Completion function for GNU readline

	17. Interprocess Communication and Networking
	17.1. subprocess — Subprocess management

	17.2. socket — Low-level networking interface

	17.3. ssl — TLS/SSL wrapper for socket objects

	17.4. signal — Set handlers for asynchronous events

	17.5. popen2 — Subprocesses with accessible I/O streams

	17.6. asyncore — Asynchronous socket handler

	17.7. asynchat — Asynchronous socket command/response handler

	18. Internet Data Handling
	18.1. email — An email and MIME handling package

	18.2. json — JSON encoder and decoder

	18.3. mailcap — Mailcap file handling

	18.4. mailbox — Manipulate mailboxes in various formats

	18.5. mhlib — Access to MH mailboxes

	18.6. mimetools — Tools for parsing MIME messages

	18.7. mimetypes — Map filenames to MIME types

	18.8. MimeWriter — Generic MIME file writer

	18.9. mimify — MIME processing of mail messages

	18.10. multifile — Support for files containing distinct parts

	18.11. rfc822 — Parse RFC 2822 mail headers

	18.12. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

	18.13. binhex — Encode and decode binhex4 files

	18.14. binascii — Convert between binary and ASCII

	18.15. quopri — Encode and decode MIME quoted-printable data

	18.16. uu — Encode and decode uuencode files

	19. Structured Markup Processing Tools
	19.1. HTMLParser — Simple HTML and XHTML parser

	19.2. sgmllib — Simple SGML parser

	19.3. htmllib — A parser for HTML documents

	19.4. htmlentitydefs — Definitions of HTML general entities

	19.5. xml.parsers.expat — Fast XML parsing using Expat

	19.6. xml.dom — The Document Object Model API

	19.7. xml.dom.minidom — Lightweight DOM implementation

	19.8. xml.dom.pulldom — Support for building partial DOM trees

	19.9. xml.sax — Support for SAX2 parsers

	19.10. xml.sax.handler — Base classes for SAX handlers

	19.11. xml.sax.saxutils — SAX Utilities

	19.12. xml.sax.xmlreader — Interface for XML parsers

	19.13. xml.etree.ElementTree — The ElementTree XML API

	20. Internet Protocols and Support
	20.1. webbrowser — Convenient Web-browser controller

	20.2. cgi — Common Gateway Interface support

	20.3. cgitb — Traceback manager for CGI scripts

	20.4. wsgiref — WSGI Utilities and Reference Implementation

	20.5. urllib — Open arbitrary resources by URL

	20.6. urllib2 — extensible library for opening URLs

	20.7. httplib — HTTP protocol client

	20.8. ftplib — FTP protocol client

	20.9. poplib — POP3 protocol client

	20.10. imaplib — IMAP4 protocol client

	20.11. nntplib — NNTP protocol client

	20.12. smtplib — SMTP protocol client

	20.13. smtpd — SMTP Server

	20.14. telnetlib — Telnet client

	20.15. uuid — UUID objects according to RFC 4122

	20.16. urlparse — Parse URLs into components

	20.17. SocketServer — A framework for network servers

	20.18. BaseHTTPServer — Basic HTTP server

	20.19. SimpleHTTPServer — Simple HTTP request handler

	20.20. CGIHTTPServer — CGI-capable HTTP request handler

	20.21. cookielib — Cookie handling for HTTP clients

	20.22. Cookie — HTTP state management

	20.23. xmlrpclib — XML-RPC client access

	20.24. SimpleXMLRPCServer — Basic XML-RPC server

	20.25. DocXMLRPCServer — Self-documenting XML-RPC server

	21. Multimedia Services
	21.1. audioop — Manipulate raw audio data

	21.2. imageop — Manipulate raw image data

	21.3. aifc — Read and write AIFF and AIFC files

	21.4. sunau — Read and write Sun AU files

	21.5. wave — Read and write WAV files

	21.6. chunk — Read IFF chunked data

	21.7. colorsys — Conversions between color systems

	21.8. imghdr — Determine the type of an image

	21.9. sndhdr — Determine type of sound file

	21.10. ossaudiodev — Access to OSS-compatible audio devices

	22. Internationalization
	22.1. gettext — Multilingual internationalization services

	22.2. locale — Internationalization services

	23. Program Frameworks
	23.1. cmd — Support for line-oriented command interpreters

	23.2. shlex — Simple lexical analysis

	24. Graphical User Interfaces with Tk
	24.1. Tkinter — Python interface to Tcl/Tk

	24.2. ttk — Tk themed widgets

	24.3. Tix — Extension widgets for Tk

	24.4. ScrolledText — Scrolled Text Widget

	24.5. turtle — Turtle graphics for Tk

	24.6. IDLE

	24.7. Other Graphical User Interface Packages

	25. Development Tools
	25.1. pydoc — Documentation generator and online help system

	25.2. doctest — Test interactive Python examples

	25.3. unittest — Unit testing framework

	25.4. 2to3 - Automated Python 2 to 3 code translation

	25.5. test — Regression tests package for Python

	25.6. test.test_support — Utility functions for tests

	26. Debugging and Profiling
	26.1. bdb — Debugger framework

	26.2. pdb — The Python Debugger

	26.3. Debugger Commands

	26.4. The Python Profilers

	26.5. hotshot — High performance logging profiler

	26.6. timeit — Measure execution time of small code snippets

	26.7. trace — Trace or track Python statement execution

	27. Python Runtime Services
	27.1. sys — System-specific parameters and functions

	27.2. sysconfig — Provide access to Python’s configuration information

	27.3. __builtin__ — Built-in objects

	27.4. future_builtins — Python 3 builtins

	27.5. __main__ — Top-level script environment

	27.6. warnings — Warning control

	27.7. contextlib — Utilities for with-statement contexts

	27.8. abc — Abstract Base Classes

	27.9. atexit — Exit handlers

	27.10. traceback — Print or retrieve a stack traceback

	27.11. __future__ — Future statement definitions

	27.12. gc — Garbage Collector interface

	27.13. inspect — Inspect live objects

	27.14. site — Site-specific configuration hook

	27.15. user — User-specific configuration hook

	27.16. fpectl — Floating point exception control

	27.17. distutils — Building and installing Python modules

	28. Custom Python Interpreters
	28.1. code — Interpreter base classes

	28.2. codeop — Compile Python code

	29. Restricted Execution
	29.1. rexec — Restricted execution framework

	29.2. Bastion — Restricting access to objects

	30. Importing Modules
	30.1. imp — Access the import internals

	30.2. importlib – Convenience wrappers for __import__()

	30.3. imputil — Import utilities

	30.4. zipimport — Import modules from Zip archives

	30.5. pkgutil — Package extension utility

	30.6. modulefinder — Find modules used by a script

	30.7. runpy — Locating and executing Python modules

	31. Python Language Services
	31.1. parser — Access Python parse trees

	31.2. Abstract Syntax Trees

	31.3. symtable — Access to the compiler’s symbol tables

	31.4. symbol — Constants used with Python parse trees

	31.5. token — Constants used with Python parse trees

	31.6. keyword — Testing for Python keywords

	31.7. tokenize — Tokenizer for Python source

	31.8. tabnanny — Detection of ambiguous indentation

	31.9. pyclbr — Python class browser support

	31.10. py_compile — Compile Python source files

	31.11. compileall — Byte-compile Python libraries

	31.12. dis — Disassembler for Python bytecode

	31.13. pickletools — Tools for pickle developers

	32. Python compiler package
	32.1. The basic interface

	32.2. Limitations

	32.3. Python Abstract Syntax

	32.4. Using Visitors to Walk ASTs

	32.5. Bytecode Generation

	33. Miscellaneous Services
	33.1. formatter — Generic output formatting

	34. MS Windows Specific Services
	34.1. msilib — Read and write Microsoft Installer files

	34.2. msvcrt – Useful routines from the MS VC++ runtime

	34.3. _winreg – Windows registry access

	34.4. winsound — Sound-playing interface for Windows

	35. Unix Specific Services
	35.1. posix — The most common POSIX system calls

	35.2. pwd — The password database

	35.3. spwd — The shadow password database

	35.4. grp — The group database

	35.5. crypt — Function to check Unix passwords

	35.6. dl — Call C functions in shared objects

	35.7. termios — POSIX style tty control

	35.8. tty — Terminal control functions

	35.9. pty — Pseudo-terminal utilities

	35.10. fcntl — The fcntl() and ioctl() system calls

	35.11. pipes — Interface to shell pipelines

	35.12. posixfile — File-like objects with locking support

	35.13. resource — Resource usage information

	35.14. nis — Interface to Sun’s NIS (Yellow Pages)

	35.15. syslog — Unix syslog library routines

	35.16. commands — Utilities for running commands

	36. Mac OS X specific services
	36.1. ic — Access to the Mac OS X Internet Config

	36.2. MacOS — Access to Mac OS interpreter features

	36.3. macostools — Convenience routines for file manipulation

	36.4. findertools — The finder‘s Apple Events interface

	36.5. EasyDialogs — Basic Macintosh dialogs

	36.6. FrameWork — Interactive application framework

	36.7. autoGIL — Global Interpreter Lock handling in event loops

	36.8. Mac OS Toolbox Modules

	36.9. ColorPicker — Color selection dialog

	37. MacPython OSA Modules
	37.1. gensuitemodule — Generate OSA stub packages

	37.2. aetools — OSA client support

	37.3. aepack — Conversion between Python variables and AppleEvent data containers

	37.4. aetypes — AppleEvent objects

	37.5. MiniAEFrame — Open Scripting Architecture server support

	38. SGI IRIX Specific Services
	38.1. al — Audio functions on the SGI

	38.2. AL — Constants used with the al module

	38.3. cd — CD-ROM access on SGI systems

	38.4. fl — FORMS library for graphical user interfaces

	38.5. FL — Constants used with the fl module

	38.6. flp — Functions for loading stored FORMS designs

	38.7. fm — Font Manager interface

	38.8. gl — Graphics Library interface

	38.9. DEVICE — Constants used with the gl module

	38.10. GL — Constants used with the gl module

	38.11. imgfile — Support for SGI imglib files

	38.12. jpeg — Read and write JPEG files

	39. SunOS Specific Services
	39.1. sunaudiodev — Access to Sun audio hardware

	39.2. SUNAUDIODEV — Constants used with sunaudiodev

	40. Undocumented Modules
	40.1. Miscellaneous useful utilities

	40.2. Platform specific modules

	40.3. Multimedia

	40.4. Undocumented Mac OS modules

	40.5. Obsolete

	40.6. SGI-specific Extension modules

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

1. Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a
language, such as numbers and lists. For these types, the Python language core
defines the form of literals and places some constraints on their semantics, but
does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can
be used by all Python code without the need of an import statement.
Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are
many ways to dissect this collection. Some modules are written in C and built
in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific
to particular operating systems, such as access to specific hardware; others
provide interfaces that are specific to a particular application domain, like
the World Wide Web. Some modules are available in all versions and ports of
Python; others are only available when the underlying system supports or
requires them; yet others are available only when a particular configuration
option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in
data types, then the built-in functions and exceptions, and finally the modules,
grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to
least important.

This means that if you start reading this manual from the start, and skip to the
next chapter when you get bored, you will get a reasonable overview of the
available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific
function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module
random) and read a section or two. Regardless of the order in which you
read the sections of this manual, it helps to start with chapter
Built-in Functions, as the remainder of the manual assumes familiarity with
this material.

Let the show begin!

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

2. Built-in Functions

The Python interpreter has a number of functions built into it that are always
available. They are listed here in alphabetical order.

	
	
	Built-in Functions
	
	

	abs()
	divmod()
	input()
	open()
	staticmethod()

	all()
	enumerate()
	int()
	ord()
	str()

	any()
	eval()
	isinstance()
	pow()
	sum()

	basestring()
	execfile()
	issubclass()
	print()
	super()

	bin()
	file()
	iter()
	property()
	tuple()

	bool()
	filter()
	len()
	range()
	type()

	bytearray()
	float()
	list()
	raw_input()
	unichr()

	callable()
	format()
	locals()
	reduce()
	unicode()

	chr()
	frozenset()
	long()
	reload()
	vars()

	classmethod()
	getattr()
	map()
	repr()
	xrange()

	cmp()
	globals()
	max()
	reversed()
	zip()

	compile()
	hasattr()
	memoryview()
	round()
	__import__()

	complex()
	hash()
	min()
	set()
	apply()

	delattr()
	help()
	next()
	setattr()
	buffer()

	dict()
	hex()
	object()
	slice()
	coerce()

	dir()
	id()
	oct()
	sorted()
	intern()

	
abs(x)

	Return the absolute value of a number. The argument may be a plain or long
integer or a floating point number. If the argument is a complex number, its
magnitude is returned.

	
all(iterable)

	Return True if all elements of the iterable are true (or if the iterable
is empty). Equivalent to:

def all(iterable):
 for element in iterable:
 if not element:
 return False
 return True

New in version 2.5.

	
any(iterable)

	Return True if any element of the iterable is true. If the iterable
is empty, return False. Equivalent to:

def any(iterable):
 for element in iterable:
 if element:
 return True
 return False

New in version 2.5.

	
basestring()

	This abstract type is the superclass for str and unicode. It
cannot be called or instantiated, but it can be used to test whether an object
is an instance of str or unicode. isinstance(obj,
basestring) is equivalent to isinstance(obj, (str, unicode)).

New in version 2.3.

	
bin(x)

	Convert an integer number to a binary string. The result is a valid Python
expression. If x is not a Python int object, it has to define an
__index__() method that returns an integer.

New in version 2.6.

	
bool([x])

	Convert a value to a Boolean, using the standard truth testing procedure. If
x is false or omitted, this returns False; otherwise it returns
True. bool is also a class, which is a subclass of
int. Class bool cannot be subclassed further. Its only
instances are False and True.

New in version 2.2.1.

Changed in version 2.3: If no argument is given, this function returns False.

	
bytearray([source[, encoding[, errors]]])

	Return a new array of bytes. The bytearray type is a mutable
sequence of integers in the range 0 <= x < 256. It has most of the usual
methods of mutable sequences, described in Mutable Sequence Types, as well
as most methods that the str type has, see String Methods.

The optional source parameter can be used to initialize the array in a few
different ways:

	If it is a string, you must also give the encoding (and optionally,
errors) parameters; bytearray() then converts the string to
bytes using str.encode().

	If it is an integer, the array will have that size and will be
initialized with null bytes.

	If it is an object conforming to the buffer interface, a read-only buffer
of the object will be used to initialize the bytes array.

	If it is an iterable, it must be an iterable of integers in the range
0 <= x < 256, which are used as the initial contents of the array.

Without an argument, an array of size 0 is created.

	
callable(object)

	Return True if the object argument appears callable,
False if not. If this
returns true, it is still possible that a call fails, but if it is false,
calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); class instances are callable if they have a
__call__() method.

	
chr(i)

	Return a string of one character whose ASCII code is the integer i. For
example, chr(97) returns the string 'a'. This is the inverse of
ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if i is outside that range. See
also unichr().

	
classmethod(function)

	Return a class method for function.

A class method receives the class as implicit first argument, just like an
instance method receives the instance. To declare a class method, use this
idiom:

class C:
 @classmethod
 def f(cls, arg1, arg2, ...): ...

The @classmethod form is a function decorator – see the description
of function definitions in Function definitions for details.

It can be called either on the class (such as C.f()) or on an instance (such
as C().f()). The instance is ignored except for its class. If a class
method is called for a derived class, the derived class object is passed as the
implied first argument.

Class methods are different than C++ or Java static methods. If you want those,
see staticmethod() in this section.

For more information on class methods, consult the documentation on the standard
type hierarchy in The standard type hierarchy.

New in version 2.2.

Changed in version 2.4: Function decorator syntax added.

	
cmp(x, y)

	Compare the two objects x and y and return an integer according to the
outcome. The return value is negative if x < y, zero if x == y and
strictly positive if x > y.

	
compile(source, filename, mode[, flags[, dont_inherit]])

	Compile the source into a code or AST object. Code objects can be executed
by an exec statement or evaluated by a call to eval().
source can either be a string or an AST object. Refer to the ast
module documentation for information on how to work with AST objects.

The filename argument should give the file from which the code was read;
pass some recognizable value if it wasn’t read from a file ('<string>' is
commonly used).

The mode argument specifies what kind of code must be compiled; it can be
'exec' if source consists of a sequence of statements, 'eval' if it
consists of a single expression, or 'single' if it consists of a single
interactive statement (in the latter case, expression statements that
evaluate to something other than None will be printed).

The optional arguments flags and dont_inherit control which future
statements (see PEP 236 [http://www.python.org/dev/peps/pep-0236]) affect the compilation of source. If neither
is present (or both are zero) the code is compiled with those future
statements that are in effect in the code that is calling compile. If the
flags argument is given and dont_inherit is not (or is zero) then the
future statements specified by the flags argument are used in addition to
those that would be used anyway. If dont_inherit is a non-zero integer then
the flags argument is it – the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to
specify multiple statements. The bitfield required to specify a given feature
can be found as the compiler_flag attribute on the _Feature
instance in the __future__ module.

This function raises SyntaxError if the compiled source is invalid,
and TypeError if the source contains null bytes.

Note

When compiling a string with multi-line code in 'single' or
'eval' mode, input must be terminated by at least one newline
character. This is to facilitate detection of incomplete and complete
statements in the code module.

Changed in version 2.3: The flags and dont_inherit arguments were added.

Changed in version 2.6: Support for compiling AST objects.

Changed in version 2.7: Allowed use of Windows and Mac newlines. Also input in 'exec' mode
does not have to end in a newline anymore.

	
complex([real[, imag]])

	Create a complex number with the value real + imag*j or convert a string or
number to a complex number. If the first parameter is a string, it will be
interpreted as a complex number and the function must be called without a second
parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and
the function serves as a numeric conversion function like int(),
long() and float(). If both arguments are omitted, returns 0j.

The complex type is described in Numeric Types — int, float, long, complex.

	
delattr(object, name)

	This is a relative of setattr(). The arguments are an object and a
string. The string must be the name of one of the object’s attributes. The
function deletes the named attribute, provided the object allows it. For
example, delattr(x, 'foobar') is equivalent to del x.foobar.

	
dict([arg])

	Create a new data dictionary, optionally with items taken from arg.
The dictionary type is described in Mapping Types — dict.

For other containers see the built in list, set, and
tuple classes, and the collections module.

	
dir([object])

	Without arguments, return the list of names in the current local scope. With an
argument, attempt to return a list of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and
must return the list of attributes. This allows objects that implement a custom
__getattr__() or __getattribute__() function to customize the way
dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to
gather information from the object’s __dict__ attribute, if defined, and
from its type object. The resulting list is not necessarily complete, and may
be inaccurate when the object has a custom __getattr__().

The default dir() mechanism behaves differently with different types of
objects, as it attempts to produce the most relevant, rather than complete,
information:

	If the object is a module object, the list contains the names of the module’s
attributes.

	If the object is a type or class object, the list contains the names of its
attributes, and recursively of the attributes of its bases.

	Otherwise, the list contains the object’s attributes’ names, the names of its
class’s attributes, and recursively of the attributes of its class’s base
classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir()
['__builtins__', '__doc__', '__name__', 'struct']
>>> dir(struct)
['Struct', '__builtins__', '__doc__', '__file__', '__name__',
 '__package__', '_clearcache', 'calcsize', 'error', 'pack', 'pack_into',
 'unpack', 'unpack_from']
>>> class Foo(object):
... def __dir__(self):
... return ["kan", "ga", "roo"]
...
>>> f = Foo()
>>> dir(f)
['ga', 'kan', 'roo']

Note

Because dir() is supplied primarily as a convenience for use at an
interactive prompt, it tries to supply an interesting set of names more than it
tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes
are not in the result list when the argument is a class.

	
divmod(a, b)

	Take two (non complex) numbers as arguments and return a pair of numbers
consisting of their quotient and remainder when using long division. With mixed
operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same as (a // b, a % b). For floating point
numbers the result is (q, a % b), where q is usually math.floor(a / b)
but may be 1 less than that. In any case q * b + a % b is very close to
a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b)
< abs(b).

Changed in version 2.3: Using divmod() with complex numbers is deprecated.

	
enumerate(sequence[, start=0])

	Return an enumerate object. sequence must be a sequence, an
iterator, or some other object which supports iteration. The
next() method of the iterator returned by enumerate() returns a
tuple containing a count (from start which defaults to 0) and the
corresponding value obtained from iterating over iterable.
enumerate() is useful for obtaining an indexed series: (0, seq[0]),
(1, seq[1]), (2, seq[2]), For example:

>>> for i, season in enumerate(['Spring', 'Summer', 'Fall', 'Winter']):
... print i, season
0 Spring
1 Summer
2 Fall
3 Winter

New in version 2.3.

New in version 2.6: The start parameter.

	
eval(expression[, globals[, locals]])

	The arguments are a string and optional globals and locals. If provided,
globals must be a dictionary. If provided, locals can be any mapping
object.

Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression
(technically speaking, a condition list) using the globals and locals
dictionaries as global and local namespace. If the globals dictionary is
present and lacks ‘__builtins__’, the current globals are copied into globals
before expression is parsed. This means that expression normally has full
access to the standard __builtin__ module and restricted environments are
propagated. If the locals dictionary is omitted it defaults to the globals
dictionary. If both dictionaries are omitted, the expression is executed in the
environment where eval() is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1')
2

This function can also be used to execute arbitrary code objects (such as
those created by compile()). In this case pass a code object instead
of a string. If the code object has been compiled with 'exec' as the
mode argument, eval()‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec
statement. Execution of statements from a file is supported by the
execfile() function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be
useful to pass around for use by eval() or execfile().

See ast.literal_eval() for a function that can safely evaluate strings
with expressions containing only literals.

	
execfile(filename[, globals[, locals]])

	This function is similar to the exec statement, but parses a file
instead of a string. It is different from the import statement in
that it does not use the module administration — it reads the file
unconditionally and does not create a new module. [1]

The arguments are a file name and two optional dictionaries. The file is parsed
and evaluated as a sequence of Python statements (similarly to a module) using
the globals and locals dictionaries as global and local namespace. If
provided, locals can be any mapping object.

Changed in version 2.4: formerly locals was required to be a dictionary.

If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment
where execfile() is called. The return value is None.

Note

The default locals act as described for function locals() below:
modifications to the default locals dictionary should not be attempted. Pass
an explicit locals dictionary if you need to see effects of the code on
locals after function execfile() returns. execfile() cannot be
used reliably to modify a function’s locals.

	
file(filename[, mode[, bufsize]])

	Constructor function for the file type, described further in section
File Objects. The constructor’s arguments are the same as those
of the open() built-in function described below.

When opening a file, it’s preferable to use open() instead of invoking
this constructor directly. file is more suited to type testing (for
example, writing isinstance(f, file)).

New in version 2.2.

	
filter(function, iterable)

	Construct a list from those elements of iterable for which function returns
true. iterable may be either a sequence, a container which supports
iteration, or an iterator. If iterable is a string or a tuple, the result
also has that type; otherwise it is always a list. If function is None,
the identity function is assumed, that is, all elements of iterable that are
false are removed.

Note that filter(function, iterable) is equivalent to [item for item in
iterable if function(item)] if function is not None and [item for item
in iterable if item] if function is None.

See itertools.ifilter() and itertools.ifilterfalse() for iterator
versions of this function, including a variation that filters for elements
where the function returns false.

	
float([x])

	Convert a string or a number to floating point. If the argument is a string, it
must contain a possibly signed decimal or floating point number, possibly
embedded in whitespace. The argument may also be [+|-]nan or [+|-]inf.
Otherwise, the argument may be a plain or long integer
or a floating point number, and a floating point number with the same value
(within Python’s floating point precision) is returned. If no argument is
given, returns 0.0.

Note

When passing in a string, values for NaN and Infinity may be returned, depending
on the underlying C library. Float accepts the strings nan, inf and -inf for
NaN and positive or negative infinity. The case and a leading + are ignored as
well as a leading - is ignored for NaN. Float always represents NaN and infinity
as nan, inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

	
format(value[, format_spec])

	Convert a value to a “formatted” representation, as controlled by
format_spec. The interpretation of format_spec will depend on the type
of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

Note

format(value, format_spec) merely calls
value.__format__(format_spec).

New in version 2.6.

	
frozenset([iterable])

	Return a frozenset object, optionally with elements taken from iterable.
The frozenset type is described in Set Types — set, frozenset.

For other containers see the built in dict, list, and
tuple classes, and the collections module.

New in version 2.4.

	
getattr(object, name[, default])

	Return the value of the named attribute of object. name must be a string.
If the string is the name of one of the object’s attributes, the result is the
value of that attribute. For example, getattr(x, 'foobar') is equivalent to
x.foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

	
globals()

	Return a dictionary representing the current global symbol table. This is always
the dictionary of the current module (inside a function or method, this is the
module where it is defined, not the module from which it is called).

	
hasattr(object, name)

	The arguments are an object and a string. The result is True if the string
is the name of one of the object’s attributes, False if not. (This is
implemented by calling getattr(object, name) and seeing whether it raises an
exception or not.)

	
hash(object)

	Return the hash value of the object (if it has one). Hash values are integers.
They are used to quickly compare dictionary keys during a dictionary lookup.
Numeric values that compare equal have the same hash value (even if they are of
different types, as is the case for 1 and 1.0).

	
help([object])

	Invoke the built-in help system. (This function is intended for interactive
use.) If no argument is given, the interactive help system starts on the
interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other
kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

New in version 2.2.

	
hex(x)

	Convert an integer number (of any size) to a hexadecimal string. The result is a
valid Python expression.

Note

To obtain a hexadecimal string representation for a float, use the
float.hex() method.

Changed in version 2.4: Formerly only returned an unsigned literal.

	
id(object)

	Return the “identity” of an object. This is an integer (or long integer) which
is guaranteed to be unique and constant for this object during its lifetime.
Two objects with non-overlapping lifetimes may have the same id()
value.

CPython implementation detail: This is the address of the object.

	
input([prompt])

	Equivalent to eval(raw_input(prompt)).

Warning

This function is not safe from user errors! It expects a valid Python
expression as input; if the input is not syntactically valid, a
SyntaxError will be raised. Other exceptions may be raised if there is an
error during evaluation. (On the other hand, sometimes this is exactly what you
need when writing a quick script for expert use.)

If the readline module was loaded, then input() will use it to
provide elaborate line editing and history features.

Consider using the raw_input() function for general input from users.

	
int([x[, base]])

	Convert a string or number to a plain integer. If the argument is a string,
it must contain a possibly signed decimal number representable as a Python
integer, possibly embedded in whitespace. The base parameter gives the
base for the conversion (which is 10 by default) and may be any integer in
the range [2, 36], or zero. If base is zero, the proper radix is
determined based on the contents of string; the interpretation is the same as
for integer literals. (See Numeric literals.) If base is specified and x
is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating
point numbers to integers truncates (towards zero). If the argument is
outside the integer range a long object will be returned instead. If no
arguments are given, returns 0.

The integer type is described in Numeric Types — int, float, long, complex.

	
isinstance(object, classinfo)

	Return true if the object argument is an instance of the classinfo argument,
or of a (direct or indirect) subclass thereof. Also return true if classinfo
is a type object (new-style class) and object is an object of that type or of
a (direct or indirect) subclass thereof. If object is not a class instance or
an object of the given type, the function always returns false. If classinfo
is neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are
not accepted). If classinfo is not a class, type, or tuple of classes, types,
and such tuples, a TypeError exception is raised.

Changed in version 2.2: Support for a tuple of type information was added.

	
issubclass(class, classinfo)

	Return true if class is a subclass (direct or indirect) of classinfo. A
class is considered a subclass of itself. classinfo may be a tuple of class
objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised.

Changed in version 2.3: Support for a tuple of type information was added.

	
iter(o[, sentinel])

	Return an iterator object. The first argument is interpreted very differently
depending on the presence of the second argument. Without a second argument, o
must be a collection object which supports the iteration protocol (the
__iter__() method), or it must support the sequence protocol (the
__getitem__() method with integer arguments starting at 0). If it
does not support either of those protocols, TypeError is raised. If the
second argument, sentinel, is given, then o must be a callable object. The
iterator created in this case will call o with no arguments for each call to
its next() method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter() is to read lines of
a file until a certain line is reached. The following example reads a file
until "STOP" is reached:

with open("mydata.txt") as fp:
 for line in iter(fp.readline, "STOP"):
 process_line(line)

New in version 2.2.

	
len(s)

	Return the length (the number of items) of an object. The argument may be a
sequence (string, tuple or list) or a mapping (dictionary).

	
list([iterable])

	Return a list whose items are the same and in the same order as iterable‘s
items. iterable may be either a sequence, a container that supports
iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similar to iterable[:]. For instance, list('abc')
returns ['a', 'b', 'c'] and list((1, 2, 3)) returns [1, 2, 3]. If
no argument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in
Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange. For other containers see the built in dict,
set, and tuple classes, and the collections module.

	
locals()

	Update and return a dictionary representing the current local symbol table.
Free variables are returned by locals() when it is called in function
blocks, but not in class blocks.

Note

The contents of this dictionary should not be modified; changes may not
affect the values of local and free variables used by the interpreter.

	
long([x[, base]])

	Convert a string or number to a long integer. If the argument is a string, it
must contain a possibly signed number of arbitrary size, possibly embedded in
whitespace. The base argument is interpreted in the same way as for
int(), and may only be given when x is a string. Otherwise, the argument
may be a plain or long integer or a floating point number, and a long integer
with the same value is returned. Conversion of floating point numbers to
integers truncates (towards zero). If no arguments are given, returns 0L.

The long type is described in Numeric Types — int, float, long, complex.

	
map(function, iterable, ...)

	Apply function to every item of iterable and return a list of the results.
If additional iterable arguments are passed, function must take that many
arguments and is applied to the items from all iterables in parallel. If one
iterable is shorter than another it is assumed to be extended with None
items. If function is None, the identity function is assumed; if there
are multiple arguments, map() returns a list consisting of tuples
containing the corresponding items from all iterables (a kind of transpose
operation). The iterable arguments may be a sequence or any iterable object;
the result is always a list.

	
max(iterable[, args...][key])

	With a single argument iterable, return the largest item of a non-empty
iterable (such as a string, tuple or list). With more than one argument, return
the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that
used for list.sort(). The key argument, if supplied, must be in keyword
form (for example, max(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

	
memoryview(obj)

	Return a “memory view” object created from the given argument. See
memoryview type for more information.

	
min(iterable[, args...][key])

	With a single argument iterable, return the smallest item of a non-empty
iterable (such as a string, tuple or list). With more than one argument, return
the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that
used for list.sort(). The key argument, if supplied, must be in keyword
form (for example, min(a,b,c,key=func)).

Changed in version 2.5: Added support for the optional key argument.

	
next(iterator[, default])

	Retrieve the next item from the iterator by calling its
next() method. If default is given, it is returned if the
iterator is exhausted, otherwise StopIteration is raised.

New in version 2.6.

	
object()

	Return a new featureless object. object is a base for all new style
classes. It has the methods that are common to all instances of new style
classes.

New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

	
oct(x)

	Convert an integer number (of any size) to an octal string. The result is a
valid Python expression.

Changed in version 2.4: Formerly only returned an unsigned literal.

	
open(filename[, mode[, bufsize]])

	Open a file, returning an object of the file type described in
section File Objects. If the file cannot be opened,
IOError is raised. When opening a file, it’s preferable to use
open() instead of invoking the file constructor directly.

The first two arguments are the same as for stdio‘s fopen():
filename is the file name to be opened, and mode is a string indicating how
the file is to be opened.

The most commonly-used values of mode are 'r' for reading, 'w' for
writing (truncating the file if it already exists), and 'a' for appending
(which on some Unix systems means that all writes append to the end of the
file regardless of the current seek position). If mode is omitted, it
defaults to 'r'. The default is to use text mode, which may convert
'\n' characters to a platform-specific representation on writing and back
on reading. Thus, when opening a binary file, you should append 'b' to
the mode value to open the file in binary mode, which will improve
portability. (Appending 'b' is useful even on systems that don’t treat
binary and text files differently, where it serves as documentation.) See below
for more possible values of mode.

The optional bufsize argument specifies the file’s desired buffer size: 0
means unbuffered, 1 means line buffered, any other positive value means use a
buffer of (approximately) that size. A negative bufsize means to use the
system default, which is usually line buffered for tty devices and fully
buffered for other files. If omitted, the system default is used. [2]

Modes 'r+', 'w+' and 'a+' open the file for updating (note that
'w+' truncates the file). Append 'b' to the mode to open the file in
binary mode, on systems that differentiate between binary and text files; on
systems that don’t have this distinction, adding the 'b' has no effect.

In addition to the standard fopen() values mode may be 'U' or
'rU'. Python is usually built with universal newline support; supplying
'U' opens the file as a text file, but lines may be terminated by any of the
following: the Unix end-of-line convention '\n', the Macintosh convention
'\r', or the Windows convention '\r\n'. All of these external
representations are seen as '\n' by the Python program. If Python is built
without universal newline support a mode with 'U' is the same as normal
text mode. Note that file objects so opened also have an attribute called
newlines which has a value of None (if no newlines have yet been
seen), '\n', '\r', '\r\n', or a tuple containing all the newline
types seen.

Python enforces that the mode, after stripping 'U', begins with 'r',
'w' or 'a'.

Python provides many file handling modules including
fileinput, os, os.path, tempfile, and
shutil.

Changed in version 2.5: Restriction on first letter of mode string introduced.

	
ord(c)

	Given a string of length one, return an integer representing the Unicode code
point of the character when the argument is a unicode object, or the value of
the byte when the argument is an 8-bit string. For example, ord('a') returns
the integer 97, ord(u'\u2020') returns 8224. This is the inverse of
chr() for 8-bit strings and of unichr() for unicode objects. If a
unicode argument is given and Python was built with UCS2 Unicode, then the
character’s code point must be in the range [0..65535] inclusive; otherwise the
string length is two, and a TypeError will be raised.

	
pow(x, y[, z])

	Return x to the power y; if z is present, return x to the power y,
modulo z (computed more efficiently than pow(x, y) % z). The two-argument
form pow(x, y) is equivalent to using the power operator: x**y.

The arguments must have numeric types. With mixed operand types, the coercion
rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second
argument is negative; in that case, all arguments are converted to float and a
float result is delivered. For example, 10**2 returns 100, but
10**-2 returns 0.01. (This last feature was added in Python 2.2. In
Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is
negative, the third argument must be omitted. If z is present, x and y
must be of integer types, and y must be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argument pow()
returned platform-dependent results depending on floating-point rounding
accidents.)

	
print([object, ...][, sep=' '][, end='\n'][, file=sys.stdout])

	Print object(s) to the stream file, separated by sep and followed by
end. sep, end and file, if present, must be given as keyword
arguments.

All non-keyword arguments are converted to strings like str() does and
written to the stream, separated by sep and followed by end. Both sep
and end must be strings; they can also be None, which means to use the
default values. If no object is given, print() will just write
end.

The file argument must be an object with a write(string) method; if it
is not present or None, sys.stdout will be used.

Note

This function is not normally available as a built-in since the name
print is recognized as the print statement. To disable the
statement and use the print() function, use this future statement at
the top of your module:

from __future__ import print_function

New in version 2.6.

	
property([fget[, fset[, fdel[, doc]]]])

	Return a property attribute for new-style classes (classes that
derive from object).

fget is a function for getting an attribute value, likewise fset is a
function for setting, and fdel a function for del’ing, an attribute. Typical
use is to define a managed attribute x:

class C(object):
 def __init__(self):
 self._x = None

 def getx(self):
 return self._x
 def setx(self, value):
 self._x = value
 def delx(self):
 del self._x
 x = property(getx, setx, delx, "I'm the 'x' property.")

If then c is an instance of C, c.x will invoke the getter,
c.x = value will invoke the setter and del c.x the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the
property will copy fget‘s docstring (if it exists). This makes it possible to
create read-only properties easily using property() as a decorator:

class Parrot(object):
 def __init__(self):
 self._voltage = 100000

 @property
 def voltage(self):
 """Get the current voltage."""
 return self._voltage

turns the voltage() method into a “getter” for a read-only attribute
with the same name.

A property object has getter, setter, and deleter
methods usable as decorators that create a copy of the property with the
corresponding accessor function set to the decorated function. This is
best explained with an example:

class C(object):
 def __init__(self):
 self._x = None

 @property
 def x(self):
 """I'm the 'x' property."""
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

This code is exactly equivalent to the first example. Be sure to give the
additional functions the same name as the original property (x in this
case.)

The returned property also has the attributes fget, fset, and
fdel corresponding to the constructor arguments.

New in version 2.2.

Changed in version 2.5: Use fget‘s docstring if no doc given.

Changed in version 2.6: The getter, setter, and deleter attributes were added.

	
range([start], stop[, step])

	This is a versatile function to create lists containing arithmetic progressions.
It is most often used in for loops. The arguments must be plain
integers. If the step argument is omitted, it defaults to 1. If the
start argument is omitted, it defaults to 0. The full form returns a list
of plain integers [start, start + step, start + 2 * step, ...]. If step
is positive, the last element is the largest start + i * step less than
stop; if step is negative, the last element is the smallest start + i *
step greater than stop. step must not be zero (or else ValueError
is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

	
raw_input([prompt])

	If the prompt argument is present, it is written to standard output without a
trailing newline. The function then reads a line from input, converts it to a
string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"

If the readline module was loaded, then raw_input() will use it to
provide elaborate line editing and history features.

	
reduce(function, iterable[, initializer])

	Apply function of two arguments cumulatively to the items of iterable, from
left to right, so as to reduce the iterable to a single value. For example,
reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5).
The left argument, x, is the accumulated value and the right argument, y, is
the update value from the iterable. If the optional initializer is present,
it is placed before the items of the iterable in the calculation, and serves as
a default when the iterable is empty. If initializer is not given and
iterable contains only one item, the first item is returned.

	
reload(module)

	Reload a previously imported module. The argument must be a module object, so
it must have been successfully imported before. This is useful if you have
edited the module source file using an external editor and want to try out the
new version without leaving the Python interpreter. The return value is the
module object (the same as the module argument).

When reload(module) is executed:

	Python modules’ code is recompiled and the module-level code reexecuted,
defining a new set of objects which are bound to names in the module’s
dictionary. The init function of extension modules is not called a second
time.

	As with all other objects in Python the old objects are only reclaimed after
their reference counts drop to zero.

	The names in the module namespace are updated to point to any new or changed
objects.

	Other references to the old objects (such as names external to the module) are
not rebound to refer to the new objects and must be updated in each namespace
where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first
import statement for it does not bind its name locally, but does
store a (partially initialized) module object in sys.modules. To reload the
module you must first import it again (this will bind the name to the
partially initialized module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global
variables) is retained. Redefinitions of names will override the old
definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a
global table or cache of objects — with a try statement it can test
for the table’s presence and skip its initialization if desired:

try:
 cache
except NameError:
 cache = {}

It is legal though generally not very useful to reload built-in or dynamically
loaded modules, except for sys, __main__ and __builtin__.
In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ...
import ..., calling reload() for the other module does not
redefine the objects imported from it — one way around this is to re-execute
the from statement, another is to use import and qualified
names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines
the class does not affect the method definitions of the instances — they
continue to use the old class definition. The same is true for derived classes.

	
repr(object)

	Return a string containing a printable representation of an object. This is
the same value yielded by conversions (reverse quotes). It is sometimes
useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an
object with the same value when passed to eval(), otherwise the
representation is a string enclosed in angle brackets that contains the name
of the type of the object together with additional information often
including the name and address of the object. A class can control what this
function returns for its instances by defining a __repr__() method.

	
reversed(seq)

	Return a reverse iterator. seq must be an object which has
a __reversed__() method or supports the sequence protocol (the
__len__() method and the __getitem__() method with integer
arguments starting at 0).

New in version 2.4.

Changed in version 2.6: Added the possibility to write a custom __reversed__() method.

	
round(x[, n])

	Return the floating point value x rounded to n digits after the decimal
point. If n is omitted, it defaults to zero. The result is a floating point
number. Values are rounded to the closest multiple of 10 to the power minus
n; if two multiples are equally close, rounding is done away from 0 (so. for
example, round(0.5) is 1.0 and round(-0.5) is -1.0).

Note

The behavior of round() for floats can be surprising: for example,
round(2.675, 2) gives 2.67 instead of the expected 2.68.
This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and Limitations for
more information.

	
set([iterable])

	Return a new set, optionally with elements taken from iterable.
The set type is described in Set Types — set, frozenset.

For other containers see the built in dict, list, and
tuple classes, and the collections module.

New in version 2.4.

	
setattr(object, name, value)

	This is the counterpart of getattr(). The arguments are an object, a
string and an arbitrary value. The string may name an existing attribute or a
new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr(x, 'foobar', 123) is equivalent to
x.foobar = 123.

	
slice([start], stop[, step])

	Return a slice object representing the set of indices specified by
range(start, stop, step). The start and step arguments default to
None. Slice objects have read-only data attributes start,
stop and step which merely return the argument values (or their
default). They have no other explicit functionality; however they are used by
Numerical Python and other third party extensions. Slice objects are also
generated when extended indexing syntax is used. For example:
a[start:stop:step] or a[start:stop, i]. See itertools.islice()
for an alternate version that returns an iterator.

	
sorted(iterable[, cmp[, key[, reverse]]])

	Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as
those for the list.sort() method (described in section
Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable
elements) which should return a negative, zero or positive number depending on
whether the first argument is considered smaller than, equal to, or larger than
the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default
value is None.

key specifies a function of one argument that is used to extract a comparison
key from each list element: key=str.lower. The default value is None
(compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are
sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster
than specifying an equivalent cmp function. This is because cmp is
called multiple times for each list element while key and reverse touch
each element only once. Use functools.cmp_to_key() to convert an
old-style cmp function to a key function.

For sorting examples and a brief sorting tutorial, see Sorting HowTo [http://wiki.python.org/moin/HowTo/Sorting/].

New in version 2.4.

	
staticmethod(function)

	Return a static method for function.

A static method does not receive an implicit first argument. To declare a static
method, use this idiom:

class C:
 @staticmethod
 def f(arg1, arg2, ...): ...

The @staticmethod form is a function decorator – see the
description of function definitions in Function definitions for details.

It can be called either on the class (such as C.f()) or on an instance (such
as C().f()). The instance is ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more
advanced concept, see classmethod() in this section.

For more information on static methods, consult the documentation on the
standard type hierarchy in The standard type hierarchy.

New in version 2.2.

Changed in version 2.4: Function decorator syntax added.

	
str([object])

	Return a string containing a nicely printable representation of an object. For
strings, this returns the string itself. The difference with repr(object)
is that str(object) does not always attempt to return a string that is
acceptable to eval(); its goal is to return a printable string. If no
argument is given, returns the empty string, ''.

For more information on strings see Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange which describes sequence
functionality (strings are sequences), and also the string-specific methods
described in the String Methods section. To output formatted strings
use template strings or the % operator described in the
String Formatting Operations section. In addition see the String Services
section. See also unicode().

	
sum(iterable[, start])

	Sums start and the items of an iterable from left to right and returns the
total. start defaults to 0. The iterable‘s items are normally numbers,
and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum().
The preferred, fast way to concatenate a sequence of strings is by calling
''.join(sequence). To add floating point values with extended precision,
see math.fsum(). To concatenate a series of iterables, consider using
itertools.chain().

New in version 2.3.

	
super(type[, object-or-type])

	Return a proxy object that delegates method calls to a parent or sibling
class of type. This is useful for accessing inherited methods that have
been overridden in a class. The search order is same as that used by
getattr() except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution
search order used by both getattr() and super(). The attribute
is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If
the second argument is an object, isinstance(obj, type) must be true. If
the second argument is a type, issubclass(type2, type) must be true (this
is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with
single inheritance, super can be used to refer to parent classes without
naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a
dynamic execution environment. This use case is unique to Python and is
not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams”
where multiple base classes implement the same method. Good design dictates
that this method have the same calling signature in every case (because the
order of calls is determined at runtime, because that order adapts
to changes in the class hierarchy, and because that order can include
sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
 def method(self, arg):
 super(C, self).method(arg)

Note that super() is implemented as part of the binding process for
explicit dotted attribute lookups such as super().__getitem__(name).
It does so by implementing its own __getattribute__() method for searching
classes in a predictable order that supports cooperative multiple inheritance.
Accordingly, super() is undefined for implicit lookups using statements or
operators such as super()[name].

Also note that super() is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate
references.

New in version 2.2.

	
tuple([iterable])

	Return a tuple whose items are the same and in the same order as iterable‘s
items. iterable may be a sequence, a container that supports iteration, or an
iterator object. If iterable is already a tuple, it is returned unchanged.
For instance, tuple('abc') returns ('a', 'b', 'c') and tuple([1, 2,
3]) returns (1, 2, 3). If no argument is given, returns a new empty
tuple, ().

tuple is an immutable sequence type, as documented in
Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange. For other containers see the built in dict,
list, and set classes, and the collections module.

	
type(object)

	Return the type of an object. The return value is a type object. The
isinstance() built-in function is recommended for testing the type of an
object.

With three arguments, type() functions as a constructor as detailed below.

	
type(name, bases, dict)

	Return a new type object. This is essentially a dynamic form of the
class statement. The name string is the class name and becomes the
__name__ attribute; the bases tuple itemizes the base classes and
becomes the __bases__ attribute; and the dict dictionary is the
namespace containing definitions for class body and becomes the __dict__
attribute. For example, the following two statements create identical
type objects:

>>> class X(object):
... a = 1
...
>>> X = type('X', (object,), dict(a=1))

New in version 2.2.

	
unichr(i)

	Return the Unicode string of one character whose Unicode code is the integer
i. For example, unichr(97) returns the string u'a'. This is the
inverse of ord() for Unicode strings. The valid range for the argument
depends how Python was configured – it may be either UCS2 [0..0xFFFF] or UCS4
[0..0x10FFFF]. ValueError is raised otherwise. For ASCII and 8-bit
strings see chr().

New in version 2.0.

	
unicode([object[, encoding[, errors]]])

	Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode() will decode the object
which can either be an 8-bit string or a character buffer using the codec for
encoding. The encoding parameter is a string giving the name of an encoding;
if the encoding is not known, LookupError is raised. Error handling is
done according to errors; this specifies the treatment of characters which are
invalid in the input encoding. If errors is 'strict' (the default), a
ValueError is raised on errors, while a value of 'ignore' causes
errors to be silently ignored, and a value of 'replace' causes the official
Unicode replacement character, U+FFFD, to be used to replace input
characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of
str() except that it returns Unicode strings instead of 8-bit strings. More
precisely, if object is a Unicode string or subclass it will return that
Unicode string without any additional decoding applied.

For objects which provide a __unicode__() method, it will call this method
without arguments to create a Unicode string. For all other objects, the 8-bit
string version or representation is requested and then converted to a Unicode
string using the codec for the default encoding in 'strict' mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange which describes
sequence functionality (Unicode strings are sequences), and also the
string-specific methods described in the String Methods section. To
output formatted strings use template strings or the % operator described
in the String Formatting Operations section. In addition see the
String Services section. See also str().

New in version 2.0.

Changed in version 2.2: Support for __unicode__() added.

	
vars([object])

	Without an argument, act like locals().

With a module, class or class instance object as argument (or anything else that
has a __dict__ attribute), return that attribute.

Note

The returned dictionary should not be modified:
the effects on the corresponding symbol table are undefined. [3]

	
xrange([start], stop[, step])

	This function is very similar to range(), but returns an “xrange object”
instead of a list. This is an opaque sequence type which yields the same values
as the corresponding list, without actually storing them all simultaneously.
The advantage of xrange() over range() is minimal (since
xrange() still has to create the values when asked for them) except when a
very large range is used on a memory-starved machine or when all of the range’s
elements are never used (such as when the loop is usually terminated with
break).

CPython implementation detail: xrange() is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python
restricts all arguments to native C longs (“short” Python integers), and
also requires that the number of elements fit in a native C long. If a
larger range is needed, an alternate version can be crafted using the
itertools module: islice(count(start, step),
(stop-start+step-1+2*(step<0))//step).

	
zip([iterable, ...])

	This function returns a list of tuples, where the i-th tuple contains the
i-th element from each of the argument sequences or iterables. The returned
list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same length, zip()
is similar to map() with an initial argument of None. With a single
sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This
makes possible an idiom for clustering a data series into n-length groups
using zip(*[iter(s)]*n).

zip() in conjunction with the * operator can be used to unzip a
list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> zipped
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zipped)
>>> x == list(x2) and y == list(y2)
True

New in version 2.0.

Changed in version 2.4: Formerly, zip() required at least one argument and zip() raised a
TypeError instead of returning an empty list.

	
__import__(name[, globals[, locals[, fromlist[, level]]]])

	
Note

This is an advanced function that is not needed in everyday Python
programming.

This function is invoked by the import statement. It can be
replaced (by importing the __builtin__ module and assigning to
__builtin__.__import__) in order to change semantics of the
import statement, but nowadays it is usually simpler to use import
hooks (see PEP 302 [http://www.python.org/dev/peps/pep-0302]). Direct use of __import__() is rare, except in
cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals
and locals to determine how to interpret the name in a package context.
The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does
not use its locals argument at all, and uses its globals only to
determine the package context of the import statement.

level specifies whether to use absolute or relative imports. The default
is -1 which indicates both absolute and relative imports will be
attempted. 0 means only perform absolute imports. Positive values for
level indicate the number of parent directories to search relative to the
directory of the module calling __import__().

When the name variable is of the form package.module, normally, the
top-level package (the name up till the first dot) is returned, not the
module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the
following code:

spam = __import__('spam', globals(), locals(), [], -1)

The statement import spam.ham results in this call:

spam = __import__('spam.ham', globals(), locals(), [], -1)

Note how __import__() returns the toplevel module here because this is
the object that is bound to a name by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as
saus results in

_temp = __import__('spam.ham', globals(), locals(), ['eggs', 'sausage'], -1)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from __import__(). From this
object, the names to import are retrieved and assigned to their respective
names.

If you simply want to import a module (potentially within a package) by name,
you can call __import__() and then look it up in sys.modules:

>>> import sys
>>> name = 'foo.bar.baz'
>>> __import__(name)
<module 'foo' from ...>
>>> baz = sys.modules[name]
>>> baz
<module 'foo.bar.baz' from ...>

Changed in version 2.5: The level parameter was added.

Changed in version 2.5: Keyword support for parameters was added.

3. Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know
or use in modern Python programming. They have been kept here to maintain
backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to
bypass these functions without concerns about missing something important.

	
apply(function, args[, keywords])

	The function argument must be a callable object (a user-defined or built-in
function or method, or a class object) and the args argument must be a
sequence. The function is called with args as the argument list; the number
of arguments is the length of the tuple. If the optional keywords argument is
present, it must be a dictionary whose keys are strings. It specifies keyword
arguments to be added to the end of the argument list. Calling apply() is
different from just calling function(args), since in that case there is
always exactly one argument. The use of apply() is equivalent to
function(*args, **keywords).

Deprecated since version 2.3: Use the extended call syntax with *args and **keywords instead.

	
buffer(object[, offset[, size]])

	The object argument must be an object that supports the buffer call interface
(such as strings, arrays, and buffers). A new buffer object will be created
which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will
extend to the end of object (or will have a length given by the size
argument).

	
coerce(x, y)

	Return a tuple consisting of the two numeric arguments converted to a common
type, using the same rules as used by arithmetic operations. If coercion is not
possible, raise TypeError.

	
intern(string)

	Enter string in the table of “interned” strings and return the interned string
– which is string itself or a copy. Interning strings is useful to gain a
little performance on dictionary lookup – if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the
names used in Python programs are automatically interned, and the dictionaries
used to hold module, class or instance attributes have interned keys.

Changed in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and
before); you must keep a reference to the return value of intern() around
to benefit from it.

Footnotes

	[1]	It is used relatively rarely so does not warrant being made into a statement.

	[2]	Specifying a buffer size currently has no effect on systems that don’t have
setvbuf(). The interface to specify the buffer size is not done using a
method that calls setvbuf(), because that may dump core when called after
any I/O has been performed, and there’s no reliable way to determine whether
this is the case.

	[3]	In the current implementation, local variable bindings cannot normally be
affected this way, but variables retrieved from other scopes (such as modules)
can be. This may change.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

4. Built-in Constants

A small number of constants live in the built-in namespace. They are:

	
False

	The false value of the bool type.

New in version 2.3.

	
True

	The true value of the bool type.

New in version 2.3.

	
None

	The sole value of types.NoneType. None is frequently used to
represent the absence of a value, as when default arguments are not passed to a
function.

Changed in version 2.4: Assignments to None are illegal and raise a SyntaxError.

	
NotImplemented

	Special value which can be returned by the “rich comparison” special methods
(__eq__(), __lt__(), and friends), to indicate that the comparison
is not implemented with respect to the other type.

	
Ellipsis

	Special value used in conjunction with extended slicing syntax.

	
__debug__

	This constant is true if Python was not started with an -O option.
See also the assert statement.

Note

The names None and __debug__ cannot be reassigned
(assignments to them, even as an attribute name, raise SyntaxError),
so they can be considered “true” constants.

Changed in version 2.7: Assignments to __debug__ as an attribute became illegal.

4.1. Constants added by the site module

The site module (which is imported automatically during startup, except
if the -S command-line option is given) adds several constants to the
built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.

	
quit([code=None])

	
exit([code=None])

	Objects that when printed, print a message like “Use quit() or Ctrl-D
(i.e. EOF) to exit”, and when called, raise SystemExit with the
specified exit code.

	
copyright

	
license

	
credits

	Objects that when printed, print a message like “Type license() to see the
full license text”, and when called, display the corresponding text in a
pager-like fashion (one screen at a time).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

5. Built-in Types

The following sections describe the standard types that are built into the
interpreter.

Note

Historically (until release 2.2), Python’s built-in types have differed from
user-defined types because it was not possible to use the built-in types as the
basis for object-oriented inheritance. This limitation no longer
exists.

The principal built-in types are numerics, sequences, mappings, files, classes,
instances and exceptions.

Some operations are supported by several object types; in particular,
practically all objects can be compared, tested for truth value, and converted
to a string (with the repr() function or the slightly different
str() function). The latter function is implicitly used when an object is
written by the print() function.

5.1. Truth Value Testing

Any object can be tested for truth value, for use in an if or
while condition or as operand of the Boolean operations below. The
following values are considered false:

	None

	False

	zero of any numeric type, for example, 0, 0L, 0.0, 0j.

	any empty sequence, for example, '', (), [].

	any empty mapping, for example, {}.

	instances of user-defined classes, if the class defines a __nonzero__()
or __len__() method, when that method returns the integer zero or
bool value False. [1]

All other values are considered true — so objects of many types are always
true.

Operations and built-in functions that have a Boolean result always return 0
or False for false and 1 or True for true, unless otherwise stated.
(Important exception: the Boolean operations or and and always return
one of their operands.)

5.2. Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

	Operation
	Result
	Notes

	x or y
	if x is false, then y, else
x
	(1)

	x and y
	if x is false, then x, else
y
	(2)

	not x
	if x is false, then True,
else False
	(3)

Notes:

	This is a short-circuit operator, so it only evaluates the second
argument if the first one is False.

	This is a short-circuit operator, so it only evaluates the second
argument if the first one is True.

	not has a lower priority than non-Boolean operators, so not a == b is
interpreted as not (a == b), and a == not b is a syntax error.

5.3. Comparisons

Comparison operations are supported by all objects. They all have the same
priority (which is higher than that of the Boolean operations). Comparisons can
be chained arbitrarily; for example, x < y <= z is equivalent to x < y and
y <= z, except that y is evaluated only once (but in both cases z is not
evaluated at all when x < y is found to be false).

This table summarizes the comparison operations:

	Operation
	Meaning
	Notes

	<
	strictly less than
	

	<=
	less than or equal
	

	>
	strictly greater than
	

	>=
	greater than or equal
	

	==
	equal
	

	!=
	not equal
	(1)

	is
	object identity
	

	is not
	negated object identity
	

Notes:

	!= can also be written <>, but this is an obsolete usage
kept for backwards compatibility only. New code should always use
!=.

Objects of different types, except different numeric types and different string
types, never compare equal; such objects are ordered consistently but
arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate
notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently. The <, <=, >
and >= operators will raise a TypeError exception when any operand is
a complex number.

Instances of a class normally compare as non-equal unless the class defines the
__cmp__() method. Refer to Basic customization) for information on the
use of this method to effect object comparisons.

CPython implementation detail: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by
their address.

Two more operations with the same syntactic priority, in and not in, are
supported only by sequence types (below).

5.4. Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long
integers, floating point numbers, and complex numbers. In
addition, Booleans are a subtype of plain integers. Plain integers (also just
called integers) are implemented using long in C, which gives
them at least 32 bits of precision (sys.maxint is always set to the maximum
plain integer value for the current platform, the minimum value is
-sys.maxint - 1). Long integers have unlimited precision. Floating point
numbers are usually implemented using double in C; information about
the precision and internal representation of floating point numbers for the
machine on which your program is running is available in
sys.float_info. Complex numbers have a real and imaginary part, which
are each a floating point number. To extract these parts from a complex number
z, use z.real and z.imag. (The standard library includes additional
numeric types, fractions that hold rationals, and decimal that
hold floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions
and operators. Unadorned integer literals (including binary, hex, and octal
numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer.
Integer literals with an 'L' or 'l' suffix yield long integers ('L'
is preferred because 1l looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers.
Appending 'j' or 'J' to a numeric literal yields a complex number with a
zero real part. A complex numeric literal is the sum of a real and an imaginary
part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the “narrower” type is
widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between
numbers of mixed type use the same rule. [2] The constructors int(),
long(), float(), and complex() can be used to produce numbers
of a specific type.

All built-in numeric types support the following operations. See
The power operator and later sections for the operators’ priorities.

	Operation
	Result
	Notes

	x + y
	sum of x and y
	

	x - y
	difference of x and y
	

	x * y
	product of x and y
	

	x / y
	quotient of x and y
	(1)

	x // y
	(floored) quotient of x and
y
	(4)(5)

	x % y
	remainder of x / y
	(4)

	-x
	x negated
	

	+x
	x unchanged
	

	abs(x)
	absolute value or magnitude of
x
	(3)

	int(x)
	x converted to integer
	(2)

	long(x)
	x converted to long integer
	(2)

	float(x)
	x converted to floating point
	(6)

	complex(re,im)
	a complex number with real part
re, imaginary part im.
im defaults to zero.
	

	c.conjugate()
	conjugate of the complex number
c. (Identity on real numbers)
	

	divmod(x, y)
	the pair (x // y, x % y)
	(3)(4)

	pow(x, y)
	x to the power y
	(3)(7)

	x ** y
	x to the power y
	(7)

Notes:

	For (plain or long) integer division, the result is an integer. The result is
always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and
(-1)/(-2) is 0. Note that the result is a long integer if either operand is a
long integer, regardless of the numeric value.

	Conversion from floats using int() or long() truncates toward
zero like the related function, math.trunc(). Use the function
math.floor() to round downward and math.ceil() to round
upward.

	See Built-in Functions for a full description.

	
Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod()
function are no longer defined for complex numbers. Instead, convert to
a floating point number using the abs() function if appropriate.

	Also referred to as integer division. The resultant value is a whole integer,
though the result’s type is not necessarily int.

	float also accepts the strings “nan” and “inf” with an optional prefix “+”
or “-” for Not a Number (NaN) and positive or negative infinity.

New in version 2.6.

	Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for
programming languages.

All numbers.Real types (int, long, and
float) also include the following operations:

	Operation
	Result
	Notes

	math.trunc(x)
	x truncated to Integral
	

	round(x[, n])
	x rounded to n digits,
rounding half to even. If n is
omitted, it defaults to 0.
	

	math.floor(x)
	the greatest integral float <= x
	

	math.ceil(x)
	the least integral float >= x
	

5.4.1. Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only
for bit-strings. Negative numbers are treated as their 2’s complement value
(for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric
operations and higher than the comparisons; the unary operation ~ has the
same priority as the other unary numeric operations (+ and -).

This table lists the bit-string operations sorted in ascending priority:

	Operation
	Result
	Notes

	x | y
	bitwise or of x and
y
	

	x ^ y
	bitwise exclusive or of
x and y
	

	x & y
	bitwise and of x and
y
	

	x << n
	x shifted left by n bits
	(1)(2)

	x >> n
	x shifted right by n bits
	(1)(3)

	~x
	the bits of x inverted
	

Notes:

	Negative shift counts are illegal and cause a ValueError to be raised.

	A left shift by n bits is equivalent to multiplication by pow(2, n). A
long integer is returned if the result exceeds the range of plain integers.

	A right shift by n bits is equivalent to division by pow(2, n).

5.4.2. Additional Methods on Integer Types

The integer types implement the numbers.Integral abstract base
class. In addition, they provide one more method:

	
int.bit_length()

	

	
long.bit_length()

	Return the number of bits necessary to represent an integer in binary,
excluding the sign and leading zeros:

>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6

More precisely, if x is nonzero, then x.bit_length() is the
unique positive integer k such that 2**(k-1) <= abs(x) < 2**k.
Equivalently, when abs(x) is small enough to have a correctly
rounded logarithm, then k = 1 + int(log(abs(x), 2)).
If x is zero, then x.bit_length() returns 0.

Equivalent to:

def bit_length(self):
 s = bin(self) # binary representation: bin(-37) --> '-0b100101'
 s = s.lstrip('-0b') # remove leading zeros and minus sign
 return len(s) # len('100101') --> 6

New in version 2.7.

5.4.3. Additional Methods on Float

The float type implements the numbers.Real abstract base
class. float also has the following additional methods.

	
float.as_integer_ratio()

	Return a pair of integers whose ratio is exactly equal to the
original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on
NaNs.

New in version 2.6.

	
float.is_integer()

	Return True if the float instance is finite with integral
value, and False otherwise:

>>> (-2.0).is_integer()
True
>>> (3.2).is_integer()
False

New in version 2.6.

Two methods support conversion to
and from hexadecimal strings. Since Python’s floats are stored
internally as binary numbers, converting a float to or from a
decimal string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and
specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

	
float.hex()

	Return a representation of a floating-point number as a hexadecimal
string. For finite floating-point numbers, this representation
will always include a leading 0x and a trailing p and
exponent.

New in version 2.6.

	
float.fromhex(s)

	Class method to return the float represented by a hexadecimal
string s. The string s may have leading and trailing
whitespace.

New in version 2.6.

Note that float.hex() is an instance method, while
float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or -, integer
and fraction are strings of hexadecimal digits, and exponent
is a decimal integer with an optional leading sign. Case is not
significant, and there must be at least one hexadecimal digit in
either the integer or the fraction. This syntax is similar to the
syntax specified in section 6.4.4.2 of the C99 standard, and also to
the syntax used in Java 1.5 onwards. In particular, the output of
float.hex() is usable as a hexadecimal floating-point literal in
C or Java code, and hexadecimal strings produced by C’s %a format
character or Java’s Double.toHexString are accepted by
float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal,
and that it gives the power of 2 by which to multiply the coefficient.
For example, the hexadecimal string 0x3.a7p10 represents the
floating-point number (3 + 10./16 + 7./16**2) * 2.0**10, or
3740.0:

>>> float.fromhex('0x3.a7p10')
3740.0

Applying the reverse conversion to 3740.0 gives a different
hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11'

5.5. Iterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration
support:

	
container.__iter__()

	Return an iterator object. The object is required to support the iterator
protocol described below. If a container supports different types of
iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting
multiple forms of iteration would be a tree structure which supports both
breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C
API.

The iterator objects themselves are required to support the following two
methods, which together form the iterator protocol:

	
iterator.__iter__()

	Return the iterator object itself. This is required to allow both containers
and iterators to be used with the for and in statements.
This method corresponds to the tp_iter slot of the type structure for
Python objects in the Python/C API.

	
iterator.next()

	Return the next item from the container. If there are no further items, raise
the StopIteration exception. This method corresponds to the
tp_iternext slot of the type structure for Python objects in the
Python/C API.

Python defines several iterator objects to support iteration over general and
specific sequence types, dictionaries, and other more specialized forms. The
specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next() method
raises StopIteration, it will continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken
according to this rule.)

5.5.1. Generator Types

Python’s generators provide a convenient way to implement the iterator
protocol. If a container object’s __iter__() method is implemented as a
generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter__() and next() methods. More
information about generators can be found in the documentation for the
yield expression.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange

There are seven sequence types: strings, Unicode strings, lists, tuples,
bytearrays, buffers, and xrange objects.

For other containers see the built in dict and set classes,
and the collections module.

String literals are written in single or double quotes: 'xyzzy',
"frobozz". See String literals for more about string literals.
Unicode strings are much like strings, but are specified in the syntax
using a preceding 'u' character: u'abc', u"def". In addition
to the functionality described here, there are also string-specific
methods described in the String Methods section. Lists are
constructed with square brackets, separating items with commas: [a, b, c].
Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple
must have the enclosing parentheses, such as a, b, c or (). A
single item tuple must have a trailing comma, such as (d,).

Bytearray objects are created with the built-in function bytearray().

Buffer objects are not directly supported by Python syntax, but can be created
by calling the built-in function buffer(). They don’t support
concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to
create them, but they are created using the xrange() function. They don’t
support slicing, concatenation or repetition, and using in, not in,
min() or max() on them is inefficient.

Most sequence types support the following operations. The in and not in
operations have the same priorities as the comparison operations. The + and
* operations have the same priority as the corresponding numeric operations.
[3] Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority). In the table, s and t
are sequences of the same type; n, i and j are integers:

	Operation
	Result
	Notes

	x in s
	True if an item of s is
equal to x, else False
	(1)

	x not in s
	False if an item of s is
equal to x, else True
	(1)

	s + t
	the concatenation of s and
t
	(6)

	s * n, n * s
	n shallow copies of s
concatenated
	(2)

	s[i]
	i‘th item of s, origin 0
	(3)

	s[i:j]
	slice of s from i to j
	(3)(4)

	s[i:j:k]
	slice of s from i to j
with step k
	(3)(5)

	len(s)
	length of s
	

	min(s)
	smallest item of s
	

	max(s)
	largest item of s
	

	s.index(i)
	index of the first occurence
of i in s
	

	s.count(i)
	total number of occurences of
i in s
	

Sequence types also support comparisons. In particular, tuples and lists
are compared lexicographically by comparing corresponding
elements. This means that to compare equal, every element must compare
equal and the two sequences must be of the same type and have the same
length. (For full details see Comparisons in the language
reference.)

Notes:

	When s is a string or Unicode string object the in and not in
operations act like a substring test. In Python versions before 2.3, x had to
be a string of length 1. In Python 2.3 and beyond, x may be a string of any
length.

	Values of n less than 0 are treated as 0 (which yields an empty
sequence of the same type as s). Note also that the copies are shallow;
nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

What has happened is that [[]] is a one-element list containing an empty
list, so all three elements of [[]] * 3 are (pointers to) this single empty
list. Modifying any of the elements of lists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]

	If i or j is negative, the index is relative to the end of the string:
len(s) + i or len(s) + j is substituted. But note that -0 is still
0.

	The slice of s from i to j is defined as the sequence of items with index
k such that i <= k < j. If i or j is greater than len(s), use
len(s). If i is omitted or None, use 0. If j is omitted or
None, use len(s). If i is greater than or equal to j, the slice is
empty.

	The slice of s from i to j with step k is defined as the sequence of
items with index x = i + n*k such that 0 <= n < (j-i)/k. In other words,
the indices are i, i+k, i+2*k, i+3*k and so on, stopping when
j is reached (but never including j). If i or j is greater than
len(s), use len(s). If i or j are omitted or None, they become
“end” values (which end depends on the sign of k). Note, k cannot be zero.
If k is None, it is treated like 1.

	
CPython implementation detail: If s and t are both strings, some Python implementations such as
CPython can usually perform an in-place optimization for assignments of
the form s = s + t or s += t. When applicable, this optimization
makes quadratic run-time much less likely. This optimization is both
version and implementation dependent. For performance sensitive code, it
is preferable to use the str.join() method which assures consistent
linear concatenation performance across versions and implementations.

Changed in version 2.4: Formerly, string concatenation never occurred in-place.

5.6.1. String Methods

Below are listed the string methods which both 8-bit strings and
Unicode objects support. Some of them are also available on bytearray
objects.

In addition, Python’s strings support the sequence type methods
described in the Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange section. To output formatted strings
use template strings or the % operator described in the
String Formatting Operations section. Also, see the re module for
string functions based on regular expressions.

	
str.capitalize()

	Return a copy of the string with its first character capitalized and the
rest lowercased.

For 8-bit strings, this method is locale-dependent.

	
str.center(width[, fillchar])

	Return centered in a string of length width. Padding is done using the
specified fillchar (default is a space).

Changed in version 2.4: Support for the fillchar argument.

	
str.count(sub[, start[, end]])

	Return the number of non-overlapping occurrences of substring sub in the
range [start, end]. Optional arguments start and end are
interpreted as in slice notation.

	
str.decode([encoding[, errors]])

	Decodes the string using the codec registered for encoding. encoding
defaults to the default string encoding. errors may be given to set a
different error handling scheme. The default is 'strict', meaning that
encoding errors raise UnicodeError. Other possible values are
'ignore', 'replace' and any other name registered via
codecs.register_error(), see section Codec Base Classes.

New in version 2.2.

Changed in version 2.3: Support for other error handling schemes added.

Changed in version 2.7: Support for keyword arguments added.

	
str.encode([encoding[, errors]])

	Return an encoded version of the string. Default encoding is the current
default string encoding. errors may be given to set a different error
handling scheme. The default for errors is 'strict', meaning that
encoding errors raise a UnicodeError. Other possible values are
'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' and
any other name registered via codecs.register_error(), see section
Codec Base Classes. For a list of possible encodings, see section
Standard Encodings.

New in version 2.0.

Changed in version 2.3: Support for 'xmlcharrefreplace' and 'backslashreplace' and other error
handling schemes added.

Changed in version 2.7: Support for keyword arguments added.

	
str.endswith(suffix[, start[, end]])

	Return True if the string ends with the specified suffix, otherwise return
False. suffix can also be a tuple of suffixes to look for. With optional
start, test beginning at that position. With optional end, stop comparing
at that position.

Changed in version 2.5: Accept tuples as suffix.

	
str.expandtabs([tabsize])

	Return a copy of the string where all tab characters are replaced by one or
more spaces, depending on the current column and the given tab size. The
column number is reset to zero after each newline occurring in the string.
If tabsize is not given, a tab size of 8 characters is assumed. This
doesn’t understand other non-printing characters or escape sequences.

	
str.find(sub[, start[, end]])

	Return the lowest index in the string where substring sub is found, such
that sub is contained in the slice s[start:end]. Optional arguments
start and end are interpreted as in slice notation. Return -1 if
sub is not found.

Note

The find() method should be used only if you need to know the
position of sub. To check if sub is a substring or not, use the
in operator:

>>> 'Py' in 'Python'
True

	
str.format(*args, **kwargs)

	Perform a string formatting operation. The string on which this method is
called can contain literal text or replacement fields delimited by braces
{}. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of
the string where each replacement field is replaced with the string value of
the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options
that can be specified in format strings.

This method of string formatting is the new standard in Python 3.0, and
should be preferred to the % formatting described in
String Formatting Operations in new code.

New in version 2.6.

	
str.index(sub[, start[, end]])

	Like find(), but raise ValueError when the substring is not found.

	
str.isalnum()

	Return true if all characters in the string are alphanumeric and there is at
least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.isalpha()

	Return true if all characters in the string are alphabetic and there is at least
one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.isdigit()

	Return true if all characters in the string are digits and there is at least one
character, false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.islower()

	Return true if all cased characters in the string are lowercase and there is at
least one cased character, false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.isspace()

	Return true if there are only whitespace characters in the string and there is
at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.istitle()

	Return true if the string is a titlecased string and there is at least one
character, for example uppercase characters may only follow uncased characters
and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.isupper()

	Return true if all cased characters in the string are uppercase and there is at
least one cased character, false otherwise.

For 8-bit strings, this method is locale-dependent.

	
str.join(iterable)

	Return a string which is the concatenation of the strings in the
iterable iterable. The separator between elements is the string
providing this method.

	
str.ljust(width[, fillchar])

	Return the string left justified in a string of length width. Padding is done
using the specified fillchar (default is a space). The original string is
returned if width is less than len(s).

Changed in version 2.4: Support for the fillchar argument.

	
str.lower()

	Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

	
str.lstrip([chars])

	Return a copy of the string with leading characters removed. The chars
argument is a string specifying the set of characters to be removed. If omitted
or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'

Changed in version 2.2.2: Support for the chars argument.

	
str.partition(sep)

	Split the string at the first occurrence of sep, and return a 3-tuple
containing the part before the separator, the separator itself, and the part
after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.

New in version 2.5.

	
str.replace(old, new[, count])

	Return a copy of the string with all occurrences of substring old replaced by
new. If the optional argument count is given, only the first count
occurrences are replaced.

	
str.rfind(sub[, start[, end]])

	Return the highest index in the string where substring sub is found, such
that sub is contained within s[start:end]. Optional arguments start
and end are interpreted as in slice notation. Return -1 on failure.

	
str.rindex(sub[, start[, end]])

	Like rfind() but raises ValueError when the substring sub is not
found.

	
str.rjust(width[, fillchar])

	Return the string right justified in a string of length width. Padding is done
using the specified fillchar (default is a space). The original string is
returned if width is less than len(s).

Changed in version 2.4: Support for the fillchar argument.

	
str.rpartition(sep)

	Split the string at the last occurrence of sep, and return a 3-tuple
containing the part before the separator, the separator itself, and the part
after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.

New in version 2.5.

	
str.rsplit([sep[, maxsplit]])

	Return a list of the words in the string, using sep as the delimiter string.
If maxsplit is given, at most maxsplit splits are done, the rightmost
ones. If sep is not specified or None, any whitespace string is a
separator. Except for splitting from the right, rsplit() behaves like
split() which is described in detail below.

New in version 2.4.

	
str.rstrip([chars])

	Return a copy of the string with trailing characters removed. The chars
argument is a string specifying the set of characters to be removed. If omitted
or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'

Changed in version 2.2.2: Support for the chars argument.

	
str.split([sep[, maxsplit]])

	Return a list of the words in the string, using sep as the delimiter
string. If maxsplit is given, at most maxsplit splits are done (thus,
the list will have at most maxsplit+1 elements). If maxsplit is not
specified, then there is no limit on the number of splits (all possible
splits are made).

If sep is given, consecutive delimiters are not grouped together and are
deemed to delimit empty strings (for example, '1,,2'.split(',') returns
['1', '', '2']). The sep argument may consist of multiple characters
(for example, '1<>2<>3'.split('<>') returns ['1', '2', '3']).
Splitting an empty string with a specified separator returns [''].

If sep is not specified or is None, a different splitting algorithm is
applied: runs of consecutive whitespace are regarded as a single separator,
and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty
string or a string consisting of just whitespace with a None separator
returns [].

For example, ' 1 2 3 '.split() returns ['1', '2', '3'], and
' 1 2 3 '.split(None, 1) returns ['1', '2 3 '].

	
str.splitlines([keepends])

	Return a list of the lines in the string, breaking at line boundaries. Line
breaks are not included in the resulting list unless keepends is given and
true.

	
str.startswith(prefix[, start[, end]])

	Return True if string starts with the prefix, otherwise return False.
prefix can also be a tuple of prefixes to look for. With optional start,
test string beginning at that position. With optional end, stop comparing
string at that position.

Changed in version 2.5: Accept tuples as prefix.

	
str.strip([chars])

	Return a copy of the string with the leading and trailing characters removed.
The chars argument is a string specifying the set of characters to be removed.
If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its
values are stripped:

>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'

Changed in version 2.2.2: Support for the chars argument.

	
str.swapcase()

	Return a copy of the string with uppercase characters converted to lowercase and
vice versa.

For 8-bit strings, this method is locale-dependent.

	
str.title()

	Return a titlecased version of the string where words start with an uppercase
character and the remaining characters are lowercase.

The algorithm uses a simple language-independent definition of a word as
groups of consecutive letters. The definition works in many contexts but
it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
 return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
 lambda mo: mo.group(0)[0].upper() +
 mo.group(0)[1:].lower(),
 s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

	
str.translate(table[, deletechars])

	Return a copy of the string where all characters occurring in the optional
argument deletechars are removed, and the remaining characters have been
mapped through the given translation table, which must be a string of length
256.

You can use the maketrans() helper function in the string
module to create a translation table. For string objects, set the table
argument to None for translations that only delete characters:

>>> 'read this short text'.translate(None, 'aeiou')
'rd ths shrt txt'

New in version 2.6: Support for a None table argument.

For Unicode objects, the translate() method does not accept the optional
deletechars argument. Instead, it returns a copy of the s where all
characters have been mapped through the given translation table which must be a
mapping of Unicode ordinals to Unicode ordinals, Unicode strings or None.
Unmapped characters are left untouched. Characters mapped to None are
deleted. Note, a more flexible approach is to create a custom character mapping
codec using the codecs module (see encodings.cp1251 for an
example).

	
str.upper()

	Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

	
str.zfill(width)

	Return the numeric string left filled with zeros in a string of length
width. A sign prefix is handled correctly. The original string is
returned if width is less than len(s).

New in version 2.2.2.

The following methods are present only on unicode objects:

	
unicode.isnumeric()

	Return True if there are only numeric characters in S, False
otherwise. Numeric characters include digit characters, and all characters
that have the Unicode numeric value property, e.g. U+2155,
VULGAR FRACTION ONE FIFTH.

	
unicode.isdecimal()

	Return True if there are only decimal characters in S, False
otherwise. Decimal characters include digit characters, and all characters
that that can be used to form decimal-radix numbers, e.g. U+0660,
ARABIC-INDIC DIGIT ZERO.

5.6.2. String Formatting Operations

String and Unicode objects have one unique built-in operation: the %
operator (modulo). This is also known as the string formatting or
interpolation operator. Given format % values (where format is a string
or Unicode object), % conversion specifications in format are replaced
with zero or more elements of values. The effect is similar to the using
sprintf() in the C language. If format is a Unicode object, or if any
of the objects being converted using the %s conversion are Unicode objects,
the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple
object. [4] Otherwise, values must be a tuple with exactly the number of
items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following
components, which must occur in this order:

	The '%' character, which marks the start of the specifier.

	Mapping key (optional), consisting of a parenthesised sequence of characters
(for example, (somename)).

	Conversion flags (optional), which affect the result of some conversion
types.

	Minimum field width (optional). If specified as an '*' (asterisk), the
actual width is read from the next element of the tuple in values, and the
object to convert comes after the minimum field width and optional precision.

	Precision (optional), given as a '.' (dot) followed by the precision. If
specified as '*' (an asterisk), the actual width is read from the next
element of the tuple in values, and the value to convert comes after the
precision.

	Length modifier (optional).

	Conversion type.

When the right argument is a dictionary (or other mapping type), then the
formats in the string must include a parenthesised mapping key into that
dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(number)03d quote types.' % \
... {"language": "Python", "number": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a
sequential parameter list).

The conversion flag characters are:

	Flag
	Meaning

	'#'
	The value conversion will use the “alternate form” (where defined
below).

	'0'
	The conversion will be zero padded for numeric values.

	'-'
	The converted value is left adjusted (overrides the '0'
conversion if both are given).

	' '
	(a space) A blank should be left before a positive number (or empty
string) produced by a signed conversion.

	'+'
	A sign character ('+' or '-') will precede the conversion
(overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it
is not necessary for Python – so e.g. %ld is identical to %d.

The conversion types are:

	Conversion
	Meaning
	Notes

	'd'
	Signed integer decimal.
	

	'i'
	Signed integer decimal.
	

	'o'
	Signed octal value.
	(1)

	'u'
	Obsolete type – it is identical to 'd'.
	(7)

	'x'
	Signed hexadecimal (lowercase).
	(2)

	'X'
	Signed hexadecimal (uppercase).
	(2)

	'e'
	Floating point exponential format (lowercase).
	(3)

	'E'
	Floating point exponential format (uppercase).
	(3)

	'f'
	Floating point decimal format.
	(3)

	'F'
	Floating point decimal format.
	(3)

	'g'
	Floating point format. Uses lowercase exponential
format if exponent is less than -4 or not less than
precision, decimal format otherwise.
	(4)

	'G'
	Floating point format. Uses uppercase exponential
format if exponent is less than -4 or not less than
precision, decimal format otherwise.
	(4)

	'c'
	Single character (accepts integer or single
character string).
	

	'r'
	String (converts any Python object using
repr()).
	(5)

	's'
	String (converts any Python object using
str()).
	(6)

	'%'
	No argument is converted, results in a '%'
character in the result.
	

Notes:

	The alternate form causes a leading zero ('0') to be inserted between
left-hand padding and the formatting of the number if the leading character
of the result is not already a zero.

	The alternate form causes a leading '0x' or '0X' (depending on whether
the 'x' or 'X' format was used) to be inserted between left-hand padding
and the formatting of the number if the leading character of the result is not
already a zero.

	The alternate form causes the result to always contain a decimal point, even if
no digits follow it.

The precision determines the number of digits after the decimal point and
defaults to 6.

	The alternate form causes the result to always contain a decimal point, and
trailing zeroes are not removed as they would otherwise be.

The precision determines the number of significant digits before and after the
decimal point and defaults to 6.

	The %r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

	If the object or format provided is a unicode string, the resulting
string will also be unicode.

The precision determines the maximal number of characters used.

	See PEP 237 [http://www.python.org/dev/peps/pep-0237].

Since Python strings have an explicit length, %s conversions do not assume
that '\0' is the end of the string.

Changed in version 2.7: %f conversions for numbers whose absolute value is over 1e50 are no
longer replaced by %g conversions.

Additional string operations are defined in standard modules string and
re.

5.6.3. XRange Type

The xrange type is an immutable sequence which is commonly used for
looping. The advantage of the xrange type is that an xrange
object will always take the same amount of memory, no matter the size of the
range it represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration,
and the len() function.

5.6.4. Mutable Sequence Types

List and bytearray objects support additional operations that allow
in-place modification of the object. Other mutable sequence types (when added
to the language) should also support these operations. Strings and tuples
are immutable sequence types: such objects cannot be modified once created.
The following operations are defined on mutable sequence types (where x is
an arbitrary object):

	Operation
	Result
	Notes

	s[i] = x
	item i of s is replaced by
x
	

	s[i:j] = t
	slice of s from i to j
is replaced by the contents of
the iterable t
	

	del s[i:j]
	same as s[i:j] = []
	

	s[i:j:k] = t
	the elements of s[i:j:k]
are replaced by those of t
	(1)

	del s[i:j:k]
	removes the elements of
s[i:j:k] from the list
	

	s.append(x)
	same as s[len(s):len(s)] =
[x]
	(2)

	s.extend(x)
	same as s[len(s):len(s)] =
x
	(3)

	s.count(x)
	return number of i‘s for
which s[i] == x
	

	s.index(x[, i[, j]])
	return smallest k such that
s[k] == x and i <= k <
j
	(4)

	s.insert(i, x)
	same as s[i:i] = [x]
	(5)

	s.pop([i])
	same as x = s[i]; del s[i];
return x
	(6)

	s.remove(x)
	same as del s[s.index(x)]
	(4)

	s.reverse()
	reverses the items of s in
place
	(7)

	s.sort([cmp[, key[,
reverse]]])
	sort the items of s in place
	(7)(8)(9)(10)

Notes:

	t must have the same length as the slice it is replacing.

	The C implementation of Python has historically accepted multiple parameters and
implicitly joined them into a tuple; this no longer works in Python 2.0. Use of
this misfeature has been deprecated since Python 1.4.

	x can be any iterable object.

	Raises ValueError when x is not found in s. When a negative index is
passed as the second or third parameter to the index() method, the list
length is added, as for slice indices. If it is still negative, it is truncated
to zero, as for slice indices.

Changed in version 2.3: Previously, index() didn’t have arguments for specifying start and stop
positions.

	When a negative index is passed as the first parameter to the insert()
method, the list length is added, as for slice indices. If it is still
negative, it is truncated to zero, as for slice indices.

Changed in version 2.3: Previously, all negative indices were truncated to zero.

	The pop() method is only supported by the list and array types. The
optional argument i defaults to -1, so that by default the last item is
removed and returned.

	The sort() and reverse() methods modify the list in place for
economy of space when sorting or reversing a large list. To remind you that
they operate by side effect, they don’t return the sorted or reversed list.

	The sort() method takes optional arguments for controlling the
comparisons.

cmp specifies a custom comparison function of two arguments (list items) which
should return a negative, zero or positive number depending on whether the first
argument is considered smaller than, equal to, or larger than the second
argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default value
is None.

key specifies a function of one argument that is used to extract a comparison
key from each list element: key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are
sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than
specifying an equivalent cmp function. This is because cmp is called
multiple times for each list element while key and reverse touch each
element only once. Use functools.cmp_to_key() to convert an
old-style cmp function to a key function.

Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.

Changed in version 2.4: Support for key and reverse was added.

	Starting with Python 2.3, the sort() method is guaranteed to be stable. A
sort is stable if it guarantees not to change the relative order of elements
that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

	
CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and
newer makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a
sort.

5.7. Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects.
Common uses include membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and
symmetric difference.
(For other containers see the built in dict, list,
and tuple classes, and the collections module.)

New in version 2.4.

Like other collections, sets support x in set, len(set), and for x in
set. Being an unordered collection, sets do not record element position or
order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two built-in set types, set and frozenset.
The set type is mutable — the contents can be changed using methods
like add() and remove(). Since it is mutable, it has no hash value
and cannot be used as either a dictionary key or as an element of another set.
The frozenset type is immutable and hashable — its contents
cannot be altered after it is created; it can therefore be used as a dictionary
key or as an element of another set.

As of Python 2.7, non-empty sets (not frozensets) can be created by placing a
comma-separated list of elements within braces, for example: {'jack',
'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

	
class set([iterable])

	
class frozenset([iterable])

	Return a new set or frozenset object whose elements are taken from
iterable. The elements of a set must be hashable. To represent sets of
sets, the inner sets must be frozenset objects. If iterable is
not specified, a new empty set is returned.

Instances of set and frozenset provide the following
operations:

	
len(s)

	Return the cardinality of set s.

	
x in s

	Test x for membership in s.

	
x not in s

	Test x for non-membership in s.

	
isdisjoint(other)

	Return True if the set has no elements in common with other. Sets are
disjoint if and only if their intersection is the empty set.

New in version 2.6.

	
issubset(other)

	
set <= other

	Test whether every element in the set is in other.

	
set < other

	Test whether the set is a true subset of other, that is,
set <= other and set != other.

	
issuperset(other)

	
set >= other

	Test whether every element in other is in the set.

	
set > other

	Test whether the set is a true superset of other, that is, set >=
other and set != other.

	
union(other, ...)

	
set | other | ...

	Return a new set with elements from the set and all others.

Changed in version 2.6: Accepts multiple input iterables.

	
intersection(other, ...)

	
set & other & ...

	Return a new set with elements common to the set and all others.

Changed in version 2.6: Accepts multiple input iterables.

	
difference(other, ...)

	
set - other - ...

	Return a new set with elements in the set that are not in the others.

Changed in version 2.6: Accepts multiple input iterables.

	
symmetric_difference(other)

	
set ^ other

	Return a new set with elements in either the set or other but not both.

	
copy()

	Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(),
difference(), and symmetric_difference(), issubset(), and
issuperset() methods will accept any iterable as an argument. In
contrast, their operator based counterparts require their arguments to be
sets. This precludes error-prone constructions like set('abc') & 'cbs'
in favor of the more readable set('abc').intersection('cbs').

Both set and frozenset support set to set comparisons. Two
sets are equal if and only if every element of each set is contained in the
other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but
is not equal). A set is greater than another set if and only if the first set
is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset
based on their members. For example, set('abc') == frozenset('abc')
returns True and so does set('abc') in set([frozenset('abc')]).

The subset and equality comparisons do not generalize to a complete ordering
function. For example, any two disjoint sets are not equal and are not
subsets of each other, so all of the following return False: a<b,
a==b, or a>b. Accordingly, sets do not implement the __cmp__()
method.

Since sets only define partial ordering (subset relationships), the output of
the list.sort() method is undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset
return the type of the first operand. For example: frozenset('ab') |
set('bc') returns an instance of frozenset.

The following table lists operations available for set that do not
apply to immutable instances of frozenset:

	
update(other, ...)

	
set |= other | ...

	Update the set, adding elements from all others.

Changed in version 2.6: Accepts multiple input iterables.

	
intersection_update(other, ...)

	
set &= other & ...

	Update the set, keeping only elements found in it and all others.

Changed in version 2.6: Accepts multiple input iterables.

	
difference_update(other, ...)

	
set -= other | ...

	Update the set, removing elements found in others.

Changed in version 2.6: Accepts multiple input iterables.

	
symmetric_difference_update(other)

	
set ^= other

	Update the set, keeping only elements found in either set, but not in both.

	
add(elem)

	Add element elem to the set.

	
remove(elem)

	Remove element elem from the set. Raises KeyError if elem is
not contained in the set.

	
discard(elem)

	Remove element elem from the set if it is present.

	
pop()

	Remove and return an arbitrary element from the set. Raises
KeyError if the set is empty.

	
clear()

	Remove all elements from the set.

Note, the non-operator versions of the update(),
intersection_update(), difference_update(), and
symmetric_difference_update() methods will accept any iterable as an
argument.

Note, the elem argument to the __contains__(), remove(), and
discard() methods may be a set. To support searching for an equivalent
frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated
since it does not have a meaningful value.

See also

	Comparison to the built-in set types

	Differences between the sets module and the built-in set types.

5.8. Mapping Types — dict

A mapping object maps hashable values to arbitrary objects.
Mappings are mutable objects. There is currently only one standard mapping
type, the dictionary. (For other containers see the built in
list, set, and tuple classes, and the
collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not
hashable, that is, values containing lists, dictionaries or other
mutable types (that are compared by value rather than by object identity) may
not be used as keys. Numeric types used for keys obey the normal rules for
numeric comparison: if two numbers compare equal (such as 1 and 1.0)
then they can be used interchangeably to index the same dictionary entry. (Note
however, that since computers store floating-point numbers as approximations it
is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value
pairs within braces, for example: {'jack': 4098, 'sjoerd': 4127} or {4098:
'jack', 4127: 'sjoerd'}, or by the dict constructor.

	
class dict([arg])

	Return a new dictionary initialized from an optional positional argument or from
a set of keyword arguments. If no arguments are given, return a new empty
dictionary. If the positional argument arg is a mapping object, return a
dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports
iteration, or an iterator object. The elements of the argument must each also
be of one of those kinds, and each must in turn contain exactly two objects.
The first is used as a key in the new dictionary, and the second as the key’s
value. If a given key is seen more than once, the last value associated with it
is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated
values are added as items to the dictionary. If a key is specified both in the
positional argument and as a keyword argument, the value associated with the
keyword is retained in the dictionary. For example, these all return a
dictionary equal to {"one": 1, "two": 2}:

	dict(one=1, two=2)

	dict({'one': 1, 'two': 2})

	dict(zip(('one', 'two'), (1, 2)))

	dict([['two', 2], ['one', 1]])

The first example only works for keys that are valid Python
identifiers; the others work with any valid keys.

New in version 2.2.

Changed in version 2.3: Support for building a dictionary from keyword arguments added.

These are the operations that dictionaries support (and therefore, custom
mapping types should support too):

	
len(d)

	Return the number of items in the dictionary d.

	
d[key]

	Return the item of d with key key. Raises a KeyError if key
is not in the map.

New in version 2.5: If a subclass of dict defines a method __missing__(), if the key
key is not present, the d[key] operation calls that method with
the key key as argument. The d[key] operation then returns or
raises whatever is returned or raised by the __missing__(key) call
if the key is not present. No other operations or methods invoke
__missing__(). If __missing__() is not defined,
KeyError is raised. __missing__() must be a method; it
cannot be an instance variable. For an example, see
collections.defaultdict.

	
d[key] = value

	Set d[key] to value.

	
del d[key]

	Remove d[key] from d. Raises a KeyError if key is not in the
map.

	
key in d

	Return True if d has a key key, else False.

New in version 2.2.

	
key not in d

	Equivalent to not key in d.

New in version 2.2.

	
iter(d)

	Return an iterator over the keys of the dictionary. This is a shortcut
for iterkeys().

	
clear()

	Remove all items from the dictionary.

	
copy()

	Return a shallow copy of the dictionary.

	
fromkeys(seq[, value])

	Create a new dictionary with keys from seq and values set to value.

fromkeys() is a class method that returns a new dictionary. value
defaults to None.

New in version 2.3.

	
get(key[, default])

	Return the value for key if key is in the dictionary, else default.
If default is not given, it defaults to None, so that this method
never raises a KeyError.

	
has_key(key)

	Test for the presence of key in the dictionary. has_key() is
deprecated in favor of key in d.

	
items()

	Return a copy of the dictionary’s list of (key, value) pairs.

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary’s
history of insertions and deletions.

If items(), keys(), values(), iteritems(),
iterkeys(), and itervalues() are called with no intervening
modifications to the dictionary, the lists will directly correspond. This
allows the creation of (value, key) pairs using zip(): pairs =
zip(d.values(), d.keys()). The same relationship holds for the
iterkeys() and itervalues() methods: pairs =
zip(d.itervalues(), d.iterkeys()) provides the same value for
pairs. Another way to create the same list is pairs = [(v, k) for
(k, v) in d.iteritems()].

	
iteritems()

	Return an iterator over the dictionary’s (key, value) pairs. See the
note for dict.items().

Using iteritems() while adding or deleting entries in the dictionary
may raise a RuntimeError or fail to iterate over all entries.

New in version 2.2.

	
iterkeys()

	Return an iterator over the dictionary’s keys. See the note for
dict.items().

Using iterkeys() while adding or deleting entries in the dictionary
may raise a RuntimeError or fail to iterate over all entries.

New in version 2.2.

	
itervalues()

	Return an iterator over the dictionary’s values. See the note for
dict.items().

Using itervalues() while adding or deleting entries in the
dictionary may raise a RuntimeError or fail to iterate over all
entries.

New in version 2.2.

	
keys()

	Return a copy of the dictionary’s list of keys. See the note for
dict.items().

	
pop(key[, default])

	If key is in the dictionary, remove it and return its value, else return
default. If default is not given and key is not in the dictionary,
a KeyError is raised.

New in version 2.3.

	
popitem()

	Remove and return an arbitrary (key, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as
often used in set algorithms. If the dictionary is empty, calling
popitem() raises a KeyError.

	
setdefault(key[, default])

	If key is in the dictionary, return its value. If not, insert key
with a value of default and return default. default defaults to
None.

	
update([other])

	Update the dictionary with the key/value pairs from other, overwriting
existing keys. Return None.

update() accepts either another dictionary object or an iterable of
key/value pairs (as tuples or other iterables of length two). If keyword
arguments are specified, the dictionary is then updated with those
key/value pairs: d.update(red=1, blue=2).

Changed in version 2.4: Allowed the argument to be an iterable of key/value pairs and allowed
keyword arguments.

	
values()

	Return a copy of the dictionary’s list of values. See the note for
dict.items().

	
viewitems()

	Return a new view of the dictionary’s items ((key, value) pairs). See
below for documentation of view objects.

New in version 2.7.

	
viewkeys()

	Return a new view of the dictionary’s keys. See below for documentation of
view objects.

New in version 2.7.

	
viewvalues()

	Return a new view of the dictionary’s values. See below for documentation of
view objects.

New in version 2.7.

5.8.1. Dictionary view objects

The objects returned by dict.viewkeys(), dict.viewvalues() and
dict.viewitems() are view objects. They provide a dynamic view on the
dictionary’s entries, which means that when the dictionary changes, the view
reflects these changes.

Dictionary views can be iterated over to yield their respective data, and
support membership tests:

	
len(dictview)

	Return the number of entries in the dictionary.

	
iter(dictview)

	Return an iterator over the keys, values or items (represented as tuples of
(key, value)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary’s history
of insertions and deletions. If keys, values and items views are iterated
over with no intervening modifications to the dictionary, the order of items
will directly correspond. This allows the creation of (value, key) pairs
using zip(): pairs = zip(d.values(), d.keys()). Another way to
create the same list is pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise
a RuntimeError or fail to iterate over all entries.

	
x in dictview

	Return True if x is in the underlying dictionary’s keys, values or
items (in the latter case, x should be a (key, value) tuple).

Keys views are set-like since their entries are unique and hashable. If all
values are hashable, so that (key, value) pairs are unique and hashable, then
the items view is also set-like. (Values views are not treated as set-like
since the entries are generally not unique.) Then these set operations are
available (“other” refers either to another view or a set):

	
dictview & other

	Return the intersection of the dictview and the other object as a new set.

	
dictview | other

	Return the union of the dictview and the other object as a new set.

	
dictview - other

	Return the difference between the dictview and the other object (all elements
in dictview that aren’t in other) as a new set.

	
dictview ^ other

	Return the symmetric difference (all elements either in dictview or
other, but not in both) of the dictview and the other object as a new set.

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.viewkeys()
>>> values = dishes.viewvalues()

>>> # iteration
>>> n = 0
>>> for val in values:
... n += val
>>> print(n)
504

>>> # keys and values are iterated over in the same order
>>> list(keys)
['eggs', 'bacon', 'sausage', 'spam']
>>> list(values)
[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['spam', 'bacon']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}

5.9. File Objects

File objects are implemented using C’s stdio package and can be
created with the built-in open() function. File
objects are also returned by some other built-in functions and methods,
such as os.popen() and os.fdopen() and the makefile()
method of socket objects. Temporary files can be created using the
tempfile module, and high-level file operations such as copying,
moving, and deleting files and directories can be achieved with the
shutil module.

When a file operation fails for an I/O-related reason, the exception
IOError is raised. This includes situations where the operation is not
defined for some reason, like seek() on a tty device or writing a file
opened for reading.

Files have the following methods:

	
file.close()

	Close the file. A closed file cannot be read or written any more. Any operation
which requires that the file be open will raise a ValueError after the
file has been closed. Calling close() more than once is allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use
the with statement. For example, the following code will
automatically close f when the with block is exited:

from __future__ import with_statement # This isn't required in Python 2.6

with open("hello.txt") as f:
 for line in f:
 print line

In older versions of Python, you would have needed to do this to get the same
effect:

f = open("hello.txt")
try:
 for line in f:
 print line
finally:
 f.close()

Note

Not all “file-like” types in Python support use as a context manager for the
with statement. If your code is intended to work with any file-like
object, you can use the function contextlib.closing() instead of using
the object directly.

	
file.flush()

	Flush the internal buffer, like stdio‘s fflush(). This may be a
no-op on some file-like objects.

Note

flush() does not necessarily write the file’s data to disk. Use
flush() followed by os.fsync() to ensure this behavior.

	
file.fileno()

	Return the integer “file descriptor” that is used by the underlying
implementation to request I/O operations from the operating system. This can be
useful for other, lower level interfaces that use file descriptors, such as the
fcntl module or os.read() and friends.

Note

File-like objects which do not have a real file descriptor should not provide
this method!

	
file.isatty()

	Return True if the file is connected to a tty(-like) device, else False.

Note

If a file-like object is not associated with a real file, this method should
not be implemented.

	
file.next()

	A file object is its own iterator, for example iter(f) returns f (unless
f is closed). When a file is used as an iterator, typically in a
for loop (for example, for line in f: print line), the
next() method is called repeatedly. This method returns the next input
line, or raises StopIteration when EOF is hit when the file is open for
reading (behavior is undefined when the file is open for writing). In order to
make a for loop the most efficient way of looping over the lines of a
file (a very common operation), the next() method uses a hidden read-ahead
buffer. As a consequence of using a read-ahead buffer, combining next()
with other file methods (like readline()) does not work right. However,
using seek() to reposition the file to an absolute position will flush the
read-ahead buffer.

New in version 2.3.

	
file.read([size])

	Read at most size bytes from the file (less if the read hits EOF before
obtaining size bytes). If the size argument is negative or omitted, read
all data until EOF is reached. The bytes are returned as a string object. An
empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note
that this method may call the underlying C function fread() more than
once in an effort to acquire as close to size bytes as possible. Also note
that when in non-blocking mode, less data than was requested may be
returned, even if no size parameter was given.

	
file.readline([size])

	Read one entire line from the file. A trailing newline character is kept in
the string (but may be absent when a file ends with an incomplete line). [5]
If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be
returned. When size is not 0, an empty string is returned only when EOF
is encountered immediately.

Note

Unlike stdio‘s fgets(), the returned string contains null characters
('\0') if they occurred in the input.

	
file.readlines([sizehint])

	Read until EOF using readline() and return a list containing the lines
thus read. If the optional sizehint argument is present, instead of
reading up to EOF, whole lines totalling approximately sizehint bytes
(possibly after rounding up to an internal buffer size) are read. Objects
implementing a file-like interface may choose to ignore sizehint if it
cannot be implemented, or cannot be implemented efficiently.

	
file.xreadlines()

	This method returns the same thing as iter(f).

New in version 2.1.

Deprecated since version 2.3: Use for line in file instead.

	
file.seek(offset[, whence])

	Set the file’s current position, like stdio‘s fseek(). The whence
argument is optional and defaults to os.SEEK_SET or 0 (absolute file
positioning); other values are os.SEEK_CUR or 1 (seek relative to the
current position) and os.SEEK_END or 2 (seek relative to the file’s
end). There is no return value.

For example, f.seek(2, os.SEEK_CUR) advances the position by two and
f.seek(-3, os.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending
(mode 'a' or 'a+'), any seek() operations will be undone at the
next write. If the file is only opened for writing in append mode (mode
'a'), this method is essentially a no-op, but it remains useful for files
opened in append mode with reading enabled (mode 'a+'). If the file is
opened in text mode (without 'b'), only offsets returned by tell() are
legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

Changed in version 2.6: Passing float values as offset has been deprecated.

	
file.tell()

	Return the file’s current position, like stdio‘s ftell().

Note

On Windows, tell() can return illegal values (after an fgets())
when reading files with Unix-style line-endings. Use binary mode ('rb') to
circumvent this problem.

	
file.truncate([size])

	Truncate the file’s size. If the optional size argument is present, the file
is truncated to (at most) that size. The size defaults to the current position.
The current file position is not changed. Note that if a specified size exceeds
the file’s current size, the result is platform-dependent: possibilities
include that the file may remain unchanged, increase to the specified size as if
zero-filled, or increase to the specified size with undefined new content.
Availability: Windows, many Unix variants.

	
file.write(str)

	Write a string to the file. There is no return value. Due to buffering, the
string may not actually show up in the file until the flush() or
close() method is called.

	
file.writelines(sequence)

	Write a sequence of strings to the file. The sequence can be any iterable
object producing strings, typically a list of strings. There is no return value.
(The name is intended to match readlines(); writelines() does not
add line separators.)

Files support the iterator protocol. Each iteration returns the same result as
file.readline(), and iteration ends when the readline() method returns
an empty string.

File objects also offer a number of other interesting attributes. These are not
required for file-like objects, but should be implemented if they make sense for
the particular object.

	
file.closed

	bool indicating the current state of the file object. This is a read-only
attribute; the close() method changes the value. It may not be available
on all file-like objects.

	
file.encoding

	The encoding that this file uses. When Unicode strings are written to a file,
they will be converted to byte strings using this encoding. In addition, when
the file is connected to a terminal, the attribute gives the encoding that the
terminal is likely to use (that information might be incorrect if the user has
misconfigured the terminal). The attribute is read-only and may not be present
on all file-like objects. It may also be None, in which case the file uses
the system default encoding for converting Unicode strings.

New in version 2.3.

	
file.errors

	The Unicode error handler used along with the encoding.

New in version 2.6.

	
file.mode

	The I/O mode for the file. If the file was created using the open()
built-in function, this will be the value of the mode parameter. This is a
read-only attribute and may not be present on all file-like objects.

	
file.name

	If the file object was created using open(), the name of the file.
Otherwise, some string that indicates the source of the file object, of the
form <...>. This is a read-only attribute and may not be present on all
file-like objects.

	
file.newlines

	If Python was built with universal newlines enabled (the default) this
read-only attribute exists, and for files opened in universal newline read
mode it keeps track of the types of newlines encountered while reading the
file. The values it can take are '\r', '\n', '\r\n', None
(unknown, no newlines read yet) or a tuple containing all the newline types
seen, to indicate that multiple newline conventions were encountered. For
files not opened in universal newline read mode the value of this attribute
will be None.

	
file.softspace

	Boolean that indicates whether a space character needs to be printed before
another value when using the print statement. Classes that are trying
to simulate a file object should also have a writable softspace
attribute, which should be initialized to zero. This will be automatic for most
classes implemented in Python (care may be needed for objects that override
attribute access); types implemented in C will have to provide a writable
softspace attribute.

Note

This attribute is not used to control the print statement, but to
allow the implementation of print to keep track of its internal
state.

5.10. memoryview type

New in version 2.7.

memoryview objects allow Python code to access the internal data
of an object that supports the buffer protocol without copying. Memory
is generally interpreted as simple bytes.

	
class memoryview(obj)

	Create a memoryview that references obj. obj must support the
buffer protocol. Built-in objects that support the buffer protocol include
str and bytearray (but not unicode).

A memoryview has the notion of an element, which is the
atomic memory unit handled by the originating object obj. For many
simple types such as str and bytearray, an element
is a single byte, but other third-party types may expose larger elements.

len(view) returns the total number of elements in the memoryview,
view. The itemsize attribute will give you the
number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single
index will return a single element as a str object. Full
slicing will result in a subview:

>>> v = memoryview('abcefg')
>>> v[1]
'b'
>>> v[-1]
'g'
>>> v[1:4]
<memory at 0x77ab28>
>>> v[1:4].tobytes()
'bce'

If the object the memoryview is over supports changing its data, the
memoryview supports slice assignment:

>>> data = bytearray('abcefg')
>>> v = memoryview(data)
>>> v.readonly
False
>>> v[0] = 'z'
>>> data
bytearray(b'zbcefg')
>>> v[1:4] = '123'
>>> data
bytearray(b'z123fg')
>>> v[2] = 'spam'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.

memoryview has two methods:

	
tobytes()

	Return the data in the buffer as a bytestring (an object of class
str).

>>> m = memoryview("abc")
>>> m.tobytes()
'abc'

	
tolist()

	Return the data in the buffer as a list of integers.

>>> memoryview("abc").tolist()
[97, 98, 99]

There are also several readonly attributes available:

	
format

	A string containing the format (in struct module style) for each
element in the view. This defaults to 'B', a simple bytestring.

	
itemsize

	The size in bytes of each element of the memoryview.

	
shape

	A tuple of integers the length of ndim giving the shape of the
memory as a N-dimensional array.

	
ndim

	An integer indicating how many dimensions of a multi-dimensional array the
memory represents.

	
strides

	A tuple of integers the length of ndim giving the size in bytes to
access each element for each dimension of the array.

	
readonly

	A bool indicating whether the memory is read only.

5.11. Context Manager Types

New in version 2.5.

Python’s with statement supports the concept of a runtime context
defined by a context manager. This is implemented using two separate methods
that allow user-defined classes to define a runtime context that is entered
before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need
to be provided for a context manager object to define a runtime context:

	
contextmanager.__enter__()

	Enter the runtime context and return either this object or another object
related to the runtime context. The value returned by this method is bound to
the identifier in the as clause of with statements using
this context manager.

An example of a context manager that returns itself is a file object. File
objects return themselves from __enter__() to allow open() to be used as
the context expression in a with statement.

An example of a context manager that returns a related object is the one
returned by decimal.localcontext(). These managers set the active
decimal context to a copy of the original decimal context and then return the
copy. This allows changes to be made to the current decimal context in the body
of the with statement without affecting code outside the
with statement.

	
contextmanager.__exit__(exc_type, exc_val, exc_tb)

	Exit the runtime context and return a Boolean flag indicating if any exception
that occurred should be suppressed. If an exception occurred while executing the
body of the with statement, the arguments contain the exception type,
value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement
to suppress the exception and continue execution with the statement immediately
following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur
during execution of this method will replace any exception that occurred in the
body of the with statement.

The exception passed in should never be reraised explicitly - instead, this
method should return a false value to indicate that the method completed
successfully and does not want to suppress the raised exception. This allows
context management code (such as contextlib.nested) to easily detect whether
or not an __exit__() method has actually failed.

Python defines several context managers to support easy thread synchronisation,
prompt closure of files or other objects, and simpler manipulation of the active
decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the
contextlib module for some examples.

Python’s generators and the contextlib.contextmanager decorator
provide a convenient way to implement these protocols. If a generator function is
decorated with the contextlib.contextmanager decorator, it will return a
context manager implementing the necessary __enter__() and
__exit__() methods, rather than the iterator produced by an undecorated
generator function.

Note that there is no specific slot for any of these methods in the type
structure for Python objects in the Python/C API. Extension types wanting to
define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a
single class dictionary lookup is negligible.

5.12. Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support
only one or two operations.

5.12.1. Modules

The only special operation on a module is attribute access: m.name, where
m is a module and name accesses a name defined in m‘s symbol table.
Module attributes can be assigned to. (Note that the import
statement is not, strictly speaking, an operation on a module object; import
foo does not require a module object named foo to exist, rather it requires
an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary
containing the module’s symbol table. Modifying this dictionary will actually
change the module’s symbol table, but direct assignment to the __dict__
attribute is not possible (you can write m.__dict__['a'] = 1, which defines
m.a to be 1, but you can’t write m.__dict__ = {}). Modifying
__dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys'
(built-in)>. If loaded from a file, they are written as <module 'os' from
'/usr/local/lib/pythonX.Y/os.pyc'>.

5.12.2. Classes and Class Instances

See Objects, values and types and Class definitions for these.

5.12.3. Functions

Function objects are created by function definitions. The only operation on a
function object is to call it: func(argument-list).

There are really two flavors of function objects: built-in functions and
user-defined functions. Both support the same operation (to call the function),
but the implementation is different, hence the different object types.

See Function definitions for more information.

5.12.4. Methods

Methods are functions that are called using the attribute notation. There are
two flavors: built-in methods (such as append() on lists) and class
instance methods. Built-in methods are described with the types that support
them.

The implementation adds two special read-only attributes to class instance
methods: m.im_self is the object on which the method operates, and
m.im_func is the function implementing the method. Calling m(arg-1,
arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self,
arg-1, arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the
method was accessed through an instance or a class, respectively. When a method
is unbound, its im_self attribute will be None and if called, an
explicit self object must be passed as the first argument. In this case,
self must be an instance of the unbound method’s class (or a subclass of
that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes.
However, since method attributes are actually stored on the underlying function
object (meth.im_func), setting method attributes on either bound or unbound
methods is disallowed. Attempting to set a method attribute results in a
TypeError being raised. In order to set a method attribute, you need to
explicitly set it on the underlying function object:

class C:
 def method(self):
 pass

c = C()
c.method.im_func.whoami = 'my name is c'

See The standard type hierarchy for more information.

5.12.5. Code Objects

Code objects are used by the implementation to represent “pseudo-compiled”
executable Python code such as a function body. They differ from function
objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile() function
and can be extracted from function objects through their func_code
attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source
string) to the exec statement or the built-in eval() function.

See The standard type hierarchy for more information.

5.12.6. Type Objects

Type objects represent the various object types. An object’s type is accessed
by the built-in function type(). There are no special operations on
types. The standard module types defines names for all standard built-in
types.

Types are written like this: <type 'int'>.

5.12.7. The Null Object

This object is returned by functions that don’t explicitly return a value. It
supports no special operations. There is exactly one null object, named
None (a built-in name).

It is written as None.

5.12.8. The Ellipsis Object

This object is used by extended slice notation (see Slicings). It
supports no special operations. There is exactly one ellipsis object, named
Ellipsis (a built-in name).

It is written as Ellipsis.

5.12.9. Boolean Values

Boolean values are the two constant objects False and True. They are
used to represent truth values (although other values can also be considered
false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively.
The built-in function bool() can be used to cast any value to a Boolean,
if the value can be interpreted as a truth value (see section Truth Value
Testing above).

They are written as False and True, respectively.

5.12.10. Internal Objects

See The standard type hierarchy for this information. It describes stack frame objects,
traceback objects, and slice objects.

5.13. Special Attributes

The implementation adds a few special read-only attributes to several object
types, where they are relevant. Some of these are not reported by the
dir() built-in function.

	
object.__dict__

	A dictionary or other mapping object used to store an object’s (writable)
attributes.

	
object.__methods__

	
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes.
This attribute is no longer available.

	
object.__members__

	
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes.
This attribute is no longer available.

	
instance.__class__

	The class to which a class instance belongs.

	
class.__bases__

	The tuple of base classes of a class object.

	
class.__name__

	The name of the class or type.

The following attributes are only supported by new-style classes.

	
class.__mro__

	This attribute is a tuple of classes that are considered when looking for
base classes during method resolution.

	
class.mro()

	This method can be overridden by a metaclass to customize the method
resolution order for its instances. It is called at class instantiation, and
its result is stored in __mro__.

	
class.__subclasses__()

	Each new-style class keeps a list of weak references to its immediate
subclasses. This method returns a list of all those references still alive.
Example:

>>> int.__subclasses__()
[<type 'bool'>]

Footnotes

	[1]	Additional information on these special methods may be found in the Python
Reference Manual (Basic customization).

	[2]	As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and
similarly for tuples.

	[3]	They must have since the parser can’t tell the type of the operands.

	[4]	To format only a tuple you should therefore provide a singleton tuple whose only
element is the tuple to be formatted.

	[5]	The advantage of leaving the newline on is that returning an empty string is
then an unambiguous EOF indication. It is also possible (in cases where it
might matter, for example, if you want to make an exact copy of a file while
scanning its lines) to tell whether the last line of a file ended in a newline
or not (yes this happens!).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

6. Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the
exceptions are provided in the built-in namespace as well as the
exceptions module.

For class exceptions, in a try statement with an except
clause that mentions a particular class, that clause also handles any exception
classes derived from that class (but not exception classes from which it is
derived). Two exception classes that are not related via subclassing are never
equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or
built-in functions. Except where mentioned, they have an “associated value”
indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string
explaining the code). The associated value is the second argument to the
raise statement. If the exception class is derived from the standard
root class BaseException, the associated value is present as the
exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception
handler or to report an error condition “just like” the situation in which the
interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions;
programmers are encouraged to at least derive new exceptions from the
Exception class and not BaseException. More information on
defining exceptions is available in the Python Tutorial under
User-defined Exceptions.

The following exceptions are only used as base classes for other exceptions.

	
exception BaseException

	The base class for all built-in exceptions. It is not meant to be directly
inherited by user-defined classes (for that, use Exception). If
str() or unicode() is called on an instance of this class, the
representation of the argument(s) to the instance are returned, or the empty
string when there were no arguments.

New in version 2.5.

	
args

	The tuple of arguments given to the exception constructor. Some built-in
exceptions (like IOError) expect a certain number of arguments and
assign a special meaning to the elements of this tuple, while others are
usually called only with a single string giving an error message.

	
exception Exception

	All built-in, non-system-exiting exceptions are derived from this class. All
user-defined exceptions should also be derived from this class.

Changed in version 2.5: Changed to inherit from BaseException.

	
exception StandardError

	The base class for all built-in exceptions except StopIteration,
GeneratorExit, KeyboardInterrupt and SystemExit.
StandardError itself is derived from Exception.

	
exception ArithmeticError

	The base class for those built-in exceptions that are raised for various
arithmetic errors: OverflowError, ZeroDivisionError,
FloatingPointError.

	
exception BufferError

	Raised when a buffer related operation cannot be
performed.

	
exception LookupError

	The base class for the exceptions that are raised when a key or index used on
a mapping or sequence is invalid: IndexError, KeyError. This
can be raised directly by codecs.lookup().

	
exception EnvironmentError

	The base class for exceptions that can occur outside the Python system:
IOError, OSError. When exceptions of this type are created with a
2-tuple, the first item is available on the instance’s errno attribute
(it is assumed to be an error number), and the second item is available on the
strerror attribute (it is usually the associated error message). The
tuple itself is also available on the args attribute.

New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the
first two items are available as above, while the third item is available on the
filename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor
arguments.

The filename attribute is None when this exception is created with
other than 3 arguments. The errno and strerror attributes are
also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a
tuple.

The following exceptions are the exceptions that are actually raised.

	
exception AssertionError

	Raised when an assert statement fails.

	
exception AttributeError

	Raised when an attribute reference (see Attribute references) or
assignment fails. (When an object does not support attribute references or
attribute assignments at all, TypeError is raised.)

	
exception EOFError

	Raised when one of the built-in functions (input() or raw_input())
hits an end-of-file condition (EOF) without reading any data. (N.B.: the
file.read() and file.readline() methods return an empty string
when they hit EOF.)

	
exception FloatingPointError

	Raised when a floating point operation fails. This exception is always defined,
but can only be raised when Python is configured with the
--with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is
defined in the pyconfig.h file.

	
exception GeneratorExit

	Raise when a generator‘s close() method is called. It
directly inherits from BaseException instead of StandardError since
it is technically not an error.

New in version 2.5.

Changed in version 2.6: Changed to inherit from BaseException.

	
exception IOError

	Raised when an I/O operation (such as a print statement, the built-in
open() function or a method of a file object) fails for an I/O-related
reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above
for more information on exception instance attributes.

Changed in version 2.6: Changed socket.error to use this as a base class.

	
exception ImportError

	Raised when an import statement fails to find the module definition
or when a from ... import fails to find a name that is to be imported.

	
exception IndexError

	Raised when a sequence subscript is out of range. (Slice indices are silently
truncated to fall in the allowed range; if an index is not a plain integer,
TypeError is raised.)

	
exception KeyError

	Raised when a mapping (dictionary) key is not found in the set of existing keys.

	
exception KeyboardInterrupt

	Raised when the user hits the interrupt key (normally Control-C or
Delete). During execution, a check for interrupts is made regularly.
Interrupts typed when a built-in function input() or raw_input() is
waiting for input also raise this exception. The exception inherits from
BaseException so as to not be accidentally caught by code that catches
Exception and thus prevent the interpreter from exiting.

Changed in version 2.5: Changed to inherit from BaseException.

	
exception MemoryError

	Raised when an operation runs out of memory but the situation may still be
rescued (by deleting some objects). The associated value is a string indicating
what kind of (internal) operation ran out of memory. Note that because of the
underlying memory management architecture (C’s malloc() function), the
interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in
case a run-away program was the cause.

	
exception NameError

	Raised when a local or global name is not found. This applies only to
unqualified names. The associated value is an error message that includes the
name that could not be found.

	
exception NotImplementedError

	This exception is derived from RuntimeError. In user defined base
classes, abstract methods should raise this exception when they require derived
classes to override the method.

New in version 1.5.2.

	
exception OSError

	This exception is derived from EnvironmentError. It is raised when a
function returns a system-related error (not for illegal argument types or
other incidental errors). The errno attribute is a numeric error
code from errno, and the strerror attribute is the
corresponding string, as would be printed by the C function perror().
See the module errno, which contains names for the error codes defined
by the underlying operating system.

For exceptions that involve a file system path (such as chdir() or
unlink()), the exception instance will contain a third attribute,
filename, which is the file name passed to the function.

New in version 1.5.2.

	
exception OverflowError

	Raised when the result of an arithmetic operation is too large to be
represented. This cannot occur for long integers (which would rather raise
MemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization
of floating point exception handling in C, most floating point operations
also aren’t checked.

	
exception ReferenceError

	This exception is raised when a weak reference proxy, created by the
weakref.proxy() function, is used to access an attribute of the referent
after it has been garbage collected. For more information on weak references,
see the weakref module.

New in version 2.2: Previously known as the weakref.ReferenceError exception.

	
exception RuntimeError

	Raised when an error is detected that doesn’t fall in any of the other
categories. The associated value is a string indicating what precisely went
wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

	
exception StopIteration

	Raised by an iterator‘s next() method to signal that
there are no further values. This is derived from Exception rather
than StandardError, since this is not considered an error in its
normal application.

New in version 2.2.

	
exception SyntaxError

	Raised when the parser encounters a syntax error. This may occur in an
import statement, in an exec statement, in a call to the
built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

Instances of this class have attributes filename, lineno,
offset and text for easier access to the details. str()
of the exception instance returns only the message.

	
exception IndentationError

	Base class for syntax errors related to incorrect indentation. This is a
subclass of SyntaxError.

	
exception TabError

	Raised when indentation contains an inconsistent use of tabs and spaces.
This is a subclass of IndentationError.

	
exception SystemError

	Raised when the interpreter finds an internal error, but the situation does not
look so serious to cause it to abandon all hope. The associated value is a
string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter.
Be sure to report the version of the Python interpreter (sys.version; it is
also printed at the start of an interactive Python session), the exact error
message (the exception’s associated value) and if possible the source of the
program that triggered the error.

	
exception SystemExit

	This exception is raised by the sys.exit() function. When it is not
handled, the Python interpreter exits; no stack traceback is printed. If the
associated value is a plain integer, it specifies the system exit status (passed
to C’s exit() function); if it is None, the exit status is zero; if
it has another type (such as a string), the object’s value is printed and the
exit status is one.

Instances have an attribute code which is set to the proposed exit
status or error message (defaulting to None). Also, this exception derives
directly from BaseException and not StandardError, since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up
handlers (finally clauses of try statements) can be
executed, and so that a debugger can execute a script without running the risk
of losing control. The os._exit() function can be used if it is
absolutely positively necessary to exit immediately (for example, in the child
process after a call to fork()).

The exception inherits from BaseException instead of StandardError
or Exception so that it is not accidentally caught by code that catches
Exception. This allows the exception to properly propagate up and cause
the interpreter to exit.

Changed in version 2.5: Changed to inherit from BaseException.

	
exception TypeError

	Raised when an operation or function is applied to an object of inappropriate
type. The associated value is a string giving details about the type mismatch.

	
exception UnboundLocalError

	Raised when a reference is made to a local variable in a function or method, but
no value has been bound to that variable. This is a subclass of
NameError.

New in version 2.0.

	
exception UnicodeError

	Raised when a Unicode-related encoding or decoding error occurs. It is a
subclass of ValueError.

New in version 2.0.

	
exception UnicodeEncodeError

	Raised when a Unicode-related error occurs during encoding. It is a subclass of
UnicodeError.

New in version 2.3.

	
exception UnicodeDecodeError

	Raised when a Unicode-related error occurs during decoding. It is a subclass of
UnicodeError.

New in version 2.3.

	
exception UnicodeTranslateError

	Raised when a Unicode-related error occurs during translating. It is a subclass
of UnicodeError.

New in version 2.3.

	
exception ValueError

	Raised when a built-in operation or function receives an argument that has the
right type but an inappropriate value, and the situation is not described by a
more precise exception such as IndexError.

	
exception VMSError

	Only available on VMS. Raised when a VMS-specific error occurs.

	
exception WindowsError

	Raised when a Windows-specific error occurs or when the error number does not
correspond to an errno value. The winerror and
strerror values are created from the return values of the
GetLastError() and FormatMessage() functions from the Windows
Platform API. The errno value maps the winerror value to
corresponding errno.h values. This is a subclass of OSError.

New in version 2.0.

Changed in version 2.5: Previous versions put the GetLastError() codes into errno.

	
exception ZeroDivisionError

	Raised when the second argument of a division or modulo operation is zero. The
associated value is a string indicating the type of the operands and the
operation.

The following exceptions are used as warning categories; see the warnings
module for more information.

	
exception Warning

	Base class for warning categories.

	
exception UserWarning

	Base class for warnings generated by user code.

	
exception DeprecationWarning

	Base class for warnings about deprecated features.

	
exception PendingDeprecationWarning

	Base class for warnings about features which will be deprecated in the future.

	
exception SyntaxWarning

	Base class for warnings about dubious syntax

	
exception RuntimeWarning

	Base class for warnings about dubious runtime behavior.

	
exception FutureWarning

	Base class for warnings about constructs that will change semantically in the
future.

	
exception ImportWarning

	Base class for warnings about probable mistakes in module imports.

New in version 2.5.

	
exception UnicodeWarning

	Base class for warnings related to Unicode.

New in version 2.5.

6.1. Exception hierarchy

The class hierarchy for built-in exceptions is:

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

7. String Services

The modules described in this chapter provide a wide range of string
manipulation operations.

In addition, Python’s built-in string classes support the sequence type
methods described in the Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange section, and also the
string-specific methods described in the String Methods section.
To output formatted strings use template strings or the % operator
described in the String Formatting Operations section. Also, see the
re module for string functions based on regular expressions.

	7.1. string — Common string operations
	7.1.1. String constants

	7.1.2. String Formatting

	7.1.3. Format String Syntax
	7.1.3.1. Format Specification Mini-Language

	7.1.3.2. Format examples

	7.1.4. Template strings

	7.1.5. String functions

	7.1.6. Deprecated string functions

	7.2. re — Regular expression operations
	7.2.1. Regular Expression Syntax

	7.2.2. Matching vs Searching

	7.2.3. Module Contents

	7.2.4. Regular Expression Objects

	7.2.5. Match Objects

	7.2.6. Examples
	7.2.6.1. Checking For a Pair

	7.2.6.2. Simulating scanf()

	7.2.6.3. Avoiding recursion

	7.2.6.4. search() vs. match()

	7.2.6.5. Making a Phonebook

	7.2.6.6. Text Munging

	7.2.6.7. Finding all Adverbs

	7.2.6.8. Finding all Adverbs and their Positions

	7.2.6.9. Raw String Notation

	7.3. struct — Interpret strings as packed binary data
	7.3.1. Functions and Exceptions

	7.3.2. Format Strings
	7.3.2.1. Byte Order, Size, and Alignment

	7.3.2.2. Format Characters

	7.3.2.3. Examples

	7.3.3. Classes

	7.4. difflib — Helpers for computing deltas
	7.4.1. SequenceMatcher Objects

	7.4.2. SequenceMatcher Examples

	7.4.3. Differ Objects

	7.4.4. Differ Example

	7.4.5. A command-line interface to difflib

	7.5. StringIO — Read and write strings as files

	7.6. cStringIO — Faster version of StringIO

	7.7. textwrap — Text wrapping and filling

	7.8. codecs — Codec registry and base classes
	7.8.1. Codec Base Classes
	7.8.1.1. Codec Objects

	7.8.1.2. IncrementalEncoder Objects

	7.8.1.3. IncrementalDecoder Objects

	7.8.1.4. StreamWriter Objects

	7.8.1.5. StreamReader Objects

	7.8.1.6. StreamReaderWriter Objects

	7.8.1.7. StreamRecoder Objects

	7.8.2. Encodings and Unicode

	7.8.3. Standard Encodings

	7.8.4. encodings.idna — Internationalized Domain Names in Applications

	7.8.5. encodings.utf_8_sig — UTF-8 codec with BOM signature

	7.9. unicodedata — Unicode Database

	7.10. stringprep — Internet String Preparation

	7.11. fpformat — Floating point conversions

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.1. string — Common string operations

The string module contains a number of useful constants and
classes, as well as some deprecated legacy functions that are also
available as methods on strings. In addition, Python’s built-in string
classes support the sequence type methods described in the
Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange section, and also the string-specific methods described
in the String Methods section. To output formatted strings use
template strings or the % operator described in the
String Formatting Operations section. Also, see the re module for
string functions based on regular expressions.

See also

Latest version of the string module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/string.py?view=markup]

7.1.1. String constants

The constants defined in this module are:

	
string.ascii_letters

	The concatenation of the ascii_lowercase and ascii_uppercase
constants described below. This value is not locale-dependent.

	
string.ascii_lowercase

	The lowercase letters 'abcdefghijklmnopqrstuvwxyz'. This value is not
locale-dependent and will not change.

	
string.ascii_uppercase

	The uppercase letters 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. This value is not
locale-dependent and will not change.

	
string.digits

	The string '0123456789'.

	
string.hexdigits

	The string '0123456789abcdefABCDEF'.

	
string.letters

	The concatenation of the strings lowercase and uppercase
described below. The specific value is locale-dependent, and will be updated
when locale.setlocale() is called.

	
string.lowercase

	A string containing all the characters that are considered lowercase letters.
On most systems this is the string 'abcdefghijklmnopqrstuvwxyz'. The
specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

	
string.octdigits

	The string '01234567'.

	
string.punctuation

	String of ASCII characters which are considered punctuation characters in the
C locale.

	
string.printable

	String of characters which are considered printable. This is a combination of
digits, letters, punctuation, and
whitespace.

	
string.uppercase

	A string containing all the characters that are considered uppercase letters.
On most systems this is the string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. The
specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

	
string.whitespace

	A string containing all characters that are considered whitespace. On most
systems this includes the characters space, tab, linefeed, return, formfeed, and
vertical tab.

7.1.2. String Formatting

New in version 2.6.

The built-in str and unicode classes provide the ability
to do complex variable substitutions and value formatting via the
str.format() method described in PEP 3101 [http://www.python.org/dev/peps/pep-3101]. The Formatter
class in the string module allows you to create and customize your own
string formatting behaviors using the same implementation as the built-in
format() method.

	
class string.Formatter

	The Formatter class has the following public methods:

	
format(format_string, *args, **kwargs)

	format() is the primary API method. It takes a format template
string, and an arbitrary set of positional and keyword argument.
format() is just a wrapper that calls vformat().

	
vformat(format_string, args, kwargs)

	This function does the actual work of formatting. It is exposed as a
separate function for cases where you want to pass in a predefined
dictionary of arguments, rather than unpacking and repacking the
dictionary as individual arguments using the *args and **kwds
syntax. vformat() does the work of breaking up the format template
string into character data and replacement fields. It calls the various
methods described below.

In addition, the Formatter defines a number of methods that are
intended to be replaced by subclasses:

	
parse(format_string)

	Loop over the format_string and return an iterable of tuples
(literal_text, field_name, format_spec, conversion). This is used
by vformat() to break the string into either literal text, or
replacement fields.

The values in the tuple conceptually represent a span of literal text
followed by a single replacement field. If there is no literal text
(which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement
field, then the values of field_name, format_spec and conversion
will be None.

	
get_field(field_name, args, kwargs)

	Given field_name as returned by parse() (see above), convert it to
an object to be formatted. Returns a tuple (obj, used_key). The default
version takes strings of the form defined in PEP 3101 [http://www.python.org/dev/peps/pep-3101], such as
“0[name]” or “label.title”. args and kwargs are as passed in to
vformat(). The return value used_key has the same meaning as the
key parameter to get_value().

	
get_value(key, args, kwargs)

	Retrieve a given field value. The key argument will be either an
integer or a string. If it is an integer, it represents the index of the
positional argument in args; if it is a string, then it represents a
named argument in kwargs.

The args parameter is set to the list of positional arguments to
vformat(), and the kwargs parameter is set to the dictionary of
keyword arguments.

For compound field names, these functions are only called for the first
component of the field name; Subsequent components are handled through
normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause
get_value() to be called with a key argument of 0. The name
attribute will be looked up after get_value() returns by calling the
built-in getattr() function.

If the index or keyword refers to an item that does not exist, then an
IndexError or KeyError should be raised.

	
check_unused_args(used_args, args, kwargs)

	Implement checking for unused arguments if desired. The arguments to this
function is the set of all argument keys that were actually referred to in
the format string (integers for positional arguments, and strings for
named arguments), and a reference to the args and kwargs that was
passed to vformat. The set of unused args can be calculated from these
parameters. check_unused_args() is assumed to raise an exception if
the check fails.

	
format_field(value, format_spec)

	format_field() simply calls the global format() built-in. The
method is provided so that subclasses can override it.

	
convert_field(value, conversion)

	Converts the value (returned by get_field()) given a conversion type
(as in the tuple returned by the parse() method). The default
version understands ‘r’ (repr) and ‘s’ (str) conversion types.

7.1.3. Format String Syntax

The str.format() method and the Formatter class share the same
syntax for format strings (although in the case of Formatter,
subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}.
Anything that is not contained in braces is considered literal text, which is
copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"
field_name ::= arg_name ("." attribute_name | "[" element_index "]")*
arg_name ::= [identifier | integer]
attribute_name ::= identifier
element_index ::= integer | index_string
index_string ::= <any source character except "]"> +
conversion ::= "r" | "s"
format_spec ::= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies
the object whose value is to be formatted and inserted
into the output instead of the replacement field.
The field_name is optionally followed by a conversion field, which is
preceded by an exclamation point '!', and a format_spec, which is preceded
by a colon ':'. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either either a number or a
keyword. If it’s a number, it refers to a positional argument, and if it’s a keyword,
it refers to a named keyword argument. If the numerical arg_names in a format string
are 0, 1, 2, ... in sequence, they can all be omitted (not just some)
and the numbers 0, 1, 2, ... will be automatically inserted in that order.
The arg_name can be followed by any number of index or
attribute expressions. An expression of the form '.name' selects the named
attribute using getattr(), while an expression of the form '[index]'
does an index lookup using __getitem__().

Changed in version 2.7: The positional argument specifiers can be omitted, so '{} {}' is
equivalent to '{0} {1}'.

Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument
"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"
"My quest is {name}" # References keyword argument 'name'
"Weight in tons {0.weight}" # 'weight' attribute of first positional arg
"Units destroyed: {players[0]}" # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the
job of formatting a value is done by the __format__() method of the value
itself. However, in some cases it is desirable to force a type to be formatted
as a string, overriding its own definition of formatting. By converting the
value to a string before calling __format__(), the normal formatting logic
is bypassed.

Two conversion flags are currently supported: '!s' which calls str()
on the value, and '!r' which calls repr().

Some examples:

"Harold's a clever {0!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first

The format_spec field contains a specification of how the value should be
presented, including such details as field width, alignment, padding, decimal
precision and so on. Each value type can define its own “formatting
mini-language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is
described in the next section.

A format_spec field can also include nested replacement fields within it.
These nested replacement fields can contain only a field name; conversion flags
and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted.
This allows the formatting of a value to be dynamically specified.

See the Format examples section for some examples.

7.1.3.1. Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a
format string to define how individual values are presented (see
Format String Syntax). They can also be passed directly to the built-in
format() function. Each formattable type may define how the format
specification is to be interpreted.

Most built-in types implement the following options for format specifications,
although some of the formatting options are only supported by the numeric types.

A general convention is that an empty format string ("") produces
the same result as if you had called str() on the value. A
non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]
fill ::= <a character other than '}'>
align ::= "<" | ">" | "=" | "^"
sign ::= "+" | "-" | " "
width ::= integer
precision ::= integer
type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"

The fill character can be any character other than ‘{‘ or ‘}’. The presence
of a fill character is signaled by the character following it, which must be
one of the alignment options. If the second character of format_spec is not
a valid alignment option, then it is assumed that both the fill character and
the alignment option are absent.

The meaning of the various alignment options is as follows:

	Option
	Meaning

	'<'
	Forces the field to be left-aligned within the available
space (this is the default for most objects).

	'>'
	Forces the field to be right-aligned within the
available space (this is the default for numbers).

	'='
	Forces the padding to be placed after the sign (if any)
but before the digits. This is used for printing fields
in the form ‘+000000120’. This alignment option is only
valid for numeric types.

	'^'
	Forces the field to be centered within the available
space.

Note that unless a minimum field width is defined, the field width will always
be the same size as the data to fill it, so that the alignment option has no
meaning in this case.

The sign option is only valid for number types, and can be one of the
following:

	Option
	Meaning

	'+'
	indicates that a sign should be used for both
positive as well as negative numbers.

	'-'
	indicates that a sign should be used only for negative
numbers (this is the default behavior).

	space
	indicates that a leading space should be used on
positive numbers, and a minus sign on negative numbers.

The '#' option is only valid for integers, and only for binary, octal, or
hexadecimal output. If present, it specifies that the output will be prefixed
by '0b', '0o', or '0x', respectively.

The ',' option signals the use of a comma for a thousands separator.
For a locale aware separator, use the 'n' integer presentation type
instead.

Changed in version 2.7: Added the ',' option (see also PEP 378 [http://www.python.org/dev/peps/pep-0378]).

width is a decimal integer defining the minimum field width. If not
specified, then the field width will be determined by the content.

If the width field is preceded by a zero ('0') character, this enables
zero-padding. This is equivalent to an alignment type of '=' and a fill
character of '0'.

The precision is a decimal number indicating how many digits should be
displayed after the decimal point for a floating point value formatted with
'f' and 'F', or before and after the decimal point for a floating point
value formatted with 'g' or 'G'. For non-number types the field
indicates the maximum field size - in other words, how many characters will be
used from the field content. The precision is not allowed for integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

	Type
	Meaning

	's'
	String format. This is the default type for strings and
may be omitted.

	None
	The same as 's'.

The available integer presentation types are:

	Type
	Meaning

	'b'
	Binary format. Outputs the number in base 2.

	'c'
	Character. Converts the integer to the corresponding
unicode character before printing.

	'd'
	Decimal Integer. Outputs the number in base 10.

	'o'
	Octal format. Outputs the number in base 8.

	'x'
	Hex format. Outputs the number in base 16, using lower-
case letters for the digits above 9.

	'X'
	Hex format. Outputs the number in base 16, using upper-
case letters for the digits above 9.

	'n'
	Number. This is the same as 'd', except that it uses
the current locale setting to insert the appropriate
number separator characters.

	None
	The same as 'd'.

In addition to the above presentation types, integers can be formatted
with the floating point presentation types listed below (except
'n' and None). When doing so, float() is used to convert the
integer to a floating point number before formatting.

The available presentation types for floating point and decimal values are:

	Type
	Meaning

	'e'
	Exponent notation. Prints the number in scientific
notation using the letter ‘e’ to indicate the exponent.

	'E'
	Exponent notation. Same as 'e' except it uses an
upper case ‘E’ as the separator character.

	'f'
	Fixed point. Displays the number as a fixed-point
number.

	'F'
	Fixed point. Same as 'f'.

	'g'
	General format. For a given precision p >= 1,
this rounds the number to p significant digits and
then formats the result in either fixed-point format
or in scientific notation, depending on its magnitude.

The precise rules are as follows: suppose that the
result formatted with presentation type 'e' and
precision p-1 would have exponent exp. Then
if -4 <= exp < p, the number is formatted
with presentation type 'f' and precision
p-1-exp. Otherwise, the number is formatted
with presentation type 'e' and precision p-1.
In both cases insignificant trailing zeros are removed
from the significand, and the decimal point is also
removed if there are no remaining digits following it.

Positive and negative infinity, positive and negative
zero, and nans, are formatted as inf, -inf,
0, -0 and nan respectively, regardless of
the precision.

A precision of 0 is treated as equivalent to a
precision of 1.

	'G'
	General format. Same as 'g' except switches to
'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

	'n'
	Number. This is the same as 'g', except that it uses
the current locale setting to insert the appropriate
number separator characters.

	'%'
	Percentage. Multiplies the number by 100 and displays
in fixed ('f') format, followed by a percent sign.

	None
	The same as 'g'.

7.1.3.2. Format examples

This section contains examples of the new format syntax and comparison with
the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the
addition of the {} and with : used instead of %.
For example, '%03.2f' can be translated to '{:03.2f}'.

The new format syntax also supports new and different options, shown in the
follow examples.

Accessing arguments by position:

>>> '{0}, {1}, {2}'.format('a', 'b', 'c')
'a, b, c'
>>> '{}, {}, {}'.format('a', 'b', 'c') # 2.7+ only
'a, b, c'
>>> '{2}, {1}, {0}'.format('a', 'b', 'c')
'c, b, a'
>>> '{2}, {1}, {0}'.format(*'abc') # unpacking argument sequence
'c, b, a'
>>> '{0}{1}{0}'.format('abra', 'cad') # arguments' indices can be repeated
'abracadabra'

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N', longitude='-115.81W')
'Coordinates: 37.24N, -115.81W'
>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}
>>> 'Coordinates: {latitude}, {longitude}'.format(**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> c = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
... 'and the imaginary part {0.imag}.').format(c)
'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.'
>>> class Point(object):
... def __init__(self, x, y):
... self.x, self.y = x, y
... def __str__(self):
... return 'Point({self.x}, {self.y})'.format(self=self)
...
>>> str(Point(4, 2))
'Point(4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}'.format(coord)
'X: 3; Y: 5'

Replacing %s and %r:

>>> "repr() shows quotes: {!r}; str() doesn't: {!s}".format('test1', 'test2')
"repr() shows quotes: 'test1'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> '{:<30}'.format('left aligned')
'left aligned '
>>> '{:>30}'.format('right aligned')
' right aligned'
>>> '{:^30}'.format('centered')
' centered '
>>> '{:*^30}'.format('centered') # use '*' as a fill char
'***********centered***********'

Replacing %+f, %-f, and % f and specifying a sign:

>>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it always
'+3.140000; -3.140000'
>>> '{: f}; {: f}'.format(3.14, -3.14) # show a space for positive numbers
' 3.140000; -3.140000'
>>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the minus -- same as '{:f}; {:f}'
'3.140000; -3.140000'

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)
'int: 42; hex: 2a; oct: 52; bin: 101010'
>>> # with 0x, 0o, or 0b as prefix:
>>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)
'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'

Using the comma as a thousands separator:

>>> '{:,}'.format(1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19.5
>>> total = 22
>>> 'Correct answers: {:.2%}.'.format(points/total)
'Correct answers: 88.64%'

Using type-specific formatting:

>>> import datetime
>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d %H:%M:%S}'.format(d)
'2010-07-04 12:15:58'

Nesting arguments and more complex examples:

>>> for align, text in zip('<^>', ['left', 'center', 'right']):
... '{0:{fill}{align}16}'.format(text, fill=align, align=align)
...
'left<<<<<<<<<<<<'
'^^^^^center^^^^^'
'>>>>>>>>>>>right'
>>>
>>> octets = [192, 168, 0, 1]
>>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)
'C0A80001'
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
... for base in 'dXob':
... print '{0:{width}{base}}'.format(num, base=base, width=width),
... print
...
 5 5 5 101
 6 6 6 110
 7 7 7 111
 8 8 10 1000
 9 9 11 1001
 10 A 12 1010
 11 B 13 1011

7.1.4. Template strings

New in version 2.4.

Templates provide simpler string substitutions as described in PEP 292 [http://www.python.org/dev/peps/pep-0292].
Instead of the normal %-based substitutions, Templates support $-based substitutions, using the following rules:

	$$ is an escape; it is replaced with a single $.

	$identifier names a substitution placeholder matching a mapping key of
"identifier". By default, "identifier" must spell a Python
identifier. The first non-identifier character after the $ character
terminates this placeholder specification.

	${identifier} is equivalent to $identifier. It is required when valid
identifier characters follow the placeholder but are not part of the
placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError
being raised.

The string module provides a Template class that implements
these rules. The methods of Template are:

	
class string.Template(template)

	The constructor takes a single argument which is the template string.

	
substitute(mapping[, **kws])

	Performs the template substitution, returning a new string. mapping is
any dictionary-like object with keys that match the placeholders in the
template. Alternatively, you can provide keyword arguments, where the
keywords are the placeholders. When both mapping and kws are given
and there are duplicates, the placeholders from kws take precedence.

	
safe_substitute(mapping[, **kws])

	Like substitute(), except that if placeholders are missing from
mapping and kws, instead of raising a KeyError exception, the
original placeholder will appear in the resulting string intact. Also,
unlike with substitute(), any other appearances of the $ will
simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe”
because substitutions always tries to return a usable string instead of
raising an exception. In another sense, safe_substitute() may be
anything other than safe, since it will silently ignore malformed
templates containing dangling delimiters, unmatched braces, or
placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

	
template

	This is the object passed to the constructor’s template argument. In
general, you shouldn’t change it, but read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template
>>> s = Template('$who likes $what')
>>> s.substitute(who='tim', what='kung pao')
'tim likes kung pao'
>>> d = dict(who='tim')
>>> Template('Give $who $100').substitute(d)
Traceback (most recent call last):
[...]
ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what').substitute(d)
Traceback (most recent call last):
[...]
KeyError: 'what'
>>> Template('$who likes $what').safe_substitute(d)
'tim likes $what'

Advanced usage: you can derive subclasses of Template to customize the
placeholder syntax, delimiter character, or the entire regular expression used
to parse template strings. To do this, you can override these class attributes:

	delimiter – This is the literal string describing a placeholder introducing
delimiter. The default value $. Note that this should not be a regular
expression, as the implementation will call re.escape() on this string as
needed.

	idpattern – This is the regular expression describing the pattern for
non-braced placeholders (the braces will be added automatically as
appropriate). The default value is the regular expression
[_a-z][_a-z0-9]*.

Alternatively, you can provide the entire regular expression pattern by
overriding the class attribute pattern. If you do this, the value must be a
regular expression object with four named capturing groups. The capturing
groups correspond to the rules given above, along with the invalid placeholder
rule:

	escaped – This group matches the escape sequence, e.g. $$, in the
default pattern.

	named – This group matches the unbraced placeholder name; it should not
include the delimiter in capturing group.

	braced – This group matches the brace enclosed placeholder name; it should
not include either the delimiter or braces in the capturing group.

	invalid – This group matches any other delimiter pattern (usually a single
delimiter), and it should appear last in the regular expression.

7.1.5. String functions

The following functions are available to operate on string and Unicode objects.
They are not available as string methods.

	
string.capwords(s[, sep])

	Split the argument into words using str.split(), capitalize each word
using str.capitalize(), and join the capitalized words using
str.join(). If the optional second argument sep is absent
or None, runs of whitespace characters are replaced by a single space
and leading and trailing whitespace are removed, otherwise sep is used to
split and join the words.

	
string.maketrans(from, to)

	Return a translation table suitable for passing to translate(), that will
map each character in from into the character at the same position in to;
from and to must have the same length.

Note

Don’t use strings derived from lowercase and uppercase as
arguments; in some locales, these don’t have the same length. For case
conversions, always use str.lower() and str.upper().

7.1.6. Deprecated string functions

The following list of functions are also defined as methods of string and
Unicode objects; see section String Methods for more information on
those. You should consider these functions as deprecated, although they will
not be removed until Python 3.0. The functions defined in this module are:

	
string.atof(s)

	
Deprecated since version 2.0: Use the float() built-in function.

Convert a string to a floating point number. The string must have the standard
syntax for a floating point literal in Python, optionally preceded by a sign
(+ or -). Note that this behaves identical to the built-in function
float() when passed a string.

Note

When passing in a string, values for NaN and Infinity may be returned, depending
on the underlying C library. The specific set of strings accepted which cause
these values to be returned depends entirely on the C library and is known to
vary.

	
string.atoi(s[, base])

	
Deprecated since version 2.0: Use the int() built-in function.

Convert string s to an integer in the given base. The string must consist
of one or more digits, optionally preceded by a sign (+ or -). The
base defaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sign): 0x or 0X
means 16, 0 means 8, anything else means 10. If base is 16, a leading
0x or 0X is always accepted, though not required. This behaves
identically to the built-in function int() when passed a string. (Also
note: for a more flexible interpretation of numeric literals, use the built-in
function eval().)

	
string.atol(s[, base])

	
Deprecated since version 2.0: Use the long() built-in function.

Convert string s to a long integer in the given base. The string must
consist of one or more digits, optionally preceded by a sign (+ or -).
The base argument has the same meaning as for atoi(). A trailing l
or L is not allowed, except if the base is 0. Note that when invoked
without base or with base set to 10, this behaves identical to the built-in
function long() when passed a string.

	
string.capitalize(word)

	Return a copy of word with only its first character capitalized.

	
string.expandtabs(s[, tabsize])

	Expand tabs in a string replacing them by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after
each newline occurring in the string. This doesn’t understand other non-printing
characters or escape sequences. The tab size defaults to 8.

	
string.find(s, sub[, start[, end]])

	Return the lowest index in s where the substring sub is found such that
sub is wholly contained in s[start:end]. Return -1 on failure.
Defaults for start and end and interpretation of negative values is the same
as for slices.

	
string.rfind(s, sub[, start[, end]])

	Like find() but find the highest index.

	
string.index(s, sub[, start[, end]])

	Like find() but raise ValueError when the substring is not found.

	
string.rindex(s, sub[, start[, end]])

	Like rfind() but raise ValueError when the substring is not found.

	
string.count(s, sub[, start[, end]])

	Return the number of (non-overlapping) occurrences of substring sub in string
s[start:end]. Defaults for start and end and interpretation of negative
values are the same as for slices.

	
string.lower(s)

	Return a copy of s, but with upper case letters converted to lower case.

	
string.split(s[, sep[, maxsplit]])

	Return a list of the words of the string s. If the optional second argument
sep is absent or None, the words are separated by arbitrary strings of
whitespace characters (space, tab, newline, return, formfeed). If the second
argument sep is present and not None, it specifies a string to be used as
the word separator. The returned list will then have one more item than the
number of non-overlapping occurrences of the separator in the string. The
optional third argument maxsplit defaults to 0. If it is nonzero, at most
maxsplit number of splits occur, and the remainder of the string is returned
as the final element of the list (thus, the list will have at most
maxsplit+1 elements).

The behavior of split on an empty string depends on the value of sep. If sep
is not specified, or specified as None, the result will be an empty list.
If sep is specified as any string, the result will be a list containing one
element which is an empty string.

	
string.rsplit(s[, sep[, maxsplit]])

	Return a list of the words of the string s, scanning s from the end. To all
intents and purposes, the resulting list of words is the same as returned by
split(), except when the optional third argument maxsplit is explicitly
specified and nonzero. When maxsplit is nonzero, at most maxsplit number of
splits – the rightmost ones – occur, and the remainder of the string is
returned as the first element of the list (thus, the list will have at most
maxsplit+1 elements).

New in version 2.4.

	
string.splitfields(s[, sep[, maxsplit]])

	This function behaves identically to split(). (In the past, split()
was only used with one argument, while splitfields() was only used with
two arguments.)

	
string.join(words[, sep])

	Concatenate a list or tuple of words with intervening occurrences of sep.
The default value for sep is a single space character. It is always true that
string.join(string.split(s, sep), sep) equals s.

	
string.joinfields(words[, sep])

	This function behaves identically to join(). (In the past, join()
was only used with one argument, while joinfields() was only used with two
arguments.) Note that there is no joinfields() method on string objects;
use the join() method instead.

	
string.lstrip(s[, chars])

	Return a copy of the string with leading characters removed. If chars is
omitted or None, whitespace characters are removed. If given and not
None, chars must be a string; the characters in the string will be
stripped from the beginning of the string this method is called on.

Changed in version 2.2.3: The chars parameter was added. The chars parameter cannot be passed in
earlier 2.2 versions.

	
string.rstrip(s[, chars])

	Return a copy of the string with trailing characters removed. If chars is
omitted or None, whitespace characters are removed. If given and not
None, chars must be a string; the characters in the string will be
stripped from the end of the string this method is called on.

Changed in version 2.2.3: The chars parameter was added. The chars parameter cannot be passed in
earlier 2.2 versions.

	
string.strip(s[, chars])

	Return a copy of the string with leading and trailing characters removed. If
chars is omitted or None, whitespace characters are removed. If given and
not None, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on.

Changed in version 2.2.3: The chars parameter was added. The chars parameter cannot be passed in
earlier 2.2 versions.

	
string.swapcase(s)

	Return a copy of s, but with lower case letters converted to upper case and
vice versa.

	
string.translate(s, table[, deletechars])

	Delete all characters from s that are in deletechars (if present), and then
translate the characters using table, which must be a 256-character string
giving the translation for each character value, indexed by its ordinal. If
table is None, then only the character deletion step is performed.

	
string.upper(s)

	Return a copy of s, but with lower case letters converted to upper case.

	
string.ljust(s, width[, fillchar])

	
string.rjust(s, width[, fillchar])

	
string.center(s, width[, fillchar])

	These functions respectively left-justify, right-justify and center a string in
a field of given width. They return a string that is at least width
characters wide, created by padding the string s with the character fillchar
(default is a space) until the given width on the right, left or both sides.
The string is never truncated.

	
string.zfill(s, width)

	Pad a numeric string on the left with zero digits until the given width is
reached. Strings starting with a sign are handled correctly.

	
string.replace(str, old, new[, maxreplace])

	Return a copy of string str with all occurrences of substring old replaced
by new. If the optional argument maxreplace is given, the first
maxreplace occurrences are replaced.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.2. re — Regular expression operations

This module provides regular expression matching operations similar to
those found in Perl. Both patterns and strings to be searched can be
Unicode strings as well as 8-bit strings.

Regular expressions use the backslash character ('\') to indicate
special forms or to allow special characters to be used without invoking
their special meaning. This collides with Python’s usage of the same
character for the same purpose in string literals; for example, to match
a literal backslash, one might have to write '\\\\' as the pattern
string, because the regular expression must be \\, and each
backslash must be expressed as \\ inside a regular Python string
literal.

The solution is to use Python’s raw string notation for regular expression
patterns; backslashes are not handled in any special way in a string literal
prefixed with 'r'. So r"\n" is a two-character string containing
'\' and 'n', while "\n" is a one-character string containing a
newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as
module-level functions and RegexObject methods. The functions are
shortcuts that don’t require you to compile a regex object first, but miss some
fine-tuning parameters.

See also

	Mastering Regular Expressions

	Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first
edition covered writing good regular expression patterns in great detail.

7.2.1. Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the
functions in this module let you check if a particular string matches a given
regular expression (or if a given regular expression matches a particular
string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A
and B are both regular expressions, then AB is also a regular expression.
In general, if a string p matches A and another string q matches B, the
string pq will match AB. This holds unless A or B contain low precedence
operations; boundary conditions between A and B; or have numbered group
references. Thus, complex expressions can easily be constructed from simpler
primitive expressions like the ones described here. For details of the theory
and implementation of regular expressions, consult the Friedl book referenced
above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further
information and a gentler presentation, consult the Regular Expression HOWTO.

Regular expressions can contain both special and ordinary characters. Most
ordinary characters, like 'A', 'a', or '0', are the simplest regular
expressions; they simply match themselves. You can concatenate ordinary
characters, so last matches the string 'last'. (In the rest of this
section, we’ll write RE’s in this special style, usually without quotes, and
strings to be matched 'in single quotes'.)

Some characters, like '|' or '(', are special. Special
characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted. Regular
expression pattern strings may not contain null bytes, but can specify
the null byte using the \number notation, e.g., '\x00'.

The special characters are:

	'.'

	(Dot.) In the default mode, this matches any character except a newline. If
the DOTALL flag has been specified, this matches any character
including a newline.

	'^'

	(Caret.) Matches the start of the string, and in MULTILINE mode also
matches immediately after each newline.

	'$'

	Matches the end of the string or just before the newline at the end of the
string, and in MULTILINE mode also matches before a newline. foo
matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in 'foo1\nfoo2\n'
matches ‘foo2’ normally, but ‘foo1’ in MULTILINE mode; searching for
a single $ in 'foo\n' will find two (empty) matches: one just before
the newline, and one at the end of the string.

	'*'

	Causes the resulting RE to match 0 or more repetitions of the preceding RE, as
many repetitions as are possible. ab* will match ‘a’, ‘ab’, or ‘a’ followed
by any number of ‘b’s.

	'+'

	Causes the resulting RE to match 1 or more repetitions of the preceding RE.
ab+ will match ‘a’ followed by any non-zero number of ‘b’s; it will not
match just ‘a’.

	'?'

	Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.
ab? will match either ‘a’ or ‘ab’.

	*?, +?, ??

	The '*', '+', and '?' qualifiers are all greedy; they match
as much text as possible. Sometimes this behaviour isn’t desired; if the RE
<.*> is matched against '<H1>title</H1>', it will match the entire
string, and not just '<H1>'. Adding '?' after the qualifier makes it
perform the match in non-greedy or minimal fashion; as few
characters as possible will be matched. Using .*? in the previous
expression will match only '<H1>'.

	{m}

	Specifies that exactly m copies of the previous RE should be matched; fewer
matches cause the entire RE not to match. For example, a{6} will match
exactly six 'a' characters, but not five.

	{m,n}

	Causes the resulting RE to match from m to n repetitions of the preceding
RE, attempting to match as many repetitions as possible. For example,
a{3,5} will match from 3 to 5 'a' characters. Omitting m specifies a
lower bound of zero, and omitting n specifies an infinite upper bound. As an
example, a{4,}b will match aaaab or a thousand 'a' characters
followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

	{m,n}?

	Causes the resulting RE to match from m to n repetitions of the preceding
RE, attempting to match as few repetitions as possible. This is the
non-greedy version of the previous qualifier. For example, on the
6-character string 'aaaaaa', a{3,5} will match 5 'a' characters,
while a{3,5}? will only match 3 characters.

	'\'

	Either escapes special characters (permitting you to match characters like
'*', '?', and so forth), or signals a special sequence; special
sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python
also uses the backslash as an escape sequence in string literals; if the escape
sequence isn’t recognized by Python’s parser, the backslash and subsequent
character are included in the resulting string. However, if Python would
recognize the resulting sequence, the backslash should be repeated twice. This
is complicated and hard to understand, so it’s highly recommended that you use
raw strings for all but the simplest expressions.

	[]

	Used to indicate a set of characters. Characters can be listed individually, or
a range of characters can be indicated by giving two characters and separating
them by a '-'. Special characters are not active inside sets. For example,
[akm$] will match any of the characters 'a', 'k',
'm', or '$'; [a-z] will match any lowercase letter, and
[a-zA-Z0-9] matches any letter or digit. Character classes such
as \w or \S (defined below) are also acceptable inside a
range, although the characters they match depends on whether LOCALE
or UNICODE mode is in force. If you want to include a
']' or a '-' inside a set, precede it with a backslash, or
place it as the first character. The pattern []] will match
']', for example.

You can match the characters not within a range by complementing the set.
This is indicated by including a '^' as the first character of the set;
'^' elsewhere will simply match the '^' character. For example,
[^5] will match any character except '5', and [^^] will match any
character except '^'.

Note that inside [] the special forms and special characters lose
their meanings and only the syntaxes described here are valid. For
example, +, *, (,), and so on are treated as
literals inside [], and backreferences cannot be used inside
[].

	'|'

	A|B, where A and B can be arbitrary REs, creates a regular expression that
will match either A or B. An arbitrary number of REs can be separated by the
'|' in this way. This can be used inside groups (see below) as well. As
the target string is scanned, REs separated by '|' are tried from left to
right. When one pattern completely matches, that branch is accepted. This means
that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the '|' operator is never
greedy. To match a literal '|', use \|, or enclose it inside a
character class, as in [|].

	(...)

	Matches whatever regular expression is inside the parentheses, and indicates the
start and end of a group; the contents of a group can be retrieved after a match
has been performed, and can be matched later in the string with the \number
special sequence, described below. To match the literals '(' or ')',
use \(or \), or enclose them inside a character class: [(] [)].

	(?...)

	This is an extension notation (a '?' following a '(' is not meaningful
otherwise). The first character after the '?' determines what the meaning
and further syntax of the construct is. Extensions usually do not create a new
group; (?P<name>...) is the only exception to this rule. Following are the
currently supported extensions.

	(?iLmsux)

	(One or more letters from the set 'i', 'L', 'm', 's',
'u', 'x'.) The group matches the empty string; the letters
set the corresponding flags: re.I (ignore case),
re.L (locale dependent), re.M (multi-line),
re.S (dot matches all), re.U (Unicode dependent),
and re.X (verbose), for the entire regular expression. (The
flags are described in Module Contents.) This
is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the
re.compile() function.

Note that the (?x) flag changes how the expression is parsed. It should be
used first in the expression string, or after one or more whitespace characters.
If there are non-whitespace characters before the flag, the results are
undefined.

	(?:...)

	A non-capturing version of regular parentheses. Matches whatever regular
expression is inside the parentheses, but the substring matched by the group
cannot be retrieved after performing a match or referenced later in the
pattern.

	(?P<name>...)

	Similar to regular parentheses, but the substring matched by the group is
accessible within the rest of the regular expression via the symbolic group
name name. Group names must be valid Python identifiers, and each group
name must be defined only once within a regular expression. A symbolic group
is also a numbered group, just as if the group were not named. So the group
named id in the example below can also be referenced as the numbered group
1.

For example, if the pattern is (?P<id>[a-zA-Z_]\w*), the group can be
referenced by its name in arguments to methods of match objects, such as
m.group('id') or m.end('id'), and also by name in the regular
expression itself (using (?P=id)) and replacement text given to
.sub() (using \g<id>).

	(?P=name)

	Matches whatever text was matched by the earlier group named name.

	(?#...)

	A comment; the contents of the parentheses are simply ignored.

	(?=...)

	Matches if ... matches next, but doesn’t consume any of the string. This is
called a lookahead assertion. For example, Isaac (?=Asimov) will match
'Isaac ' only if it’s followed by 'Asimov'.

	(?!...)

	Matches if ... doesn’t match next. This is a negative lookahead assertion.
For example, Isaac (?!Asimov) will match 'Isaac ' only if it’s not
followed by 'Asimov'.

	(?<=...)

	Matches if the current position in the string is preceded by a match for ...
that ends at the current position. This is called a positive lookbehind
assertion. (?<=abc)def will find a match in abcdef, since the
lookbehind will back up 3 characters and check if the contained pattern matches.
The contained pattern must only match strings of some fixed length, meaning that
abc or a|b are allowed, but a* and a{3,4} are not. Note that
patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to use the
search() function rather than the match() function:

>>> import re
>>> m = re.search('(?<=abc)def', 'abcdef')
>>> m.group(0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search('(?<=-)\w+', 'spam-egg')
>>> m.group(0)
'egg'

	(?<!...)

	Matches if the current position in the string is not preceded by a match for
.... This is called a negative lookbehind assertion. Similar to
positive lookbehind assertions, the contained pattern must only match strings of
some fixed length. Patterns which start with negative lookbehind assertions may
match at the beginning of the string being searched.

	(?(id/name)yes-pattern|no-pattern)

	Will try to match with yes-pattern if the group with given id or name
exists, and with no-pattern if it doesn’t. no-pattern is optional and
can be omitted. For example, (<)?(\w+@\w+(?:\.\w+)+)(?(1)>) is a poor email
matching pattern, which will match with '<user@host.com>' as well as
'user@host.com', but not with '<user@host.com'.

New in version 2.4.

The special sequences consist of '\' and a character from the list below.
If the ordinary character is not on the list, then the resulting RE will match
the second character. For example, \$ matches the character '$'.

	\number

	Matches the contents of the group of the same number. Groups are numbered
starting from 1. For example, (.+) \1 matches 'the the' or '55 55',
but not 'the end' (note the space after the group). This special sequence
can only be used to match one of the first 99 groups. If the first digit of
number is 0, or number is 3 octal digits long, it will not be interpreted as
a group match, but as the character with octal value number. Inside the
'[' and ']' of a character class, all numeric escapes are treated as
characters.

	\A

	Matches only at the start of the string.

	\b

	Matches the empty string, but only at the beginning or end of a word. A word is
defined as a sequence of alphanumeric or underscore characters, so the end of a
word is indicated by whitespace or a non-alphanumeric, non-underscore character.
Note that \b is defined as the boundary between \w and \W, so the
precise set of characters deemed to be alphanumeric depends on the values of the
UNICODE and LOCALE flags. Inside a character range, \b represents
the backspace character, for compatibility with Python’s string literals.

	\B

	Matches the empty string, but only when it is not at the beginning or end of a
word. This is just the opposite of \b, so is also subject to the settings
of LOCALE and UNICODE.

	\d

	When the UNICODE flag is not specified, matches any decimal digit; this
is equivalent to the set [0-9]. With UNICODE, it will match
whatever is classified as a decimal digit in the Unicode character properties
database.

	\D

	When the UNICODE flag is not specified, matches any non-digit
character; this is equivalent to the set [^0-9]. With UNICODE, it
will match anything other than character marked as digits in the Unicode
character properties database.

	\s

	When the LOCALE and UNICODE flags are not specified, matches
any whitespace character; this is equivalent to the set [\t\n\r\f\v]. With
LOCALE, it will match this set plus whatever characters are defined as
space for the current locale. If UNICODE is set, this will match the
characters [\t\n\r\f\v] plus whatever is classified as space in the Unicode
character properties database.

	\S

	When the LOCALE and UNICODE flags are not specified, matches
any non-whitespace character; this is equivalent to the set [^ \t\n\r\f\v]
With LOCALE, it will match any character not in this set, and not
defined as space in the current locale. If UNICODE is set, this will
match anything other than [\t\n\r\f\v] and characters marked as space in
the Unicode character properties database.

	\w

	When the LOCALE and UNICODE flags are not specified, matches
any alphanumeric character and the underscore; this is equivalent to the set
[a-zA-Z0-9_]. With LOCALE, it will match the set [0-9_] plus
whatever characters are defined as alphanumeric for the current locale. If
UNICODE is set, this will match the characters [0-9_] plus whatever
is classified as alphanumeric in the Unicode character properties database.

	\W

	When the LOCALE and UNICODE flags are not specified, matches
any non-alphanumeric character; this is equivalent to the set [^a-zA-Z0-9_].
With LOCALE, it will match any character not in the set [0-9_], and
not defined as alphanumeric for the current locale. If UNICODE is set,
this will match anything other than [0-9_] and characters marked as
alphanumeric in the Unicode character properties database.

	\Z

	Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also
accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
\\

Octal escapes are included in a limited form: If the first digit is a 0, or if
there are three octal digits, it is considered an octal escape. Otherwise, it is
a group reference. As for string literals, octal escapes are always at most
three digits in length.

7.2.2. Matching vs Searching

Python offers two different primitive operations based on regular expressions:
match checks for a match only at the beginning of the string, while
search checks for a match anywhere in the string (this is what Perl does
by default).

Note that match may differ from search even when using a regular expression
beginning with '^': '^' matches only at the start of the string, or in
MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string
regardless of mode, or at the starting position given by the optional pos
argument regardless of whether a newline precedes it.

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

7.2.3. Module Contents

The module defines several functions, constants, and an exception. Some of the
functions are simplified versions of the full featured methods for compiled
regular expressions. Most non-trivial applications always use the compiled
form.

	
re.compile(pattern[, flags])

	Compile a regular expression pattern into a regular expression object, which
can be used for matching using its match() and search() methods,
described below.

The expression’s behaviour can be modified by specifying a flags value.
Values can be any of the following variables, combined using bitwise OR (the
| operator).

The sequence

prog = re.compile(pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re.compile() and saving the resulting regular expression
object for reuse is more efficient when the expression will be used several
times in a single program.

Note

The compiled versions of the most recent patterns passed to
re.match(), re.search() or re.compile() are cached, so
programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

	
re.I

	
re.IGNORECASE

	Perform case-insensitive matching; expressions like [A-Z] will match
lowercase letters, too. This is not affected by the current locale.

	
re.L

	
re.LOCALE

	Make \w, \W, \b, \B, \s and \S dependent on the
current locale.

	
re.M

	
re.MULTILINE

	When specified, the pattern character '^' matches at the beginning of the
string and at the beginning of each line (immediately following each newline);
and the pattern character '$' matches at the end of the string and at the
end of each line (immediately preceding each newline). By default, '^'
matches only at the beginning of the string, and '$' only at the end of the
string and immediately before the newline (if any) at the end of the string.

	
re.S

	
re.DOTALL

	Make the '.' special character match any character at all, including a
newline; without this flag, '.' will match anything except a newline.

	
re.U

	
re.UNICODE

	Make \w, \W, \b, \B, \d, \D, \s and \S dependent
on the Unicode character properties database.

New in version 2.0.

	
re.X

	
re.VERBOSE

	This flag allows you to write regular expressions that look nicer. Whitespace
within the pattern is ignored, except when in a character class or preceded by
an unescaped backslash, and, when a line contains a '#' neither in a
character class or preceded by an unescaped backslash, all characters from the
leftmost such '#' through the end of the line are ignored.

That means that the two following regular expression objects that match a
decimal number are functionally equal:

a = re.compile(r"""\d + # the integral part
 \. # the decimal point
 \d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

	
re.search(pattern, string[, flags])

	Scan through string looking for a location where the regular expression
pattern produces a match, and return a corresponding MatchObject
instance. Return None if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the
string.

	
re.match(pattern, string[, flags])

	If zero or more characters at the beginning of string match the regular
expression pattern, return a corresponding MatchObject instance.
Return None if the string does not match the pattern; note that this is
different from a zero-length match.

Note

If you want to locate a match anywhere in string, use search()
instead.

	
re.split(pattern, string[, maxsplit=0, flags=0])

	Split string by the occurrences of pattern. If capturing parentheses are
used in pattern, then the text of all groups in the pattern are also returned
as part of the resulting list. If maxsplit is nonzero, at most maxsplit
splits occur, and the remainder of the string is returned as the final element
of the list. (Incompatibility note: in the original Python 1.5 release,
maxsplit was ignored. This has been fixed in later releases.)

>>> re.split('\W+', 'Words, words, words.')
['Words', 'words', 'words', '']
>>> re.split('(\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split('\W+', 'Words, words, words.', 1)
['Words', 'words, words.']
>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
['0', '3', '9']

If there are capturing groups in the separator and it matches at the start of
the string, the result will start with an empty string. The same holds for
the end of the string:

>>> re.split('(\W+)', '...words, words...')
['', '...', 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative
indices within the result list (e.g., if there’s one capturing group
in the separator, the 0th, the 2nd and so forth).

Note that split will never split a string on an empty pattern match.
For example:

>>> re.split('x*', 'foo')
['foo']
>>> re.split("(?m)^$", "foo\n\nbar\n")
['foo\n\nbar\n']

Changed in version 2.7: Added the optional flags argument.

	
re.findall(pattern, string[, flags])

	Return all non-overlapping matches of pattern in string, as a list of
strings. The string is scanned left-to-right, and matches are returned in
the order found. If one or more groups are present in the pattern, return a
list of groups; this will be a list of tuples if the pattern has more than
one group. Empty matches are included in the result unless they touch the
beginning of another match.

New in version 1.5.2.

Changed in version 2.4: Added the optional flags argument.

	
re.finditer(pattern, string[, flags])

	Return an iterator yielding MatchObject instances over all
non-overlapping matches for the RE pattern in string. The string is
scanned left-to-right, and matches are returned in the order found. Empty
matches are included in the result unless they touch the beginning of another
match.

New in version 2.2.

Changed in version 2.4: Added the optional flags argument.

	
re.sub(pattern, repl, string[, count, flags])

	Return the string obtained by replacing the leftmost non-overlapping occurrences
of pattern in string by the replacement repl. If the pattern isn’t found,
string is returned unchanged. repl can be a string or a function; if it is
a string, any backslash escapes in it are processed. That is, \n is
converted to a single newline character, \r is converted to a linefeed, and
so forth. Unknown escapes such as \j are left alone. Backreferences, such
as \6, are replaced with the substring matched by group 6 in the pattern.
For example:

>>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',
... r'static PyObject*\npy_\1(void)\n{',
... 'def myfunc():')
'static PyObject*\npy_myfunc(void)\n{'

If repl is a function, it is called for every non-overlapping occurrence of
pattern. The function takes a single match object argument, and returns the
replacement string. For example:

>>> def dashrepl(matchobj):
... if matchobj.group(0) == '-': return ' '
... else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
'pro--gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be
replaced; count must be a non-negative integer. If omitted or zero, all
occurrences will be replaced. Empty matches for the pattern are replaced only
when not adjacent to a previous match, so sub('x*', '-', 'abc') returns
'-a-b-c-'.

In addition to character escapes and backreferences as described above,
\g<name> will use the substring matched by the group named name, as
defined by the (?P<name>...) syntax. \g<number> uses the corresponding
group number; \g<2> is therefore equivalent to \2, but isn’t ambiguous
in a replacement such as \g<2>0. \20 would be interpreted as a
reference to group 20, not a reference to group 2 followed by the literal
character '0'. The backreference \g<0> substitutes in the entire
substring matched by the RE.

Changed in version 2.7: Added the optional flags argument.

	
re.subn(pattern, repl, string[, count, flags])

	Perform the same operation as sub(), but return a tuple (new_string,
number_of_subs_made).

Changed in version 2.7: Added the optional flags argument.

	
re.escape(string)

	Return string with all non-alphanumerics backslashed; this is useful if you
want to match an arbitrary literal string that may have regular expression
metacharacters in it.

	
re.purge()

	Clear the regular expression cache.

	
exception re.error

	Exception raised when a string passed to one of the functions here is not a
valid regular expression (for example, it might contain unmatched parentheses)
or when some other error occurs during compilation or matching. It is never an
error if a string contains no match for a pattern.

7.2.4. Regular Expression Objects

	
class re.RegexObject

	The RegexObject class supports the following methods and attributes:

	
search(string[, pos[, endpos]])

	Scan through string looking for a location where this regular expression
produces a match, and return a corresponding MatchObject instance.
Return None if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the
search is to start; it defaults to 0. This is not completely equivalent to
slicing the string; the '^' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the
index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it
will be as if the string is endpos characters long, so only the characters
from pos to endpos - 1 will be searched for a match. If endpos is less
than pos, no match will be found, otherwise, if rx is a compiled regular
expression object, rx.search(string, 0, 50) is equivalent to
rx.search(string[:50], 0).

>>> pattern = re.compile("d")
>>> pattern.search("dog") # Match at index 0
<_sre.SRE_Match object at ...>
>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

	
match(string[, pos[, endpos]])

	If zero or more characters at the beginning of string match this regular
expression, return a corresponding MatchObject instance. Return
None if the string does not match the pattern; note that this is different
from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the
search() method.

Note

If you want to locate a match anywhere in string, use
search() instead.

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

	
split(string[, maxsplit=0])

	Identical to the split() function, using the compiled pattern.

	
findall(string[, pos[, endpos]])

	Similar to the findall() function, using the compiled pattern, but
also accepts optional pos and endpos parameters that limit the search
region like for match().

	
finditer(string[, pos[, endpos]])

	Similar to the finditer() function, using the compiled pattern, but
also accepts optional pos and endpos parameters that limit the search
region like for match().

	
sub(repl, string[, count=0])

	Identical to the sub() function, using the compiled pattern.

	
subn(repl, string[, count=0])

	Identical to the subn() function, using the compiled pattern.

	
flags

	The flags argument used when the RE object was compiled, or 0 if no flags
were provided.

	
groups

	The number of capturing groups in the pattern.

	
groupindex

	A dictionary mapping any symbolic group names defined by (?P<id>) to group
numbers. The dictionary is empty if no symbolic groups were used in the
pattern.

	
pattern

	The pattern string from which the RE object was compiled.

7.2.5. Match Objects

	
class re.MatchObject

	Match Objects always have a boolean value of True, so that you can test
whether e.g. match() resulted in a match with a simple if statement. They
support the following methods and attributes:

	
expand(template)

	Return the string obtained by doing backslash substitution on the template
string template, as done by the sub() method. Escapes
such as \n are converted to the appropriate characters, and numeric
backreferences (\1, \2) and named backreferences (\g<1>,
\g<name>) are replaced by the contents of the corresponding group.

	
group([group1, ...])

	Returns one or more subgroups of the match. If there is a single argument, the
result is a single string; if there are multiple arguments, the result is a
tuple with one item per argument. Without arguments, group1 defaults to zero
(the whole match is returned). If a groupN argument is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the corresponding parenthesized group. If a
group number is negative or larger than the number of groups defined in the
pattern, an IndexError exception is raised. If a group is contained in a
part of the pattern that did not match, the corresponding result is None.
If a group is contained in a part of the pattern that matched multiple times,
the last match is returned.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group(0) # The entire match
'Isaac Newton'
>>> m.group(1) # The first parenthesized subgroup.
'Isaac'
>>> m.group(2) # The second parenthesized subgroup.
'Newton'
>>> m.group(1, 2) # Multiple arguments give us a tuple.
('Isaac', 'Newton')

If the regular expression uses the (?P<name>...) syntax, the groupN
arguments may also be strings identifying groups by their group name. If a
string argument is not used as a group name in the pattern, an IndexError
exception is raised.

A moderately complicated example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group('first_name')
'Malcolm'
>>> m.group('last_name')
'Reynolds'

Named groups can also be referred to by their index:

>>> m.group(1)
'Malcolm'
>>> m.group(2)
'Reynolds'

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.
>>> m.group(1) # Returns only the last match.
'c3'

	
groups([default])

	Return a tuple containing all the subgroups of the match, from 1 up to however
many groups are in the pattern. The default argument is used for groups that
did not participate in the match; it defaults to None. (Incompatibility
note: in the original Python 1.5 release, if the tuple was one element long, a
string would be returned instead. In later versions (from 1.5.1 on), a
singleton tuple is returned in such cases.)

For example:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups()
('24', '1632')

If we make the decimal place and everything after it optional, not all groups
might participate in the match. These groups will default to None unless
the default argument is given:

>>> m = re.match(r"(\d+)\.?(\d+)?", "24")
>>> m.groups() # Second group defaults to None.
('24', None)
>>> m.groups('0') # Now, the second group defaults to '0'.
('24', '0')

	
groupdict([default])

	Return a dictionary containing all the named subgroups of the match, keyed by
the subgroup name. The default argument is used for groups that did not
participate in the match; it defaults to None. For example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

	
start([group])

	
end([group])

	Return the indices of the start and end of the substring matched by group;
group defaults to zero (meaning the whole matched substring). Return -1 if
group exists but did not contribute to the match. For a match object m, and
a group g that did contribute to the match, the substring matched by group g
(equivalent to m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a
null string. For example, after m = re.search('b(c?)', 'cba'),
m.start(0) is 1, m.end(0) is 2, m.start(1) and m.end(1) are both
2, and m.start(2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start()] + email[m.end():]
'tony@tiger.net'

	
span([group])

	For MatchObject m, return the 2-tuple (m.start(group),
m.end(group)). Note that if group did not contribute to the match, this is
(-1, -1). group defaults to zero, the entire match.

	
pos

	The value of pos which was passed to the search() or
match() method of the RegexObject. This is the
index into the string at which the RE engine started looking for a match.

	
endpos

	The value of endpos which was passed to the search() or
match() method of the RegexObject. This is the
index into the string beyond which the RE engine will not go.

	
lastindex

	The integer index of the last matched capturing group, or None if no group
was matched at all. For example, the expressions (a)b, ((a)(b)), and
((ab)) will have lastindex == 1 if applied to the string 'ab', while
the expression (a)(b) will have lastindex == 2, if applied to the same
string.

	
lastgroup

	The name of the last matched capturing group, or None if the group didn’t
have a name, or if no group was matched at all.

	
re

	The regular expression object whose match() or
search() method produced this MatchObject
instance.

	
string

	The string passed to match() or
search().

7.2.6. Examples

7.2.6.1. Checking For a Pair

In this example, we’ll use the following helper function to display match
objects a little more gracefully:

def displaymatch(match):
 if match is None:
 return None
 return '<Match: %r, groups=%r>' % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as
a 5-character string with each character representing a card, “a” for ace, “k”
for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"[0-9akqj]{5}$")
>>> displaymatch(valid.match("ak05q")) # Valid.
"<Match: 'ak05q', groups=()>"
>>> displaymatch(valid.match("ak05e")) # Invalid.
>>> displaymatch(valid.match("ak0")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards.
To match this with a regular expression, one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")
>>> displaymatch(pair.match("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"
>>> displaymatch(pair.match("718ak")) # No pairs.
>>> displaymatch(pair.match("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the
group() method of MatchObject in the following
manner:

>>> pair.match("717ak").group(1)
'7'

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak").group(1)
Traceback (most recent call last):
 File "<pyshell#23>", line 1, in <module>
 re.match(r".*(.).*\1", "718ak").group(1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa").group(1)
'a'

7.2.6.2. Simulating scanf()

Python does not currently have an equivalent to scanf(). Regular
expressions are generally more powerful, though also more verbose, than
scanf() format strings. The table below offers some more-or-less
equivalent mappings between scanf() format tokens and regular
expressions.

	scanf() Token
	Regular Expression

	%c
	.

	%5c
	.{5}

	%d
	[-+]?\d+

	%e, %E, %f, %g
	[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?

	%i
	[-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)

	%o
	0[0-7]*

	%s
	\S+

	%u
	\d+

	%x, %X
	0[xX][\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

7.2.6.3. Avoiding recursion

If you create regular expressions that require the engine to perform a lot of
recursion, you may encounter a RuntimeError exception with the message
maximum recursion limit exceeded. For example,

>>> s = 'Begin ' + 1000*'a very long string ' + 'end'
>>> re.match('Begin (\w|)*? end', s).end()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/local/lib/python2.5/re.py", line 132, in match
 return _compile(pattern, flags).match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of the *? pattern are special-cased to
avoid recursion. Thus, the above regular expression can avoid recursion by
being recast as Begin [a-zA-Z0-9_]*?end. As a further benefit, such
regular expressions will run faster than their recursive equivalents.

7.2.6.4. search() vs. match()

In a nutshell, match() only attempts to match a pattern at the beginning
of a string where search() will match a pattern anywhere in a string.
For example:

>>> re.match("o", "dog") # No match as "o" is not the first letter of "dog".
>>> re.search("o", "dog") # Match as search() looks everywhere in the string.
<_sre.SRE_Match object at ...>

Note

The following applies only to regular expression objects like those created
with re.compile("pattern"), not the primitives re.match(pattern,
string) or re.search(pattern, string).

match() has an optional second parameter that gives an index in the string
where the search is to start:

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern.match("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):
>>> pattern.match("dog", 1)
<_sre.SRE_Match object at ...>
>>> pattern.match("dog", 2) # No match as "o" is not the 3rd character of "dog."

7.2.6.5. Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The
method is invaluable for converting textual data into data structures that can be
easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using
triple-quoted string syntax:

>>> input = """Ross McFluff: 834.345.1254 155 Elm Street
...
... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way
...
...
... Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string
into a list with each nonempty line having its own entry:

>>> entries = re.split("\n+", input)
>>> entries
['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone
number, and address. We use the maxsplit parameter of split()
because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The :? pattern matches the colon after the last name, so that it does not
occur in the result list. With a maxsplit of 4, we could separate the
house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

7.2.6.6. Text Munging

sub() replaces every occurrence of a pattern with a string or the
result of a function. This example demonstrates using sub() with
a function to “munge” text, or randomize the order of all the characters
in each word of a sentence except for the first and last characters:

>>> def repl(m):
... inner_word = list(m.group(2))
... random.shuffle(inner_word)
... return m.group(1) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

7.2.6.7. Finding all Adverbs

findall() matches all occurrences of a pattern, not just the first
one as search() does. For example, if one was a writer and wanted to
find all of the adverbs in some text, he or she might use findall() in
the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly", text)
['carefully', 'quickly']

7.2.6.8. Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched
text, finditer() is useful as it provides instances of
MatchObject instead of strings. Continuing with the previous example,
if one was a writer who wanted to find all of the adverbs and their positions
in some text, he or she would use finditer() in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):
... print '%02d-%02d: %s' % (m.start(), m.end(), m.group(0))
07-16: carefully
40-47: quickly

7.2.6.9. Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it,
every backslash ('\') in a regular expression would have to be prefixed with
another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match(r"\W(.)\1\W", " ff ")
<_sre.SRE_Match object at ...>
>>> re.match("\\W(.)\\1\\W", " ff ")
<_sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular
expression. With raw string notation, this means r"\\". Without raw string
notation, one must use "\\\\", making the following lines of code
functionally identical:

>>> re.match(r"\\", r"\\")
<_sre.SRE_Match object at ...>
>>> re.match("\\\\", r"\\")
<_sre.SRE_Match object at ...>

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.3. struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented
as Python strings. This can be used in handling binary data stored in files or
from network connections, among other sources. It uses
Format Strings as compact descriptions of the layout of the C
structs and the intended conversion to/from Python values.

Note

By default, the result of packing a given C struct includes pad bytes in
order to maintain proper alignment for the C types involved; similarly,
alignment is taken into account when unpacking. This behavior is chosen so
that the bytes of a packed struct correspond exactly to the layout in memory
of the corresponding C struct. To handle platform-independent data formats
or omit implicit pad bytes, use standard size and alignment instead of
native size and alignment: see Byte Order, Size, and Alignment for details.

7.3.1. Functions and Exceptions

The module defines the following exception and functions:

	
exception struct.error

	Exception raised on various occasions; argument is a string describing what
is wrong.

	
struct.pack(fmt, v1, v2, ...)

	Return a string containing the values v1, v2, ... packed according to the
given format. The arguments must match the values required by the format
exactly.

	
struct.pack_into(fmt, buffer, offset, v1, v2, ...)

	Pack the values v1, v2, ... according to the given format, write the
packed bytes into the writable buffer starting at offset. Note that the
offset is a required argument.

New in version 2.5.

	
struct.unpack(fmt, string)

	Unpack the string (presumably packed by pack(fmt, ...)) according to the
given format. The result is a tuple even if it contains exactly one item.
The string must contain exactly the amount of data required by the format
(len(string) must equal calcsize(fmt)).

	
struct.unpack_from(fmt, buffer[, offset=0])

	Unpack the buffer according to the given format. The result is a tuple even
if it contains exactly one item. The buffer must contain at least the
amount of data required by the format (len(buffer[offset:]) must be at
least calcsize(fmt)).

New in version 2.5.

	
struct.calcsize(fmt)

	Return the size of the struct (and hence of the string) corresponding to the
given format.

7.3.2. Format Strings

Format strings are the mechanism used to specify the expected layout when
packing and unpacking data. They are built up from Format Characters,
which specify the type of data being packed/unpacked. In addition, there are
special characters for controlling the Byte Order, Size, and Alignment.

7.3.2.1. Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte
order, and properly aligned by skipping pad bytes if necessary (according to the
rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate
the byte order, size and alignment of the packed data, according to the
following table:

	Character
	Byte order
	Size
	Alignment

	@
	native
	native
	native

	=
	native
	standard
	none

	<
	little-endian
	standard
	none

	>
	big-endian
	standard
	none

	!
	network (= big-endian)
	standard
	none

If the first character is not one of these, '@' is assumed.

Native byte order is big-endian or little-endian, depending on the host
system. For example, Intel x86 and AMD64 (x86-64) are little-endian;
Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature
switchable endianness (bi-endian). Use sys.byteorder to check the
endianness of your system.

Native size and alignment are determined using the C compiler’s
sizeof expression. This is always combined with native byte order.

Standard size depends only on the format character; see the table in
the Format Characters section.

Note the difference between '@' and '=': both use native byte order, but
the size and alignment of the latter is standardized.

The form '!' is available for those poor souls who claim they can’t remember
whether network byte order is big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the
appropriate choice of '<' or '>'.

Notes:

	Padding is only automatically added between successive structure members.
No padding is added at the beginning or the end of the encoded struct.

	No padding is added when using non-native size and alignment, e.g.
with ‘<’, ‘>’, ‘=’, and ‘!’.

	To align the end of a structure to the alignment requirement of a
particular type, end the format with the code for that type with a repeat
count of zero. See Examples.

7.3.2.2. Format Characters

Format characters have the following meaning; the conversion between C and
Python values should be obvious given their types. The ‘Standard size’ column
refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of '<', '>', '!' or
'='. When using native size, the size of the packed value is
platform-dependent.

	Format
	C Type
	Python type
	Standard size
	Notes

	x
	pad byte
	no value
	
	

	c
	char
	string of length 1
	1
	

	b
	signed char
	integer
	1
	(3)

	B
	unsigned char
	integer
	1
	(3)

	?
	_Bool
	bool
	1
	(1)

	h
	short
	integer
	2
	(3)

	H
	unsigned short
	integer
	2
	(3)

	i
	int
	integer
	4
	(3)

	I
	unsigned int
	integer
	4
	(3)

	l
	long
	integer
	4
	(3)

	L
	unsigned long
	integer
	4
	(3)

	q
	long long
	integer
	8
	(2), (3)

	Q
	unsigned long
long
	integer
	8
	(2), (3)

	f
	float
	float
	4
	(4)

	d
	double
	float
	8
	(4)

	s
	char[]
	string
	
	

	p
	char[]
	string
	
	

	P
	void *
	integer
	
	(5), (3)

Notes:

	The '?' conversion code corresponds to the _Bool type defined by
C99. If this type is not available, it is simulated using a char. In
standard mode, it is always represented by one byte.

New in version 2.6.

	The 'q' and 'Q' conversion codes are available in native mode only if
the platform C compiler supports C long long, or, on Windows,
__int64. They are always available in standard modes.

New in version 2.2.

	When attempting to pack a non-integer using any of the integer conversion
codes, if the non-integer has a __index__() method then that method is
called to convert the argument to an integer before packing. If no
__index__() method exists, or the call to __index__() raises
TypeError, then the __int__() method is tried. However, the use
of __int__() is deprecated, and will raise DeprecationWarning.

Changed in version 2.7: Use of the __index__() method for non-integers is new in 2.7.

Changed in version 2.7: Prior to version 2.7, not all integer conversion codes would use the
__int__() method to convert, and DeprecationWarning was
raised only for float arguments.

	For the 'f' and 'd' conversion codes, the packed representation uses
the IEEE 754 binary32 (for 'f') or binary64 (for 'd') format,
regardless of the floating-point format used by the platform.

	The 'P' format character is only available for the native byte ordering
(selected as the default or with the '@' byte order character). The byte
order character '=' chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native
ordering, so the 'P' format is not available.

A format character may be preceded by an integral repeat count. For example,
the format string '4h' means exactly the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must
not contain whitespace though.

For the 's' format character, the count is interpreted as the size of the
string, not a repeat count like for the other format characters; for example,
'10s' means a single 10-byte string, while '10c' means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to
make it fit. For unpacking, the resulting string always has exactly the
specified number of bytes. As a special case, '0s' means a single, empty
string (while '0c' means 0 characters).

The 'p' format character encodes a “Pascal string”, meaning a short
variable-length string stored in a fixed number of bytes, given by the count.
The first byte stored is the length of the string, or 255, whichever is smaller.
The bytes of the string follow. If the string passed in to pack() is too
long (longer than the count minus 1), only the leading count-1 bytes of the
string are stored. If the string is shorter than count-1, it is padded with
null bytes so that exactly count bytes in all are used. Note that for
unpack(), the 'p' format character consumes count bytes, but that the
string returned can never contain more than 255 characters.

For the 'P' format character, the return value is a Python integer or long
integer, depending on the size needed to hold a pointer when it has been cast to
an integer type. A NULL pointer will always be returned as the Python integer
0. When packing pointer-sized values, Python integer or long integer objects
may be used. For example, the Alpha and Merced processors use 64-bit pointer
values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

For the '?' format character, the return value is either True or
False. When packing, the truth value of the argument object is used.
Either 0 or 1 in the native or standard bool representation will be packed, and
any non-zero value will be True when unpacking.

7.3.2.3. Examples

Note

All examples assume a native byte order, size, and alignment with a
big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *
>>> pack('hhl', 1, 2, 3)
'\x00\x01\x00\x02\x00\x00\x00\x03'
>>> unpack('hhl', '\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)
>>> calcsize('hhl')
8

Unpacked fields can be named by assigning them to variables or by wrapping
the result in a named tuple:

>>> record = 'raymond \x32\x12\x08\x01\x08'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple
>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make(unpack('<10sHHb', record))
Student(name='raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding
needed to satisfy alignment requirements is different:

>>> pack('ci', '*', 0x12131415)
'*\x00\x00\x00\x12\x13\x14\x15'
>>> pack('ic', 0x12131415, '*')
'\x12\x13\x14\x15*'
>>> calcsize('ci')
8
>>> calcsize('ic')
5

The following format 'llh0l' specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries:

>>> pack('llh0l', 1, 2, 3)
'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00'

This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See also

	Module array

	Packed binary storage of homogeneous data.

	Module xdrlib

	Packing and unpacking of XDR data.

7.3.3. Classes

The struct module also defines the following type:

	
class struct.Struct(format)

	Return a new Struct object which writes and reads binary data according to
the format string format. Creating a Struct object once and calling its
methods is more efficient than calling the struct functions with the
same format since the format string only needs to be compiled once.

New in version 2.5.

Compiled Struct objects support the following methods and attributes:

	
pack(v1, v2, ...)

	Identical to the pack() function, using the compiled format.
(len(result) will equal self.size.)

	
pack_into(buffer, offset, v1, v2, ...)

	Identical to the pack_into() function, using the compiled format.

	
unpack(string)

	Identical to the unpack() function, using the compiled format.
(len(string) must equal self.size).

	
unpack_from(buffer[, offset=0])

	Identical to the unpack_from() function, using the compiled format.
(len(buffer[offset:]) must be at least self.size).

	
format

	The format string used to construct this Struct object.

	
size

	The calculated size of the struct (and hence of the string) corresponding
to format.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.4. difflib — Helpers for computing deltas

New in version 2.1.

This module provides classes and functions for comparing sequences. It
can be used for example, for comparing files, and can produce difference
information in various formats, including HTML and context and unified
diffs. For comparing directories and files, see also, the filecmp module.

	
class difflib.SequenceMatcher

	This is a flexible class for comparing pairs of sequences of any type, so long
as the sequence elements are hashable. The basic algorithm predates, and is a
little fancier than, an algorithm published in the late 1980’s by Ratcliff and
Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to
find the longest contiguous matching subsequence that contains no “junk”
elements (the Ratcliff and Obershelp algorithm doesn’t address junk). The same
idea is then applied recursively to the pieces of the sequences to the left and
to the right of the matching subsequence. This does not yield minimal edit
sequences, but does tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst
case and quadratic time in the expected case. SequenceMatcher is
quadratic time for the worst case and has expected-case behavior dependent in a
complicated way on how many elements the sequences have in common; best case
time is linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that
automatically treats certain sequence items as junk. The heuristic counts how many
times each individual item appears in the sequence. If an item’s duplicates (after
the first one) account for more than 1% of the sequence and the sequence is at least
200 items long, this item is marked as “popular” and is treated as junk for
the purpose of sequence matching. This heuristic can be turned off by setting
the autojunk argument to False when creating the SequenceMatcher.

New in version 2.7.1: The autojunk parameter.

	
class difflib.Differ

	This is a class for comparing sequences of lines of text, and producing
human-readable differences or deltas. Differ uses SequenceMatcher
both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

	Code
	Meaning

	'- '
	line unique to sequence 1

	'+ '
	line unique to sequence 2

	' '
	line common to both sequences

	'? '
	line not present in either input sequence

Lines beginning with ‘?‘ attempt to guide the eye to intraline differences,
and were not present in either input sequence. These lines can be confusing if
the sequences contain tab characters.

	
class difflib.HtmlDiff

	This class can be used to create an HTML table (or a complete HTML file
containing the table) showing a side by side, line by line comparison of text
with inter-line and intra-line change highlights. The table can be generated in
either full or contextual difference mode.

The constructor for this class is:

	
__init__([tabsize][, wrapcolumn][, linejunk][, charjunk])

	Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and
defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are
broken and wrapped, defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff()
(used by HtmlDiff to generate the side by side HTML differences). See
ndiff() documentation for argument default values and descriptions.

The following methods are public:

	
make_file(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

	Compares fromlines and tolines (lists of strings) and returns a string which
is a complete HTML file containing a table showing line by line differences with
inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file
column header strings (both default to an empty string).

context and numlines are both optional keyword arguments. Set context to
True when contextual differences are to be shown, else the default is
False to show the full files. numlines defaults to 5. When context
is True numlines controls the number of context lines which surround the
difference highlights. When context is False numlines controls the
number of lines which are shown before a difference highlight when using the
“next” hyperlinks (setting to zero would cause the “next” hyperlinks to place
the next difference highlight at the top of the browser without any leading
context).

	
make_table(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])

	Compares fromlines and tolines (lists of strings) and returns a string which
is a complete HTML table showing line by line differences with inter-line and
intra-line changes highlighted.

The arguments for this method are the same as those for the make_file()
method.

Tools/scripts/diff.py is a command-line front-end to this class and
contains a good example of its use.

New in version 2.4.

	
difflib.context_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

	Compare a and b (lists of strings); return a delta (a generator
generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus
a few lines of context. The changes are shown in a before/after style. The
number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ---) are created
with a trailing newline. This is helpful so that inputs created from
file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing
newlines.

For inputs that do not have trailing newlines, set the lineterm argument to
"" so that the output will be uniformly newline free.

The context diff format normally has a header for filenames and modification
times. Any or all of these may be specified using strings for fromfile,
tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the
strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> for line in context_diff(s1, s2, fromfile='before.py', tofile='after.py'):
... sys.stdout.write(line)
*** before.py
--- after.py

*** 1,4 ****
! bacon
! eggs
! ham
 guido
--- 1,4 ----
! python
! eggy
! hamster
 guido

See A command-line interface to difflib for a more detailed example.

New in version 2.3.

	
difflib.get_close_matches(word, possibilities[, n][, cutoff])

	Return a list of the best “good enough” matches. word is a sequence for which
close matches are desired (typically a string), and possibilities is a list of
sequences against which to match word (typically a list of strings).

Optional argument n (default 3) is the maximum number of close matches to
return; n must be greater than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1].
Possibilities that don’t score at least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a
list, sorted by similarity score, most similar first.

>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'])
['apple', 'ape']
>>> import keyword
>>> get_close_matches('wheel', keyword.kwlist)
['while']
>>> get_close_matches('apple', keyword.kwlist)
[]
>>> get_close_matches('accept', keyword.kwlist)
['except']

	
difflib.ndiff(a, b[, linejunk][, charjunk])

	Compare a and b (lists of strings); return a Differ-style
delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions
(or None):

linejunk: A function that accepts a single string argument, and returns true
if the string is junk, or false if not. The default is (None), starting with
Python 2.3. Before then, the default was the module-level function
IS_LINE_JUNK(), which filters out lines without visible characters, except
for at most one pound character ('#'). As of Python 2.3, the underlying
SequenceMatcher class does a dynamic analysis of which lines are so
frequent as to constitute noise, and this usually works better than the pre-2.3
default.

charjunk: A function that accepts a character (a string of length 1), and
returns if the character is junk, or false if not. The default is module-level
function IS_CHARACTER_JUNK(), which filters out whitespace characters (a
blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
... 'ore\ntree\nemu\n'.splitlines(1))
>>> print ''.join(diff),
- one
? ^
+ ore
? ^
- two
- three
? -
+ tree
+ emu

	
difflib.restore(sequence, which)

	Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff(), extract
lines originating from file 1 or 2 (parameter which), stripping off line
prefixes.

Example:

>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
... 'ore\ntree\nemu\n'.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ''.join(restore(diff, 1)),
one
two
three
>>> print ''.join(restore(diff, 2)),
ore
tree
emu

	
difflib.unified_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])

	Compare a and b (lists of strings); return a delta (a generator
generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus
a few lines of context. The changes are shown in a inline style (instead of
separate before/after blocks). The number of context lines is set by n which
defaults to three.

By default, the diff control lines (those with ---, +++, or @@) are
created with a trailing newline. This is helpful so that inputs created from
file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing
newlines.

For inputs that do not have trailing newlines, set the lineterm argument to
"" so that the output will be uniformly newline free.

The context diff format normally has a header for filenames and modification
times. Any or all of these may be specified using strings for fromfile,
tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the
strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> for line in unified_diff(s1, s2, fromfile='before.py', tofile='after.py'):
... sys.stdout.write(line)
--- before.py
+++ after.py
@@ -1,4 +1,4 @@
-bacon
-eggs
-ham
+python
+eggy
+hamster
 guido

See A command-line interface to difflib for a more detailed example.

New in version 2.3.

	
difflib.IS_LINE_JUNK(line)

	Return true for ignorable lines. The line line is ignorable if line is
blank or contains a single '#', otherwise it is not ignorable. Used as a
default for parameter linejunk in ndiff() before Python 2.3.

	
difflib.IS_CHARACTER_JUNK(ch)

	Return true for ignorable characters. The character ch is ignorable if ch
is a space or tab, otherwise it is not ignorable. Used as a default for
parameter charjunk in ndiff().

See also

	Pattern Matching: The Gestalt Approach [http://www.ddj.com/184407970?pgno=5]

	Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This
was published in Dr. Dobb’s Journal [http://www.ddj.com/] in July, 1988.

7.4.1. SequenceMatcher Objects

The SequenceMatcher class has this constructor:

	
class difflib.SequenceMatcher([isjunk[, a[, b[, autojunk=True]]]])

	Optional argument isjunk must be None (the default) or a one-argument
function that takes a sequence element and returns true if and only if the
element is “junk” and should be ignored. Passing None for isjunk is
equivalent to passing lambda x: 0; in other words, no elements are ignored.
For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up
on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to
empty strings. The elements of both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk
heuristic.

New in version 2.7.1: The autojunk parameter.

SequenceMatcher objects have the following methods:

	
set_seqs(a, b)

	Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the
second sequence, so if you want to compare one sequence against many
sequences, use set_seq2() to set the commonly used sequence once and
call set_seq1() repeatedly, once for each of the other sequences.

	
set_seq1(a)

	Set the first sequence to be compared. The second sequence to be compared
is not changed.

	
set_seq2(b)

	Set the second sequence to be compared. The first sequence to be compared
is not changed.

	
find_longest_match(alo, ahi, blo, bhi)

	Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match() returns
(i, j, k) such that a[i:i+k] is equal to b[j:j+k], where alo
<= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For all (i', j',
k') meeting those conditions, the additional conditions k >= k', i
<= i', and if i == i', j <= j' are also met. In other words, of
all maximal matching blocks, return one that starts earliest in a, and
of all those maximal matching blocks that start earliest in a, return
the one that starts earliest in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined
as above, but with the additional restriction that no junk element appears
in the block. Then that block is extended as far as possible by matching
(only) junk elements on both sides. So the resulting block never matches
on junk except as identical junk happens to be adjacent to an interesting
match.

Here’s the same example as before, but considering blanks to be junk. That
prevents ' abcd' from matching the ' abcd' at the tail end of the
second sequence directly. Instead only the 'abcd' can match, and
matches the leftmost 'abcd' in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).

Changed in version 2.6: This method returns a named tuple Match(a, b, size).

	
get_matching_blocks()

	Return list of triples describing matching subsequences. Each triple is of
the form (i, j, n), and means that a[i:i+n] == b[j:j+n]. The
triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It
is the only triple with n == 0. If (i, j, n) and (i', j', n')
are adjacent triples in the list, and the second is not the last triple in
the list, then i+n != i' or j+n != j'; in other words, adjacent
triples always describe non-adjacent equal blocks.

Changed in version 2.5: The guarantee that adjacent triples always describe non-adjacent blocks
was implemented.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

	
get_opcodes()

	Return list of 5-tuples describing how to turn a into b. Each tuple is
of the form (tag, i1, i2, j1, j2). The first tuple has i1 == j1 ==
0, and remaining tuples have i1 equal to the i2 from the preceding
tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

	Value
	Meaning

	'replace'
	a[i1:i2] should be replaced by
b[j1:j2].

	'delete'
	a[i1:i2] should be deleted. Note that
j1 == j2 in this case.

	'insert'
	b[j1:j2] should be inserted at
a[i1:i1]. Note that i1 == i2 in
this case.

	'equal'
	a[i1:i2] == b[j1:j2] (the sub-sequences
are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))
 delete a[0:1] (q) b[0:0] ()
 equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)
 equal a[4:6] (cd) b[3:5] (cd)
 insert a[6:6] () b[5:6] (f)

	
get_grouped_opcodes([n])

	Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes(), this method
splits out smaller change clusters and eliminates intervening ranges which
have no changes.

The groups are returned in the same format as get_opcodes().

New in version 2.3.

	
ratio()

	Return a measure of the sequences’ similarity as a float in the range [0,
1].

Where T is the total number of elements in both sequences, and M is the
number of matches, this is 2.0*M / T. Note that this is 1.0 if the
sequences are identical, and 0.0 if they have nothing in common.

This is expensive to compute if get_matching_blocks() or
get_opcodes() hasn’t already been called, in which case you may want
to try quick_ratio() or real_quick_ratio() first to get an
upper bound.

	
quick_ratio()

	Return an upper bound on ratio() relatively quickly.

	
real_quick_ratio()

	Return an upper bound on ratio() very quickly.

The three methods that return the ratio of matching to total characters can give
different results due to differing levels of approximation, although
quick_ratio() and real_quick_ratio() are always at least as large as
ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
>>> s.quick_ratio()
0.75
>>> s.real_quick_ratio()
1.0

7.4.2. SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
... "private Thread currentThread;",
... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the
sequences. As a rule of thumb, a ratio() value over 0.6 means the
sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match,
get_matching_blocks() is handy:

>>> for block in s.get_matching_blocks():
... print "a[%d] and b[%d] match for %d elements" % block
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 21 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks() is always a
dummy, (len(a), len(b), 0), and this is the only case in which the last
tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use
get_opcodes():

>>> for opcode in s.get_opcodes():
... print "%6s a[%d:%d] b[%d:%d]" % opcode
 equal a[0:8] b[0:8]
insert a[8:8] b[8:17]
 equal a[8:29] b[17:38]

See also

	The get_close_matches() function in this module which shows how
simple code building on SequenceMatcher can be used to do useful
work.

	Simple version control recipe [http://code.activestate.com/recipes/576729/] for a small application
built with SequenceMatcher.

7.4.3. Differ Objects

Note that Differ-generated deltas make no claim to be minimal
diffs. To the contrary, minimal diffs are often counter-intuitive, because they
synch up anywhere possible, sometimes accidental matches 100 pages apart.
Restricting synch points to contiguous matches preserves some notion of
locality, at the occasional cost of producing a longer diff.

The Differ class has this constructor:

	
class difflib.Differ([linejunk[, charjunk]])

	Optional keyword parameters linejunk and charjunk are for filter functions
(or None):

linejunk: A function that accepts a single string argument, and returns true
if the string is junk. The default is None, meaning that no line is
considered junk.

charjunk: A function that accepts a single character argument (a string of
length 1), and returns true if the character is junk. The default is None,
meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

	
compare(a, b)

	Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines.
Such sequences can be obtained from the readlines() method of file-like
objects. The delta generated also consists of newline-terminated strings, ready
to be printed as-is via the writelines() method of a file-like object.

7.4.4. Differ Example

This example compares two texts. First we set up the texts, sequences of
individual single-line strings ending with newlines (such sequences can also be
obtained from the readlines() method of file-like objects):

>>> text1 = ''' 1. Beautiful is better than ugly.
... 2. Explicit is better than implicit.
... 3. Simple is better than complex.
... 4. Complex is better than complicated.
... '''.splitlines(1)
>>> len(text1)
4
>>> text1[0][-1]
'\n'
>>> text2 = ''' 1. Beautiful is better than ugly.
... 3. Simple is better than complex.
... 4. Complicated is better than complex.
... 5. Flat is better than nested.
... '''.splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to
filter out line and character “junk.” See the Differ() constructor for
details.

Finally, we compare the two:

>>> result = list(d.compare(text1, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[' 1. Beautiful is better than ugly.\n',
 '- 2. Explicit is better than implicit.\n',
 '- 3. Simple is better than complex.\n',
 '+ 3. Simple is better than complex.\n',
 '? ++\n',
 '- 4. Complex is better than complicated.\n',
 '? ^ ---- ^\n',
 '+ 4. Complicated is better than complex.\n',
 '? ++++ ^ ^\n',
 '+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines(result)
 1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
- 3. Simple is better than complex.
+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
? ^ ---- ^
+ 4. Complicated is better than complex.
? ++++ ^ ^
+ 5. Flat is better than nested.

7.4.5. A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility.
It is also contained in the Python source distribution, as
Tools/scripts/diff.py.

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.
* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.
* html: generates side by side comparison with change highlights.

"""

import sys, os, time, difflib, optparse

def main():
 # Configure the option parser
 usage = "usage: %prog [options] fromfile tofile"
 parser = optparse.OptionParser(usage)
 parser.add_option("-c", action="store_true", default=False,
 help='Produce a context format diff (default)')
 parser.add_option("-u", action="store_true", default=False,
 help='Produce a unified format diff')
 hlp = 'Produce HTML side by side diff (can use -c and -l in conjunction)'
 parser.add_option("-m", action="store_true", default=False, help=hlp)
 parser.add_option("-n", action="store_true", default=False,
 help='Produce a ndiff format diff')
 parser.add_option("-l", "--lines", type="int", default=3,
 help='Set number of context lines (default 3)')
 (options, args) = parser.parse_args()

 if len(args) == 0:
 parser.print_help()
 sys.exit(1)
 if len(args) != 2:
 parser.error("need to specify both a fromfile and tofile")

 n = options.lines
 fromfile, tofile = args # as specified in the usage string

 # we're passing these as arguments to the diff function
 fromdate = time.ctime(os.stat(fromfile).st_mtime)
 todate = time.ctime(os.stat(tofile).st_mtime)
 fromlines = open(fromfile, 'U').readlines()
 tolines = open(tofile, 'U').readlines()

 if options.u:
 diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile,
 fromdate, todate, n=n)
 elif options.n:
 diff = difflib.ndiff(fromlines, tolines)
 elif options.m:
 diff = difflib.HtmlDiff().make_file(fromlines, tolines, fromfile,
 tofile, context=options.c,
 numlines=n)
 else:
 diff = difflib.context_diff(fromlines, tolines, fromfile, tofile,
 fromdate, todate, n=n)

 # we're using writelines because diff is a generator
 sys.stdout.writelines(diff)

if __name__ == '__main__':
 main()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.5. StringIO — Read and write strings as files

This module implements a file-like class, StringIO, that reads and
writes a string buffer (also known as memory files). See the description of
file objects for operations (section File Objects). (For
standard strings, see str and unicode.)

	
class StringIO.StringIO([buffer])

	When a StringIO object is created, it can be initialized to an existing
string by passing the string to the constructor. If no string is given, the
StringIO will start empty. In both cases, the initial file position
starts at zero.

The StringIO object can accept either Unicode or 8-bit strings, but
mixing the two may take some care. If both are used, 8-bit strings that cannot
be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised when getvalue() is called.

The following methods of StringIO objects require special mention:

	
StringIO.getvalue()

	Retrieve the entire contents of the “file” at any time before the
StringIO object’s close() method is called. See the note above
for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to raise UnicodeError.

	
StringIO.close()

	Free the memory buffer. Attempting to do further operations with a closed
StringIO object will raise a ValueError.

Example usage:

import StringIO

output = StringIO.StringIO()
output.write('First line.\n')
print >>output, 'Second line.'

Retrieve file contents -- this will be
'First line.\nSecond line.\n'
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

7.6. cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the
StringIO module. Heavy use of StringIO.StringIO objects can be
made more efficient by using the function StringIO() from this module
instead.

	
cStringIO.StringIO([s])

	Return a StringIO-like stream for reading or writing.

Since this is a factory function which returns objects of built-in types,
there’s no way to build your own version using subclassing. It’s not
possible to set attributes on it. Use the original StringIO module in
those cases.

Unlike the StringIO module, this module is not able to accept Unicode
strings that cannot be encoded as plain ASCII strings. Calling
StringIO() with a Unicode string parameter populates the object with
the buffer representation of the Unicode string instead of encoding the
string.

Another difference from the StringIO module is that calling
StringIO() with a string parameter creates a read-only object. Unlike an
object created without a string parameter, it does not have write methods.
These objects are not generally visible. They turn up in tracebacks as
StringI and StringO.

The following data objects are provided as well:

	
cStringIO.InputType

	The type object of the objects created by calling StringIO() with a string
parameter.

	
cStringIO.OutputType

	The type object of the objects returned by calling StringIO() with no
parameters.

There is a C API to the module as well; refer to the module source for more
information.

Example usage:

import cStringIO

output = cStringIO.StringIO()
output.write('First line.\n')
print >>output, 'Second line.'

Retrieve file contents -- this will be
'First line.\nSecond line.\n'
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.7. textwrap — Text wrapping and filling

New in version 2.3.

The textwrap module provides two convenience functions, wrap() and
fill(), as well as TextWrapper, the class that does all the work,
and a utility function dedent(). If you’re just wrapping or filling one
or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

See also

Latest version of the textwrap module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/textwrap.py?view=markup]

	
textwrap.wrap(text[, width[, ...]])

	Wraps the single paragraph in text (a string) so every line is at most width
characters long. Returns a list of output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of
TextWrapper, documented below. width defaults to 70.

	
textwrap.fill(text[, width[, ...]])

	Wraps the single paragraph in text, and returns a single string containing the
wrapped paragraph. fill() is shorthand for

"\n".join(wrap(text, ...))

In particular, fill() accepts exactly the same keyword arguments as
wrap().

Both wrap() and fill() work by creating a TextWrapper
instance and calling a single method on it. That instance is not reused, so for
applications that wrap/fill many text strings, it will be more efficient for you
to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in
hyphenated words; only then will long words be broken if necessary, unless
TextWrapper.break_long_words is set to false.

An additional utility function, dedent(), is provided to remove
indentation from strings that have unwanted whitespace to the left of the text.

	
textwrap.dedent(text)

	Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the
display, while still presenting them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not
equal: the lines " hello" and "\thello" are considered to have no
common leading whitespace. (This behaviour is new in Python 2.5; older versions
of this module incorrectly expanded tabs before searching for common leading
whitespace.)

For example:

def test():
 # end first line with \ to avoid the empty line!
 s = '''\
 hello
 world
 '''
 print repr(s) # prints ' hello\n world\n '
 print repr(dedent(s)) # prints 'hello\n world\n'

	
class textwrap.TextWrapper(...)

	The TextWrapper constructor accepts a number of optional keyword
arguments. Each argument corresponds to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the same TextWrapper object many times, and you can
change any of its options through direct assignment to instance attributes
between uses.

The TextWrapper instance attributes (and keyword arguments to the
constructor) are as follows:

	
width

	(default: 70) The maximum length of wrapped lines. As long as there
are no individual words in the input text longer than width,
TextWrapper guarantees that no output line will be longer than
width characters.

	
expand_tabs

	(default: True) If true, then all tab characters in text will be
expanded to spaces using the expandtabs() method of text.

	
replace_whitespace

	(default: True) If true, each whitespace character (as defined by
string.whitespace) remaining after tab expansion will be replaced by a
single space.

Note

If expand_tabs is false and replace_whitespace is true,
each tab character will be replaced by a single space, which is not
the same as tab expansion.

Note

If replace_whitespace is false, newlines may appear in the
middle of a line and cause strange output. For this reason, text should
be split into paragraphs (using str.splitlines() or similar)
which are wrapped separately.

	
drop_whitespace

	(default: True) If true, whitespace that, after wrapping, happens to
end up at the beginning or end of a line is dropped (leading whitespace in
the first line is always preserved, though).

New in version 2.6: Whitespace was always dropped in earlier versions.

	
initial_indent

	(default: '') String that will be prepended to the first line of
wrapped output. Counts towards the length of the first line.

	
subsequent_indent

	(default: '') String that will be prepended to all lines of wrapped
output except the first. Counts towards the length of each line except
the first.

	
fix_sentence_endings

	(default: False) If true, TextWrapper attempts to detect
sentence endings and ensure that sentences are always separated by exactly
two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a
sentence ending consists of a lowercase letter followed by one of '.',
'!', or '?', possibly followed by one of '"' or "'",
followed by a space. One problem with this is algorithm is that it is
unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein's monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for
the definition of “lowercase letter,” and a convention of using two spaces
after a period to separate sentences on the same line, it is specific to
English-language texts.

	
break_long_words

	(default: True) If true, then words longer than width will be
broken in order to ensure that no lines are longer than width. If
it is false, long words will not be broken, and some lines may be longer
than width. (Long words will be put on a line by themselves, in
order to minimize the amount by which width is exceeded.)

	
break_on_hyphens

	(default: True) If true, wrapping will occur preferably on whitespaces
and right after hyphens in compound words, as it is customary in English.
If false, only whitespaces will be considered as potentially good places
for line breaks, but you need to set break_long_words to false if
you want truly insecable words. Default behaviour in previous versions
was to always allow breaking hyphenated words.

New in version 2.6.

TextWrapper also provides two public methods, analogous to the
module-level convenience functions:

	
wrap(text)

	Wraps the single paragraph in text (a string) so every line is at most
width characters long. All wrapping options are taken from
instance attributes of the TextWrapper instance. Returns a list
of output lines, without final newlines.

	
fill(text)

	Wraps the single paragraph in text, and returns a single string
containing the wrapped paragraph.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.8. codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and
decoders) and provides access to the internal Python codec registry which
manages the codec and error handling lookup process.

It defines the following functions:

	
codecs.register(search_function)

	Register a codec search function. Search functions are expected to take one
argument, the encoding name in all lower case letters, and return a
CodecInfo object having the following attributes:

	name The name of the encoding;

	encode The stateless encoding function;

	decode The stateless decoding function;

	incrementalencoder An incremental encoder class or factory function;

	incrementaldecoder An incremental decoder class or factory function;

	streamwriter A stream writer class or factory function;

	streamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same
interface as the encode()/decode() methods of Codec instances (see
Codec Interface). The functions/methods are expected to work in a stateless
mode.

incrementalencoder and incrementaldecoder: These have to be factory
functions providing the following interface:

factory(errors='strict')

The factory functions must return objects providing the interfaces defined by
the base classes IncrementalEncoder and IncrementalDecoder,
respectively. Incremental codecs can maintain state.

streamreader and streamwriter: These have to be factory functions providing
the following interface:

factory(stream, errors='strict')

The factory functions must return objects providing the interfaces defined by
the base classes StreamWriter and StreamReader, respectively.
Stream codecs can maintain state.

Possible values for errors are

	'strict': raise an exception in case of an encoding error

	'replace': replace malformed data with a suitable replacement marker,
such as '?' or '\ufffd'

	'ignore': ignore malformed data and continue without further notice

	'xmlcharrefreplace': replace with the appropriate XML character
reference (for encoding only)

	'backslashreplace': replace with backslashed escape sequences (for
encoding only)

as well as any other error handling name defined via register_error().

In case a search function cannot find a given encoding, it should return
None.

	
codecs.lookup(encoding)

	Looks up the codec info in the Python codec registry and returns a
CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of
registered search functions is scanned. If no CodecInfo object is
found, a LookupError is raised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional
functions which use lookup() for the codec lookup:

	
codecs.getencoder(encoding)

	Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

	
codecs.getdecoder(encoding)

	Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

	
codecs.getincrementalencoder(encoding)

	Look up the codec for the given encoding and return its incremental encoder
class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec
doesn’t support an incremental encoder.

New in version 2.5.

	
codecs.getincrementaldecoder(encoding)

	Look up the codec for the given encoding and return its incremental decoder
class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec
doesn’t support an incremental decoder.

New in version 2.5.

	
codecs.getreader(encoding)

	Look up the codec for the given encoding and return its StreamReader class or
factory function.

Raises a LookupError in case the encoding cannot be found.

	
codecs.getwriter(encoding)

	Look up the codec for the given encoding and return its StreamWriter class or
factory function.

Raises a LookupError in case the encoding cannot be found.

	
codecs.register_error(name, error_handler)

	Register the error handling function error_handler under the name name.
error_handler will be called during encoding and decoding in case of an error,
when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError
instance, which contains information about the location of the error. The error
handler must either raise this or a different exception or return a tuple with a
replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding
the original input at the specified position. Negative position values will be
treated as being relative to the end of the input string. If the resulting
position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the
replacement from the error handler will be put into the output directly.

	
codecs.lookup_error(name)

	Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

	
codecs.strict_errors(exception)

	Implements the strict error handling: each encoding or decoding error
raises a UnicodeError.

	
codecs.replace_errors(exception)

	Implements the replace error handling: malformed data is replaced with a
suitable replacement character such as '?' in bytestrings and
'\ufffd' in Unicode strings.

	
codecs.ignore_errors(exception)

	Implements the ignore error handling: malformed data is ignored and
encoding or decoding is continued without further notice.

	
codecs.xmlcharrefreplace_errors(exception)

	Implements the xmlcharrefreplace error handling (for encoding only): the
unencodable character is replaced by an appropriate XML character reference.

	
codecs.backslashreplace_errors(exception)

	Implements the backslashreplace error handling (for encoding only): the
unencodable character is replaced by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these
utility functions:

	
codecs.open(filename, mode[, encoding[, errors[, buffering]]])

	Open an encoded file using the given mode and return a wrapped version
providing transparent encoding/decoding. The default file mode is 'r'
meaning to open the file in read mode.

Note

The wrapped version will only accept the object format defined by the codecs,
i.e. Unicode objects for most built-in codecs. Output is also codec-dependent
and will usually be Unicode as well.

Note

Files are always opened in binary mode, even if no binary mode was
specified. This is done to avoid data loss due to encodings using 8-bit
values. This means that no automatic conversion of '\n' is done
on reading and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to 'strict'
which causes a ValueError to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It
defaults to line buffered.

	
codecs.EncodedFile(file, input[, output[, errors]])

	Return a wrapped version of file which provides transparent encoding
translation.

Strings written to the wrapped file are interpreted according to the given
input encoding and then written to the original file as strings using the
output encoding. The intermediate encoding will usually be Unicode but depends
on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to 'strict',
which causes ValueError to be raised in case an encoding error occurs.

	
codecs.iterencode(iterable, encoding[, errors])

	Uses an incremental encoder to iteratively encode the input provided by
iterable. This function is a generator. errors (as well as any
other keyword argument) is passed through to the incremental encoder.

New in version 2.5.

	
codecs.iterdecode(iterable, encoding[, errors])

	Uses an incremental decoder to iteratively decode the input provided by
iterable. This function is a generator. errors (as well as any
other keyword argument) is passed through to the incremental decoder.

New in version 2.5.

The module also provides the following constants which are useful for reading
and writing to platform dependent files:

	
codecs.BOM

	
codecs.BOM_BE

	
codecs.BOM_LE

	
codecs.BOM_UTF8

	
codecs.BOM_UTF16

	
codecs.BOM_UTF16_BE

	
codecs.BOM_UTF16_LE

	
codecs.BOM_UTF32

	
codecs.BOM_UTF32_BE

	
codecs.BOM_UTF32_LE

	These constants define various encodings of the Unicode byte order mark (BOM)
used in UTF-16 and UTF-32 data streams to indicate the byte order used in the
stream or file and in UTF-8 as a Unicode signature. BOM_UTF16 is either
BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s
native byte order, BOM is an alias for BOM_UTF16,
BOM_LE for BOM_UTF16_LE and BOM_BE for
BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32
encodings.

7.8.1. Codec Base Classes

The codecs module defines a set of base classes which define the
interface and can also be used to easily write your own codecs for use in
Python.

Each codec has to define four interfaces to make it usable as codec in Python:
stateless encoder, stateless decoder, stream reader and stream writer. The
stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode() and
decode() methods may implement different error handling schemes by
providing the errors string argument. The following string values are defined
and implemented by all standard Python codecs:

	Value
	Meaning

	'strict'
	Raise UnicodeError (or a subclass);
this is the default.

	'ignore'
	Ignore the character and continue with the
next.

	'replace'
	Replace with a suitable replacement
character; Python will use the official
U+FFFD REPLACEMENT CHARACTER for the built-in
Unicode codecs on decoding and ‘?’ on
encoding.

	'xmlcharrefreplace'
	Replace with the appropriate XML character
reference (only for encoding).

	'backslashreplace'
	Replace with backslashed escape sequences
(only for encoding).

The set of allowed values can be extended via register_error().

7.8.1.1. Codec Objects

The Codec class defines these methods which also define the function
interfaces of the stateless encoder and decoder:

	
Codec.encode(input[, errors])

	Encodes the object input and returns a tuple (output object, length consumed).
While codecs are not restricted to use with Unicode, in a Unicode context,
encoding converts a Unicode object to a plain string using a particular
character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to 'strict'
handling.

The method may not store state in the Codec instance. Use
StreamCodec for codecs which have to keep state in order to make
encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object
of the output object type in this situation.

	
Codec.decode(input[, errors])

	Decodes the object input and returns a tuple (output object, length consumed).
In a Unicode context, decoding converts a plain string encoded using a
particular character set encoding to a Unicode object.

input must be an object which provides the bf_getreadbuf buffer slot.
Python strings, buffer objects and memory mapped files are examples of objects
providing this slot.

errors defines the error handling to apply. It defaults to 'strict'
handling.

The method may not store state in the Codec instance. Use
StreamCodec for codecs which have to keep state in order to make
encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object
of the output object type in this situation.

The IncrementalEncoder and IncrementalDecoder classes provide
the basic interface for incremental encoding and decoding. Encoding/decoding the
input isn’t done with one call to the stateless encoder/decoder function, but
with multiple calls to the encode()/decode() method of the
incremental encoder/decoder. The incremental encoder/decoder keeps track of the
encoding/decoding process during method calls.

The joined output of calls to the encode()/decode() method is the
same as if all the single inputs were joined into one, and this input was
encoded/decoded with the stateless encoder/decoder.

7.8.1.2. IncrementalEncoder Objects

New in version 2.5.

The IncrementalEncoder class is used for encoding an input in multiple
steps. It defines the following methods which every incremental encoder must
define in order to be compatible with the Python codec registry.

	
class codecs.IncrementalEncoder([errors])

	Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free
to add additional keyword arguments, but only the ones defined here are used by
the Python codec registry.

The IncrementalEncoder may implement different error handling schemes
by providing the errors keyword argument. These parameters are predefined:

	'strict' Raise ValueError (or a subclass); this is the default.

	'ignore' Ignore the character and continue with the next.

	'replace' Replace with a suitable replacement character

	'xmlcharrefreplace' Replace with the appropriate XML character reference

	'backslashreplace' Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name.
Assigning to this attribute makes it possible to switch between different error
handling strategies during the lifetime of the IncrementalEncoder
object.

The set of allowed values for the errors argument can be extended with
register_error().

	
encode(object[, final])

	Encodes object (taking the current state of the encoder into account)
and returns the resulting encoded object. If this is the last call to
encode() final must be true (the default is false).

	
reset()

	Reset the encoder to the initial state.

7.8.1.3. IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple
steps. It defines the following methods which every incremental decoder must
define in order to be compatible with the Python codec registry.

	
class codecs.IncrementalDecoder([errors])

	Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free
to add additional keyword arguments, but only the ones defined here are used by
the Python codec registry.

The IncrementalDecoder may implement different error handling schemes
by providing the errors keyword argument. These parameters are predefined:

	'strict' Raise ValueError (or a subclass); this is the default.

	'ignore' Ignore the character and continue with the next.

	'replace' Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name.
Assigning to this attribute makes it possible to switch between different error
handling strategies during the lifetime of the IncrementalDecoder
object.

The set of allowed values for the errors argument can be extended with
register_error().

	
decode(object[, final])

	Decodes object (taking the current state of the decoder into account)
and returns the resulting decoded object. If this is the last call to
decode() final must be true (the default is false). If final is
true the decoder must decode the input completely and must flush all
buffers. If this isn’t possible (e.g. because of incomplete byte sequences
at the end of the input) it must initiate error handling just like in the
stateless case (which might raise an exception).

	
reset()

	Reset the decoder to the initial state.

The StreamWriter and StreamReader classes provide generic
working interfaces which can be used to implement new encoding submodules very
easily. See encodings.utf_8 for an example of how this is done.

7.8.1.4. StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the
following methods which every stream writer must define in order to be
compatible with the Python codec registry.

	
class codecs.StreamWriter(stream[, errors])

	Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add
additional keyword arguments, but only the ones defined here are used by the
Python codec registry.

stream must be a file-like object open for writing binary data.

The StreamWriter may implement different error handling schemes by
providing the errors keyword argument. These parameters are predefined:

	'strict' Raise ValueError (or a subclass); this is the default.

	'ignore' Ignore the character and continue with the next.

	'replace' Replace with a suitable replacement character

	'xmlcharrefreplace' Replace with the appropriate XML character reference

	'backslashreplace' Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name.
Assigning to this attribute makes it possible to switch between different error
handling strategies during the lifetime of the StreamWriter object.

The set of allowed values for the errors argument can be extended with
register_error().

	
write(object)

	Writes the object’s contents encoded to the stream.

	
writelines(list)

	Writes the concatenated list of strings to the stream (possibly by reusing
the write() method).

	
reset()

	Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into
a clean state that allows appending of new fresh data without having to
rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit
all other methods and attributes from the underlying stream.

7.8.1.5. StreamReader Objects

The StreamReader class is a subclass of Codec and defines the
following methods which every stream reader must define in order to be
compatible with the Python codec registry.

	
class codecs.StreamReader(stream[, errors])

	Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add
additional keyword arguments, but only the ones defined here are used by the
Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by
providing the errors keyword argument. These parameters are defined:

	'strict' Raise ValueError (or a subclass); this is the default.

	'ignore' Ignore the character and continue with the next.

	'replace' Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name.
Assigning to this attribute makes it possible to switch between different error
handling strategies during the lifetime of the StreamReader object.

The set of allowed values for the errors argument can be extended with
register_error().

	
read([size[, chars[, firstline]]])

	Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the
stream. read() will never return more than chars characters, but
it might return less, if there are not enough characters available.

size indicates the approximate maximum number of bytes to read from the
stream for decoding purposes. The decoder can modify this setting as
appropriate. The default value -1 indicates to read and decode as much as
possible. size is intended to prevent having to decode huge files in
one step.

firstline indicates that it would be sufficient to only return the first
line, if there are decoding errors on later lines.

The method should use a greedy read strategy meaning that it should read
as much data as is allowed within the definition of the encoding and the
given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

Changed in version 2.4: chars argument added.

Changed in version 2.4.2: firstline argument added.

	
readline([size[, keepends]])

	Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s
readline() method.

If keepends is false line-endings will be stripped from the lines
returned.

Changed in version 2.4: keepends argument added.

	
readlines([sizehint[, keepends]])

	Read all lines available on the input stream and return them as a list of
lines.

Line-endings are implemented using the codec’s decoder method and are
included in the list entries if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s
read() method.

	
reset()

	Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is
primarily intended to be able to recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit
all other methods and attributes from the underlying stream.

The next two base classes are included for convenience. They are not needed by
the codec registry, but may provide useful in practice.

7.8.1.6. StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read
and write modes.

The design is such that one can use the factory functions returned by the
lookup() function to construct the instance.

	
class codecs.StreamReaderWriter(stream, Reader, Writer, errors)

	Creates a StreamReaderWriter instance. stream must be a file-like
object. Reader and Writer must be factory functions or classes providing the
StreamReader and StreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of
StreamReader and StreamWriter classes. They inherit all other
methods and attributes from the underlying stream.

7.8.1.7. StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data
which is sometimes useful when dealing with different encoding environments.

The design is such that one can use the factory functions returned by the
lookup() function to construct the instance.

	
class codecs.StreamRecoder(stream, encode, decode, Reader, Writer, errors)

	Creates a StreamRecoder instance which implements a two-way conversion:
encode and decode work on the frontend (the input to read() and output
of write()) while Reader and Writer work on the backend (reading and
writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1
to UTF-8 and back.

stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader,
Writer must be factory functions or classes providing objects of the
StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and
Writer for the backend translation. The intermediate format used is
determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode
as the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and
writers.

StreamRecoder instances define the combined interfaces of
StreamReader and StreamWriter classes. They inherit all other
methods and attributes from the underlying stream.

7.8.2. Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be precise
as Py_UNICODE arrays). Depending on the way Python is compiled (either
via --enable-unicode=ucs2 or --enable-unicode=ucs4, with the
former being the default) Py_UNICODE is either a 16-bit or 32-bit data
type. Once a Unicode object is used outside of CPU and memory, CPU endianness
and how these arrays are stored as bytes become an issue. Transforming a
unicode object into a sequence of bytes is called encoding and recreating the
unicode object from the sequence of bytes is known as decoding. There are many
different methods for how this transformation can be done (these methods are
also called encodings). The simplest method is to map the codepoints 0-255 to
the bytes 0x0-0xff. This means that a unicode object that contains
codepoints above U+00FF can’t be encoded with this method (which is called
'latin-1' or 'iso-8859-1'). unicode.encode() will raise a
UnicodeEncodeError that looks like this: UnicodeEncodeError: 'latin-1'
codec can't encode character u'\u1234' in position 3: ordinal not in
range(256).

There’s another group of encodings (the so called charmap encodings) that choose
a different subset of all unicode code points and how these codepoints are
mapped to the bytes 0x0-0xff. To see how this is done simply open
e.g. encodings/cp1252.py (which is an encoding that is used primarily on
Windows). There’s a string constant with 256 characters that shows you which
character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints
defined in unicode. A simple and straightforward way that can store each Unicode
code point, is to store each codepoint as two consecutive bytes. There are two
possibilities: Store the bytes in big endian or in little endian order. These
two encodings are called UTF-16-BE and UTF-16-LE respectively. Their
disadvantage is that if e.g. you use UTF-16-BE on a little endian machine you
will always have to swap bytes on encoding and decoding. UTF-16 avoids this
problem: Bytes will always be in natural endianness. When these bytes are read
by a CPU with a different endianness, then bytes have to be swapped though. To
be able to detect the endianness of a UTF-16 byte sequence, there’s the so
called BOM (the “Byte Order Mark”). This is the Unicode character U+FEFF.
This character will be prepended to every UTF-16 byte sequence. The byte swapped
version of this character (0xFFFE) is an illegal character that may not
appear in a Unicode text. So when the first character in an UTF-16 byte sequence
appears to be a U+FFFE the bytes have to be swapped on decoding.
Unfortunately upto Unicode 4.0 the character U+FEFF had a second purpose as
a ZERO WIDTH NO-BREAK SPACE: A character that has no width and doesn’t allow
a word to be split. It can e.g. be used to give hints to a ligature algorithm.
With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has been
deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless
Unicode software still must be able to handle U+FEFF in both roles: As a BOM
it’s a device to determine the storage layout of the encoded bytes, and vanishes
once the byte sequence has been decoded into a Unicode string; as a ZERO WIDTH
NO-BREAK SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode
characters: UTF-8. UTF-8 is an 8-bit encoding, which means there are no issues
with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of two
parts: Marker bits (the most significant bits) and payload bits. The marker bits
are a sequence of zero to six 1 bits followed by a 0 bit. Unicode characters are
encoded like this (with x being payload bits, which when concatenated give the
Unicode character):

	Range
	Encoding

	U-00000000 ... U-0000007F
	0xxxxxxx

	U-00000080 ... U-000007FF
	110xxxxx 10xxxxxx

	U-00000800 ... U-0000FFFF
	1110xxxx 10xxxxxx 10xxxxxx

	U-00010000 ... U-001FFFFF
	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

	U-00200000 ... U-03FFFFFF
	111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

	U-04000000 ... U-7FFFFFFF
	1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
10xxxxxx

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in
the decoded Unicode string (even if it’s the first character) is treated as a
ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which
encoding was used for encoding a Unicode string. Each charmap encoding can
decode any random byte sequence. However that’s not possible with UTF-8, as
UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte
sequences. To increase the reliability with which a UTF-8 encoding can be
detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls
"utf-8-sig") for its Notepad program: Before any of the Unicode characters
is written to the file, a UTF-8 encoded BOM (which looks like this as a byte
sequence: 0xef, 0xbb, 0xbf) is written. As it’s rather improbable
that any charmap encoded file starts with these byte values (which would e.g.
map to

LATIN SMALL LETTER I WITH DIAERESIS

RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

INVERTED QUESTION MARK

in iso-8859-1), this increases the probability that a utf-8-sig encoding can be
correctly guessed from the byte sequence. So here the BOM is not used to be able
to determine the byte order used for generating the byte sequence, but as a
signature that helps in guessing the encoding. On encoding the utf-8-sig codec
will write 0xef, 0xbb, 0xbf as the first three bytes to the file. On
decoding utf-8-sig will skip those three bytes if they appear as the first three
bytes in the file.

7.8.3. Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions
or with dictionaries as mapping tables. The following table lists the codecs by
name, together with a few common aliases, and the languages for which the
encoding is likely used. Neither the list of aliases nor the list of languages
is meant to be exhaustive. Notice that spelling alternatives that only differ in
case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf-8' is a valid alias for the 'utf_8' codec.

Many of the character sets support the same languages. They vary in individual
characters (e.g. whether the EURO SIGN is supported or not), and in the
assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

	an ISO 8859 codeset

	a Microsoft Windows code page, which is typically derived from a 8859 codeset,
but replaces control characters with additional graphic characters

	an IBM EBCDIC code page

	an IBM PC code page, which is ASCII compatible

	Codec
	Aliases
	Languages

	ascii
	646, us-ascii
	English

	big5
	big5-tw, csbig5
	Traditional Chinese

	big5hkscs
	big5-hkscs, hkscs
	Traditional Chinese

	cp037
	IBM037, IBM039
	English

	cp424
	EBCDIC-CP-HE, IBM424
	Hebrew

	cp437
	437, IBM437
	English

	cp500
	EBCDIC-CP-BE, EBCDIC-CP-CH,
IBM500
	Western Europe

	cp720
	
	Arabic

	cp737
	
	Greek

	cp775
	IBM775
	Baltic languages

	cp850
	850, IBM850
	Western Europe

	cp852
	852, IBM852
	Central and Eastern Europe

	cp855
	855, IBM855
	Bulgarian, Byelorussian,
Macedonian, Russian, Serbian

	cp856
	
	Hebrew

	cp857
	857, IBM857
	Turkish

	cp858
	858, IBM858
	Western Europe

	cp860
	860, IBM860
	Portuguese

	cp861
	861, CP-IS, IBM861
	Icelandic

	cp862
	862, IBM862
	Hebrew

	cp863
	863, IBM863
	Canadian

	cp864
	IBM864
	Arabic

	cp865
	865, IBM865
	Danish, Norwegian

	cp866
	866, IBM866
	Russian

	cp869
	869, CP-GR, IBM869
	Greek

	cp874
	
	Thai

	cp875
	
	Greek

	cp932
	932, ms932, mskanji, ms-kanji
	Japanese

	cp949
	949, ms949, uhc
	Korean

	cp950
	950, ms950
	Traditional Chinese

	cp1006
	
	Urdu

	cp1026
	ibm1026
	Turkish

	cp1140
	ibm1140
	Western Europe

	cp1250
	windows-1250
	Central and Eastern Europe

	cp1251
	windows-1251
	Bulgarian, Byelorussian,
Macedonian, Russian, Serbian

	cp1252
	windows-1252
	Western Europe

	cp1253
	windows-1253
	Greek

	cp1254
	windows-1254
	Turkish

	cp1255
	windows-1255
	Hebrew

	cp1256
	windows-1256
	Arabic

	cp1257
	windows-1257
	Baltic languages

	cp1258
	windows-1258
	Vietnamese

	euc_jp
	eucjp, ujis, u-jis
	Japanese

	euc_jis_2004
	jisx0213, eucjis2004
	Japanese

	euc_jisx0213
	eucjisx0213
	Japanese

	euc_kr
	euckr, korean, ksc5601,
ks_c-5601, ks_c-5601-1987,
ksx1001, ks_x-1001
	Korean

	gb2312
	chinese, csiso58gb231280, euc-
cn, euccn, eucgb2312-cn,
gb2312-1980, gb2312-80, iso-
ir-58
	Simplified Chinese

	gbk
	936, cp936, ms936
	Unified Chinese

	gb18030
	gb18030-2000
	Unified Chinese

	hz
	hzgb, hz-gb, hz-gb-2312
	Simplified Chinese

	iso2022_jp
	csiso2022jp, iso2022jp,
iso-2022-jp
	Japanese

	iso2022_jp_1
	iso2022jp-1, iso-2022-jp-1
	Japanese

	iso2022_jp_2
	iso2022jp-2, iso-2022-jp-2
	Japanese, Korean, Simplified
Chinese, Western Europe, Greek

	iso2022_jp_2004
	iso2022jp-2004,
iso-2022-jp-2004
	Japanese

	iso2022_jp_3
	iso2022jp-3, iso-2022-jp-3
	Japanese

	iso2022_jp_ext
	iso2022jp-ext, iso-2022-jp-ext
	Japanese

	iso2022_kr
	csiso2022kr, iso2022kr,
iso-2022-kr
	Korean

	latin_1
	iso-8859-1, iso8859-1, 8859,
cp819, latin, latin1, L1
	West Europe

	iso8859_2
	iso-8859-2, latin2, L2
	Central and Eastern Europe

	iso8859_3
	iso-8859-3, latin3, L3
	Esperanto, Maltese

	iso8859_4
	iso-8859-4, latin4, L4
	Baltic languages

	iso8859_5
	iso-8859-5, cyrillic
	Bulgarian, Byelorussian,
Macedonian, Russian, Serbian

	iso8859_6
	iso-8859-6, arabic
	Arabic

	iso8859_7
	iso-8859-7, greek, greek8
	Greek

	iso8859_8
	iso-8859-8, hebrew
	Hebrew

	iso8859_9
	iso-8859-9, latin5, L5
	Turkish

	iso8859_10
	iso-8859-10, latin6, L6
	Nordic languages

	iso8859_13
	iso-8859-13, latin7, L7
	Baltic languages

	iso8859_14
	iso-8859-14, latin8, L8
	Celtic languages

	iso8859_15
	iso-8859-15, latin9, L9
	Western Europe

	iso8859_16
	iso-8859-16, latin10, L10
	South-Eastern Europe

	johab
	cp1361, ms1361
	Korean

	koi8_r
	
	Russian

	koi8_u
	
	Ukrainian

	mac_cyrillic
	maccyrillic
	Bulgarian, Byelorussian,
Macedonian, Russian, Serbian

	mac_greek
	macgreek
	Greek

	mac_iceland
	maciceland
	Icelandic

	mac_latin2
	maclatin2, maccentraleurope
	Central and Eastern Europe

	mac_roman
	macroman
	Western Europe

	mac_turkish
	macturkish
	Turkish

	ptcp154
	csptcp154, pt154, cp154,
cyrillic-asian
	Kazakh

	shift_jis
	csshiftjis, shiftjis, sjis,
s_jis
	Japanese

	shift_jis_2004
	shiftjis2004, sjis_2004,
sjis2004
	Japanese

	shift_jisx0213
	shiftjisx0213, sjisx0213,
s_jisx0213
	Japanese

	utf_32
	U32, utf32
	all languages

	utf_32_be
	UTF-32BE
	all languages

	utf_32_le
	UTF-32LE
	all languages

	utf_16
	U16, utf16
	all languages

	utf_16_be
	UTF-16BE
	all languages (BMP only)

	utf_16_le
	UTF-16LE
	all languages (BMP only)

	utf_7
	U7, unicode-1-1-utf-7
	all languages

	utf_8
	U8, UTF, utf8
	all languages

	utf_8_sig
	
	all languages

A number of codecs are specific to Python, so their codec names have no meaning
outside Python. Some of them don’t convert from Unicode strings to byte strings,
but instead use the property of the Python codecs machinery that any bijective
function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a
byte string. The result of the “decoding” direction is listed as operand type in
the table.

	Codec
	Aliases
	Operand type
	Purpose

	base64_codec
	base64, base-64
	byte string
	Convert operand to MIME
base64

	bz2_codec
	bz2
	byte string
	Compress the operand
using bz2

	hex_codec
	hex
	byte string
	Convert operand to
hexadecimal
representation, with two
digits per byte

	idna
	
	Unicode string
	Implements RFC 3490 [http://tools.ietf.org/html/rfc3490.html],
see also
encodings.idna

	mbcs
	dbcs
	Unicode string
	Windows only: Encode
operand according to the
ANSI codepage (CP_ACP)

	palmos
	
	Unicode string
	Encoding of PalmOS 3.5

	punycode
	
	Unicode string
	Implements RFC 3492 [http://tools.ietf.org/html/rfc3492.html]

	quopri_codec
	quopri, quoted-printable,
quotedprintable
	byte string
	Convert operand to MIME
quoted printable

	raw_unicode_escape
	
	Unicode string
	Produce a string that is
suitable as raw Unicode
literal in Python source
code

	rot_13
	rot13
	Unicode string
	Returns the Caesar-cypher
encryption of the operand

	string_escape
	
	byte string
	Produce a string that is
suitable as string
literal in Python source
code

	undefined
	
	any
	Raise an exception for
all conversions. Can be
used as the system
encoding if no automatic
coercion between
byte and Unicode strings
is desired.

	unicode_escape
	
	Unicode string
	Produce a string that is
suitable as Unicode
literal in Python source
code

	unicode_internal
	
	Unicode string
	Return the internal
representation of the
operand

	uu_codec
	uu
	byte string
	Convert the operand using
uuencode

	zlib_codec
	zip, zlib
	byte string
	Compress the operand
using gzip

New in version 2.3: The idna and punycode encodings.

7.8.4. encodings.idna — Internationalized Domain Names in Applications

New in version 2.3.

This module implements RFC 3490 [http://tools.ietf.org/html/rfc3490.html] (Internationalized Domain Names in
Applications) and RFC 3492 [http://tools.ietf.org/html/rfc3492.html] (Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN)). It builds upon the punycode encoding
and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain
names. A domain name containing non-ASCII characters (such as
www.Alliancefrançaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain
name is then used in all places where arbitrary characters are not allowed by
the protocol, such as DNS queries, HTTP Host fields, and so
on. This conversion is carried out in the application; if possible invisible to
the user: The application should transparently convert Unicode domain labels to
IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: the idna codec performs
conversion between Unicode and ACE, separating an input string into labels
based on the separator characters defined in section 3.1 [http://tools.ietf.org/html/rfc3490#section-3.1] (1) of RFC 3490 [http://tools.ietf.org/html/rfc3490.html]
and converting each label to ACE as required, and conversely separating an input
byte string into labels based on the . separator and converting any ACE
labels found into unicode. Furthermore, the socket module
transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the
socket module. On top of that, modules that have host names as function
parameters, such as httplib and ftplib, accept Unicode host names
(httplib then also transparently sends an IDNA hostname in the
Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no
automatic conversion to Unicode is performed: Applications wishing to present
such host names to the user should decode them to Unicode.

The module encodings.idna also implements the nameprep procedure, which
performs certain normalizations on host names, to achieve case-insensitivity of
international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

	
encodings.idna.nameprep(label)

	Return the nameprepped version of label. The implementation currently assumes
query strings, so AllowUnassigned is true.

	
encodings.idna.ToASCII(label)

	Convert a label to ASCII, as specified in RFC 3490 [http://tools.ietf.org/html/rfc3490.html]. UseSTD3ASCIIRules is
assumed to be false.

	
encodings.idna.ToUnicode(label)

	Convert a label to Unicode, as specified in RFC 3490 [http://tools.ietf.org/html/rfc3490.html].

7.8.5. encodings.utf_8_sig — UTF-8 codec with BOM signature

New in version 2.5.

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded
BOM will be prepended to the UTF-8 encoded bytes. For the stateful encoder this
is only done once (on the first write to the byte stream). For decoding an
optional UTF-8 encoded BOM at the start of the data will be skipped.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.9. unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines
character properties for all Unicode characters. The data in this database is
based on the UnicodeData.txt file version 5.2.0 which is publicly
available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File
Format 5.2.0 (see http://www.unicode.org/reports/tr44/tr44-4.html).
It defines the following functions:

	
unicodedata.lookup(name)

	Look up character by name. If a character with the given name is found, return
the corresponding Unicode character. If not found, KeyError is raised.

	
unicodedata.name(unichr[, default])

	Returns the name assigned to the Unicode character unichr as a string. If no
name is defined, default is returned, or, if not given, ValueError is
raised.

	
unicodedata.decimal(unichr[, default])

	Returns the decimal value assigned to the Unicode character unichr as integer.
If no such value is defined, default is returned, or, if not given,
ValueError is raised.

	
unicodedata.digit(unichr[, default])

	Returns the digit value assigned to the Unicode character unichr as integer.
If no such value is defined, default is returned, or, if not given,
ValueError is raised.

	
unicodedata.numeric(unichr[, default])

	Returns the numeric value assigned to the Unicode character unichr as float.
If no such value is defined, default is returned, or, if not given,
ValueError is raised.

	
unicodedata.category(unichr)

	Returns the general category assigned to the Unicode character unichr as
string.

	
unicodedata.bidirectional(unichr)

	Returns the bidirectional category assigned to the Unicode character unichr as
string. If no such value is defined, an empty string is returned.

	
unicodedata.combining(unichr)

	Returns the canonical combining class assigned to the Unicode character unichr
as integer. Returns 0 if no combining class is defined.

	
unicodedata.east_asian_width(unichr)

	Returns the east asian width assigned to the Unicode character unichr as
string.

New in version 2.4.

	
unicodedata.mirrored(unichr)

	Returns the mirrored property assigned to the Unicode character unichr as
integer. Returns 1 if the character has been identified as a “mirrored”
character in bidirectional text, 0 otherwise.

	
unicodedata.decomposition(unichr)

	Returns the character decomposition mapping assigned to the Unicode character
unichr as string. An empty string is returned in case no such mapping is
defined.

	
unicodedata.normalize(form, unistr)

	Return the normal form form for the Unicode string unistr. Valid values for
form are ‘NFC’, ‘NFKC’, ‘NFD’, and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string,
based on the definition of canonical equivalence and compatibility equivalence.
In Unicode, several characters can be expressed in various way. For example, the
character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL LETTER C).

For each character, there are two normal forms: normal form C and normal form D.
Normal form D (NFD) is also known as canonical decomposition, and translates
each character into its decomposed form. Normal form C (NFC) first applies a
canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on
compatibility equivalence. In Unicode, certain characters are supported which
normally would be unified with other characters. For example, U+2160 (ROMAN
NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character
sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e.
replace all compatibility characters with their equivalents. The normal form KC
(NFKC) first applies the compatibility decomposition, followed by the canonical
composition.

Even if two unicode strings are normalized and look the same to
a human reader, if one has combining characters and the other
doesn’t, they may not compare equal.

New in version 2.3.

In addition, the module exposes the following constant:

	
unicodedata.unidata_version

	The version of the Unicode database used in this module.

New in version 2.3.

	
unicodedata.ucd_3_2_0

	This is an object that has the same methods as the entire module, but uses the
Unicode database version 3.2 instead, for applications that require this
specific version of the Unicode database (such as IDNA).

New in version 2.5.

Examples:

>>> import unicodedata
>>> unicodedata.lookup('LEFT CURLY BRACKET')
u'{'
>>> unicodedata.name(u'/')
'SOLIDUS'
>>> unicodedata.decimal(u'9')
9
>>> unicodedata.decimal(u'a')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category(u'A') # 'L'etter, 'u'ppercase
'Lu'
>>> unicodedata.bidirectional(u'\u0660') # 'A'rabic, 'N'umber
'AN'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.10. stringprep — Internet String Preparation

New in version 2.3.

When identifying things (such as host names) in the internet, it is often
necessary to compare such identifications for “equality”. Exactly how this
comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the
possible identifications, to allow only identifications consisting of
“printable” characters.

RFC 3454 [http://tools.ietf.org/html/rfc3454.html] defines a procedure for “preparing” Unicode strings in internet
protocols. Before passing strings onto the wire, they are processed with the
preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must
define which tables it uses, and what other optional parts of the stringprep
procedure are part of the profile. One example of a stringprep profile is
nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these
tables would be very large to represent them as dictionaries or lists, the
module uses the Unicode character database internally. The module source code
itself was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures.
There are two kinds of tables in the RFC: sets and mappings. For a set,
stringprep provides the “characteristic function”, i.e. a function that
returns true if the parameter is part of the set. For mappings, it provides the
mapping function: given the key, it returns the associated value. Below is a
list of all functions available in the module.

	
stringprep.in_table_a1(code)

	Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

	
stringprep.in_table_b1(code)

	Determine whether code is in tableB.1 (Commonly mapped to nothing).

	
stringprep.map_table_b2(code)

	Return the mapped value for code according to tableB.2 (Mapping for
case-folding used with NFKC).

	
stringprep.map_table_b3(code)

	Return the mapped value for code according to tableB.3 (Mapping for
case-folding used with no normalization).

	
stringprep.in_table_c11(code)

	Determine whether code is in tableC.1.1 (ASCII space characters).

	
stringprep.in_table_c12(code)

	Determine whether code is in tableC.1.2 (Non-ASCII space characters).

	
stringprep.in_table_c11_c12(code)

	Determine whether code is in tableC.1 (Space characters, union of C.1.1 and
C.1.2).

	
stringprep.in_table_c21(code)

	Determine whether code is in tableC.2.1 (ASCII control characters).

	
stringprep.in_table_c22(code)

	Determine whether code is in tableC.2.2 (Non-ASCII control characters).

	
stringprep.in_table_c21_c22(code)

	Determine whether code is in tableC.2 (Control characters, union of C.2.1 and
C.2.2).

	
stringprep.in_table_c3(code)

	Determine whether code is in tableC.3 (Private use).

	
stringprep.in_table_c4(code)

	Determine whether code is in tableC.4 (Non-character code points).

	
stringprep.in_table_c5(code)

	Determine whether code is in tableC.5 (Surrogate codes).

	
stringprep.in_table_c6(code)

	Determine whether code is in tableC.6 (Inappropriate for plain text).

	
stringprep.in_table_c7(code)

	Determine whether code is in tableC.7 (Inappropriate for canonical
representation).

	
stringprep.in_table_c8(code)

	Determine whether code is in tableC.8 (Change display properties or are
deprecated).

	
stringprep.in_table_c9(code)

	Determine whether code is in tableC.9 (Tagging characters).

	
stringprep.in_table_d1(code)

	Determine whether code is in tableD.1 (Characters with bidirectional property
“R” or “AL”).

	
stringprep.in_table_d2(code)

	Determine whether code is in tableD.2 (Characters with bidirectional property
“L”).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	7. String Services

7.11. fpformat — Floating point conversions

Deprecated since version 2.6: The fpformat module has been removed in Python 3.0.

The fpformat module defines functions for dealing with floating point
numbers representations in 100% pure Python.

Note

This module is unnecessary: everything here can be done using the % string
interpolation operator described in the String Formatting Operations section.

The fpformat module defines the following functions and an exception:

	
fpformat.fix(x, digs)

	Format x as [-]ddd.ddd with digs digits after the point and at least one
digit before. If digs <= 0, the decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an
integer.

Return value is a string.

	
fpformat.sci(x, digs)

	Format x as [-]d.dddE[+-]ddd with digs digits after the point and
exactly one digit before. If digs <= 0, one digit is kept and the point is
suppressed.

x can be either a real number, or a string that looks like one. digs is an
integer.

Return value is a string.

	
exception fpformat.NotANumber

	Exception raised when a string passed to fix() or sci() as the x
parameter does not look like a number. This is a subclass of ValueError
when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
'1.2'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

8. Data Types

The modules described in this chapter provide a variety of specialized data
types such as dates and times, fixed-type arrays, heap queues, synchronized
queues, and sets.

Python also provides some built-in data types, in particular,
dict, list, set (which along with
frozenset, replaces the deprecated sets module), and
tuple. The str class can be used to handle binary data
and 8-bit text, and the unicode class to handle Unicode text.

The following modules are documented in this chapter:

	8.1. datetime — Basic date and time types
	8.1.1. Available Types

	8.1.2. timedelta Objects

	8.1.3. date Objects

	8.1.4. datetime Objects

	8.1.5. time Objects

	8.1.6. tzinfo Objects

	8.1.7. strftime() and strptime() Behavior

	8.2. calendar — General calendar-related functions

	8.3. collections — High-performance container datatypes
	8.3.1. Counter objects

	8.3.2. deque objects
	8.3.2.1. deque Recipes

	8.3.3. defaultdict objects
	8.3.3.1. defaultdict Examples

	8.3.4. namedtuple() Factory Function for Tuples with Named Fields

	8.3.5. OrderedDict objects
	8.3.5.1. OrderedDict Examples and Recipes

	8.3.6. ABCs - abstract base classes

	8.4. heapq — Heap queue algorithm
	8.4.1. Basic Examples

	8.4.2. Priority Queue Implementation Notes

	8.4.3. Theory

	8.5. bisect — Array bisection algorithm
	8.5.1. Searching Sorted Lists

	8.5.2. Other Examples

	8.6. array — Efficient arrays of numeric values

	8.7. sets — Unordered collections of unique elements
	8.7.1. Set Objects

	8.7.2. Example

	8.7.3. Protocol for automatic conversion to immutable

	8.7.4. Comparison to the built-in set types

	8.8. sched — Event scheduler
	8.8.1. Scheduler Objects

	8.9. mutex — Mutual exclusion support
	8.9.1. Mutex Objects

	8.10. queue — A synchronized queue class
	8.10.1. Queue Objects

	8.11. weakref — Weak references
	8.11.1. Weak Reference Objects

	8.11.2. Example

	8.12. UserDict — Class wrapper for dictionary objects

	8.13. UserList — Class wrapper for list objects

	8.14. UserString — Class wrapper for string objects

	8.15. types — Names for built-in types

	8.16. new — Creation of runtime internal objects

	8.17. copy — Shallow and deep copy operations

	8.18. pprint — Data pretty printer
	8.18.1. PrettyPrinter Objects

	8.18.2. pprint Example

	8.19. repr — Alternate repr() implementation
	8.19.1. Repr Objects

	8.19.2. Subclassing Repr Objects

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.1. datetime — Basic date and time types

New in version 2.3.

The datetime module supplies classes for manipulating dates and times in
both simple and complex ways. While date and time arithmetic is supported, the
focus of the implementation is on efficient member extraction for output
formatting and manipulation. For related
functionality, see also the time and calendar modules.

There are two kinds of date and time objects: “naive” and “aware”. This
distinction refers to whether the object has any notion of time zone, daylight
saving time, or other kind of algorithmic or political time adjustment. Whether
a naive datetime object represents Coordinated Universal Time (UTC),
local time, or time in some other timezone is purely up to the program, just
like it’s up to the program whether a particular number represents metres,
miles, or mass. Naive datetime objects are easy to understand and to
work with, at the cost of ignoring some aspects of reality.

For applications requiring more, datetime and time objects
have an optional time zone information member, tzinfo, that can contain
an instance of a subclass of the abstract tzinfo class. These
tzinfo objects capture information about the offset from UTC time, the
time zone name, and whether Daylight Saving Time is in effect. Note that no
concrete tzinfo classes are supplied by the datetime module.
Supporting timezones at whatever level of detail is required is up to the
application. The rules for time adjustment across the world are more political
than rational, and there is no standard suitable for every application.

The datetime module exports the following constants:

	
datetime.MINYEAR

	The smallest year number allowed in a date or datetime object.
MINYEAR is 1.

	
datetime.MAXYEAR

	The largest year number allowed in a date or datetime object.
MAXYEAR is 9999.

See also

	Module calendar

	General calendar related functions.

	Module time

	Time access and conversions.

8.1.1. Available Types

	
class datetime.date

	An idealized naive date, assuming the current Gregorian calendar always was, and
always will be, in effect. Attributes: year, month, and
day.

	
class datetime.time

	An idealized time, independent of any particular day, assuming that every day
has exactly 24*60*60 seconds (there is no notion of “leap seconds” here).
Attributes: hour, minute, second, microsecond,
and tzinfo.

	
class datetime.datetime

	A combination of a date and a time. Attributes: year, month,
day, hour, minute, second, microsecond,
and tzinfo.

	
class datetime.timedelta

	A duration expressing the difference between two date, time,
or datetime instances to microsecond resolution.

	
class datetime.tzinfo

	An abstract base class for time zone information objects. These are used by the
datetime and time classes to provide a customizable notion of
time adjustment (for example, to account for time zone and/or daylight saving
time).

Objects of these types are immutable.

Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware.
d is aware if d.tzinfo is not None and d.tzinfo.utcoffset(d) does
not return None. If d.tzinfo is None, or if d.tzinfo is not
None but d.tzinfo.utcoffset(d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to timedelta
objects.

Subclass relationships:

object
 timedelta
 tzinfo
 time
 date
 datetime

8.1.2. timedelta Objects

A timedelta object represents a duration, the difference between two
dates or times.

	
class datetime.timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks]]]]]]])

	All arguments are optional and default to 0. Arguments may be ints, longs,
or floats, and may be positive or negative.

Only days, seconds and microseconds are stored internally. Arguments are
converted to those units:

	A millisecond is converted to 1000 microseconds.

	A minute is converted to 60 seconds.

	An hour is converted to 3600 seconds.

	A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the
representation is unique, with

	0 <= microseconds < 1000000

	0 <= seconds < 3600*24 (the number of seconds in one day)

	-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional
microseconds left over from all arguments are combined and their sum is rounded
to the nearest microsecond. If no argument is a float, the conversion and
normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range,
OverflowError is raised.

Note that normalization of negative values may be surprising at first. For
example,

>>> from datetime import timedelta
>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

	
timedelta.min

	The most negative timedelta object, timedelta(-999999999).

	
timedelta.max

	The most positive timedelta object, timedelta(days=999999999,
hours=23, minutes=59, seconds=59, microseconds=999999).

	
timedelta.resolution

	The smallest possible difference between non-equal timedelta objects,
timedelta(microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min.
-timedelta.max is not representable as a timedelta object.

Instance attributes (read-only):

	Attribute
	Value

	days
	Between -999999999 and 999999999 inclusive

	seconds
	Between 0 and 86399 inclusive

	microseconds
	Between 0 and 999999 inclusive

Supported operations:

	Operation
	Result

	t1 = t2 + t3
	Sum of t2 and t3. Afterwards t1-t2 ==
t3 and t1-t3 == t2 are true. (1)

	t1 = t2 - t3
	Difference of t2 and t3. Afterwards t1
== t2 - t3 and t2 == t1 + t3 are
true. (1)

	t1 = t2 * i or t1 = i * t2
	Delta multiplied by an integer or long.
Afterwards t1 // i == t2 is true,
provided i != 0.

	
	In general, t1 * i == t1 * (i-1) + t1
is true. (1)

	t1 = t2 // i
	The floor is computed and the remainder (if
any) is thrown away. (3)

	+t1
	Returns a timedelta object with the
same value. (2)

	-t1
	equivalent to timedelta(-t1.days, -t1.seconds,
-t1.microseconds), and to t1* -1. (1)(4)

	abs(t)
	equivalent to +t when t.days >= 0, and
to -t when t.days < 0. (2)

	str(t)
	Returns a string in the form
[D day[s],][H]H:MM:SS[.UUUUUU], where D
is negative for negative t. (5)

	repr(t)
	Returns a string in the form
datetime.timedelta(D[, S[, U]]), where D
is negative for negative t. (5)

Notes:

	This is exact, but may overflow.

	This is exact, and cannot overflow.

	Division by 0 raises ZeroDivisionError.

	-timedelta.max is not representable as a timedelta object.

	String representations of timedelta objects are normalized
similarly to their internal representation. This leads to somewhat
unusual results for negative timedeltas. For example:

>>> timedelta(hours=-5)
datetime.timedelta(-1, 68400)
>>> print(_)
-1 day, 19:00:00

In addition to the operations listed above timedelta objects support
certain additions and subtractions with date and datetime
objects (see below).

Comparisons of timedelta objects are supported with the
timedelta object representing the smaller duration considered to be the
smaller timedelta. In order to stop mixed-type comparisons from falling back to
the default comparison by object address, when a timedelta object is
compared to an object of a different type, TypeError is raised unless the
comparison is == or !=. The latter cases return False or
True, respectively.

timedelta objects are hashable (usable as dictionary keys), support
efficient pickling, and in Boolean contexts, a timedelta object is
considered to be true if and only if it isn’t equal to timedelta(0).

Instance methods:

	
timedelta.total_seconds()

	Return the total number of seconds contained in the duration.
Equivalent to (td.microseconds + (td.seconds + td.days * 24 *
3600) * 10**6) / 10**6 computed with true division enabled.

Note that for very large time intervals (greater than 270 years on
most platforms) this method will lose microsecond accuracy.

New in version 2.7.

Example usage:

>>> from datetime import timedelta
>>> year = timedelta(days=365)
>>> another_year = timedelta(weeks=40, days=84, hours=23,
... minutes=50, seconds=600) # adds up to 365 days
>>> year.total_seconds()
31536000.0
>>> year == another_year
True
>>> ten_years = 10 * year
>>> ten_years, ten_years.days // 365
(datetime.timedelta(3650), 10)
>>> nine_years = ten_years - year
>>> nine_years, nine_years.days // 365
(datetime.timedelta(3285), 9)
>>> three_years = nine_years // 3;
>>> three_years, three_years.days // 365
(datetime.timedelta(1095), 3)
>>> abs(three_years - ten_years) == 2 * three_years + year
True

8.1.3. date Objects

A date object represents a date (year, month and day) in an idealized
calendar, the current Gregorian calendar indefinitely extended in both
directions. January 1 of year 1 is called day number 1, January 2 of year 1 is
called day number 2, and so on. This matches the definition of the “proleptic
Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations,
where it’s the base calendar for all computations. See the book for algorithms
for converting between proleptic Gregorian ordinals and many other calendar
systems.

	
class datetime.date(year, month, day)

	All arguments are required. Arguments may be ints or longs, in the following
ranges:

	MINYEAR <= year <= MAXYEAR

	1 <= month <= 12

	1 <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

	
classmethod date.today()

	Return the current local date. This is equivalent to
date.fromtimestamp(time.time()).

	
classmethod date.fromtimestamp(timestamp)

	Return the local date corresponding to the POSIX timestamp, such as is returned
by time.time(). This may raise ValueError, if the timestamp is out
of the range of values supported by the platform C localtime() function.
It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a
timestamp, leap seconds are ignored by fromtimestamp().

	
classmethod date.fromordinal(ordinal)

	Return the date corresponding to the proleptic Gregorian ordinal, where January
1 of year 1 has ordinal 1. ValueError is raised unless 1 <= ordinal <=
date.max.toordinal(). For any date d, date.fromordinal(d.toordinal()) ==
d.

Class attributes:

	
date.min

	The earliest representable date, date(MINYEAR, 1, 1).

	
date.max

	The latest representable date, date(MAXYEAR, 12, 31).

	
date.resolution

	The smallest possible difference between non-equal date objects,
timedelta(days=1).

Instance attributes (read-only):

	
date.year

	Between MINYEAR and MAXYEAR inclusive.

	
date.month

	Between 1 and 12 inclusive.

	
date.day

	Between 1 and the number of days in the given month of the given year.

Supported operations:

	Operation
	Result

	date2 = date1 + timedelta
	date2 is timedelta.days days removed
from date1. (1)

	date2 = date1 - timedelta
	Computes date2 such that date2 +
timedelta == date1. (2)

	timedelta = date1 - date2
	(3)

	date1 < date2
	date1 is considered less than date2 when
date1 precedes date2 in time. (4)

Notes:

	date2 is moved forward in time if timedelta.days > 0, or backward if
timedelta.days < 0. Afterward date2 - date1 == timedelta.days.
timedelta.seconds and timedelta.microseconds are ignored.
OverflowError is raised if date2.year would be smaller than
MINYEAR or larger than MAXYEAR.

	This isn’t quite equivalent to date1 + (-timedelta), because -timedelta in
isolation can overflow in cases where date1 - timedelta does not.
timedelta.seconds and timedelta.microseconds are ignored.

	This is exact, and cannot overflow. timedelta.seconds and
timedelta.microseconds are 0, and date2 + timedelta == date1 after.

	In other words, date1 < date2 if and only if date1.toordinal() <
date2.toordinal(). In order to stop comparison from falling back to the
default scheme of comparing object addresses, date comparison normally raises
TypeError if the other comparand isn’t also a date object.
However, NotImplemented is returned instead if the other comparand has a
timetuple() attribute. This hook gives other kinds of date objects a
chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised
unless the comparison is == or !=. The latter cases return
False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date
objects are considered to be true.

Instance methods:

	
date.replace(year, month, day)

	Return a date with the same value, except for those members given new values by
whichever keyword arguments are specified. For example, if d == date(2002,
12, 31), then d.replace(day=26) == date(2002, 12, 26).

	
date.timetuple()

	Return a time.struct_time such as returned by time.localtime().
The hours, minutes and seconds are 0, and the DST flag is -1. d.timetuple()
is equivalent to time.struct_time((d.year, d.month, d.day, 0, 0, 0,
d.weekday(), yday, -1)), where yday = d.toordinal() - date(d.year, 1,
1).toordinal() + 1 is the day number within the current year starting with
1 for January 1st.

	
date.toordinal()

	Return the proleptic Gregorian ordinal of the date, where January 1 of year 1
has ordinal 1. For any date object d,
date.fromordinal(d.toordinal()) == d.

	
date.weekday()

	Return the day of the week as an integer, where Monday is 0 and Sunday is 6.
For example, date(2002, 12, 4).weekday() == 2, a Wednesday. See also
isoweekday().

	
date.isoweekday()

	Return the day of the week as an integer, where Monday is 1 and Sunday is 7.
For example, date(2002, 12, 4).isoweekday() == 3, a Wednesday. See also
weekday(), isocalendar().

	
date.isocalendar()

	Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good
explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a
Monday and ends on a Sunday. The first week of an ISO year is the first
(Gregorian) calendar week of a year containing a Thursday. This is called week
number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004
begins on Monday, 29 Dec 2003 and ends on Sunday, 4 Jan 2004, so that
date(2003, 12, 29).isocalendar() == (2004, 1, 1) and date(2004, 1,
4).isocalendar() == (2004, 1, 7).

	
date.isoformat()

	Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For
example, date(2002, 12, 4).isoformat() == '2002-12-04'.

	
date.__str__()

	For a date d, str(d) is equivalent to d.isoformat().

	
date.ctime()

	Return a string representing the date, for example date(2002, 12,
4).ctime() == 'Wed Dec 4 00:00:00 2002'. d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native C
ctime() function (which time.ctime() invokes, but which
date.ctime() does not invoke) conforms to the C standard.

	
date.strftime(format)

	Return a string representing the date, controlled by an explicit format string.
Format codes referring to hours, minutes or seconds will see 0 values. See
section strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date.today()
>>> today
datetime.date(2007, 12, 5)
>>> today == date.fromtimestamp(time.time())
True
>>> my_birthday = date(today.year, 6, 24)
>>> if my_birthday < today:
... my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday
datetime.date(2008, 6, 24)
>>> time_to_birthday = abs(my_birthday - today)
>>> time_to_birthday.days
202

Example of working with date:

>>> from datetime import date
>>> d = date.fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d
datetime.date(2002, 3, 11)
>>> t = d.timetuple()
>>> for i in t:
... print i
2002 # year
3 # month
11 # day
0
0
0
0 # weekday (0 = Monday)
70 # 70th day in the year
-1
>>> ic = d.isocalendar()
>>> for i in ic:
... print i
2002 # ISO year
11 # ISO week number
1 # ISO day number (1 = Monday)
>>> d.isoformat()
'2002-03-11'
>>> d.strftime("%d/%m/%y")
'11/03/02'
>>> d.strftime("%A %d. %B %Y")
'Monday 11. March 2002'

8.1.4. datetime Objects

A datetime object is a single object containing all the information
from a date object and a time object. Like a date
object, datetime assumes the current Gregorian calendar extended in
both directions; like a time object, datetime assumes there are exactly
3600*24 seconds in every day.

Constructor:

	
class datetime.datetime(year, month, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]])

	The year, month and day arguments are required. tzinfo may be None, or an
instance of a tzinfo subclass. The remaining arguments may be ints or
longs, in the following ranges:

	MINYEAR <= year <= MAXYEAR

	1 <= month <= 12

	1 <= day <= number of days in the given month and year

	0 <= hour < 24

	0 <= minute < 60

	0 <= second < 60

	0 <= microsecond < 1000000

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

	
classmethod datetime.today()

	Return the current local datetime, with tzinfo None. This is
equivalent to datetime.fromtimestamp(time.time()). See also now(),
fromtimestamp().

	
classmethod datetime.now([tz])

	Return the current local date and time. If optional argument tz is None
or not specified, this is like today(), but, if possible, supplies more
precision than can be gotten from going through a time.time() timestamp
(for example, this may be possible on platforms supplying the C
gettimeofday() function).

Else tz must be an instance of a class tzinfo subclass, and the
current date and time are converted to tz‘s time zone. In this case the
result is equivalent to tz.fromutc(datetime.utcnow().replace(tzinfo=tz)).
See also today(), utcnow().

	
classmethod datetime.utcnow()

	Return the current UTC date and time, with tzinfo None. This is like
now(), but returns the current UTC date and time, as a naive
datetime object. See also now().

	
classmethod datetime.fromtimestamp(timestamp[, tz])

	Return the local date and time corresponding to the POSIX timestamp, such as is
returned by time.time(). If optional argument tz is None or not
specified, the timestamp is converted to the platform’s local date and time, and
the returned datetime object is naive.

Else tz must be an instance of a class tzinfo subclass, and the
timestamp is converted to tz‘s time zone. In this case the result is
equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).

fromtimestamp() may raise ValueError, if the timestamp is out of
the range of values supported by the platform C localtime() or
gmtime() functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in
their notion of a timestamp, leap seconds are ignored by fromtimestamp(),
and then it’s possible to have two timestamps differing by a second that yield
identical datetime objects. See also utcfromtimestamp().

	
classmethod datetime.utcfromtimestamp(timestamp)

	Return the UTC datetime corresponding to the POSIX timestamp, with
tzinfo None. This may raise ValueError, if the timestamp is
out of the range of values supported by the platform C gmtime() function.
It’s common for this to be restricted to years in 1970 through 2038. See also
fromtimestamp().

	
classmethod datetime.fromordinal(ordinal)

	Return the datetime corresponding to the proleptic Gregorian ordinal,
where January 1 of year 1 has ordinal 1. ValueError is raised unless 1
<= ordinal <= datetime.max.toordinal(). The hour, minute, second and
microsecond of the result are all 0, and tzinfo is None.

	
classmethod datetime.combine(date, time)

	Return a new datetime object whose date members are equal to the given
date object’s, and whose time and tzinfo members are equal to
the given time object’s. For any datetime object d, d ==
datetime.combine(d.date(), d.timetz()). If date is a datetime
object, its time and tzinfo members are ignored.

	
classmethod datetime.strptime(date_string, format)

	Return a datetime corresponding to date_string, parsed according to
format. This is equivalent to datetime(*(time.strptime(date_string,
format)[0:6])). ValueError is raised if the date_string and format
can’t be parsed by time.strptime() or if it returns a value which isn’t a
time tuple. See section strftime() and strptime() Behavior.

New in version 2.5.

Class attributes:

	
datetime.min

	The earliest representable datetime, datetime(MINYEAR, 1, 1,
tzinfo=None).

	
datetime.max

	The latest representable datetime, datetime(MAXYEAR, 12, 31, 23, 59,
59, 999999, tzinfo=None).

	
datetime.resolution

	The smallest possible difference between non-equal datetime objects,
timedelta(microseconds=1).

Instance attributes (read-only):

	
datetime.year

	Between MINYEAR and MAXYEAR inclusive.

	
datetime.month

	Between 1 and 12 inclusive.

	
datetime.day

	Between 1 and the number of days in the given month of the given year.

	
datetime.hour

	In range(24).

	
datetime.minute

	In range(60).

	
datetime.second

	In range(60).

	
datetime.microsecond

	In range(1000000).

	
datetime.tzinfo

	The object passed as the tzinfo argument to the datetime constructor,
or None if none was passed.

Supported operations:

	Operation
	Result

	datetime2 = datetime1 + timedelta
	(1)

	datetime2 = datetime1 - timedelta
	(2)

	timedelta = datetime1 - datetime2
	(3)

	datetime1 < datetime2
	Compares datetime to
datetime. (4)

	datetime2 is a duration of timedelta removed from datetime1, moving forward in
time if timedelta.days > 0, or backward if timedelta.days < 0. The
result has the same tzinfo member as the input datetime, and datetime2 -
datetime1 == timedelta after. OverflowError is raised if datetime2.year
would be smaller than MINYEAR or larger than MAXYEAR. Note
that no time zone adjustments are done even if the input is an aware object.

	Computes the datetime2 such that datetime2 + timedelta == datetime1. As for
addition, the result has the same tzinfo member as the input datetime,
and no time zone adjustments are done even if the input is aware. This isn’t
quite equivalent to datetime1 + (-timedelta), because -timedelta in isolation
can overflow in cases where datetime1 - timedelta does not.

	Subtraction of a datetime from a datetime is defined only if
both operands are naive, or if both are aware. If one is aware and the other is
naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo member,
the tzinfo members are ignored, and the result is a timedelta
object t such that datetime2 + t == datetime1. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo members, a-b acts as if
a and b were first converted to naive UTC datetimes first. The result is
(a.replace(tzinfo=None) - a.utcoffset()) - (b.replace(tzinfo=None) -
b.utcoffset()) except that the implementation never overflows.

	datetime1 is considered less than datetime2 when datetime1 precedes
datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised.
If both comparands are aware, and have the same tzinfo member, the
common tzinfo member is ignored and the base datetimes are compared. If
both comparands are aware and have different tzinfo members, the
comparands are first adjusted by subtracting their UTC offsets (obtained from
self.utcoffset()).

Note

In order to stop comparison from falling back to the default scheme of comparing
object addresses, datetime comparison normally raises TypeError if the
other comparand isn’t also a datetime object. However,
NotImplemented is returned instead if the other comparand has a
timetuple() attribute. This hook gives other kinds of date objects a
chance at implementing mixed-type comparison. If not, when a datetime
object is compared to an object of a different type, TypeError is raised
unless the comparison is == or !=. The latter cases return
False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts,
all datetime objects are considered to be true.

Instance methods:

	
datetime.date()

	Return date object with same year, month and day.

	
datetime.time()

	Return time object with same hour, minute, second and microsecond.
tzinfo is None. See also method timetz().

	
datetime.timetz()

	Return time object with same hour, minute, second, microsecond, and
tzinfo members. See also method time().

	
datetime.replace([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]])

	Return a datetime with the same members, except for those members given new
values by whichever keyword arguments are specified. Note that tzinfo=None
can be specified to create a naive datetime from an aware datetime with no
conversion of date and time members.

	
datetime.astimezone(tz)

	Return a datetime object with new tzinfo member tz, adjusting
the date and time members so the result is the same UTC time as self, but in
tz‘s local time.

tz must be an instance of a tzinfo subclass, and its
utcoffset() and dst() methods must not return None. self must
be aware (self.tzinfo must not be None, and self.utcoffset() must
not return None).

If self.tzinfo is tz, self.astimezone(tz) is equal to self: no
adjustment of date or time members is performed. Else the result is local time
in time zone tz, representing the same UTC time as self: after astz =
dt.astimezone(tz), astz - astz.utcoffset() will usually have the same date
and time members as dt - dt.utcoffset(). The discussion of class
tzinfo explains the cases at Daylight Saving Time transition boundaries
where this cannot be achieved (an issue only if tz models both standard and
daylight time).

If you merely want to attach a time zone object tz to a datetime dt without
adjustment of date and time members, use dt.replace(tzinfo=tz). If you
merely want to remove the time zone object from an aware datetime dt without
conversion of date and time members, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in a
tzinfo subclass to affect the result returned by astimezone().
Ignoring error cases, astimezone() acts like:

def astimezone(self, tz):
 if self.tzinfo is tz:
 return self
 # Convert self to UTC, and attach the new time zone object.
 utc = (self - self.utcoffset()).replace(tzinfo=tz)
 # Convert from UTC to tz's local time.
 return tz.fromutc(utc)

	
datetime.utcoffset()

	If tzinfo is None, returns None, else returns
self.tzinfo.utcoffset(self), and raises an exception if the latter doesn’t
return None, or a timedelta object representing a whole number of
minutes with magnitude less than one day.

	
datetime.dst()

	If tzinfo is None, returns None, else returns
self.tzinfo.dst(self), and raises an exception if the latter doesn’t return
None, or a timedelta object representing a whole number of minutes
with magnitude less than one day.

	
datetime.tzname()

	If tzinfo is None, returns None, else returns
self.tzinfo.tzname(self), raises an exception if the latter doesn’t return
None or a string object,

	
datetime.timetuple()

	Return a time.struct_time such as returned by time.localtime().
d.timetuple() is equivalent to time.struct_time((d.year, d.month, d.day,
d.hour, d.minute, d.second, d.weekday(), yday, dst)), where yday =
d.toordinal() - date(d.year, 1, 1).toordinal() + 1 is the day number within
the current year starting with 1 for January 1st. The tm_isdst flag
of the result is set according to the dst() method: tzinfo is
None or dst() returns None, tm_isdst is set to -1;
else if dst() returns a non-zero value, tm_isdst is set to 1;
else tm_isdst is set to 0.

	
datetime.utctimetuple()

	If datetime instance d is naive, this is the same as
d.timetuple() except that tm_isdst is forced to 0 regardless of what
d.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting
d.utcoffset(), and a time.struct_time for the normalized time is
returned. tm_isdst is forced to 0. Note that the result’s
tm_year member may be MINYEAR-1 or MAXYEAR+1, if
d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year
boundary.

	
datetime.toordinal()

	Return the proleptic Gregorian ordinal of the date. The same as
self.date().toordinal().

	
datetime.weekday()

	Return the day of the week as an integer, where Monday is 0 and Sunday is 6.
The same as self.date().weekday(). See also isoweekday().

	
datetime.isoweekday()

	Return the day of the week as an integer, where Monday is 1 and Sunday is 7.
The same as self.date().isoweekday(). See also weekday(),
isocalendar().

	
datetime.isocalendar()

	Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date().isocalendar().

	
datetime.isoformat([sep])

	Return a string representing the date and time in ISO 8601 format,
YYYY-MM-DDTHH:MM:SS.mmmmmm or, if microsecond is 0,
YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is
appended, giving the UTC offset in (signed) hours and minutes:
YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0
YYYY-MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default 'T') is a one-character separator,
placed between the date and time portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ')
'2002-12-25 00:00:00-06:39'

	
datetime.__str__()

	For a datetime instance d, str(d) is equivalent to
d.isoformat(' ').

	
datetime.ctime()

	Return a string representing the date and time, for example datetime(2002, 12,
4, 20, 30, 40).ctime() == 'Wed Dec 4 20:30:40 2002'. d.ctime() is
equivalent to time.ctime(time.mktime(d.timetuple())) on platforms where the
native C ctime() function (which time.ctime() invokes, but which
datetime.ctime() does not invoke) conforms to the C standard.

	
datetime.strftime(format)

	Return a string representing the date and time, controlled by an explicit format
string. See section strftime() and strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time
>>> # Using datetime.combine()
>>> d = date(2005, 7, 14)
>>> t = time(12, 30)
>>> datetime.combine(d, t)
datetime.datetime(2005, 7, 14, 12, 30)
>>> # Using datetime.now() or datetime.utcnow()
>>> datetime.now()
datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow()
datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)
>>> # Using datetime.strptime()
>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y %H:%M")
>>> dt
datetime.datetime(2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple()
>>> for it in tt:
... print it
...
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar()
>>> for it in ic:
... print it
...
2006 # ISO year
47 # ISO week
2 # ISO weekday
>>> # Formatting datetime
>>> dt.strftime("%A, %d. %B %Y %I:%M%p")
'Tuesday, 21. November 2006 04:30PM'

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1(tzinfo):
... def __init__(self): # DST starts last Sunday in March
... d = datetime(dt.year, 4, 1) # ends last Sunday in October
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=1)
... else:
... return timedelta(0)
... def tzname(self,dt):
... return "GMT +1"
...
>>> class GMT2(tzinfo):
... def __init__(self):
... d = datetime(dt.year, 4, 1)
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=2)
... else:
... return timedelta(0)
... def tzname(self,dt):
... return "GMT +2"
...
>>> gmt1 = GMT1()
>>> # Daylight Saving Time
>>> dt1 = datetime(2006, 11, 21, 16, 30, tzinfo=gmt1)
>>> dt1.dst()
datetime.timedelta(0)
>>> dt1.utcoffset()
datetime.timedelta(0, 3600)
>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo=gmt1)
>>> dt2.dst()
datetime.timedelta(0, 3600)
>>> dt2.utcoffset()
datetime.timedelta(0, 7200)
>>> # Convert datetime to another time zone
>>> dt3 = dt2.astimezone(GMT2())
>>> dt3
datetime.datetime(2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2
datetime.datetime(2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>)
>>> dt2.utctimetuple() == dt3.utctimetuple()
True

8.1.5. time Objects

A time object represents a (local) time of day, independent of any particular
day, and subject to adjustment via a tzinfo object.

	
class datetime.time(hour[, minute[, second[, microsecond[, tzinfo]]]])

	All arguments are optional. tzinfo may be None, or an instance of a
tzinfo subclass. The remaining arguments may be ints or longs, in the
following ranges:

	0 <= hour < 24

	0 <= minute < 60

	0 <= second < 60

	0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All
default to 0 except tzinfo, which defaults to None.

Class attributes:

	
time.min

	The earliest representable time, time(0, 0, 0, 0).

	
time.max

	The latest representable time, time(23, 59, 59, 999999).

	
time.resolution

	The smallest possible difference between non-equal time objects,
timedelta(microseconds=1), although note that arithmetic on time
objects is not supported.

Instance attributes (read-only):

	
time.hour

	In range(24).

	
time.minute

	In range(60).

	
time.second

	In range(60).

	
time.microsecond

	In range(1000000).

	
time.tzinfo

	The object passed as the tzinfo argument to the time constructor, or
None if none was passed.

Supported operations:

	comparison of time to time, where a is considered less
than b when a precedes b in time. If one comparand is naive and the other
is aware, TypeError is raised. If both comparands are aware, and have
the same tzinfo member, the common tzinfo member is ignored and
the base times are compared. If both comparands are aware and have different
tzinfo members, the comparands are first adjusted by subtracting their
UTC offsets (obtained from self.utcoffset()). In order to stop mixed-type
comparisons from falling back to the default comparison by object address, when
a time object is compared to an object of a different type,
TypeError is raised unless the comparison is == or !=. The
latter cases return False or True, respectively.

	hash, use as dict key

	efficient pickling

	in Boolean contexts, a time object is considered to be true if and
only if, after converting it to minutes and subtracting utcoffset() (or
0 if that’s None), the result is non-zero.

Instance methods:

	
time.replace([hour[, minute[, second[, microsecond[, tzinfo]]]]])

	Return a time with the same value, except for those members given new
values by whichever keyword arguments are specified. Note that tzinfo=None
can be specified to create a naive time from an aware time,
without conversion of the time members.

	
time.isoformat()

	Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if
self.microsecond is 0, HH:MM:SS If utcoffset() does not return None, a
6-character string is appended, giving the UTC offset in (signed) hours and
minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0, HH:MM:SS+HH:MM

	
time.__str__()

	For a time t, str(t) is equivalent to t.isoformat().

	
time.strftime(format)

	Return a string representing the time, controlled by an explicit format string.
See section strftime() and strptime() Behavior.

	
time.utcoffset()

	If tzinfo is None, returns None, else returns
self.tzinfo.utcoffset(None), and raises an exception if the latter doesn’t
return None or a timedelta object representing a whole number of
minutes with magnitude less than one day.

	
time.dst()

	If tzinfo is None, returns None, else returns
self.tzinfo.dst(None), and raises an exception if the latter doesn’t return
None, or a timedelta object representing a whole number of minutes
with magnitude less than one day.

	
time.tzname()

	If tzinfo is None, returns None, else returns
self.tzinfo.tzname(None), or raises an exception if the latter doesn’t
return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1(tzinfo):
... def utcoffset(self, dt):
... return timedelta(hours=1)
... def dst(self, dt):
... return timedelta(0)
... def tzname(self,dt):
... return "Europe/Prague"
...
>>> t = time(12, 10, 30, tzinfo=GMT1())
>>> t
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
>>> gmt = GMT1()
>>> t.isoformat()
'12:10:30+01:00'
>>> t.dst()
datetime.timedelta(0)
>>> t.tzname()
'Europe/Prague'
>>> t.strftime("%H:%M:%S %Z")
'12:10:30 Europe/Prague'

8.1.6. tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be
instantiated directly. You need to derive a concrete subclass, and (at least)
supply implementations of the standard tzinfo methods needed by the
datetime methods you use. The datetime module does not supply
any concrete subclasses of tzinfo.

An instance of (a concrete subclass of) tzinfo can be passed to the
constructors for datetime and time objects. The latter objects
view their members as being in local time, and the tzinfo object
supports methods revealing offset of local time from UTC, the name of the time
zone, and DST offset, all relative to a date or time object passed to them.

Special requirement for pickling: A tzinfo subclass must have an
__init__() method that can be called with no arguments, else it can be
pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass of tzinfo may need to implement the following
methods. Exactly which methods are needed depends on the uses made of aware
datetime objects. If in doubt, simply implement all of them.

	
tzinfo.utcoffset(self, dt)

	Return offset of local time from UTC, in minutes east of UTC. If local time is
west of UTC, this should be negative. Note that this is intended to be the
total offset from UTC; for example, if a tzinfo object represents both
time zone and DST adjustments, utcoffset() should return their sum. If
the UTC offset isn’t known, return None. Else the value returned must be a
timedelta object specifying a whole number of minutes in the range
-1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations of utcoffset() will probably look
like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not return None, dst() should not return
None either.

The default implementation of utcoffset() raises
NotImplementedError.

	
tzinfo.dst(self, dt)

	Return the daylight saving time (DST) adjustment, in minutes east of UTC, or
None if DST information isn’t known. Return timedelta(0) if DST is not
in effect. If DST is in effect, return the offset as a timedelta object
(see utcoffset() for details). Note that DST offset, if applicable, has
already been added to the UTC offset returned by utcoffset(), so there’s
no need to consult dst() unless you’re interested in obtaining DST info
separately. For example, datetime.timetuple() calls its tzinfo
member’s dst() method to determine how the tm_isdst flag should be
set, and tzinfo.fromutc() calls dst() to account for DST changes
when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and
daylight times must be consistent in this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo ==
tz For sane tzinfo subclasses, this expression yields the time
zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone()
relies on this, but cannot detect violations; it’s the programmer’s
responsibility to ensure it. If a tzinfo subclass cannot guarantee
this, it may be able to override the default implementation of
tzinfo.fromutc() to work correctly with astimezone() regardless.

Most implementations of dst() will probably look like one of these two:

def dst(self):
 # a fixed-offset class: doesn't account for DST
 return timedelta(0)

or

def dst(self):
 # Code to set dston and dstoff to the time zone's DST
 # transition times based on the input dt.year, and expressed
 # in standard local time. Then

 if dston <= dt.replace(tzinfo=None) < dstoff:
 return timedelta(hours=1)
 else:
 return timedelta(0)

The default implementation of dst() raises NotImplementedError.

	
tzinfo.tzname(self, dt)

	Return the time zone name corresponding to the datetime object dt, as
a string. Nothing about string names is defined by the datetime module,
and there’s no requirement that it mean anything in particular. For example,
“GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all
valid replies. Return None if a string name isn’t known. Note that this is
a method rather than a fixed string primarily because some tzinfo
subclasses will wish to return different names depending on the specific value
of dt passed, especially if the tzinfo class is accounting for
daylight time.

The default implementation of tzname() raises NotImplementedError.

These methods are called by a datetime or time object, in
response to their methods of the same names. A datetime object passes
itself as the argument, and a time object passes None as the
argument. A tzinfo subclass’s methods should therefore be prepared to
accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best
response. For example, returning None is appropriate if the class wishes to
say that time objects don’t participate in the tzinfo protocols. It
may be more useful for utcoffset(None) to return the standard UTC offset, as
there is no other convention for discovering the standard offset.

When a datetime object is passed in response to a datetime
method, dt.tzinfo is the same object as self. tzinfo methods can
rely on this, unless user code calls tzinfo methods directly. The
intent is that the tzinfo methods interpret dt as being in local
time, and not need worry about objects in other timezones.

There is one more tzinfo method that a subclass may wish to override:

	
tzinfo.fromutc(self, dt)

	This is called from the default datetime.astimezone() implementation.
When called from that, dt.tzinfo is self, and dt‘s date and time members
are to be viewed as expressing a UTC time. The purpose of fromutc() is to
adjust the date and time members, returning an equivalent datetime in self‘s
local time.

Most tzinfo subclasses should be able to inherit the default
fromutc() implementation without problems. It’s strong enough to handle
fixed-offset time zones, and time zones accounting for both standard and
daylight time, and the latter even if the DST transition times differ in
different years. An example of a time zone the default fromutc()
implementation may not handle correctly in all cases is one where the standard
offset (from UTC) depends on the specific date and time passed, which can happen
for political reasons. The default implementations of astimezone() and
fromutc() may not produce the result you want if the result is one of the
hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc() implementation acts
like:

def fromutc(self, dt):
 # raise ValueError error if dt.tzinfo is not self
 dtoff = dt.utcoffset()
 dtdst = dt.dst()
 # raise ValueError if dtoff is None or dtdst is None
 delta = dtoff - dtdst # this is self's standard offset
 if delta:
 dt += delta # convert to standard local time
 dtdst = dt.dst()
 # raise ValueError if dtdst is None
 if dtdst:
 return dt + dtdst
 else:
 return dt

Example tzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):
 """UTC"""

 def utcoffset(self, dt):
 return ZERO

 def tzname(self, dt):
 return "UTC"

 def dst(self, dt):
 return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
 """Fixed offset in minutes east from UTC."""

 def __init__(self, offset, name):
 self.__offset = timedelta(minutes = offset)
 self.__name = name

 def utcoffset(self, dt):
 return self.__offset

 def tzname(self, dt):
 return self.__name

 def dst(self, dt):
 return ZERO

A class capturing the platform's idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:
 DSTOFFSET = timedelta(seconds = -_time.altzone)
else:
 DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone(tzinfo):

 def utcoffset(self, dt):
 if self._isdst(dt):
 return DSTOFFSET
 else:
 return STDOFFSET

 def dst(self, dt):
 if self._isdst(dt):
 return DSTDIFF
 else:
 return ZERO

 def tzname(self, dt):
 return _time.tzname[self._isdst(dt)]

 def _isdst(self, dt):
 tt = (dt.year, dt.month, dt.day,
 dt.hour, dt.minute, dt.second,
 dt.weekday(), 0, 0)
 stamp = _time.mktime(tt)
 tt = _time.localtime(stamp)
 return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
 days_to_go = 6 - dt.weekday()
 if days_to_go:
 dt += timedelta(days_to_go)
 return dt

US DST Rules
#
This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-link.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)
#
In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime(1, 3, 8, 2)
and ends at 2am (DST time; 1am standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)
From 1987 to 2006, DST used to start at 2am (standard time) on the first
Sunday in April and to end at 2am (DST time; 1am standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)
DSTEND_1987_2006 = datetime(1, 10, 25, 1)
From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time;
1am standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.
DSTSTART_1967_1986 = datetime(1, 4, 24, 2)
DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone(tzinfo):

 def __init__(self, hours, reprname, stdname, dstname):
 self.stdoffset = timedelta(hours=hours)
 self.reprname = reprname
 self.stdname = stdname
 self.dstname = dstname

 def __repr__(self):
 return self.reprname

 def tzname(self, dt):
 if self.dst(dt):
 return self.dstname
 else:
 return self.stdname

 def utcoffset(self, dt):
 return self.stdoffset + self.dst(dt)

 def dst(self, dt):
 if dt is None or dt.tzinfo is None:
 # An exception may be sensible here, in one or both cases.
 # It depends on how you want to treat them. The default
 # fromutc() implementation (called by the default astimezone()
 # implementation) passes a datetime with dt.tzinfo is self.
 return ZERO
 assert dt.tzinfo is self

 # Find start and end times for US DST. For years before 1967, return
 # ZERO for no DST.
 if 2006 < dt.year:
 dststart, dstend = DSTSTART_2007, DSTEND_2007
 elif 1986 < dt.year < 2007:
 dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
 elif 1966 < dt.year < 1987:
 dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
 else:
 return ZERO

 start = first_sunday_on_or_after(dststart.replace(year=dt.year))
 end = first_sunday_on_or_after(dstend.replace(year=dt.year))

 # Can't compare naive to aware objects, so strip the timezone from
 # dt first.
 if start <= dt.replace(tzinfo=None) < end:
 return HOUR
 else:
 return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo
subclass accounting for both standard and daylight time, at the DST transition
points. For concreteness, consider US Eastern (UTC -0500), where EDT begins the
minute after 1:59 (EST) on the second Sunday in March, and ends the minute after
1:59 (EDT) on the first Sunday in November:

 UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
 EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
 EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

 end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to
3:00. A wall time of the form 2:MM doesn’t really make sense on that day, so
astimezone(Eastern) won’t deliver a result with hour == 2 on the day DST
begins. In order for astimezone() to make this guarantee, the
rzinfo.dst() method must consider times in the “missing hour” (2:MM for
Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an
hour that can’t be spelled unambiguously in local wall time: the last hour of
daylight time. In Eastern, that’s times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back
to 1:00 (standard time) again. Local times of the form 1:MM are ambiguous.
astimezone() mimics the local clock’s behavior by mapping two adjacent UTC
hours into the same local hour then. In the Eastern example, UTC times of the
form 5:MM and 6:MM both map to 1:MM when converted to Eastern. In order for
astimezone() to make this guarantee, the tzinfo.dst() method must
consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s
standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid
tzinfo subclasses; there are no ambiguities when using UTC, or any
other fixed-offset tzinfo subclass (such as a class representing only
EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

8.1.7. strftime() and strptime() Behavior

date, datetime, and time objects all support a
strftime(format) method, to create a string representing the time under the
control of an explicit format string. Broadly speaking, d.strftime(fmt)
acts like the time module’s time.strftime(fmt, d.timetuple())
although not all objects support a timetuple() method.

Conversely, the datetime.strptime() class method creates a
datetime object from a string representing a date and time and a
corresponding format string. datetime.strptime(date_string, format) is
equivalent to datetime(*(time.strptime(date_string, format)[0:6])).

For time objects, the format codes for year, month, and day should not
be used, as time objects have no such values. If they’re used anyway, 1900
is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and
microseconds should not be used, as date objects have no such
values. If they’re used anyway, 0 is substituted for them.

New in version 2.6: time and datetime objects support a %f format code
which expands to the number of microseconds in the object, zero-padded on
the left to six places.

For a naive object, the %z and %Z format codes are replaced by empty
strings.

For an aware object:

	%z

	utcoffset() is transformed into a 5-character string of the form +HHMM or
-HHMM, where HH is a 2-digit string giving the number of UTC offset hours, and
MM is a 2-digit string giving the number of UTC offset minutes. For example, if
utcoffset() returns timedelta(hours=-3, minutes=-30), %z is
replaced with the string '-0330'.

	%Z

	If tzname() returns None, %Z is replaced by an empty string.
Otherwise %Z is replaced by the returned value, which must be a string.

The full set of format codes supported varies across platforms, because Python
calls the platform C library’s strftime() function, and platform
variations are common.

The following is a list of all the format codes that the C standard (1989
version) requires, and these work on all platforms with a standard C
implementation. Note that the 1999 version of the C standard added additional
format codes.

The exact range of years for which strftime() works also varies across
platforms. Regardless of platform, years before 1900 cannot be used.

	Directive
	Meaning
	Notes

	%a
	Locale’s abbreviated weekday
name.
	

	%A
	Locale’s full weekday name.
	

	%b
	Locale’s abbreviated month
name.
	

	%B
	Locale’s full month name.
	

	%c
	Locale’s appropriate date and
time representation.
	

	%d
	Day of the month as a decimal
number [01,31].
	

	%f
	Microsecond as a decimal
number [0,999999], zero-padded
on the left
	(1)

	%H
	Hour (24-hour clock) as a
decimal number [00,23].
	

	%I
	Hour (12-hour clock) as a
decimal number [01,12].
	

	%j
	Day of the year as a decimal
number [001,366].
	

	%m
	Month as a decimal number
[01,12].
	

	%M
	Minute as a decimal number
[00,59].
	

	%p
	Locale’s equivalent of either
AM or PM.
	(2)

	%S
	Second as a decimal number
[00,61].
	(3)

	%U
	Week number of the year
(Sunday as the first day of
the week) as a decimal number
[00,53]. All days in a new
year preceding the first
Sunday are considered to be in
week 0.
	(4)

	%w
	Weekday as a decimal number
[0(Sunday),6].
	

	%W
	Week number of the year
(Monday as the first day of
the week) as a decimal number
[00,53]. All days in a new
year preceding the first
Monday are considered to be in
week 0.
	(4)

	%x
	Locale’s appropriate date
representation.
	

	%X
	Locale’s appropriate time
representation.
	

	%y
	Year without century as a
decimal number [00,99].
	

	%Y
	Year with century as a decimal
number.
	

	%z
	UTC offset in the form +HHMM
or -HHMM (empty string if the
the object is naive).
	(5)

	%Z
	Time zone name (empty string
if the object is naive).
	

	%%
	A literal '%' character.
	

Notes:

	When used with the strptime() method, the %f directive
accepts from one to six digits and zero pads on the right. %f is
an extension to the set of format characters in the C standard (but
implemented separately in datetime objects, and therefore always
available).

	When used with the strptime() method, the %p directive only affects
the output hour field if the %I directive is used to parse the hour.

	The range really is 0 to 61; according to the Posix standard this
accounts for leap seconds and the (very rare) double leap seconds.
The time module may produce and does accept leap seconds since
it is based on the Posix standard, but the datetime module
does not accept leap seconds in strptime() input nor will it
produce them in strftime() output.

	When used with the strptime() method, %U and %W are only used in
calculations when the day of the week and the year are specified.

	For example, if utcoffset() returns timedelta(hours=-3, minutes=-30),
%z is replaced with the string '-0330'.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.2. calendar — General calendar-related functions

This module allows you to output calendars like the Unix cal program,
and provides additional useful functions related to the calendar. By default,
these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use setfirstweekday() to set the first day of
the week to Sunday (6) or to any other weekday. Parameters that specify dates
are given as integers. For related
functionality, see also the datetime and time modules.

Most of these functions and classes rely on the datetime module which
uses an idealized calendar, the current Gregorian calendar indefinitely extended
in both directions. This matches the definition of the “proleptic Gregorian”
calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where
it’s the base calendar for all computations.

See also

Latest version of the calendar module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/calendar.py?view=markup]

	
class calendar.Calendar([firstweekday])

	Creates a Calendar object. firstweekday is an integer specifying the
first day of the week. 0 is Monday (the default), 6 is Sunday.

A Calendar object provides several methods that can be used for
preparing the calendar data for formatting. This class doesn’t do any formatting
itself. This is the job of subclasses.

New in version 2.5.

Calendar instances have the following methods:

	
iterweekdays()

	Return an iterator for the week day numbers that will be used for one
week. The first value from the iterator will be the same as the value of
the firstweekday property.

	
itermonthdates(year, month)

	Return an iterator for the month month (1-12) in the year year. This
iterator will return all days (as datetime.date objects) for the
month and all days before the start of the month or after the end of the
month that are required to get a complete week.

	
itermonthdays2(year, month)

	Return an iterator for the month month in the year year similar to
itermonthdates(). Days returned will be tuples consisting of a day
number and a week day number.

	
itermonthdays(year, month)

	Return an iterator for the month month in the year year similar to
itermonthdates(). Days returned will simply be day numbers.

	
monthdatescalendar(year, month)

	Return a list of the weeks in the month month of the year as full
weeks. Weeks are lists of seven datetime.date objects.

	
monthdays2calendar(year, month)

	Return a list of the weeks in the month month of the year as full
weeks. Weeks are lists of seven tuples of day numbers and weekday
numbers.

	
monthdayscalendar(year, month)

	Return a list of the weeks in the month month of the year as full
weeks. Weeks are lists of seven day numbers.

	
yeardatescalendar(year[, width])

	Return the data for the specified year ready for formatting. The return
value is a list of month rows. Each month row contains up to width
months (defaulting to 3). Each month contains between 4 and 6 weeks and
each week contains 1–7 days. Days are datetime.date objects.

	
yeardays2calendar(year[, width])

	Return the data for the specified year ready for formatting (similar to
yeardatescalendar()). Entries in the week lists are tuples of day
numbers and weekday numbers. Day numbers outside this month are zero.

	
yeardayscalendar(year[, width])

	Return the data for the specified year ready for formatting (similar to
yeardatescalendar()). Entries in the week lists are day numbers. Day
numbers outside this month are zero.

	
class calendar.TextCalendar([firstweekday])

	This class can be used to generate plain text calendars.

New in version 2.5.

TextCalendar instances have the following methods:

	
formatmonth(theyear, themonth[, w[, l]])

	Return a month’s calendar in a multi-line string. If w is provided, it
specifies the width of the date columns, which are centered. If l is
given, it specifies the number of lines that each week will use. Depends
on the first weekday as specified in the constructor or set by the
setfirstweekday() method.

	
prmonth(theyear, themonth[, w[, l]])

	Print a month’s calendar as returned by formatmonth().

	
formatyear(theyear[, w[, l[, c[, m]]]])

	Return a m-column calendar for an entire year as a multi-line string.
Optional parameters w, l, and c are for date column width, lines per
week, and number of spaces between month columns, respectively. Depends on
the first weekday as specified in the constructor or set by the
setfirstweekday() method. The earliest year for which a calendar
can be generated is platform-dependent.

	
pryear(theyear[, w[, l[, c[, m]]]])

	Print the calendar for an entire year as returned by formatyear().

	
class calendar.HTMLCalendar([firstweekday])

	This class can be used to generate HTML calendars.

New in version 2.5.

HTMLCalendar instances have the following methods:

	
formatmonth(theyear, themonth[, withyear])

	Return a month’s calendar as an HTML table. If withyear is true the year
will be included in the header, otherwise just the month name will be
used.

	
formatyear(theyear[, width])

	Return a year’s calendar as an HTML table. width (defaulting to 3)
specifies the number of months per row.

	
formatyearpage(theyear[, width[, css[, encoding]]])

	Return a year’s calendar as a complete HTML page. width (defaulting to
3) specifies the number of months per row. css is the name for the
cascading style sheet to be used. None can be passed if no style
sheet should be used. encoding specifies the encoding to be used for the
output (defaulting to the system default encoding).

	
class calendar.LocaleTextCalendar([firstweekday[, locale]])

	This subclass of TextCalendar can be passed a locale name in the
constructor and will return month and weekday names in the specified locale.
If this locale includes an encoding all strings containing month and weekday
names will be returned as unicode.

New in version 2.5.

	
class calendar.LocaleHTMLCalendar([firstweekday[, locale]])

	This subclass of HTMLCalendar can be passed a locale name in the
constructor and will return month and weekday names in the specified
locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode.

New in version 2.5.

Note

The formatweekday() and formatmonthname() methods of these two
classes temporarily change the current locale to the given locale. Because
the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

	
calendar.setfirstweekday(weekday)

	Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The
values MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY, and SUNDAY are provided for
convenience. For example, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

New in version 2.0.

	
calendar.firstweekday()

	Returns the current setting for the weekday to start each week.

New in version 2.0.

	
calendar.isleap(year)

	Returns True if year is a leap year, otherwise False.

	
calendar.leapdays(y1, y2)

	Returns the number of leap years in the range from y1 to y2 (exclusive),
where y1 and y2 are years.

Changed in version 2.0: This function didn’t work for ranges spanning a century change in Python
1.5.2.

	
calendar.weekday(year, month, day)

	Returns the day of the week (0 is Monday) for year (1970–...),
month (1–12), day (1–31).

	
calendar.weekheader(n)

	Return a header containing abbreviated weekday names. n specifies the width in
characters for one weekday.

	
calendar.monthrange(year, month)

	Returns weekday of first day of the month and number of days in month, for the
specified year and month.

	
calendar.monthcalendar(year, month)

	Returns a matrix representing a month’s calendar. Each row represents a week;
days outside of the month a represented by zeros. Each week begins with Monday
unless set by setfirstweekday().

	
calendar.prmonth(theyear, themonth[, w[, l]])

	Prints a month’s calendar as returned by month().

	
calendar.month(theyear, themonth[, w[, l]])

	Returns a month’s calendar in a multi-line string using the formatmonth()
of the TextCalendar class.

New in version 2.0.

	
calendar.prcal(year[, w[, l[c]]])

	Prints the calendar for an entire year as returned by calendar().

	
calendar.calendar(year[, w[, l[c]]])

	Returns a 3-column calendar for an entire year as a multi-line string using the
formatyear() of the TextCalendar class.

New in version 2.0.

	
calendar.timegm(tuple)

	An unrelated but handy function that takes a time tuple such as returned by the
gmtime() function in the time module, and returns the corresponding
Unix timestamp value, assuming an epoch of 1970, and the POSIX encoding. In
fact, time.gmtime() and timegm() are each others’ inverse.

New in version 2.0.

The calendar module exports the following data attributes:

	
calendar.day_name

	An array that represents the days of the week in the current locale.

	
calendar.day_abbr

	An array that represents the abbreviated days of the week in the current locale.

	
calendar.month_name

	An array that represents the months of the year in the current locale. This
follows normal convention of January being month number 1, so it has a length of
13 and month_name[0] is the empty string.

	
calendar.month_abbr

	An array that represents the abbreviated months of the year in the current
locale. This follows normal convention of January being month number 1, so it
has a length of 13 and month_abbr[0] is the empty string.

See also

	Module datetime

	Object-oriented interface to dates and times with similar functionality to the
time module.

	Module time

	Low-level time related functions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.3. collections — High-performance container datatypes

New in version 2.4.

This module implements specialized container datatypes providing alternatives to
Python’s general purpose built-in containers, dict, list,
set, and tuple.

	namedtuple()
	factory function for creating tuple subclasses with named fields
	
New in version 2.6.

	deque
	list-like container with fast appends and pops on either end
	
New in version 2.4.

	Counter
	dict subclass for counting hashable objects
	
New in version 2.7.

	OrderedDict
	dict subclass that remembers the order entries were added
	
New in version 2.7.

	defaultdict
	dict subclass that calls a factory function to supply missing values
	
New in version 2.5.

In addition to the concrete container classes, the collections module provides
ABCs - abstract base classes that can be used to test whether a class provides a
particular interface, for example, whether it is hashable or a mapping.

See also

Latest version of the collections module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/collections.py?view=markup]

8.3.1. Counter objects

A counter tool is provided to support convenient and rapid tallies.
For example:

>>> # Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
... cnt[word] += 1
>>> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})

>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall('\w+', open('hamlet.txt').read().lower())
>>> Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
 ('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

	
class collections.Counter([iterable-or-mapping])

	A Counter is a dict subclass for counting hashable objects.
It is an unordered collection where elements are stored as dictionary keys
and their counts are stored as dictionary values. Counts are allowed to be
any integer value including zero or negative counts. The Counter
class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another
mapping (or counter):

>>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero
count for missing items instead of raising a KeyError:

>>> c = Counter(['eggs', 'ham'])
>>> c['bacon'] # count of a missing element is zero
0

Setting a count to zero does not remove an element from a counter.
Use del to remove it entirely:

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c['sausage'] # del actually removes the entry

New in version 2.7.

Counter objects support three methods beyond those available for all
dictionaries:

	
elements()

	Return an iterator over elements repeating each as many times as its
count. Elements are returned in arbitrary order. If an element’s count
is less than one, elements() will ignore it.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

	
most_common([n])

	Return a list of the n most common elements and their counts from the
most common to the least. If n is not specified, most_common()
returns all elements in the counter. Elements with equal counts are
ordered arbitrarily:

>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]

	
subtract([iterable-or-mapping])

	Elements are subtracted from an iterable or from another mapping
(or counter). Like dict.update() but subtracts counts instead
of replacing them. Both inputs and outputs may be zero or negative.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

The usual dictionary methods are available for Counter objects
except for two which work differently for counters.

	
fromkeys(iterable)

	This class method is not implemented for Counter objects.

	
update([iterable-or-mapping])

	Elements are counted from an iterable or added-in from another
mapping (or counter). Like dict.update() but adds counts
instead of replacing them. Also, the iterable is expected to be a
sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum(c.values()) # total of all counts
c.clear() # reset all counts
list(c) # list unique elements
set(c) # convert to a set
dict(c) # convert to a regular dictionary
c.items() # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common()[:-n:-1] # n least common elements
c += Counter() # remove zero and negative counts

Several mathematical operations are provided for combining Counter
objects to produce multisets (counters that have counts greater than zero).
Addition and subtraction combine counters by adding or subtracting the counts
of corresponding elements. Intersection and union return the minimum and
maximum of corresponding counts. Each operation can accept inputs with signed
counts, but the output will exclude results with counts of zero or less.

>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d # union: max(c[x], d[x])
Counter({'a': 3, 'b': 2})

Note

Counters were primarily designed to work with positive integers to represent
running counts; however, care was taken to not unnecessarily preclude use
cases needing other types or negative values. To help with those use cases,
this section documents the minimum range and type restrictions.

	The Counter class itself is a dictionary subclass with no
restrictions on its keys and values. The values are intended to be numbers
representing counts, but you could store anything in the value field.

	The most_common() method requires only that the values be orderable.

	For in-place operations such as c[key] += 1, the value type need only
support addition and subtraction. So fractions, floats, and decimals would
work and negative values are supported. The same is also true for
update() and subtract() which allow negative and zero values
for both inputs and outputs.

	The multiset methods are designed only for use cases with positive values.
The inputs may be negative or zero, but only outputs with positive values
are created. There are no type restrictions, but the value type needs to
support support addition, subtraction, and comparison.

	The elements() method requires integer counts. It ignores zero and
negative counts.

See also

	Counter class [http://code.activestate.com/recipes/576611/]
adapted for Python 2.5 and an early Bag recipe [http://code.activestate.com/recipes/259174/] for Python 2.4.

	Bag class [http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html]
in Smalltalk.

	Wikipedia entry for Multisets [http://en.wikipedia.org/wiki/Multiset].

	C++ multisets [http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm]
tutorial with examples.

	For mathematical operations on multisets and their use cases, see
Knuth, Donald. The Art of Computer Programming Volume II,
Section 4.6.3, Exercise 19.

	To enumerate all distinct multisets of a given size over a given set of
elements, see itertools.combinations_with_replacement().

map(Counter, combinations_with_replacement(‘ABC’, 2)) –> AA AB AC BB BC CC

8.3.2. deque objects

	
class collections.deque([iterable[, maxlen]])

	Returns a new deque object initialized left-to-right (using append()) with
data from iterable. If iterable is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck”
and is short for “double-ended queue”). Deques support thread-safe, memory
efficient appends and pops from either side of the deque with approximately the
same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for
fast fixed-length operations and incur O(n) memory movement costs for
pop(0) and insert(0, v) operations which change both the size and
position of the underlying data representation.

New in version 2.4.

If maxlen is not specified or is None, deques may grow to an
arbitrary length. Otherwise, the deque is bounded to the specified maximum
length. Once a bounded length deque is full, when new items are added, a
corresponding number of items are discarded from the opposite end. Bounded
length deques provide functionality similar to the tail filter in
Unix. They are also useful for tracking transactions and other pools of data
where only the most recent activity is of interest.

Changed in version 2.6: Added maxlen parameter.

Deque objects support the following methods:

	
append(x)

	Add x to the right side of the deque.

	
appendleft(x)

	Add x to the left side of the deque.

	
clear()

	Remove all elements from the deque leaving it with length 0.

	
count(x)

	Count the number of deque elements equal to x.

New in version 2.7.

	
extend(iterable)

	Extend the right side of the deque by appending elements from the iterable
argument.

	
extendleft(iterable)

	Extend the left side of the deque by appending elements from iterable.
Note, the series of left appends results in reversing the order of
elements in the iterable argument.

	
pop()

	Remove and return an element from the right side of the deque. If no
elements are present, raises an IndexError.

	
popleft()

	Remove and return an element from the left side of the deque. If no
elements are present, raises an IndexError.

	
remove(value)

	Removed the first occurrence of value. If not found, raises a
ValueError.

New in version 2.5.

	
reverse()

	Reverse the elements of the deque in-place and then return None.

New in version 2.7.

	
rotate(n)

	Rotate the deque n steps to the right. If n is negative, rotate to
the left. Rotating one step to the right is equivalent to:
d.appendleft(d.pop()).

Deque objects also provide one read-only attribute:

	
maxlen

	Maximum size of a deque or None if unbounded.

New in version 2.7.

In addition to the above, deques support iteration, pickling, len(d),
reversed(d), copy.copy(d), copy.deepcopy(d), membership testing with
the in operator, and subscript references such as d[-1]. Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random
access, use lists instead.

Example:

>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
... print elem.upper()
G
H
I

>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> d[0] # peek at leftmost item
'g'
>>> d[-1] # peek at rightmost item
'i'

>>> list(reversed(d)) # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d # search the deque
True
>>> d.extend('jkl') # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1) # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1) # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> deque(reversed(d)) # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear() # empty the deque
>>> d.pop() # cannot pop from an empty deque
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in -toplevel-
 d.pop()
IndexError: pop from an empty deque

>>> d.extendleft('abc') # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

8.3.2.1. deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter
in Unix:

def tail(filename, n=10):
 'Return the last n lines of a file'
 return deque(open(filename), n)

Another approach to using deques is to maintain a sequence of recently
added elements by appending to the right and popping to the left:

def moving_average(iterable, n=3):
 # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
 # http://en.wikipedia.org/wiki/Moving_average
 it = iter(iterable)
 d = deque(itertools.islice(it, n-1))
 d.appendleft(0)
 s = sum(d)
 for elem in it:
 s += elem - d.popleft()
 d.append(elem)
 yield s / float(n)

The rotate() method provides a way to implement deque slicing and
deletion. For example, a pure Python implementation of del d[n] relies on
the rotate() method to position elements to be popped:

def delete_nth(d, n):
 d.rotate(-n)
 d.popleft()
 d.rotate(n)

To implement deque slicing, use a similar approach applying
rotate() to bring a target element to the left side of the deque. Remove
old entries with popleft(), add new entries with extend(), and then
reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style
stack manipulations such as dup, drop, swap, over, pick,
rot, and roll.

8.3.3. defaultdict objects

	
class collections.defaultdict([default_factory[, ...]])

	Returns a new dictionary-like object. defaultdict is a subclass of the
built-in dict class. It overrides one method and adds one writable
instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for the default_factory
attribute; it defaults to None. All remaining arguments are treated the same
as if they were passed to the dict constructor, including keyword
arguments.

New in version 2.5.

defaultdict objects support the following method in addition to the
standard dict operations:

	
__missing__(key)

	If the default_factory attribute is None, this raises a
KeyError exception with the key as argument.

If default_factory is not None, it is called without arguments
to provide a default value for the given key, this value is inserted in
the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is
propagated unchanged.

This method is called by the __getitem__() method of the
dict class when the requested key is not found; whatever it
returns or raises is then returned or raised by __getitem__().

defaultdict objects support the following instance variable:

	
default_factory

	This attribute is used by the __missing__() method; it is
initialized from the first argument to the constructor, if present, or to
None, if absent.

8.3.3.1. defaultdict Examples

Using list as the default_factory, it is easy to group a
sequence of key-value pairs into a dictionary of lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
... d[k].append(v)
...
>>> d.items()
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

When each key is encountered for the first time, it is not already in the
mapping; so an entry is automatically created using the default_factory
function which returns an empty list. The list.append()
operation then attaches the value to the new list. When keys are encountered
again, the look-up proceeds normally (returning the list for that key) and the
list.append() operation adds another value to the list. This technique is
simpler and faster than an equivalent technique using dict.setdefault():

>>> d = {}
>>> for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> d.items()
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factory to int makes the
defaultdict useful for counting (like a bag or multiset in other
languages):

>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
... d[k] += 1
...
>>> d.items()
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]

When a letter is first encountered, it is missing from the mapping, so the
default_factory function calls int() to supply a default count of
zero. The increment operation then builds up the count for each letter.

The function int() which always returns zero is just a special case of
constant functions. A faster and more flexible way to create constant functions
is to use itertools.repeat() which can supply any constant value (not just
zero):

>>> def constant_factory(value):
... return itertools.repeat(value).next
>>> d = defaultdict(constant_factory('<missing>'))
>>> d.update(name='John', action='ran')
>>> '%(name)s %(action)s to %(object)s' % d
'John ran to <missing>'

Setting the default_factory to set makes the
defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
... d[k].add(v)
...
>>> d.items()
[('blue', set([2, 4])), ('red', set([1, 3]))]

8.3.4. namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable,
self-documenting code. They can be used wherever regular tuples are used, and
they add the ability to access fields by name instead of position index.

	
collections.namedtuple(typename, field_names[, verbose=False][, rename=False])

	Returns a new tuple subclass named typename. The new subclass is used to
create tuple-like objects that have fields accessible by attribute lookup as
well as being indexable and iterable. Instances of the subclass also have a
helpful docstring (with typename and field_names) and a helpful __repr__()
method which lists the tuple contents in a name=value format.

The field_names are a sequence of strings such as ['x', 'y'].
Alternatively, field_names can be a single string with each fieldname
separated by whitespace and/or commas, for example 'x y' or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names
starting with an underscore. Valid identifiers consist of letters, digits,
and underscores but do not start with a digit or underscore and cannot be
a keyword such as class, for, return, global, pass, print,
or raise.

If rename is true, invalid fieldnames are automatically replaced
with positional names. For example, ['abc', 'def', 'ghi', 'abc'] is
converted to ['abc', '_1', 'ghi', '_3'], eliminating the keyword
def and the duplicate fieldname abc.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are
lightweight and require no more memory than regular tuples.

New in version 2.6.

Changed in version 2.7: added support for rename.

Example:

>>> Point = namedtuple('Point', ['x', 'y'], verbose=True)
class Point(tuple):
 'Point(x, y)'

 __slots__ = ()

 _fields = ('x', 'y')

 def __new__(_cls, x, y):
 'Create a new instance of Point(x, y)'
 return _tuple.__new__(_cls, (x, y))

 @classmethod
 def _make(cls, iterable, new=tuple.__new__, len=len):
 'Make a new Point object from a sequence or iterable'
 result = new(cls, iterable)
 if len(result) != 2:
 raise TypeError('Expected 2 arguments, got %d' % len(result))
 return result

 def __repr__(self):
 'Return a nicely formatted representation string'
 return 'Point(x=%r, y=%r)' % self

 def _asdict(self):
 'Return a new OrderedDict which maps field names to their values'
 return OrderedDict(zip(self._fields, self))

 def _replace(_self, **kwds):
 'Return a new Point object replacing specified fields with new values'
 result = _self._make(map(kwds.pop, ('x', 'y'), _self))
 if kwds:
 raise ValueError('Got unexpected field names: %r' % kwds.keys())
 return result

 def __getnewargs__(self):
 'Return self as a plain tuple. Used by copy and pickle.'
 return tuple(self)

 x = _property(_itemgetter(0), doc='Alias for field number 0')
 y = _property(_itemgetter(1), doc='Alias for field number 1')

>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__ with a name=value style
Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned
by the csv or sqlite3 modules:

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
 print emp.name, emp.title

import sqlite3
conn = sqlite3.connect('/companydata')
cursor = conn.cursor()
cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord._make, cursor.fetchall()):
 print emp.name, emp.title

In addition to the methods inherited from tuples, named tuples support
three additional methods and one attribute. To prevent conflicts with
field names, the method and attribute names start with an underscore.

	
classmethod somenamedtuple._make(iterable)

	Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)

	
somenamedtuple._asdict()

	Return a new OrderedDict which maps field names to their corresponding
values:

>>> p._asdict()
OrderedDict([('x', 11), ('y', 22)])

Changed in version 2.7: Returns an OrderedDict instead of a regular dict.

	
somenamedtuple._replace(kwargs)

	Return a new instance of the named tuple replacing specified fields with new
values:

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)

>>> for partnum, record in inventory.items():
 inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

	
somenamedtuple._fields

	Tuple of strings listing the field names. Useful for introspection
and for creating new named tuple types from existing named tuples.

>>> p._fields # view the field names
('x', 'y')

>>> Color = namedtuple('Color', 'red green blue')
>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr()
function:

>>> getattr(p, 'x')
11

To convert a dictionary to a named tuple, use the double-star-operator
(as described in Unpacking Argument Lists):

>>> d = {'x': 11, 'y': 22}
>>> Point(**d)
Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change
functionality with a subclass. Here is how to add a calculated field and
a fixed-width print format:

>>> class Point(namedtuple('Point', 'x y')):
 __slots__ = ()
 @property
 def hypot(self):
 return (self.x ** 2 + self.y ** 2) ** 0.5
 def __str__(self):
 return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)

>>> for p in Point(3, 4), Point(14, 5/7.):
 print p
Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps
keep memory requirements low by preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply
create a new named tuple type from the _fields attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Default values can be implemented by using _replace() to
customize a prototype instance:

>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account('<owner name>', 0.0, 0)
>>> johns_account = default_account._replace(owner='John')

Enumerated constants can be implemented with named tuples, but it is simpler
and more efficient to use a simple class declaration:

>>> Status = namedtuple('Status', 'open pending closed')._make(range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> class Status:
 open, pending, closed = range(3)

See also

Named tuple recipe [http://code.activestate.com/recipes/500261/]
adapted for Python 2.4.

8.3.5. OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the
order that items were inserted. When iterating over an ordered dictionary,
the items are returned in the order their keys were first added.

	
class collections.OrderedDict([items])

	Return an instance of a dict subclass, supporting the usual dict
methods. An OrderedDict is a dict that remembers the order that keys
were first inserted. If a new entry overwrites an existing entry, the
original insertion position is left unchanged. Deleting an entry and
reinserting it will move it to the end.

New in version 2.7.

	
OrderedDict.popitem(last=True)

	The popitem() method for ordered dictionaries returns and removes
a (key, value) pair. The pairs are returned in LIFO order if last is
true or FIFO order if false.

In addition to the usual mapping methods, ordered dictionaries also support
reverse iteration using reversed().

Equality tests between OrderedDict objects are order-sensitive
and are implemented as list(od1.items())==list(od2.items()).
Equality tests between OrderedDict objects and other
Mapping objects are order-insensitive like regular dictionaries.
This allows OrderedDict objects to be substituted anywhere a
regular dictionary is used.

The OrderedDict constructor and update() method both accept
keyword arguments, but their order is lost because Python’s function call
semantics pass-in keyword arguments using a regular unordered dictionary.

See also

Equivalent OrderedDict recipe [http://code.activestate.com/recipes/576693/]
that runs on Python 2.4 or later.

8.3.5.1. OrderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used
in conjuction with sorting to make a sorted dictionary:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

The new sorted dictionaries maintain their sort order when entries
are deleted. But when new keys are added, the keys are appended
to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant
that the remembers the order the keys were last inserted.
If a new entry overwrites an existing entry, the
original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict(OrderedDict):

 'Store items in the order the keys were last added'
 def __setitem__(self, key, value):
 if key in self:
 del self[key]
 OrderedDict.__setitem__(self, key, value)

An ordered dictionary can combined with the Counter class
so that the counter remembers the order elements are first encountered:

class OrderedCounter(Counter, OrderedDict):
 'Counter that remembers the order elements are first encountered'

 def __repr__(self):
 return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))

 def __reduce__(self):
 return self.__class__, (OrderedDict(self),)

8.3.6. ABCs - abstract base classes

The collections module offers the following ABCs:

	ABC
	Inherits from
	Abstract Methods
	Mixin Methods

	Container
	
	__contains__
	

	Hashable
	
	__hash__
	

	Iterable
	
	__iter__
	

	Iterator
	Iterable
	next
	__iter__

	Sized
	
	__len__
	

	Callable
	
	__call__
	

	Sequence
	Sized,
Iterable,
Container
	__getitem__
	__contains__. __iter__, __reversed__,
index, and count

	MutableSequence
	Sequence
	__setitem__,
__delitem__,
insert
	Inherited Sequence methods and
append, reverse, extend, pop,
remove, and __iadd__

	Set
	Sized,
Iterable,
Container
	
	__le__, __lt__, __eq__, __ne__,
__gt__, __ge__, __and__, __or__,
__sub__, __xor__, and isdisjoint

	MutableSet
	Set
	add,
discard
	Inherited Set methods and
clear, pop, remove, __ior__,
__iand__, __ixor__, and __isub__

	Mapping
	Sized,
Iterable,
Container
	__getitem__
	__contains__, keys, items, values,
get, __eq__, and __ne__

	MutableMapping
	Mapping
	__setitem__,
__delitem__
	Inherited Mapping methods and
pop, popitem, clear, update,
and setdefault

	MappingView
	Sized
	
	__len__

	ItemsView
	MappingView,
Set
	
	__contains__,
__iter__

	KeysView
	MappingView,
Set
	
	__contains__,
__iter__

	ValuesView
	MappingView
	
	__contains__, __iter__

	
class collections.Container

	
class collections.Hashable

	
class collections.Sized

	
class collections.Callable

	ABCs for classes that provide respectively the methods __contains__(),
__hash__(), __len__(), and __call__().

	
class collections.Iterable

	ABC for classes that provide the __iter__() method.
See also the definition of iterable.

	
class collections.Iterator

	ABC for classes that provide the __iter__() and next() methods.
See also the definition of iterator.

	
class collections.Sequence

	
class collections.MutableSequence

	ABCs for read-only and mutable sequences.

	
class collections.Set

	
class collections.MutableSet

	ABCs for read-only and mutable sets.

	
class collections.Mapping

	
class collections.MutableMapping

	ABCs for read-only and mutable mappings.

	
class collections.MappingView

	
class collections.ItemsView

	
class collections.KeysView

	
class collections.ValuesView

	ABCs for mapping, items, keys, and values views.

These ABCs allow us to ask classes or instances if they provide
particular functionality, for example:

size = None
if isinstance(myvar, collections.Sized):
 size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop
classes supporting container APIs. For example, to write a class supporting
the full Set API, it only necessary to supply the three underlying
abstract methods: __contains__(), __iter__(), and __len__().
The ABC supplies the remaining methods such as __and__() and
isdisjoint()

class ListBasedSet(collections.Set):
 ''' Alternate set implementation favoring space over speed
 and not requiring the set elements to be hashable. '''
 def __init__(self, iterable):
 self.elements = lst = []
 for value in iterable:
 if value not in lst:
 lst.append(value)
 def __iter__(self):
 return iter(self.elements)
 def __contains__(self, value):
 return value in self.elements
 def __len__(self):
 return len(self.elements)

s1 = ListBasedSet('abcdef')
s2 = ListBasedSet('defghi')
overlap = s1 & s2 # The __and__() method is supported automatically

Notes on using Set and MutableSet as a mixin:

	Since some set operations create new sets, the default mixin methods need
a way to create new instances from an iterable. The class constructor is
assumed to have a signature in the form ClassName(iterable).
That assumption is factored-out to an internal classmethod called
_from_iterable() which calls cls(iterable) to produce a new set.
If the Set mixin is being used in a class with a different
constructor signature, you will need to override _from_iterable()
with a classmethod that can construct new instances from
an iterable argument.

	To override the comparisons (presumably for speed, as the
semantics are fixed), redefine __le__() and
then the other operations will automatically follow suit.

	The Set mixin provides a _hash() method to compute a hash value
for the set; however, __hash__() is not defined because not all sets
are hashable or immutable. To add set hashabilty using mixins,
inherit from both Set() and Hashable(), then define
__hash__ = Set._hash.

See also

	Latest version of the Python source code for the collections abstract base classes [http://svn.python.org/view/python/branches/release27-maint/Lib/_abcoll.py?view=markup]

	OrderedSet recipe [http://code.activestate.com/recipes/576694/] for an
example built on MutableSet.

	For more about ABCs, see the abc module and PEP 3119 [http://www.python.org/dev/peps/pep-3119].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.4. heapq — Heap queue algorithm

New in version 2.3.

This module provides an implementation of the heap queue algorithm, also known
as the priority queue algorithm.

See also

Latest version of the heapq Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/heapq.py?view=markup]

Heaps are binary trees for which every parent node has a value less than or
equal to any of its children. This implementation uses arrays for which
heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k, counting
elements from zero. For the sake of comparison, non-existing elements are
considered to be infinite. The interesting property of a heap is that its
smallest element is always the root, heap[0].

The API below differs from textbook heap algorithms in two aspects: (a) We use
zero-based indexing. This makes the relationship between the index for a node
and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest
item, not the largest (called a “min heap” in textbooks; a “max heap” is more
common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without
surprises: heap[0] is the smallest item, and heap.sort() maintains the
heap invariant!

To create a heap, use a list initialized to [], or you can transform a
populated list into a heap via function heapify().

The following functions are provided:

	
heapq.heappush(heap, item)

	Push the value item onto the heap, maintaining the heap invariant.

	
heapq.heappop(heap)

	Pop and return the smallest item from the heap, maintaining the heap
invariant. If the heap is empty, IndexError is raised.

	
heapq.heappushpop(heap, item)

	Push item on the heap, then pop and return the smallest item from the
heap. The combined action runs more efficiently than heappush()
followed by a separate call to heappop().

New in version 2.6.

	
heapq.heapify(x)

	Transform list x into a heap, in-place, in linear time.

	
heapq.heapreplace(heap, item)

	Pop and return the smallest item from the heap, and also push the new item.
The heap size doesn’t change. If the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop() followed by
heappush() and can be more appropriate when using a fixed-size heap.
The pop/push combination always returns an element from the heap and replaces
it with item.

The value returned may be larger than the item added. If that isn’t
desired, consider using heappushpop() instead. Its push/pop
combination returns the smaller of the two values, leaving the larger value
on the heap.

The module also offers three general purpose functions based on heaps.

	
heapq.merge(*iterables)

	Merge multiple sorted inputs into a single sorted output (for example, merge
timestamped entries from multiple log files). Returns an iterator
over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does
not pull the data into memory all at once, and assumes that each of the input
streams is already sorted (smallest to largest).

New in version 2.6.

	
heapq.nlargest(n, iterable[, key])

	Return a list with the n largest elements from the dataset defined by
iterable. key, if provided, specifies a function of one argument that is
used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key,
reverse=True)[:n]

New in version 2.4.

Changed in version 2.5: Added the optional key argument.

	
heapq.nsmallest(n, iterable[, key])

	Return a list with the n smallest elements from the dataset defined by
iterable. key, if provided, specifies a function of one argument that is
used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key)[:n]

New in version 2.4.

Changed in version 2.5: Added the optional key argument.

The latter two functions perform best for smaller values of n. For larger
values, it is more efficient to use the sorted() function. Also, when
n==1, it is more efficient to use the built-in min() and max()
functions.

8.4.1. Basic Examples

A heapsort [http://en.wikipedia.org/wiki/Heapsort] can be implemented by
pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort(iterable):
... 'Equivalent to sorted(iterable)'
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Heap elements can be tuples. This is useful for assigning comparison values
(such as task priorities) alongside the main record being tracked:

>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')

8.4.2. Priority Queue Implementation Notes

A priority queue [http://en.wikipedia.org/wiki/Priority_queue] is common use
for a heap, and it presents several implementation challenges:

	Sort stability: how do you get two tasks with equal priorities to be returned
in the order they were originally added?

	In the future with Python 3, tuple comparison breaks for (priority, task)
pairs if the priorities are equal and the tasks do not have a default
comparison order.

	If the priority of a task changes, how do you move it to a new position in
the heap?

	Or if a pending task needs to be deleted, how do you find it and remove it
from the queue?

A solution to the first two challenges is to store entries as 3-element list
including the priority, an entry count, and the task. The entry count serves as
a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple
comparison will never attempt to directly compare two tasks.

The remaining challenges revolve around finding a pending task and making
changes to its priority or removing it entirely. Finding a task can be done
with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would
break the heap structure invariants. So, a possible solution is to mark an
entry as invalid and optionally add a new entry with the revised priority:

pq = [] # the priority queue list
counter = itertools.count(1) # unique sequence count
task_finder = {} # mapping of tasks to entries
INVALID = 0 # mark an entry as deleted

def add_task(priority, task, count=None):
 if count is None:
 count = next(counter)
 entry = [priority, count, task]
 task_finder[task] = entry
 heappush(pq, entry)

def get_top_priority():
 while True:
 priority, count, task = heappop(pq)
 del task_finder[task]
 if count is not INVALID:
 return task

def delete_task(task):
 entry = task_finder[task]
 entry[1] = INVALID

def reprioritize(priority, task):
 entry = task_finder[task]
 add_task(priority, task, entry[1])
 entry[1] = INVALID

8.4.3. Theory

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all
k, counting elements from 0. For the sake of comparison, non-existing
elements are considered to be infinite. The interesting property of a heap is
that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation
for a tournament. The numbers below are k, not a[k]:

 0

 1 2

 3 4 5 6

 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In an usual
binary tournament we see in sports, each cell is the winner over the two cells
it tops, and we can trace the winner down the tree to see all opponents s/he
had. However, in many computer applications of such tournaments, we do not need
to trace the history of a winner. To be more memory efficient, when a winner is
promoted, we try to replace it by something else at a lower level, and the rule
becomes that a cell and the two cells it tops contain three different items, but
the top cell “wins” over the two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall
winner. The simplest algorithmic way to remove it and find the “next” winner is
to move some loser (let’s say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the
invariant is re-established. This is clearly logarithmic on the total number of
items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while
the sort is going on, provided that the inserted items are not “better” than the
last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition
means the smallest scheduled time. When an event schedule other events for
execution, they are scheduled into the future, so they can easily go into the
heap. So, a heap is a good structure for implementing schedulers (this is what
I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied,
and heaps are good for this, as they are reasonably speedy, the speed is almost
constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet
the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a
big sort implies producing “runs” (which are pre-sorted sequences, which size is
usually related to the amount of CPU memory), followed by a merging passes for
these runs, which merging is often very cleverly organised [1]. It is very
important that the initial sort produces the longest runs possible. Tournaments
are a good way to that. If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run,
you’ll produce runs which are twice the size of the memory for random input, and
much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit
in the current tournament (because the value “wins” over the last output value),
it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap,
which grows at exactly the same rate the first heap is melting. When the first
heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. I use them in a few
applications, and I think it is good to keep a ‘heap’ module around. :-)

Footnotes

	[1]	The disk balancing algorithms which are current, nowadays, are more annoying
than clever, and this is a consequence of the seeking capabilities of the disks.
On devices which cannot seek, like big tape drives, the story was quite
different, and one had to be very clever to ensure (far in advance) that each
tape movement will be the most effective possible (that is, will best
participate at “progressing” the merge). Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time. Believe me, real
good tape sorts were quite spectacular to watch! From all times, sorting has
always been a Great Art! :-)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.5. bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without
having to sort the list after each insertion. For long lists of items with
expensive comparison operations, this can be an improvement over the more common
approach. The module is called bisect because it uses a basic bisection
algorithm to do its work. The source code may be most useful as a working
example of the algorithm (the boundary conditions are already right!).

New in version 2.1.

See also

Latest version of the bisect module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/bisect.py?view=markup]

The following functions are provided:

	
bisect.bisect_left(a, x, lo=0, hi=len(a))

	Locate the insertion point for x in a to maintain sorted order.
The parameters lo and hi may be used to specify a subset of the list
which should be considered; by default the entire list is used. If x is
already present in a, the insertion point will be before (to the left of)
any existing entries. The return value is suitable for use as the first
parameter to list.insert() assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so
that all(val < x for val in a[lo:i]) for the left side and
all(val >= x for val in a[i:hi]) for the right side.

	
bisect.bisect_right(a, x, lo=0, hi=len(a))

	
bisect.bisect(a, x, lo=0, hi=len(a))

	Similar to bisect_left(), but returns an insertion point which comes
after (to the right of) any existing entries of x in a.

The returned insertion point i partitions the array a into two halves so
that all(val <= x for val in a[lo:i]) for the left side and
all(val > x for val in a[i:hi]) for the right side.

	
bisect.insort_left(a, x, lo=0, hi=len(a))

	Insert x in a in sorted order. This is equivalent to
a.insert(bisect.bisect_left(a, x, lo, hi), x) assuming that a is
already sorted. Keep in mind that the O(log n) search is dominated by
the slow O(n) insertion step.

	
bisect.insort_right(a, x, lo=0, hi=len(a))

	
bisect.insort(a, x, lo=0, hi=len(a))

	Similar to insort_left(), but inserting x in a after any existing
entries of x.

See also

SortedCollection recipe [http://code.activestate.com/recipes/577197-sortedcollection/] that uses
bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save
unnecessary calls to the key function during searches.

8.5.1. Searching Sorted Lists

The above bisect() functions are useful for finding insertion points but
can be tricky or awkward to use for common searching tasks. The following five
functions show how to transform them into the standard lookups for sorted
lists:

def index(a, x):
 'Locate the leftmost value exactly equal to x'
 i = bisect_left(a, x)
 if i != len(a) and a[i] == x:
 return i
 raise ValueError

def find_lt(a, x):
 'Find rightmost value less than x'
 i = bisect_left(a, x)
 if i:
 return a[i-1]
 raise ValueError

def find_le(a, x):
 'Find rightmost value less than or equal to x'
 i = bisect_right(a, x)
 if i:
 return a[i-1]
 raise ValueError

def find_gt(a, x):
 'Find leftmost value greater than x'
 i = bisect_right(a, x)
 if i != len(a):
 return a[i]
 raise ValueError

def find_ge(a, x):
 'Find leftmost item greater than or equal to x'
 i = bisect_left(a, x)
 if i != len(a):
 return a[i]
 raise ValueError

8.5.2. Other Examples

The bisect() function can be useful for numeric table lookups. This
example uses bisect() to look up a letter grade for an exam score (say)
based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is
a ‘B’, and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
... i = bisect(breakpoints, score)
... return grades[i]
...
>>> [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]
['F', 'A', 'C', 'C', 'B', 'A', 'A']

Unlike the sorted() function, it does not make sense for the bisect()
functions to have key or reversed arguments because that would lead to an
inefficient design (successive calls to bisect functions would not “remember”
all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index
of the record in question:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort(key=lambda r: r[1])
>>> keys = [r[1] for r in data] # precomputed list of keys
>>> data[bisect_left(keys, 0)]
('black', 0)
>>> data[bisect_left(keys, 1)]
('blue', 1)
>>> data[bisect_left(keys, 5)]
('red', 5)
>>> data[bisect_left(keys, 8)]
('yellow', 8)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.6. array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of
basic values: characters, integers, floating point numbers. Arrays are sequence
types and behave very much like lists, except that the type of objects stored in
them is constrained. The type is specified at object creation time by using a
type code, which is a single character. The following type codes are
defined:

	Type code
	C Type
	Python Type
	Minimum size in bytes

	'c'
	char
	character
	1

	'b'
	signed char
	int
	1

	'B'
	unsigned char
	int
	1

	'u'
	Py_UNICODE
	Unicode character
	2 (see note)

	'h'
	signed short
	int
	2

	'H'
	unsigned short
	int
	2

	'i'
	signed int
	int
	2

	'I'
	unsigned int
	long
	2

	'l'
	signed long
	int
	4

	'L'
	unsigned long
	long
	4

	'f'
	float
	float
	4

	'd'
	double
	float
	8

Note

The 'u' typecode corresponds to Python’s unicode character. On narrow
Unicode builds this is 2-bytes, on wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture
(strictly speaking, by the C implementation). The actual size can be accessed
through the itemsize attribute. The values stored for 'L' and
'I' items will be represented as Python long integers when retrieved,
because Python’s plain integer type cannot represent the full range of C’s
unsigned (long) integers.

The module defines the following type:

	
class array.array(typecode[, initializer])

	A new array whose items are restricted by typecode, and initialized
from the optional initializer value, which must be a list, string, or iterable
over elements of the appropriate type.

Changed in version 2.4: Formerly, only lists or strings were accepted.

If given a list or string, the initializer is passed to the new array’s
fromlist(), fromstring(), or fromunicode() method (see below)
to add initial items to the array. Otherwise, the iterable initializer is
passed to the extend() method.

	
array.ArrayType

	Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing,
concatenation, and multiplication. When using slice assignment, the assigned
value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface,
and may be used wherever buffer objects are supported.

The following data items and methods are also supported:

	
array.typecode

	The typecode character used to create the array.

	
array.itemsize

	The length in bytes of one array item in the internal representation.

	
array.append(x)

	Append a new item with value x to the end of the array.

	
array.buffer_info()

	Return a tuple (address, length) giving the current memory address and the
length in elements of the buffer used to hold array’s contents. The size of the
memory buffer in bytes can be computed as array.buffer_info()[1] *
array.itemsize. This is occasionally useful when working with low-level (and
inherently unsafe) I/O interfaces that require memory addresses, such as certain
ioctl() operations. The returned numbers are valid as long as the array
exists and no length-changing operations are applied to it.

Note

When using array objects from code written in C or C++ (the only way to
effectively make use of this information), it makes more sense to use the buffer
interface supported by array objects. This method is maintained for backward
compatibility and should be avoided in new code. The buffer interface is
documented in bufferobjects.

	
array.byteswap()

	“Byteswap” all items of the array. This is only supported for values which are
1, 2, 4, or 8 bytes in size; for other types of values, RuntimeError is
raised. It is useful when reading data from a file written on a machine with a
different byte order.

	
array.count(x)

	Return the number of occurrences of x in the array.

	
array.extend(iterable)

	Append items from iterable to the end of the array. If iterable is another
array, it must have exactly the same type code; if not, TypeError will
be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

Changed in version 2.4: Formerly, the argument could only be another array.

	
array.fromfile(f, n)

	Read n items (as machine values) from the file object f and append them to
the end of the array. If less than n items are available, EOFError is
raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with a read()
method won’t do.

	
array.fromlist(list)

	Append items from the list. This is equivalent to for x in list:
a.append(x) except that if there is a type error, the array is unchanged.

	
array.fromstring(s)

	Appends items from the string, interpreting the string as an array of machine
values (as if it had been read from a file using the fromfile() method).

	
array.fromunicode(s)

	Extends this array with data from the given unicode string. The array must
be a type 'u' array; otherwise a ValueError is raised. Use
array.fromstring(unicodestring.encode(enc)) to append Unicode data to an
array of some other type.

	
array.index(x)

	Return the smallest i such that i is the index of the first occurrence of
x in the array.

	
array.insert(i, x)

	Insert a new item with value x in the array before position i. Negative
values are treated as being relative to the end of the array.

	
array.pop([i])

	Removes the item with the index i from the array and returns it. The optional
argument defaults to -1, so that by default the last item is removed and
returned.

	
array.read(f, n)

	
Deprecated since version 1.5.1: Use the fromfile() method.

Read n items (as machine values) from the file object f and append them to
the end of the array. If less than n items are available, EOFError is
raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with a read()
method won’t do.

	
array.remove(x)

	Remove the first occurrence of x from the array.

	
array.reverse()

	Reverse the order of the items in the array.

	
array.tofile(f)

	Write all items (as machine values) to the file object f.

	
array.tolist()

	Convert the array to an ordinary list with the same items.

	
array.tostring()

	Convert the array to an array of machine values and return the string
representation (the same sequence of bytes that would be written to a file by
the tofile() method.)

	
array.tounicode()

	Convert the array to a unicode string. The array must be a type 'u' array;
otherwise a ValueError is raised. Use array.tostring().decode(enc) to
obtain a unicode string from an array of some other type.

	
array.write(f)

	
Deprecated since version 1.5.1: Use the tofile() method.

Write all items (as machine values) to the file object f.

When an array object is printed or converted to a string, it is represented as
array(typecode, initializer). The initializer is omitted if the array is
empty, otherwise it is a string if the typecode is 'c', otherwise it is a
list of numbers. The string is guaranteed to be able to be converted back to an
array with the same type and value using eval(), so long as the
array() function has been imported using from array import array.
Examples:

array('l')
array('c', 'hello world')
array('u', u'hello \u2641')
array('l', [1, 2, 3, 4, 5])
array('d', [1.0, 2.0, 3.14])

See also

	Module struct

	Packing and unpacking of heterogeneous binary data.

	Module xdrlib

	Packing and unpacking of External Data Representation (XDR) data as used in some
remote procedure call systems.

	The Numerical Python Manual [http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm]

	The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python.
(A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.7. sets — Unordered collections of unique elements

New in version 2.3.

Deprecated since version 2.6: The built-in set/frozenset types replace this module.

The sets module provides classes for constructing and manipulating
unordered collections of unique elements. Common uses include membership
testing, removing duplicates from a sequence, and computing standard math
operations on sets such as intersection, union, difference, and symmetric
difference.

Like other collections, sets support x in set, len(set), and for x in
set. Being an unordered collection, sets do not record element position or
order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

Most set applications use the Set class which provides every set method
except for __hash__(). For advanced applications requiring a hash method,
the ImmutableSet class adds a __hash__() method but omits methods
which alter the contents of the set. Both Set and ImmutableSet
derive from BaseSet, an abstract class useful for determining whether
something is a set: isinstance(obj, BaseSet).

The set classes are implemented using dictionaries. Accordingly, the
requirements for set elements are the same as those for dictionary keys; namely,
that the element defines both __eq__() and __hash__(). As a result,
sets cannot contain mutable elements such as lists or dictionaries. However,
they can contain immutable collections such as tuples or instances of
ImmutableSet. For convenience in implementing sets of sets, inner sets
are automatically converted to immutable form, for example,
Set([Set(['dog'])]) is transformed to Set([ImmutableSet(['dog'])]).

	
class sets.Set([iterable])

	Constructs a new empty Set object. If the optional iterable
parameter is supplied, updates the set with elements obtained from iteration.
All of the elements in iterable should be immutable or be transformable to an
immutable using the protocol described in section Protocol for automatic conversion to immutable.

	
class sets.ImmutableSet([iterable])

	Constructs a new empty ImmutableSet object. If the optional iterable
parameter is supplied, updates the set with elements obtained from iteration.
All of the elements in iterable should be immutable or be transformable to an
immutable using the protocol described in section Protocol for automatic conversion to immutable.

Because ImmutableSet objects provide a __hash__() method, they
can be used as set elements or as dictionary keys. ImmutableSet
objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.

8.7.1. Set Objects

Instances of Set and ImmutableSet both provide the following
operations:

	Operation
	Equivalent
	Result

	len(s)
	
	cardinality of set s

	x in s
	
	test x for membership in s

	x not in s
	
	test x for non-membership in
s

	s.issubset(t)
	s <= t
	test whether every element in
s is in t

	s.issuperset(t)
	s >= t
	test whether every element in
t is in s

	s.union(t)
	s | t
	new set with elements from both
s and t

	s.intersection(t)
	s & t
	new set with elements common to
s and t

	s.difference(t)
	s - t
	new set with elements in s
but not in t

	s.symmetric_difference(t)
	s ^ t
	new set with elements in either
s or t but not both

	s.copy()
	
	new set with a shallow copy of
s

Note, the non-operator versions of union(), intersection(),
difference(), and symmetric_difference() will accept any iterable as
an argument. In contrast, their operator based counterparts require their
arguments to be sets. This precludes error-prone constructions like
Set('abc') & 'cbs' in favor of the more readable
Set('abc').intersection('cbs').

Changed in version 2.3.1: Formerly all arguments were required to be sets.

In addition, both Set and ImmutableSet support set to set
comparisons. Two sets are equal if and only if every element of each set is
contained in the other (each is a subset of the other). A set is less than
another set if and only if the first set is a proper subset of the second set
(is a subset, but is not equal). A set is greater than another set if and only
if the first set is a proper superset of the second set (is a superset, but is
not equal).

The subset and equality comparisons do not generalize to a complete ordering
function. For example, any two disjoint sets are not equal and are not subsets
of each other, so all of the following return False: a<b, a==b,
or a>b. Accordingly, sets do not implement the __cmp__() method.

Since sets only define partial ordering (subset relationships), the output of
the list.sort() method is undefined for lists of sets.

The following table lists operations available in ImmutableSet but not
found in Set:

	Operation
	Result

	hash(s)
	returns a hash value for s

The following table lists operations available in Set but not found in
ImmutableSet:

	Operation
	Equivalent
	Result

	s.update(t)
	s |= t
	return set s with elements
added from t

	s.intersection_update(t)
	s &= t
	return set s keeping only
elements also found in t

	s.difference_update(t)
	s -= t
	return set s after removing
elements found in t

	s.symmetric_difference_update(t)
	s ^= t
	return set s with elements
from s or t but not both

	s.add(x)
	
	add element x to set s

	s.remove(x)
	
	remove x from set s; raises
KeyError if not present

	s.discard(x)
	
	removes x from set s if
present

	s.pop()
	
	remove and return an arbitrary
element from s; raises
KeyError if empty

	s.clear()
	
	remove all elements from set
s

Note, the non-operator versions of update(), intersection_update(),
difference_update(), and symmetric_difference_update() will accept
any iterable as an argument.

Changed in version 2.3.1: Formerly all arguments were required to be sets.

Also note, the module also includes a union_update() method which is an
alias for update(). The method is included for backwards compatibility.
Programmers should prefer the update() method because it is supported by
the built-in set() and frozenset() types.

8.7.2. Example

>>> from sets import Set
>>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
>>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
>>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
>>> employees = engineers | programmers | managers # union
>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add('Marvin') # add element
>>> print engineers
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
>>> employees.issuperset(engineers) # superset test
False
>>> employees.update(engineers) # update from another set
>>> employees.issuperset(engineers)
True
>>> for group in [engineers, programmers, managers, employees]:
... group.discard('Susan') # unconditionally remove element
... print group
...
Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
Set(['Janice', 'Jack', 'Sam'])
Set(['Jane', 'Zack', 'Jack'])
Set(['Jack', 'Sam', 'Jane', 'Marvin', 'Janice', 'John', 'Zack'])

8.7.3. Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, mutable Set
objects are automatically copied to an ImmutableSet before being added
as a set element.

The mechanism is to always add a hashable element, or if it is not
hashable, the element is checked to see if it has an __as_immutable__()
method which returns an immutable equivalent.

Since Set objects have a __as_immutable__() method returning an
instance of ImmutableSet, it is possible to construct sets of sets.

A similar mechanism is needed by the __contains__() and remove()
methods which need to hash an element to check for membership in a set. Those
methods check an element for hashability and, if not, check for a
__as_temporarily_immutable__() method which returns the element wrapped by
a class that provides temporary methods for __hash__(), __eq__(),
and __ne__().

The alternate mechanism spares the need to build a separate copy of the original
mutable object.

Set objects implement the __as_temporarily_immutable__() method
which returns the Set object wrapped by a new class
_TemporarilyImmutableSet.

The two mechanisms for adding hashability are normally invisible to the user;
however, a conflict can arise in a multi-threaded environment where one thread
is updating a set while another has temporarily wrapped it in
_TemporarilyImmutableSet. In other words, sets of mutable sets are not
thread-safe.

8.7.4. Comparison to the built-in set types

The built-in set and frozenset types were designed based on
lessons learned from the sets module. The key differences are:

	Set and ImmutableSet were renamed to set and
frozenset.

	There is no equivalent to BaseSet. Instead, use isinstance(x,
(set, frozenset)).

	The hash algorithm for the built-ins performs significantly better (fewer
collisions) for most datasets.

	The built-in versions have more space efficient pickles.

	The built-in versions do not have a union_update() method. Instead, use
the update() method which is equivalent.

	The built-in versions do not have a _repr(sorted=True) method.
Instead, use the built-in repr() and sorted() functions:
repr(sorted(s)).

	The built-in version does not have a protocol for automatic conversion to
immutable. Many found this feature to be confusing and no one in the community
reported having found real uses for it.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.8. sched — Event scheduler

The sched module defines a class which implements a general purpose event
scheduler:

See also

Latest version of the sched module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/sched.py?view=markup]

	
class sched.scheduler(timefunc, delayfunc)

	The scheduler class defines a generic interface to scheduling events.
It needs two functions to actually deal with the “outside world” — timefunc
should be callable without arguments, and return a number (the “time”, in any
units whatsoever). The delayfunc function should be callable with one
argument, compatible with the output of timefunc, and should delay that many
time units. delayfunc will also be called with the argument 0 after each
event is run to allow other threads an opportunity to run in multi-threaded
applications.

Example:

>>> import sched, time
>>> s = sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()
... s.enter(5, 1, print_time, ())
... s.enter(10, 1, print_time, ())
... s.run()
... print time.time()
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations
with respect to thread-safety, inability to insert a new task before
the one currently pending in a running scheduler, and holding up the main
thread until the event queue is empty. Instead, the preferred approach
is to use the threading.Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time():
... print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()
... Timer(5, print_time, ()).start()
... Timer(10, print_time, ()).start()
... time.sleep(11) # sleep while time-delay events execute
... print time.time()
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343701.301

8.8.1. Scheduler Objects

scheduler instances have the following methods and attributes:

	
scheduler.enterabs(time, priority, action, argument)

	Schedule a new event. The time argument should be a numeric type compatible
with the return value of the timefunc function passed to the constructor.
Events scheduled for the same time will be executed in the order of their
priority.

Executing the event means executing action(*argument). argument must be a
sequence holding the parameters for action.

Return value is an event which may be used for later cancellation of the event
(see cancel()).

	
scheduler.enter(delay, priority, action, argument)

	Schedule an event for delay more time units. Other then the relative time, the
other arguments, the effect and the return value are the same as those for
enterabs().

	
scheduler.cancel(event)

	Remove the event from the queue. If event is not an event currently in the
queue, this method will raise a ValueError.

	
scheduler.empty()

	Return true if the event queue is empty.

	
scheduler.run()

	Run all scheduled events. This function will wait (using the delayfunc()
function passed to the constructor) for the next event, then execute it and so
on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the
scheduler will maintain a consistent state and propagate the exception. If an
exception is raised by action, the event will not be attempted in future calls
to run().

If a sequence of events takes longer to run than the time available before the
next event, the scheduler will simply fall behind. No events will be dropped;
the calling code is responsible for canceling events which are no longer
pertinent.

	
scheduler.queue

	Read-only attribute returning a list of upcoming events in the order they
will be run. Each event is shown as a named tuple with the
following fields: time, priority, action, argument.

New in version 2.6.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.9. mutex — Mutual exclusion support

Deprecated since version 2.6: The mutex module has been removed in Python 3.0.

The mutex module defines a class that allows mutual-exclusion via
acquiring and releasing locks. It does not require (or imply)
threading or multi-tasking, though it could be useful for those
purposes.

The mutex module defines the following class:

	
class mutex.mutex

	Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex
is not locked, the queue is empty. Otherwise, the queue contains zero or more
(function, argument) pairs representing functions (or methods) waiting to
acquire the lock. When the mutex is unlocked while the queue is not empty, the
first queue entry is removed and its function(argument) pair called,
implying it now has the lock.

Of course, no multi-threading is implied – hence the funny interface for
lock(), where a function is called once the lock is acquired.

8.9.1. Mutex Objects

mutex objects have following methods:

	
mutex.test()

	Check whether the mutex is locked.

	
mutex.testandset()

	“Atomic” test-and-set, grab the lock if it is not set, and return True,
otherwise, return False.

	
mutex.lock(function, argument)

	Execute function(argument), unless the mutex is locked. In the case it is
locked, place the function and argument on the queue. See unlock() for
explanation of when function(argument) is executed in that case.

	
mutex.unlock()

	Unlock the mutex if queue is empty, otherwise execute the first element in the
queue.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.10. queue — A synchronized queue class

The Queue module implements multi-producer, multi-consumer queues.
It is especially useful in threaded programming when information must be
exchanged safely between multiple threads. The Queue class in this
module implements all the required locking semantics. It depends on the
availability of thread support in Python; see the threading
module.

Implements three types of queue whose only difference is the order that
the entries are retrieved. In a FIFO queue, the first tasks added are
the first retrieved. In a LIFO queue, the most recently added entry is
the first retrieved (operating like a stack). With a priority queue,
the entries are kept sorted (using the heapq module) and the
lowest valued entry is retrieved first.

See also

Latest version of the queue module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/Queue.py?view=markup].

The Queue module defines the following classes and exceptions:

	
class Queue.Queue(maxsize=0)

	Constructor for a FIFO queue. maxsize is an integer that sets the upperbound
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

	
class Queue.LifoQueue(maxsize=0)

	Constructor for a LIFO queue. maxsize is an integer that sets the upperbound
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

New in version 2.6.

	
class Queue.PriorityQueue(maxsize=0)

	Constructor for a priority queue. maxsize is an integer that sets the upperbound
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the
one returned by sorted(list(entries))[0]). A typical pattern for entries
is a tuple in the form: (priority_number, data).

New in version 2.6.

	
exception Queue.Empty

	Exception raised when non-blocking get() (or get_nowait()) is called
on a Queue object which is empty.

	
exception Queue.Full

	Exception raised when non-blocking put() (or put_nowait()) is called
on a Queue object which is full.

See also

collections.deque is an alternative implementation of unbounded
queues with fast atomic append() and popleft() operations that
do not require locking.

8.10.1. Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue)
provide the public methods described below.

	
Queue.qsize()

	Return the approximate size of the queue. Note, qsize() > 0 doesn’t
guarantee that a subsequent get() will not block, nor will qsize() < maxsize
guarantee that put() will not block.

	
Queue.empty()

	Return True if the queue is empty, False otherwise. If empty()
returns True it doesn’t guarantee that a subsequent call to put()
will not block. Similarly, if empty() returns False it doesn’t
guarantee that a subsequent call to get() will not block.

	
Queue.full()

	Return True if the queue is full, False otherwise. If full()
returns True it doesn’t guarantee that a subsequent call to get()
will not block. Similarly, if full() returns False it doesn’t
guarantee that a subsequent call to put() will not block.

	
Queue.put(item[, block[, timeout]])

	Put item into the queue. If optional args block is true and timeout is
None (the default), block if necessary until a free slot is available. If
timeout is a positive number, it blocks at most timeout seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (block is false), put an item on the queue if a free slot is
immediately available, else raise the Full exception (timeout is
ignored in that case).

New in version 2.3: The timeout parameter.

	
Queue.put_nowait(item)

	Equivalent to put(item, False).

	
Queue.get([block[, timeout]])

	Remove and return an item from the queue. If optional args block is true and
timeout is None (the default), block if necessary until an item is available.
If timeout is a positive number, it blocks at most timeout seconds and
raises the Empty exception if no item was available within that time.
Otherwise (block is false), return an item if one is immediately available,
else raise the Empty exception (timeout is ignored in that case).

New in version 2.3: The timeout parameter.

	
Queue.get_nowait()

	Equivalent to get(False).

Two methods are offered to support tracking whether enqueued tasks have been
fully processed by daemon consumer threads.

	
Queue.task_done()

	Indicate that a formerly enqueued task is complete. Used by queue consumer
threads. For each get() used to fetch a task, a subsequent call to
task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been
processed (meaning that a task_done() call was received for every item
that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in
the queue.

New in version 2.5.

	
Queue.join()

	Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue.
The count goes down whenever a consumer thread calls task_done() to
indicate that the item was retrieved and all work on it is complete. When the
count of unfinished tasks drops to zero, join() unblocks.

New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker():
 while True:
 item = q.get()
 do_work(item)
 q.task_done()

q = Queue()
for i in range(num_worker_threads):
 t = Thread(target=worker)
 t.daemon = True
 t.start()

for item in source():
 q.put(item)

q.join() # block until all tasks are done

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.11. weakref — Weak references

New in version 2.1.

The weakref module allows the Python programmer to create weak
references to objects.

In the following, the term referent means the object which is referred to
by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the
only remaining references to a referent are weak references,
garbage collection is free to destroy the referent and reuse its memory
for something else. A primary use for weak references is to implement caches or
mappings holding large objects, where it’s desired that a large object not be
kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to
associate a name with each. If you used a Python dictionary to map names to
images, or images to names, the image objects would remain alive just because
they appeared as values or keys in the dictionaries. The
WeakKeyDictionary and WeakValueDictionary classes supplied by
the weakref module are an alternative, using weak references to construct
mappings that don’t keep objects alive solely because they appear in the mapping
objects. If, for example, an image object is a value in a
WeakValueDictionary, then when the last remaining references to that
image object are the weak references held by weak mappings, garbage collection
can reclaim the object, and its corresponding entries in weak mappings are
simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references
in their implementation, setting up callback functions on the weak references
that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak
dictionary types is all they need – it’s not usually necessary to create your
own weak references directly. The low-level machinery used by the weak
dictionary implementations is exposed by the weakref module for the
benefit of advanced uses.

Note

Weak references to an object are cleared before the object’s __del__()
is called, to ensure that the weak reference callback (if any) finds the
object still alive.

Not all objects can be weakly referenced; those objects which can include class
instances, functions written in Python (but not in C), methods (both bound and
unbound), sets, frozensets, file objects, generators, type objects,
DBcursor objects from the bsddb module, sockets, arrays, deques,
regular expression pattern objects, and code objects.

Changed in version 2.4: Added support for files, sockets, arrays, and patterns.

Changed in version 2.7: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as list and dict do not directly
support weak references but can add support through subclassing:

class Dict(dict):
 pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

CPython implementation detail: Other built-in types such as tuple and long do not support
weak references even when subclassed.

Extension types can easily be made to support weak references; see
Weak Reference Support.

	
class weakref.ref(object[, callback])

	Return a weak reference to object. The original object can be retrieved by
calling the reference object if the referent is still alive; if the referent is
no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned
weakref object is still alive, the callback will be called when the object is
about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object.
Callbacks registered for each weak reference will be called from the most
recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output,
but cannot be propagated; they are handled in exactly the same way as exceptions
raised from an object’s __del__() method.

Weak references are hashable if the object is hashable. They will maintain
their hash value even after the object was deleted. If hash() is called
the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents
are still alive, two references have the same equality relationship as their
referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derives from
object.

	
weakref.proxy(object[, callback])

	Return a proxy to object which uses a weak reference. This supports use of
the proxy in most contexts instead of requiring the explicit dereferencing used
with weak reference objects. The returned object will have a type of either
ProxyType or CallableProxyType, depending on whether object is
callable. Proxy objects are not hashable regardless of the referent; this
avoids a number of problems related to their fundamentally mutable nature, and
prevent their use as dictionary keys. callback is the same as the parameter
of the same name to the ref() function.

	
weakref.getweakrefcount(object)

	Return the number of weak references and proxies which refer to object.

	
weakref.getweakrefs(object)

	Return a list of all weak reference and proxy objects which refer to object.

	
class weakref.WeakKeyDictionary([dict])

	Mapping class that references keys weakly. Entries in the dictionary will be
discarded when there is no longer a strong reference to the key. This can be
used to associate additional data with an object owned by other parts of an
application without adding attributes to those objects. This can be especially
useful with objects that override attribute accesses.

Note

Caution: Because a WeakKeyDictionary is built on top of a Python
dictionary, it must not change size when iterating over it. This can be
difficult to ensure for a WeakKeyDictionary because actions
performed by the program during iteration may cause items in the
dictionary to vanish “by magic” (as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These
expose the internal references directly. The references are not guaranteed to
be “live” at the time they are used, so the result of calling the references
needs to be checked before being used. This can be used to avoid creating
references that will cause the garbage collector to keep the keys around longer
than needed.

	
WeakKeyDictionary.iterkeyrefs()

	Return an iterator that yields the weak references to the keys.

New in version 2.5.

	
WeakKeyDictionary.keyrefs()

	Return a list of weak references to the keys.

New in version 2.5.

	
class weakref.WeakValueDictionary([dict])

	Mapping class that references values weakly. Entries in the dictionary will be
discarded when no strong reference to the value exists any more.

Note

Caution: Because a WeakValueDictionary is built on top of a Python
dictionary, it must not change size when iterating over it. This can be
difficult to ensure for a WeakValueDictionary because actions performed
by the program during iteration may cause items in the dictionary to vanish “by
magic” (as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods.
These method have the same issues as the iterkeyrefs() and keyrefs()
methods of WeakKeyDictionary objects.

	
WeakValueDictionary.itervaluerefs()

	Return an iterator that yields the weak references to the values.

New in version 2.5.

	
WeakValueDictionary.valuerefs()

	Return a list of weak references to the values.

New in version 2.5.

	
class weakref.WeakSet([elements])

	Set class that keeps weak references to its elements. An element will be
discarded when no strong reference to it exists any more.

New in version 2.7.

	
weakref.ReferenceType

	The type object for weak references objects.

	
weakref.ProxyType

	The type object for proxies of objects which are not callable.

	
weakref.CallableProxyType

	The type object for proxies of callable objects.

	
weakref.ProxyTypes

	Sequence containing all the type objects for proxies. This can make it simpler
to test if an object is a proxy without being dependent on naming both proxy
types.

	
exception weakref.ReferenceError

	Exception raised when a proxy object is used but the underlying object has been
collected. This is the same as the standard ReferenceError exception.

See also

	PEP 0205 [http://www.python.org/dev/peps/pep-0205] - Weak References

	The proposal and rationale for this feature, including links to earlier
implementations and information about similar features in other languages.

8.11.1. Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent
to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
... pass
...
>>> o = Object()
>>> r = weakref.ref(o)
>>> o2 = r()
>>> o is o2
True

If the referent no longer exists, calling the reference object returns
None:

>>> del o, o2
>>> print r()
None

Testing that a weak reference object is still live should be done using the
expression ref() is not None. Normally, application code that needs to use
a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
 # referent has been garbage collected
 print "Object has been deallocated; can't frobnicate."
else:
 print "Object is still live!"
 o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded
applications; another thread can cause a weak reference to become invalidated
before the weak reference is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing.
This is used in the implementation of the WeakValueDictionary to reduce
the memory overhead for each entry in the mapping. This may be most useful to
associate additional information with a reference, but could also be used to
insert additional processing on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store
additional information about an object and affect the value that’s returned when
the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):
 def __init__(self, ob, callback=None, **annotations):
 super(ExtendedRef, self).__init__(ob, callback)
 self.__counter = 0
 for k, v in annotations.iteritems():
 setattr(self, k, v)

 def __call__(self):
 """Return a pair containing the referent and the number of
 times the reference has been called.
 """
 ob = super(ExtendedRef, self).__call__()
 if ob is not None:
 self.__counter += 1
 ob = (ob, self.__counter)
 return ob

8.11.2. Example

This simple example shows how an application can use objects IDs to retrieve
objects that it has seen before. The IDs of the objects can then be used in
other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
 oid = id(obj)
 _id2obj_dict[oid] = obj
 return oid

def id2obj(oid):
 return _id2obj_dict[oid]

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.12. UserDict — Class wrapper for dictionary objects

The module defines a mixin, DictMixin, defining all dictionary methods
for classes that already have a minimum mapping interface. This greatly
simplifies writing classes that need to be substitutable for dictionaries (such
as the shelve module).

This module also defines a class, UserDict, that acts as a wrapper
around dictionary objects. The need for this class has been largely supplanted
by the ability to subclass directly from dict (a feature that became
available starting with Python version 2.2). Prior to the introduction of
dict, the UserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding
new ones.

See also

Latest version of the UserDict Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/UserDict.py?view=markup]

The UserDict module defines the UserDict class and
DictMixin:

	
class UserDict.UserDict([initialdata])

	Class that simulates a dictionary. The instance’s contents are kept in a
regular dictionary, which is accessible via the data attribute of
UserDict instances. If initialdata is provided, data is
initialized with its contents; note that a reference to initialdata will not
be kept, allowing it be used for other purposes.

Note

For backward compatibility, instances of UserDict are not iterable.

	
class UserDict.IterableUserDict([initialdata])

	Subclass of UserDict that supports direct iteration (e.g. for key in
myDict).

In addition to supporting the methods and operations of mappings (see section
Mapping Types — dict), UserDict and IterableUserDict instances
provide the following attribute:

	
IterableUserDict.data

	A real dictionary used to store the contents of the UserDict class.

	
class UserDict.DictMixin

	Mixin defining all dictionary methods for classes that already have a minimum
dictionary interface including __getitem__(), __setitem__(),
__delitem__(), and keys().

This mixin should be used as a superclass. Adding each of the above methods
adds progressively more functionality. For instance, defining all but
__delitem__() will preclude only pop() and popitem() from the
full interface.

In addition to the four base methods, progressively more efficiency comes with
defining __contains__(), __iter__(), and iteritems().

Since the mixin has no knowledge of the subclass constructor, it does not define
__init__() or copy().

Starting with Python version 2.6, it is recommended to use
collections.MutableMapping instead of DictMixin.

8.13. UserList — Class wrapper for list objects

Note

This module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2,
please consider subclassing directly from the built-in list type.

This module defines a class that acts as a wrapper around list objects. It is a
useful base class for your own list-like classes, which can inherit from them
and override existing methods or add new ones. In this way one can add new
behaviors to lists.

The UserList module defines the UserList class:

	
class UserList.UserList([list])

	Class that simulates a list. The instance’s contents are kept in a regular
list, which is accessible via the data attribute of UserList
instances. The instance’s contents are initially set to a copy of list,
defaulting to the empty list []. list can be any iterable, e.g. a
real Python list or a UserList object.

Note

The UserList class has been moved to the collections
module in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.

In addition to supporting the methods and operations of mutable sequences (see
section Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange), UserList instances provide the following
attribute:

	
UserList.data

	A real Python list object used to store the contents of the UserList
class.

Subclassing requirements: Subclasses of UserList are expect to
offer a constructor which can be called with either no arguments or one
argument. List operations which return a new sequence attempt to create an
instance of the actual implementation class. To do so, it assumes that the
constructor can be called with a single parameter, which is a sequence object
used as a data source.

If a derived class does not wish to comply with this requirement, all of the
special methods supported by this class will need to be overridden; please
consult the sources for information about the methods which need to be provided
in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable
with no parameters, and offer a mutable data attribute. Earlier
versions of Python did not attempt to create instances of the derived class.

8.14. UserString — Class wrapper for string objects

Note

This UserString class from this module is available for backward
compatibility only. If you are writing code that does not need to work with
versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-in str type instead of using UserString (there
is no built-in equivalent to MutableString).

This module defines a class that acts as a wrapper around string objects. It is
a useful base class for your own string-like classes, which can inherit from
them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real
string or Unicode objects; this is especially the case for
MutableString.

The UserString module defines the following classes:

	
class UserString.UserString([sequence])

	Class that simulates a string or a Unicode string object. The instance’s
content is kept in a regular string or Unicode string object, which is
accessible via the data attribute of UserString instances. The
instance’s contents are initially set to a copy of sequence. sequence can
be either a regular Python string or Unicode string, an instance of
UserString (or a subclass) or an arbitrary sequence which can be
converted into a string using the built-in str() function.

Note

The UserString class has been moved to the collections
module in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.

	
class UserString.MutableString([sequence])

	This class is derived from the UserString above and redefines strings
to be mutable. Mutable strings can’t be used as dictionary keys, because
dictionaries require immutable objects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to
remove (override) the __hash__() method in order to trap attempts to use a
mutable object as dictionary key, which would be otherwise very error prone and
hard to track down.

Deprecated since version 2.6: The MutableString class has been removed in Python 3.0.

In addition to supporting the methods and operations of string and Unicode
objects (see section String Methods), UserString instances
provide the following attribute:

	
MutableString.data

	A real Python string or Unicode object used to store the content of the
UserString class.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.15. types — Names for built-in types

This module defines names for some object types that are used by the standard
Python interpreter, but not for the types defined by various extension modules.
Also, it does not include some of the types that arise during processing such as
the listiterator type. It is safe to use from types import * — the
module does not export any names besides the ones listed here. New names
exported by future versions of this module will all end in Type.

Typical use is for functions that do different things depending on their
argument types, like the following:

from types import *
def delete(mylist, item):
 if type(item) is IntType:
 del mylist[item]
 else:
 mylist.remove(item)

Starting in Python 2.2, built-in factory functions such as int() and
str() are also names for the corresponding types. This is now the
preferred way to access the type instead of using the types module.
Accordingly, the example above should be written as follows:

def delete(mylist, item):
 if isinstance(item, int):
 del mylist[item]
 else:
 mylist.remove(item)

The module defines the following names:

	
types.NoneType

	The type of None.

	
types.TypeType

	The type of type objects (such as returned by type()); alias of the
built-in type.

	
types.BooleanType

	The type of the bool values True and False; alias of the
built-in bool.

New in version 2.3.

	
types.IntType

	The type of integers (e.g. 1); alias of the built-in int.

	
types.LongType

	The type of long integers (e.g. 1L); alias of the built-in long.

	
types.FloatType

	The type of floating point numbers (e.g. 1.0); alias of the built-in
float.

	
types.ComplexType

	The type of complex numbers (e.g. 1.0j). This is not defined if Python was
built without complex number support.

	
types.StringType

	The type of character strings (e.g. 'Spam'); alias of the built-in
str.

	
types.UnicodeType

	The type of Unicode character strings (e.g. u'Spam'). This is not defined
if Python was built without Unicode support. It’s an alias of the built-in
unicode.

	
types.TupleType

	The type of tuples (e.g. (1, 2, 3, 'Spam')); alias of the built-in
tuple.

	
types.ListType

	The type of lists (e.g. [0, 1, 2, 3]); alias of the built-in
list.

	
types.DictType

	The type of dictionaries (e.g. {'Bacon': 1, 'Ham': 0}); alias of the
built-in dict.

	
types.DictionaryType

	An alternate name for DictType.

	
types.FunctionType

	
types.LambdaType

	The type of user-defined functions and functions created by lambda
expressions.

	
types.GeneratorType

	The type of generator-iterator objects, produced by calling a
generator function.

New in version 2.2.

	
types.CodeType

	The type for code objects such as returned by compile().

	
types.ClassType

	The type of user-defined old-style classes.

	
types.InstanceType

	The type of instances of user-defined classes.

	
types.MethodType

	The type of methods of user-defined class instances.

	
types.UnboundMethodType

	An alternate name for MethodType.

	
types.BuiltinFunctionType

	
types.BuiltinMethodType

	The type of built-in functions like len() or sys.exit(), and
methods of built-in classes. (Here, the term “built-in” means “written in
C”.)

	
types.ModuleType

	The type of modules.

	
types.FileType

	The type of open file objects such as sys.stdout; alias of the built-in
file.

	
types.XRangeType

	The type of range objects returned by xrange(); alias of the built-in
xrange.

	
types.SliceType

	The type of objects returned by slice(); alias of the built-in
slice.

	
types.EllipsisType

	The type of Ellipsis.

	
types.TracebackType

	The type of traceback objects such as found in sys.exc_traceback.

	
types.FrameType

	The type of frame objects such as found in tb.tb_frame if tb is a
traceback object.

	
types.BufferType

	The type of buffer objects created by the buffer() function.

	
types.DictProxyType

	The type of dict proxies, such as TypeType.__dict__.

	
types.NotImplementedType

	The type of NotImplemented

	
types.GetSetDescriptorType

	The type of objects defined in extension modules with PyGetSetDef, such
as FrameType.f_locals or array.array.typecode. This type is used as
descriptor for object attributes; it has the same purpose as the
property type, but for classes defined in extension modules.

New in version 2.5.

	
types.MemberDescriptorType

	The type of objects defined in extension modules with PyMemberDef, such
as datetime.timedelta.days. This type is used as descriptor for simple C
data members which use standard conversion functions; it has the same purpose
as the property type, but for classes defined in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType.

New in version 2.5.

	
types.StringTypes

	A sequence containing StringType and UnicodeType used to facilitate
easier checking for any string object. Using this is more portable than using a
sequence of the two string types constructed elsewhere since it only contains
UnicodeType if it has been built in the running version of Python. For
example: isinstance(s, types.StringTypes).

New in version 2.2.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.16. new — Creation of runtime internal objects

Deprecated since version 2.6: The new module has been removed in Python 3.0. Use the types
module’s classes instead.

The new module allows an interface to the interpreter object creation
functions. This is for use primarily in marshal-type functions, when a new
object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so
care must be exercised when using this module. It is possible to supply
non-sensical arguments which crash the interpreter when the object is used.

The new module defines the following functions:

	
new.instance(class[, dict])

	This function creates an instance of class with dictionary dict without
calling the __init__() constructor. If dict is omitted or None, a
new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

	
new.instancemethod(function, instance, class)

	This function will return a method object, bound to instance, or unbound if
instance is None. function must be callable.

	
new.function(code, globals[, name[, argdefs[, closure]]])

	Returns a (Python) function with the given code and globals. If name is given,
it must be a string or None. If it is a string, the function will have the
given name, otherwise the function name will be taken from code.co_name. If
argdefs is given, it must be a tuple and will be used to determine the default
values of parameters. If closure is given, it must be None or a tuple of
cell objects containing objects to bind to the names in code.co_freevars.

	
new.code(argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, lnotab)

	This function is an interface to the PyCode_New() C function.

	
new.module(name[, doc])

	This function returns a new module object with name name. name must be a
string. The optional doc argument can have any type.

	
new.classobj(name, baseclasses, dict)

	This function returns a new class object, with name name, derived from
baseclasses (which should be a tuple of classes) and with namespace dict.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.17. copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

	
copy.copy(x)

	Return a shallow copy of x.

	
copy.deepcopy(x)

	Return a deep copy of x.

	
exception copy.error

	Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound
objects (objects that contain other objects, like lists or class instances):

	A shallow copy constructs a new compound object and then (to the extent
possible) inserts references into it to the objects found in the original.

	A deep copy constructs a new compound object and then, recursively, inserts
copies into it of the objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow
copy operations:

	Recursive objects (compound objects that, directly or indirectly, contain a
reference to themselves) may cause a recursive loop.

	Because deep copy copies everything it may copy too much, e.g.,
administrative data structures that should be shared even between copies.

The deepcopy() function avoids these problems by:

	keeping a “memo” dictionary of objects already copied during the current
copying pass; and

	letting user-defined classes override the copying operation or the set of
components copied.

This module does not copy types like module, method, stack trace, stack frame,
file, socket, window, array, or any similar types. It does “copy” functions and
classes (shallow and deeply), by returning the original object unchanged; this
is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy(), and
of lists by assigning a slice of the entire list, for example,
copied_list = original_list[:].

Changed in version 2.5: Added copying functions.

Classes can use the same interfaces to control copying that they use to control
pickling. See the description of module pickle for information on these
methods. The copy module does not use the copy_reg registration
module.

In order for a class to define its own copy implementation, it can define
special methods __copy__() and __deepcopy__(). The former is called
to implement the shallow copy operation; no additional arguments are passed.
The latter is called to implement the deep copy operation; it is passed one
argument, the memo dictionary. If the __deepcopy__() implementation needs
to make a deep copy of a component, it should call the deepcopy() function
with the component as first argument and the memo dictionary as second argument.

See also

	Module pickle

	Discussion of the special methods used to support object state retrieval and
restoration.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.18. pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary
Python data structures in a form which can be used as input to the interpreter.
If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects
such as files, sockets, classes, or instances are included, as well as many
other built-in objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and
breaks them onto multiple lines if they don’t fit within the allowed width.
Construct PrettyPrinter objects explicitly if you need to adjust the
width constraint.

Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a
dictionary was sorted only if its display required more than one line, although
that wasn’t documented.

Changed in version 2.6: Added support for set and frozenset.

See also

Latest version of the pprint module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/pprint.py?view=markup]

The pprint module defines one class:

	
class pprint.PrettyPrinter(...)

	Construct a PrettyPrinter instance. This constructor understands
several keyword parameters. An output stream may be set using the stream
keyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, the PrettyPrinter adopts
sys.stdout. Three additional parameters may be used to control the
formatted representation. The keywords are indent, depth, and width. The
amount of indentation added for each recursive level is specified by indent;
the default is one. Other values can cause output to look a little odd, but can
make nesting easier to spot. The number of levels which may be printed is
controlled by depth; if the data structure being printed is too deep, the next
contained level is replaced by By default, there is no constraint on
the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is 80 characters. If a
structure cannot be formatted within the constrained width, a best effort will
be made.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[['spam', 'eggs', 'lumberjack', 'knights', 'ni'],
 'spam',
 'eggs',
 'lumberjack',
 'knights',
 'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
... ('parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

The PrettyPrinter class supports several derivative functions:

	
pprint.pformat(object[, indent[, width[, depth]]])

	Return the formatted representation of object as a string. indent, width
and depth will be passed to the PrettyPrinter constructor as
formatting parameters.

Changed in version 2.4: The parameters indent, width and depth were added.

	
pprint.pprint(object[, stream[, indent[, width[, depth]]]])

	Prints the formatted representation of object on stream, followed by a
newline. If stream is omitted, sys.stdout is used. This may be used in
the interactive interpreter instead of a print statement for
inspecting values. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=...>,
 'spam',
 'eggs',
 'lumberjack',
 'knights',
 'ni']

Changed in version 2.4: The parameters indent, width and depth were added.

	
pprint.isreadable(object)

	Determine if the formatted representation of object is “readable,” or can be
used to reconstruct the value using eval(). This always returns False
for recursive objects.

>>> pprint.isreadable(stuff)
False

	
pprint.isrecursive(object)

	Determine if object requires a recursive representation.

One more support function is also defined:

	
pprint.saferepr(object)

	Return a string representation of object, protected against recursive data
structures. If the representation of object exposes a recursive entry, the
recursive reference will be represented as <Recursion on typename with
id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni']"

8.18.1. PrettyPrinter Objects

PrettyPrinter instances have the following methods:

	
PrettyPrinter.pformat(object)

	Return the formatted representation of object. This takes into account the
options passed to the PrettyPrinter constructor.

	
PrettyPrinter.pprint(object)

	Print the formatted representation of object on the configured stream,
followed by a newline.

The following methods provide the implementations for the corresponding
functions of the same names. Using these methods on an instance is slightly
more efficient since new PrettyPrinter objects don’t need to be
created.

	
PrettyPrinter.isreadable(object)

	Determine if the formatted representation of the object is “readable,” or can be
used to reconstruct the value using eval(). Note that this returns
False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this
returns False.

	
PrettyPrinter.isrecursive(object)

	Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects
are converted to strings. The default implementation uses the internals of the
saferepr() implementation.

	
PrettyPrinter.format(object, context, maxlevels, level)

	Returns three values: the formatted version of object as a string, a flag
indicating whether the result is readable, and a flag indicating whether
recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id() of objects that are part of
the current presentation context (direct and indirect containers for object
that are affecting the presentation) as the keys; if an object needs to be
presented which is already represented in context, the third return value
should be True. Recursive calls to the format() method should add
additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there
is no requested limit. This argument should be passed unmodified to recursive
calls. The fourth argument, level, gives the current level; recursive calls
should be passed a value less than that of the current call.

New in version 2.3.

8.18.2. pprint Example

This example demonstrates several uses of the pprint() function and its parameters.

>>> import pprint
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
... ('parrot', ('fresh fruit',))))))))
>>> stuff = ['a' * 10, tup, ['a' * 30, 'b' * 30], ['c' * 20, 'd' * 20]]
>>> pprint.pprint(stuff)
['aaaaaaaaaa',
 ('spam',
 ('eggs',
 ('lumberjack',
 ('knights', ('ni', ('dead', ('parrot', ('fresh fruit',)))))))),
 ['aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb'],
 ['cccccccccccccccccccc', 'dddddddddddddddddddd']]
>>> pprint.pprint(stuff, depth=3)
['aaaaaaaaaa',
 ('spam', ('eggs', (...))),
 ['aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb'],
 ['cccccccccccccccccccc', 'dddddddddddddddddddd']]
>>> pprint.pprint(stuff, width=60)
['aaaaaaaaaa',
 ('spam',
 ('eggs',
 ('lumberjack',
 ('knights',
 ('ni', ('dead', ('parrot', ('fresh fruit',)))))))),
 ['aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa',
 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb'],
 ['cccccccccccccccccccc', 'dddddddddddddddddddd']]

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	8. Data Types

8.19. repr — Alternate repr() implementation

The repr module provides a means for producing object representations
with limits on the size of the resulting strings. This is used in the Python
debugger and may be useful in other contexts as well.

See also

Latest version of the repr module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/repr.py?view=markup]

This module provides a class, an instance, and a function:

	
class repr.Repr

	Class which provides formatting services useful in implementing functions
similar to the built-in repr(); size limits for different object types
are added to avoid the generation of representations which are excessively long.

	
repr.aRepr

	This is an instance of Repr which is used to provide the repr()
function described below. Changing the attributes of this object will affect
the size limits used by repr() and the Python debugger.

	
repr.repr(obj)

	This is the repr() method of aRepr. It returns a string
similar to that returned by the built-in function of the same name, but with
limits on most sizes.

8.19.1. Repr Objects

Repr instances provide several members which can be used to provide
size limits for the representations of different object types, and methods
which format specific object types.

	
Repr.maxlevel

	Depth limit on the creation of recursive representations. The default is 6.

	
Repr.maxdict

	
Repr.maxlist

	
Repr.maxtuple

	
Repr.maxset

	
Repr.maxfrozenset

	
Repr.maxdeque

	
Repr.maxarray

	Limits on the number of entries represented for the named object type. The
default is 4 for maxdict, 5 for maxarray, and 6 for
the others.

New in version 2.4: maxset, maxfrozenset, and set.

	
Repr.maxlong

	Maximum number of characters in the representation for a long integer. Digits
are dropped from the middle. The default is 40.

	
Repr.maxstring

	Limit on the number of characters in the representation of the string. Note
that the “normal” representation of the string is used as the character source:
if escape sequences are needed in the representation, these may be mangled when
the representation is shortened. The default is 30.

	
Repr.maxother

	This limit is used to control the size of object types for which no specific
formatting method is available on the Repr object. It is applied in a
similar manner as maxstring. The default is 20.

	
Repr.repr(obj)

	The equivalent to the built-in repr() that uses the formatting imposed by
the instance.

	
Repr.repr1(obj, level)

	Recursive implementation used by repr(). This uses the type of obj to
determine which formatting method to call, passing it obj and level. The
type-specific methods should call repr1() to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

	
Repr.repr_TYPE(obj, level)

	Formatting methods for specific types are implemented as methods with a name
based on the type name. In the method name, TYPE is replaced by
string.join(string.split(type(obj).__name__, '_')). Dispatch to these
methods is handled by repr1(). Type-specific methods which need to
recursively format a value should call self.repr1(subobj, level - 1).

8.19.2. Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of
Repr to add support for additional built-in object types or to modify
the handling of types already supported. This example shows how special support
for file objects could be added:

import repr as reprlib
import sys

class MyRepr(reprlib.Repr):
 def repr_file(self, obj, level):
 if obj.name in ['<stdin>', '<stdout>', '<stderr>']:
 return obj.name
 else:
 return repr(obj)

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

9. Numeric and Mathematical Modules

The modules described in this chapter provide numeric and math-related functions
and data types. The numbers module defines an abstract hierarchy of
numeric types. The math and cmath modules contain various
mathematical functions for floating-point and complex numbers. For users more
interested in decimal accuracy than in speed, the decimal module supports
exact representations of decimal numbers.

The following modules are documented in this chapter:

	9.1. numbers — Numeric abstract base classes
	9.1.1. The numeric tower

	9.1.2. Notes for type implementors
	9.1.2.1. Adding More Numeric ABCs

	9.1.2.2. Implementing the arithmetic operations

	9.2. math — Mathematical functions
	9.2.1. Number-theoretic and representation functions

	9.2.2. Power and logarithmic functions

	9.2.3. Trigonometric functions

	9.2.4. Angular conversion

	9.2.5. Hyperbolic functions

	9.2.6. Special functions

	9.2.7. Constants

	9.3. cmath — Mathematical functions for complex numbers
	9.3.1. Conversions to and from polar coordinates

	9.3.2. Power and logarithmic functions

	9.3.3. Trigonometric functions

	9.3.4. Hyperbolic functions

	9.3.5. Classification functions

	9.3.6. Constants

	9.4. decimal — Decimal fixed point and floating point arithmetic
	9.4.1. Quick-start Tutorial

	9.4.2. Decimal objects
	9.4.2.1. Logical operands

	9.4.3. Context objects

	9.4.4. Signals

	9.4.5. Floating Point Notes
	9.4.5.1. Mitigating round-off error with increased precision

	9.4.5.2. Special values

	9.4.6. Working with threads

	9.4.7. Recipes

	9.4.8. Decimal FAQ

	9.5. fractions — Rational numbers

	9.6. random — Generate pseudo-random numbers

	9.7. itertools — Functions creating iterators for efficient looping
	9.7.1. Itertool functions

	9.7.2. Recipes

	9.8. functools — Higher order functions and operations on callable objects
	9.8.1. partial Objects

	9.9. operator — Standard operators as functions
	9.9.1. Mapping Operators to Functions

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.1. numbers — Numeric abstract base classes

New in version 2.6.

The numbers module (PEP 3141 [http://www.python.org/dev/peps/pep-3141]) defines a hierarchy of numeric abstract
base classes which progressively define more operations. None of the types
defined in this module can be instantiated.

	
class numbers.Number

	The root of the numeric hierarchy. If you just want to check if an argument
x is a number, without caring what kind, use isinstance(x, Number).

9.1.1. The numeric tower

	
class numbers.Complex

	Subclasses of this type describe complex numbers and include the operations
that work on the built-in complex type. These are: conversions to
complex and bool, real, imag, +,
-, *, /, abs(), conjugate(), ==, and !=. All
except - and != are abstract.

	
real

	Abstract. Retrieves the real component of this number.

	
imag

	Abstract. Retrieves the imaginary component of this number.

	
conjugate()

	Abstract. Returns the complex conjugate. For example, (1+3j).conjugate()
== (1-3j).

	
class numbers.Real

	To Complex, Real adds the operations that work on real
numbers.

In short, those are: a conversion to float, math.trunc(),
round(), math.floor(), math.ceil(), divmod(), //,
%, <, <=, >, and >=.

Real also provides defaults for complex(), real,
imag, and conjugate().

	
class numbers.Rational

	Subtypes Real and adds
numerator and denominator properties, which
should be in lowest terms. With these, it provides a default for
float().

	
numerator

	Abstract.

	
denominator

	Abstract.

	
class numbers.Integral

	Subtypes Rational and adds a conversion to int.
Provides defaults for float(), numerator, and
denominator, and bit-string operations: <<,
>>, &, ^, |, ~.

9.1.2. Notes for type implementors

Implementors should be careful to make equal numbers equal and hash
them to the same values. This may be subtle if there are two different
extensions of the real numbers. For example, fractions.Fraction
implements hash() as follows:

def __hash__(self):
 if self.denominator == 1:
 # Get integers right.
 return hash(self.numerator)
 # Expensive check, but definitely correct.
 if self == float(self):
 return hash(float(self))
 else:
 # Use tuple's hash to avoid a high collision rate on
 # simple fractions.
 return hash((self.numerator, self.denominator))

9.1.2.1. Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would
be a poor hierarchy if it precluded the possibility of adding
those. You can add MyFoo between Complex and
Real with:

class MyFoo(Complex): ...
MyFoo.register(Real)

9.1.2.2. Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode
operations either call an implementation whose author knew about the
types of both arguments, or convert both to the nearest built in type
and do the operation there. For subtypes of Integral, this
means that __add__() and __radd__() should be defined as:

class MyIntegral(Integral):

 def __add__(self, other):
 if isinstance(other, MyIntegral):
 return do_my_adding_stuff(self, other)
 elif isinstance(other, OtherTypeIKnowAbout):
 return do_my_other_adding_stuff(self, other)
 else:
 return NotImplemented

 def __radd__(self, other):
 if isinstance(other, MyIntegral):
 return do_my_adding_stuff(other, self)
 elif isinstance(other, OtherTypeIKnowAbout):
 return do_my_other_adding_stuff(other, self)
 elif isinstance(other, Integral):
 return int(other) + int(self)
 elif isinstance(other, Real):
 return float(other) + float(self)
 elif isinstance(other, Complex):
 return complex(other) + complex(self)
 else:
 return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses
of Complex. I’ll refer to all of the above code that doesn’t
refer to MyIntegral and OtherTypeIKnowAbout as
“boilerplate”. a will be an instance of A, which is a subtype
of Complex (a : A <: Complex), and b : B <:
Complex. I’ll consider a + b:

	If A defines an __add__() which accepts b, all is
well.

	If A falls back to the boilerplate code, and it were to
return a value from __add__(), we’d miss the possibility
that B defines a more intelligent __radd__(), so the
boilerplate should return NotImplemented from
__add__(). (Or A may not implement __add__() at
all.)

	Then B‘s __radd__() gets a chance. If it accepts
a, all is well.

	If it falls back to the boilerplate, there are no more possible
methods to try, so this is where the default implementation
should live.

	If B <: A, Python tries B.__radd__ before
A.__add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before
delegating to Complex.

If A <: Complex and B <: Real without sharing any other knowledge,
then the appropriate shared operation is the one involving the built
in complex, and both __radd__() s land there, so a+b
== b+a.

Because most of the operations on any given type will be very similar,
it can be useful to define a helper function which generates the
forward and reverse instances of any given operator. For example,
fractions.Fraction uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):
 def forward(a, b):
 if isinstance(b, (int, long, Fraction)):
 return monomorphic_operator(a, b)
 elif isinstance(b, float):
 return fallback_operator(float(a), b)
 elif isinstance(b, complex):
 return fallback_operator(complex(a), b)
 else:
 return NotImplemented
 forward.__name__ = '__' + fallback_operator.__name__ + '__'
 forward.__doc__ = monomorphic_operator.__doc__

 def reverse(b, a):
 if isinstance(a, Rational):
 # Includes ints.
 return monomorphic_operator(a, b)
 elif isinstance(a, numbers.Real):
 return fallback_operator(float(a), float(b))
 elif isinstance(a, numbers.Complex):
 return fallback_operator(complex(a), complex(b))
 else:
 return NotImplemented
 reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
 reverse.__doc__ = monomorphic_operator.__doc__

 return forward, reverse

def _add(a, b):
 """a + b"""
 return Fraction(a.numerator * b.denominator +
 b.numerator * a.denominator,
 a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

...

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.2. math — Mathematical functions

This module is always available. It provides access to the mathematical
functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the
same name from the cmath module if you require support for complex
numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.

The following functions are provided by this module. Except when explicitly
noted otherwise, all return values are floats.

9.2.1. Number-theoretic and representation functions

	
math.ceil(x)

	Return the ceiling of x as a float, the smallest integer value greater than or
equal to x.

	
math.copysign(x, y)

	Return x with the sign of y. On a platform that supports
signed zeros, copysign(1.0, -0.0) returns -1.0.

New in version 2.6.

	
math.fabs(x)

	Return the absolute value of x.

	
math.factorial(x)

	Return x factorial. Raises ValueError if x is not integral or
is negative.

New in version 2.6.

	
math.floor(x)

	Return the floor of x as a float, the largest integer value less than or equal
to x.

	
math.fmod(x, y)

	Return fmod(x, y), as defined by the platform C library. Note that the
Python expression x % y may not return the same result. The intent of the C
standard is that fmod(x, y) be exactly (mathematically; to infinite
precision) equal to x - n*y for some integer n such that the result has
the same sign as x and magnitude less than abs(y). Python’s x % y
returns a result with the sign of y instead, and may not be exactly computable
for float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but
the result of Python’s -1e-100 % 1e100 is 1e100-1e-100, which cannot be
represented exactly as a float, and rounds to the surprising 1e100. For
this reason, function fmod() is generally preferred when working with
floats, while Python’s x % y is preferred when working with integers.

	
math.frexp(x)

	Return the mantissa and exponent of x as the pair (m, e). m is a float
and e is an integer such that x == m * 2**e exactly. If x is zero,
returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

	
math.fsum(iterable)

	Return an accurate floating point sum of values in the iterable. Avoids
loss of precision by tracking multiple intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the
typical case where the rounding mode is half-even. On some non-Windows
builds, the underlying C library uses extended precision addition and may
occasionally double-round an intermediate sum causing it to be off in its
least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook
recipes for accurate floating point summation [http://code.activestate.com/recipes/393090/].

New in version 2.6.

	
math.isinf(x)

	Check if the float x is positive or negative infinity.

New in version 2.6.

	
math.isnan(x)

	Check if the float x is a NaN (not a number). For more information
on NaNs, see the IEEE 754 standards.

New in version 2.6.

	
math.ldexp(x, i)

	Return x * (2**i). This is essentially the inverse of function
frexp().

	
math.modf(x)

	Return the fractional and integer parts of x. Both results carry the sign
of x and are floats.

	
math.trunc(x)

	Return the Real value x truncated to an Integral (usually
a long integer). Uses the __trunc__ method.

New in version 2.6.

Note that frexp() and modf() have a different call/return pattern
than their C equivalents: they take a single argument and return a pair of
values, rather than returning their second return value through an ‘output
parameter’ (there is no such thing in Python).

For the ceil(), floor(), and modf() functions, note that all
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs(x) >= 2**52
necessarily has no fractional bits.

9.2.2. Power and logarithmic functions

	
math.exp(x)

	Return e**x.

	
math.expm1(x)

	Return e**x - 1. For small floats x, the subtraction in
exp(x) - 1 can result in a significant loss of precision; the
expm1() function provides a way to compute this quantity to
full precision:

>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05

New in version 2.7.

	
math.log(x[, base])

	With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base,
calculated as log(x)/log(base).

Changed in version 2.3: base argument added.

	
math.log1p(x)

	Return the natural logarithm of 1+x (base e). The
result is calculated in a way which is accurate for x near zero.

New in version 2.6.

	
math.log10(x)

	Return the base-10 logarithm of x. This is usually more accurate
than log(x, 10).

	
math.pow(x, y)

	Return x raised to the power y. Exceptional cases follow
Annex ‘F’ of the C99 standard as far as possible. In particular,
pow(1.0, x) and pow(x, 0.0) always return 1.0, even
when x is a zero or a NaN. If both x and y are finite,
x is negative, and y is not an integer then pow(x, y)
is undefined, and raises ValueError.

Changed in version 2.6: The outcome of 1**nan and nan**0 was undefined.

	
math.sqrt(x)

	Return the square root of x.

9.2.3. Trigonometric functions

	
math.acos(x)

	Return the arc cosine of x, in radians.

	
math.asin(x)

	Return the arc sine of x, in radians.

	
math.atan(x)

	Return the arc tangent of x, in radians.

	
math.atan2(y, x)

	Return atan(y / x), in radians. The result is between -pi and pi.
The vector in the plane from the origin to point (x, y) makes this angle
with the positive X axis. The point of atan2() is that the signs of both
inputs are known to it, so it can compute the correct quadrant for the angle.
For example, atan(1) and atan2(1, 1) are both pi/4, but atan2(-1,
-1) is -3*pi/4.

	
math.cos(x)

	Return the cosine of x radians.

	
math.hypot(x, y)

	Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector
from the origin to point (x, y).

	
math.sin(x)

	Return the sine of x radians.

	
math.tan(x)

	Return the tangent of x radians.

9.2.4. Angular conversion

	
math.degrees(x)

	Converts angle x from radians to degrees.

	
math.radians(x)

	Converts angle x from degrees to radians.

9.2.5. Hyperbolic functions

	
math.acosh(x)

	Return the inverse hyperbolic cosine of x.

New in version 2.6.

	
math.asinh(x)

	Return the inverse hyperbolic sine of x.

New in version 2.6.

	
math.atanh(x)

	Return the inverse hyperbolic tangent of x.

New in version 2.6.

	
math.cosh(x)

	Return the hyperbolic cosine of x.

	
math.sinh(x)

	Return the hyperbolic sine of x.

	
math.tanh(x)

	Return the hyperbolic tangent of x.

9.2.6. Special functions

	
math.erf(x)

	Return the error function at x.

New in version 2.7.

	
math.erfc(x)

	Return the complementary error function at x.

New in version 2.7.

	
math.gamma(x)

	Return the Gamma function at x.

New in version 2.7.

	
math.lgamma(x)

	Return the natural logarithm of the absolute value of the Gamma
function at x.

New in version 2.7.

9.2.7. Constants

	
math.pi

	The mathematical constant π = 3.141592..., to available precision.

	
math.e

	The mathematical constant e = 2.718281..., to available precision.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of
the C99 standard where appropriate. The current implementation will raise
ValueError for invalid operations like sqrt(-1.0) or log(0.0)
(where C99 Annex F recommends signaling invalid operation or divide-by-zero),
and OverflowError for results that overflow (for example,
exp(1000.0)). A NaN will not be returned from any of the functions
above unless one or more of the input arguments was a NaN; in that case,
most functions will return a NaN, but (again following C99 Annex F) there
are some exceptions to this rule, for example pow(float('nan'), 0.0) or
hypot(float('nan'), float('inf')).

Note that Python makes no effort to distinguish signaling NaNs from
quiet NaNs, and behavior for signaling NaNs remains unspecified.
Typical behavior is to treat all NaNs as though they were quiet.

Changed in version 2.6: Behavior in special cases now aims to follow C99 Annex F. In earlier
versions of Python the behavior in special cases was loosely specified.

See also

	Module cmath

	Complex number versions of many of these functions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.3. cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions
for complex numbers. The functions in this module accept integers,
floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either a __complex__() or a __float__()
method: these methods are used to convert the object to a complex or
floating-point number, respectively, and the function is then applied to the
result of the conversion.

Note

On platforms with hardware and system-level support for signed
zeros, functions involving branch cuts are continuous on both
sides of the branch cut: the sign of the zero distinguishes one
side of the branch cut from the other. On platforms that do not
support signed zeros the continuity is as specified below.

9.3.1. Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular
or Cartesian coordinates. It is completely determined by its real
part z.real and its imaginary part z.imag. In other
words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex
number. In polar coordinates, a complex number z is defined by the
modulus r and the phase angle phi. The modulus r is the distance
from z to the origin, while the phase phi is the counterclockwise
angle, measured in radians, from the positive x-axis to the line
segment that joins the origin to z.

The following functions can be used to convert from the native
rectangular coordinates to polar coordinates and back.

	
cmath.phase(x)

	Return the phase of x (also known as the argument of x), as a
float. phase(x) is equivalent to math.atan2(x.imag,
x.real). The result lies in the range [-π, π], and the branch
cut for this operation lies along the negative real axis,
continuous from above. On systems with support for signed zeros
(which includes most systems in current use), this means that the
sign of the result is the same as the sign of x.imag, even when
x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.1415926535897931
>>> phase(complex(-1.0, -0.0))
-3.1415926535897931

New in version 2.6.

Note

The modulus (absolute value) of a complex number x can be
computed using the built-in abs() function. There is no
separate cmath module function for this operation.

	
cmath.polar(x)

	Return the representation of x in polar coordinates. Returns a
pair (r, phi) where r is the modulus of x and phi is the
phase of x. polar(x) is equivalent to (abs(x),
phase(x)).

New in version 2.6.

	
cmath.rect(r, phi)

	Return the complex number x with polar coordinates r and phi.
Equivalent to r * (math.cos(phi) + math.sin(phi)*1j).

New in version 2.6.

9.3.2. Power and logarithmic functions

	
cmath.exp(x)

	Return the exponential value e**x.

	
cmath.log(x[, base])

	Returns the logarithm of x to the given base. If the base is not
specified, returns the natural logarithm of x. There is one branch cut, from 0
along the negative real axis to -∞, continuous from above.

Changed in version 2.4: base argument added.

	
cmath.log10(x)

	Return the base-10 logarithm of x. This has the same branch cut as
log().

	
cmath.sqrt(x)

	Return the square root of x. This has the same branch cut as log().

9.3.3. Trigonometric functions

	
cmath.acos(x)

	Return the arc cosine of x. There are two branch cuts: One extends right from
1 along the real axis to ∞, continuous from below. The other extends left from
-1 along the real axis to -∞, continuous from above.

	
cmath.asin(x)

	Return the arc sine of x. This has the same branch cuts as acos().

	
cmath.atan(x)

	Return the arc tangent of x. There are two branch cuts: One extends from
1j along the imaginary axis to ∞j, continuous from the right. The
other extends from -1j along the imaginary axis to -∞j, continuous
from the left.

Changed in version 2.6: direction of continuity of upper cut reversed

	
cmath.cos(x)

	Return the cosine of x.

	
cmath.sin(x)

	Return the sine of x.

	
cmath.tan(x)

	Return the tangent of x.

9.3.4. Hyperbolic functions

	
cmath.acosh(x)

	Return the hyperbolic arc cosine of x. There is one branch cut, extending left
from 1 along the real axis to -∞, continuous from above.

	
cmath.asinh(x)

	Return the hyperbolic arc sine of x. There are two branch cuts:
One extends from 1j along the imaginary axis to ∞j,
continuous from the right. The other extends from -1j along
the imaginary axis to -∞j, continuous from the left.

Changed in version 2.6: branch cuts moved to match those recommended by the C99 standard

	
cmath.atanh(x)

	Return the hyperbolic arc tangent of x. There are two branch cuts: One
extends from 1 along the real axis to ∞, continuous from below. The
other extends from -1 along the real axis to -∞, continuous from
above.

Changed in version 2.6: direction of continuity of right cut reversed

	
cmath.cosh(x)

	Return the hyperbolic cosine of x.

	
cmath.sinh(x)

	Return the hyperbolic sine of x.

	
cmath.tanh(x)

	Return the hyperbolic tangent of x.

9.3.5. Classification functions

	
cmath.isinf(x)

	Return True if the real or the imaginary part of x is positive
or negative infinity.

New in version 2.6.

	
cmath.isnan(x)

	Return True if the real or imaginary part of x is not a number (NaN).

New in version 2.6.

9.3.6. Constants

	
cmath.pi

	The mathematical constant π, as a float.

	
cmath.e

	The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in
module math. The reason for having two modules is that some users aren’t
interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqrt(-1) raise an exception than return a complex
number. Also note that the functions defined in cmath always return a
complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to
be continuous. They are a necessary feature of many complex functions. It is
assumed that if you need to compute with complex functions, you will understand
about branch cuts. Consult almost any (not too elementary) book on complex
variables for enlightenment. For information of the proper choice of branch
cuts for numerical purposes, a good reference should be the following:

See also

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about
nothing’s sign bit. In Iserles, A., and Powell, M. (eds.), The state of the art
in numerical analysis. Clarendon Press (1987) pp165-211.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.4. decimal — Decimal fixed point and floating point arithmetic

New in version 2.4.

The decimal module provides support for decimal floating point
arithmetic. It offers several advantages over the float datatype:

	Decimal “is based on a floating-point model which was designed with people
in mind, and necessarily has a paramount guiding principle – computers must
provide an arithmetic that works in the same way as the arithmetic that
people learn at school.” – excerpt from the decimal arithmetic specification.

	Decimal numbers can be represented exactly. In contrast, numbers like
1.1 and 2.2 do not have an exact representations in binary
floating point. End users typically would not expect 1.1 + 2.2 to display
as 3.3000000000000003 as it does with binary floating point.

	The exactness carries over into arithmetic. In decimal floating point, 0.1
+ 0.1 + 0.1 - 0.3 is exactly equal to zero. In binary floating point, the result
is 5.5511151231257827e-017. While near to zero, the differences
prevent reliable equality testing and differences can accumulate. For this
reason, decimal is preferred in accounting applications which have strict
equality invariants.

	The decimal module incorporates a notion of significant places so that 1.30
+ 1.20 is 2.50. The trailing zero is kept to indicate significance.
This is the customary presentation for monetary applications. For
multiplication, the “schoolbook” approach uses all the figures in the
multiplicands. For instance, 1.3 * 1.2 gives 1.56 while 1.30 *
1.20 gives 1.5600.

	Unlike hardware based binary floating point, the decimal module has a user
alterable precision (defaulting to 28 places) which can be as large as needed for
a given problem:

>>> from decimal import *
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal('0.142857')
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal('0.1428571428571428571428571429')

	Both binary and decimal floating point are implemented in terms of published
standards. While the built-in float type exposes only a modest portion of its
capabilities, the decimal module exposes all required parts of the standard.
When needed, the programmer has full control over rounding and signal handling.
This includes an option to enforce exact arithmetic by using exceptions
to block any inexact operations.

	The decimal module was designed to support “without prejudice, both exact
unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
and rounded floating-point arithmetic.” – excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the
context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an
exponent. To preserve significance, the coefficient digits do not truncate
trailing zeros. Decimals also include special values such as
Infinity, -Infinity, and NaN. The standard also
differentiates -0 from +0.

The context for arithmetic is an environment specifying precision, rounding
rules, limits on exponents, flags indicating the results of operations, and trap
enablers which determine whether signals are treated as exceptions. Rounding
options include ROUND_CEILING, ROUND_DOWN,
ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of
computation. Depending on the needs of the application, signals may be ignored,
considered as informational, or treated as exceptions. The signals in the
decimal module are: Clamped, InvalidOperation,
DivisionByZero, Inexact, Rounded, Subnormal,
Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is
encountered, its flag is set to one, then, if the trap enabler is
set to one, an exception is raised. Flags are sticky, so the user needs to
reset them before monitoring a calculation.

See also

	IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic
Specification [http://speleotrove.com/decimal/].

	IEEE standard 854-1987, Unofficial IEEE 854 Text [http://754r.ucbtest.org/standards/854.pdf].

9.4.1. Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current
context with getcontext() and, if necessary, setting new values for
precision, rounding, or enabled traps:

>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
 InvalidOperation])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples.
Construction from an integer or a float performs an exact conversion of the
value of that integer or float. Decimal numbers include special values such as
NaN which stands for “Not a number”, positive and negative
Infinity, and -0.

>>> getcontext().prec = 28
>>> Decimal(10)
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
>>> Decimal(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
Decimal('1.41421356237')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
Decimal('NaN')
>>> Decimal('-Infinity')
Decimal('-Infinity')

The significance of a new Decimal is determined solely by the number of digits
input. Context precision and rounding only come into play during arithmetic
operations.

>>> getcontext().prec = 6
>>> Decimal('3.0')
Decimal('3.0')
>>> Decimal('3.1415926535')
Decimal('3.1415926535')
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85987')
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85988')

Decimals interact well with much of the rest of Python. Here is a small decimal
floating point flying circus:

>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
>>> max(data)
Decimal('9.25')
>>> min(data)
Decimal('0.03')
>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29')
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.34
>>> round(a, 1) # round() first converts to binary floating point
1.3
>>> int(a)
1
>>> a * 5
Decimal('6.70')
>>> a * b
Decimal('2.5058')
>>> c % a
Decimal('0.77')

And some mathematical functions are also available to Decimal:

>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801688724')
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal('10').ln()
Decimal('2.302585092994045684017991455')
>>> Decimal('10').log10()
Decimal('1')

The quantize() method rounds a number to a fixed exponent. This method is
useful for monetary applications that often round results to a fixed number of
places:

>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')
>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Decimal('8')

As shown above, the getcontext() function accesses the current context and
allows the settings to be changed. This approach meets the needs of most
applications.

For more advanced work, it may be useful to create alternate contexts using the
Context() constructor. To make an alternate active, use the setcontext()
function.

In accordance with the standard, the Decimal module provides two ready to
use standard contexts, BasicContext and ExtendedContext. The
former is especially useful for debugging because many of the traps are
enabled:

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')

>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
 capitals=1, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
 File "<pyshell#143>", line 1, in -toplevel-
 Decimal(42) / Decimal(0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions
encountered during computations. The flags remain set until explicitly cleared,
so it is best to clear the flags before each set of monitored computations by
using the clear_flags() method.

>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
 capitals=1, flags=[Rounded, Inexact], traps=[])

The flags entry shows that the rational approximation to Pi was
rounded (digits beyond the context precision were thrown away) and that the
result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the traps field of a
context:

>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal('Infinity')
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
 File "<pyshell#112>", line 1, in -toplevel-
 Decimal(1) / Decimal(0)
DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the
program. And, in many applications, data is converted to Decimal with
a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric
types.

9.4.2. Decimal objects

	
class decimal.Decimal([value[, context]])

	Construct a new Decimal object based from value.

value can be an integer, string, tuple, float, or another Decimal
object. If no value is given, returns Decimal('0'). If value is a
string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign ::= '+' | '-'
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator ::= 'e' | 'E'
digits ::= digit [digit]...
decimal-part ::= digits '.' [digits] | ['.'] digits
exponent-part ::= indicator [sign] digits
infinity ::= 'Infinity' | 'Inf'
nan ::= 'NaN' [digits] | 'sNaN' [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If value is a unicode string then other Unicode decimal digits
are also permitted where digit appears above. These include
decimal digits from various other alphabets (for example,
Arabic-Indic and Devanāgarī digits) along with the fullwidth digits
u'\uff10' through u'\uff19'.

If value is a tuple, it should have three components, a sign
(0 for positive or 1 for negative), a tuple of
digits, and an integer exponent. For example, Decimal((0, (1, 4, 1, 4), -3))
returns Decimal('1.414').

If value is a float, the binary floating point value is losslessly
converted to its exact decimal equivalent. This conversion can often require
53 or more digits of precision. For example, Decimal(float('1.1'))
converts to
Decimal('1.100000000000000088817841970012523233890533447265625').

The context precision does not affect how many digits are stored. That is
determined exclusively by the number of digits in value. For example,
Decimal('3.00000') records all five zeros even if the context precision is
only three.

The purpose of the context argument is determining what to do if value is a
malformed string. If the context traps InvalidOperation, an exception
is raised; otherwise, the constructor returns a new Decimal with the value of
NaN.

Once constructed, Decimal objects are immutable.

Changed in version 2.6: leading and trailing whitespace characters are permitted when
creating a Decimal instance from a string.

Changed in version 2.7: The argument to the constructor is now permitted to be a float instance.

Decimal floating point objects share many properties with the other built-in
numeric types such as float and int. All of the usual math
operations and special methods apply. Likewise, decimal objects can be
copied, pickled, printed, used as dictionary keys, used as set elements,
compared, sorted, and coerced to another type (such as float or
long).

Decimal objects cannot generally be combined with floats in
arithmetic operations: an attempt to add a Decimal to a
float, for example, will raise a TypeError.
There’s one exception to this rule: it’s possible to use Python’s
comparison operators to compare a float instance x
with a Decimal instance y. Without this exception,
comparisons between Decimal and float instances
would follow the general rules for comparing objects of different
types described in the Expressions section of the reference
manual, leading to confusing results.

Changed in version 2.7: A comparison between a float instance x and a
Decimal instance y now returns a result based on
the values of x and y. In earlier versions x < y
returned the same (arbitrary) result for any Decimal
instance x and any float instance y.

In addition to the standard numeric properties, decimal floating point
objects also have a number of specialized methods:

	
adjusted()

	Return the adjusted exponent after shifting out the coefficient’s
rightmost digits until only the lead digit remains:
Decimal('321e+5').adjusted() returns seven. Used for determining the
position of the most significant digit with respect to the decimal point.

	
as_tuple()

	Return a named tuple representation of the number:
DecimalTuple(sign, digits, exponent).

Changed in version 2.6: Use a named tuple.

	
canonical()

	Return the canonical encoding of the argument. Currently, the encoding of
a Decimal instance is always canonical, so this operation returns
its argument unchanged.

New in version 2.6.

	
compare(other[, context])

	Compare the values of two Decimal instances. This operation behaves in
the same way as the usual comparison method __cmp__(), except that
compare() returns a Decimal instance rather than an integer, and if
either operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal('NaN')
a < b ==> Decimal('-1')
a == b ==> Decimal('0')
a > b ==> Decimal('1')

	
compare_signal(other[, context])

	This operation is identical to the compare() method, except that all
NaNs signal. That is, if neither operand is a signaling NaN then any
quiet NaN operand is treated as though it were a signaling NaN.

New in version 2.6.

	
compare_total(other)

	Compare two operands using their abstract representation rather than their
numerical value. Similar to the compare() method, but the result
gives a total ordering on Decimal instances. Two
Decimal instances with the same numeric value but different
representations compare unequal in this ordering:

>>> Decimal('12.0').compare_total(Decimal('12'))
Decimal('-1')

Quiet and signaling NaNs are also included in the total ordering. The
result of this function is Decimal('0') if both operands have the same
representation, Decimal('-1') if the first operand is lower in the
total order than the second, and Decimal('1') if the first operand is
higher in the total order than the second operand. See the specification
for details of the total order.

New in version 2.6.

	
compare_total_mag(other)

	Compare two operands using their abstract representation rather than their
value as in compare_total(), but ignoring the sign of each operand.
x.compare_total_mag(y) is equivalent to
x.copy_abs().compare_total(y.copy_abs()).

New in version 2.6.

	
conjugate()

	Just returns self, this method is only to comply with the Decimal
Specification.

New in version 2.6.

	
copy_abs()

	Return the absolute value of the argument. This operation is unaffected
by the context and is quiet: no flags are changed and no rounding is
performed.

New in version 2.6.

	
copy_negate()

	Return the negation of the argument. This operation is unaffected by the
context and is quiet: no flags are changed and no rounding is performed.

New in version 2.6.

	
copy_sign(other)

	Return a copy of the first operand with the sign set to be the same as the
sign of the second operand. For example:

>>> Decimal('2.3').copy_sign(Decimal('-1.5'))
Decimal('-2.3')

This operation is unaffected by the context and is quiet: no flags are
changed and no rounding is performed.

New in version 2.6.

	
exp([context])

	Return the value of the (natural) exponential function e**x at the
given number. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal(321).exp()
Decimal('2.561702493119680037517373933E+139')

New in version 2.6.

	
from_float(f)

	Classmethod that converts a float to a decimal number, exactly.

Note Decimal.from_float(0.1) is not the same as Decimal(‘0.1’).
Since 0.1 is not exactly representable in binary floating point, the
value is stored as the nearest representable value which is
0x1.999999999999ap-4. That equivalent value in decimal is
0.1000000000000000055511151231257827021181583404541015625.

Note

From Python 2.7 onwards, a Decimal instance
can also be constructed directly from a float.

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal.from_float(float('nan'))
Decimal('NaN')
>>> Decimal.from_float(float('inf'))
Decimal('Infinity')
>>> Decimal.from_float(float('-inf'))
Decimal('-Infinity')

New in version 2.7.

	
fma(other, third[, context])

	Fused multiply-add. Return self*other+third with no rounding of the
intermediate product self*other.

>>> Decimal(2).fma(3, 5)
Decimal('11')

New in version 2.6.

	
is_canonical()

	Return True if the argument is canonical and False
otherwise. Currently, a Decimal instance is always canonical, so
this operation always returns True.

New in version 2.6.

	
is_finite()

	Return True if the argument is a finite number, and
False if the argument is an infinity or a NaN.

New in version 2.6.

	
is_infinite()

	Return True if the argument is either positive or negative
infinity and False otherwise.

New in version 2.6.

	
is_nan()

	Return True if the argument is a (quiet or signaling) NaN and
False otherwise.

New in version 2.6.

	
is_normal()

	Return True if the argument is a normal finite non-zero
number with an adjusted exponent greater than or equal to Emin.
Return False if the argument is zero, subnormal, infinite or a
NaN. Note, the term normal is used here in a different sense with
the normalize() method which is used to create canonical values.

New in version 2.6.

	
is_qnan()

	Return True if the argument is a quiet NaN, and
False otherwise.

New in version 2.6.

	
is_signed()

	Return True if the argument has a negative sign and
False otherwise. Note that zeros and NaNs can both carry signs.

New in version 2.6.

	
is_snan()

	Return True if the argument is a signaling NaN and False
otherwise.

New in version 2.6.

	
is_subnormal()

	Return True if the argument is subnormal, and False
otherwise. A number is subnormal is if it is nonzero, finite, and has an
adjusted exponent less than Emin.

New in version 2.6.

	
is_zero()

	Return True if the argument is a (positive or negative) zero and
False otherwise.

New in version 2.6.

	
ln([context])

	Return the natural (base e) logarithm of the operand. The result is
correctly rounded using the ROUND_HALF_EVEN rounding mode.

New in version 2.6.

	
log10([context])

	Return the base ten logarithm of the operand. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

New in version 2.6.

	
logb([context])

	For a nonzero number, return the adjusted exponent of its operand as a
Decimal instance. If the operand is a zero then
Decimal('-Infinity') is returned and the DivisionByZero flag
is raised. If the operand is an infinity then Decimal('Infinity') is
returned.

New in version 2.6.

	
logical_and(other[, context])

	logical_and() is a logical operation which takes two logical
operands (see Logical operands). The result is the
digit-wise and of the two operands.

New in version 2.6.

	
logical_invert([context])

	logical_invert() is a logical operation. The
result is the digit-wise inversion of the operand.

New in version 2.6.

	
logical_or(other[, context])

	logical_or() is a logical operation which takes two logical
operands (see Logical operands). The result is the
digit-wise or of the two operands.

New in version 2.6.

	
logical_xor(other[, context])

	logical_xor() is a logical operation which takes two logical
operands (see Logical operands). The result is the
digit-wise exclusive or of the two operands.

New in version 2.6.

	
max(other[, context])

	Like max(self, other) except that the context rounding rule is applied
before returning and that NaN values are either signaled or
ignored (depending on the context and whether they are signaling or
quiet).

	
max_mag(other[, context])

	Similar to the max() method, but the comparison is done using the
absolute values of the operands.

New in version 2.6.

	
min(other[, context])

	Like min(self, other) except that the context rounding rule is applied
before returning and that NaN values are either signaled or
ignored (depending on the context and whether they are signaling or
quiet).

	
min_mag(other[, context])

	Similar to the min() method, but the comparison is done using the
absolute values of the operands.

New in version 2.6.

	
next_minus([context])

	Return the largest number representable in the given context (or in the
current thread’s context if no context is given) that is smaller than the
given operand.

New in version 2.6.

	
next_plus([context])

	Return the smallest number representable in the given context (or in the
current thread’s context if no context is given) that is larger than the
given operand.

New in version 2.6.

	
next_toward(other[, context])

	If the two operands are unequal, return the number closest to the first
operand in the direction of the second operand. If both operands are
numerically equal, return a copy of the first operand with the sign set to
be the same as the sign of the second operand.

New in version 2.6.

	
normalize([context])

	Normalize the number by stripping the rightmost trailing zeros and
converting any result equal to Decimal('0') to
Decimal('0e0'). Used for producing canonical values for members
of an equivalence class. For example, Decimal('32.100') and
Decimal('0.321000e+2') both normalize to the equivalent value
Decimal('32.1').

	
number_class([context])

	Return a string describing the class of the operand. The returned value
is one of the following ten strings.

	"-Infinity", indicating that the operand is negative infinity.

	"-Normal", indicating that the operand is a negative normal number.

	"-Subnormal", indicating that the operand is negative and subnormal.

	"-Zero", indicating that the operand is a negative zero.

	"+Zero", indicating that the operand is a positive zero.

	"+Subnormal", indicating that the operand is positive and subnormal.

	"+Normal", indicating that the operand is a positive normal number.

	"+Infinity", indicating that the operand is positive infinity.

	"NaN", indicating that the operand is a quiet NaN (Not a Number).

	"sNaN", indicating that the operand is a signaling NaN.

New in version 2.6.

	
quantize(exp[, rounding[, context[, watchexp]]])

	Return a value equal to the first operand after rounding and having the
exponent of the second operand.

>>> Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')

Unlike other operations, if the length of the coefficient after the
quantize operation would be greater than precision, then an
InvalidOperation is signaled. This guarantees that, unless there
is an error condition, the quantized exponent is always equal to that of
the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if
the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first
then rounding may be necessary. In this case, the rounding mode is
determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of
the current thread’s context is used.

If watchexp is set (default), then an error is returned whenever the
resulting exponent is greater than Emax or less than
Etiny.

	
radix()

	Return Decimal(10), the radix (base) in which the Decimal
class does all its arithmetic. Included for compatibility with the
specification.

New in version 2.6.

	
remainder_near(other[, context])

	Compute the modulo as either a positive or negative value depending on
which is closest to zero. For instance, Decimal(10).remainder_near(6)
returns Decimal('-2') which is closer to zero than Decimal('4').

If both are equally close, the one chosen will have the same sign as
self.

	
rotate(other[, context])

	Return the result of rotating the digits of the first operand by an amount
specified by the second operand. The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right.
The coefficient of the first operand is padded on the left with zeros to
length precision if necessary. The sign and exponent of the first operand
are unchanged.

New in version 2.6.

	
same_quantum(other[, context])

	Test whether self and other have the same exponent or whether both are
NaN.

	
scaleb(other[, context])

	Return the first operand with exponent adjusted by the second.
Equivalently, return the first operand multiplied by 10**other. The
second operand must be an integer.

New in version 2.6.

	
shift(other[, context])

	Return the result of shifting the digits of the first operand by an amount
specified by the second operand. The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the
right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.

New in version 2.6.

	
sqrt([context])

	Return the square root of the argument to full precision.

	
to_eng_string([context])

	Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there
are up to 3 digits left of the decimal place. For example, converts
Decimal('123E+1') to Decimal('1.23E+3')

	
to_integral([rounding[, context]])

	Identical to the to_integral_value() method. The to_integral
name has been kept for compatibility with older versions.

	
to_integral_exact([rounding[, context]])

	Round to the nearest integer, signaling Inexact or
Rounded as appropriate if rounding occurs. The rounding mode is
determined by the rounding parameter if given, else by the given
context. If neither parameter is given then the rounding mode of the
current context is used.

New in version 2.6.

	
to_integral_value([rounding[, context]])

	Round to the nearest integer without signaling Inexact or
Rounded. If given, applies rounding; otherwise, uses the
rounding method in either the supplied context or the current context.

Changed in version 2.6: renamed from to_integral to to_integral_value. The old name
remains valid for compatibility.

9.4.2.1. Logical operands

The logical_and(), logical_invert(), logical_or(),
and logical_xor() methods expect their arguments to be logical
operands. A logical operand is a Decimal instance whose
exponent and sign are both zero, and whose digits are all either
0 or 1.

9.4.3. Context objects

Contexts are environments for arithmetic operations. They govern precision, set
rules for rounding, determine which signals are treated as exceptions, and limit
the range for exponents.

Each thread has its own current context which is accessed or changed using the
getcontext() and setcontext() functions:

	
decimal.getcontext()

	Return the current context for the active thread.

	
decimal.setcontext(c)

	Set the current context for the active thread to c.

Beginning with Python 2.5, you can also use the with statement and
the localcontext() function to temporarily change the active context.

	
decimal.localcontext([c])

	Return a context manager that will set the current context for the active thread
to a copy of c on entry to the with-statement and restore the previous context
when exiting the with-statement. If no context is specified, a copy of the
current context is used.

New in version 2.5.

For example, the following code sets the current decimal precision to 42 places,
performs a calculation, and then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
 ctx.prec = 42 # Perform a high precision calculation
 s = calculate_something()
s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor
described below. In addition, the module provides three pre-made contexts:

	
class decimal.BasicContext

	This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated
as exceptions) except Inexact, Rounded, and
Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

	
class decimal.ExtendedContext

	This is a standard context defined by the General Decimal Arithmetic
Specification. Precision is set to nine. Rounding is set to
ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that
exceptions are not raised during computations).

Because the traps are disabled, this context is useful for applications that
prefer to have result value of NaN or Infinity instead of
raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.

	
class decimal.DefaultContext

	This context is used by the Context constructor as a prototype for new
contexts. Changing a field (such a precision) has the effect of changing the
default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the
fields before threads are started has the effect of setting system-wide
defaults. Changing the fields after threads have started is not recommended as
it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at
all. Instead, simply create contexts explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
for Overflow, InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the
Context constructor.

	
class decimal.Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)

	Creates a new context. If a field is not specified or is None, the
default values are copied from the DefaultContext. If the flags
field is not specified or is None, all flags are cleared.

The prec field is a positive integer that sets the precision for arithmetic
operations in the context.

The rounding option is one of:

	ROUND_CEILING (towards Infinity),

	ROUND_DOWN (towards zero),

	ROUND_FLOOR (towards -Infinity),

	ROUND_HALF_DOWN (to nearest with ties going towards zero),

	ROUND_HALF_EVEN (to nearest with ties going to nearest even integer),

	ROUND_HALF_UP (to nearest with ties going away from zero), or

	ROUND_UP (away from zero).

	ROUND_05UP (away from zero if last digit after rounding towards zero
would have been 0 or 5; otherwise towards zero)

The traps and flags fields list any signals to be set. Generally, new
contexts should only set traps and leave the flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable
for exponents.

The capitals field is either 0 or 1 (the default). If set to
1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal('6.02e+23').

Changed in version 2.6: The ROUND_05UP rounding mode was added.

The Context class defines several general purpose methods as well as
a large number of methods for doing arithmetic directly in a given context.
In addition, for each of the Decimal methods described above (with
the exception of the adjusted() and as_tuple() methods) there is
a corresponding Context method. For example, for a Context
instance C and Decimal instance x, C.exp(x) is
equivalent to x.exp(context=C). Each Context method accepts a
Python integer (an instance of int or long) anywhere that a
Decimal instance is accepted.

	
clear_flags()

	Resets all of the flags to 0.

	
copy()

	Return a duplicate of the context.

	
copy_decimal(num)

	Return a copy of the Decimal instance num.

	
create_decimal(num)

	Creates a new Decimal instance from num but using self as
context. Unlike the Decimal constructor, the context precision,
rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision
than is needed by the application. Another benefit is that rounding
immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that
adding zero to a sum can change the result:

>>> getcontext().prec = 3
>>> Decimal('3.4445') + Decimal('1.0023')
Decimal('4.45')
>>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
Decimal('4.44')

This method implements the to-number operation of the IBM specification.
If the argument is a string, no leading or trailing whitespace is
permitted.

	
create_decimal_from_float(f)

	Creates a new Decimal instance from a float f but rounding using self
as the context. Unlike the Decimal.from_float() class method,
the context precision, rounding method, flags, and traps are applied to
the conversion.

>>> context = Context(prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float(math.pi)
Decimal('3.1415')
>>> context = Context(prec=5, traps=[Inexact])
>>> context.create_decimal_from_float(math.pi)
Traceback (most recent call last):
 ...
Inexact: None

New in version 2.7.

	
Etiny()

	Returns a value equal to Emin - prec + 1 which is the minimum exponent
value for subnormal results. When underflow occurs, the exponent is set
to Etiny.

	
Etop()

	Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal
instances and then apply arithmetic operations which take place within the
current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are
similar to those for the Decimal class and are only briefly
recounted here.

	
abs(x)

	Returns the absolute value of x.

	
add(x, y)

	Return the sum of x and y.

	
canonical(x)

	Returns the same Decimal object x.

	
compare(x, y)

	Compares x and y numerically.

	
compare_signal(x, y)

	Compares the values of the two operands numerically.

	
compare_total(x, y)

	Compares two operands using their abstract representation.

	
compare_total_mag(x, y)

	Compares two operands using their abstract representation, ignoring sign.

	
copy_abs(x)

	Returns a copy of x with the sign set to 0.

	
copy_negate(x)

	Returns a copy of x with the sign inverted.

	
copy_sign(x, y)

	Copies the sign from y to x.

	
divide(x, y)

	Return x divided by y.

	
divide_int(x, y)

	Return x divided by y, truncated to an integer.

	
divmod(x, y)

	Divides two numbers and returns the integer part of the result.

	
exp(x)

	Returns e ** x.

	
fma(x, y, z)

	Returns x multiplied by y, plus z.

	
is_canonical(x)

	Returns True if x is canonical; otherwise returns False.

	
is_finite(x)

	Returns True if x is finite; otherwise returns False.

	
is_infinite(x)

	Returns True if x is infinite; otherwise returns False.

	
is_nan(x)

	Returns True if x is a qNaN or sNaN; otherwise returns False.

	
is_normal(x)

	Returns True if x is a normal number; otherwise returns False.

	
is_qnan(x)

	Returns True if x is a quiet NaN; otherwise returns False.

	
is_signed(x)

	Returns True if x is negative; otherwise returns False.

	
is_snan(x)

	Returns True if x is a signaling NaN; otherwise returns False.

	
is_subnormal(x)

	Returns True if x is subnormal; otherwise returns False.

	
is_zero(x)

	Returns True if x is a zero; otherwise returns False.

	
ln(x)

	Returns the natural (base e) logarithm of x.

	
log10(x)

	Returns the base 10 logarithm of x.

	
logb(x)

	Returns the exponent of the magnitude of the operand’s MSD.

	
logical_and(x, y)

	Applies the logical operation and between each operand’s digits.

	
logical_invert(x)

	Invert all the digits in x.

	
logical_or(x, y)

	Applies the logical operation or between each operand’s digits.

	
logical_xor(x, y)

	Applies the logical operation xor between each operand’s digits.

	
max(x, y)

	Compares two values numerically and returns the maximum.

	
max_mag(x, y)

	Compares the values numerically with their sign ignored.

	
min(x, y)

	Compares two values numerically and returns the minimum.

	
min_mag(x, y)

	Compares the values numerically with their sign ignored.

	
minus(x)

	Minus corresponds to the unary prefix minus operator in Python.

	
multiply(x, y)

	Return the product of x and y.

	
next_minus(x)

	Returns the largest representable number smaller than x.

	
next_plus(x)

	Returns the smallest representable number larger than x.

	
next_toward(x, y)

	Returns the number closest to x, in direction towards y.

	
normalize(x)

	Reduces x to its simplest form.

	
number_class(x)

	Returns an indication of the class of x.

	
plus(x)

	Plus corresponds to the unary prefix plus operator in Python. This
operation applies the context precision and rounding, so it is not an
identity operation.

	
power(x, y[, modulo])

	Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y
must be integral. The result will be inexact unless y is integral and
the result is finite and can be expressed exactly in ‘precision’ digits.
The result should always be correctly rounded, using the rounding mode of
the current thread’s context.

With three arguments, compute (x**y) % modulo. For the three argument
form, the following restrictions on the arguments hold:

	all three arguments must be integral

	y must be nonnegative

	at least one of x or y must be nonzero

	modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is
equal to the value that would be obtained by computing (x**y)
% modulo with unbounded precision, but is computed more
efficiently. The exponent of the result is zero, regardless of
the exponents of x, y and modulo. The result is
always exact.

Changed in version 2.6: y may now be nonintegral in x**y.
Stricter requirements for the three-argument version.

	
quantize(x, y)

	Returns a value equal to x (rounded), having the exponent of y.

	
radix()

	Just returns 10, as this is Decimal, :)

	
remainder(x, y)

	Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original
dividend.

	
remainder_near(x, y)

	Returns x - y * n, where n is the integer nearest the exact value
of x / y (if the result is 0 then its sign will be the sign of x).

	
rotate(x, y)

	Returns a rotated copy of x, y times.

	
same_quantum(x, y)

	Returns True if the two operands have the same exponent.

	
scaleb(x, y)

	Returns the first operand after adding the second value its exp.

	
shift(x, y)

	Returns a shifted copy of x, y times.

	
sqrt(x)

	Square root of a non-negative number to context precision.

	
subtract(x, y)

	Return the difference between x and y.

	
to_eng_string(x)

	Converts a number to a string, using scientific notation.

	
to_integral_exact(x)

	Rounds to an integer.

	
to_sci_string(x)

	Converts a number to a string using scientific notation.

9.4.4. Signals

Signals represent conditions that arise during computation. Each corresponds to
one context flag and one context trap enabler.

The context flag is set whenever the condition is encountered. After the
computation, flags may be checked for informational purposes (for instance, to
determine whether a computation was exact). After checking the flags, be sure to
clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a
Python exception to be raised. For example, if the DivisionByZero trap
is set, then a DivisionByZero exception is raised upon encountering the
condition.

	
class decimal.Clamped

	Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s
Emin and Emax limits. If possible, the exponent is reduced to
fit by adding zeros to the coefficient.

	
class decimal.DecimalException

	Base class for other signals and a subclass of ArithmeticError.

	
class decimal.DivisionByZero

	Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative
power. If this signal is not trapped, returns Infinity or
-Infinity with the sign determined by the inputs to the calculation.

	
class decimal.Inexact

	Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result
is returned. The signal flag or trap is used to detect when results are
inexact.

	
class decimal.InvalidOperation

	An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not
trapped, returns NaN. Possible causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
x._rescale(non-integer)
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity

	
class decimal.Overflow

	Numerical overflow.

Indicates the exponent is larger than Emax after rounding has
occurred. If not trapped, the result depends on the rounding mode, either
pulling inward to the largest representable finite number or rounding outward
to Infinity. In either case, Inexact and Rounded
are also signaled.

	
class decimal.Rounded

	Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero
(such as rounding 5.00 to 5.0). If not trapped, returns
the result unchanged. This signal is used to detect loss of significant
digits.

	
class decimal.Subnormal

	Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If
not trapped, returns the result unchanged.

	
class decimal.Underflow

	Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact
and Subnormal are also signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
 DecimalException
 Clamped
 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
 Inexact
 Overflow(Inexact, Rounded)
 Underflow(Inexact, Rounded, Subnormal)
 InvalidOperation
 Rounded
 Subnormal

9.4.5. Floating Point Notes

9.4.5.1. Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error
(making it possible to represent 0.1 exactly); however, some operations
can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction
of nearly offsetting quantities resulting in loss of significance. Knuth
provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive
properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.5111111')
>>> u + (v + w)
Decimal('10')

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.01')
>>> u * (v+w)
Decimal('0.0060000')

The decimal module makes it possible to restore the identities by
expanding the precision sufficiently to avoid loss of significance:

>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.51111111')
>>> u + (v + w)
Decimal('9.51111111')
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.0060000')
>>> u * (v+w)
Decimal('0.0060000')

9.4.5.2. Special values

The number system for the decimal module provides special values
including NaN, sNaN, -Infinity, Infinity,
and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal('Infinity'). Also,
they can arise from dividing by zero when the DivisionByZero signal is
not trapped. Likewise, when the Overflow signal is not trapped, infinity
can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations
where they get treated as very large, indeterminate numbers. For instance,
adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the
InvalidOperation signal is trapped, raise an exception. For example,
0/0 returns NaN which means “not a number”. This variety of
NaN is quiet and, once created, will flow through other computations
always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the
calculation to proceed while flagging specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every
operation. This is a useful return value when an invalid result needs to
interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a
NaN is involved. A test for equality where one of the operands is a
quiet or signaling NaN always returns False (even when doing
Decimal('NaN')==Decimal('NaN')), while a test for inequality always returns
True. An attempt to compare two Decimals using any of the <,
<=, > or >= operators will raise the InvalidOperation signal
if either operand is a NaN, and return False if this signal is
not trapped. Note that the General Decimal Arithmetic specification does not
specify the behavior of direct comparisons; these rules for comparisons
involving a NaN were taken from the IEEE 854 standard (see Table 3 in
section 5.7). To ensure strict standards-compliance, use the compare()
and compare-signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign
that would have resulted if the calculation had been carried out to greater
precision. Since their magnitude is zero, both positive and negative zeros are
treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are
various representations of zero with differing precisions yet equivalent in
value. This takes a bit of getting used to. For an eye accustomed to
normalized floating point representations, it is not immediately obvious that
the following calculation returns a value equal to zero:

>>> 1 / Decimal('Infinity')
Decimal('0E-1000000026')

9.4.6. Working with threads

The getcontext() function accesses a different Context object for
each thread. Having separate thread contexts means that threads may make
changes (such as getcontext.prec=10) without interfering with other threads.

Likewise, the setcontext() function automatically assigns its target to
the current thread.

If setcontext() has not been called before getcontext(), then
getcontext() will automatically create a new context for use in the
current thread.

The new context is copied from a prototype context called DefaultContext. To
control the defaults so that each thread will use the same values throughout the
application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between
threads calling getcontext(). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)

Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
 . . .

9.4.7. Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways
to work with the Decimal class:

def moneyfmt(value, places=2, curr='', sep=',', dp='.',
 pos='', neg='-', trailneg=''):
 """Convert Decimal to a money formatted string.

 places: required number of places after the decimal point
 curr: optional currency symbol before the sign (may be blank)
 sep: optional grouping separator (comma, period, space, or blank)
 dp: decimal point indicator (comma or period)
 only specify as blank when places is zero
 pos: optional sign for positive numbers: '+', space or blank
 neg: optional sign for negative numbers: '-', '(', space or blank
 trailneg:optional trailing minus indicator: '-', ')', space or blank

 >>> d = Decimal('-1234567.8901')
 >>> moneyfmt(d, curr='$')
 '-$1,234,567.89'
 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
 '1.234.568-'
 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
 '($1,234,567.89)'
 >>> moneyfmt(Decimal(123456789), sep=' ')
 '123 456 789.00'
 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
 '<0.02>'

 """
 q = Decimal(10) ** -places # 2 places --> '0.01'
 sign, digits, exp = value.quantize(q).as_tuple()
 result = []
 digits = map(str, digits)
 build, next = result.append, digits.pop
 if sign:
 build(trailneg)
 for i in range(places):
 build(next() if digits else '0')
 build(dp)
 if not digits:
 build('0')
 i = 0
 while digits:
 build(next())
 i += 1
 if i == 3 and digits:
 i = 0
 build(sep)
 build(curr)
 build(neg if sign else pos)
 return ''.join(reversed(result))

def pi():
 """Compute Pi to the current precision.

 >>> print pi()
 3.141592653589793238462643383

 """
 getcontext().prec += 2 # extra digits for intermediate steps
 three = Decimal(3) # substitute "three=3.0" for regular floats
 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
 while s != lasts:
 lasts = s
 n, na = n+na, na+8
 d, da = d+da, da+32
 t = (t * n) / d
 s += t
 getcontext().prec -= 2
 return +s # unary plus applies the new precision

def exp(x):
 """Return e raised to the power of x. Result type matches input type.

 >>> print exp(Decimal(1))
 2.718281828459045235360287471
 >>> print exp(Decimal(2))
 7.389056098930650227230427461
 >>> print exp(2.0)
 7.38905609893
 >>> print exp(2+0j)
 (7.38905609893+0j)

 """
 getcontext().prec += 2
 i, lasts, s, fact, num = 0, 0, 1, 1, 1
 while s != lasts:
 lasts = s
 i += 1
 fact *= i
 num *= x
 s += num / fact
 getcontext().prec -= 2
 return +s

def cos(x):
 """Return the cosine of x as measured in radians.

 >>> print cos(Decimal('0.5'))
 0.8775825618903727161162815826
 >>> print cos(0.5)
 0.87758256189
 >>> print cos(0.5+0j)
 (0.87758256189+0j)

 """
 getcontext().prec += 2
 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
 while s != lasts:
 lasts = s
 i += 2
 fact *= i * (i-1)
 num *= x * x
 sign *= -1
 s += num / fact * sign
 getcontext().prec -= 2
 return +s

def sin(x):
 """Return the sine of x as measured in radians.

 >>> print sin(Decimal('0.5'))
 0.4794255386042030002732879352
 >>> print sin(0.5)
 0.479425538604
 >>> print sin(0.5+0j)
 (0.479425538604+0j)

 """
 getcontext().prec += 2
 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
 while s != lasts:
 lasts = s
 i += 2
 fact *= i * (i-1)
 num *= x * x
 sign *= -1
 s += num / fact * sign
 getcontext().prec -= 2
 return +s

9.4.8. Decimal FAQ

Q. It is cumbersome to type decimal.Decimal('1234.5'). Is there a way to
minimize typing when using the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23') + D('3.45')
Decimal('4.68')

Q. In a fixed-point application with two decimal places, some inputs have many
places and need to be rounded. Others are not supposed to have excess digits
and need to be validated. What methods should be used?

A. The quantize() method rounds to a fixed number of decimal places. If
the Inexact trap is set, it is also useful for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')

>>> # Round to two places
>>> Decimal('3.214').quantize(TWOPLACES)
Decimal('3.21')

>>> # Validate that a number does not exceed two places
>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal('3.21')

>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):
 ...
Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant
throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer
will automatically preserve fixed point. Others operations, like division and
non-integer multiplication, will change the number of decimal places and need to
be followed-up with a quantize() step:

>>> a = Decimal('102.72') # Initial fixed-point values
>>> b = Decimal('3.17')
>>> a + b # Addition preserves fixed-point
Decimal('105.89')
>>> a - b
Decimal('99.55')
>>> a * 42 # So does integer multiplication
Decimal('4314.24')
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal('325.62')
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal('0.03')

In developing fixed-point applications, it is convenient to define functions
to handle the quantize() step:

>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)

>>> mul(a, b) # Automatically preserve fixed-point
Decimal('325.62')
>>> div(b, a)
Decimal('0.03')

Q. There are many ways to express the same value. The numbers 200,
200.000, 2E2, and 02E+4 all have the same value at
various precisions. Is there a way to transform them to a single recognizable
canonical value?

A. The normalize() method maps all equivalent values to a single
representative:

>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]

Q. Some decimal values always print with exponential notation. Is there a way
to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number
of significant places in the coefficient. For example, expressing
5.0E+3 as 5000 keeps the value constant but cannot show the
original’s two-place significance.

If an application does not care about tracking significance, it is easy to
remove the exponent and trailing zeros, losing significance, but keeping the
value unchanged:

def remove_exponent(d):
 '''Remove exponent and trailing zeros.

 >>> remove_exponent(Decimal('5E+3'))
 Decimal('5000')

 '''
 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a
Decimal though an exact conversion may take more precision than intuition would
suggest:

>>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')

Q. Within a complex calculation, how can I make sure that I haven’t gotten a
spurious result because of insufficient precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to
re-run calculations using greater precision and with various rounding modes.
Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but
not to the inputs. Is there anything to watch out for when mixing values of
different precisions?

A. Yes. The principle is that all values are considered to be exact and so is
the arithmetic on those values. Only the results are rounded. The advantage
for inputs is that “what you type is what you get”. A disadvantage is that the
results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext().prec = 3
>>> Decimal('3.104') + Decimal('2.104')
Decimal('5.21')
>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20')

The solution is either to increase precision or to force rounding of inputs
using the unary plus operation:

>>> getcontext().prec = 3
>>> +Decimal('1.23456789') # unary plus triggers rounding
Decimal('1.23')

Alternatively, inputs can be rounded upon creation using the
Context.create_decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.5. fractions — Rational numbers

New in version 2.6.

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from
another rational number, or from a string.

	
class fractions.Fraction(numerator=0, denominator=1)

	
class fractions.Fraction(other_fraction)

	
class fractions.Fraction(float)

	
class fractions.Fraction(decimal)

	
class fractions.Fraction(string)

	The first version requires that numerator and denominator are instances
of numbers.Rational and returns a new Fraction instance
with value numerator/denominator. If denominator is 0, it
raises a ZeroDivisionError. The second version requires that
other_fraction is an instance of numbers.Rational and returns a
Fraction instance with the same value. The next two versions accept
either a float or a decimal.Decimal instance, and return a
Fraction instance with exactly the same value. Note that due to the
usual issues with binary floating-point (see Floating Point Arithmetic: Issues and Limitations), the
argument to Fraction(1.1) is not exactly equal to 11/10, and so
Fraction(1.1) does not return Fraction(11, 10) as one might expect.
(But see the documentation for the limit_denominator() method below.)
The last version of the constructor expects a string or unicode instance.
The usual form for this instance is:

[sign] numerator ['/' denominator]

where the optional sign may be either ‘+’ or ‘-‘ and
numerator and denominator (if present) are strings of
decimal digits. In addition, any string that represents a finite
value and is accepted by the float constructor is also
accepted by the Fraction constructor. In either form the
input string may also have leading and/or trailing whitespace.
Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction('3/7')
Fraction(3, 7)
[40794 refs]
>>> Fraction(' -3/7 ')
Fraction(-3, 7)
>>> Fraction('1.414213 \t\n')
Fraction(1414213, 1000000)
>>> Fraction('-.125')
Fraction(-1, 8)
>>> Fraction('7e-6')
Fraction(7, 1000000)
>>> Fraction(2.25)
Fraction(9, 4)
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction(Decimal('1.1'))
Fraction(11, 10)

The Fraction class inherits from the abstract base class
numbers.Rational, and implements all of the methods and
operations from that class. Fraction instances are hashable,
and should be treated as immutable. In addition,
Fraction has the following methods:

Changed in version 2.7: The Fraction constructor now accepts float and
decimal.Decimal instances.

	
from_float(flt)

	This class method constructs a Fraction representing the exact
value of flt, which must be a float. Beware that
Fraction.from_float(0.3) is not the same value as Fraction(3, 10)

	
from_decimal(dec)

	This class method constructs a Fraction representing the exact
value of dec, which must be a decimal.Decimal.

	
limit_denominator(max_denominator=1000000)

	Finds and returns the closest Fraction to self that has
denominator at most max_denominator. This method is useful for finding
rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos
>>> Fraction(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)).limit_denominator()
Fraction(1, 2)
>>> Fraction(1.1).limit_denominator()
Fraction(11, 10)

	
fractions.gcd(a, b)

	Return the greatest common divisor of the integers a and b. If either
a or b is nonzero, then the absolute value of gcd(a, b) is the
largest integer that divides both a and b. gcd(a,b) has the same
sign as b if b is nonzero; otherwise it takes the sign of a. gcd(0,
0) returns 0.

See also

	Module numbers

	The abstract base classes making up the numeric tower.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.6. random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various
distributions.

See also

Latest version of the random module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/random.py?view=markup]

For integers, uniform selection from a range. For sequences, uniform selection
of a random element, a function to generate a random permutation of a list
in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian),
lognormal, negative exponential, gamma, and beta distributions. For generating
distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which
generates a random float uniformly in the semi-open range [0.0, 1.0). Python
uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2**19937-1. The underlying implementation in C is
both fast and threadsafe. The Mersenne Twister is one of the most extensively
tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable
for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden
instance of the random.Random class. You can instantiate your own
instances of Random to get generators that don’t share state. This is
especially useful for multi-threaded programs, creating a different instance of
Random for each thread, and using the jumpahead() method to make
it likely that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a different
basic generator of your own devising: in that case, override the random(),
seed(), getstate(), setstate() and jumpahead() methods.
Optionally, a new generator can supply a getrandbits() method — this
allows randrange() to produce selections over an arbitrarily large range.

New in version 2.4: the getrandbits() method.

As an example of subclassing, the random module provides the
WichmannHill class that implements an alternative generator in pure
Python. The class provides a backward compatible way to reproduce results from
earlier versions of Python, which used the Wichmann-Hill algorithm as the core
generator. Note that this Wichmann-Hill generator can no longer be recommended:
its period is too short by contemporary standards, and the sequence generated is
known to fail some stringent randomness tests. See the references below for a
recent variant that repairs these flaws.

Changed in version 2.3: MersenneTwister replaced Wichmann-Hill as the default generator.

The random module also provides the SystemRandom class which
uses the system function os.urandom() to generate random numbers
from sources provided by the operating system.

Bookkeeping functions:

	
random.seed([x])

	Initialize the basic random number generator. Optional argument x can be any
hashable object. If x is omitted or None, current system time is used;
current system time is also used to initialize the generator when the module is
first imported. If randomness sources are provided by the operating system,
they are used instead of the system time (see the os.urandom() function
for details on availability).

Changed in version 2.4: formerly, operating system resources were not used.

	
random.getstate()

	Return an object capturing the current internal state of the generator. This
object can be passed to setstate() to restore the state.

New in version 2.1.

Changed in version 2.6: State values produced in Python 2.6 cannot be loaded into earlier versions.

	
random.setstate(state)

	state should have been obtained from a previous call to getstate(), and
setstate() restores the internal state of the generator to what it was at
the time setstate() was called.

New in version 2.1.

	
random.jumpahead(n)

	Change the internal state to one different from and likely far away from the
current state. n is a non-negative integer which is used to scramble the
current state vector. This is most useful in multi-threaded programs, in
conjunction with multiple instances of the Random class:
setstate() or seed() can be used to force all instances into the
same internal state, and then jumpahead() can be used to force the
instances’ states far apart.

New in version 2.1.

Changed in version 2.3: Instead of jumping to a specific state, n steps ahead, jumpahead(n)
jumps to another state likely to be separated by many steps.

	
random.getrandbits(k)

	Returns a python long int with k random bits. This method is supplied
with the MersenneTwister generator and some other generators may also provide it
as an optional part of the API. When available, getrandbits() enables
randrange() to handle arbitrarily large ranges.

New in version 2.4.

Functions for integers:

	
random.randrange([start], stop[, step])

	Return a randomly selected element from range(start, stop, step). This is
equivalent to choice(range(start, stop, step)), but doesn’t actually build a
range object.

New in version 1.5.2.

	
random.randint(a, b)

	Return a random integer N such that a <= N <= b.

Functions for sequences:

	
random.choice(seq)

	Return a random element from the non-empty sequence seq. If seq is empty,
raises IndexError.

	
random.shuffle(x[, random])

	Shuffle the sequence x in place. The optional argument random is a
0-argument function returning a random float in [0.0, 1.0); by default, this is
the function random().

Note that for even rather small len(x), the total number of permutations of
x is larger than the period of most random number generators; this implies
that most permutations of a long sequence can never be generated.

	
random.sample(population, k)

	Return a k length list of unique elements chosen from the population sequence.
Used for random sampling without replacement.

New in version 2.3.

Returns a new list containing elements from the population while leaving the
original population unchanged. The resulting list is in selection order so that
all sub-slices will also be valid random samples. This allows raffle winners
(the sample) to be partitioned into grand prize and second place winners (the
subslices).

Members of the population need not be hashable or unique. If the population
contains repeats, then each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an xrange() object as an
argument. This is especially fast and space efficient for sampling from a large
population: sample(xrange(10000000), 60).

The following functions generate specific real-valued distributions. Function
parameters are named after the corresponding variables in the distribution’s
equation, as used in common mathematical practice; most of these equations can
be found in any statistics text.

	
random.random()

	Return the next random floating point number in the range [0.0, 1.0).

	
random.uniform(a, b)

	Return a random floating point number N such that a <= N <= b for
a <= b and b <= N <= a for b < a.

The end-point value b may or may not be included in the range
depending on floating-point rounding in the equation a + (b-a) * random().

	
random.triangular(low, high, mode)

	Return a random floating point number N such that low <= N <= high and
with the specified mode between those bounds. The low and high bounds
default to zero and one. The mode argument defaults to the midpoint
between the bounds, giving a symmetric distribution.

New in version 2.6.

	
random.betavariate(alpha, beta)

	Beta distribution. Conditions on the parameters are alpha > 0 and
beta > 0. Returned values range between 0 and 1.

	
random.expovariate(lambd)

	Exponential distribution. lambd is 1.0 divided by the desired
mean. It should be nonzero. (The parameter would be called
“lambda”, but that is a reserved word in Python.) Returned values
range from 0 to positive infinity if lambd is positive, and from
negative infinity to 0 if lambd is negative.

	
random.gammavariate(alpha, beta)

	Gamma distribution. (Not the gamma function!) Conditions on the
parameters are alpha > 0 and beta > 0.

	
random.gauss(mu, sigma)

	Gaussian distribution. mu is the mean, and sigma is the standard
deviation. This is slightly faster than the normalvariate() function
defined below.

	
random.lognormvariate(mu, sigma)

	Log normal distribution. If you take the natural logarithm of this
distribution, you’ll get a normal distribution with mean mu and standard
deviation sigma. mu can have any value, and sigma must be greater than
zero.

	
random.normalvariate(mu, sigma)

	Normal distribution. mu is the mean, and sigma is the standard deviation.

	
random.vonmisesvariate(mu, kappa)

	mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa
is the concentration parameter, which must be greater than or equal to zero. If
kappa is equal to zero, this distribution reduces to a uniform random angle
over the range 0 to 2*pi.

	
random.paretovariate(alpha)

	Pareto distribution. alpha is the shape parameter.

	
random.weibullvariate(alpha, beta)

	Weibull distribution. alpha is the scale parameter and beta is the shape
parameter.

Alternative Generators:

	
class random.WichmannHill([seed])

	Class that implements the Wichmann-Hill algorithm as the core generator. Has all
of the same methods as Random plus the whseed() method described
below. Because this class is implemented in pure Python, it is not threadsafe
and may require locks between calls. The period of the generator is
6,953,607,871,644 which is small enough to require care that two independent
random sequences do not overlap.

	
random.whseed([x])

	This is obsolete, supplied for bit-level compatibility with versions of Python
prior to 2.1. See seed() for details. whseed() does not guarantee
that distinct integer arguments yield distinct internal states, and can yield no
more than about 2**24 distinct internal states in all.

	
class random.SystemRandom([seed])

	Class that uses the os.urandom() function for generating random numbers
from sources provided by the operating system. Not available on all systems.
Does not rely on software state and sequences are not reproducible. Accordingly,
the seed() and jumpahead() methods have no effect and are ignored.
The getstate() and setstate() methods raise
NotImplementedError if called.

New in version 2.4.

Examples of basic usage:

>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Choose a random element
'c'

>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]

See also

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator”, ACM Transactions on
Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable
pseudo-random number generator”, Applied Statistics 31 (1982) 188-190.

Complementary-Multiply-with-Carry recipe [http://code.activestate.com/recipes/576707/] for a compatible alternative
random number generator with a long period and comparatively simple update
operations.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.7. itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a number of iterator building blocks inspired
by constructs from APL, Haskell, and SML. Each has been recast in a form
suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination. Together, they form an “iterator
algebra” making it possible to construct specialized tools succinctly and
efficiently in pure Python.

For instance, SML provides a tabulation tool: tabulate(f) which produces a
sequence f(0), f(1), The same effect can be achieved in Python
by combining imap() and count() to form imap(f, count()).

These tools and their built-in counterparts also work well with the high-speed
functions in the operator module. For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
sum(imap(operator.mul, vector1, vector2)).

Infinite Iterators:

	Iterator
	Arguments
	Results
	Example

	count()
	start, [step]
	start, start+step, start+2*step, ...
	count(10) --> 10 11 12 13 14 ...

	cycle()
	p
	p0, p1, ... plast, p0, p1, ...
	cycle('ABCD') --> A B C D A B C D ...

	repeat()
	elem [,n]
	elem, elem, elem, ... endlessly or up to n times
	repeat(10, 3) --> 10 10 10

Iterators terminating on the shortest input sequence:

	Iterator
	Arguments
	Results
	Example

	chain()
	p, q, ...
	p0, p1, ... plast, q0, q1, ...
	chain('ABC', 'DEF') --> A B C D E F

	compress()
	data, selectors
	(d[0] if s[0]), (d[1] if s[1]), ...
	compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F

	dropwhile()
	pred, seq
	seq[n], seq[n+1], starting when pred fails
	dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1

	groupby()
	iterable[, keyfunc]
	sub-iterators grouped by value of keyfunc(v)
	

	ifilter()
	pred, seq
	elements of seq where pred(elem) is True
	ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9

	ifilterfalse()
	pred, seq
	elements of seq where pred(elem) is False
	ifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8

	islice()
	seq, [start,] stop [, step]
	elements from seq[start:stop:step]
	islice('ABCDEFG', 2, None) --> C D E F G

	imap()
	func, p, q, ...
	func(p0, q0), func(p1, q1), ...
	imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000

	starmap()
	func, seq
	func(*seq[0]), func(*seq[1]), ...
	starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000

	tee()
	it, n
	it1, it2 , ... itn splits one iterator into n
	

	takewhile()
	pred, seq
	seq[0], seq[1], until pred fails
	takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4

	izip()
	p, q, ...
	(p[0], q[0]), (p[1], q[1]), ...
	izip('ABCD', 'xy') --> Ax By

	izip_longest()
	p, q, ...
	(p[0], q[0]), (p[1], q[1]), ...
	izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-

Combinatoric generators:

	Iterator
	Arguments
	Results

	product()
	p, q, ... [repeat=1]
	cartesian product, equivalent to a nested for-loop

	permutations()
	p[, r]
	r-length tuples, all possible orderings, no repeated elements

	combinations()
	p, r
	r-length tuples, in sorted order, no repeated elements

	combinations_with_replacement()
	p, r
	r-length tuples, in sorted order, with repeated elements

	product('ABCD', repeat=2)
	
	AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD

	permutations('ABCD', 2)
	
	AB AC AD BA BC BD CA CB CD DA DB DC

	combinations('ABCD', 2)
	
	AB AC AD BC BD CD

	combinations_with_replacement('ABCD', 2)
	
	AA AB AC AD BB BC BD CC CD DD

9.7.1. Itertool functions

The following module functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.

	
itertools.chain(*iterables)

	Make an iterator that returns elements from the first iterable until it is
exhausted, then proceeds to the next iterable, until all of the iterables are
exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to:

def chain(*iterables):
 # chain('ABC', 'DEF') --> A B C D E F
 for it in iterables:
 for element in it:
 yield element

	
classmethod chain.from_iterable(iterable)

	Alternate constructor for chain(). Gets chained inputs from a
single iterable argument that is evaluated lazily. Equivalent to:

@classmethod
def from_iterable(iterables):
 # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
 for it in iterables:
 for element in it:
 yield element

New in version 2.6.

	
itertools.combinations(iterable, r)

	Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the
input iterable is sorted, the combination tuples will be produced
in sorted order.

Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeat
values in each combination.

Equivalent to:

def combinations(iterable, r):
 # combinations('ABCD', 2) --> AB AC AD BC BD CD
 # combinations(range(4), 3) --> 012 013 023 123
 pool = tuple(iterable)
 n = len(pool)
 if r > n:
 return
 indices = range(r)
 yield tuple(pool[i] for i in indices)
 while True:
 for i in reversed(range(r)):
 if indices[i] != i + n - r:
 break
 else:
 return
 indices[i] += 1
 for j in range(i+1, r):
 indices[j] = indices[j-1] + 1
 yield tuple(pool[i] for i in indices)

The code for combinations() can be also expressed as a subsequence
of permutations() after filtering entries where the elements are not
in sorted order (according to their position in the input pool):

def combinations(iterable, r):
 pool = tuple(iterable)
 n = len(pool)
 for indices in permutations(range(n), r):
 if sorted(indices) == list(indices):
 yield tuple(pool[i] for i in indices)

The number of items returned is n! / r! / (n-r)! when 0 <= r <= n
or zero when r > n.

New in version 2.6.

	
itertools.combinations_with_replacement(iterable, r)

	Return r length subsequences of elements from the input iterable
allowing individual elements to be repeated more than once.

Combinations are emitted in lexicographic sort order. So, if the
input iterable is sorted, the combination tuples will be produced
in sorted order.

Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, the generated combinations
will also be unique.

Equivalent to:

def combinations_with_replacement(iterable, r):
 # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
 pool = tuple(iterable)
 n = len(pool)
 if not n and r:
 return
 indices = [0] * r
 yield tuple(pool[i] for i in indices)
 while True:
 for i in reversed(range(r)):
 if indices[i] != n - 1:
 break
 else:
 return
 indices[i:] = [indices[i] + 1] * (r - i)
 yield tuple(pool[i] for i in indices)

The code for combinations_with_replacement() can be also expressed as
a subsequence of product() after filtering entries where the elements
are not in sorted order (according to their position in the input pool):

def combinations_with_replacement(iterable, r):
 pool = tuple(iterable)
 n = len(pool)
 for indices in product(range(n), repeat=r):
 if sorted(indices) == list(indices):
 yield tuple(pool[i] for i in indices)

The number of items returned is (n+r-1)! / r! / (n-1)! when n > 0.

New in version 2.7.

	
itertools.compress(data, selectors)

	Make an iterator that filters elements from data returning only those that
have a corresponding element in selectors that evaluates to True.
Stops when either the data or selectors iterables has been exhausted.
Equivalent to:

def compress(data, selectors):
 # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
 return (d for d, s in izip(data, selectors) if s)

New in version 2.7.

	
itertools.count(start=0, step=1)

	Make an iterator that returns evenly spaced values starting with n. Often
used as an argument to imap() to generate consecutive data points.
Also, used with izip() to add sequence numbers. Equivalent to:

def count(start=0, step=1):
 # count(10) --> 10 11 12 13 14 ...
 # count(2.5, 0.5) -> 2.5 3.0 3.5 ...
 n = start
 while True:
 yield n
 n += step

When counting with floating point numbers, better accuracy can sometimes be
achieved by substituting multiplicative code such as: (start + step * i
for i in count()).

Changed in version 2.7: added step argument and allowed non-integer arguments.

	
itertools.cycle(iterable)

	Make an iterator returning elements from the iterable and saving a copy of each.
When the iterable is exhausted, return elements from the saved copy. Repeats
indefinitely. Equivalent to:

def cycle(iterable):
 # cycle('ABCD') --> A B C D A B C D A B C D ...
 saved = []
 for element in iterable:
 yield element
 saved.append(element)
 while saved:
 for element in saved:
 yield element

Note, this member of the toolkit may require significant auxiliary storage
(depending on the length of the iterable).

	
itertools.dropwhile(predicate, iterable)

	Make an iterator that drops elements from the iterable as long as the predicate
is true; afterwards, returns every element. Note, the iterator does not produce
any output until the predicate first becomes false, so it may have a lengthy
start-up time. Equivalent to:

def dropwhile(predicate, iterable):
 # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
 iterable = iter(iterable)
 for x in iterable:
 if not predicate(x):
 yield x
 break
 for x in iterable:
 yield x

	
itertools.groupby(iterable[, key])

	Make an iterator that returns consecutive keys and groups from the iterable.
The key is a function computing a key value for each element. If not
specified or is None, key defaults to an identity function and returns
the element unchanged. Generally, the iterable needs to already be sorted on
the same key function.

The operation of groupby() is similar to the uniq filter in Unix. It
generates a break or new group every time the value of the key function changes
(which is why it is usually necessary to have sorted the data using the same key
function). That behavior differs from SQL’s GROUP BY which aggregates common
elements regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable
with groupby(). Because the source is shared, when the groupby()
object is advanced, the previous group is no longer visible. So, if that data
is needed later, it should be stored as a list:

groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):
 groups.append(list(g)) # Store group iterator as a list
 uniquekeys.append(k)

groupby() is equivalent to:

class groupby(object):
 # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
 # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
 def __init__(self, iterable, key=None):
 if key is None:
 key = lambda x: x
 self.keyfunc = key
 self.it = iter(iterable)
 self.tgtkey = self.currkey = self.currvalue = object()
 def __iter__(self):
 return self
 def next(self):
 while self.currkey == self.tgtkey:
 self.currvalue = next(self.it) # Exit on StopIteration
 self.currkey = self.keyfunc(self.currvalue)
 self.tgtkey = self.currkey
 return (self.currkey, self._grouper(self.tgtkey))
 def _grouper(self, tgtkey):
 while self.currkey == tgtkey:
 yield self.currvalue
 self.currvalue = next(self.it) # Exit on StopIteration
 self.currkey = self.keyfunc(self.currvalue)

New in version 2.4.

	
itertools.ifilter(predicate, iterable)

	Make an iterator that filters elements from iterable returning only those for
which the predicate is True. If predicate is None, return the items
that are true. Equivalent to:

def ifilter(predicate, iterable):
 # ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9
 if predicate is None:
 predicate = bool
 for x in iterable:
 if predicate(x):
 yield x

	
itertools.ifilterfalse(predicate, iterable)

	Make an iterator that filters elements from iterable returning only those for
which the predicate is False. If predicate is None, return the items
that are false. Equivalent to:

def ifilterfalse(predicate, iterable):
 # ifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
 if predicate is None:
 predicate = bool
 for x in iterable:
 if not predicate(x):
 yield x

	
itertools.imap(function, *iterables)

	Make an iterator that computes the function using arguments from each of the
iterables. If function is set to None, then imap() returns the
arguments as a tuple. Like map() but stops when the shortest iterable is
exhausted instead of filling in None for shorter iterables. The reason for
the difference is that infinite iterator arguments are typically an error for
map() (because the output is fully evaluated) but represent a common and
useful way of supplying arguments to imap(). Equivalent to:

def imap(function, *iterables):
 # imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000
 iterables = map(iter, iterables)
 while True:
 args = [next(it) for it in iterables]
 if function is None:
 yield tuple(args)
 else:
 yield function(*args)

	
itertools.islice(iterable[, start], stop[, step])

	Make an iterator that returns selected elements from the iterable. If start is
non-zero, then elements from the iterable are skipped until start is reached.
Afterward, elements are returned consecutively unless step is set higher than
one which results in items being skipped. If stop is None, then iteration
continues until the iterator is exhausted, if at all; otherwise, it stops at the
specified position. Unlike regular slicing, islice() does not support
negative values for start, stop, or step. Can be used to extract related
fields from data where the internal structure has been flattened (for example, a
multi-line report may list a name field on every third line). Equivalent to:

def islice(iterable, *args):
 # islice('ABCDEFG', 2) --> A B
 # islice('ABCDEFG', 2, 4) --> C D
 # islice('ABCDEFG', 2, None) --> C D E F G
 # islice('ABCDEFG', 0, None, 2) --> A C E G
 s = slice(*args)
 it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
 nexti = next(it)
 for i, element in enumerate(iterable):
 if i == nexti:
 yield element
 nexti = next(it)

If start is None, then iteration starts at zero. If step is None,
then the step defaults to one.

Changed in version 2.5: accept None values for default start and step.

	
itertools.izip(*iterables)

	Make an iterator that aggregates elements from each of the iterables. Like
zip() except that it returns an iterator instead of a list. Used for
lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
 # izip('ABCD', 'xy') --> Ax By
 iterables = map(iter, iterables)
 while iterables:
 yield tuple(map(next, iterables))

Changed in version 2.4: When no iterables are specified, returns a zero length iterator instead of
raising a TypeError exception.

The left-to-right evaluation order of the iterables is guaranteed. This
makes possible an idiom for clustering a data series into n-length groups
using izip(*[iter(s)]*n).

izip() should only be used with unequal length inputs when you don’t
care about trailing, unmatched values from the longer iterables. If those
values are important, use izip_longest() instead.

	
itertools.izip_longest(*iterables[, fillvalue])

	Make an iterator that aggregates elements from each of the iterables. If the
iterables are of uneven length, missing values are filled-in with fillvalue.
Iteration continues until the longest iterable is exhausted. Equivalent to:

def izip_longest(*args, **kwds):
 # izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
 fillvalue = kwds.get('fillvalue')
 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
 yield counter() # yields the fillvalue, or raises IndexError
 fillers = repeat(fillvalue)
 iters = [chain(it, sentinel(), fillers) for it in args]
 try:
 for tup in izip(*iters):
 yield tup
 except IndexError:
 pass

If one of the iterables is potentially infinite, then the
izip_longest() function should be wrapped with something that limits
the number of calls (for example islice() or takewhile()). If
not specified, fillvalue defaults to None.

New in version 2.6.

	
itertools.permutations(iterable[, r])

	Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length
of the iterable and all possible full-length permutations
are generated.

Permutations are emitted in lexicographic sort order. So, if the
input iterable is sorted, the permutation tuples will be produced
in sorted order.

Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeat
values in each permutation.

Equivalent to:

def permutations(iterable, r=None):
 # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
 # permutations(range(3)) --> 012 021 102 120 201 210
 pool = tuple(iterable)
 n = len(pool)
 r = n if r is None else r
 if r > n:
 return
 indices = range(n)
 cycles = range(n, n-r, -1)
 yield tuple(pool[i] for i in indices[:r])
 while n:
 for i in reversed(range(r)):
 cycles[i] -= 1
 if cycles[i] == 0:
 indices[i:] = indices[i+1:] + indices[i:i+1]
 cycles[i] = n - i
 else:
 j = cycles[i]
 indices[i], indices[-j] = indices[-j], indices[i]
 yield tuple(pool[i] for i in indices[:r])
 break
 else:
 return

The code for permutations() can be also expressed as a subsequence of
product(), filtered to exclude entries with repeated elements (those
from the same position in the input pool):

def permutations(iterable, r=None):
 pool = tuple(iterable)
 n = len(pool)
 r = n if r is None else r
 for indices in product(range(n), repeat=r):
 if len(set(indices)) == r:
 yield tuple(pool[i] for i in indices)

The number of items returned is n! / (n-r)! when 0 <= r <= n
or zero when r > n.

New in version 2.6.

	
itertools.product(*iterables[, repeat])

	Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For example,
product(A, B) returns the same as ((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing
on every iteration. This pattern creates a lexicographic ordering so that if
the input’s iterables are sorted, the product tuples are emitted in sorted
order.

To compute the product of an iterable with itself, specify the number of
repetitions with the optional repeat keyword argument. For example,
product(A, repeat=4) means the same as product(A, A, A, A).

This function is equivalent to the following code, except that the
actual implementation does not build up intermediate results in memory:

def product(*args, **kwds):
 # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
 # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
 pools = map(tuple, args) * kwds.get('repeat', 1)
 result = [[]]
 for pool in pools:
 result = [x+[y] for x in result for y in pool]
 for prod in result:
 yield tuple(prod)

New in version 2.6.

	
itertools.repeat(object[, times])

	Make an iterator that returns object over and over again. Runs indefinitely
unless the times argument is specified. Used as argument to imap() for
invariant function parameters. Also used with izip() to create constant
fields in a tuple record. Equivalent to:

def repeat(object, times=None):
 # repeat(10, 3) --> 10 10 10
 if times is None:
 while True:
 yield object
 else:
 for i in xrange(times):
 yield object

	
itertools.starmap(function, iterable)

	Make an iterator that computes the function using arguments obtained from
the iterable. Used instead of imap() when argument parameters are already
grouped in tuples from a single iterable (the data has been “pre-zipped”). The
difference between imap() and starmap() parallels the distinction
between function(a,b) and function(*c). Equivalent to:

def starmap(function, iterable):
 # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
 for args in iterable:
 yield function(*args)

Changed in version 2.6: Previously, starmap() required the function arguments to be tuples.
Now, any iterable is allowed.

	
itertools.takewhile(predicate, iterable)

	Make an iterator that returns elements from the iterable as long as the
predicate is true. Equivalent to:

def takewhile(predicate, iterable):
 # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
 for x in iterable:
 if predicate(x):
 yield x
 else:
 break

	
itertools.tee(iterable[, n=2])

	Return n independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
 it = iter(iterable)
 deques = [collections.deque() for i in range(n)]
 def gen(mydeque):
 while True:
 if not mydeque: # when the local deque is empty
 newval = next(it) # fetch a new value and
 for d in deques: # load it to all the deques
 d.append(newval)
 yield mydeque.popleft()
 return tuple(gen(d) for d in deques)

Once tee() has made a split, the original iterable should not be
used anywhere else; otherwise, the iterable could get advanced without
the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how
much temporary data needs to be stored). In general, if one iterator uses
most or all of the data before another iterator starts, it is faster to use
list() instead of tee().

New in version 2.4.

9.7.2. Recipes

This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset.
The superior memory performance is kept by processing elements one at a time
rather than bringing the whole iterable into memory all at once. Code volume is
kept small by linking the tools together in a functional style which helps
eliminate temporary variables. High speed is retained by preferring
“vectorized” building blocks over the use of for-loops and generators
which incur interpreter overhead.

def take(n, iterable):
 "Return first n items of the iterable as a list"
 return list(islice(iterable, n))

def tabulate(function, start=0):
 "Return function(0), function(1), ..."
 return imap(function, count(start))

def consume(iterator, n):
 "Advance the iterator n-steps ahead. If n is none, consume entirely."
 # Use functions that consume iterators at C speed.
 if n is None:
 # feed the entire iterator into a zero-length deque
 collections.deque(iterator, maxlen=0)
 else:
 # advance to the empty slice starting at position n
 next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):
 "Returns the nth item or a default value"
 return next(islice(iterable, n, None), default)

def quantify(iterable, pred=bool):
 "Count how many times the predicate is true"
 return sum(imap(pred, iterable))

def padnone(iterable):
 """Returns the sequence elements and then returns None indefinitely.

 Useful for emulating the behavior of the built-in map() function.
 """
 return chain(iterable, repeat(None))

def ncycles(iterable, n):
 "Returns the sequence elements n times"
 return chain.from_iterable(repeat(tuple(iterable), n))

def dotproduct(vec1, vec2):
 return sum(imap(operator.mul, vec1, vec2))

def flatten(listOfLists):
 "Flatten one level of nesting"
 return chain.from_iterable(listOfLists)

def repeatfunc(func, times=None, *args):
 """Repeat calls to func with specified arguments.

 Example: repeatfunc(random.random)
 """
 if times is None:
 return starmap(func, repeat(args))
 return starmap(func, repeat(args, times))

def pairwise(iterable):
 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
 a, b = tee(iterable)
 next(b, None)
 return izip(a, b)

def grouper(n, iterable, fillvalue=None):
 "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
 args = [iter(iterable)] * n
 return izip_longest(fillvalue=fillvalue, *args)

def roundrobin(*iterables):
 "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
 # Recipe credited to George Sakkis
 pending = len(iterables)
 nexts = cycle(iter(it).next for it in iterables)
 while pending:
 try:
 for next in nexts:
 yield next()
 except StopIteration:
 pending -= 1
 nexts = cycle(islice(nexts, pending))

def powerset(iterable):
 "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
 s = list(iterable)
 return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def unique_everseen(iterable, key=None):
 "List unique elements, preserving order. Remember all elements ever seen."
 # unique_everseen('AAAABBBCCDAABBB') --> A B C D
 # unique_everseen('ABBCcAD', str.lower) --> A B C D
 seen = set()
 seen_add = seen.add
 if key is None:
 for element in ifilterfalse(seen.__contains__, iterable):
 seen_add(element)
 yield element
 else:
 for element in iterable:
 k = key(element)
 if k not in seen:
 seen_add(k)
 yield element

def unique_justseen(iterable, key=None):
 "List unique elements, preserving order. Remember only the element just seen."
 # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
 # unique_justseen('ABBCcAD', str.lower) --> A B C A D
 return imap(next, imap(itemgetter(1), groupby(iterable, key)))

def iter_except(func, exception, first=None):
 """ Call a function repeatedly until an exception is raised.

 Converts a call-until-exception interface to an iterator interface.
 Like __builtin__.iter(func, sentinel) but uses an exception instead
 of a sentinel to end the loop.

 Examples:
 bsddbiter = iter_except(db.next, bsddb.error, db.first)
 heapiter = iter_except(functools.partial(heappop, h), IndexError)
 dictiter = iter_except(d.popitem, KeyError)
 dequeiter = iter_except(d.popleft, IndexError)
 queueiter = iter_except(q.get_nowait, Queue.Empty)
 setiter = iter_except(s.pop, KeyError)

 """
 try:
 if first is not None:
 yield first()
 while 1:
 yield func()
 except exception:
 pass

def random_product(*args, **kwds):
 "Random selection from itertools.product(*args, **kwds)"
 pools = map(tuple, args) * kwds.get('repeat', 1)
 return tuple(random.choice(pool) for pool in pools)

def random_permutation(iterable, r=None):
 "Random selection from itertools.permutations(iterable, r)"
 pool = tuple(iterable)
 r = len(pool) if r is None else r
 return tuple(random.sample(pool, r))

def random_combination(iterable, r):
 "Random selection from itertools.combinations(iterable, r)"
 pool = tuple(iterable)
 n = len(pool)
 indices = sorted(random.sample(xrange(n), r))
 return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
 "Random selection from itertools.combinations_with_replacement(iterable, r)"
 pool = tuple(iterable)
 n = len(pool)
 indices = sorted(random.randrange(n) for i in xrange(r))
 return tuple(pool[i] for i in indices)

Note, many of the above recipes can be optimized by replacing global lookups
with local variables defined as default values. For example, the
dotproduct recipe can be written as:

def dotproduct(vec1, vec2, sum=sum, imap=imap, mul=operator.mul):
 return sum(imap(mul, vec1, vec2))

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.8. functools — Higher order functions and operations on callable objects

New in version 2.5.

The functools module is for higher-order functions: functions that act on
or return other functions. In general, any callable object can be treated as a
function for the purposes of this module.

See also

Latest version of the functools Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/functools.py?view=markup]

The functools module defines the following functions:

	
functools.cmp_to_key(func)

	Transform an old-style comparison function to a key-function. Used with
tools that accept key functions (such as sorted(), min(),
max(), heapq.nlargest(), heapq.nsmallest(),
itertools.groupby()). This function is primarily used as a transition
tool for programs being converted to Py3.x where comparison functions are no
longer supported.

A compare function is any callable that accept two arguments, compares them,
and returns a negative number for less-than, zero for equality, or a positive
number for greater-than. A key function is a callable that accepts one
argument and returns another value that indicates the position in the desired
collation sequence.

Example:

sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order

New in version 2.7.

	
functools.total_ordering(cls)

	Given a class defining one or more rich comparison ordering methods, this
class decorator supplies the rest. This simplifies the effort involved
in specifying all of the possible rich comparison operations:

The class must define one of __lt__(), __le__(),
__gt__(), or __ge__().
In addition, the class should supply an __eq__() method.

For example:

@total_ordering
class Student:
 def __eq__(self, other):
 return ((self.lastname.lower(), self.firstname.lower()) ==
 (other.lastname.lower(), other.firstname.lower()))
 def __lt__(self, other):
 return ((self.lastname.lower(), self.firstname.lower()) <
 (other.lastname.lower(), other.firstname.lower()))

New in version 2.7.

	
functools.reduce(function, iterable[, initializer])

	This is the same function as reduce(). It is made available in this module
to allow writing code more forward-compatible with Python 3.

New in version 2.6.

	
functools.partial(func[,*args][, **keywords])

	Return a new partial object which when called will behave like func
called with the positional arguments args and keyword arguments keywords. If
more arguments are supplied to the call, they are appended to args. If
additional keyword arguments are supplied, they extend and override keywords.
Roughly equivalent to:

def partial(func, *args, **keywords):
 def newfunc(*fargs, **fkeywords):
 newkeywords = keywords.copy()
 newkeywords.update(fkeywords)
 return func(*(args + fargs), **newkeywords)
 newfunc.func = func
 newfunc.args = args
 newfunc.keywords = keywords
 return newfunc

The partial() is used for partial function application which “freezes”
some portion of a function’s arguments and/or keywords resulting in a new object
with a simplified signature. For example, partial() can be used to create
a callable that behaves like the int() function where the base argument
defaults to two:

>>> from functools import partial
>>> basetwo = partial(int, base=2)
>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
>>> basetwo('10010')
18

	
functools.update_wrapper(wrapper, wrapped[, assigned][, updated])

	Update a wrapper function to look like the wrapped function. The optional
arguments are tuples to specify which attributes of the original function are
assigned directly to the matching attributes on the wrapper function and which
attributes of the wrapper function are updated with the corresponding attributes
from the original function. The default values for these arguments are the
module level constants WRAPPER_ASSIGNMENTS (which assigns to the wrapper
function’s __name__, __module__ and __doc__, the documentation string) and
WRAPPER_UPDATES (which updates the wrapper function’s __dict__, i.e. the
instance dictionary).

The main intended use for this function is in decorator functions which
wrap the decorated function and return the wrapper. If the wrapper function is
not updated, the metadata of the returned function will reflect the wrapper
definition rather than the original function definition, which is typically less
than helpful.

	
functools.wraps(wrapped[, assigned][, updated])

	This is a convenience function for invoking partial(update_wrapper,
wrapped=wrapped, assigned=assigned, updated=updated) as a function decorator
when defining a wrapper function. For example:

>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwds):
... print 'Calling decorated function'
... return f(*args, **kwds)
... return wrapper
...
>>> @my_decorator
... def example():
... """Docstring"""
... print 'Called example function'
...
>>> example()
Calling decorated function
Called example function
>>> example.__name__
'example'
>>> example.__doc__
'Docstring'

Without the use of this decorator factory, the name of the example function
would have been 'wrapper', and the docstring of the original example()
would have been lost.

9.8.1. partial Objects

partial objects are callable objects created by partial(). They
have three read-only attributes:

	
partial.func

	A callable object or function. Calls to the partial object will be
forwarded to func with new arguments and keywords.

	
partial.args

	The leftmost positional arguments that will be prepended to the positional
arguments provided to a partial object call.

	
partial.keywords

	The keyword arguments that will be supplied when the partial object is
called.

partial objects are like function objects in that they are
callable, weak referencable, and can have attributes. There are some important
differences. For instance, the __name__ and __doc__ attributes
are not created automatically. Also, partial objects defined in
classes behave like static methods and do not transform into bound methods
during instance attribute look-up.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	9. Numeric and Mathematical Modules

9.9. operator — Standard operators as functions

The operator module exports a set of functions implemented in C
corresponding to the intrinsic operators of Python. For example,
operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and
trailing __ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical
operations, mathematical operations, sequence operations, and abstract type
tests.

The object comparison functions are useful for all objects, and are named after
the rich comparison operators they support:

	
operator.lt(a, b)

	
operator.le(a, b)

	
operator.eq(a, b)

	
operator.ne(a, b)

	
operator.ge(a, b)

	
operator.gt(a, b)

	
operator.__lt__(a, b)

	
operator.__le__(a, b)

	
operator.__eq__(a, b)

	
operator.__ne__(a, b)

	
operator.__ge__(a, b)

	
operator.__gt__(a, b)

	Perform “rich comparisons” between a and b. Specifically, lt(a, b) is
equivalent to a < b, le(a, b) is equivalent to a <= b, eq(a,
b) is equivalent to a == b, ne(a, b) is equivalent to a != b,
gt(a, b) is equivalent to a > b and ge(a, b) is equivalent to a
>= b. Note that unlike the built-in cmp(), these functions can
return any value, which may or may not be interpretable as a Boolean value.
See Comparisons for more information about rich comparisons.

New in version 2.2.

The logical operations are also generally applicable to all objects, and support
truth tests, identity tests, and boolean operations:

	
operator.not_(obj)

	
operator.__not__(obj)

	Return the outcome of not obj. (Note that there is no
__not__() method for object instances; only the interpreter core defines
this operation. The result is affected by the __nonzero__() and
__len__() methods.)

	
operator.truth(obj)

	Return True if obj is true, and False otherwise. This is
equivalent to using the bool constructor.

	
operator.is_(a, b)

	Return a is b. Tests object identity.

New in version 2.3.

	
operator.is_not(a, b)

	Return a is not b. Tests object identity.

New in version 2.3.

The mathematical and bitwise operations are the most numerous:

	
operator.abs(obj)

	
operator.__abs__(obj)

	Return the absolute value of obj.

	
operator.add(a, b)

	
operator.__add__(a, b)

	Return a + b, for a and b numbers.

	
operator.and_(a, b)

	
operator.__and__(a, b)

	Return the bitwise and of a and b.

	
operator.div(a, b)

	
operator.__div__(a, b)

	Return a / b when __future__.division is not in effect. This is
also known as “classic” division.

	
operator.floordiv(a, b)

	
operator.__floordiv__(a, b)

	Return a // b.

New in version 2.2.

	
operator.index(a)

	
operator.__index__(a)

	Return a converted to an integer. Equivalent to a.__index__().

New in version 2.5.

	
operator.inv(obj)

	
operator.invert(obj)

	
operator.__inv__(obj)

	
operator.__invert__(obj)

	Return the bitwise inverse of the number obj. This is equivalent to ~obj.

New in version 2.0: The names invert() and __invert__().

	
operator.lshift(a, b)

	
operator.__lshift__(a, b)

	Return a shifted left by b.

	
operator.mod(a, b)

	
operator.__mod__(a, b)

	Return a % b.

	
operator.mul(a, b)

	
operator.__mul__(a, b)

	Return a * b, for a and b numbers.

	
operator.neg(obj)

	
operator.__neg__(obj)

	Return obj negated (-obj).

	
operator.or_(a, b)

	
operator.__or__(a, b)

	Return the bitwise or of a and b.

	
operator.pos(obj)

	
operator.__pos__(obj)

	Return obj positive (+obj).

	
operator.pow(a, b)

	
operator.__pow__(a, b)

	Return a ** b, for a and b numbers.

New in version 2.3.

	
operator.rshift(a, b)

	
operator.__rshift__(a, b)

	Return a shifted right by b.

	
operator.sub(a, b)

	
operator.__sub__(a, b)

	Return a - b.

	
operator.truediv(a, b)

	
operator.__truediv__(a, b)

	Return a / b when __future__.division is in effect. This is also
known as “true” division.

New in version 2.2.

	
operator.xor(a, b)

	
operator.__xor__(a, b)

	Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

	
operator.concat(a, b)

	
operator.__concat__(a, b)

	Return a + b for a and b sequences.

	
operator.contains(a, b)

	
operator.__contains__(a, b)

	Return the outcome of the test b in a. Note the reversed operands.

New in version 2.0: The name __contains__().

	
operator.countOf(a, b)

	Return the number of occurrences of b in a.

	
operator.delitem(a, b)

	
operator.__delitem__(a, b)

	Remove the value of a at index b.

	
operator.delslice(a, b, c)

	
operator.__delslice__(a, b, c)

	Delete the slice of a from index b to index c-1.

Deprecated since version 2.6: This function is removed in Python 3.x. Use delitem() with a slice
index.

	
operator.getitem(a, b)

	
operator.__getitem__(a, b)

	Return the value of a at index b.

	
operator.getslice(a, b, c)

	
operator.__getslice__(a, b, c)

	Return the slice of a from index b to index c-1.

Deprecated since version 2.6: This function is removed in Python 3.x. Use getitem() with a slice
index.

	
operator.indexOf(a, b)

	Return the index of the first of occurrence of b in a.

	
operator.repeat(a, b)

	
operator.__repeat__(a, b)

	
Deprecated since version 2.7: Use __mul__() instead.

Return a * b where a is a sequence and b is an integer.

	
operator.sequenceIncludes(...)

	
Deprecated since version 2.0: Use contains() instead.

Alias for contains().

	
operator.setitem(a, b, c)

	
operator.__setitem__(a, b, c)

	Set the value of a at index b to c.

	
operator.setslice(a, b, c, v)

	
operator.__setslice__(a, b, c, v)

	Set the slice of a from index b to index c-1 to the sequence v.

Deprecated since version 2.6: This function is removed in Python 3.x. Use setitem() with a slice
index.

Example use of operator functions:

>>> # Elementwise multiplication
>>> map(mul, [0, 1, 2, 3], [10, 20, 30, 40])
[0, 20, 60, 120]

>>> # Dot product
>>> sum(map(mul, [0, 1, 2, 3], [10, 20, 30, 40]))
200

Many operations have an “in-place” version. The following functions provide a
more primitive access to in-place operators than the usual syntax does; for
example, the statement x += y is equivalent to
x = operator.iadd(x, y). Another way to put it is to say that
z = operator.iadd(x, y) is equivalent to the compound statement
z = x; z += y.

	
operator.iadd(a, b)

	
operator.__iadd__(a, b)

	a = iadd(a, b) is equivalent to a += b.

New in version 2.5.

	
operator.iand(a, b)

	
operator.__iand__(a, b)

	a = iand(a, b) is equivalent to a &= b.

New in version 2.5.

	
operator.iconcat(a, b)

	
operator.__iconcat__(a, b)

	a = iconcat(a, b) is equivalent to a += b for a and b sequences.

New in version 2.5.

	
operator.idiv(a, b)

	
operator.__idiv__(a, b)

	a = idiv(a, b) is equivalent to a /= b when __future__.division is
not in effect.

New in version 2.5.

	
operator.ifloordiv(a, b)

	
operator.__ifloordiv__(a, b)

	a = ifloordiv(a, b) is equivalent to a //= b.

New in version 2.5.

	
operator.ilshift(a, b)

	
operator.__ilshift__(a, b)

	a = ilshift(a, b) is equivalent to a <<= b.

New in version 2.5.

	
operator.imod(a, b)

	
operator.__imod__(a, b)

	a = imod(a, b) is equivalent to a %= b.

New in version 2.5.

	
operator.imul(a, b)

	
operator.__imul__(a, b)

	a = imul(a, b) is equivalent to a *= b.

New in version 2.5.

	
operator.ior(a, b)

	
operator.__ior__(a, b)

	a = ior(a, b) is equivalent to a |= b.

New in version 2.5.

	
operator.ipow(a, b)

	
operator.__ipow__(a, b)

	a = ipow(a, b) is equivalent to a **= b.

New in version 2.5.

	
operator.irepeat(a, b)

	
operator.__irepeat__(a, b)

	
Deprecated since version 2.7: Use __imul__() instead.

a = irepeat(a, b) is equivalent to a *= b where a is a sequence and
b is an integer.

New in version 2.5.

	
operator.irshift(a, b)

	
operator.__irshift__(a, b)

	a = irshift(a, b) is equivalent to a >>= b.

New in version 2.5.

	
operator.isub(a, b)

	
operator.__isub__(a, b)

	a = isub(a, b) is equivalent to a -= b.

New in version 2.5.

	
operator.itruediv(a, b)

	
operator.__itruediv__(a, b)

	a = itruediv(a, b) is equivalent to a /= b when __future__.division
is in effect.

New in version 2.5.

	
operator.ixor(a, b)

	
operator.__ixor__(a, b)

	a = ixor(a, b) is equivalent to a ^= b.

New in version 2.5.

The operator module also defines a few predicates to test the type of
objects; however, these are not all reliable. It is preferable to test
abstract base classes instead (see collections and
numbers for details).

	
operator.isCallable(obj)

	
Deprecated since version 2.0: Use isinstance(x, collections.Callable) instead.

Returns true if the object obj can be called like a function, otherwise it
returns false. True is returned for functions, bound and unbound methods, class
objects, and instance objects which support the __call__() method.

	
operator.isMappingType(obj)

	
Deprecated since version 2.7: Use isinstance(x, collections.Mapping) instead.

Returns true if the object obj supports the mapping interface. This is true for
dictionaries and all instance objects defining __getitem__().

	
operator.isNumberType(obj)

	
Deprecated since version 2.7: Use isinstance(x, numbers.Number) instead.

Returns true if the object obj represents a number. This is true for all
numeric types implemented in C.

	
operator.isSequenceType(obj)

	
Deprecated since version 2.7: Use isinstance(x, collections.Sequence) instead.

Returns true if the object obj supports the sequence protocol. This returns true
for all objects which define sequence methods in C, and for all instance objects
defining __getitem__().

The operator module also defines tools for generalized attribute and item
lookups. These are useful for making fast field extractors as arguments for
map(), sorted(), itertools.groupby(), or other functions that
expect a function argument.

	
operator.attrgetter(attr[, args...])

	Return a callable object that fetches attr from its operand. If more than one
attribute is requested, returns a tuple of attributes. After,
f = attrgetter('name'), the call f(b) returns b.name. After,
f = attrgetter('name', 'date'), the call f(b) returns (b.name,
b.date). Equivalent to:

def attrgetter(*items):
 if len(items) == 1:
 attr = items[0]
 def g(obj):
 return resolve_attr(obj, attr)
 else:
 def g(obj):
 return tuple(resolve_att(obj, attr) for attr in items)
 return g

def resolve_attr(obj, attr):
 for name in attr.split("."):
 obj = getattr(obj, name)
 return obj

The attribute names can also contain dots; after f = attrgetter('date.month'),
the call f(b) returns b.date.month.

New in version 2.4.

Changed in version 2.5: Added support for multiple attributes.

Changed in version 2.6: Added support for dotted attributes.

	
operator.itemgetter(item[, args...])

	Return a callable object that fetches item from its operand using the
operand’s __getitem__() method. If multiple items are specified,
returns a tuple of lookup values. Equivalent to:

def itemgetter(*items):
 if len(items) == 1:
 item = items[0]
 def g(obj):
 return obj[item]
 else:
 def g(obj):
 return tuple(obj[item] for item in items)
 return g

The items can be any type accepted by the operand’s __getitem__()
method. Dictionaries accept any hashable value. Lists, tuples, and
strings accept an index or a slice:

>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG'

New in version 2.4.

Changed in version 2.5: Added support for multiple item extraction.

Example of using itemgetter() to retrieve specific fields from a
tuple record:

>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> map(getcount, inventory)
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]

	
operator.methodcaller(name[, args...])

	Return a callable object that calls the method name on its operand. If
additional arguments and/or keyword arguments are given, they will be given
to the method as well. After f = methodcaller('name'), the call f(b)
returns b.name(). After f = methodcaller('name', 'foo', bar=1), the
call f(b) returns b.name('foo', bar=1). Equivalent to:

def methodcaller(name, *args, **kwargs):
 def caller(obj):
 return getattr(obj, name)(*args, **kwargs)
 return caller

New in version 2.6.

9.9.1. Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the
Python syntax and the functions in the operator module.

	Operation
	Syntax
	Function

	Addition
	a + b
	add(a, b)

	Concatenation
	seq1 + seq2
	concat(seq1, seq2)

	Containment Test
	obj in seq
	contains(seq, obj)

	Division
	a / b
	div(a, b) (without
__future__.division)

	Division
	a / b
	truediv(a, b) (with
__future__.division)

	Division
	a // b
	floordiv(a, b)

	Bitwise And
	a & b
	and_(a, b)

	Bitwise Exclusive Or
	a ^ b
	xor(a, b)

	Bitwise Inversion
	~ a
	invert(a)

	Bitwise Or
	a | b
	or_(a, b)

	Exponentiation
	a ** b
	pow(a, b)

	Identity
	a is b
	is_(a, b)

	Identity
	a is not b
	is_not(a, b)

	Indexed Assignment
	obj[k] = v
	setitem(obj, k, v)

	Indexed Deletion
	del obj[k]
	delitem(obj, k)

	Indexing
	obj[k]
	getitem(obj, k)

	Left Shift
	a << b
	lshift(a, b)

	Modulo
	a % b
	mod(a, b)

	Multiplication
	a * b
	mul(a, b)

	Negation (Arithmetic)
	- a
	neg(a)

	Negation (Logical)
	not a
	not_(a)

	Positive
	+ a
	pos(a)

	Right Shift
	a >> b
	rshift(a, b)

	Sequence Repetition
	seq * i
	repeat(seq, i)

	Slice Assignment
	seq[i:j] = values
	setitem(seq, slice(i, j), values)

	Slice Deletion
	del seq[i:j]
	delitem(seq, slice(i, j))

	Slicing
	seq[i:j]
	getitem(seq, slice(i, j))

	String Formatting
	s % obj
	mod(s, obj)

	Subtraction
	a - b
	sub(a, b)

	Truth Test
	obj
	truth(obj)

	Ordering
	a < b
	lt(a, b)

	Ordering
	a <= b
	le(a, b)

	Equality
	a == b
	eq(a, b)

	Difference
	a != b
	ne(a, b)

	Ordering
	a >= b
	ge(a, b)

	Ordering
	a > b
	gt(a, b)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

10. File and Directory Access

The modules described in this chapter deal with disk files and directories. For
example, there are modules for reading the properties of files, manipulating
paths in a portable way, and creating temporary files. The full list of modules
in this chapter is:

	10.1. os.path — Common pathname manipulations

	10.2. fileinput — Iterate over lines from multiple input streams

	10.3. stat — Interpreting stat() results

	10.4. statvfs — Constants used with os.statvfs()

	10.5. filecmp — File and Directory Comparisons
	10.5.1. The dircmp class

	10.6. tempfile — Generate temporary files and directories

	10.7. glob — Unix style pathname pattern expansion

	10.8. fnmatch — Unix filename pattern matching

	10.9. linecache — Random access to text lines

	10.10. shutil — High-level file operations
	10.10.1. Directory and files operations
	10.10.1.1. copytree example

	10.10.2. Archives operations
	10.10.2.1. Archiving example

	10.11. dircache — Cached directory listings

	10.12. macpath — Mac OS 9 path manipulation functions

See also

	Section File Objects

	A description of Python’s built-in file objects.

	Module os

	Operating system interfaces, including functions to work with files at a lower
level than the built-in file object.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.1. os.path — Common pathname manipulations

This module implements some useful functions on pathnames. To read or
write files see open(), and for accessing the filesystem see the
os module.

Note

On Windows, many of these functions do not properly support UNC pathnames.
splitunc() and ismount() do handle them correctly.

Note

Since different operating systems have different path name conventions, there
are several versions of this module in the standard library. The
os.path module is always the path module suitable for the operating
system Python is running on, and therefore usable for local paths. However,
you can also import and use the individual modules if you want to manipulate
a path that is always in one of the different formats. They all have the
same interface:

	posixpath for UNIX-style paths

	ntpath for Windows paths

	macpath for old-style MacOS paths

	os2emxpath for OS/2 EMX paths

	
os.path.abspath(path)

	Return a normalized absolutized version of the pathname path. On most
platforms, this is equivalent to normpath(join(os.getcwd(), path)).

New in version 1.5.2.

	
os.path.basename(path)

	Return the base name of pathname path. This is the second half of the pair
returned by split(path). Note that the result of this function is different
from the Unix basename program; where basename for
'/foo/bar/' returns 'bar', the basename() function returns an
empty string ('').

	
os.path.commonprefix(list)

	Return the longest path prefix (taken character-by-character) that is a prefix
of all paths in list. If list is empty, return the empty string ('').
Note that this may return invalid paths because it works a character at a time.

	
os.path.dirname(path)

	Return the directory name of pathname path. This is the first half of the
pair returned by split(path).

	
os.path.exists(path)

	Return True if path refers to an existing path. Returns False for
broken symbolic links. On some platforms, this function may return False if
permission is not granted to execute os.stat() on the requested file, even
if the path physically exists.

	
os.path.lexists(path)

	Return True if path refers to an existing path. Returns True for
broken symbolic links. Equivalent to exists() on platforms lacking
os.lstat().

New in version 2.4.

	
os.path.expanduser(path)

	On Unix and Windows, return the argument with an initial component of ~ or
~user replaced by that user‘s home directory.

On Unix, an initial ~ is replaced by the environment variable HOME
if it is set; otherwise the current user’s home directory is looked up in the
password directory through the built-in module pwd. An initial ~user
is looked up directly in the password directory.

On Windows, HOME and USERPROFILE will be used if set,
otherwise a combination of HOMEPATH and HOMEDRIVE will be
used. An initial ~user is handled by stripping the last directory component
from the created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is
returned unchanged.

	
os.path.expandvars(path)

	Return the argument with environment variables expanded. Substrings of the form
$name or ${name} are replaced by the value of environment variable
name. Malformed variable names and references to non-existing variables are
left unchanged.

On Windows, %name% expansions are supported in addition to $name and
${name}.

	
os.path.getatime(path)

	Return the time of last access of path. The return value is a number giving
the number of seconds since the epoch (see the time module). Raise
os.error if the file does not exist or is inaccessible.

New in version 1.5.2.

Changed in version 2.3: If os.stat_float_times() returns True, the result is a floating point
number.

	
os.path.getmtime(path)

	Return the time of last modification of path. The return value is a number
giving the number of seconds since the epoch (see the time module).
Raise os.error if the file does not exist or is inaccessible.

New in version 1.5.2.

Changed in version 2.3: If os.stat_float_times() returns True, the result is a floating point
number.

	
os.path.getctime(path)

	Return the system’s ctime which, on some systems (like Unix) is the time of the
last change, and, on others (like Windows), is the creation time for path.
The return value is a number giving the number of seconds since the epoch (see
the time module). Raise os.error if the file does not exist or
is inaccessible.

New in version 2.3.

	
os.path.getsize(path)

	Return the size, in bytes, of path. Raise os.error if the file does
not exist or is inaccessible.

New in version 1.5.2.

	
os.path.isabs(path)

	Return True if path is an absolute pathname. On Unix, that means it
begins with a slash, on Windows that it begins with a (back)slash after chopping
off a potential drive letter.

	
os.path.isfile(path)

	Return True if path is an existing regular file. This follows symbolic
links, so both islink() and isfile() can be true for the same path.

	
os.path.isdir(path)

	Return True if path is an existing directory. This follows symbolic
links, so both islink() and isdir() can be true for the same path.

	
os.path.islink(path)

	Return True if path refers to a directory entry that is a symbolic link.
Always False if symbolic links are not supported.

	
os.path.ismount(path)

	Return True if pathname path is a mount point: a point in a file
system where a different file system has been mounted. The function checks
whether path‘s parent, path/.., is on a different device than path,
or whether path/.. and path point to the same i-node on the same
device — this should detect mount points for all Unix and POSIX variants.

	
os.path.join(path1[, path2[, ...]])

	Join one or more path components intelligently. If any component is an absolute
path, all previous components (on Windows, including the previous drive letter,
if there was one) are thrown away, and joining continues. The return value is
the concatenation of path1, and optionally path2, etc., with exactly one
directory separator (os.sep) inserted between components, unless path2 is
empty. Note that on Windows, since there is a current directory for each drive,
os.path.join("c:", "foo") represents a path relative to the current
directory on drive C: (c:foo), not c:\foo.

	
os.path.normcase(path)

	Normalize the case of a pathname. On Unix and Mac OS X, this returns the
path unchanged; on case-insensitive filesystems, it converts the path to
lowercase. On Windows, it also converts forward slashes to backward slashes.

	
os.path.normpath(path)

	Normalize a pathname. This collapses redundant separators and up-level
references so that A//B, A/B/, A/./B and A/foo/../B all become
A/B.

It does not normalize the case (use normcase() for that). On Windows, it
converts forward slashes to backward slashes. It should be understood that this
may change the meaning of the path if it contains symbolic links!

	
os.path.realpath(path)

	Return the canonical path of the specified filename, eliminating any symbolic
links encountered in the path (if they are supported by the operating system).

New in version 2.2.

	
os.path.relpath(path[, start])

	Return a relative filepath to path either from the current directory or from
an optional start point.

start defaults to os.curdir.

Availability: Windows, Unix.

New in version 2.6.

	
os.path.samefile(path1, path2)

	Return True if both pathname arguments refer to the same file or directory
(as indicated by device number and i-node number). Raise an exception if a
os.stat() call on either pathname fails.

Availability: Unix.

	
os.path.sameopenfile(fp1, fp2)

	Return True if the file descriptors fp1 and fp2 refer to the same file.

Availability: Unix.

	
os.path.samestat(stat1, stat2)

	Return True if the stat tuples stat1 and stat2 refer to the same file.
These structures may have been returned by fstat(), lstat(), or
stat(). This function implements the underlying comparison used by
samefile() and sameopenfile().

Availability: Unix.

	
os.path.split(path)

	Split the pathname path into a pair, (head, tail) where tail is the
last pathname component and head is everything leading up to that. The
tail part will never contain a slash; if path ends in a slash, tail
will be empty. If there is no slash in path, head will be empty. If
path is empty, both head and tail are empty. Trailing slashes are
stripped from head unless it is the root (one or more slashes only). In
all cases, join(head, tail) returns a path to the same location as path
(but the strings may differ).

	
os.path.splitdrive(path)

	Split the pathname path into a pair (drive, tail) where drive is either
a drive specification or the empty string. On systems which do not use drive
specifications, drive will always be the empty string. In all cases, drive
+ tail will be the same as path.

New in version 1.3.

	
os.path.splitext(path)

	Split the pathname path into a pair (root, ext) such that root + ext ==
path, and ext is empty or begins with a period and contains at most one
period. Leading periods on the basename are ignored; splitext('.cshrc')
returns ('.cshrc', '').

Changed in version 2.6: Earlier versions could produce an empty root when the only period was the
first character.

	
os.path.splitunc(path)

	Split the pathname path into a pair (unc, rest) so that unc is the UNC
mount point (such as r'\\host\mount'), if present, and rest the rest of
the path (such as r'\path\file.ext'). For paths containing drive letters,
unc will always be the empty string.

Availability: Windows.

	
os.path.walk(path, visit, arg)

	Calls the function visit with arguments (arg, dirname, names) for each
directory in the directory tree rooted at path (including path itself, if it
is a directory). The argument dirname specifies the visited directory, the
argument names lists the files in the directory (gotten from
os.listdir(dirname)). The visit function may modify names to influence
the set of directories visited below dirname, e.g. to avoid visiting certain
parts of the tree. (The object referred to by names must be modified in
place, using del or slice assignment.)

Note

Symbolic links to directories are not treated as subdirectories, and that
walk() therefore will not visit them. To visit linked directories you must
identify them with os.path.islink(file) and os.path.isdir(file), and
invoke walk() as necessary.

Note

This function is deprecated and has been removed in 3.0 in favor of
os.walk().

	
os.path.supports_unicode_filenames

	True if arbitrary Unicode strings can be used as file names (within limitations
imposed by the file system).

New in version 2.3.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.2. fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a
loop over standard input or a list of files. If you just want to read or
write one file see open().

The typical use is:

import fileinput
for line in fileinput.input():
 process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting
to sys.stdin if the list is empty. If a filename is '-', it is also
replaced by sys.stdin. To specify an alternative list of filenames, pass it
as the first argument to input(). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by
specifying the mode parameter in the call to input() or
FileInput(). If an I/O error occurs during opening or reading a file,
IOError is raised.

If sys.stdin is used more than once, the second and further use will return
no lines, except perhaps for interactive use, or if it has been explicitly reset
(e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in
the list of filenames is noticeable at all is when the last file opened is
empty.

Lines are returned with any newlines intact, which means that the last line in
a file may not have one.

You can control how files are opened by providing an opening hook via the
openhook parameter to fileinput.input() or FileInput(). The
hook must be a function that takes two arguments, filename and mode, and
returns an accordingly opened file-like object. Two useful hooks are already
provided by this module.

See also

Latest version of the fileinput Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/fileinput.py?view=markup]

The following function is the primary interface of this module:

	
fileinput.input([files[, inplace[, backup[, mode[, openhook]]]]])

	Create an instance of the FileInput class. The instance will be used
as global state for the functions of this module, and is also returned to use
during iteration. The parameters to this function will be passed along to the
constructor of the FileInput class.

Changed in version 2.5: Added the mode and openhook parameters.

The following functions use the global state created by fileinput.input();
if there is no active state, RuntimeError is raised.

	
fileinput.filename()

	Return the name of the file currently being read. Before the first line has
been read, returns None.

	
fileinput.fileno()

	Return the integer “file descriptor” for the current file. When no file is
opened (before the first line and between files), returns -1.

New in version 2.5.

	
fileinput.lineno()

	Return the cumulative line number of the line that has just been read. Before
the first line has been read, returns 0. After the last line of the last
file has been read, returns the line number of that line.

	
fileinput.filelineno()

	Return the line number in the current file. Before the first line has been
read, returns 0. After the last line of the last file has been read,
returns the line number of that line within the file.

	
fileinput.isfirstline()

	Returns true if the line just read is the first line of its file, otherwise
returns false.

	
fileinput.isstdin()

	Returns true if the last line was read from sys.stdin, otherwise returns
false.

	
fileinput.nextfile()

	Close the current file so that the next iteration will read the first line from
the next file (if any); lines not read from the file will not count towards the
cumulative line count. The filename is not changed until after the first line
of the next file has been read. Before the first line has been read, this
function has no effect; it cannot be used to skip the first file. After the
last line of the last file has been read, this function has no effect.

	
fileinput.close()

	Close the sequence.

The class which implements the sequence behavior provided by the module is
available for subclassing as well:

	
class fileinput.FileInput([files[, inplace[, backup[, mode[, openhook]]]]])

	Class FileInput is the implementation; its methods filename(),
fileno(), lineno(), filelineno(), isfirstline(),
isstdin(), nextfile() and close() correspond to the functions
of the same name in the module. In addition it has a readline() method
which returns the next input line, and a __getitem__() method which
implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access and readline() cannot be mixed.

With mode you can specify which file mode will be passed to open(). It
must be one of 'r', 'rU', 'U' and 'rb'.

The openhook, when given, must be a function that takes two arguments,
filename and mode, and returns an accordingly opened file-like object. You
cannot use inplace and openhook together.

Changed in version 2.5: Added the mode and openhook parameters.

Optional in-place filtering: if the keyword argument inplace=1 is passed
to fileinput.input() or to the FileInput constructor, the file is
moved to a backup file and standard output is directed to the input file (if a
file of the same name as the backup file already exists, it will be replaced
silently). This makes it possible to write a filter that rewrites its input
file in place. If the backup parameter is given (typically as
backup='.<some extension>'), it specifies the extension for the backup file,
and the backup file remains around; by default, the extension is '.bak' and
it is deleted when the output file is closed. In-place filtering is disabled
when standard input is read.

Note

The current implementation does not work for MS-DOS 8+3 filesystems.

The two following opening hooks are provided by this module:

	
fileinput.hook_compressed(filename, mode)

	Transparently opens files compressed with gzip and bzip2 (recognized by the
extensions '.gz' and '.bz2') using the gzip and bz2
modules. If the filename extension is not '.gz' or '.bz2', the file is
opened normally (ie, using open() without any decompression).

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_compressed)

New in version 2.5.

	
fileinput.hook_encoded(encoding)

	Returns a hook which opens each file with codecs.open(), using the given
encoding to read the file.

Usage example: fi =
fileinput.FileInput(openhook=fileinput.hook_encoded("iso-8859-1"))

Note

With this hook, FileInput might return Unicode strings depending on the
specified encoding.

New in version 2.5.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.3. stat — Interpreting stat() results

The stat module defines constants and functions for interpreting the
results of os.stat(), os.fstat() and os.lstat() (if they
exist). For complete details about the stat(), fstat() and
lstat() calls, consult the documentation for your system.

The stat module defines the following functions to test for specific file
types:

	
stat.S_ISDIR(mode)

	Return non-zero if the mode is from a directory.

	
stat.S_ISCHR(mode)

	Return non-zero if the mode is from a character special device file.

	
stat.S_ISBLK(mode)

	Return non-zero if the mode is from a block special device file.

	
stat.S_ISREG(mode)

	Return non-zero if the mode is from a regular file.

	
stat.S_ISFIFO(mode)

	Return non-zero if the mode is from a FIFO (named pipe).

	
stat.S_ISLNK(mode)

	Return non-zero if the mode is from a symbolic link.

	
stat.S_ISSOCK(mode)

	Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s
mode:

	
stat.S_IMODE(mode)

	Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission bits, plus the sticky bit, set-group-id, and
set-user-id bits (on systems that support them).

	
stat.S_IFMT(mode)

	Return the portion of the file’s mode that describes the file type (used by the
S_IS*() functions above).

Normally, you would use the os.path.is*() functions for testing the type
of a file; the functions here are useful when you are doing multiple tests of
the same file and wish to avoid the overhead of the stat() system call
for each test. These are also useful when checking for information about a file
that isn’t handled by os.path, like the tests for block and character
devices.

Example:

import os, sys
from stat import *

def walktree(top, callback):
 '''recursively descend the directory tree rooted at top,
 calling the callback function for each regular file'''

 for f in os.listdir(top):
 pathname = os.path.join(top, f)
 mode = os.stat(pathname)[ST_MODE]
 if S_ISDIR(mode):
 # It's a directory, recurse into it
 walktree(pathname, callback)
 elif S_ISREG(mode):
 # It's a file, call the callback function
 callback(pathname)
 else:
 # Unknown file type, print a message
 print 'Skipping %s' % pathname

def visitfile(file):
 print 'visiting', file

if __name__ == '__main__':
 walktree(sys.argv[1], visitfile)

All the variables below are simply symbolic indexes into the 10-tuple returned
by os.stat(), os.fstat() or os.lstat().

	
stat.ST_MODE

	Inode protection mode.

	
stat.ST_INO

	Inode number.

	
stat.ST_DEV

	Device inode resides on.

	
stat.ST_NLINK

	Number of links to the inode.

	
stat.ST_UID

	User id of the owner.

	
stat.ST_GID

	Group id of the owner.

	
stat.ST_SIZE

	Size in bytes of a plain file; amount of data waiting on some special files.

	
stat.ST_ATIME

	Time of last access.

	
stat.ST_MTIME

	Time of last modification.

	
stat.ST_CTIME

	The “ctime” as reported by the operating system. On some systems (like Unix) is
the time of the last metadata change, and, on others (like Windows), is the
creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain
files this is the size of the file in bytes. For FIFOs and sockets under most
flavors of Unix (including Linux in particular), the “size” is the number of
bytes waiting to be read at the time of the call to os.stat(),
os.fstat(), or os.lstat(); this can sometimes be useful, especially
for polling one of these special files after a non-blocking open. The meaning
of the size field for other character and block devices varies more, depending
on the implementation of the underlying system call.

The variables below define the flags used in the ST_MODE field.

Use of the functions above is more portable than use of the first set of flags:

	
stat.S_IFMT

	Bit mask for the file type bit fields.

	
stat.S_IFSOCK

	Socket.

	
stat.S_IFLNK

	Symbolic link.

	
stat.S_IFREG

	Regular file.

	
stat.S_IFBLK

	Block device.

	
stat.S_IFDIR

	Directory.

	
stat.S_IFCHR

	Character device.

	
stat.S_IFIFO

	FIFO.

The following flags can also be used in the mode argument of os.chmod():

	
stat.S_ISUID

	Set UID bit.

	
stat.S_ISGID

	Set-group-ID bit. This bit has several special uses. For a directory
it indicates that BSD semantics is to be used for that directory:
files created there inherit their group ID from the directory, not
from the effective group ID of the creating process, and directories
created there will also get the S_ISGID bit set. For a
file that does not have the group execution bit (S_IXGRP)
set, the set-group-ID bit indicates mandatory file/record locking
(see also S_ENFMT).

	
stat.S_ISVTX

	Sticky bit. When this bit is set on a directory it means that a file
in that directory can be renamed or deleted only by the owner of the
file, by the owner of the directory, or by a privileged process.

	
stat.S_IRWXU

	Mask for file owner permissions.

	
stat.S_IRUSR

	Owner has read permission.

	
stat.S_IWUSR

	Owner has write permission.

	
stat.S_IXUSR

	Owner has execute permission.

	
stat.S_IRWXG

	Mask for group permissions.

	
stat.S_IRGRP

	Group has read permission.

	
stat.S_IWGRP

	Group has write permission.

	
stat.S_IXGRP

	Group has execute permission.

	
stat.S_IRWXO

	Mask for permissions for others (not in group).

	
stat.S_IROTH

	Others have read permission.

	
stat.S_IWOTH

	Others have write permission.

	
stat.S_IXOTH

	Others have execute permission.

	
stat.S_ENFMT

	System V file locking enforcement. This flag is shared with S_ISGID:
file/record locking is enforced on files that do not have the group
execution bit (S_IXGRP) set.

	
stat.S_IREAD

	Unix V7 synonym for S_IRUSR.

	
stat.S_IWRITE

	Unix V7 synonym for S_IWUSR.

	
stat.S_IEXEC

	Unix V7 synonym for S_IXUSR.

The following flags can be used in the flags argument of os.chflags():

	
stat.UF_NODUMP

	Do not dump the file.

	
stat.UF_IMMUTABLE

	The file may not be changed.

	
stat.UF_APPEND

	The file may only be appended to.

	
stat.UF_OPAQUE

	The file may not be renamed or deleted.

	
stat.UF_NOUNLINK

	The directory is opaque when viewed through a union stack.

	
stat.SF_ARCHIVED

	The file may be archived.

	
stat.SF_IMMUTABLE

	The file may not be changed.

	
stat.SF_APPEND

	The file may only be appended to.

	
stat.SF_NOUNLINK

	The file may not be renamed or deleted.

	
stat.SF_SNAPSHOT

	The file is a snapshot file.

See the *BSD or Mac OS systems man page chflags(2) for more information.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.4. statvfs — Constants used with os.statvfs()

Deprecated since version 2.6: The statvfs module has been deprecated for removal in Python 3.0.

The statvfs module defines constants so interpreting the result if
os.statvfs(), which returns a tuple, can be made without remembering
“magic numbers.” Each of the constants defined in this module is the index of
the entry in the tuple returned by os.statvfs() that contains the
specified information.

	
statvfs.F_BSIZE

	Preferred file system block size.

	
statvfs.F_FRSIZE

	Fundamental file system block size.

	
statvfs.F_BLOCKS

	Total number of blocks in the filesystem.

	
statvfs.F_BFREE

	Total number of free blocks.

	
statvfs.F_BAVAIL

	Free blocks available to non-super user.

	
statvfs.F_FILES

	Total number of file nodes.

	
statvfs.F_FFREE

	Total number of free file nodes.

	
statvfs.F_FAVAIL

	Free nodes available to non-super user.

	
statvfs.F_FLAG

	Flags. System dependent: see statvfs() man page.

	
statvfs.F_NAMEMAX

	Maximum file name length.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.5. filecmp — File and Directory Comparisons

The filecmp module defines functions to compare files and directories,
with various optional time/correctness trade-offs. For comparing files,
see also the difflib module.

See also

Latest version of the filecmp Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/filecmp.py?view=markup]

The filecmp module defines the following functions:

	
filecmp.cmp(f1, f2[, shallow])

	Compare the files named f1 and f2, returning True if they seem equal,
False otherwise.

Unless shallow is given and is false, files with identical os.stat()
signatures are taken to be equal.

Files that were compared using this function will not be compared again unless
their os.stat() signature changes.

Note that no external programs are called from this function, giving it
portability and efficiency.

	
filecmp.cmpfiles(dir1, dir2, common[, shallow])

	Compare the files in the two directories dir1 and dir2 whose names are
given by common.

Returns three lists of file names: match, mismatch,
errors. match contains the list of files that match, mismatch contains
the names of those that don’t, and errors lists the names of files which
could not be compared. Files are listed in errors if they don’t exist in
one of the directories, the user lacks permission to read them or if the
comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for
filecmp.cmp().

For example, cmpfiles('a', 'b', ['c', 'd/e']) will compare a/c with
b/c and a/d/e with b/d/e. 'c' and 'd/e' will each be in
one of the three returned lists.

Example:

>>> import filecmp
>>> filecmp.cmp('undoc.rst', 'undoc.rst')
True
>>> filecmp.cmp('undoc.rst', 'index.rst')
False

10.5.1. The dircmp class

dircmp instances are built using this constructor:

	
class filecmp.dircmp(a, b[, ignore[, hide]])

	Construct a new directory comparison object, to compare the directories a and
b. ignore is a list of names to ignore, and defaults to ['RCS', 'CVS',
'tags']. hide is a list of names to hide, and defaults to [os.curdir,
os.pardir].

The dircmp class provides the following methods:

	
report()

	Print (to sys.stdout) a comparison between a and b.

	
report_partial_closure()

	Print a comparison between a and b and common immediate
subdirectories.

	
report_full_closure()

	Print a comparison between a and b and common subdirectories
(recursively).

The dircmp offers a number of interesting attributes that may be
used to get various bits of information about the directory trees being
compared.

Note that via __getattr__() hooks, all attributes are computed lazily,
so there is no speed penalty if only those attributes which are lightweight
to compute are used.

	
left_list

	Files and subdirectories in a, filtered by hide and ignore.

	
right_list

	Files and subdirectories in b, filtered by hide and ignore.

	
common

	Files and subdirectories in both a and b.

	
left_only

	Files and subdirectories only in a.

	
right_only

	Files and subdirectories only in b.

	
common_dirs

	Subdirectories in both a and b.

	
common_files

	Files in both a and b

	
common_funny

	Names in both a and b, such that the type differs between the
directories, or names for which os.stat() reports an error.

	
same_files

	Files which are identical in both a and b.

	
diff_files

	Files which are in both a and b, whose contents differ.

	
funny_files

	Files which are in both a and b, but could not be compared.

	
subdirs

	A dictionary mapping names in common_dirs to dircmp objects.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.6. tempfile — Generate temporary files and directories

This module generates temporary files and directories. It works on all
supported platforms.

In version 2.3 of Python, this module was overhauled for enhanced security. It
now provides three new functions, NamedTemporaryFile(), mkstemp(),
and mkdtemp(), which should eliminate all remaining need to use the
insecure mktemp() function. Temporary file names created by this module
no longer contain the process ID; instead a string of six random characters is
used.

Also, all the user-callable functions now take additional arguments which
allow direct control over the location and name of temporary files. It is
no longer necessary to use the global tempdir and template variables.
To maintain backward compatibility, the argument order is somewhat odd; it
is recommended to use keyword arguments for clarity.

The module defines the following user-callable functions:

	
tempfile.TemporaryFile([mode='w+b'[, bufsize=-1[, suffix=''[, prefix='tmp'[, dir=None]]]]])

	Return a file-like object that can be used as a temporary storage area.
The file is created using mkstemp(). It will be destroyed as soon
as it is closed (including an implicit close when the object is garbage
collected). Under Unix, the directory entry for the file is removed
immediately after the file is created. Other platforms do not support
this; your code should not rely on a temporary file created using this
function having or not having a visible name in the file system.

The mode parameter defaults to 'w+b' so that the file created can
be read and written without being closed. Binary mode is used so that it
behaves consistently on all platforms without regard for the data that is
stored. bufsize defaults to -1, meaning that the operating system
default is used.

The dir, prefix and suffix parameters are passed to mkstemp().

The returned object is a true file object on POSIX platforms. On other
platforms, it is a file-like object whose file attribute is the
underlying true file object. This file-like object can be used in a
with statement, just like a normal file.

	
tempfile.NamedTemporaryFile([mode='w+b'[, bufsize=-1[, suffix=''[, prefix='tmp'[, dir=None[, delete=True]]]]]])

	This function operates exactly as TemporaryFile() does, except that
the file is guaranteed to have a visible name in the file system (on
Unix, the directory entry is not unlinked). That name can be retrieved
from the name member of the file object. Whether the name can be
used to open the file a second time, while the named temporary file is
still open, varies across platforms (it can be so used on Unix; it cannot
on Windows NT or later). If delete is true (the default), the file is
deleted as soon as it is closed.

The returned object is always a file-like object whose file
attribute is the underlying true file object. This file-like object can
be used in a with statement, just like a normal file.

New in version 2.3.

New in version 2.6: The delete parameter.

	
tempfile.SpooledTemporaryFile([max_size=0[, mode='w+b'[, bufsize=-1[, suffix=''[, prefix='tmp'[, dir=None]]]]]])

	This function operates exactly as TemporaryFile() does, except that
data is spooled in memory until the file size exceeds max_size, or
until the file’s fileno() method is called, at which point the
contents are written to disk and operation proceeds as with
TemporaryFile().

The resulting file has one additional method, rollover(), which
causes the file to roll over to an on-disk file regardless of its size.

The returned object is a file-like object whose _file attribute
is either a StringIO object or a true file object, depending on
whether rollover() has been called. This file-like object can be
used in a with statement, just like a normal file.

New in version 2.6.

	
tempfile.mkstemp([suffix=''[, prefix='tmp'[, dir=None[, text=False]]]])

	Creates a temporary file in the most secure manner possible. There are
no race conditions in the file’s creation, assuming that the platform
properly implements the os.O_EXCL flag for os.open(). The
file is readable and writable only by the creating user ID. If the
platform uses permission bits to indicate whether a file is executable,
the file is executable by no one. The file descriptor is not inherited
by child processes.

Unlike TemporaryFile(), the user of mkstemp() is responsible
for deleting the temporary file when done with it.

If suffix is specified, the file name will end with that suffix,
otherwise there will be no suffix. mkstemp() does not put a dot
between the file name and the suffix; if you need one, put it at the
beginning of suffix.

If prefix is specified, the file name will begin with that prefix;
otherwise, a default prefix is used.

If dir is specified, the file will be created in that directory;
otherwise, a default directory is used. The default directory is chosen
from a platform-dependent list, but the user of the application can
control the directory location by setting the TMPDIR, TEMP or TMP
environment variables. There is thus no guarantee that the generated
filename will have any nice properties, such as not requiring quoting
when passed to external commands via os.popen().

If text is specified, it indicates whether to open the file in binary
mode (the default) or text mode. On some platforms, this makes no
difference.

mkstemp() returns a tuple containing an OS-level handle to an open
file (as would be returned by os.open()) and the absolute pathname
of that file, in that order.

New in version 2.3.

	
tempfile.mkdtemp([suffix=''[, prefix='tmp'[, dir=None]]])

	Creates a temporary directory in the most secure manner possible. There
are no race conditions in the directory’s creation. The directory is
readable, writable, and searchable only by the creating user ID.

The user of mkdtemp() is responsible for deleting the temporary
directory and its contents when done with it.

The prefix, suffix, and dir arguments are the same as for
mkstemp().

mkdtemp() returns the absolute pathname of the new directory.

New in version 2.3.

	
tempfile.mktemp([suffix=''[, prefix='tmp'[, dir=None]]])

	
Deprecated since version 2.3: Use mkstemp() instead.

Return an absolute pathname of a file that did not exist at the time the
call is made. The prefix, suffix, and dir arguments are the same
as for mkstemp().

Warning

Use of this function may introduce a security hole in your program. By
the time you get around to doing anything with the file name it returns,
someone else may have beaten you to the punch. mktemp() usage can
be replaced easily with NamedTemporaryFile(), passing it the
delete=False parameter:

>>> f = NamedTemporaryFile(delete=False)
>>> f
<open file '<fdopen>', mode 'w+b' at 0x384698>
>>> f.name
'/var/folders/5q/5qTPn6xq2RaWqk+1Ytw3-U+++TI/-Tmp-/tmpG7V1Y0'
>>> f.write("Hello World!\n")
>>> f.close()
>>> os.unlink(f.name)
>>> os.path.exists(f.name)
False

The module uses two global variables that tell it how to construct a
temporary name. They are initialized at the first call to any of the
functions above. The caller may change them, but this is discouraged; use
the appropriate function arguments, instead.

	
tempfile.tempdir

	When set to a value other than None, this variable defines the
default value for the dir argument to all the functions defined in this
module.

If tempdir is unset or None at any call to any of the above
functions, Python searches a standard list of directories and sets
tempdir to the first one which the calling user can create files in.
The list is:

	The directory named by the TMPDIR environment variable.

	The directory named by the TEMP environment variable.

	The directory named by the TMP environment variable.

	A platform-specific location:
	On RiscOS, the directory named by the Wimp$ScrapDir environment
variable.

	On Windows, the directories C:\TEMP, C:\TMP,
\TEMP, and \TMP, in that order.

	On all other platforms, the directories /tmp, /var/tmp, and
/usr/tmp, in that order.

	As a last resort, the current working directory.

	
tempfile.gettempdir()

	Return the directory currently selected to create temporary files in. If
tempdir is not None, this simply returns its contents; otherwise,
the search described above is performed, and the result returned.

New in version 2.3.

	
tempfile.template

	
Deprecated since version 2.0: Use gettempprefix() instead.

When set to a value other than None, this variable defines the prefix of the
final component of the filenames returned by mktemp(). A string of six
random letters and digits is appended to the prefix to make the filename unique.
The default prefix is tmp.

Older versions of this module used to require that template be set to
None after a call to os.fork(); this has not been necessary since
version 1.5.2.

	
tempfile.gettempprefix()

	Return the filename prefix used to create temporary files. This does not
contain the directory component. Using this function is preferred over reading
the template variable directly.

New in version 1.5.2.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.7. glob — Unix style pathname pattern expansion

The glob module finds all the pathnames matching a specified pattern
according to the rules used by the Unix shell. No tilde expansion is done, but
*, ?, and character ranges expressed with [] will be correctly
matched. This is done by using the os.listdir() and
fnmatch.fnmatch() functions in concert, and not by actually invoking a
subshell. (For tilde and shell variable expansion, use
os.path.expanduser() and os.path.expandvars().)

See also

Latest version of the glob module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/glob.py?view=markup]

	
glob.glob(pathname)

	Return a possibly-empty list of path names that match pathname, which must be
a string containing a path specification. pathname can be either absolute
(like /usr/src/Python-1.5/Makefile) or relative (like
../../Tools/*/*.gif), and can contain shell-style wildcards. Broken
symlinks are included in the results (as in the shell).

	
glob.iglob(pathname)

	Return an iterator which yields the same values as glob()
without actually storing them all simultaneously.

New in version 2.5.

For example, consider a directory containing only the following files:
1.gif, 2.txt, and card.gif. glob() will produce
the following results. Notice how any leading components of the path are
preserved.

>>> import glob
>>> glob.glob('./[0-9].*')
['./1.gif', './2.txt']
>>> glob.glob('*.gif')
['1.gif', 'card.gif']
>>> glob.glob('?.gif')
['1.gif']

See also

	Module fnmatch

	Shell-style filename (not path) expansion

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.8. fnmatch — Unix filename pattern matching

This module provides support for Unix shell-style wildcards, which are not the
same as regular expressions (which are documented in the re module). The
special characters used in shell-style wildcards are:

	Pattern
	Meaning

	*
	matches everything

	?
	matches any single character

	[seq]
	matches any character in seq

	[!seq]
	matches any character not in seq

Note that the filename separator ('/' on Unix) is not special to this
module. See module glob for pathname expansion (glob uses
fnmatch() to match pathname segments). Similarly, filenames starting with
a period are not special for this module, and are matched by the * and ?
patterns.

See also

Latest version of the fnmatch Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/fnmatch.py?view=markup]

	
fnmatch.fnmatch(filename, pattern)

	Test whether the filename string matches the pattern string, returning
True or False. If the operating system is case-insensitive,
then both parameters will be normalized to all lower- or upper-case before
the comparison is performed. fnmatchcase() can be used to perform a
case-sensitive comparison, regardless of whether that’s standard for the
operating system.

This example will print all file names in the current directory with the
extension .txt:

import fnmatch
import os

for file in os.listdir('.'):
 if fnmatch.fnmatch(file, '*.txt'):
 print file

	
fnmatch.fnmatchcase(filename, pattern)

	Test whether filename matches pattern, returning True or
False; the comparison is case-sensitive.

	
fnmatch.filter(names, pattern)

	Return the subset of the list of names that match pattern. It is the same as
[n for n in names if fnmatch(n, pattern)], but implemented more efficiently.

New in version 2.2.

	
fnmatch.translate(pattern)

	Return the shell-style pattern converted to a regular expression.

Be aware there is no way to quote meta-characters.

Example:

>>> import fnmatch, re
>>>
>>> regex = fnmatch.translate('*.txt')
>>> regex
'.*\\.txt$'
>>> reobj = re.compile(regex)
>>> reobj.match('foobar.txt')
<_sre.SRE_Match object at 0x...>

See also

	Module glob

	Unix shell-style path expansion.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.9. linecache — Random access to text lines

The linecache module allows one to get any line from any file, while
attempting to optimize internally, using a cache, the common case where many
lines are read from a single file. This is used by the traceback module
to retrieve source lines for inclusion in the formatted traceback.

See also

Latest version of the linecache module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/linecache.py?view=markup]

The linecache module defines the following functions:

	
linecache.getline(filename, lineno[, module_globals])

	Get line lineno from file named filename. This function will never raise an
exception — it will return '' on errors (the terminating newline character
will be included for lines that are found).

If a file named filename is not found, the function will look for it in the
module search path, sys.path, after first checking for a PEP 302 [http://www.python.org/dev/peps/pep-0302]
__loader__ in module_globals, in case the module was imported from a
zipfile or other non-filesystem import source.

New in version 2.5: The module_globals parameter was added.

	
linecache.clearcache()

	Clear the cache. Use this function if you no longer need lines from files
previously read using getline().

	
linecache.checkcache([filename])

	Check the cache for validity. Use this function if files in the cache may have
changed on disk, and you require the updated version. If filename is omitted,
it will check all the entries in the cache.

Example:

>>> import linecache
>>> linecache.getline('/etc/passwd', 4)
'sys:x:3:3:sys:/dev:/bin/sh\n'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.10. shutil — High-level file operations

The shutil module offers a number of high-level operations on files and
collections of files. In particular, functions are provided which support file
copying and removal. For operations on individual files, see also the
os module.

See also

Latest version of the shutil module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/shutil.py?view=markup]

Warning

Even the higher-level file copying functions (copy(), copy2())
can’t copy all file metadata.

On POSIX platforms, this means that file owner and group are lost as well
as ACLs. On Mac OS, the resource fork and other metadata are not used.
This means that resources will be lost and file type and creator codes will
not be correct. On Windows, file owners, ACLs and alternate data streams
are not copied.

10.10.1. Directory and files operations

	
shutil.copyfileobj(fsrc, fdst[, length])

	Copy the contents of the file-like object fsrc to the file-like object fdst.
The integer length, if given, is the buffer size. In particular, a negative
length value means to copy the data without looping over the source data in
chunks; by default the data is read in chunks to avoid uncontrolled memory
consumption. Note that if the current file position of the fsrc object is not
0, only the contents from the current file position to the end of the file will
be copied.

	
shutil.copyfile(src, dst)

	Copy the contents (no metadata) of the file named src to a file named dst.
dst must be the complete target file name; look at copy() for a copy that
accepts a target directory path. If src and dst are the same files,
Error is raised.
The destination location must be writable; otherwise, an IOError exception
will be raised. If dst already exists, it will be replaced. Special files
such as character or block devices and pipes cannot be copied with this
function. src and dst are path names given as strings.

	
shutil.copymode(src, dst)

	Copy the permission bits from src to dst. The file contents, owner, and
group are unaffected. src and dst are path names given as strings.

	
shutil.copystat(src, dst)

	Copy the permission bits, last access time, last modification time, and flags
from src to dst. The file contents, owner, and group are unaffected. src
and dst are path names given as strings.

	
shutil.copy(src, dst)

	Copy the file src to the file or directory dst. If dst is a directory, a
file with the same basename as src is created (or overwritten) in the
directory specified. Permission bits are copied. src and dst are path
names given as strings.

	
shutil.copy2(src, dst)

	Similar to copy(), but metadata is copied as well – in fact, this is just
copy() followed by copystat(). This is similar to the
Unix command cp -p.

	
shutil.ignore_patterns(*patterns)

	This factory function creates a function that can be used as a callable for
copytree()‘s ignore argument, ignoring files and directories that
match one of the glob-style patterns provided. See the example below.

New in version 2.6.

	
shutil.copytree(src, dst[, symlinks=False[, ignore=None]])

	Recursively copy an entire directory tree rooted at src. The destination
directory, named by dst, must not already exist; it will be created as well
as missing parent directories. Permissions and times of directories are
copied with copystat(), individual files are copied using
copy2().

If symlinks is true, symbolic links in the source tree are represented as
symbolic links in the new tree; if false or omitted, the contents of the
linked files are copied to the new tree.

If ignore is given, it must be a callable that will receive as its
arguments the directory being visited by copytree(), and a list of its
contents, as returned by os.listdir(). Since copytree() is
called recursively, the ignore callable will be called once for each
directory that is copied. The callable must return a sequence of directory
and file names relative to the current directory (i.e. a subset of the items
in its second argument); these names will then be ignored in the copy
process. ignore_patterns() can be used to create such a callable that
ignores names based on glob-style patterns.

If exception(s) occur, an Error is raised with a list of reasons.

The source code for this should be considered an example rather than the
ultimate tool.

Changed in version 2.3: Error is raised if any exceptions occur during copying, rather than
printing a message.

Changed in version 2.5: Create intermediate directories needed to create dst, rather than raising an
error. Copy permissions and times of directories using copystat().

Changed in version 2.6: Added the ignore argument to be able to influence what is being copied.

	
shutil.rmtree(path[, ignore_errors[, onerror]])

	Delete an entire directory tree; path must point to a directory (but not a
symbolic link to a directory). If ignore_errors is true, errors resulting
from failed removals will be ignored; if false or omitted, such errors are
handled by calling a handler specified by onerror or, if that is omitted,
they raise an exception.

If onerror is provided, it must be a callable that accepts three
parameters: function, path, and excinfo. The first parameter,
function, is the function which raised the exception; it will be
os.path.islink(), os.listdir(), os.remove() or
os.rmdir(). The second parameter, path, will be the path name passed
to function. The third parameter, excinfo, will be the exception
information return by sys.exc_info(). Exceptions raised by onerror
will not be caught.

Changed in version 2.6: Explicitly check for path being a symbolic link and raise OSError
in that case.

	
shutil.move(src, dst)

	Recursively move a file or directory to another location.

If the destination is on the current filesystem, then simply use rename.
Otherwise, copy src (with copy2()) to the dst and then remove src.

New in version 2.3.

	
exception shutil.Error

	This exception collects exceptions that raised during a multi-file operation. For
copytree(), the exception argument is a list of 3-tuples (srcname,
dstname, exception).

New in version 2.3.

10.10.1.1. copytree example

This example is the implementation of the copytree() function, described
above, with the docstring omitted. It demonstrates many of the other functions
provided by this module.

def copytree(src, dst, symlinks=False, ignore=None):
 names = os.listdir(src)
 if ignore is not None:
 ignored_names = ignore(src, names)
 else:
 ignored_names = set()

 os.makedirs(dst)
 errors = []
 for name in names:
 if name in ignored_names:
 continue
 srcname = os.path.join(src, name)
 dstname = os.path.join(dst, name)
 try:
 if symlinks and os.path.islink(srcname):
 linkto = os.readlink(srcname)
 os.symlink(linkto, dstname)
 elif os.path.isdir(srcname):
 copytree(srcname, dstname, symlinks, ignore)
 else:
 copy2(srcname, dstname)
 # XXX What about devices, sockets etc.?
 except (IOError, os.error), why:
 errors.append((srcname, dstname, str(why)))
 # catch the Error from the recursive copytree so that we can
 # continue with other files
 except Error, err:
 errors.extend(err.args[0])
 try:
 copystat(src, dst)
 except WindowsError:
 # can't copy file access times on Windows
 pass
 except OSError, why:
 errors.extend((src, dst, str(why)))
 if errors:
 raise Error(errors)

Another example that uses the ignore_patterns() helper:

from shutil import copytree, ignore_patterns

copytree(source, destination, ignore=ignore_patterns('*.pyc', 'tmp*'))

This will copy everything except .pyc files and files or directories whose
name starts with tmp.

Another example that uses the ignore argument to add a logging call:

from shutil import copytree
import logging

def _logpath(path, names):
 logging.info('Working in %s' % path)
 return [] # nothing will be ignored

copytree(source, destination, ignore=_logpath)

10.10.2. Archives operations

	
shutil.make_archive(base_name, format[, root_dir[, base_dir[, verbose[, dry_run[, owner[, group[, logger]]]]]]])

	Create an archive file (eg. zip or tar) and returns its name.

base_name is the name of the file to create, including the path, minus
any format-specific extension. format is the archive format: one of
“zip”, “tar”, “bztar” or “gztar”.

root_dir is a directory that will be the root directory of the
archive; ie. we typically chdir into root_dir before creating the
archive.

base_dir is the directory where we start archiving from;
ie. base_dir will be the common prefix of all files and
directories in the archive.

root_dir and base_dir both default to the current directory.

owner and group are used when creating a tar archive. By default,
uses the current owner and group.

New in version 2.7.

	
shutil.get_archive_formats()

	Returns a list of supported formats for archiving.
Each element of the returned sequence is a tuple (name, description)

By default shutil provides these formats:

	gztar: gzip’ed tar-file

	bztar: bzip2’ed tar-file

	tar: uncompressed tar file

	zip: ZIP file

You can register new formats or provide your own archiver for any existing
formats, by using register_archive_format().

New in version 2.7.

	
shutil.register_archive_format(name, function[, extra_args[, description]])

	Registers an archiver for the format name. function is a callable that
will be used to invoke the archiver.

If given, extra_args is a sequence of (name, value) that will be
used as extra keywords arguments when the archiver callable is used.

description is used by get_archive_formats() which returns the
list of archivers. Defaults to an empty list.

New in version 2.7.

	
shutil.unregister_archive_format(name)

	Remove the archive format name from the list of supported formats.

New in version 2.7.

10.10.2.1. Archiving example

In this example, we create a gzip’ed tar-file archive containing all files
found in the .ssh directory of the user:

>>> from shutil import make_archive
>>> import os
>>> archive_name = os.path.expanduser(os.path.join('~', 'myarchive'))
>>> root_dir = os.path.expanduser(os.path.join('~', '.ssh'))
>>> make_archive(archive_name, 'gztar', root_dir)
'/Users/tarek/myarchive.tar.gz'

The resulting archive contains:

$ tar -tzvf /Users/tarek/myarchive.tar.gz
drwx------ tarek/staff 0 2010-02-01 16:23:40 ./
-rw-r--r-- tarek/staff 609 2008-06-09 13:26:54 ./authorized_keys
-rwxr-xr-x tarek/staff 65 2008-06-09 13:26:54 ./config
-rwx------ tarek/staff 668 2008-06-09 13:26:54 ./id_dsa
-rwxr-xr-x tarek/staff 609 2008-06-09 13:26:54 ./id_dsa.pub
-rw------- tarek/staff 1675 2008-06-09 13:26:54 ./id_rsa
-rw-r--r-- tarek/staff 397 2008-06-09 13:26:54 ./id_rsa.pub
-rw-r--r-- tarek/staff 37192 2010-02-06 18:23:10 ./known_hosts

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.11. dircache — Cached directory listings

Deprecated since version 2.6: The dircache module has been removed in Python 3.0.

The dircache module defines a function for reading directory listing
using a cache, and cache invalidation using the mtime of the directory.
Additionally, it defines a function to annotate directories by appending a
slash.

The dircache module defines the following functions:

	
dircache.reset()

	Resets the directory cache.

	
dircache.listdir(path)

	Return a directory listing of path, as gotten from os.listdir(). Note
that unless path changes, further call to listdir() will not re-read the
directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future
version should change it to return a tuple?)

	
dircache.opendir(path)

	Same as listdir(). Defined for backwards compatibility.

	
dircache.annotate(head, list)

	Assume list is a list of paths relative to head, and append, in place, a
'/' to each path which points to a directory.

>>> import dircache
>>> a = dircache.listdir('/')
>>> a = a[:] # Copy the return value so we can change 'a'
>>> a
['bin', 'boot', 'cdrom', 'dev', 'etc', 'floppy', 'home', 'initrd', 'lib', 'lost+
found', 'mnt', 'proc', 'root', 'sbin', 'tmp', 'usr', 'var', 'vmlinuz']
>>> dircache.annotate('/', a)
>>> a
['bin/', 'boot/', 'cdrom/', 'dev/', 'etc/', 'floppy/', 'home/', 'initrd/', 'lib/
', 'lost+found/', 'mnt/', 'proc/', 'root/', 'sbin/', 'tmp/', 'usr/', 'var/', 'vm
linuz']

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	10. File and Directory Access

10.12. macpath — Mac OS 9 path manipulation functions

This module is the Mac OS 9 (and earlier) implementation of the os.path
module. It can be used to manipulate old-style Macintosh pathnames on Mac OS X
(or any other platform).

The following functions are available in this module: normcase(),
normpath(), isabs(), join(), split(), isdir(),
isfile(), walk(), exists(). For other functions available in
os.path dummy counterparts are available.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

11. Data Persistence

The modules described in this chapter support storing Python data in a
persistent form on disk. The pickle and marshal modules can turn
many Python data types into a stream of bytes and then recreate the objects from
the bytes. The various DBM-related modules support a family of hash-based file
formats that store a mapping of strings to other strings. The bsddb
module also provides such disk-based string-to-string mappings based on hashing,
and also supports B-Tree and record-based formats.

The list of modules described in this chapter is:

	11.1. pickle — Python object serialization
	11.1.1. Relationship to other Python modules

	11.1.2. Data stream format

	11.1.3. Usage

	11.1.4. What can be pickled and unpickled?

	11.1.5. The pickle protocol
	11.1.5.1. Pickling and unpickling normal class instances

	11.1.5.2. Pickling and unpickling extension types

	11.1.5.3. Pickling and unpickling external objects

	11.1.6. Subclassing Unpicklers

	11.1.7. Example

	11.2. cPickle — A faster pickle

	11.3. copy_reg — Register pickle support functions

	11.4. shelve — Python object persistence
	11.4.1. Restrictions

	11.4.2. Example

	11.5. marshal — Internal Python object serialization

	11.6. anydbm — Generic access to DBM-style databases

	11.7. whichdb — Guess which DBM module created a database

	11.8. dbm — Simple “database” interface

	11.9. gdbm — GNU’s reinterpretation of dbm

	11.10. dbhash — DBM-style interface to the BSD database library
	11.10.1. Database Objects

	11.11. bsddb — Interface to Berkeley DB library
	11.11.1. Hash, BTree and Record Objects

	11.12. dumbdbm — Portable DBM implementation
	11.12.1. Dumbdbm Objects

	11.13. sqlite3 — DB-API 2.0 interface for SQLite databases
	11.13.1. Module functions and constants

	11.13.2. Connection Objects

	11.13.3. Cursor Objects

	11.13.4. Row Objects

	11.13.5. SQLite and Python types
	11.13.5.1. Introduction

	11.13.5.2. Using adapters to store additional Python types in SQLite databases
	11.13.5.2.1. Letting your object adapt itself

	11.13.5.2.2. Registering an adapter callable

	11.13.5.3. Converting SQLite values to custom Python types

	11.13.5.4. Default adapters and converters

	11.13.6. Controlling Transactions

	11.13.7. Using sqlite3 efficiently
	11.13.7.1. Using shortcut methods

	11.13.7.2. Accessing columns by name instead of by index

	11.13.7.3. Using the connection as a context manager

	11.13.8. Common issues
	11.13.8.1. Multithreading

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.1. pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for
serializing and de-serializing a Python object structure. “Pickling” is the
process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back
into an object hierarchy. Pickling (and unpickling) is alternatively known as
“serialization”, “marshalling,” [1] or “flattening”, however, to avoid
confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both the pickle module and the
cPickle module.

Warning

The pickle module is not intended to be secure against erroneous or
maliciously constructed data. Never unpickle data received from an untrusted
or unauthenticated source.

11.1.1. Relationship to other Python modules

The pickle module has an optimized cousin called the cPickle
module. As its name implies, cPickle is written in C, so it can be up to
1000 times faster than pickle. However it does not support subclassing
of the Pickler() and Unpickler() classes, because in cPickle
these are functions, not classes. Most applications have no need for this
functionality, and can benefit from the improved performance of cPickle.
Other than that, the interfaces of the two modules are nearly identical; the
common interface is described in this manual and differences are pointed out
where necessary. In the following discussions, we use the term “pickle” to
collectively describe the pickle and cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module called marshal, but in
general pickle should always be the preferred way to serialize Python
objects. marshal exists primarily to support Python’s .pyc
files.

The pickle module differs from marshal in several significant ways:

	The pickle module keeps track of the objects it has already serialized,
so that later references to the same object won’t be serialized again.
marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive
objects are objects that contain references to themselves. These are not
handled by marshal, and in fact, attempting to marshal recursive objects will
crash your Python interpreter. Object sharing happens when there are multiple
references to the same object in different places in the object hierarchy being
serialized. pickle stores such objects only once, and ensures that all
other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

	marshal cannot be used to serialize user-defined classes and their
instances. pickle can save and restore class instances transparently,
however the class definition must be importable and live in the same module as
when the object was stored.

	The marshal serialization format is not guaranteed to be portable
across Python versions. Because its primary job in life is to support
.pyc files, the Python implementers reserve the right to change the
serialization format in non-backwards compatible ways should the need arise.
The pickle serialization format is guaranteed to be backwards compatible
across Python releases.

Note that serialization is a more primitive notion than persistence; although
pickle reads and writes file objects, it does not handle the issue of
naming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. The pickle module can transform a complex
object into a byte stream and it can transform the byte stream into an object
with the same internal structure. Perhaps the most obvious thing to do with
these byte streams is to write them onto a file, but it is also conceivable to
send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on
DBM-style database files.

11.1.2. Data stream format

The data format used by pickle is Python-specific. This has the
advantage that there are no restrictions imposed by external standards such as
XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ASCII representation.
This is slightly more voluminous than a binary representation. The big
advantage of using printable ASCII (and of some other characteristics of
pickle‘s representation) is that for debugging or recovery purposes it is
possible for a human to read the pickled file with a standard text editor.

There are currently 3 different protocols which can be used for pickling.

	Protocol version 0 is the original ASCII protocol and is backwards compatible
with earlier versions of Python.

	Protocol version 1 is the old binary format which is also compatible with
earlier versions of Python.

	Protocol version 2 was introduced in Python 2.3. It provides much more
efficient pickling of new-style classes.

Refer to PEP 307 [http://www.python.org/dev/peps/pep-0307] for more information.

If a protocol is not specified, protocol 0 is used. If protocol is specified
as a negative value or HIGHEST_PROTOCOL, the highest protocol version
available will be used.

Changed in version 2.3: Introduced the protocol parameter.

A binary format, which is slightly more efficient, can be chosen by specifying a
protocol version >= 1.

11.1.3. Usage

To serialize an object hierarchy, you first create a pickler, then you call the
pickler’s dump() method. To de-serialize a data stream, you first create
an unpickler, then you call the unpickler’s load() method. The
pickle module provides the following constant:

	
pickle.HIGHEST_PROTOCOL

	The highest protocol version available. This value can be passed as a
protocol value.

New in version 2.3.

Note

Be sure to always open pickle files created with protocols >= 1 in binary mode.
For the old ASCII-based pickle protocol 0 you can use either text mode or binary
mode as long as you stay consistent.

A pickle file written with protocol 0 in binary mode will contain lone linefeeds
as line terminators and therefore will look “funny” when viewed in Notepad or
other editors which do not support this format.

The pickle module provides the following functions to make the pickling
process more convenient:

	
pickle.dump(obj, file[, protocol])

	Write a pickled representation of obj to the open file object file. This is
equivalent to Pickler(file, protocol).dump(obj).

If the protocol parameter is omitted, protocol 0 is used. If protocol is
specified as a negative value or HIGHEST_PROTOCOL, the highest protocol
version will be used.

Changed in version 2.3: Introduced the protocol parameter.

file must have a write() method that accepts a single string argument.
It can thus be a file object opened for writing, a StringIO object, or
any other custom object that meets this interface.

	
pickle.load(file)

	Read a string from the open file object file and interpret it as a pickle data
stream, reconstructing and returning the original object hierarchy. This is
equivalent to Unpickler(file).load().

file must have two methods, a read() method that takes an integer
argument, and a readline() method that requires no arguments. Both
methods should return a string. Thus file can be a file object opened for
reading, a StringIO object, or any other custom object that meets this
interface.

This function automatically determines whether the data stream was written in
binary mode or not.

	
pickle.dumps(obj[, protocol])

	Return the pickled representation of the object as a string, instead of writing
it to a file.

If the protocol parameter is omitted, protocol 0 is used. If protocol is
specified as a negative value or HIGHEST_PROTOCOL, the highest protocol
version will be used.

Changed in version 2.3: The protocol parameter was added.

	
pickle.loads(string)

	Read a pickled object hierarchy from a string. Characters in the string past
the pickled object’s representation are ignored.

The pickle module also defines three exceptions:

	
exception pickle.PickleError

	A common base class for the other exceptions defined below. This inherits from
Exception.

	
exception pickle.PicklingError

	This exception is raised when an unpicklable object is passed to the
dump() method.

	
exception pickle.UnpicklingError

	This exception is raised when there is a problem unpickling an object. Note that
other exceptions may also be raised during unpickling, including (but not
necessarily limited to) AttributeError, EOFError,
ImportError, and IndexError.

The pickle module also exports two callables [2], Pickler and
Unpickler:

	
class pickle.Pickler(file[, protocol])

	This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is omitted, protocol 0 is used. If protocol is
specified as a negative value or HIGHEST_PROTOCOL, the highest
protocol version will be used.

Changed in version 2.3: Introduced the protocol parameter.

file must have a write() method that accepts a single string argument.
It can thus be an open file object, a StringIO object, or any other
custom object that meets this interface.

Pickler objects define one (or two) public methods:

	
dump(obj)

	Write a pickled representation of obj to the open file object given in the
constructor. Either the binary or ASCII format will be used, depending on the
value of the protocol argument passed to the constructor.

	
clear_memo()

	Clears the pickler’s “memo”. The memo is the data structure that remembers
which objects the pickler has already seen, so that shared or recursive objects
pickled by reference and not by value. This method is useful when re-using
picklers.

Note

Prior to Python 2.3, clear_memo() was only available on the picklers
created by cPickle. In the pickle module, picklers have an
instance variable called memo which is a Python dictionary. So to clear
the memo for a pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simply use
clear_memo().

It is possible to make multiple calls to the dump() method of the same
Pickler instance. These must then be matched to the same number of
calls to the load() method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump() calls, the
load() will all yield references to the same object. [3]

Unpickler objects are defined as:

	
class pickle.Unpickler(file)

	This takes a file-like object from which it will read a pickle data stream.
This class automatically determines whether the data stream was written in
binary mode or not, so it does not need a flag as in the Pickler
factory.

file must have two methods, a read() method that takes an integer
argument, and a readline() method that requires no arguments. Both
methods should return a string. Thus file can be a file object opened for
reading, a StringIO object, or any other custom object that meets this
interface.

Unpickler objects have one (or two) public methods:

	
load()

	Read a pickled object representation from the open file object given in
the constructor, and return the reconstituted object hierarchy specified
therein.

This method automatically determines whether the data stream was written
in binary mode or not.

	
noload()

	This is just like load() except that it doesn’t actually create any
objects. This is useful primarily for finding what’s called “persistent
ids” that may be referenced in a pickle data stream. See section
The pickle protocol below for more details.

Note: the noload() method is currently only available on
Unpickler objects created with the cPickle module.
pickle module Unpicklers do not have the noload()
method.

11.1.4. What can be pickled and unpickled?

The following types can be pickled:

	None, True, and False

	integers, long integers, floating point numbers, complex numbers

	normal and Unicode strings

	tuples, lists, sets, and dictionaries containing only picklable objects

	functions defined at the top level of a module

	built-in functions defined at the top level of a module

	classes that are defined at the top level of a module

	instances of such classes whose __dict__ or __setstate__() is
picklable (see section The pickle protocol for details)

Attempts to pickle unpicklable objects will raise the PicklingError
exception; when this happens, an unspecified number of bytes may have already
been written to the underlying file. Trying to pickle a highly recursive data
structure may exceed the maximum recursion depth, a RuntimeError will be
raised in this case. You can carefully raise this limit with
sys.setrecursionlimit().

Note that functions (built-in and user-defined) are pickled by “fully qualified”
name reference, not by value. This means that only the function name is
pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the
defining module must be importable in the unpickling environment, and the module
must contain the named object, otherwise an exception will be raised. [4]

Similarly, classes are pickled by named reference, so the same restrictions in
the unpickling environment apply. Note that none of the class’s code or data is
pickled, so in the following example the class attribute attr is not
restored in the unpickling environment:

class Foo:
 attr = 'a class attr'

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in
the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not
pickled along with them. Only the instance data are pickled. This is done on
purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you
plan to have long-lived objects that will see many versions of a class, it may
be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class’s __setstate__() method.

11.1.5. The pickle protocol

This section describes the “pickling protocol” that defines the interface
between the pickler/unpickler and the objects that are being serialized. This
protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section
doesn’t cover specific customizations that you can employ to make the unpickling
environment slightly safer from untrusted pickle data streams; see section
Subclassing Unpicklers for more details.

11.1.5.1. Pickling and unpickling normal class instances

	
object.__getinitargs__()

	When a pickled class instance is unpickled, its __init__() method is
normally not invoked. If it is desirable that the __init__() method
be called on unpickling, an old-style class can define a method
__getinitargs__(), which should return a tuple containing the
arguments to be passed to the class constructor (__init__() for
example). The __getinitargs__() method is called at pickle time; the
tuple it returns is incorporated in the pickle for the instance.

	
object.__getnewargs__()

	New-style types can provide a __getnewargs__() method that is used for
protocol 2. Implementing this method is needed if the type establishes some
internal invariants when the instance is created, or if the memory allocation
is affected by the values passed to the __new__() method for the type
(as it is for tuples and strings). Instances of a new-style class
C are created using

obj = C.__new__(C, *args)

where args is the result of calling __getnewargs__() on the original
object; if there is no __getnewargs__(), an empty tuple is assumed.

	
object.__getstate__()

	Classes can further influence how their instances are pickled; if the class
defines the method __getstate__(), it is called and the return state is
pickled as the contents for the instance, instead of the contents of the
instance’s dictionary. If there is no __getstate__() method, the
instance’s __dict__ is pickled.

	
object.__setstate__(state)

	Upon unpickling, if the class also defines the method __setstate__(),
it is called with the unpickled state. [5] If there is no
__setstate__() method, the pickled state must be a dictionary and its
items are assigned to the new instance’s dictionary. If a class defines both
__getstate__() and __setstate__(), the state object needn’t be a
dictionary and these methods can do what they want. [6]

Note

For new-style classes, if __getstate__() returns a false
value, the __setstate__() method will not be called.

Note

At unpickling time, some methods like __getattr__(),
__getattribute__(), or __setattr__() may be called upon the
instance. In case those methods rely on some internal invariant being
true, the type should implement either __getinitargs__() or
__getnewargs__() to establish such an invariant; otherwise, neither
__new__() nor __init__() will be called.

11.1.5.2. Pickling and unpickling extension types

	
object.__reduce__()

	When the Pickler encounters an object of a type it knows nothing
about — such as an extension type — it looks in two places for a hint of
how to pickle it. One alternative is for the object to implement a
__reduce__() method. If provided, at pickling time __reduce__()
will be called with no arguments, and it must return either a string or a
tuple.

If a string is returned, it names a global variable whose contents are
pickled as normal. The string returned by __reduce__() should be the
object’s local name relative to its module; the pickle module searches the
module namespace to determine the object’s module.

When a tuple is returned, it must be between two and five elements long.
Optional elements can either be omitted, or None can be provided as their
value. The contents of this tuple are pickled as normal and used to
reconstruct the object at unpickling time. The semantics of each element
are:

	A callable object that will be called to create the initial version of the
object. The next element of the tuple will provide arguments for this
callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled data.

In the unpickling environment this object must be either a class, a
callable registered as a “safe constructor” (see below), or it must have an
attribute __safe_for_unpickling__ with a true value. Otherwise, an
UnpicklingError will be raised in the unpickling environment. Note
that as usual, the callable itself is pickled by name.

	A tuple of arguments for the callable object.

Changed in version 2.5: Formerly, this argument could also be None.

	Optionally, the object’s state, which will be passed to the object’s
__setstate__() method as described in section Pickling and unpickling normal class instances. If
the object has no __setstate__() method, then, as above, the value
must be a dictionary and it will be added to the object’s __dict__.

	Optionally, an iterator (and not a sequence) yielding successive list
items. These list items will be pickled, and appended to the object using
either obj.append(item) or obj.extend(list_of_items). This is
primarily used for list subclasses, but may be used by other classes as
long as they have append() and extend() methods with the
appropriate signature. (Whether append() or extend() is used
depends on which pickle protocol version is used as well as the number of
items to append, so both must be supported.)

	Optionally, an iterator (not a sequence) yielding successive dictionary
items, which should be tuples of the form (key, value). These items
will be pickled and stored to the object using obj[key] = value. This
is primarily used for dictionary subclasses, but may be used by other
classes as long as they implement __setitem__().

	
object.__reduce_ex__(protocol)

	It is sometimes useful to know the protocol version when implementing
__reduce__(). This can be done by implementing a method named
__reduce_ex__() instead of __reduce__(). __reduce_ex__(),
when it exists, is called in preference over __reduce__() (you may
still provide __reduce__() for backwards compatibility). The
__reduce_ex__() method will be called with a single integer argument,
the protocol version.

The object class implements both __reduce__() and
__reduce_ex__(); however, if a subclass overrides __reduce__()
but not __reduce_ex__(), the __reduce_ex__() implementation
detects this and calls __reduce__().

An alternative to implementing a __reduce__() method on the object to be
pickled, is to register the callable with the copy_reg module. This
module provides a way for programs to register “reduction functions” and
constructors for user-defined types. Reduction functions have the same
semantics and interface as the __reduce__() method described above, except
that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of
unpickling as described above.

11.1.5.3. Pickling and unpickling external objects

For the benefit of object persistence, the pickle module supports the
notion of a reference to an object outside the pickled data stream. Such
objects are referenced by a “persistent id”, which is just an arbitrary string
of printable ASCII characters. The resolution of such names is not defined by
the pickle module; it will delegate this resolution to user defined
functions on the pickler and unpickler. [7]

To define external persistent id resolution, you need to set the
persistent_id attribute of the pickler object and the
persistent_load attribute of the unpickler object.

To pickle objects that have an external persistent id, the pickler must have a
custom persistent_id() method that takes an object as an argument and
returns either None or the persistent id for that object. When None is
returned, the pickler simply pickles the object as normal. When a persistent id
string is returned, the pickler will pickle that string, along with a marker so
that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a custom
persistent_load() function that takes a persistent id string and returns
the referenced object.

Here’s a silly example that might shed more light:

import pickle
from cStringIO import StringIO

src = StringIO()
p = pickle.Pickler(src)

def persistent_id(obj):
 if hasattr(obj, 'x'):
 return 'the value %d' % obj.x
 else:
 return None

p.persistent_id = persistent_id

class Integer:
 def __init__(self, x):
 self.x = x
 def __str__(self):
 return 'My name is integer %d' % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringIO(datastream)

up = pickle.Unpickler(dst)

class FancyInteger(Integer):
 def __str__(self):
 return 'I am the integer %d' % self.x

def persistent_load(persid):
 if persid.startswith('the value '):
 value = int(persid.split()[2])
 return FancyInteger(value)
 else:
 raise pickle.UnpicklingError, 'Invalid persistent id'

up.persistent_load = persistent_load

j = up.load()
print j

In the cPickle module, the unpickler’s persistent_load attribute
can also be set to a Python list, in which case, when the unpickler reaches a
persistent id, the persistent id string will simply be appended to this list.
This functionality exists so that a pickle data stream can be “sniffed” for
object references without actually instantiating all the objects in a pickle.
[8] Setting persistent_load to a list is usually used in conjunction
with the noload() method on the Unpickler.

11.1.6. Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data.
You can control exactly what gets unpickled and what gets called by customizing
your unpickler. Unfortunately, exactly how you do this is different depending
on whether you’re using pickle or cPickle. [9]

In the pickle module, you need to derive a subclass from
Unpickler, overriding the load_global() method.
load_global() should read two lines from the pickle data stream where the
first line will the name of the module containing the class and the second line
will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it
finds to the unpickler’s stack. Later on, this class will be assigned to the
__class__ attribute of an empty class, as a way of magically creating an
instance without calling its class’s __init__(). Your job (should you
choose to accept it), would be to have load_global() push onto the
unpickler’s stack, a known safe version of any class you deem safe to unpickle.
It is up to you to produce such a class. Or you could raise an error if you
want to disallow all unpickling of instances. If this sounds like a hack,
you’re right. Refer to the source code to make this work.

Things are a little cleaner with cPickle, but not by much. To control
what gets unpickled, you can set the unpickler’s find_global attribute
to a function or None. If it is None then any attempts to unpickle
instances will raise an UnpicklingError. If it is a function, then it
should accept a module name and a class name, and return the corresponding class
object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being
unpickled.

The moral of the story is that you should be really careful about the source of
the strings your application unpickles.

11.1.7. Example

For the simplest code, use the dump() and load() functions. Note
that a self-referencing list is pickled and restored correctly.

import pickle

data1 = {'a': [1, 2.0, 3, 4+6j],
 'b': ('string', u'Unicode string'),
 'c': None}

selfref_list = [1, 2, 3]
selfref_list.append(selfref_list)

output = open('data.pkl', 'wb')

Pickle dictionary using protocol 0.
pickle.dump(data1, output)

Pickle the list using the highest protocol available.
pickle.dump(selfref_list, output, -1)

output.close()

The following example reads the resulting pickled data. When reading a
pickle-containing file, you should open the file in binary mode because you
can’t be sure if the ASCII or binary format was used.

import pprint, pickle

pkl_file = open('data.pkl', 'rb')

data1 = pickle.load(pkl_file)
pprint.pprint(data1)

data2 = pickle.load(pkl_file)
pprint.pprint(data2)

pkl_file.close()

Here’s a larger example that shows how to modify pickling behavior for a class.
The TextReader class opens a text file, and returns the line number and
line contents each time its readline() method is called. If a
TextReader instance is pickled, all attributes except the file object
member are saved. When the instance is unpickled, the file is reopened, and
reading resumes from the last location. The __setstate__() and
__getstate__() methods are used to implement this behavior.

#!/usr/local/bin/python

class TextReader:
 """Print and number lines in a text file."""
 def __init__(self, file):
 self.file = file
 self.fh = open(file)
 self.lineno = 0

 def readline(self):
 self.lineno = self.lineno + 1
 line = self.fh.readline()
 if not line:
 return None
 if line.endswith("\n"):
 line = line[:-1]
 return "%d: %s" % (self.lineno, line)

 def __getstate__(self):
 odict = self.__dict__.copy() # copy the dict since we change it
 del odict['fh'] # remove filehandle entry
 return odict

 def __setstate__(self, dict):
 fh = open(dict['file']) # reopen file
 count = dict['lineno'] # read from file...
 while count: # until line count is restored
 fh.readline()
 count = count - 1
 self.__dict__.update(dict) # update attributes
 self.fh = fh # save the file object

A sample usage might be something like this:

>>> import TextReader
>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()
'1: #!/usr/local/bin/python'
>>> obj.readline()
'2: '
>>> obj.readline()
'3: class TextReader:'
>>> import pickle
>>> pickle.dump(obj, open('save.p', 'wb'))

If you want to see that pickle works across Python processes, start
another Python session, before continuing. What follows can happen from either
the same process or a new process.

>>> import pickle
>>> reader = pickle.load(open('save.p', 'rb'))
>>> reader.readline()
'4: """Print and number lines in a text file."""'

See also

	Module copy_reg

	Pickle interface constructor registration for extension types.

	Module shelve

	Indexed databases of objects; uses pickle.

	Module copy

	Shallow and deep object copying.

	Module marshal

	High-performance serialization of built-in types.

11.2. cPickle — A faster pickle

The cPickle module supports serialization and de-serialization of Python
objects, providing an interface and functionality nearly identical to the
pickle module. There are several differences, the most important being
performance and subclassability.

First, cPickle can be up to 1000 times faster than pickle because
the former is implemented in C. Second, in the cPickle module the
callables Pickler() and Unpickler() are functions, not classes.
This means that you cannot use them to derive custom pickling and unpickling
subclasses. Most applications have no need for this functionality and should
benefit from the greatly improved performance of the cPickle module.

The pickle data stream produced by pickle and cPickle are
identical, so it is possible to use pickle and cPickle
interchangeably with existing pickles. [10]

There are additional minor differences in API between cPickle and
pickle, however for most applications, they are interchangeable. More
documentation is provided in the pickle module documentation, which
includes a list of the documented differences.

Footnotes

	[1]	Don’t confuse this with the marshal module

	[2]	In the pickle module these callables are classes, which you could
subclass to customize the behavior. However, in the cPickle module these
callables are factory functions and so cannot be subclassed. One common reason
to subclass is to control what objects can actually be unpickled. See section
Subclassing Unpicklers for more details.

	[3]	Warning: this is intended for pickling multiple objects without intervening
modifications to the objects or their parts. If you modify an object and then
pickle it again using the same Pickler instance, the object is not
pickled again — a reference to it is pickled and the Unpickler will
return the old value, not the modified one. There are two problems here: (1)
detecting changes, and (2) marshalling a minimal set of changes. Garbage
Collection may also become a problem here.

	[4]	The exception raised will likely be an ImportError or an
AttributeError but it could be something else.

	[5]	These methods can also be used to implement copying class instances.

	[6]	This protocol is also used by the shallow and deep copying operations defined in
the copy module.

	[7]	The actual mechanism for associating these user defined functions is slightly
different for pickle and cPickle. The description given here
works the same for both implementations. Users of the pickle module
could also use subclassing to effect the same results, overriding the
persistent_id() and persistent_load() methods in the derived
classes.

	[8]	We’ll leave you with the image of Guido and Jim sitting around sniffing pickles
in their living rooms.

	[9]	A word of caution: the mechanisms described here use internal attributes and
methods, which are subject to change in future versions of Python. We intend to
someday provide a common interface for controlling this behavior, which will
work in either pickle or cPickle.

	[10]	Since the pickle data format is actually a tiny stack-oriented programming
language, and some freedom is taken in the encodings of certain objects, it is
possible that the two modules produce different data streams for the same input
objects. However it is guaranteed that they will always be able to read each
other’s data streams.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.3. copy_reg — Register pickle support functions

Note

The copy_reg module has been renamed to copyreg in Python 3.0.
The 2to3 tool will automatically adapt imports when converting your
sources to 3.0.

The copy_reg module provides support for the pickle and
cPickle modules. The copy module is likely to use this in the
future as well. It provides configuration information about object constructors
which are not classes. Such constructors may be factory functions or class
instances.

	
copy_reg.constructor(object)

	Declares object to be a valid constructor. If object is not callable (and
hence not valid as a constructor), raises TypeError.

	
copy_reg.pickle(type, function[, constructor])

	Declares that function should be used as a “reduction” function for objects of
type type; type must not be a “classic” class object. (Classic classes are
handled differently; see the documentation for the pickle module for
details.) function should return either a string or a tuple containing two or
three elements.

The optional constructor parameter, if provided, is a callable object which
can be used to reconstruct the object when called with the tuple of arguments
returned by function at pickling time. TypeError will be raised if
object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of
function and constructor.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.4. shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm”
databases is that the values (not the keys!) in a shelf can be essentially
arbitrary Python objects — anything that the pickle module can handle.
This includes most class instances, recursive data types, and objects containing
lots of shared sub-objects. The keys are ordinary strings.

See also

Latest version of the shelve module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/shelve.py?view=markup]

	
shelve.open(filename[, flag='c'[, protocol=None[, writeback=False]]])

	Open a persistent dictionary. The filename specified is the base filename for
the underlying database. As a side-effect, an extension may be added to the
filename and more than one file may be created. By default, the underlying
database file is opened for reading and writing. The optional flag parameter
has the same interpretation as the flag parameter of anydbm.open().

By default, version 0 pickles are used to serialize values. The version of the
pickle protocol can be specified with the protocol parameter.

Changed in version 2.3: The protocol parameter was added.

Because of Python semantics, a shelf cannot know when a mutable
persistent-dictionary entry is modified. By default modified objects are
written only when assigned to the shelf (see Example). If the
optional writeback parameter is set to True, all entries accessed are also
cached in memory, and written back on sync() and
close(); this can make it handier to mutate mutable entries in
the persistent dictionary, but, if many entries are accessed, it can consume
vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to
determine which accessed entries are mutable, nor which ones were actually
mutated).

Note

Do not rely on the shelf being closed automatically; always call
close() explicitly when you don’t need it any more, or use a
with statement with contextlib.closing().

Warning

Because the shelve module is backed by pickle, it is insecure
to load a shelf from an untrusted source. Like with pickle, loading a shelf
can execute arbitrary code.

Shelf objects support all methods supported by dictionaries. This eases the
transition from dictionary based scripts to those requiring persistent storage.

Two additional methods are supported:

	
Shelf.sync()

	Write back all entries in the cache if the shelf was opened with writeback
set to True. Also empty the cache and synchronize the persistent
dictionary on disk, if feasible. This is called automatically when the shelf
is closed with close().

	
Shelf.close()

	Synchronize and close the persistent dict object. Operations on a closed
shelf will fail with a ValueError.

See also

Persistent dictionary recipe [http://code.activestate.com/recipes/576642/]
with widely supported storage formats and having the speed of native
dictionaries.

11.4.1. Restrictions

	The choice of which database package will be used (such as dbm,
gdbm or bsddb) depends on which interface is available. Therefore
it is not safe to open the database directly using dbm. The database is
also (unfortunately) subject to the limitations of dbm, if it is used —
this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

	The shelve module does not support concurrent read/write access to
shelved objects. (Multiple simultaneous read accesses are safe.) When a
program has a shelf open for writing, no other program should have it open for
reading or writing. Unix file locking can be used to solve this, but this
differs across Unix versions and requires knowledge about the database
implementation used.

	
class shelve.Shelf(dict[, protocol=None[, writeback=False]])

	A subclass of UserDict.DictMixin which stores pickled values in the
dict object.

By default, version 0 pickles are used to serialize values. The version of the
pickle protocol can be specified with the protocol parameter. See the
pickle documentation for a discussion of the pickle protocols.

Changed in version 2.3: The protocol parameter was added.

If the writeback parameter is True, the object will hold a cache of all
entries accessed and write them back to the dict at sync and close times.
This allows natural operations on mutable entries, but can consume much more
memory and make sync and close take a long time.

	
class shelve.BsdDbShelf(dict[, protocol=None[, writeback=False]])

	A subclass of Shelf which exposes first(), next(),
previous(), last() and set_location() which are available in
the bsddb module but not in other database modules. The dict object
passed to the constructor must support those methods. This is generally
accomplished by calling one of bsddb.hashopen(), bsddb.btopen() or
bsddb.rnopen(). The optional protocol and writeback parameters have
the same interpretation as for the Shelf class.

	
class shelve.DbfilenameShelf(filename[, flag='c'[, protocol=None[, writeback=False]]])

	A subclass of Shelf which accepts a filename instead of a dict-like
object. The underlying file will be opened using anydbm.open(). By
default, the file will be created and opened for both read and write. The
optional flag parameter has the same interpretation as for the open()
function. The optional protocol and writeback parameters have the same
interpretation as for the Shelf class.

11.4.2. Example

To summarize the interface (key is a string, data is an arbitrary
object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level
 # library

d[key] = data # store data at key (overwrites old data if
 # using an existing key)
data = d[key] # retrieve a COPY of data at key (raise KeyError if no
 # such key)
del d[key] # delete data stored at key (raises KeyError
 # if no such key)
flag = d.has_key(key) # true if the key exists
klist = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:
d['xx'] = range(4) # this works as expected, but...
d['xx'].append(5) # *this doesn't!* -- d['xx'] is STILL range(4)!

having opened d without writeback=True, you need to code carefully:
temp = d['xx'] # extracts the copy
temp.append(5) # mutates the copy
d['xx'] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx'].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See also

	Module anydbm

	Generic interface to dbm-style databases.

	Module bsddb

	BSD db database interface.

	Module dbhash

	Thin layer around the bsddb which provides an open()
function like the other database modules.

	Module dbm

	Standard Unix database interface.

	Module dumbdbm

	Portable implementation of the dbm interface.

	Module gdbm

	GNU database interface, based on the dbm interface.

	Module pickle

	Object serialization used by shelve.

	Module cPickle

	High-performance version of pickle.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.5. marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary
format. The format is specific to Python, but independent of machine
architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are
undocumented on purpose; it may change between Python versions (although it
rarely does). [1]

This is not a general “persistence” module. For general persistence and
transfer of Python objects through RPC calls, see the modules pickle and
shelve. The marshal module exists mainly to support reading and
writing the “pseudo-compiled” code for Python modules of .pyc files.
Therefore, the Python maintainers reserve the right to modify the marshal format
in backward incompatible ways should the need arise. If you’re serializing and
de-serializing Python objects, use the pickle module instead – the
performance is comparable, version independence is guaranteed, and pickle
supports a substantially wider range of objects than marshal.

Warning

The marshal module is not intended to be secure against erroneous or
maliciously constructed data. Never unmarshal data received from an
untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value
is independent from a particular invocation of Python can be written and read by
this module. The following types are supported: booleans, integers, long
integers, floating point numbers, complex numbers, strings, Unicode objects,
tuples, lists, sets, frozensets, dictionaries, and code objects, where it should
be understood that tuples, lists, sets, frozensets and dictionaries are only
supported as long as the values contained therein are themselves supported; and
recursive lists, sets and dictionaries should not be written (they will cause
infinite loops). The singletons None, Ellipsis and
StopIteration can also be marshalled and unmarshalled.

Warning

On machines where C’s long int type has more than 32 bits (such as the
DEC Alpha), it is possible to create plain Python integers that are longer
than 32 bits. If such an integer is marshaled and read back in on a machine
where C’s long int type has only 32 bits, a Python long integer object
is returned instead. While of a different type, the numeric value is the
same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was
printed.)

There are functions that read/write files as well as functions operating on
strings.

The module defines these functions:

	
marshal.dump(value, file[, version])

	Write the value on the open file. The value must be a supported type. The
file must be an open file object such as sys.stdout or returned by
open() or os.popen(). It must be opened in binary mode ('wb'
or 'w+b').

If the value has (or contains an object that has) an unsupported type, a
ValueError exception is raised — but garbage data will also be written
to the file. The object will not be properly read back by load().

New in version 2.4: The version argument indicates the data format that dump should use
(see below).

	
marshal.load(file)

	Read one value from the open file and return it. If no valid value is read
(e.g. because the data has a different Python version’s incompatible marshal
format), raise EOFError, ValueError or TypeError. The
file must be an open file object opened in binary mode ('rb' or
'r+b').

Note

If an object containing an unsupported type was marshalled with dump(),
load() will substitute None for the unmarshallable type.

	
marshal.dumps(value[, version])

	Return the string that would be written to a file by dump(value, file). The
value must be a supported type. Raise a ValueError exception if value
has (or contains an object that has) an unsupported type.

New in version 2.4: The version argument indicates the data format that dumps should use
(see below).

	
marshal.loads(string)

	Convert the string to a value. If no valid value is found, raise
EOFError, ValueError or TypeError. Extra characters in the
string are ignored.

In addition, the following constants are defined:

	
marshal.version

	Indicates the format that the module uses. Version 0 is the historical format,
version 1 (added in Python 2.4) shares interned strings and version 2 (added in
Python 2.5) uses a binary format for floating point numbers. The current version
is 2.

New in version 2.4.

Footnotes

	[1]	The name of this module stems from a bit of terminology used by the designers of
Modula-3 (amongst others), who use the term “marshalling” for shipping of data
around in a self-contained form. Strictly speaking, “to marshal” means to
convert some data from internal to external form (in an RPC buffer for instance)
and “unmarshalling” for the reverse process.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.6. anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM database —
dbhash (requires bsddb), gdbm, or dbm. If none of
these modules is installed, the slow-but-simple implementation in module
dumbdbm will be used.

	
anydbm.open(filename[, flag[, mode]])

	Open the database file filename and return a corresponding object.

If the database file already exists, the whichdb module is used to
determine its type and the appropriate module is used; if it does not exist,
the first module listed above that can be imported is used.

The optional flag argument must be one of these values:

	Value
	Meaning

	'r'
	Open existing database for reading only
(default)

	'w'
	Open existing database for reading and
writing

	'c'
	Open database for reading and writing,
creating it if it doesn’t exist

	'n'
	Always create a new, empty database, open
for reading and writing

If not specified, the default value is 'r'.

The optional mode argument is the Unix mode of the file, used only when the
database has to be created. It defaults to octal 0666 (and will be
modified by the prevailing umask).

	
exception anydbm.error

	A tuple containing the exceptions that can be raised by each of the supported
modules, with a unique exception also named anydbm.error as the first
item — the latter is used when anydbm.error is raised.

The object returned by open() supports most of the same functionality as
dictionaries; keys and their corresponding values can be stored, retrieved, and
deleted, and the has_key() and keys() methods are available. Keys
and values must always be strings.

The following example records some hostnames and a corresponding title, and
then prints out the contents of the database:

import anydbm

Open database, creating it if necessary.
db = anydbm.open('cache', 'c')

Record some values
db['www.python.org'] = 'Python Website'
db['www.cnn.com'] = 'Cable News Network'

Loop through contents. Other dictionary methods
such as .keys(), .values() also work.
for k, v in db.iteritems():
 print k, '\t', v

Storing a non-string key or value will raise an exception (most
likely a TypeError).
db['www.yahoo.com'] = 4

Close when done.
db.close()

See also

	Module dbhash

	BSD db database interface.

	Module dbm

	Standard Unix database interface.

	Module dumbdbm

	Portable implementation of the dbm interface.

	Module gdbm

	GNU database interface, based on the dbm interface.

	Module shelve

	General object persistence built on top of the Python dbm interface.

	Module whichdb

	Utility module used to determine the type of an existing database.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.7. whichdb — Guess which DBM module created a database

Note

The whichdb module’s only function has been put into the dbm
module in Python 3.0. The 2to3 tool will automatically adapt imports
when converting your sources to 3.0.

The single function in this module attempts to guess which of the several simple
database modules available–dbm, gdbm, or dbhash–should be used to open a given file.

	
whichdb.whichdb(filename)

	Returns one of the following values: None if the file can’t be opened
because it’s unreadable or doesn’t exist; the empty string ('') if the
file’s format can’t be guessed; or a string containing the required module name,
such as 'dbm' or 'gdbm'.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.8. dbm — Simple “database” interface

The dbm module provides an interface to the Unix “(n)dbm” library. Dbm
objects behave like mappings (dictionaries), except that keys and values are
always strings. Printing a dbm object doesn’t print the keys and values, and the
items() and values() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB
compatibility interface, or the GNU GDBM compatibility interface. On Unix, the
configure script will attempt to locate the appropriate header file
to simplify building this module.

The module defines the following:

	
exception dbm.error

	Raised on dbm-specific errors, such as I/O errors. KeyError is raised for
general mapping errors like specifying an incorrect key.

	
dbm.library

	Name of the ndbm implementation library used.

	
dbm.open(filename[, flag[, mode]])

	Open a dbm database and return a dbm object. The filename argument is the
name of the database file (without the .dir or .pag extensions;
note that the BSD DB implementation of the interface will append the extension
.db and only create one file).

The optional flag argument must be one of these values:

	Value
	Meaning

	'r'
	Open existing database for reading only
(default)

	'w'
	Open existing database for reading and
writing

	'c'
	Open database for reading and writing,
creating it if it doesn’t exist

	'n'
	Always create a new, empty database, open
for reading and writing

The optional mode argument is the Unix mode of the file, used only when the
database has to be created. It defaults to octal 0666 (and will be
modified by the prevailing umask).

See also

	Module anydbm

	Generic interface to dbm-style databases.

	Module gdbm

	Similar interface to the GNU GDBM library.

	Module whichdb

	Utility module used to determine the type of an existing database.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.9. gdbm — GNU’s reinterpretation of dbm

This module is quite similar to the dbm module, but uses gdbm instead
to provide some additional functionality. Please note that the file formats
created by gdbm and dbm are incompatible.

The gdbm module provides an interface to the GNU DBM library. gdbm
objects behave like mappings (dictionaries), except that keys and values are
always strings. Printing a gdbm object doesn’t print the keys and values,
and the items() and values() methods are not supported.

The module defines the following constant and functions:

	
exception gdbm.error

	Raised on gdbm-specific errors, such as I/O errors. KeyError is
raised for general mapping errors like specifying an incorrect key.

	
gdbm.open(filename[, flag[, mode]])

	Open a gdbm database and return a gdbm object. The filename argument
is the name of the database file.

The optional flag argument can be:

	Value
	Meaning

	'r'
	Open existing database for reading only
(default)

	'w'
	Open existing database for reading and
writing

	'c'
	Open database for reading and writing,
creating it if it doesn’t exist

	'n'
	Always create a new, empty database, open
for reading and writing

The following additional characters may be appended to the flag to control
how the database is opened:

	Value
	Meaning

	'f'
	Open the database in fast mode. Writes
to the database will not be synchronized.

	's'
	Synchronized mode. This will cause changes
to the database to be immediately written
to the file.

	'u'
	Do not lock database.

Not all flags are valid for all versions of gdbm. The module constant
open_flags is a string of supported flag characters. The exception
error is raised if an invalid flag is specified.

The optional mode argument is the Unix mode of the file, used only when the
database has to be created. It defaults to octal 0666.

In addition to the dictionary-like methods, gdbm objects have the following
methods:

	
gdbm.firstkey()

	It’s possible to loop over every key in the database using this method and the
nextkey() method. The traversal is ordered by gdbm‘s internal hash
values, and won’t be sorted by the key values. This method returns the starting
key.

	
gdbm.nextkey(key)

	Returns the key that follows key in the traversal. The following code prints
every key in the database db, without having to create a list in memory that
contains them all:

k = db.firstkey()
while k != None:
 print k
 k = db.nextkey(k)

	
gdbm.reorganize()

	If you have carried out a lot of deletions and would like to shrink the space
used by the gdbm file, this routine will reorganize the database. gdbm
will not shorten the length of a database file except by using this
reorganization; otherwise, deleted file space will be kept and reused as new
(key, value) pairs are added.

	
gdbm.sync()

	When the database has been opened in fast mode, this method forces any
unwritten data to be written to the disk.

See also

	Module anydbm

	Generic interface to dbm-style databases.

	Module whichdb

	Utility module used to determine the type of an existing database.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.10. dbhash — DBM-style interface to the BSD database library

Deprecated since version 2.6: The dbhash module has been deprecated for removal in Python 3.0.

The dbhash module provides a function to open databases using the BSD
db library. This module mirrors the interface of the other Python database
modules that provide access to DBM-style databases. The bsddb module is
required to use dbhash.

This module provides an exception and a function:

	
exception dbhash.error

	Exception raised on database errors other than KeyError. It is a synonym
for bsddb.error.

	
dbhash.open(path[, flag[, mode]])

	Open a db database and return the database object. The path argument is
the name of the database file.

The flag argument can be:

	Value
	Meaning

	'r'
	Open existing database for reading only
(default)

	'w'
	Open existing database for reading and
writing

	'c'
	Open database for reading and writing,
creating it if it doesn’t exist

	'n'
	Always create a new, empty database, open
for reading and writing

For platforms on which the BSD db library supports locking, an 'l'
can be appended to indicate that locking should be used.

The optional mode parameter is used to indicate the Unix permission bits that
should be set if a new database must be created; this will be masked by the
current umask value for the process.

See also

	Module anydbm

	Generic interface to dbm-style databases.

	Module bsddb

	Lower-level interface to the BSD db library.

	Module whichdb

	Utility module used to determine the type of an existing database.

11.10.1. Database Objects

The database objects returned by open() provide the methods common to all
the DBM-style databases and mapping objects. The following methods are
available in addition to the standard methods.

	
dbhash.first()

	It’s possible to loop over every key/value pair in the database using this
method and the next() method. The traversal is ordered by the databases
internal hash values, and won’t be sorted by the key values. This method
returns the starting key.

	
dbhash.last()

	Return the last key/value pair in a database traversal. This may be used to
begin a reverse-order traversal; see previous().

	
dbhash.next()

	Returns the key next key/value pair in a database traversal. The following code
prints every key in the database db, without having to create a list in
memory that contains them all:

print db.first()
for i in xrange(1, len(db)):
 print db.next()

	
dbhash.previous()

	Returns the previous key/value pair in a forward-traversal of the database. In
conjunction with last(), this may be used to implement a reverse-order
traversal.

	
dbhash.sync()

	This method forces any unwritten data to be written to the disk.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.11. bsddb — Interface to Berkeley DB library

Deprecated since version 2.6: The bsddb module has been deprecated for removal in Python 3.0.

The bsddb module provides an interface to the Berkeley DB library. Users
can create hash, btree or record based library files using the appropriate open
call. Bsddb objects behave generally like dictionaries. Keys and values must be
strings, however, so to use other objects as keys or to store other kinds of
objects the user must serialize them somehow, typically using
marshal.dumps() or pickle.dumps().

The bsddb module requires a Berkeley DB library version from 4.0 thru
4.7.

See also

	http://www.jcea.es/programacion/pybsddb.htm

	The website with documentation for the bsddb.db Python Berkeley DB
interface that closely mirrors the object oriented interface provided in
Berkeley DB 4.x itself.

	http://www.oracle.com/database/berkeley-db/

	The Berkeley DB library.

A more modern DB, DBEnv and DBSequence object interface is available in the
bsddb.db module which closely matches the Berkeley DB C API documented at
the above URLs. Additional features provided by the bsddb.db API include
fine tuning, transactions, logging, and multiprocess concurrent database access.

The following is a description of the legacy bsddb interface compatible
with the old Python bsddb module. Starting in Python 2.5 this interface should
be safe for multithreaded access. The bsddb.db API is recommended for
threading users as it provides better control.

The bsddb module defines the following functions that create objects that
access the appropriate type of Berkeley DB file. The first two arguments of
each function are the same. For ease of portability, only the first two
arguments should be used in most instances.

	
bsddb.hashopen(filename[, flag[, mode[, pgsize[, ffactor[, nelem[, cachesize[, lorder[, hflags]]]]]]]])

	Open the hash format file named filename. Files never intended to be
preserved on disk may be created by passing None as the filename. The
optional flag identifies the mode used to open the file. It may be 'r'
(read only), 'w' (read-write) , 'c' (read-write - create if necessary;
the default) or 'n' (read-write - truncate to zero length). The other
arguments are rarely used and are just passed to the low-level dbopen()
function. Consult the Berkeley DB documentation for their use and
interpretation.

	
bsddb.btopen(filename[, flag[, mode[, btflags[, cachesize[, maxkeypage[, minkeypage[, pgsize[, lorder]]]]]]]])

	Open the btree format file named filename. Files never intended to be
preserved on disk may be created by passing None as the filename. The
optional flag identifies the mode used to open the file. It may be 'r'
(read only), 'w' (read-write), 'c' (read-write - create if necessary;
the default) or 'n' (read-write - truncate to zero length). The other
arguments are rarely used and are just passed to the low-level dbopen function.
Consult the Berkeley DB documentation for their use and interpretation.

	
bsddb.rnopen(filename[, flag[, mode[, rnflags[, cachesize[, pgsize[, lorder[, rlen[, delim[, source[, pad]]]]]]]]]])

	Open a DB record format file named filename. Files never intended to be
preserved on disk may be created by passing None as the filename. The
optional flag identifies the mode used to open the file. It may be 'r'
(read only), 'w' (read-write), 'c' (read-write - create if necessary;
the default) or 'n' (read-write - truncate to zero length). The other
arguments are rarely used and are just passed to the low-level dbopen function.
Consult the Berkeley DB documentation for their use and interpretation.

Note

Beginning in 2.3 some Unix versions of Python may have a bsddb185 module.
This is present only to allow backwards compatibility with systems which ship
with the old Berkeley DB 1.85 database library. The bsddb185 module
should never be used directly in new code. The module has been removed in
Python 3.0. If you find you still need it look in PyPI.

See also

	Module dbhash

	DBM-style interface to the bsddb

11.11.1. Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the same methods as
dictionaries. In addition, they support the methods listed below.

Changed in version 2.3.1: Added dictionary methods.

	
bsddbobject.close()

	Close the underlying file. The object can no longer be accessed. Since there
is no open open() method for these objects, to open the file again a new
bsddb module open function must be called.

	
bsddbobject.keys()

	Return the list of keys contained in the DB file. The order of the list is
unspecified and should not be relied on. In particular, the order of the list
returned is different for different file formats.

	
bsddbobject.has_key(key)

	Return 1 if the DB file contains the argument as a key.

	
bsddbobject.set_location(key)

	Set the cursor to the item indicated by key and return a tuple containing the
key and its value. For binary tree databases (opened using btopen()), if
key does not actually exist in the database, the cursor will point to the next
item in sorted order and return that key and value. For other databases,
KeyError will be raised if key is not found in the database.

	
bsddbobject.first()

	Set the cursor to the first item in the DB file and return it. The order of
keys in the file is unspecified, except in the case of B-Tree databases. This
method raises bsddb.error if the database is empty.

	
bsddbobject.next()

	Set the cursor to the next item in the DB file and return it. The order of
keys in the file is unspecified, except in the case of B-Tree databases.

	
bsddbobject.previous()

	Set the cursor to the previous item in the DB file and return it. The order of
keys in the file is unspecified, except in the case of B-Tree databases. This
is not supported on hashtable databases (those opened with hashopen()).

	
bsddbobject.last()

	Set the cursor to the last item in the DB file and return it. The order of keys
in the file is unspecified. This is not supported on hashtable databases (those
opened with hashopen()). This method raises bsddb.error if the
database is empty.

	
bsddbobject.sync()

	Synchronize the database on disk.

Example:

>>> import bsddb
>>> db = bsddb.btopen('/tmp/spam.db', 'c')
>>> for i in range(10): db['%d'%i] = '%d'% (i*i)
...
>>> db['3']
'9'
>>> db.keys()
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
>>> db.first()
('0', '0')
>>> db.next()
('1', '1')
>>> db.last()
('9', '81')
>>> db.set_location('2')
('2', '4')
>>> db.previous()
('1', '1')
>>> for k, v in db.iteritems():
... print k, v
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
>>> '8' in db
True
>>> db.sync()
0

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.12. dumbdbm — Portable DBM implementation

Note

The dumbdbm module has been renamed to dbm.dumb in Python 3.0.
The 2to3 tool will automatically adapt imports when converting your
sources to 3.0.

Note

The dumbdbm module is intended as a last resort fallback for the
anydbm module when no more robust module is available. The dumbdbm
module is not written for speed and is not nearly as heavily used as the other
database modules.

The dumbdbm module provides a persistent dictionary-like interface which
is written entirely in Python. Unlike other modules such as gdbm and
bsddb, no external library is required. As with other persistent
mappings, the keys and values must always be strings.

The module defines the following:

	
exception dumbdbm.error

	Raised on dumbdbm-specific errors, such as I/O errors. KeyError is
raised for general mapping errors like specifying an incorrect key.

	
dumbdbm.open(filename[, flag[, mode]])

	Open a dumbdbm database and return a dumbdbm object. The filename argument is
the basename of the database file (without any specific extensions). When a
dumbdbm database is created, files with .dat and .dir extensions
are created.

The optional flag argument is currently ignored; the database is always opened
for update, and will be created if it does not exist.

The optional mode argument is the Unix mode of the file, used only when the
database has to be created. It defaults to octal 0666 (and will be modified
by the prevailing umask).

Changed in version 2.2: The mode argument was ignored in earlier versions.

See also

	Module anydbm

	Generic interface to dbm-style databases.

	Module dbm

	Similar interface to the DBM/NDBM library.

	Module gdbm

	Similar interface to the GNU GDBM library.

	Module shelve

	Persistence module which stores non-string data.

	Module whichdb

	Utility module used to determine the type of an existing database.

11.12.1. Dumbdbm Objects

In addition to the methods provided by the UserDict.DictMixin class,
dumbdbm objects provide the following methods.

	
dumbdbm.sync()

	Synchronize the on-disk directory and data files. This method is called by the
sync() method of Shelve objects.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	11. Data Persistence

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases

New in version 2.5.

SQLite is a C library that provides a lightweight disk-based database that
doesn’t require a separate server process and allows accessing the database
using a nonstandard variant of the SQL query language. Some applications can use
SQLite for internal data storage. It’s also possible to prototype an
application using SQLite and then port the code to a larger database such as
PostgreSQL or Oracle.

sqlite3 was written by Gerhard Häring and provides a SQL interface compliant
with the DB-API 2.0 specification described by PEP 249 [http://www.python.org/dev/peps/pep-0249].

To use the module, you must first create a Connection object that
represents the database. Here the data will be stored in the
/tmp/example file:

conn = sqlite3.connect('/tmp/example')

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object
and call its execute() method to perform SQL commands:

c = conn.cursor()

Create table
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')

Insert a row of data
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")

Save (commit) the changes
conn.commit()

We can also close the cursor if we are done with it
c.close()

Usually your SQL operations will need to use values from Python variables. You
shouldn’t assemble your query using Python’s string operations because doing so
is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder
wherever you want to use a value, and then provide a tuple of values as the
second argument to the cursor’s execute() method. (Other database
modules may use a different placeholder, such as %s or :1.) For
example:

Never do this -- insecure!
symbol = 'IBM'
c.execute("... where symbol = '%s'" % symbol)

Do this instead
t = (symbol,)
c.execute('select * from stocks where symbol=?', t)

Larger example
for t in [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
 ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
 ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
]:
 c.execute('insert into stocks values (?,?,?,?,?)', t)

To retrieve data after executing a SELECT statement, you can either treat the
cursor as an iterator, call the cursor’s fetchone() method to
retrieve a single matching row, or call fetchall() to get a list of the
matching rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute('select * from stocks order by price')
>>> for row in c:
... print row
...
(u'2006-01-05', u'BUY', u'RHAT', 100, 35.14)
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
>>>

See also

	http://code.google.com/p/pysqlite/

	The pysqlite web page – sqlite3 is developed externally under the name
“pysqlite”.

	http://www.sqlite.org

	The SQLite web page; the documentation describes the syntax and the
available data types for the supported SQL dialect.

	PEP 249 [http://www.python.org/dev/peps/pep-0249] - Database API Specification 2.0

	PEP written by Marc-André Lemburg.

11.13.1. Module functions and constants

	
sqlite3.PARSE_DECLTYPES

	This constant is meant to be used with the detect_types parameter of the
connect() function.

Setting it makes the sqlite3 module parse the declared type for each
column it returns. It will parse out the first word of the declared type,
i. e. for “integer primary key”, it will parse out “integer”, or for
“number(10)” it will parse out “number”. Then for that column, it will look
into the converters dictionary and use the converter function registered for
that type there.

	
sqlite3.PARSE_COLNAMES

	This constant is meant to be used with the detect_types parameter of the
connect() function.

Setting this makes the SQLite interface parse the column name for each column it
returns. It will look for a string formed [mytype] in there, and then decide
that ‘mytype’ is the type of the column. It will try to find an entry of
‘mytype’ in the converters dictionary and then use the converter function found
there to return the value. The column name found in Cursor.description
is only the first word of the column name, i. e. if you use something like
'as "x [datetime]"' in your SQL, then we will parse out everything until the
first blank for the column name: the column name would simply be “x”.

	
sqlite3.connect(database[, timeout, detect_types, isolation_level, check_same_thread, factory, cached_statements])

	Opens a connection to the SQLite database file database. You can use
":memory:" to open a database connection to a database that resides in RAM
instead of on disk.

When a database is accessed by multiple connections, and one of the processes
modifies the database, the SQLite database is locked until that transaction is
committed. The timeout parameter specifies how long the connection should wait
for the lock to go away until raising an exception. The default for the timeout
parameter is 5.0 (five seconds).

For the isolation_level parameter, please see the
Connection.isolation_level property of Connection objects.

SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If
you want to use other types you must add support for them yourself. The
detect_types parameter and the using custom converters registered with the
module-level register_converter() function allow you to easily do that.

detect_types defaults to 0 (i. e. off, no type detection), you can set it to
any combination of PARSE_DECLTYPES and PARSE_COLNAMES to turn
type detection on.

By default, the sqlite3 module uses its Connection class for the
connect call. You can, however, subclass the Connection class and make
connect() use your class instead by providing your class for the factory
parameter.

Consult the section SQLite and Python types of this manual for details.

The sqlite3 module internally uses a statement cache to avoid SQL parsing
overhead. If you want to explicitly set the number of statements that are cached
for the connection, you can set the cached_statements parameter. The currently
implemented default is to cache 100 statements.

	
sqlite3.register_converter(typename, callable)

	Registers a callable to convert a bytestring from the database into a custom
Python type. The callable will be invoked for all database values that are of
the type typename. Confer the parameter detect_types of the connect()
function for how the type detection works. Note that the case of typename and
the name of the type in your query must match!

	
sqlite3.register_adapter(type, callable)

	Registers a callable to convert the custom Python type type into one of
SQLite’s supported types. The callable callable accepts as single parameter
the Python value, and must return a value of the following types: int, long,
float, str (UTF-8 encoded), unicode or buffer.

	
sqlite3.complete_statement(sql)

	Returns True if the string sql contains one or more complete SQL
statements terminated by semicolons. It does not verify that the SQL is
syntactically correct, only that there are no unclosed string literals and the
statement is terminated by a semicolon.

This can be used to build a shell for SQLite, as in the following example:

A minimal SQLite shell for experiments

import sqlite3

con = sqlite3.connect(":memory:")
con.isolation_level = None
cur = con.cursor()

buffer = ""

print "Enter your SQL commands to execute in sqlite3."
print "Enter a blank line to exit."

while True:
 line = raw_input()
 if line == "":
 break
 buffer += line
 if sqlite3.complete_statement(buffer):
 try:
 buffer = buffer.strip()
 cur.execute(buffer)

 if buffer.lstrip().upper().startswith("SELECT"):
 print cur.fetchall()
 except sqlite3.Error, e:
 print "An error occurred:", e.args[0]
 buffer = ""

con.close()

	
sqlite3.enable_callback_tracebacks(flag)

	By default you will not get any tracebacks in user-defined functions,
aggregates, converters, authorizer callbacks etc. If you want to debug them, you
can call this function with flag as True. Afterwards, you will get tracebacks
from callbacks on sys.stderr. Use False to disable the feature
again.

11.13.2. Connection Objects

	
class sqlite3.Connection

	A SQLite database connection has the following attributes and methods:

	
Connection.isolation_level

	Get or set the current isolation level. None for autocommit mode or
one of “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE”. See section
Controlling Transactions for a more detailed explanation.

	
Connection.cursor([cursorClass])

	The cursor method accepts a single optional parameter cursorClass. If
supplied, this must be a custom cursor class that extends
sqlite3.Cursor.

	
Connection.commit()

	This method commits the current transaction. If you don’t call this method,
anything you did since the last call to commit() is not visible from from
other database connections. If you wonder why you don’t see the data you’ve
written to the database, please check you didn’t forget to call this method.

	
Connection.rollback()

	This method rolls back any changes to the database since the last call to
commit().

	
Connection.close()

	This closes the database connection. Note that this does not automatically
call commit(). If you just close your database connection without
calling commit() first, your changes will be lost!

	
Connection.execute(sql[, parameters])

	This is a nonstandard shortcut that creates an intermediate cursor object by
calling the cursor method, then calls the cursor’s execute method with the parameters given.

	
Connection.executemany(sql[, parameters])

	This is a nonstandard shortcut that creates an intermediate cursor object by
calling the cursor method, then calls the cursor’s executemany method with the parameters given.

	
Connection.executescript(sql_script)

	This is a nonstandard shortcut that creates an intermediate cursor object by
calling the cursor method, then calls the cursor’s executescript method with the parameters given.

	
Connection.create_function(name, num_params, func)

	Creates a user-defined function that you can later use from within SQL
statements under the function name name. num_params is the number of
parameters the function accepts, and func is a Python callable that is called
as the SQL function.

The function can return any of the types supported by SQLite: unicode, str, int,
long, float, buffer and None.

Example:

import sqlite3
import md5

def md5sum(t):
 return md5.md5(t).hexdigest()

con = sqlite3.connect(":memory:")
con.create_function("md5", 1, md5sum)
cur = con.cursor()
cur.execute("select md5(?)", ("foo",))
print cur.fetchone()[0]

	
Connection.create_aggregate(name, num_params, aggregate_class)

	Creates a user-defined aggregate function.

The aggregate class must implement a step method, which accepts the number
of parameters num_params, and a finalize method which will return the
final result of the aggregate.

The finalize method can return any of the types supported by SQLite:
unicode, str, int, long, float, buffer and None.

Example:

import sqlite3

class MySum:
 def __init__(self):
 self.count = 0

 def step(self, value):
 self.count += value

 def finalize(self):
 return self.count

con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.cursor()
cur.execute("create table test(i)")
cur.execute("insert into test(i) values (1)")
cur.execute("insert into test(i) values (2)")
cur.execute("select mysum(i) from test")
print cur.fetchone()[0]

	
Connection.create_collation(name, callable)

	Creates a collation with the specified name and callable. The callable will
be passed two string arguments. It should return -1 if the first is ordered
lower than the second, 0 if they are ordered equal and 1 if the first is ordered
higher than the second. Note that this controls sorting (ORDER BY in SQL) so
your comparisons don’t affect other SQL operations.

Note that the callable will get its parameters as Python bytestrings, which will
normally be encoded in UTF-8.

The following example shows a custom collation that sorts “the wrong way”:

import sqlite3

def collate_reverse(string1, string2):
 return -cmp(string1, string2)

con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)

cur = con.cursor()
cur.execute("create table test(x)")
cur.executemany("insert into test(x) values (?)", [("a",), ("b",)])
cur.execute("select x from test order by x collate reverse")
for row in cur:
 print row
con.close()

To remove a collation, call create_collation with None as callable:

con.create_collation("reverse", None)

	
Connection.interrupt()

	You can call this method from a different thread to abort any queries that might
be executing on the connection. The query will then abort and the caller will
get an exception.

	
Connection.set_authorizer(authorizer_callback)

	This routine registers a callback. The callback is invoked for each attempt to
access a column of a table in the database. The callback should return
SQLITE_OK if access is allowed, SQLITE_DENY if the entire SQL
statement should be aborted with an error and SQLITE_IGNORE if the
column should be treated as a NULL value. These constants are available in the
sqlite3 module.

The first argument to the callback signifies what kind of operation is to be
authorized. The second and third argument will be arguments or None
depending on the first argument. The 4th argument is the name of the database
(“main”, “temp”, etc.) if applicable. The 5th argument is the name of the
inner-most trigger or view that is responsible for the access attempt or
None if this access attempt is directly from input SQL code.

Please consult the SQLite documentation about the possible values for the first
argument and the meaning of the second and third argument depending on the first
one. All necessary constants are available in the sqlite3 module.

	
Connection.set_progress_handler(handler, n)

	
New in version 2.6.

This routine registers a callback. The callback is invoked for every n
instructions of the SQLite virtual machine. This is useful if you want to
get called from SQLite during long-running operations, for example to update
a GUI.

If you want to clear any previously installed progress handler, call the
method with None for handler.

	
Connection.enable_load_extension(enabled)

	
New in version 2.7.

This routine allows/disallows the SQLite engine to load SQLite extensions
from shared libraries. SQLite extensions can define new functions,
aggregates or whole new virtual table implementations. One well-known
extension is the fulltext-search extension distributed with SQLite.

import sqlite3

con = sqlite3.connect(":memory:")

enable extension loading
con.enable_load_extension(True)

Load the fulltext search extension
con.execute("select load_extension('./fts3.so')")

alternatively you can load the extension using an API call:
con.load_extension("./fts3.so")

disable extension laoding again
con.enable_load_extension(False)

example from SQLite wiki
con.execute("create virtual table recipe using fts3(name, ingredients)")
con.executescript("""
 insert into recipe (name, ingredients) values ('broccoli stew', 'broccoli peppers cheese tomatoes');
 insert into recipe (name, ingredients) values ('pumpkin stew', 'pumpkin onions garlic celery');
 insert into recipe (name, ingredients) values ('broccoli pie', 'broccoli cheese onions flour');
 insert into recipe (name, ingredients) values ('pumpkin pie', 'pumpkin sugar flour butter');
 """)
for row in con.execute("select rowid, name, ingredients from recipe where name match 'pie'"):
 print row

	
Connection.load_extension(path)

	
New in version 2.7.

This routine loads a SQLite extension from a shared library. You have to
enable extension loading with enable_load_extension() before you can
use this routine.

	
Connection.row_factory

	You can change this attribute to a callable that accepts the cursor and the
original row as a tuple and will return the real result row. This way, you can
implement more advanced ways of returning results, such as returning an object
that can also access columns by name.

Example:

import sqlite3

def dict_factory(cursor, row):
 d = {}
 for idx, col in enumerate(cursor.description):
 d[col[0]] = row[idx]
 return d

con = sqlite3.connect(":memory:")
con.row_factory = dict_factory
cur = con.cursor()
cur.execute("select 1 as a")
print cur.fetchone()["a"]

If returning a tuple doesn’t suffice and you want name-based access to
columns, you should consider setting row_factory to the
highly-optimized sqlite3.Row type. Row provides both
index-based and case-insensitive name-based access to columns with almost no
memory overhead. It will probably be better than your own custom
dictionary-based approach or even a db_row based solution.

	
Connection.text_factory

	Using this attribute you can control what objects are returned for the TEXT
data type. By default, this attribute is set to unicode and the
sqlite3 module will return Unicode objects for TEXT. If you want to
return bytestrings instead, you can set it to str.

For efficiency reasons, there’s also a way to return Unicode objects only for
non-ASCII data, and bytestrings otherwise. To activate it, set this attribute to
sqlite3.OptimizedUnicode.

You can also set it to any other callable that accepts a single bytestring
parameter and returns the resulting object.

See the following example code for illustration:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()

Create the table
con.execute("create table person(lastname, firstname)")

AUSTRIA = u"\xd6sterreich"

by default, rows are returned as Unicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA

but we can make sqlite3 always return bytestrings ...
con.text_factory = str
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == str
the bytestrings will be encoded in UTF-8, unless you stored garbage in the
database ...
assert row[0] == AUSTRIA.encode("utf-8")

we can also implement a custom text_factory ...
here we implement one that will ignore Unicode characters that cannot be
decoded from UTF-8
con.text_factory = lambda x: unicode(x, "utf-8", "ignore")
cur.execute("select ?", ("this is latin1 and would normally create errors" +
 u"\xe4\xf6\xfc".encode("latin1"),))
row = cur.fetchone()
assert type(row[0]) == unicode

sqlite3 offers a built-in optimized text_factory that will return bytestring
objects, if the data is in ASCII only, and otherwise return unicode objects
con.text_factory = sqlite3.OptimizedUnicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == unicode

cur.execute("select ?", ("Germany",))
row = cur.fetchone()
assert type(row[0]) == str

	
Connection.total_changes

	Returns the total number of database rows that have been modified, inserted, or
deleted since the database connection was opened.

	
Connection.iterdump

	Returns an iterator to dump the database in an SQL text format. Useful when
saving an in-memory database for later restoration. This function provides
the same capabilities as the .dump command in the sqlite3
shell.

New in version 2.6.

Example:

Convert file existing_db.db to SQL dump file dump.sql
import sqlite3, os

con = sqlite3.connect('existing_db.db')
with open('dump.sql', 'w') as f:
 for line in con.iterdump():
 f.write('%s\n' % line)

11.13.3. Cursor Objects

	
class sqlite3.Cursor

	A Cursor instance has the following attributes and methods.

	
Cursor.execute(sql[, parameters])

	Executes an SQL statement. The SQL statement may be parametrized (i. e.
placeholders instead of SQL literals). The sqlite3 module supports two
kinds of placeholders: question marks (qmark style) and named placeholders
(named style).

This example shows how to use parameters with qmark style:

import sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=? and age=?", (who, age))
print cur.fetchone()

This example shows how to use the named style:

import sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=:who and age=:age",
 {"who": who, "age": age})
print cur.fetchone()

execute() will only execute a single SQL statement. If you try to execute
more than one statement with it, it will raise a Warning. Use
executescript() if you want to execute multiple SQL statements with one
call.

	
Cursor.executemany(sql, seq_of_parameters)

	Executes an SQL command against all parameter sequences or mappings found in
the sequence sql. The sqlite3 module also allows using an
iterator yielding parameters instead of a sequence.

import sqlite3

class IterChars:
 def __init__(self):
 self.count = ord('a')

 def __iter__(self):
 return self

 def next(self):
 if self.count > ord('z'):
 raise StopIteration
 self.count += 1
 return (chr(self.count - 1),) # this is a 1-tuple

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

theIter = IterChars()
cur.executemany("insert into characters(c) values (?)", theIter)

cur.execute("select c from characters")
print cur.fetchall()

Here’s a shorter example using a generator:

import sqlite3

def char_generator():
 import string
 for c in string.letters[:26]:
 yield (c,)

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

cur.executemany("insert into characters(c) values (?)", char_generator())

cur.execute("select c from characters")
print cur.fetchall()

	
Cursor.executescript(sql_script)

	This is a nonstandard convenience method for executing multiple SQL statements
at once. It issues a COMMIT statement first, then executes the SQL script it
gets as a parameter.

sql_script can be a bytestring or a Unicode string.

Example:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.executescript("""
 create table person(
 firstname,
 lastname,
 age
);

 create table book(
 title,
 author,
 published
);

 insert into book(title, author, published)
 values (
 'Dirk Gently''s Holistic Detective Agency',
 'Douglas Adams',
 1987
);
 """)

	
Cursor.fetchone()

	Fetches the next row of a query result set, returning a single sequence,
or None when no more data is available.

	
Cursor.fetchmany([size=cursor.arraysize])

	Fetches the next set of rows of a query result, returning a list. An empty
list is returned when no more rows are available.

The number of rows to fetch per call is specified by the size parameter.
If it is not given, the cursor’s arraysize determines the number of rows
to be fetched. The method should try to fetch as many rows as indicated by
the size parameter. If this is not possible due to the specified number of
rows not being available, fewer rows may be returned.

Note there are performance considerations involved with the size parameter.
For optimal performance, it is usually best to use the arraysize attribute.
If the size parameter is used, then it is best for it to retain the same
value from one fetchmany() call to the next.

	
Cursor.fetchall()

	Fetches all (remaining) rows of a query result, returning a list. Note that
the cursor’s arraysize attribute can affect the performance of this operation.
An empty list is returned when no rows are available.

	
Cursor.rowcount

	Although the Cursor class of the sqlite3 module implements this
attribute, the database engine’s own support for the determination of “rows
affected”/”rows selected” is quirky.

For DELETE statements, SQLite reports rowcount as 0 if you make a
DELETE FROM table without any condition.

For executemany() statements, the number of modifications are summed up
into rowcount.

As required by the Python DB API Spec, the rowcount attribute “is -1 in
case no executeXX() has been performed on the cursor or the rowcount of the
last operation is not determinable by the interface”.

This includes SELECT statements because we cannot determine the number of
rows a query produced until all rows were fetched.

	
Cursor.lastrowid

	This read-only attribute provides the rowid of the last modified row. It is
only set if you issued a INSERT statement using the execute()
method. For operations other than INSERT or when executemany() is
called, lastrowid is set to None.

	
Cursor.description

	This read-only attribute provides the column names of the last query. To
remain compatible with the Python DB API, it returns a 7-tuple for each
column where the last six items of each tuple are None.

It is set for SELECT statements without any matching rows as well.

11.13.4. Row Objects

	
class sqlite3.Row

	A Row instance serves as a highly optimized
row_factory for Connection objects.
It tries to mimic a tuple in most of its features.

It supports mapping access by column name and index, iteration,
representation, equality testing and len().

If two Row objects have exactly the same columns and their
members are equal, they compare equal.

Changed in version 2.6: Added iteration and equality (hashability).

	
keys()

	This method returns a tuple of column names. Immediately after a query,
it is the first member of each tuple in Cursor.description.

New in version 2.6.

Let’s assume we initialize a table as in the example given above:

conn = sqlite3.connect(":memory:")
c = conn.cursor()
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")
conn.commit()
c.close()

Now we plug Row in:

>>> conn.row_factory = sqlite3.Row
>>> c = conn.cursor()
>>> c.execute('select * from stocks')
<sqlite3.Cursor object at 0x7f4e7dd8fa80>
>>> r = c.fetchone()
>>> type(r)
<type 'sqlite3.Row'>
>>> r
(u'2006-01-05', u'BUY', u'RHAT', 100.0, 35.14)
>>> len(r)
5
>>> r[2]
u'RHAT'
>>> r.keys()
['date', 'trans', 'symbol', 'qty', 'price']
>>> r['qty']
100.0
>>> for member in r: print member
...
2006-01-05
BUY
RHAT
100.0
35.14

11.13.5. SQLite and Python types

11.13.5.1. Introduction

SQLite natively supports the following types: NULL, INTEGER,
REAL, TEXT, BLOB.

The following Python types can thus be sent to SQLite without any problem:

	Python type
	SQLite type

	None
	NULL

	int
	INTEGER

	long
	INTEGER

	float
	REAL

	str (UTF8-encoded)
	TEXT

	unicode
	TEXT

	buffer
	BLOB

This is how SQLite types are converted to Python types by default:

	SQLite type
	Python type

	NULL
	None

	INTEGER
	int or long,
depending on size

	REAL
	float

	TEXT
	depends on text_factory,
unicode by default

	BLOB
	buffer

The type system of the sqlite3 module is extensible in two ways: you can
store additional Python types in a SQLite database via object adaptation, and
you can let the sqlite3 module convert SQLite types to different Python
types via converters.

11.13.5.2. Using adapters to store additional Python types in SQLite databases

As described before, SQLite supports only a limited set of types natively. To
use other Python types with SQLite, you must adapt them to one of the
sqlite3 module’s supported types for SQLite: one of NoneType, int, long, float,
str, unicode, buffer.

The sqlite3 module uses Python object adaptation, as described in
PEP 246 [http://www.python.org/dev/peps/pep-0246] for this. The protocol to use is PrepareProtocol.

There are two ways to enable the sqlite3 module to adapt a custom Python
type to one of the supported ones.

11.13.5.2.1. Letting your object adapt itself

This is a good approach if you write the class yourself. Let’s suppose you have
a class like this:

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

Now you want to store the point in a single SQLite column. First you’ll have to
choose one of the supported types first to be used for representing the point.
Let’s just use str and separate the coordinates using a semicolon. Then you need
to give your class a method __conform__(self, protocol) which must return
the converted value. The parameter protocol will be PrepareProtocol.

import sqlite3

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

 def __conform__(self, protocol):
 if protocol is sqlite3.PrepareProtocol:
 return "%f;%f" % (self.x, self.y)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print cur.fetchone()[0]

11.13.5.2.2. Registering an adapter callable

The other possibility is to create a function that converts the type to the
string representation and register the function with register_adapter().

Note

The type/class to adapt must be a new-style class, i. e. it must have
object as one of its bases.

import sqlite3

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

def adapt_point(point):
 return "%f;%f" % (point.x, point.y)

sqlite3.register_adapter(Point, adapt_point)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print cur.fetchone()[0]

The sqlite3 module has two default adapters for Python’s built-in
datetime.date and datetime.datetime types. Now let’s suppose
we want to store datetime.datetime objects not in ISO representation,
but as a Unix timestamp.

import sqlite3
import datetime, time

def adapt_datetime(ts):
 return time.mktime(ts.timetuple())

sqlite3.register_adapter(datetime.datetime, adapt_datetime)

con = sqlite3.connect(":memory:")
cur = con.cursor()

now = datetime.datetime.now()
cur.execute("select ?", (now,))
print cur.fetchone()[0]

11.13.5.3. Converting SQLite values to custom Python types

Writing an adapter lets you send custom Python types to SQLite. But to make it
really useful we need to make the Python to SQLite to Python roundtrip work.

Enter converters.

Let’s go back to the Point class. We stored the x and y coordinates
separated via semicolons as strings in SQLite.

First, we’ll define a converter function that accepts the string as a parameter
and constructs a Point object from it.

Note

Converter functions always get called with a string, no matter under which
data type you sent the value to SQLite.

def convert_point(s):
 x, y = map(float, s.split(";"))
 return Point(x, y)

Now you need to make the sqlite3 module know that what you select from
the database is actually a point. There are two ways of doing this:

	Implicitly via the declared type

	Explicitly via the column name

Both ways are described in section Module functions and constants, in the entries
for the constants PARSE_DECLTYPES and PARSE_COLNAMES.

The following example illustrates both approaches.

import sqlite3

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

 def __repr__(self):
 return "(%f;%f)" % (self.x, self.y)

def adapt_point(point):
 return "%f;%f" % (point.x, point.y)

def convert_point(s):
 x, y = map(float, s.split(";"))
 return Point(x, y)

Register the adapter
sqlite3.register_adapter(Point, adapt_point)

Register the converter
sqlite3.register_converter("point", convert_point)

p = Point(4.0, -3.2)

#########################
1) Using declared types
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.cursor()
cur.execute("create table test(p point)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute("select p from test")
print "with declared types:", cur.fetchone()[0]
cur.close()
con.close()

#######################
1) Using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(p)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute('select p as "p [point]" from test')
print "with column names:", cur.fetchone()[0]
cur.close()
con.close()

11.13.5.4. Default adapters and converters

There are default adapters for the date and datetime types in the datetime
module. They will be sent as ISO dates/ISO timestamps to SQLite.

The default converters are registered under the name “date” for
datetime.date and under the name “timestamp” for
datetime.datetime.

This way, you can use date/timestamps from Python without any additional
fiddling in most cases. The format of the adapters is also compatible with the
experimental SQLite date/time functions.

The following example demonstrates this.

import sqlite3
import datetime

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(d date, ts timestamp)")

today = datetime.date.today()
now = datetime.datetime.now()

cur.execute("insert into test(d, ts) values (?, ?)", (today, now))
cur.execute("select d, ts from test")
row = cur.fetchone()
print today, "=>", row[0], type(row[0])
print now, "=>", row[1], type(row[1])

cur.execute('select current_date as "d [date]", current_timestamp as "ts [timestamp]"')
row = cur.fetchone()
print "current_date", row[0], type(row[0])
print "current_timestamp", row[1], type(row[1])

11.13.6. Controlling Transactions

By default, the sqlite3 module opens transactions implicitly before a
Data Modification Language (DML) statement (i.e.
INSERT/UPDATE/DELETE/REPLACE), and commits transactions
implicitly before a non-DML, non-query statement (i. e.
anything other than SELECT or the aforementioned).

So if you are within a transaction and issue a command like CREATE TABLE
..., VACUUM, PRAGMA, the sqlite3 module will commit implicitly
before executing that command. There are two reasons for doing that. The first
is that some of these commands don’t work within transactions. The other reason
is that sqlite3 needs to keep track of the transaction state (if a transaction
is active or not).

You can control which kind of BEGIN statements sqlite3 implicitly executes
(or none at all) via the isolation_level parameter to the connect()
call, or via the isolation_level property of connections.

If you want autocommit mode, then set isolation_level to None.

Otherwise leave it at its default, which will result in a plain “BEGIN”
statement, or set it to one of SQLite’s supported isolation levels: “DEFERRED”,
“IMMEDIATE” or “EXCLUSIVE”.

11.13.7. Using sqlite3 efficiently

11.13.7.1. Using shortcut methods

Using the nonstandard execute(), executemany() and
executescript() methods of the Connection object, your code can
be written more concisely because you don’t have to create the (often
superfluous) Cursor objects explicitly. Instead, the Cursor
objects are created implicitly and these shortcut methods return the cursor
objects. This way, you can execute a SELECT statement and iterate over it
directly using only a single call on the Connection object.

import sqlite3

persons = [
 ("Hugo", "Boss"),
 ("Calvin", "Klein")
]

con = sqlite3.connect(":memory:")

Create the table
con.execute("create table person(firstname, lastname)")

Fill the table
con.executemany("insert into person(firstname, lastname) values (?, ?)", persons)

Print the table contents
for row in con.execute("select firstname, lastname from person"):
 print row

Using a dummy WHERE clause to not let SQLite take the shortcut table deletes.
print "I just deleted", con.execute("delete from person where 1=1").rowcount, "rows"

11.13.7.2. Accessing columns by name instead of by index

One useful feature of the sqlite3 module is the built-in
sqlite3.Row class designed to be used as a row factory.

Rows wrapped with this class can be accessed both by index (like tuples) and
case-insensitively by name:

import sqlite3

con = sqlite3.connect("mydb")
con.row_factory = sqlite3.Row

cur = con.cursor()
cur.execute("select name_last, age from people")
for row in cur:
 assert row[0] == row["name_last"]
 assert row["name_last"] == row["nAmE_lAsT"]
 assert row[1] == row["age"]
 assert row[1] == row["AgE"]

11.13.7.3. Using the connection as a context manager

New in version 2.6.

Connection objects can be used as context managers
that automatically commit or rollback transactions. In the event of an
exception, the transaction is rolled back; otherwise, the transaction is
committed:

import sqlite3

con = sqlite3.connect(":memory:")
con.execute("create table person (id integer primary key, firstname varchar unique)")

Successful, con.commit() is called automatically afterwards
with con:
 con.execute("insert into person(firstname) values (?)", ("Joe",))

con.rollback() is called after the with block finishes with an exception, the
exception is still raised and must be catched
try:
 with con:
 con.execute("insert into person(firstname) values (?)", ("Joe",))
except sqlite3.IntegrityError:
 print "couldn't add Joe twice"

11.13.8. Common issues

11.13.8.1. Multithreading

Older SQLite versions had issues with sharing connections between threads.
That’s why the Python module disallows sharing connections and cursors between
threads. If you still try to do so, you will get an exception at runtime.

The only exception is calling the interrupt() method, which
only makes sense to call from a different thread.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

12. Data Compression and Archiving

The modules described in this chapter support data compression with the zlib,
gzip, and bzip2 algorithms, and the creation of ZIP- and tar-format archives.

	12.1. zlib — Compression compatible with gzip

	12.2. gzip — Support for gzip files
	12.2.1. Examples of usage

	12.3. bz2 — Compression compatible with bzip2
	12.3.1. (De)compression of files

	12.3.2. Sequential (de)compression

	12.3.3. One-shot (de)compression

	12.4. zipfile — Work with ZIP archives
	12.4.1. ZipFile Objects

	12.4.2. PyZipFile Objects

	12.4.3. ZipInfo Objects

	12.5. tarfile — Read and write tar archive files
	12.5.1. TarFile Objects

	12.5.2. TarInfo Objects

	12.5.3. Examples

	12.5.4. Supported tar formats

	12.5.5. Unicode issues

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	12. Data Compression and Archiving

12.1. zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module
allow compression and decompression, using the zlib library. The zlib library
has its own home page at http://www.zlib.net. There are known
incompatibilities between the Python module and versions of the zlib library
earlier than 1.1.3; 1.1.3 has a security vulnerability, so we recommend using
1.1.4 or later.

zlib’s functions have many options and often need to be used in a particular
order. This documentation doesn’t attempt to cover all of the permutations;
consult the zlib manual at http://www.zlib.net/manual.html for authoritative
information.

For reading and writing .gz files see the gzip module. For
other archive formats, see the bz2, zipfile, and
tarfile modules.

The available exception and functions in this module are:

	
exception zlib.error

	Exception raised on compression and decompression errors.

	
zlib.adler32(data[, value])

	Computes a Adler-32 checksum of data. (An Adler-32 checksum is almost as
reliable as a CRC32 but can be computed much more quickly.) If value is
present, it is used as the starting value of the checksum; otherwise, a fixed
default value is used. This allows computing a running checksum over the
concatenation of several inputs. The algorithm is not cryptographically
strong, and should not be used for authentication or digital signatures. Since
the algorithm is designed for use as a checksum algorithm, it is not suitable
for use as a general hash algorithm.

This function always returns an integer object.

Note

To generate the same numeric value across all Python versions and
platforms use adler32(data) & 0xffffffff. If you are only using
the checksum in packed binary format this is not necessary as the
return value is the correct 32bit binary representation
regardless of sign.

Changed in version 2.6: The return value is in the range [-2**31, 2**31-1]
regardless of platform. In older versions the value is
signed on some platforms and unsigned on others.

Changed in version 3.0: The return value is unsigned and in the range [0, 2**32-1]
regardless of platform.

	
zlib.compress(string[, level])

	Compresses the data in string, returning a string contained compressed data.
level is an integer from 1 to 9 controlling the level of compression;
1 is fastest and produces the least compression, 9 is slowest and
produces the most. The default value is 6. Raises the error
exception if any error occurs.

	
zlib.compressobj([level])

	Returns a compression object, to be used for compressing data streams that won’t
fit into memory at once. level is an integer from 1 to 9 controlling
the level of compression; 1 is fastest and produces the least compression,
9 is slowest and produces the most. The default value is 6.

	
zlib.crc32(data[, value])

	Computes a CRC (Cyclic Redundancy Check) checksum of data. If value is
present, it is used as the starting value of the checksum; otherwise, a fixed
default value is used. This allows computing a running checksum over the
concatenation of several inputs. The algorithm is not cryptographically
strong, and should not be used for authentication or digital signatures. Since
the algorithm is designed for use as a checksum algorithm, it is not suitable
for use as a general hash algorithm.

This function always returns an integer object.

Note

To generate the same numeric value across all Python versions and
platforms use crc32(data) & 0xffffffff. If you are only using
the checksum in packed binary format this is not necessary as the
return value is the correct 32bit binary representation
regardless of sign.

Changed in version 2.6: The return value is in the range [-2**31, 2**31-1]
regardless of platform. In older versions the value would be
signed on some platforms and unsigned on others.

Changed in version 3.0: The return value is unsigned and in the range [0, 2**32-1]
regardless of platform.

	
zlib.decompress(string[, wbits[, bufsize]])

	Decompresses the data in string, returning a string containing the
uncompressed data. The wbits parameter controls the size of the window
buffer, and is discussed further below.
If bufsize is given, it is used as the initial size of the output
buffer. Raises the error exception if any error occurs.

The absolute value of wbits is the base two logarithm of the size of the
history buffer (the “window size”) used when compressing data. Its absolute
value should be between 8 and 15 for the most recent versions of the zlib
library, larger values resulting in better compression at the expense of greater
memory usage. When decompressing a stream, wbits must not be smaller
than the size originally used to compress the stream; using a too-small
value will result in an exception. The default value is therefore the
highest value, 15. When wbits is negative, the standard
gzip header is suppressed.

bufsize is the initial size of the buffer used to hold decompressed data. If
more space is required, the buffer size will be increased as needed, so you
don’t have to get this value exactly right; tuning it will only save a few calls
to malloc(). The default size is 16384.

	
zlib.decompressobj([wbits])

	Returns a decompression object, to be used for decompressing data streams that
won’t fit into memory at once. The wbits parameter controls the size of the
window buffer.

Compression objects support the following methods:

	
Compress.compress(string)

	Compress string, returning a string containing compressed data for at least
part of the data in string. This data should be concatenated to the output
produced by any preceding calls to the compress() method. Some input may
be kept in internal buffers for later processing.

	
Compress.flush([mode])

	All pending input is processed, and a string containing the remaining compressed
output is returned. mode can be selected from the constants
Z_SYNC_FLUSH, Z_FULL_FLUSH, or Z_FINISH,
defaulting to Z_FINISH. Z_SYNC_FLUSH and
Z_FULL_FLUSH allow compressing further strings of data, while
Z_FINISH finishes the compressed stream and prevents compressing any
more data. After calling flush() with mode set to Z_FINISH,
the compress() method cannot be called again; the only realistic action is
to delete the object.

	
Compress.copy()

	Returns a copy of the compression object. This can be used to efficiently
compress a set of data that share a common initial prefix.

New in version 2.5.

Decompression objects support the following methods, and two attributes:

	
Decompress.unused_data

	A string which contains any bytes past the end of the compressed data. That is,
this remains "" until the last byte that contains compression data is
available. If the whole string turned out to contain compressed data, this is
"", the empty string.

The only way to determine where a string of compressed data ends is by actually
decompressing it. This means that when compressed data is contained part of a
larger file, you can only find the end of it by reading data and feeding it
followed by some non-empty string into a decompression object’s
decompress() method until the unused_data attribute is no longer
the empty string.

	
Decompress.unconsumed_tail

	A string that contains any data that was not consumed by the last
decompress() call because it exceeded the limit for the uncompressed data
buffer. This data has not yet been seen by the zlib machinery, so you must feed
it (possibly with further data concatenated to it) back to a subsequent
decompress() method call in order to get correct output.

	
Decompress.decompress(string[, max_length])

	Decompress string, returning a string containing the uncompressed data
corresponding to at least part of the data in string. This data should be
concatenated to the output produced by any preceding calls to the
decompress() method. Some of the input data may be preserved in internal
buffers for later processing.

If the optional parameter max_length is supplied then the return value will be
no longer than max_length. This may mean that not all of the compressed input
can be processed; and unconsumed data will be stored in the attribute
unconsumed_tail. This string must be passed to a subsequent call to
decompress() if decompression is to continue. If max_length is not
supplied then the whole input is decompressed, and unconsumed_tail is an
empty string.

	
Decompress.flush([length])

	All pending input is processed, and a string containing the remaining
uncompressed output is returned. After calling flush(), the
decompress() method cannot be called again; the only realistic action is
to delete the object.

The optional parameter length sets the initial size of the output buffer.

	
Decompress.copy()

	Returns a copy of the decompression object. This can be used to save the state
of the decompressor midway through the data stream in order to speed up random
seeks into the stream at a future point.

New in version 2.5.

See also

	Module gzip

	Reading and writing gzip-format files.

	http://www.zlib.net

	The zlib library home page.

	http://www.zlib.net/manual.html

	The zlib manual explains the semantics and usage of the library’s many
functions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	12. Data Compression and Archiving

12.2. gzip — Support for gzip files

This module provides a simple interface to compress and decompress files just
like the GNU programs gzip and gunzip would.

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class which is modeled
after Python’s File Object. The GzipFile class reads and writes
gzip-format files, automatically compressing or decompressing the
data so that it looks like an ordinary file object.

Note that additional file formats which can be decompressed by the
gzip and gunzip programs, such as those produced by
compress and pack, are not supported by this module.

For other archive formats, see the bz2, zipfile, and
tarfile modules.

The module defines the following items:

	
class gzip.GzipFile([filename[, mode[, compresslevel[, fileobj[, mtime]]]]])

	Constructor for the GzipFile class, which simulates most of the methods
of a file object, with the exception of the readinto() and
truncate() methods. At least one of fileobj and filename must be
given a non-trivial value.

The new class instance is based on fileobj, which can be a regular file, a
StringIO object, or any other object which simulates a file. It
defaults to None, in which case filename is opened to provide a file
object.

When fileobj is not None, the filename argument is only used to be
included in the gzip file header, which may includes the original
filename of the uncompressed file. It defaults to the filename of fileobj, if
discernible; otherwise, it defaults to the empty string, and in this case the
original filename is not included in the header.

The mode argument can be any of 'r', 'rb', 'a', 'ab', 'w',
or 'wb', depending on whether the file will be read or written. The default
is the mode of fileobj if discernible; otherwise, the default is 'rb'. If
not given, the ‘b’ flag will be added to the mode to ensure the file is opened
in binary mode for cross-platform portability.

The compresslevel argument is an integer from 1 to 9 controlling the
level of compression; 1 is fastest and produces the least compression, and
9 is slowest and produces the most compression. The default is 9.

The mtime argument is an optional numeric timestamp to be written to
the stream when compressing. All gzip compressed streams are
required to contain a timestamp. If omitted or None, the current
time is used. This module ignores the timestamp when decompressing;
however, some programs, such as gunzip, make use of it.
The format of the timestamp is the same as that of the return value of
time.time() and of the st_mtime member of the object returned
by os.stat().

Calling a GzipFile object’s close() method does not close
fileobj, since you might wish to append more material after the compressed
data. This also allows you to pass a StringIO object opened for
writing as fileobj, and retrieve the resulting memory buffer using the
StringIO object’s getvalue() method.

GzipFile supports iteration and the with statement.

Changed in version 2.7: Support for the with statement was added.

Changed in version 2.7: Support for zero-padded files was added.

	
gzip.open(filename[, mode[, compresslevel]])

	This is a shorthand for GzipFile(filename, mode, compresslevel).
The filename argument is required; mode defaults to 'rb' and
compresslevel defaults to 9.

12.2.1. Examples of usage

Example of how to read a compressed file:

import gzip
f = gzip.open('/home/joe/file.txt.gz', 'rb')
file_content = f.read()
f.close()

Example of how to create a compressed GZIP file:

import gzip
content = "Lots of content here"
f = gzip.open('/home/joe/file.txt.gz', 'wb')
f.write(content)
f.close()

Example of how to GZIP compress an existing file:

import gzip
f_in = open('/home/joe/file.txt', 'rb')
f_out = gzip.open('/home/joe/file.txt.gz', 'wb')
f_out.writelines(f_in)
f_out.close()
f_in.close()

See also

	Module zlib

	The basic data compression module needed to support the gzip file
format.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	12. Data Compression and Archiving

12.3. bz2 — Compression compatible with bzip2

New in version 2.3.

This module provides a comprehensive interface for the bz2 compression library.
It implements a complete file interface, one-shot (de)compression functions, and
types for sequential (de)compression.

For other archive formats, see the gzip, zipfile, and
tarfile modules.

Here is a summary of the features offered by the bz2 module:

	BZ2File class implements a complete file interface, including
readline(), readlines(),
writelines(), seek(), etc;

	BZ2File class implements emulated seek() support;

	BZ2File class implements universal newline support;

	BZ2File class offers an optimized line iteration using the readahead
algorithm borrowed from file objects;

	Sequential (de)compression supported by BZ2Compressor and
BZ2Decompressor classes;

	One-shot (de)compression supported by compress() and decompress()
functions;

	Thread safety uses individual locking mechanism.

12.3.1. (De)compression of files

Handling of compressed files is offered by the BZ2File class.

	
class bz2.BZ2File(filename[, mode[, buffering[, compresslevel]]])

	Open a bz2 file. Mode can be either 'r' or 'w', for reading (default)
or writing. When opened for writing, the file will be created if it doesn’t
exist, and truncated otherwise. If buffering is given, 0 means
unbuffered, and larger numbers specify the buffer size; the default is
0. If compresslevel is given, it must be a number between 1 and
9; the default is 9. Add a 'U' to mode to open the file for input
with universal newline support. Any line ending in the input file will be
seen as a '\n' in Python. Also, a file so opened gains the attribute
newlines; the value for this attribute is one of None (no newline
read yet), '\r', '\n', '\r\n' or a tuple containing all the
newline types seen. Universal newlines are available only when
reading. Instances support iteration in the same way as normal file
instances.

BZ2File supports the with statement.

Changed in version 2.7: Support for the with statement was added.

	
close()

	Close the file. Sets data attribute closed to true. A closed file
cannot be used for further I/O operations. close() may be called
more than once without error.

	
read([size])

	Read at most size uncompressed bytes, returned as a string. If the
size argument is negative or omitted, read until EOF is reached.

	
readline([size])

	Return the next line from the file, as a string, retaining newline. A
non-negative size argument limits the maximum number of bytes to return
(an incomplete line may be returned then). Return an empty string at EOF.

	
readlines([size])

	Return a list of lines read. The optional size argument, if given, is an
approximate bound on the total number of bytes in the lines returned.

	
xreadlines()

	For backward compatibility. BZ2File objects now include the
performance optimizations previously implemented in the xreadlines
module.

Deprecated since version 2.3: This exists only for compatibility with the method by this name on
file objects, which is deprecated. Use for line in file
instead.

	
seek(offset[, whence])

	Move to new file position. Argument offset is a byte count. Optional
argument whence defaults to os.SEEK_SET or 0 (offset from start
of file; offset should be >= 0); other values are os.SEEK_CUR or
1 (move relative to current position; offset can be positive or
negative), and os.SEEK_END or 2 (move relative to end of file;
offset is usually negative, although many platforms allow seeking beyond
the end of a file).

Note that seeking of bz2 files is emulated, and depending on the
parameters the operation may be extremely slow.

	
tell()

	Return the current file position, an integer (may be a long integer).

	
write(data)

	Write string data to file. Note that due to buffering, close() may
be needed before the file on disk reflects the data written.

	
writelines(sequence_of_strings)

	Write the sequence of strings to the file. Note that newlines are not
added. The sequence can be any iterable object producing strings. This is
equivalent to calling write() for each string.

12.3.2. Sequential (de)compression

Sequential compression and decompression is done using the classes
BZ2Compressor and BZ2Decompressor.

	
class bz2.BZ2Compressor([compresslevel])

	Create a new compressor object. This object may be used to compress data
sequentially. If you want to compress data in one shot, use the
compress() function instead. The compresslevel parameter, if given,
must be a number between 1 and 9; the default is 9.

	
compress(data)

	Provide more data to the compressor object. It will return chunks of
compressed data whenever possible. When you’ve finished providing data to
compress, call the flush() method to finish the compression process,
and return what is left in internal buffers.

	
flush()

	Finish the compression process and return what is left in internal
buffers. You must not use the compressor object after calling this method.

	
class bz2.BZ2Decompressor

	Create a new decompressor object. This object may be used to decompress data
sequentially. If you want to decompress data in one shot, use the
decompress() function instead.

	
decompress(data)

	Provide more data to the decompressor object. It will return chunks of
decompressed data whenever possible. If you try to decompress data after
the end of stream is found, EOFError will be raised. If any data
was found after the end of stream, it’ll be ignored and saved in
unused_data attribute.

12.3.3. One-shot (de)compression

One-shot compression and decompression is provided through the compress()
and decompress() functions.

	
bz2.compress(data[, compresslevel])

	Compress data in one shot. If you want to compress data sequentially, use
an instance of BZ2Compressor instead. The compresslevel parameter,
if given, must be a number between 1 and 9; the default is 9.

	
bz2.decompress(data)

	Decompress data in one shot. If you want to decompress data sequentially,
use an instance of BZ2Decompressor instead.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	12. Data Compression and Archiving

12.4. zipfile — Work with ZIP archives

New in version 1.6.

The ZIP file format is a common archive and compression standard. This module
provides tools to create, read, write, append, and list a ZIP file. Any
advanced use of this module will require an understanding of the format, as
defined in PKZIP Application Note [http://www.pkware.com/documents/casestudies/APPNOTE.TXT].

This module does not currently handle multi-disk ZIP files.
It can handle ZIP files that use the ZIP64 extensions
(that is ZIP files that are more than 4 GByte in size). It supports
decryption of encrypted files in ZIP archives, but it currently cannot
create an encrypted file. Decryption is extremely slow as it is
implemented in native Python rather than C.

For other archive formats, see the bz2, gzip, and
tarfile modules.

The module defines the following items:

	
exception zipfile.BadZipfile

	The error raised for bad ZIP files (old name: zipfile.error).

	
exception zipfile.LargeZipFile

	The error raised when a ZIP file would require ZIP64 functionality but that has
not been enabled.

	
class zipfile.ZipFile

	The class for reading and writing ZIP files. See section
ZipFile Objects for constructor details.

	
class zipfile.PyZipFile

	Class for creating ZIP archives containing Python libraries.

	
class zipfile.ZipInfo([filename[, date_time]])

	Class used to represent information about a member of an archive. Instances
of this class are returned by the getinfo() and infolist()
methods of ZipFile objects. Most users of the zipfile module
will not need to create these, but only use those created by this
module. filename should be the full name of the archive member, and
date_time should be a tuple containing six fields which describe the time
of the last modification to the file; the fields are described in section
ZipInfo Objects.

	
zipfile.is_zipfile(filename)

	Returns True if filename is a valid ZIP file based on its magic number,
otherwise returns False. filename may be a file or file-like object too.

Changed in version 2.7: Support for file and file-like objects.

	
zipfile.ZIP_STORED

	The numeric constant for an uncompressed archive member.

	
zipfile.ZIP_DEFLATED

	The numeric constant for the usual ZIP compression method. This requires the
zlib module. No other compression methods are currently supported.

See also

	PKZIP Application Note [http://www.pkware.com/documents/casestudies/APPNOTE.TXT]

	Documentation on the ZIP file format by Phil Katz, the creator of the format and
algorithms used.

	Info-ZIP Home Page [http://www.info-zip.org/]

	Information about the Info-ZIP project’s ZIP archive programs and development
libraries.

12.4.1. ZipFile Objects

	
class zipfile.ZipFile(file[, mode[, compression[, allowZip64]]])

	Open a ZIP file, where file can be either a path to a file (a string) or a
file-like object. The mode parameter should be 'r' to read an existing
file, 'w' to truncate and write a new file, or 'a' to append to an
existing file. If mode is 'a' and file refers to an existing ZIP
file, then additional files are added to it. If file does not refer to a
ZIP file, then a new ZIP archive is appended to the file. This is meant for
adding a ZIP archive to another file (such as python.exe).

Changed in version 2.6: If mode is a and the file does not exist at all, it is created.

compression is the ZIP compression method to use when writing the archive,
and should be ZIP_STORED or ZIP_DEFLATED; unrecognized
values will cause RuntimeError to be raised. If ZIP_DEFLATED
is specified but the zlib module is not available, RuntimeError
is also raised. The default is ZIP_STORED. If allowZip64 is
True zipfile will create ZIP files that use the ZIP64 extensions when
the zipfile is larger than 2 GB. If it is false (the default) zipfile
will raise an exception when the ZIP file would require ZIP64 extensions.
ZIP64 extensions are disabled by default because the default zip
and unzip commands on Unix (the InfoZIP utilities) don’t support
these extensions.

Changed in version 2.7.1: If the file is created with mode 'a' or 'w' and then
close()d without adding any files to the archive, the appropriate
ZIP structures for an empty archive will be written to the file.

ZipFile is also a context manager and therefore supports the
with statement. In the example, myzip is closed after the
with statement’s suite is finished—even if an exception occurs:

with ZipFile('spam.zip', 'w') as myzip:
 myzip.write('eggs.txt')

New in version 2.7: Added the ability to use ZipFile as a context manager.

	
ZipFile.close()

	Close the archive file. You must call close() before exiting your program
or essential records will not be written.

	
ZipFile.getinfo(name)

	Return a ZipInfo object with information about the archive member
name. Calling getinfo() for a name not currently contained in the
archive will raise a KeyError.

	
ZipFile.infolist()

	Return a list containing a ZipInfo object for each member of the
archive. The objects are in the same order as their entries in the actual ZIP
file on disk if an existing archive was opened.

	
ZipFile.namelist()

	Return a list of archive members by name.

	
ZipFile.open(name[, mode[, pwd]])

	Extract a member from the archive as a file-like object (ZipExtFile). name is
the name of the file in the archive, or a ZipInfo object. The mode
parameter, if included, must be one of the following: 'r' (the default),
'U', or 'rU'. Choosing 'U' or 'rU' will enable universal newline
support in the read-only object. pwd is the password used for encrypted files.
Calling open() on a closed ZipFile will raise a RuntimeError.

Note

The file-like object is read-only and provides the following methods:
read(), readline(), readlines(), __iter__(),
next().

Note

If the ZipFile was created by passing in a file-like object as the first
argument to the constructor, then the object returned by open() shares the
ZipFile’s file pointer. Under these circumstances, the object returned by
open() should not be used after any additional operations are performed
on the ZipFile object. If the ZipFile was created by passing in a string (the
filename) as the first argument to the constructor, then open() will
create a new file object that will be held by the ZipExtFile, allowing it to
operate independently of the ZipFile.

Note

The open(), read() and extract() methods can take a filename
or a ZipInfo object. You will appreciate this when trying to read a
ZIP file that contains members with duplicate names.

New in version 2.6.

	
ZipFile.extract(member[, path[, pwd]])

	Extract a member from the archive to the current working directory; member
must be its full name or a ZipInfo object). Its file information is
extracted as accurately as possible. path specifies a different directory
to extract to. member can be a filename or a ZipInfo object.
pwd is the password used for encrypted files.

New in version 2.6.

	
ZipFile.extractall([path[, members[, pwd]]])

	Extract all members from the archive to the current working directory. path
specifies a different directory to extract to. members is optional and must
be a subset of the list returned by namelist(). pwd is the password
used for encrypted files.

Warning

Never extract archives from untrusted sources without prior inspection.
It is possible that files are created outside of path, e.g. members
that have absolute filenames starting with "/" or filenames with two
dots "..".

New in version 2.6.

	
ZipFile.printdir()

	Print a table of contents for the archive to sys.stdout.

	
ZipFile.setpassword(pwd)

	Set pwd as default password to extract encrypted files.

New in version 2.6.

	
ZipFile.read(name[, pwd])

	Return the bytes of the file name in the archive. name is the name of the
file in the archive, or a ZipInfo object. The archive must be open for
read or append. pwd is the password used for encrypted files and, if specified,
it will override the default password set with setpassword(). Calling
read() on a closed ZipFile will raise a RuntimeError.

Changed in version 2.6: pwd was added, and name can now be a ZipInfo object.

	
ZipFile.testzip()

	Read all the files in the archive and check their CRC’s and file headers.
Return the name of the first bad file, or else return None. Calling
testzip() on a closed ZipFile will raise a RuntimeError.

	
ZipFile.write(filename[, arcname[, compress_type]])

	Write the file named filename to the archive, giving it the archive name
arcname (by default, this will be the same as filename, but without a drive
letter and with leading path separators removed). If given, compress_type
overrides the value given for the compression parameter to the constructor for
the new entry. The archive must be open with mode 'w' or 'a' – calling
write() on a ZipFile created with mode 'r' will raise a
RuntimeError. Calling write() on a closed ZipFile will raise a
RuntimeError.

Note

There is no official file name encoding for ZIP files. If you have unicode file
names, you must convert them to byte strings in your desired encoding before
passing them to write(). WinZip interprets all file names as encoded in
CP437, also known as DOS Latin.

Note

Archive names should be relative to the archive root, that is, they should not
start with a path separator.

Note

If arcname (or filename, if arcname is not given) contains a null
byte, the name of the file in the archive will be truncated at the null byte.

	
ZipFile.writestr(zinfo_or_arcname, bytes[, compress_type])

	Write the string bytes to the archive; zinfo_or_arcname is either the file
name it will be given in the archive, or a ZipInfo instance. If it’s
an instance, at least the filename, date, and time must be given. If it’s a
name, the date and time is set to the current date and time. The archive must be
opened with mode 'w' or 'a' – calling writestr() on a ZipFile
created with mode 'r' will raise a RuntimeError. Calling
writestr() on a closed ZipFile will raise a RuntimeError.

If given, compress_type overrides the value given for the compression
parameter to the constructor for the new entry, or in the zinfo_or_arcname
(if that is a ZipInfo instance).

Note

When passing a ZipInfo instance as the zinfo_or_arcname parameter,
the compression method used will be that specified in the compress_type
member of the given ZipInfo instance. By default, the
ZipInfo constructor sets this member to ZIP_STORED.

Changed in version 2.7: The compression_type argument.

The following data attributes are also available:

	
ZipFile.debug

	The level of debug output to use. This may be set from 0 (the default, no
output) to 3 (the most output). Debugging information is written to
sys.stdout.

	
ZipFile.comment

	The comment text associated with the ZIP file. If assigning a comment to a
ZipFile instance created with mode ‘a’ or ‘w’, this should be a
string no longer than 65535 bytes. Comments longer than this will be
truncated in the written archive when ZipFile.close() is called.

12.4.2. PyZipFile Objects

The PyZipFile constructor takes the same parameters as the
ZipFile constructor. Instances have one method in addition to those of
ZipFile objects.

	
PyZipFile.writepy(pathname[, basename])

	Search for files *.py and add the corresponding file to the archive.
The corresponding file is a *.pyo file if available, else a
*.pyc file, compiling if necessary. If the pathname is a file, the
filename must end with .py, and just the (corresponding
*.py[co]) file is added at the top level (no path information). If the
pathname is a file that does not end with .py, a RuntimeError
will be raised. If it is a directory, and the directory is not a package
directory, then all the files *.py[co] are added at the top level. If
the directory is a package directory, then all *.py[co] are added under
the package name as a file path, and if any subdirectories are package
directories, all of these are added recursively. basename is intended for
internal use only. The writepy() method makes archives with file names
like this:

string.pyc # Top level name
test/__init__.pyc # Package directory
test/test_support.pyc # Module test.test_support
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

12.4.3. ZipInfo Objects

Instances of the ZipInfo class are returned by the getinfo() and
infolist() methods of ZipFile objects. Each object stores
information about a single member of the ZIP archive.

Instances have the following attributes:

	
ZipInfo.filename

	Name of the file in the archive.

	
ZipInfo.date_time

	The time and date of the last modification to the archive member. This is a
tuple of six values:

	Index
	Value

	0
	Year

	1
	Month (one-based)

	2
	Day of month (one-based)

	3
	Hours (zero-based)

	4
	Minutes (zero-based)

	5
	Seconds (zero-based)

	
ZipInfo.compress_type

	Type of compression for the archive member.

	
ZipInfo.comment

	Comment for the individual archive member.

	
ZipInfo.extra

	Expansion field data. The PKZIP Application Note [http://www.pkware.com/documents/casestudies/APPNOTE.TXT] contains
some comments on the internal structure of the data contained in this string.

	
ZipInfo.create_system

	System which created ZIP archive.

	
ZipInfo.create_version

	PKZIP version which created ZIP archive.

	
ZipInfo.extract_version

	PKZIP version needed to extract archive.

	
ZipInfo.reserved

	Must be zero.

	
ZipInfo.flag_bits

	ZIP flag bits.

	
ZipInfo.volume

	Volume number of file header.

	
ZipInfo.internal_attr

	Internal attributes.

	
ZipInfo.external_attr

	External file attributes.

	
ZipInfo.header_offset

	Byte offset to the file header.

	
ZipInfo.CRC

	CRC-32 of the uncompressed file.

	
ZipInfo.compress_size

	Size of the compressed data.

	
ZipInfo.file_size

	Size of the uncompressed file.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	12. Data Compression and Archiving

12.5. tarfile — Read and write tar archive files

New in version 2.3.

The tarfile module makes it possible to read and write tar
archives, including those using gzip or bz2 compression.
(.zip files can be read and written using the zipfile module.)

Some facts and figures:

	reads and writes gzip and bz2 compressed archives.

	read/write support for the POSIX.1-1988 (ustar) format.

	read/write support for the GNU tar format including longname and longlink
extensions, read-only support for the sparse extension.

	read/write support for the POSIX.1-2001 (pax) format.

New in version 2.6.

	handles directories, regular files, hardlinks, symbolic links, fifos,
character devices and block devices and is able to acquire and restore file
information like timestamp, access permissions and owner.

	
tarfile.open(name=None, mode='r', fileobj=None, bufsize=10240, **kwargs)

	Return a TarFile object for the pathname name. For detailed
information on TarFile objects and the keyword arguments that are
allowed, see TarFile Objects.

mode has to be a string of the form 'filemode[:compression]', it defaults
to 'r'. Here is a full list of mode combinations:

	mode
	action

	'r' or 'r:*'
	Open for reading with transparent
compression (recommended).

	'r:'
	Open for reading exclusively without
compression.

	'r:gz'
	Open for reading with gzip compression.

	'r:bz2'
	Open for reading with bzip2 compression.

	'a' or 'a:'
	Open for appending with no compression. The
file is created if it does not exist.

	'w' or 'w:'
	Open for uncompressed writing.

	'w:gz'
	Open for gzip compressed writing.

	'w:bz2'
	Open for bzip2 compressed writing.

Note that 'a:gz' or 'a:bz2' is not possible. If mode is not suitable
to open a certain (compressed) file for reading, ReadError is raised. Use
mode 'r' to avoid this. If a compression method is not supported,
CompressionError is raised.

If fileobj is specified, it is used as an alternative to a file object opened
for name. It is supposed to be at position 0.

For special purposes, there is a second format for mode:
'filemode|[compression]'. tarfile.open() will return a TarFile
object that processes its data as a stream of blocks. No random seeking will
be done on the file. If given, fileobj may be any object that has a
read() or write() method (depending on the mode). bufsize
specifies the blocksize and defaults to 20 * 512 bytes. Use this variant
in combination with e.g. sys.stdin, a socket file object or a tape
device. However, such a TarFile object is limited in that it does
not allow to be accessed randomly, see Examples. The currently
possible modes:

	Mode
	Action

	'r|*'
	Open a stream of tar blocks for reading
with transparent compression.

	'r|'
	Open a stream of uncompressed tar blocks
for reading.

	'r|gz'
	Open a gzip compressed stream for
reading.

	'r|bz2'
	Open a bzip2 compressed stream for
reading.

	'w|'
	Open an uncompressed stream for writing.

	'w|gz'
	Open an gzip compressed stream for
writing.

	'w|bz2'
	Open an bzip2 compressed stream for
writing.

	
class tarfile.TarFile

	Class for reading and writing tar archives. Do not use this class directly,
better use tarfile.open() instead. See TarFile Objects.

	
tarfile.is_tarfile(name)

	Return True if name is a tar archive file, that the tarfile
module can read.

	
class tarfile.TarFileCompat(filename, mode='r', compression=TAR_PLAIN)

	Class for limited access to tar archives with a zipfile-like interface.
Please consult the documentation of the zipfile module for more details.
compression must be one of the following constants:

	
TAR_PLAIN

	Constant for an uncompressed tar archive.

	
TAR_GZIPPED

	Constant for a gzip compressed tar archive.

Deprecated since version 2.6: The TarFileCompat class has been deprecated for removal in Python 3.0.

	
exception tarfile.TarError

	Base class for all tarfile exceptions.

	
exception tarfile.ReadError

	Is raised when a tar archive is opened, that either cannot be handled by the
tarfile module or is somehow invalid.

	
exception tarfile.CompressionError

	Is raised when a compression method is not supported or when the data cannot be
decoded properly.

	
exception tarfile.StreamError

	Is raised for the limitations that are typical for stream-like TarFile
objects.

	
exception tarfile.ExtractError

	Is raised for non-fatal errors when using TarFile.extract(), but only if
TarFile.errorlevel== 2.

	
exception tarfile.HeaderError

	Is raised by TarInfo.frombuf() if the buffer it gets is invalid.

New in version 2.6.

Each of the following constants defines a tar archive format that the
tarfile module is able to create. See section Supported tar formats for
details.

	
tarfile.USTAR_FORMAT

	POSIX.1-1988 (ustar) format.

	
tarfile.GNU_FORMAT

	GNU tar format.

	
tarfile.PAX_FORMAT

	POSIX.1-2001 (pax) format.

	
tarfile.DEFAULT_FORMAT

	The default format for creating archives. This is currently GNU_FORMAT.

The following variables are available on module level:

	
tarfile.ENCODING

	The default character encoding i.e. the value from either
sys.getfilesystemencoding() or sys.getdefaultencoding().

See also

	Module zipfile

	Documentation of the zipfile standard module.

	GNU tar manual, Basic Tar Format [http://www.gnu.org/software/tar/manual/html_node/Standard.html]

	Documentation for tar archive files, including GNU tar extensions.

12.5.1. TarFile Objects

The TarFile object provides an interface to a tar archive. A tar
archive is a sequence of blocks. An archive member (a stored file) is made up of
a header block followed by data blocks. It is possible to store a file in a tar
archive several times. Each archive member is represented by a TarInfo
object, see TarInfo Objects for details.

A TarFile object can be used as a context manager in a with
statement. It will automatically be closed when the block is completed. Please
note that in the event of an exception an archive opened for writing will not
be finalized; only the internally used file object will be closed. See the
Examples section for a use case.

New in version 2.7: Added support for the context manager protocol.

	
class tarfile.TarFile(name=None, mode='r', fileobj=None, format=DEFAULT_FORMAT, tarinfo=TarInfo, dereference=False, ignore_zeros=False, encoding=ENCODING, errors=None, pax_headers=None, debug=0, errorlevel=0)

	All following arguments are optional and can be accessed as instance attributes
as well.

name is the pathname of the archive. It can be omitted if fileobj is given.
In this case, the file object’s name attribute is used if it exists.

mode is either 'r' to read from an existing archive, 'a' to append
data to an existing file or 'w' to create a new file overwriting an existing
one.

If fileobj is given, it is used for reading or writing data. If it can be
determined, mode is overridden by fileobj‘s mode. fileobj will be used
from position 0.

Note

fileobj is not closed, when TarFile is closed.

format controls the archive format. It must be one of the constants
USTAR_FORMAT, GNU_FORMAT or PAX_FORMAT that are
defined at module level.

New in version 2.6.

The tarinfo argument can be used to replace the default TarInfo class
with a different one.

New in version 2.6.

If dereference is False, add symbolic and hard links to the archive. If it
is True, add the content of the target files to the archive. This has no
effect on systems that do not support symbolic links.

If ignore_zeros is False, treat an empty block as the end of the archive.
If it is True, skip empty (and invalid) blocks and try to get as many members
as possible. This is only useful for reading concatenated or damaged archives.

debug can be set from 0 (no debug messages) up to 3 (all debug
messages). The messages are written to sys.stderr.

If errorlevel is 0, all errors are ignored when using TarFile.extract().
Nevertheless, they appear as error messages in the debug output, when debugging
is enabled. If 1, all fatal errors are raised as OSError or
IOError exceptions. If 2, all non-fatal errors are raised as
TarError exceptions as well.

The encoding and errors arguments control the way strings are converted to
unicode objects and vice versa. The default settings will work for most users.
See section Unicode issues for in-depth information.

New in version 2.6.

The pax_headers argument is an optional dictionary of unicode strings which
will be added as a pax global header if format is PAX_FORMAT.

New in version 2.6.

	
TarFile.open(...)

	Alternative constructor. The tarfile.open() function is actually a
shortcut to this classmethod.

	
TarFile.getmember(name)

	Return a TarInfo object for member name. If name can not be found
in the archive, KeyError is raised.

Note

If a member occurs more than once in the archive, its last occurrence is assumed
to be the most up-to-date version.

	
TarFile.getmembers()

	Return the members of the archive as a list of TarInfo objects. The
list has the same order as the members in the archive.

	
TarFile.getnames()

	Return the members as a list of their names. It has the same order as the list
returned by getmembers().

	
TarFile.list(verbose=True)

	Print a table of contents to sys.stdout. If verbose is False,
only the names of the members are printed. If it is True, output
similar to that of ls -l is produced.

	
TarFile.next()

	Return the next member of the archive as a TarInfo object, when
TarFile is opened for reading. Return None if there is no more
available.

	
TarFile.extractall(path=".", members=None)

	Extract all members from the archive to the current working directory or
directory path. If optional members is given, it must be a subset of the
list returned by getmembers(). Directory information like owner,
modification time and permissions are set after all members have been extracted.
This is done to work around two problems: A directory’s modification time is
reset each time a file is created in it. And, if a directory’s permissions do
not allow writing, extracting files to it will fail.

Warning

Never extract archives from untrusted sources without prior inspection.
It is possible that files are created outside of path, e.g. members
that have absolute filenames starting with "/" or filenames with two
dots "..".

New in version 2.5.

	
TarFile.extract(member, path="")

	Extract a member from the archive to the current working directory, using its
full name. Its file information is extracted as accurately as possible. member
may be a filename or a TarInfo object. You can specify a different
directory using path.

Note

The extract() method does not take care of several extraction issues.
In most cases you should consider using the extractall() method.

Warning

See the warning for extractall().

	
TarFile.extractfile(member)

	Extract a member from the archive as a file object. member may be a filename
or a TarInfo object. If member is a regular file, a file-like object
is returned. If member is a link, a file-like object is constructed from the
link’s target. If member is none of the above, None is returned.

Note

The file-like object is read-only. It provides the methods
read(), readline(), readlines(), seek(), tell(),
and close(), and also supports iteration over its lines.

	
TarFile.add(name, arcname=None, recursive=True, exclude=None, filter=None)

	Add the file name to the archive. name may be any type of file (directory,
fifo, symbolic link, etc.). If given, arcname specifies an alternative name
for the file in the archive. Directories are added recursively by default. This
can be avoided by setting recursive to False. If exclude is given
it must be a function that takes one filename argument and returns a boolean
value. Depending on this value the respective file is either excluded
(True) or added (False). If filter is specified it must
be a function that takes a TarInfo object argument and returns the
changed TarInfo object. If it instead returns None the TarInfo
object will be excluded from the archive. See Examples for an
example.

Changed in version 2.6: Added the exclude parameter.

Changed in version 2.7: Added the filter parameter.

Deprecated since version 2.7: The exclude parameter is deprecated, please use the filter parameter
instead. For maximum portability, filter should be used as a keyword
argument rather than as a positional argument so that code won’t be
affected when exclude is ultimately removed.

	
TarFile.addfile(tarinfo, fileobj=None)

	Add the TarInfo object tarinfo to the archive. If fileobj is given,
tarinfo.size bytes are read from it and added to the archive. You can
create TarInfo objects using gettarinfo().

Note

On Windows platforms, fileobj should always be opened with mode 'rb' to
avoid irritation about the file size.

	
TarFile.gettarinfo(name=None, arcname=None, fileobj=None)

	Create a TarInfo object for either the file name or the file object
fileobj (using os.fstat() on its file descriptor). You can modify some
of the TarInfo‘s attributes before you add it using addfile().
If given, arcname specifies an alternative name for the file in the archive.

	
TarFile.close()

	Close the TarFile. In write mode, two finishing zero blocks are
appended to the archive.

	
TarFile.posix

	Setting this to True is equivalent to setting the format
attribute to USTAR_FORMAT, False is equivalent to
GNU_FORMAT.

Changed in version 2.4: posix defaults to False.

Deprecated since version 2.6: Use the format attribute instead.

	
TarFile.pax_headers

	A dictionary containing key-value pairs of pax global headers.

New in version 2.6.

12.5.2. TarInfo Objects

A TarInfo object represents one member in a TarFile. Aside
from storing all required attributes of a file (like file type, size, time,
permissions, owner etc.), it provides some useful methods to determine its type.
It does not contain the file’s data itself.

TarInfo objects are returned by TarFile‘s methods
getmember(), getmembers() and gettarinfo().

	
class tarfile.TarInfo(name="")

	Create a TarInfo object.

	
TarInfo.frombuf(buf)

	Create and return a TarInfo object from string buffer buf.

New in version 2.6: Raises HeaderError if the buffer is invalid..

	
TarInfo.fromtarfile(tarfile)

	Read the next member from the TarFile object tarfile and return it as
a TarInfo object.

New in version 2.6.

	
TarInfo.tobuf(format=DEFAULT_FORMAT, encoding=ENCODING, errors='strict')

	Create a string buffer from a TarInfo object. For information on the
arguments see the constructor of the TarFile class.

Changed in version 2.6: The arguments were added.

A TarInfo object has the following public data attributes:

	
TarInfo.name

	Name of the archive member.

	
TarInfo.size

	Size in bytes.

	
TarInfo.mtime

	Time of last modification.

	
TarInfo.mode

	Permission bits.

	
TarInfo.type

	File type. type is usually one of these constants: REGTYPE,
AREGTYPE, LNKTYPE, SYMTYPE, DIRTYPE,
FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE,
GNUTYPE_SPARSE. To determine the type of a TarInfo object
more conveniently, use the is_*() methods below.

	
TarInfo.linkname

	Name of the target file name, which is only present in TarInfo objects
of type LNKTYPE and SYMTYPE.

	
TarInfo.uid

	User ID of the user who originally stored this member.

	
TarInfo.gid

	Group ID of the user who originally stored this member.

	
TarInfo.uname

	User name.

	
TarInfo.gname

	Group name.

	
TarInfo.pax_headers

	A dictionary containing key-value pairs of an associated pax extended header.

New in version 2.6.

A TarInfo object also provides some convenient query methods:

	
TarInfo.isfile()

	Return True if the Tarinfo object is a regular file.

	
TarInfo.isreg()

	Same as isfile().

	
TarInfo.isdir()

	Return True if it is a directory.

	
TarInfo.issym()

	Return True if it is a symbolic link.

	
TarInfo.islnk()

	Return True if it is a hard link.

	
TarInfo.ischr()

	Return True if it is a character device.

	
TarInfo.isblk()

	Return True if it is a block device.

	
TarInfo.isfifo()

	Return True if it is a FIFO.

	
TarInfo.isdev()

	Return True if it is one of character device, block device or FIFO.

12.5.3. Examples

How to extract an entire tar archive to the current working directory:

import tarfile
tar = tarfile.open("sample.tar.gz")
tar.extractall()
tar.close()

How to extract a subset of a tar archive with TarFile.extractall() using
a generator function instead of a list:

import os
import tarfile

def py_files(members):
 for tarinfo in members:
 if os.path.splitext(tarinfo.name)[1] == ".py":
 yield tarinfo

tar = tarfile.open("sample.tar.gz")
tar.extractall(members=py_files(tar))
tar.close()

How to create an uncompressed tar archive from a list of filenames:

import tarfile
tar = tarfile.open("sample.tar", "w")
for name in ["foo", "bar", "quux"]:
 tar.add(name)
tar.close()

The same example using the with statement:

import tarfile
with tarfile.open("sample.tar", "w") as tar:
 for name in ["foo", "bar", "quux"]:
 tar.add(name)

How to read a gzip compressed tar archive and display some member information:

import tarfile
tar = tarfile.open("sample.tar.gz", "r:gz")
for tarinfo in tar:
 print tarinfo.name, "is", tarinfo.size, "bytes in size and is",
 if tarinfo.isreg():
 print "a regular file."
 elif tarinfo.isdir():
 print "a directory."
 else:
 print "something else."
tar.close()

How to create an archive and reset the user information using the filter
parameter in TarFile.add():

import tarfile
def reset(tarinfo):
 tarinfo.uid = tarinfo.gid = 0
 tarinfo.uname = tarinfo.gname = "root"
 return tarinfo
tar = tarfile.open("sample.tar.gz", "w:gz")
tar.add("foo", filter=reset)
tar.close()

12.5.4. Supported tar formats

There are three tar formats that can be created with the tarfile module:

	The POSIX.1-1988 ustar format (USTAR_FORMAT). It supports filenames
up to a length of at best 256 characters and linknames up to 100 characters. The
maximum file size is 8 gigabytes. This is an old and limited but widely
supported format.

	The GNU tar format (GNU_FORMAT). It supports long filenames and
linknames, files bigger than 8 gigabytes and sparse files. It is the de facto
standard on GNU/Linux systems. tarfile fully supports the GNU tar
extensions for long names, sparse file support is read-only.

	The POSIX.1-2001 pax format (PAX_FORMAT). It is the most flexible
format with virtually no limits. It supports long filenames and linknames, large
files and stores pathnames in a portable way. However, not all tar
implementations today are able to handle pax archives properly.

The pax format is an extension to the existing ustar format. It uses extra
headers for information that cannot be stored otherwise. There are two flavours
of pax headers: Extended headers only affect the subsequent file header, global
headers are valid for the complete archive and affect all following files. All
the data in a pax header is encoded in UTF-8 for portability reasons.

There are some more variants of the tar format which can be read, but not
created:

	The ancient V7 format. This is the first tar format from Unix Seventh Edition,
storing only regular files and directories. Names must not be longer than 100
characters, there is no user/group name information. Some archives have
miscalculated header checksums in case of fields with non-ASCII characters.

	The SunOS tar extended format. This format is a variant of the POSIX.1-2001
pax format, but is not compatible.

12.5.5. Unicode issues

The tar format was originally conceived to make backups on tape drives with the
main focus on preserving file system information. Nowadays tar archives are
commonly used for file distribution and exchanging archives over networks. One
problem of the original format (that all other formats are merely variants of)
is that there is no concept of supporting different character encodings. For
example, an ordinary tar archive created on a UTF-8 system cannot be read
correctly on a Latin-1 system if it contains non-ASCII characters. Names (i.e.
filenames, linknames, user/group names) containing these characters will appear
damaged. Unfortunately, there is no way to autodetect the encoding of an
archive.

The pax format was designed to solve this problem. It stores non-ASCII names
using the universal character encoding UTF-8. When a pax archive is read,
these UTF-8 names are converted to the encoding of the local file system.

The details of unicode conversion are controlled by the encoding and errors
keyword arguments of the TarFile class.

The default value for encoding is the local character encoding. It is deduced
from sys.getfilesystemencoding() and sys.getdefaultencoding(). In
read mode, encoding is used exclusively to convert unicode names from a pax
archive to strings in the local character encoding. In write mode, the use of
encoding depends on the chosen archive format. In case of PAX_FORMAT,
input names that contain non-ASCII characters need to be decoded before being
stored as UTF-8 strings. The other formats do not make use of encoding
unless unicode objects are used as input names. These are converted to 8-bit
character strings before they are added to the archive.

The errors argument defines how characters are treated that cannot be
converted to or from encoding. Possible values are listed in section
Codec Base Classes. In read mode, there is an additional scheme
'utf-8' which means that bad characters are replaced by their UTF-8
representation. This is the default scheme. In write mode the default value for
errors is 'strict' to ensure that name information is not altered
unnoticed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

13. File Formats

The modules described in this chapter parse various miscellaneous file formats
that aren’t markup languages or are related to e-mail.

	13.1. csv — CSV File Reading and Writing
	13.1.1. Module Contents

	13.1.2. Dialects and Formatting Parameters

	13.1.3. Reader Objects

	13.1.4. Writer Objects

	13.1.5. Examples

	13.2. ConfigParser — Configuration file parser
	13.2.1. RawConfigParser Objects

	13.2.2. ConfigParser Objects

	13.2.3. SafeConfigParser Objects

	13.2.4. Examples

	13.3. robotparser — Parser for robots.txt

	13.4. netrc — netrc file processing
	13.4.1. netrc Objects

	13.5. xdrlib — Encode and decode XDR data
	13.5.1. Packer Objects

	13.5.2. Unpacker Objects

	13.5.3. Exceptions

	13.6. plistlib — Generate and parse Mac OS X .plist files
	13.6.1. Examples

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	13. File Formats

13.1. csv — CSV File Reading and Writing

New in version 2.3.

The so-called CSV (Comma Separated Values) format is the most common import and
export format for spreadsheets and databases. There is no “CSV standard”, so
the format is operationally defined by the many applications which read and
write it. The lack of a standard means that subtle differences often exist in
the data produced and consumed by different applications. These differences can
make it annoying to process CSV files from multiple sources. Still, while the
delimiters and quoting characters vary, the overall format is similar enough
that it is possible to write a single module which can efficiently manipulate
such data, hiding the details of reading and writing the data from the
programmer.

The csv module implements classes to read and write tabular data in CSV
format. It allows programmers to say, “write this data in the format preferred
by Excel,” or “read data from this file which was generated by Excel,” without
knowing the precise details of the CSV format used by Excel. Programmers can
also describe the CSV formats understood by other applications or define their
own special-purpose CSV formats.

The csv module’s reader and writer objects read and
write sequences. Programmers can also read and write data in dictionary form
using the DictReader and DictWriter classes.

Note

This version of the csv module doesn’t support Unicode input. Also,
there are currently some issues regarding ASCII NUL characters. Accordingly,
all input should be UTF-8 or printable ASCII to be safe; see the examples in
section Examples. These restrictions will be removed in the future.

See also

	PEP 305 [http://www.python.org/dev/peps/pep-0305] - CSV File API

	The Python Enhancement Proposal which proposed this addition to Python.

13.1.1. Module Contents

The csv module defines the following functions:

	
csv.reader(csvfile[, dialect='excel'][, fmtparam])

	Return a reader object which will iterate over lines in the given csvfile.
csvfile can be any object which supports the iterator protocol and returns a
string each time its next() method is called — file objects and list
objects are both suitable. If csvfile is a file object, it must be opened
with the ‘b’ flag on platforms where that makes a difference. An optional
dialect parameter can be given which is used to define a set of parameters
specific to a particular CSV dialect. It may be an instance of a subclass of
the Dialect class or one of the strings returned by the
list_dialects() function. The other optional fmtparam keyword arguments
can be given to override individual formatting parameters in the current
dialect. For full details about the dialect and formatting parameters, see
section Dialects and Formatting Parameters.

Each row read from the csv file is returned as a list of strings. No
automatic data type conversion is performed.

A short usage example:

>>> import csv
>>> spamReader = csv.reader(open('eggs.csv', 'rb'), delimiter=' ', quotechar='|')
>>> for row in spamReader:
... print ', '.join(row)
Spam, Spam, Spam, Spam, Spam, Baked Beans
Spam, Lovely Spam, Wonderful Spam

Changed in version 2.5: The parser is now stricter with respect to multi-line quoted fields. Previously,
if a line ended within a quoted field without a terminating newline character, a
newline would be inserted into the returned field. This behavior caused problems
when reading files which contained carriage return characters within fields.
The behavior was changed to return the field without inserting newlines. As a
consequence, if newlines embedded within fields are important, the input should
be split into lines in a manner which preserves the newline characters.

	
csv.writer(csvfile[, dialect='excel'][, fmtparam])

	Return a writer object responsible for converting the user’s data into delimited
strings on the given file-like object. csvfile can be any object with a
write() method. If csvfile is a file object, it must be opened with the
‘b’ flag on platforms where that makes a difference. An optional dialect
parameter can be given which is used to define a set of parameters specific to a
particular CSV dialect. It may be an instance of a subclass of the
Dialect class or one of the strings returned by the
list_dialects() function. The other optional fmtparam keyword arguments
can be given to override individual formatting parameters in the current
dialect. For full details about the dialect and formatting parameters, see
section Dialects and Formatting Parameters. To make it
as easy as possible to interface with modules which implement the DB API, the
value None is written as the empty string. While this isn’t a
reversible transformation, it makes it easier to dump SQL NULL data values to
CSV files without preprocessing the data returned from a cursor.fetch* call.
All other non-string data are stringified with str() before being written.

A short usage example:

>>> import csv
>>> spamWriter = csv.writer(open('eggs.csv', 'wb'), delimiter=' ',
... quotechar='|', quoting=csv.QUOTE_MINIMAL)
>>> spamWriter.writerow(['Spam'] * 5 + ['Baked Beans'])
>>> spamWriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])

	
csv.register_dialect(name[, dialect][, fmtparam])

	Associate dialect with name. name must be a string or Unicode object. The
dialect can be specified either by passing a sub-class of Dialect, or
by fmtparam keyword arguments, or both, with keyword arguments overriding
parameters of the dialect. For full details about the dialect and formatting
parameters, see section Dialects and Formatting Parameters.

	
csv.unregister_dialect(name)

	Delete the dialect associated with name from the dialect registry. An
Error is raised if name is not a registered dialect name.

	
csv.get_dialect(name)

	Return the dialect associated with name. An Error is raised if name
is not a registered dialect name.

Changed in version 2.5: This function now returns an immutable Dialect. Previously an
instance of the requested dialect was returned. Users could modify the
underlying class, changing the behavior of active readers and writers.

	
csv.list_dialects()

	Return the names of all registered dialects.

	
csv.field_size_limit([new_limit])

	Returns the current maximum field size allowed by the parser. If new_limit is
given, this becomes the new limit.

New in version 2.5.

The csv module defines the following classes:

	
class csv.DictReader(csvfile[, fieldnames=None[, restkey=None[, restval=None[, dialect='excel'[, *args, **kwds]]]]])

	Create an object which operates like a regular reader but maps the information
read into a dict whose keys are given by the optional fieldnames parameter.
If the fieldnames parameter is omitted, the values in the first row of the
csvfile will be used as the fieldnames. If the row read has more fields
than the fieldnames sequence, the remaining data is added as a sequence
keyed by the value of restkey. If the row read has fewer fields than the
fieldnames sequence, the remaining keys take the value of the optional
restval parameter. Any other optional or keyword arguments are passed to
the underlying reader instance.

	
class csv.DictWriter(csvfile, fieldnames[, restval=''[, extrasaction='raise'[, dialect='excel'[, *args, **kwds]]]])

	Create an object which operates like a regular writer but maps dictionaries onto
output rows. The fieldnames parameter identifies the order in which values in
the dictionary passed to the writerow() method are written to the
csvfile. The optional restval parameter specifies the value to be written
if the dictionary is missing a key in fieldnames. If the dictionary passed to
the writerow() method contains a key not found in fieldnames, the
optional extrasaction parameter indicates what action to take. If it is set
to 'raise' a ValueError is raised. If it is set to 'ignore',
extra values in the dictionary are ignored. Any other optional or keyword
arguments are passed to the underlying writer instance.

Note that unlike the DictReader class, the fieldnames parameter of
the DictWriter is not optional. Since Python’s dict objects
are not ordered, there is not enough information available to deduce the order
in which the row should be written to the csvfile.

	
class csv.Dialect

	The Dialect class is a container class relied on primarily for its
attributes, which are used to define the parameters for a specific
reader or writer instance.

	
class csv.excel

	The excel class defines the usual properties of an Excel-generated CSV
file. It is registered with the dialect name 'excel'.

	
class csv.excel_tab

	The excel_tab class defines the usual properties of an Excel-generated
TAB-delimited file. It is registered with the dialect name 'excel-tab'.

	
class csv.Sniffer

	The Sniffer class is used to deduce the format of a CSV file.

The Sniffer class provides two methods:

	
sniff(sample[, delimiters=None])

	Analyze the given sample and return a Dialect subclass
reflecting the parameters found. If the optional delimiters parameter
is given, it is interpreted as a string containing possible valid
delimiter characters.

	
has_header(sample)

	Analyze the sample text (presumed to be in CSV format) and return
True if the first row appears to be a series of column headers.

An example for Sniffer use:

csvfile = open("example.csv", "rb")
dialect = csv.Sniffer().sniff(csvfile.read(1024))
csvfile.seek(0)
reader = csv.reader(csvfile, dialect)
... process CSV file contents here ...

The csv module defines the following constants:

	
csv.QUOTE_ALL

	Instructs writer objects to quote all fields.

	
csv.QUOTE_MINIMAL

	Instructs writer objects to only quote those fields which contain
special characters such as delimiter, quotechar or any of the characters in
lineterminator.

	
csv.QUOTE_NONNUMERIC

	Instructs writer objects to quote all non-numeric fields.

Instructs the reader to convert all non-quoted fields to type float.

	
csv.QUOTE_NONE

	Instructs writer objects to never quote fields. When the current
delimiter occurs in output data it is preceded by the current escapechar
character. If escapechar is not set, the writer will raise Error if
any characters that require escaping are encountered.

Instructs reader to perform no special processing of quote characters.

The csv module defines the following exception:

	
exception csv.Error

	Raised by any of the functions when an error is detected.

13.1.2. Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific
formatting parameters are grouped together into dialects. A dialect is a
subclass of the Dialect class having a set of specific methods and a
single validate() method. When creating reader or
writer objects, the programmer can specify a string or a subclass of
the Dialect class as the dialect parameter. In addition to, or instead
of, the dialect parameter, the programmer can also specify individual
formatting parameters, which have the same names as the attributes defined below
for the Dialect class.

Dialects support the following attributes:

	
Dialect.delimiter

	A one-character string used to separate fields. It defaults to ','.

	
Dialect.doublequote

	Controls how instances of quotechar appearing inside a field should be
themselves be quoted. When True, the character is doubled. When
False, the escapechar is used as a prefix to the quotechar. It
defaults to True.

On output, if doublequote is False and no escapechar is set,
Error is raised if a quotechar is found in a field.

	
Dialect.escapechar

	A one-character string used by the writer to escape the delimiter if quoting
is set to QUOTE_NONE and the quotechar if doublequote is
False. On reading, the escapechar removes any special meaning from
the following character. It defaults to None, which disables escaping.

	
Dialect.lineterminator

	The string used to terminate lines produced by the writer. It defaults
to '\r\n'.

Note

The reader is hard-coded to recognise either '\r' or '\n' as
end-of-line, and ignores lineterminator. This behavior may change in the
future.

	
Dialect.quotechar

	A one-character string used to quote fields containing special characters, such
as the delimiter or quotechar, or which contain new-line characters. It
defaults to '"'.

	
Dialect.quoting

	Controls when quotes should be generated by the writer and recognised by the
reader. It can take on any of the QUOTE_* constants (see section
Module Contents) and defaults to QUOTE_MINIMAL.

	
Dialect.skipinitialspace

	When True, whitespace immediately following the delimiter is ignored.
The default is False.

13.1.3. Reader Objects

Reader objects (DictReader instances and objects returned by the
reader() function) have the following public methods:

	
csvreader.next()

	Return the next row of the reader’s iterable object as a list, parsed according
to the current dialect.

Reader objects have the following public attributes:

	
csvreader.dialect

	A read-only description of the dialect in use by the parser.

	
csvreader.line_num

	The number of lines read from the source iterator. This is not the same as the
number of records returned, as records can span multiple lines.

New in version 2.5.

DictReader objects have the following public attribute:

	
csvreader.fieldnames

	If not passed as a parameter when creating the object, this attribute is
initialized upon first access or when the first record is read from the
file.

Changed in version 2.6.

13.1.4. Writer Objects

Writer objects (DictWriter instances and objects returned by
the writer() function) have the following public methods. A row must be
a sequence of strings or numbers for Writer objects and a dictionary
mapping fieldnames to strings or numbers (by passing them through str()
first) for DictWriter objects. Note that complex numbers are written
out surrounded by parens. This may cause some problems for other programs which
read CSV files (assuming they support complex numbers at all).

	
csvwriter.writerow(row)

	Write the row parameter to the writer’s file object, formatted according to
the current dialect.

	
csvwriter.writerows(rows)

	Write all the rows parameters (a list of row objects as described above) to
the writer’s file object, formatted according to the current dialect.

Writer objects have the following public attribute:

	
csvwriter.dialect

	A read-only description of the dialect in use by the writer.

DictWriter objects have the following public method:

	
DictWriter.writeheader()

	Write a row with the field names (as specified in the constructor).

New in version 2.7.

13.1.5. Examples

The simplest example of reading a CSV file:

import csv
with open('some.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 print row

Reading a file with an alternate format:

import csv
with open('passwd', 'rb') as f:
 reader = csv.reader(f, delimiter=':', quoting=csv.QUOTE_NONE)
 for row in reader:
 print row

The corresponding simplest possible writing example is:

import csv
with open('some.csv', 'wb') as f:
 writer = csv.writer(f)
 writer.writerows(someiterable)

Registering a new dialect:

import csv
csv.register_dialect('unixpwd', delimiter=':', quoting=csv.QUOTE_NONE)
with open('passwd', 'rb') as f:
 reader = csv.reader(f, 'unixpwd')

A slightly more advanced use of the reader — catching and reporting errors:

import csv, sys
filename = 'some.csv'
with open(filename, 'rb') as f:
 reader = csv.reader(f)
 try:
 for row in reader:
 print row
 except csv.Error, e:
 sys.exit('file %s, line %d: %s' % (filename, reader.line_num, e))

And while the module doesn’t directly support parsing strings, it can easily be
done:

import csv
for row in csv.reader(['one,two,three']):
 print row

The csv module doesn’t directly support reading and writing Unicode, but
it is 8-bit-clean save for some problems with ASCII NUL characters. So you can
write functions or classes that handle the encoding and decoding for you as long
as you avoid encodings like UTF-16 that use NULs. UTF-8 is recommended.

unicode_csv_reader() below is a generator that wraps csv.reader
to handle Unicode CSV data (a list of Unicode strings). utf_8_encoder()
is a generator that encodes the Unicode strings as UTF-8, one string (or row) at
a time. The encoded strings are parsed by the CSV reader, and
unicode_csv_reader() decodes the UTF-8-encoded cells back into Unicode:

import csv

def unicode_csv_reader(unicode_csv_data, dialect=csv.excel, **kwargs):
 # csv.py doesn't do Unicode; encode temporarily as UTF-8:
 csv_reader = csv.reader(utf_8_encoder(unicode_csv_data),
 dialect=dialect, **kwargs)
 for row in csv_reader:
 # decode UTF-8 back to Unicode, cell by cell:
 yield [unicode(cell, 'utf-8') for cell in row]

def utf_8_encoder(unicode_csv_data):
 for line in unicode_csv_data:
 yield line.encode('utf-8')

For all other encodings the following UnicodeReader and
UnicodeWriter classes can be used. They take an additional encoding
parameter in their constructor and make sure that the data passes the real
reader or writer encoded as UTF-8:

import csv, codecs, cStringIO

class UTF8Recoder:
 """
 Iterator that reads an encoded stream and reencodes the input to UTF-8
 """
 def __init__(self, f, encoding):
 self.reader = codecs.getreader(encoding)(f)

 def __iter__(self):
 return self

 def next(self):
 return self.reader.next().encode("utf-8")

class UnicodeReader:
 """
 A CSV reader which will iterate over lines in the CSV file "f",
 which is encoded in the given encoding.
 """

 def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
 f = UTF8Recoder(f, encoding)
 self.reader = csv.reader(f, dialect=dialect, **kwds)

 def next(self):
 row = self.reader.next()
 return [unicode(s, "utf-8") for s in row]

 def __iter__(self):
 return self

class UnicodeWriter:
 """
 A CSV writer which will write rows to CSV file "f",
 which is encoded in the given encoding.
 """

 def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
 # Redirect output to a queue
 self.queue = cStringIO.StringIO()
 self.writer = csv.writer(self.queue, dialect=dialect, **kwds)
 self.stream = f
 self.encoder = codecs.getincrementalencoder(encoding)()

 def writerow(self, row):
 self.writer.writerow([s.encode("utf-8") for s in row])
 # Fetch UTF-8 output from the queue ...
 data = self.queue.getvalue()
 data = data.decode("utf-8")
 # ... and reencode it into the target encoding
 data = self.encoder.encode(data)
 # write to the target stream
 self.stream.write(data)
 # empty queue
 self.queue.truncate(0)

 def writerows(self, rows):
 for row in rows:
 self.writerow(row)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	13. File Formats

13.2. ConfigParser — Configuration file parser

Note

The ConfigParser module has been renamed to configparser in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

This module defines the class ConfigParser. The ConfigParser
class implements a basic configuration file parser language which provides a
structure similar to what you would find on Microsoft Windows INI files. You
can use this to write Python programs which can be customized by end users
easily.

Note

This library does not interpret or write the value-type prefixes used in
the Windows Registry extended version of INI syntax.

See also

	Module shlex

	Support for a creating Unix shell-like mini-languages which can be used
as an alternate format for application configuration files.

	Module json

	The json module implements a subset of JavaScript syntax which can also
be used for this purpose.

The configuration file consists of sections, led by a [section] header and
followed by name: value entries, with continuations in the style of
RFC 822 [http://tools.ietf.org/html/rfc822.html] (see section 3.1.1, “LONG HEADER FIELDS”); name=value is also
accepted. Note that leading whitespace is removed from values. The optional
values can contain format strings which refer to other values in the same
section, or values in a special DEFAULT section. Additional defaults can be
provided on initialization and retrieval. Lines beginning with '#' or
';' are ignored and may be used to provide comments.

Configuration files may include comments, prefixed by specific characters (#
and ;). Comments may appear on their own in an otherwise empty line, or may
be entered in lines holding values or section names. In the latter case, they
need to be preceded by a whitespace character to be recognized as a comment.
(For backwards compatibility, only ; starts an inline comment, while #
does not.)

On top of the core functionality, SafeConfigParser supports
interpolation. This means values can contain format strings which refer to
other values in the same section, or values in a special DEFAULT section.
Additional defaults can be provided on initialization.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob
long: this value continues
 in the next line

would resolve the %(dir)s to the value of dir (frob in this case).
All reference expansions are done on demand.

Default values can be specified by passing them into the ConfigParser
constructor as a dictionary. Additional defaults may be passed into the
get() method which will override all others.

Sections are normally stored in a built-in dictionary. An alternative dictionary
type can be passed to the ConfigParser constructor. For example, if a
dictionary type is passed that sorts its keys, the sections will be sorted on
write-back, as will be the keys within each section.

	
class ConfigParser.RawConfigParser([defaults[, dict_type[, allow_no_value]]])

	The basic configuration object. When defaults is given, it is initialized
into the dictionary of intrinsic defaults. When dict_type is given, it will
be used to create the dictionary objects for the list of sections, for the
options within a section, and for the default values. When allow_no_value
is true (default: False), options without values are accepted; the value
presented for these is None.

This class does not
support the magical interpolation behavior.

All option names are passed through the optionxform() method. Its
default implementation converts option names to lower case.

New in version 2.3.

Changed in version 2.6: dict_type was added.

Changed in version 2.7: The default dict_type is collections.OrderedDict.
allow_no_value was added.

	
class ConfigParser.ConfigParser([defaults[, dict_type[, allow_no_value]]])

	Derived class of RawConfigParser that implements the magical
interpolation feature and adds optional arguments to the get() and
items() methods. The values in defaults must be appropriate for the
%()s string interpolation. Note that __name__ is an intrinsic default;
its value is the section name, and will override any value provided in
defaults.

All option names used in interpolation will be passed through the
optionxform() method just like any other option name reference. Using
the default implementation of optionxform(), the values foo %(bar)s
and foo %(BAR)s are equivalent.

New in version 2.3.

Changed in version 2.6: dict_type was added.

Changed in version 2.7: The default dict_type is collections.OrderedDict.
allow_no_value was added.

	
class ConfigParser.SafeConfigParser([defaults[, dict_type[, allow_no_value]]])

	Derived class of ConfigParser that implements a more-sane variant of
the magical interpolation feature. This implementation is more predictable as
well. New applications should prefer this version if they don’t need to be
compatible with older versions of Python.

New in version 2.3.

Changed in version 2.6: dict_type was added.

Changed in version 2.7: The default dict_type is collections.OrderedDict.
allow_no_value was added.

	
exception ConfigParser.Error

	Base class for all other configparser exceptions.

	
exception ConfigParser.NoSectionError

	Exception raised when a specified section is not found.

	
exception ConfigParser.DuplicateSectionError

	Exception raised if add_section() is called with the name of a section
that is already present.

	
exception ConfigParser.NoOptionError

	Exception raised when a specified option is not found in the specified section.

	
exception ConfigParser.InterpolationError

	Base class for exceptions raised when problems occur performing string
interpolation.

	
exception ConfigParser.InterpolationDepthError

	Exception raised when string interpolation cannot be completed because the
number of iterations exceeds MAX_INTERPOLATION_DEPTH. Subclass of
InterpolationError.

	
exception ConfigParser.InterpolationMissingOptionError

	Exception raised when an option referenced from a value does not exist. Subclass
of InterpolationError.

New in version 2.3.

	
exception ConfigParser.InterpolationSyntaxError

	Exception raised when the source text into which substitutions are made does not
conform to the required syntax. Subclass of InterpolationError.

New in version 2.3.

	
exception ConfigParser.MissingSectionHeaderError

	Exception raised when attempting to parse a file which has no section headers.

	
exception ConfigParser.ParsingError

	Exception raised when errors occur attempting to parse a file.

	
ConfigParser.MAX_INTERPOLATION_DEPTH

	The maximum depth for recursive interpolation for get() when the raw
parameter is false. This is relevant only for the ConfigParser class.

See also

	Module shlex

	Support for a creating Unix shell-like mini-languages which can be used as an
alternate format for application configuration files.

13.2.1. RawConfigParser Objects

RawConfigParser instances have the following methods:

	
RawConfigParser.defaults()

	Return a dictionary containing the instance-wide defaults.

	
RawConfigParser.sections()

	Return a list of the sections available; DEFAULT is not included in the
list.

	
RawConfigParser.add_section(section)

	Add a section named section to the instance. If a section by the given name
already exists, DuplicateSectionError is raised. If the name
DEFAULT (or any of it’s case-insensitive variants) is passed,
ValueError is raised.

	
RawConfigParser.has_section(section)

	Indicates whether the named section is present in the configuration. The
DEFAULT section is not acknowledged.

	
RawConfigParser.options(section)

	Returns a list of options available in the specified section.

	
RawConfigParser.has_option(section, option)

	If the given section exists, and contains the given option, return
True; otherwise return False.

New in version 1.6.

	
RawConfigParser.read(filenames)

	Attempt to read and parse a list of filenames, returning a list of filenames
which were successfully parsed. If filenames is a string or Unicode string,
it is treated as a single filename. If a file named in filenames cannot be
opened, that file will be ignored. This is designed so that you can specify a
list of potential configuration file locations (for example, the current
directory, the user’s home directory, and some system-wide directory), and all
existing configuration files in the list will be read. If none of the named
files exist, the ConfigParser instance will contain an empty dataset.
An application which requires initial values to be loaded from a file should
load the required file or files using readfp() before calling read()
for any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()
config.readfp(open('defaults.cfg'))
config.read(['site.cfg', os.path.expanduser('~/.myapp.cfg')])

Changed in version 2.4: Returns list of successfully parsed filenames.

	
RawConfigParser.readfp(fp[, filename])

	Read and parse configuration data from the file or file-like object in fp
(only the readline() method is used). If filename is omitted and fp
has a name attribute, that is used for filename; the default is
<???>.

	
RawConfigParser.get(section, option)

	Get an option value for the named section.

	
RawConfigParser.getint(section, option)

	A convenience method which coerces the option in the specified section to an
integer.

	
RawConfigParser.getfloat(section, option)

	A convenience method which coerces the option in the specified section to a
floating point number.

	
RawConfigParser.getboolean(section, option)

	A convenience method which coerces the option in the specified section to a
Boolean value. Note that the accepted values for the option are "1",
"yes", "true", and "on", which cause this method to return True,
and "0", "no", "false", and "off", which cause it to return
False. These string values are checked in a case-insensitive manner. Any
other value will cause it to raise ValueError.

	
RawConfigParser.items(section)

	Return a list of (name, value) pairs for each option in the given section.

	
RawConfigParser.set(section, option, value)

	If the given section exists, set the given option to the specified value;
otherwise raise NoSectionError. While it is possible to use
RawConfigParser (or ConfigParser with raw parameters set to
true) for internal storage of non-string values, full functionality (including
interpolation and output to files) can only be achieved using string values.

New in version 1.6.

	
RawConfigParser.write(fileobject)

	Write a representation of the configuration to the specified file object. This
representation can be parsed by a future read() call.

New in version 1.6.

	
RawConfigParser.remove_option(section, option)

	Remove the specified option from the specified section. If the section does
not exist, raise NoSectionError. If the option existed to be removed,
return True; otherwise return False.

New in version 1.6.

	
RawConfigParser.remove_section(section)

	Remove the specified section from the configuration. If the section in fact
existed, return True. Otherwise return False.

	
RawConfigParser.optionxform(option)

	Transforms the option name option as found in an input file or as passed in
by client code to the form that should be used in the internal structures.
The default implementation returns a lower-case version of option;
subclasses may override this or client code can set an attribute of this name
on instances to affect this behavior.

You don’t necessarily need to subclass a ConfigParser to use this method, you
can also re-set it on an instance, to a function that takes a string
argument. Setting it to str, for example, would make option names case
sensitive:

cfgparser = ConfigParser()
...
cfgparser.optionxform = str

Note that when reading configuration files, whitespace around the
option names are stripped before optionxform() is called.

13.2.2. ConfigParser Objects

The ConfigParser class extends some methods of the
RawConfigParser interface, adding some optional arguments.

	
ConfigParser.get(section, option[, raw[, vars]])

	Get an option value for the named section. If vars is provided, it
must be a dictionary. The option is looked up in vars (if provided),
section, and in defaults in that order.

All the '%' interpolations are expanded in the return values, unless the
raw argument is true. Values for interpolation keys are looked up in the
same manner as the option.

	
ConfigParser.items(section[, raw[, vars]])

	Return a list of (name, value) pairs for each option in the given section.
Optional arguments have the same meaning as for the get() method.

New in version 2.3.

13.2.3. SafeConfigParser Objects

The SafeConfigParser class implements the same extended interface as
ConfigParser, with the following addition:

	
SafeConfigParser.set(section, option, value)

	If the given section exists, set the given option to the specified value;
otherwise raise NoSectionError. value must be a string (str
or unicode); if not, TypeError is raised.

New in version 2.4.

13.2.4. Examples

An example of writing to a configuration file:

import ConfigParser

config = ConfigParser.RawConfigParser()

When adding sections or items, add them in the reverse order of
how you want them to be displayed in the actual file.
In addition, please note that using RawConfigParser's and the raw
mode of ConfigParser's respective set functions, you can assign
non-string values to keys internally, but will receive an error
when attempting to write to a file or when you get it in non-raw
mode. SafeConfigParser does not allow such assignments to take place.
config.add_section('Section1')
config.set('Section1', 'int', '15')
config.set('Section1', 'bool', 'true')
config.set('Section1', 'float', '3.1415')
config.set('Section1', 'baz', 'fun')
config.set('Section1', 'bar', 'Python')
config.set('Section1', 'foo', '%(bar)s is %(baz)s!')

Writing our configuration file to 'example.cfg'
with open('example.cfg', 'wb') as configfile:
 config.write(configfile)

An example of reading the configuration file again:

import ConfigParser

config = ConfigParser.RawConfigParser()
config.read('example.cfg')

getfloat() raises an exception if the value is not a float
getint() and getboolean() also do this for their respective types
float = config.getfloat('Section1', 'float')
int = config.getint('Section1', 'int')
print float + int

Notice that the next output does not interpolate '%(bar)s' or '%(baz)s'.
This is because we are using a RawConfigParser().
if config.getboolean('Section1', 'bool'):
 print config.get('Section1', 'foo')

To get interpolation, you will need to use a ConfigParser or
SafeConfigParser:

import ConfigParser

config = ConfigParser.ConfigParser()
config.read('example.cfg')

Set the third, optional argument of get to 1 if you wish to use raw mode.
print config.get('Section1', 'foo', 0) # -> "Python is fun!"
print config.get('Section1', 'foo', 1) # -> "%(bar)s is %(baz)s!"

The optional fourth argument is a dict with members that will take
precedence in interpolation.
print config.get('Section1', 'foo', 0, {'bar': 'Documentation',
 'baz': 'evil'})

Defaults are available in all three types of ConfigParsers. They are used in
interpolation if an option used is not defined elsewhere.

import ConfigParser

New instance with 'bar' and 'baz' defaulting to 'Life' and 'hard' each
config = ConfigParser.SafeConfigParser({'bar': 'Life', 'baz': 'hard'})
config.read('example.cfg')

print config.get('Section1', 'foo') # -> "Python is fun!"
config.remove_option('Section1', 'bar')
config.remove_option('Section1', 'baz')
print config.get('Section1', 'foo') # -> "Life is hard!"

The function opt_move below can be used to move options between sections:

def opt_move(config, section1, section2, option):
 try:
 config.set(section2, option, config.get(section1, option, 1))
 except ConfigParser.NoSectionError:
 # Create non-existent section
 config.add_section(section2)
 opt_move(config, section1, section2, option)
 else:
 config.remove_option(section1, option)

Some configuration files are known to include settings without values, but which
otherwise conform to the syntax supported by ConfigParser. The
allow_no_value parameter to the constructor can be used to indicate that such
values should be accepted:

>>> import ConfigParser
>>> import io

>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-external-locking
... old_passwords = 1
... skip-bdb
... skip-innodb
... """
>>> config = ConfigParser.RawConfigParser(allow_no_value=True)
>>> config.readfp(io.BytesIO(sample_config))

>>> # Settings with values are treated as before:
>>> config.get("mysqld", "user")
'mysql'

>>> # Settings without values provide None:
>>> config.get("mysqld", "skip-bdb")

>>> # Settings which aren't specified still raise an error:
>>> config.get("mysqld", "does-not-exist")
Traceback (most recent call last):
 ...
ConfigParser.NoOptionError: No option 'does-not-exist' in section: 'mysqld'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	13. File Formats

13.3. robotparser — Parser for robots.txt

Note

The robotparser module has been renamed urllib.robotparser in
Python 3.0.
The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

This module provides a single class, RobotFileParser, which answers
questions about whether or not a particular user agent can fetch a URL on the
Web site that published the robots.txt file. For more details on the
structure of robots.txt files, see http://www.robotstxt.org/orig.html.

	
class robotparser.RobotFileParser

	This class provides a set of methods to read, parse and answer questions
about a single robots.txt file.

	
set_url(url)

	Sets the URL referring to a robots.txt file.

	
read()

	Reads the robots.txt URL and feeds it to the parser.

	
parse(lines)

	Parses the lines argument.

	
can_fetch(useragent, url)

	Returns True if the useragent is allowed to fetch the url
according to the rules contained in the parsed robots.txt
file.

	
mtime()

	Returns the time the robots.txt file was last fetched. This is
useful for long-running web spiders that need to check for new
robots.txt files periodically.

	
modified()

	Sets the time the robots.txt file was last fetched to the current
time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import robotparser
>>> rp = robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
False
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
True

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	13. File Formats

13.4. netrc — netrc file processing

New in version 1.5.2.

The netrc class parses and encapsulates the netrc file format used by
the Unix ftp program and other FTP clients.

	
class netrc.netrc([file])

	A netrc instance or subclass instance encapsulates data from a netrc
file. The initialization argument, if present, specifies the file to parse. If
no argument is given, the file .netrc in the user’s home directory will
be read. Parse errors will raise NetrcParseError with diagnostic
information including the file name, line number, and terminating token.

	
exception netrc.NetrcParseError

	Exception raised by the netrc class when syntactical errors are
encountered in source text. Instances of this exception provide three
interesting attributes: msg is a textual explanation of the error,
filename is the name of the source file, and lineno gives the
line number on which the error was found.

13.4.1. netrc Objects

A netrc instance has the following methods:

	
netrc.authenticators(host)

	Return a 3-tuple (login, account, password) of authenticators for host.
If the netrc file did not contain an entry for the given host, return the tuple
associated with the ‘default’ entry. If neither matching host nor default entry
is available, return None.

	
netrc.__repr__()

	Dump the class data as a string in the format of a netrc file. (This discards
comments and may reorder the entries.)

Instances of netrc have public instance variables:

	
netrc.hosts

	Dictionary mapping host names to (login, account, password) tuples. The
‘default’ entry, if any, is represented as a pseudo-host by that name.

	
netrc.macros

	Dictionary mapping macro names to string lists.

Note

Passwords are limited to a subset of the ASCII character set. Versions of
this module prior to 2.3 were extremely limited. Starting with 2.3, all
ASCII punctuation is allowed in passwords. However, note that whitespace and
non-printable characters are not allowed in passwords. This is a limitation
of the way the .netrc file is parsed and may be removed in the future.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	13. File Formats

13.5. xdrlib — Encode and decode XDR data

The xdrlib module supports the External Data Representation Standard as
described in RFC 1014 [http://tools.ietf.org/html/rfc1014.html], written by Sun Microsystems, Inc. June 1987. It
supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR
representation, and another for unpacking from XDR representation. There are
also two exception classes.

	
class xdrlib.Packer

	Packer is the class for packing data into XDR representation. The
Packer class is instantiated with no arguments.

	
class xdrlib.Unpacker(data)

	Unpacker is the complementary class which unpacks XDR data values from a
string buffer. The input buffer is given as data.

See also

	RFC 1014 [http://tools.ietf.org/html/rfc1014.html] - XDR: External Data Representation Standard

	This RFC defined the encoding of data which was XDR at the time this module was
originally written. It has apparently been obsoleted by RFC 1832 [http://tools.ietf.org/html/rfc1832.html].

	RFC 1832 [http://tools.ietf.org/html/rfc1832.html] - XDR: External Data Representation Standard

	Newer RFC that provides a revised definition of XDR.

13.5.1. Packer Objects

Packer instances have the following methods:

	
Packer.get_buffer()

	Returns the current pack buffer as a string.

	
Packer.reset()

	Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the
appropriate pack_type() method. Each method takes a single argument, the
value to pack. The following simple data type packing methods are supported:
pack_uint(), pack_int(), pack_enum(), pack_bool(),
pack_uhyper(), and pack_hyper().

	
Packer.pack_float(value)

	Packs the single-precision floating point number value.

	
Packer.pack_double(value)

	Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

	
Packer.pack_fstring(n, s)

	Packs a fixed length string, s. n is the length of the string but it is
not packed into the data buffer. The string is padded with null bytes if
necessary to guaranteed 4 byte alignment.

	
Packer.pack_fopaque(n, data)

	Packs a fixed length opaque data stream, similarly to pack_fstring().

	
Packer.pack_string(s)

	Packs a variable length string, s. The length of the string is first packed
as an unsigned integer, then the string data is packed with
pack_fstring().

	
Packer.pack_opaque(data)

	Packs a variable length opaque data string, similarly to pack_string().

	
Packer.pack_bytes(bytes)

	Packs a variable length byte stream, similarly to pack_string().

The following methods support packing arrays and lists:

	
Packer.pack_list(list, pack_item)

	Packs a list of homogeneous items. This method is useful for lists with an
indeterminate size; i.e. the size is not available until the entire list has
been walked. For each item in the list, an unsigned integer 1 is packed
first, followed by the data value from the list. pack_item is the function
that is called to pack the individual item. At the end of the list, an unsigned
integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

	
Packer.pack_farray(n, array, pack_item)

	Packs a fixed length list (array) of homogeneous items. n is the length of
the list; it is not packed into the buffer, but a ValueError exception
is raised if len(array) is not equal to n. As above, pack_item is the
function used to pack each element.

	
Packer.pack_array(list, pack_item)

	Packs a variable length list of homogeneous items. First, the length of the
list is packed as an unsigned integer, then each element is packed as in
pack_farray() above.

13.5.2. Unpacker Objects

The Unpacker class offers the following methods:

	
Unpacker.reset(data)

	Resets the string buffer with the given data.

	
Unpacker.get_position()

	Returns the current unpack position in the data buffer.

	
Unpacker.set_position(position)

	Sets the data buffer unpack position to position. You should be careful about
using get_position() and set_position().

	
Unpacker.get_buffer()

	Returns the current unpack data buffer as a string.

	
Unpacker.done()

	Indicates unpack completion. Raises an Error exception if all of the
data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be
unpacked with an Unpacker. Unpacking methods are of the form
unpack_type(), and take no arguments. They return the unpacked object.

	
Unpacker.unpack_float()

	Unpacks a single-precision floating point number.

	
Unpacker.unpack_double()

	Unpacks a double-precision floating point number, similarly to
unpack_float().

In addition, the following methods unpack strings, bytes, and opaque data:

	
Unpacker.unpack_fstring(n)

	Unpacks and returns a fixed length string. n is the number of characters
expected. Padding with null bytes to guaranteed 4 byte alignment is assumed.

	
Unpacker.unpack_fopaque(n)

	Unpacks and returns a fixed length opaque data stream, similarly to
unpack_fstring().

	
Unpacker.unpack_string()

	Unpacks and returns a variable length string. The length of the string is first
unpacked as an unsigned integer, then the string data is unpacked with
unpack_fstring().

	
Unpacker.unpack_opaque()

	Unpacks and returns a variable length opaque data string, similarly to
unpack_string().

	
Unpacker.unpack_bytes()

	Unpacks and returns a variable length byte stream, similarly to
unpack_string().

The following methods support unpacking arrays and lists:

	
Unpacker.unpack_list(unpack_item)

	Unpacks and returns a list of homogeneous items. The list is unpacked one
element at a time by first unpacking an unsigned integer flag. If the flag is
1, then the item is unpacked and appended to the list. A flag of 0
indicates the end of the list. unpack_item is the function that is called to
unpack the items.

	
Unpacker.unpack_farray(n, unpack_item)

	Unpacks and returns (as a list) a fixed length array of homogeneous items. n
is number of list elements to expect in the buffer. As above, unpack_item is
the function used to unpack each element.

	
Unpacker.unpack_array(unpack_item)

	Unpacks and returns a variable length list of homogeneous items. First, the
length of the list is unpacked as an unsigned integer, then each element is
unpacked as in unpack_farray() above.

13.5.3. Exceptions

Exceptions in this module are coded as class instances:

	
exception xdrlib.Error

	The base exception class. Error has a single public data member
msg containing the description of the error.

	
exception xdrlib.ConversionError

	Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:
 p.pack_double(8.01)
except xdrlib.ConversionError, instance:
 print 'packing the double failed:', instance.msg

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	13. File Formats

13.6. plistlib — Generate and parse Mac OS X .plist files

Changed in version 2.6: This module was previously only available in the Mac-specific library, it is
now available for all platforms.

This module provides an interface for reading and writing the “property list”
XML files used mainly by Mac OS X.

The property list (.plist) file format is a simple XML pickle supporting
basic object types, like dictionaries, lists, numbers and strings. Usually the
top level object is a dictionary.

Values can be strings, integers, floats, booleans, tuples, lists, dictionaries
(but only with string keys), Data or datetime.datetime
objects. String values (including dictionary keys) may be unicode strings –
they will be written out as UTF-8.

The <data> plist type is supported through the Data class. This is
a thin wrapper around a Python string. Use Data if your strings
contain control characters.

See also

	PList manual page [http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html]

	Apple’s documentation of the file format.

This module defines the following functions:

	
plistlib.readPlist(pathOrFile)

	Read a plist file. pathOrFile may either be a file name or a (readable)
file object. Return the unpacked root object (which usually is a
dictionary).

The XML data is parsed using the Expat parser from xml.parsers.expat
– see its documentation for possible exceptions on ill-formed XML.
Unknown elements will simply be ignored by the plist parser.

	
plistlib.writePlist(rootObject, pathOrFile)

	Write rootObject to a plist file. pathOrFile may either be a file name
or a (writable) file object.

A TypeError will be raised if the object is of an unsupported type or
a container that contains objects of unsupported types.

	
plistlib.readPlistFromString(data)

	Read a plist from a string. Return the root object.

	
plistlib.writePlistToString(rootObject)

	Return rootObject as a plist-formatted string.

	
plistlib.readPlistFromResource(path[, restype='plst'[, resid=0]])

	Read a plist from the resource with type restype from the resource fork of
path. Availability: Mac OS X.

Note

In Python 3.x, this function has been removed.

	
plistlib.writePlistToResource(rootObject, path[, restype='plst'[, resid=0]])

	Write rootObject as a resource with type restype to the resource fork of
path. Availability: Mac OS X.

Note

In Python 3.x, this function has been removed.

The following class is available:

	
class plistlib.Data(data)

	Return a “data” wrapper object around the string data. This is used in
functions converting from/to plists to represent the <data> type
available in plists.

It has one attribute, data, that can be used to retrieve the Python
string stored in it.

13.6.1. Examples

Generating a plist:

pl = dict(
 aString="Doodah",
 aList=["A", "B", 12, 32.1, [1, 2, 3]],
 aFloat = 0.1,
 anInt = 728,
 aDict=dict(
 anotherString="<hello & hi there!>",
 aUnicodeValue=u'M\xe4ssig, Ma\xdf',
 aTrueValue=True,
 aFalseValue=False,
),
 someData = Data("<binary gunk>"),
 someMoreData = Data("<lots of binary gunk>" * 10),
 aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())),
)
unicode keys are possible, but a little awkward to use:
pl[u'\xc5benraa'] = "That was a unicode key."
writePlist(pl, fileName)

Parsing a plist:

pl = readPlist(pathOrFile)
print pl["aKey"]

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

14. Cryptographic Services

The modules described in this chapter implement various algorithms of a
cryptographic nature. They are available at the discretion of the installation.
Here’s an overview:

	14.1. hashlib — Secure hashes and message digests

	14.2. hmac — Keyed-Hashing for Message Authentication

	14.3. md5 — MD5 message digest algorithm

	14.4. sha — SHA-1 message digest algorithm

Hardcore cypherpunks will probably find the cryptographic modules written by
A.M. Kuchling of further interest; the package contains modules for various
encryption algorithms, most notably AES. These modules are not distributed with
Python but available separately. See the URL
http://www.amk.ca/python/code/crypto.html for more information.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	14. Cryptographic Services

14.1. hashlib — Secure hashes and message digests

New in version 2.5.

This module implements a common interface to many different secure hash and
message digest algorithms. Included are the FIPS secure hash algorithms SHA1,
SHA224, SHA256, SHA384, and SHA512 (defined in FIPS 180-2) as well as RSA’s MD5
algorithm (defined in Internet RFC 1321 [http://tools.ietf.org/html/rfc1321.html]). The terms secure hash and message
digest are interchangeable. Older algorithms were called message digests. The
modern term is secure hash.

Note

If you want the adler32 or crc32 hash functions they are available in
the zlib module.

Warning

Some algorithms have known hash collision weaknesses, see the FAQ at the end.

There is one constructor method named for each type of hash. All return
a hash object with the same simple interface. For example: use sha1() to
create a SHA1 hash object. You can now feed this object with arbitrary strings
using the update() method. At any point you can ask it for the
digest of the concatenation of the strings fed to it so far using the
digest() or hexdigest() methods.

Constructors for hash algorithms that are always present in this module are
md5(), sha1(), sha224(), sha256(), sha384(), and
sha512(). Additional algorithms may also be available depending upon the
OpenSSL library that Python uses on your platform.

For example, to obtain the digest of the string 'Nobody inspects the spammish
repetition':

>>> import hashlib
>>> m = hashlib.md5()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224("Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

A generic new() constructor that takes the string name of the desired
algorithm as its first parameter also exists to allow access to the above listed
hashes as well as any other algorithms that your OpenSSL library may offer. The
named constructors are much faster than new() and should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>> h = hashlib.new('ripemd160')
>>> h.update("Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

This module provides the following constant attribute:

	
hashlib.algorithms

	A tuple providing the names of the hash algorithms guaranteed to be
supported by this module.

New in version 2.7.

The following values are provided as constant attributes of the hash objects
returned by the constructors:

	
hash.digest_size

	The size of the resulting hash in bytes.

	
hash.block_size

	The internal block size of the hash algorithm in bytes.

A hash object has the following methods:

	
hash.update(arg)

	Update the hash object with the string arg. Repeated calls are equivalent to
a single call with the concatenation of all the arguments: m.update(a);
m.update(b) is equivalent to m.update(a+b).

Changed in version 2.7.

	
hash.digest()

	Return the digest of the strings passed to the update() method so far.
This is a string of digest_size bytes which may contain non-ASCII
characters, including null bytes.

	
hash.hexdigest()

	Like digest() except the digest is returned as a string of double length,
containing only hexadecimal digits. This may be used to exchange the value
safely in email or other non-binary environments.

	
hash.copy()

	Return a copy (“clone”) of the hash object. This can be used to efficiently
compute the digests of strings that share a common initial substring.

See also

	Module hmac

	A module to generate message authentication codes using hashes.

	Module base64

	Another way to encode binary hashes for non-binary environments.

	http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

	The FIPS 180-2 publication on Secure Hash Algorithms.

	http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms

	Wikipedia article with information on which algorithms have known issues and
what that means regarding their use.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	14. Cryptographic Services

14.2. hmac — Keyed-Hashing for Message Authentication

New in version 2.2.

This module implements the HMAC algorithm as described by RFC 2104 [http://tools.ietf.org/html/rfc2104.html].

	
hmac.new(key[, msg[, digestmod]])

	Return a new hmac object. If msg is present, the method call update(msg)
is made. digestmod is the digest constructor or module for the HMAC object to
use. It defaults to the hashlib.md5() constructor.

An HMAC object has the following methods:

	
hmac.update(msg)

	Update the hmac object with the string msg. Repeated calls are equivalent to
a single call with the concatenation of all the arguments: m.update(a);
m.update(b) is equivalent to m.update(a + b).

	
hmac.digest()

	Return the digest of the strings passed to the update() method so far.
This string will be the same length as the digest_size of the digest given to
the constructor. It may contain non-ASCII characters, including NUL bytes.

	
hmac.hexdigest()

	Like digest() except the digest is returned as a string twice the length
containing only hexadecimal digits. This may be used to exchange the value
safely in email or other non-binary environments.

	
hmac.copy()

	Return a copy (“clone”) of the hmac object. This can be used to efficiently
compute the digests of strings that share a common initial substring.

See also

	Module hashlib

	The Python module providing secure hash functions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	14. Cryptographic Services

14.3. md5 — MD5 message digest algorithm

Deprecated since version 2.5: Use the hashlib module instead.

This module implements the interface to RSA’s MD5 message digest algorithm (see
also Internet RFC 1321 [http://tools.ietf.org/html/rfc1321.html]). Its use is quite straightforward: use new()
to create an md5 object. You can now feed this object with arbitrary strings
using the update() method, and at any point you can ask it for the
digest (a strong kind of 128-bit checksum, a.k.a. “fingerprint”) of the
concatenation of the strings fed to it so far using the digest() method.

For example, to obtain the digest of the string 'Nobody inspects the spammish
repetition':

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'

The following values are provided as constants in the module and as attributes
of the md5 objects returned by new():

	
md5.digest_size

	The size of the resulting digest in bytes. This is always 16.

The md5 module provides the following functions:

	
md5.new([arg])

	Return a new md5 object. If arg is present, the method call update(arg)
is made.

	
md5.md5([arg])

	For backward compatibility reasons, this is an alternative name for the
new() function.

An md5 object has the following methods:

	
md5.update(arg)

	Update the md5 object with the string arg. Repeated calls are equivalent to a
single call with the concatenation of all the arguments: m.update(a);
m.update(b) is equivalent to m.update(a+b).

	
md5.digest()

	Return the digest of the strings passed to the update() method so far.
This is a 16-byte string which may contain non-ASCII characters, including null
bytes.

	
md5.hexdigest()

	Like digest() except the digest is returned as a string of length 32,
containing only hexadecimal digits. This may be used to exchange the value
safely in email or other non-binary environments.

	
md5.copy()

	Return a copy (“clone”) of the md5 object. This can be used to efficiently
compute the digests of strings that share a common initial substring.

See also

	Module sha

	Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm
is considered a more secure hash.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	14. Cryptographic Services

14.4. sha — SHA-1 message digest algorithm

Deprecated since version 2.5: Use the hashlib module instead.

This module implements the interface to NIST’s secure hash algorithm, known as
SHA-1. SHA-1 is an improved version of the original SHA hash algorithm. It is
used in the same way as the md5 module: use new() to create an sha
object, then feed this object with arbitrary strings using the update()
method, and at any point you can ask it for the digest of the
concatenation of the strings fed to it so far. SHA-1 digests are 160 bits
instead of MD5’s 128 bits.

	
sha.new([string])

	Return a new sha object. If string is present, the method call
update(string) is made.

The following values are provided as constants in the module and as attributes
of the sha objects returned by new():

	
sha.blocksize

	Size of the blocks fed into the hash function; this is always 1. This size
is used to allow an arbitrary string to be hashed.

	
sha.digest_size

	The size of the resulting digest in bytes. This is always 20.

An sha object has the same methods as md5 objects:

	
sha.update(arg)

	Update the sha object with the string arg. Repeated calls are equivalent to a
single call with the concatenation of all the arguments: m.update(a);
m.update(b) is equivalent to m.update(a+b).

	
sha.digest()

	Return the digest of the strings passed to the update() method so far.
This is a 20-byte string which may contain non-ASCII characters, including null
bytes.

	
sha.hexdigest()

	Like digest() except the digest is returned as a string of length 40,
containing only hexadecimal digits. This may be used to exchange the value
safely in email or other non-binary environments.

	
sha.copy()

	Return a copy (“clone”) of the sha object. This can be used to efficiently
compute the digests of strings that share a common initial substring.

See also

	Secure Hash Standard [http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf]

	The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-2: Secure
Hash Standard [http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf],
published in August 2002.

	Cryptographic Toolkit (Secure Hashing) [http://csrc.nist.gov/CryptoToolkit/tkhash.html]

	Links from NIST to various information on secure hashing.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

15. Generic Operating System Services

The modules described in this chapter provide interfaces to operating system
features that are available on (almost) all operating systems, such as files and
a clock. The interfaces are generally modeled after the Unix or C interfaces,
but they are available on most other systems as well. Here’s an overview:

	15.1. os — Miscellaneous operating system interfaces
	15.1.1. Process Parameters

	15.1.2. File Object Creation

	15.1.3. File Descriptor Operations
	15.1.3.1. open() flag constants

	15.1.4. Files and Directories

	15.1.5. Process Management

	15.1.6. Miscellaneous System Information

	15.1.7. Miscellaneous Functions

	15.2. io — Core tools for working with streams
	15.2.1. Module Interface

	15.2.2. I/O Base Classes

	15.2.3. Raw File I/O

	15.2.4. Buffered Streams

	15.2.5. Text I/O

	15.2.6. Advanced topics
	15.2.6.1. Performance
	15.2.6.1.1. Binary I/O

	15.2.6.1.2. Text I/O

	15.2.6.2. Multi-threading

	15.2.6.3. Reentrancy

	15.3. time — Time access and conversions

	15.4. argparse — Parser for command-line options, arguments and sub-commands
	15.4.1. Example
	15.4.1.1. Creating a parser

	15.4.1.2. Adding arguments

	15.4.1.3. Parsing arguments

	15.4.2. ArgumentParser objects
	15.4.2.1. description

	15.4.2.2. epilog

	15.4.2.3. add_help

	15.4.2.4. prefix_chars

	15.4.2.5. fromfile_prefix_chars

	15.4.2.6. argument_default

	15.4.2.7. parents

	15.4.2.8. formatter_class

	15.4.2.9. conflict_handler

	15.4.2.10. prog

	15.4.2.11. usage

	15.4.3. The add_argument() method
	15.4.3.1. name or flags

	15.4.3.2. action

	15.4.3.3. nargs

	15.4.3.4. const

	15.4.3.5. default

	15.4.3.6. type

	15.4.3.7. choices

	15.4.3.8. required

	15.4.3.9. help

	15.4.3.10. metavar

	15.4.3.11. dest

	15.4.4. The parse_args() method
	15.4.4.1. Option value syntax

	15.4.4.2. Invalid arguments

	15.4.4.3. Arguments containing "-"

	15.4.4.4. Argument abbreviations

	15.4.4.5. Beyond sys.argv

	15.4.4.6. The Namespace object

	15.4.5. Other utilities
	15.4.5.1. Sub-commands

	15.4.5.2. FileType objects

	15.4.5.3. Argument groups

	15.4.5.4. Mutual exclusion

	15.4.5.5. Parser defaults

	15.4.5.6. Printing help

	15.4.5.7. Partial parsing

	15.4.5.8. Customizing file parsing

	15.4.5.9. Exiting methods

	15.4.6. Upgrading optparse code

	15.5. optparse — Parser for command line options
	15.5.1. Background
	15.5.1.1. Terminology

	15.5.1.2. What are options for?

	15.5.1.3. What are positional arguments for?

	15.5.2. Tutorial
	15.5.2.1. Understanding option actions

	15.5.2.2. The store action

	15.5.2.3. Handling boolean (flag) options

	15.5.2.4. Other actions

	15.5.2.5. Default values

	15.5.2.6. Generating help
	15.5.2.6.1. Grouping Options

	15.5.2.7. Printing a version string

	15.5.2.8. How optparse handles errors

	15.5.2.9. Putting it all together

	15.5.3. Reference Guide
	15.5.3.1. Creating the parser

	15.5.3.2. Populating the parser

	15.5.3.3. Defining options

	15.5.3.4. Option attributes

	15.5.3.5. Standard option actions

	15.5.3.6. Standard option types

	15.5.3.7. Parsing arguments

	15.5.3.8. Querying and manipulating your option parser

	15.5.3.9. Conflicts between options

	15.5.3.10. Cleanup

	15.5.3.11. Other methods

	15.5.4. Option Callbacks
	15.5.4.1. Defining a callback option

	15.5.4.2. How callbacks are called

	15.5.4.3. Raising errors in a callback

	15.5.4.4. Callback example 1: trivial callback

	15.5.4.5. Callback example 2: check option order

	15.5.4.6. Callback example 3: check option order (generalized)

	15.5.4.7. Callback example 4: check arbitrary condition

	15.5.4.8. Callback example 5: fixed arguments

	15.5.4.9. Callback example 6: variable arguments

	15.5.5. Extending optparse
	15.5.5.1. Adding new types

	15.5.5.2. Adding new actions

	15.6. getopt — C-style parser for command line options

	15.7. logging — Logging facility for Python
	15.7.1. Logger Objects

	15.7.2. Handler Objects

	15.7.3. Formatter Objects

	15.7.4. Filter Objects

	15.7.5. LogRecord Objects

	15.7.6. LogRecord attributes

	15.7.7. LoggerAdapter Objects

	15.7.8. Thread Safety

	15.7.9. Module-Level Functions

	15.7.10. Integration with the warnings module

	15.8. logging.config — Logging configuration
	15.8.1. Configuration functions

	15.8.2. Configuration dictionary schema
	15.8.2.1. Dictionary Schema Details

	15.8.2.2. Incremental Configuration

	15.8.2.3. Object connections

	15.8.2.4. User-defined objects

	15.8.2.5. Access to external objects

	15.8.2.6. Access to internal objects

	15.8.3. Configuration file format

	15.9. logging.handlers — Logging handlers
	15.9.1. StreamHandler

	15.9.2. FileHandler

	15.9.3. NullHandler

	15.9.4. WatchedFileHandler

	15.9.5. RotatingFileHandler

	15.9.6. TimedRotatingFileHandler

	15.9.7. SocketHandler

	15.9.8. DatagramHandler

	15.9.9. SysLogHandler

	15.9.10. NTEventLogHandler

	15.9.11. SMTPHandler

	15.9.12. MemoryHandler

	15.9.13. HTTPHandler

	15.10. getpass — Portable password input

	15.11. curses — Terminal handling for character-cell displays
	15.11.1. Functions

	15.11.2. Window Objects

	15.11.3. Constants

	15.12. curses.textpad — Text input widget for curses programs
	15.12.1. Textbox objects

	15.13. curses.wrapper — Terminal handler for curses programs

	15.14. curses.ascii — Utilities for ASCII characters

	15.15. curses.panel — A panel stack extension for curses
	15.15.1. Functions

	15.15.2. Panel Objects

	15.16. platform — Access to underlying platform’s identifying data
	15.16.1. Cross Platform

	15.16.2. Java Platform

	15.16.3. Windows Platform
	15.16.3.1. Win95/98 specific

	15.16.4. Mac OS Platform

	15.16.5. Unix Platforms

	15.17. errno — Standard errno system symbols

	15.18. ctypes — A foreign function library for Python
	15.18.1. ctypes tutorial
	15.18.1.1. Loading dynamic link libraries

	15.18.1.2. Accessing functions from loaded dlls

	15.18.1.3. Calling functions

	15.18.1.4. Fundamental data types

	15.18.1.5. Calling functions, continued

	15.18.1.6. Calling functions with your own custom data types

	15.18.1.7. Specifying the required argument types (function prototypes)

	15.18.1.8. Return types

	15.18.1.9. Passing pointers (or: passing parameters by reference)

	15.18.1.10. Structures and unions

	15.18.1.11. Structure/union alignment and byte order

	15.18.1.12. Bit fields in structures and unions

	15.18.1.13. Arrays

	15.18.1.14. Pointers

	15.18.1.15. Type conversions

	15.18.1.16. Incomplete Types

	15.18.1.17. Callback functions

	15.18.1.18. Accessing values exported from dlls

	15.18.1.19. Surprises

	15.18.1.20. Variable-sized data types

	15.18.2. ctypes reference
	15.18.2.1. Finding shared libraries

	15.18.2.2. Loading shared libraries

	15.18.2.3. Foreign functions

	15.18.2.4. Function prototypes

	15.18.2.5. Utility functions

	15.18.2.6. Data types

	15.18.2.7. Fundamental data types

	15.18.2.8. Structured data types

	15.18.2.9. Arrays and pointers

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.1. os — Miscellaneous operating system interfaces

This module provides a portable way of using operating system dependent
functionality. If you just want to read or write a file see open(), if
you want to manipulate paths, see the os.path module, and if you want to
read all the lines in all the files on the command line see the fileinput
module. For creating temporary files and directories see the tempfile
module, and for high-level file and directory handling see the shutil
module.

Notes on the availability of these functions:

	The design of all built-in operating system dependent modules of Python is
such that as long as the same functionality is available, it uses the same
interface; for example, the function os.stat(path) returns stat
information about path in the same format (which happens to have originated
with the POSIX interface).

	Extensions peculiar to a particular operating system are also available
through the os module, but using them is of course a threat to
portability.

	An “Availability: Unix” note means that this function is commonly found on
Unix systems. It does not make any claims about its existence on a specific
operating system.

	If not separately noted, all functions that claim “Availability: Unix” are
supported on Mac OS X, which builds on a Unix core.

Note

All functions in this module raise OSError in the case of invalid or
inaccessible file names and paths, or other arguments that have the correct
type, but are not accepted by the operating system.

	
exception os.error

	An alias for the built-in OSError exception.

	
os.name

	The name of the operating system dependent module imported. The following
names have currently been registered: 'posix', 'nt',
'os2', 'ce', 'java', 'riscos'.

15.1.1. Process Parameters

These functions and data items provide information and operate on the current
process and user.

	
os.environ

	A mapping object representing the string environment. For example,
environ['HOME'] is the pathname of your home directory (on some platforms),
and is equivalent to getenv("HOME") in C.

This mapping is captured the first time the os module is imported,
typically during Python startup as part of processing site.py. Changes
to the environment made after this time are not reflected in os.environ,
except for changes made by modifying os.environ directly.

If the platform supports the putenv() function, this mapping may be used
to modify the environment as well as query the environment. putenv() will
be called automatically when the mapping is modified.

Note

Calling putenv() directly does not change os.environ, so it’s better
to modify os.environ.

Note

On some platforms, including FreeBSD and Mac OS X, setting environ may
cause memory leaks. Refer to the system documentation for
putenv().

If putenv() is not provided, a modified copy of this mapping may be
passed to the appropriate process-creation functions to cause child processes
to use a modified environment.

If the platform supports the unsetenv() function, you can delete items in
this mapping to unset environment variables. unsetenv() will be called
automatically when an item is deleted from os.environ, and when
one of the pop() or clear() methods is called.

Changed in version 2.6: Also unset environment variables when calling os.environ.clear()
and os.environ.pop().

	
os.chdir(path)

	
os.fchdir(fd)

	
os.getcwd()

	These functions are described in Files and Directories.

	
os.ctermid()

	Return the filename corresponding to the controlling terminal of the process.

Availability: Unix.

	
os.getegid()

	Return the effective group id of the current process. This corresponds to the
“set id” bit on the file being executed in the current process.

Availability: Unix.

	
os.geteuid()

	Return the current process’s effective user id.

Availability: Unix.

	
os.getgid()

	Return the real group id of the current process.

Availability: Unix.

	
os.getgroups()

	Return list of supplemental group ids associated with the current process.

Availability: Unix.

	
os.initgroups(username, gid)

	Call the system initgroups() to initialize the group access list with all of
the groups of which the specified username is a member, plus the specified
group id.

Availability: Unix.

New in version 2.7.

	
os.getlogin()

	Return the name of the user logged in on the controlling terminal of the
process. For most purposes, it is more useful to use the environment variable
LOGNAME to find out who the user is, or
pwd.getpwuid(os.getuid())[0] to get the login name of the currently
effective user id.

Availability: Unix.

	
os.getpgid(pid)

	Return the process group id of the process with process id pid. If pid is 0,
the process group id of the current process is returned.

Availability: Unix.

New in version 2.3.

	
os.getpgrp()

	Return the id of the current process group.

Availability: Unix.

	
os.getpid()

	Return the current process id.

Availability: Unix, Windows.

	
os.getppid()

	Return the parent’s process id.

Availability: Unix.

	
os.getresuid()

	Return a tuple (ruid, euid, suid) denoting the current process’s
real, effective, and saved user ids.

Availability: Unix.

New in version 2.7.

	
os.getresgid()

	Return a tuple (rgid, egid, sgid) denoting the current process’s
real, effective, and saved group ids.

Availability: Unix.

New in version 2.7.

	
os.getuid()

	Return the current process’s user id.

Availability: Unix.

	
os.getenv(varname[, value])

	Return the value of the environment variable varname if it exists, or value
if it doesn’t. value defaults to None.

Availability: most flavors of Unix, Windows.

	
os.putenv(varname, value)

	Set the environment variable named varname to the string value. Such
changes to the environment affect subprocesses started with os.system(),
popen() or fork() and execv().

Availability: most flavors of Unix, Windows.

Note

On some platforms, including FreeBSD and Mac OS X, setting environ may
cause memory leaks. Refer to the system documentation for putenv.

When putenv() is supported, assignments to items in os.environ are
automatically translated into corresponding calls to putenv(); however,
calls to putenv() don’t update os.environ, so it is actually
preferable to assign to items of os.environ.

	
os.setegid(egid)

	Set the current process’s effective group id.

Availability: Unix.

	
os.seteuid(euid)

	Set the current process’s effective user id.

Availability: Unix.

	
os.setgid(gid)

	Set the current process’ group id.

Availability: Unix.

	
os.setgroups(groups)

	Set the list of supplemental group ids associated with the current process to
groups. groups must be a sequence, and each element must be an integer
identifying a group. This operation is typically available only to the superuser.

Availability: Unix.

New in version 2.2.

	
os.setpgrp()

	Call the system call setpgrp() or setpgrp(0, 0)() depending on
which version is implemented (if any). See the Unix manual for the semantics.

Availability: Unix.

	
os.setpgid(pid, pgrp)

	Call the system call setpgid() to set the process group id of the
process with id pid to the process group with id pgrp. See the Unix manual
for the semantics.

Availability: Unix.

	
os.setregid(rgid, egid)

	Set the current process’s real and effective group ids.

Availability: Unix.

	
os.setresgid(rgid, egid, sgid)

	Set the current process’s real, effective, and saved group ids.

Availability: Unix.

New in version 2.7.

	
os.setresuid(ruid, euid, suid)

	Set the current process’s real, effective, and saved user ids.

Availability: Unix.

New in version 2.7.

	
os.setreuid(ruid, euid)

	Set the current process’s real and effective user ids.

Availability: Unix.

	
os.getsid(pid)

	Call the system call getsid(). See the Unix manual for the semantics.

Availability: Unix.

New in version 2.4.

	
os.setsid()

	Call the system call setsid(). See the Unix manual for the semantics.

Availability: Unix.

	
os.setuid(uid)

	Set the current process’s user id.

Availability: Unix.

	
os.strerror(code)

	Return the error message corresponding to the error code in code.
On platforms where strerror() returns NULL when given an unknown
error number, ValueError is raised.

Availability: Unix, Windows.

	
os.umask(mask)

	Set the current numeric umask and return the previous umask.

Availability: Unix, Windows.

	
os.uname()

	Return a 5-tuple containing information identifying the current operating
system. The tuple contains 5 strings: (sysname, nodename, release, version,
machine). Some systems truncate the nodename to 8 characters or to the
leading component; a better way to get the hostname is
socket.gethostname() or even
socket.gethostbyaddr(socket.gethostname()).

Availability: recent flavors of Unix.

	
os.unsetenv(varname)

	Unset (delete) the environment variable named varname. Such changes to the
environment affect subprocesses started with os.system(), popen() or
fork() and execv().

When unsetenv() is supported, deletion of items in os.environ is
automatically translated into a corresponding call to unsetenv(); however,
calls to unsetenv() don’t update os.environ, so it is actually
preferable to delete items of os.environ.

Availability: most flavors of Unix, Windows.

15.1.2. File Object Creation

These functions create new file objects. (See also open().)

	
os.fdopen(fd[, mode[, bufsize]])

	Return an open file object connected to the file descriptor fd. The mode
and bufsize arguments have the same meaning as the corresponding arguments to
the built-in open() function.

Availability: Unix, Windows.

Changed in version 2.3: When specified, the mode argument must now start with one of the letters
'r', 'w', or 'a', otherwise a ValueError is raised.

Changed in version 2.5: On Unix, when the mode argument starts with 'a', the O_APPEND flag is
set on the file descriptor (which the fdopen() implementation already
does on most platforms).

	
os.popen(command[, mode[, bufsize]])

	Open a pipe to or from command. The return value is an open file object
connected to the pipe, which can be read or written depending on whether mode
is 'r' (default) or 'w'. The bufsize argument has the same meaning as
the corresponding argument to the built-in open() function. The exit
status of the command (encoded in the format specified for wait()) is
available as the return value of the close() method of the file object,
except that when the exit status is zero (termination without errors), None
is returned.

Availability: Unix, Windows.

Deprecated since version 2.6: This function is obsolete. Use the subprocess module. Check
especially the Replacing Older Functions with the subprocess Module section.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python.
This was due to the use of the _popen() function from the libraries
provided with Windows. Newer versions of Python do not use the broken
implementation from the Windows libraries.

	
os.tmpfile()

	Return a new file object opened in update mode (w+b). The file has no
directory entries associated with it and will be automatically deleted once
there are no file descriptors for the file.

Availability: Unix, Windows.

There are a number of different popen*() functions that provide slightly
different ways to create subprocesses.

Deprecated since version 2.6: All of the popen*() functions are obsolete. Use the subprocess
module.

For each of the popen*() variants, if bufsize is specified, it
specifies the buffer size for the I/O pipes. mode, if provided, should be the
string 'b' or 't'; on Windows this is needed to determine whether the
file objects should be opened in binary or text mode. The default value for
mode is 't'.

Also, for each of these variants, on Unix, cmd may be a sequence, in which
case arguments will be passed directly to the program without shell intervention
(as with os.spawnv()). If cmd is a string it will be passed to the shell
(as with os.system()).

These methods do not make it possible to retrieve the exit status from the child
processes. The only way to control the input and output streams and also
retrieve the return codes is to use the subprocess module; these are only
available on Unix.

For a discussion of possible deadlock conditions related to the use of these
functions, see Flow Control Issues.

	
os.popen2(cmd[, mode[, bufsize]])

	Execute cmd as a sub-process and return the file objects (child_stdin,
child_stdout).

Deprecated since version 2.6: This function is obsolete. Use the subprocess module. Check
especially the Replacing Older Functions with the subprocess Module section.

Availability: Unix, Windows.

New in version 2.0.

	
os.popen3(cmd[, mode[, bufsize]])

	Execute cmd as a sub-process and return the file objects (child_stdin,
child_stdout, child_stderr).

Deprecated since version 2.6: This function is obsolete. Use the subprocess module. Check
especially the Replacing Older Functions with the subprocess Module section.

Availability: Unix, Windows.

New in version 2.0.

	
os.popen4(cmd[, mode[, bufsize]])

	Execute cmd as a sub-process and return the file objects (child_stdin,
child_stdout_and_stderr).

Deprecated since version 2.6: This function is obsolete. Use the subprocess module. Check
especially the Replacing Older Functions with the subprocess Module section.

Availability: Unix, Windows.

New in version 2.0.

(Note that child_stdin, child_stdout, and child_stderr are named from the
point of view of the child process, so child_stdin is the child’s standard
input.)

This functionality is also available in the popen2 module using functions
of the same names, but the return values of those functions have a different
order.

15.1.3. File Descriptor Operations

These functions operate on I/O streams referenced using file descriptors.

File descriptors are small integers corresponding to a file that has been opened
by the current process. For example, standard input is usually file descriptor
0, standard output is 1, and standard error is 2. Further files opened by a
process will then be assigned 3, 4, 5, and so forth. The name “file descriptor”
is slightly deceptive; on Unix platforms, sockets and pipes are also referenced
by file descriptors.

The fileno() method can be used to obtain the file descriptor
associated with a file object when required. Note that using the file
descriptor directly will bypass the file object methods, ignoring aspects such
as internal buffering of data.

	
os.close(fd)

	Close file descriptor fd.

Availability: Unix, Windows.

Note

This function is intended for low-level I/O and must be applied to a file
descriptor as returned by os.open() or pipe(). To close a “file
object” returned by the built-in function open() or by popen() or
fdopen(), use its close() method.

	
os.closerange(fd_low, fd_high)

	Close all file descriptors from fd_low (inclusive) to fd_high (exclusive),
ignoring errors. Equivalent to:

for fd in xrange(fd_low, fd_high):
 try:
 os.close(fd)
 except OSError:
 pass

Availability: Unix, Windows.

New in version 2.6.

	
os.dup(fd)

	Return a duplicate of file descriptor fd.

Availability: Unix, Windows.

	
os.dup2(fd, fd2)

	Duplicate file descriptor fd to fd2, closing the latter first if necessary.

Availability: Unix, Windows.

	
os.fchmod(fd, mode)

	Change the mode of the file given by fd to the numeric mode. See the docs
for chmod() for possible values of mode.

Availability: Unix.

New in version 2.6.

	
os.fchown(fd, uid, gid)

	Change the owner and group id of the file given by fd to the numeric uid
and gid. To leave one of the ids unchanged, set it to -1.

Availability: Unix.

New in version 2.6.

	
os.fdatasync(fd)

	Force write of file with filedescriptor fd to disk. Does not force update of
metadata.

Availability: Unix.

Note

This function is not available on MacOS.

	
os.fpathconf(fd, name)

	Return system configuration information relevant to an open file. name
specifies the configuration value to retrieve; it may be a string which is the
name of a defined system value; these names are specified in a number of
standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define
additional names as well. The names known to the host operating system are
given in the pathconf_names dictionary. For configuration variables not
included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a
specific value for name is not supported by the host system, even if it is
included in pathconf_names, an OSError is raised with
errno.EINVAL for the error number.

Availability: Unix.

	
os.fstat(fd)

	Return status for file descriptor fd, like stat().

Availability: Unix, Windows.

	
os.fstatvfs(fd)

	Return information about the filesystem containing the file associated with file
descriptor fd, like statvfs().

Availability: Unix.

	
os.fsync(fd)

	Force write of file with filedescriptor fd to disk. On Unix, this calls the
native fsync() function; on Windows, the MS _commit() function.

If you’re starting with a Python file object f, first do f.flush(), and
then do os.fsync(f.fileno()), to ensure that all internal buffers associated
with f are written to disk.

Availability: Unix, and Windows starting in 2.2.3.

	
os.ftruncate(fd, length)

	Truncate the file corresponding to file descriptor fd, so that it is at most
length bytes in size.

Availability: Unix.

	
os.isatty(fd)

	Return True if the file descriptor fd is open and connected to a
tty(-like) device, else False.

Availability: Unix.

	
os.lseek(fd, pos, how)

	Set the current position of file descriptor fd to position pos, modified
by how: SEEK_SET or 0 to set the position relative to the
beginning of the file; SEEK_CUR or 1 to set it relative to the
current position; os.SEEK_END or 2 to set it relative to the end of
the file.

Availability: Unix, Windows.

	
os.SEEK_SET

	
os.SEEK_CUR

	
os.SEEK_END

	Parameters to the lseek() function. Their values are 0, 1, and 2,
respectively.

Availability: Windows, Unix.

New in version 2.5.

	
os.open(file, flags[, mode])

	Open the file file and set various flags according to flags and possibly its
mode according to mode. The default mode is 0777 (octal), and the
current umask value is first masked out. Return the file descriptor for the
newly opened file.

For a description of the flag and mode values, see the C run-time documentation;
flag constants (like O_RDONLY and O_WRONLY) are defined in
this module too (see open() flag constants). In particular, on Windows adding
O_BINARY is needed to open files in binary mode.

Availability: Unix, Windows.

Note

This function is intended for low-level I/O. For normal usage, use the
built-in function open(), which returns a “file object” with
read() and write() methods (and many more). To
wrap a file descriptor in a “file object”, use fdopen().

	
os.openpty()

	Open a new pseudo-terminal pair. Return a pair of file descriptors (master,
slave) for the pty and the tty, respectively. For a (slightly) more portable
approach, use the pty module.

Availability: some flavors of Unix.

	
os.pipe()

	Create a pipe. Return a pair of file descriptors (r, w) usable for reading
and writing, respectively.

Availability: Unix, Windows.

	
os.read(fd, n)

	Read at most n bytes from file descriptor fd. Return a string containing the
bytes read. If the end of the file referred to by fd has been reached, an
empty string is returned.

Availability: Unix, Windows.

Note

This function is intended for low-level I/O and must be applied to a file
descriptor as returned by os.open() or pipe(). To read a “file object”
returned by the built-in function open() or by popen() or
fdopen(), or sys.stdin, use its read() or
readline() methods.

	
os.tcgetpgrp(fd)

	Return the process group associated with the terminal given by fd (an open
file descriptor as returned by os.open()).

Availability: Unix.

	
os.tcsetpgrp(fd, pg)

	Set the process group associated with the terminal given by fd (an open file
descriptor as returned by os.open()) to pg.

Availability: Unix.

	
os.ttyname(fd)

	Return a string which specifies the terminal device associated with
file descriptor fd. If fd is not associated with a terminal device, an
exception is raised.

Availability: Unix.

	
os.write(fd, str)

	Write the string str to file descriptor fd. Return the number of bytes
actually written.

Availability: Unix, Windows.

Note

This function is intended for low-level I/O and must be applied to a file
descriptor as returned by os.open() or pipe(). To write a “file
object” returned by the built-in function open() or by popen() or
fdopen(), or sys.stdout or sys.stderr, use its
write() method.

15.1.3.1. open() flag constants

The following constants are options for the flags parameter to the
open() function. They can be combined using the bitwise OR operator
|. Some of them are not available on all platforms. For descriptions of
their availability and use, consult the open(2) manual page on Unix
or the MSDN [http://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx] on Windows.

	
os.O_RDONLY

	
os.O_WRONLY

	
os.O_RDWR

	
os.O_APPEND

	
os.O_CREAT

	
os.O_EXCL

	
os.O_TRUNC

	These constants are available on Unix and Windows.

	
os.O_DSYNC

	
os.O_RSYNC

	
os.O_SYNC

	
os.O_NDELAY

	
os.O_NONBLOCK

	
os.O_NOCTTY

	
os.O_SHLOCK

	
os.O_EXLOCK

	These constants are only available on Unix.

	
os.O_BINARY

	
os.O_NOINHERIT

	
os.O_SHORT_LIVED

	
os.O_TEMPORARY

	
os.O_RANDOM

	
os.O_SEQUENTIAL

	
os.O_TEXT

	These constants are only available on Windows.

	
os.O_ASYNC

	
os.O_DIRECT

	
os.O_DIRECTORY

	
os.O_NOFOLLOW

	
os.O_NOATIME

	These constants are GNU extensions and not present if they are not defined by
the C library.

15.1.4. Files and Directories

	
os.access(path, mode)

	Use the real uid/gid to test for access to path. Note that most operations
will use the effective uid/gid, therefore this routine can be used in a
suid/sgid environment to test if the invoking user has the specified access to
path. mode should be F_OK to test the existence of path, or it
can be the inclusive OR of one or more of R_OK, W_OK, and
X_OK to test permissions. Return True if access is allowed,
False if not. See the Unix man page access(2) for more
information.

Availability: Unix, Windows.

Note

Using access() to check if a user is authorized to e.g. open a file
before actually doing so using open() creates a security hole,
because the user might exploit the short time interval between checking
and opening the file to manipulate it. It’s preferable to use EAFP
techniques. For example:

if os.access("myfile", os.R_OK):
 with open("myfile") as fp:
 return fp.read()
return "some default data"

is better written as:

try:
 fp = open("myfile")
except IOError as e:
 if e.errno == errno.EACCESS:
 return "some default data"
 # Not a permission error.
 raise
else:
 with fp:
 return fp.read()

Note

I/O operations may fail even when access() indicates that they would
succeed, particularly for operations on network filesystems which may have
permissions semantics beyond the usual POSIX permission-bit model.

	
os.F_OK

	Value to pass as the mode parameter of access() to test the existence of
path.

	
os.R_OK

	Value to include in the mode parameter of access() to test the
readability of path.

	
os.W_OK

	Value to include in the mode parameter of access() to test the
writability of path.

	
os.X_OK

	Value to include in the mode parameter of access() to determine if
path can be executed.

	
os.chdir(path)

	Change the current working directory to path.

Availability: Unix, Windows.

	
os.fchdir(fd)

	Change the current working directory to the directory represented by the file
descriptor fd. The descriptor must refer to an opened directory, not an open
file.

Availability: Unix.

New in version 2.3.

	
os.getcwd()

	Return a string representing the current working directory.

Availability: Unix, Windows.

	
os.getcwdu()

	Return a Unicode object representing the current working directory.

Availability: Unix, Windows.

New in version 2.3.

	
os.chflags(path, flags)

	Set the flags of path to the numeric flags. flags may take a combination
(bitwise OR) of the following values (as defined in the stat module):

	stat.UF_NODUMP

	stat.UF_IMMUTABLE

	stat.UF_APPEND

	stat.UF_OPAQUE

	stat.UF_NOUNLINK

	stat.SF_ARCHIVED

	stat.SF_IMMUTABLE

	stat.SF_APPEND

	stat.SF_NOUNLINK

	stat.SF_SNAPSHOT

Availability: Unix.

New in version 2.6.

	
os.chroot(path)

	Change the root directory of the current process to path. Availability:
Unix.

New in version 2.2.

	
os.chmod(path, mode)

	Change the mode of path to the numeric mode. mode may take one of the
following values (as defined in the stat module) or bitwise ORed
combinations of them:

	stat.S_ISUID

	stat.S_ISGID

	stat.S_ENFMT

	stat.S_ISVTX

	stat.S_IREAD

	stat.S_IWRITE

	stat.S_IEXEC

	stat.S_IRWXU

	stat.S_IRUSR

	stat.S_IWUSR

	stat.S_IXUSR

	stat.S_IRWXG

	stat.S_IRGRP

	stat.S_IWGRP

	stat.S_IXGRP

	stat.S_IRWXO

	stat.S_IROTH

	stat.S_IWOTH

	stat.S_IXOTH

Availability: Unix, Windows.

Note

Although Windows supports chmod(), you can only set the file’s read-only
flag with it (via the stat.S_IWRITE and stat.S_IREAD
constants or a corresponding integer value). All other bits are
ignored.

	
os.chown(path, uid, gid)

	Change the owner and group id of path to the numeric uid and gid. To leave
one of the ids unchanged, set it to -1.

Availability: Unix.

	
os.lchflags(path, flags)

	Set the flags of path to the numeric flags, like chflags(), but do not
follow symbolic links.

Availability: Unix.

New in version 2.6.

	
os.lchmod(path, mode)

	Change the mode of path to the numeric mode. If path is a symlink, this
affects the symlink rather than the target. See the docs for chmod()
for possible values of mode.

Availability: Unix.

New in version 2.6.

	
os.lchown(path, uid, gid)

	Change the owner and group id of path to the numeric uid and gid. This
function will not follow symbolic links.

Availability: Unix.

New in version 2.3.

	
os.link(source, link_name)

	Create a hard link pointing to source named link_name.

Availability: Unix.

	
os.listdir(path)

	Return a list containing the names of the entries in the directory given by
path. The list is in arbitrary order. It does not include the special
entries '.' and '..' even if they are present in the
directory.

Availability: Unix, Windows.

Changed in version 2.3: On Windows NT/2k/XP and Unix, if path is a Unicode object, the result will be
a list of Unicode objects. Undecodable filenames will still be returned as
string objects.

	
os.lstat(path)

	Perform the equivalent of an lstat() system call on the given path.
Similar to stat(), but does not follow symbolic links. On
platforms that do not support symbolic links, this is an alias for
stat().

	
os.mkfifo(path[, mode])

	Create a FIFO (a named pipe) named path with numeric mode mode. The default
mode is 0666 (octal). The current umask value is first masked out from
the mode.

Availability: Unix.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they
are deleted (for example with os.unlink()). Generally, FIFOs are used as
rendezvous between “client” and “server” type processes: the server opens the
FIFO for reading, and the client opens it for writing. Note that mkfifo()
doesn’t open the FIFO — it just creates the rendezvous point.

	
os.mknod(filename[, mode=0600, device])

	Create a filesystem node (file, device special file or named pipe) named
filename. mode specifies both the permissions to use and the type of node to
be created, being combined (bitwise OR) with one of stat.S_IFREG,
stat.S_IFCHR, stat.S_IFBLK,
and stat.S_IFIFO (those constants are available in stat).
For stat.S_IFCHR and
stat.S_IFBLK, device defines the newly created device special file (probably using
os.makedev()), otherwise it is ignored.

New in version 2.3.

	
os.major(device)

	Extract the device major number from a raw device number (usually the
st_dev or st_rdev field from stat).

New in version 2.3.

	
os.minor(device)

	Extract the device minor number from a raw device number (usually the
st_dev or st_rdev field from stat).

New in version 2.3.

	
os.makedev(major, minor)

	Compose a raw device number from the major and minor device numbers.

New in version 2.3.

	
os.mkdir(path[, mode])

	Create a directory named path with numeric mode mode. The default mode is
0777 (octal). On some systems, mode is ignored. Where it is used, the
current umask value is first masked out. If the directory already exists,
OSError is raised.

It is also possible to create temporary directories; see the
tempfile module’s tempfile.mkdtemp() function.

Availability: Unix, Windows.

	
os.makedirs(path[, mode])

	Recursive directory creation function. Like mkdir(), but makes all
intermediate-level directories needed to contain the leaf directory. Raises an
error exception if the leaf directory already exists or cannot be
created. The default mode is 0777 (octal). On some systems, mode is
ignored. Where it is used, the current umask value is first masked out.

Note

makedirs() will become confused if the path elements to create include
os.pardir.

New in version 1.5.2.

Changed in version 2.3: This function now handles UNC paths correctly.

	
os.pathconf(path, name)

	Return system configuration information relevant to a named file. name
specifies the configuration value to retrieve; it may be a string which is the
name of a defined system value; these names are specified in a number of
standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define
additional names as well. The names known to the host operating system are
given in the pathconf_names dictionary. For configuration variables not
included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a
specific value for name is not supported by the host system, even if it is
included in pathconf_names, an OSError is raised with
errno.EINVAL for the error number.

Availability: Unix.

	
os.pathconf_names

	Dictionary mapping names accepted by pathconf() and fpathconf() to
the integer values defined for those names by the host operating system. This
can be used to determine the set of names known to the system. Availability:
Unix.

	
os.readlink(path)

	Return a string representing the path to which the symbolic link points. The
result may be either an absolute or relative pathname; if it is relative, it may
be converted to an absolute pathname using os.path.join(os.path.dirname(path),
result).

Changed in version 2.6: If the path is a Unicode object the result will also be a Unicode object.

Availability: Unix.

	
os.remove(path)

	Remove (delete) the file path. If path is a directory, OSError is
raised; see rmdir() below to remove a directory. This is identical to
the unlink() function documented below. On Windows, attempting to
remove a file that is in use causes an exception to be raised; on Unix, the
directory entry is removed but the storage allocated to the file is not made
available until the original file is no longer in use.

Availability: Unix, Windows.

	
os.removedirs(path)

	Remove directories recursively. Works like rmdir() except that, if the
leaf directory is successfully removed, removedirs() tries to
successively remove every parent directory mentioned in path until an error
is raised (which is ignored, because it generally means that a parent directory
is not empty). For example, os.removedirs('foo/bar/baz') will first remove
the directory 'foo/bar/baz', and then remove 'foo/bar' and 'foo' if
they are empty. Raises OSError if the leaf directory could not be
successfully removed.

New in version 1.5.2.

	
os.rename(src, dst)

	Rename the file or directory src to dst. If dst is a directory,
OSError will be raised. On Unix, if dst exists and is a file, it will
be replaced silently if the user has permission. The operation may fail on some
Unix flavors if src and dst are on different filesystems. If successful,
the renaming will be an atomic operation (this is a POSIX requirement). On
Windows, if dst already exists, OSError will be raised even if it is a
file; there may be no way to implement an atomic rename when dst names an
existing file.

Availability: Unix, Windows.

	
os.renames(old, new)

	Recursive directory or file renaming function. Works like rename(), except
creation of any intermediate directories needed to make the new pathname good is
attempted first. After the rename, directories corresponding to rightmost path
segments of the old name will be pruned away using removedirs().

New in version 1.5.2.

Note

This function can fail with the new directory structure made if you lack
permissions needed to remove the leaf directory or file.

	
os.rmdir(path)

	Remove (delete) the directory path. Only works when the directory is
empty, otherwise, OSError is raised. In order to remove whole
directory trees, shutil.rmtree() can be used.

Availability: Unix, Windows.

	
os.stat(path)

	Perform the equivalent of a stat() system call on the given path.
(This function follows symlinks; to stat a symlink use lstat().)

The return value is an object whose attributes correspond to the members
of the stat structure, namely:

	st_mode - protection bits,

	st_ino - inode number,

	st_dev - device,

	st_nlink - number of hard links,

	st_uid - user id of owner,

	st_gid - group id of owner,

	st_size - size of file, in bytes,

	st_atime - time of most recent access,

	st_mtime - time of most recent content modification,

	st_ctime - platform dependent; time of most recent metadata change on
Unix, or the time of creation on Windows)

Changed in version 2.3: If stat_float_times() returns True, the time values are floats, measuring
seconds. Fractions of a second may be reported if the system supports that. On
Mac OS, the times are always floats. See stat_float_times() for further
discussion.

On some Unix systems (such as Linux), the following attributes may also be
available:

	st_blocks - number of blocks allocated for file

	st_blksize - filesystem blocksize

	st_rdev - type of device if an inode device

	st_flags - user defined flags for file

On other Unix systems (such as FreeBSD), the following attributes may be
available (but may be only filled out if root tries to use them):

	st_gen - file generation number

	st_birthtime - time of file creation

On Mac OS systems, the following attributes may also be available:

	st_rsize

	st_creator

	st_type

On RISCOS systems, the following attributes are also available:

	st_ftype (file type)

	st_attrs (attributes)

	st_obtype (object type).

Note

The exact meaning and resolution of the st_atime, st_mtime, and
st_ctime members depends on the operating system and the file system.
For example, on Windows systems using the FAT or FAT32 file systems,
st_mtime has 2-second resolution, and st_atime has only 1-day
resolution. See your operating system documentation for details.

For backward compatibility, the return value of stat() is also accessible
as a tuple of at least 10 integers giving the most important (and portable)
members of the stat structure, in the order st_mode,
st_ino, st_dev, st_nlink, st_uid,
st_gid, st_size, st_atime, st_mtime,
st_ctime. More items may be added at the end by some implementations.

The standard module stat defines functions and constants that are useful
for extracting information from a stat structure. (On Windows, some
items are filled with dummy values.)

Example:

>>> import os
>>> statinfo = os.stat('somefile.txt')
>>> statinfo
(33188, 422511, 769, 1, 1032, 100, 926, 1105022698,1105022732, 1105022732)
>>> statinfo.st_size
926

Availability: Unix, Windows.

Changed in version 2.2: Added access to values as attributes of the returned object.

Changed in version 2.5: Added st_gen and st_birthtime.

	
os.stat_float_times([newvalue])

	Determine whether stat_result represents time stamps as float objects.
If newvalue is True, future calls to stat() return floats, if it is
False, future calls return ints. If newvalue is omitted, return the
current setting.

For compatibility with older Python versions, accessing stat_result as
a tuple always returns integers.

Changed in version 2.5: Python now returns float values by default. Applications which do not work
correctly with floating point time stamps can use this function to restore the
old behaviour.

The resolution of the timestamps (that is the smallest possible fraction)
depends on the system. Some systems only support second resolution; on these
systems, the fraction will always be zero.

It is recommended that this setting is only changed at program startup time in
the __main__ module; libraries should never change this setting. If an
application uses a library that works incorrectly if floating point time stamps
are processed, this application should turn the feature off until the library
has been corrected.

	
os.statvfs(path)

	Perform a statvfs() system call on the given path. The return value is
an object whose attributes describe the filesystem on the given path, and
correspond to the members of the statvfs structure, namely:
f_bsize, f_frsize, f_blocks, f_bfree,
f_bavail, f_files, f_ffree, f_favail,
f_flag, f_namemax.

For backward compatibility, the return value is also accessible as a tuple whose
values correspond to the attributes, in the order given above. The standard
module statvfs defines constants that are useful for extracting
information from a statvfs structure when accessing it as a sequence;
this remains useful when writing code that needs to work with versions of Python
that don’t support accessing the fields as attributes.

Availability: Unix.

Changed in version 2.2: Added access to values as attributes of the returned object.

	
os.symlink(source, link_name)

	Create a symbolic link pointing to source named link_name.

Availability: Unix.

	
os.tempnam([dir[, prefix]])

	Return a unique path name that is reasonable for creating a temporary file.
This will be an absolute path that names a potential directory entry in the
directory dir or a common location for temporary files if dir is omitted or
None. If given and not None, prefix is used to provide a short prefix
to the filename. Applications are responsible for properly creating and
managing files created using paths returned by tempnam(); no automatic
cleanup is provided. On Unix, the environment variable TMPDIR
overrides dir, while on Windows TMP is used. The specific
behavior of this function depends on the C library implementation; some aspects
are underspecified in system documentation.

Warning

Use of tempnam() is vulnerable to symlink attacks; consider using
tmpfile() (section File Object Creation) instead.

Availability: Unix, Windows.

	
os.tmpnam()

	Return a unique path name that is reasonable for creating a temporary file.
This will be an absolute path that names a potential directory entry in a common
location for temporary files. Applications are responsible for properly
creating and managing files created using paths returned by tmpnam(); no
automatic cleanup is provided.

Warning

Use of tmpnam() is vulnerable to symlink attacks; consider using
tmpfile() (section File Object Creation) instead.

Availability: Unix, Windows. This function probably shouldn’t be used on
Windows, though: Microsoft’s implementation of tmpnam() always creates a
name in the root directory of the current drive, and that’s generally a poor
location for a temp file (depending on privileges, you may not even be able to
open a file using this name).

	
os.TMP_MAX

	The maximum number of unique names that tmpnam() will generate before
reusing names.

	
os.unlink(path)

	Remove (delete) the file path. This is the same function as
remove(); the unlink() name is its traditional Unix
name.

Availability: Unix, Windows.

	
os.utime(path, times)

	Set the access and modified times of the file specified by path. If times
is None, then the file’s access and modified times are set to the current
time. (The effect is similar to running the Unix program touch on
the path.) Otherwise, times must be a 2-tuple of numbers, of the form
(atime, mtime) which is used to set the access and modified times,
respectively. Whether a directory can be given for path depends on whether
the operating system implements directories as files (for example, Windows
does not). Note that the exact times you set here may not be returned by a
subsequent stat() call, depending on the resolution with which your
operating system records access and modification times; see stat().

Changed in version 2.0: Added support for None for times.

Availability: Unix, Windows.

	
os.walk(top[, topdown=True[, onerror=None[, followlinks=False]]])

	Generate the file names in a directory tree by walking the tree
either top-down or bottom-up. For each directory in the tree rooted at directory
top (including top itself), it yields a 3-tuple (dirpath, dirnames,
filenames).

dirpath is a string, the path to the directory. dirnames is a list of the
names of the subdirectories in dirpath (excluding '.' and '..').
filenames is a list of the names of the non-directory files in dirpath.
Note that the names in the lists contain no path components. To get a full path
(which begins with top) to a file or directory in dirpath, do
os.path.join(dirpath, name).

If optional argument topdown is True or not specified, the triple for a
directory is generated before the triples for any of its subdirectories
(directories are generated top-down). If topdown is False, the triple for a
directory is generated after the triples for all of its subdirectories
(directories are generated bottom-up).

When topdown is True, the caller can modify the dirnames list in-place
(perhaps using del or slice assignment), and walk() will only
recurse into the subdirectories whose names remain in dirnames; this can be
used to prune the search, impose a specific order of visiting, or even to inform
walk() about directories the caller creates or renames before it resumes
walk() again. Modifying dirnames when topdown is False is
ineffective, because in bottom-up mode the directories in dirnames are
generated before dirpath itself is generated.

By default errors from the listdir() call are ignored. If optional
argument onerror is specified, it should be a function; it will be called with
one argument, an OSError instance. It can report the error to continue
with the walk, or raise the exception to abort the walk. Note that the filename
is available as the filename attribute of the exception object.

By default, walk() will not walk down into symbolic links that resolve to
directories. Set followlinks to True to visit directories pointed to by
symlinks, on systems that support them.

New in version 2.6: The followlinks parameter.

Note

Be aware that setting followlinks to True can lead to infinite recursion if a
link points to a parent directory of itself. walk() does not keep track of
the directories it visited already.

Note

If you pass a relative pathname, don’t change the current working directory
between resumptions of walk(). walk() never changes the current
directory, and assumes that its caller doesn’t either.

This example displays the number of bytes taken by non-directory files in each
directory under the starting directory, except that it doesn’t look under any
CVS subdirectory:

import os
from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email'):
 print root, "consumes",
 print sum(getsize(join(root, name)) for name in files),
 print "bytes in", len(files), "non-directory files"
 if 'CVS' in dirs:
 dirs.remove('CVS') # don't visit CVS directories

In the next example, walking the tree bottom-up is essential: rmdir()
doesn’t allow deleting a directory before the directory is empty:

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == '/', it
could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):
 for name in files:
 os.remove(os.path.join(root, name))
 for name in dirs:
 os.rmdir(os.path.join(root, name))

New in version 2.3.

15.1.5. Process Management

These functions may be used to create and manage processes.

The various exec*() functions take a list of arguments for the new
program loaded into the process. In each case, the first of these arguments is
passed to the new program as its own name rather than as an argument a user may
have typed on a command line. For the C programmer, this is the argv[0]
passed to a program’s main(). For example, os.execv('/bin/echo',
['foo', 'bar']) will only print bar on standard output; foo will seem
to be ignored.

	
os.abort()

	Generate a SIGABRT signal to the current process. On Unix, the default
behavior is to produce a core dump; on Windows, the process immediately returns
an exit code of 3. Be aware that programs which use signal.signal()
to register a handler for SIGABRT will behave differently.

Availability: Unix, Windows.

	
os.execl(path, arg0, arg1, ...)

	
os.execle(path, arg0, arg1, ..., env)

	
os.execlp(file, arg0, arg1, ...)

	
os.execlpe(file, arg0, arg1, ..., env)

	
os.execv(path, args)

	
os.execve(path, args, env)

	
os.execvp(file, args)

	
os.execvpe(file, args, env)

	These functions all execute a new program, replacing the current process; they
do not return. On Unix, the new executable is loaded into the current process,
and will have the same process id as the caller. Errors will be reported as
OSError exceptions.

The current process is replaced immediately. Open file objects and
descriptors are not flushed, so if there may be data buffered
on these open files, you should flush them using
sys.stdout.flush() or os.fsync() before calling an
exec*() function.

The “l” and “v” variants of the exec*() functions differ in how
command-line arguments are passed. The “l” variants are perhaps the easiest
to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters to the execl*()
functions. The “v” variants are good when the number of parameters is
variable, with the arguments being passed in a list or tuple as the args
parameter. In either case, the arguments to the child process should start with
the name of the command being run, but this is not enforced.

The variants which include a “p” near the end (execlp(),
execlpe(), execvp(), and execvpe()) will use the
PATH environment variable to locate the program file. When the
environment is being replaced (using one of the exec*e() variants,
discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other variants, execl(), execle(),
execv(), and execve(), will not use the PATH variable to
locate the executable; path must contain an appropriate absolute or relative
path.

For execle(), execlpe(), execve(), and execvpe() (note
that these all end in “e”), the env parameter must be a mapping which is
used to define the environment variables for the new process (these are used
instead of the current process’ environment); the functions execl(),
execlp(), execv(), and execvp() all cause the new process to
inherit the environment of the current process.

Availability: Unix, Windows.

	
os._exit(n)

	Exit the process with status n, without calling cleanup handlers, flushing
stdio buffers, etc.

Availability: Unix, Windows.

Note

The standard way to exit is sys.exit(n). _exit() should
normally only be used in the child process after a fork().

The following exit codes are defined and can be used with _exit(),
although they are not required. These are typically used for system programs
written in Python, such as a mail server’s external command delivery program.

Note

Some of these may not be available on all Unix platforms, since there is some
variation. These constants are defined where they are defined by the underlying
platform.

	
os.EX_OK

	Exit code that means no error occurred.

Availability: Unix.

New in version 2.3.

	
os.EX_USAGE

	Exit code that means the command was used incorrectly, such as when the wrong
number of arguments are given.

Availability: Unix.

New in version 2.3.

	
os.EX_DATAERR

	Exit code that means the input data was incorrect.

Availability: Unix.

New in version 2.3.

	
os.EX_NOINPUT

	Exit code that means an input file did not exist or was not readable.

Availability: Unix.

New in version 2.3.

	
os.EX_NOUSER

	Exit code that means a specified user did not exist.

Availability: Unix.

New in version 2.3.

	
os.EX_NOHOST

	Exit code that means a specified host did not exist.

Availability: Unix.

New in version 2.3.

	
os.EX_UNAVAILABLE

	Exit code that means that a required service is unavailable.

Availability: Unix.

New in version 2.3.

	
os.EX_SOFTWARE

	Exit code that means an internal software error was detected.

Availability: Unix.

New in version 2.3.

	
os.EX_OSERR

	Exit code that means an operating system error was detected, such as the
inability to fork or create a pipe.

Availability: Unix.

New in version 2.3.

	
os.EX_OSFILE

	Exit code that means some system file did not exist, could not be opened, or had
some other kind of error.

Availability: Unix.

New in version 2.3.

	
os.EX_CANTCREAT

	Exit code that means a user specified output file could not be created.

Availability: Unix.

New in version 2.3.

	
os.EX_IOERR

	Exit code that means that an error occurred while doing I/O on some file.

Availability: Unix.

New in version 2.3.

	
os.EX_TEMPFAIL

	Exit code that means a temporary failure occurred. This indicates something
that may not really be an error, such as a network connection that couldn’t be
made during a retryable operation.

Availability: Unix.

New in version 2.3.

	
os.EX_PROTOCOL

	Exit code that means that a protocol exchange was illegal, invalid, or not
understood.

Availability: Unix.

New in version 2.3.

	
os.EX_NOPERM

	Exit code that means that there were insufficient permissions to perform the
operation (but not intended for file system problems).

Availability: Unix.

New in version 2.3.

	
os.EX_CONFIG

	Exit code that means that some kind of configuration error occurred.

Availability: Unix.

New in version 2.3.

	
os.EX_NOTFOUND

	Exit code that means something like “an entry was not found”.

Availability: Unix.

New in version 2.3.

	
os.fork()

	Fork a child process. Return 0 in the child and the child’s process id in the
parent. If an error occurs OSError is raised.

Note that some platforms including FreeBSD <= 6.3, Cygwin and OS/2 EMX have
known issues when using fork() from a thread.

Availability: Unix.

	
os.forkpty()

	Fork a child process, using a new pseudo-terminal as the child’s controlling
terminal. Return a pair of (pid, fd), where pid is 0 in the child, the
new child’s process id in the parent, and fd is the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, use the
pty module. If an error occurs OSError is raised.

Availability: some flavors of Unix.

	
os.kill(pid, sig)

	Send signal sig to the process pid. Constants for the specific signals
available on the host platform are defined in the signal module.

Windows: The signal.CTRL_C_EVENT and
signal.CTRL_BREAK_EVENT signals are special signals which can
only be sent to console processes which share a common console window,
e.g., some subprocesses. Any other value for sig will cause the process
to be unconditionally killed by the TerminateProcess API, and the exit code
will be set to sig. The Windows version of kill() additionally takes
process handles to be killed.

New in version 2.7: Windows support

	
os.killpg(pgid, sig)

	Send the signal sig to the process group pgid.

Availability: Unix.

New in version 2.3.

	
os.nice(increment)

	Add increment to the process’s “niceness”. Return the new niceness.

Availability: Unix.

	
os.plock(op)

	Lock program segments into memory. The value of op (defined in
<sys/lock.h>) determines which segments are locked.

Availability: Unix.

	
os.popen(...)

	
os.popen2(...)

	
os.popen3(...)

	
os.popen4(...)

	Run child processes, returning opened pipes for communications. These functions
are described in section File Object Creation.

	
os.spawnl(mode, path, ...)

	
os.spawnle(mode, path, ..., env)

	
os.spawnlp(mode, file, ...)

	
os.spawnlpe(mode, file, ..., env)

	
os.spawnv(mode, path, args)

	
os.spawnve(mode, path, args, env)

	
os.spawnvp(mode, file, args)

	
os.spawnvpe(mode, file, args, env)

	Execute the program path in a new process.

(Note that the subprocess module provides more powerful facilities for
spawning new processes and retrieving their results; using that module is
preferable to using these functions. Check especially the
Replacing Older Functions with the subprocess Module section.)

If mode is P_NOWAIT, this function returns the process id of the new
process; if mode is P_WAIT, returns the process’s exit code if it
exits normally, or -signal, where signal is the signal that killed the
process. On Windows, the process id will actually be the process handle, so can
be used with the waitpid() function.

The “l” and “v” variants of the spawn*() functions differ in how
command-line arguments are passed. The “l” variants are perhaps the easiest
to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters to the
spawnl*() functions. The “v” variants are good when the number of
parameters is variable, with the arguments being passed in a list or tuple as
the args parameter. In either case, the arguments to the child process must
start with the name of the command being run.

The variants which include a second “p” near the end (spawnlp(),
spawnlpe(), spawnvp(), and spawnvpe()) will use the
PATH environment variable to locate the program file. When the
environment is being replaced (using one of the spawn*e() variants,
discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other variants, spawnl(),
spawnle(), spawnv(), and spawnve(), will not use the
PATH variable to locate the executable; path must contain an
appropriate absolute or relative path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe()
(note that these all end in “e”), the env parameter must be a mapping
which is used to define the environment variables for the new process (they are
used instead of the current process’ environment); the functions
spawnl(), spawnlp(), spawnv(), and spawnvp() all cause
the new process to inherit the environment of the current process. Note that
keys and values in the env dictionary must be strings; invalid keys or
values will cause the function to fail, with a return value of 127.

As an example, the following calls to spawnlp() and spawnvpe() are
equivalent:

import os
os.spawnlp(os.P_WAIT, 'cp', 'cp', 'index.html', '/dev/null')

L = ['cp', 'index.html', '/dev/null']
os.spawnvpe(os.P_WAIT, 'cp', L, os.environ)

Availability: Unix, Windows. spawnlp(), spawnlpe(), spawnvp()
and spawnvpe() are not available on Windows.

New in version 1.6.

	
os.P_NOWAIT

	
os.P_NOWAITO

	Possible values for the mode parameter to the spawn*() family of
functions. If either of these values is given, the spawn*() functions
will return as soon as the new process has been created, with the process id as
the return value.

Availability: Unix, Windows.

New in version 1.6.

	
os.P_WAIT

	Possible value for the mode parameter to the spawn*() family of
functions. If this is given as mode, the spawn*() functions will not
return until the new process has run to completion and will return the exit code
of the process the run is successful, or -signal if a signal kills the
process.

Availability: Unix, Windows.

New in version 1.6.

	
os.P_DETACH

	
os.P_OVERLAY

	Possible values for the mode parameter to the spawn*() family of
functions. These are less portable than those listed above. P_DETACH
is similar to P_NOWAIT, but the new process is detached from the
console of the calling process. If P_OVERLAY is used, the current
process will be replaced; the spawn*() function will not return.

Availability: Windows.

New in version 1.6.

	
os.startfile(path[, operation])

	Start a file with its associated application.

When operation is not specified or 'open', this acts like double-clicking
the file in Windows Explorer, or giving the file name as an argument to the
start command from the interactive command shell: the file is opened
with whatever application (if any) its extension is associated.

When another operation is given, it must be a “command verb” that specifies
what should be done with the file. Common verbs documented by Microsoft are
'print' and 'edit' (to be used on files) as well as 'explore' and
'find' (to be used on directories).

startfile() returns as soon as the associated application is launched.
There is no option to wait for the application to close, and no way to retrieve
the application’s exit status. The path parameter is relative to the current
directory. If you want to use an absolute path, make sure the first character
is not a slash ('/'); the underlying Win32 ShellExecute() function
doesn’t work if it is. Use the os.path.normpath() function to ensure that
the path is properly encoded for Win32.

Availability: Windows.

New in version 2.0.

New in version 2.5: The operation parameter.

	
os.system(command)

	Execute the command (a string) in a subshell. This is implemented by calling
the Standard C function system(), and has the same limitations.
Changes to sys.stdin, etc. are not reflected in the environment of the
executed command.

On Unix, the return value is the exit status of the process encoded in the
format specified for wait(). Note that POSIX does not specify the meaning
of the return value of the C system() function, so the return value of
the Python function is system-dependent.

On Windows, the return value is that returned by the system shell after running
command, given by the Windows environment variable COMSPEC: on
command.com systems (Windows 95, 98 and ME) this is always 0; on
cmd.exe systems (Windows NT, 2000 and XP) this is the exit status of
the command run; on systems using a non-native shell, consult your shell
documentation.

The subprocess module provides more powerful facilities for spawning new
processes and retrieving their results; using that module is preferable to using
this function. See the
Replacing Older Functions with the subprocess Module section in the subprocess documentation
for some helpful recipes.

Availability: Unix, Windows.

	
os.times()

	Return a 5-tuple of floating point numbers indicating accumulated (processor
or other) times, in seconds. The items are: user time, system time,
children’s user time, children’s system time, and elapsed real time since a
fixed point in the past, in that order. See the Unix manual page
times(2) or the corresponding Windows Platform API documentation.
On Windows, only the first two items are filled, the others are zero.

Availability: Unix, Windows

	
os.wait()

	Wait for completion of a child process, and return a tuple containing its pid
and exit status indication: a 16-bit number, whose low byte is the signal number
that killed the process, and whose high byte is the exit status (if the signal
number is zero); the high bit of the low byte is set if a core file was
produced.

Availability: Unix.

	
os.waitpid(pid, options)

	The details of this function differ on Unix and Windows.

On Unix: Wait for completion of a child process given by process id pid, and
return a tuple containing its process id and exit status indication (encoded as
for wait()). The semantics of the call are affected by the value of the
integer options, which should be 0 for normal operation.

If pid is greater than 0, waitpid() requests status information for
that specific process. If pid is 0, the request is for the status of any
child in the process group of the current process. If pid is -1, the
request pertains to any child of the current process. If pid is less than
-1, status is requested for any process in the process group -pid (the
absolute value of pid).

An OSError is raised with the value of errno when the syscall
returns -1.

On Windows: Wait for completion of a process given by process handle pid, and
return a tuple containing pid, and its exit status shifted left by 8 bits
(shifting makes cross-platform use of the function easier). A pid less than or
equal to 0 has no special meaning on Windows, and raises an exception. The
value of integer options has no effect. pid can refer to any process whose
id is known, not necessarily a child process. The spawn() functions called
with P_NOWAIT return suitable process handles.

	
os.wait3([options])

	Similar to waitpid(), except no process id argument is given and a
3-element tuple containing the child’s process id, exit status indication, and
resource usage information is returned. Refer to resource.getrusage() for details on resource usage information. The option
argument is the same as that provided to waitpid() and wait4().

Availability: Unix.

New in version 2.5.

	
os.wait4(pid, options)

	Similar to waitpid(), except a 3-element tuple, containing the child’s
process id, exit status indication, and resource usage information is returned.
Refer to resource.getrusage() for details on resource usage
information. The arguments to wait4() are the same as those provided to
waitpid().

Availability: Unix.

New in version 2.5.

	
os.WNOHANG

	The option for waitpid() to return immediately if no child process status
is available immediately. The function returns (0, 0) in this case.

Availability: Unix.

	
os.WCONTINUED

	This option causes child processes to be reported if they have been continued
from a job control stop since their status was last reported.

Availability: Some Unix systems.

New in version 2.3.

	
os.WUNTRACED

	This option causes child processes to be reported if they have been stopped but
their current state has not been reported since they were stopped.

Availability: Unix.

New in version 2.3.

The following functions take a process status code as returned by
system(), wait(), or waitpid() as a parameter. They may be
used to determine the disposition of a process.

	
os.WCOREDUMP(status)

	Return True if a core dump was generated for the process, otherwise
return False.

Availability: Unix.

New in version 2.3.

	
os.WIFCONTINUED(status)

	Return True if the process has been continued from a job control stop,
otherwise return False.

Availability: Unix.

New in version 2.3.

	
os.WIFSTOPPED(status)

	Return True if the process has been stopped, otherwise return
False.

Availability: Unix.

	
os.WIFSIGNALED(status)

	Return True if the process exited due to a signal, otherwise return
False.

Availability: Unix.

	
os.WIFEXITED(status)

	Return True if the process exited using the exit(2) system call,
otherwise return False.

Availability: Unix.

	
os.WEXITSTATUS(status)

	If WIFEXITED(status) is true, return the integer parameter to the
exit(2) system call. Otherwise, the return value is meaningless.

Availability: Unix.

	
os.WSTOPSIG(status)

	Return the signal which caused the process to stop.

Availability: Unix.

	
os.WTERMSIG(status)

	Return the signal which caused the process to exit.

Availability: Unix.

15.1.6. Miscellaneous System Information

	
os.confstr(name)

	Return string-valued system configuration values. name specifies the
configuration value to retrieve; it may be a string which is the name of a
defined system value; these names are specified in a number of standards (POSIX,
Unix 95, Unix 98, and others). Some platforms define additional names as well.
The names known to the host operating system are given as the keys of the
confstr_names dictionary. For configuration variables not included in that
mapping, passing an integer for name is also accepted.

If the configuration value specified by name isn’t defined, None is
returned.

If name is a string and is not known, ValueError is raised. If a
specific value for name is not supported by the host system, even if it is
included in confstr_names, an OSError is raised with
errno.EINVAL for the error number.

Availability: Unix

	
os.confstr_names

	Dictionary mapping names accepted by confstr() to the integer values
defined for those names by the host operating system. This can be used to
determine the set of names known to the system.

Availability: Unix.

	
os.getloadavg()

	Return the number of processes in the system run queue averaged over the last
1, 5, and 15 minutes or raises OSError if the load average was
unobtainable.

Availability: Unix.

New in version 2.3.

	
os.sysconf(name)

	Return integer-valued system configuration values. If the configuration value
specified by name isn’t defined, -1 is returned. The comments regarding
the name parameter for confstr() apply here as well; the dictionary that
provides information on the known names is given by sysconf_names.

Availability: Unix.

	
os.sysconf_names

	Dictionary mapping names accepted by sysconf() to the integer values
defined for those names by the host operating system. This can be used to
determine the set of names known to the system.

Availability: Unix.

The following data values are used to support path manipulation operations. These
are defined for all platforms.

Higher-level operations on pathnames are defined in the os.path module.

	
os.curdir

	The constant string used by the operating system to refer to the current
directory. This is '.' for Windows and POSIX. Also available via
os.path.

	
os.pardir

	The constant string used by the operating system to refer to the parent
directory. This is '..' for Windows and POSIX. Also available via
os.path.

	
os.sep

	The character used by the operating system to separate pathname components.
This is '/' for POSIX and '\\' for Windows. Note that knowing this
is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() and os.path.join() — but it is occasionally
useful. Also available via os.path.

	
os.altsep

	An alternative character used by the operating system to separate pathname
components, or None if only one separator character exists. This is set to
'/' on Windows systems where sep is a backslash. Also available via
os.path.

	
os.extsep

	The character which separates the base filename from the extension; for example,
the '.' in os.py. Also available via os.path.

New in version 2.2.

	
os.pathsep

	The character conventionally used by the operating system to separate search
path components (as in PATH), such as ':' for POSIX or ';' for
Windows. Also available via os.path.

	
os.defpath

	The default search path used by exec*p*() and spawn*p*() if the
environment doesn’t have a 'PATH' key. Also available via os.path.

	
os.linesep

	The string used to separate (or, rather, terminate) lines on the current
platform. This may be a single character, such as '\n' for POSIX, or
multiple characters, for example, '\r\n' for Windows. Do not use
os.linesep as a line terminator when writing files opened in text mode (the
default); use a single '\n' instead, on all platforms.

	
os.devnull

	The file path of the null device. For example: '/dev/null' for
POSIX, 'nul' for Windows. Also available via os.path.

New in version 2.4.

15.1.7. Miscellaneous Functions

	
os.urandom(n)

	Return a string of n random bytes suitable for cryptographic use.

This function returns random bytes from an OS-specific randomness source. The
returned data should be unpredictable enough for cryptographic applications,
though its exact quality depends on the OS implementation. On a UNIX-like
system this will query /dev/urandom, and on Windows it will use CryptGenRandom.
If a randomness source is not found, NotImplementedError will be raised.

New in version 2.4.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.2. io — Core tools for working with streams

New in version 2.6.

The io module provides the Python interfaces to stream handling.
Under Python 2.x, this is proposed as an alternative to the built-in
file object, but in Python 3.x it is the default interface to
access files and streams.

Note

Since this module has been designed primarily for Python 3.x, you have to
be aware that all uses of “bytes” in this document refer to the
str type (of which bytes is an alias), and all uses
of “text” refer to the unicode type. Furthermore, those two
types are not interchangeable in the io APIs.

At the top of the I/O hierarchy is the abstract base class IOBase. It
defines the basic interface to a stream. Note, however, that there is no
separation between reading and writing to streams; implementations are allowed
to raise an IOError if they do not support a given operation.

Extending IOBase is RawIOBase which deals simply with the
reading and writing of raw bytes to a stream. FileIO subclasses
RawIOBase to provide an interface to files in the machine’s
file system.

BufferedIOBase deals with buffering on a raw byte stream
(RawIOBase). Its subclasses, BufferedWriter,
BufferedReader, and BufferedRWPair buffer streams that are
readable, writable, and both readable and writable.
BufferedRandom provides a buffered interface to random access
streams. BytesIO is a simple stream of in-memory bytes.

Another IOBase subclass, TextIOBase, deals with
streams whose bytes represent text, and handles encoding and decoding
from and to unicode strings. TextIOWrapper, which extends
it, is a buffered text interface to a buffered raw stream
(BufferedIOBase). Finally, StringIO is an in-memory
stream for unicode text.

Argument names are not part of the specification, and only the arguments of
open() are intended to be used as keyword arguments.

15.2.1. Module Interface

	
io.DEFAULT_BUFFER_SIZE

	An int containing the default buffer size used by the module’s buffered I/O
classes. open() uses the file’s blksize (as obtained by
os.stat()) if possible.

	
io.open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True)

	Open file and return a corresponding stream. If the file cannot be opened,
an IOError is raised.

file is either a string giving the pathname (absolute or
relative to the current working directory) of the file to be opened or
an integer file descriptor of the file to be wrapped. (If a file descriptor
is given, it is closed when the returned I/O object is closed, unless
closefd is set to False.)

mode is an optional string that specifies the mode in which the file is
opened. It defaults to 'r' which means open for reading in text mode.
Other common values are 'w' for writing (truncating the file if it
already exists), and 'a' for appending (which on some Unix systems,
means that all writes append to the end of the file regardless of the
current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent. (For reading and writing raw bytes use
binary mode and leave encoding unspecified.) The available modes are:

	Character
	Meaning

	'r'
	open for reading (default)

	'w'
	open for writing, truncating the file first

	'a'
	open for writing, appending to the end of the file if it exists

	'b'
	binary mode

	't'
	text mode (default)

	'+'
	open a disk file for updating (reading and writing)

	'U'
	universal newline mode (for backwards compatibility; should
not be used in new code)

The default mode is 'rt' (open for reading text). For binary random
access, the mode 'w+b' opens and truncates the file to 0 bytes, while
'r+b' opens the file without truncation.

Python distinguishes between files opened in binary and text modes, even when
the underlying operating system doesn’t. Files opened in binary mode
(including 'b' in the mode argument) return contents as bytes
objects without any decoding. In text mode (the default, or when 't' is
included in the mode argument), the contents of the file are returned as
unicode strings, the bytes having been first decoded using a
platform-dependent encoding or using the specified encoding if given.

buffering is an optional integer used to set the buffering policy.
Pass 0 to switch buffering off (only allowed in binary mode), 1 to select
line buffering (only usable in text mode), and an integer > 1 to indicate
the size of a fixed-size chunk buffer. When no buffering argument is
given, the default buffering policy works as follows:

	Binary files are buffered in fixed-size chunks; the size of the buffer
is chosen using a heuristic trying to determine the underlying device’s
“block size” and falling back on DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

	“Interactive” text files (files for which isatty() returns True)
use line buffering. Other text files use the policy described above
for binary files.

encoding is the name of the encoding used to decode or encode the file.
This should only be used in text mode. The default encoding is platform
dependent (whatever locale.getpreferredencoding() returns), but any
encoding supported by Python can be used. See the codecs module for
the list of supported encodings.

errors is an optional string that specifies how encoding and decoding
errors are to be handled–this cannot be used in binary mode. Pass
'strict' to raise a ValueError exception if there is an encoding
error (the default of None has the same effect), or pass 'ignore' to
ignore errors. (Note that ignoring encoding errors can lead to data loss.)
'replace' causes a replacement marker (such as '?') to be inserted
where there is malformed data. When writing, 'xmlcharrefreplace'
(replace with the appropriate XML character reference) or
'backslashreplace' (replace with backslashed escape sequences) can be
used. Any other error handling name that has been registered with
codecs.register_error() is also valid.

newline controls how universal newlines works (it only applies to text
mode). It can be None, '', '\n', '\r', and '\r\n'. It
works as follows:

	On input, if newline is None, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these
are translated into '\n' before being returned to the caller. If it is
'', universal newline mode is enabled, but line endings are returned to
the caller untranslated. If it has any of the other legal values, input
lines are only terminated by the given string, and the line ending is
returned to the caller untranslated.

	On output, if newline is None, any '\n' characters written are
translated to the system default line separator, os.linesep. If
newline is '', no translation takes place. If newline is any of
the other legal values, any '\n' characters written are translated to
the given string.

If closefd is False and a file descriptor rather than a filename was
given, the underlying file descriptor will be kept open when the file is
closed. If a filename is given closefd has no effect and must be True
(the default).

The type of file object returned by the open() function depends on the
mode. When open() is used to open a file in a text mode ('w',
'r', 'wt', 'rt', etc.), it returns a subclass of
TextIOBase (specifically TextIOWrapper). When used to open
a file in a binary mode with buffering, the returned class is a subclass of
BufferedIOBase. The exact class varies: in read binary mode, it
returns a BufferedReader; in write binary and append binary modes,
it returns a BufferedWriter, and in read/write mode, it returns a
BufferedRandom. When buffering is disabled, the raw stream, a
subclass of RawIOBase, FileIO, is returned.

It is also possible to use an unicode or bytes string
as a file for both reading and writing. For unicode strings
StringIO can be used like a file opened in text mode,
and for bytes a BytesIO can be used like a
file opened in a binary mode.

	
exception io.BlockingIOError

	Error raised when blocking would occur on a non-blocking stream. It inherits
IOError.

In addition to those of IOError, BlockingIOError has one
attribute:

	
characters_written

	An integer containing the number of characters written to the stream
before it blocked.

	
exception io.UnsupportedOperation

	An exception inheriting IOError and ValueError that is raised
when an unsupported operation is called on a stream.

15.2.2. I/O Base Classes

	
class io.IOBase

	The abstract base class for all I/O classes, acting on streams of bytes.
There is no public constructor.

This class provides empty abstract implementations for many methods
that derived classes can override selectively; the default
implementations represent a file that cannot be read, written or
seeked.

Even though IOBase does not declare read(), readinto(),
or write() because their signatures will vary, implementations and
clients should consider those methods part of the interface. Also,
implementations may raise a IOError when operations they do not
support are called.

The basic type used for binary data read from or written to a file is
bytes (also known as str). bytearrays are
accepted too, and in some cases (such as readinto) required.
Text I/O classes work with unicode data.

Note that calling any method (even inquiries) on a closed stream is
undefined. Implementations may raise IOError in this case.

IOBase (and its subclasses) support the iterator protocol, meaning that an
IOBase object can be iterated over yielding the lines in a stream.
Lines are defined slightly differently depending on whether the stream is
a binary stream (yielding bytes), or a text stream (yielding
unicode strings). See readline() below.

IOBase is also a context manager and therefore supports the
with statement. In this example, file is closed after the
with statement’s suite is finished—even if an exception occurs:

with io.open('spam.txt', 'w') as file:
 file.write(u'Spam and eggs!')

IOBase provides these data attributes and methods:

	
close()

	Flush and close this stream. This method has no effect if the file is
already closed. Once the file is closed, any operation on the file
(e.g. reading or writing) will raise a ValueError.

As a convenience, it is allowed to call this method more than once;
only the first call, however, will have an effect.

	
closed

	True if the stream is closed.

	
fileno()

	Return the underlying file descriptor (an integer) of the stream if it
exists. An IOError is raised if the IO object does not use a file
descriptor.

	
flush()

	Flush the write buffers of the stream if applicable. This does nothing
for read-only and non-blocking streams.

	
isatty()

	Return True if the stream is interactive (i.e., connected to
a terminal/tty device).

	
readable()

	Return True if the stream can be read from. If False, read()
will raise IOError.

	
readline(limit=-1)

	Read and return one line from the stream. If limit is specified, at
most limit bytes will be read.

The line terminator is always b'\n' for binary files; for text files,
the newlines argument to open() can be used to select the line
terminator(s) recognized.

	
readlines(hint=-1)

	Read and return a list of lines from the stream. hint can be specified
to control the number of lines read: no more lines will be read if the
total size (in bytes/characters) of all lines so far exceeds hint.

	
seek(offset, whence=SEEK_SET)

	Change the stream position to the given byte offset. offset is
interpreted relative to the position indicated by whence. Values for
whence are:

	SEEK_SET or 0 – start of the stream (the default);
offset should be zero or positive

	SEEK_CUR or 1 – current stream position; offset may
be negative

	SEEK_END or 2 – end of the stream; offset is usually
negative

Return the new absolute position.

New in version 2.7: The SEEK_* constants

	
seekable()

	Return True if the stream supports random access. If False,
seek(), tell() and truncate() will raise IOError.

	
tell()

	Return the current stream position.

	
truncate(size=None)

	Resize the stream to the given size in bytes (or the current position
if size is not specified). The current stream position isn’t changed.
This resizing can extend or reduce the current file size. In case of
extension, the contents of the new file area depend on the platform
(on most systems, additional bytes are zero-filled, on Windows they’re
undetermined). The new file size is returned.

	
writable()

	Return True if the stream supports writing. If False,
write() and truncate() will raise IOError.

	
writelines(lines)

	Write a list of lines to the stream. Line separators are not added, so it
is usual for each of the lines provided to have a line separator at the
end.

	
class io.RawIOBase

	Base class for raw binary I/O. It inherits IOBase. There is no
public constructor.

Raw binary I/O typically provides low-level access to an underlying OS
device or API, and does not try to encapsulate it in high-level primitives
(this is left to Buffered I/O and Text I/O, described later in this page).

In addition to the attributes and methods from IOBase,
RawIOBase provides the following methods:

	
read(n=-1)

	Read up to n bytes from the object and return them. As a convenience,
if n is unspecified or -1, readall() is called. Otherwise,
only one system call is ever made. Fewer than n bytes may be
returned if the operating system call returns fewer than n bytes.

If 0 bytes are returned, and n was not 0, this indicates end of file.
If the object is in non-blocking mode and no bytes are available,
None is returned.

	
readall()

	Read and return all the bytes from the stream until EOF, using multiple
calls to the stream if necessary.

	
readinto(b)

	Read up to len(b) bytes into bytearray b and return the number
of bytes read. If the object is in non-blocking mode and no
bytes are available, None is returned.

	
write(b)

	Write the given bytes or bytearray object, b, to the underlying raw
stream and return the number of bytes written. This can be less than
len(b), depending on specifics of the underlying raw stream, and
especially if it is in non-blocking mode. None is returned if the
raw stream is set not to block and no single byte could be readily
written to it.

	
class io.BufferedIOBase

	Base class for binary streams that support some kind of buffering.
It inherits IOBase. There is no public constructor.

The main difference with RawIOBase is that methods read(),
readinto() and write() will try (respectively) to read as much
input as requested or to consume all given output, at the expense of
making perhaps more than one system call.

In addition, those methods can raise BlockingIOError if the
underlying raw stream is in non-blocking mode and cannot take or give
enough data; unlike their RawIOBase counterparts, they will
never return None.

Besides, the read() method does not have a default
implementation that defers to readinto().

A typical BufferedIOBase implementation should not inherit from a
RawIOBase implementation, but wrap one, like
BufferedWriter and BufferedReader do.

BufferedIOBase provides or overrides these members in addition to
those from IOBase:

	
raw

	The underlying raw stream (a RawIOBase instance) that
BufferedIOBase deals with. This is not part of the
BufferedIOBase API and may not exist on some implementations.

	
detach()

	Separate the underlying raw stream from the buffer and return it.

After the raw stream has been detached, the buffer is in an unusable
state.

Some buffers, like BytesIO, do not have the concept of a single
raw stream to return from this method. They raise
UnsupportedOperation.

New in version 2.7.

	
read(n=-1)

	Read and return up to n bytes. If the argument is omitted, None, or
negative, data is read and returned until EOF is reached. An empty bytes
object is returned if the stream is already at EOF.

If the argument is positive, and the underlying raw stream is not
interactive, multiple raw reads may be issued to satisfy the byte count
(unless EOF is reached first). But for interactive raw streams, at most
one raw read will be issued, and a short result does not imply that EOF is
imminent.

A BlockingIOError is raised if the underlying raw stream is in
non blocking-mode, and has no data available at the moment.

	
read1(n=-1)

	Read and return up to n bytes, with at most one call to the underlying
raw stream’s read() method. This can be useful if you
are implementing your own buffering on top of a BufferedIOBase
object.

	
readinto(b)

	Read up to len(b) bytes into bytearray b and return the number of bytes
read.

Like read(), multiple reads may be issued to the underlying raw
stream, unless the latter is ‘interactive’.

A BlockingIOError is raised if the underlying raw stream is in
non blocking-mode, and has no data available at the moment.

	
write(b)

	Write the given bytes or bytearray object, b and return the number
of bytes written (never less than len(b), since if the write fails
an IOError will be raised). Depending on the actual
implementation, these bytes may be readily written to the underlying
stream, or held in a buffer for performance and latency reasons.

When in non-blocking mode, a BlockingIOError is raised if the
data needed to be written to the raw stream but it couldn’t accept
all the data without blocking.

15.2.3. Raw File I/O

	
class io.FileIO(name, mode='r', closefd=True)

	FileIO represents an OS-level file containing bytes data.
It implements the RawIOBase interface (and therefore the
IOBase interface, too).

The name can be one of two things:

	a string representing the path to the file which will be opened;

	an integer representing the number of an existing OS-level file descriptor
to which the resulting FileIO object will give access.

The mode can be 'r', 'w' or 'a' for reading (default), writing,
or appending. The file will be created if it doesn’t exist when opened for
writing or appending; it will be truncated when opened for writing. Add a
'+' to the mode to allow simultaneous reading and writing.

The read() (when called with a positive argument), readinto()
and write() methods on this class will only make one system call.

In addition to the attributes and methods from IOBase and
RawIOBase, FileIO provides the following data
attributes and methods:

	
mode

	The mode as given in the constructor.

	
name

	The file name. This is the file descriptor of the file when no name is
given in the constructor.

15.2.4. Buffered Streams

Buffered I/O streams provide a higher-level interface to an I/O device
than raw I/O does.

	
class io.BytesIO([initial_bytes])

	A stream implementation using an in-memory bytes buffer. It inherits
BufferedIOBase.

The argument initial_bytes is an optional initial bytes.

BytesIO provides or overrides these methods in addition to those
from BufferedIOBase and IOBase:

	
getvalue()

	Return bytes containing the entire contents of the buffer.

	
read1()

	In BytesIO, this is the same as read().

	
class io.BufferedReader(raw, buffer_size=DEFAULT_BUFFER_SIZE)

	A buffer providing higher-level access to a readable, sequential
RawIOBase object. It inherits BufferedIOBase.
When reading data from this object, a larger amount of data may be
requested from the underlying raw stream, and kept in an internal buffer.
The buffered data can then be returned directly on subsequent reads.

The constructor creates a BufferedReader for the given readable
raw stream and buffer_size. If buffer_size is omitted,
DEFAULT_BUFFER_SIZE is used.

BufferedReader provides or overrides these methods in addition to
those from BufferedIOBase and IOBase:

	
peek([n])

	Return bytes from the stream without advancing the position. At most one
single read on the raw stream is done to satisfy the call. The number of
bytes returned may be less or more than requested.

	
read([n])

	Read and return n bytes, or if n is not given or negative, until EOF
or if the read call would block in non-blocking mode.

	
read1(n)

	Read and return up to n bytes with only one call on the raw stream. If
at least one byte is buffered, only buffered bytes are returned.
Otherwise, one raw stream read call is made.

	
class io.BufferedWriter(raw, buffer_size=DEFAULT_BUFFER_SIZE)

	A buffer providing higher-level access to a writeable, sequential
RawIOBase object. It inherits BufferedIOBase.
When writing to this object, data is normally held into an internal
buffer. The buffer will be written out to the underlying RawIOBase
object under various conditions, including:

	when the buffer gets too small for all pending data;

	when flush() is called;

	when a seek() is requested (for BufferedRandom objects);

	when the BufferedWriter object is closed or destroyed.

The constructor creates a BufferedWriter for the given writeable
raw stream. If the buffer_size is not given, it defaults to
DEFAULT_BUFFER_SIZE.

A third argument, max_buffer_size, is supported, but unused and deprecated.

BufferedWriter provides or overrides these methods in addition to
those from BufferedIOBase and IOBase:

	
flush()

	Force bytes held in the buffer into the raw stream. A
BlockingIOError should be raised if the raw stream blocks.

	
write(b)

	Write the bytes or bytearray object, b and return the number of bytes
written. When in non-blocking mode, a BlockingIOError is raised
if the buffer needs to be written out but the raw stream blocks.

	
class io.BufferedRWPair(reader, writer, buffer_size=DEFAULT_BUFFER_SIZE)

	A buffered I/O object giving a combined, higher-level access to two
sequential RawIOBase objects: one readable, the other writeable.
It is useful for pairs of unidirectional communication channels
(pipes, for instance). It inherits BufferedIOBase.

reader and writer are RawIOBase objects that are readable and
writeable respectively. If the buffer_size is omitted it defaults to
DEFAULT_BUFFER_SIZE.

A fourth argument, max_buffer_size, is supported, but unused and
deprecated.

BufferedRWPair implements all of BufferedIOBase‘s methods
except for detach(), which raises
UnsupportedOperation.

	
class io.BufferedRandom(raw, buffer_size=DEFAULT_BUFFER_SIZE)

	A buffered interface to random access streams. It inherits
BufferedReader and BufferedWriter, and further supports
seek() and tell() functionality.

The constructor creates a reader and writer for a seekable raw stream, given
in the first argument. If the buffer_size is omitted it defaults to
DEFAULT_BUFFER_SIZE.

A third argument, max_buffer_size, is supported, but unused and deprecated.

BufferedRandom is capable of anything BufferedReader or
BufferedWriter can do.

15.2.5. Text I/O

	
class io.TextIOBase

	Base class for text streams. This class provides an unicode character
and line based interface to stream I/O. There is no readinto()
method because Python’s unicode strings are immutable.
It inherits IOBase. There is no public constructor.

TextIOBase provides or overrides these data attributes and
methods in addition to those from IOBase:

	
encoding

	The name of the encoding used to decode the stream’s bytes into
strings, and to encode strings into bytes.

	
errors

	The error setting of the decoder or encoder.

	
newlines

	A string, a tuple of strings, or None, indicating the newlines
translated so far. Depending on the implementation and the initial
constructor flags, this may not be available.

	
buffer

	The underlying binary buffer (a BufferedIOBase instance) that
TextIOBase deals with. This is not part of the
TextIOBase API and may not exist on some implementations.

	
detach()

	Separate the underlying binary buffer from the TextIOBase and
return it.

After the underlying buffer has been detached, the TextIOBase is
in an unusable state.

Some TextIOBase implementations, like StringIO, may not
have the concept of an underlying buffer and calling this method will
raise UnsupportedOperation.

New in version 2.7.

	
read(n)

	Read and return at most n characters from the stream as a single
unicode. If n is negative or None, reads until EOF.

	
readline()

	Read until newline or EOF and return a single unicode. If the
stream is already at EOF, an empty string is returned.

	
write(s)

	Write the unicode string s to the stream and return the
number of characters written.

	
class io.TextIOWrapper(buffer, encoding=None, errors=None, newline=None, line_buffering=False)

	A buffered text stream over a BufferedIOBase binary stream.
It inherits TextIOBase.

encoding gives the name of the encoding that the stream will be decoded or
encoded with. It defaults to locale.getpreferredencoding().

errors is an optional string that specifies how encoding and decoding
errors are to be handled. Pass 'strict' to raise a ValueError
exception if there is an encoding error (the default of None has the same
effect), or pass 'ignore' to ignore errors. (Note that ignoring encoding
errors can lead to data loss.) 'replace' causes a replacement marker
(such as '?') to be inserted where there is malformed data. When
writing, 'xmlcharrefreplace' (replace with the appropriate XML character
reference) or 'backslashreplace' (replace with backslashed escape
sequences) can be used. Any other error handling name that has been
registered with codecs.register_error() is also valid.

newline can be None, '', '\n', '\r', or '\r\n'. It
controls the handling of line endings. If it is None, universal newlines
is enabled. With this enabled, on input, the lines endings '\n',
'\r', or '\r\n' are translated to '\n' before being returned to
the caller. Conversely, on output, '\n' is translated to the system
default line separator, os.linesep. If newline is any other of its
legal values, that newline becomes the newline when the file is read and it
is returned untranslated. On output, '\n' is converted to the newline.

If line_buffering is True, flush() is implied when a call to
write contains a newline character.

TextIOWrapper provides one attribute in addition to those of
TextIOBase and its parents:

	
line_buffering

	Whether line buffering is enabled.

	
class io.StringIO(initial_value=u'', newline=None)

	An in-memory stream for unicode text. It inherits TextIOWrapper.

The initial value of the buffer (an empty unicode string by default) can
be set by providing initial_value. The newline argument works like
that of TextIOWrapper. The default is to do no newline
translation.

StringIO provides this method in addition to those from
TextIOWrapper and its parents:

	
getvalue()

	Return a unicode containing the entire contents of the buffer at any
time before the StringIO object’s close() method is
called.

Example usage:

import io

output = io.StringIO()
output.write(u'First line.\n')
output.write(u'Second line.\n')

Retrieve file contents -- this will be
u'First line.\nSecond line.\n'
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

	
class io.IncrementalNewlineDecoder

	A helper codec that decodes newlines for universal newlines mode. It
inherits codecs.IncrementalDecoder.

15.2.6. Advanced topics

Here we will discuss several advanced topics pertaining to the concrete
I/O implementations described above.

15.2.6.1. Performance

15.2.6.1.1. Binary I/O

By reading and writing only large chunks of data even when the user asks
for a single byte, buffered I/O is designed to hide any inefficiency in
calling and executing the operating system’s unbuffered I/O routines. The
gain will vary very much depending on the OS and the kind of I/O which is
performed (for example, on some contemporary OSes such as Linux, unbuffered
disk I/O can be as fast as buffered I/O). The bottom line, however, is
that buffered I/O will offer you predictable performance regardless of the
platform and the backing device. Therefore, it is most always preferable to
use buffered I/O rather than unbuffered I/O.

15.2.6.1.2. Text I/O

Text I/O over a binary storage (such as a file) is significantly slower than
binary I/O over the same storage, because it implies conversions from
unicode to binary data using a character codec. This can become noticeable
if you handle huge amounts of text data (for example very large log files).
Also, TextIOWrapper.tell() and TextIOWrapper.seek() are both
quite slow due to the reconstruction algorithm used.

StringIO, however, is a native in-memory unicode container and will
exhibit similar speed to BytesIO.

15.2.6.2. Multi-threading

FileIO objects are thread-safe to the extent that the operating
system calls (such as read(2) under Unix) they are wrapping are thread-safe
too.

Binary buffered objects (instances of BufferedReader,
BufferedWriter, BufferedRandom and BufferedRWPair)
protect their internal structures using a lock; it is therefore safe to call
them from multiple threads at once.

TextIOWrapper objects are not thread-safe.

15.2.6.3. Reentrancy

Binary buffered objects (instances of BufferedReader,
BufferedWriter, BufferedRandom and BufferedRWPair)
are not reentrant. While reentrant calls will not happen in normal situations,
they can arise if you are doing I/O in a signal handler. If it is
attempted to enter a buffered object again while already being accessed
from the same thread, then a RuntimeError is raised.

The above implicitly extends to text files, since the open()
function will wrap a buffered object inside a TextIOWrapper. This
includes standard streams and therefore affects the built-in function
print() as well.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.3. time — Time access and conversions

This module provides various time-related functions. For related
functionality, see also the datetime and calendar modules.

Although this module is always available,
not all functions are available on all platforms. Most of the functions
defined in this module call platform C library functions with the same name. It
may sometimes be helpful to consult the platform documentation, because the
semantics of these functions varies among platforms.

An explanation of some terminology and conventions is in order.

	The epoch is the point where the time starts. On January 1st of that
year, at 0 hours, the “time since the epoch” is zero. For Unix, the epoch is
1970. To find out what the epoch is, look at gmtime(0).

	The functions in this module do not handle dates and times before the epoch or
far in the future. The cut-off point in the future is determined by the C
library; for Unix, it is typically in 2038.

	Year 2000 (Y2K) issues: Python depends on the platform’s C library, which
generally doesn’t have year 2000 issues, since all dates and times are
represented internally as seconds since the epoch. Functions accepting a
struct_time (see below) generally require a 4-digit year. For backward
compatibility, 2-digit years are supported if the module variable
accept2dyear is a non-zero integer; this variable is initialized to 1
unless the environment variable PYTHONY2K is set to a non-empty
string, in which case it is initialized to 0. Thus, you can set
PYTHONY2K to a non-empty string in the environment to require 4-digit
years for all year input. When 2-digit years are accepted, they are converted
according to the POSIX or X/Open standard: values 69-99 are mapped to 1969-1999,
and values 0–68 are mapped to 2000–2068. Values 100–1899 are always illegal.
Note that this is new as of Python 1.5.2(a2); earlier versions, up to Python
1.5.1 and 1.5.2a1, would add 1900 to year values below 1900.

	UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or
GMT). The acronym UTC is not a mistake but a compromise between English and
French.

	DST is Daylight Saving Time, an adjustment of the timezone by (usually) one
hour during part of the year. DST rules are magic (determined by local law) and
can change from year to year. The C library has a table containing the local
rules (often it is read from a system file for flexibility) and is the only
source of True Wisdom in this respect.

	The precision of the various real-time functions may be less than suggested by
the units in which their value or argument is expressed. E.g. on most Unix
systems, the clock “ticks” only 50 or 100 times a second.

	On the other hand, the precision of time() and sleep() is better
than their Unix equivalents: times are expressed as floating point numbers,
time() returns the most accurate time available (using Unix
gettimeofday() where available), and sleep() will accept a time
with a nonzero fraction (Unix select() is used to implement this, where
available).

	The time value as returned by gmtime(), localtime(), and
strptime(), and accepted by asctime(), mktime() and
strftime(), may be considered as a sequence of 9 integers. The return
values of gmtime(), localtime(), and strptime() also offer
attribute names for individual fields.

See struct_time for a description of these objects.

Changed in version 2.2: The time value sequence was changed from a tuple to a struct_time, with
the addition of attribute names for the fields.

	Use the following functions to convert between time representations:

	From

	To

	Use

	seconds since the epoch

	struct_time in
UTC

	gmtime()

	seconds since the epoch

	struct_time in
local time

	localtime()

	struct_time in
UTC

	seconds since the epoch

	calendar.timegm()

	struct_time in
local time

	seconds since the epoch

	mktime()

The module defines the following functions and data items:

	
time.accept2dyear

	Boolean value indicating whether two-digit year values will be accepted. This
is true by default, but will be set to false if the environment variable
PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

	
time.altzone

	The offset of the local DST timezone, in seconds west of UTC, if one is defined.
This is negative if the local DST timezone is east of UTC (as in Western Europe,
including the UK). Only use this if daylight is nonzero.

	
time.asctime([t])

	Convert a tuple or struct_time representing a time as returned by
gmtime() or localtime() to a 24-character string of the following
form: 'Sun Jun 20 23:21:05 1993'. If t is not provided, the current time
as returned by localtime() is used. Locale information is not used by
asctime().

Note

Unlike the C function of the same name, there is no trailing newline.

Changed in version 2.1: Allowed t to be omitted.

	
time.clock()

	On Unix, return the current processor time as a floating point number expressed
in seconds. The precision, and in fact the very definition of the meaning of
“processor time”, depends on that of the C function of the same name, but in any
case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first
call to this function, as a floating point number, based on the Win32 function
QueryPerformanceCounter(). The resolution is typically better than one
microsecond.

	
time.ctime([secs])

	Convert a time expressed in seconds since the epoch to a string representing
local time. If secs is not provided or None, the current time as
returned by time() is used. ctime(secs) is equivalent to
asctime(localtime(secs)). Locale information is not used by ctime().

Changed in version 2.1: Allowed secs to be omitted.

Changed in version 2.4: If secs is None, the current time is used.

	
time.daylight

	Nonzero if a DST timezone is defined.

	
time.gmtime([secs])

	Convert a time expressed in seconds since the epoch to a struct_time in
UTC in which the dst flag is always zero. If secs is not provided or
None, the current time as returned by time() is used. Fractions
of a second are ignored. See above for a description of the
struct_time object. See calendar.timegm() for the inverse of this
function.

Changed in version 2.1: Allowed secs to be omitted.

Changed in version 2.4: If secs is None, the current time is used.

	
time.localtime([secs])

	Like gmtime() but converts to local time. If secs is not provided or
None, the current time as returned by time() is used. The dst
flag is set to 1 when DST applies to the given time.

Changed in version 2.1: Allowed secs to be omitted.

Changed in version 2.4: If secs is None, the current time is used.

	
time.mktime(t)

	This is the inverse function of localtime(). Its argument is the
struct_time or full 9-tuple (since the dst flag is needed; use -1
as the dst flag if it is unknown) which expresses the time in local time, not
UTC. It returns a floating point number, for compatibility with time().
If the input value cannot be represented as a valid time, either
OverflowError or ValueError will be raised (which depends on
whether the invalid value is caught by Python or the underlying C libraries).
The earliest date for which it can generate a time is platform-dependent.

	
time.sleep(secs)

	Suspend execution for the given number of seconds. The argument may be a
floating point number to indicate a more precise sleep time. The actual
suspension time may be less than that requested because any caught signal will
terminate the sleep() following execution of that signal’s catching
routine. Also, the suspension time may be longer than requested by an arbitrary
amount because of the scheduling of other activity in the system.

	
time.strftime(format[, t])

	Convert a tuple or struct_time representing a time as returned by
gmtime() or localtime() to a string as specified by the format
argument. If t is not provided, the current time as returned by
localtime() is used. format must be a string. ValueError is
raised if any field in t is outside of the allowed range.

Changed in version 2.1: Allowed t to be omitted.

Changed in version 2.4: ValueError raised if a field in t is out of range.

Changed in version 2.5: 0 is now a legal argument for any position in the time tuple; if it is normally
illegal the value is forced to a correct one..

The following directives can be embedded in the format string. They are shown
without the optional field width and precision specification, and are replaced
by the indicated characters in the strftime() result:

	Directive
	Meaning
	Notes

	%a
	Locale’s abbreviated weekday
name.
	

	%A
	Locale’s full weekday name.
	

	%b
	Locale’s abbreviated month
name.
	

	%B
	Locale’s full month name.
	

	%c
	Locale’s appropriate date and
time representation.
	

	%d
	Day of the month as a decimal
number [01,31].
	

	%H
	Hour (24-hour clock) as a
decimal number [00,23].
	

	%I
	Hour (12-hour clock) as a
decimal number [01,12].
	

	%j
	Day of the year as a decimal
number [001,366].
	

	%m
	Month as a decimal number
[01,12].
	

	%M
	Minute as a decimal number
[00,59].
	

	%p
	Locale’s equivalent of either
AM or PM.
	(1)

	%S
	Second as a decimal number
[00,61].
	(2)

	%U
	Week number of the year
(Sunday as the first day of
the week) as a decimal number
[00,53]. All days in a new
year preceding the first
Sunday are considered to be in
week 0.
	(3)

	%w
	Weekday as a decimal number
[0(Sunday),6].
	

	%W
	Week number of the year
(Monday as the first day of
the week) as a decimal number
[00,53]. All days in a new
year preceding the first
Monday are considered to be in
week 0.
	(3)

	%x
	Locale’s appropriate date
representation.
	

	%X
	Locale’s appropriate time
representation.
	

	%y
	Year without century as a
decimal number [00,99].
	

	%Y
	Year with century as a decimal
number.
	

	%Z
	Time zone name (no characters
if no time zone exists).
	

	%%
	A literal '%' character.
	

Notes:

	When used with the strptime() function, the %p directive only affects
the output hour field if the %I directive is used to parse the hour.

	The range really is 0 to 61; this accounts for leap seconds and the
(very rare) double leap seconds.

	When used with the strptime() function, %U and %W are only used in
calculations when the day of the week and the year are specified.

Here is an example, a format for dates compatible with that specified in the
RFC 2822 [http://tools.ietf.org/html/rfc2822.html] Internet email standard. [1]

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
'Thu, 28 Jun 2001 14:17:15 +0000'

Additional directives may be supported on certain platforms, but only the ones
listed here have a meaning standardized by ANSI C.

On some platforms, an optional field width and precision specification can
immediately follow the initial '%' of a directive in the following order;
this is also not portable. The field width is normally 2 except for %j where
it is 3.

	
time.strptime(string[, format])

	Parse a string representing a time according to a format. The return value is
a struct_time as returned by gmtime() or localtime().

The format parameter uses the same directives as those used by
strftime(); it defaults to "%a %b %d %H:%M:%S %Y" which matches the
formatting returned by ctime(). If string cannot be parsed according to
format, or if it has excess data after parsing, ValueError is raised.
The default values used to fill in any missing data when more accurate values
cannot be inferred are (1900, 1, 1, 0, 0, 0, 0, 1, -1).

For example:

>>> import time
>>> time.strptime("30 Nov 00", "%d %b %y")
time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0,
 tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)

Support for the %Z directive is based on the values contained in tzname
and whether daylight is true. Because of this, it is platform-specific
except for recognizing UTC and GMT which are always known (and are considered to
be non-daylight savings timezones).

Only the directives specified in the documentation are supported. Because
strftime() is implemented per platform it can sometimes offer more
directives than those listed. But strptime() is independent of any platform
and thus does not necessarily support all directives available that are not
documented as supported.

	
class time.struct_time

	The type of the time value sequence returned by gmtime(),
localtime(), and strptime(). It is an object with a named
tuple interface: values can be accessed by index and by attribute name. The
following values are present:

	Index
	Attribute
	Values

	0
	tm_year
	(for example, 1993)

	1
	tm_mon
	range [1, 12]

	2
	tm_mday
	range [1, 31]

	3
	tm_hour
	range [0, 23]

	4
	tm_min
	range [0, 59]

	5
	tm_sec
	range [0, 61]; see (1) in
strftime() description

	6
	tm_wday
	range [0, 6], Monday is 0

	7
	tm_yday
	range [1, 366]

	8
	tm_isdst
	0, 1 or -1; see below

New in version 2.2.

Note that unlike the C structure, the month value is a range of [1, 12], not
[0, 11]. A year value will be handled as described under Year 2000
(Y2K) issues above. A -1 argument as the daylight
savings flag, passed to mktime() will usually result in the correct
daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecting a
struct_time, or having elements of the wrong type, a
TypeError is raised.

	
time.time()

	Return the time as a floating point number expressed in seconds since the epoch,
in UTC. Note that even though the time is always returned as a floating point
number, not all systems provide time with a better precision than 1 second.
While this function normally returns non-decreasing values, it can return a
lower value than a previous call if the system clock has been set back between
the two calls.

	
time.timezone

	The offset of the local (non-DST) timezone, in seconds west of UTC (negative in
most of Western Europe, positive in the US, zero in the UK).

	
time.tzname

	A tuple of two strings: the first is the name of the local non-DST timezone, the
second is the name of the local DST timezone. If no DST timezone is defined,
the second string should not be used.

	
time.tzset()

	Resets the time conversion rules used by the library routines. The environment
variable TZ specifies how this is done.

New in version 2.3.

Availability: Unix.

Note

Although in many cases, changing the TZ environment variable may
affect the output of functions like localtime() without calling
tzset(), this behavior should not be relied on.

The TZ environment variable should contain no whitespace.

The standard format of the TZ environment variable is (whitespace
added for clarity):

std offset [dst [offset [,start[/time], end[/time]]]]

Where the components are:

	std and dst

	Three or more alphanumerics giving the timezone abbreviations. These will be
propagated into time.tzname

	offset

	The offset has the form: ± hh[:mm[:ss]]. This indicates the value
added the local time to arrive at UTC. If preceded by a ‘-‘, the timezone
is east of the Prime Meridian; otherwise, it is west. If no offset follows
dst, summer time is assumed to be one hour ahead of standard time.

	start[/time], end[/time]

	Indicates when to change to and back from DST. The format of the
start and end dates are one of the following:

	Jn

	The Julian day n (1 <= n <= 365). Leap days are not counted, so in
all years February 28 is day 59 and March 1 is day 60.

	n

	The zero-based Julian day (0 <= n <= 365). Leap days are counted, and
it is possible to refer to February 29.

	Mm.n.d

	The d‘th day (0 <= d <= 6) or week n of month m of the year (1
<= n <= 5, 1 <= m <= 12, where week 5 means “the last d day in
month m” which may occur in either the fourth or the fifth
week). Week 1 is the first week in which the d‘th day occurs. Day
zero is Sunday.

time has the same format as offset except that no leading sign
(‘-‘ or ‘+’) is allowed. The default, if time is not given, is 02:00:00.

>>> os.environ['TZ'] = 'EST+05EDT,M4.1.0,M10.5.0'
>>> time.tzset()
>>> time.strftime('%X %x %Z')
'02:07:36 05/08/03 EDT'
>>> os.environ['TZ'] = 'AEST-10AEDT-11,M10.5.0,M3.5.0'
>>> time.tzset()
>>> time.strftime('%X %x %Z')
'16:08:12 05/08/03 AEST'

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more
convenient to use the system’s zoneinfo (tzfile(5)) database to
specify the timezone rules. To do this, set the TZ environment
variable to the path of the required timezone datafile, relative to the root of
the systems ‘zoneinfo’ timezone database, usually located at
/usr/share/zoneinfo. For example, 'US/Eastern',
'Australia/Melbourne', 'Egypt' or 'Europe/Amsterdam'.

>>> os.environ['TZ'] = 'US/Eastern'
>>> time.tzset()
>>> time.tzname
('EST', 'EDT')
>>> os.environ['TZ'] = 'Egypt'
>>> time.tzset()
>>> time.tzname
('EET', 'EEST')

See also

	Module datetime

	More object-oriented interface to dates and times.

	Module locale

	Internationalization services. The locale settings can affect the return values
for some of the functions in the time module.

	Module calendar

	General calendar-related functions. timegm() is the inverse of
gmtime() from this module.

Footnotes

	[1]	The use of %Z is now deprecated, but the %z escape that expands to the
preferred hour/minute offset is not supported by all ANSI C libraries. Also, a
strict reading of the original 1982 RFC 822 [http://tools.ietf.org/html/rfc822.html] standard calls for a two-digit
year (%y rather than %Y), but practice moved to 4-digit years long before the
year 2000. The 4-digit year has been mandated by RFC 2822 [http://tools.ietf.org/html/rfc2822.html], which obsoletes
RFC 822 [http://tools.ietf.org/html/rfc822.html].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.4. argparse — Parser for command-line options, arguments and sub-commands

New in version 2.7.

The argparse module makes it easy to write user-friendly command-line
interfaces. The program defines what arguments it requires, and argparse
will figure out how to parse those out of sys.argv. The argparse
module also automatically generates help and usage messages and issues errors
when users give the program invalid arguments.

15.4.1. Example

The following code is a Python program that takes a list of integers and
produces either the sum or the max:

import argparse

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('integers', metavar='N', type=int, nargs='+',
 help='an integer for the accumulator')
parser.add_argument('--sum', dest='accumulate', action='store_const',
 const=sum, default=max,
 help='sum the integers (default: find the max)')

args = parser.parse_args()
print args.accumulate(args.integers)

Assuming the Python code above is saved into a file called prog.py, it can
be run at the command line and provides useful help messages:

$ prog.py -h
usage: prog.py [-h] [--sum] N [N ...]

Process some integers.

positional arguments:
 N an integer for the accumulator

optional arguments:
 -h, --help show this help message and exit
 --sum sum the integers (default: find the max)

When run with the appropriate arguments, it prints either the sum or the max of
the command-line integers:

$ prog.py 1 2 3 4
4

$ prog.py 1 2 3 4 --sum
10

If invalid arguments are passed in, it will issue an error:

$ prog.py a b c
usage: prog.py [-h] [--sum] N [N ...]
prog.py: error: argument N: invalid int value: 'a'

The following sections walk you through this example.

15.4.1.1. Creating a parser

The first step in using the argparse is creating an
ArgumentParser object:

>>> parser = argparse.ArgumentParser(description='Process some integers.')

The ArgumentParser object will hold all the information necessary to
parse the command line into Python data types.

15.4.1.2. Adding arguments

Filling an ArgumentParser with information about program arguments is
done by making calls to the add_argument() method.
Generally, these calls tell the ArgumentParser how to take the strings
on the command line and turn them into objects. This information is stored and
used when parse_args() is called. For example:

>>> parser.add_argument('integers', metavar='N', type=int, nargs='+',
... help='an integer for the accumulator')
>>> parser.add_argument('--sum', dest='accumulate', action='store_const',
... const=sum, default=max,
... help='sum the integers (default: find the max)')

Later, calling parse_args() will return an object with
two attributes, integers and accumulate. The integers attribute
will be a list of one or more ints, and the accumulate attribute will be
either the sum() function, if --sum was specified at the command line,
or the max() function if it was not.

15.4.1.3. Parsing arguments

ArgumentParser parses args through the
parse_args() method. This will inspect the command line,
convert each arg to the appropriate type and then invoke the appropriate action.
In most cases, this means a simple namespace object will be built up from
attributes parsed out of the command line:

>>> parser.parse_args(['--sum', '7', '-1', '42'])
Namespace(accumulate=<built-in function sum>, integers=[7, -1, 42])

In a script, parse_args() will typically be called with no
arguments, and the ArgumentParser will automatically determine the
command-line args from sys.argv.

15.4.2. ArgumentParser objects

	
class argparse.ArgumentParser([description][, epilog][, prog][, usage][, add_help][, argument_default][, parents][, prefix_chars][, conflict_handler][, formatter_class])

	Create a new ArgumentParser object. Each parameter has its own more
detailed description below, but in short they are:

	description - Text to display before the argument help.

	epilog - Text to display after the argument help.

	add_help - Add a -h/–help option to the parser. (default: True)

	argument_default - Set the global default value for arguments.
(default: None)

	parents - A list of ArgumentParser objects whose arguments should
also be included.

	prefix_chars - The set of characters that prefix optional arguments.
(default: ‘-‘)

	fromfile_prefix_chars - The set of characters that prefix files from
which additional arguments should be read. (default: None)

	formatter_class - A class for customizing the help output.

	conflict_handler - Usually unnecessary, defines strategy for resolving
conflicting optionals.

	prog - The name of the program (default:
sys.argv[0])

	usage - The string describing the program usage (default: generated)

The following sections describe how each of these are used.

15.4.2.1. description

Most calls to the ArgumentParser constructor will use the
description= keyword argument. This argument gives a brief description of
what the program does and how it works. In help messages, the description is
displayed between the command-line usage string and the help messages for the
various arguments:

>>> parser = argparse.ArgumentParser(description='A foo that bars')
>>> parser.print_help()
usage: argparse.py [-h]

A foo that bars

optional arguments:
 -h, --help show this help message and exit

By default, the description will be line-wrapped so that it fits within the
given space. To change this behavior, see the formatter_class argument.

15.4.2.2. epilog

Some programs like to display additional description of the program after the
description of the arguments. Such text can be specified using the epilog=
argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(
... description='A foo that bars',
... epilog="And that's how you'd foo a bar")
>>> parser.print_help()
usage: argparse.py [-h]

A foo that bars

optional arguments:
 -h, --help show this help message and exit

And that's how you'd foo a bar

As with the description argument, the epilog= text is by default
line-wrapped, but this behavior can be adjusted with the formatter_class
argument to ArgumentParser.

15.4.2.3. add_help

By default, ArgumentParser objects add an option which simply displays
the parser’s help message. For example, consider a file named
myprogram.py containing the following code:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--foo', help='foo help')
args = parser.parse_args()

If -h or --help is supplied at the command line, the ArgumentParser
help will be printed:

$ python myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
 -h, --help show this help message and exit
 --foo FOO foo help

Occasionally, it may be useful to disable the addition of this help option.
This can be achieved by passing False as the add_help= argument to
ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> parser.add_argument('--foo', help='foo help')
>>> parser.print_help()
usage: PROG [--foo FOO]

optional arguments:
 --foo FOO foo help

The help option is typically -h/--help. The exception to this is
if the prefix_chars= is specified and does not include '-', in
which case -h and --help are not valid options. In
this case, the first character in prefix_chars is used to prefix
the help options:

>>> parser = argparse.ArgumentParser(prog='PROG', prefix_chars='+/')
>>> parser.print_help()
usage: PROG [+h]

optional arguments:
 +h, ++help show this help message and exit

15.4.2.4. prefix_chars

Most command-line options will use '-' as the prefix, e.g. -f/--foo.
Parsers that need to support different or additional prefix
characters, e.g. for options
like +f or /foo, may specify them using the prefix_chars= argument
to the ArgumentParser constructor:

>>> parser = argparse.ArgumentParser(prog='PROG', prefix_chars='-+')
>>> parser.add_argument('+f')
>>> parser.add_argument('++bar')
>>> parser.parse_args('+f X ++bar Y'.split())
Namespace(bar='Y', f='X')

The prefix_chars= argument defaults to '-'. Supplying a set of
characters that does not include '-' will cause -f/--foo options to be
disallowed.

15.4.2.5. fromfile_prefix_chars

Sometimes, for example when dealing with a particularly long argument lists, it
may make sense to keep the list of arguments in a file rather than typing it out
at the command line. If the fromfile_prefix_chars= argument is given to the
ArgumentParser constructor, then arguments that start with any of the
specified characters will be treated as files, and will be replaced by the
arguments they contain. For example:

>>> with open('args.txt', 'w') as fp:
... fp.write('-f\nbar')
>>> parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
>>> parser.add_argument('-f')
>>> parser.parse_args(['-f', 'foo', '@args.txt'])
Namespace(f='bar')

Arguments read from a file must by default be one per line (but see also
convert_arg_line_to_args()) and are treated as if they
were in the same place as the original file referencing argument on the command
line. So in the example above, the expression ['-f', 'foo', '@args.txt']
is considered equivalent to the expression ['-f', 'foo', '-f', 'bar'].

The fromfile_prefix_chars= argument defaults to None, meaning that
arguments will never be treated as file references.

15.4.2.6. argument_default

Generally, argument defaults are specified either by passing a default to
add_argument() or by calling the
set_defaults() methods with a specific set of name-value
pairs. Sometimes however, it may be useful to specify a single parser-wide
default for arguments. This can be accomplished by passing the
argument_default= keyword argument to ArgumentParser. For example,
to globally suppress attribute creation on parse_args()
calls, we supply argument_default=SUPPRESS:

>>> parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
>>> parser.add_argument('--foo')
>>> parser.add_argument('bar', nargs='?')
>>> parser.parse_args(['--foo', '1', 'BAR'])
Namespace(bar='BAR', foo='1')
>>> parser.parse_args([])
Namespace()

15.4.2.7. parents

Sometimes, several parsers share a common set of arguments. Rather than
repeating the definitions of these arguments, a single parser with all the
shared arguments and passed to parents= argument to ArgumentParser
can be used. The parents= argument takes a list of ArgumentParser
objects, collects all the positional and optional actions from them, and adds
these actions to the ArgumentParser object being constructed:

>>> parent_parser = argparse.ArgumentParser(add_help=False)
>>> parent_parser.add_argument('--parent', type=int)

>>> foo_parser = argparse.ArgumentParser(parents=[parent_parser])
>>> foo_parser.add_argument('foo')
>>> foo_parser.parse_args(['--parent', '2', 'XXX'])
Namespace(foo='XXX', parent=2)

>>> bar_parser = argparse.ArgumentParser(parents=[parent_parser])
>>> bar_parser.add_argument('--bar')
>>> bar_parser.parse_args(['--bar', 'YYY'])
Namespace(bar='YYY', parent=None)

Note that most parent parsers will specify add_help=False. Otherwise, the
ArgumentParser will see two -h/--help options (one in the parent
and one in the child) and raise an error.

Note

You must fully initialize the parsers before passing them via parents=.
If you change the parent parsers after the child parser, those changes will
not be reflected in the child.

15.4.2.8. formatter_class

ArgumentParser objects allow the help formatting to be customized by
specifying an alternate formatting class. Currently, there are three such
classes:

	
class argparse.RawDescriptionHelpFormatter

	
class argparse.RawTextHelpFormatter

	
class argparse.ArgumentDefaultsHelpFormatter

	

The first two allow more control over how textual descriptions are displayed,
while the last automatically adds information about argument default values.

By default, ArgumentParser objects line-wrap the description and
epilog texts in command-line help messages:

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... description='''this description
... was indented weird
... but that is okay''',
... epilog='''
... likewise for this epilog whose whitespace will
... be cleaned up and whose words will be wrapped
... across a couple lines''')
>>> parser.print_help()
usage: PROG [-h]

this description was indented weird but that is okay

optional arguments:
 -h, --help show this help message and exit

likewise for this epilog whose whitespace will be cleaned up and whose words
will be wrapped across a couple lines

Passing RawDescriptionHelpFormatter as formatter_class=
indicates that description and epilog are already correctly formatted and
should not be line-wrapped:

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... formatter_class=argparse.RawDescriptionHelpFormatter,
... description=textwrap.dedent('''\
... Please do not mess up this text!
... --------------------------------
... I have indented it
... exactly the way
... I want it
... '''))
>>> parser.print_help()
usage: PROG [-h]

Please do not mess up this text!

 I have indented it
 exactly the way
 I want it

optional arguments:
 -h, --help show this help message and exit

RawTextHelpFormatter maintains whitespace for all sorts of help text
including argument descriptions.

The other formatter class available, ArgumentDefaultsHelpFormatter,
will add information about the default value of each of the arguments:

>>> parser = argparse.ArgumentParser(
... prog='PROG',
... formatter_class=argparse.ArgumentDefaultsHelpFormatter)
>>> parser.add_argument('--foo', type=int, default=42, help='FOO!')
>>> parser.add_argument('bar', nargs='*', default=[1, 2, 3], help='BAR!')
>>> parser.print_help()
usage: PROG [-h] [--foo FOO] [bar [bar ...]]

positional arguments:
 bar BAR! (default: [1, 2, 3])

optional arguments:
 -h, --help show this help message and exit
 --foo FOO FOO! (default: 42)

15.4.2.9. conflict_handler

ArgumentParser objects do not allow two actions with the same option
string. By default, ArgumentParser objects raises an exception if an
attempt is made to create an argument with an option string that is already in
use:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-f', '--foo', help='old foo help')
>>> parser.add_argument('--foo', help='new foo help')
Traceback (most recent call last):
 ..
ArgumentError: argument --foo: conflicting option string(s): --foo

Sometimes (e.g. when using parents) it may be useful to simply override any
older arguments with the same option string. To get this behavior, the value
'resolve' can be supplied to the conflict_handler= argument of
ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='PROG', conflict_handler='resolve')
>>> parser.add_argument('-f', '--foo', help='old foo help')
>>> parser.add_argument('--foo', help='new foo help')
>>> parser.print_help()
usage: PROG [-h] [-f FOO] [--foo FOO]

optional arguments:
 -h, --help show this help message and exit
 -f FOO old foo help
 --foo FOO new foo help

Note that ArgumentParser objects only remove an action if all of its
option strings are overridden. So, in the example above, the old -f/--foo
action is retained as the -f action, because only the --foo option
string was overridden.

15.4.2.10. prog

By default, ArgumentParser objects uses sys.argv[0] to determine
how to display the name of the program in help messages. This default is almost
always desirable because it will make the help messages match how the program was
invoked on the command line. For example, consider a file named
myprogram.py with the following code:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--foo', help='foo help')
args = parser.parse_args()

The help for this program will display myprogram.py as the program name
(regardless of where the program was invoked from):

$ python myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
 -h, --help show this help message and exit
 --foo FOO foo help
$ cd ..
$ python subdir\myprogram.py --help
usage: myprogram.py [-h] [--foo FOO]

optional arguments:
 -h, --help show this help message and exit
 --foo FOO foo help

To change this default behavior, another value can be supplied using the
prog= argument to ArgumentParser:

>>> parser = argparse.ArgumentParser(prog='myprogram')
>>> parser.print_help()
usage: myprogram [-h]

optional arguments:
 -h, --help show this help message and exit

Note that the program name, whether determined from sys.argv[0] or from the
prog= argument, is available to help messages using the %(prog)s format
specifier.

>>> parser = argparse.ArgumentParser(prog='myprogram')
>>> parser.add_argument('--foo', help='foo of the %(prog)s program')
>>> parser.print_help()
usage: myprogram [-h] [--foo FOO]

optional arguments:
 -h, --help show this help message and exit
 --foo FOO foo of the myprogram program

15.4.2.11. usage

By default, ArgumentParser calculates the usage message from the
arguments it contains:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', nargs='?', help='foo help')
>>> parser.add_argument('bar', nargs='+', help='bar help')
>>> parser.print_help()
usage: PROG [-h] [--foo [FOO]] bar [bar ...]

positional arguments:
 bar bar help

optional arguments:
 -h, --help show this help message and exit
 --foo [FOO] foo help

The default message can be overridden with the usage= keyword argument:

>>> parser = argparse.ArgumentParser(prog='PROG', usage='%(prog)s [options]')
>>> parser.add_argument('--foo', nargs='?', help='foo help')
>>> parser.add_argument('bar', nargs='+', help='bar help')
>>> parser.print_help()
usage: PROG [options]

positional arguments:
 bar bar help

optional arguments:
 -h, --help show this help message and exit
 --foo [FOO] foo help

The %(prog)s format specifier is available to fill in the program name in
your usage messages.

15.4.3. The add_argument() method

	
ArgumentParser.add_argument(name or flags...[, action][, nargs][, const][, default][, type][, choices][, required][, help][, metavar][, dest])

	Define how a single command-line argument should be parsed. Each parameter
has its own more detailed description below, but in short they are:

	name or flags - Either a name or a list of option strings, e.g. foo
or -f, --foo.

	action - The basic type of action to be taken when this argument is
encountered at the command line.

	nargs - The number of command-line arguments that should be consumed.

	const - A constant value required by some action and nargs selections.

	default - The value produced if the argument is absent from the
command line.

	type - The type to which the command-line argument should be converted.

	choices - A container of the allowable values for the argument.

	required - Whether or not the command-line option may be omitted
(optionals only).

	help - A brief description of what the argument does.

	metavar - A name for the argument in usage messages.

	dest - The name of the attribute to be added to the object returned by
parse_args().

The following sections describe how each of these are used.

15.4.3.1. name or flags

The add_argument() method must know whether an optional
argument, like -f or --foo, or a positional argument, like a list of
filenames, is expected. The first arguments passed to
add_argument() must therefore be either a series of
flags, or a simple argument name. For example, an optional argument could
be created like:

>>> parser.add_argument('-f', '--foo')

while a positional argument could be created like:

>>> parser.add_argument('bar')

When parse_args() is called, optional arguments will be
identified by the - prefix, and the remaining arguments will be assumed to
be positional:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-f', '--foo')
>>> parser.add_argument('bar')
>>> parser.parse_args(['BAR'])
Namespace(bar='BAR', foo=None)
>>> parser.parse_args(['BAR', '--foo', 'FOO'])
Namespace(bar='BAR', foo='FOO')
>>> parser.parse_args(['--foo', 'FOO'])
usage: PROG [-h] [-f FOO] bar
PROG: error: too few arguments

15.4.3.2. action

ArgumentParser objects associate command-line args with actions. These
actions can do just about anything with the command-line args associated with
them, though most actions simply add an attribute to the object returned by
parse_args(). The action keyword argument specifies
how the command-line args should be handled. The supported actions are:

	'store' - This just stores the argument’s value. This is the default
action. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.parse_args('--foo 1'.split())
Namespace(foo='1')

	'store_const' - This stores the value specified by the const keyword
argument. (Note that the const keyword argument defaults to the rather
unhelpful None.) The 'store_const' action is most commonly used with
optional arguments that specify some sort of flag. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_const', const=42)
>>> parser.parse_args('--foo'.split())
Namespace(foo=42)

	'store_true' and 'store_false' - These store the values True and
False respectively. These are special cases of 'store_const'. For
example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_true')
>>> parser.add_argument('--bar', action='store_false')
>>> parser.parse_args('--foo --bar'.split())
Namespace(bar=False, foo=True)

	'append' - This stores a list, and appends each argument value to the
list. This is useful to allow an option to be specified multiple times.
Example usage:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='append')
>>> parser.parse_args('--foo 1 --foo 2'.split())
Namespace(foo=['1', '2'])

	'append_const' - This stores a list, and appends the value specified by
the const keyword argument to the list. (Note that the const keyword
argument defaults to None.) The 'append_const' action is typically
useful when multiple arguments need to store constants to the same list. For
example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--str', dest='types', action='append_const', const=str)
>>> parser.add_argument('--int', dest='types', action='append_const', const=int)
>>> parser.parse_args('--str --int'.split())
Namespace(types=[<type 'str'>, <type 'int'>])

	'version' - This expects a version= keyword argument in the
add_argument() call, and prints version information
and exits when invoked.

>>> import argparse
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--version', action='version', version='%(prog)s 2.0')
>>> parser.parse_args(['--version'])
PROG 2.0

You can also specify an arbitrary action by passing an object that implements
the Action API. The easiest way to do this is to extend
argparse.Action, supplying an appropriate __call__ method. The
__call__ method should accept four parameters:

	parser - The ArgumentParser object which contains this action.

	namespace - The namespace object that will be returned by
parse_args(). Most actions add an attribute to this
object.

	values - The associated command-line args, with any type-conversions
applied. (Type-conversions are specified with the type keyword argument to
add_argument().

	option_string - The option string that was used to invoke this action.
The option_string argument is optional, and will be absent if the action
is associated with a positional argument.

An example of a custom action:

>>> class FooAction(argparse.Action):
... def __call__(self, parser, namespace, values, option_string=None):
... print '%r %r %r' % (namespace, values, option_string)
... setattr(namespace, self.dest, values)
...
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action=FooAction)
>>> parser.add_argument('bar', action=FooAction)
>>> args = parser.parse_args('1 --foo 2'.split())
Namespace(bar=None, foo=None) '1' None
Namespace(bar='1', foo=None) '2' '--foo'
>>> args
Namespace(bar='1', foo='2')

15.4.3.3. nargs

ArgumentParser objects usually associate a single command-line argument with a
single action to be taken. The nargs keyword argument associates a
different number of command-line arguments with a single action. The supported
values are:

	N (an integer). N args from the command line will be gathered together into a
list. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', nargs=2)
>>> parser.add_argument('bar', nargs=1)
>>> parser.parse_args('c --foo a b'.split())
Namespace(bar=['c'], foo=['a', 'b'])

Note that nargs=1 produces a list of one item. This is different from
the default, in which the item is produced by itself.

	'?'. One arg will be consumed from the command line if possible, and
produced as a single item. If no command-line arg is present, the value from
default will be produced. Note that for optional arguments, there is an
additional case - the option string is present but not followed by a
command-line arg. In this case the value from const will be produced. Some
examples to illustrate this:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', nargs='?', const='c', default='d')
>>> parser.add_argument('bar', nargs='?', default='d')
>>> parser.parse_args('XX --foo YY'.split())
Namespace(bar='XX', foo='YY')
>>> parser.parse_args('XX --foo'.split())
Namespace(bar='XX', foo='c')
>>> parser.parse_args(''.split())
Namespace(bar='d', foo='d')

One of the more common uses of nargs='?' is to allow optional input and
output files:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('infile', nargs='?', type=argparse.FileType('r'),
... default=sys.stdin)
>>> parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'),
... default=sys.stdout)
>>> parser.parse_args(['input.txt', 'output.txt'])
Namespace(infile=<open file 'input.txt', mode 'r' at 0x...>,
 outfile=<open file 'output.txt', mode 'w' at 0x...>)
>>> parser.parse_args([])
Namespace(infile=<open file '<stdin>', mode 'r' at 0x...>,
 outfile=<open file '<stdout>', mode 'w' at 0x...>)

	'*'. All command-line args present are gathered into a list. Note that
it generally doesn’t make much sense to have more than one positional argument
with nargs='*', but multiple optional arguments with nargs='*' is
possible. For example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', nargs='*')
>>> parser.add_argument('--bar', nargs='*')
>>> parser.add_argument('baz', nargs='*')
>>> parser.parse_args('a b --foo x y --bar 1 2'.split())
Namespace(bar=['1', '2'], baz=['a', 'b'], foo=['x', 'y'])

	'+'. Just like '*', all command-line args present are gathered into a
list. Additionally, an error message will be generated if there wasn’t at
least one command-line arg present. For example:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', nargs='+')
>>> parser.parse_args('a b'.split())
Namespace(foo=['a', 'b'])
>>> parser.parse_args(''.split())
usage: PROG [-h] foo [foo ...]
PROG: error: too few arguments

If the nargs keyword argument is not provided, the number of args consumed
is determined by the action. Generally this means a single command-line arg
will be consumed and a single item (not a list) will be produced.

15.4.3.4. const

The const argument of add_argument() is used to hold
constant values that are not read from the command line but are required for
the various ArgumentParser actions. The two most common uses of it are:

	When add_argument() is called with
action='store_const' or action='append_const'. These actions add the
const value to one of the attributes of the object returned by parse_args(). See the action description for examples.

	When add_argument() is called with option strings
(like -f or --foo) and nargs='?'. This creates an optional
argument that can be followed by zero or one command-line args.
When parsing the command line, if the option string is encountered with no
command-line arg following it, the value of const will be assumed instead.
See the nargs description for examples.

The const keyword argument defaults to None.

15.4.3.5. default

All optional arguments and some positional arguments may be omitted at the
command line. The default keyword argument of
add_argument(), whose value defaults to None,
specifies what value should be used if the command-line arg is not present.
For optional arguments, the default value is used when the option string
was not present at the command line:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default=42)
>>> parser.parse_args('--foo 2'.split())
Namespace(foo='2')
>>> parser.parse_args(''.split())
Namespace(foo=42)

For positional arguments with nargs ='?' or '*', the default value
is used when no command-line arg was present:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', nargs='?', default=42)
>>> parser.parse_args('a'.split())
Namespace(foo='a')
>>> parser.parse_args(''.split())
Namespace(foo=42)

Providing default=argparse.SUPPRESS causes no attribute to be added if the
command-line argument was not present.:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default=argparse.SUPPRESS)
>>> parser.parse_args([])
Namespace()
>>> parser.parse_args(['--foo', '1'])
Namespace(foo='1')

15.4.3.6. type

By default, ArgumentParser objects read command-line args in as simple strings.
However, quite often the command-line string should instead be interpreted as
another type, like a float, int or file. The
type keyword argument of add_argument() allows any
necessary type-checking and type-conversions to be performed. Many common
built-in types can be used directly as the value of the type argument:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', type=int)
>>> parser.add_argument('bar', type=file)
>>> parser.parse_args('2 temp.txt'.split())
Namespace(bar=<open file 'temp.txt', mode 'r' at 0x...>, foo=2)

To ease the use of various types of files, the argparse module provides the
factory FileType which takes the mode= and bufsize= arguments of the
file object. For example, FileType('w') can be used to create a
writable file:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('bar', type=argparse.FileType('w'))
>>> parser.parse_args(['out.txt'])
Namespace(bar=<open file 'out.txt', mode 'w' at 0x...>)

type= can take any callable that takes a single string argument and returns
the type-converted value:

>>> def perfect_square(string):
... value = int(string)
... sqrt = math.sqrt(value)
... if sqrt != int(sqrt):
... msg = "%r is not a perfect square" % string
... raise argparse.ArgumentTypeError(msg)
... return value
...
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=perfect_square)
>>> parser.parse_args('9'.split())
Namespace(foo=9)
>>> parser.parse_args('7'.split())
usage: PROG [-h] foo
PROG: error: argument foo: '7' is not a perfect square

The choices keyword argument may be more convenient for type checkers that
simply check against a range of values:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=int, choices=xrange(5, 10))
>>> parser.parse_args('7'.split())
Namespace(foo=7)
>>> parser.parse_args('11'.split())
usage: PROG [-h] {5,6,7,8,9}
PROG: error: argument foo: invalid choice: 11 (choose from 5, 6, 7, 8, 9)

See the choices section for more details.

15.4.3.7. choices

Some command-line args should be selected from a restricted set of values.
These can be handled by passing a container object as the choices keyword
argument to add_argument(). When the command line is
parsed, arg values will be checked, and an error message will be displayed if
the arg was not one of the acceptable values:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', choices='abc')
>>> parser.parse_args('c'.split())
Namespace(foo='c')
>>> parser.parse_args('X'.split())
usage: PROG [-h] {a,b,c}
PROG: error: argument foo: invalid choice: 'X' (choose from 'a', 'b', 'c')

Note that inclusion in the choices container is checked after any type
conversions have been performed, so the type of the objects in the choices
container should match the type specified:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('foo', type=complex, choices=[1, 1j])
>>> parser.parse_args('1j'.split())
Namespace(foo=1j)
>>> parser.parse_args('-- -4'.split())
usage: PROG [-h] {1,1j}
PROG: error: argument foo: invalid choice: (-4+0j) (choose from 1, 1j)

Any object that supports the in operator can be passed as the choices
value, so dict objects, set objects, custom containers,
etc. are all supported.

15.4.3.8. required

In general, the argparse module assumes that flags like -f and --bar
indicate optional arguments, which can always be omitted at the command line.
To make an option required, True can be specified for the required=
keyword argument to add_argument():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', required=True)
>>> parser.parse_args(['--foo', 'BAR'])
Namespace(foo='BAR')
>>> parser.parse_args([])
usage: argparse.py [-h] [--foo FOO]
argparse.py: error: option --foo is required

As the example shows, if an option is marked as required,
parse_args() will report an error if that option is not
present at the command line.

Note

Required options are generally considered bad form because users expect
options to be optional, and thus they should be avoided when possible.

15.4.3.9. help

The help value is a string containing a brief description of the argument.
When a user requests help (usually by using -h or --help at the
command line), these help descriptions will be displayed with each
argument:

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('--foo', action='store_true',
... help='foo the bars before frobbling')
>>> parser.add_argument('bar', nargs='+',
... help='one of the bars to be frobbled')
>>> parser.parse_args('-h'.split())
usage: frobble [-h] [--foo] bar [bar ...]

positional arguments:
 bar one of the bars to be frobbled

optional arguments:
 -h, --help show this help message and exit
 --foo foo the bars before frobbling

The help strings can include various format specifiers to avoid repetition
of things like the program name or the argument default. The available
specifiers include the program name, %(prog)s and most keyword arguments to
add_argument(), e.g. %(default)s, %(type)s, etc.:

>>> parser = argparse.ArgumentParser(prog='frobble')
>>> parser.add_argument('bar', nargs='?', type=int, default=42,
... help='the bar to %(prog)s (default: %(default)s)')
>>> parser.print_help()
usage: frobble [-h] [bar]

positional arguments:
 bar the bar to frobble (default: 42)

optional arguments:
 -h, --help show this help message and exit

15.4.3.10. metavar

When ArgumentParser generates help messages, it need some way to refer
to each expected argument. By default, ArgumentParser objects use the dest
value as the “name” of each object. By default, for positional argument
actions, the dest value is used directly, and for optional argument actions,
the dest value is uppercased. So, a single positional argument with
dest='bar' will that argument will be referred to as bar. A single
optional argument --foo that should be followed by a single command-line arg
will be referred to as FOO. An example:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.add_argument('bar')
>>> parser.parse_args('X --foo Y'.split())
Namespace(bar='X', foo='Y')
>>> parser.print_help()
usage: [-h] [--foo FOO] bar

positional arguments:
 bar

optional arguments:
 -h, --help show this help message and exit
 --foo FOO

An alternative name can be specified with metavar:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', metavar='YYY')
>>> parser.add_argument('bar', metavar='XXX')
>>> parser.parse_args('X --foo Y'.split())
Namespace(bar='X', foo='Y')
>>> parser.print_help()
usage: [-h] [--foo YYY] XXX

positional arguments:
 XXX

optional arguments:
 -h, --help show this help message and exit
 --foo YYY

Note that metavar only changes the displayed name - the name of the
attribute on the parse_args() object is still determined
by the dest value.

Different values of nargs may cause the metavar to be used multiple times.
Providing a tuple to metavar specifies a different display for each of the
arguments:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x', nargs=2)
>>> parser.add_argument('--foo', nargs=2, metavar=('bar', 'baz'))
>>> parser.print_help()
usage: PROG [-h] [-x X X] [--foo bar baz]

optional arguments:
 -h, --help show this help message and exit
 -x X X
 --foo bar baz

15.4.3.11. dest

Most ArgumentParser actions add some value as an attribute of the
object returned by parse_args(). The name of this
attribute is determined by the dest keyword argument of
add_argument(). For positional argument actions,
dest is normally supplied as the first argument to
add_argument():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('bar')
>>> parser.parse_args('XXX'.split())
Namespace(bar='XXX')

For optional argument actions, the value of dest is normally inferred from
the option strings. ArgumentParser generates the value of dest by
taking the first long option string and stripping away the initial '--'
string. If no long option strings were supplied, dest will be derived from
the first short option string by stripping the initial '-' character. Any
internal '-' characters will be converted to '_' characters to make sure
the string is a valid attribute name. The examples below illustrate this
behavior:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-f', '--foo-bar', '--foo')
>>> parser.add_argument('-x', '-y')
>>> parser.parse_args('-f 1 -x 2'.split())
Namespace(foo_bar='1', x='2')
>>> parser.parse_args('--foo 1 -y 2'.split())
Namespace(foo_bar='1', x='2')

dest allows a custom attribute name to be provided:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', dest='bar')
>>> parser.parse_args('--foo XXX'.split())
Namespace(bar='XXX')

15.4.4. The parse_args() method

	
ArgumentParser.parse_args(args=None, namespace=None)

	Convert argument strings to objects and assign them as attributes of the
namespace. Return the populated namespace.

Previous calls to add_argument() determine exactly what objects are
created and how they are assigned. See the documentation for
add_argument() for details.

By default, the arg strings are taken from sys.argv, and a new empty
Namespace object is created for the attributes.

15.4.4.1. Option value syntax

The parse_args() method supports several ways of
specifying the value of an option (if it takes one). In the simplest case, the
option and its value are passed as two separate arguments:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x')
>>> parser.add_argument('--foo')
>>> parser.parse_args('-x X'.split())
Namespace(foo=None, x='X')
>>> parser.parse_args('--foo FOO'.split())
Namespace(foo='FOO', x=None)

For long options (options with names longer than a single character), the option
and value can also be passed as a single command-line argument, using = to
separate them:

>>> parser.parse_args('--foo=FOO'.split())
Namespace(foo='FOO', x=None)

For short options (options only one character long), the option and its value
can be concatenated:

>>> parser.parse_args('-xX'.split())
Namespace(foo=None, x='X')

Several short options can be joined together, using only a single - prefix,
as long as only the last option (or none of them) requires a value:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x', action='store_true')
>>> parser.add_argument('-y', action='store_true')
>>> parser.add_argument('-z')
>>> parser.parse_args('-xyzZ'.split())
Namespace(x=True, y=True, z='Z')

15.4.4.2. Invalid arguments

While parsing the command line, parse_args() checks for a
variety of errors, including ambiguous options, invalid types, invalid options,
wrong number of positional arguments, etc. When it encounters such an error,
it exits and prints the error along with a usage message:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', type=int)
>>> parser.add_argument('bar', nargs='?')

>>> # invalid type
>>> parser.parse_args(['--foo', 'spam'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: argument --foo: invalid int value: 'spam'

>>> # invalid option
>>> parser.parse_args(['--bar'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: no such option: --bar

>>> # wrong number of arguments
>>> parser.parse_args(['spam', 'badger'])
usage: PROG [-h] [--foo FOO] [bar]
PROG: error: extra arguments found: badger

15.4.4.3. Arguments containing "-"

The parse_args() method attempts to give errors whenever
the user has clearly made a mistake, but some situations are inherently
ambiguous. For example, the command-line arg '-1' could either be an
attempt to specify an option or an attempt to provide a positional argument.
The parse_args() method is cautious here: positional
arguments may only begin with '-' if they look like negative numbers and
there are no options in the parser that look like negative numbers:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-x')
>>> parser.add_argument('foo', nargs='?')

>>> # no negative number options, so -1 is a positional argument
>>> parser.parse_args(['-x', '-1'])
Namespace(foo=None, x='-1')

>>> # no negative number options, so -1 and -5 are positional arguments
>>> parser.parse_args(['-x', '-1', '-5'])
Namespace(foo='-5', x='-1')

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-1', dest='one')
>>> parser.add_argument('foo', nargs='?')

>>> # negative number options present, so -1 is an option
>>> parser.parse_args(['-1', 'X'])
Namespace(foo=None, one='X')

>>> # negative number options present, so -2 is an option
>>> parser.parse_args(['-2'])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: no such option: -2

>>> # negative number options present, so both -1s are options
>>> parser.parse_args(['-1', '-1'])
usage: PROG [-h] [-1 ONE] [foo]
PROG: error: argument -1: expected one argument

If you have positional arguments that must begin with '-' and don’t look
like negative numbers, you can insert the pseudo-argument '--' which tells
parse_args() that everything after that is a positional
argument:

>>> parser.parse_args(['--', '-f'])
Namespace(foo='-f', one=None)

15.4.4.4. Argument abbreviations

The parse_args() method allows long options to be
abbreviated if the abbreviation is unambiguous:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-bacon')
>>> parser.add_argument('-badger')
>>> parser.parse_args('-bac MMM'.split())
Namespace(bacon='MMM', badger=None)
>>> parser.parse_args('-bad WOOD'.split())
Namespace(bacon=None, badger='WOOD')
>>> parser.parse_args('-ba BA'.split())
usage: PROG [-h] [-bacon BACON] [-badger BADGER]
PROG: error: ambiguous option: -ba could match -badger, -bacon

An error is produced for arguments that could produce more than one options.

15.4.4.5. Beyond sys.argv

Sometimes it may be useful to have an ArgumentParser parse args other than those
of sys.argv. This can be accomplished by passing a list of strings to
parse_args(). This is useful for testing at the
interactive prompt:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument(
... 'integers', metavar='int', type=int, choices=xrange(10),
... nargs='+', help='an integer in the range 0..9')
>>> parser.add_argument(
... '--sum', dest='accumulate', action='store_const', const=sum,
... default=max, help='sum the integers (default: find the max)')
>>> parser.parse_args(['1', '2', '3', '4'])
Namespace(accumulate=<built-in function max>, integers=[1, 2, 3, 4])
>>> parser.parse_args('1 2 3 4 --sum'.split())
Namespace(accumulate=<built-in function sum>, integers=[1, 2, 3, 4])

15.4.4.6. The Namespace object

By default, parse_args() will return a new object of type
Namespace where the necessary attributes have been set. This class is
deliberately simple, just an object subclass with a readable string
representation. If you prefer to have dict-like view of the attributes, you
can use the standard Python idiom via vars():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> args = parser.parse_args(['--foo', 'BAR'])
>>> vars(args)
{'foo': 'BAR'}

It may also be useful to have an ArgumentParser assign attributes to an
already existing object, rather than a new Namespace object. This can
be achieved by specifying the namespace= keyword argument:

>>> class C(object):
... pass
...
>>> c = C()
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo')
>>> parser.parse_args(args=['--foo', 'BAR'], namespace=c)
>>> c.foo
'BAR'

15.4.5. Other utilities

15.4.5.1. Sub-commands

	
ArgumentParser.add_subparsers()

	Many programs split up their functionality into a number of sub-commands,
for example, the svn program can invoke sub-commands like svn
checkout, svn update, and svn commit. Splitting up functionality
this way can be a particularly good idea when a program performs several
different functions which require different kinds of command-line arguments.
ArgumentParser supports the creation of such sub-commands with the
add_subparsers() method. The add_subparsers() method is normally
called with no arguments and returns an special action object. This object
has a single method, add_parser(), which takes a
command name and any ArgumentParser constructor arguments, and
returns an ArgumentParser object that can be modified as usual.

Some example usage:

>>> # create the top-level parser
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('--foo', action='store_true', help='foo help')
>>> subparsers = parser.add_subparsers(help='sub-command help')
>>>
>>> # create the parser for the "a" command
>>> parser_a = subparsers.add_parser('a', help='a help')
>>> parser_a.add_argument('bar', type=int, help='bar help')
>>>
>>> # create the parser for the "b" command
>>> parser_b = subparsers.add_parser('b', help='b help')
>>> parser_b.add_argument('--baz', choices='XYZ', help='baz help')
>>>
>>> # parse some arg lists
>>> parser.parse_args(['a', '12'])
Namespace(bar=12, foo=False)
>>> parser.parse_args(['--foo', 'b', '--baz', 'Z'])
Namespace(baz='Z', foo=True)

Note that the object returned by parse_args() will only contain
attributes for the main parser and the subparser that was selected by the
command line (and not any other subparsers). So in the example above, when
the "a" command is specified, only the foo and bar attributes are
present, and when the "b" command is specified, only the foo and
baz attributes are present.

Similarly, when a help message is requested from a subparser, only the help
for that particular parser will be printed. The help message will not
include parent parser or sibling parser messages. (A help message for each
subparser command, however, can be given by supplying the help= argument
to add_parser() as above.)

>>> parser.parse_args(['--help'])
usage: PROG [-h] [--foo] {a,b} ...

positional arguments:
 {a,b} sub-command help
a a help
b b help

optional arguments:
 -h, --help show this help message and exit
 --foo foo help

>>> parser.parse_args(['a', '--help'])
usage: PROG a [-h] bar

positional arguments:
 bar bar help

optional arguments:
 -h, --help show this help message and exit

>>> parser.parse_args(['b', '--help'])
usage: PROG b [-h] [--baz {X,Y,Z}]

optional arguments:
 -h, --help show this help message and exit
 --baz {X,Y,Z} baz help

The add_subparsers() method also supports title and description
keyword arguments. When either is present, the subparser’s commands will
appear in their own group in the help output. For example:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(title='subcommands',
... description='valid subcommands',
... help='additional help')
>>> subparsers.add_parser('foo')
>>> subparsers.add_parser('bar')
>>> parser.parse_args(['-h'])
usage: [-h] {foo,bar} ...

optional arguments:
 -h, --help show this help message and exit

subcommands:
 valid subcommands

 {foo,bar} additional help

One particularly effective way of handling sub-commands is to combine the use
of the add_subparsers() method with calls to set_defaults() so
that each subparser knows which Python function it should execute. For
example:

>>> # sub-command functions
>>> def foo(args):
... print args.x * args.y
...
>>> def bar(args):
... print '((%s))' % args.z
...
>>> # create the top-level parser
>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers()
>>>
>>> # create the parser for the "foo" command
>>> parser_foo = subparsers.add_parser('foo')
>>> parser_foo.add_argument('-x', type=int, default=1)
>>> parser_foo.add_argument('y', type=float)
>>> parser_foo.set_defaults(func=foo)
>>>
>>> # create the parser for the "bar" command
>>> parser_bar = subparsers.add_parser('bar')
>>> parser_bar.add_argument('z')
>>> parser_bar.set_defaults(func=bar)
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args('foo 1 -x 2'.split())
>>> args.func(args)
2.0
>>>
>>> # parse the args and call whatever function was selected
>>> args = parser.parse_args('bar XYZYX'.split())
>>> args.func(args)
((XYZYX))

This way, you can let parse_args() does the job of calling the
appropriate function after argument parsing is complete. Associating
functions with actions like this is typically the easiest way to handle the
different actions for each of your subparsers. However, if it is necessary
to check the name of the subparser that was invoked, the dest keyword
argument to the add_subparsers() call will work:

>>> parser = argparse.ArgumentParser()
>>> subparsers = parser.add_subparsers(dest='subparser_name')
>>> subparser1 = subparsers.add_parser('1')
>>> subparser1.add_argument('-x')
>>> subparser2 = subparsers.add_parser('2')
>>> subparser2.add_argument('y')
>>> parser.parse_args(['2', 'frobble'])
Namespace(subparser_name='2', y='frobble')

15.4.5.2. FileType objects

	
class argparse.FileType(mode='r', bufsize=None)

	The FileType factory creates objects that can be passed to the type
argument of ArgumentParser.add_argument(). Arguments that have
FileType objects as their type will open command-line args as files
with the requested modes and buffer sizes:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--output', type=argparse.FileType('wb', 0))
>>> parser.parse_args(['--output', 'out'])
Namespace(output=<open file 'out', mode 'wb' at 0x...>)

FileType objects understand the pseudo-argument '-' and automatically
convert this into sys.stdin for readable FileType objects and
sys.stdout for writable FileType objects:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('infile', type=argparse.FileType('r'))
>>> parser.parse_args(['-'])
Namespace(infile=<open file '<stdin>', mode 'r' at 0x...>)

15.4.5.3. Argument groups

	
ArgumentParser.add_argument_group(title=None, description=None)

	By default, ArgumentParser groups command-line arguments into
“positional arguments” and “optional arguments” when displaying help
messages. When there is a better conceptual grouping of arguments than this
default one, appropriate groups can be created using the
add_argument_group() method:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> group = parser.add_argument_group('group')
>>> group.add_argument('--foo', help='foo help')
>>> group.add_argument('bar', help='bar help')
>>> parser.print_help()
usage: PROG [--foo FOO] bar

group:
 bar bar help
 --foo FOO foo help

The add_argument_group() method returns an argument group object which
has an add_argument() method just like a regular
ArgumentParser. When an argument is added to the group, the parser
treats it just like a normal argument, but displays the argument in a
separate group for help messages. The add_argument_group() method
accepts title and description arguments which can be used to
customize this display:

>>> parser = argparse.ArgumentParser(prog='PROG', add_help=False)
>>> group1 = parser.add_argument_group('group1', 'group1 description')
>>> group1.add_argument('foo', help='foo help')
>>> group2 = parser.add_argument_group('group2', 'group2 description')
>>> group2.add_argument('--bar', help='bar help')
>>> parser.print_help()
usage: PROG [--bar BAR] foo

group1:
 group1 description

 foo foo help

group2:
 group2 description

 --bar BAR bar help

Note that any arguments not your user defined groups will end up back in the
usual “positional arguments” and “optional arguments” sections.

15.4.5.4. Mutual exclusion

	
argparse.add_mutually_exclusive_group(required=False)

	Create a mutually exclusive group. argparse will make sure that only
one of the arguments in the mutually exclusive group was present on the
command line:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> group = parser.add_mutually_exclusive_group()
>>> group.add_argument('--foo', action='store_true')
>>> group.add_argument('--bar', action='store_false')
>>> parser.parse_args(['--foo'])
Namespace(bar=True, foo=True)
>>> parser.parse_args(['--bar'])
Namespace(bar=False, foo=False)
>>> parser.parse_args(['--foo', '--bar'])
usage: PROG [-h] [--foo | --bar]
PROG: error: argument --bar: not allowed with argument --foo

The add_mutually_exclusive_group() method also accepts a required
argument, to indicate that at least one of the mutually exclusive arguments
is required:

>>> parser = argparse.ArgumentParser(prog='PROG')
>>> group = parser.add_mutually_exclusive_group(required=True)
>>> group.add_argument('--foo', action='store_true')
>>> group.add_argument('--bar', action='store_false')
>>> parser.parse_args([])
usage: PROG [-h] (--foo | --bar)
PROG: error: one of the arguments --foo --bar is required

Note that currently mutually exclusive argument groups do not support the
title and description arguments of
add_argument_group().

15.4.5.5. Parser defaults

	
ArgumentParser.set_defaults(**kwargs)

	Most of the time, the attributes of the object returned by parse_args()
will be fully determined by inspecting the command-line args and the argument
actions. set_defaults() allows some additional
attributes that are determined without any inspection of the command line to
be added:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('foo', type=int)
>>> parser.set_defaults(bar=42, baz='badger')
>>> parser.parse_args(['736'])
Namespace(bar=42, baz='badger', foo=736)

Note that parser-level defaults always override argument-level defaults:

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default='bar')
>>> parser.set_defaults(foo='spam')
>>> parser.parse_args([])
Namespace(foo='spam')

Parser-level defaults can be particularly useful when working with multiple
parsers. See the add_subparsers() method for an
example of this type.

	
ArgumentParser.get_default(dest)

	Get the default value for a namespace attribute, as set by either
add_argument() or by
set_defaults():

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', default='badger')
>>> parser.get_default('foo')
'badger'

15.4.5.6. Printing help

In most typical applications, parse_args() will take
care of formatting and printing any usage or error messages. However, several
formatting methods are available:

	
ArgumentParser.print_usage(file=None)

	Print a brief description of how the ArgumentParser should be
invoked on the command line. If file is None, sys.stdout is
assumed.

	
ArgumentParser.print_help(file=None)

	Print a help message, including the program usage and information about the
arguments registered with the ArgumentParser. If file is
None, sys.stdout is assumed.

There are also variants of these methods that simply return a string instead of
printing it:

	
ArgumentParser.format_usage()

	Return a string containing a brief description of how the
ArgumentParser should be invoked on the command line.

	
ArgumentParser.format_help()

	Return a string containing a help message, including the program usage and
information about the arguments registered with the ArgumentParser.

15.4.5.7. Partial parsing

	
ArgumentParser.parse_known_args(args=None, namespace=None)

	

Sometimes a script may only parse a few of the command-line arguments, passing
the remaining arguments on to another script or program. In these cases, the
parse_known_args() method can be useful. It works much like
parse_args() except that it does not produce an error when
extra arguments are present. Instead, it returns a two item tuple containing
the populated namespace and the list of remaining argument strings.

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--foo', action='store_true')
>>> parser.add_argument('bar')
>>> parser.parse_known_args(['--foo', '--badger', 'BAR', 'spam'])
(Namespace(bar='BAR', foo=True), ['--badger', 'spam'])

15.4.5.8. Customizing file parsing

	
ArgumentParser.convert_arg_line_to_args(arg_line)

	Arguments that are read from a file (see the fromfile_prefix_chars
keyword argument to the ArgumentParser constructor) are read one
argument per line. convert_arg_line_to_args() can be overriden for
fancier reading.

This method takes a single argument arg_line which is a string read from
the argument file. It returns a list of arguments parsed from this string.
The method is called once per line read from the argument file, in order.

A useful override of this method is one that treats each space-separated word
as an argument:

def convert_arg_line_to_args(self, arg_line):
 for arg in arg_line.split():
 if not arg.strip():
 continue
 yield arg

15.4.5.9. Exiting methods

	
ArgumentParser.exit(status=0, message=None)

	This method terminates the program, exiting with the specified status
and, if given, it prints a message before that.

	
ArgumentParser.error(message)

	This method prints a usage message including the message to the
standard output and terminates the program with a status code of 2.

15.4.6. Upgrading optparse code

Originally, the argparse module had attempted to maintain compatibility
with optparse. However, optparse was difficult to extend
transparently, particularly with the changes required to support the new
nargs= specifiers and better usage messages. When most everything in
optparse had either been copy-pasted over or monkey-patched, it no
longer seemed practical to try to maintain the backwards compatibility.

A partial upgrade path from optparse to argparse:

	Replace all optparse.OptionParser.add_option() calls with
ArgumentParser.add_argument() calls.

	Replace options, args = parser.parse_args() with args =
parser.parse_args() and add additional ArgumentParser.add_argument()
calls for the positional arguments.

	Replace callback actions and the callback_* keyword arguments with
type or action arguments.

	Replace string names for type keyword arguments with the corresponding
type objects (e.g. int, float, complex, etc).

	Replace optparse.Values with Namespace and
optparse.OptionError and optparse.OptionValueError with
ArgumentError.

	Replace strings with implicit arguments such as %default or %prog with
the standard Python syntax to use dictionaries to format strings, that is,
%(default)s and %(prog)s.

	Replace the OptionParser constructor version argument with a call to
parser.add_argument('--version', action='version', version='<the version>')

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.5. optparse — Parser for command line options

Deprecated since version 2.7: The optparse module is deprecated and will not be developed further;
development will continue with the argparse module.

New in version 2.3.

optparse is a more convenient, flexible, and powerful library for parsing
command-line options than the old getopt module. optparse uses a
more declarative style of command-line parsing: you create an instance of
OptionParser, populate it with options, and parse the command
line. optparse allows users to specify options in the conventional
GNU/POSIX syntax, and additionally generates usage and help messages for you.

Here’s an example of using optparse in a simple script:

from optparse import OptionParser
[...]
parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",
 help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",
 action="store_false", dest="verbose", default=True,
 help="don't print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing”
on the command-line, for example:

<yourscript> --file=outfile -q

As it parses the command line, optparse sets attributes of the
options object returned by parse_args() based on user-supplied
command-line values. When parse_args() returns from parsing this command
line, options.filename will be "outfile" and options.verbose will be
False. optparse supports both long and short options, allows short
options to be merged together, and allows options to be associated with their
arguments in a variety of ways. Thus, the following command lines are all
equivalent to the above example:

<yourscript> -f outfile --quiet
<yourscript> --quiet --file outfile
<yourscript> -q -foutfile
<yourscript> -qfoutfile

Additionally, users can run one of

<yourscript> -h
<yourscript> --help

and optparse will print out a brief summary of your script’s options:

Usage: <yourscript> [options]

Options:
 -h, --help show this help message and exit
 -f FILE, --file=FILE write report to FILE
 -q, --quiet don't print status messages to stdout

where the value of yourscript is determined at runtime (normally from
sys.argv[0]).

15.5.1. Background

optparse was explicitly designed to encourage the creation of programs
with straightforward, conventional command-line interfaces. To that end, it
supports only the most common command-line syntax and semantics conventionally
used under Unix. If you are unfamiliar with these conventions, read this
section to acquaint yourself with them.

15.5.1.1. Terminology

	argument

	a string entered on the command-line, and passed by the shell to execl()
or execv(). In Python, arguments are elements of sys.argv[1:]
(sys.argv[0] is the name of the program being executed). Unix shells
also use the term “word”.

It is occasionally desirable to substitute an argument list other than
sys.argv[1:], so you should read “argument” as “an element of
sys.argv[1:], or of some other list provided as a substitute for
sys.argv[1:]”.

	option

	an argument used to supply extra information to guide or customize the
execution of a program. There are many different syntaxes for options; the
traditional Unix syntax is a hyphen (“-”) followed by a single letter,
e.g. -x or -F. Also, traditional Unix syntax allows multiple
options to be merged into a single argument, e.g. -x -F is equivalent
to -xF. The GNU project introduced -- followed by a series of
hyphen-separated words, e.g. --file or --dry-run. These are the
only two option syntaxes provided by optparse.

Some other option syntaxes that the world has seen include:

	a hyphen followed by a few letters, e.g. -pf (this is not the same
as multiple options merged into a single argument)

	a hyphen followed by a whole word, e.g. -file (this is technically
equivalent to the previous syntax, but they aren’t usually seen in the same
program)

	a plus sign followed by a single letter, or a few letters, or a word, e.g.
+f, +rgb

	a slash followed by a letter, or a few letters, or a word, e.g. /f,
/file

These option syntaxes are not supported by optparse, and they never
will be. This is deliberate: the first three are non-standard on any
environment, and the last only makes sense if you’re exclusively targeting
VMS, MS-DOS, and/or Windows.

	option argument

	an argument that follows an option, is closely associated with that option,
and is consumed from the argument list when that option is. With
optparse, option arguments may either be in a separate argument from
their option:

-f foo
--file foo

or included in the same argument:

-ffoo
--file=foo

Typically, a given option either takes an argument or it doesn’t. Lots of
people want an “optional option arguments” feature, meaning that some options
will take an argument if they see it, and won’t if they don’t. This is
somewhat controversial, because it makes parsing ambiguous: if -a takes
an optional argument and -b is another option entirely, how do we
interpret -ab? Because of this ambiguity, optparse does not
support this feature.

	positional argument

	something leftover in the argument list after options have been parsed, i.e.
after options and their arguments have been parsed and removed from the
argument list.

	required option

	an option that must be supplied on the command-line; note that the phrase
“required option” is self-contradictory in English. optparse doesn’t
prevent you from implementing required options, but doesn’t give you much
help at it either.

For example, consider this hypothetical command-line:

prog -v --report /tmp/report.txt foo bar

-v and --report are both options. Assuming that --report
takes one argument, /tmp/report.txt is an option argument. foo and
bar are positional arguments.

15.5.1.2. What are options for?

Options are used to provide extra information to tune or customize the execution
of a program. In case it wasn’t clear, options are usually optional. A
program should be able to run just fine with no options whatsoever. (Pick a
random program from the Unix or GNU toolsets. Can it run without any options at
all and still make sense? The main exceptions are find, tar, and
dd—all of which are mutant oddballs that have been rightly criticized
for their non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it.
If it’s required, then it’s not optional! If there is a piece of information
that your program absolutely requires in order to run successfully, that’s what
positional arguments are for.

As an example of good command-line interface design, consider the humble cp
utility, for copying files. It doesn’t make much sense to try to copy files
without supplying a destination and at least one source. Hence, cp fails if
you run it with no arguments. However, it has a flexible, useful syntax that
does not require any options at all:

cp SOURCE DEST
cp SOURCE ... DEST-DIR

You can get pretty far with just that. Most cp implementations provide a
bunch of options to tweak exactly how the files are copied: you can preserve
mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core mission of
cp, which is to copy either one file to another, or several files to another
directory.

15.5.1.3. What are positional arguments for?

Positional arguments are for those pieces of information that your program
absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If
your program requires 17 distinct pieces of information in order to run
successfully, it doesn’t much matter how you get that information from the
user—most people will give up and walk away before they successfully run the
program. This applies whether the user interface is a command-line, a
configuration file, or a GUI: if you make that many demands on your users, most
of them will simply give up.

In short, try to minimize the amount of information that users are absolutely
required to supply—use sensible defaults whenever possible. Of course, you
also want to make your programs reasonably flexible. That’s what options are
for. Again, it doesn’t matter if they are entries in a config file, widgets in
the “Preferences” dialog of a GUI, or command-line options—the more options
you implement, the more flexible your program is, and the more complicated its
implementation becomes. Too much flexibility has drawbacks as well, of course;
too many options can overwhelm users and make your code much harder to maintain.

15.5.2. Tutorial

While optparse is quite flexible and powerful, it’s also straightforward
to use in most cases. This section covers the code patterns that are common to
any optparse-based program.

First, you need to import the OptionParser class; then, early in the main
program, create an OptionParser instance:

from optparse import OptionParser
[...]
parser = OptionParser()

Then you can start defining options. The basic syntax is:

parser.add_option(opt_str, ...,
 attr=value, ...)

Each option has one or more option strings, such as -f or --file,
and several option attributes that tell optparse what to expect and what
to do when it encounters that option on the command line.

Typically, each option will have one short option string and one long option
string, e.g.:

parser.add_option("-f", "--file", ...)

You’re free to define as many short option strings and as many long option
strings as you like (including zero), as long as there is at least one option
string overall.

The option strings passed to add_option() are effectively labels for the
option defined by that call. For brevity, we will frequently refer to
encountering an option on the command line; in reality, optparse
encounters option strings and looks up options from them.

Once all of your options are defined, instruct optparse to parse your
program’s command line:

(options, args) = parser.parse_args()

(If you like, you can pass a custom argument list to parse_args(), but
that’s rarely necessary: by default it uses sys.argv[1:].)

parse_args() returns two values:

	options, an object containing values for all of your options—e.g. if
--file takes a single string argument, then options.file will be the
filename supplied by the user, or None if the user did not supply that
option

	args, the list of positional arguments leftover after parsing options

This tutorial section only covers the four most important option attributes:
action, type, dest
(destination), and help. Of these, action is the
most fundamental.

15.5.2.1. Understanding option actions

Actions tell optparse what to do when it encounters an option on the
command line. There is a fixed set of actions hard-coded into optparse;
adding new actions is an advanced topic covered in section
Extending optparse. Most actions tell optparse to store
a value in some variable—for example, take a string from the command line and
store it in an attribute of options.

If you don’t specify an option action, optparse defaults to store.

15.5.2.2. The store action

The most common option action is store, which tells optparse to take
the next argument (or the remainder of the current argument), ensure that it is
of the correct type, and store it to your chosen destination.

For example:

parser.add_option("-f", "--file",
 action="store", type="string", dest="filename")

Now let’s make up a fake command line and ask optparse to parse it:

args = ["-f", "foo.txt"]
(options, args) = parser.parse_args(args)

When optparse sees the option string -f, it consumes the next
argument, foo.txt, and stores it in options.filename. So, after this
call to parse_args(), options.filename is "foo.txt".

Some other option types supported by optparse are int and float.
Here’s an option that expects an integer argument:

parser.add_option("-n", type="int", dest="num")

Note that this option has no long option string, which is perfectly acceptable.
Also, there’s no explicit action, since the default is store.

Let’s parse another fake command-line. This time, we’ll jam the option argument
right up against the option: since -n42 (one argument) is equivalent to
-n 42 (two arguments), the code

(options, args) = parser.parse_args(["-n42"])
print options.num

will print 42.

If you don’t specify a type, optparse assumes string. Combined with
the fact that the default action is store, that means our first example can
be a lot shorter:

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destination, optparse figures out a sensible
default from the option strings: if the first long option string is
--foo-bar, then the default destination is foo_bar. If there are no
long option strings, optparse looks at the first short option string: the
default destination for -f is f.

optparse also includes built-in long and complex types. Adding
types is covered in section Extending optparse.

15.5.2.3. Handling boolean (flag) options

Flag options—set a variable to true or false when a particular option is seen
—are quite common. optparse supports them with two separate actions,
store_true and store_false. For example, you might have a verbose
flag that is turned on with -v and off with -q:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly
OK. (It just means you have to be a bit careful when setting default values—
see below.)

When optparse encounters -v on the command line, it sets
options.verbose to True; when it encounters -q,
options.verbose is set to False.

15.5.2.4. Other actions

Some other actions supported by optparse are:

	"store_const"

	store a constant value

	"append"

	append this option’s argument to a list

	"count"

	increment a counter by one

	"callback"

	call a specified function

These are covered in section Reference Guide, Reference Guide
and section Option Callbacks.

15.5.2.5. Default values

All of the above examples involve setting some variable (the “destination”) when
certain command-line options are seen. What happens if those options are never
seen? Since we didn’t supply any defaults, they are all set to None. This
is usually fine, but sometimes you want more control. optparse lets you
supply a default value for each destination, which is assigned before the
command line is parsed.

First, consider the verbose/quiet example. If we want optparse to set
verbose to True unless -q is seen, then we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-q", action="store_false", dest="verbose")

Since default values apply to the destination rather than to any particular
option, and these two options happen to have the same destination, this is
exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value for verbose will be True: the last default
value supplied for any particular destination is the one that counts.

A clearer way to specify default values is the set_defaults() method of
OptionParser, which you can call at any time before calling parse_args():

parser.set_defaults(verbose=True)
parser.add_option(...)
(options, args) = parser.parse_args()

As before, the last value specified for a given option destination is the one
that counts. For clarity, try to use one method or the other of setting default
values, not both.

15.5.2.6. Generating help

optparse‘s ability to generate help and usage text automatically is
useful for creating user-friendly command-line interfaces. All you have to do
is supply a help value for each option, and optionally a short
usage message for your whole program. Here’s an OptionParser populated with
user-friendly (documented) options:

usage = "usage: %prog [options] arg1 arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",
 action="store_true", dest="verbose", default=True,
 help="make lots of noise [default]")
parser.add_option("-q", "--quiet",
 action="store_false", dest="verbose",
 help="be vewwy quiet (I'm hunting wabbits)")
parser.add_option("-f", "--filename",
 metavar="FILE", help="write output to FILE")
parser.add_option("-m", "--mode",
 default="intermediate",
 help="interaction mode: novice, intermediate, "
 "or expert [default: %default]")

If optparse encounters either -h or --help on the
command-line, or if you just call parser.print_help(), it prints the
following to standard output:

Usage: <yourscript> [options] arg1 arg2

Options:
 -h, --help show this help message and exit
 -v, --verbose make lots of noise [default]
 -q, --quiet be vewwy quiet (I'm hunting wabbits)
 -f FILE, --filename=FILE
 write output to FILE
 -m MODE, --mode=MODE interaction mode: novice, intermediate, or
 expert [default: intermediate]

(If the help output is triggered by a help option, optparse exits after
printing the help text.)

There’s a lot going on here to help optparse generate the best possible
help message:

	the script defines its own usage message:

usage = "usage: %prog [options] arg1 arg2"

optparse expands %prog in the usage string to the name of the
current program, i.e. os.path.basename(sys.argv[0]). The expanded string
is then printed before the detailed option help.

If you don’t supply a usage string, optparse uses a bland but sensible
default: "Usage: %prog [options]", which is fine if your script doesn’t
take any positional arguments.

	every option defines a help string, and doesn’t worry about line-wrapping—
optparse takes care of wrapping lines and making the help output look
good.

	options that take a value indicate this fact in their automatically-generated
help message, e.g. for the “mode” option:

-m MODE, --mode=MODE

Here, “MODE” is called the meta-variable: it stands for the argument that the
user is expected to supply to -m/--mode. By default,
optparse converts the destination variable name to uppercase and uses
that for the meta-variable. Sometimes, that’s not what you want—for
example, the --filename option explicitly sets metavar="FILE",
resulting in this automatically-generated option description:

-f FILE, --filename=FILE

This is important for more than just saving space, though: the manually
written help text uses the meta-variable FILE to clue the user in that
there’s a connection between the semi-formal syntax -f FILE and the informal
semantic description “write output to FILE”. This is a simple but effective
way to make your help text a lot clearer and more useful for end users.

New in version 2.4: Options that have a default value can include %default in the help
string—optparse will replace it with str() of the option’s
default value. If an option has no default value (or the default value is
None), %default expands to none.

15.5.2.6.1. Grouping Options

When dealing with many options, it is convenient to group these options for
better help output. An OptionParser can contain several option groups,
each of which can contain several options.

An option group is obtained using the class OptionGroup:

	
class optparse.OptionGroup(parser, title, description=None)

	where

	parser is the OptionParser instance the group will be insterted in
to

	title is the group title

	description, optional, is a long description of the group

OptionGroup inherits from OptionContainer (like
OptionParser) and so the add_option() method can be used to add
an option to the group.

Once all the options are declared, using the OptionParser method
add_option_group() the group is added to the previously defined parser.

Continuing with the parser defined in the previous section, adding an
OptionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",
 "Caution: use these options at your own risk. "
 "It is believed that some of them bite.")
group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

This would result in the following help output:

Usage: <yourscript> [options] arg1 arg2

Options:
 -h, --help show this help message and exit
 -v, --verbose make lots of noise [default]
 -q, --quiet be vewwy quiet (I'm hunting wabbits)
 -f FILE, --filename=FILE
 write output to FILE
 -m MODE, --mode=MODE interaction mode: novice, intermediate, or
 expert [default: intermediate]

 Dangerous Options:
 Caution: use these options at your own risk. It is believed that some
 of them bite.

 -g Group option.

A bit more complete example might invole using more than one group: still
extendind the previous example:

group = OptionGroup(parser, "Dangerous Options",
 "Caution: use these options at your own risk. "
 "It is believed that some of them bite.")
group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

group = OptionGroup(parser, "Debug Options")
group.add_option("-d", "--debug", action="store_true",
 help="Print debug information")
group.add_option("-s", "--sql", action="store_true",
 help="Print all SQL statements executed")
group.add_option("-e", action="store_true", help="Print every action done")
parser.add_option_group(group)

that results in the following output:

Usage: <yourscript> [options] arg1 arg2

Options:
 -h, --help show this help message and exit
 -v, --verbose make lots of noise [default]
 -q, --quiet be vewwy quiet (I'm hunting wabbits)
 -f FILE, --filename=FILE
 write output to FILE
 -m MODE, --mode=MODE interaction mode: novice, intermediate, or expert
 [default: intermediate]

 Dangerous Options:
 Caution: use these options at your own risk. It is believed that some
 of them bite.

 -g Group option.

 Debug Options:
 -d, --debug Print debug information
 -s, --sql Print all SQL statements executed
 -e Print every action done

Another interesting method, in particular when working programmatically with
option groups is:

	
OptionParser.get_option_group(opt_str)

	Return, if defined, the OptionGroup that has the title or the long
description equals to opt_str

15.5.2.7. Printing a version string

Similar to the brief usage string, optparse can also print a version
string for your program. You have to supply the string as the version
argument to OptionParser:

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

%prog is expanded just like it is in usage. Apart from that,
version can contain anything you like. When you supply it, optparse
automatically adds a --version option to your parser. If it encounters
this option on the command line, it expands your version string (by
replacing %prog), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo:

$ /usr/bin/foo --version
foo 1.0

The following two methods can be used to print and get the version string:

	
OptionParser.print_version(file=None)

	Print the version message for the current program (self.version) to
file (default stdout). As with print_usage(), any occurrence
of %prog in self.version is replaced with the name of the current
program. Does nothing if self.version is empty or undefined.

	
OptionParser.get_version()

	Same as print_version() but returns the version string instead of
printing it.

15.5.2.8. How optparse handles errors

There are two broad classes of errors that optparse has to worry about:
programmer errors and user errors. Programmer errors are usually erroneous
calls to OptionParser.add_option(), e.g. invalid option strings, unknown
option attributes, missing option attributes, etc. These are dealt with in the
usual way: raise an exception (either optparse.OptionError or
TypeError) and let the program crash.

Handling user errors is much more important, since they are guaranteed to happen
no matter how stable your code is. optparse can automatically detect
some user errors, such as bad option arguments (passing -n 4x where
-n takes an integer argument), missing arguments (-n at the end
of the command line, where -n takes an argument of any type). Also,
you can call OptionParser.error() to signal an application-defined error
condition:

(options, args) = parser.parse_args()
[...]
if options.a and options.b:
 parser.error("options -a and -b are mutually exclusive")

In either case, optparse handles the error the same way: it prints the
program’s usage message and an error message to standard error and exits with
error status 2.

Consider the first example above, where the user passes 4x to an option
that takes an integer:

$ /usr/bin/foo -n 4x
Usage: foo [options]

foo: error: option -n: invalid integer value: '4x'

Or, where the user fails to pass a value at all:

$ /usr/bin/foo -n
Usage: foo [options]

foo: error: -n option requires an argument

optparse-generated error messages take care always to mention the
option involved in the error; be sure to do the same when calling
OptionParser.error() from your application code.

If optparse‘s default error-handling behaviour does not suit your needs,
you’ll need to subclass OptionParser and override its exit()
and/or error() methods.

15.5.2.9. Putting it all together

Here’s what optparse-based scripts usually look like:

from optparse import OptionParser
[...]
def main():
 usage = "usage: %prog [options] arg"
 parser = OptionParser(usage)
 parser.add_option("-f", "--file", dest="filename",
 help="read data from FILENAME")
 parser.add_option("-v", "--verbose",
 action="store_true", dest="verbose")
 parser.add_option("-q", "--quiet",
 action="store_false", dest="verbose")
 [...]
 (options, args) = parser.parse_args()
 if len(args) != 1:
 parser.error("incorrect number of arguments")
 if options.verbose:
 print "reading %s..." % options.filename
 [...]

if __name__ == "__main__":
 main()

15.5.3. Reference Guide

15.5.3.1. Creating the parser

The first step in using optparse is to create an OptionParser instance.

	
class optparse.OptionParser(...)

	The OptionParser constructor has no required arguments, but a number of
optional keyword arguments. You should always pass them as keyword
arguments, i.e. do not rely on the order in which the arguments are declared.

	usage (default: "%prog [options]")

	The usage summary to print when your program is run incorrectly or with a
help option. When optparse prints the usage string, it expands
%prog to os.path.basename(sys.argv[0]) (or to prog if you
passed that keyword argument). To suppress a usage message, pass the
special value optparse.SUPPRESS_USAGE.

	option_list (default: [])

	A list of Option objects to populate the parser with. The options in
option_list are added after any options in standard_option_list (a
class attribute that may be set by OptionParser subclasses), but before
any version or help options. Deprecated; use add_option() after
creating the parser instead.

	option_class (default: optparse.Option)

	Class to use when adding options to the parser in add_option().

	version (default: None)

	A version string to print when the user supplies a version option. If you
supply a true value for version, optparse automatically adds a
version option with the single option string --version. The
substring %prog is expanded the same as for usage.

	conflict_handler (default: "error")

	Specifies what to do when options with conflicting option strings are
added to the parser; see section
Conflicts between options.

	description (default: None)

	A paragraph of text giving a brief overview of your program.
optparse reformats this paragraph to fit the current terminal width
and prints it when the user requests help (after usage, but before the
list of options).

	formatter (default: a new IndentedHelpFormatter)

	An instance of optparse.HelpFormatter that will be used for printing help
text. optparse provides two concrete classes for this purpose:
IndentedHelpFormatter and TitledHelpFormatter.

	add_help_option (default: True)

	If true, optparse will add a help option (with option strings -h
and --help) to the parser.

	prog

	The string to use when expanding %prog in usage and version
instead of os.path.basename(sys.argv[0]).

	epilog (default: None)

	A paragraph of help text to print after the option help.

15.5.3.2. Populating the parser

There are several ways to populate the parser with options. The preferred way
is by using OptionParser.add_option(), as shown in section
Tutorial. add_option() can be called in one of two ways:

	pass it an Option instance (as returned by make_option())

	pass it any combination of positional and keyword arguments that are
acceptable to make_option() (i.e., to the Option constructor), and it
will create the Option instance for you

The other alternative is to pass a list of pre-constructed Option instances to
the OptionParser constructor, as in:

option_list = [
 make_option("-f", "--filename",
 action="store", type="string", dest="filename"),
 make_option("-q", "--quiet",
 action="store_false", dest="verbose"),
]
parser = OptionParser(option_list=option_list)

(make_option() is a factory function for creating Option instances;
currently it is an alias for the Option constructor. A future version of
optparse may split Option into several classes, and make_option()
will pick the right class to instantiate. Do not instantiate Option directly.)

15.5.3.3. Defining options

Each Option instance represents a set of synonymous command-line option strings,
e.g. -f and --file. You can specify any number of short or
long option strings, but you must specify at least one overall option string.

The canonical way to create an Option instance is with the
add_option() method of OptionParser.

	
OptionParser.add_option(opt_str[, ...], attr=value, ...)

	To define an option with only a short option string:

parser.add_option("-f", attr=value, ...)

And to define an option with only a long option string:

parser.add_option("--foo", attr=value, ...)

The keyword arguments define attributes of the new Option object. The most
important option attribute is action, and it largely
determines which other attributes are relevant or required. If you pass
irrelevant option attributes, or fail to pass required ones, optparse
raises an OptionError exception explaining your mistake.

An option’s action determines what optparse does when it encounters
this option on the command-line. The standard option actions hard-coded into
optparse are:

	"store"

	store this option’s argument (default)

	"store_const"

	store a constant value

	"store_true"

	store a true value

	"store_false"

	store a false value

	"append"

	append this option’s argument to a list

	"append_const"

	append a constant value to a list

	"count"

	increment a counter by one

	"callback"

	call a specified function

	"help"

	print a usage message including all options and the documentation for them

(If you don’t supply an action, the default is "store". For this action,
you may also supply type and dest option
attributes; see Standard option actions.)

As you can see, most actions involve storing or updating a value somewhere.
optparse always creates a special object for this, conventionally called
options (it happens to be an instance of optparse.Values). Option
arguments (and various other values) are stored as attributes of this object,
according to the dest (destination) option attribute.

For example, when you call

parser.parse_args()

one of the first things optparse does is create the options object:

options = Values()

If one of the options in this parser is defined with

parser.add_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo
-f foo
--file=foo
--file foo

then optparse, on seeing this option, will do the equivalent of

options.filename = "foo"

The type and dest option attributes are almost
as important as action, but action is the only
one that makes sense for all options.

15.5.3.4. Option attributes

The following option attributes may be passed as keyword arguments to
OptionParser.add_option(). If you pass an option attribute that is not
relevant to a particular option, or fail to pass a required option attribute,
optparse raises OptionError.

	
Option.action

	(default: "store")

Determines optparse‘s behaviour when this option is seen on the
command line; the available options are documented here.

	
Option.type

	(default: "string")

The argument type expected by this option (e.g., "string" or "int");
the available option types are documented here.

	
Option.dest

	(default: derived from option strings)

If the option’s action implies writing or modifying a value somewhere, this
tells optparse where to write it: dest names an
attribute of the options object that optparse builds as it parses
the command line.

	
Option.default

	The value to use for this option’s destination if the option is not seen on
the command line. See also OptionParser.set_defaults().

	
Option.nargs

	(default: 1)

How many arguments of type type should be consumed when this
option is seen. If > 1, optparse will store a tuple of values to
dest.

	
Option.const

	For actions that store a constant value, the constant value to store.

	
Option.choices

	For options of type "choice", the list of strings the user may choose
from.

	
Option.callback

	For options with action "callback", the callable to call when this option
is seen. See section Option Callbacks for detail on the
arguments passed to the callable.

	
Option.callback_args

	
Option.callback_kwargs

	Additional positional and keyword arguments to pass to callback after the
four standard callback arguments.

	
Option.help

	Help text to print for this option when listing all available options after
the user supplies a help option (such as --help). If
no help text is supplied, the option will be listed without help text. To
hide this option, use the special value optparse.SUPPRESS_HELP.

	
Option.metavar

	(default: derived from option strings)

Stand-in for the option argument(s) to use when printing help text. See
section Tutorial for an example.

15.5.3.5. Standard option actions

The various option actions all have slightly different requirements and effects.
Most actions have several relevant option attributes which you may specify to
guide optparse‘s behaviour; a few have required attributes, which you
must specify for any option using that action.

	"store" [relevant: type, dest,
nargs, choices]

The option must be followed by an argument, which is converted to a value
according to type and stored in dest. If
nargs > 1, multiple arguments will be consumed from the
command line; all will be converted according to type and
stored to dest as a tuple. See the
Standard option types section.

If choices is supplied (a list or tuple of strings), the type
defaults to "choice".

If type is not supplied, it defaults to "string".

If dest is not supplied, optparse derives a destination
from the first long option string (e.g., --foo-bar implies
foo_bar). If there are no long option strings, optparse derives a
destination from the first short option string (e.g., -f implies f).

Example:

parser.add_option("-f")
parser.add_option("-p", type="float", nargs=3, dest="point")

As it parses the command line

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set

options.f = "foo.txt"
options.point = (1.0, -3.5, 4.0)
options.f = "bar.txt"

	"store_const" [required: const; relevant:
dest]

The value const is stored in dest.

Example:

parser.add_option("-q", "--quiet",
 action="store_const", const=0, dest="verbose")
parser.add_option("-v", "--verbose",
 action="store_const", const=1, dest="verbose")
parser.add_option("--noisy",
 action="store_const", const=2, dest="verbose")

If --noisy is seen, optparse will set

options.verbose = 2

	"store_true" [relevant: dest]

A special case of "store_const" that stores a true value to
dest.

	"store_false" [relevant: dest]

Like "store_true", but stores a false value.

Example:

parser.add_option("--clobber", action="store_true", dest="clobber")
parser.add_option("--no-clobber", action="store_false", dest="clobber")

	"append" [relevant: type, dest,
nargs, choices]

The option must be followed by an argument, which is appended to the list in
dest. If no default value for dest is
supplied, an empty list is automatically created when optparse first
encounters this option on the command-line. If nargs > 1,
multiple arguments are consumed, and a tuple of length nargs
is appended to dest.

The defaults for type and dest are the same as
for the "store" action.

Example:

parser.add_option("-t", "--tracks", action="append", type="int")

If -t3 is seen on the command-line, optparse does the equivalent
of:

options.tracks = []
options.tracks.append(int("3"))

If, a little later on, --tracks=4 is seen, it does:

options.tracks.append(int("4"))

	"append_const" [required: const; relevant:
dest]

Like "store_const", but the value const is appended to
dest; as with "append", dest defaults to
None, and an empty list is automatically created the first time the option
is encountered.

	"count" [relevant: dest]

Increment the integer stored at dest. If no default value is
supplied, dest is set to zero before being incremented the
first time.

Example:

parser.add_option("-v", action="count", dest="verbosity")

The first time -v is seen on the command line, optparse does the
equivalent of:

options.verbosity = 0
options.verbosity += 1

Every subsequent occurrence of -v results in

options.verbosity += 1

	"callback" [required: callback; relevant:
type, nargs, callback_args,
callback_kwargs]

Call the function specified by callback, which is called as

func(option, opt_str, value, parser, *args, **kwargs)

See section Option Callbacks for more detail.

	"help"

Prints a complete help message for all the options in the current option
parser. The help message is constructed from the usage string passed to
OptionParser’s constructor and the help string passed to every
option.

If no help string is supplied for an option, it will still be
listed in the help message. To omit an option entirely, use the special value
optparse.SUPPRESS_HELP.

optparse automatically adds a help option to all
OptionParsers, so you do not normally need to create one.

Example:

from optparse import OptionParser, SUPPRESS_HELP

usually, a help option is added automatically, but that can
be suppressed using the add_help_option argument
parser = OptionParser(add_help_option=False)

parser.add_option("-h", "--help", action="help")
parser.add_option("-v", action="store_true", dest="verbose",
 help="Be moderately verbose")
parser.add_option("--file", dest="filename",
 help="Input file to read data from")
parser.add_option("--secret", help=SUPPRESS_HELP)

If optparse sees either -h or --help on the command line,
it will print something like the following help message to stdout (assuming
sys.argv[0] is "foo.py"):

Usage: foo.py [options]

Options:
 -h, --help Show this help message and exit
 -v Be moderately verbose
 --file=FILENAME Input file to read data from

After printing the help message, optparse terminates your process with
sys.exit(0).

	"version"

Prints the version number supplied to the OptionParser to stdout and exits.
The version number is actually formatted and printed by the
print_version() method of OptionParser. Generally only relevant if the
version argument is supplied to the OptionParser constructor. As with
help options, you will rarely create version options,
since optparse automatically adds them when needed.

15.5.3.6. Standard option types

optparse has six built-in option types: "string", "int",
"long", "choice", "float" and "complex". If you need to add new
option types, see section Extending optparse.

Arguments to string options are not checked or converted in any way: the text on
the command line is stored in the destination (or passed to the callback) as-is.

Integer arguments (type "int" or "long") are parsed as follows:

	if the number starts with 0x, it is parsed as a hexadecimal number

	if the number starts with 0, it is parsed as an octal number

	if the number starts with 0b, it is parsed as a binary number

	otherwise, the number is parsed as a decimal number

The conversion is done by calling either int() or long() with the
appropriate base (2, 8, 10, or 16). If this fails, so will optparse,
although with a more useful error message.

"float" and "complex" option arguments are converted directly with
float() and complex(), with similar error-handling.

"choice" options are a subtype of "string" options. The
choices option attribute (a sequence of strings) defines the
set of allowed option arguments. optparse.check_choice() compares
user-supplied option arguments against this master list and raises
OptionValueError if an invalid string is given.

15.5.3.7. Parsing arguments

The whole point of creating and populating an OptionParser is to call its
parse_args() method:

(options, args) = parser.parse_args(args=None, values=None)

where the input parameters are

	args

	the list of arguments to process (default: sys.argv[1:])

	values

	a optparse.Values object to store option arguments in (default: a
new instance of Values) – if you give an existing object, the
option defaults will not be initialized on it

and the return values are

	options

	the same object that was passed in as values, or the optparse.Values
instance created by optparse

	args

	the leftover positional arguments after all options have been processed

The most common usage is to supply neither keyword argument. If you supply
values, it will be modified with repeated setattr() calls (roughly one
for every option argument stored to an option destination) and returned by
parse_args().

If parse_args() encounters any errors in the argument list, it calls the
OptionParser’s error() method with an appropriate end-user error message.
This ultimately terminates your process with an exit status of 2 (the
traditional Unix exit status for command-line errors).

15.5.3.8. Querying and manipulating your option parser

The default behavior of the option parser can be customized slightly, and you
can also poke around your option parser and see what’s there. OptionParser
provides several methods to help you out:

	
OptionParser.disable_interspersed_args()

	Set parsing to stop on the first non-option. For example, if -a and
-b are both simple options that take no arguments, optparse
normally accepts this syntax:

prog -a arg1 -b arg2

and treats it as equivalent to

prog -a -b arg1 arg2

To disable this feature, call disable_interspersed_args(). This
restores traditional Unix syntax, where option parsing stops with the first
non-option argument.

Use this if you have a command processor which runs another command which has
options of its own and you want to make sure these options don’t get
confused. For example, each command might have a different set of options.

	
OptionParser.enable_interspersed_args()

	Set parsing to not stop on the first non-option, allowing interspersing
switches with command arguments. This is the default behavior.

	
OptionParser.get_option(opt_str)

	Returns the Option instance with the option string opt_str, or None if
no options have that option string.

	
OptionParser.has_option(opt_str)

	Return true if the OptionParser has an option with option string opt_str
(e.g., -q or --verbose).

	
OptionParser.remove_option(opt_str)

	If the OptionParser has an option corresponding to opt_str, that
option is removed. If that option provided any other option strings, all of
those option strings become invalid. If opt_str does not occur in any
option belonging to this OptionParser, raises ValueError.

15.5.3.9. Conflicts between options

If you’re not careful, it’s easy to define options with conflicting option
strings:

parser.add_option("-n", "--dry-run", ...)
[...]
parser.add_option("-n", "--noisy", ...)

(This is particularly true if you’ve defined your own OptionParser subclass with
some standard options.)

Every time you add an option, optparse checks for conflicts with existing
options. If it finds any, it invokes the current conflict-handling mechanism.
You can set the conflict-handling mechanism either in the constructor:

parser = OptionParser(..., conflict_handler=handler)

or with a separate call:

parser.set_conflict_handler(handler)

The available conflict handlers are:

	"error" (default)

	assume option conflicts are a programming error and raise
OptionConflictError

	"resolve"

	resolve option conflicts intelligently (see below)

As an example, let’s define an OptionParser that resolves conflicts
intelligently and add conflicting options to it:

parser = OptionParser(conflict_handler="resolve")
parser.add_option("-n", "--dry-run", ..., help="do no harm")
parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already
using the -n option string. Since conflict_handler is "resolve",
it resolves the situation by removing -n from the earlier option’s list of
option strings. Now --dry-run is the only way for the user to activate
that option. If the user asks for help, the help message will reflect that:

Options:
 --dry-run do no harm
 [...]
 -n, --noisy be noisy

It’s possible to whittle away the option strings for a previously-added option
until there are none left, and the user has no way of invoking that option from
the command-line. In that case, optparse removes that option completely,
so it doesn’t show up in help text or anywhere else. Carrying on with our
existing OptionParser:

parser.add_option("--dry-run", ..., help="new dry-run option")

At this point, the original -n/--dry-run option is no longer
accessible, so optparse removes it, leaving this help text:

Options:
 [...]
 -n, --noisy be noisy
 --dry-run new dry-run option

15.5.3.10. Cleanup

OptionParser instances have several cyclic references. This should not be a
problem for Python’s garbage collector, but you may wish to break the cyclic
references explicitly by calling destroy() on your
OptionParser once you are done with it. This is particularly useful in
long-running applications where large object graphs are reachable from your
OptionParser.

15.5.3.11. Other methods

OptionParser supports several other public methods:

	
OptionParser.set_usage(usage)

	Set the usage string according to the rules described above for the usage
constructor keyword argument. Passing None sets the default usage
string; use optparse.SUPPRESS_USAGE to suppress a usage message.

	
OptionParser.print_usage(file=None)

	Print the usage message for the current program (self.usage) to file
(default stdout). Any occurrence of the string %prog in self.usage
is replaced with the name of the current program. Does nothing if
self.usage is empty or not defined.

	
OptionParser.get_usage()

	Same as print_usage() but returns the usage string instead of
printing it.

	
OptionParser.set_defaults(dest=value, ...)

	Set default values for several option destinations at once. Using
set_defaults() is the preferred way to set default values for options,
since multiple options can share the same destination. For example, if
several “mode” options all set the same destination, any one of them can set
the default, and the last one wins:

parser.add_option("--advanced", action="store_const",
 dest="mode", const="advanced",
 default="novice") # overridden below
parser.add_option("--novice", action="store_const",
 dest="mode", const="novice",
 default="advanced") # overrides above setting

To avoid this confusion, use set_defaults():

parser.set_defaults(mode="advanced")
parser.add_option("--advanced", action="store_const",
 dest="mode", const="advanced")
parser.add_option("--novice", action="store_const",
 dest="mode", const="novice")

15.5.4. Option Callbacks

When optparse‘s built-in actions and types aren’t quite enough for your
needs, you have two choices: extend optparse or define a callback option.
Extending optparse is more general, but overkill for a lot of simple
cases. Quite often a simple callback is all you need.

There are two steps to defining a callback option:

	define the option itself using the "callback" action

	write the callback; this is a function (or method) that takes at least four
arguments, as described below

15.5.4.1. Defining a callback option

As always, the easiest way to define a callback option is by using the
OptionParser.add_option() method. Apart from action, the
only option attribute you must specify is callback, the function to call:

parser.add_option("-c", action="callback", callback=my_callback)

callback is a function (or other callable object), so you must have already
defined my_callback() when you create this callback option. In this simple
case, optparse doesn’t even know if -c takes any arguments,
which usually means that the option takes no arguments—the mere presence of
-c on the command-line is all it needs to know. In some
circumstances, though, you might want your callback to consume an arbitrary
number of command-line arguments. This is where writing callbacks gets tricky;
it’s covered later in this section.

optparse always passes four particular arguments to your callback, and it
will only pass additional arguments if you specify them via
callback_args and callback_kwargs. Thus, the
minimal callback function signature is:

def my_callback(option, opt, value, parser):

The four arguments to a callback are described below.

There are several other option attributes that you can supply when you define a
callback option:

	type

	has its usual meaning: as with the "store" or "append" actions, it
instructs optparse to consume one argument and convert it to
type. Rather than storing the converted value(s) anywhere,
though, optparse passes it to your callback function.

	nargs

	also has its usual meaning: if it is supplied and > 1, optparse will
consume nargs arguments, each of which must be convertible to
type. It then passes a tuple of converted values to your
callback.

	callback_args

	a tuple of extra positional arguments to pass to the callback

	callback_kwargs

	a dictionary of extra keyword arguments to pass to the callback

15.5.4.2. How callbacks are called

All callbacks are called as follows:

func(option, opt_str, value, parser, *args, **kwargs)

where

	option

	is the Option instance that’s calling the callback

	opt_str

	is the option string seen on the command-line that’s triggering the callback.
(If an abbreviated long option was used, opt_str will be the full,
canonical option string—e.g. if the user puts --foo on the
command-line as an abbreviation for --foobar, then opt_str will be
"--foobar".)

	value

	is the argument to this option seen on the command-line. optparse will
only expect an argument if type is set; the type of value will be
the type implied by the option’s type. If type for this option is
None (no argument expected), then value will be None. If nargs
> 1, value will be a tuple of values of the appropriate type.

	parser

	is the OptionParser instance driving the whole thing, mainly useful because
you can access some other interesting data through its instance attributes:

	parser.largs

	the current list of leftover arguments, ie. arguments that have been
consumed but are neither options nor option arguments. Feel free to modify
parser.largs, e.g. by adding more arguments to it. (This list will
become args, the second return value of parse_args().)

	parser.rargs

	the current list of remaining arguments, ie. with opt_str and
value (if applicable) removed, and only the arguments following them
still there. Feel free to modify parser.rargs, e.g. by consuming more
arguments.

	parser.values

	the object where option values are by default stored (an instance of
optparse.OptionValues). This lets callbacks use the same mechanism as the
rest of optparse for storing option values; you don’t need to mess
around with globals or closures. You can also access or modify the
value(s) of any options already encountered on the command-line.

	args

	is a tuple of arbitrary positional arguments supplied via the
callback_args option attribute.

	kwargs

	is a dictionary of arbitrary keyword arguments supplied via
callback_kwargs.

15.5.4.3. Raising errors in a callback

The callback function should raise OptionValueError if there are any
problems with the option or its argument(s). optparse catches this and
terminates the program, printing the error message you supply to stderr. Your
message should be clear, concise, accurate, and mention the option at fault.
Otherwise, the user will have a hard time figuring out what he did wrong.

15.5.4.4. Callback example 1: trivial callback

Here’s an example of a callback option that takes no arguments, and simply
records that the option was seen:

def record_foo_seen(option, opt_str, value, parser):
 parser.values.saw_foo = True

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the "store_true" action.

15.5.4.5. Callback example 2: check option order

Here’s a slightly more interesting example: record the fact that -a is
seen, but blow up if it comes after -b in the command-line.

def check_order(option, opt_str, value, parser):
 if parser.values.b:
 raise OptionValueError("can't use -a after -b")
 parser.values.a = 1
[...]
parser.add_option("-a", action="callback", callback=check_order)
parser.add_option("-b", action="store_true", dest="b")

15.5.4.6. Callback example 3: check option order (generalized)

If you want to re-use this callback for several similar options (set a flag, but
blow up if -b has already been seen), it needs a bit of work: the error
message and the flag that it sets must be generalized.

def check_order(option, opt_str, value, parser):
 if parser.values.b:
 raise OptionValueError("can't use %s after -b" % opt_str)
 setattr(parser.values, option.dest, 1)
[...]
parser.add_option("-a", action="callback", callback=check_order, dest='a')
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest='c')

15.5.4.7. Callback example 4: check arbitrary condition

Of course, you could put any condition in there—you’re not limited to checking
the values of already-defined options. For example, if you have options that
should not be called when the moon is full, all you have to do is this:

def check_moon(option, opt_str, value, parser):
 if is_moon_full():
 raise OptionValueError("%s option invalid when moon is full"
 % opt_str)
 setattr(parser.values, option.dest, 1)
[...]
parser.add_option("--foo",
 action="callback", callback=check_moon, dest="foo")

(The definition of is_moon_full() is left as an exercise for the reader.)

15.5.4.8. Callback example 5: fixed arguments

Things get slightly more interesting when you define callback options that take
a fixed number of arguments. Specifying that a callback option takes arguments
is similar to defining a "store" or "append" option: if you define
type, then the option takes one argument that must be
convertible to that type; if you further define nargs, then the
option takes nargs arguments.

Here’s an example that just emulates the standard "store" action:

def store_value(option, opt_str, value, parser):
 setattr(parser.values, option.dest, value)
[...]
parser.add_option("--foo",
 action="callback", callback=store_value,
 type="int", nargs=3, dest="foo")

Note that optparse takes care of consuming 3 arguments and converting
them to integers for you; all you have to do is store them. (Or whatever;
obviously you don’t need a callback for this example.)

15.5.4.9. Callback example 6: variable arguments

Things get hairy when you want an option to take a variable number of arguments.
For this case, you must write a callback, as optparse doesn’t provide any
built-in capabilities for it. And you have to deal with certain intricacies of
conventional Unix command-line parsing that optparse normally handles for
you. In particular, callbacks should implement the conventional rules for bare
-- and - arguments:

	either -- or - can be option arguments

	bare -- (if not the argument to some option): halt command-line
processing and discard the --

	bare - (if not the argument to some option): halt command-line
processing but keep the - (append it to parser.largs)

If you want an option that takes a variable number of arguments, there are
several subtle, tricky issues to worry about. The exact implementation you
choose will be based on which trade-offs you’re willing to make for your
application (which is why optparse doesn’t support this sort of thing
directly).

Nevertheless, here’s a stab at a callback for an option with variable
arguments:

 def vararg_callback(option, opt_str, value, parser):
 assert value is None
 value = []

 def floatable(str):
 try:
 float(str)
 return True
 except ValueError:
 return False

 for arg in parser.rargs:
 # stop on --foo like options
 if arg[:2] == "--" and len(arg) > 2:
 break
 # stop on -a, but not on -3 or -3.0
 if arg[:1] == "-" and len(arg) > 1 and not floatable(arg):
 break
 value.append(arg)

 del parser.rargs[:len(value)]
 setattr(parser.values, option.dest, value)

[...]
parser.add_option("-c", "--callback", dest="vararg_attr",
 action="callback", callback=vararg_callback)

15.5.5. Extending optparse

Since the two major controlling factors in how optparse interprets
command-line options are the action and type of each option, the most likely
direction of extension is to add new actions and new types.

15.5.5.1. Adding new types

To add new types, you need to define your own subclass of optparse‘s
Option class. This class has a couple of attributes that define
optparse‘s types: TYPES and TYPE_CHECKER.

	
Option.TYPES

	A tuple of type names; in your subclass, simply define a new tuple
TYPES that builds on the standard one.

	
Option.TYPE_CHECKER

	A dictionary mapping type names to type-checking functions. A type-checking
function has the following signature:

def check_mytype(option, opt, value)

where option is an Option instance, opt is an option string
(e.g., -f), and value is the string from the command line that must
be checked and converted to your desired type. check_mytype() should
return an object of the hypothetical type mytype. The value returned by
a type-checking function will wind up in the OptionValues instance returned
by OptionParser.parse_args(), or be passed to a callback as the
value parameter.

Your type-checking function should raise OptionValueError if it
encounters any problems. OptionValueError takes a single string
argument, which is passed as-is to OptionParser‘s error()
method, which in turn prepends the program name and the string "error:"
and prints everything to stderr before terminating the process.

Here’s a silly example that demonstrates adding a "complex" option type to
parse Python-style complex numbers on the command line. (This is even sillier
than it used to be, because optparse 1.3 added built-in support for
complex numbers, but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (in the
TYPE_CHECKER class attribute of your Option subclass):

def check_complex(option, opt, value):
 try:
 return complex(value)
 except ValueError:
 raise OptionValueError(
 "option %s: invalid complex value: %r" % (opt, value))

Finally, the Option subclass:

class MyOption (Option):
 TYPES = Option.TYPES + ("complex",)
 TYPE_CHECKER = copy(Option.TYPE_CHECKER)
 TYPE_CHECKER["complex"] = check_complex

(If we didn’t make a copy() of Option.TYPE_CHECKER, we would end
up modifying the TYPE_CHECKER attribute of optparse‘s
Option class. This being Python, nothing stops you from doing that except good
manners and common sense.)

That’s it! Now you can write a script that uses the new option type just like
any other optparse-based script, except you have to instruct your
OptionParser to use MyOption instead of Option:

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", type="complex")

Alternately, you can build your own option list and pass it to OptionParser; if
you don’t use add_option() in the above way, you don’t need to tell
OptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

15.5.5.2. Adding new actions

Adding new actions is a bit trickier, because you have to understand that
optparse has a couple of classifications for actions:

	“store” actions

	actions that result in optparse storing a value to an attribute of the
current OptionValues instance; these options require a dest
attribute to be supplied to the Option constructor.

	“typed” actions

	actions that take a value from the command line and expect it to be of a
certain type; or rather, a string that can be converted to a certain type.
These options require a type attribute to the Option
constructor.

These are overlapping sets: some default “store” actions are "store",
"store_const", "append", and "count", while the default “typed”
actions are "store", "append", and "callback".

When you add an action, you need to categorize it by listing it in at least one
of the following class attributes of Option (all are lists of strings):

	
Option.ACTIONS

	All actions must be listed in ACTIONS.

	
Option.STORE_ACTIONS

	“store” actions are additionally listed here.

	
Option.TYPED_ACTIONS

	“typed” actions are additionally listed here.

	
Option.ALWAYS_TYPED_ACTIONS

	Actions that always take a type (i.e. whose options always take a value) are
additionally listed here. The only effect of this is that optparse
assigns the default type, "string", to options with no explicit type
whose action is listed in ALWAYS_TYPED_ACTIONS.

In order to actually implement your new action, you must override Option’s
take_action() method and add a case that recognizes your action.

For example, let’s add an "extend" action. This is similar to the standard
"append" action, but instead of taking a single value from the command-line
and appending it to an existing list, "extend" will take multiple values in
a single comma-delimited string, and extend an existing list with them. That
is, if --names is an "extend" option of type "string", the command
line

--names=foo,bar --names blah --names ding,dong

would result in a list

["foo", "bar", "blah", "ding", "dong"]

Again we define a subclass of Option:

class MyOption(Option):

 ACTIONS = Option.ACTIONS + ("extend",)
 STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
 TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
 ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)

 def take_action(self, action, dest, opt, value, values, parser):
 if action == "extend":
 lvalue = value.split(",")
 values.ensure_value(dest, []).extend(lvalue)
 else:
 Option.take_action(
 self, action, dest, opt, value, values, parser)

Features of note:

	"extend" both expects a value on the command-line and stores that value
somewhere, so it goes in both STORE_ACTIONS and
TYPED_ACTIONS.

	to ensure that optparse assigns the default type of "string" to
"extend" actions, we put the "extend" action in
ALWAYS_TYPED_ACTIONS as well.

	MyOption.take_action() implements just this one new action, and passes
control back to Option.take_action() for the standard optparse
actions.

	values is an instance of the optparse_parser.Values class, which provides
the very useful ensure_value() method. ensure_value() is
essentially getattr() with a safety valve; it is called as

values.ensure_value(attr, value)

If the attr attribute of values doesn’t exist or is None, then
ensure_value() first sets it to value, and then returns ‘value. This is
very handy for actions like "extend", "append", and "count", all
of which accumulate data in a variable and expect that variable to be of a
certain type (a list for the first two, an integer for the latter). Using
ensure_value() means that scripts using your action don’t have to worry
about setting a default value for the option destinations in question; they
can just leave the default as None and ensure_value() will take care of
getting it right when it’s needed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.6. getopt — C-style parser for command line options

This module helps scripts to parse the command line arguments in sys.argv.
It supports the same conventions as the Unix getopt() function (including
the special meanings of arguments of the form ‘-‘ and ‘--‘). Long
options similar to those supported by GNU software may be used as well via an
optional third argument.

A more convenient, flexible, and powerful alternative is the
optparse module.

This module provides two functions and an
exception:

	
getopt.getopt(args, options[, long_options])

	Parses command line options and parameter list. args is the argument list to
be parsed, without the leading reference to the running program. Typically, this
means sys.argv[1:]. options is the string of option letters that the
script wants to recognize, with options that require an argument followed by a
colon (':'; i.e., the same format that Unix getopt() uses).

Note

Unlike GNU getopt(), after a non-option argument, all further
arguments are considered also non-options. This is similar to the way
non-GNU Unix systems work.

long_options, if specified, must be a list of strings with the names of the
long options which should be supported. The leading '--'
characters should not be included in the option name. Long options which
require an argument should be followed by an equal sign ('='). Optional
arguments are not supported. To accept only long options, options should
be an empty string. Long options on the command line can be recognized so
long as they provide a prefix of the option name that matches exactly one of
the accepted options. For example, if long_options is ['foo', 'frob'],
the option --fo will match as --foo, but --f
will not match uniquely, so GetoptError will be raised.

The return value consists of two elements: the first is a list of (option,
value) pairs; the second is the list of program arguments left after the
option list was stripped (this is a trailing slice of args). Each
option-and-value pair returned has the option as its first element, prefixed
with a hyphen for short options (e.g., '-x') or two hyphens for long
options (e.g., '--long-option'), and the option argument as its
second element, or an empty string if the option has no argument. The
options occur in the list in the same order in which they were found, thus
allowing multiple occurrences. Long and short options may be mixed.

	
getopt.gnu_getopt(args, options[, long_options])

	This function works like getopt(), except that GNU style scanning mode is
used by default. This means that option and non-option arguments may be
intermixed. The getopt() function stops processing options as soon as a
non-option argument is encountered.

If the first character of the option string is '+', or if the environment
variable POSIXLY_CORRECT is set, then option processing stops as
soon as a non-option argument is encountered.

New in version 2.3.

	
exception getopt.GetoptError

	This is raised when an unrecognized option is found in the argument list or when
an option requiring an argument is given none. The argument to the exception is
a string indicating the cause of the error. For long options, an argument given
to an option which does not require one will also cause this exception to be
raised. The attributes msg and opt give the error message and
related option; if there is no specific option to which the exception relates,
opt is an empty string.

Changed in version 1.6: Introduced GetoptError as a synonym for error.

	
exception getopt.error

	Alias for GetoptError; for backward compatibility.

An example using only Unix style options:

>>> import getopt
>>> args = '-a -b -cfoo -d bar a1 a2'.split()
>>> args
['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']
>>> optlist, args = getopt.getopt(args, 'abc:d:')
>>> optlist
[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d', 'bar')]
>>> args
['a1', 'a2']

Using long option names is equally easy:

>>> s = '--condition=foo --testing --output-file abc.def -x a1 a2'
>>> args = s.split()
>>> args
['--condition=foo', '--testing', '--output-file', 'abc.def', '-x', 'a1', 'a2']
>>> optlist, args = getopt.getopt(args, 'x', [
... 'condition=', 'output-file=', 'testing'])
>>> optlist
[('--condition', 'foo'), ('--testing', ''), ('--output-file', 'abc.def'), ('-x', '')]
>>> args
['a1', 'a2']

In a script, typical usage is something like this:

import getopt, sys

def main():
 try:
 opts, args = getopt.getopt(sys.argv[1:], "ho:v", ["help", "output="])
 except getopt.GetoptError, err:
 # print help information and exit:
 print str(err) # will print something like "option -a not recognized"
 usage()
 sys.exit(2)
 output = None
 verbose = False
 for o, a in opts:
 if o == "-v":
 verbose = True
 elif o in ("-h", "--help"):
 usage()
 sys.exit()
 elif o in ("-o", "--output"):
 output = a
 else:
 assert False, "unhandled option"
 # ...

if __name__ == "__main__":
 main()

Note that an equivalent command line interface could be produced with less code
and more informative help and error messages by using the argparse module:

import argparse

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('-o', '--output')
 parser.add_argument('-v', dest='verbose', action='store_true')
 args = parser.parse_args()
 # ... do something with args.output ...
 # ... do something with args.verbose ..

See also

	Module argparse

	Alternative command line option and argument parsing library.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.7. logging — Logging facility for Python

Important

This page contains the API reference information. For tutorial
information and discussion of more advanced topics, see

	Basic Tutorial

	Advanced Tutorial

	Logging Cookbook

New in version 2.3.

This module defines functions and classes which implement a flexible event
logging system for applications and libraries.

The key benefit of having the logging API provided by a standard library module
is that all Python modules can participate in logging, so your application log
can include your own messages integrated with messages from third-party
modules.

The module provides a lot of functionality and flexibility. If you are
unfamiliar with logging, the best way to get to grips with it is to see the
tutorials (see the links on the right).

The basic classes defined by the module, together with their functions, are
listed below.

	Loggers expose the interface that application code directly uses.

	Handlers send the log records (created by loggers) to the appropriate
destination.

	Filters provide a finer grained facility for determining which log records
to output.

	Formatters specify the layout of log records in the final output.

15.7.1. Logger Objects

Loggers have the following attributes and methods. Note that Loggers are never
instantiated directly, but always through the module-level function
logging.getLogger(name).

	
class logging.Logger

	

	
Logger.propagate

	If this evaluates to false, logging messages are not passed by this logger or by
its child loggers to the handlers of higher level (ancestor) loggers. The
constructor sets this attribute to 1.

	
Logger.setLevel(lvl)

	Sets the threshold for this logger to lvl. Logging messages which are less
severe than lvl will be ignored. When a logger is created, the level is set to
NOTSET (which causes all messages to be processed when the logger is
the root logger, or delegation to the parent when the logger is a non-root
logger). Note that the root logger is created with level WARNING.

The term ‘delegation to the parent’ means that if a logger has a level of
NOTSET, its chain of ancestor loggers is traversed until either an ancestor with
a level other than NOTSET is found, or the root is reached.

If an ancestor is found with a level other than NOTSET, then that ancestor’s
level is treated as the effective level of the logger where the ancestor search
began, and is used to determine how a logging event is handled.

If the root is reached, and it has a level of NOTSET, then all messages will be
processed. Otherwise, the root’s level will be used as the effective level.

	
Logger.isEnabledFor(lvl)

	Indicates if a message of severity lvl would be processed by this logger.
This method checks first the module-level level set by
logging.disable(lvl) and then the logger’s effective level as determined
by getEffectiveLevel().

	
Logger.getEffectiveLevel()

	Indicates the effective level for this logger. If a value other than
NOTSET has been set using setLevel(), it is returned. Otherwise,
the hierarchy is traversed towards the root until a value other than
NOTSET is found, and that value is returned.

	
Logger.getChild(suffix)

	Returns a logger which is a descendant to this logger, as determined by the suffix.
Thus, logging.getLogger('abc').getChild('def.ghi') would return the same
logger as would be returned by logging.getLogger('abc.def.ghi'). This is a
convenience method, useful when the parent logger is named using e.g. __name__
rather than a literal string.

New in version 2.7.

	
Logger.debug(msg, *args, **kwargs)

	Logs a message with level DEBUG on this logger. The msg is the
message format string, and the args are the arguments which are merged into
msg using the string formatting operator. (Note that this means that you can
use keywords in the format string, together with a single dictionary argument.)

There are two keyword arguments in kwargs which are inspected: exc_info
which, if it does not evaluate as false, causes exception information to be
added to the logging message. If an exception tuple (in the format returned by
sys.exc_info()) is provided, it is used; otherwise, sys.exc_info()
is called to get the exception information.

The second keyword argument is extra which can be used to pass a
dictionary which is used to populate the __dict__ of the LogRecord created for
the logging event with user-defined attributes. These custom attributes can then
be used as you like. For example, they could be incorporated into logged
messages. For example:

FORMAT = '%(asctime)-15s %(clientip)s %(user)-8s %(message)s'
logging.basicConfig(format=FORMAT)
d = { 'clientip' : '192.168.0.1', 'user' : 'fbloggs' }
logger = logging.getLogger('tcpserver')
logger.warning('Protocol problem: %s', 'connection reset', extra=d)

would print something like

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used
by the logging system. (See the Formatter documentation for more
information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise
some care. In the above example, for instance, the Formatter has been
set up with a format string which expects ‘clientip’ and ‘user’ in the attribute
dictionary of the LogRecord. If these are missing, the message will not be
logged because a string formatting exception will occur. So in this case, you
always need to pass the extra dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized
circumstances, such as multi-threaded servers where the same code executes in
many contexts, and interesting conditions which arise are dependent on this
context (such as remote client IP address and authenticated user name, in the
above example). In such circumstances, it is likely that specialized
Formatters would be used with particular Handlers.

	
Logger.info(msg, *args, **kwargs)

	Logs a message with level INFO on this logger. The arguments are
interpreted as for debug().

	
Logger.warning(msg, *args, **kwargs)

	Logs a message with level WARNING on this logger. The arguments are
interpreted as for debug().

	
Logger.error(msg, *args, **kwargs)

	Logs a message with level ERROR on this logger. The arguments are
interpreted as for debug().

	
Logger.critical(msg, *args, **kwargs)

	Logs a message with level CRITICAL on this logger. The arguments are
interpreted as for debug().

	
Logger.log(lvl, msg, *args, **kwargs)

	Logs a message with integer level lvl on this logger. The other arguments are
interpreted as for debug().

	
Logger.exception(msg, *args)

	Logs a message with level ERROR on this logger. The arguments are
interpreted as for debug(). Exception info is added to the logging
message. This method should only be called from an exception handler.

	
Logger.addFilter(filt)

	Adds the specified filter filt to this logger.

	
Logger.removeFilter(filt)

	Removes the specified filter filt from this logger.

	
Logger.filter(record)

	Applies this logger’s filters to the record and returns a true value if the
record is to be processed.

	
Logger.addHandler(hdlr)

	Adds the specified handler hdlr to this logger.

	
Logger.removeHandler(hdlr)

	Removes the specified handler hdlr from this logger.

	
Logger.findCaller()

	Finds the caller’s source filename and line number. Returns the filename, line
number and function name as a 3-element tuple.

Changed in version 2.4: The function name was added. In earlier versions, the filename and line
number were returned as a 2-element tuple.

	
Logger.handle(record)

	Handles a record by passing it to all handlers associated with this logger and
its ancestors (until a false value of propagate is found). This method is used
for unpickled records received from a socket, as well as those created locally.
Logger-level filtering is applied using filter().

	
Logger.makeRecord(name, lvl, fn, lno, msg, args, exc_info, func=None, extra=None)

	This is a factory method which can be overridden in subclasses to create
specialized LogRecord instances.

Changed in version 2.5: func and extra were added.

15.7.2. Handler Objects

Handlers have the following attributes and methods. Note that Handler
is never instantiated directly; this class acts as a base for more useful
subclasses. However, the __init__() method in subclasses needs to call
Handler.__init__().

	
Handler.__init__(level=NOTSET)

	Initializes the Handler instance by setting its level, setting the list
of filters to the empty list and creating a lock (using createLock()) for
serializing access to an I/O mechanism.

	
Handler.createLock()

	Initializes a thread lock which can be used to serialize access to underlying
I/O functionality which may not be threadsafe.

	
Handler.acquire()

	Acquires the thread lock created with createLock().

	
Handler.release()

	Releases the thread lock acquired with acquire().

	
Handler.setLevel(lvl)

	Sets the threshold for this handler to lvl. Logging messages which are less
severe than lvl will be ignored. When a handler is created, the level is set
to NOTSET (which causes all messages to be processed).

	
Handler.setFormatter(form)

	Sets the Formatter for this handler to form.

	
Handler.addFilter(filt)

	Adds the specified filter filt to this handler.

	
Handler.removeFilter(filt)

	Removes the specified filter filt from this handler.

	
Handler.filter(record)

	Applies this handler’s filters to the record and returns a true value if the
record is to be processed.

	
Handler.flush()

	Ensure all logging output has been flushed. This version does nothing and is
intended to be implemented by subclasses.

	
Handler.close()

	Tidy up any resources used by the handler. This version does no output but
removes the handler from an internal list of handlers which is closed when
shutdown() is called. Subclasses should ensure that this gets called
from overridden close() methods.

	
Handler.handle(record)

	Conditionally emits the specified logging record, depending on filters which may
have been added to the handler. Wraps the actual emission of the record with
acquisition/release of the I/O thread lock.

	
Handler.handleError(record)

	This method should be called from handlers when an exception is encountered
during an emit() call. By default it does nothing, which means that
exceptions get silently ignored. This is what is mostly wanted for a logging
system - most users will not care about errors in the logging system, they are
more interested in application errors. You could, however, replace this with a
custom handler if you wish. The specified record is the one which was being
processed when the exception occurred.

	
Handler.format(record)

	Do formatting for a record - if a formatter is set, use it. Otherwise, use the
default formatter for the module.

	
Handler.emit(record)

	Do whatever it takes to actually log the specified logging record. This version
is intended to be implemented by subclasses and so raises a
NotImplementedError.

For a list of handlers included as standard, see logging.handlers.

15.7.3. Formatter Objects

Formatter objects have the following attributes and methods. They are
responsible for converting a LogRecord to (usually) a string which can
be interpreted by either a human or an external system. The base
Formatter allows a formatting string to be specified. If none is
supplied, the default value of '%(message)s' is used.

A Formatter can be initialized with a format string which makes use of knowledge
of the LogRecord attributes - such as the default value mentioned above
making use of the fact that the user’s message and arguments are pre-formatted
into a LogRecord‘s message attribute. This format string contains
standard Python %-style mapping keys. See section String Formatting Operations
for more information on string formatting.

The useful mapping keys in a LogRecord are given in the section on
LogRecord attributes.

	
class logging.Formatter(fmt=None, datefmt=None)

	Returns a new instance of the Formatter class. The instance is
initialized with a format string for the message as a whole, as well as a
format string for the date/time portion of a message. If no fmt is
specified, '%(message)s' is used. If no datefmt is specified, the
ISO8601 date format is used.

	
format(record)

	The record’s attribute dictionary is used as the operand to a string
formatting operation. Returns the resulting string. Before formatting the
dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using msg % args. If the
formatting string contains '(asctime)', formatTime() is called
to format the event time. If there is exception information, it is
formatted using formatException() and appended to the message. Note
that the formatted exception information is cached in attribute
exc_text. This is useful because the exception information can be
pickled and sent across the wire, but you should be careful if you have
more than one Formatter subclass which customizes the formatting
of exception information. In this case, you will have to clear the cached
value after a formatter has done its formatting, so that the next
formatter to handle the event doesn’t use the cached value but
recalculates it afresh.

	
formatTime(record, datefmt=None)

	This method should be called from format() by a formatter which
wants to make use of a formatted time. This method can be overridden in
formatters to provide for any specific requirement, but the basic behavior
is as follows: if datefmt (a string) is specified, it is used with
time.strftime() to format the creation time of the
record. Otherwise, the ISO8601 format is used. The resulting string is
returned.

	
formatException(exc_info)

	Formats the specified exception information (a standard exception tuple as
returned by sys.exc_info()) as a string. This default implementation
just uses traceback.print_exception(). The resulting string is
returned.

15.7.4. Filter Objects

Filters can be used by Handlers and Loggers for more sophisticated
filtering than is provided by levels. The base filter class only allows events
which are below a certain point in the logger hierarchy. For example, a filter
initialized with ‘A.B’ will allow events logged by loggers ‘A.B’, ‘A.B.C’,
‘A.B.C.D’, ‘A.B.D’ etc. but not ‘A.BB’, ‘B.A.B’ etc. If initialized with the
empty string, all events are passed.

	
class logging.Filter(name='')

	Returns an instance of the Filter class. If name is specified, it
names a logger which, together with its children, will have its events allowed
through the filter. If name is the empty string, allows every event.

	
filter(record)

	Is the specified record to be logged? Returns zero for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place by this
method.

Note that filters attached to handlers are consulted whenever an event is
emitted by the handler, whereas filters attached to loggers are consulted
whenever an event is logged to the handler (using debug(), info(),
etc.) This means that events which have been generated by descendant loggers
will not be filtered by a logger’s filter setting, unless the filter has also
been applied to those descendant loggers.

You don’t actually need to subclass Filter: you can pass any instance
which has a filter method with the same semantics.

Although filters are used primarily to filter records based on more
sophisticated criteria than levels, they get to see every record which is
processed by the handler or logger they’re attached to: this can be useful if
you want to do things like counting how many records were processed by a
particular logger or handler, or adding, changing or removing attributes in
the LogRecord being processed. Obviously changing the LogRecord needs to be
done with some care, but it does allow the injection of contextual information
into logs (see Using Filters to impart contextual information).

15.7.5. LogRecord Objects

LogRecord instances are created automatically by the Logger
every time something is logged, and can be created manually via
makeLogRecord() (for example, from a pickled event received over the
wire).

	
class logging.LogRecord(name, level, pathname, lineno, msg, args, exc_info, func=None)

	Contains all the information pertinent to the event being logged.

The primary information is passed in msg and args, which
are combined using msg % args to create the message field of the
record.

	Parameters:	
	name – The name of the logger used to log the event represented by
this LogRecord.

	level – The numeric level of the logging event (one of DEBUG, INFO etc.)

	pathname – The full pathname of the source file where the logging call
was made.

	lineno – The line number in the source file where the logging call was
made.

	msg – The event description message, possibly a format string with
placeholders for variable data.

	args – Variable data to merge into the msg argument to obtain the
event description.

	exc_info – An exception tuple with the current exception information,
or None if no exception information is available.

	func – The name of the function or method from which the logging call
was invoked.

Changed in version 2.5: func was added.

	
getMessage()

	Returns the message for this LogRecord instance after merging any
user-supplied arguments with the message. If the user-supplied message
argument to the logging call is not a string, str() is called on it to
convert it to a string. This allows use of user-defined classes as
messages, whose __str__ method can return the actual format string to
be used.

15.7.6. LogRecord attributes

The LogRecord has a number of attributes, most of which are derived from the
parameters to the constructor. (Note that the names do not always correspond
exactly between the LogRecord constructor parameters and the LogRecord
attributes.) These attributes can be used to merge data from the record into
the format string. The following table lists (in alphabetical order) the
attribute names, their meanings and the corresponding placeholder in a %-style
format string.

	Attribute name
	Format
	Description

	args
	You shouldn’t need to
format this yourself.
	The tuple of arguments merged into msg to
produce message.

	asctime
	%(asctime)s
	Human-readable time when the
LogRecord was created. By default
this is of the form ‘2003-07-08 16:49:45,896’
(the numbers after the comma are millisecond
portion of the time).

	created
	%(created)f
	Time when the LogRecord was created
(as returned by time.time()).

	exc_info
	You shouldn’t need to
format this yourself.
	Exception tuple (à la sys.exc_info) or,
if no exception has occurred, None.

	filename
	%(filename)s
	Filename portion of pathname.

	funcName
	%(funcName)s
	Name of function containing the logging call.

	levelname
	%(levelname)s
	Text logging level for the message
('DEBUG', 'INFO', 'WARNING',
'ERROR', 'CRITICAL').

	levelno
	%(levelno)s
	Numeric logging level for the message
(DEBUG, INFO,
WARNING, ERROR,
CRITICAL).

	lineno
	%(lineno)d
	Source line number where the logging call was
issued (if available).

	module
	%(module)s
	Module (name portion of filename).

	msecs
	%(msecs)d
	Millisecond portion of the time when the
LogRecord was created.

	message
	%(message)s
	The logged message, computed as msg %
args. This is set when
Formatter.format() is invoked.

	msg
	You shouldn’t need to
format this yourself.
	The format string passed in the original
logging call. Merged with args to
produce message, or an arbitrary object
(see Using arbitrary objects as messages).

	name
	%(name)s
	Name of the logger used to log the call.

	pathname
	%(pathname)s
	Full pathname of the source file where the
logging call was issued (if available).

	process
	%(process)d
	Process ID (if available).

	processName
	%(processName)s
	Process name (if available).

	relativeCreated
	%(relativeCreated)d
	Time in milliseconds when the LogRecord was
created, relative to the time the logging
module was loaded.

	thread
	%(thread)d
	Thread ID (if available).

	threadName
	%(threadName)s
	Thread name (if available).

Changed in version 2.5: funcName was added.

15.7.7. LoggerAdapter Objects

LoggerAdapter instances are used to conveniently pass contextual
information into logging calls. For a usage example , see the section on
adding contextual information to your logging output.

New in version 2.6.

	
class logging.LoggerAdapter(logger, extra)

	Returns an instance of LoggerAdapter initialized with an
underlying Logger instance and a dict-like object.

	
process(msg, kwargs)

	Modifies the message and/or keyword arguments passed to a logging call in
order to insert contextual information. This implementation takes the object
passed as extra to the constructor and adds it to kwargs using key
‘extra’. The return value is a (msg, kwargs) tuple which has the
(possibly modified) versions of the arguments passed in.

In addition to the above, LoggerAdapter supports the following
methods of Logger, i.e. debug(), info(), warning(),
error(), exception(), critical(), log(),
isEnabledFor(), getEffectiveLevel(), setLevel(),
hasHandlers(). These methods have the same signatures as their
counterparts in Logger, so you can use the two types of instances
interchangeably.

Changed in version 2.7: The isEnabledFor() method was added to LoggerAdapter. This
method delegates to the underlying logger.

15.7.8. Thread Safety

The logging module is intended to be thread-safe without any special work
needing to be done by its clients. It achieves this though using threading
locks; there is one lock to serialize access to the module’s shared data, and
each handler also creates a lock to serialize access to its underlying I/O.

If you are implementing asynchronous signal handlers using the signal
module, you may not be able to use logging from within such handlers. This is
because lock implementations in the threading module are not always
re-entrant, and so cannot be invoked from such signal handlers.

15.7.9. Module-Level Functions

In addition to the classes described above, there are a number of module- level
functions.

	
logging.getLogger([name])

	Return a logger with the specified name or, if no name is specified, return a
logger which is the root logger of the hierarchy. If specified, the name is
typically a dot-separated hierarchical name like “a”, “a.b” or “a.b.c.d”.
Choice of these names is entirely up to the developer who is using logging.

All calls to this function with a given name return the same logger instance.
This means that logger instances never need to be passed between different parts
of an application.

	
logging.getLoggerClass()

	Return either the standard Logger class, or the last class passed to
setLoggerClass(). This function may be called from within a new class
definition, to ensure that installing a customised Logger class will
not undo customisations already applied by other code. For example:

class MyLogger(logging.getLoggerClass()):
 # ... override behaviour here

	
logging.debug(msg[, *args[, **kwargs]])

	Logs a message with level DEBUG on the root logger. The msg is the
message format string, and the args are the arguments which are merged into
msg using the string formatting operator. (Note that this means that you can
use keywords in the format string, together with a single dictionary argument.)

There are two keyword arguments in kwargs which are inspected: exc_info
which, if it does not evaluate as false, causes exception information to be
added to the logging message. If an exception tuple (in the format returned by
sys.exc_info()) is provided, it is used; otherwise, sys.exc_info()
is called to get the exception information.

The other optional keyword argument is extra which can be used to pass a
dictionary which is used to populate the __dict__ of the LogRecord created for
the logging event with user-defined attributes. These custom attributes can then
be used as you like. For example, they could be incorporated into logged
messages. For example:

FORMAT = "%(asctime)-15s %(clientip)s %(user)-8s %(message)s"
logging.basicConfig(format=FORMAT)
d = {'clientip': '192.168.0.1', 'user': 'fbloggs'}
logging.warning("Protocol problem: %s", "connection reset", extra=d)

would print something like:

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used
by the logging system. (See the Formatter documentation for more
information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise
some care. In the above example, for instance, the Formatter has been
set up with a format string which expects ‘clientip’ and ‘user’ in the attribute
dictionary of the LogRecord. If these are missing, the message will not be
logged because a string formatting exception will occur. So in this case, you
always need to pass the extra dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized
circumstances, such as multi-threaded servers where the same code executes in
many contexts, and interesting conditions which arise are dependent on this
context (such as remote client IP address and authenticated user name, in the
above example). In such circumstances, it is likely that specialized
Formatters would be used with particular Handlers.

Changed in version 2.5: extra was added.

	
logging.info(msg[, *args[, **kwargs]])

	Logs a message with level INFO on the root logger. The arguments are
interpreted as for debug().

	
logging.warning(msg[, *args[, **kwargs]])

	Logs a message with level WARNING on the root logger. The arguments are
interpreted as for debug().

	
logging.error(msg[, *args[, **kwargs]])

	Logs a message with level ERROR on the root logger. The arguments are
interpreted as for debug().

	
logging.critical(msg[, *args[, **kwargs]])

	Logs a message with level CRITICAL on the root logger. The arguments
are interpreted as for debug().

	
logging.exception(msg[, *args])

	Logs a message with level ERROR on the root logger. The arguments are
interpreted as for debug(). Exception info is added to the logging
message. This function should only be called from an exception handler.

	
logging.log(level, msg[, *args[, **kwargs]])

	Logs a message with level level on the root logger. The other arguments are
interpreted as for debug().

PLEASE NOTE: The above module-level functions which delegate to the root
logger should not be used in threads, in versions of Python earlier than
2.7.1 and 3.2, unless at least one handler has been added to the root
logger before the threads are started. These convenience functions call
basicConfig() to ensure that at least one handler is available; in
earlier versions of Python, this can (under rare circumstances) lead to
handlers being added multiple times to the root logger, which can in turn
lead to multiple messages for the same event.

	
logging.disable(lvl)

	Provides an overriding level lvl for all loggers which takes precedence over
the logger’s own level. When the need arises to temporarily throttle logging
output down across the whole application, this function can be useful. Its
effect is to disable all logging calls of severity lvl and below, so that
if you call it with a value of INFO, then all INFO and DEBUG events would be
discarded, whereas those of severity WARNING and above would be processed
according to the logger’s effective level.

	
logging.addLevelName(lvl, levelName)

	Associates level lvl with text levelName in an internal dictionary, which is
used to map numeric levels to a textual representation, for example when a
Formatter formats a message. This function can also be used to define
your own levels. The only constraints are that all levels used must be
registered using this function, levels should be positive integers and they
should increase in increasing order of severity.

NOTE: If you are thinking of defining your own levels, please see the section
on Custom Levels.

	
logging.getLevelName(lvl)

	Returns the textual representation of logging level lvl. If the level is one
of the predefined levels CRITICAL, ERROR, WARNING,
INFO or DEBUG then you get the corresponding string. If you
have associated levels with names using addLevelName() then the name you
have associated with lvl is returned. If a numeric value corresponding to one
of the defined levels is passed in, the corresponding string representation is
returned. Otherwise, the string “Level %s” % lvl is returned.

	
logging.makeLogRecord(attrdict)

	Creates and returns a new LogRecord instance whose attributes are
defined by attrdict. This function is useful for taking a pickled
LogRecord attribute dictionary, sent over a socket, and reconstituting
it as a LogRecord instance at the receiving end.

	
logging.basicConfig([**kwargs])

	Does basic configuration for the logging system by creating a
StreamHandler with a default Formatter and adding it to the
root logger. The functions debug(), info(), warning(),
error() and critical() will call basicConfig() automatically
if no handlers are defined for the root logger.

This function does nothing if the root logger already has handlers
configured for it.

Changed in version 2.4: Formerly, basicConfig() did not take any keyword arguments.

PLEASE NOTE: This function should be called from the main thread
before other threads are started. In versions of Python prior to
2.7.1 and 3.2, if this function is called from multiple threads,
it is possible (in rare circumstances) that a handler will be added
to the root logger more than once, leading to unexpected results
such as messages being duplicated in the log.

The following keyword arguments are supported.

	Format
	Description

	filename
	Specifies that a FileHandler be created,
using the specified filename, rather than a
StreamHandler.

	filemode
	Specifies the mode to open the file, if
filename is specified (if filemode is
unspecified, it defaults to ‘a’).

	format
	Use the specified format string for the
handler.

	datefmt
	Use the specified date/time format.

	level
	Set the root logger level to the specified
level.

	stream
	Use the specified stream to initialize the
StreamHandler. Note that this argument is
incompatible with ‘filename’ - if both are
present, ‘stream’ is ignored.

	
logging.shutdown()

	Informs the logging system to perform an orderly shutdown by flushing and
closing all handlers. This should be called at application exit and no
further use of the logging system should be made after this call.

	
logging.setLoggerClass(klass)

	Tells the logging system to use the class klass when instantiating a logger.
The class should define __init__() such that only a name argument is
required, and the __init__() should call Logger.__init__(). This
function is typically called before any loggers are instantiated by applications
which need to use custom logger behavior.

15.7.10. Integration with the warnings module

The captureWarnings() function can be used to integrate logging
with the warnings module.

	
logging.captureWarnings(capture)

	This function is used to turn the capture of warnings by logging on and
off.

If capture is True, warnings issued by the warnings module will
be redirected to the logging system. Specifically, a warning will be
formatted using warnings.formatwarning() and the resulting string
logged to a logger named ‘py.warnings’ with a severity of WARNING.

If capture is False, the redirection of warnings to the logging system
will stop, and warnings will be redirected to their original destinations
(i.e. those in effect before captureWarnings(True) was called).

See also

	Module logging.config

	Configuration API for the logging module.

	Module logging.handlers

	Useful handlers included with the logging module.

	PEP 282 [http://www.python.org/dev/peps/pep-0282] - A Logging System

	The proposal which described this feature for inclusion in the Python standard
library.

	Original Python logging package [http://www.red-dove.com/python_logging.html]

	This is the original source for the logging package. The version of the
package available from this site is suitable for use with Python 1.5.2, 2.1.x
and 2.2.x, which do not include the logging package in the standard
library.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.8. logging.config — Logging configuration

Important

This page contains only reference information. For tutorials,
please see

	Basic Tutorial

	Advanced Tutorial

	Logging Cookbook

This section describes the API for configuring the logging module.

15.8.1. Configuration functions

The following functions configure the logging module. They are located in the
logging.config module. Their use is optional — you can configure the
logging module using these functions or by making calls to the main API (defined
in logging itself) and defining handlers which are declared either in
logging or logging.handlers.

	
logging.config.dictConfig(config)

	
Takes the logging configuration from a dictionary. The contents of
this dictionary are described in Configuration dictionary schema
below.

If an error is encountered during configuration, this function will
raise a ValueError, TypeError, AttributeError
or ImportError with a suitably descriptive message. The
following is a (possibly incomplete) list of conditions which will
raise an error:

	A level which is not a string or which is a string not
corresponding to an actual logging level.

	A propagate value which is not a boolean.

	An id which does not have a corresponding destination.

	A non-existent handler id found during an incremental call.

	An invalid logger name.

	Inability to resolve to an internal or external object.

Parsing is performed by the DictConfigurator class, whose
constructor is passed the dictionary used for configuration, and
has a configure() method. The logging.config module
has a callable attribute dictConfigClass
which is initially set to DictConfigurator.
You can replace the value of dictConfigClass with a
suitable implementation of your own.

dictConfig() calls dictConfigClass passing
the specified dictionary, and then calls the configure() method on
the returned object to put the configuration into effect:

def dictConfig(config):
 dictConfigClass(config).configure()

For example, a subclass of DictConfigurator could call
DictConfigurator.__init__() in its own __init__(), then
set up custom prefixes which would be usable in the subsequent
configure() call. dictConfigClass would be bound to
this new subclass, and then dictConfig() could be called exactly as
in the default, uncustomized state.

New in version 2.7.

	
logging.config.fileConfig(fname, defaults=None, disable_existing_loggers=True)

	Reads the logging configuration from a configparser-format file
named fname. This function can be called several times from an
application, allowing an end user to select from various pre-canned
configurations (if the developer provides a mechanism to present the choices
and load the chosen configuration).

	Parameters:	
	defaults – Defaults to be passed to the ConfigParser can be specified
in this argument.

	disable_existing_loggers – If specified as False, loggers which
exist when this call is made are left
alone. The default is True because this
enables old behaviour in a backward-
compatible way. This behaviour is to
disable any existing loggers unless they or
their ancestors are explicitly named in the
logging configuration.

Changed in version 2.6: The disable_existing_loggers keyword argument was added. Previously,
existing loggers were always disabled.

	
logging.config.listen(port=DEFAULT_LOGGING_CONFIG_PORT)

	Starts up a socket server on the specified port, and listens for new
configurations. If no port is specified, the module’s default
DEFAULT_LOGGING_CONFIG_PORT is used. Logging configurations will be
sent as a file suitable for processing by fileConfig(). Returns a
Thread instance on which you can call start() to start the
server, and which you can join() when appropriate. To stop the server,
call stopListening().

To send a configuration to the socket, read in the configuration file and
send it to the socket as a string of bytes preceded by a four-byte length
string packed in binary using struct.pack('>L', n).

	
logging.config.stopListening()

	Stops the listening server which was created with a call to listen().
This is typically called before calling join() on the return value from
listen().

15.8.2. Configuration dictionary schema

Describing a logging configuration requires listing the various
objects to create and the connections between them; for example, you
may create a handler named ‘console’ and then say that the logger
named ‘startup’ will send its messages to the ‘console’ handler.
These objects aren’t limited to those provided by the logging
module because you might write your own formatter or handler class.
The parameters to these classes may also need to include external
objects such as sys.stderr. The syntax for describing these
objects and connections is defined in Object connections
below.

15.8.2.1. Dictionary Schema Details

The dictionary passed to dictConfig() must contain the following
keys:

	version - to be set to an integer value representing the schema
version. The only valid value at present is 1, but having this key
allows the schema to evolve while still preserving backwards
compatibility.

All other keys are optional, but if present they will be interpreted
as described below. In all cases below where a ‘configuring dict’ is
mentioned, it will be checked for the special '()' key to see if a
custom instantiation is required. If so, the mechanism described in
User-defined objects below is used to create an instance;
otherwise, the context is used to determine what to instantiate.

	formatters - the corresponding value will be a dict in which each
key is a formatter id and each value is a dict describing how to
configure the corresponding Formatter instance.

The configuring dict is searched for keys format and datefmt
(with defaults of None) and these are used to construct a
logging.Formatter instance.

	filters - the corresponding value will be a dict in which each key
is a filter id and each value is a dict describing how to configure
the corresponding Filter instance.

The configuring dict is searched for the key name (defaulting to the
empty string) and this is used to construct a logging.Filter
instance.

	handlers - the corresponding value will be a dict in which each
key is a handler id and each value is a dict describing how to
configure the corresponding Handler instance.

The configuring dict is searched for the following keys:

	class (mandatory). This is the fully qualified name of the
handler class.

	level (optional). The level of the handler.

	formatter (optional). The id of the formatter for this
handler.

	filters (optional). A list of ids of the filters for this
handler.

All other keys are passed through as keyword arguments to the
handler’s constructor. For example, given the snippet:

handlers:
 console:
 class : logging.StreamHandler
 formatter: brief
 level : INFO
 filters: [allow_foo]
 stream : ext://sys.stdout
 file:
 class : logging.handlers.RotatingFileHandler
 formatter: precise
 filename: logconfig.log
 maxBytes: 1024
 backupCount: 3

the handler with id console is instantiated as a
logging.StreamHandler, using sys.stdout as the underlying
stream. The handler with id file is instantiated as a
logging.handlers.RotatingFileHandler with the keyword arguments
filename='logconfig.log', maxBytes=1024, backupCount=3.

	loggers - the corresponding value will be a dict in which each key
is a logger name and each value is a dict describing how to
configure the corresponding Logger instance.

The configuring dict is searched for the following keys:

	level (optional). The level of the logger.

	propagate (optional). The propagation setting of the logger.

	filters (optional). A list of ids of the filters for this
logger.

	handlers (optional). A list of ids of the handlers for this
logger.

The specified loggers will be configured according to the level,
propagation, filters and handlers specified.

	root - this will be the configuration for the root logger.
Processing of the configuration will be as for any logger, except
that the propagate setting will not be applicable.

	incremental - whether the configuration is to be interpreted as
incremental to the existing configuration. This value defaults to
False, which means that the specified configuration replaces the
existing configuration with the same semantics as used by the
existing fileConfig() API.

If the specified value is True, the configuration is processed
as described in the section on Incremental Configuration.

	disable_existing_loggers - whether any existing loggers are to be
disabled. This setting mirrors the parameter of the same name in
fileConfig(). If absent, this parameter defaults to True.
This value is ignored if incremental is True.

15.8.2.2. Incremental Configuration

It is difficult to provide complete flexibility for incremental
configuration. For example, because objects such as filters
and formatters are anonymous, once a configuration is set up, it is
not possible to refer to such anonymous objects when augmenting a
configuration.

Furthermore, there is not a compelling case for arbitrarily altering
the object graph of loggers, handlers, filters, formatters at
run-time, once a configuration is set up; the verbosity of loggers and
handlers can be controlled just by setting levels (and, in the case of
loggers, propagation flags). Changing the object graph arbitrarily in
a safe way is problematic in a multi-threaded environment; while not
impossible, the benefits are not worth the complexity it adds to the
implementation.

Thus, when the incremental key of a configuration dict is present
and is True, the system will completely ignore any formatters and
filters entries, and process only the level
settings in the handlers entries, and the level and
propagate settings in the loggers and root entries.

Using a value in the configuration dict lets configurations to be sent
over the wire as pickled dicts to a socket listener. Thus, the logging
verbosity of a long-running application can be altered over time with
no need to stop and restart the application.

15.8.2.3. Object connections

The schema describes a set of logging objects - loggers,
handlers, formatters, filters - which are connected to each other in
an object graph. Thus, the schema needs to represent connections
between the objects. For example, say that, once configured, a
particular logger has attached to it a particular handler. For the
purposes of this discussion, we can say that the logger represents the
source, and the handler the destination, of a connection between the
two. Of course in the configured objects this is represented by the
logger holding a reference to the handler. In the configuration dict,
this is done by giving each destination object an id which identifies
it unambiguously, and then using the id in the source object’s
configuration to indicate that a connection exists between the source
and the destination object with that id.

So, for example, consider the following YAML snippet:

formatters:
 brief:
 # configuration for formatter with id 'brief' goes here
 precise:
 # configuration for formatter with id 'precise' goes here
handlers:
 h1: #This is an id
 # configuration of handler with id 'h1' goes here
 formatter: brief
 h2: #This is another id
 # configuration of handler with id 'h2' goes here
 formatter: precise
loggers:
 foo.bar.baz:
 # other configuration for logger 'foo.bar.baz'
 handlers: [h1, h2]

(Note: YAML used here because it’s a little more readable than the
equivalent Python source form for the dictionary.)

The ids for loggers are the logger names which would be used
programmatically to obtain a reference to those loggers, e.g.
foo.bar.baz. The ids for Formatters and Filters can be any string
value (such as brief, precise above) and they are transient,
in that they are only meaningful for processing the configuration
dictionary and used to determine connections between objects, and are
not persisted anywhere when the configuration call is complete.

The above snippet indicates that logger named foo.bar.baz should
have two handlers attached to it, which are described by the handler
ids h1 and h2. The formatter for h1 is that described by id
brief, and the formatter for h2 is that described by id
precise.

15.8.2.4. User-defined objects

The schema supports user-defined objects for handlers, filters and
formatters. (Loggers do not need to have different types for
different instances, so there is no support in this configuration
schema for user-defined logger classes.)

Objects to be configured are described by dictionaries
which detail their configuration. In some places, the logging system
will be able to infer from the context how an object is to be
instantiated, but when a user-defined object is to be instantiated,
the system will not know how to do this. In order to provide complete
flexibility for user-defined object instantiation, the user needs
to provide a ‘factory’ - a callable which is called with a
configuration dictionary and which returns the instantiated object.
This is signalled by an absolute import path to the factory being
made available under the special key '()'. Here’s a concrete
example:

formatters:
 brief:
 format: '%(message)s'
 default:
 format: '%(asctime)s %(levelname)-8s %(name)-15s %(message)s'
 datefmt: '%Y-%m-%d %H:%M:%S'
 custom:
 (): my.package.customFormatterFactory
 bar: baz
 spam: 99.9
 answer: 42

The above YAML snippet defines three formatters. The first, with id
brief, is a standard logging.Formatter instance with the
specified format string. The second, with id default, has a
longer format and also defines the time format explicitly, and will
result in a logging.Formatter initialized with those two format
strings. Shown in Python source form, the brief and default
formatters have configuration sub-dictionaries:

{
 'format' : '%(message)s'
}

and:

{
 'format' : '%(asctime)s %(levelname)-8s %(name)-15s %(message)s',
 'datefmt' : '%Y-%m-%d %H:%M:%S'
}

respectively, and as these dictionaries do not contain the special key
'()', the instantiation is inferred from the context: as a result,
standard logging.Formatter instances are created. The
configuration sub-dictionary for the third formatter, with id
custom, is:

{
 '()' : 'my.package.customFormatterFactory',
 'bar' : 'baz',
 'spam' : 99.9,
 'answer' : 42
}

and this contains the special key '()', which means that
user-defined instantiation is wanted. In this case, the specified
factory callable will be used. If it is an actual callable it will be
used directly - otherwise, if you specify a string (as in the example)
the actual callable will be located using normal import mechanisms.
The callable will be called with the remaining items in the
configuration sub-dictionary as keyword arguments. In the above
example, the formatter with id custom will be assumed to be
returned by the call:

my.package.customFormatterFactory(bar='baz', spam=99.9, answer=42)

The key '()' has been used as the special key because it is not a
valid keyword parameter name, and so will not clash with the names of
the keyword arguments used in the call. The '()' also serves as a
mnemonic that the corresponding value is a callable.

15.8.2.5. Access to external objects

There are times where a configuration needs to refer to objects
external to the configuration, for example sys.stderr. If the
configuration dict is constructed using Python code, this is
straightforward, but a problem arises when the configuration is
provided via a text file (e.g. JSON, YAML). In a text file, there is
no standard way to distinguish sys.stderr from the literal string
'sys.stderr'. To facilitate this distinction, the configuration
system looks for certain special prefixes in string values and
treat them specially. For example, if the literal string
'ext://sys.stderr' is provided as a value in the configuration,
then the ext:// will be stripped off and the remainder of the
value processed using normal import mechanisms.

The handling of such prefixes is done in a way analogous to protocol
handling: there is a generic mechanism to look for prefixes which
match the regular expression ^(?P<prefix>[a-z]+)://(?P<suffix>.*)$
whereby, if the prefix is recognised, the suffix is processed
in a prefix-dependent manner and the result of the processing replaces
the string value. If the prefix is not recognised, then the string
value will be left as-is.

15.8.2.6. Access to internal objects

As well as external objects, there is sometimes also a need to refer
to objects in the configuration. This will be done implicitly by the
configuration system for things that it knows about. For example, the
string value 'DEBUG' for a level in a logger or handler will
automatically be converted to the value logging.DEBUG, and the
handlers, filters and formatter entries will take an
object id and resolve to the appropriate destination object.

However, a more generic mechanism is needed for user-defined
objects which are not known to the logging module. For
example, consider logging.handlers.MemoryHandler, which takes
a target argument which is another handler to delegate to. Since
the system already knows about this class, then in the configuration,
the given target just needs to be the object id of the relevant
target handler, and the system will resolve to the handler from the
id. If, however, a user defines a my.package.MyHandler which has
an alternate handler, the configuration system would not know that
the alternate referred to a handler. To cater for this, a generic
resolution system allows the user to specify:

handlers:
 file:
 # configuration of file handler goes here

 custom:
 (): my.package.MyHandler
 alternate: cfg://handlers.file

The literal string 'cfg://handlers.file' will be resolved in an
analogous way to strings with the ext:// prefix, but looking
in the configuration itself rather than the import namespace. The
mechanism allows access by dot or by index, in a similar way to
that provided by str.format. Thus, given the following snippet:

handlers:
 email:
 class: logging.handlers.SMTPHandler
 mailhost: localhost
 fromaddr: my_app@domain.tld
 toaddrs:
 - support_team@domain.tld
 - dev_team@domain.tld
 subject: Houston, we have a problem.

in the configuration, the string 'cfg://handlers' would resolve to
the dict with key handlers, the string 'cfg://handlers.email
would resolve to the dict with key email in the handlers dict,
and so on. The string 'cfg://handlers.email.toaddrs[1] would
resolve to 'dev_team.domain.tld' and the string
'cfg://handlers.email.toaddrs[0]' would resolve to the value
'support_team@domain.tld'. The subject value could be accessed
using either 'cfg://handlers.email.subject' or, equivalently,
'cfg://handlers.email[subject]'. The latter form only needs to be
used if the key contains spaces or non-alphanumeric characters. If an
index value consists only of decimal digits, access will be attempted
using the corresponding integer value, falling back to the string
value if needed.

Given a string cfg://handlers.myhandler.mykey.123, this will
resolve to config_dict['handlers']['myhandler']['mykey']['123'].
If the string is specified as cfg://handlers.myhandler.mykey[123],
the system will attempt to retrieve the value from
config_dict['handlers']['myhandler']['mykey'][123], and fall back
to config_dict['handlers']['myhandler']['mykey']['123'] if that
fails.

15.8.3. Configuration file format

The configuration file format understood by fileConfig() is based on
configparser functionality. The file must contain sections called
[loggers], [handlers] and [formatters] which identify by name the
entities of each type which are defined in the file. For each such entity, there
is a separate section which identifies how that entity is configured. Thus, for
a logger named log01 in the [loggers] section, the relevant
configuration details are held in a section [logger_log01]. Similarly, a
handler called hand01 in the [handlers] section will have its
configuration held in a section called [handler_hand01], while a formatter
called form01 in the [formatters] section will have its configuration
specified in a section called [formatter_form01]. The root logger
configuration must be specified in a section called [logger_root].

Examples of these sections in the file are given below.

[loggers]
keys=root,log02,log03,log04,log05,log06,log07

[handlers]
keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]
keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The root logger must specify a level and a list of handlers. An example of a
root logger section is given below.

[logger_root]
level=NOTSET
handlers=hand01

The level entry can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL or
NOTSET. For the root logger only, NOTSET means that all messages will be
logged. Level values are eval()uated in the context of the logging
package’s namespace.

The handlers entry is a comma-separated list of handler names, which must
appear in the [handlers] section. These names must appear in the
[handlers] section and have corresponding sections in the configuration
file.

For loggers other than the root logger, some additional information is required.
This is illustrated by the following example.

[logger_parser]
level=DEBUG
handlers=hand01
propagate=1
qualname=compiler.parser

The level and handlers entries are interpreted as for the root logger,
except that if a non-root logger’s level is specified as NOTSET, the system
consults loggers higher up the hierarchy to determine the effective level of the
logger. The propagate entry is set to 1 to indicate that messages must
propagate to handlers higher up the logger hierarchy from this logger, or 0 to
indicate that messages are not propagated to handlers up the hierarchy. The
qualname entry is the hierarchical channel name of the logger, that is to
say the name used by the application to get the logger.

Sections which specify handler configuration are exemplified by the following.

[handler_hand01]
class=StreamHandler
level=NOTSET
formatter=form01
args=(sys.stdout,)

The class entry indicates the handler’s class (as determined by eval()
in the logging package’s namespace). The level is interpreted as for
loggers, and NOTSET is taken to mean ‘log everything’.

Changed in version 2.6: Added support for resolving the handler’s class as a dotted module and
class name.

The formatter entry indicates the key name of the formatter for this
handler. If blank, a default formatter (logging._defaultFormatter) is used.
If a name is specified, it must appear in the [formatters] section and have
a corresponding section in the configuration file.

The args entry, when eval()uated in the context of the logging
package’s namespace, is the list of arguments to the constructor for the handler
class. Refer to the constructors for the relevant handlers, or to the examples
below, to see how typical entries are constructed.

[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form02
args=('python.log', 'w')

[handler_hand03]
class=handlers.SocketHandler
level=INFO
formatter=form03
args=('localhost', handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]
class=handlers.DatagramHandler
level=WARN
formatter=form04
args=('localhost', handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]
class=handlers.SysLogHandler
level=ERROR
formatter=form05
args=(('localhost', handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

[handler_hand06]
class=handlers.NTEventLogHandler
level=CRITICAL
formatter=form06
args=('Python Application', '', 'Application')

[handler_hand07]
class=handlers.SMTPHandler
level=WARN
formatter=form07
args=('localhost', 'from@abc', ['user1@abc', 'user2@xyz'], 'Logger Subject')

[handler_hand08]
class=handlers.MemoryHandler
level=NOTSET
formatter=form08
target=
args=(10, ERROR)

[handler_hand09]
class=handlers.HTTPHandler
level=NOTSET
formatter=form09
args=('localhost:9022', '/log', 'GET')

Sections which specify formatter configuration are typified by the following.

[formatter_form01]
format=F1 %(asctime)s %(levelname)s %(message)s
datefmt=
class=logging.Formatter

The format entry is the overall format string, and the datefmt entry is
the strftime()-compatible date/time format string. If empty, the
package substitutes ISO8601 format date/times, which is almost equivalent to
specifying the date format string '%Y-%m-%d %H:%M:%S'. The ISO8601 format
also specifies milliseconds, which are appended to the result of using the above
format string, with a comma separator. An example time in ISO8601 format is
2003-01-23 00:29:50,411.

The class entry is optional. It indicates the name of the formatter’s class
(as a dotted module and class name.) This option is useful for instantiating a
Formatter subclass. Subclasses of Formatter can present
exception tracebacks in an expanded or condensed format.

See also

	Module logging

	API reference for the logging module.

	Module logging.handlers

	Useful handlers included with the logging module.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.9. logging.handlers — Logging handlers

Important

This page contains only reference information. For tutorials,
please see

	Basic Tutorial

	Advanced Tutorial

	Logging Cookbook

The following useful handlers are provided in the package. Note that three of
the handlers (StreamHandler, FileHandler and
NullHandler) are actually defined in the logging module itself,
but have been documented here along with the other handlers.

15.9.1. StreamHandler

The StreamHandler class, located in the core logging package,
sends logging output to streams such as sys.stdout, sys.stderr or any
file-like object (or, more precisely, any object which supports write()
and flush() methods).

	
class logging.StreamHandler(stream=None)

	Returns a new instance of the StreamHandler class. If stream is
specified, the instance will use it for logging output; otherwise, sys.stderr
will be used.

	
emit(record)

	If a formatter is specified, it is used to format the record. The record
is then written to the stream with a newline terminator. If exception
information is present, it is formatted using
traceback.print_exception() and appended to the stream.

	
flush()

	Flushes the stream by calling its flush() method. Note that the
close() method is inherited from Handler and so does
no output, so an explicit flush() call may be needed at times.

15.9.2. FileHandler

The FileHandler class, located in the core logging package,
sends logging output to a disk file. It inherits the output functionality from
StreamHandler.

	
class logging.FileHandler(filename, mode='a', encoding=None, delay=False)

	Returns a new instance of the FileHandler class. The specified file is
opened and used as the stream for logging. If mode is not specified,
'a' is used. If encoding is not None, it is used to open the file
with that encoding. If delay is true, then file opening is deferred until the
first call to emit(). By default, the file grows indefinitely.

Changed in version 2.6: delay was added.

	
close()

	Closes the file.

	
emit(record)

	Outputs the record to the file.

15.9.3. NullHandler

New in version 2.7.

The NullHandler class, located in the core logging package,
does not do any formatting or output. It is essentially a ‘no-op’ handler
for use by library developers.

	
class logging.NullHandler

	Returns a new instance of the NullHandler class.

	
emit(record)

	This method does nothing.

	
handle(record)

	This method does nothing.

	
createLock()

	This method returns None for the lock, since there is no
underlying I/O to which access needs to be serialized.

See Configuring Logging for a Library for more information on how to use
NullHandler.

15.9.4. WatchedFileHandler

New in version 2.6.

The WatchedFileHandler class, located in the logging.handlers
module, is a FileHandler which watches the file it is logging to. If
the file changes, it is closed and reopened using the file name.

A file change can happen because of usage of programs such as newsyslog and
logrotate which perform log file rotation. This handler, intended for use
under Unix/Linux, watches the file to see if it has changed since the last emit.
(A file is deemed to have changed if its device or inode have changed.) If the
file has changed, the old file stream is closed, and the file opened to get a
new stream.

This handler is not appropriate for use under Windows, because under Windows
open log files cannot be moved or renamed - logging opens the files with
exclusive locks - and so there is no need for such a handler. Furthermore,
ST_INO is not supported under Windows; stat() always returns zero for
this value.

	
class logging.handlers.WatchedFileHandler(filename[, mode[, encoding[, delay]]])

	Returns a new instance of the WatchedFileHandler class. The specified
file is opened and used as the stream for logging. If mode is not specified,
'a' is used. If encoding is not None, it is used to open the file
with that encoding. If delay is true, then file opening is deferred until the
first call to emit(). By default, the file grows indefinitely.

	
emit(record)

	Outputs the record to the file, but first checks to see if the file has
changed. If it has, the existing stream is flushed and closed and the
file opened again, before outputting the record to the file.

15.9.5. RotatingFileHandler

The RotatingFileHandler class, located in the logging.handlers
module, supports rotation of disk log files.

	
class logging.handlers.RotatingFileHandler(filename, mode='a', maxBytes=0, backupCount=0, encoding=None, delay=0)

	Returns a new instance of the RotatingFileHandler class. The specified
file is opened and used as the stream for logging. If mode is not specified,
'a' is used. If encoding is not None, it is used to open the file
with that encoding. If delay is true, then file opening is deferred until the
first call to emit(). By default, the file grows indefinitely.

You can use the maxBytes and backupCount values to allow the file to
rollover at a predetermined size. When the size is about to be exceeded,
the file is closed and a new file is silently opened for output. Rollover occurs
whenever the current log file is nearly maxBytes in length; if maxBytes is
zero, rollover never occurs. If backupCount is non-zero, the system will save
old log files by appending the extensions ‘.1’, ‘.2’ etc., to the filename. For
example, with a backupCount of 5 and a base file name of app.log, you
would get app.log, app.log.1, app.log.2, up to
app.log.5. The file being written to is always app.log. When
this file is filled, it is closed and renamed to app.log.1, and if files
app.log.1, app.log.2, etc. exist, then they are renamed to
app.log.2, app.log.3 etc. respectively.

Changed in version 2.6: delay was added.

	
doRollover()

	Does a rollover, as described above.

	
emit(record)

	Outputs the record to the file, catering for rollover as described
previously.

15.9.6. TimedRotatingFileHandler

The TimedRotatingFileHandler class, located in the
logging.handlers module, supports rotation of disk log files at certain
timed intervals.

	
class logging.handlers.TimedRotatingFileHandler(filename, when='h', interval=1, backupCount=0, encoding=None, delay=False, utc=False)

	Returns a new instance of the TimedRotatingFileHandler class. The
specified file is opened and used as the stream for logging. On rotating it also
sets the filename suffix. Rotating happens based on the product of when and
interval.

You can use the when to specify the type of interval. The list of possible
values is below. Note that they are not case sensitive.

	Value
	Type of interval

	'S'
	Seconds

	'M'
	Minutes

	'H'
	Hours

	'D'
	Days

	'W'
	Week day (0=Monday)

	'midnight'
	Roll over at midnight

The system will save old log files by appending extensions to the filename.
The extensions are date-and-time based, using the strftime format
%Y-%m-%d_%H-%M-%S or a leading portion thereof, depending on the
rollover interval.

When computing the next rollover time for the first time (when the handler
is created), the last modification time of an existing log file, or else
the current time, is used to compute when the next rotation will occur.

If the utc argument is true, times in UTC will be used; otherwise
local time is used.

If backupCount is nonzero, at most backupCount files
will be kept, and if more would be created when rollover occurs, the oldest
one is deleted. The deletion logic uses the interval to determine which
files to delete, so changing the interval may leave old files lying around.

If delay is true, then file opening is deferred until the first call to
emit().

Changed in version 2.6: delay was added.

Changed in version 2.7: utc was added.

	
doRollover()

	Does a rollover, as described above.

	
emit(record)

	Outputs the record to the file, catering for rollover as described above.

15.9.7. SocketHandler

The SocketHandler class, located in the logging.handlers module,
sends logging output to a network socket. The base class uses a TCP socket.

	
class logging.handlers.SocketHandler(host, port)

	Returns a new instance of the SocketHandler class intended to
communicate with a remote machine whose address is given by host and port.

	
close()

	Closes the socket.

	
emit()

	Pickles the record’s attribute dictionary and writes it to the socket in
binary format. If there is an error with the socket, silently drops the
packet. If the connection was previously lost, re-establishes the
connection. To unpickle the record at the receiving end into a
LogRecord, use the makeLogRecord() function.

	
handleError()

	Handles an error which has occurred during emit(). The most likely
cause is a lost connection. Closes the socket so that we can retry on the
next event.

	
makeSocket()

	This is a factory method which allows subclasses to define the precise
type of socket they want. The default implementation creates a TCP socket
(socket.SOCK_STREAM).

	
makePickle(record)

	Pickles the record’s attribute dictionary in binary format with a length
prefix, and returns it ready for transmission across the socket.

Note that pickles aren’t completely secure. If you are concerned about
security, you may want to override this method to implement a more secure
mechanism. For example, you can sign pickles using HMAC and then verify
them on the receiving end, or alternatively you can disable unpickling of
global objects on the receiving end.

	
send(packet)

	Send a pickled string packet to the socket. This function allows for
partial sends which can happen when the network is busy.

	
createSocket()

	Tries to create a socket; on failure, uses an exponential back-off
algorithm. On intial failure, the handler will drop the message it was
trying to send. When subsequent messages are handled by the same
instance, it will not try connecting until some time has passed. The
default parameters are such that the initial delay is one second, and if
after that delay the connection still can’t be made, the handler will
double the delay each time up to a maximum of 30 seconds.

This behaviour is controlled by the following handler attributes:

	retryStart (initial delay, defaulting to 1.0 seconds).

	retryFactor (multiplier, defaulting to 2.0).

	retryMax (maximum delay, defaulting to 30.0 seconds).

This means that if the remote listener starts up after the handler has
been used, you could lose messages (since the handler won’t even attempt
a connection until the delay has elapsed, but just silently drop messages
during the delay period).

15.9.8. DatagramHandler

The DatagramHandler class, located in the logging.handlers
module, inherits from SocketHandler to support sending logging messages
over UDP sockets.

	
class logging.handlers.DatagramHandler(host, port)

	Returns a new instance of the DatagramHandler class intended to
communicate with a remote machine whose address is given by host and port.

	
emit()

	Pickles the record’s attribute dictionary and writes it to the socket in
binary format. If there is an error with the socket, silently drops the
packet. To unpickle the record at the receiving end into a
LogRecord, use the makeLogRecord() function.

	
makeSocket()

	The factory method of SocketHandler is here overridden to create
a UDP socket (socket.SOCK_DGRAM).

	
send(s)

	Send a pickled string to a socket.

15.9.9. SysLogHandler

The SysLogHandler class, located in the logging.handlers module,
supports sending logging messages to a remote or local Unix syslog.

	
class logging.handlers.SysLogHandler(address=('localhost', SYSLOG_UDP_PORT), facility=LOG_USER, socktype=socket.SOCK_DGRAM)

	Returns a new instance of the SysLogHandler class intended to
communicate with a remote Unix machine whose address is given by address in
the form of a (host, port) tuple. If address is not specified,
('localhost', 514) is used. The address is used to open a socket. An
alternative to providing a (host, port) tuple is providing an address as a
string, for example ‘/dev/log’. In this case, a Unix domain socket is used to
send the message to the syslog. If facility is not specified,
LOG_USER is used. The type of socket opened depends on the
socktype argument, which defaults to socket.SOCK_DGRAM and thus
opens a UDP socket. To open a TCP socket (for use with the newer syslog
daemons such as rsyslog), specify a value of socket.SOCK_STREAM.

Note that if your server is not listening on UDP port 514,
SysLogHandler may appear not to work. In that case, check what
address you should be using for a domain socket - it’s system dependent.
For example, on Linux it’s usually ‘/dev/log’ but on OS/X it’s
‘/var/run/syslog’. You’ll need to check your platform and use the
appropriate address (you may need to do this check at runtime if your
application needs to run on several platforms). On Windows, you pretty
much have to use the UDP option.

Changed in version 2.7: socktype was added.

	
close()

	Closes the socket to the remote host.

	
emit(record)

	The record is formatted, and then sent to the syslog server. If exception
information is present, it is not sent to the server.

	
encodePriority(facility, priority)

	Encodes the facility and priority into an integer. You can pass in strings
or integers - if strings are passed, internal mapping dictionaries are
used to convert them to integers.

The symbolic LOG_ values are defined in SysLogHandler and
mirror the values defined in the sys/syslog.h header file.

Priorities

	Name (string)
	Symbolic value

	alert
	LOG_ALERT

	crit or critical
	LOG_CRIT

	debug
	LOG_DEBUG

	emerg or panic
	LOG_EMERG

	err or error
	LOG_ERR

	info
	LOG_INFO

	notice
	LOG_NOTICE

	warn or warning
	LOG_WARNING

Facilities

	Name (string)
	Symbolic value

	auth
	LOG_AUTH

	authpriv
	LOG_AUTHPRIV

	cron
	LOG_CRON

	daemon
	LOG_DAEMON

	ftp
	LOG_FTP

	kern
	LOG_KERN

	lpr
	LOG_LPR

	mail
	LOG_MAIL

	news
	LOG_NEWS

	syslog
	LOG_SYSLOG

	user
	LOG_USER

	uucp
	LOG_UUCP

	local0
	LOG_LOCAL0

	local1
	LOG_LOCAL1

	local2
	LOG_LOCAL2

	local3
	LOG_LOCAL3

	local4
	LOG_LOCAL4

	local5
	LOG_LOCAL5

	local6
	LOG_LOCAL6

	local7
	LOG_LOCAL7

	
mapPriority(levelname)

	Maps a logging level name to a syslog priority name.
You may need to override this if you are using custom levels, or
if the default algorithm is not suitable for your needs. The
default algorithm maps DEBUG, INFO, WARNING, ERROR and
CRITICAL to the equivalent syslog names, and all other level
names to ‘warning’.

15.9.10. NTEventLogHandler

The NTEventLogHandler class, located in the logging.handlers
module, supports sending logging messages to a local Windows NT, Windows 2000 or
Windows XP event log. Before you can use it, you need Mark Hammond’s Win32
extensions for Python installed.

	
class logging.handlers.NTEventLogHandler(appname, dllname=None, logtype='Application')

	Returns a new instance of the NTEventLogHandler class. The appname is
used to define the application name as it appears in the event log. An
appropriate registry entry is created using this name. The dllname should give
the fully qualified pathname of a .dll or .exe which contains message
definitions to hold in the log (if not specified, 'win32service.pyd' is used
- this is installed with the Win32 extensions and contains some basic
placeholder message definitions. Note that use of these placeholders will make
your event logs big, as the entire message source is held in the log. If you
want slimmer logs, you have to pass in the name of your own .dll or .exe which
contains the message definitions you want to use in the event log). The
logtype is one of 'Application', 'System' or 'Security', and
defaults to 'Application'.

	
close()

	At this point, you can remove the application name from the registry as a
source of event log entries. However, if you do this, you will not be able
to see the events as you intended in the Event Log Viewer - it needs to be
able to access the registry to get the .dll name. The current version does
not do this.

	
emit(record)

	Determines the message ID, event category and event type, and then logs
the message in the NT event log.

	
getEventCategory(record)

	Returns the event category for the record. Override this if you want to
specify your own categories. This version returns 0.

	
getEventType(record)

	Returns the event type for the record. Override this if you want to
specify your own types. This version does a mapping using the handler’s
typemap attribute, which is set up in __init__() to a dictionary
which contains mappings for DEBUG, INFO,
WARNING, ERROR and CRITICAL. If you are using
your own levels, you will either need to override this method or place a
suitable dictionary in the handler’s typemap attribute.

	
getMessageID(record)

	Returns the message ID for the record. If you are using your own messages,
you could do this by having the msg passed to the logger being an ID
rather than a format string. Then, in here, you could use a dictionary
lookup to get the message ID. This version returns 1, which is the base
message ID in win32service.pyd.

15.9.11. SMTPHandler

The SMTPHandler class, located in the logging.handlers module,
supports sending logging messages to an email address via SMTP.

	
class logging.handlers.SMTPHandler(mailhost, fromaddr, toaddrs, subject, credentials=None, secure=None)

	Returns a new instance of the SMTPHandler class. The instance is
initialized with the from and to addresses and subject line of the email.
The toaddrs should be a list of strings. To specify a non-standard SMTP
port, use the (host, port) tuple format for the mailhost argument. If you
use a string, the standard SMTP port is used. If your SMTP server requires
authentication, you can specify a (username, password) tuple for the
credentials argument. If secure is True, then the handler will attempt
to use TLS for the email transmission.

Changed in version 2.6: credentials was added.

Changed in version 2.7: secure was added.

	
emit(record)

	Formats the record and sends it to the specified addressees.

	
getSubject(record)

	If you want to specify a subject line which is record-dependent, override
this method.

15.9.12. MemoryHandler

The MemoryHandler class, located in the logging.handlers module,
supports buffering of logging records in memory, periodically flushing them to a
target handler. Flushing occurs whenever the buffer is full, or when an
event of a certain severity or greater is seen.

MemoryHandler is a subclass of the more general
BufferingHandler, which is an abstract class. This buffers logging
records in memory. Whenever each record is added to the buffer, a check is made
by calling shouldFlush() to see if the buffer should be flushed. If it
should, then flush() is expected to do the needful.

	
class logging.handlers.BufferingHandler(capacity)

	Initializes the handler with a buffer of the specified capacity.

	
emit(record)

	Appends the record to the buffer. If shouldFlush() returns true,
calls flush() to process the buffer.

	
flush()

	You can override this to implement custom flushing behavior. This version
just zaps the buffer to empty.

	
shouldFlush(record)

	Returns true if the buffer is up to capacity. This method can be
overridden to implement custom flushing strategies.

	
class logging.handlers.MemoryHandler(capacity, flushLevel=ERROR, target=None)

	Returns a new instance of the MemoryHandler class. The instance is
initialized with a buffer size of capacity. If flushLevel is not specified,
ERROR is used. If no target is specified, the target will need to be
set using setTarget() before this handler does anything useful.

	
close()

	Calls flush(), sets the target to None and clears the
buffer.

	
flush()

	For a MemoryHandler, flushing means just sending the buffered
records to the target, if there is one. The buffer is also cleared when
this happens. Override if you want different behavior.

	
setTarget(target)

	

Changed in version 2.6: credentials was added.Sets the target handler for this handler.

	
shouldFlush(record)

	Checks for buffer full or a record at the flushLevel or higher.

15.9.13. HTTPHandler

The HTTPHandler class, located in the logging.handlers module,
supports sending logging messages to a Web server, using either GET or
POST semantics.

	
class logging.handlers.HTTPHandler(host, url, method='GET')

	Returns a new instance of the HTTPHandler class. The host can be
of the form host:port, should you need to use a specific port number.
If no method is specified, GET is used.

	
emit(record)

	Sends the record to the Web server as a percent-encoded dictionary.

See also

	Module logging

	API reference for the logging module.

	Module logging.config

	Configuration API for the logging module.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.10. getpass — Portable password input

The getpass module provides two functions:

	
getpass.getpass([prompt[, stream]])

	Prompt the user for a password without echoing. The user is prompted using the
string prompt, which defaults to 'Password: '. On Unix, the prompt is
written to the file-like object stream. stream defaults to the
controlling terminal (/dev/tty) or if that is unavailable to sys.stderr
(this argument is ignored on Windows).

If echo free input is unavailable getpass() falls back to printing
a warning message to stream and reading from sys.stdin and
issuing a GetPassWarning.

Availability: Macintosh, Unix, Windows.

Changed in version 2.5: The stream parameter was added.

Changed in version 2.6: On Unix it defaults to using /dev/tty before falling back
to sys.stdin and sys.stderr.

Note

If you call getpass from within IDLE, the input may be done in the
terminal you launched IDLE from rather than the idle window itself.

	
exception getpass.GetPassWarning

	A UserWarning subclass issued when password input may be echoed.

	
getpass.getuser()

	Return the “login name” of the user. Availability: Unix, Windows.

This function checks the environment variables LOGNAME,
USER, LNAME and USERNAME, in order, and returns
the value of the first one which is set to a non-empty string. If none are set,
the login name from the password database is returned on systems which support
the pwd module, otherwise, an exception is raised.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.11. curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for the ncurses library and converted to a package.

The curses module provides an interface to the curses library, the
de-facto standard for portable advanced terminal handling.

While curses is most widely used in the Unix environment, versions are available
for DOS, OS/2, and possibly other systems as well. This extension module is
designed to match the API of ncurses, an open-source curses library hosted on
Linux and the BSD variants of Unix.

Note

Since version 5.4, the ncurses library decides how to interpret non-ASCII data
using the nl_langinfo function. That means that you have to call
locale.setlocale() in the application and encode Unicode strings
using one of the system’s available encodings. This example uses the
system’s default encoding:

import locale
locale.setlocale(locale.LC_ALL, '')
code = locale.getpreferredencoding()

Then use code as the encoding for str.encode() calls.

See also

	Module curses.ascii

	Utilities for working with ASCII characters, regardless of your locale settings.

	Module curses.panel

	A panel stack extension that adds depth to curses windows.

	Module curses.textpad

	Editable text widget for curses supporting Emacs-like bindings.

	Module curses.wrapper

	Convenience function to ensure proper terminal setup and resetting on
application entry and exit.

	Curses Programming with Python

	Tutorial material on using curses with Python, by Andrew Kuchling and Eric
Raymond.

The Demo/curses/ directory in the Python source distribution contains
some example programs using the curses bindings provided by this module.

15.11.1. Functions

The module curses defines the following exception:

	
exception curses.error

	Exception raised when a curses library function returns an error.

Note

Whenever x or y arguments to a function or a method are optional, they
default to the current cursor location. Whenever attr is optional, it defaults
to A_NORMAL.

The module curses defines the following functions:

	
curses.baudrate()

	Returns the output speed of the terminal in bits per second. On software
terminal emulators it will have a fixed high value. Included for historical
reasons; in former times, it was used to write output loops for time delays and
occasionally to change interfaces depending on the line speed.

	
curses.beep()

	Emit a short attention sound.

	
curses.can_change_color()

	Returns true or false, depending on whether the programmer can change the colors
displayed by the terminal.

	
curses.cbreak()

	Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty
line buffering is turned off and characters are available to be read one by one.
However, unlike raw mode, special characters (interrupt, quit, suspend, and flow
control) retain their effects on the tty driver and calling program. Calling
first raw() then cbreak() leaves the terminal in cbreak mode.

	
curses.color_content(color_number)

	Returns the intensity of the red, green, and blue (RGB) components in the color
color_number, which must be between 0 and COLORS. A 3-tuple is
returned, containing the R,G,B values for the given color, which will be between
0 (no component) and 1000 (maximum amount of component).

	
curses.color_pair(color_number)

	Returns the attribute value for displaying text in the specified color. This
attribute value can be combined with A_STANDOUT, A_REVERSE,
and the other A_* attributes. pair_number() is the counterpart
to this function.

	
curses.curs_set(visibility)

	Sets the cursor state. visibility can be set to 0, 1, or 2, for invisible,
normal, or very visible. If the terminal supports the visibility requested, the
previous cursor state is returned; otherwise, an exception is raised. On many
terminals, the “visible” mode is an underline cursor and the “very visible” mode
is a block cursor.

	
curses.def_prog_mode()

	Saves the current terminal mode as the “program” mode, the mode when the running
program is using curses. (Its counterpart is the “shell” mode, for when the
program is not in curses.) Subsequent calls to reset_prog_mode() will
restore this mode.

	
curses.def_shell_mode()

	Saves the current terminal mode as the “shell” mode, the mode when the running
program is not using curses. (Its counterpart is the “program” mode, when the
program is using curses capabilities.) Subsequent calls to
reset_shell_mode() will restore this mode.

	
curses.delay_output(ms)

	Inserts an ms millisecond pause in output.

	
curses.doupdate()

	Update the physical screen. The curses library keeps two data structures, one
representing the current physical screen contents and a virtual screen
representing the desired next state. The doupdate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write
operations such as addstr() have been performed on a window. The normal
refresh() call is simply noutrefresh() followed by doupdate();
if you have to update multiple windows, you can speed performance and perhaps
reduce screen flicker by issuing noutrefresh() calls on all windows,
followed by a single doupdate().

	
curses.echo()

	Enter echo mode. In echo mode, each character input is echoed to the screen as
it is entered.

	
curses.endwin()

	De-initialize the library, and return terminal to normal status.

	
curses.erasechar()

	Returns the user’s current erase character. Under Unix operating systems this
is a property of the controlling tty of the curses program, and is not set by
the curses library itself.

	
curses.filter()

	The filter() routine, if used, must be called before initscr() is
called. The effect is that, during those calls, LINES is set to 1; the
capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the home
string is set to the value of cr. The effect is that the cursor is confined to
the current line, and so are screen updates. This may be used for enabling
character-at-a-time line editing without touching the rest of the screen.

	
curses.flash()

	Flash the screen. That is, change it to reverse-video and then change it back
in a short interval. Some people prefer such as ‘visible bell’ to the audible
attention signal produced by beep().

	
curses.flushinp()

	Flush all input buffers. This throws away any typeahead that has been typed
by the user and has not yet been processed by the program.

	
curses.getmouse()

	After getch() returns KEY_MOUSE to signal a mouse event, this
method should be call to retrieve the queued mouse event, represented as a
5-tuple (id, x, y, z, bstate). id is an ID value used to distinguish
multiple devices, and x, y, z are the event’s coordinates. (z is
currently unused.). bstate is an integer value whose bits will be set to
indicate the type of event, and will be the bitwise OR of one or more of the
following constants, where n is the button number from 1 to 4:
BUTTONn_PRESSED, BUTTONn_RELEASED, BUTTONn_CLICKED,
BUTTONn_DOUBLE_CLICKED, BUTTONn_TRIPLE_CLICKED,
BUTTON_SHIFT, BUTTON_CTRL, BUTTON_ALT.

	
curses.getsyx()

	Returns the current coordinates of the virtual screen cursor in y and x. If
leaveok is currently true, then -1,-1 is returned.

	
curses.getwin(file)

	Reads window related data stored in the file by an earlier putwin() call.
The routine then creates and initializes a new window using that data, returning
the new window object.

	
curses.has_colors()

	Returns true if the terminal can display colors; otherwise, it returns false.

	
curses.has_ic()

	Returns true if the terminal has insert- and delete- character capabilities.
This function is included for historical reasons only, as all modern software
terminal emulators have such capabilities.

	
curses.has_il()

	Returns true if the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions. This function is included for
historical reasons only, as all modern software terminal emulators have such
capabilities.

	
curses.has_key(ch)

	Takes a key value ch, and returns true if the current terminal type recognizes
a key with that value.

	
curses.halfdelay(tenths)

	Used for half-delay mode, which is similar to cbreak mode in that characters
typed by the user are immediately available to the program. However, after
blocking for tenths tenths of seconds, an exception is raised if nothing has
been typed. The value of tenths must be a number between 1 and 255. Use
nocbreak() to leave half-delay mode.

	
curses.init_color(color_number, r, g, b)

	Changes the definition of a color, taking the number of the color to be changed
followed by three RGB values (for the amounts of red, green, and blue
components). The value of color_number must be between 0 and
COLORS. Each of r, g, b, must be a value between 0 and
1000. When init_color() is used, all occurrences of that color on the
screen immediately change to the new definition. This function is a no-op on
most terminals; it is active only if can_change_color() returns 1.

	
curses.init_pair(pair_number, fg, bg)

	Changes the definition of a color-pair. It takes three arguments: the number of
the color-pair to be changed, the foreground color number, and the background
color number. The value of pair_number must be between 1 and
COLOR_PAIRS - 1 (the 0 color pair is wired to white on black and cannot
be changed). The value of fg and bg arguments must be between 0 and
COLORS. If the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair are changed to the new
definition.

	
curses.initscr()

	Initialize the library. Returns a WindowObject which represents the
whole screen.

Note

If there is an error opening the terminal, the underlying curses library may
cause the interpreter to exit.

	
curses.isendwin()

	Returns true if endwin() has been called (that is, the curses library has
been deinitialized).

	
curses.keyname(k)

	Return the name of the key numbered k. The name of a key generating printable
ASCII character is the key’s character. The name of a control-key combination
is a two-character string consisting of a caret followed by the corresponding
printable ASCII character. The name of an alt-key combination (128-255) is a
string consisting of the prefix ‘M-‘ followed by the name of the corresponding
ASCII character.

	
curses.killchar()

	Returns the user’s current line kill character. Under Unix operating systems
this is a property of the controlling tty of the curses program, and is not set
by the curses library itself.

	
curses.longname()

	Returns a string containing the terminfo long name field describing the current
terminal. The maximum length of a verbose description is 128 characters. It is
defined only after the call to initscr().

	
curses.meta(yes)

	If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only
7-bit chars.

	
curses.mouseinterval(interval)

	Sets the maximum time in milliseconds that can elapse between press and release
events in order for them to be recognized as a click, and returns the previous
interval value. The default value is 200 msec, or one fifth of a second.

	
curses.mousemask(mousemask)

	Sets the mouse events to be reported, and returns a tuple (availmask,
oldmask). availmask indicates which of the specified mouse events can be
reported; on complete failure it returns 0. oldmask is the previous value of
the given window’s mouse event mask. If this function is never called, no mouse
events are ever reported.

	
curses.napms(ms)

	Sleep for ms milliseconds.

	
curses.newpad(nlines, ncols)

	Creates and returns a pointer to a new pad data structure with the given number
of lines and columns. A pad is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and
is not necessarily associated with a particular part of the screen. Pads can be
used when a large window is needed, and only a part of the window will be on the
screen at one time. Automatic refreshes of pads (such as from scrolling or
echoing of input) do not occur. The refresh() and noutrefresh()
methods of a pad require 6 arguments to specify the part of the pad to be
displayed and the location on the screen to be used for the display. The
arguments are pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol; the p
arguments refer to the upper left corner of the pad region to be displayed and
the s arguments define a clipping box on the screen within which the pad region
is to be displayed.

	
curses.newwin([nlines, ncols], begin_y, begin_x)

	Return a new window, whose left-upper corner is at (begin_y, begin_x), and
whose height/width is nlines/ncols.

By default, the window will extend from the specified position to the lower
right corner of the screen.

	
curses.nl()

	Enter newline mode. This mode translates the return key into newline on input,
and translates newline into return and line-feed on output. Newline mode is
initially on.

	
curses.nocbreak()

	Leave cbreak mode. Return to normal “cooked” mode with line buffering.

	
curses.noecho()

	Leave echo mode. Echoing of input characters is turned off.

	
curses.nonl()

	Leave newline mode. Disable translation of return into newline on input, and
disable low-level translation of newline into newline/return on output (but this
does not change the behavior of addch('\n'), which always does the
equivalent of return and line feed on the virtual screen). With translation
off, curses can sometimes speed up vertical motion a little; also, it will be
able to detect the return key on input.

	
curses.noqiflush()

	When the noqiflush routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done. You may
want to call noqiflush() in a signal handler if you want output to
continue as though the interrupt had not occurred, after the handler exits.

	
curses.noraw()

	Leave raw mode. Return to normal “cooked” mode with line buffering.

	
curses.pair_content(pair_number)

	Returns a tuple (fg, bg) containing the colors for the requested color pair.
The value of pair_number must be between 1 and COLOR_PAIRS - 1.

	
curses.pair_number(attr)

	Returns the number of the color-pair set by the attribute value attr.
color_pair() is the counterpart to this function.

	
curses.putp(string)

	Equivalent to tputs(str, 1, putchar); emits the value of a specified
terminfo capability for the current terminal. Note that the output of putp
always goes to standard output.

	
curses.qiflush([flag])

	If flag is false, the effect is the same as calling noqiflush(). If
flag is true, or no argument is provided, the queues will be flushed when
these control characters are read.

	
curses.raw()

	Enter raw mode. In raw mode, normal line buffering and processing of
interrupt, quit, suspend, and flow control keys are turned off; characters are
presented to curses input functions one by one.

	
curses.reset_prog_mode()

	Restores the terminal to “program” mode, as previously saved by
def_prog_mode().

	
curses.reset_shell_mode()

	Restores the terminal to “shell” mode, as previously saved by
def_shell_mode().

	
curses.setsyx(y, x)

	Sets the virtual screen cursor to y, x. If y and x are both -1, then
leaveok is set.

	
curses.setupterm([termstr, fd])

	Initializes the terminal. termstr is a string giving the terminal name; if
omitted, the value of the TERM environment variable will be used. fd is the
file descriptor to which any initialization sequences will be sent; if not
supplied, the file descriptor for sys.stdout will be used.

	
curses.start_color()

	Must be called if the programmer wants to use colors, and before any other color
manipulation routine is called. It is good practice to call this routine right
after initscr().

start_color() initializes eight basic colors (black, red, green, yellow,
blue, magenta, cyan, and white), and two global variables in the curses
module, COLORS and COLOR_PAIRS, containing the maximum number
of colors and color-pairs the terminal can support. It also restores the colors
on the terminal to the values they had when the terminal was just turned on.

	
curses.termattrs()

	Returns a logical OR of all video attributes supported by the terminal. This
information is useful when a curses program needs complete control over the
appearance of the screen.

	
curses.termname()

	Returns the value of the environment variable TERM, truncated to 14 characters.

	
curses.tigetflag(capname)

	Returns the value of the Boolean capability corresponding to the terminfo
capability name capname. The value -1 is returned if capname is not a
Boolean capability, or 0 if it is canceled or absent from the terminal
description.

	
curses.tigetnum(capname)

	Returns the value of the numeric capability corresponding to the terminfo
capability name capname. The value -2 is returned if capname is not a
numeric capability, or -1 if it is canceled or absent from the terminal
description.

	
curses.tigetstr(capname)

	Returns the value of the string capability corresponding to the terminfo
capability name capname. None is returned if capname is not a string
capability, or is canceled or absent from the terminal description.

	
curses.tparm(str[, ...])

	Instantiates the string str with the supplied parameters, where str should
be a parameterized string obtained from the terminfo database. E.g.
tparm(tigetstr("cup"), 5, 3) could result in '\033[6;4H', the exact
result depending on terminal type.

	
curses.typeahead(fd)

	Specifies that the file descriptor fd be used for typeahead checking. If fd
is -1, then no typeahead checking is done.

The curses library does “line-breakout optimization” by looking for typeahead
periodically while updating the screen. If input is found, and it is coming
from a tty, the current update is postponed until refresh or doupdate is called
again, allowing faster response to commands typed in advance. This function
allows specifying a different file descriptor for typeahead checking.

	
curses.unctrl(ch)

	Returns a string which is a printable representation of the character ch.
Control characters are displayed as a caret followed by the character, for
example as ^C. Printing characters are left as they are.

	
curses.ungetch(ch)

	Push ch so the next getch() will return it.

Note

Only one ch can be pushed before getch() is called.

	
curses.ungetmouse(id, x, y, z, bstate)

	Push a KEY_MOUSE event onto the input queue, associating the given
state data with it.

	
curses.use_env(flag)

	If used, this function should be called before initscr() or newterm are
called. When flag is false, the values of lines and columns specified in the
terminfo database will be used, even if environment variables LINES
and COLUMNS (used by default) are set, or if curses is running in a
window (in which case default behavior would be to use the window size if
LINES and COLUMNS are not set).

	
curses.use_default_colors()

	Allow use of default values for colors on terminals supporting this feature. Use
this to support transparency in your application. The default color is assigned
to the color number -1. After calling this function, init_pair(x,
curses.COLOR_RED, -1) initializes, for instance, color pair x to a red
foreground color on the default background.

15.11.2. Window Objects

Window objects, as returned by initscr() and newwin() above, have
the following methods:

	
window.addch([y, x], ch[, attr])

	
Note

A character means a C character (an ASCII code), rather then a Python
character (a string of length 1). (This note is true whenever the
documentation mentions a character.) The built-in ord() is handy for
conveying strings to codes.

Paint character ch at (y, x) with attributes attr, overwriting any
character previously painter at that location. By default, the character
position and attributes are the current settings for the window object.

	
window.addnstr([y, x], str, n[, attr])

	Paint at most n characters of the string str at (y, x) with attributes
attr, overwriting anything previously on the display.

	
window.addstr([y, x], str[, attr])

	Paint the string str at (y, x) with attributes attr, overwriting
anything previously on the display.

	
window.attroff(attr)

	Remove attribute attr from the “background” set applied to all writes to the
current window.

	
window.attron(attr)

	Add attribute attr from the “background” set applied to all writes to the
current window.

	
window.attrset(attr)

	Set the “background” set of attributes to attr. This set is initially 0 (no
attributes).

	
window.bkgd(ch[, attr])

	Sets the background property of the window to the character ch, with
attributes attr. The change is then applied to every character position in
that window:

	The attribute of every character in the window is changed to the new
background attribute.

	Wherever the former background character appears, it is changed to the new
background character.

	
window.bkgdset(ch[, attr])

	Sets the window’s background. A window’s background consists of a character and
any combination of attributes. The attribute part of the background is combined
(OR’ed) with all non-blank characters that are written into the window. Both
the character and attribute parts of the background are combined with the blank
characters. The background becomes a property of the character and moves with
the character through any scrolling and insert/delete line/character operations.

	
window.border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])

	Draw a border around the edges of the window. Each parameter specifies the
character to use for a specific part of the border; see the table below for more
details. The characters can be specified as integers or as one-character
strings.

Note

A 0 value for any parameter will cause the default character to be used for
that parameter. Keyword parameters can not be used. The defaults are listed
in this table:

	Parameter
	Description
	Default value

	ls
	Left side
	ACS_VLINE

	rs
	Right side
	ACS_VLINE

	ts
	Top
	ACS_HLINE

	bs
	Bottom
	ACS_HLINE

	tl
	Upper-left corner
	ACS_ULCORNER

	tr
	Upper-right corner
	ACS_URCORNER

	bl
	Bottom-left corner
	ACS_LLCORNER

	br
	Bottom-right corner
	ACS_LRCORNER

	
window.box([vertch, horch])

	Similar to border(), but both ls and rs are vertch and both ts and
bs are horch. The default corner characters are always used by this function.

	
window.chgat([y, x,] [num,] attr)

	Sets the attributes of num characters at the current cursor position, or at
position (y, x) if supplied. If no value of num is given or num = -1,
the attribute will be set on all the characters to the end of the line. This
function does not move the cursor. The changed line will be touched using the
touchline() method so that the contents will be redisplayed by the next
window refresh.

	
window.clear()

	Like erase(), but also causes the whole window to be repainted upon next
call to refresh().

	
window.clearok(yes)

	If yes is 1, the next call to refresh() will clear the window
completely.

	
window.clrtobot()

	Erase from cursor to the end of the window: all lines below the cursor are
deleted, and then the equivalent of clrtoeol() is performed.

	
window.clrtoeol()

	Erase from cursor to the end of the line.

	
window.cursyncup()

	Updates the current cursor position of all the ancestors of the window to
reflect the current cursor position of the window.

	
window.delch([y, x])

	Delete any character at (y, x).

	
window.deleteln()

	Delete the line under the cursor. All following lines are moved up by 1 line.

	
window.derwin([nlines, ncols], begin_y, begin_x)

	An abbreviation for “derive window”, derwin() is the same as calling
subwin(), except that begin_y and begin_x are relative to the origin
of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

	
window.echochar(ch[, attr])

	Add character ch with attribute attr, and immediately call refresh()
on the window.

	
window.enclose(y, x)

	Tests whether the given pair of screen-relative character-cell coordinates are
enclosed by the given window, returning true or false. It is useful for
determining what subset of the screen windows enclose the location of a mouse
event.

	
window.erase()

	Clear the window.

	
window.getbegyx()

	Return a tuple (y, x) of co-ordinates of upper-left corner.

	
window.getch([y, x])

	Get a character. Note that the integer returned does not have to be in ASCII
range: function keys, keypad keys and so on return numbers higher than 256. In
no-delay mode, -1 is returned if there is no input, else getch() waits
until a key is pressed.

	
window.getkey([y, x])

	Get a character, returning a string instead of an integer, as getch()
does. Function keys, keypad keys and so on return a multibyte string containing
the key name. In no-delay mode, an exception is raised if there is no input.

	
window.getmaxyx()

	Return a tuple (y, x) of the height and width of the window.

	
window.getparyx()

	Returns the beginning coordinates of this window relative to its parent window
into two integer variables y and x. Returns -1,-1 if this window has no
parent.

	
window.getstr([y, x])

	Read a string from the user, with primitive line editing capacity.

	
window.getyx()

	Return a tuple (y, x) of current cursor position relative to the window’s
upper-left corner.

	
window.hline([y, x], ch, n)

	Display a horizontal line starting at (y, x) with length n consisting of
the character ch.

	
window.idcok(flag)

	If flag is false, curses no longer considers using the hardware insert/delete
character feature of the terminal; if flag is true, use of character insertion
and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

	
window.idlok(yes)

	If called with yes equal to 1, curses will try and use hardware line
editing facilities. Otherwise, line insertion/deletion are disabled.

	
window.immedok(flag)

	If flag is true, any change in the window image automatically causes the
window to be refreshed; you no longer have to call refresh() yourself.
However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

	
window.inch([y, x])

	Return the character at the given position in the window. The bottom 8 bits are
the character proper, and upper bits are the attributes.

	
window.insch([y, x], ch[, attr])

	Paint character ch at (y, x) with attributes attr, moving the line from
position x right by one character.

	
window.insdelln(nlines)

	Inserts nlines lines into the specified window above the current line. The
nlines bottom lines are lost. For negative nlines, delete nlines lines
starting with the one under the cursor, and move the remaining lines up. The
bottom nlines lines are cleared. The current cursor position remains the
same.

	
window.insertln()

	Insert a blank line under the cursor. All following lines are moved down by 1
line.

	
window.insnstr([y, x], str, n[, attr])

	Insert a character string (as many characters as will fit on the line) before
the character under the cursor, up to n characters. If n is zero or
negative, the entire string is inserted. All characters to the right of the
cursor are shifted right, with the rightmost characters on the line being lost.
The cursor position does not change (after moving to y, x, if specified).

	
window.insstr([y, x], str[, attr])

	Insert a character string (as many characters as will fit on the line) before
the character under the cursor. All characters to the right of the cursor are
shifted right, with the rightmost characters on the line being lost. The cursor
position does not change (after moving to y, x, if specified).

	
window.instr([y, x] [, n])

	Returns a string of characters, extracted from the window starting at the
current cursor position, or at y, x if specified. Attributes are stripped
from the characters. If n is specified, instr() returns return a string
at most n characters long (exclusive of the trailing NUL).

	
window.is_linetouched(line)

	Returns true if the specified line was modified since the last call to
refresh(); otherwise returns false. Raises a curses.error
exception if line is not valid for the given window.

	
window.is_wintouched()

	Returns true if the specified window was modified since the last call to
refresh(); otherwise returns false.

	
window.keypad(yes)

	If yes is 1, escape sequences generated by some keys (keypad, function keys)
will be interpreted by curses. If yes is 0, escape sequences will be
left as is in the input stream.

	
window.leaveok(yes)

	If yes is 1, cursor is left where it is on update, instead of being at “cursor
position.” This reduces cursor movement where possible. If possible the cursor
will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

	
window.move(new_y, new_x)

	Move cursor to (new_y, new_x).

	
window.mvderwin(y, x)

	Moves the window inside its parent window. The screen-relative parameters of
the window are not changed. This routine is used to display different parts of
the parent window at the same physical position on the screen.

	
window.mvwin(new_y, new_x)

	Move the window so its upper-left corner is at (new_y, new_x).

	
window.nodelay(yes)

	If yes is 1, getch() will be non-blocking.

	
window.notimeout(yes)

	If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be
interpreted, and will be left in the input stream as is.

	
window.noutrefresh()

	Mark for refresh but wait. This function updates the data structure
representing the desired state of the window, but does not force an update of
the physical screen. To accomplish that, call doupdate().

	
window.overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])

	Overlay the window on top of destwin. The windows need not be the same size,
only the overlapping region is copied. This copy is non-destructive, which means
that the current background character does not overwrite the old contents of
destwin.

To get fine-grained control over the copied region, the second form of
overlay() can be used. sminrow and smincol are the upper-left
coordinates of the source window, and the other variables mark a rectangle in
the destination window.

	
window.overwrite(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])

	Overwrite the window on top of destwin. The windows need not be the same size,
in which case only the overlapping region is copied. This copy is destructive,
which means that the current background character overwrites the old contents of
destwin.

To get fine-grained control over the copied region, the second form of
overwrite() can be used. sminrow and smincol are the upper-left
coordinates of the source window, the other variables mark a rectangle in the
destination window.

	
window.putwin(file)

	Writes all data associated with the window into the provided file object. This
information can be later retrieved using the getwin() function.

	
window.redrawln(beg, num)

	Indicates that the num screen lines, starting at line beg, are corrupted and
should be completely redrawn on the next refresh() call.

	
window.redrawwin()

	Touches the entire window, causing it to be completely redrawn on the next
refresh() call.

	
window.refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])

	Update the display immediately (sync actual screen with previous
drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created
with newpad(). The additional parameters are needed to indicate what part
of the pad and screen are involved. pminrow and pmincol specify the upper
left-hand corner of the rectangle to be displayed in the pad. sminrow,
smincol, smaxrow, and smaxcol specify the edges of the rectangle to be
displayed on the screen. The lower right-hand corner of the rectangle to be
displayed in the pad is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely contained
within their respective structures. Negative values of pminrow, pmincol,
sminrow, or smincol are treated as if they were zero.

	
window.scroll([lines=1])

	Scroll the screen or scrolling region upward by lines lines.

	
window.scrollok(flag)

	Controls what happens when the cursor of a window is moved off the edge of the
window or scrolling region, either as a result of a newline action on the bottom
line, or typing the last character of the last line. If flag is false, the
cursor is left on the bottom line. If flag is true, the window is scrolled up
one line. Note that in order to get the physical scrolling effect on the
terminal, it is also necessary to call idlok().

	
window.setscrreg(top, bottom)

	Set the scrolling region from line top to line bottom. All scrolling actions
will take place in this region.

	
window.standend()

	Turn off the standout attribute. On some terminals this has the side effect of
turning off all attributes.

	
window.standout()

	Turn on attribute A_STANDOUT.

	
window.subpad([nlines, ncols], begin_y, begin_x)

	Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and
whose width/height is ncols/nlines.

	
window.subwin([nlines, ncols], begin_y, begin_x)

	Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and
whose width/height is ncols/nlines.

By default, the sub-window will extend from the specified position to the lower
right corner of the window.

	
window.syncdown()

	Touches each location in the window that has been touched in any of its ancestor
windows. This routine is called by refresh(), so it should almost never
be necessary to call it manually.

	
window.syncok(flag)

	If called with flag set to true, then syncup() is called automatically
whenever there is a change in the window.

	
window.syncup()

	Touches all locations in ancestors of the window that have been changed in the
window.

	
window.timeout(delay)

	Sets blocking or non-blocking read behavior for the window. If delay is
negative, blocking read is used (which will wait indefinitely for input). If
delay is zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. If delay is positive, then
getch() will block for delay milliseconds, and return -1 if there is
still no input at the end of that time.

	
window.touchline(start, count[, changed])

	Pretend count lines have been changed, starting with line start. If
changed is supplied, it specifies whether the affected lines are marked as
having been changed (changed=1) or unchanged (changed=0).

	
window.touchwin()

	Pretend the whole window has been changed, for purposes of drawing
optimizations.

	
window.untouchwin()

	Marks all lines in the window as unchanged since the last call to
refresh().

	
window.vline([y, x], ch, n)

	Display a vertical line starting at (y, x) with length n consisting of the
character ch.

15.11.3. Constants

The curses module defines the following data members:

	
curses.ERR

	Some curses routines that return an integer, such as getch(), return
ERR upon failure.

	
curses.OK

	Some curses routines that return an integer, such as napms(), return
OK upon success.

	
curses.version

	A string representing the current version of the module. Also available as
__version__.

Several constants are available to specify character cell attributes:

	Attribute
	Meaning

	A_ALTCHARSET
	Alternate character set mode.

	A_BLINK
	Blink mode.

	A_BOLD
	Bold mode.

	A_DIM
	Dim mode.

	A_NORMAL
	Normal attribute.

	A_REVERSE
	Reverse background and
foreground colors.

	A_STANDOUT
	Standout mode.

	A_UNDERLINE
	Underline mode.

Keys are referred to by integer constants with names starting with KEY_.
The exact keycaps available are system dependent.

	Key constant
	Key

	KEY_MIN
	Minimum key value

	KEY_BREAK
	Break key (unreliable)

	KEY_DOWN
	Down-arrow

	KEY_UP
	Up-arrow

	KEY_LEFT
	Left-arrow

	KEY_RIGHT
	Right-arrow

	KEY_HOME
	Home key (upward+left arrow)

	KEY_BACKSPACE
	Backspace (unreliable)

	KEY_F0
	Function keys. Up to 64 function keys are
supported.

	KEY_Fn
	Value of function key n

	KEY_DL
	Delete line

	KEY_IL
	Insert line

	KEY_DC
	Delete character

	KEY_IC
	Insert char or enter insert mode

	KEY_EIC
	Exit insert char mode

	KEY_CLEAR
	Clear screen

	KEY_EOS
	Clear to end of screen

	KEY_EOL
	Clear to end of line

	KEY_SF
	Scroll 1 line forward

	KEY_SR
	Scroll 1 line backward (reverse)

	KEY_NPAGE
	Next page

	KEY_PPAGE
	Previous page

	KEY_STAB
	Set tab

	KEY_CTAB
	Clear tab

	KEY_CATAB
	Clear all tabs

	KEY_ENTER
	Enter or send (unreliable)

	KEY_SRESET
	Soft (partial) reset (unreliable)

	KEY_RESET
	Reset or hard reset (unreliable)

	KEY_PRINT
	Print

	KEY_LL
	Home down or bottom (lower left)

	KEY_A1
	Upper left of keypad

	KEY_A3
	Upper right of keypad

	KEY_B2
	Center of keypad

	KEY_C1
	Lower left of keypad

	KEY_C3
	Lower right of keypad

	KEY_BTAB
	Back tab

	KEY_BEG
	Beg (beginning)

	KEY_CANCEL
	Cancel

	KEY_CLOSE
	Close

	KEY_COMMAND
	Cmd (command)

	KEY_COPY
	Copy

	KEY_CREATE
	Create

	KEY_END
	End

	KEY_EXIT
	Exit

	KEY_FIND
	Find

	KEY_HELP
	Help

	KEY_MARK
	Mark

	KEY_MESSAGE
	Message

	KEY_MOVE
	Move

	KEY_NEXT
	Next

	KEY_OPEN
	Open

	KEY_OPTIONS
	Options

	KEY_PREVIOUS
	Prev (previous)

	KEY_REDO
	Redo

	KEY_REFERENCE
	Ref (reference)

	KEY_REFRESH
	Refresh

	KEY_REPLACE
	Replace

	KEY_RESTART
	Restart

	KEY_RESUME
	Resume

	KEY_SAVE
	Save

	KEY_SBEG
	Shifted Beg (beginning)

	KEY_SCANCEL
	Shifted Cancel

	KEY_SCOMMAND
	Shifted Command

	KEY_SCOPY
	Shifted Copy

	KEY_SCREATE
	Shifted Create

	KEY_SDC
	Shifted Delete char

	KEY_SDL
	Shifted Delete line

	KEY_SELECT
	Select

	KEY_SEND
	Shifted End

	KEY_SEOL
	Shifted Clear line

	KEY_SEXIT
	Shifted Dxit

	KEY_SFIND
	Shifted Find

	KEY_SHELP
	Shifted Help

	KEY_SHOME
	Shifted Home

	KEY_SIC
	Shifted Input

	KEY_SLEFT
	Shifted Left arrow

	KEY_SMESSAGE
	Shifted Message

	KEY_SMOVE
	Shifted Move

	KEY_SNEXT
	Shifted Next

	KEY_SOPTIONS
	Shifted Options

	KEY_SPREVIOUS
	Shifted Prev

	KEY_SPRINT
	Shifted Print

	KEY_SREDO
	Shifted Redo

	KEY_SREPLACE
	Shifted Replace

	KEY_SRIGHT
	Shifted Right arrow

	KEY_SRSUME
	Shifted Resume

	KEY_SSAVE
	Shifted Save

	KEY_SSUSPEND
	Shifted Suspend

	KEY_SUNDO
	Shifted Undo

	KEY_SUSPEND
	Suspend

	KEY_UNDO
	Undo

	KEY_MOUSE
	Mouse event has occurred

	KEY_RESIZE
	Terminal resize event

	KEY_MAX
	Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are
normally at least four function keys (KEY_F1, KEY_F2,
KEY_F3, KEY_F4) available, and the arrow keys mapped to
KEY_UP, KEY_DOWN, KEY_LEFT and KEY_RIGHT in
the obvious way. If your machine has a PC keyboard, it is safe to expect arrow
keys and twelve function keys (older PC keyboards may have only ten function
keys); also, the following keypad mappings are standard:

	Keycap
	Constant

	Insert
	KEY_IC

	Delete
	KEY_DC

	Home
	KEY_HOME

	End
	KEY_END

	Page Up
	KEY_NPAGE

	Page Down
	KEY_PPAGE

The following table lists characters from the alternate character set. These are
inherited from the VT100 terminal, and will generally be available on software
emulations such as X terminals. When there is no graphic available, curses
falls back on a crude printable ASCII approximation.

Note

These are available only after initscr() has been called.

	ACS code
	Meaning

	ACS_BBSS
	alternate name for upper right corner

	ACS_BLOCK
	solid square block

	ACS_BOARD
	board of squares

	ACS_BSBS
	alternate name for horizontal line

	ACS_BSSB
	alternate name for upper left corner

	ACS_BSSS
	alternate name for top tee

	ACS_BTEE
	bottom tee

	ACS_BULLET
	bullet

	ACS_CKBOARD
	checker board (stipple)

	ACS_DARROW
	arrow pointing down

	ACS_DEGREE
	degree symbol

	ACS_DIAMOND
	diamond

	ACS_GEQUAL
	greater-than-or-equal-to

	ACS_HLINE
	horizontal line

	ACS_LANTERN
	lantern symbol

	ACS_LARROW
	left arrow

	ACS_LEQUAL
	less-than-or-equal-to

	ACS_LLCORNER
	lower left-hand corner

	ACS_LRCORNER
	lower right-hand corner

	ACS_LTEE
	left tee

	ACS_NEQUAL
	not-equal sign

	ACS_PI
	letter pi

	ACS_PLMINUS
	plus-or-minus sign

	ACS_PLUS
	big plus sign

	ACS_RARROW
	right arrow

	ACS_RTEE
	right tee

	ACS_S1
	scan line 1

	ACS_S3
	scan line 3

	ACS_S7
	scan line 7

	ACS_S9
	scan line 9

	ACS_SBBS
	alternate name for lower right corner

	ACS_SBSB
	alternate name for vertical line

	ACS_SBSS
	alternate name for right tee

	ACS_SSBB
	alternate name for lower left corner

	ACS_SSBS
	alternate name for bottom tee

	ACS_SSSB
	alternate name for left tee

	ACS_SSSS
	alternate name for crossover or big plus

	ACS_STERLING
	pound sterling

	ACS_TTEE
	top tee

	ACS_UARROW
	up arrow

	ACS_ULCORNER
	upper left corner

	ACS_URCORNER
	upper right corner

	ACS_VLINE
	vertical line

The following table lists the predefined colors:

	Constant
	Color

	COLOR_BLACK
	Black

	COLOR_BLUE
	Blue

	COLOR_CYAN
	Cyan (light greenish blue)

	COLOR_GREEN
	Green

	COLOR_MAGENTA
	Magenta (purplish red)

	COLOR_RED
	Red

	COLOR_WHITE
	White

	COLOR_YELLOW
	Yellow

15.12. curses.textpad — Text input widget for curses programs

New in version 1.6.

The curses.textpad module provides a Textbox class that handles
elementary text editing in a curses window, supporting a set of keybindings
resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x,
FrameMaker, and many other programs). The module also provides a
rectangle-drawing function useful for framing text boxes or for other purposes.

The module curses.textpad defines the following function:

	
curses.textpad.rectangle(win, uly, ulx, lry, lrx)

	Draw a rectangle. The first argument must be a window object; the remaining
arguments are coordinates relative to that window. The second and third
arguments are the y and x coordinates of the upper left hand corner of the
rectangle to be drawn; the fourth and fifth arguments are the y and x
coordinates of the lower right hand corner. The rectangle will be drawn using
VT100/IBM PC forms characters on terminals that make this possible (including
xterm and most other software terminal emulators). Otherwise it will be drawn
with ASCII dashes, vertical bars, and plus signs.

15.12.1. Textbox objects

You can instantiate a Textbox object as follows:

	
class curses.textpad.Textbox(win)

	Return a textbox widget object. The win argument should be a curses
WindowObject in which the textbox is to be contained. The edit cursor
of the textbox is initially located at the upper left hand corner of the
containing window, with coordinates (0, 0). The instance’s
stripspaces flag is initially on.

Textbox objects have the following methods:

	
edit([validator])

	This is the entry point you will normally use. It accepts editing
keystrokes until one of the termination keystrokes is entered. If
validator is supplied, it must be a function. It will be called for
each keystroke entered with the keystroke as a parameter; command dispatch
is done on the result. This method returns the window contents as a
string; whether blanks in the window are included is affected by the
stripspaces member.

	
do_command(ch)

	Process a single command keystroke. Here are the supported special
keystrokes:

	Keystroke
	Action

	Control-A
	Go to left edge of window.

	Control-B
	Cursor left, wrapping to previous line if
appropriate.

	Control-D
	Delete character under cursor.

	Control-E
	Go to right edge (stripspaces off) or end
of line (stripspaces on).

	Control-F
	Cursor right, wrapping to next line when
appropriate.

	Control-G
	Terminate, returning the window contents.

	Control-H
	Delete character backward.

	Control-J
	Terminate if the window is 1 line,
otherwise insert newline.

	Control-K
	If line is blank, delete it, otherwise
clear to end of line.

	Control-L
	Refresh screen.

	Control-N
	Cursor down; move down one line.

	Control-O
	Insert a blank line at cursor location.

	Control-P
	Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement
is not possible. The following synonyms are supported where possible:

	Constant
	Keystroke

	KEY_LEFT
	Control-B

	KEY_RIGHT
	Control-F

	KEY_UP
	Control-P

	KEY_DOWN
	Control-N

	KEY_BACKSPACE
	Control-h

All other keystrokes are treated as a command to insert the given
character and move right (with line wrapping).

	
gather()

	This method returns the window contents as a string; whether blanks in the
window are included is affected by the stripspaces member.

	
stripspaces

	This data member is a flag which controls the interpretation of blanks in
the window. When it is on, trailing blanks on each line are ignored; any
cursor motion that would land the cursor on a trailing blank goes to the
end of that line instead, and trailing blanks are stripped when the window
contents are gathered.

15.13. curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one function, wrapper(), which runs another function
which should be the rest of your curses-using application. If the application
raises an exception, wrapper() will restore the terminal to a sane state
before re-raising the exception and generating a traceback.

	
curses.wrapper.wrapper(func, ...)

	Wrapper function that initializes curses and calls another function, func,
restoring normal keyboard/screen behavior on error. The callable object func
is then passed the main window ‘stdscr’ as its first argument, followed by any
other arguments passed to wrapper().

Before calling the hook function, wrapper() turns on cbreak mode, turns
off echo, enables the terminal keypad, and initializes colors if the terminal
has color support. On exit (whether normally or by exception) it restores
cooked mode, turns on echo, and disables the terminal keypad.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.14. curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants for ASCII characters and
functions to test membership in various ASCII character classes. The constants
supplied are names for control characters as follows:

	Name
	Meaning

	NUL
	

	SOH
	Start of heading, console interrupt

	STX
	Start of text

	ETX
	End of text

	EOT
	End of transmission

	ENQ
	Enquiry, goes with ACK flow control

	ACK
	Acknowledgement

	BEL
	Bell

	BS
	Backspace

	TAB
	Tab

	HT
	Alias for TAB: “Horizontal tab”

	LF
	Line feed

	NL
	Alias for LF: “New line”

	VT
	Vertical tab

	FF
	Form feed

	CR
	Carriage return

	SO
	Shift-out, begin alternate character set

	SI
	Shift-in, resume default character set

	DLE
	Data-link escape

	DC1
	XON, for flow control

	DC2
	Device control 2, block-mode flow control

	DC3
	XOFF, for flow control

	DC4
	Device control 4

	NAK
	Negative acknowledgement

	SYN
	Synchronous idle

	ETB
	End transmission block

	CAN
	Cancel

	EM
	End of medium

	SUB
	Substitute

	ESC
	Escape

	FS
	File separator

	GS
	Group separator

	RS
	Record separator, block-mode terminator

	US
	Unit separator

	SP
	Space

	DEL
	Delete

Note that many of these have little practical significance in modern usage. The
mnemonics derive from teleprinter conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard
C library:

	
curses.ascii.isalnum(c)

	Checks for an ASCII alphanumeric character; it is equivalent to isalpha(c) or
isdigit(c).

	
curses.ascii.isalpha(c)

	Checks for an ASCII alphabetic character; it is equivalent to isupper(c) or
islower(c).

	
curses.ascii.isascii(c)

	Checks for a character value that fits in the 7-bit ASCII set.

	
curses.ascii.isblank(c)

	Checks for an ASCII whitespace character.

	
curses.ascii.iscntrl(c)

	Checks for an ASCII control character (in the range 0x00 to 0x1f).

	
curses.ascii.isdigit(c)

	Checks for an ASCII decimal digit, '0' through '9'. This is equivalent
to c in string.digits.

	
curses.ascii.isgraph(c)

	Checks for ASCII any printable character except space.

	
curses.ascii.islower(c)

	Checks for an ASCII lower-case character.

	
curses.ascii.isprint(c)

	Checks for any ASCII printable character including space.

	
curses.ascii.ispunct(c)

	Checks for any printable ASCII character which is not a space or an alphanumeric
character.

	
curses.ascii.isspace(c)

	Checks for ASCII white-space characters; space, line feed, carriage return, form
feed, horizontal tab, vertical tab.

	
curses.ascii.isupper(c)

	Checks for an ASCII uppercase letter.

	
curses.ascii.isxdigit(c)

	Checks for an ASCII hexadecimal digit. This is equivalent to c in
string.hexdigits.

	
curses.ascii.isctrl(c)

	Checks for an ASCII control character (ordinal values 0 to 31).

	
curses.ascii.ismeta(c)

	Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a
string, it is first converted using the built-in function ord().

Note that all these functions check ordinal bit values derived from the first
character of the string you pass in; they do not actually know anything about
the host machine’s character encoding. For functions that know about the
character encoding (and handle internationalization properly) see the
string module.

The following two functions take either a single-character string or integer
byte value; they return a value of the same type.

	
curses.ascii.ascii(c)

	Return the ASCII value corresponding to the low 7 bits of c.

	
curses.ascii.ctrl(c)

	Return the control character corresponding to the given character (the character
bit value is bitwise-anded with 0x1f).

	
curses.ascii.alt(c)

	Return the 8-bit character corresponding to the given ASCII character (the
character bit value is bitwise-ored with 0x80).

The following function takes either a single-character string or integer value;
it returns a string.

	
curses.ascii.unctrl(c)

	Return a string representation of the ASCII character c. If c is printable,
this string is the character itself. If the character is a control character
(0x00-0x1f) the string consists of a caret ('^') followed by the
corresponding uppercase letter. If the character is an ASCII delete (0x7f) the
string is '^?'. If the character has its meta bit (0x80) set, the meta bit
is stripped, the preceding rules applied, and '!' prepended to the result.

	
curses.ascii.controlnames

	A 33-element string array that contains the ASCII mnemonics for the thirty-two
ASCII control characters from 0 (NUL) to 0x1f (US), in order, plus the mnemonic
SP for the space character.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.15. curses.panel — A panel stack extension for curses

Panels are windows with the added feature of depth, so they can be stacked on
top of each other, and only the visible portions of each window will be
displayed. Panels can be added, moved up or down in the stack, and removed.

15.15.1. Functions

The module curses.panel defines the following functions:

	
curses.panel.bottom_panel()

	Returns the bottom panel in the panel stack.

	
curses.panel.new_panel(win)

	Returns a panel object, associating it with the given window win. Be aware
that you need to keep the returned panel object referenced explicitly. If you
don’t, the panel object is garbage collected and removed from the panel stack.

	
curses.panel.top_panel()

	Returns the top panel in the panel stack.

	
curses.panel.update_panels()

	Updates the virtual screen after changes in the panel stack. This does not call
curses.doupdate(), so you’ll have to do this yourself.

15.15.2. Panel Objects

Panel objects, as returned by new_panel() above, are windows with a
stacking order. There’s always a window associated with a panel which determines
the content, while the panel methods are responsible for the window’s depth in
the panel stack.

Panel objects have the following methods:

	
Panel.above()

	Returns the panel above the current panel.

	
Panel.below()

	Returns the panel below the current panel.

	
Panel.bottom()

	Push the panel to the bottom of the stack.

	
Panel.hidden()

	Returns true if the panel is hidden (not visible), false otherwise.

	
Panel.hide()

	Hide the panel. This does not delete the object, it just makes the window on
screen invisible.

	
Panel.move(y, x)

	Move the panel to the screen coordinates (y, x).

	
Panel.replace(win)

	Change the window associated with the panel to the window win.

	
Panel.set_userptr(obj)

	Set the panel’s user pointer to obj. This is used to associate an arbitrary
piece of data with the panel, and can be any Python object.

	
Panel.show()

	Display the panel (which might have been hidden).

	
Panel.top()

	Push panel to the top of the stack.

	
Panel.userptr()

	Returns the user pointer for the panel. This might be any Python object.

	
Panel.window()

	Returns the window object associated with the panel.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.16. platform — Access to underlying platform’s identifying data

New in version 2.3.

Note

Specific platforms listed alphabetically, with Linux included in the Unix
section.

15.16.1. Cross Platform

	
platform.architecture(executable=sys.executable, bits='', linkage='')

	Queries the given executable (defaults to the Python interpreter binary) for
various architecture information.

Returns a tuple (bits, linkage) which contain information about the bit
architecture and the linkage format used for the executable. Both values are
returned as strings.

Values that cannot be determined are returned as given by the parameter presets.
If bits is given as '', the sizeof(pointer)() (or
sizeof(long)() on Python version < 1.5.2) is used as indicator for the
supported pointer size.

The function relies on the system’s file command to do the actual work.
This is available on most if not all Unix platforms and some non-Unix platforms
and then only if the executable points to the Python interpreter. Reasonable
defaults are used when the above needs are not met.

Note

On Mac OS X (and perhaps other platforms), executable files may be
universal files containing multiple architectures.

To get at the “64-bitness” of the current interpreter, it is more
reliable to query the sys.maxsize attribute:

is_64bits = sys.maxsize > 2**32

	
platform.machine()

	Returns the machine type, e.g. 'i386'. An empty string is returned if the
value cannot be determined.

	
platform.node()

	Returns the computer’s network name (may not be fully qualified!). An empty
string is returned if the value cannot be determined.

	
platform.platform(aliased=0, terse=0)

	Returns a single string identifying the underlying platform with as much useful
information as possible.

The output is intended to be human readable rather than machine parseable. It
may look different on different platforms and this is intended.

If aliased is true, the function will use aliases for various platforms that
report system names which differ from their common names, for example SunOS will
be reported as Solaris. The system_alias() function is used to implement
this.

Setting terse to true causes the function to return only the absolute minimum
information needed to identify the platform.

	
platform.processor()

	Returns the (real) processor name, e.g. 'amdk6'.

An empty string is returned if the value cannot be determined. Note that many
platforms do not provide this information or simply return the same value as for
machine(). NetBSD does this.

	
platform.python_build()

	Returns a tuple (buildno, builddate) stating the Python build number and
date as strings.

	
platform.python_compiler()

	Returns a string identifying the compiler used for compiling Python.

	
platform.python_branch()

	Returns a string identifying the Python implementation SCM branch.

New in version 2.6.

	
platform.python_implementation()

	Returns a string identifying the Python implementation. Possible return values
are: ‘CPython’, ‘IronPython’, ‘Jython’, ‘PyPy’.

New in version 2.6.

	
platform.python_revision()

	Returns a string identifying the Python implementation SCM revision.

New in version 2.6.

	
platform.python_version()

	Returns the Python version as string 'major.minor.patchlevel'

Note that unlike the Python sys.version, the returned value will always
include the patchlevel (it defaults to 0).

	
platform.python_version_tuple()

	Returns the Python version as tuple (major, minor, patchlevel) of strings.

Note that unlike the Python sys.version, the returned value will always
include the patchlevel (it defaults to '0').

	
platform.release()

	Returns the system’s release, e.g. '2.2.0' or 'NT' An empty string is
returned if the value cannot be determined.

	
platform.system()

	Returns the system/OS name, e.g. 'Linux', 'Windows', or 'Java'. An
empty string is returned if the value cannot be determined.

	
platform.system_alias(system, release, version)

	Returns (system, release, version) aliased to common marketing names used
for some systems. It also does some reordering of the information in some cases
where it would otherwise cause confusion.

	
platform.version()

	Returns the system’s release version, e.g. '#3 on degas'. An empty string is
returned if the value cannot be determined.

	
platform.uname()

	Fairly portable uname interface. Returns a tuple of strings (system, node,
release, version, machine, processor) identifying the underlying platform.

Note that unlike the os.uname() function this also returns possible
processor information as additional tuple entry.

Entries which cannot be determined are set to ''.

15.16.2. Java Platform

	
platform.java_ver(release='', vendor='', vminfo=('', '', ''), osinfo=('', '', ''))

	Version interface for Jython.

Returns a tuple (release, vendor, vminfo, osinfo) with vminfo being a
tuple (vm_name, vm_release, vm_vendor) and osinfo being a tuple
(os_name, os_version, os_arch). Values which cannot be determined are set to
the defaults given as parameters (which all default to '').

15.16.3. Windows Platform

	
platform.win32_ver(release='', version='', csd='', ptype='')

	Get additional version information from the Windows Registry and return a tuple
(version, csd, ptype) referring to version number, CSD level and OS type
(multi/single processor).

As a hint: ptype is 'Uniprocessor Free' on single processor NT machines
and 'Multiprocessor Free' on multi processor machines. The ‘Free’ refers
to the OS version being free of debugging code. It could also state ‘Checked’
which means the OS version uses debugging code, i.e. code that checks arguments,
ranges, etc.

Note

This function works best with Mark Hammond’s
win32all package installed, but also on Python 2.3 and
later (support for this was added in Python 2.6). It obviously
only runs on Win32 compatible platforms.

15.16.3.1. Win95/98 specific

	
platform.popen(cmd, mode='r', bufsize=None)

	Portable popen() interface. Find a working popen implementation
preferring win32pipe.popen(). On Windows NT, win32pipe.popen()
should work; on Windows 9x it hangs due to bugs in the MS C library.

15.16.4. Mac OS Platform

	
platform.mac_ver(release='', versioninfo=('', '', ''), machine='')

	Get Mac OS version information and return it as tuple (release, versioninfo,
machine) with versioninfo being a tuple (version, dev_stage,
non_release_version).

Entries which cannot be determined are set to ''. All tuple entries are
strings.

Documentation for the underlying gestalt() API is available online at
http://www.rgaros.nl/gestalt/.

15.16.5. Unix Platforms

	
platform.dist(distname='', version='', id='', supported_dists=('SuSE', 'debian', 'redhat', 'mandrake', ...))

	This is an old version of the functionality now provided by
linux_distribution(). For new code, please use the
linux_distribution().

The only difference between the two is that dist() always
returns the short name of the distribution taken from the
supported_dists parameter.

Deprecated since version 2.6.

	
platform.linux_distribution(distname='', version='', id='', supported_dists=('SuSE', 'debian', 'redhat', 'mandrake', ...), full_distribution_name=1)

	Tries to determine the name of the Linux OS distribution name.

supported_dists may be given to define the set of Linux distributions to
look for. It defaults to a list of currently supported Linux distributions
identified by their release file name.

If full_distribution_name is true (default), the full distribution read
from the OS is returned. Otherwise the short name taken from
supported_dists is used.

Returns a tuple (distname,version,id) which defaults to the args given as
parameters. id is the item in parentheses after the version number. It
is usually the version codename.

New in version 2.6.

	
platform.libc_ver(executable=sys.executable, lib='', version='', chunksize=2048)

	Tries to determine the libc version against which the file executable (defaults
to the Python interpreter) is linked. Returns a tuple of strings (lib,
version) which default to the given parameters in case the lookup fails.

Note that this function has intimate knowledge of how different libc versions
add symbols to the executable is probably only usable for executables compiled
using gcc.

The file is read and scanned in chunks of chunksize bytes.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.17. errno — Standard errno system symbols

This module makes available standard errno system symbols. The value of each
symbol is the corresponding integer value. The names and descriptions are
borrowed from linux/include/errno.h, which should be pretty
all-inclusive.

	
errno.errorcode

	Dictionary providing a mapping from the errno value to the string name in the
underlying system. For instance, errno.errorcode[errno.EPERM] maps to
'EPERM'.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not
defined by the module. The specific list of defined symbols is available as
errno.errorcode.keys(). Symbols available can include:

	
errno.EPERM

	Operation not permitted

	
errno.ENOENT

	No such file or directory

	
errno.ESRCH

	No such process

	
errno.EINTR

	Interrupted system call

	
errno.EIO

	I/O error

	
errno.ENXIO

	No such device or address

	
errno.E2BIG

	Arg list too long

	
errno.ENOEXEC

	Exec format error

	
errno.EBADF

	Bad file number

	
errno.ECHILD

	No child processes

	
errno.EAGAIN

	Try again

	
errno.ENOMEM

	Out of memory

	
errno.EACCES

	Permission denied

	
errno.EFAULT

	Bad address

	
errno.ENOTBLK

	Block device required

	
errno.EBUSY

	Device or resource busy

	
errno.EEXIST

	File exists

	
errno.EXDEV

	Cross-device link

	
errno.ENODEV

	No such device

	
errno.ENOTDIR

	Not a directory

	
errno.EISDIR

	Is a directory

	
errno.EINVAL

	Invalid argument

	
errno.ENFILE

	File table overflow

	
errno.EMFILE

	Too many open files

	
errno.ENOTTY

	Not a typewriter

	
errno.ETXTBSY

	Text file busy

	
errno.EFBIG

	File too large

	
errno.ENOSPC

	No space left on device

	
errno.ESPIPE

	Illegal seek

	
errno.EROFS

	Read-only file system

	
errno.EMLINK

	Too many links

	
errno.EPIPE

	Broken pipe

	
errno.EDOM

	Math argument out of domain of func

	
errno.ERANGE

	Math result not representable

	
errno.EDEADLK

	Resource deadlock would occur

	
errno.ENAMETOOLONG

	File name too long

	
errno.ENOLCK

	No record locks available

	
errno.ENOSYS

	Function not implemented

	
errno.ENOTEMPTY

	Directory not empty

	
errno.ELOOP

	Too many symbolic links encountered

	
errno.EWOULDBLOCK

	Operation would block

	
errno.ENOMSG

	No message of desired type

	
errno.EIDRM

	Identifier removed

	
errno.ECHRNG

	Channel number out of range

	
errno.EL2NSYNC

	Level 2 not synchronized

	
errno.EL3HLT

	Level 3 halted

	
errno.EL3RST

	Level 3 reset

	
errno.ELNRNG

	Link number out of range

	
errno.EUNATCH

	Protocol driver not attached

	
errno.ENOCSI

	No CSI structure available

	
errno.EL2HLT

	Level 2 halted

	
errno.EBADE

	Invalid exchange

	
errno.EBADR

	Invalid request descriptor

	
errno.EXFULL

	Exchange full

	
errno.ENOANO

	No anode

	
errno.EBADRQC

	Invalid request code

	
errno.EBADSLT

	Invalid slot

	
errno.EDEADLOCK

	File locking deadlock error

	
errno.EBFONT

	Bad font file format

	
errno.ENOSTR

	Device not a stream

	
errno.ENODATA

	No data available

	
errno.ETIME

	Timer expired

	
errno.ENOSR

	Out of streams resources

	
errno.ENONET

	Machine is not on the network

	
errno.ENOPKG

	Package not installed

	
errno.EREMOTE

	Object is remote

	
errno.ENOLINK

	Link has been severed

	
errno.EADV

	Advertise error

	
errno.ESRMNT

	Srmount error

	
errno.ECOMM

	Communication error on send

	
errno.EPROTO

	Protocol error

	
errno.EMULTIHOP

	Multihop attempted

	
errno.EDOTDOT

	RFS specific error

	
errno.EBADMSG

	Not a data message

	
errno.EOVERFLOW

	Value too large for defined data type

	
errno.ENOTUNIQ

	Name not unique on network

	
errno.EBADFD

	File descriptor in bad state

	
errno.EREMCHG

	Remote address changed

	
errno.ELIBACC

	Can not access a needed shared library

	
errno.ELIBBAD

	Accessing a corrupted shared library

	
errno.ELIBSCN

	.lib section in a.out corrupted

	
errno.ELIBMAX

	Attempting to link in too many shared libraries

	
errno.ELIBEXEC

	Cannot exec a shared library directly

	
errno.EILSEQ

	Illegal byte sequence

	
errno.ERESTART

	Interrupted system call should be restarted

	
errno.ESTRPIPE

	Streams pipe error

	
errno.EUSERS

	Too many users

	
errno.ENOTSOCK

	Socket operation on non-socket

	
errno.EDESTADDRREQ

	Destination address required

	
errno.EMSGSIZE

	Message too long

	
errno.EPROTOTYPE

	Protocol wrong type for socket

	
errno.ENOPROTOOPT

	Protocol not available

	
errno.EPROTONOSUPPORT

	Protocol not supported

	
errno.ESOCKTNOSUPPORT

	Socket type not supported

	
errno.EOPNOTSUPP

	Operation not supported on transport endpoint

	
errno.EPFNOSUPPORT

	Protocol family not supported

	
errno.EAFNOSUPPORT

	Address family not supported by protocol

	
errno.EADDRINUSE

	Address already in use

	
errno.EADDRNOTAVAIL

	Cannot assign requested address

	
errno.ENETDOWN

	Network is down

	
errno.ENETUNREACH

	Network is unreachable

	
errno.ENETRESET

	Network dropped connection because of reset

	
errno.ECONNABORTED

	Software caused connection abort

	
errno.ECONNRESET

	Connection reset by peer

	
errno.ENOBUFS

	No buffer space available

	
errno.EISCONN

	Transport endpoint is already connected

	
errno.ENOTCONN

	Transport endpoint is not connected

	
errno.ESHUTDOWN

	Cannot send after transport endpoint shutdown

	
errno.ETOOMANYREFS

	Too many references: cannot splice

	
errno.ETIMEDOUT

	Connection timed out

	
errno.ECONNREFUSED

	Connection refused

	
errno.EHOSTDOWN

	Host is down

	
errno.EHOSTUNREACH

	No route to host

	
errno.EALREADY

	Operation already in progress

	
errno.EINPROGRESS

	Operation now in progress

	
errno.ESTALE

	Stale NFS file handle

	
errno.EUCLEAN

	Structure needs cleaning

	
errno.ENOTNAM

	Not a XENIX named type file

	
errno.ENAVAIL

	No XENIX semaphores available

	
errno.EISNAM

	Is a named type file

	
errno.EREMOTEIO

	Remote I/O error

	
errno.EDQUOT

	Quota exceeded

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	15. Generic Operating System Services

15.18. ctypes — A foreign function library for Python

New in version 2.5.

ctypes is a foreign function library for Python. It provides C compatible
data types, and allows calling functions in DLLs or shared libraries. It can be
used to wrap these libraries in pure Python.

15.18.1. ctypes tutorial

Note: The code samples in this tutorial use doctest to make sure that
they actually work. Since some code samples behave differently under Linux,
Windows, or Mac OS X, they contain doctest directives in comments.

Note: Some code samples reference the ctypes c_int type. This type is
an alias for the c_long type on 32-bit systems. So, you should not be
confused if c_long is printed if you would expect c_int —
they are actually the same type.

15.18.1.1. Loading dynamic link libraries

ctypes exports the cdll, and on Windows windll and oledll
objects, for loading dynamic link libraries.

You load libraries by accessing them as attributes of these objects. cdll
loads libraries which export functions using the standard cdecl calling
convention, while windll libraries call functions using the stdcall
calling convention. oledll also uses the stdcall calling convention, and
assumes the functions return a Windows HRESULT error code. The error
code is used to automatically raise a WindowsError exception when the
function call fails.

Here are some examples for Windows. Note that msvcrt is the MS standard C
library containing most standard C functions, and uses the cdecl calling
convention:

>>> from ctypes import *
>>> print windll.kernel32
<WinDLL 'kernel32', handle ... at ...>
>>> print cdll.msvcrt
<CDLL 'msvcrt', handle ... at ...>
>>> libc = cdll.msvcrt
>>>

Windows appends the usual .dll file suffix automatically.

On Linux, it is required to specify the filename including the extension to
load a library, so attribute access can not be used to load libraries. Either the
LoadLibrary() method of the dll loaders should be used, or you should load
the library by creating an instance of CDLL by calling the constructor:

>>> cdll.LoadLibrary("libc.so.6")
<CDLL 'libc.so.6', handle ... at ...>
>>> libc = CDLL("libc.so.6")
>>> libc
<CDLL 'libc.so.6', handle ... at ...>
>>>

15.18.1.2. Accessing functions from loaded dlls

Functions are accessed as attributes of dll objects:

>>> from ctypes import *
>>> libc.printf
<_FuncPtr object at 0x...>
>>> print windll.kernel32.GetModuleHandleA
<_FuncPtr object at 0x...>
>>> print windll.kernel32.MyOwnFunction
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "ctypes.py", line 239, in __getattr__
 func = _StdcallFuncPtr(name, self)
AttributeError: function 'MyOwnFunction' not found
>>>

Note that win32 system dlls like kernel32 and user32 often export ANSI
as well as UNICODE versions of a function. The UNICODE version is exported with
an W appended to the name, while the ANSI version is exported with an A
appended to the name. The win32 GetModuleHandle function, which returns a
module handle for a given module name, has the following C prototype, and a
macro is used to expose one of them as GetModuleHandle depending on whether
UNICODE is defined or not:

/* ANSI version */
HMODULE GetModuleHandleA(LPCSTR lpModuleName);
/* UNICODE version */
HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

windll does not try to select one of them by magic, you must access the
version you need by specifying GetModuleHandleA or GetModuleHandleW
explicitly, and then call it with strings or unicode strings
respectively.

Sometimes, dlls export functions with names which aren’t valid Python
identifiers, like "??2@YAPAXI@Z". In this case you have to use
getattr() to retrieve the function:

>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z")
<_FuncPtr object at 0x...>
>>>

On Windows, some dlls export functions not by name but by ordinal. These
functions can be accessed by indexing the dll object with the ordinal number:

>>> cdll.kernel32[1]
<_FuncPtr object at 0x...>
>>> cdll.kernel32[0]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "ctypes.py", line 310, in __getitem__
 func = _StdcallFuncPtr(name, self)
AttributeError: function ordinal 0 not found
>>>

15.18.1.3. Calling functions

You can call these functions like any other Python callable. This example uses
the time() function, which returns system time in seconds since the Unix
epoch, and the GetModuleHandleA() function, which returns a win32 module
handle.

This example calls both functions with a NULL pointer (None should be used
as the NULL pointer):

>>> print libc.time(None)
1150640792
>>> print hex(windll.kernel32.GetModuleHandleA(None))
0x1d000000
>>>

ctypes tries to protect you from calling functions with the wrong number
of arguments or the wrong calling convention. Unfortunately this only works on
Windows. It does this by examining the stack after the function returns, so
although an error is raised the function has been called:

>>> windll.kernel32.GetModuleHandleA()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>> windll.kernel32.GetModuleHandleA(0, 0)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

The same exception is raised when you call an stdcall function with the
cdecl calling convention, or vice versa:

>>> cdll.kernel32.GetModuleHandleA(None)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>>

>>> windll.msvcrt.printf("spam")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

To find out the correct calling convention you have to look into the C header
file or the documentation for the function you want to call.

On Windows, ctypes uses win32 structured exception handling to prevent
crashes from general protection faults when functions are called with invalid
argument values:

>>> windll.kernel32.GetModuleHandleA(32)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
WindowsError: exception: access violation reading 0x00000020
>>>

There are, however, enough ways to crash Python with ctypes, so you
should be careful anyway.

None, integers, longs, byte strings and unicode strings are the only native
Python objects that can directly be used as parameters in these function calls.
None is passed as a C NULL pointer, byte strings and unicode strings are
passed as pointer to the memory block that contains their data (char *
or wchar_t *). Python integers and Python longs are passed as the
platforms default C int type, their value is masked to fit into the C
type.

Before we move on calling functions with other parameter types, we have to learn
more about ctypes data types.

15.18.1.4. Fundamental data types

ctypes defines a number of primitive C compatible data types :

	ctypes type
	C type
	Python type

	c_bool
	_Bool
	bool (1)

	c_char
	char
	1-character string

	c_wchar
	wchar_t
	1-character unicode string

	c_byte
	char
	int/long

	c_ubyte
	unsigned char
	int/long

	c_short
	short
	int/long

	c_ushort
	unsigned short
	int/long

	c_int
	int
	int/long

	c_uint
	unsigned int
	int/long

	c_long
	long
	int/long

	c_ulong
	unsigned long
	int/long

	c_longlong
	__int64 or long long
	int/long

	c_ulonglong
	unsigned __int64 or
unsigned long long
	int/long

	c_float
	float
	float

	c_double
	double
	float

	c_longdouble
	long double
	float

	c_char_p
	char * (NUL terminated)
	string or None

	c_wchar_p
	wchar_t * (NUL terminated)
	unicode or None

	c_void_p
	void *
	int/long or None

	The constructor accepts any object with a truth value.

All these types can be created by calling them with an optional initializer of
the correct type and value:

>>> c_int()
c_long(0)
>>> c_char_p("Hello, World")
c_char_p('Hello, World')
>>> c_ushort(-3)
c_ushort(65533)
>>>

Since these types are mutable, their value can also be changed afterwards:

>>> i = c_int(42)
>>> print i
c_long(42)
>>> print i.value
42
>>> i.value = -99
>>> print i.value
-99
>>>

Assigning a new value to instances of the pointer types c_char_p,
c_wchar_p, and c_void_p changes the memory location they
point to, not the contents of the memory block (of course not, because Python
strings are immutable):

>>> s = "Hello, World"
>>> c_s = c_char_p(s)
>>> print c_s
c_char_p('Hello, World')
>>> c_s.value = "Hi, there"
>>> print c_s
c_char_p('Hi, there')
>>> print s # first string is unchanged
Hello, World
>>>

You should be careful, however, not to pass them to functions expecting pointers
to mutable memory. If you need mutable memory blocks, ctypes has a
create_string_buffer() function which creates these in various ways. The
current memory block contents can be accessed (or changed) with the raw
property; if you want to access it as NUL terminated string, use the value
property:

>>> from ctypes import *
>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
>>> print sizeof(p), repr(p.raw)
3 '\x00\x00\x00'
>>> p = create_string_buffer("Hello") # create a buffer containing a NUL terminated string
>>> print sizeof(p), repr(p.raw)
6 'Hello\x00'
>>> print repr(p.value)
'Hello'
>>> p = create_string_buffer("Hello", 10) # create a 10 byte buffer
>>> print sizeof(p), repr(p.raw)
10 'Hello\x00\x00\x00\x00\x00'
>>> p.value = "Hi"
>>> print sizeof(p), repr(p.raw)
10 'Hi\x00lo\x00\x00\x00\x00\x00'
>>>

The create_string_buffer() function replaces the c_buffer() function
(which is still available as an alias), as well as the c_string() function
from earlier ctypes releases. To create a mutable memory block containing
unicode characters of the C type wchar_t use the
create_unicode_buffer() function.

15.18.1.5. Calling functions, continued

Note that printf prints to the real standard output channel, not to
sys.stdout, so these examples will only work at the console prompt, not
from within IDLE or PythonWin:

>>> printf = libc.printf
>>> printf("Hello, %s\n", "World!")
Hello, World!
14
>>> printf("Hello, %S\n", u"World!")
Hello, World!
14
>>> printf("%d bottles of beer\n", 42)
42 bottles of beer
19
>>> printf("%f bottles of beer\n", 42.5)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
>>>

As has been mentioned before, all Python types except integers, strings, and
unicode strings have to be wrapped in their corresponding ctypes type, so
that they can be converted to the required C data type:

>>> printf("An int %d, a double %f\n", 1234, c_double(3.14))
An int 1234, a double 3.140000
31
>>>

15.18.1.6. Calling functions with your own custom data types

You can also customize ctypes argument conversion to allow instances of
your own classes be used as function arguments. ctypes looks for an
_as_parameter_ attribute and uses this as the function argument. Of
course, it must be one of integer, string, or unicode:

>>> class Bottles(object):
... def __init__(self, number):
... self._as_parameter_ = number
...
>>> bottles = Bottles(42)
>>> printf("%d bottles of beer\n", bottles)
42 bottles of beer
19
>>>

If you don’t want to store the instance’s data in the _as_parameter_
instance variable, you could define a property() which makes the data
available.

15.18.1.7. Specifying the required argument types (function prototypes)

It is possible to specify the required argument types of functions exported from
DLLs by setting the argtypes attribute.

argtypes must be a sequence of C data types (the printf function is
probably not a good example here, because it takes a variable number and
different types of parameters depending on the format string, on the other hand
this is quite handy to experiment with this feature):

>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
>>> printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)
String 'Hi', Int 10, Double 2.200000
37
>>>

Specifying a format protects against incompatible argument types (just as a
prototype for a C function), and tries to convert the arguments to valid types:

>>> printf("%d %d %d", 1, 2, 3)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: wrong type
>>> printf("%s %d %f\n", "X", 2, 3)
X 2 3.000000
13
>>>

If you have defined your own classes which you pass to function calls, you have
to implement a from_param() class method for them to be able to use them
in the argtypes sequence. The from_param() class method receives
the Python object passed to the function call, it should do a typecheck or
whatever is needed to make sure this object is acceptable, and then return the
object itself, its _as_parameter_ attribute, or whatever you want to
pass as the C function argument in this case. Again, the result should be an
integer, string, unicode, a ctypes instance, or an object with an
_as_parameter_ attribute.

15.18.1.8. Return types

By default functions are assumed to return the C int type. Other
return types can be specified by setting the restype attribute of the
function object.

Here is a more advanced example, it uses the strchr function, which expects
a string pointer and a char, and returns a pointer to a string:

>>> strchr = libc.strchr
>>> strchr("abcdef", ord("d"))
8059983
>>> strchr.restype = c_char_p # c_char_p is a pointer to a string
>>> strchr("abcdef", ord("d"))
'def'
>>> print strchr("abcdef", ord("x"))
None
>>>

If you want to avoid the ord("x") calls above, you can set the
argtypes attribute, and the second argument will be converted from a
single character Python string into a C char:

>>> strchr.restype = c_char_p
>>> strchr.argtypes = [c_char_p, c_char]
>>> strchr("abcdef", "d")
'def'
>>> strchr("abcdef", "def")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: one character string expected
>>> print strchr("abcdef", "x")
None
>>> strchr("abcdef", "d")
'def'
>>>

You can also use a callable Python object (a function or a class for example) as
the restype attribute, if the foreign function returns an integer. The
callable will be called with the integer the C function returns, and the
result of this call will be used as the result of your function call. This is
useful to check for error return values and automatically raise an exception:

>>> GetModuleHandle = windll.kernel32.GetModuleHandleA
>>> def ValidHandle(value):
... if value == 0:
... raise WinError()
... return value
...
>>>
>>> GetModuleHandle.restype = ValidHandle
>>> GetModuleHandle(None)
486539264
>>> GetModuleHandle("something silly")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in ValidHandle
WindowsError: [Errno 126] The specified module could not be found.
>>>

WinError is a function which will call Windows FormatMessage() api to
get the string representation of an error code, and returns an exception.
WinError takes an optional error code parameter, if no one is used, it calls
GetLastError() to retrieve it.

Please note that a much more powerful error checking mechanism is available
through the errcheck attribute; see the reference manual for details.

15.18.1.9. Passing pointers (or: passing parameters by reference)

Sometimes a C api function expects a pointer to a data type as parameter,
probably to write into the corresponding location, or if the data is too large
to be passed by value. This is also known as passing parameters by reference.

ctypes exports the byref() function which is used to pass
parameters by reference. The same effect can be achieved with the
pointer() function, although pointer() does a lot more work since it
constructs a real pointer object, so it is faster to use byref() if you
don’t need the pointer object in Python itself:

>>> i = c_int()
>>> f = c_float()
>>> s = create_string_buffer('\000' * 32)
>>> print i.value, f.value, repr(s.value)
0 0.0 ''
>>> libc.sscanf("1 3.14 Hello", "%d %f %s",
... byref(i), byref(f), s)
3
>>> print i.value, f.value, repr(s.value)
1 3.1400001049 'Hello'
>>>

15.18.1.10. Structures and unions

Structures and unions must derive from the Structure and Union
base classes which are defined in the ctypes module. Each subclass must
define a _fields_ attribute. _fields_ must be a list of
2-tuples, containing a field name and a field type.

The field type must be a ctypes type like c_int, or any other
derived ctypes type: structure, union, array, pointer.

Here is a simple example of a POINT structure, which contains two integers named
x and y, and also shows how to initialize a structure in the constructor:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print point.x, point.y
10 20
>>> point = POINT(y=5)
>>> print point.x, point.y
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: too many initializers
>>>

You can, however, build much more complicated structures. Structures can itself
contain other structures by using a structure as a field type.

Here is a RECT structure which contains two POINTs named upperleft and
lowerright:

>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print rc.upperleft.x, rc.upperleft.y
0 5
>>> print rc.lowerright.x, rc.lowerright.y
0 0
>>>

Nested structures can also be initialized in the constructor in several ways:

>>> r = RECT(POINT(1, 2), POINT(3, 4))
>>> r = RECT((1, 2), (3, 4))

Field descriptors can be retrieved from the class, they are useful
for debugging because they can provide useful information:

>>> print POINT.x
<Field type=c_long, ofs=0, size=4>
>>> print POINT.y
<Field type=c_long, ofs=4, size=4>
>>>

15.18.1.11. Structure/union alignment and byte order

By default, Structure and Union fields are aligned in the same way the C
compiler does it. It is possible to override this behavior be specifying a
pack class attribute in the subclass definition. This must be set to a
positive integer and specifies the maximum alignment for the fields. This is
what #pragma pack(n) also does in MSVC.

ctypes uses the native byte order for Structures and Unions. To build
structures with non-native byte order, you can use one of the
BigEndianStructure, LittleEndianStructure,
BigEndianUnion, and LittleEndianUnion base classes. These
classes cannot contain pointer fields.

15.18.1.12. Bit fields in structures and unions

It is possible to create structures and unions containing bit fields. Bit fields
are only possible for integer fields, the bit width is specified as the third
item in the _fields_ tuples:

>>> class Int(Structure):
... _fields_ = [("first_16", c_int, 16),
... ("second_16", c_int, 16)]
...
>>> print Int.first_16
<Field type=c_long, ofs=0:0, bits=16>
>>> print Int.second_16
<Field type=c_long, ofs=0:16, bits=16>
>>>

15.18.1.13. Arrays

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a
positive integer:

TenPointsArrayType = POINT * 10

Here is an example of an somewhat artificial data type, a structure containing 4
POINTs among other stuff:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class MyStruct(Structure):
... _fields_ = [("a", c_int),
... ("b", c_float),
... ("point_array", POINT * 4)]
>>>
>>> print len(MyStruct().point_array)
4
>>>

Instances are created in the usual way, by calling the class:

arr = TenPointsArrayType()
for pt in arr:
 print pt.x, pt.y

The above code print a series of 0 0 lines, because the array contents is
initialized to zeros.

Initializers of the correct type can also be specified:

>>> from ctypes import *
>>> TenIntegers = c_int * 10
>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> print ii
<c_long_Array_10 object at 0x...>
>>> for i in ii: print i,
...
1 2 3 4 5 6 7 8 9 10
>>>

15.18.1.14. Pointers

Pointer instances are created by calling the pointer() function on a
ctypes type:

>>> from ctypes import *
>>> i = c_int(42)
>>> pi = pointer(i)
>>>

Pointer instances have a contents attribute which returns the object to
which the pointer points, the i object above:

>>> pi.contents
c_long(42)
>>>

Note that ctypes does not have OOR (original object return), it constructs a
new, equivalent object each time you retrieve an attribute:

>>> pi.contents is i
False
>>> pi.contents is pi.contents
False
>>>

Assigning another c_int instance to the pointer’s contents attribute
would cause the pointer to point to the memory location where this is stored:

>>> i = c_int(99)
>>> pi.contents = i
>>> pi.contents
c_long(99)
>>>

Pointer instances can also be indexed with integers:

>>> pi[0]
99
>>>

Assigning to an integer index changes the pointed to value:

>>> print i
c_long(99)
>>> pi[0] = 22
>>> print i
c_long(22)
>>>

It is also possible to use indexes different from 0, but you must know what
you’re doing, just as in C: You can access or change arbitrary memory locations.
Generally you only use this feature if you receive a pointer from a C function,
and you know that the pointer actually points to an array instead of a single
item.

Behind the scenes, the pointer() function does more than simply create
pointer instances, it has to create pointer types first. This is done with
the POINTER() function, which accepts any ctypes type, and returns
a new type:

>>> PI = POINTER(c_int)
>>> PI
<class 'ctypes.LP_c_long'>
>>> PI(42)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: expected c_long instead of int
>>> PI(c_int(42))
<ctypes.LP_c_long object at 0x...>
>>>

Calling the pointer type without an argument creates a NULL pointer.
NULL pointers have a False boolean value:

>>> null_ptr = POINTER(c_int)()
>>> print bool(null_ptr)
False
>>>

ctypes checks for NULL when dereferencing pointers (but dereferencing
invalid non-NULL pointers would crash Python):

>>> null_ptr[0]
Traceback (most recent call last):

ValueError: NULL pointer access
>>>

>>> null_ptr[0] = 1234
Traceback (most recent call last):

ValueError: NULL pointer access
>>>

15.18.1.15. Type conversions

Usually, ctypes does strict type checking. This means, if you have
POINTER(c_int) in the argtypes list of a function or as the type of
a member field in a structure definition, only instances of exactly the same
type are accepted. There are some exceptions to this rule, where ctypes accepts
other objects. For example, you can pass compatible array instances instead of
pointer types. So, for POINTER(c_int), ctypes accepts an array of c_int:

>>> class Bar(Structure):
... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
...
>>> bar = Bar()
>>> bar.values = (c_int * 3)(1, 2, 3)
>>> bar.count = 3
>>> for i in range(bar.count):
... print bar.values[i]
...
1
2
3
>>>

To set a POINTER type field to NULL, you can assign None:

>>> bar.values = None
>>>

Sometimes you have instances of incompatible types. In C, you can cast one type
into another type. ctypes provides a cast() function which can be
used in the same way. The Bar structure defined above accepts
POINTER(c_int) pointers or c_int arrays for its values field,
but not instances of other types:

>>> bar.values = (c_byte * 4)()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
>>>

For these cases, the cast() function is handy.

The cast() function can be used to cast a ctypes instance into a pointer
to a different ctypes data type. cast() takes two parameters, a ctypes
object that is or can be converted to a pointer of some kind, and a ctypes
pointer type. It returns an instance of the second argument, which references
the same memory block as the first argument:

>>> a = (c_byte * 4)()
>>> cast(a, POINTER(c_int))
<ctypes.LP_c_long object at ...>
>>>

So, cast() can be used to assign to the values field of Bar the
structure:

>>> bar = Bar()
>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
>>> print bar.values[0]
0
>>>

15.18.1.16. Incomplete Types

Incomplete Types are structures, unions or arrays whose members are not yet
specified. In C, they are specified by forward declarations, which are defined
later:

struct cell; /* forward declaration */

struct {
 char *name;
 struct cell *next;
} cell;

The straightforward translation into ctypes code would be this, but it does not
work:

>>> class cell(Structure):
... _fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
...
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in cell
NameError: name 'cell' is not defined
>>>

because the new class cell is not available in the class statement itself.
In ctypes, we can define the cell class and set the _fields_
attribute later, after the class statement:

>>> from ctypes import *
>>> class cell(Structure):
... pass
...
>>> cell._fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
>>>

Lets try it. We create two instances of cell, and let them point to each
other, and finally follow the pointer chain a few times:

>>> c1 = cell()
>>> c1.name = "foo"
>>> c2 = cell()
>>> c2.name = "bar"
>>> c1.next = pointer(c2)
>>> c2.next = pointer(c1)
>>> p = c1
>>> for i in range(8):
... print p.name,
... p = p.next[0]
...
foo bar foo bar foo bar foo bar
>>>

15.18.1.17. Callback functions

ctypes allows to create C callable function pointers from Python callables.
These are sometimes called callback functions.

First, you must create a class for the callback function, the class knows the
calling convention, the return type, and the number and types of arguments this
function will receive.

The CFUNCTYPE factory function creates types for callback functions using the
normal cdecl calling convention, and, on Windows, the WINFUNCTYPE factory
function creates types for callback functions using the stdcall calling
convention.

Both of these factory functions are called with the result type as first
argument, and the callback functions expected argument types as the remaining
arguments.

I will present an example here which uses the standard C library’s qsort()
function, this is used to sort items with the help of a callback function.
qsort() will be used to sort an array of integers:

>>> IntArray5 = c_int * 5
>>> ia = IntArray5(5, 1, 7, 33, 99)
>>> qsort = libc.qsort
>>> qsort.restype = None
>>>

qsort() must be called with a pointer to the data to sort, the number of
items in the data array, the size of one item, and a pointer to the comparison
function, the callback. The callback will then be called with two pointers to
items, and it must return a negative integer if the first item is smaller than
the second, a zero if they are equal, and a positive integer else.

So our callback function receives pointers to integers, and must return an
integer. First we create the type for the callback function:

>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>>

For the first implementation of the callback function, we simply print the
arguments we get, and return 0 (incremental development ;-):

>>> def py_cmp_func(a, b):
... print "py_cmp_func", a, b
... return 0
...
>>>

Create the C callable callback:

>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

And we’re ready to go:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
>>>

We know how to access the contents of a pointer, so lets redefine our callback:

>>> def py_cmp_func(a, b):
... print "py_cmp_func", a[0], b[0]
... return 0
...
>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

Here is what we get on Windows:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 7 1
py_cmp_func 33 1
py_cmp_func 99 1
py_cmp_func 5 1
py_cmp_func 7 5
py_cmp_func 33 5
py_cmp_func 99 5
py_cmp_func 7 99
py_cmp_func 33 99
py_cmp_func 7 33
>>>

It is funny to see that on linux the sort function seems to work much more
efficiently, it is doing less comparisons:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func)
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 5 7
py_cmp_func 1 7
>>>

Ah, we’re nearly done! The last step is to actually compare the two items and
return a useful result:

>>> def py_cmp_func(a, b):
... print "py_cmp_func", a[0], b[0]
... return a[0] - b[0]
...
>>>

Final run on Windows:

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 33 7
py_cmp_func 99 33
py_cmp_func 5 99
py_cmp_func 1 99
py_cmp_func 33 7
py_cmp_func 1 33
py_cmp_func 5 33
py_cmp_func 5 7
py_cmp_func 1 7
py_cmp_func 5 1
>>>

and on Linux:

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func))
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>

It is quite interesting to see that the Windows qsort() function needs
more comparisons than the linux version!

As we can easily check, our array is sorted now:

>>> for i in ia: print i,
...
1 5 7 33 99
>>>

Important note for callback functions:

Make sure you keep references to CFUNCTYPE objects as long as they are used from
C code. ctypes doesn’t, and if you don’t, they may be garbage collected,
crashing your program when a callback is made.

15.18.1.18. Accessing values exported from dlls

Some shared libraries not only export functions, they also export variables. An
example in the Python library itself is the Py_OptimizeFlag, an integer set
to 0, 1, or 2, depending on the -O or -OO flag given on
startup.

ctypes can access values like this with the in_dll() class methods of
the type. pythonapi is a predefined symbol giving access to the Python C
api:

>>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
>>> print opt_flag
c_long(0)
>>>

If the interpreter would have been started with -O, the sample would
have printed c_long(1), or c_long(2) if -OO would have been
specified.

An extended example which also demonstrates the use of pointers accesses the
PyImport_FrozenModules pointer exported by Python.

Quoting the Python docs: This pointer is initialized to point to an array of
“struct _frozen” records, terminated by one whose members are all NULL or zero.
When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of
frozen modules.

So manipulating this pointer could even prove useful. To restrict the example
size, we show only how this table can be read with ctypes:

>>> from ctypes import *
>>>
>>> class struct_frozen(Structure):
... _fields_ = [("name", c_char_p),
... ("code", POINTER(c_ubyte)),
... ("size", c_int)]
...
>>>

We have defined the struct _frozen data type, so we can get the pointer to
the table:

>>> FrozenTable = POINTER(struct_frozen)
>>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
>>>

Since table is a pointer to the array of struct_frozen records, we
can iterate over it, but we just have to make sure that our loop terminates,
because pointers have no size. Sooner or later it would probably crash with an
access violation or whatever, so it’s better to break out of the loop when we
hit the NULL entry:

>>> for item in table:
... print item.name, item.size
... if item.name is None:
... break
...
__hello__ 104
__phello__ -104
__phello__.spam 104
None 0
>>>

The fact that standard Python has a frozen module and a frozen package
(indicated by the negative size member) is not well known, it is only used for
testing. Try it out with import __hello__ for example.

15.18.1.19. Surprises

There are some edges in ctypes where you may be expect something else than
what actually happens.

Consider the following example:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class RECT(Structure):
... _fields_ = ("a", POINT), ("b", POINT)
...
>>> p1 = POINT(1, 2)
>>> p2 = POINT(3, 4)
>>> rc = RECT(p1, p2)
>>> print rc.a.x, rc.a.y, rc.b.x, rc.b.y
1 2 3 4
>>> # now swap the two points
>>> rc.a, rc.b = rc.b, rc.a
>>> print rc.a.x, rc.a.y, rc.b.x, rc.b.y
3 4 3 4
>>>

Hm. We certainly expected the last statement to print 3 4 1 2. What
happened? Here are the steps of the rc.a, rc.b = rc.b, rc.a line above:

>>> temp0, temp1 = rc.b, rc.a
>>> rc.a = temp0
>>> rc.b = temp1
>>>

Note that temp0 and temp1 are objects still using the internal buffer of
the rc object above. So executing rc.a = temp0 copies the buffer
contents of temp0 into rc ‘s buffer. This, in turn, changes the
contents of temp1. So, the last assignment rc.b = temp1, doesn’t have
the expected effect.

Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays
doesn’t copy the sub-object, instead it retrieves a wrapper object accessing
the root-object’s underlying buffer.

Another example that may behave different from what one would expect is this:

>>> s = c_char_p()
>>> s.value = "abc def ghi"
>>> s.value
'abc def ghi'
>>> s.value is s.value
False
>>>

Why is it printing False? ctypes instances are objects containing a memory
block plus some descriptors accessing the contents of the memory.
Storing a Python object in the memory block does not store the object itself,
instead the contents of the object is stored. Accessing the contents again
constructs a new Python object each time!

15.18.1.20. Variable-sized data types

ctypes provides some support for variable-sized arrays and structures.

The resize() function can be used to resize the memory buffer of an
existing ctypes object. The function takes the object as first argument, and
the requested size in bytes as the second argument. The memory block cannot be
made smaller than the natural memory block specified by the objects type, a
ValueError is raised if this is tried:

>>> short_array = (c_short * 4)()
>>> print sizeof(short_array)
8
>>> resize(short_array, 4)
Traceback (most recent call last):
 ...
ValueError: minimum size is 8
>>> resize(short_array, 32)
>>> sizeof(short_array)
32
>>> sizeof(type(short_array))
8
>>>

This is nice and fine, but how would one access the additional elements
contained in this array? Since the type still only knows about 4 elements, we
get errors accessing other elements:

>>> short_array[:]
[0, 0, 0, 0]
>>> short_array[7]
Traceback (most recent call last):
 ...
IndexError: invalid index
>>>

Another way to use variable-sized data types with ctypes is to use the
dynamic nature of Python, and (re-)define the data type after the required size
is already known, on a case by case basis.

15.18.2. ctypes reference

15.18.2.1. Finding shared libraries

When programming in a compiled language, shared libraries are accessed when
compiling/linking a program, and when the program is run.

The purpose of the find_library() function is to locate a library in a way
similar to what the compiler does (on platforms with several versions of a
shared library the most recent should be loaded), while the ctypes library
loaders act like when a program is run, and call the runtime loader directly.

The ctypes.util module provides a function which can help to determine the
library to load.

	
ctypes.util.find_library(name)

	Try to find a library and return a pathname. name is the library name without
any prefix like lib, suffix like .so, .dylib or version number (this
is the form used for the posix linker option -l). If no library can
be found, returns None.

The exact functionality is system dependent.

On Linux, find_library() tries to run external programs
(/sbin/ldconfig, gcc, and objdump) to find the library file. It
returns the filename of the library file. Here are some examples:

>>> from ctypes.util import find_library
>>> find_library("m")
'libm.so.6'
>>> find_library("c")
'libc.so.6'
>>> find_library("bz2")
'libbz2.so.1.0'
>>>

On OS X, find_library() tries several predefined naming schemes and paths
to locate the library, and returns a full pathname if successful:

>>> from ctypes.util import find_library
>>> find_library("c")
'/usr/lib/libc.dylib'
>>> find_library("m")
'/usr/lib/libm.dylib'
>>> find_library("bz2")
'/usr/lib/libbz2.dylib'
>>> find_library("AGL")
'/System/Library/Frameworks/AGL.framework/AGL'
>>>

On Windows, find_library() searches along the system search path, and
returns the full pathname, but since there is no predefined naming scheme a call
like find_library("c") will fail and return None.

If wrapping a shared library with ctypes, it may be better to determine
the shared library name at development type, and hardcode that into the wrapper
module instead of using find_library() to locate the library at runtime.

15.18.2.2. Loading shared libraries

There are several ways to loaded shared libraries into the Python process. One
way is to instantiate one of the following classes:

	
class ctypes.CDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)

	Instances of this class represent loaded shared libraries. Functions in these
libraries use the standard C calling convention, and are assumed to return
int.

	
class ctypes.OleDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)

	Windows only: Instances of this class represent loaded shared libraries,
functions in these libraries use the stdcall calling convention, and are
assumed to return the windows specific HRESULT code. HRESULT
values contain information specifying whether the function call failed or
succeeded, together with additional error code. If the return value signals a
failure, an WindowsError is automatically raised.

	
class ctypes.WinDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)

	Windows only: Instances of this class represent loaded shared libraries,
functions in these libraries use the stdcall calling convention, and are
assumed to return int by default.

On Windows CE only the standard calling convention is used, for convenience the
WinDLL and OleDLL use the standard calling convention on this
platform.

The Python global interpreter lock is released before calling any
function exported by these libraries, and reacquired afterwards.

	
class ctypes.PyDLL(name, mode=DEFAULT_MODE, handle=None)

	Instances of this class behave like CDLL instances, except that the
Python GIL is not released during the function call, and after the function
execution the Python error flag is checked. If the error flag is set, a Python
exception is raised.

Thus, this is only useful to call Python C api functions directly.

All these classes can be instantiated by calling them with at least one
argument, the pathname of the shared library. If you have an existing handle to
an already loaded shared library, it can be passed as the handle named
parameter, otherwise the underlying platforms dlopen or LoadLibrary
function is used to load the library into the process, and to get a handle to
it.

The mode parameter can be used to specify how the library is loaded. For
details, consult the dlopen(3) manpage, on Windows, mode is
ignored.

The use_errno parameter, when set to True, enables a ctypes mechanism that
allows to access the system errno error number in a safe way.
ctypes maintains a thread-local copy of the systems errno
variable; if you call foreign functions created with use_errno=True then the
errno value before the function call is swapped with the ctypes private
copy, the same happens immediately after the function call.

The function ctypes.get_errno() returns the value of the ctypes private
copy, and the function ctypes.set_errno() changes the ctypes private copy
to a new value and returns the former value.

The use_last_error parameter, when set to True, enables the same mechanism for
the Windows error code which is managed by the GetLastError() and
SetLastError() Windows API functions; ctypes.get_last_error() and
ctypes.set_last_error() are used to request and change the ctypes private
copy of the windows error code.

New in version 2.6: The use_last_error and use_errno optional parameters were added.

	
ctypes.RTLD_GLOBAL

	Flag to use as mode parameter. On platforms where this flag is not available,
it is defined as the integer zero.

	
ctypes.RTLD_LOCAL

	Flag to use as mode parameter. On platforms where this is not available, it
is the same as RTLD_GLOBAL.

	
ctypes.DEFAULT_MODE

	The default mode which is used to load shared libraries. On OSX 10.3, this is
RTLD_GLOBAL, otherwise it is the same as RTLD_LOCAL.

Instances of these classes have no public methods, however __getattr__()
and __getitem__() have special behavior: functions exported by the shared
library can be accessed as attributes of by index. Please note that both
__getattr__() and __getitem__() cache their result, so calling them
repeatedly returns the same object each time.

The following public attributes are available, their name starts with an
underscore to not clash with exported function names:

	
PyDLL._handle

	The system handle used to access the library.

	
PyDLL._name

	The name of the library passed in the constructor.

Shared libraries can also be loaded by using one of the prefabricated objects,
which are instances of the LibraryLoader class, either by calling the
LoadLibrary() method, or by retrieving the library as attribute of the
loader instance.

	
class ctypes.LibraryLoader(dlltype)

	Class which loads shared libraries. dlltype should be one of the
CDLL, PyDLL, WinDLL, or OleDLL types.

__getattr__() has special behavior: It allows to load a shared library by
accessing it as attribute of a library loader instance. The result is cached,
so repeated attribute accesses return the same library each time.

	
LoadLibrary(name)

	Load a shared library into the process and return it. This method always
returns a new instance of the library.

These prefabricated library loaders are available:

	
ctypes.cdll

	Creates CDLL instances.

	
ctypes.windll

	Windows only: Creates WinDLL instances.

	
ctypes.oledll

	Windows only: Creates OleDLL instances.

	
ctypes.pydll

	Creates PyDLL instances.

For accessing the C Python api directly, a ready-to-use Python shared library
object is available:

	
ctypes.pythonapi

	An instance of PyDLL that exposes Python C API functions as
attributes. Note that all these functions are assumed to return C
int, which is of course not always the truth, so you have to assign
the correct restype attribute to use these functions.

15.18.2.3. Foreign functions

As explained in the previous section, foreign functions can be accessed as
attributes of loaded shared libraries. The function objects created in this way
by default accept any number of arguments, accept any ctypes data instances as
arguments, and return the default result type specified by the library loader.
They are instances of a private class:

	
class ctypes._FuncPtr

	Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they
represent C function pointers.

This behavior can be customized by assigning to special attributes of the
foreign function object.

	
restype

	Assign a ctypes type to specify the result type of the foreign function.
Use None for void, a function not returning anything.

It is possible to assign a callable Python object that is not a ctypes
type, in this case the function is assumed to return a C int, and
the callable will be called with this integer, allowing to do further
processing or error checking. Using this is deprecated, for more flexible
post processing or error checking use a ctypes data type as
restype and assign a callable to the errcheck attribute.

	
argtypes

	Assign a tuple of ctypes types to specify the argument types that the
function accepts. Functions using the stdcall calling convention can
only be called with the same number of arguments as the length of this
tuple; functions using the C calling convention accept additional,
unspecified arguments as well.

When a foreign function is called, each actual argument is passed to the
from_param() class method of the items in the argtypes
tuple, this method allows to adapt the actual argument to an object that
the foreign function accepts. For example, a c_char_p item in
the argtypes tuple will convert a unicode string passed as
argument into an byte string using ctypes conversion rules.

New: It is now possible to put items in argtypes which are not ctypes
types, but each item must have a from_param() method which returns a
value usable as argument (integer, string, ctypes instance). This allows
to define adapters that can adapt custom objects as function parameters.

	
errcheck

	Assign a Python function or another callable to this attribute. The
callable will be called with three or more arguments:

	
callable(result, func, arguments)

	result is what the foreign function returns, as specified by the
restype attribute.

func is the foreign function object itself, this allows to reuse the
same callable object to check or post process the results of several
functions.

arguments is a tuple containing the parameters originally passed to
the function call, this allows to specialize the behavior on the
arguments used.

The object that this function returns will be returned from the
foreign function call, but it can also check the result value
and raise an exception if the foreign function call failed.

	
exception ctypes.ArgumentError

	This exception is raised when a foreign function call cannot convert one of the
passed arguments.

15.18.2.4. Function prototypes

Foreign functions can also be created by instantiating function prototypes.
Function prototypes are similar to function prototypes in C; they describe a
function (return type, argument types, calling convention) without defining an
implementation. The factory functions must be called with the desired result
type and the argument types of the function.

	
ctypes.CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)

	The returned function prototype creates functions that use the standard C
calling convention. The function will release the GIL during the call. If
use_errno is set to True, the ctypes private copy of the system
errno variable is exchanged with the real errno value before
and after the call; use_last_error does the same for the Windows error
code.

Changed in version 2.6: The optional use_errno and use_last_error parameters were added.

	
ctypes.WINFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)

	Windows only: The returned function prototype creates functions that use the
stdcall calling convention, except on Windows CE where
WINFUNCTYPE() is the same as CFUNCTYPE(). The function will
release the GIL during the call. use_errno and use_last_error have the
same meaning as above.

	
ctypes.PYFUNCTYPE(restype, *argtypes)

	The returned function prototype creates functions that use the Python calling
convention. The function will not release the GIL during the call.

Function prototypes created by these factory functions can be instantiated in
different ways, depending on the type and number of the parameters in the call:

	
prototype(address)

	Returns a foreign function at the specified address which must be an integer.

	
prototype(callable)

	Create a C callable function (a callback function) from a Python callable.

	
prototype(func_spec[, paramflags])

	Returns a foreign function exported by a shared library. func_spec must be a
2-tuple (name_or_ordinal, library). The first item is the name of the
exported function as string, or the ordinal of the exported function as small
integer. The second item is the shared library instance.

	
prototype(vtbl_index, name[, paramflags[, iid]])

	Returns a foreign function that will call a COM method. vtbl_index is the
index into the virtual function table, a small non-negative integer. name is
name of the COM method. iid is an optional pointer to the interface identifier
which is used in extended error reporting.

COM methods use a special calling convention: They require a pointer to the COM
interface as first argument, in addition to those parameters that are specified
in the argtypes tuple.

The optional paramflags parameter creates foreign function wrappers with much
more functionality than the features described above.

paramflags must be a tuple of the same length as argtypes.

Each item in this tuple contains further information about a parameter, it must
be a tuple containing one, two, or three items.

The first item is an integer containing a combination of direction
flags for the parameter:

	1

	Specifies an input parameter to the function.

	2

	Output parameter. The foreign function fills in a value.

	4

	Input parameter which defaults to the integer zero.

The optional second item is the parameter name as string. If this is specified,
the foreign function can be called with named parameters.

The optional third item is the default value for this parameter.

This example demonstrates how to wrap the Windows MessageBoxA function so
that it supports default parameters and named arguments. The C declaration from
the windows header file is this:

WINUSERAPI int WINAPI
MessageBoxA(
 HWND hWnd ,
 LPCSTR lpText,
 LPCSTR lpCaption,
 UINT uType);

Here is the wrapping with ctypes:

>>> from ctypes import c_int, WINFUNCTYPE, windll
>>> from ctypes.wintypes import HWND, LPCSTR, UINT
>>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)
>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
>>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
>>>

The MessageBox foreign function can now be called in these ways:

>>> MessageBox()
>>> MessageBox(text="Spam, spam, spam")
>>> MessageBox(flags=2, text="foo bar")
>>>

A second example demonstrates output parameters. The win32 GetWindowRect
function retrieves the dimensions of a specified window by copying them into
RECT structure that the caller has to supply. Here is the C declaration:

WINUSERAPI BOOL WINAPI
GetWindowRect(
 HWND hWnd,
 LPRECT lpRect);

Here is the wrapping with ctypes:

>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
>>> from ctypes.wintypes import BOOL, HWND, RECT
>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
>>> paramflags = (1, "hwnd"), (2, "lprect")
>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
>>>

Functions with output parameters will automatically return the output parameter
value if there is a single one, or a tuple containing the output parameter
values when there are more than one, so the GetWindowRect function now returns a
RECT instance, when called.

Output parameters can be combined with the errcheck protocol to do
further output processing and error checking. The win32 GetWindowRect api
function returns a BOOL to signal success or failure, so this function could
do the error checking, and raises an exception when the api call failed:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... return args
...
>>> GetWindowRect.errcheck = errcheck
>>>

If the errcheck function returns the argument tuple it receives
unchanged, ctypes continues the normal processing it does on the output
parameters. If you want to return a tuple of window coordinates instead of a
RECT instance, you can retrieve the fields in the function and return them
instead, the normal processing will no longer take place:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... rc = args[1]
... return rc.left, rc.top, rc.bottom, rc.right
...
>>> GetWindowRect.errcheck = errcheck
>>>

15.18.2.5. Utility functions

	
ctypes.addressof(obj)

	Returns the address of the memory buffer as integer. obj must be an
instance of a ctypes type.

	
ctypes.alignment(obj_or_type)

	Returns the alignment requirements of a ctypes type. obj_or_type must be a
ctypes type or instance.

	
ctypes.byref(obj[, offset])

	Returns a light-weight pointer to obj, which must be an instance of a
ctypes type. offset defaults to zero, and must be an integer that will be
added to the internal pointer value.

byref(obj, offset) corresponds to this C code:

(((char *)&obj) + offset)

The returned object can only be used as a foreign function call
parameter. It behaves similar to pointer(obj), but the
construction is a lot faster.

New in version 2.6: The offset optional argument was added.

	
ctypes.cast(obj, type)

	This function is similar to the cast operator in C. It returns a new
instance of type which points to the same memory block as obj. type
must be a pointer type, and obj must be an object that can be interpreted
as a pointer.

	
ctypes.create_string_buffer(init_or_size[, size])

	This function creates a mutable character buffer. The returned object is a
ctypes array of c_char.

init_or_size must be an integer which specifies the size of the array, or a
string which will be used to initialize the array items.

If a string is specified as first argument, the buffer is made one item larger
than the length of the string so that the last element in the array is a NUL
termination character. An integer can be passed as second argument which allows
to specify the size of the array if the length of the string should not be used.

If the first parameter is a unicode string, it is converted into an 8-bit string
according to ctypes conversion rules.

	
ctypes.create_unicode_buffer(init_or_size[, size])

	This function creates a mutable unicode character buffer. The returned object is
a ctypes array of c_wchar.

init_or_size must be an integer which specifies the size of the array, or a
unicode string which will be used to initialize the array items.

If a unicode string is specified as first argument, the buffer is made one item
larger than the length of the string so that the last element in the array is a
NUL termination character. An integer can be passed as second argument which
allows to specify the size of the array if the length of the string should not
be used.

If the first parameter is a 8-bit string, it is converted into an unicode string
according to ctypes conversion rules.

	
ctypes.DllCanUnloadNow()

	Windows only: This function is a hook which allows to implement in-process
COM servers with ctypes. It is called from the DllCanUnloadNow function that
the _ctypes extension dll exports.

	
ctypes.DllGetClassObject()

	Windows only: This function is a hook which allows to implement in-process
COM servers with ctypes. It is called from the DllGetClassObject function
that the _ctypes extension dll exports.

	
ctypes.util.find_library(name)

	Try to find a library and return a pathname. name is the library name
without any prefix like lib, suffix like .so, .dylib or version
number (this is the form used for the posix linker option -l). If
no library can be found, returns None.

The exact functionality is system dependent.

Changed in version 2.6: Windows only: find_library("m") or find_library("c") return the
result of a call to find_msvcrt().

	
ctypes.util.find_msvcrt()

	Windows only: return the filename of the VC runtype library used by Python,
and by the extension modules. If the name of the library cannot be
determined, None is returned.

If you need to free memory, for example, allocated by an extension module
with a call to the free(void *), it is important that you use the
function in the same library that allocated the memory.

New in version 2.6.

	
ctypes.FormatError([code])

	Windows only: Returns a textual description of the error code code. If no
error code is specified, the last error code is used by calling the Windows
api function GetLastError.

	
ctypes.GetLastError()

	Windows only: Returns the last error code set by Windows in the calling thread.
This function calls the Windows GetLastError() function directly,
it does not return the ctypes-private copy of the error code.

	
ctypes.get_errno()

	Returns the current value of the ctypes-private copy of the system
errno variable in the calling thread.

New in version 2.6.

	
ctypes.get_last_error()

	Windows only: returns the current value of the ctypes-private copy of the system
LastError variable in the calling thread.

New in version 2.6.

	
ctypes.memmove(dst, src, count)

	Same as the standard C memmove library function: copies count bytes from
src to dst. dst and src must be integers or ctypes instances that can
be converted to pointers.

	
ctypes.memset(dst, c, count)

	Same as the standard C memset library function: fills the memory block at
address dst with count bytes of value c. dst must be an integer
specifying an address, or a ctypes instance.

	
ctypes.POINTER(type)

	This factory function creates and returns a new ctypes pointer type. Pointer
types are cached an reused internally, so calling this function repeatedly is
cheap. type must be a ctypes type.

	
ctypes.pointer(obj)

	This function creates a new pointer instance, pointing to obj. The returned
object is of the type POINTER(type(obj)).

Note: If you just want to pass a pointer to an object to a foreign function
call, you should use byref(obj) which is much faster.

	
ctypes.resize(obj, size)

	This function resizes the internal memory buffer of obj, which must be an
instance of a ctypes type. It is not possible to make the buffer smaller
than the native size of the objects type, as given by sizeof(type(obj)),
but it is possible to enlarge the buffer.

	
ctypes.set_conversion_mode(encoding, errors)

	This function sets the rules that ctypes objects use when converting between
8-bit strings and unicode strings. encoding must be a string specifying an
encoding, like 'utf-8' or 'mbcs', errors must be a string
specifying the error handling on encoding/decoding errors. Examples of
possible values are "strict", "replace", or "ignore".

set_conversion_mode() returns a 2-tuple containing the previous
conversion rules. On windows, the initial conversion rules are ('mbcs',
'ignore'), on other systems ('ascii', 'strict').

	
ctypes.set_errno(value)

	Set the current value of the ctypes-private copy of the system errno
variable in the calling thread to value and return the previous value.

New in version 2.6.

	
ctypes.set_last_error(value)

	Windows only: set the current value of the ctypes-private copy of the system
LastError variable in the calling thread to value and return the
previous value.

New in version 2.6.

	
ctypes.sizeof(obj_or_type)

	Returns the size in bytes of a ctypes type or instance memory buffer. Does the
same as the C sizeof() function.

	
ctypes.string_at(address[, size])

	This function returns the string starting at memory address address. If size
is specified, it is used as size, otherwise the string is assumed to be
zero-terminated.

	
ctypes.WinError(code=None, descr=None)

	Windows only: this function is probably the worst-named thing in ctypes. It
creates an instance of WindowsError. If code is not specified,
GetLastError is called to determine the error code. If descr is not
specified, FormatError() is called to get a textual description of the
error.

	
ctypes.wstring_at(address[, size])

	This function returns the wide character string starting at memory address
address as unicode string. If size is specified, it is used as the
number of characters of the string, otherwise the string is assumed to be
zero-terminated.

15.18.2.6. Data types

	
class ctypes._CData

	This non-public class is the common base class of all ctypes data types.
Among other things, all ctypes type instances contain a memory block that
hold C compatible data; the address of the memory block is returned by the
addressof() helper function. Another instance variable is exposed as
_objects; this contains other Python objects that need to be kept
alive in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be
exact, they are methods of the metaclass):

	
from_buffer(source[, offset])

	This method returns a ctypes instance that shares the buffer of the
source object. The source object must support the writeable buffer
interface. The optional offset parameter specifies an offset into the
source buffer in bytes; the default is zero. If the source buffer is not
large enough a ValueError is raised.

New in version 2.6.

	
from_buffer_copy(source[, offset])

	This method creates a ctypes instance, copying the buffer from the
source object buffer which must be readable. The optional offset
parameter specifies an offset into the source buffer in bytes; the default
is zero. If the source buffer is not large enough a ValueError is
raised.

New in version 2.6.

	
from_address(address)

	This method returns a ctypes type instance using the memory specified by
address which must be an integer.

	
from_param(obj)

	This method adapts obj to a ctypes type. It is called with the actual
object used in a foreign function call when the type is present in the
foreign function’s argtypes tuple; it must return an object that
can be used as a function call parameter.

All ctypes data types have a default implementation of this classmethod
that normally returns obj if that is an instance of the type. Some
types accept other objects as well.

	
in_dll(library, name)

	This method returns a ctypes type instance exported by a shared
library. name is the name of the symbol that exports the data, library
is the loaded shared library.

Common instance variables of ctypes data types:

	
_b_base_

	Sometimes ctypes data instances do not own the memory block they contain,
instead they share part of the memory block of a base object. The
_b_base_ read-only member is the root ctypes object that owns the
memory block.

	
_b_needsfree_

	This read-only variable is true when the ctypes data instance has
allocated the memory block itself, false otherwise.

	
_objects

	This member is either None or a dictionary containing Python objects
that need to be kept alive so that the memory block contents is kept
valid. This object is only exposed for debugging; never modify the
contents of this dictionary.

15.18.2.7. Fundamental data types

	
class ctypes._SimpleCData

	This non-public class is the base class of all fundamental ctypes data
types. It is mentioned here because it contains the common attributes of the
fundamental ctypes data types. _SimpleCData is a subclass of
_CData, so it inherits their methods and attributes.

Changed in version 2.6: ctypes data types that are not and do not contain pointers can now be
pickled.

Instances have a single attribute:

	
value

	This attribute contains the actual value of the instance. For integer and
pointer types, it is an integer, for character types, it is a single
character string, for character pointer types it is a Python string or
unicode string.

When the value attribute is retrieved from a ctypes instance, usually
a new object is returned each time. ctypes does not implement
original object return, always a new object is constructed. The same is
true for all other ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for
example, by retrieving structure field members or array items, are transparently
converted to native Python types. In other words, if a foreign function has a
restype of c_char_p, you will always receive a Python string,
not a c_char_p instance.

Subclasses of fundamental data types do not inherit this behavior. So, if a
foreign functions restype is a subclass of c_void_p, you will
receive an instance of this subclass from the function call. Of course, you can
get the value of the pointer by accessing the value attribute.

These are the fundamental ctypes data types:

	
class ctypes.c_byte

	Represents the C signed char datatype, and interprets the value as
small integer. The constructor accepts an optional integer initializer; no
overflow checking is done.

	
class ctypes.c_char

	Represents the C char datatype, and interprets the value as a single
character. The constructor accepts an optional string initializer, the
length of the string must be exactly one character.

	
class ctypes.c_char_p

	Represents the C char * datatype when it points to a zero-terminated
string. For a general character pointer that may also point to binary data,
POINTER(c_char) must be used. The constructor accepts an integer
address, or a string.

	
class ctypes.c_double

	Represents the C double datatype. The constructor accepts an
optional float initializer.

	
class ctypes.c_longdouble

	Represents the C long double datatype. The constructor accepts an
optional float initializer. On platforms where sizeof(long double) ==
sizeof(double) it is an alias to c_double.

New in version 2.6.

	
class ctypes.c_float

	Represents the C float datatype. The constructor accepts an
optional float initializer.

	
class ctypes.c_int

	Represents the C signed int datatype. The constructor accepts an
optional integer initializer; no overflow checking is done. On platforms
where sizeof(int) == sizeof(long) it is an alias to c_long.

	
class ctypes.c_int8

	Represents the C 8-bit signed int datatype. Usually an alias for
c_byte.

	
class ctypes.c_int16

	Represents the C 16-bit signed int datatype. Usually an alias for
c_short.

	
class ctypes.c_int32

	Represents the C 32-bit signed int datatype. Usually an alias for
c_int.

	
class ctypes.c_int64

	Represents the C 64-bit signed int datatype. Usually an alias for
c_longlong.

	
class ctypes.c_long

	Represents the C signed long datatype. The constructor accepts an
optional integer initializer; no overflow checking is done.

	
class ctypes.c_longlong

	Represents the C signed long long datatype. The constructor accepts
an optional integer initializer; no overflow checking is done.

	
class ctypes.c_short

	Represents the C signed short datatype. The constructor accepts an
optional integer initializer; no overflow checking is done.

	
class ctypes.c_size_t

	Represents the C size_t datatype.

	
class ctypes.c_ssize_t

	Represents the C ssize_t datatype.

New in version 2.7.

	
class ctypes.c_ubyte

	Represents the C unsigned char datatype, it interprets the value as
small integer. The constructor accepts an optional integer initializer; no
overflow checking is done.

	
class ctypes.c_uint

	Represents the C unsigned int datatype. The constructor accepts an
optional integer initializer; no overflow checking is done. On platforms
where sizeof(int) == sizeof(long) it is an alias for c_ulong.

	
class ctypes.c_uint8

	Represents the C 8-bit unsigned int datatype. Usually an alias for
c_ubyte.

	
class ctypes.c_uint16

	Represents the C 16-bit unsigned int datatype. Usually an alias for
c_ushort.

	
class ctypes.c_uint32

	Represents the C 32-bit unsigned int datatype. Usually an alias for
c_uint.

	
class ctypes.c_uint64

	Represents the C 64-bit unsigned int datatype. Usually an alias for
c_ulonglong.

	
class ctypes.c_ulong

	Represents the C unsigned long datatype. The constructor accepts an
optional integer initializer; no overflow checking is done.

	
class ctypes.c_ulonglong

	Represents the C unsigned long long datatype. The constructor
accepts an optional integer initializer; no overflow checking is done.

	
class ctypes.c_ushort

	Represents the C unsigned short datatype. The constructor accepts
an optional integer initializer; no overflow checking is done.

	
class ctypes.c_void_p

	Represents the C void * type. The value is represented as integer.
The constructor accepts an optional integer initializer.

	
class ctypes.c_wchar

	Represents the C wchar_t datatype, and interprets the value as a
single character unicode string. The constructor accepts an optional string
initializer, the length of the string must be exactly one character.

	
class ctypes.c_wchar_p

	Represents the C wchar_t * datatype, which must be a pointer to a
zero-terminated wide character string. The constructor accepts an integer
address, or a string.

	
class ctypes.c_bool

	Represent the C bool datatype (more accurately, _Bool from
C99). Its value can be True or False, and the constructor accepts any object
that has a truth value.

New in version 2.6.

	
class ctypes.HRESULT

	Windows only: Represents a HRESULT value, which contains success or
error information for a function or method call.

	
class ctypes.py_object

	Represents the C PyObject * datatype. Calling this without an
argument creates a NULL PyObject * pointer.

The ctypes.wintypes module provides quite some other Windows specific
data types, for example HWND, WPARAM, or DWORD. Some
useful structures like MSG or RECT are also defined.

15.18.2.8. Structured data types

	
class ctypes.Union(*args, **kw)

	Abstract base class for unions in native byte order.

	
class ctypes.BigEndianStructure(*args, **kw)

	Abstract base class for structures in big endian byte order.

	
class ctypes.LittleEndianStructure(*args, **kw)

	Abstract base class for structures in little endian byte order.

Structures with non-native byte order cannot contain pointer type fields, or any
other data types containing pointer type fields.

	
class ctypes.Structure(*args, **kw)

	Abstract base class for structures in native byte order.

Concrete structure and union types must be created by subclassing one of these
types, and at least define a _fields_ class variable. ctypes will
create descriptors which allow reading and writing the fields by direct
attribute accesses. These are the

	
fields

	A sequence defining the structure fields. The items must be 2-tuples or
3-tuples. The first item is the name of the field, the second item
specifies the type of the field; it can be any ctypes data type.

For integer type fields like c_int, a third optional item can be
given. It must be a small positive integer defining the bit width of the
field.

Field names must be unique within one structure or union. This is not
checked, only one field can be accessed when names are repeated.

It is possible to define the _fields_ class variable after the
class statement that defines the Structure subclass, this allows to create
data types that directly or indirectly reference themselves:

class List(Structure):
 pass
List._fields_ = [("pnext", POINTER(List)),
 ...
]

The _fields_ class variable must, however, be defined before the
type is first used (an instance is created, sizeof() is called on it,
and so on). Later assignments to the _fields_ class variable will
raise an AttributeError.

Structure and union subclass constructors accept both positional and named
arguments. Positional arguments are used to initialize the fields in the
same order as they appear in the _fields_ definition, named
arguments are used to initialize the fields with the corresponding name.

It is possible to defined sub-subclasses of structure types, they inherit
the fields of the base class plus the _fields_ defined in the
sub-subclass, if any.

	
pack

	An optional small integer that allows to override the alignment of
structure fields in the instance. _pack_ must already be defined
when _fields_ is assigned, otherwise it will have no effect.

	
anonymous

	An optional sequence that lists the names of unnamed (anonymous) fields.
anonymous must be already defined when _fields_ is
assigned, otherwise it will have no effect.

The fields listed in this variable must be structure or union type fields.
ctypes will create descriptors in the structure type that allows to
access the nested fields directly, without the need to create the
structure or union field.

Here is an example type (Windows):

class _U(Union):
 fields = [("lptdesc", POINTER(TYPEDESC)),
 ("lpadesc", POINTER(ARRAYDESC)),
 ("hreftype", HREFTYPE)]

class TYPEDESC(Structure):
 anonymous = ("u",)
 fields = [("u", _U),
 ("vt", VARTYPE)]

The TYPEDESC structure describes a COM data type, the vt field
specifies which one of the union fields is valid. Since the u field
is defined as anonymous field, it is now possible to access the members
directly off the TYPEDESC instance. td.lptdesc and td.u.lptdesc
are equivalent, but the former is faster since it does not need to create
a temporary union instance:

td = TYPEDESC()
td.vt = VT_PTR
td.lptdesc = POINTER(some_type)
td.u.lptdesc = POINTER(some_type)

It is possible to defined sub-subclasses of structures, they inherit the
fields of the base class. If the subclass definition has a separate
fields variable, the fields specified in this are appended to the
fields of the base class.

Structure and union constructors accept both positional and keyword
arguments. Positional arguments are used to initialize member fields in the
same order as they are appear in _fields_. Keyword arguments in the
constructor are interpreted as attribute assignments, so they will initialize
fields with the same name, or create new attributes for names not
present in _fields_.

15.18.2.9. Arrays and pointers

Not yet written - please see the sections Pointers and section
Arrays in the tutorial.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

16. Optional Operating System Services

The modules described in this chapter provide interfaces to operating system
features that are available on selected operating systems only. The interfaces
are generally modeled after the Unix or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

	16.1. select — Waiting for I/O completion
	16.1.1. Edge and Level Trigger Polling (epoll) Objects

	16.1.2. Polling Objects

	16.1.3. Kqueue Objects

	16.1.4. Kevent Objects

	16.2. threading — Higher-level threading interface
	16.2.1. Thread Objects

	16.2.2. Lock Objects

	16.2.3. RLock Objects

	16.2.4. Condition Objects

	16.2.5. Semaphore Objects
	16.2.5.1. Semaphore Example

	16.2.6. Event Objects

	16.2.7. Timer Objects

	16.2.8. Using locks, conditions, and semaphores in the with statement

	16.2.9. Importing in threaded code

	16.3. thread — Multiple threads of control

	16.4. dummy_threading — Drop-in replacement for the threading module

	16.5. dummy_thread — Drop-in replacement for the thread module

	16.6. multiprocessing — Process-based “threading” interface
	16.6.1. Introduction
	16.6.1.1. The Process class

	16.6.1.2. Exchanging objects between processes

	16.6.1.3. Synchronization between processes

	16.6.1.4. Sharing state between processes

	16.6.1.5. Using a pool of workers

	16.6.2. Reference
	16.6.2.1. Process and exceptions

	16.6.2.2. Pipes and Queues

	16.6.2.3. Miscellaneous

	16.6.2.4. Connection Objects

	16.6.2.5. Synchronization primitives

	16.6.2.6. Shared ctypes Objects
	16.6.2.6.1. The multiprocessing.sharedctypes module

	16.6.2.7. Managers
	16.6.2.7.1. Namespace objects

	16.6.2.7.2. Customized managers

	16.6.2.7.3. Using a remote manager

	16.6.2.8. Proxy Objects
	16.6.2.8.1. Cleanup

	16.6.2.9. Process Pools

	16.6.2.10. Listeners and Clients
	16.6.2.10.1. Address Formats

	16.6.2.11. Authentication keys

	16.6.2.12. Logging

	16.6.2.13. The multiprocessing.dummy module

	16.6.3. Programming guidelines
	16.6.3.1. All platforms

	16.6.3.2. Windows

	16.6.4. Examples

	16.7. mmap — Memory-mapped file support

	16.8. readline — GNU readline interface
	16.8.1. Example

	16.9. rlcompleter — Completion function for GNU readline
	16.9.1. Completer Objects

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.1. select — Waiting for I/O completion

This module provides access to the select() and poll() functions
available in most operating systems, epoll() available on Linux 2.5+ and
kqueue() available on most BSD.
Note that on Windows, it only works for sockets; on other operating systems,
it also works for other file types (in particular, on Unix, it works on pipes).
It cannot be used on regular files to determine whether a file has grown since
it was last read.

The module defines the following:

	
exception select.error

	The exception raised when an error occurs. The accompanying value is a pair
containing the numeric error code from errno and the corresponding
string, as would be printed by the C function perror().

	
select.epoll([sizehint=-1])

	(Only supported on Linux 2.5.44 and newer.) Returns an edge polling object,
which can be used as Edge or Level Triggered interface for I/O events; see
section Edge and Level Trigger Polling (epoll) Objects below for the methods supported by epolling
objects.

New in version 2.6.

	
select.poll()

	(Not supported by all operating systems.) Returns a polling object, which
supports registering and unregistering file descriptors, and then polling them
for I/O events; see section Polling Objects below for the methods supported
by polling objects.

	
select.kqueue()

	(Only supported on BSD.) Returns a kernel queue object; see section
Kqueue Objects below for the methods supported by kqueue objects.

New in version 2.6.

	
select.kevent(ident, filter=KQ_FILTER_READ, flags=KQ_EV_ADD, fflags=0, data=0, udata=0)

	(Only supported on BSD.) Returns a kernel event object; see section
Kevent Objects below for the methods supported by kevent objects.

New in version 2.6.

	
select.select(rlist, wlist, xlist[, timeout])

	This is a straightforward interface to the Unix select() system call.
The first three arguments are sequences of ‘waitable objects’: either
integers representing file descriptors or objects with a parameterless method
named fileno() returning such an integer:

	rlist: wait until ready for reading

	wlist: wait until ready for writing

	xlist: wait for an “exceptional condition” (see the manual page for what
your system considers such a condition)

Empty sequences are allowed, but acceptance of three empty sequences is
platform-dependent. (It is known to work on Unix but not on Windows.) The
optional timeout argument specifies a time-out as a floating point number
in seconds. When the timeout argument is omitted the function blocks until
at least one file descriptor is ready. A time-out value of zero specifies a
poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the
first three arguments. When the time-out is reached without a file descriptor
becoming ready, three empty lists are returned.

Among the acceptable object types in the sequences are Python file objects (e.g.
sys.stdin, or objects returned by open() or os.popen()), socket
objects returned by socket.socket(). You may also define a wrapper
class yourself, as long as it has an appropriate fileno() method (that
really returns a file descriptor, not just a random integer).

Note

File objects on Windows are not acceptable, but sockets are. On Windows,
the underlying select() function is provided by the WinSock
library, and does not handle file descriptors that don’t originate from
WinSock.

	
select.PIPE_BUF

	Files reported as ready for writing by select(), poll() or
similar interfaces in this module are guaranteed to not block on a write
of up to PIPE_BUF bytes.
This value is guaranteed by POSIX to be at least 512. Availability: Unix.

New in version 2.7.

16.1.1. Edge and Level Trigger Polling (epoll) Objects

http://linux.die.net/man/4/epoll

eventmask

	Constant
	Meaning

	EPOLLIN
	Available for read

	EPOLLOUT
	Available for write

	EPOLLPRI
	Urgent data for read

	EPOLLERR
	Error condition happened on the assoc. fd

	EPOLLHUP
	Hang up happened on the assoc. fd

	EPOLLET
	Set Edge Trigger behavior, the default is
Level Trigger behavior

	EPOLLONESHOT
	Set one-shot behavior. After one event is
pulled out, the fd is internally disabled

	EPOLLRDNORM
	Equivalent to EPOLLIN

	EPOLLRDBAND
	Priority data band can be read.

	EPOLLWRNORM
	Equivalent to EPOLLOUT

	EPOLLWRBAND
	Priority data may be written.

	EPOLLMSG
	Ignored.

	
epoll.close()

	Close the control file descriptor of the epoll object.

	
epoll.fileno()

	Return the file descriptor number of the control fd.

	
epoll.fromfd(fd)

	Create an epoll object from a given file descriptor.

	
epoll.register(fd[, eventmask])

	Register a fd descriptor with the epoll object.

Note

Registering a file descriptor that’s already registered raises an
IOError – contrary to Polling Objects‘s register.

	
epoll.modify(fd, eventmask)

	Modify a register file descriptor.

	
epoll.unregister(fd)

	Remove a registered file descriptor from the epoll object.

	
epoll.poll([timeout=-1[, maxevents=-1]])

	Wait for events. timeout in seconds (float)

16.1.2. Polling Objects

The poll() system call, supported on most Unix systems, provides better
scalability for network servers that service many, many clients at the same
time. poll() scales better because the system call only requires listing
the file descriptors of interest, while select() builds a bitmap, turns
on bits for the fds of interest, and then afterward the whole bitmap has to be
linearly scanned again. select() is O(highest file descriptor), while
poll() is O(number of file descriptors).

	
poll.register(fd[, eventmask])

	Register a file descriptor with the polling object. Future calls to the
poll() method will then check whether the file descriptor has any pending
I/O events. fd can be either an integer, or an object with a fileno()
method that returns an integer. File objects implement fileno(), so they
can also be used as the argument.

eventmask is an optional bitmask describing the type of events you want to
check for, and can be a combination of the constants POLLIN,
POLLPRI, and POLLOUT, described in the table below. If not
specified, the default value used will check for all 3 types of events.

	Constant
	Meaning

	POLLIN
	There is data to read

	POLLPRI
	There is urgent data to read

	POLLOUT
	Ready for output: writing will not block

	POLLERR
	Error condition of some sort

	POLLHUP
	Hung up

	POLLNVAL
	Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has
the same effect as registering the descriptor exactly once.

	
poll.modify(fd, eventmask)

	Modifies an already registered fd. This has the same effect as
register(fd, eventmask). Attempting to modify a file descriptor
that was never registered causes an IOError exception with errno
ENOENT to be raised.

New in version 2.6.

	
poll.unregister(fd)

	Remove a file descriptor being tracked by a polling object. Just like the
register() method, fd can be an integer or an object with a
fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a
KeyError exception to be raised.

	
poll.poll([timeout])

	Polls the set of registered file descriptors, and returns a possibly-empty list
containing (fd, event) 2-tuples for the descriptors that have events or
errors to report. fd is the file descriptor, and event is a bitmask with
bits set for the reported events for that descriptor — POLLIN for
waiting input, POLLOUT to indicate that the descriptor can be written
to, and so forth. An empty list indicates that the call timed out and no file
descriptors had any events to report. If timeout is given, it specifies the
length of time in milliseconds which the system will wait for events before
returning. If timeout is omitted, negative, or None, the call will
block until there is an event for this poll object.

16.1.3. Kqueue Objects

	
kqueue.close()

	Close the control file descriptor of the kqueue object.

	
kqueue.fileno()

	Return the file descriptor number of the control fd.

	
kqueue.fromfd(fd)

	Create a kqueue object from a given file descriptor.

	
kqueue.control(changelist, max_events[, timeout=None]) eventlist

	Low level interface to kevent

	changelist must be an iterable of kevent object or None

	max_events must be 0 or a positive integer

	timeout in seconds (floats possible)

16.1.4. Kevent Objects

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

	
kevent.ident

	Value used to identify the event. The interpretation depends on the filter
but it’s usually the file descriptor. In the constructor ident can either
be an int or an object with a fileno() function. kevent stores the integer
internally.

	
kevent.filter

	Name of the kernel filter.

	Constant
	Meaning

	KQ_FILTER_READ
	Takes a descriptor and returns whenever
there is data available to read

	KQ_FILTER_WRITE
	Takes a descriptor and returns whenever
there is data available to write

	KQ_FILTER_AIO
	AIO requests

	KQ_FILTER_VNODE
	Returns when one or more of the requested
events watched in fflag occurs

	KQ_FILTER_PROC
	Watch for events on a process id

	KQ_FILTER_NETDEV
	Watch for events on a network device
[not available on Mac OS X]

	KQ_FILTER_SIGNAL
	Returns whenever the watched signal is
delivered to the process

	KQ_FILTER_TIMER
	Establishes an arbitrary timer

	
kevent.flags

	Filter action.

	Constant
	Meaning

	KQ_EV_ADD
	Adds or modifies an event

	KQ_EV_DELETE
	Removes an event from the queue

	KQ_EV_ENABLE
	Permitscontrol() to returns the event

	KQ_EV_DISABLE
	Disablesevent

	KQ_EV_ONESHOT
	Removes event after first occurrence

	KQ_EV_CLEAR
	Reset the state after an event is retrieved

	KQ_EV_SYSFLAGS
	internal event

	KQ_EV_FLAG1
	internal event

	KQ_EV_EOF
	Filter specific EOF condition

	KQ_EV_ERROR
	See return values

	
kevent.fflags

	Filter specific flags.

KQ_FILTER_READ and KQ_FILTER_WRITE filter flags:

	Constant
	Meaning

	KQ_NOTE_LOWAT
	low water mark of a socket buffer

KQ_FILTER_VNODE filter flags:

	Constant
	Meaning

	KQ_NOTE_DELETE
	unlink() was called

	KQ_NOTE_WRITE
	a write occurred

	KQ_NOTE_EXTEND
	the file was extended

	KQ_NOTE_ATTRIB
	an attribute was changed

	KQ_NOTE_LINK
	the link count has changed

	KQ_NOTE_RENAME
	the file was renamed

	KQ_NOTE_REVOKE
	access to the file was revoked

KQ_FILTER_PROC filter flags:

	Constant
	Meaning

	KQ_NOTE_EXIT
	the process has exited

	KQ_NOTE_FORK
	the process has called fork()

	KQ_NOTE_EXEC
	the process has executed a new process

	KQ_NOTE_PCTRLMASK
	internal filter flag

	KQ_NOTE_PDATAMASK
	internal filter flag

	KQ_NOTE_TRACK
	follow a process across fork()

	KQ_NOTE_CHILD
	returned on the child process for
NOTE_TRACK

	KQ_NOTE_TRACKERR
	unable to attach to a child

KQ_FILTER_NETDEV filter flags (not available on Mac OS X):

	Constant
	Meaning

	KQ_NOTE_LINKUP
	link is up

	KQ_NOTE_LINKDOWN
	link is down

	KQ_NOTE_LINKINV
	link state is invalid

	
kevent.data

	Filter specific data.

	
kevent.udata

	User defined value.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.2. threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower
level thread module.
See also the mutex and Queue modules.

The dummy_threading module is provided for situations where
threading cannot be used because thread is missing.

Note

Starting with Python 2.6, this module provides PEP 8 [http://www.python.org/dev/peps/pep-0008] compliant aliases and
properties to replace the camelCase names that were inspired by Java’s
threading API. This updated API is compatible with that of the
multiprocessing module. However, no schedule has been set for the
deprecation of the camelCase names and they remain fully supported in
both Python 2.x and 3.x.

Note

Starting with Python 2.5, several Thread methods raise RuntimeError
instead of AssertionError if called erroneously.

CPython implementation detail: Due to the Global Interpreter Lock, in CPython only one thread
can execute Python code at once (even though certain performance-oriented
libraries might overcome this limitation).
If you want your application to make better of use of the computational
resources of multi-core machines, you are advised to use
multiprocessing. However, threading is still an appropriate model
if you want to run multiple I/O-bound tasks simultaneously.

See also

Latest version of the threading module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/threading.py?view=markup]

This module defines the following functions and objects:

	
threading.active_count()

	
threading.activeCount()

	Return the number of Thread objects currently alive. The returned
count is equal to the length of the list returned by enumerate().

	
threading.Condition()

	A factory function that returns a new condition variable object. A condition
variable allows one or more threads to wait until they are notified by another
thread.

See Condition Objects.

	
threading.current_thread()

	
threading.currentThread()

	Return the current Thread object, corresponding to the caller’s thread
of control. If the caller’s thread of control was not created through the
threading module, a dummy thread object with limited functionality is
returned.

	
threading.enumerate()

	Return a list of all Thread objects currently alive. The list
includes daemonic threads, dummy thread objects created by
current_thread(), and the main thread. It excludes terminated threads
and threads that have not yet been started.

	
threading.Event()

	A factory function that returns a new event object. An event manages a flag
that can be set to true with the set() method and reset to false
with the clear() method. The wait() method blocks until the flag
is true.

See Event Objects.

	
class threading.local

	A class that represents thread-local data. Thread-local data are data whose
values are thread specific. To manage thread-local data, just create an
instance of local (or a subclass) and store attributes on it:

mydata = threading.local()
mydata.x = 1

The instance’s values will be different for separate threads.

For more details and extensive examples, see the documentation string of the
_threading_local module.

New in version 2.4.

	
threading.Lock()

	A factory function that returns a new primitive lock object. Once a thread has
acquired it, subsequent attempts to acquire it block, until it is released; any
thread may release it.

See Lock Objects.

	
threading.RLock()

	A factory function that returns a new reentrant lock object. A reentrant lock
must be released by the thread that acquired it. Once a thread has acquired a
reentrant lock, the same thread may acquire it again without blocking; the
thread must release it once for each time it has acquired it.

See RLock Objects.

	
threading.Semaphore([value])

	A factory function that returns a new semaphore object. A semaphore manages a
counter representing the number of release() calls minus the number of
acquire() calls, plus an initial value. The acquire() method blocks
if necessary until it can return without making the counter negative. If not
given, value defaults to 1.

See Semaphore Objects.

	
threading.BoundedSemaphore([value])

	A factory function that returns a new bounded semaphore object. A bounded
semaphore checks to make sure its current value doesn’t exceed its initial
value. If it does, ValueError is raised. In most situations semaphores
are used to guard resources with limited capacity. If the semaphore is released
too many times it’s a sign of a bug. If not given, value defaults to 1.

	
class threading.Thread

	A class that represents a thread of control. This class can be safely
subclassed in a limited fashion.

See Thread Objects.

	
class threading.Timer

	A thread that executes a function after a specified interval has passed.

See Timer Objects.

	
threading.settrace(func)

	Set a trace function for all threads started from the threading module.
The func will be passed to sys.settrace() for each thread, before its
run() method is called.

New in version 2.3.

	
threading.setprofile(func)

	Set a profile function for all threads started from the threading module.
The func will be passed to sys.setprofile() for each thread, before its
run() method is called.

New in version 2.3.

	
threading.stack_size([size])

	Return the thread stack size used when creating new threads. The optional
size argument specifies the stack size to be used for subsequently created
threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32kB). If changing the thread stack size is
unsupported, a ThreadError is raised. If the specified stack size is
invalid, a ValueError is raised and the stack size is unmodified. 32kB
is currently the minimum supported stack size value to guarantee sufficient
stack space for the interpreter itself. Note that some platforms may have
particular restrictions on values for the stack size, such as requiring a
minimum stack size > 32kB or requiring allocation in multiples of the system
memory page size - platform documentation should be referred to for more
information (4kB pages are common; using multiples of 4096 for the stack size is
the suggested approach in the absence of more specific information).
Availability: Windows, systems with POSIX threads.

New in version 2.5.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However,
where Java makes locks and condition variables basic behavior of every object,
they are separate objects in Python. Python’s Thread class supports a
subset of the behavior of Java’s Thread class; currently, there are no
priorities, no thread groups, and threads cannot be destroyed, stopped,
suspended, resumed, or interrupted. The static methods of Java’s Thread class,
when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

16.2.1. Thread Objects

This class represents an activity that is run in a separate thread of control.
There are two ways to specify the activity: by passing a callable object to the
constructor, or by overriding the run() method in a subclass. No other
methods (except for the constructor) should be overridden in a subclass. In
other words, only override the __init__() and run() methods of
this class.

Once a thread object is created, its activity must be started by calling the
thread’s start() method. This invokes the run() method in a
separate thread of control.

Once the thread’s activity is started, the thread is considered ‘alive’. It
stops being alive when its run() method terminates – either normally, or
by raising an unhandled exception. The is_alive() method tests whether the
thread is alive.

Other threads can call a thread’s join() method. This blocks the calling
thread until the thread whose join() method is called is terminated.

A thread has a name. The name can be passed to the constructor, and read or
changed through the name attribute.

A thread can be flagged as a “daemon thread”. The significance of this flag is
that the entire Python program exits when only daemon threads are left. The
initial value is inherited from the creating thread. The flag can be set
through the daemon property.

There is a “main thread” object; this corresponds to the initial thread of
control in the Python program. It is not a daemon thread.

There is the possibility that “dummy thread objects” are created. These are
thread objects corresponding to “alien threads”, which are threads of control
started outside the threading module, such as directly from C code. Dummy
thread objects have limited functionality; they are always considered alive and
daemonic, and cannot be join()ed. They are never deleted, since it is
impossible to detect the termination of alien threads.

	
class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})

	This constructor should always be called with keyword arguments. Arguments
are:

group should be None; reserved for future extension when a
ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method.
Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the
form “Thread-N” where N is a small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation.
Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the
base class constructor (Thread.__init__()) before doing anything else to
the thread.

	
start()

	Start the thread’s activity.

It must be called at most once per thread object. It arranges for the
object’s run() method to be invoked in a separate thread of control.

This method will raise a RuntimeError if called more than once
on the same thread object.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run()
method invokes the callable object passed to the object’s constructor as
the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
join([timeout])

	Wait until the thread terminates. This blocks the calling thread until the
thread whose join() method is called terminates – either normally
or through an unhandled exception – or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join() always returns None, you must
call isAlive() after join() to decide whether a timeout
happened – if the thread is still alive, the join() call timed out.

When the timeout argument is not present or None, the operation will
block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join
the current thread as that would cause a deadlock. It is also an error to
join() a thread before it has been started and attempts to do so
raises the same exception.

	
getName()

	
setName()

	Old API for name.

	
name

	A string used for identification purposes only. It has no semantics.
Multiple threads may be given the same name. The initial name is set by
the constructor.

	
ident

	The ‘thread identifier’ of this thread or None if the thread has not
been started. This is a nonzero integer. See the
thread.get_ident() function. Thread identifiers may be recycled
when a thread exits and another thread is created. The identifier is
available even after the thread has exited.

New in version 2.6.

	
is_alive()

	
isAlive()

	Return whether the thread is alive.

This method returns True just before the run() method starts
until just after the run() method terminates. The module function
enumerate() returns a list of all alive threads.

	
isDaemon()

	
setDaemon()

	Old API for daemon.

	
daemon

	A boolean value indicating whether this thread is a daemon thread (True)
or not (False). This must be set before start() is called,
otherwise RuntimeError is raised. Its initial value is inherited
from the creating thread; the main thread is not a daemon thread and
therefore all threads created in the main thread default to daemon
= False.

The entire Python program exits when no alive non-daemon threads are left.

16.2.2. Lock Objects

A primitive lock is a synchronization primitive that is not owned by a
particular thread when locked. In Python, it is currently the lowest level
synchronization primitive available, implemented directly by the thread
extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created
in the unlocked state. It has two basic methods, acquire() and
release(). When the state is unlocked, acquire() changes the state
to locked and returns immediately. When the state is locked, acquire()
blocks until a call to release() in another thread changes it to unlocked,
then the acquire() call resets it to locked and returns. The
release() method should only be called in the locked state; it changes the
state to unlocked and returns immediately. If an attempt is made to release an
unlocked lock, a RuntimeError will be raised.

When more than one thread is blocked in acquire() waiting for the state to
turn to unlocked, only one thread proceeds when a release() call resets
the state to unlocked; which one of the waiting threads proceeds is not defined,
and may vary across implementations.

All methods are executed atomically.

	
Lock.acquire([blocking])

	Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to
locked, and return true.

When invoked with the blocking argument set to true, do the same thing as when
called without arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call
without an argument would block, return false immediately; otherwise, do the
same thing as when called without arguments, and return true.

	
Lock.release()

	Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads
are blocked waiting for the lock to become unlocked, allow exactly one of them
to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

16.2.3. RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple
times by the same thread. Internally, it uses the concepts of “owning thread”
and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state,
no thread owns it.

To lock the lock, a thread calls its acquire() method; this returns once
the thread owns the lock. To unlock the lock, a thread calls its
release() method. acquire()/release() call pairs may be
nested; only the final release() (the release() of the outermost
pair) resets the lock to unlocked and allows another thread blocked in
acquire() to proceed.

	
RLock.acquire([blocking=1])

	Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment
the recursion level by one, and return immediately. Otherwise, if another
thread owns the lock, block until the lock is unlocked. Once the lock is
unlocked (not owned by any thread), then grab ownership, set the recursion level
to one, and return. If more than one thread is blocked waiting until the lock
is unlocked, only one at a time will be able to grab ownership of the lock.
There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when
called without arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call
without an argument would block, return false immediately; otherwise, do the
same thing as when called without arguments, and return true.

	
RLock.release()

	Release a lock, decrementing the recursion level. If after the decrement it is
zero, reset the lock to unlocked (not owned by any thread), and if any other
threads are blocked waiting for the lock to become unlocked, allow exactly one
of them to proceed. If after the decrement the recursion level is still
nonzero, the lock remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. A
RuntimeError is raised if this method is called when the lock is
unlocked.

There is no return value.

16.2.4. Condition Objects

A condition variable is always associated with some kind of lock; this can be
passed in or one will be created by default. (Passing one in is useful when
several condition variables must share the same lock.)

A condition variable has acquire() and release() methods that call
the corresponding methods of the associated lock. It also has a wait()
method, and notify() and notifyAll() methods. These three must only
be called when the calling thread has acquired the lock, otherwise a
RuntimeError is raised.

The wait() method releases the lock, and then blocks until it is awakened
by a notify() or notifyAll() call for the same condition variable in
another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition
variable, if any are waiting. The notifyAll() method wakes up all threads
waiting for the condition variable.

Note: the notify() and notifyAll() methods don’t release the lock;
this means that the thread or threads awakened will not return from their
wait() call immediately, but only when the thread that called
notify() or notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to
synchronize access to some shared state; threads that are interested in a
particular change of state call wait() repeatedly until they see the
desired state, while threads that modify the state call notify() or
notifyAll() when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following
code is a generic producer-consumer situation with unlimited buffer capacity:

Consume one item
cv.acquire()
while not an_item_is_available():
 cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()

To choose between notify() and notifyAll(), consider whether one
state change can be interesting for only one or several waiting threads. E.g.
in a typical producer-consumer situation, adding one item to the buffer only
needs to wake up one consumer thread.

	
class threading.Condition([lock])

	If the lock argument is given and not None, it must be a Lock
or RLock object, and it is used as the underlying lock. Otherwise,
a new RLock object is created and used as the underlying lock.

	
acquire(*args)

	Acquire the underlying lock. This method calls the corresponding method on
the underlying lock; the return value is whatever that method returns.

	
release()

	Release the underlying lock. This method calls the corresponding method on
the underlying lock; there is no return value.

	
wait([timeout])

	Wait until notified or until a timeout occurs. If the calling thread has not
acquired the lock when this method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is
awakened by a notify() or notifyAll() call for the same
condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

When the underlying lock is an RLock, it is not released using
its release() method, since this may not actually unlock the lock
when it was acquired multiple times recursively. Instead, an internal
interface of the RLock class is used, which really unlocks it
even when it has been recursively acquired several times. Another internal
interface is then used to restore the recursion level when the lock is
reacquired.

	
notify()

	Wake up a thread waiting on this condition, if any. If the calling thread
has not acquired the lock when this method is called, a
RuntimeError is raised.

This method wakes up one of the threads waiting for the condition
variable, if any are waiting; it is a no-op if no threads are waiting.

The current implementation wakes up exactly one thread, if any are
waiting. However, it’s not safe to rely on this behavior. A future,
optimized implementation may occasionally wake up more than one thread.

Note: the awakened thread does not actually return from its wait()
call until it can reacquire the lock. Since notify() does not
release the lock, its caller should.

	
notify_all()

	
notifyAll()

	Wake up all threads waiting on this condition. This method acts like
notify(), but wakes up all waiting threads instead of one. If the
calling thread has not acquired the lock when this method is called, a
RuntimeError is raised.

16.2.5. Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer
science, invented by the early Dutch computer scientist Edsger W. Dijkstra (he
used P() and V() instead of acquire() and release()).

A semaphore manages an internal counter which is decremented by each
acquire() call and incremented by each release() call. The counter
can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some other thread calls release().

	
class threading.Semaphore([value])

	The optional argument gives the initial value for the internal counter; it
defaults to 1. If the value given is less than 0, ValueError is
raised.

	
acquire([blocking])

	Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than
zero on entry, decrement it by one and return immediately. If it is zero
on entry, block, waiting until some other thread has called
release() to make it larger than zero. This is done with proper
interlocking so that if multiple acquire() calls are blocked,
release() will wake exactly one of them up. The implementation may
pick one at random, so the order in which blocked threads are awakened
should not be relied on. There is no return value in this case.

When invoked with blocking set to true, do the same thing as when called
without arguments, and return true.

When invoked with blocking set to false, do not block. If a call
without an argument would block, return false immediately; otherwise, do
the same thing as when called without arguments, and return true.

	
release()

	Release a semaphore, incrementing the internal counter by one. When it
was zero on entry and another thread is waiting for it to become larger
than zero again, wake up that thread.

16.2.5.1. Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example,
a database server. In any situation where the size of the resource is fixed,
you should use a bounded semaphore. Before spawning any worker threads, your
main thread would initialize the semaphore:

maxconnections = 5
...
pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore’s acquire and release methods
when they need to connect to the server:

pool_sema.acquire()
conn = connectdb()
... use connection ...
conn.close()
pool_sema.release()

The use of a bounded semaphore reduces the chance that a programming error which
causes the semaphore to be released more than it’s acquired will go undetected.

16.2.6. Event Objects

This is one of the simplest mechanisms for communication between threads: one
thread signals an event and other threads wait for it.

An event object manages an internal flag that can be set to true with the
set() method and reset to false with the clear() method. The
wait() method blocks until the flag is true.

	
class threading.Event

	The internal flag is initially false.

	
is_set()

	
isSet()

	Return true if and only if the internal flag is true.

Changed in version 2.6: The is_set() syntax is new.

	
set()

	Set the internal flag to true. All threads waiting for it to become true
are awakened. Threads that call wait() once the flag is true will
not block at all.

	
clear()

	Reset the internal flag to false. Subsequently, threads calling
wait() will block until set() is called to set the internal
flag to true again.

	
wait([timeout])

	Block until the internal flag is true. If the internal flag is true on
entry, return immediately. Otherwise, block until another thread calls
set() to set the flag to true, or until the optional timeout
occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

This method returns the internal flag on exit, so it will always return
True except if a timeout is given and the operation times out.

Changed in version 2.7: Previously, the method always returned None.

16.2.7. Timer Objects

This class represents an action that should be run only after a certain amount
of time has passed — a timer. Timer is a subclass of Thread
and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling their start() method. The
timer can be stopped (before its action has begun) by calling the cancel()
method. The interval the timer will wait before executing its action may not be
exactly the same as the interval specified by the user.

For example:

def hello():
 print "hello, world"

t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

	
class threading.Timer(interval, function, args=[], kwargs={})

	Create a timer that will run function with arguments args and keyword
arguments kwargs, after interval seconds have passed.

	
cancel()

	Stop the timer, and cancel the execution of the timer’s action. This will
only work if the timer is still in its waiting stage.

16.2.8. Using locks, conditions, and semaphores in the with statement

All of the objects provided by this module that have acquire() and
release() methods can be used as context managers for a with
statement. The acquire() method will be called when the block is entered,
and release() will be called when the block is exited.

Currently, Lock, RLock, Condition,
Semaphore, and BoundedSemaphore objects may be used as
with statement context managers. For example:

import threading

some_rlock = threading.RLock()

with some_rlock:
 print "some_rlock is locked while this executes"

16.2.9. Importing in threaded code

While the import machinery is thread-safe, there are two key restrictions on
threaded imports due to inherent limitations in the way that thread-safety is
provided:

	Firstly, other than in the main module, an import should not have the
side effect of spawning a new thread and then waiting for that thread in
any way. Failing to abide by this restriction can lead to a deadlock if
the spawned thread directly or indirectly attempts to import a module.

	Secondly, all import attempts must be completed before the interpreter
starts shutting itself down. This can be most easily achieved by only
performing imports from non-daemon threads created through the threading
module. Daemon threads and threads created directly with the thread
module will require some other form of synchronization to ensure they do
not attempt imports after system shutdown has commenced. Failure to
abide by this restriction will lead to intermittent exceptions and
crashes during interpreter shutdown (as the late imports attempt to
access machinery which is no longer in a valid state).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.3. thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads
(also called light-weight processes or tasks) — multiple threads of
control sharing their global data space. For synchronization, simple locks
(also called mutexes or binary semaphores) are provided.
The threading module provides an easier to use and higher-level
threading API built on top of this module.

The module is optional. It is supported on Windows, Linux, SGI IRIX, Solaris
2.x, as well as on systems that have a POSIX thread (a.k.a. “pthread”)
implementation. For systems lacking the thread module, the
dummy_thread module is available. It duplicates this module’s interface
and can be used as a drop-in replacement.

It defines the following constant and functions:

	
exception thread.error

	Raised on thread-specific errors.

	
thread.LockType

	This is the type of lock objects.

	
thread.start_new_thread(function, args[, kwargs])

	Start a new thread and return its identifier. The thread executes the function
function with the argument list args (which must be a tuple). The optional
kwargs argument specifies a dictionary of keyword arguments. When the function
returns, the thread silently exits. When the function terminates with an
unhandled exception, a stack trace is printed and then the thread exits (but
other threads continue to run).

	
thread.interrupt_main()

	Raise a KeyboardInterrupt exception in the main thread. A subthread can
use this function to interrupt the main thread.

New in version 2.3.

	
thread.exit()

	Raise the SystemExit exception. When not caught, this will cause the
thread to exit silently.

	
thread.allocate_lock()

	Return a new lock object. Methods of locks are described below. The lock is
initially unlocked.

	
thread.get_ident()

	Return the ‘thread identifier’ of the current thread. This is a nonzero
integer. Its value has no direct meaning; it is intended as a magic cookie to
be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

	
thread.stack_size([size])

	Return the thread stack size used when creating new threads. The optional
size argument specifies the stack size to be used for subsequently created
threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32kB). If changing the thread stack size is
unsupported, the error exception is raised. If the specified stack size is
invalid, a ValueError is raised and the stack size is unmodified. 32kB
is currently the minimum supported stack size value to guarantee sufficient
stack space for the interpreter itself. Note that some platforms may have
particular restrictions on values for the stack size, such as requiring a
minimum stack size > 32kB or requiring allocation in multiples of the system
memory page size - platform documentation should be referred to for more
information (4kB pages are common; using multiples of 4096 for the stack size is
the suggested approach in the absence of more specific information).
Availability: Windows, systems with POSIX threads.

New in version 2.5.

Lock objects have the following methods:

	
lock.acquire([waitflag])

	Without the optional argument, this method acquires the lock unconditionally, if
necessary waiting until it is released by another thread (only one thread at a
time can acquire a lock — that’s their reason for existence). If the integer
waitflag argument is present, the action depends on its value: if it is zero,
the lock is only acquired if it can be acquired immediately without waiting,
while if it is nonzero, the lock is acquired unconditionally as before. The
return value is True if the lock is acquired successfully, False if not.

	
lock.release()

	Releases the lock. The lock must have been acquired earlier, but not
necessarily by the same thread.

	
lock.locked()

	Return the status of the lock: True if it has been acquired by some thread,
False if not.

In addition to these methods, lock objects can also be used via the
with statement, e.g.:

import thread

a_lock = thread.allocate_lock()

with a_lock:
 print "a_lock is locked while this executes"

Caveats:

	Threads interact strangely with interrupts: the KeyboardInterrupt
exception will be received by an arbitrary thread. (When the signal
module is available, interrupts always go to the main thread.)

	Calling sys.exit() or raising the SystemExit exception is
equivalent to calling thread.exit().

	Not all built-in functions that may block waiting for I/O allow other threads
to run. (The most popular ones (time.sleep(), file.read(),
select.select()) work as expected.)

	It is not possible to interrupt the acquire() method on a lock — the
KeyboardInterrupt exception will happen after the lock has been acquired.

	When the main thread exits, it is system defined whether the other threads
survive. On SGI IRIX using the native thread implementation, they survive. On
most other systems, they are killed without executing try ...
finally clauses or executing object destructors.

	When the main thread exits, it does not do any of its usual cleanup (except
that try ... finally clauses are honored), and the
standard I/O files are not flushed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.4. dummy_threading — Drop-in replacement for the threading module

This module provides a duplicate interface to the threading module. It
is meant to be imported when the thread module is not provided on a
platform.

Suggested usage is:

try:
 import threading as _threading
except ImportError:
 import dummy_threading as _threading

Be careful to not use this module where deadlock might occur from a thread
being created that blocks waiting for another thread to be created. This often
occurs with blocking I/O.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.5. dummy_thread — Drop-in replacement for the thread module

Note

The dummy_thread module has been renamed to _dummy_thread in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0; however, you should consider using the
high-lever dummy_threading module instead.

This module provides a duplicate interface to the thread module. It is
meant to be imported when the thread module is not provided on a
platform.

Suggested usage is:

try:
 import thread as _thread
except ImportError:
 import dummy_thread as _thread

Be careful to not use this module where deadlock might occur from a thread
being created that blocks waiting for another thread to be created. This often
occurs with blocking I/O.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.6. multiprocessing — Process-based “threading” interface

New in version 2.6.

16.6.1. Introduction

multiprocessing is a package that supports spawning processes using an
API similar to the threading module. The multiprocessing package
offers both local and remote concurrency, effectively side-stepping the
Global Interpreter Lock by using subprocesses instead of threads. Due
to this, the multiprocessing module allows the programmer to fully
leverage multiple processors on a given machine. It runs on both Unix and
Windows.

Warning

Some of this package’s functionality requires a functioning shared semaphore
implementation on the host operating system. Without one, the
multiprocessing.synchronize module will be disabled, and attempts to
import it will result in an ImportError. See
issue 3770 [http://bugs.python.org/issue3770] for additional information.

Note

Functionality within this package requires that the __main__ module be
importable by the children. This is covered in Programming guidelines
however it is worth pointing out here. This means that some examples, such
as the multiprocessing.Pool examples will not work in the
interactive interpreter. For example:

>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'

(If you try this it will actually output three full tracebacks
interleaved in a semi-random fashion, and then you may have to
stop the master process somehow.)

16.6.1.1. The Process class

In multiprocessing, processes are spawned by creating a Process
object and then calling its start() method. Process
follows the API of threading.Thread. A trivial example of a
multiprocess program is

from multiprocessing import Process

def f(name):
 print 'hello', name

if __name__ == '__main__':
 p = Process(target=f, args=('bob',))
 p.start()
 p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process
import os

def info(title):
 print title
 print 'module name:', __name__
 print 'parent process:', os.getppid()
 print 'process id:', os.getpid()

def f(name):
 info('function f')
 print 'hello', name

if __name__ == '__main__':
 info('main line')
 p = Process(target=f, args=('bob',))
 p.start()
 p.join()

For an explanation of why (on Windows) the if __name__ == '__main__' part is
necessary, see Programming guidelines.

16.6.1.2. Exchanging objects between processes

multiprocessing supports two types of communication channel between
processes:

Queues

The Queue class is a near clone of Queue.Queue. For
example:

from multiprocessing import Process, Queue

def f(q):
 q.put([42, None, 'hello'])

if __name__ == '__main__':
 q = Queue()
 p = Process(target=f, args=(q,))
 p.start()
 print q.get() # prints "[42, None, 'hello']"
 p.join()

Queues are thread and process safe.

Pipes

The Pipe() function returns a pair of connection objects connected by a
pipe which by default is duplex (two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):
 conn.send([42, None, 'hello'])
 conn.close()

if __name__ == '__main__':
 parent_conn, child_conn = Pipe()
 p = Process(target=f, args=(child_conn,))
 p.start()
 print parent_conn.recv() # prints "[42, None, 'hello']"
 p.join()

The two connection objects returned by Pipe() represent the two ends of
the pipe. Each connection object has send() and
recv() methods (among others). Note that data in a pipe
may become corrupted if two processes (or threads) try to read from or write
to the same end of the pipe at the same time. Of course there is no risk
of corruption from processes using different ends of the pipe at the same
time.

16.6.1.3. Synchronization between processes

multiprocessing contains equivalents of all the synchronization
primitives from threading. For instance one can use a lock to ensure
that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):
 l.acquire()
 print 'hello world', i
 l.release()

if __name__ == '__main__':
 lock = Lock()

 for num in range(10):
 Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all
mixed up.

16.6.1.4. Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to
avoid using shared state as far as possible. This is particularly true when
using multiple processes.

However, if you really do need to use some shared data then
multiprocessing provides a couple of ways of doing so.

Shared memory

Data can be stored in a shared memory map using Value or
Array. For example, the following code

from multiprocessing import Process, Value, Array

def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
 a[i] = -a[i]

if __name__ == '__main__':
 num = Value('d', 0.0)
 arr = Array('i', range(10))

 p = Process(target=f, args=(num, arr))
 p.start()
 p.join()

 print num.value
 print arr[:]

will print

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The 'd' and 'i' arguments used when creating num and arr are
typecodes of the kind used by the array module: 'd' indicates a
double precision float and 'i' indicates a signed integer. These shared
objects will be process and thread-safe.

For more flexibility in using shared memory one can use the
multiprocessing.sharedctypes module which supports the creation of
arbitrary ctypes objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which
holds Python objects and allows other processes to manipulate them using
proxies.

A manager returned by Manager() will support types list,
dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition,
Event, Queue, Value and Array. For
example,

from multiprocessing import Process, Manager

def f(d, l):
 d[1] = '1'
 d['2'] = 2
 d[0.25] = None
 l.reverse()

if __name__ == '__main__':
 manager = Manager()

 d = manager.dict()
 l = manager.list(range(10))

 p = Process(target=f, args=(d, l))
 p.start()
 p.join()

 print d
 print l

will print

{0.25: None, 1: '1', '2': 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects
because they can be made to support arbitrary object types. Also, a single
manager can be shared by processes on different computers over a network.
They are, however, slower than using shared memory.

16.6.1.5. Using a pool of workers

The Pool class represents a pool of worker
processes. It has methods which allows tasks to be offloaded to the worker
processes in a few different ways.

For example:

from multiprocessing import Pool

def f(x):
 return x*x

if __name__ == '__main__':
 pool = Pool(processes=4) # start 4 worker processes
 result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
 print result.get(timeout=1) # prints "100" unless your computer is *very* slow
 print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"

16.6.2. Reference

The multiprocessing package mostly replicates the API of the
threading module.

16.6.2.1. Process and exceptions

	
class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]])

	Process objects represent activity that is run in a separate process. The
Process class has equivalents of all the methods of
threading.Thread.

The constructor should always be called with keyword arguments. group
should always be None; it exists solely for compatibility with
threading.Thread. target is the callable object to be invoked by
the run() method. It defaults to None, meaning nothing is
called. name is the process name. By default, a unique name is constructed
of the form ‘Process-N1:N2:...:Nk‘ where N1,N2,...,Nk is a sequence of integers whose length
is determined by the generation of the process. args is the argument
tuple for the target invocation. kwargs is a dictionary of keyword
arguments for the target invocation. By default, no arguments are passed to
target.

If a subclass overrides the constructor, it must make sure it invokes the
base class constructor (Process.__init__()) before doing anything else
to the process.

	
run()

	Method representing the process’s activity.

You may override this method in a subclass. The standard run()
method invokes the callable object passed to the object’s constructor as
the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
start()

	Start the process’s activity.

This must be called at most once per process object. It arranges for the
object’s run() method to be invoked in a separate process.

	
join([timeout])

	Block the calling thread until the process whose join() method is
called terminates or until the optional timeout occurs.

If timeout is None then there is no timeout.

A process can be joined many times.

A process cannot join itself because this would cause a deadlock. It is
an error to attempt to join a process before it has been started.

	
name

	The process’s name.

The name is a string used for identification purposes only. It has no
semantics. Multiple processes may be given the same name. The initial
name is set by the constructor.

	
is_alive()

	Return whether the process is alive.

Roughly, a process object is alive from the moment the start()
method returns until the child process terminates.

	
daemon

	The process’s daemon flag, a Boolean value. This must be set before
start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child
processes.

Note that a daemonic process is not allowed to create child processes.
Otherwise a daemonic process would leave its children orphaned if it gets
terminated when its parent process exits. Additionally, these are not
Unix daemons or services, they are normal processes that will be
terminated (and not joined) if non-daemonic processes have exited.

In addition to the Threading.Thread API, Process objects
also support the following attributes and methods:

	
pid

	Return the process ID. Before the process is spawned, this will be
None.

	
exitcode

	The child’s exit code. This will be None if the process has not yet
terminated. A negative value -N indicates that the child was terminated
by signal N.

	
authkey

	The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a
random string using os.random().

When a Process object is created, it will inherit the
authentication key of its parent process, although this may be changed by
setting authkey to another byte string.

See Authentication keys.

	
terminate()

	Terminate the process. On Unix this is done using the SIGTERM signal;
on Windows TerminateProcess() is used. Note that exit handlers and
finally clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated –
they will simply become orphaned.

Warning

If this method is used when the associated process is using a pipe or
queue then the pipe or queue is liable to become corrupted and may
become unusable by other process. Similarly, if the process has
acquired a lock or semaphore etc. then terminating it is liable to
cause other processes to deadlock.

Note that the start(), join(), is_alive() and
exit_code methods should only be called by the process that created
the process object.

Example usage of some of the methods of Process:

>>> import multiprocessing, time, signal
>>> p = multiprocessing.Process(target=time.sleep, args=(1000,))
>>> print p, p.is_alive()
<Process(Process-1, initial)> False
>>> p.start()
>>> print p, p.is_alive()
<Process(Process-1, started)> True
>>> p.terminate()
>>> time.sleep(0.1)
>>> print p, p.is_alive()
<Process(Process-1, stopped[SIGTERM])> False
>>> p.exitcode == -signal.SIGTERM
True

	
exception multiprocessing.BufferTooShort

	Exception raised by Connection.recv_bytes_into() when the supplied
buffer object is too small for the message read.

If e is an instance of BufferTooShort then e.args[0] will give
the message as a byte string.

16.6.2.2. Pipes and Queues

When using multiple processes, one generally uses message passing for
communication between processes and avoids having to use any synchronization
primitives like locks.

For passing messages one can use Pipe() (for a connection between two
processes) or a queue (which allows multiple producers and consumers).

The Queue and JoinableQueue types are multi-producer,
multi-consumer FIFO queues modelled on the Queue.Queue class in the
standard library. They differ in that Queue lacks the
task_done() and join() methods introduced
into Python 2.5’s Queue.Queue class.

If you use JoinableQueue then you must call
JoinableQueue.task_done() for each task removed from the queue or else the
semaphore used to count the number of unfinished tasks may eventually overflow
raising an exception.

Note that one can also create a shared queue by using a manager object – see
Managers.

Note

multiprocessing uses the usual Queue.Empty and
Queue.Full exceptions to signal a timeout. They are not available in
the multiprocessing namespace so you need to import them from
Queue.

Warning

If a process is killed using Process.terminate() or os.kill()
while it is trying to use a Queue, then the data in the queue is
likely to become corrupted. This may cause any other processes to get an
exception when it tries to use the queue later on.

Warning

As mentioned above, if a child process has put items on a queue (and it has
not used JoinableQueue.cancel_join_thread()), then that process will
not terminate until all buffered items have been flushed to the pipe.

This means that if you try joining that process you may get a deadlock unless
you are sure that all items which have been put on the queue have been
consumed. Similarly, if the child process is non-daemonic then the parent
process may hang on exit when it tries to join all its non-daemonic children.

Note that a queue created using a manager does not have this issue. See
Programming guidelines.

For an example of the usage of queues for interprocess communication see
Examples.

	
multiprocessing.Pipe([duplex])

	Returns a pair (conn1, conn2) of Connection objects representing
the ends of a pipe.

If duplex is True (the default) then the pipe is bidirectional. If
duplex is False then the pipe is unidirectional: conn1 can only be
used for receiving messages and conn2 can only be used for sending
messages.

	
class multiprocessing.Queue([maxsize])

	Returns a process shared queue implemented using a pipe and a few
locks/semaphores. When a process first puts an item on the queue a feeder
thread is started which transfers objects from a buffer into the pipe.

The usual Queue.Empty and Queue.Full exceptions from the
standard library’s Queue module are raised to signal timeouts.

Queue implements all the methods of Queue.Queue except for
task_done() and join().

	
qsize()

	Return the approximate size of the queue. Because of
multithreading/multiprocessing semantics, this number is not reliable.

Note that this may raise NotImplementedError on Unix platforms like
Mac OS X where sem_getvalue() is not implemented.

	
empty()

	Return True if the queue is empty, False otherwise. Because of
multithreading/multiprocessing semantics, this is not reliable.

	
full()

	Return True if the queue is full, False otherwise. Because of
multithreading/multiprocessing semantics, this is not reliable.

	
put(item[, block[, timeout]])

	Put item into the queue. If the optional argument block is True
(the default) and timeout is None (the default), block if necessary until
a free slot is available. If timeout is a positive number, it blocks at
most timeout seconds and raises the Queue.Full exception if no
free slot was available within that time. Otherwise (block is
False), put an item on the queue if a free slot is immediately
available, else raise the Queue.Full exception (timeout is
ignored in that case).

	
put_nowait(item)

	Equivalent to put(item, False).

	
get([block[, timeout]])

	Remove and return an item from the queue. If optional args block is
True (the default) and timeout is None (the default), block if
necessary until an item is available. If timeout is a positive number,
it blocks at most timeout seconds and raises the Queue.Empty
exception if no item was available within that time. Otherwise (block is
False), return an item if one is immediately available, else raise the
Queue.Empty exception (timeout is ignored in that case).

	
get_nowait()

	
get_no_wait()

	Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in
Queue.Queue. These methods are usually unnecessary for most
code:

	
close()

	Indicate that no more data will be put on this queue by the current
process. The background thread will quit once it has flushed all buffered
data to the pipe. This is called automatically when the queue is garbage
collected.

	
join_thread()

	Join the background thread. This can only be used after close() has
been called. It blocks until the background thread exits, ensuring that
all data in the buffer has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it
will attempt to join the queue’s background thread. The process can call
cancel_join_thread() to make join_thread() do nothing.

	
cancel_join_thread()

	Prevent join_thread() from blocking. In particular, this prevents
the background thread from being joined automatically when the process
exits – see join_thread().

	
class multiprocessing.JoinableQueue([maxsize])

	JoinableQueue, a Queue subclass, is a queue which
additionally has task_done() and join() methods.

	
task_done()

	Indicate that a formerly enqueued task is complete. Used by queue consumer
threads. For each get() used to fetch a task, a subsequent
call to task_done() tells the queue that the processing on the task
is complete.

If a join() is currently blocking, it will resume when all
items have been processed (meaning that a task_done() call was
received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items
placed in the queue.

	
join()

	Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls
task_done() to indicate that the item was retrieved and all work on
it is complete. When the count of unfinished tasks drops to zero,
join() unblocks.

16.6.2.3. Miscellaneous

	
multiprocessing.active_children()

	Return list of all live children of the current process.

Calling this has the side affect of “joining” any processes which have
already finished.

	
multiprocessing.cpu_count()

	Return the number of CPUs in the system. May raise
NotImplementedError.

	
multiprocessing.current_process()

	Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

	
multiprocessing.freeze_support()

	Add support for when a program which uses multiprocessing has been
frozen to produce a Windows executable. (Has been tested with py2exe,
PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ ==
'__main__' line of the main module. For example:

from multiprocessing import Process, freeze_support

def f():
 print 'hello world!'

if __name__ == '__main__':
 freeze_support()
 Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen
executable will raise RuntimeError.

If the module is being run normally by the Python interpreter then
freeze_support() has no effect.

	
multiprocessing.set_executable()

	Sets the path of the Python interpreter to use when starting a child process.
(By default sys.executable is used). Embedders will probably need to
do some thing like

setExecutable(os.path.join(sys.exec_prefix, 'pythonw.exe'))

before they can create child processes. (Windows only)

Note

multiprocessing contains no analogues of
threading.active_count(), threading.enumerate(),
threading.settrace(), threading.setprofile(),
threading.Timer, or threading.local.

16.6.2.4. Connection Objects

Connection objects allow the sending and receiving of picklable objects or
strings. They can be thought of as message oriented connected sockets.

Connection objects usually created using Pipe() – see also
Listeners and Clients.

	
class multiprocessing.Connection

	
	
send(obj)

	Send an object to the other end of the connection which should be read
using recv().

The object must be picklable. Very large pickles (approximately 32 MB+,
though it depends on the OS) may raise a ValueError exception.

	
recv()

	Return an object sent from the other end of the connection using
send(). Raises EOFError if there is nothing left to receive
and the other end was closed.

	
fileno()

	Returns the file descriptor or handle used by the connection.

	
close()

	Close the connection.

This is called automatically when the connection is garbage collected.

	
poll([timeout])

	Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If
timeout is a number then this specifies the maximum time in seconds to
block. If timeout is None then an infinite timeout is used.

	
send_bytes(buffer[, offset[, size]])

	Send byte data from an object supporting the buffer interface as a
complete message.

If offset is given then data is read from that position in buffer. If
size is given then that many bytes will be read from buffer. Very large
buffers (approximately 32 MB+, though it depends on the OS) may raise a
ValueError exception

	
recv_bytes([maxlength])

	Return a complete message of byte data sent from the other end of the
connection as a string. Raises EOFError if there is nothing left
to receive and the other end has closed.

If maxlength is specified and the message is longer than maxlength
then IOError is raised and the connection will no longer be
readable.

	
recv_bytes_into(buffer[, offset])

	Read into buffer a complete message of byte data sent from the other end
of the connection and return the number of bytes in the message. Raises
EOFError if there is nothing left to receive and the other end was
closed.

buffer must be an object satisfying the writable buffer interface. If
offset is given then the message will be written into the buffer from
that position. Offset must be a non-negative integer less than the
length of buffer (in bytes).

If the buffer is too short then a BufferTooShort exception is
raised and the complete message is available as e.args[0] where e
is the exception instance.

For example:

>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, 'hello', None])
>>> b.recv()
[1, 'hello', None]
>>> b.send_bytes('thank you')
>>> a.recv_bytes()
'thank you'
>>> import array
>>> arr1 = array.array('i', range(5))
>>> arr2 = array.array('i', [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning

The Connection.recv() method automatically unpickles the data it
receives, which can be a security risk unless you can trust the process
which sent the message.

Therefore, unless the connection object was produced using Pipe() you
should only use the recv() and send()
methods after performing some sort of authentication. See
Authentication keys.

Warning

If a process is killed while it is trying to read or write to a pipe then
the data in the pipe is likely to become corrupted, because it may become
impossible to be sure where the message boundaries lie.

16.6.2.5. Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess
program as they are in a multithreaded program. See the documentation for
threading module.

Note that one can also create synchronization primitives by using a manager
object – see Managers.

	
class multiprocessing.BoundedSemaphore([value])

	A bounded semaphore object: a clone of threading.BoundedSemaphore.

(On Mac OS X, this is indistinguishable from Semaphore because
sem_getvalue() is not implemented on that platform).

	
class multiprocessing.Condition([lock])

	A condition variable: a clone of threading.Condition.

If lock is specified then it should be a Lock or RLock
object from multiprocessing.

	
class multiprocessing.Event

	A clone of threading.Event.
This method returns the state of the internal semaphore on exit, so it
will always return True except if a timeout is given and the operation
times out.

Changed in version 2.7: Previously, the method always returned None.

	
class multiprocessing.Lock

	A non-recursive lock object: a clone of threading.Lock.

	
class multiprocessing.RLock

	A recursive lock object: a clone of threading.RLock.

	
class multiprocessing.Semaphore([value])

	A semaphore object: a clone of threading.Semaphore.

Note

The acquire() method of BoundedSemaphore, Lock,
RLock and Semaphore has a timeout parameter not supported
by the equivalents in threading. The signature is
acquire(block=True, timeout=None) with keyword parameters being
acceptable. If block is True and timeout is not None then it
specifies a timeout in seconds. If block is False then timeout is
ignored.

On Mac OS X, sem_timedwait is unsupported, so calling acquire() with
a timeout will emulate that function’s behavior using a sleeping loop.

Note

If the SIGINT signal generated by Ctrl-C arrives while the main thread is
blocked by a call to BoundedSemaphore.acquire(), Lock.acquire(),
RLock.acquire(), Semaphore.acquire(), Condition.acquire()
or Condition.wait() then the call will be immediately interrupted and
KeyboardInterrupt will be raised.

This differs from the behaviour of threading where SIGINT will be
ignored while the equivalent blocking calls are in progress.

16.6.2.6. Shared ctypes Objects

It is possible to create shared objects using shared memory which can be
inherited by child processes.

	
multiprocessing.Value(typecode_or_type, *args[, lock])

	Return a ctypes object allocated from shared memory. By default the
return value is actually a synchronized wrapper for the object.

typecode_or_type determines the type of the returned object: it is either a
ctypes type or a one character typecode of the kind used by the array
module. *args is passed on to the constructor for the type.

If lock is True (the default) then a new lock object is created to
synchronize access to the value. If lock is a Lock or
RLock object then that will be used to synchronize access to the
value. If lock is False then access to the returned object will not be
automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword-only argument.

	
multiprocessing.Array(typecode_or_type, size_or_initializer, *, lock=True)

	Return a ctypes array allocated from shared memory. By default the return
value is actually a synchronized wrapper for the array.

typecode_or_type determines the type of the elements of the returned array:
it is either a ctypes type or a one character typecode of the kind used by
the array module. If size_or_initializer is an integer, then it
determines the length of the array, and the array will be initially zeroed.
Otherwise, size_or_initializer is a sequence which is used to initialize
the array and whose length determines the length of the array.

If lock is True (the default) then a new lock object is created to
synchronize access to the value. If lock is a Lock or
RLock object then that will be used to synchronize access to the
value. If lock is False then access to the returned object will not be
automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword only argument.

Note that an array of ctypes.c_char has value and raw
attributes which allow one to use it to store and retrieve strings.

16.6.2.6.1. The multiprocessing.sharedctypes module

The multiprocessing.sharedctypes module provides functions for allocating
ctypes objects from shared memory which can be inherited by child
processes.

Note

Although it is possible to store a pointer in shared memory remember that
this will refer to a location in the address space of a specific process.
However, the pointer is quite likely to be invalid in the context of a second
process and trying to dereference the pointer from the second process may
cause a crash.

	
multiprocessing.sharedctypes.RawArray(typecode_or_type, size_or_initializer)

	Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array:
it is either a ctypes type or a one character typecode of the kind used by
the array module. If size_or_initializer is an integer then it
determines the length of the array, and the array will be initially zeroed.
Otherwise size_or_initializer is a sequence which is used to initialize the
array and whose length determines the length of the array.

Note that setting and getting an element is potentially non-atomic – use
Array() instead to make sure that access is automatically synchronized
using a lock.

	
multiprocessing.sharedctypes.RawValue(typecode_or_type, *args)

	Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a
ctypes type or a one character typecode of the kind used by the array
module. *args is passed on to the constructor for the type.

Note that setting and getting the value is potentially non-atomic – use
Value() instead to make sure that access is automatically synchronized
using a lock.

Note that an array of ctypes.c_char has value and raw
attributes which allow one to use it to store and retrieve strings – see
documentation for ctypes.

	
multiprocessing.sharedctypes.Array(typecode_or_type, size_or_initializer, *args[, lock])

	The same as RawArray() except that depending on the value of lock a
process-safe synchronization wrapper may be returned instead of a raw ctypes
array.

If lock is True (the default) then a new lock object is created to
synchronize access to the value. If lock is a Lock or
RLock object then that will be used to synchronize access to the
value. If lock is False then access to the returned object will not be
automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword-only argument.

	
multiprocessing.sharedctypes.Value(typecode_or_type, *args[, lock])

	The same as RawValue() except that depending on the value of lock a
process-safe synchronization wrapper may be returned instead of a raw ctypes
object.

If lock is True (the default) then a new lock object is created to
synchronize access to the value. If lock is a Lock or
RLock object then that will be used to synchronize access to the
value. If lock is False then access to the returned object will not be
automatically protected by a lock, so it will not necessarily be
“process-safe”.

Note that lock is a keyword-only argument.

	
multiprocessing.sharedctypes.copy(obj)

	Return a ctypes object allocated from shared memory which is a copy of the
ctypes object obj.

	
multiprocessing.sharedctypes.synchronized(obj[, lock])

	Return a process-safe wrapper object for a ctypes object which uses lock to
synchronize access. If lock is None (the default) then a
multiprocessing.RLock object is created automatically.

A synchronized wrapper will have two methods in addition to those of the
object it wraps: get_obj() returns the wrapped object and
get_lock() returns the lock object used for synchronization.

Note that accessing the ctypes object through the wrapper can be a lot slower
than accessing the raw ctypes object.

The table below compares the syntax for creating shared ctypes objects from
shared memory with the normal ctypes syntax. (In the table MyStruct is some
subclass of ctypes.Structure.)

	ctypes
	sharedctypes using type
	sharedctypes using typecode

	c_double(2.4)
	RawValue(c_double, 2.4)
	RawValue(‘d’, 2.4)

	MyStruct(4, 6)
	RawValue(MyStruct, 4, 6)
	

	(c_short * 7)()
	RawArray(c_short, 7)
	RawArray(‘h’, 7)

	(c_int * 3)(9, 2, 8)
	RawArray(c_int, (9, 2, 8))
	RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child
process:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

class Point(Structure):
 fields = [('x', c_double), ('y', c_double)]

def modify(n, x, s, A):
 n.value **= 2
 x.value **= 2
 s.value = s.value.upper()
 for a in A:
 a.x **= 2
 a.y **= 2

if __name__ == '__main__':
 lock = Lock()

 n = Value('i', 7)
 x = Value(c_double, 1.0/3.0, lock=False)
 s = Array('c', 'hello world', lock=lock)
 A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

 p = Process(target=modify, args=(n, x, s, A))
 p.start()
 p.join()

 print n.value
 print x.value
 print s.value
 print [(a.x, a.y) for a in A]

The results printed are

49
0.1111111111111111
HELLO WORLD
[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

16.6.2.7. Managers

Managers provide a way to create data which can be shared between different
processes. A manager object controls a server process which manages shared
objects. Other processes can access the shared objects by using proxies.

	
multiprocessing.Manager()

	Returns a started SyncManager object which
can be used for sharing objects between processes. The returned manager
object corresponds to a spawned child process and has methods which will
create shared objects and return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or
their parent process exits. The manager classes are defined in the
multiprocessing.managers module:

	
class multiprocessing.managers.BaseManager([address[, authkey]])

	Create a BaseManager object.

Once created one should call start() or get_server().serve_forever() to ensure
that the manager object refers to a started manager process.

address is the address on which the manager process listens for new
connections. If address is None then an arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity
of incoming connections to the server process. If authkey is None then
current_process().authkey. Otherwise authkey is used and it
must be a string.

	
start([initializer[, initargs]])

	Start a subprocess to start the manager. If initializer is not None
then the subprocess will call initializer(*initargs) when it starts.

	
get_server()

	Returns a Server object which represents the actual server under
the control of the Manager. The Server object supports the
serve_forever() method:

>>> from multiprocessing.managers import BaseManager
>>> manager = BaseManager(address=('', 50000), authkey='abc')
>>> server = manager.get_server()
>>> server.serve_forever()

Server additionally has an address attribute.

	
connect()

	Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager
>>> m = BaseManager(address=('127.0.0.1', 5000), authkey='abc')
>>> m.connect()

	
shutdown()

	Stop the process used by the manager. This is only available if
start() has been used to start the server process.

This can be called multiple times.

	
register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])

	A classmethod which can be used for registering a type or callable with
the manager class.

typeid is a “type identifier” which is used to identify a particular
type of shared object. This must be a string.

callable is a callable used for creating objects for this type
identifier. If a manager instance will be created using the
from_address() classmethod or if the create_method argument is
False then this can be left as None.

proxytype is a subclass of BaseProxy which is used to create
proxies for shared objects with this typeid. If None then a proxy
class is created automatically.

exposed is used to specify a sequence of method names which proxies for
this typeid should be allowed to access using
BaseProxy._callMethod(). (If exposed is None then
proxytype._exposed_ is used instead if it exists.) In the case
where no exposed list is specified, all “public methods” of the shared
object will be accessible. (Here a “public method” means any attribute
which has a __call__() method and whose name does not begin with
'_'.)

method_to_typeid is a mapping used to specify the return type of those
exposed methods which should return a proxy. It maps method names to
typeid strings. (If method_to_typeid is None then
proxytype._method_to_typeid_ is used instead if it exists.) If a
method’s name is not a key of this mapping or if the mapping is None
then the object returned by the method will be copied by value.

create_method determines whether a method should be created with name
typeid which can be used to tell the server process to create a new
shared object and return a proxy for it. By default it is True.

BaseManager instances also have one read-only property:

	
address

	The address used by the manager.

	
class multiprocessing.managers.SyncManager

	A subclass of BaseManager which can be used for the synchronization
of processes. Objects of this type are returned by
multiprocessing.Manager().

It also supports creation of shared lists and dictionaries.

	
BoundedSemaphore([value])

	Create a shared threading.BoundedSemaphore object and return a
proxy for it.

	
Condition([lock])

	Create a shared threading.Condition object and return a proxy for
it.

If lock is supplied then it should be a proxy for a
threading.Lock or threading.RLock object.

	
Event()

	Create a shared threading.Event object and return a proxy for it.

	
Lock()

	Create a shared threading.Lock object and return a proxy for it.

	
Namespace()

	Create a shared Namespace object and return a proxy for it.

	
Queue([maxsize])

	Create a shared Queue.Queue object and return a proxy for it.

	
RLock()

	Create a shared threading.RLock object and return a proxy for it.

	
Semaphore([value])

	Create a shared threading.Semaphore object and return a proxy for
it.

	
Array(typecode, sequence)

	Create an array and return a proxy for it.

	
Value(typecode, value)

	Create an object with a writable value attribute and return a proxy
for it.

	
dict()

	
dict(mapping)

	
dict(sequence)

	Create a shared dict object and return a proxy for it.

	
list()

	
list(sequence)

	Create a shared list object and return a proxy for it.

Note

Modifications to mutable values or items in dict and list proxies will not
be propagated through the manager, because the proxy has no way of knowing
when its values or items are modified. To modify such an item, you can
re-assign the modified object to the container proxy:

create a list proxy and append a mutable object (a dictionary)
lproxy = manager.list()
lproxy.append({})
now mutate the dictionary
d = lproxy[0]
d['a'] = 1
d['b'] = 2
at this point, the changes to d are not yet synced, but by
reassigning the dictionary, the proxy is notified of the change
lproxy[0] = d

16.6.2.7.1. Namespace objects

A namespace object has no public methods, but does have writable attributes.
Its representation shows the values of its attributes.

However, when using a proxy for a namespace object, an attribute beginning with
'_' will be an attribute of the proxy and not an attribute of the referent:

>>> manager = multiprocessing.Manager()
>>> Global = manager.Namespace()
>>> Global.x = 10
>>> Global.y = 'hello'
>>> Global._z = 12.3 # this is an attribute of the proxy
>>> print Global
Namespace(x=10, y='hello')

16.6.2.7.2. Customized managers

To create one’s own manager, one creates a subclass of BaseManager and
use the register() classmethod to register new types or
callables with the manager class. For example:

from multiprocessing.managers import BaseManager

class MathsClass(object):
 def add(self, x, y):
 return x + y
 def mul(self, x, y):
 return x * y

class MyManager(BaseManager):
 pass

MyManager.register('Maths', MathsClass)

if __name__ == '__main__':
 manager = MyManager()
 manager.start()
 maths = manager.Maths()
 print maths.add(4, 3) # prints 7
 print maths.mul(7, 8) # prints 56

16.6.2.7.3. Using a remote manager

It is possible to run a manager server on one machine and have clients use it
from other machines (assuming that the firewalls involved allow it).

Running the following commands creates a server for a single shared queue which
remote clients can access:

>>> from multiprocessing.managers import BaseManager
>>> import Queue
>>> queue = Queue.Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue', callable=lambda:queue)
>>> m = QueueManager(address=('', 50000), authkey='abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.put('hello')

Another client can also use it:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.get()
'hello'

Local processes can also access that queue, using the code from above on the
client to access it remotely:

>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super(Worker, self).__init__()
... def run(self):
... self.q.put('local hello')
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register('get_queue', callable=lambda: queue)
>>> m = QueueManager(address=('', 50000), authkey='abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()

16.6.2.8. Proxy Objects

A proxy is an object which refers to a shared object which lives (presumably)
in a different process. The shared object is said to be the referent of the
proxy. Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent
(although not every method of the referent will necessarily be available through
the proxy). A proxy can usually be used in most of the same ways that its
referent can:

>>> from multiprocessing import Manager
>>> manager = Manager()
>>> l = manager.list([i*i for i in range(10)])
>>> print l
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print repr(l)
<ListProxy object, typeid 'list' at 0x...>
>>> l[4]
16
>>> l[2:5]
[4, 9, 16]

Notice that applying str() to a proxy will return the representation of
the referent, whereas applying repr() will return the representation of
the proxy.

An important feature of proxy objects is that they are picklable so they can be
passed between processes. Note, however, that if a proxy is sent to the
corresponding manager’s process then unpickling it will produce the referent
itself. This means, for example, that one shared object can contain a second:

>>> a = manager.list()
>>> b = manager.list()
>>> a.append(b) # referent of a now contains referent of b
>>> print a, b
[[]] []
>>> b.append('hello')
>>> print a, b
[['hello']] ['hello']

Note

The proxy types in multiprocessing do nothing to support comparisons
by value. So, for instance, we have:

>>> manager.list([1,2,3]) == [1,2,3]
False

One should just use a copy of the referent instead when making comparisons.

	
class multiprocessing.managers.BaseProxy

	Proxy objects are instances of subclasses of BaseProxy.

	
_callmethod(methodname[, args[, kwds]])

	Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to
a new shared object – see documentation for the method_to_typeid
argument of BaseManager.register().

If an exception is raised by the call, then then is re-raised by
_callmethod(). If some other exception is raised in the manager’s
process then this is converted into a RemoteError exception and is
raised by _callmethod().

Note in particular that an exception will be raised if methodname has
not been exposed

An example of the usage of _callmethod():

>>> l = manager.list(range(10))
>>> l._callmethod('__len__')
10
>>> l._callmethod('__getslice__', (2, 7)) # equiv to `l[2:7]`
[2, 3, 4, 5, 6]
>>> l._callmethod('__getitem__', (20,)) # equiv to `l[20]`
Traceback (most recent call last):
...
IndexError: list index out of range

	
_getvalue()

	Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

	
__repr__()

	Return a representation of the proxy object.

	
__str__()

	Return the representation of the referent.

16.6.2.8.1. Cleanup

A proxy object uses a weakref callback so that when it gets garbage collected it
deregisters itself from the manager which owns its referent.

A shared object gets deleted from the manager process when there are no longer
any proxies referring to it.

16.6.2.9. Process Pools

One can create a pool of processes which will carry out tasks submitted to it
with the Pool class.

	
class multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])

	A process pool object which controls a pool of worker processes to which jobs
can be submitted. It supports asynchronous results with timeouts and
callbacks and has a parallel map implementation.

processes is the number of worker processes to use. If processes is
None then the number returned by cpu_count() is used. If
initializer is not None then each worker process will call
initializer(*initargs) when it starts.

New in version 2.7: maxtasksperchild is the number of tasks a worker process can complete
before it will exit and be replaced with a fresh worker process, to enable
unused resources to be freed. The default maxtasksperchild is None, which
means worker processes will live as long as the pool.

Note

Worker processes within a Pool typically live for the complete
duration of the Pool’s work queue. A frequent pattern found in other
systems (such as Apache, mod_wsgi, etc) to free resources held by
workers is to allow a worker within a pool to complete only a set
amount of work before being exiting, being cleaned up and a new
process spawned to replace the old one. The maxtasksperchild
argument to the Pool exposes this ability to the end user.

	
apply(func[, args[, kwds]])

	Equivalent of the apply() built-in function. It blocks till the
result is ready. Given this blocks, apply_async() is better suited
for performing work in parallel. Additionally, the passed
in function is only executed in one of the workers of the pool.

	
apply_async(func[, args[, kwds[, callback]]])

	A variant of the apply() method which returns a result object.

If callback is specified then it should be a callable which accepts a
single argument. When the result becomes ready callback is applied to
it (unless the call failed). callback should complete immediately since
otherwise the thread which handles the results will get blocked.

	
map(func, iterable[, chunksize])

	A parallel equivalent of the map() built-in function (it supports only
one iterable argument though). It blocks till the result is ready.

This method chops the iterable into a number of chunks which it submits to
the process pool as separate tasks. The (approximate) size of these
chunks can be specified by setting chunksize to a positive integer.

	
map_async(func, iterable[, chunksize[, callback]])

	A variant of the map() method which returns a result object.

If callback is specified then it should be a callable which accepts a
single argument. When the result becomes ready callback is applied to
it (unless the call failed). callback should complete immediately since
otherwise the thread which handles the results will get blocked.

	
imap(func, iterable[, chunksize])

	An equivalent of itertools.imap().

The chunksize argument is the same as the one used by the map()
method. For very long iterables using a large value for chunksize can
make make the job complete much faster than using the default value of
1.

Also if chunksize is 1 then the next() method of the iterator
returned by the imap() method has an optional timeout parameter:
next(timeout) will raise multiprocessing.TimeoutError if the
result cannot be returned within timeout seconds.

	
imap_unordered(func, iterable[, chunksize])

	The same as imap() except that the ordering of the results from the
returned iterator should be considered arbitrary. (Only when there is
only one worker process is the order guaranteed to be “correct”.)

	
close()

	Prevents any more tasks from being submitted to the pool. Once all the
tasks have been completed the worker processes will exit.

	
terminate()

	Stops the worker processes immediately without completing outstanding
work. When the pool object is garbage collected terminate() will be
called immediately.

	
join()

	Wait for the worker processes to exit. One must call close() or
terminate() before using join().

	
class multiprocessing.pool.AsyncResult

	The class of the result returned by Pool.apply_async() and
Pool.map_async().

	
get([timeout])

	Return the result when it arrives. If timeout is not None and the
result does not arrive within timeout seconds then
multiprocessing.TimeoutError is raised. If the remote call raised
an exception then that exception will be reraised by get().

	
wait([timeout])

	Wait until the result is available or until timeout seconds pass.

	
ready()

	Return whether the call has completed.

	
successful()

	Return whether the call completed without raising an exception. Will
raise AssertionError if the result is not ready.

The following example demonstrates the use of a pool:

from multiprocessing import Pool

def f(x):
 return x*x

if __name__ == '__main__':
 pool = Pool(processes=4) # start 4 worker processes

 result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
 print result.get(timeout=1) # prints "100" unless your computer is *very* slow

 print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"

 it = pool.imap(f, range(10))
 print it.next() # prints "0"
 print it.next() # prints "1"
 print it.next(timeout=1) # prints "4" unless your computer is *very* slow

 import time
 result = pool.apply_async(time.sleep, (10,))
 print result.get(timeout=1) # raises TimeoutError

16.6.2.10. Listeners and Clients

Usually message passing between processes is done using queues or by using
Connection objects returned by Pipe().

However, the multiprocessing.connection module allows some extra
flexibility. It basically gives a high level message oriented API for dealing
with sockets or Windows named pipes, and also has support for digest
authentication using the hmac module.

	
multiprocessing.connection.deliver_challenge(connection, authkey)

	Send a randomly generated message to the other end of the connection and wait
for a reply.

If the reply matches the digest of the message using authkey as the key
then a welcome message is sent to the other end of the connection. Otherwise
AuthenticationError is raised.

	
multiprocessing.connection.answerChallenge(connection, authkey)

	Receive a message, calculate the digest of the message using authkey as the
key, and then send the digest back.

If a welcome message is not received, then AuthenticationError is
raised.

	
multiprocessing.connection.Client(address[, family[, authenticate[, authkey]]])

	Attempt to set up a connection to the listener which is using address
address, returning a Connection.

The type of the connection is determined by family argument, but this can
generally be omitted since it can usually be inferred from the format of
address. (See Address Formats)

If authenticate is True or authkey is a string then digest
authentication is used. The key used for authentication will be either
authkey or current_process().authkey) if authkey is None.
If authentication fails then AuthenticationError is raised. See
Authentication keys.

	
class multiprocessing.connection.Listener([address[, family[, backlog[, authenticate[, authkey]]]]])

	A wrapper for a bound socket or Windows named pipe which is ‘listening’ for
connections.

address is the address to be used by the bound socket or named pipe of the
listener object.

Note

If an address of ‘0.0.0.0’ is used, the address will not be a connectable
end point on Windows. If you require a connectable end-point,
you should use ‘127.0.0.1’.

family is the type of socket (or named pipe) to use. This can be one of
the strings 'AF_INET' (for a TCP socket), 'AF_UNIX' (for a Unix
domain socket) or 'AF_PIPE' (for a Windows named pipe). Of these only
the first is guaranteed to be available. If family is None then the
family is inferred from the format of address. If address is also
None then a default is chosen. This default is the family which is
assumed to be the fastest available. See
Address Formats. Note that if family is
'AF_UNIX' and address is None then the socket will be created in a
private temporary directory created using tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed
to the listen() method of the socket once it has been bound.

If authenticate is True (False by default) or authkey is not
None then digest authentication is used.

If authkey is a string then it will be used as the authentication key;
otherwise it must be None.

If authkey is None and authenticate is True then
current_process().authkey is used as the authentication key. If
authkey is None and authenticate is False then no
authentication is done. If authentication fails then
AuthenticationError is raised. See Authentication keys.

	
accept()

	Accept a connection on the bound socket or named pipe of the listener
object and return a Connection object. If authentication is
attempted and fails, then AuthenticationError is raised.

	
close()

	Close the bound socket or named pipe of the listener object. This is
called automatically when the listener is garbage collected. However it
is advisable to call it explicitly.

Listener objects have the following read-only properties:

	
address

	The address which is being used by the Listener object.

	
last_accepted

	The address from which the last accepted connection came. If this is
unavailable then it is None.

The module defines two exceptions:

	
exception multiprocessing.connection.AuthenticationError

	Exception raised when there is an authentication error.

Examples

The following server code creates a listener which uses 'secret password' as
an authentication key. It then waits for a connection and sends some data to
the client:

from multiprocessing.connection import Listener
from array import array

address = ('localhost', 6000) # family is deduced to be 'AF_INET'
listener = Listener(address, authkey='secret password')

conn = listener.accept()
print 'connection accepted from', listener.last_accepted

conn.send([2.25, None, 'junk', float])

conn.send_bytes('hello')

conn.send_bytes(array('i', [42, 1729]))

conn.close()
listener.close()

The following code connects to the server and receives some data from the
server:

from multiprocessing.connection import Client
from array import array

address = ('localhost', 6000)
conn = Client(address, authkey='secret password')

print conn.recv() # => [2.25, None, 'junk', float]

print conn.recv_bytes() # => 'hello'

arr = array('i', [0, 0, 0, 0, 0])
print conn.recv_bytes_into(arr) # => 8
print arr # => array('i', [42, 1729, 0, 0, 0])

conn.close()

16.6.2.10.1. Address Formats

	An 'AF_INET' address is a tuple of the form (hostname, port) where
hostname is a string and port is an integer.

	An 'AF_UNIX' address is a string representing a filename on the
filesystem.

	
	An 'AF_PIPE' address is a string of the form

	r'\\.\pipe\PipeName'. To use Client() to connect to a named
pipe on a remote computer called ServerName one should use an address of the
form r'\\ServerName\pipe\PipeName' instead.

Note that any string beginning with two backslashes is assumed by default to be
an 'AF_PIPE' address rather than an 'AF_UNIX' address.

16.6.2.11. Authentication keys

When one uses Connection.recv(), the data received is automatically
unpickled. Unfortunately unpickling data from an untrusted source is a security
risk. Therefore Listener and Client() use the hmac module
to provide digest authentication.

An authentication key is a string which can be thought of as a password: once a
connection is established both ends will demand proof that the other knows the
authentication key. (Demonstrating that both ends are using the same key does
not involve sending the key over the connection.)

If authentication is requested but do authentication key is specified then the
return value of current_process().authkey is used (see
Process). This value will automatically inherited by
any Process object that the current process creates.
This means that (by default) all processes of a multi-process program will share
a single authentication key which can be used when setting up connections
between themselves.

Suitable authentication keys can also be generated by using os.urandom().

16.6.2.12. Logging

Some support for logging is available. Note, however, that the logging
package does not use process shared locks so it is possible (depending on the
handler type) for messages from different processes to get mixed up.

	
multiprocessing.get_logger()

	Returns the logger used by multiprocessing. If necessary, a new one
will be created.

When first created the logger has level logging.NOTSET and no
default handler. Messages sent to this logger will not by default propagate
to the root logger.

Note that on Windows child processes will only inherit the level of the
parent process’s logger – any other customization of the logger will not be
inherited.

	
multiprocessing.log_to_stderr()

	This function performs a call to get_logger() but in addition to
returning the logger created by get_logger, it adds a handler which sends
output to sys.stderr using format
'[%(levelname)s/%(processName)s] %(message)s'.

Below is an example session with logging turned on:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../listener-...'
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0

In addition to having these two logging functions, the multiprocessing also
exposes two additional logging level attributes. These are SUBWARNING
and SUBDEBUG. The table below illustrates where theses fit in the
normal level hierarchy.

	Level
	Numeric value

	SUBWARNING
	25

	SUBDEBUG
	5

For a full table of logging levels, see the logging module.

These additional logging levels are used primarily for certain debug messages
within the multiprocessing module. Below is the same example as above, except
with SUBDEBUG enabled:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(multiprocessing.SUBDEBUG)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../pymp-djGBXN/listener-...'
>>> del m
[SUBDEBUG/MainProcess] finalizer calling ...
[INFO/MainProcess] sending shutdown message to manager
[DEBUG/SyncManager-...] manager received shutdown message
[SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
[SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
[SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
[SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
[INFO/SyncManager-...] manager exiting with exitcode 0

16.6.2.13. The multiprocessing.dummy module

multiprocessing.dummy replicates the API of multiprocessing but is
no more than a wrapper around the threading module.

16.6.3. Programming guidelines

There are certain guidelines and idioms which should be adhered to when using
multiprocessing.

16.6.3.1. All platforms

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data
between processes.

It is probably best to stick to using queues or pipes for communication
between processes rather than using the lower level synchronization
primitives from the threading module.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it
with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

On Unix when a process finishes but has not been joined it becomes a zombie.
There should never be very many because each time a new process starts (or
active_children() is called) all completed processes which have not
yet been joined will be joined. Also calling a finished process’s
Process.is_alive() will join the process. Even so it is probably good
practice to explicitly join all the processes that you start.

Better to inherit than pickle/unpickle

On Windows many types from multiprocessing need to be picklable so
that child processes can use them. However, one should generally avoid
sending shared objects to other processes using pipes or queues. Instead
you should arrange the program so that a process which need access to a
shared resource created elsewhere can inherit it from an ancestor process.

Avoid terminating processes

Using the Process.terminate() method to stop a process is liable to
cause any shared resources (such as locks, semaphores, pipes and queues)
currently being used by the process to become broken or unavailable to other
processes.

Therefore it is probably best to only consider using
Process.terminate() on processes which never use any shared resources.

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before
terminating until all the buffered items are fed by the “feeder” thread to
the underlying pipe. (The child process can call the
Queue.cancel_join_thread() method of the queue to avoid this behaviour.)

This means that whenever you use a queue you need to make sure that all
items which have been put on the queue will eventually be removed before the
process is joined. Otherwise you cannot be sure that processes which have
put items on the queue will terminate. Remember also that non-daemonic
processes will be automatically be joined.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):
 q.put('X' * 1000000)

if __name__ == '__main__':
 queue = Queue()
 p = Process(target=f, args=(queue,))
 p.start()
 p.join() # this deadlocks
 obj = queue.get()

A fix here would be to swap the last two lines round (or simply remove the
p.join() line).

Explicitly pass resources to child processes

On Unix a child process can make use of a shared resource created in a
parent process using a global resource. However, it is better to pass the
object as an argument to the constructor for the child process.

Apart from making the code (potentially) compatible with Windows this also
ensures that as long as the child process is still alive the object will not
be garbage collected in the parent process. This might be important if some
resource is freed when the object is garbage collected in the parent
process.

So for instance

from multiprocessing import Process, Lock

def f():
 ... do something using "lock" ...

if __name__ == '__main__':
 lock = Lock()
 for i in range(10):
 Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):
 ... do something using "l" ...

if __name__ == '__main__':
 lock = Lock()
 for i in range(10):
 Process(target=f, args=(lock,)).start()

Beware replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted
in issues with processes-in-processes. This has been changed to:

sys.stdin.close()
sys.stdin = open(os.devnull)

Which solves the fundamental issue of processes colliding with each other
resulting in a bad file descriptor error, but introduces a potential danger
to applications which replace sys.stdin() with a “file-like object”
with output buffering. This danger is that if multiple processes call
close() on this file-like object, it could result in the same
data being flushed to the object multiple times, resulting in corruption.

If you write a file-like object and implement your own caching, you can
make it fork-safe by storing the pid whenever you append to the cache,
and discarding the cache when the pid changes. For example:

@property
def cache(self):
 pid = os.getpid()
 if pid != self._pid:
 self._pid = pid
 self._cache = []
 return self._cache

For more information, see issue 5155 [http://bugs.python.org/issue5155], issue 5313 [http://bugs.python.org/issue5313] and issue 5331 [http://bugs.python.org/issue5331]

16.6.3.2. Windows

Since Windows lacks os.fork() it has a few extra restrictions:

More picklability

Ensure that all arguments to Process.__init__() are picklable. This
means, in particular, that bound or unbound methods cannot be used directly
as the target argument on Windows — just define a function and use
that instead.

Also, if you subclass Process then make sure that instances will be
picklable when the Process.start() method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global
variable, then the value it sees (if any) may not be the same as the value
in the parent process at the time that Process.start() was called.

However, global variables which are just module level constants cause no
problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python
interpreter without causing unintended side effects (such a starting a new
process).

For example, under Windows running the following module would fail with a
RuntimeError:

from multiprocessing import Process

def foo():
 print 'hello'

p = Process(target=foo)
p.start()

Instead one should protect the “entry point” of the program by using if
__name__ == '__main__': as follows:

from multiprocessing import Process, freeze_support

def foo():
 print 'hello'

if __name__ == '__main__':
 freeze_support()
 p = Process(target=foo)
 p.start()

(The freeze_support() line can be omitted if the program will be run
normally instead of frozen.)

This allows the newly spawned Python interpreter to safely import the module
and then run the module’s foo() function.

Similar restrictions apply if a pool or manager is created in the main
module.

16.6.4. Examples

Demonstration of how to create and use customized managers and proxies:

#
This module shows how to use arbitrary callables with a subclass of
`BaseManager`.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator

##

class Foo(object):
 def f(self):
 print 'you called Foo.f()'
 def g(self):
 print 'you called Foo.g()'
 def _h(self):
 print 'you called Foo._h()'

A simple generator function
def baz():
 for i in xrange(10):
 yield i*i

Proxy type for generator objects
class GeneratorProxy(BaseProxy):
 exposed = ('next', '__next__')
 def __iter__(self):
 return self
 def next(self):
 return self._callmethod('next')
 def __next__(self):
 return self._callmethod('__next__')

Function to return the operator module
def get_operator_module():
 return operator

##

class MyManager(BaseManager):
 pass

register the Foo class; make `f()` and `g()` accessible via proxy
MyManager.register('Foo1', Foo)

register the Foo class; make `g()` and `_h()` accessible via proxy
MyManager.register('Foo2', Foo, exposed=('g', '_h'))

register the generator function baz; use `GeneratorProxy` to make proxies
MyManager.register('baz', baz, proxytype=GeneratorProxy)

register get_operator_module(); make public functions accessible via proxy
MyManager.register('operator', get_operator_module)

##

def test():
 manager = MyManager()
 manager.start()

 print '-' * 20

 f1 = manager.Foo1()
 f1.f()
 f1.g()
 assert not hasattr(f1, '_h')
 assert sorted(f1._exposed_) == sorted(['f', 'g'])

 print '-' * 20

 f2 = manager.Foo2()
 f2.g()
 f2._h()
 assert not hasattr(f2, 'f')
 assert sorted(f2._exposed_) == sorted(['g', '_h'])

 print '-' * 20

 it = manager.baz()
 for i in it:
 print '<%d>' % i,
 print

 print '-' * 20

 op = manager.operator()
 print 'op.add(23, 45) =', op.add(23, 45)
 print 'op.pow(2, 94) =', op.pow(2, 94)
 print 'op.getslice(range(10), 2, 6) =', op.getslice(range(10), 2, 6)
 print 'op.repeat(range(5), 3) =', op.repeat(range(5), 3)
 print 'op._exposed_ =', op._exposed_

##

if __name__ == '__main__':
 freeze_support()
 test()

Using Pool:

#
A test of `multiprocessing.Pool` class
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import multiprocessing
import time
import random
import sys

#
Functions used by test code
#

def calculate(func, args):
 result = func(*args)
 return '%s says that %s%s = %s' % (
 multiprocessing.current_process().name,
 func.__name__, args, result
)

def calculatestar(args):
 return calculate(*args)

def mul(a, b):
 time.sleep(0.5*random.random())
 return a * b

def plus(a, b):
 time.sleep(0.5*random.random())
 return a + b

def f(x):
 return 1.0 / (x-5.0)

def pow3(x):
 return x**3

def noop(x):
 pass

#
Test code
#

def test():
 print 'cpu_count() = %d\n' % multiprocessing.cpu_count()

 #
 # Create pool
 #

 PROCESSES = 4
 print 'Creating pool with %d processes\n' % PROCESSES
 pool = multiprocessing.Pool(PROCESSES)
 print 'pool = %s' % pool
 print

 #
 # Tests
 #

 TASKS = [(mul, (i, 7)) for i in range(10)] + \
 [(plus, (i, 8)) for i in range(10)]

 results = [pool.apply_async(calculate, t) for t in TASKS]
 imap_it = pool.imap(calculatestar, TASKS)
 imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

 print 'Ordered results using pool.apply_async():'
 for r in results:
 print '\t', r.get()
 print

 print 'Ordered results using pool.imap():'
 for x in imap_it:
 print '\t', x
 print

 print 'Unordered results using pool.imap_unordered():'
 for x in imap_unordered_it:
 print '\t', x
 print

 print 'Ordered results using pool.map() --- will block till complete:'
 for x in pool.map(calculatestar, TASKS):
 print '\t', x
 print

 #
 # Simple benchmarks
 #

 N = 100000
 print 'def pow3(x): return x**3'

 t = time.time()
 A = map(pow3, xrange(N))
 print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \
 (N, time.time() - t)

 t = time.time()
 B = pool.map(pow3, xrange(N))
 print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \
 (N, time.time() - t)

 t = time.time()
 C = list(pool.imap(pow3, xrange(N), chunksize=N//8))
 print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \
 ' seconds' % (N, N//8, time.time() - t)

 assert A == B == C, (len(A), len(B), len(C))
 print

 L = [None] * 1000000
 print 'def noop(x): pass'
 print 'L = [None] * 1000000'

 t = time.time()
 A = map(noop, L)
 print '\tmap(noop, L):\n\t\t%s seconds' % \
 (time.time() - t)

 t = time.time()
 B = pool.map(noop, L)
 print '\tpool.map(noop, L):\n\t\t%s seconds' % \
 (time.time() - t)

 t = time.time()
 C = list(pool.imap(noop, L, chunksize=len(L)//8))
 print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \
 (len(L)//8, time.time() - t)

 assert A == B == C, (len(A), len(B), len(C))
 print

 del A, B, C, L

 #
 # Test error handling
 #

 print 'Testing error handling:'

 try:
 print pool.apply(f, (5,))
 except ZeroDivisionError:
 print '\tGot ZeroDivisionError as expected from pool.apply()'
 else:
 raise AssertionError('expected ZeroDivisionError')

 try:
 print pool.map(f, range(10))
 except ZeroDivisionError:
 print '\tGot ZeroDivisionError as expected from pool.map()'
 else:
 raise AssertionError('expected ZeroDivisionError')

 try:
 print list(pool.imap(f, range(10)))
 except ZeroDivisionError:
 print '\tGot ZeroDivisionError as expected from list(pool.imap())'
 else:
 raise AssertionError('expected ZeroDivisionError')

 it = pool.imap(f, range(10))
 for i in range(10):
 try:
 x = it.next()
 except ZeroDivisionError:
 if i == 5:
 pass
 except StopIteration:
 break
 else:
 if i == 5:
 raise AssertionError('expected ZeroDivisionError')

 assert i == 9
 print '\tGot ZeroDivisionError as expected from IMapIterator.next()'
 print

 #
 # Testing timeouts
 #

 print 'Testing ApplyResult.get() with timeout:',
 res = pool.apply_async(calculate, TASKS[0])
 while 1:
 sys.stdout.flush()
 try:
 sys.stdout.write('\n\t%s' % res.get(0.02))
 break
 except multiprocessing.TimeoutError:
 sys.stdout.write('.')
 print
 print

 print 'Testing IMapIterator.next() with timeout:',
 it = pool.imap(calculatestar, TASKS)
 while 1:
 sys.stdout.flush()
 try:
 sys.stdout.write('\n\t%s' % it.next(0.02))
 except StopIteration:
 break
 except multiprocessing.TimeoutError:
 sys.stdout.write('.')
 print
 print

 #
 # Testing callback
 #

 print 'Testing callback:'

 A = []
 B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

 r = pool.apply_async(mul, (7, 8), callback=A.append)
 r.wait()

 r = pool.map_async(pow3, range(10), callback=A.extend)
 r.wait()

 if A == B:
 print '\tcallbacks succeeded\n'
 else:
 print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)

 #
 # Check there are no outstanding tasks
 #

 assert not pool._cache, 'cache = %r' % pool._cache

 #
 # Check close() methods
 #

 print 'Testing close():'

 for worker in pool._pool:
 assert worker.is_alive()

 result = pool.apply_async(time.sleep, [0.5])
 pool.close()
 pool.join()

 assert result.get() is None

 for worker in pool._pool:
 assert not worker.is_alive()

 print '\tclose() succeeded\n'

 #
 # Check terminate() method
 #

 print 'Testing terminate():'

 pool = multiprocessing.Pool(2)
 DELTA = 0.1
 ignore = pool.apply(pow3, [2])
 results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
 pool.terminate()
 pool.join()

 for worker in pool._pool:
 assert not worker.is_alive()

 print '\tterminate() succeeded\n'

 #
 # Check garbage collection
 #

 print 'Testing garbage collection:'

 pool = multiprocessing.Pool(2)
 DELTA = 0.1
 processes = pool._pool
 ignore = pool.apply(pow3, [2])
 results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]

 results = pool = None

 time.sleep(DELTA * 2)

 for worker in processes:
 assert not worker.is_alive()

 print '\tgarbage collection succeeded\n'

if __name__ == '__main__':
 multiprocessing.freeze_support()

 assert len(sys.argv) in (1, 2)

 if len(sys.argv) == 1 or sys.argv[1] == 'processes':
 print ' Using processes '.center(79, '-')
 elif sys.argv[1] == 'threads':
 print ' Using threads '.center(79, '-')
 import multiprocessing.dummy as multiprocessing
 else:
 print 'Usage:\n\t%s [processes | threads]' % sys.argv[0]
 raise SystemExit(2)

 test()

Synchronization types like locks, conditions and queues:

#
A test file for the `multiprocessing` package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, random
from Queue import Empty

import multiprocessing # may get overwritten

TEST_VALUE

def value_func(running, mutex):
 random.seed()
 time.sleep(random.random()*4)

 mutex.acquire()
 print '\n\t\t\t' + str(multiprocessing.current_process()) + ' has finished'
 running.value -= 1
 mutex.release()

def test_value():
 TASKS = 10
 running = multiprocessing.Value('i', TASKS)
 mutex = multiprocessing.Lock()

 for i in range(TASKS):
 p = multiprocessing.Process(target=value_func, args=(running, mutex))
 p.start()

 while running.value > 0:
 time.sleep(0.08)
 mutex.acquire()
 print running.value,
 sys.stdout.flush()
 mutex.release()

 print
 print 'No more running processes'

TEST_QUEUE

def queue_func(queue):
 for i in range(30):
 time.sleep(0.5 * random.random())
 queue.put(i*i)
 queue.put('STOP')

def test_queue():
 q = multiprocessing.Queue()

 p = multiprocessing.Process(target=queue_func, args=(q,))
 p.start()

 o = None
 while o != 'STOP':
 try:
 o = q.get(timeout=0.3)
 print o,
 sys.stdout.flush()
 except Empty:
 print 'TIMEOUT'

 print

TEST_CONDITION

def condition_func(cond):
 cond.acquire()
 print '\t' + str(cond)
 time.sleep(2)
 print '\tchild is notifying'
 print '\t' + str(cond)
 cond.notify()
 cond.release()

def test_condition():
 cond = multiprocessing.Condition()

 p = multiprocessing.Process(target=condition_func, args=(cond,))
 print cond

 cond.acquire()
 print cond
 cond.acquire()
 print cond

 p.start()

 print 'main is waiting'
 cond.wait()
 print 'main has woken up'

 print cond
 cond.release()
 print cond
 cond.release()

 p.join()
 print cond

TEST_SEMAPHORE

def semaphore_func(sema, mutex, running):
 sema.acquire()

 mutex.acquire()
 running.value += 1
 print running.value, 'tasks are running'
 mutex.release()

 random.seed()
 time.sleep(random.random()*2)

 mutex.acquire()
 running.value -= 1
 print '%s has finished' % multiprocessing.current_process()
 mutex.release()

 sema.release()

def test_semaphore():
 sema = multiprocessing.Semaphore(3)
 mutex = multiprocessing.RLock()
 running = multiprocessing.Value('i', 0)

 processes = [
 multiprocessing.Process(target=semaphore_func,
 args=(sema, mutex, running))
 for i in range(10)
]

 for p in processes:
 p.start()

 for p in processes:
 p.join()

TEST_JOIN_TIMEOUT

def join_timeout_func():
 print '\tchild sleeping'
 time.sleep(5.5)
 print '\n\tchild terminating'

def test_join_timeout():
 p = multiprocessing.Process(target=join_timeout_func)
 p.start()

 print 'waiting for process to finish'

 while 1:
 p.join(timeout=1)
 if not p.is_alive():
 break
 print '.',
 sys.stdout.flush()

TEST_EVENT

def event_func(event):
 print '\t%r is waiting' % multiprocessing.current_process()
 event.wait()
 print '\t%r has woken up' % multiprocessing.current_process()

def test_event():
 event = multiprocessing.Event()

 processes = [multiprocessing.Process(target=event_func, args=(event,))
 for i in range(5)]

 for p in processes:
 p.start()

 print 'main is sleeping'
 time.sleep(2)

 print 'main is setting event'
 event.set()

 for p in processes:
 p.join()

TEST_SHAREDVALUES

def sharedvalues_func(values, arrays, shared_values, shared_arrays):
 for i in range(len(values)):
 v = values[i][1]
 sv = shared_values[i].value
 assert v == sv

 for i in range(len(values)):
 a = arrays[i][1]
 sa = list(shared_arrays[i][:])
 assert a == sa

 print 'Tests passed'

def test_sharedvalues():
 values = [
 ('i', 10),
 ('h', -2),
 ('d', 1.25)
]
 arrays = [
 ('i', range(100)),
 ('d', [0.25 * i for i in range(100)]),
 ('H', range(1000))
]

 shared_values = [multiprocessing.Value(id, v) for id, v in values]
 shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]

 p = multiprocessing.Process(
 target=sharedvalues_func,
 args=(values, arrays, shared_values, shared_arrays)
)
 p.start()
 p.join()

 assert p.exitcode == 0

####

def test(namespace=multiprocessing):
 global multiprocessing

 multiprocessing = namespace

 for func in [test_value, test_queue, test_condition,
 test_semaphore, test_join_timeout, test_event,
 test_sharedvalues]:

 print '\n\t######## %s\n' % func.__name__
 func()

 ignore = multiprocessing.active_children() # cleanup any old processes
 if hasattr(multiprocessing, '_debug_info'):
 info = multiprocessing._debug_info()
 if info:
 print info
 raise ValueError('there should be no positive refcounts left')

if __name__ == '__main__':
 multiprocessing.freeze_support()

 assert len(sys.argv) in (1, 2)

 if len(sys.argv) == 1 or sys.argv[1] == 'processes':
 print ' Using processes '.center(79, '-')
 namespace = multiprocessing
 elif sys.argv[1] == 'manager':
 print ' Using processes and a manager '.center(79, '-')
 namespace = multiprocessing.Manager()
 namespace.Process = multiprocessing.Process
 namespace.current_process = multiprocessing.current_process
 namespace.active_children = multiprocessing.active_children
 elif sys.argv[1] == 'threads':
 print ' Using threads '.center(79, '-')
 import multiprocessing.dummy as namespace
 else:
 print 'Usage:\n\t%s [processes | manager | threads]' % sys.argv[0]
 raise SystemExit(2)

 test(namespace)

An example showing how to use queues to feed tasks to a collection of worker
process and collect the results:

#
Simple example which uses a pool of workers to carry out some tasks.
#
Notice that the results will probably not come out of the output
queue in the same in the same order as the corresponding tasks were
put on the input queue. If it is important to get the results back
in the original order then consider using `Pool.map()` or
`Pool.imap()` (which will save on the amount of code needed anyway).
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time
import random

from multiprocessing import Process, Queue, current_process, freeze_support

#
Function run by worker processes
#

def worker(input, output):
 for func, args in iter(input.get, 'STOP'):
 result = calculate(func, args)
 output.put(result)

#
Function used to calculate result
#

def calculate(func, args):
 result = func(*args)
 return '%s says that %s%s = %s' % \
 (current_process().name, func.__name__, args, result)

#
Functions referenced by tasks
#

def mul(a, b):
 time.sleep(0.5*random.random())
 return a * b

def plus(a, b):
 time.sleep(0.5*random.random())
 return a + b

#
#
#

def test():
 NUMBER_OF_PROCESSES = 4
 TASKS1 = [(mul, (i, 7)) for i in range(20)]
 TASKS2 = [(plus, (i, 8)) for i in range(10)]

 # Create queues
 task_queue = Queue()
 done_queue = Queue()

 # Submit tasks
 for task in TASKS1:
 task_queue.put(task)

 # Start worker processes
 for i in range(NUMBER_OF_PROCESSES):
 Process(target=worker, args=(task_queue, done_queue)).start()

 # Get and print results
 print 'Unordered results:'
 for i in range(len(TASKS1)):
 print '\t', done_queue.get()

 # Add more tasks using `put()`
 for task in TASKS2:
 task_queue.put(task)

 # Get and print some more results
 for i in range(len(TASKS2)):
 print '\t', done_queue.get()

 # Tell child processes to stop
 for i in range(NUMBER_OF_PROCESSES):
 task_queue.put('STOP')

if __name__ == '__main__':
 freeze_support()
 test()

An example of how a pool of worker processes can each run a
SimpleHTTPServer.HttpServer instance while sharing a single listening
socket.

#
Example where a pool of http servers share a single listening socket
#
On Windows this module depends on the ability to pickle a socket
object so that the worker processes can inherit a copy of the server
object. (We import `multiprocessing.reduction` to enable this pickling.)
#
Not sure if we should synchronize access to `socket.accept()` method by
using a process-shared lock -- does not seem to be necessary.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import os
import sys

from multiprocessing import Process, current_process, freeze_support
from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler

if sys.platform == 'win32':
 import multiprocessing.reduction # make sockets pickable/inheritable

def note(format, *args):
 sys.stderr.write('[%s]\t%s\n' % (current_process().name, format%args))

class RequestHandler(SimpleHTTPRequestHandler):
 # we override log_message() to show which process is handling the request
 def log_message(self, format, *args):
 note(format, *args)

def serve_forever(server):
 note('starting server')
 try:
 server.serve_forever()
 except KeyboardInterrupt:
 pass

def runpool(address, number_of_processes):
 # create a single server object -- children will each inherit a copy
 server = HTTPServer(address, RequestHandler)

 # create child processes to act as workers
 for i in range(number_of_processes-1):
 Process(target=serve_forever, args=(server,)).start()

 # main process also acts as a worker
 serve_forever(server)

def test():
 DIR = os.path.join(os.path.dirname(__file__), '..')
 ADDRESS = ('localhost', 8000)
 NUMBER_OF_PROCESSES = 4

 print 'Serving at http://%s:%d using %d worker processes' % \
 (ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES)
 print 'To exit press Ctrl-' + ['C', 'Break'][sys.platform=='win32']

 os.chdir(DIR)
 runpool(ADDRESS, NUMBER_OF_PROCESSES)

if __name__ == '__main__':
 freeze_support()
 test()

Some simple benchmarks comparing multiprocessing with threading:

#
Simple benchmarks for the multiprocessing package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, multiprocessing, threading, Queue, gc

if sys.platform == 'win32':
 _timer = time.clock
else:
 _timer = time.time

delta = 1

TEST_QUEUESPEED

def queuespeed_func(q, c, iterations):
 a = '0' * 256
 c.acquire()
 c.notify()
 c.release()

 for i in xrange(iterations):
 q.put(a)

 q.put('STOP')

def test_queuespeed(Process, q, c):
 elapsed = 0
 iterations = 1

 while elapsed < delta:
 iterations *= 2

 p = Process(target=queuespeed_func, args=(q, c, iterations))
 c.acquire()
 p.start()
 c.wait()
 c.release()

 result = None
 t = _timer()

 while result != 'STOP':
 result = q.get()

 elapsed = _timer() - t

 p.join()

 print iterations, 'objects passed through the queue in', elapsed, 'seconds'
 print 'average number/sec:', iterations/elapsed

TEST_PIPESPEED

def pipe_func(c, cond, iterations):
 a = '0' * 256
 cond.acquire()
 cond.notify()
 cond.release()

 for i in xrange(iterations):
 c.send(a)

 c.send('STOP')

def test_pipespeed():
 c, d = multiprocessing.Pipe()
 cond = multiprocessing.Condition()
 elapsed = 0
 iterations = 1

 while elapsed < delta:
 iterations *= 2

 p = multiprocessing.Process(target=pipe_func,
 args=(d, cond, iterations))
 cond.acquire()
 p.start()
 cond.wait()
 cond.release()

 result = None
 t = _timer()

 while result != 'STOP':
 result = c.recv()

 elapsed = _timer() - t
 p.join()

 print iterations, 'objects passed through connection in',elapsed,'seconds'
 print 'average number/sec:', iterations/elapsed

TEST_SEQSPEED

def test_seqspeed(seq):
 elapsed = 0
 iterations = 1

 while elapsed < delta:
 iterations *= 2

 t = _timer()

 for i in xrange(iterations):
 a = seq[5]

 elapsed = _timer()-t

 print iterations, 'iterations in', elapsed, 'seconds'
 print 'average number/sec:', iterations/elapsed

TEST_LOCK

def test_lockspeed(l):
 elapsed = 0
 iterations = 1

 while elapsed < delta:
 iterations *= 2

 t = _timer()

 for i in xrange(iterations):
 l.acquire()
 l.release()

 elapsed = _timer()-t

 print iterations, 'iterations in', elapsed, 'seconds'
 print 'average number/sec:', iterations/elapsed

TEST_CONDITION

def conditionspeed_func(c, N):
 c.acquire()
 c.notify()

 for i in xrange(N):
 c.wait()
 c.notify()

 c.release()

def test_conditionspeed(Process, c):
 elapsed = 0
 iterations = 1

 while elapsed < delta:
 iterations *= 2

 c.acquire()
 p = Process(target=conditionspeed_func, args=(c, iterations))
 p.start()

 c.wait()

 t = _timer()

 for i in xrange(iterations):
 c.notify()
 c.wait()

 elapsed = _timer()-t

 c.release()
 p.join()

 print iterations * 2, 'waits in', elapsed, 'seconds'
 print 'average number/sec:', iterations * 2 / elapsed

####

def test():
 manager = multiprocessing.Manager()

 gc.disable()

 print '\n\t######## testing Queue.Queue\n'
 test_queuespeed(threading.Thread, Queue.Queue(),
 threading.Condition())
 print '\n\t######## testing multiprocessing.Queue\n'
 test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),
 multiprocessing.Condition())
 print '\n\t######## testing Queue managed by server process\n'
 test_queuespeed(multiprocessing.Process, manager.Queue(),
 manager.Condition())
 print '\n\t######## testing multiprocessing.Pipe\n'
 test_pipespeed()

 print

 print '\n\t######## testing list\n'
 test_seqspeed(range(10))
 print '\n\t######## testing list managed by server process\n'
 test_seqspeed(manager.list(range(10)))
 print '\n\t######## testing Array("i", ..., lock=False)\n'
 test_seqspeed(multiprocessing.Array('i', range(10), lock=False))
 print '\n\t######## testing Array("i", ..., lock=True)\n'
 test_seqspeed(multiprocessing.Array('i', range(10), lock=True))

 print

 print '\n\t######## testing threading.Lock\n'
 test_lockspeed(threading.Lock())
 print '\n\t######## testing threading.RLock\n'
 test_lockspeed(threading.RLock())
 print '\n\t######## testing multiprocessing.Lock\n'
 test_lockspeed(multiprocessing.Lock())
 print '\n\t######## testing multiprocessing.RLock\n'
 test_lockspeed(multiprocessing.RLock())
 print '\n\t######## testing lock managed by server process\n'
 test_lockspeed(manager.Lock())
 print '\n\t######## testing rlock managed by server process\n'
 test_lockspeed(manager.RLock())

 print

 print '\n\t######## testing threading.Condition\n'
 test_conditionspeed(threading.Thread, threading.Condition())
 print '\n\t######## testing multiprocessing.Condition\n'
 test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())
 print '\n\t######## testing condition managed by a server process\n'
 test_conditionspeed(multiprocessing.Process, manager.Condition())

 gc.enable()

if __name__ == '__main__':
 multiprocessing.freeze_support()
 test()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.7. mmap — Memory-mapped file support

Memory-mapped file objects behave like both strings and like file objects.
Unlike normal string objects, however, these are mutable. You can use mmap
objects in most places where strings are expected; for example, you can use
the re module to search through a memory-mapped file. Since they’re
mutable, you can change a single character by doing obj[index] = 'a', or
change a substring by assigning to a slice: obj[i1:i2] = '...'. You can
also read and write data starting at the current file position, and
seek() through the file to different positions.

A memory-mapped file is created by the mmap constructor, which is
different on Unix and on Windows. In either case you must provide a file
descriptor for a file opened for update. If you wish to map an existing Python
file object, use its fileno() method to obtain the correct value for the
fileno parameter. Otherwise, you can open the file using the
os.open() function, which returns a file descriptor directly (the file
still needs to be closed when done).

For both the Unix and Windows versions of the constructor, access may be
specified as an optional keyword parameter. access accepts one of three
values: ACCESS_READ, ACCESS_WRITE, or ACCESS_COPY
to specify read-only, write-through or copy-on-write memory respectively.
access can be used on both Unix and Windows. If access is not specified,
Windows mmap returns a write-through mapping. The initial memory values for
all three access types are taken from the specified file. Assignment to an
ACCESS_READ memory map raises a TypeError exception.
Assignment to an ACCESS_WRITE memory map affects both memory and the
underlying file. Assignment to an ACCESS_COPY memory map affects
memory but does not update the underlying file.

Changed in version 2.5: To map anonymous memory, -1 should be passed as the fileno along with the
length.

Changed in version 2.6: mmap.mmap has formerly been a factory function creating mmap objects. Now
mmap.mmap is the class itself.

	
class mmap.mmap(fileno, length[, tagname[, access[, offset]]])

	(Windows version) Maps length bytes from the file specified by the
file handle fileno, and creates a mmap object. If length is larger
than the current size of the file, the file is extended to contain length
bytes. If length is 0, the maximum length of the map is the current
size of the file, except that if the file is empty Windows raises an
exception (you cannot create an empty mapping on Windows).

tagname, if specified and not None, is a string giving a tag name for
the mapping. Windows allows you to have many different mappings against
the same file. If you specify the name of an existing tag, that tag is
opened, otherwise a new tag of this name is created. If this parameter is
omitted or None, the mapping is created without a name. Avoiding the
use of the tag parameter will assist in keeping your code portable between
Unix and Windows.

offset may be specified as a non-negative integer offset. mmap references
will be relative to the offset from the beginning of the file. offset
defaults to 0. offset must be a multiple of the ALLOCATIONGRANULARITY.

	
class mmap.mmap(fileno, length[, flags[, prot[, access[, offset]]]])

	(Unix version) Maps length bytes from the file specified by the file
descriptor fileno, and returns a mmap object. If length is 0, the
maximum length of the map will be the current size of the file when
mmap is called.

flags specifies the nature of the mapping. MAP_PRIVATE creates a
private copy-on-write mapping, so changes to the contents of the mmap
object will be private to this process, and MAP_SHARED creates a
mapping that’s shared with all other processes mapping the same areas of
the file. The default value is MAP_SHARED.

prot, if specified, gives the desired memory protection; the two most
useful values are PROT_READ and PROT_WRITE, to specify
that the pages may be read or written. prot defaults to
PROT_READ | PROT_WRITE.

access may be specified in lieu of flags and prot as an optional
keyword parameter. It is an error to specify both flags, prot and
access. See the description of access above for information on how to
use this parameter.

offset may be specified as a non-negative integer offset. mmap references
will be relative to the offset from the beginning of the file. offset
defaults to 0. offset must be a multiple of the PAGESIZE or
ALLOCATIONGRANULARITY.

To ensure validity of the created memory mapping the file specified
by the descriptor fileno is internally automatically synchronized
with physical backing store on Mac OS X and OpenVMS.

This example shows a simple way of using mmap:

import mmap

write a simple example file
with open("hello.txt", "wb") as f:
 f.write("Hello Python!\n")

with open("hello.txt", "r+b") as f:
 # memory-map the file, size 0 means whole file
 map = mmap.mmap(f.fileno(), 0)
 # read content via standard file methods
 print map.readline() # prints "Hello Python!"
 # read content via slice notation
 print map[:5] # prints "Hello"
 # update content using slice notation;
 # note that new content must have same size
 map[6:] = " world!\n"
 # ... and read again using standard file methods
 map.seek(0)
 print map.readline() # prints "Hello world!"
 # close the map
 map.close()

The next example demonstrates how to create an anonymous map and exchange
data between the parent and child processes:

import mmap
import os

map = mmap.mmap(-1, 13)
map.write("Hello world!")

pid = os.fork()

if pid == 0: # In a child process
 map.seek(0)
 print map.readline()

 map.close()

Memory-mapped file objects support the following methods:

	
mmap.close()

	Close the file. Subsequent calls to other methods of the object will
result in an exception being raised.

	
mmap.find(string[, start[, end]])

	Returns the lowest index in the object where the substring string is
found, such that string is contained in the range [start, end].
Optional arguments start and end are interpreted as in slice notation.
Returns -1 on failure.

	
mmap.flush([offset, size])

	Flushes changes made to the in-memory copy of a file back to disk. Without
use of this call there is no guarantee that changes are written back before
the object is destroyed. If offset and size are specified, only
changes to the given range of bytes will be flushed to disk; otherwise, the
whole extent of the mapping is flushed.

(Windows version) A nonzero value returned indicates success; zero
indicates failure.

(Unix version) A zero value is returned to indicate success. An
exception is raised when the call failed.

	
mmap.move(dest, src, count)

	Copy the count bytes starting at offset src to the destination index
dest. If the mmap was created with ACCESS_READ, then calls to
move will raise a TypeError exception.

	
mmap.read(num)

	Return a string containing up to num bytes starting from the current
file position; the file position is updated to point after the bytes that
were returned.

	
mmap.read_byte()

	Returns a string of length 1 containing the character at the current file
position, and advances the file position by 1.

	
mmap.readline()

	Returns a single line, starting at the current file position and up to the
next newline.

	
mmap.resize(newsize)

	Resizes the map and the underlying file, if any. If the mmap was created
with ACCESS_READ or ACCESS_COPY, resizing the map will
raise a TypeError exception.

	
mmap.rfind(string[, start[, end]])

	Returns the highest index in the object where the substring string is
found, such that string is contained in the range [start, end].
Optional arguments start and end are interpreted as in slice notation.
Returns -1 on failure.

	
mmap.seek(pos[, whence])

	Set the file’s current position. whence argument is optional and
defaults to os.SEEK_SET or 0 (absolute file positioning); other
values are os.SEEK_CUR or 1 (seek relative to the current
position) and os.SEEK_END or 2 (seek relative to the file’s end).

	
mmap.size()

	Return the length of the file, which can be larger than the size of the
memory-mapped area.

	
mmap.tell()

	Returns the current position of the file pointer.

	
mmap.write(string)

	Write the bytes in string into memory at the current position of the
file pointer; the file position is updated to point after the bytes that
were written. If the mmap was created with ACCESS_READ, then
writing to it will raise a TypeError exception.

	
mmap.write_byte(byte)

	Write the single-character string byte into memory at the current
position of the file pointer; the file position is advanced by 1. If
the mmap was created with ACCESS_READ, then writing to it will
raise a TypeError exception.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.8. readline — GNU readline interface

The readline module defines a number of functions to facilitate
completion and reading/writing of history files from the Python interpreter.
This module can be used directly or via the rlcompleter module. Settings
made using this module affect the behaviour of both the interpreter’s
interactive prompt and the prompts offered by the raw_input() and
input() built-in functions.

Note

On MacOS X the readline module can be implemented using
the libedit library instead of GNU readline.

The configuration file for libedit is different from that
of GNU readline. If you programmatically load configuration strings
you can check for the text “libedit” in readline.__doc__
to differentiate between GNU readline and libedit.

The readline module defines the following functions:

	
readline.parse_and_bind(string)

	Parse and execute single line of a readline init file.

	
readline.get_line_buffer()

	Return the current contents of the line buffer.

	
readline.insert_text(string)

	Insert text into the command line.

	
readline.read_init_file([filename])

	Parse a readline initialization file. The default filename is the last filename
used.

	
readline.read_history_file([filename])

	Load a readline history file. The default filename is ~/.history.

	
readline.write_history_file([filename])

	Save a readline history file. The default filename is ~/.history.

	
readline.clear_history()

	Clear the current history. (Note: this function is not available if the
installed version of GNU readline doesn’t support it.)

New in version 2.4.

	
readline.get_history_length()

	Return the desired length of the history file. Negative values imply unlimited
history file size.

	
readline.set_history_length(length)

	Set the number of lines to save in the history file. write_history_file()
uses this value to truncate the history file when saving. Negative values imply
unlimited history file size.

	
readline.get_current_history_length()

	Return the number of lines currently in the history. (This is different from
get_history_length(), which returns the maximum number of lines that will
be written to a history file.)

New in version 2.3.

	
readline.get_history_item(index)

	Return the current contents of history item at index.

New in version 2.3.

	
readline.remove_history_item(pos)

	Remove history item specified by its position from the history.

New in version 2.4.

	
readline.replace_history_item(pos, line)

	Replace history item specified by its position with the given line.

New in version 2.4.

	
readline.redisplay()

	Change what’s displayed on the screen to reflect the current contents of the
line buffer.

New in version 2.3.

	
readline.set_startup_hook([function])

	Set or remove the startup_hook function. If function is specified, it will be
used as the new startup_hook function; if omitted or None, any hook function
already installed is removed. The startup_hook function is called with no
arguments just before readline prints the first prompt.

	
readline.set_pre_input_hook([function])

	Set or remove the pre_input_hook function. If function is specified, it will
be used as the new pre_input_hook function; if omitted or None, any hook
function already installed is removed. The pre_input_hook function is called
with no arguments after the first prompt has been printed and just before
readline starts reading input characters.

	
readline.set_completer([function])

	Set or remove the completer function. If function is specified, it will be
used as the new completer function; if omitted or None, any completer
function already installed is removed. The completer function is called as
function(text, state), for state in 0, 1, 2, ..., until it
returns a non-string value. It should return the next possible completion
starting with text.

	
readline.get_completer()

	Get the completer function, or None if no completer function has been set.

New in version 2.3.

	
readline.get_completion_type()

	Get the type of completion being attempted.

New in version 2.6.

	
readline.get_begidx()

	Get the beginning index of the readline tab-completion scope.

	
readline.get_endidx()

	Get the ending index of the readline tab-completion scope.

	
readline.set_completer_delims(string)

	Set the readline word delimiters for tab-completion.

	
readline.get_completer_delims()

	Get the readline word delimiters for tab-completion.

	
readline.set_completion_display_matches_hook([function])

	Set or remove the completion display function. If function is
specified, it will be used as the new completion display function;
if omitted or None, any completion display function already
installed is removed. The completion display function is called as
function(substitution, [matches], longest_match_length) once
each time matches need to be displayed.

New in version 2.6.

	
readline.add_history(line)

	Append a line to the history buffer, as if it was the last line typed.

See also

	Module rlcompleter

	Completion of Python identifiers at the interactive prompt.

16.8.1. Example

The following example demonstrates how to use the readline module’s
history reading and writing functions to automatically load and save a history
file named .pyhist from the user’s home directory. The code below would
normally be executed automatically during interactive sessions from the user’s
PYTHONSTARTUP file.

import os
import readline
histfile = os.path.join(os.path.expanduser("~"), ".pyhist")
try:
 readline.read_history_file(histfile)
except IOError:
 pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

The following example extends the code.InteractiveConsole class to
support history save/restore.

import code
import readline
import atexit
import os

class HistoryConsole(code.InteractiveConsole):
 def __init__(self, locals=None, filename="<console>",
 histfile=os.path.expanduser("~/.console-history")):
 code.InteractiveConsole.__init__(self, locals, filename)
 self.init_history(histfile)

 def init_history(self, histfile):
 readline.parse_and_bind("tab: complete")
 if hasattr(readline, "read_history_file"):
 try:
 readline.read_history_file(histfile)
 except IOError:
 pass
 atexit.register(self.save_history, histfile)

 def save_history(self, histfile):
 readline.write_history_file(histfile)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	16. Optional Operating System Services

16.9. rlcompleter — Completion function for GNU readline

The rlcompleter module defines a completion function suitable for the
readline module by completing valid Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module
available, an instance of the Completer class is automatically created
and its complete() method is set as the readline completer.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer(readline.read_init_file(
readline.__file__ readline.insert_text(readline.set_completer(
readline.__name__ readline.parse_and_bind(
>>> readline.

The rlcompleter module is designed for use with Python’s interactive
mode. A user can add the following lines to his or her initialization file
(identified by the PYTHONSTARTUP environment variable) to get
automatic Tab completion:

try:
 import readline
except ImportError:
 print "Module readline not available."
else:
 import rlcompleter
 readline.parse_and_bind("tab: complete")

On platforms without readline, the Completer class defined by
this module can still be used for custom purposes.

16.9.1. Completer Objects

Completer objects have the following method:

	
Completer.complete(text, state)

	Return the stateth completion for text.

If called for text that doesn’t include a period character ('.'), it will
complete from names currently defined in __main__, __builtin__ and
keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious
side-effects (functions will not be evaluated, but it can generate calls to
__getattr__()) up to the last part, and find matches for the rest via the
dir() function. Any exception raised during the evaluation of the
expression is caught, silenced and None is returned.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

17. Interprocess Communication and Networking

The modules described in this chapter provide mechanisms for different processes
to communicate.

Some modules only work for two processes that are on the same machine, e.g.
signal and subprocess. Other modules support networking protocols
that two or more processes can used to communicate across machines.

The list of modules described in this chapter is:

	17.1. subprocess — Subprocess management
	17.1.1. Using the subprocess Module
	17.1.1.1. Convenience Functions

	17.1.1.2. Exceptions

	17.1.1.3. Security

	17.1.2. Popen Objects

	17.1.3. Windows Popen Helpers
	17.1.3.1. Constants

	17.1.4. Replacing Older Functions with the subprocess Module
	17.1.4.1. Replacing /bin/sh shell backquote

	17.1.4.2. Replacing shell pipeline

	17.1.4.3. Replacing os.system()

	17.1.4.4. Replacing the os.spawn family

	17.1.4.5. Replacing os.popen(), os.popen2(), os.popen3()

	17.1.4.6. Replacing functions from the popen2 module

	17.1.5. Notes
	17.1.5.1. Converting an argument sequence to a string on Windows

	17.2. socket — Low-level networking interface
	17.2.1. Socket Objects

	17.2.2. Example

	17.3. ssl — TLS/SSL wrapper for socket objects
	17.3.1. Functions, Constants, and Exceptions

	17.3.2. SSLSocket Objects

	17.3.3. Certificates

	17.3.4. Examples
	17.3.4.1. Testing for SSL support

	17.3.4.2. Client-side operation

	17.3.4.3. Server-side operation

	17.4. signal — Set handlers for asynchronous events
	17.4.1. Example

	17.5. popen2 — Subprocesses with accessible I/O streams
	17.5.1. Popen3 and Popen4 Objects

	17.5.2. Flow Control Issues

	17.6. asyncore — Asynchronous socket handler
	17.6.1. asyncore Example basic HTTP client

	17.6.2. asyncore Example basic echo server

	17.7. asynchat — Asynchronous socket command/response handler
	17.7.1. asynchat - Auxiliary Classes

	17.7.2. asynchat Example

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.1. subprocess — Subprocess management

New in version 2.4.

The subprocess module allows you to spawn new processes, connect to their
input/output/error pipes, and obtain their return codes. This module intends to
replace several other, older modules and functions, such as:

os.system
os.spawn*
os.popen*
popen2.*
commands.*

Information about how the subprocess module can be used to replace these
modules and functions can be found in the following sections.

See also

PEP 324 [http://www.python.org/dev/peps/pep-0324] – PEP proposing the subprocess module

17.1.1. Using the subprocess Module

This module defines one class called Popen:

	
class subprocess.Popen(args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, preexec_fn=None, close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0)

	Arguments are:

args should be a string, or a sequence of program arguments. The program
to execute is normally the first item in the args sequence or the string if
a string is given, but can be explicitly set by using the executable
argument. When executable is given, the first item in the args sequence
is still treated by most programs as the command name, which can then be
different from the actual executable name. On Unix, it becomes the display
name for the executing program in utilities such as ps.

On Unix, with shell=False (default): In this case, the Popen class uses
os.execvp() to execute the child program. args should normally be a
sequence. If a string is specified for args, it will be used as the name
or path of the program to execute; this will only work if the program is
being given no arguments.

Note

shlex.split() can be useful when determining the correct
tokenization for args, especially in complex cases:

>>> import shlex, subprocess
>>> command_line = raw_input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"
>>> args = shlex.split(command_line)
>>> print args
['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo '$MONEY'"]
>>> p = subprocess.Popen(args) # Success!

Note in particular that options (such as -input) and arguments (such
as eggs.txt) that are separated by whitespace in the shell go in separate
list elements, while arguments that need quoting or backslash escaping when
used in the shell (such as filenames containing spaces or the echo command
shown above) are single list elements.

On Unix, with shell=True: If args is a string, it specifies the command
string to execute through the shell. This means that the string must be
formatted exactly as it would be when typed at the shell prompt. This
includes, for example, quoting or backslash escaping filenames with spaces in
them. If args is a sequence, the first item specifies the command string, and
any additional items will be treated as additional arguments to the shell
itself. That is to say, Popen does the equivalent of:

Popen(['/bin/sh', '-c', args[0], args[1], ...])

Warning

Executing shell commands that incorporate unsanitized input from an
untrusted source makes a program vulnerable to shell injection [http://en.wikipedia.org/wiki/Shell_injection#Shell_injection],
a serious security flaw which can result in arbitrary command execution.
For this reason, the use of shell=True is strongly discouraged in cases
where the command string is constructed from external input:

>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...

shell=False does not suffer from this vulnerability; the above Note may be
helpful in getting code using shell=False to work.

On Windows: the Popen class uses CreateProcess() to execute the child
child program, which operates on strings. If args is a sequence, it will
be converted to a string in a manner described in
Converting an argument sequence to a string on Windows.

bufsize, if given, has the same meaning as the corresponding argument to the
built-in open() function: 0 means unbuffered, 1 means line
buffered, any other positive value means use a buffer of (approximately) that
size. A negative bufsize means to use the system default, which usually means
fully buffered. The default value for bufsize is 0 (unbuffered).

Note

If you experience performance issues, it is recommended that you try to
enable buffering by setting bufsize to either -1 or a large enough
positive value (such as 4096).

The executable argument specifies the program to execute. It is very seldom
needed: Usually, the program to execute is defined by the args argument. If
shell=True, the executable argument specifies which shell to use. On Unix,
the default shell is /bin/sh. On Windows, the default shell is
specified by the COMSPEC environment variable. The only reason you
would need to specify shell=True on Windows is where the command you
wish to execute is actually built in to the shell, eg dir, copy.
You don’t need shell=True to run a batch file, nor to run a console-based
executable.

stdin, stdout and stderr specify the executed programs’ standard input,
standard output and standard error file handles, respectively. Valid values
are PIPE, an existing file descriptor (a positive integer), an
existing file object, and None. PIPE indicates that a new pipe
to the child should be created. With None, no redirection will occur;
the child’s file handles will be inherited from the parent. Additionally,
stderr can be STDOUT, which indicates that the stderr data from the
applications should be captured into the same file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the
child process just before the child is executed. (Unix only)

If close_fds is true, all file descriptors except 0, 1 and
2 will be closed before the child process is executed. (Unix only).
Or, on Windows, if close_fds is true then no handles will be inherited by the
child process. Note that on Windows, you cannot set close_fds to true and
also redirect the standard handles by setting stdin, stdout or stderr.

If shell is True, the specified command will be executed through the
shell.

If cwd is not None, the child’s current directory will be changed to cwd
before it is executed. Note that this directory is not considered when
searching the executable, so you can’t specify the program’s path relative to
cwd.

If env is not None, it must be a mapping that defines the environment
variables for the new process; these are used instead of inheriting the current
process’ environment, which is the default behavior.

Note

If specified, env must provide any variables required
for the program to execute. On Windows, in order to run a
side-by-side assembly [http://en.wikipedia.org/wiki/Side-by-Side_Assembly] the specified env must include a valid
SystemRoot.

If universal_newlines is True, the file objects stdout and stderr are
opened as text files, but lines may be terminated by any of '\n', the Unix
end-of-line convention, '\r', the old Macintosh convention or '\r\n', the
Windows convention. All of these external representations are seen as '\n'
by the Python program.

Note

This feature is only available if Python is built with universal newline
support (the default). Also, the newlines attribute of the file objects
stdout, stdin and stderr are not updated by the
communicate() method.

If given, startupinfo will be a STARTUPINFO object, which is
passed to the underlying CreateProcess function.
creationflags, if given, can be CREATE_NEW_CONSOLE or
CREATE_NEW_PROCESS_GROUP. (Windows only)

	
subprocess.PIPE

	Special value that can be used as the stdin, stdout or stderr argument
to Popen and indicates that a pipe to the standard stream should be
opened.

	
subprocess.STDOUT

	Special value that can be used as the stderr argument to Popen and
indicates that standard error should go into the same handle as standard
output.

17.1.1.1. Convenience Functions

This module also defines the following shortcut functions:

	
subprocess.call(*popenargs, **kwargs)

	Run command with arguments. Wait for command to complete, then return the
returncode attribute.

The arguments are the same as for the Popen constructor. Example:

>>> retcode = subprocess.call(["ls", "-l"])

Warning

Like Popen.wait(), this will deadlock when using
stdout=PIPE and/or stderr=PIPE and the child process
generates enough output to a pipe such that it blocks waiting
for the OS pipe buffer to accept more data.

	
subprocess.check_call(*popenargs, **kwargs)

	Run command with arguments. Wait for command to complete. If the exit code was
zero then return, otherwise raise CalledProcessError. The
CalledProcessError object will have the return code in the
returncode attribute.

The arguments are the same as for the Popen constructor. Example:

>>> subprocess.check_call(["ls", "-l"])
0

New in version 2.5.

Warning

See the warning for call().

	
subprocess.check_output(*popenargs, **kwargs)

	Run command with arguments and return its output as a byte string.

If the exit code was non-zero it raises a CalledProcessError. The
CalledProcessError object will have the return code in the
returncode
attribute and output in the output attribute.

The arguments are the same as for the Popen constructor. Example:

>>> subprocess.check_output(["ls", "-l", "/dev/null"])
'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n'

The stdout argument is not allowed as it is used internally.
To capture standard error in the result, use stderr=subprocess.STDOUT:

>>> subprocess.check_output(
... ["/bin/sh", "-c", "ls non_existent_file; exit 0"],
... stderr=subprocess.STDOUT)
'ls: non_existent_file: No such file or directory\n'

New in version 2.7.

17.1.1.2. Exceptions

Exceptions raised in the child process, before the new program has started to
execute, will be re-raised in the parent. Additionally, the exception object
will have one extra attribute called child_traceback, which is a string
containing traceback information from the child’s point of view.

The most common exception raised is OSError. This occurs, for example,
when trying to execute a non-existent file. Applications should prepare for
OSError exceptions.

A ValueError will be raised if Popen is called with invalid
arguments.

check_call() will raise CalledProcessError, if the called process returns
a non-zero return code.

17.1.1.3. Security

Unlike some other popen functions, this implementation will never call /bin/sh
implicitly. This means that all characters, including shell metacharacters, can
safely be passed to child processes.

17.1.2. Popen Objects

Instances of the Popen class have the following methods:

	
Popen.poll()

	Check if child process has terminated. Set and return returncode
attribute.

	
Popen.wait()

	Wait for child process to terminate. Set and return returncode
attribute.

Warning

This will deadlock when using stdout=PIPE and/or
stderr=PIPE and the child process generates enough output to
a pipe such that it blocks waiting for the OS pipe buffer to
accept more data. Use communicate() to avoid that.

	
Popen.communicate(input=None)

	Interact with process: Send data to stdin. Read data from stdout and stderr,
until end-of-file is reached. Wait for process to terminate. The optional
input argument should be a string to be sent to the child process, or
None, if no data should be sent to the child.

communicate() returns a tuple (stdoutdata, stderrdata).

Note that if you want to send data to the process’s stdin, you need to create
the Popen object with stdin=PIPE. Similarly, to get anything other than
None in the result tuple, you need to give stdout=PIPE and/or
stderr=PIPE too.

Note

The data read is buffered in memory, so do not use this method if the data
size is large or unlimited.

	
Popen.send_signal(signal)

	Sends the signal signal to the child.

Note

On Windows, SIGTERM is an alias for terminate(). CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a creationflags
parameter which includes CREATE_NEW_PROCESS_GROUP.

New in version 2.6.

	
Popen.terminate()

	Stop the child. On Posix OSs the method sends SIGTERM to the
child. On Windows the Win32 API function TerminateProcess() is called
to stop the child.

New in version 2.6.

	
Popen.kill()

	Kills the child. On Posix OSs the function sends SIGKILL to the child.
On Windows kill() is an alias for terminate().

New in version 2.6.

The following attributes are also available:

Warning

Use communicate() rather than .stdin.write,
.stdout.read or .stderr.read to avoid
deadlocks due to any of the other OS pipe buffers filling up and blocking the
child process.

	
Popen.stdin

	If the stdin argument was PIPE, this attribute is a file object
that provides input to the child process. Otherwise, it is None.

	
Popen.stdout

	If the stdout argument was PIPE, this attribute is a file object
that provides output from the child process. Otherwise, it is None.

	
Popen.stderr

	If the stderr argument was PIPE, this attribute is a file object
that provides error output from the child process. Otherwise, it is
None.

	
Popen.pid

	The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID
of the spawned shell.

	
Popen.returncode

	The child return code, set by poll() and wait() (and indirectly
by communicate()). A None value indicates that the process
hasn’t terminated yet.

A negative value -N indicates that the child was terminated by signal
N (Unix only).

17.1.3. Windows Popen Helpers

The STARTUPINFO class and following constants are only available
on Windows.

	
class subprocess.STARTUPINFO

	Partial support of the Windows
STARTUPINFO [http://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx]
structure is used for Popen creation.

	
dwFlags

	A bit field that determines whether certain STARTUPINFO members
are used when the process creates a window.

si = subprocess.STARTUPINFO()
si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW

	
hStdInput

	If dwFlags specifies STARTF_USESTDHANDLES, this member is
the standard input handle for the process. If STARTF_USESTDHANDLES
is not specified, the default for standard input is the keyboard buffer.

	
hStdOutput

	If dwFlags specifies STARTF_USESTDHANDLES, this member is
the standard output handle for the process. Otherwise, this member is
ignored and the default for standard output is the console window’s
buffer.

	
hStdError

	If dwFlags specifies STARTF_USESTDHANDLES, this member is
the standard error handle for the process. Otherwise, this member is
ignored and the default for standard error is the console window’s buffer.

	
wShowWindow

	If dwFlags specifies STARTF_USESHOWWINDOW, this member
can be any of the values that can be specified in the nCmdShow
parameter for the
ShowWindow [http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx]
function, except for SW_SHOWDEFAULT. Otherwise, this member is
ignored.

SW_HIDE is provided for this attribute. It is used when
Popen is called with shell=True.

17.1.3.1. Constants

The subprocess module exposes the following constants.

	
subprocess.STD_INPUT_HANDLE

	The standard input device. Initially, this is the console input buffer,
CONIN$.

	
subprocess.STD_OUTPUT_HANDLE

	The standard output device. Initially, this is the active console screen
buffer, CONOUT$.

	
subprocess.STD_ERROR_HANDLE

	The standard error device. Initially, this is the active console screen
buffer, CONOUT$.

	
subprocess.SW_HIDE

	Hides the window. Another window will be activated.

	
subprocess.STARTF_USESTDHANDLES

	Specifies that the STARTUPINFO.hStdInput,
STARTUPINFO.hStdOutput, and STARTUPINFO.hStdError members
contain additional information.

	
subprocess.STARTF_USESHOWWINDOW

	Specifies that the STARTUPINFO.wShowWindow member contains
additional information.

	
subprocess.CREATE_NEW_CONSOLE

	The new process has a new console, instead of inheriting its parent’s
console (the default).

This flag is always set when Popen is created with shell=True.

	
subprocess.CREATE_NEW_PROCESS_GROUP

	A Popen creationflags parameter to specify that a new process
group will be created. This flag is necessary for using os.kill()
on the subprocess.

This flag is ignored if CREATE_NEW_CONSOLE is specified.

17.1.4. Replacing Older Functions with the subprocess Module

In this section, “a ==> b” means that b can be used as a replacement for a.

Note

All functions in this section fail (more or less) silently if the executed
program cannot be found; this module raises an OSError exception.

In the following examples, we assume that the subprocess module is imported with
“from subprocess import *”.

17.1.4.1. Replacing /bin/sh shell backquote

output=`mycmd myarg`
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]

17.1.4.2. Replacing shell pipeline

output=`dmesg | grep hda`
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]

The p1.stdout.close() call after starting the p2 is important in order for p1
to receive a SIGPIPE if p2 exits before p1.

17.1.4.3. Replacing os.system()

sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
sts = os.waitpid(p.pid, 0)[1]

Notes:

	Calling the program through the shell is usually not required.

	It’s easier to look at the returncode attribute than the exit status.

A more realistic example would look like this:

try:
 retcode = call("mycmd" + " myarg", shell=True)
 if retcode < 0:
 print >>sys.stderr, "Child was terminated by signal", -retcode
 else:
 print >>sys.stderr, "Child returned", retcode
except OSError, e:
 print >>sys.stderr, "Execution failed:", e

17.1.4.4. Replacing the os.spawn family

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

Vector example:

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

17.1.4.5. Replacing os.popen(), os.popen2(), os.popen3()

pipe = os.popen("cmd", 'r', bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdout=PIPE).stdout

pipe = os.popen("cmd", 'w', bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdin=PIPE).stdin

(child_stdin, child_stdout) = os.popen2("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,
 child_stdout,
 child_stderr) = os.popen3("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
 child_stdout,
 child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4("cmd", mode,
 bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

On Unix, os.popen2, os.popen3 and os.popen4 also accept a sequence as
the command to execute, in which case arguments will be passed
directly to the program without shell intervention. This usage can be
replaced as follows:

(child_stdin, child_stdout) = os.popen2(["/bin/ls", "-l"], mode,
 bufsize)
==>
p = Popen(["/bin/ls", "-l"], bufsize=bufsize, stdin=PIPE, stdout=PIPE)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen("cmd", 'w')
...
rc = pipe.close()
if rc is not None and rc >> 8:
 print "There were some errors"
==>
process = Popen("cmd", 'w', shell=True, stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:
 print "There were some errors"

17.1.4.6. Replacing functions from the popen2 module

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

On Unix, popen2 also accepts a sequence as the command to execute, in
which case arguments will be passed directly to the program without
shell intervention. This usage can be replaced as follows:

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize,
 mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

popen2.Popen3 and popen2.Popen4 basically work as
subprocess.Popen, except that:

	Popen raises an exception if the execution fails.

	the capturestderr argument is replaced with the stderr argument.

	stdin=PIPE and stdout=PIPE must be specified.

	popen2 closes all file descriptors by default, but you have to specify
close_fds=True with Popen.

17.1.5. Notes

17.1.5.1. Converting an argument sequence to a string on Windows

On Windows, an args sequence is converted to a string that can be parsed
using the following rules (which correspond to the rules used by the MS C
runtime):

	Arguments are delimited by white space, which is either a
space or a tab.

	A string surrounded by double quotation marks is
interpreted as a single argument, regardless of white space
contained within. A quoted string can be embedded in an
argument.

	A double quotation mark preceded by a backslash is
interpreted as a literal double quotation mark.

	Backslashes are interpreted literally, unless they
immediately precede a double quotation mark.

	If backslashes immediately precede a double quotation mark,
every pair of backslashes is interpreted as a literal
backslash. If the number of backslashes is odd, the last
backslash escapes the next double quotation mark as
described in rule 3.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.2. socket — Low-level networking interface

This module provides access to the BSD socket interface. It is available on
all modern Unix systems, Windows, Mac OS X, BeOS, OS/2, and probably additional
platforms.

Note

Some behavior may be platform dependent, since calls are made to the operating
system socket APIs.

For an introduction to socket programming (in C), see the following papers: An
Introductory 4.3BSD Interprocess Communication Tutorial, by Stuart Sechrest and
An Advanced 4.3BSD Interprocess Communication Tutorial, by Samuel J. Leffler et
al, both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections
PS1:7 and PS1:8). The platform-specific reference material for the various
socket-related system calls are also a valuable source of information on the
details of socket semantics. For Unix, refer to the manual pages; for Windows,
see the WinSock (or Winsock 2) specification. For IPv6-ready APIs, readers may
want to refer to RFC 3493 [http://tools.ietf.org/html/rfc3493.html] titled Basic Socket Interface Extensions for IPv6.

The Python interface is a straightforward transliteration of the Unix system
call and library interface for sockets to Python’s object-oriented style: the
socket() function returns a socket object whose methods implement
the various socket system calls. Parameter types are somewhat higher-level than
in the C interface: as with read() and write() operations on Python
files, buffer allocation on receive operations is automatic, and buffer length
is implicit on send operations.

Socket addresses are represented as follows: A single string is used for the
AF_UNIX address family. A pair (host, port) is used for the
AF_INET address family, where host is a string representing either a
hostname in Internet domain notation like 'daring.cwi.nl' or an IPv4 address
like '100.50.200.5', and port is an integral port number. For
AF_INET6 address family, a four-tuple (host, port, flowinfo,
scopeid) is used, where flowinfo and scopeid represents sin6_flowinfo
and sin6_scope_id member in struct sockaddr_in6 in C. For
socket module methods, flowinfo and scopeid can be omitted just for
backward compatibility. Note, however, omission of scopeid can cause problems
in manipulating scoped IPv6 addresses. Other address families are currently not
supported. The address format required by a particular socket object is
automatically selected based on the address family specified when the socket
object was created.

For IPv4 addresses, two special forms are accepted instead of a host address:
the empty string represents INADDR_ANY, and the string
'<broadcast>' represents INADDR_BROADCAST. The behavior is not
available for IPv6 for backward compatibility, therefore, you may want to avoid
these if you intend to support IPv6 with your Python programs.

If you use a hostname in the host portion of IPv4/v6 socket address, the
program may show a nondeterministic behavior, as Python uses the first address
returned from the DNS resolution. The socket address will be resolved
differently into an actual IPv4/v6 address, depending on the results from DNS
resolution and/or the host configuration. For deterministic behavior use a
numeric address in host portion.

New in version 2.5: AF_NETLINK sockets are represented as pairs pid, groups.

New in version 2.6: Linux-only support for TIPC is also available using the AF_TIPC
address family. TIPC is an open, non-IP based networked protocol designed
for use in clustered computer environments. Addresses are represented by a
tuple, and the fields depend on the address type. The general tuple form is
(addr_type, v1, v2, v3 [, scope]), where:
	addr_type is one of TIPC_ADDR_NAMESEQ, TIPC_ADDR_NAME, or
TIPC_ADDR_ID.

	scope is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, and
TIPC_NODE_SCOPE.

	If addr_type is TIPC_ADDR_NAME, then v1 is the server type, v2 is
the port identifier, and v3 should be 0.

If addr_type is TIPC_ADDR_NAMESEQ, then v1 is the server type, v2
is the lower port number, and v3 is the upper port number.

If addr_type is TIPC_ADDR_ID, then v1 is the node, v2 is the
reference, and v3 should be set to 0.

All errors raise exceptions. The normal exceptions for invalid argument types
and out-of-memory conditions can be raised; errors related to socket or address
semantics raise the error socket.error.

Non-blocking mode is supported through setblocking(). A
generalization of this based on timeouts is supported through
settimeout().

The module socket exports the following constants and functions:

	
exception socket.error

	This exception is raised for socket-related errors. The accompanying value is
either a string telling what went wrong or a pair (errno, string)
representing an error returned by a system call, similar to the value
accompanying os.error. See the module errno, which contains names
for the error codes defined by the underlying operating system.

Changed in version 2.6: socket.error is now a child class of IOError.

	
exception socket.herror

	This exception is raised for address-related errors, i.e. for functions that use
h_errno in the C API, including gethostbyname_ex() and
gethostbyaddr().

The accompanying value is a pair (h_errno, string) representing an error
returned by a library call. string represents the description of h_errno, as
returned by the hstrerror() C function.

	
exception socket.gaierror

	This exception is raised for address-related errors, for getaddrinfo() and
getnameinfo(). The accompanying value is a pair (error, string)
representing an error returned by a library call. string represents the
description of error, as returned by the gai_strerror() C function. The
error value will match one of the EAI_* constants defined in this
module.

	
exception socket.timeout

	This exception is raised when a timeout occurs on a socket which has had
timeouts enabled via a prior call to settimeout(). The accompanying value
is a string whose value is currently always “timed out”.

New in version 2.3.

	
socket.AF_UNIX

	
socket.AF_INET

	
socket.AF_INET6

	These constants represent the address (and protocol) families, used for the
first argument to socket(). If the AF_UNIX constant is not
defined then this protocol is unsupported.

	
socket.SOCK_STREAM

	
socket.SOCK_DGRAM

	
socket.SOCK_RAW

	
socket.SOCK_RDM

	
socket.SOCK_SEQPACKET

	These constants represent the socket types, used for the second argument to
socket(). (Only SOCK_STREAM and SOCK_DGRAM appear to be
generally useful.)

	
SO_*

	
socket.SOMAXCONN

	
MSG_*

	
SOL_*

	
IPPROTO_*

	
IPPORT_*

	
INADDR_*

	
IP_*

	
IPV6_*

	
EAI_*

	
AI_*

	
NI_*

	
TCP_*

	Many constants of these forms, documented in the Unix documentation on sockets
and/or the IP protocol, are also defined in the socket module. They are
generally used in arguments to the setsockopt() and getsockopt()
methods of socket objects. In most cases, only those symbols that are defined
in the Unix header files are defined; for a few symbols, default values are
provided.

	
SIO_*

	
RCVALL_*

	Constants for Windows’ WSAIoctl(). The constants are used as arguments to the
ioctl() method of socket objects.

New in version 2.6.

	
TIPC_*

	TIPC related constants, matching the ones exported by the C socket API. See
the TIPC documentation for more information.

New in version 2.6.

	
socket.has_ipv6

	This constant contains a boolean value which indicates if IPv6 is supported on
this platform.

New in version 2.3.

	
socket.create_connection(address[, timeout[, source_address]])

	Convenience function. Connect to address (a 2-tuple (host, port)),
and return the socket object. Passing the optional timeout parameter will
set the timeout on the socket instance before attempting to connect. If no
timeout is supplied, the global default timeout setting returned by
getdefaulttimeout() is used.

If supplied, source_address must be a 2-tuple (host, port) for the
socket to bind to as its source address before connecting. If host or port
are ‘’ or 0 respectively the OS default behavior will be used.

New in version 2.6.

Changed in version 2.7: source_address was added.

	
socket.getaddrinfo(host, port, family=0, socktype=0, proto=0, flags=0)

	Translate the host/port argument into a sequence of 5-tuples that contain
all the necessary arguments for creating a socket connected to that service.
host is a domain name, a string representation of an IPv4/v6 address
or None. port is a string service name such as 'http', a numeric
port number or None. By passing None as the value of host
and port, you can pass NULL to the underlying C API.

The family, socktype and proto arguments can be optionally specified
in order to narrow the list of addresses returned. Passing zero as a
value for each of these arguments selects the full range of results.
The flags argument can be one or several of the AI_* constants,
and will influence how results are computed and returned.
For example, AI_NUMERICHOST will disable domain name resolution
and will raise an error if host is a domain name.

The function returns a list of 5-tuples with the following structure:

(family, socktype, proto, canonname, sockaddr)

In these tuples, family, socktype, proto are all integers and are
meant to be passed to the socket() function. canonname will be
a string representing the canonical name of the host if
AI_CANONNAME is part of the flags argument; else canonname
will be empty. sockaddr is a tuple describing a socket address, whose
format depends on the returned family (a (address, port) 2-tuple for
AF_INET, a (address, port, flow info, scope id) 4-tuple for
AF_INET6), and is meant to be passed to the socket.connect()
method.

The following example fetches address information for a hypothetical TCP
connection to www.python.org on port 80 (results may differ on your
system if IPv6 isn’t enabled):

>>> socket.getaddrinfo("www.python.org", 80, 0, 0, socket.SOL_TCP)
[(2, 1, 6, '', ('82.94.164.162', 80)),
 (10, 1, 6, '', ('2001:888:2000:d::a2', 80, 0, 0))]

New in version 2.2.

	
socket.getfqdn([name])

	Return a fully qualified domain name for name. If name is omitted or empty,
it is interpreted as the local host. To find the fully qualified name, the
hostname returned by gethostbyaddr() is checked, followed by aliases for the
host, if available. The first name which includes a period is selected. In
case no fully qualified domain name is available, the hostname as returned by
gethostname() is returned.

New in version 2.0.

	
socket.gethostbyname(hostname)

	Translate a host name to IPv4 address format. The IPv4 address is returned as a
string, such as '100.50.200.5'. If the host name is an IPv4 address itself
it is returned unchanged. See gethostbyname_ex() for a more complete
interface. gethostbyname() does not support IPv6 name resolution, and
getaddrinfo() should be used instead for IPv4/v6 dual stack support.

	
socket.gethostbyname_ex(hostname)

	Translate a host name to IPv4 address format, extended interface. Return a
triple (hostname, aliaslist, ipaddrlist) where hostname is the primary
host name responding to the given ip_address, aliaslist is a (possibly
empty) list of alternative host names for the same address, and ipaddrlist is
a list of IPv4 addresses for the same interface on the same host (often but not
always a single address). gethostbyname_ex() does not support IPv6 name
resolution, and getaddrinfo() should be used instead for IPv4/v6 dual
stack support.

	
socket.gethostname()

	Return a string containing the hostname of the machine where the Python
interpreter is currently executing.

If you want to know the current machine’s IP address, you may want to use
gethostbyname(gethostname()). This operation assumes that there is a
valid address-to-host mapping for the host, and the assumption does not
always hold.

Note: gethostname() doesn’t always return the fully qualified domain
name; use getfqdn() (see above).

	
socket.gethostbyaddr(ip_address)

	Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the
primary host name responding to the given ip_address, aliaslist is a
(possibly empty) list of alternative host names for the same address, and
ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same
host (most likely containing only a single address). To find the fully qualified
domain name, use the function getfqdn(). gethostbyaddr() supports
both IPv4 and IPv6.

	
socket.getnameinfo(sockaddr, flags)

	Translate a socket address sockaddr into a 2-tuple (host, port). Depending
on the settings of flags, the result can contain a fully-qualified domain name
or numeric address representation in host. Similarly, port can contain a
string port name or a numeric port number.

New in version 2.2.

	
socket.getprotobyname(protocolname)

	Translate an Internet protocol name (for example, 'icmp') to a constant
suitable for passing as the (optional) third argument to the socket()
function. This is usually only needed for sockets opened in “raw” mode
(SOCK_RAW); for the normal socket modes, the correct protocol is chosen
automatically if the protocol is omitted or zero.

	
socket.getservbyname(servicename[, protocolname])

	Translate an Internet service name and protocol name to a port number for that
service. The optional protocol name, if given, should be 'tcp' or
'udp', otherwise any protocol will match.

	
socket.getservbyport(port[, protocolname])

	Translate an Internet port number and protocol name to a service name for that
service. The optional protocol name, if given, should be 'tcp' or
'udp', otherwise any protocol will match.

	
socket.socket([family[, type[, proto]]])

	Create a new socket using the given address family, socket type and protocol
number. The address family should be AF_INET (the default),
AF_INET6 or AF_UNIX. The socket type should be
SOCK_STREAM (the default), SOCK_DGRAM or perhaps one of the
other SOCK_ constants. The protocol number is usually zero and may be
omitted in that case.

	
socket.socketpair([family[, type[, proto]]])

	Build a pair of connected socket objects using the given address family, socket
type, and protocol number. Address family, socket type, and protocol number are
as for the socket() function above. The default family is AF_UNIX
if defined on the platform; otherwise, the default is AF_INET.
Availability: Unix.

New in version 2.4.

	
socket.fromfd(fd, family, type[, proto])

	Duplicate the file descriptor fd (an integer as returned by a file object’s
fileno() method) and build a socket object from the result. Address
family, socket type and protocol number are as for the socket() function
above. The file descriptor should refer to a socket, but this is not checked —
subsequent operations on the object may fail if the file descriptor is invalid.
This function is rarely needed, but can be used to get or set socket options on
a socket passed to a program as standard input or output (such as a server
started by the Unix inet daemon). The socket is assumed to be in blocking mode.
Availability: Unix.

	
socket.ntohl(x)

	Convert 32-bit positive integers from network to host byte order. On machines
where the host byte order is the same as network byte order, this is a no-op;
otherwise, it performs a 4-byte swap operation.

	
socket.ntohs(x)

	Convert 16-bit positive integers from network to host byte order. On machines
where the host byte order is the same as network byte order, this is a no-op;
otherwise, it performs a 2-byte swap operation.

	
socket.htonl(x)

	Convert 32-bit positive integers from host to network byte order. On machines
where the host byte order is the same as network byte order, this is a no-op;
otherwise, it performs a 4-byte swap operation.

	
socket.htons(x)

	Convert 16-bit positive integers from host to network byte order. On machines
where the host byte order is the same as network byte order, this is a no-op;
otherwise, it performs a 2-byte swap operation.

	
socket.inet_aton(ip_string)

	Convert an IPv4 address from dotted-quad string format (for example,
‘123.45.67.89’) to 32-bit packed binary format, as a string four characters in
length. This is useful when conversing with a program that uses the standard C
library and needs objects of type struct in_addr, which is the C type
for the 32-bit packed binary this function returns.

inet_aton() also accepts strings with less than three dots; see the
Unix manual page inet(3) for details.

If the IPv4 address string passed to this function is invalid,
socket.error will be raised. Note that exactly what is valid depends on
the underlying C implementation of inet_aton().

inet_aton() does not support IPv6, and inet_pton() should be used
instead for IPv4/v6 dual stack support.

	
socket.inet_ntoa(packed_ip)

	Convert a 32-bit packed IPv4 address (a string four characters in length) to its
standard dotted-quad string representation (for example, ‘123.45.67.89’). This
is useful when conversing with a program that uses the standard C library and
needs objects of type struct in_addr, which is the C type for the
32-bit packed binary data this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in length,
socket.error will be raised. inet_ntoa() does not support IPv6, and
inet_ntop() should be used instead for IPv4/v6 dual stack support.

	
socket.inet_pton(address_family, ip_string)

	Convert an IP address from its family-specific string format to a packed, binary
format. inet_pton() is useful when a library or network protocol calls for
an object of type struct in_addr (similar to inet_aton()) or
struct in6_addr.

Supported values for address_family are currently AF_INET and
AF_INET6. If the IP address string ip_string is invalid,
socket.error will be raised. Note that exactly what is valid depends on
both the value of address_family and the underlying implementation of
inet_pton().

Availability: Unix (maybe not all platforms).

New in version 2.3.

	
socket.inet_ntop(address_family, packed_ip)

	Convert a packed IP address (a string of some number of characters) to its
standard, family-specific string representation (for example, '7.10.0.5' or
'5aef:2b::8') inet_ntop() is useful when a library or network protocol
returns an object of type struct in_addr (similar to inet_ntoa())
or struct in6_addr.

Supported values for address_family are currently AF_INET and
AF_INET6. If the string packed_ip is not the correct length for the
specified address family, ValueError will be raised. A
socket.error is raised for errors from the call to inet_ntop().

Availability: Unix (maybe not all platforms).

New in version 2.3.

	
socket.getdefaulttimeout()

	Return the default timeout in floating seconds for new socket objects. A value
of None indicates that new socket objects have no timeout. When the socket
module is first imported, the default is None.

New in version 2.3.

	
socket.setdefaulttimeout(timeout)

	Set the default timeout in floating seconds for new socket objects. A value of
None indicates that new socket objects have no timeout. When the socket
module is first imported, the default is None.

New in version 2.3.

	
socket.SocketType

	This is a Python type object that represents the socket object type. It is the
same as type(socket(...)).

See also

	Module SocketServer

	Classes that simplify writing network servers.

	Module ssl

	A TLS/SSL wrapper for socket objects.

17.2.1. Socket Objects

Socket objects have the following methods. Except for makefile() these
correspond to Unix system calls applicable to sockets.

	
socket.accept()

	Accept a connection. The socket must be bound to an address and listening for
connections. The return value is a pair (conn, address) where conn is a
new socket object usable to send and receive data on the connection, and
address is the address bound to the socket on the other end of the connection.

	
socket.bind(address)

	Bind the socket to address. The socket must not already be bound. (The format
of address depends on the address family — see above.)

Note

This method has historically accepted a pair of parameters for AF_INET
addresses instead of only a tuple. This was never intentional and is no longer
available in Python 2.0 and later.

	
socket.close()

	Close the socket. All future operations on the socket object will fail. The
remote end will receive no more data (after queued data is flushed). Sockets are
automatically closed when they are garbage-collected.

	
socket.connect(address)

	Connect to a remote socket at address. (The format of address depends on the
address family — see above.)

Note

This method has historically accepted a pair of parameters for AF_INET
addresses instead of only a tuple. This was never intentional and is no longer
available in Python 2.0 and later.

	
socket.connect_ex(address)

	Like connect(address), but return an error indicator instead of raising an
exception for errors returned by the C-level connect() call (other
problems, such as “host not found,” can still raise exceptions). The error
indicator is 0 if the operation succeeded, otherwise the value of the
errno variable. This is useful to support, for example, asynchronous
connects.

Note

This method has historically accepted a pair of parameters for AF_INET
addresses instead of only a tuple. This was never intentional and is no longer
available in Python 2.0 and later.

	
socket.fileno()

	Return the socket’s file descriptor (a small integer). This is useful with
select.select().

Under Windows the small integer returned by this method cannot be used where a
file descriptor can be used (such as os.fdopen()). Unix does not have
this limitation.

	
socket.getpeername()

	Return the remote address to which the socket is connected. This is useful to
find out the port number of a remote IPv4/v6 socket, for instance. (The format
of the address returned depends on the address family — see above.) On some
systems this function is not supported.

	
socket.getsockname()

	Return the socket’s own address. This is useful to find out the port number of
an IPv4/v6 socket, for instance. (The format of the address returned depends on
the address family — see above.)

	
socket.getsockopt(level, optname[, buflen])

	Return the value of the given socket option (see the Unix man page
getsockopt(2)). The needed symbolic constants (SO_* etc.)
are defined in this module. If buflen is absent, an integer option is assumed
and its integer value is returned by the function. If buflen is present, it
specifies the maximum length of the buffer used to receive the option in, and
this buffer is returned as a string. It is up to the caller to decode the
contents of the buffer (see the optional built-in module struct for a way
to decode C structures encoded as strings).

	
socket.ioctl(control, option)

	

	Platform :	Windows

The ioctl() method is a limited interface to the WSAIoctl system
interface. Please refer to the Win32 documentation [http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx] for more
information.

On other platforms, the generic fcntl.fcntl() and fcntl.ioctl()
functions may be used; they accept a socket object as their first argument.

New in version 2.6.

	
socket.listen(backlog)

	Listen for connections made to the socket. The backlog argument specifies the
maximum number of queued connections and should be at least 0; the maximum value
is system-dependent (usually 5), the minimum value is forced to 0.

	
socket.makefile([mode[, bufsize]])

	Return a file object associated with the socket. (File objects are
described in File Objects.) The file object
references a dup()ped version of the socket file descriptor, so the
file object and socket object may be closed or garbage-collected independently.
The socket must be in blocking mode (it can not have a timeout). The optional
mode and bufsize arguments are interpreted the same way as by the built-in
file() function.

Note

On Windows, the file-like object created by makefile() cannot be
used where a file object with a file descriptor is expected, such as the
stream arguments of subprocess.Popen().

	
socket.recv(bufsize[, flags])

	Receive data from the socket. The return value is a string representing the
data received. The maximum amount of data to be received at once is specified
by bufsize. See the Unix manual page recv(2) for the meaning of
the optional argument flags; it defaults to zero.

Note

For best match with hardware and network realities, the value of bufsize
should be a relatively small power of 2, for example, 4096.

	
socket.recvfrom(bufsize[, flags])

	Receive data from the socket. The return value is a pair (string, address)
where string is a string representing the data received and address is the
address of the socket sending the data. See the Unix manual page
recv(2) for the meaning of the optional argument flags; it defaults
to zero. (The format of address depends on the address family — see above.)

	
socket.recvfrom_into(buffer[, nbytes[, flags]])

	Receive data from the socket, writing it into buffer instead of creating a
new string. The return value is a pair (nbytes, address) where nbytes is
the number of bytes received and address is the address of the socket sending
the data. See the Unix manual page recv(2) for the meaning of the
optional argument flags; it defaults to zero. (The format of address
depends on the address family — see above.)

New in version 2.5.

	
socket.recv_into(buffer[, nbytes[, flags]])

	Receive up to nbytes bytes from the socket, storing the data into a buffer
rather than creating a new string. If nbytes is not specified (or 0),
receive up to the size available in the given buffer. Returns the number of
bytes received. See the Unix manual page recv(2) for the meaning
of the optional argument flags; it defaults to zero.

New in version 2.5.

	
socket.send(string[, flags])

	Send data to the socket. The socket must be connected to a remote socket. The
optional flags argument has the same meaning as for recv() above.
Returns the number of bytes sent. Applications are responsible for checking that
all data has been sent; if only some of the data was transmitted, the
application needs to attempt delivery of the remaining data.

	
socket.sendall(string[, flags])

	Send data to the socket. The socket must be connected to a remote socket. The
optional flags argument has the same meaning as for recv() above.
Unlike send(), this method continues to send data from string until
either all data has been sent or an error occurs. None is returned on
success. On error, an exception is raised, and there is no way to determine how
much data, if any, was successfully sent.

	
socket.sendto(string[, flags], address)

	Send data to the socket. The socket should not be connected to a remote socket,
since the destination socket is specified by address. The optional flags
argument has the same meaning as for recv() above. Return the number of
bytes sent. (The format of address depends on the address family — see
above.)

	
socket.setblocking(flag)

	Set blocking or non-blocking mode of the socket: if flag is 0, the socket is
set to non-blocking, else to blocking mode. Initially all sockets are in
blocking mode. In non-blocking mode, if a recv() call doesn’t find any
data, or if a send() call can’t immediately dispose of the data, a
error exception is raised; in blocking mode, the calls block until they
can proceed. s.setblocking(0) is equivalent to s.settimeout(0.0);
s.setblocking(1) is equivalent to s.settimeout(None).

	
socket.settimeout(value)

	Set a timeout on blocking socket operations. The value argument can be a
nonnegative float expressing seconds, or None. If a float is given,
subsequent socket operations will raise a timeout exception if the
timeout period value has elapsed before the operation has completed. Setting
a timeout of None disables timeouts on socket operations.
s.settimeout(0.0) is equivalent to s.setblocking(0);
s.settimeout(None) is equivalent to s.setblocking(1).

New in version 2.3.

	
socket.gettimeout()

	Return the timeout in floating seconds associated with socket operations, or
None if no timeout is set. This reflects the last call to
setblocking() or settimeout().

New in version 2.3.

Some notes on socket blocking and timeouts: A socket object can be in one of
three modes: blocking, non-blocking, or timeout. Sockets are always created in
blocking mode. In blocking mode, operations block until complete or
the system returns an error (such as connection timed out). In
non-blocking mode, operations fail (with an error that is unfortunately
system-dependent) if they cannot be completed immediately. In timeout mode,
operations fail if they cannot be completed within the timeout specified for the
socket or if the system returns an error. The setblocking()
method is simply a shorthand for certain settimeout() calls.

Timeout mode internally sets the socket in non-blocking mode. The blocking and
timeout modes are shared between file descriptors and socket objects that refer
to the same network endpoint. A consequence of this is that file objects
returned by the makefile() method must only be used when the
socket is in blocking mode; in timeout or non-blocking mode file operations
that cannot be completed immediately will fail.

Note that the connect() operation is subject to the timeout
setting, and in general it is recommended to call settimeout()
before calling connect() or pass a timeout parameter to
create_connection(). The system network stack may return a connection
timeout error of its own regardless of any Python socket timeout setting.

	
socket.setsockopt(level, optname, value)

	Set the value of the given socket option (see the Unix manual page
setsockopt(2)). The needed symbolic constants are defined in the
socket module (SO_* etc.). The value can be an integer or a
string representing a buffer. In the latter case it is up to the caller to
ensure that the string contains the proper bits (see the optional built-in
module struct for a way to encode C structures as strings).

	
socket.shutdown(how)

	Shut down one or both halves of the connection. If how is SHUT_RD,
further receives are disallowed. If how is SHUT_WR, further sends
are disallowed. If how is SHUT_RDWR, further sends and receives are
disallowed. Depending on the platform, shutting down one half of the connection
can also close the opposite half (e.g. on Mac OS X, shutdown(SHUT_WR) does
not allow further reads on the other end of the connection).

Note that there are no methods read() or write(); use
recv() and send() without flags argument instead.

Socket objects also have these (read-only) attributes that correspond to the
values given to the socket constructor.

	
socket.family

	The socket family.

New in version 2.5.

	
socket.type

	The socket type.

New in version 2.5.

	
socket.proto

	The socket protocol.

New in version 2.5.

17.2.2. Example

Here are four minimal example programs using the TCP/IP protocol: a server that
echoes all data that it receives back (servicing only one client), and a client
using it. Note that a server must perform the sequence socket(),
bind(), listen(), accept() (possibly
repeating the accept() to service more than one client), while a
client only needs the sequence socket(), connect(). Also
note that the server does not send()/recv() on the
socket it is listening on but on the new socket returned by
accept().

The first two examples support IPv4 only.

Echo server program
import socket

HOST = '' # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:
 data = conn.recv(1024)
 if not data: break
 conn.send(data)
conn.close()

Echo client program
import socket

HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send('Hello, world')
data = s.recv(1024)
s.close()
print 'Received', repr(data)

The next two examples are identical to the above two, but support both IPv4 and
IPv6. The server side will listen to the first address family available (it
should listen to both instead). On most of IPv6-ready systems, IPv6 will take
precedence and the server may not accept IPv4 traffic. The client side will try
to connect to the all addresses returned as a result of the name resolution, and
sends traffic to the first one connected successfully.

Echo server program
import socket
import sys

HOST = None # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,
 socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
 af, socktype, proto, canonname, sa = res
 try:
 s = socket.socket(af, socktype, proto)
 except socket.error, msg:
 s = None
 continue
 try:
 s.bind(sa)
 s.listen(1)
 except socket.error, msg:
 s.close()
 s = None
 continue
 break
if s is None:
 print 'could not open socket'
 sys.exit(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:
 data = conn.recv(1024)
 if not data: break
 conn.send(data)
conn.close()

Echo client program
import socket
import sys

HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):
 af, socktype, proto, canonname, sa = res
 try:
 s = socket.socket(af, socktype, proto)
 except socket.error, msg:
 s = None
 continue
 try:
 s.connect(sa)
 except socket.error, msg:
 s.close()
 s = None
 continue
 break
if s is None:
 print 'could not open socket'
 sys.exit(1)
s.send('Hello, world')
data = s.recv(1024)
s.close()
print 'Received', repr(data)

The last example shows how to write a very simple network sniffer with raw
sockets on Windows. The example requires administrator privileges to modify
the interface:

import socket

the public network interface
HOST = socket.gethostbyname(socket.gethostname())

create a raw socket and bind it to the public interface
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s.bind((HOST, 0))

Include IP headers
s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packages
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

receive a package
print s.recvfrom(65565)

disabled promiscuous mode
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.3. ssl — TLS/SSL wrapper for socket objects

New in version 2.6.

This module provides access to Transport Layer Security (often known as “Secure
Sockets Layer”) encryption and peer authentication facilities for network
sockets, both client-side and server-side. This module uses the OpenSSL
library. It is available on all modern Unix systems, Windows, Mac OS X, and
probably additional platforms, as long as OpenSSL is installed on that platform.

Note

Some behavior may be platform dependent, since calls are made to the
operating system socket APIs. The installed version of OpenSSL may also
cause variations in behavior.

This section documents the objects and functions in the ssl module; for more
general information about TLS, SSL, and certificates, the reader is referred to
the documents in the “See Also” section at the bottom.

This module provides a class, ssl.SSLSocket, which is derived from the
socket.socket type, and provides a socket-like wrapper that also
encrypts and decrypts the data going over the socket with SSL. It supports
additional read() and write() methods, along with a method,
getpeercert(), to retrieve the certificate of the other side of the
connection, and a method, cipher(), to retrieve the cipher being used for
the secure connection.

17.3.1. Functions, Constants, and Exceptions

	
exception ssl.SSLError

	Raised to signal an error from the underlying SSL implementation. This
signifies some problem in the higher-level encryption and authentication
layer that’s superimposed on the underlying network connection. This error
is a subtype of socket.error, which in turn is a subtype of
IOError.

	
ssl.wrap_socket(sock, keyfile=None, certfile=None, server_side=False, cert_reqs=CERT_NONE, ssl_version={see docs}, ca_certs=None, do_handshake_on_connect=True, suppress_ragged_eofs=True, ciphers=None)

	Takes an instance sock of socket.socket, and returns an instance
of ssl.SSLSocket, a subtype of socket.socket, which wraps
the underlying socket in an SSL context. For client-side sockets, the
context construction is lazy; if the underlying socket isn’t connected yet,
the context construction will be performed after connect() is called on
the socket. For server-side sockets, if the socket has no remote peer, it is
assumed to be a listening socket, and the server-side SSL wrapping is
automatically performed on client connections accepted via the accept()
method. wrap_socket() may raise SSLError.

The keyfile and certfile parameters specify optional files which
contain a certificate to be used to identify the local side of the
connection. See the discussion of Certificates for more
information on how the certificate is stored in the certfile.

Often the private key is stored in the same file as the certificate; in this
case, only the certfile parameter need be passed. If the private key is
stored in a separate file, both parameters must be used. If the private key
is stored in the certfile, it should come before the first certificate in
the certificate chain:

-----BEGIN RSA PRIVATE KEY-----
... (private key in base64 encoding) ...
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

The parameter server_side is a boolean which identifies whether
server-side or client-side behavior is desired from this socket.

The parameter cert_reqs specifies whether a certificate is required from
the other side of the connection, and whether it will be validated if
provided. It must be one of the three values CERT_NONE
(certificates ignored), CERT_OPTIONAL (not required, but validated
if provided), or CERT_REQUIRED (required and validated). If the
value of this parameter is not CERT_NONE, then the ca_certs
parameter must point to a file of CA certificates.

The ca_certs file contains a set of concatenated “certification
authority” certificates, which are used to validate certificates passed from
the other end of the connection. See the discussion of
Certificates for more information about how to arrange the
certificates in this file.

The parameter ssl_version specifies which version of the SSL protocol to
use. Typically, the server chooses a particular protocol version, and the
client must adapt to the server’s choice. Most of the versions are not
interoperable with the other versions. If not specified, for client-side
operation, the default SSL version is SSLv3; for server-side operation,
SSLv23. These version selections provide the most compatibility with other
versions.

Here’s a table showing which versions in a client (down the side) can connect
to which versions in a server (along the top):

	client / server
	SSLv2
	SSLv3
	SSLv23
	TLSv1

	SSLv2
	yes
	no
	yes
	no

	SSLv3
	yes
	yes
	yes
	no

	SSLv23
	yes
	no
	yes
	no

	TLSv1
	no
	no
	yes
	yes

Note

Which connections succeed will vary depending on the version of
OpenSSL. For instance, in some older versions of OpenSSL (such
as 0.9.7l on OS X 10.4), an SSLv2 client could not connect to an
SSLv23 server. Another example: beginning with OpenSSL 1.0.0,
an SSLv23 client will not actually attempt SSLv2 connections
unless you explicitly enable SSLv2 ciphers; for example, you
might specify "ALL" or "SSLv2" as the ciphers parameter
to enable them.

The ciphers parameter sets the available ciphers for this SSL object.
It should be a string in the OpenSSL cipher list format [http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT].

The parameter do_handshake_on_connect specifies whether to do the SSL
handshake automatically after doing a socket.connect(), or whether the
application program will call it explicitly, by invoking the
SSLSocket.do_handshake() method. Calling
SSLSocket.do_handshake() explicitly gives the program control over the
blocking behavior of the socket I/O involved in the handshake.

The parameter suppress_ragged_eofs specifies how the
SSLSocket.read() method should signal unexpected EOF from the other end
of the connection. If specified as True (the default), it returns a
normal EOF in response to unexpected EOF errors raised from the underlying
socket; if False, it will raise the exceptions back to the caller.

Changed in version 2.7: New optional argument ciphers.

	
ssl.RAND_status()

	Returns True if the SSL pseudo-random number generator has been seeded with
‘enough’ randomness, and False otherwise. You can use ssl.RAND_egd()
and ssl.RAND_add() to increase the randomness of the pseudo-random
number generator.

	
ssl.RAND_egd(path)

	If you are running an entropy-gathering daemon (EGD) somewhere, and path
is the pathname of a socket connection open to it, this will read 256 bytes
of randomness from the socket, and add it to the SSL pseudo-random number
generator to increase the security of generated secret keys. This is
typically only necessary on systems without better sources of randomness.

See http://egd.sourceforge.net/ or http://prngd.sourceforge.net/ for sources
of entropy-gathering daemons.

	
ssl.RAND_add(bytes, entropy)

	Mixes the given bytes into the SSL pseudo-random number generator. The
parameter entropy (a float) is a lower bound on the entropy contained in
string (so you can always use 0.0). See RFC 1750 [http://tools.ietf.org/html/rfc1750.html] for more
information on sources of entropy.

	
ssl.cert_time_to_seconds(timestring)

	Returns a floating-point value containing a normal seconds-after-the-epoch
time value, given the time-string representing the “notBefore” or “notAfter”
date from a certificate.

Here’s an example:

>>> import ssl
>>> ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT")
1178694000.0
>>> import time
>>> time.ctime(ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT"))
'Wed May 9 00:00:00 2007'
>>>

	
ssl.get_server_certificate(addr, ssl_version=PROTOCOL_SSLv3, ca_certs=None)

	Given the address addr of an SSL-protected server, as a (hostname,
port-number) pair, fetches the server’s certificate, and returns it as a
PEM-encoded string. If ssl_version is specified, uses that version of
the SSL protocol to attempt to connect to the server. If ca_certs is
specified, it should be a file containing a list of root certificates, the
same format as used for the same parameter in wrap_socket(). The call
will attempt to validate the server certificate against that set of root
certificates, and will fail if the validation attempt fails.

	
ssl.DER_cert_to_PEM_cert(DER_cert_bytes)

	Given a certificate as a DER-encoded blob of bytes, returns a PEM-encoded
string version of the same certificate.

	
ssl.PEM_cert_to_DER_cert(PEM_cert_string)

	Given a certificate as an ASCII PEM string, returns a DER-encoded sequence of
bytes for that same certificate.

	
ssl.CERT_NONE

	Value to pass to the cert_reqs parameter to sslobject() when no
certificates will be required or validated from the other side of the socket
connection.

	
ssl.CERT_OPTIONAL

	Value to pass to the cert_reqs parameter to sslobject() when no
certificates will be required from the other side of the socket connection,
but if they are provided, will be validated. Note that use of this setting
requires a valid certificate validation file also be passed as a value of the
ca_certs parameter.

	
ssl.CERT_REQUIRED

	Value to pass to the cert_reqs parameter to sslobject() when
certificates will be required from the other side of the socket connection.
Note that use of this setting requires a valid certificate validation file
also be passed as a value of the ca_certs parameter.

	
ssl.PROTOCOL_SSLv2

	Selects SSL version 2 as the channel encryption protocol.

This protocol is not available if OpenSSL is compiled with OPENSSL_NO_SSL2
flag.

Warning

SSL version 2 is insecure. Its use is highly discouraged.

	
ssl.PROTOCOL_SSLv23

	Selects SSL version 2 or 3 as the channel encryption protocol. This is a
setting to use with servers for maximum compatibility with the other end of
an SSL connection, but it may cause the specific ciphers chosen for the
encryption to be of fairly low quality.

	
ssl.PROTOCOL_SSLv3

	Selects SSL version 3 as the channel encryption protocol. For clients, this
is the maximally compatible SSL variant.

	
ssl.PROTOCOL_TLSv1

	Selects TLS version 1 as the channel encryption protocol. This is the most
modern version, and probably the best choice for maximum protection, if both
sides can speak it.

	
ssl.OPENSSL_VERSION

	The version string of the OpenSSL library loaded by the interpreter:

>>> ssl.OPENSSL_VERSION
'OpenSSL 0.9.8k 25 Mar 2009'

New in version 2.7.

	
ssl.OPENSSL_VERSION_INFO

	A tuple of five integers representing version information about the
OpenSSL library:

>>> ssl.OPENSSL_VERSION_INFO
(0, 9, 8, 11, 15)

New in version 2.7.

	
ssl.OPENSSL_VERSION_NUMBER

	The raw version number of the OpenSSL library, as a single integer:

>>> ssl.OPENSSL_VERSION_NUMBER
9470143L
>>> hex(ssl.OPENSSL_VERSION_NUMBER)
'0x9080bfL'

New in version 2.7.

17.3.2. SSLSocket Objects

	
SSLSocket.read([nbytes=1024])

	Reads up to nbytes bytes from the SSL-encrypted channel and returns them.

	
SSLSocket.write(data)

	Writes the data to the other side of the connection, using the SSL
channel to encrypt. Returns the number of bytes written.

	
SSLSocket.getpeercert(binary_form=False)

	If there is no certificate for the peer on the other end of the connection,
returns None.

If the parameter binary_form is False, and a certificate was
received from the peer, this method returns a dict instance. If the
certificate was not validated, the dict is empty. If the certificate was
validated, it returns a dict with the keys subject (the principal for
which the certificate was issued), and notAfter (the time after which the
certificate should not be trusted). The certificate was already validated,
so the notBefore and issuer fields are not returned. If a
certificate contains an instance of the Subject Alternative Name extension
(see RFC 3280 [http://tools.ietf.org/html/rfc3280.html]), there will also be a subjectAltName key in the
dictionary.

The “subject” field is a tuple containing the sequence of relative
distinguished names (RDNs) given in the certificate’s data structure for the
principal, and each RDN is a sequence of name-value pairs:

{'notAfter': 'Feb 16 16:54:50 2013 GMT',
 'subject': ((('countryName', u'US'),),
 (('stateOrProvinceName', u'Delaware'),),
 (('localityName', u'Wilmington'),),
 (('organizationName', u'Python Software Foundation'),),
 (('organizationalUnitName', u'SSL'),),
 (('commonName', u'somemachine.python.org'),))}

If the binary_form parameter is True, and a certificate was
provided, this method returns the DER-encoded form of the entire certificate
as a sequence of bytes, or None if the peer did not provide a
certificate. This return value is independent of validation; if validation
was required (CERT_OPTIONAL or CERT_REQUIRED), it will have
been validated, but if CERT_NONE was used to establish the
connection, the certificate, if present, will not have been validated.

	
SSLSocket.cipher()

	Returns a three-value tuple containing the name of the cipher being used, the
version of the SSL protocol that defines its use, and the number of secret
bits being used. If no connection has been established, returns None.

	
SSLSocket.do_handshake()

	Perform a TLS/SSL handshake. If this is used with a non-blocking socket, it
may raise SSLError with an arg[0] of SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE, in which case it must be called again until
it completes successfully. For example, to simulate the behavior of a
blocking socket, one might write:

while True:
 try:
 s.do_handshake()
 break
 except ssl.SSLError, err:
 if err.args[0] == ssl.SSL_ERROR_WANT_READ:
 select.select([s], [], [])
 elif err.args[0] == ssl.SSL_ERROR_WANT_WRITE:
 select.select([], [s], [])
 else:
 raise

	
SSLSocket.unwrap()

	Performs the SSL shutdown handshake, which removes the TLS layer from the
underlying socket, and returns the underlying socket object. This can be
used to go from encrypted operation over a connection to unencrypted. The
socket instance returned should always be used for further communication with
the other side of the connection, rather than the original socket instance
(which may not function properly after the unwrap).

17.3.3. Certificates

Certificates in general are part of a public-key / private-key system. In this
system, each principal, (which may be a machine, or a person, or an
organization) is assigned a unique two-part encryption key. One part of the key
is public, and is called the public key; the other part is kept secret, and is
called the private key. The two parts are related, in that if you encrypt a
message with one of the parts, you can decrypt it with the other part, and
only with the other part.

A certificate contains information about two principals. It contains the name
of a subject, and the subject’s public key. It also contains a statement by a
second principal, the issuer, that the subject is who he claims to be, and
that this is indeed the subject’s public key. The issuer’s statement is signed
with the issuer’s private key, which only the issuer knows. However, anyone can
verify the issuer’s statement by finding the issuer’s public key, decrypting the
statement with it, and comparing it to the other information in the certificate.
The certificate also contains information about the time period over which it is
valid. This is expressed as two fields, called “notBefore” and “notAfter”.

In the Python use of certificates, a client or server can use a certificate to
prove who they are. The other side of a network connection can also be required
to produce a certificate, and that certificate can be validated to the
satisfaction of the client or server that requires such validation. The
connection attempt can be set to raise an exception if the validation fails.
Validation is done automatically, by the underlying OpenSSL framework; the
application need not concern itself with its mechanics. But the application
does usually need to provide sets of certificates to allow this process to take
place.

Python uses files to contain certificates. They should be formatted as “PEM”
(see RFC 1422 [http://tools.ietf.org/html/rfc1422.html]), which is a base-64 encoded form wrapped with a header line
and a footer line:

-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

The Python files which contain certificates can contain a sequence of
certificates, sometimes called a certificate chain. This chain should start
with the specific certificate for the principal who “is” the client or server,
and then the certificate for the issuer of that certificate, and then the
certificate for the issuer of that certificate, and so on up the chain till
you get to a certificate which is self-signed, that is, a certificate which
has the same subject and issuer, sometimes called a root certificate. The
certificates should just be concatenated together in the certificate file. For
example, suppose we had a three certificate chain, from our server certificate
to the certificate of the certification authority that signed our server
certificate, to the root certificate of the agency which issued the
certification authority’s certificate:

-----BEGIN CERTIFICATE-----
... (certificate for your server)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the root certificate for the CA's issuer)...
-----END CERTIFICATE-----

If you are going to require validation of the other side of the connection’s
certificate, you need to provide a “CA certs” file, filled with the certificate
chains for each issuer you are willing to trust. Again, this file just contains
these chains concatenated together. For validation, Python will use the first
chain it finds in the file which matches.

Some “standard” root certificates are available from various certification
authorities: CACert.org [http://www.cacert.org/index.php?id=3], Thawte [http://www.thawte.com/roots/], Verisign [http://www.verisign.com/support/roots.html], Positive SSL [http://www.PositiveSSL.com/ssl-certificate-support/cert_installation/UTN-USERFirst-Hardware.crt]
(used by python.org), Equifax and GeoTrust [http://www.geotrust.com/resources/root_certificates/index.asp].

In general, if you are using SSL3 or TLS1, you don’t need to put the full chain
in your “CA certs” file; you only need the root certificates, and the remote
peer is supposed to furnish the other certificates necessary to chain from its
certificate to a root certificate. See RFC 4158 [http://tools.ietf.org/html/rfc4158.html] for more discussion of the
way in which certification chains can be built.

If you are going to create a server that provides SSL-encrypted connection
services, you will need to acquire a certificate for that service. There are
many ways of acquiring appropriate certificates, such as buying one from a
certification authority. Another common practice is to generate a self-signed
certificate. The simplest way to do this is with the OpenSSL package, using
something like the following:

% openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem
Generating a 1024 bit RSA private key
.......++++++
.............................++++++
writing new private key to 'cert.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:MyState
Locality Name (eg, city) []:Some City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Organization, Inc.
Organizational Unit Name (eg, section) []:My Group
Common Name (eg, YOUR name) []:myserver.mygroup.myorganization.com
Email Address []:ops@myserver.mygroup.myorganization.com
%

The disadvantage of a self-signed certificate is that it is its own root
certificate, and no one else will have it in their cache of known (and trusted)
root certificates.

17.3.4. Examples

17.3.4.1. Testing for SSL support

To test for the presence of SSL support in a Python installation, user code
should use the following idiom:

try:
 import ssl
except ImportError:
 pass
else:
 ... # do something that requires SSL support

17.3.4.2. Client-side operation

This example connects to an SSL server, prints the server’s address and
certificate, sends some bytes, and reads part of the response:

import socket, ssl, pprint

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

require a certificate from the server
ssl_sock = ssl.wrap_socket(s,
 ca_certs="/etc/ca_certs_file",
 cert_reqs=ssl.CERT_REQUIRED)

ssl_sock.connect(('www.verisign.com', 443))

print repr(ssl_sock.getpeername())
print ssl_sock.cipher()
print pprint.pformat(ssl_sock.getpeercert())

Set a simple HTTP request -- use httplib in actual code.
ssl_sock.write("""GET / HTTP/1.0\r
Host: www.verisign.com\r\n\r\n""")

Read a chunk of data. Will not necessarily
read all the data returned by the server.
data = ssl_sock.read()

note that closing the SSLSocket will also close the underlying socket
ssl_sock.close()

As of September 6, 2007, the certificate printed by this program looked like
this:

{'notAfter': 'May 8 23:59:59 2009 GMT',
 'subject': ((('serialNumber', u'2497886'),),
 (('1.3.6.1.4.1.311.60.2.1.3', u'US'),),
 (('1.3.6.1.4.1.311.60.2.1.2', u'Delaware'),),
 (('countryName', u'US'),),
 (('postalCode', u'94043'),),
 (('stateOrProvinceName', u'California'),),
 (('localityName', u'Mountain View'),),
 (('streetAddress', u'487 East Middlefield Road'),),
 (('organizationName', u'VeriSign, Inc.'),),
 (('organizationalUnitName',
 u'Production Security Services'),),
 (('organizationalUnitName',
 u'Terms of use at www.verisign.com/rpa (c)06'),),
 (('commonName', u'www.verisign.com'),))}

which is a fairly poorly-formed subject field.

17.3.4.3. Server-side operation

For server operation, typically you’d need to have a server certificate, and
private key, each in a file. You’d open a socket, bind it to a port, call
listen() on it, then start waiting for clients to connect:

import socket, ssl

bindsocket = socket.socket()
bindsocket.bind(('myaddr.mydomain.com', 10023))
bindsocket.listen(5)

When one did, you’d call accept() on the socket to get the new socket from
the other end, and use wrap_socket() to create a server-side SSL context
for it:

while True:
 newsocket, fromaddr = bindsocket.accept()
 connstream = ssl.wrap_socket(newsocket,
 server_side=True,
 certfile="mycertfile",
 keyfile="mykeyfile",
 ssl_version=ssl.PROTOCOL_TLSv1)
 try:
 deal_with_client(connstream)
 finally:
 connstream.shutdown(socket.SHUT_RDWR)
 connstream.close()

Then you’d read data from the connstream and do something with it till you
are finished with the client (or the client is finished with you):

def deal_with_client(connstream):
 data = connstream.read()
 # null data means the client is finished with us
 while data:
 if not do_something(connstream, data):
 # we'll assume do_something returns False
 # when we're finished with client
 break
 data = connstream.read()
 # finished with client

And go back to listening for new client connections.

See also

	Class socket.socket

	Documentation of underlying socket class

	Introducing SSL and Certificates using OpenSSL [http://old.pseudonym.org/ssl/wwwj-index.html]

	Frederick J. Hirsch

	RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management [http://www.ietf.org/rfc/rfc1422]

	Steve Kent

	RFC 1750: Randomness Recommendations for Security [http://www.ietf.org/rfc/rfc1750]

	D. Eastlake et. al.

	RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile [http://www.ietf.org/rfc/rfc3280]

	Housley et. al.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.4. signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general
rules for working with signals and their handlers:

	A handler for a particular signal, once set, remains installed until it is
explicitly reset (Python emulates the BSD style interface regardless of the
underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

	There is no way to “block” signals temporarily from critical sections (since
this is not supported by all Unix flavors).

	Although Python signal handlers are called asynchronously as far as the Python
user is concerned, they can only occur between the “atomic” instructions of the
Python interpreter. This means that signals arriving during long calculations
implemented purely in C (such as regular expression matches on large bodies of
text) may be delayed for an arbitrary amount of time.

	When a signal arrives during an I/O operation, it is possible that the I/O
operation raises an exception after the signal handler returns. This is
dependent on the underlying Unix system’s semantics regarding interrupted system
calls.

	Because the C signal handler always returns, it makes little sense to catch
synchronous errors like SIGFPE or SIGSEGV.

	Python installs a small number of signal handlers by default: SIGPIPE
is ignored (so write errors on pipes and sockets can be reported as ordinary
Python exceptions) and SIGINT is translated into a
KeyboardInterrupt exception. All of these can be overridden.

	Some care must be taken if both signals and threads are used in the same
program. The fundamental thing to remember in using signals and threads
simultaneously is: always perform signal() operations in the main thread
of execution. Any thread can perform an alarm(), getsignal(),
pause(), setitimer() or getitimer(); only the main thread
can set a new signal handler, and the main thread will be the only one to
receive signals (this is enforced by the Python signal module, even
if the underlying thread implementation supports sending signals to
individual threads). This means that signals can’t be used as a means of
inter-thread communication. Use locks instead.

The variables defined in the signal module are:

	
signal.SIG_DFL

	This is one of two standard signal handling options; it will simply perform
the default function for the signal. For example, on most systems the
default action for SIGQUIT is to dump core and exit, while the
default action for SIGCHLD is to simply ignore it.

	
signal.SIG_IGN

	This is another standard signal handler, which will simply ignore the given
signal.

	
SIG*

	All the signal numbers are defined symbolically. For example, the hangup signal
is defined as signal.SIGHUP; the variable names are identical to the
names used in C programs, as found in <signal.h>. The Unix man page for
‘signal()‘ lists the existing signals (on some systems this is
signal(2), on others the list is in signal(7)). Note that
not all systems define the same set of signal names; only those names defined by
the system are defined by this module.

	
signal.CTRL_C_EVENT

	The signal corresponding to the CTRL+C keystroke event. This signal can
only be used with os.kill().

Availability: Windows.

New in version 2.7.

	
signal.CTRL_BREAK_EVENT

	The signal corresponding to the CTRL+BREAK keystroke event. This signal can
only be used with os.kill().

Availability: Windows.

New in version 2.7.

	
signal.NSIG

	One more than the number of the highest signal number.

	
signal.ITIMER_REAL

	Decrements interval timer in real time, and delivers SIGALRM upon expiration.

	
signal.ITIMER_VIRTUAL

	Decrements interval timer only when the process is executing, and delivers
SIGVTALRM upon expiration.

	
signal.ITIMER_PROF

	Decrements interval timer both when the process executes and when the
system is executing on behalf of the process. Coupled with ITIMER_VIRTUAL,
this timer is usually used to profile the time spent by the application
in user and kernel space. SIGPROF is delivered upon expiration.

The signal module defines one exception:

	
exception signal.ItimerError

	Raised to signal an error from the underlying setitimer() or
getitimer() implementation. Expect this error if an invalid
interval timer or a negative time is passed to setitimer().
This error is a subtype of IOError.

The signal module defines the following functions:

	
signal.alarm(time)

	If time is non-zero, this function requests that a SIGALRM signal be
sent to the process in time seconds. Any previously scheduled alarm is
canceled (only one alarm can be scheduled at any time). The returned value is
then the number of seconds before any previously set alarm was to have been
delivered. If time is zero, no alarm is scheduled, and any scheduled alarm is
canceled. If the return value is zero, no alarm is currently scheduled. (See
the Unix man page alarm(2).) Availability: Unix.

	
signal.getsignal(signalnum)

	Return the current signal handler for the signal signalnum. The returned value
may be a callable Python object, or one of the special values
signal.SIG_IGN, signal.SIG_DFL or None. Here,
signal.SIG_IGN means that the signal was previously ignored,
signal.SIG_DFL means that the default way of handling the signal was
previously in use, and None means that the previous signal handler was not
installed from Python.

	
signal.pause()

	Cause the process to sleep until a signal is received; the appropriate handler
will then be called. Returns nothing. Not on Windows. (See the Unix man page
signal(2).)

	
signal.setitimer(which, seconds[, interval])

	Sets given interval timer (one of signal.ITIMER_REAL,
signal.ITIMER_VIRTUAL or signal.ITIMER_PROF) specified
by which to fire after seconds (float is accepted, different from
alarm()) and after that every interval seconds. The interval
timer specified by which can be cleared by setting seconds to zero.

When an interval timer fires, a signal is sent to the process.
The signal sent is dependent on the timer being used;
signal.ITIMER_REAL will deliver SIGALRM,
signal.ITIMER_VIRTUAL sends SIGVTALRM,
and signal.ITIMER_PROF will deliver SIGPROF.

The old values are returned as a tuple: (delay, interval).

Attempting to pass an invalid interval timer will cause an
ItimerError. Availability: Unix.

New in version 2.6.

	
signal.getitimer(which)

	Returns current value of a given interval timer specified by which.
Availability: Unix.

New in version 2.6.

	
signal.set_wakeup_fd(fd)

	Set the wakeup fd to fd. When a signal is received, a '\0' byte is
written to the fd. This can be used by a library to wakeup a poll or select
call, allowing the signal to be fully processed.

The old wakeup fd is returned. fd must be non-blocking. It is up to the
library to remove any bytes before calling poll or select again.

When threads are enabled, this function can only be called from the main thread;
attempting to call it from other threads will cause a ValueError
exception to be raised.

New in version 2.6.

	
signal.siginterrupt(signalnum, flag)

	Change system call restart behaviour: if flag is False, system
calls will be restarted when interrupted by signal signalnum, otherwise
system calls will be interrupted. Returns nothing. Availability: Unix (see
the man page siginterrupt(3) for further information).

Note that installing a signal handler with signal() will reset the
restart behaviour to interruptible by implicitly calling
siginterrupt() with a true flag value for the given signal.

New in version 2.6.

	
signal.signal(signalnum, handler)

	Set the handler for signal signalnum to the function handler. handler can
be a callable Python object taking two arguments (see below), or one of the
special values signal.SIG_IGN or signal.SIG_DFL. The previous
signal handler will be returned (see the description of getsignal()
above). (See the Unix man page signal(2).)

When threads are enabled, this function can only be called from the main thread;
attempting to call it from other threads will cause a ValueError
exception to be raised.

The handler is called with two arguments: the signal number and the current
stack frame (None or a frame object; for a description of frame objects,
see the description in the type hierarchy or see the
attribute descriptions in the inspect module).

On Windows, signal() can only be called with SIGABRT,
SIGFPE, SIGILL, SIGINT, SIGSEGV, or
SIGTERM. A ValueError will be raised in any other case.

17.4.1. Example

Here is a minimal example program. It uses the alarm() function to limit
the time spent waiting to open a file; this is useful if the file is for a
serial device that may not be turned on, which would normally cause the
os.open() to hang indefinitely. The solution is to set a 5-second alarm
before opening the file; if the operation takes too long, the alarm signal will
be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):
 print 'Signal handler called with signal', signum
 raise IOError("Couldn't open device!")

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open('/dev/ttyS0', os.O_RDWR)

signal.alarm(0) # Disable the alarm

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.5. popen2 — Subprocesses with accessible I/O streams

Deprecated since version 2.6: This module is obsolete. Use the subprocess module. Check
especially the Replacing Older Functions with the subprocess Module section.

This module allows you to spawn processes and connect to their
input/output/error pipes and obtain their return codes under Unix and Windows.

The subprocess module provides more powerful facilities for spawning new
processes and retrieving their results. Using the subprocess module is
preferable to using the popen2 module.

The primary interface offered by this module is a trio of factory functions.
For each of these, if bufsize is specified, it specifies the buffer size for
the I/O pipes. mode, if provided, should be the string 'b' or 't'; on
Windows this is needed to determine whether the file objects should be opened in
binary or text mode. The default value for mode is 't'.

On Unix, cmd may be a sequence, in which case arguments will be passed
directly to the program without shell intervention (as with os.spawnv()).
If cmd is a string it will be passed to the shell (as with os.system()).

The only way to retrieve the return codes for the child processes is by using
the poll() or wait() methods on the Popen3 and
Popen4 classes; these are only available on Unix. This information is
not available when using the popen2(), popen3(), and popen4()
functions, or the equivalent functions in the os module. (Note that the
tuples returned by the os module’s functions are in a different order
from the ones returned by the popen2 module.)

	
popen2.popen2(cmd[, bufsize[, mode]])

	Executes cmd as a sub-process. Returns the file objects (child_stdout,
child_stdin).

	
popen2.popen3(cmd[, bufsize[, mode]])

	Executes cmd as a sub-process. Returns the file objects (child_stdout,
child_stdin, child_stderr).

	
popen2.popen4(cmd[, bufsize[, mode]])

	Executes cmd as a sub-process. Returns the file objects
(child_stdout_and_stderr, child_stdin).

New in version 2.0.

On Unix, a class defining the objects returned by the factory functions is also
available. These are not used for the Windows implementation, and are not
available on that platform.

	
class popen2.Popen3(cmd[, capturestderr[, bufsize]])

	This class represents a child process. Normally, Popen3 instances are
created using the popen2() and popen3() factory functions described
above.

If not using one of the helper functions to create Popen3 objects, the
parameter cmd is the shell command to execute in a sub-process. The
capturestderr flag, if true, specifies that the object should capture standard
error output of the child process. The default is false. If the bufsize
parameter is specified, it specifies the size of the I/O buffers to/from the
child process.

	
class popen2.Popen4(cmd[, bufsize])

	Similar to Popen3, but always captures standard error into the same
file object as standard output. These are typically created using
popen4().

New in version 2.0.

17.5.1. Popen3 and Popen4 Objects

Instances of the Popen3 and Popen4 classes have the following
methods:

	
Popen3.poll()

	Returns -1 if child process hasn’t completed yet, or its status code
(see wait()) otherwise.

	
Popen3.wait()

	Waits for and returns the status code of the child process. The status code
encodes both the return code of the process and information about whether it
exited using the exit() system call or died due to a signal. Functions
to help interpret the status code are defined in the os module; see
section Process Management for the W*() family of functions.

The following attributes are also available:

	
Popen3.fromchild

	A file object that provides output from the child process. For Popen4
instances, this will provide both the standard output and standard error
streams.

	
Popen3.tochild

	A file object that provides input to the child process.

	
Popen3.childerr

	A file object that provides error output from the child process, if
capturestderr was true for the constructor, otherwise None. This will
always be None for Popen4 instances.

	
Popen3.pid

	The process ID of the child process.

17.5.2. Flow Control Issues

Any time you are working with any form of inter-process communication, control
flow needs to be carefully thought out. This remains the case with the file
objects provided by this module (or the os module equivalents).

When reading output from a child process that writes a lot of data to standard
error while the parent is reading from the child’s standard output, a deadlock
can occur. A similar situation can occur with other combinations of reads and
writes. The essential factors are that more than _PC_PIPE_BUF bytes
are being written by one process in a blocking fashion, while the other process
is reading from the first process, also in a blocking fashion.

There are several ways to deal with this situation.

The simplest application change, in many cases, will be to follow this model in
the parent process:

import popen2

r, w, e = popen2.popen3('python slave.py')
e.readlines()
r.readlines()
r.close()
e.close()
w.close()

with code like this in the child:

import os
import sys

note that each of these print statements
writes a single long string

print >>sys.stderr, 400 * 'this is a test\n'
os.close(sys.stderr.fileno())
print >>sys.stdout, 400 * 'this is another test\n'

In particular, note that sys.stderr must be closed after writing all data,
or readlines() won’t return. Also note that os.close() must be
used, as sys.stderr.close() won’t close stderr (otherwise assigning to
sys.stderr will silently close it, so no further errors can be printed).

Applications which need to support a more general approach should integrate I/O
over pipes with their select() loops, or use separate threads to read each
of the individual files provided by whichever popen*() function or
Popen* class was used.

See also

	Module subprocess

	Module for spawning and managing subprocesses.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.6. asyncore — Asynchronous socket handler

This module provides the basic infrastructure for writing asynchronous socket
service clients and servers.

There are only two ways to have a program on a single processor do “more than
one thing at a time.” Multi-threaded programming is the simplest and most
popular way to do it, but there is another very different technique, that lets
you have nearly all the advantages of multi-threading, without actually using
multiple threads. It’s really only practical if your program is largely I/O
bound. If your program is processor bound, then pre-emptive scheduled threads
are probably what you really need. Network servers are rarely processor
bound, however.

If your operating system supports the select() system call in its I/O
library (and nearly all do), then you can use it to juggle multiple
communication channels at once; doing other work while your I/O is taking
place in the “background.” Although this strategy can seem strange and
complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The asyncore module solves
many of the difficult problems for you, making the task of building
sophisticated high-performance network servers and clients a snap. For
“conversational” applications and protocols the companion asynchat
module is invaluable.

The basic idea behind both modules is to create one or more network
channels, instances of class asyncore.dispatcher and
asynchat.async_chat. Creating the channels adds them to a global
map, used by the loop() function if you do not provide it with your own
map.

Once the initial channel(s) is(are) created, calling the loop() function
activates channel service, which continues until the last channel (including
any that have been added to the map during asynchronous service) is closed.

	
asyncore.loop([timeout[, use_poll[, map[, count]]]])

	Enter a polling loop that terminates after count passes or all open
channels have been closed. All arguments are optional. The count
parameter defaults to None, resulting in the loop terminating only when all
channels have been closed. The timeout argument sets the timeout
parameter for the appropriate select() or poll() call, measured
in seconds; the default is 30 seconds. The use_poll parameter, if true,
indicates that poll() should be used in preference to select()
(the default is False).

The map parameter is a dictionary whose items are the channels to watch.
As channels are closed they are deleted from their map. If map is
omitted, a global map is used. Channels (instances of
asyncore.dispatcher, asynchat.async_chat and subclasses
thereof) can freely be mixed in the map.

	
class asyncore.dispatcher

	The dispatcher class is a thin wrapper around a low-level socket
object. To make it more useful, it has a few methods for event-handling
which are called from the asynchronous loop. Otherwise, it can be treated
as a normal non-blocking socket object.

The firing of low-level events at certain times or in certain connection
states tells the asynchronous loop that certain higher-level events have
taken place. For example, if we have asked for a socket to connect to
another host, we know that the connection has been made when the socket
becomes writable for the first time (at this point you know that you may
write to it with the expectation of success). The implied higher-level
events are:

	Event
	Description

	handle_connect()
	Implied by the first read or write
event

	handle_close()
	Implied by a read event with no data
available

	handle_accept()
	Implied by a read event on a listening
socket

During asynchronous processing, each mapped channel’s readable() and
writable() methods are used to determine whether the channel’s socket
should be added to the list of channels select()ed or
poll()ed for read and write events.

Thus, the set of channel events is larger than the basic socket events. The
full set of methods that can be overridden in your subclass follows:

	
handle_read()

	Called when the asynchronous loop detects that a read() call on the
channel’s socket will succeed.

	
handle_write()

	Called when the asynchronous loop detects that a writable socket can be
written. Often this method will implement the necessary buffering for
performance. For example:

def handle_write(self):
 sent = self.send(self.buffer)
 self.buffer = self.buffer[sent:]

	
handle_expt()

	Called when there is out of band (OOB) data for a socket connection. This
will almost never happen, as OOB is tenuously supported and rarely used.

	
handle_connect()

	Called when the active opener’s socket actually makes a connection. Might
send a “welcome” banner, or initiate a protocol negotiation with the
remote endpoint, for example.

	
handle_close()

	Called when the socket is closed.

	
handle_error()

	Called when an exception is raised and not otherwise handled. The default
version prints a condensed traceback.

	
handle_accept()

	Called on listening channels (passive openers) when a connection can be
established with a new remote endpoint that has issued a connect()
call for the local endpoint.

	
readable()

	Called each time around the asynchronous loop to determine whether a
channel’s socket should be added to the list on which read events can
occur. The default method simply returns True, indicating that by
default, all channels will be interested in read events.

	
writable()

	Called each time around the asynchronous loop to determine whether a
channel’s socket should be added to the list on which write events can
occur. The default method simply returns True, indicating that by
default, all channels will be interested in write events.

In addition, each channel delegates or extends many of the socket methods.
Most of these are nearly identical to their socket partners.

	
create_socket(family, type)

	This is identical to the creation of a normal socket, and will use the
same options for creation. Refer to the socket documentation for
information on creating sockets.

	
connect(address)

	As with the normal socket object, address is a tuple with the first
element the host to connect to, and the second the port number.

	
send(data)

	Send data to the remote end-point of the socket.

	
recv(buffer_size)

	Read at most buffer_size bytes from the socket’s remote end-point. An
empty string implies that the channel has been closed from the other end.

	
listen(backlog)

	Listen for connections made to the socket. The backlog argument
specifies the maximum number of queued connections and should be at least
1; the maximum value is system-dependent (usually 5).

	
bind(address)

	Bind the socket to address. The socket must not already be bound. (The
format of address depends on the address family — refer to the
socket documentation for more information.) To mark
the socket as re-usable (setting the SO_REUSEADDR option), call
the dispatcher object’s set_reuse_addr() method.

	
accept()

	Accept a connection. The socket must be bound to an address and listening
for connections. The return value can be either None or a pair
(conn, address) where conn is a new socket object usable to send
and receive data on the connection, and address is the address bound to
the socket on the other end of the connection.
When None is returned it means the connection didn’t take place, in
which case the server should just ignore this event and keep listening
for further incoming connections.

	
close()

	Close the socket. All future operations on the socket object will fail.
The remote end-point will receive no more data (after queued data is
flushed). Sockets are automatically closed when they are
garbage-collected.

	
class asyncore.dispatcher_with_send

	A dispatcher subclass which adds simple buffered output capability,
useful for simple clients. For more sophisticated usage use
asynchat.async_chat.

	
class asyncore.file_dispatcher

	A file_dispatcher takes a file descriptor or file object along with an
optional map argument and wraps it for use with the poll() or
loop() functions. If provided a file object or anything with a
fileno() method, that method will be called and passed to the
file_wrapper constructor. Availability: UNIX.

	
class asyncore.file_wrapper

	A file_wrapper takes an integer file descriptor and calls os.dup() to
duplicate the handle so that the original handle may be closed independently
of the file_wrapper. This class implements sufficient methods to emulate a
socket for use by the file_dispatcher class. Availability: UNIX.

17.6.1. asyncore Example basic HTTP client

Here is a very basic HTTP client that uses the dispatcher class to
implement its socket handling:

import asyncore, socket

class HTTPClient(asyncore.dispatcher):

 def __init__(self, host, path):
 asyncore.dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.connect((host, 80))
 self.buffer = 'GET %s HTTP/1.0\r\n\r\n' % path

 def handle_connect(self):
 pass

 def handle_close(self):
 self.close()

 def handle_read(self):
 print self.recv(8192)

 def writable(self):
 return (len(self.buffer) > 0)

 def handle_write(self):
 sent = self.send(self.buffer)
 self.buffer = self.buffer[sent:]

client = HTTPClient('www.python.org', '/')
asyncore.loop()

17.6.2. asyncore Example basic echo server

Here is a basic echo server that uses the dispatcher class to accept
connections and dispatches the incoming connections to a handler:

import asyncore
import socket

class EchoHandler(asyncore.dispatcher_with_send):

 def handle_read(self):
 data = self.recv(8192)
 if data:
 self.send(data)

class EchoServer(asyncore.dispatcher):

 def __init__(self, host, port):
 asyncore.dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind((host, port))
 self.listen(5)

 def handle_accept(self):
 pair = self.accept()
 if pair is None:
 pass
 else:
 sock, addr = pair
 print 'Incoming connection from %s' % repr(addr)
 handler = EchoHandler(sock)

server = EchoServer('localhost', 8080)
asyncore.loop()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	17. Interprocess Communication and Networking

17.7. asynchat — Asynchronous socket command/response handler

This module builds on the asyncore infrastructure, simplifying
asynchronous clients and servers and making it easier to handle protocols
whose elements are terminated by arbitrary strings, or are of variable length.
asynchat defines the abstract class async_chat that you
subclass, providing implementations of the collect_incoming_data() and
found_terminator() methods. It uses the same asynchronous loop as
asyncore, and the two types of channel, asyncore.dispatcher
and asynchat.async_chat, can freely be mixed in the channel map.
Typically an asyncore.dispatcher server channel generates new
asynchat.async_chat channel objects as it receives incoming
connection requests.

	
class asynchat.async_chat

	This class is an abstract subclass of asyncore.dispatcher. To make
practical use of the code you must subclass async_chat, providing
meaningful collect_incoming_data() and found_terminator()
methods.
The asyncore.dispatcher methods can be used, although not all make
sense in a message/response context.

Like asyncore.dispatcher, async_chat defines a set of
events that are generated by an analysis of socket conditions after a
select() call. Once the polling loop has been started the
async_chat object’s methods are called by the event-processing
framework with no action on the part of the programmer.

Two class attributes can be modified, to improve performance, or possibly
even to conserve memory.

	
ac_in_buffer_size

	The asynchronous input buffer size (default 4096).

	
ac_out_buffer_size

	The asynchronous output buffer size (default 4096).

Unlike asyncore.dispatcher, async_chat allows you to
define a first-in-first-out queue (fifo) of producers. A producer need
have only one method, more(), which should return data to be
transmitted on the channel.
The producer indicates exhaustion (i.e. that it contains no more data) by
having its more() method return the empty string. At this point the
async_chat object removes the producer from the fifo and starts
using the next producer, if any. When the producer fifo is empty the
handle_write() method does nothing. You use the channel object’s
set_terminator() method to describe how to recognize the end of, or
an important breakpoint in, an incoming transmission from the remote
endpoint.

To build a functioning async_chat subclass your input methods
collect_incoming_data() and found_terminator() must handle the
data that the channel receives asynchronously. The methods are described
below.

	
async_chat.close_when_done()

	Pushes a None on to the producer fifo. When this producer is popped off
the fifo it causes the channel to be closed.

	
async_chat.collect_incoming_data(data)

	Called with data holding an arbitrary amount of received data. The
default method, which must be overridden, raises a
NotImplementedError exception.

	
async_chat.discard_buffers()

	In emergencies this method will discard any data held in the input and/or
output buffers and the producer fifo.

	
async_chat.found_terminator()

	Called when the incoming data stream matches the termination condition set
by set_terminator(). The default method, which must be overridden,
raises a NotImplementedError exception. The buffered input data
should be available via an instance attribute.

	
async_chat.get_terminator()

	Returns the current terminator for the channel.

	
async_chat.push(data)

	Pushes data on to the channel’s fifo to ensure its transmission.
This is all you need to do to have the channel write the data out to the
network, although it is possible to use your own producers in more complex
schemes to implement encryption and chunking, for example.

	
async_chat.push_with_producer(producer)

	Takes a producer object and adds it to the producer fifo associated with
the channel. When all currently-pushed producers have been exhausted the
channel will consume this producer’s data by calling its more()
method and send the data to the remote endpoint.

	
async_chat.set_terminator(term)

	Sets the terminating condition to be recognized on the channel. term
may be any of three types of value, corresponding to three different ways
to handle incoming protocol data.

	term
	Description

	string
	Will call found_terminator() when the
string is found in the input stream

	integer
	Will call found_terminator() when the
indicated number of characters have been
received

	None
	The channel continues to collect data
forever

Note that any data following the terminator will be available for reading
by the channel after found_terminator() is called.

17.7.1. asynchat - Auxiliary Classes

	
class asynchat.fifo([list=None])

	A fifo holding data which has been pushed by the application but
not yet popped for writing to the channel. A fifo is a list used
to hold data and/or producers until they are required. If the list
argument is provided then it should contain producers or data items to be
written to the channel.

	
is_empty()

	Returns True if and only if the fifo is empty.

	
first()

	Returns the least-recently push()ed item from the fifo.

	
push(data)

	Adds the given data (which may be a string or a producer object) to the
producer fifo.

	
pop()

	If the fifo is not empty, returns True, first(), deleting the popped
item. Returns False, None for an empty fifo.

17.7.2. asynchat Example

The following partial example shows how HTTP requests can be read with
async_chat. A web server might create an
http_request_handler object for each incoming client connection.
Notice that initially the channel terminator is set to match the blank line at
the end of the HTTP headers, and a flag indicates that the headers are being
read.

Once the headers have been read, if the request is of type POST (indicating
that further data are present in the input stream) then the
Content-Length: header is used to set a numeric terminator to read the
right amount of data from the channel.

The handle_request() method is called once all relevant input has been
marshalled, after setting the channel terminator to None to ensure that
any extraneous data sent by the web client are ignored.

class http_request_handler(asynchat.async_chat):

 def __init__(self, sock, addr, sessions, log):
 asynchat.async_chat.__init__(self, sock=sock)
 self.addr = addr
 self.sessions = sessions
 self.ibuffer = []
 self.obuffer = ""
 self.set_terminator("\r\n\r\n")
 self.reading_headers = True
 self.handling = False
 self.cgi_data = None
 self.log = log

 def collect_incoming_data(self, data):
 """Buffer the data"""
 self.ibuffer.append(data)

 def found_terminator(self):
 if self.reading_headers:
 self.reading_headers = False
 self.parse_headers("".join(self.ibuffer))
 self.ibuffer = []
 if self.op.upper() == "POST":
 clen = self.headers.getheader("content-length")
 self.set_terminator(int(clen))
 else:
 self.handling = True
 self.set_terminator(None)
 self.handle_request()
 elif not self.handling:
 self.set_terminator(None) # browsers sometimes over-send
 self.cgi_data = parse(self.headers, "".join(self.ibuffer))
 self.handling = True
 self.ibuffer = []
 self.handle_request()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

18. Internet Data Handling

This chapter describes modules which support handling data formats commonly used
on the Internet.

	18.1. email — An email and MIME handling package
	18.1.1. email: Representing an email message

	18.1.2. email: Parsing email messages
	18.1.2.1. FeedParser API

	18.1.2.2. Parser class API

	18.1.2.3. Additional notes

	18.1.3. email: Generating MIME documents

	18.1.4. email: Creating email and MIME objects from scratch

	18.1.5. email: Internationalized headers

	18.1.6. email: Representing character sets

	18.1.7. email: Encoders

	18.1.8. email: Exception and Defect classes

	18.1.9. email: Miscellaneous utilities

	18.1.10. email: Iterators

	18.1.11. email: Examples

	18.1.12. Package History

	18.1.13. Differences from mimelib

	18.2. json — JSON encoder and decoder
	18.2.1. Basic Usage

	18.2.2. Encoders and decoders

	18.3. mailcap — Mailcap file handling

	18.4. mailbox — Manipulate mailboxes in various formats
	18.4.1. Mailbox objects
	18.4.1.1. Maildir

	18.4.1.2. mbox

	18.4.1.3. MH

	18.4.1.4. Babyl

	18.4.1.5. MMDF

	18.4.2. Message objects
	18.4.2.1. MaildirMessage

	18.4.2.2. mboxMessage

	18.4.2.3. MHMessage

	18.4.2.4. BabylMessage

	18.4.2.5. MMDFMessage

	18.4.3. Exceptions

	18.4.4. Deprecated classes and methods

	18.4.5. Examples

	18.5. mhlib — Access to MH mailboxes
	18.5.1. MH Objects

	18.5.2. Folder Objects

	18.5.3. Message Objects

	18.6. mimetools — Tools for parsing MIME messages
	18.6.1. Additional Methods of Message Objects

	18.7. mimetypes — Map filenames to MIME types
	18.7.1. MimeTypes Objects

	18.8. MimeWriter — Generic MIME file writer
	18.8.1. MimeWriter Objects

	18.9. mimify — MIME processing of mail messages

	18.10. multifile — Support for files containing distinct parts
	18.10.1. MultiFile Objects

	18.10.2. MultiFile Example

	18.11. rfc822 — Parse RFC 2822 mail headers
	18.11.1. Message Objects

	18.11.2. AddressList Objects

	18.12. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

	18.13. binhex — Encode and decode binhex4 files
	18.13.1. Notes

	18.14. binascii — Convert between binary and ASCII

	18.15. quopri — Encode and decode MIME quoted-printable data

	18.16. uu — Encode and decode uuencode files

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.1. email — An email and MIME handling package

New in version 2.2.

The email package is a library for managing email messages, including
MIME and other RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-based message documents. It subsumes most of the
functionality in several older standard modules such as rfc822,
mimetools, multifile, and other non-standard packages such as
mimecntl. It is specifically not designed to do any sending of email
messages to SMTP (RFC 2821 [http://tools.ietf.org/html/rfc2821.html]), NNTP, or other servers; those are functions of
modules such as smtplib and nntplib. The email package
attempts to be as RFC-compliant as possible, supporting in addition to
RFC 2822 [http://tools.ietf.org/html/rfc2822.html], such MIME-related RFCs as RFC 2045 [http://tools.ietf.org/html/rfc2045.html], RFC 2046 [http://tools.ietf.org/html/rfc2046.html], RFC 2047 [http://tools.ietf.org/html/rfc2047.html],
and RFC 2231 [http://tools.ietf.org/html/rfc2231.html].

The primary distinguishing feature of the email package is that it splits
the parsing and generating of email messages from the internal object model
representation of email. Applications using the email package deal
primarily with objects; you can add sub-objects to messages, remove sub-objects
from messages, completely re-arrange the contents, etc. There is a separate
parser and a separate generator which handles the transformation from flat text
to the object model, and then back to flat text again. There are also handy
subclasses for some common MIME object types, and a few miscellaneous utilities
that help with such common tasks as extracting and parsing message field values,
creating RFC-compliant dates, etc.

The following sections describe the functionality of the email package.
The ordering follows a progression that should be common in applications: an
email message is read as flat text from a file or other source, the text is
parsed to produce the object structure of the email message, this structure is
manipulated, and finally, the object tree is rendered back into flat text.

It is perfectly feasible to create the object structure out of whole cloth —
i.e. completely from scratch. From there, a similar progression can be taken as
above.

Also included are detailed specifications of all the classes and modules that
the email package provides, the exception classes you might encounter
while using the email package, some auxiliary utilities, and a few
examples. For users of the older mimelib package, or previous versions
of the email package, a section on differences and porting is provided.

Contents of the email package documentation:

	18.1.1. email: Representing an email message

	18.1.2. email: Parsing email messages
	18.1.2.1. FeedParser API

	18.1.2.2. Parser class API

	18.1.2.3. Additional notes

	18.1.3. email: Generating MIME documents

	18.1.4. email: Creating email and MIME objects from scratch

	18.1.5. email: Internationalized headers

	18.1.6. email: Representing character sets

	18.1.7. email: Encoders

	18.1.8. email: Exception and Defect classes

	18.1.9. email: Miscellaneous utilities

	18.1.10. email: Iterators

	18.1.11. email: Examples

See also

	Module smtplib

	SMTP protocol client

	Module nntplib

	NNTP protocol client

18.1.12. Package History

This table describes the release history of the email package, corresponding to
the version of Python that the package was released with. For purposes of this
document, when you see a note about change or added versions, these refer to the
Python version the change was made in, not the email package version. This
table also describes the Python compatibility of each version of the package.

	email version
	distributed with
	compatible with

	1.x
	Python 2.2.0 to Python 2.2.1
	no longer supported

	2.5
	Python 2.2.2+ and Python 2.3
	Python 2.1 to 2.5

	3.0
	Python 2.4
	Python 2.3 to 2.5

	4.0
	Python 2.5
	Python 2.3 to 2.5

Here are the major differences between email version 4 and version 3:

	All modules have been renamed according to PEP 8 [http://www.python.org/dev/peps/pep-0008] standards. For example,
the version 3 module email.Message was renamed to email.message in
version 4.

	A new subpackage email.mime was added and all the version 3
email.MIME* modules were renamed and situated into the email.mime
subpackage. For example, the version 3 module email.MIMEText was renamed
to email.mime.text.

Note that the version 3 names will continue to work until Python 2.6.

	The email.mime.application module was added, which contains the
MIMEApplication class.

	Methods that were deprecated in version 3 have been removed. These include
Generator.__call__(), Message.get_type(),
Message.get_main_type(), Message.get_subtype().

	Fixes have been added for RFC 2231 [http://tools.ietf.org/html/rfc2231.html] support which can change some of the
return types for Message.get_param() and friends. Under some
circumstances, values which used to return a 3-tuple now return simple strings
(specifically, if all extended parameter segments were unencoded, there is no
language and charset designation expected, so the return type is now a simple
string). Also, %-decoding used to be done for both encoded and unencoded
segments; this decoding is now done only for encoded segments.

Here are the major differences between email version 3 and version 2:

	The FeedParser class was introduced, and the Parser class
was implemented in terms of the FeedParser. All parsing therefore is
non-strict, and parsing will make a best effort never to raise an exception.
Problems found while parsing messages are stored in the message’s defect
attribute.

	All aspects of the API which raised DeprecationWarnings in version 2
have been removed. These include the _encoder argument to the
MIMEText constructor, the Message.add_payload() method, the
Utils.dump_address_pair() function, and the functions Utils.decode()
and Utils.encode().

	New DeprecationWarnings have been added to:
Generator.__call__(), Message.get_type(),
Message.get_main_type(), Message.get_subtype(), and the strict
argument to the Parser class. These are expected to be removed in
future versions.

	Support for Pythons earlier than 2.3 has been removed.

Here are the differences between email version 2 and version 1:

	The email.Header and email.Charset modules have been added.

	The pickle format for Message instances has changed. Since this was
never (and still isn’t) formally defined, this isn’t considered a backward
incompatibility. However if your application pickles and unpickles
Message instances, be aware that in email version 2,
Message instances now have private variables _charset and
_default_type.

	Several methods in the Message class have been deprecated, or their
signatures changed. Also, many new methods have been added. See the
documentation for the Message class for details. The changes should be
completely backward compatible.

	The object structure has changed in the face of message/rfc822
content types. In email version 1, such a type would be represented by a
scalar payload, i.e. the container message’s is_multipart() returned
false, get_payload() was not a list object, but a single Message
instance.

This structure was inconsistent with the rest of the package, so the object
representation for message/rfc822 content types was changed. In
email version 2, the container does return True from
is_multipart(), and get_payload() returns a list containing a single
Message item.

Note that this is one place that backward compatibility could not be completely
maintained. However, if you’re already testing the return type of
get_payload(), you should be fine. You just need to make sure your code
doesn’t do a set_payload() with a Message instance on a container
with a content type of message/rfc822.

	The Parser constructor’s strict argument was added, and its
parse() and parsestr() methods grew a headersonly argument. The
strict flag was also added to functions email.message_from_file() and
email.message_from_string().

	Generator.__call__() is deprecated; use Generator.flatten()
instead. The Generator class has also grown the clone() method.

	The DecodedGenerator class in the email.Generator module was
added.

	The intermediate base classes MIMENonMultipart and
MIMEMultipart have been added, and interposed in the class hierarchy
for most of the other MIME-related derived classes.

	The _encoder argument to the MIMEText constructor has been
deprecated. Encoding now happens implicitly based on the _charset argument.

	The following functions in the email.Utils module have been deprecated:
dump_address_pairs(), decode(), and encode(). The following
functions have been added to the module: make_msgid(),
decode_rfc2231(), encode_rfc2231(), and decode_params().

	The non-public function email.Iterators._structure() was added.

18.1.13. Differences from mimelib

The email package was originally prototyped as a separate library called
mimelib [http://mimelib.sf.net/]. Changes have been made so that method names
are more consistent, and some methods or modules have either been added or
removed. The semantics of some of the methods have also changed. For the most
part, any functionality available in mimelib is still available in the
email package, albeit often in a different way. Backward compatibility
between the mimelib package and the email package was not a
priority.

Here is a brief description of the differences between the mimelib and
the email packages, along with hints on how to port your applications.

Of course, the most visible difference between the two packages is that the
package name has been changed to email. In addition, the top-level
package has the following differences:

	messageFromString() has been renamed to message_from_string().

	messageFromFile() has been renamed to message_from_file().

The Message class has the following differences:

	The method asString() was renamed to as_string().

	The method ismultipart() was renamed to is_multipart().

	The get_payload() method has grown a decode optional argument.

	The method getall() was renamed to get_all().

	The method addheader() was renamed to add_header().

	The method gettype() was renamed to get_type().

	The method getmaintype() was renamed to get_main_type().

	The method getsubtype() was renamed to get_subtype().

	The method getparams() was renamed to get_params(). Also, whereas
getparams() returned a list of strings, get_params() returns a list
of 2-tuples, effectively the key/value pairs of the parameters, split on the
'=' sign.

	The method getparam() was renamed to get_param().

	The method getcharsets() was renamed to get_charsets().

	The method getfilename() was renamed to get_filename().

	The method getboundary() was renamed to get_boundary().

	The method setboundary() was renamed to set_boundary().

	The method getdecodedpayload() was removed. To get similar
functionality, pass the value 1 to the decode flag of the get_payload()
method.

	The method getpayloadastext() was removed. Similar functionality is
supported by the DecodedGenerator class in the email.generator
module.

	The method getbodyastext() was removed. You can get similar
functionality by creating an iterator with typed_subpart_iterator() in the
email.iterators module.

The Parser class has no differences in its public interface. It does
have some additional smarts to recognize message/delivery-status
type messages, which it represents as a Message instance containing
separate Message subparts for each header block in the delivery status
notification [1].

The Generator class has no differences in its public interface. There
is a new class in the email.generator module though, called
DecodedGenerator which provides most of the functionality previously
available in the Message.getpayloadastext() method.

The following modules and classes have been changed:

	The MIMEBase class constructor arguments _major and _minor have
changed to _maintype and _subtype respectively.

	The Image class/module has been renamed to MIMEImage. The _minor
argument has been renamed to _subtype.

	The Text class/module has been renamed to MIMEText. The _minor
argument has been renamed to _subtype.

	The MessageRFC822 class/module has been renamed to MIMEMessage. Note
that an earlier version of mimelib called this class/module RFC822,
but that clashed with the Python standard library module rfc822 on some
case-insensitive file systems.

Also, the MIMEMessage class now represents any kind of MIME message
with main type message. It takes an optional argument _subtype
which is used to set the MIME subtype. _subtype defaults to
rfc822.

mimelib provided some utility functions in its address and
date modules. All of these functions have been moved to the
email.utils module.

The MsgReader class/module has been removed. Its functionality is most
closely supported in the body_line_iterator() function in the
email.iterators module.

Footnotes

	[1]	Delivery Status Notifications (DSN) are defined in RFC 1894 [http://tools.ietf.org/html/rfc1894.html].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.1. email: Representing an email message

The central class in the email package is the Message class,
imported from the email.message module. It is the base class for the
email object model. Message provides the core functionality for
setting and querying header fields, and for accessing message bodies.

Conceptually, a Message object consists of headers and payloads.
Headers are RFC 2822 [http://tools.ietf.org/html/rfc2822.html] style field names and values where the field name and
value are separated by a colon. The colon is not part of either the field name
or the field value.

Headers are stored and returned in case-preserving form but are matched
case-insensitively. There may also be a single envelope header, also known as
the Unix-From header or the From_ header. The payload is either a string
in the case of simple message objects or a list of Message objects for
MIME container documents (e.g. multipart/* and
message/rfc822).

Message objects provide a mapping style interface for accessing the
message headers, and an explicit interface for accessing both the headers and
the payload. It provides convenience methods for generating a flat text
representation of the message object tree, for accessing commonly used header
parameters, and for recursively walking over the object tree.

Here are the methods of the Message class:

	
class email.message.Message

	The constructor takes no arguments.

	
as_string([unixfrom])

	Return the entire message flattened as a string. When optional unixfrom
is True, the envelope header is included in the returned string.
unixfrom defaults to False. Flattening the message may trigger
changes to the Message if defaults need to be filled in to
complete the transformation to a string (for example, MIME boundaries may
be generated or modified).

Note that this method is provided as a convenience and may not always
format the message the way you want. For example, by default it mangles
lines that begin with From. For more flexibility, instantiate a
Generator instance and use its flatten()
method directly. For example:

from cStringIO import StringIO
from email.generator import Generator
fp = StringIO()
g = Generator(fp, mangle_from_=False, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

	
__str__()

	Equivalent to as_string(unixfrom=True).

	
is_multipart()

	Return True if the message’s payload is a list of sub-Message objects, otherwise return False. When
is_multipart() returns False, the payload should be a string object.

	
set_unixfrom(unixfrom)

	Set the message’s envelope header to unixfrom, which should be a string.

	
get_unixfrom()

	Return the message’s envelope header. Defaults to None if the
envelope header was never set.

	
attach(payload)

	Add the given payload to the current payload, which must be None or
a list of Message objects before the call. After the call, the
payload will always be a list of Message objects. If you want to
set the payload to a scalar object (e.g. a string), use
set_payload() instead.

	
get_payload([i[, decode]])

	Return the current payload, which will be a list of
Message objects when is_multipart() is True, or a
string when is_multipart() is False. If the payload is a list
and you mutate the list object, you modify the message’s payload in place.

With optional argument i, get_payload() will return the i-th
element of the payload, counting from zero, if is_multipart() is
True. An IndexError will be raised if i is less than 0 or
greater than or equal to the number of items in the payload. If the
payload is a string (i.e. is_multipart() is False) and i is
given, a TypeError is raised.

Optional decode is a flag indicating whether the payload should be
decoded or not, according to the Content-Transfer-Encoding
header. When True and the message is not a multipart, the payload will
be decoded if this header’s value is quoted-printable or base64.
If some other encoding is used, or Content-Transfer-Encoding
header is missing, or if the payload has bogus base64 data, the payload is
returned as-is (undecoded). If the message is a multipart and the
decode flag is True, then None is returned. The default for
decode is False.

	
set_payload(payload[, charset])

	Set the entire message object’s payload to payload. It is the client’s
responsibility to ensure the payload invariants. Optional charset sets
the message’s default character set; see set_charset() for details.

Changed in version 2.2.2: charset argument added.

	
set_charset(charset)

	Set the character set of the payload to charset, which can either be a
Charset instance (see email.charset), a
string naming a character set, or None. If it is a string, it will
be converted to a Charset instance. If charset
is None, the charset parameter will be removed from the
Content-Type header (the message will not be otherwise
modified). Anything else will generate a TypeError.

If there is no existing MIME-Version header one will be
added. If there is no existing Content-Type header, one
will be added with a value of text/plain. Whether the
Content-Type header already exists or not, its charset
parameter will be set to charset.output_charset. If
charset.input_charset and charset.output_charset differ, the payload
will be re-encoded to the output_charset. If there is no existing
Content-Transfer-Encoding header, then the payload will be
transfer-encoded, if needed, using the specified
Charset, and a header with the appropriate value
will be added. If a Content-Transfer-Encoding header
already exists, the payload is assumed to already be correctly encoded
using that Content-Transfer-Encoding and is not modified.

The message will be assumed to be of type text/*, with the
payload either in unicode or encoded with charset.input_charset.
It will be encoded or converted to charset.output_charset
and transfer encoded properly, if needed, when generating the plain text
representation of the message. MIME headers (MIME-Version,
Content-Type, Content-Transfer-Encoding) will
be added as needed.

New in version 2.2.2.

	
get_charset()

	Return the Charset instance associated with the
message’s payload.

New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the
message’s RFC 2822 [http://tools.ietf.org/html/rfc2822.html] headers. Note that there are some semantic differences
between these methods and a normal mapping (i.e. dictionary) interface. For
example, in a dictionary there are no duplicate keys, but here there may be
duplicate message headers. Also, in dictionaries there is no guaranteed
order to the keys returned by keys(), but in a Message object,
headers are always returned in the order they appeared in the original
message, or were added to the message later. Any header deleted and then
re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal
convenience.

Note that in all cases, any envelope header present in the message is not
included in the mapping interface.

	
__len__()

	Return the total number of headers, including duplicates.

	
__contains__(name)

	Return true if the message object has a field named name. Matching is
done case-insensitively and name should not include the trailing colon.
Used for the in operator, e.g.:

if 'message-id' in myMessage:
 print 'Message-ID:', myMessage['message-id']

	
__getitem__(name)

	Return the value of the named header field. name should not include the
colon field separator. If the header is missing, None is returned; a
KeyError is never raised.

Note that if the named field appears more than once in the message’s
headers, exactly which of those field values will be returned is
undefined. Use the get_all() method to get the values of all the
extant named headers.

	
__setitem__(name, val)

	Add a header to the message with field name name and value val. The
field is appended to the end of the message’s existing fields.

Note that this does not overwrite or delete any existing header with the same
name. If you want to ensure that the new header is the only one present in the
message with field name name, delete the field first, e.g.:

del msg['subject']
msg['subject'] = 'Python roolz!'

	
__delitem__(name)

	Delete all occurrences of the field with name name from the message’s
headers. No exception is raised if the named field isn’t present in the headers.

	
has_key(name)

	Return true if the message contains a header field named name, otherwise
return false.

	
keys()

	Return a list of all the message’s header field names.

	
values()

	Return a list of all the message’s field values.

	
items()

	Return a list of 2-tuples containing all the message’s field headers and
values.

	
get(name[, failobj])

	Return the value of the named header field. This is identical to
__getitem__() except that optional failobj is returned if the
named header is missing (defaults to None).

Here are some additional useful methods:

	
get_all(name[, failobj])

	Return a list of all the values for the field named name. If there are
no such named headers in the message, failobj is returned (defaults to
None).

	
add_header(_name, _value, **_params)

	Extended header setting. This method is similar to __setitem__()
except that additional header parameters can be provided as keyword
arguments. _name is the header field to add and _value is the
primary value for the header.

For each item in the keyword argument dictionary _params, the key is
taken as the parameter name, with underscores converted to dashes (since
dashes are illegal in Python identifiers). Normally, the parameter will
be added as key="value" unless the value is None, in which case
only the key will be added. If the value contains non-ASCII characters,
it must be specified as a three tuple in the format
(CHARSET, LANGUAGE, VALUE), where CHARSET is a string naming the
charset to be used to encode the value, LANGUAGE can usually be set
to None or the empty string (see RFC 2231 [http://tools.ietf.org/html/rfc2231.html] for other possibilities),
and VALUE is the string value containing non-ASCII code points.

Here’s an example:

msg.add_header('Content-Disposition', 'attachment', filename='bud.gif')

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

An example with with non-ASCII characters:

msg.add_header('Content-Disposition', 'attachment',
 filename=('iso-8859-1', '', 'Fußballer.ppt'))

Which produces

Content-Disposition: attachment; filename*="iso-8859-1''Fu%DFballer.ppt"

	
replace_header(_name, _value)

	Replace a header. Replace the first header found in the message that
matches _name, retaining header order and field name case. If no
matching header was found, a KeyError is raised.

New in version 2.2.2.

	
get_content_type()

	Return the message’s content type. The returned string is coerced to
lower case of the form maintype/subtype. If there was no
Content-Type header in the message the default type as given
by get_default_type() will be returned. Since according to
RFC 2045 [http://tools.ietf.org/html/rfc2045.html], messages always have a default type, get_content_type()
will always return a value.

RFC 2045 [http://tools.ietf.org/html/rfc2045.html] defines a message’s default type to be text/plain
unless it appears inside a multipart/digest container, in
which case it would be message/rfc822. If the
Content-Type header has an invalid type specification,
RFC 2045 [http://tools.ietf.org/html/rfc2045.html] mandates that the default type be text/plain.

New in version 2.2.2.

	
get_content_maintype()

	Return the message’s main content type. This is the maintype
part of the string returned by get_content_type().

New in version 2.2.2.

	
get_content_subtype()

	Return the message’s sub-content type. This is the subtype
part of the string returned by get_content_type().

New in version 2.2.2.

	
get_default_type()

	Return the default content type. Most messages have a default content
type of text/plain, except for messages that are subparts of
multipart/digest containers. Such subparts have a default
content type of message/rfc822.

New in version 2.2.2.

	
set_default_type(ctype)

	Set the default content type. ctype should either be
text/plain or message/rfc822, although this is not
enforced. The default content type is not stored in the
Content-Type header.

New in version 2.2.2.

	
get_params([failobj[, header[, unquote]]])

	Return the message’s Content-Type parameters, as a list.
The elements of the returned list are 2-tuples of key/value pairs, as
split on the '=' sign. The left hand side of the '=' is the key,
while the right hand side is the value. If there is no '=' sign in
the parameter the value is the empty string, otherwise the value is as
described in get_param() and is unquoted if optional unquote is
True (the default).

Optional failobj is the object to return if there is no
Content-Type header. Optional header is the header to
search instead of Content-Type.

Changed in version 2.2.2: unquote argument added.

	
get_param(param[, failobj[, header[, unquote]]])

	Return the value of the Content-Type header’s parameter
param as a string. If the message has no Content-Type
header or if there is no such parameter, then failobj is returned
(defaults to None).

Optional header if given, specifies the message header to use instead of
Content-Type.

Parameter keys are always compared case insensitively. The return value
can either be a string, or a 3-tuple if the parameter was RFC 2231 [http://tools.ietf.org/html/rfc2231.html]
encoded. When it’s a 3-tuple, the elements of the value are of the form
(CHARSET, LANGUAGE, VALUE). Note that both CHARSET and
LANGUAGE can be None, in which case you should consider VALUE
to be encoded in the us-ascii charset. You can usually ignore
LANGUAGE.

If your application doesn’t care whether the parameter was encoded as in
RFC 2231 [http://tools.ietf.org/html/rfc2231.html], you can collapse the parameter value by calling
email.utils.collapse_rfc2231_value(), passing in the return value
from get_param(). This will return a suitably decoded Unicode
string when the value is a tuple, or the original string unquoted if it
isn’t. For example:

rawparam = msg.get_param('foo')
param = email.utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, or the
VALUE item in the 3-tuple) is always unquoted, unless unquote is set
to False.

Changed in version 2.2.2: unquote argument added, and 3-tuple return value possible.

	
set_param(param, value[, header[, requote[, charset[, language]]]])

	Set a parameter in the Content-Type header. If the
parameter already exists in the header, its value will be replaced with
value. If the Content-Type header as not yet been defined
for this message, it will be set to text/plain and the new
parameter value will be appended as per RFC 2045 [http://tools.ietf.org/html/rfc2045.html].

Optional header specifies an alternative header to
Content-Type, and all parameters will be quoted as necessary
unless optional requote is False (the default is True).

If optional charset is specified, the parameter will be encoded
according to RFC 2231 [http://tools.ietf.org/html/rfc2231.html]. Optional language specifies the RFC 2231
language, defaulting to the empty string. Both charset and language
should be strings.

New in version 2.2.2.

	
del_param(param[, header[, requote]])

	Remove the given parameter completely from the Content-Type
header. The header will be re-written in place without the parameter or
its value. All values will be quoted as necessary unless requote is
False (the default is True). Optional header specifies an
alternative to Content-Type.

New in version 2.2.2.

	
set_type(type[, header][, requote])

	Set the main type and subtype for the Content-Type
header. type must be a string in the form maintype/subtype,
otherwise a ValueError is raised.

This method replaces the Content-Type header, keeping all
the parameters in place. If requote is False, this leaves the
existing header’s quoting as is, otherwise the parameters will be quoted
(the default).

An alternative header can be specified in the header argument. When the
Content-Type header is set a MIME-Version
header is also added.

New in version 2.2.2.

	
get_filename([failobj])

	Return the value of the filename parameter of the
Content-Disposition header of the message. If the header
does not have a filename parameter, this method falls back to looking
for the name parameter on the Content-Type header. If
neither is found, or the header is missing, then failobj is returned.
The returned string will always be unquoted as per
email.utils.unquote().

	
get_boundary([failobj])

	Return the value of the boundary parameter of the
Content-Type header of the message, or failobj if either
the header is missing, or has no boundary parameter. The returned
string will always be unquoted as per email.utils.unquote().

	
set_boundary(boundary)

	Set the boundary parameter of the Content-Type header to
boundary. set_boundary() will always quote boundary if
necessary. A HeaderParseError is raised if the message object has
no Content-Type header.

Note that using this method is subtly different than deleting the old
Content-Type header and adding a new one with the new
boundary via add_header(), because set_boundary() preserves
the order of the Content-Type header in the list of
headers. However, it does not preserve any continuation lines which may
have been present in the original Content-Type header.

	
get_content_charset([failobj])

	Return the charset parameter of the Content-Type header,
coerced to lower case. If there is no Content-Type header, or if
that header has no charset parameter, failobj is returned.

Note that this method differs from get_charset() which returns the
Charset instance for the default encoding of the message body.

New in version 2.2.2.

	
get_charsets([failobj])

	Return a list containing the character set names in the message. If the
message is a multipart, then the list will contain one element
for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of the
charset parameter in the Content-Type header for the
represented subpart. However, if the subpart has no
Content-Type header, no charset parameter, or is not of
the text main MIME type, then that item in the returned list
will be failobj.

	
walk()

	The walk() method is an all-purpose generator which can be used to
iterate over all the parts and subparts of a message object tree, in
depth-first traversal order. You will typically use walk() as the
iterator in a for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart
message structure:

>>> for part in msg.walk():
... print part.get_content_type()
multipart/report
text/plain
message/delivery-status
text/plain
text/plain
message/rfc822

Changed in version 2.5: The previously deprecated methods get_type(), get_main_type(), and
get_subtype() were removed.

Message objects can also optionally contain two instance attributes,
which can be used when generating the plain text of a MIME message.

	
preamble

	The format of a MIME document allows for some text between the blank line
following the headers, and the first multipart boundary string. Normally,
this text is never visible in a MIME-aware mail reader because it falls
outside the standard MIME armor. However, when viewing the raw text of
the message, or when viewing the message in a non-MIME aware reader, this
text can become visible.

The preamble attribute contains this leading extra-armor text for MIME
documents. When the Parser discovers some text
after the headers but before the first boundary string, it assigns this
text to the message’s preamble attribute. When the
Generator is writing out the plain text
representation of a MIME message, and it finds the
message has a preamble attribute, it will write this text in the area
between the headers and the first boundary. See email.parser and
email.generator for details.

Note that if the message object has no preamble, the preamble attribute
will be None.

	
epilogue

	The epilogue attribute acts the same way as the preamble attribute,
except that it contains text that appears between the last boundary and
the end of the message.

Changed in version 2.5: You do not need to set the epilogue to the empty string in order for the
Generator to print a newline at the end of the file.

	
defects

	The defects attribute contains a list of all the problems found when
parsing this message. See email.errors for a detailed description
of the possible parsing defects.

New in version 2.4.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.2. email: Parsing email messages

Message object structures can be created in one of two ways: they can be created
from whole cloth by instantiating Message objects and
stringing them together via attach() and set_payload() calls, or they
can be created by parsing a flat text representation of the email message.

The email package provides a standard parser that understands most email
document structures, including MIME documents. You can pass the parser a string
or a file object, and the parser will return to you the root
Message instance of the object structure. For simple,
non-MIME messages the payload of this root object will likely be a string
containing the text of the message. For MIME messages, the root object will
return True from its is_multipart() method, and the subparts can be
accessed via the get_payload() and walk() methods.

There are actually two parser interfaces available for use, the classic
Parser API and the incremental FeedParser API. The classic
Parser API is fine if you have the entire text of the message in memory
as a string, or if the entire message lives in a file on the file system.
FeedParser is more appropriate for when you’re reading the message from
a stream which might block waiting for more input (e.g. reading an email message
from a socket). The FeedParser can consume and parse the message
incrementally, and only returns the root object when you close the parser [1].

Note that the parser can be extended in limited ways, and of course you can
implement your own parser completely from scratch. There is no magical
connection between the email package’s bundled parser and the
Message class, so your custom parser can create message
object trees any way it finds necessary.

18.1.2.1. FeedParser API

New in version 2.4.

The FeedParser, imported from the email.feedparser module,
provides an API that is conducive to incremental parsing of email messages, such
as would be necessary when reading the text of an email message from a source
that can block (e.g. a socket). The FeedParser can of course be used
to parse an email message fully contained in a string or a file, but the classic
Parser API may be more convenient for such use cases. The semantics
and results of the two parser APIs are identical.

The FeedParser‘s API is simple; you create an instance, feed it a bunch
of text until there’s no more to feed it, then close the parser to retrieve the
root message object. The FeedParser is extremely accurate when parsing
standards-compliant messages, and it does a very good job of parsing
non-compliant messages, providing information about how a message was deemed
broken. It will populate a message object’s defects attribute with a list of
any problems it found in a message. See the email.errors module for the
list of defects that it can find.

Here is the API for the FeedParser:

	
class email.parser.FeedParser([_factory])

	Create a FeedParser instance. Optional _factory is a no-argument
callable that will be called whenever a new message object is needed. It
defaults to the email.message.Message class.

	
feed(data)

	Feed the FeedParser some more data. data should be a string
containing one or more lines. The lines can be partial and the
FeedParser will stitch such partial lines together properly. The
lines in the string can have any of the common three line endings,
carriage return, newline, or carriage return and newline (they can even be
mixed).

	
close()

	Closing a FeedParser completes the parsing of all previously fed
data, and returns the root message object. It is undefined what happens
if you feed more data to a closed FeedParser.

18.1.2.2. Parser class API

The Parser class, imported from the email.parser module,
provides an API that can be used to parse a message when the complete contents
of the message are available in a string or file. The email.parser
module also provides a second class, called HeaderParser which can be
used if you’re only interested in the headers of the message.
HeaderParser can be much faster in these situations, since it does not
attempt to parse the message body, instead setting the payload to the raw body
as a string. HeaderParser has the same API as the Parser
class.

	
class email.parser.Parser([_class])

	The constructor for the Parser class takes an optional argument
_class. This must be a callable factory (such as a function or a class), and
it is used whenever a sub-message object needs to be created. It defaults to
Message (see email.message). The factory will
be called without arguments.

The optional strict flag is ignored.

Deprecated since version 2.4: Because the Parser class is a backward compatible API wrapper
around the new-in-Python 2.4 FeedParser, all parsing is
effectively non-strict. You should simply stop passing a strict flag to
the Parser constructor.

Changed in version 2.2.2: The strict flag was added.

Changed in version 2.4: The strict flag was deprecated.

The other public Parser methods are:

	
parse(fp[, headersonly])

	Read all the data from the file-like object fp, parse the resulting
text, and return the root message object. fp must support both the
readline() and the read() methods on file-like objects.

The text contained in fp must be formatted as a block of RFC 2822 [http://tools.ietf.org/html/rfc2822.html]
style headers and header continuation lines, optionally preceded by a
envelope header. The header block is terminated either by the end of the
data or by a blank line. Following the header block is the body of the
message (which may contain MIME-encoded subparts).

Optional headersonly is as with the parse() method.

Changed in version 2.2.2: The headersonly flag was added.

	
parsestr(text[, headersonly])

	Similar to the parse() method, except it takes a string object
instead of a file-like object. Calling this method on a string is exactly
equivalent to wrapping text in a StringIO instance first and
calling parse().

Optional headersonly is a flag specifying whether to stop parsing after
reading the headers or not. The default is False, meaning it parses
the entire contents of the file.

Changed in version 2.2.2: The headersonly flag was added.

Since creating a message object structure from a string or a file object is such
a common task, two functions are provided as a convenience. They are available
in the top-level email package namespace.

	
email.message_from_string(s[, _class[, strict]])

	Return a message object structure from a string. This is exactly equivalent to
Parser().parsestr(s). Optional _class and strict are interpreted as
with the Parser class constructor.

Changed in version 2.2.2: The strict flag was added.

	
email.message_from_file(fp[, _class[, strict]])

	Return a message object structure tree from an open file object. This is
exactly equivalent to Parser().parse(fp). Optional _class and strict
are interpreted as with the Parser class constructor.

Changed in version 2.2.2: The strict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import email
>>> msg = email.message_from_string(myString)

18.1.2.3. Additional notes

Here are some notes on the parsing semantics:

	Most non-multipart type messages are parsed as a single message
object with a string payload. These objects will return False for
is_multipart(). Their get_payload() method will return a string
object.

	All multipart type messages will be parsed as a container message
object with a list of sub-message objects for their payload. The outer
container message will return True for is_multipart() and their
get_payload() method will return the list of Message
subparts.

	Most messages with a content type of message/* (e.g.
message/delivery-status and message/rfc822) will also be
parsed as container object containing a list payload of length 1. Their
is_multipart() method will return True. The single element in the
list payload will be a sub-message object.

	Some non-standards compliant messages may not be internally consistent about
their multipart-edness. Such messages may have a
Content-Type header of type multipart, but their
is_multipart() method may return False. If such messages were parsed
with the FeedParser, they will have an instance of the
MultipartInvariantViolationDefect class in their defects attribute
list. See email.errors for details.

Footnotes

	[1]	As of email package version 3.0, introduced in Python 2.4, the classic
Parser was re-implemented in terms of the FeedParser, so the
semantics and results are identical between the two parsers.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.3. email: Generating MIME documents

One of the most common tasks is to generate the flat text of the email message
represented by a message object structure. You will need to do this if you want
to send your message via the smtplib module or the nntplib module,
or print the message on the console. Taking a message object structure and
producing a flat text document is the job of the Generator class.

Again, as with the email.parser module, you aren’t limited to the
functionality of the bundled generator; you could write one from scratch
yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just
fine, and is designed so that the transformation from flat text, to a message
structure via the Parser class, and back to flat text,
is idempotent (the input is identical to the output). On the other hand, using
the Generator on a Message constructed by program may
result in changes to the Message object as defaults are
filled in.

Here are the public methods of the Generator class, imported from the
email.generator module:

	
class email.generator.Generator(outfp[, mangle_from_[, maxheaderlen]])

	The constructor for the Generator class takes a file-like object called
outfp for an argument. outfp must support the write() method and be
usable as the output file in a Python extended print statement.

Optional mangle_from_ is a flag that, when True, puts a > character in
front of any line in the body that starts exactly as From, i.e. From
followed by a space at the beginning of the line. This is the only guaranteed
portable way to avoid having such lines be mistaken for a Unix mailbox format
envelope header separator (see WHY THE CONTENT-LENGTH FORMAT IS BAD [http://www.jwz.org/doc/content-length.html] for details). mangle_from_
defaults to True, but you might want to set this to False if you are not
writing Unix mailbox format files.

Optional maxheaderlen specifies the longest length for a non-continued header.
When a header line is longer than maxheaderlen (in characters, with tabs
expanded to 8 spaces), the header will be split as defined in the
Header class. Set to zero to disable header wrapping.
The default is 78, as recommended (but not required) by RFC 2822 [http://tools.ietf.org/html/rfc2822.html].

The other public Generator methods are:

	
flatten(msg[, unixfrom])

	Print the textual representation of the message object structure rooted at
msg to the output file specified when the Generator instance
was created. Subparts are visited depth-first and the resulting text will
be properly MIME encoded.

Optional unixfrom is a flag that forces the printing of the envelope
header delimiter before the first RFC 2822 [http://tools.ietf.org/html/rfc2822.html] header of the root message
object. If the root object has no envelope header, a standard one is
crafted. By default, this is set to False to inhibit the printing of
the envelope delimiter.

Note that for subparts, no envelope header is ever printed.

New in version 2.2.2.

	
clone(fp)

	Return an independent clone of this Generator instance with the
exact same options.

New in version 2.2.2.

	
write(s)

	Write the string s to the underlying file object, i.e. outfp passed to
Generator‘s constructor. This provides just enough file-like API
for Generator instances to be used in extended print statements.

As a convenience, see the methods Message.as_string() and
str(aMessage), a.k.a. Message.__str__(), which simplify the generation
of a formatted string representation of a message object. For more detail, see
email.message.

The email.generator module also provides a derived class, called
DecodedGenerator which is like the Generator base class,
except that non-text parts are substituted with a format string
representing the part.

	
class email.generator.DecodedGenerator(outfp[, mangle_from_[, maxheaderlen[, fmt]]])

	This class, derived from Generator walks through all the subparts of a
message. If the subpart is of main type text, then it prints the
decoded payload of the subpart. Optional _mangle_from_ and maxheaderlen are
as with the Generator base class.

If the subpart is not of main type text, optional fmt is a format
string that is used instead of the message payload. fmt is expanded with the
following keywords, %(keyword)s format:

	type – Full MIME type of the non-text part

	maintype – Main MIME type of the non-text part

	subtype – Sub-MIME type of the non-text part

	filename – Filename of the non-text part

	description – Description associated with the non-text part

	encoding – Content transfer encoding of the non-text part

The default value for fmt is None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

New in version 2.2.2.

Changed in version 2.5: The previously deprecated method __call__() was removed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.4. email: Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to
a parser, which parses the text and returns the root message object. However
you can also build a complete message structure from scratch, or even individual
Message objects by hand. In fact, you can also take an
existing structure and add new Message objects, move them
around, etc. This makes a very convenient interface for slicing-and-dicing MIME
messages.

You can create a new object structure by creating Message
instances, adding attachments and all the appropriate headers manually. For MIME
messages though, the email package provides some convenient subclasses to
make things easier.

Here are the classes:

	
class email.mime.base.MIMEBase(_maintype, _subtype, **_params)

	Module: email.mime.base

This is the base class for all the MIME-specific subclasses of
Message. Ordinarily you won’t create instances
specifically of MIMEBase, although you could. MIMEBase
is provided primarily as a convenient base class for more specific
MIME-aware subclasses.

_maintype is the Content-Type major type (e.g. text
or image), and _subtype is the Content-Type minor
type (e.g. plain or gif). _params is a parameter
key/value dictionary and is passed directly to Message.add_header().

The MIMEBase class always adds a Content-Type header
(based on _maintype, _subtype, and _params), and a
MIME-Version header (always set to 1.0).

	
class email.mime.nonmultipart.MIMENonMultipart

	Module: email.mime.nonmultipart

A subclass of MIMEBase, this is an intermediate base
class for MIME messages that are not multipart. The primary
purpose of this class is to prevent the use of the attach() method,
which only makes sense for multipart messages. If attach()
is called, a MultipartConversionError exception is raised.

New in version 2.2.2.

	
class email.mime.multipart.MIMEMultipart([_subtype[, boundary[, _subparts[, _params]]]])

	Module: email.mime.multipart

A subclass of MIMEBase, this is an intermediate base
class for MIME messages that are multipart. Optional _subtype
defaults to mixed, but can be used to specify the subtype of the
message. A Content-Type header of multipart/_subtype
will be added to the message object. A MIME-Version header will
also be added.

Optional boundary is the multipart boundary string. When None (the
default), the boundary is calculated when needed (for example, when the
message is serialized).

_subparts is a sequence of initial subparts for the payload. It must be
possible to convert this sequence to a list. You can always attach new subparts
to the message by using the Message.attach() method.

Additional parameters for the Content-Type header are taken from
the keyword arguments, or passed into the _params argument, which is a keyword
dictionary.

New in version 2.2.2.

	
class email.mime.application.MIMEApplication(_data[, _subtype[, _encoder[, **_params]]])

	Module: email.mime.application

A subclass of MIMENonMultipart, the
MIMEApplication class is used to represent MIME message objects of
major type application. _data is a string containing the raw
byte data. Optional _subtype specifies the MIME subtype and defaults to
octet-stream.

Optional _encoder is a callable (i.e. function) which will perform the actual
encoding of the data for transport. This callable takes one argument, which is
the MIMEApplication instance. It should use get_payload() and
set_payload() to change the payload to encoded form. It should also add
any Content-Transfer-Encoding or other headers to the message
object as necessary. The default encoding is base64. See the
email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

New in version 2.5.

	
class email.mime.audio.MIMEAudio(_audiodata[, _subtype[, _encoder[, **_params]]])

	Module: email.mime.audio

A subclass of MIMENonMultipart, the
MIMEAudio class is used to create MIME message objects of major type
audio. _audiodata is a string containing the raw audio data. If
this data can be decoded by the standard Python module sndhdr, then the
subtype will be automatically included in the Content-Type header.
Otherwise you can explicitly specify the audio subtype via the _subtype
parameter. If the minor type could not be guessed and _subtype was not given,
then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual
encoding of the audio data for transport. This callable takes one argument,
which is the MIMEAudio instance. It should use get_payload() and
set_payload() to change the payload to encoded form. It should also add
any Content-Transfer-Encoding or other headers to the message
object as necessary. The default encoding is base64. See the
email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

	
class email.mime.image.MIMEImage(_imagedata[, _subtype[, _encoder[, **_params]]])

	Module: email.mime.image

A subclass of MIMENonMultipart, the
MIMEImage class is used to create MIME message objects of major type
image. _imagedata is a string containing the raw image data. If
this data can be decoded by the standard Python module imghdr, then the
subtype will be automatically included in the Content-Type header.
Otherwise you can explicitly specify the image subtype via the _subtype
parameter. If the minor type could not be guessed and _subtype was not given,
then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual
encoding of the image data for transport. This callable takes one argument,
which is the MIMEImage instance. It should use get_payload() and
set_payload() to change the payload to encoded form. It should also add
any Content-Transfer-Encoding or other headers to the message
object as necessary. The default encoding is base64. See the
email.encoders module for a list of the built-in encoders.

_params are passed straight through to the MIMEBase
constructor.

	
class email.mime.message.MIMEMessage(_msg[, _subtype])

	Module: email.mime.message

A subclass of MIMENonMultipart, the
MIMEMessage class is used to create MIME objects of main type
message. _msg is used as the payload, and must be an instance
of class Message (or a subclass thereof), otherwise
a TypeError is raised.

Optional _subtype sets the subtype of the message; it defaults to
rfc822.

	
class email.mime.text.MIMEText(_text[, _subtype[, _charset]])

	Module: email.mime.text

A subclass of MIMENonMultipart, the
MIMEText class is used to create MIME objects of major type
text. _text is the string for the payload. _subtype is the
minor type and defaults to plain. _charset is the character
set of the text and is passed as a parameter to the
MIMENonMultipart constructor; it defaults
to us-ascii. If _text is unicode, it is encoded using the
output_charset of _charset, otherwise it is used as-is.

Changed in version 2.4: The previously deprecated _encoding argument has been removed. Content
Transfer Encoding now happens happens implicitly based on the _charset
argument.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.5. email: Internationalized headers

RFC 2822 [http://tools.ietf.org/html/rfc2822.html] is the base standard that describes the format of email messages.
It derives from the older RFC 822 [http://tools.ietf.org/html/rfc822.html] standard which came into widespread use at
a time when most email was composed of ASCII characters only. RFC 2822 [http://tools.ietf.org/html/rfc2822.html] is a
specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become
internationalized, such that language specific character sets can now be used in
email messages. The base standard still requires email messages to be
transferred using only 7-bit ASCII characters, so a slew of RFCs have been
written describing how to encode email containing non-ASCII characters into
RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-compliant format. These RFCs include RFC 2045 [http://tools.ietf.org/html/rfc2045.html], RFC 2046 [http://tools.ietf.org/html/rfc2046.html],
RFC 2047 [http://tools.ietf.org/html/rfc2047.html], and RFC 2231 [http://tools.ietf.org/html/rfc2231.html]. The email package supports these standards
in its email.header and email.charset modules.

If you want to include non-ASCII characters in your email headers, say in the
Subject or To fields, you should use the
Header class and assign the field in the Message
object to an instance of Header instead of using a string for the header
value. Import the Header class from the email.header module.
For example:

>>> from email.message import Message
>>> from email.header import Header
>>> msg = Message()
>>> h = Header('p\xf6stal', 'iso-8859-1')
>>> msg['Subject'] = h
>>> print msg.as_string()
Subject: =?iso-8859-1?q?p=F6stal?=

Notice here how we wanted the Subject field to contain a non-ASCII
character? We did this by creating a Header instance and passing in
the character set that the byte string was encoded in. When the subsequent
Message instance was flattened, the Subject
field was properly RFC 2047 [http://tools.ietf.org/html/rfc2047.html] encoded. MIME-aware mail readers would show this
header using the embedded ISO-8859-1 character.

New in version 2.2.2.

Here is the Header class description:

	
class email.header.Header([s[, charset[, maxlinelen[, header_name[, continuation_ws[, errors]]]]]])

	Create a MIME-compliant header that can contain strings in different character
sets.

Optional s is the initial header value. If None (the default), the
initial header value is not set. You can later append to the header with
append() method calls. s may be a byte string or a Unicode string, but
see the append() documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset
argument to the append() method. It also sets the default character set
for all subsequent append() calls that omit the charset argument. If
charset is not provided in the constructor (the default), the us-ascii
character set is used both as s‘s initial charset and as the default for
subsequent append() calls.

The maximum line length can be specified explicitly via maxlinelen. For
splitting the first line to a shorter value (to account for the field header
which isn’t included in s, e.g. Subject) pass in the name of the
field in header_name. The default maxlinelen is 76, and the default value
for header_name is None, meaning it is not taken into account for the
first line of a long, split header.

Optional continuation_ws must be RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-compliant folding whitespace,
and is usually either a space or a hard tab character. This character will be
prepended to continuation lines. continuation_ws defaults to a single
space character (” ”).

Optional errors is passed straight through to the append() method.

	
append(s[, charset[, errors]])

	Append the string s to the MIME header.

Optional charset, if given, should be a Charset
instance (see email.charset) or the name of a character set, which
will be converted to a Charset instance. A value
of None (the default) means that the charset given in the constructor
is used.

s may be a byte string or a Unicode string. If it is a byte string
(i.e. isinstance(s, str) is true), then charset is the encoding of
that byte string, and a UnicodeError will be raised if the string
cannot be decoded with that character set.

If s is a Unicode string, then charset is a hint specifying the
character set of the characters in the string. In this case, when
producing an RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-compliant header using RFC 2047 [http://tools.ietf.org/html/rfc2047.html] rules, the
Unicode string will be encoded using the following charsets in order:
us-ascii, the charset hint, utf-8. The first character set to
not provoke a UnicodeError is used.

Optional errors is passed through to any unicode() or
ustr.encode() call, and defaults to “strict”.

	
encode([splitchars])

	Encode a message header into an RFC-compliant format, possibly wrapping
long lines and encapsulating non-ASCII parts in base64 or quoted-printable
encodings. Optional splitchars is a string containing characters to
split long ASCII lines on, in rough support of RFC 2822 [http://tools.ietf.org/html/rfc2822.html]‘s highest
level syntactic breaks. This doesn’t affect RFC 2047 [http://tools.ietf.org/html/rfc2047.html] encoded lines.

The Header class also provides a number of methods to support
standard operators and built-in functions.

	
__str__()

	A synonym for Header.encode(). Useful for str(aHeader).

	
__unicode__()

	A helper for the built-in unicode() function. Returns the header as
a Unicode string.

	
__eq__(other)

	This method allows you to compare two Header instances for
equality.

	
__ne__(other)

	This method allows you to compare two Header instances for
inequality.

The email.header module also provides the following convenient functions.

	
email.header.decode_header(header)

	Decode a message header value without converting the character set. The header
value is in header.

This function returns a list of (decoded_string, charset) pairs containing
each of the decoded parts of the header. charset is None for non-encoded
parts of the header, otherwise a lower case string containing the name of the
character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header
>>> decode_header('=?iso-8859-1?q?p=F6stal?=')
[('p\xf6stal', 'iso-8859-1')]

	
email.header.make_header(decoded_seq[, maxlinelen[, header_name[, continuation_ws]]])

	Create a Header instance from a sequence of pairs as returned by
decode_header().

decode_header() takes a header value string and returns a sequence of
pairs of the format (decoded_string, charset) where charset is the name of
the character set.

This function takes one of those sequence of pairs and returns a Header
instance. Optional maxlinelen, header_name, and continuation_ws are as in
the Header constructor.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.6. email: Representing character sets

This module provides a class Charset for representing character sets
and character set conversions in email messages, as well as a character set
registry and several convenience methods for manipulating this registry.
Instances of Charset are used in several other modules within the
email package.

Import this class from the email.charset module.

New in version 2.2.2.

	
class email.charset.Charset([input_charset])

	Map character sets to their email properties.

This class provides information about the requirements imposed on email for a
specific character set. It also provides convenience routines for converting
between character sets, given the availability of the applicable codecs. Given
a character set, it will do its best to provide information on how to use that
character set in an email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used
in email headers or bodies. Certain character sets must be converted outright,
and are not allowed in email.

Optional input_charset is as described below; it is always coerced to lower
case. After being alias normalized it is also used as a lookup into the
registry of character sets to find out the header encoding, body encoding, and
output conversion codec to be used for the character set. For example, if
input_charset is iso-8859-1, then headers and bodies will be encoded using
quoted-printable and no output conversion codec is necessary. If
input_charset is euc-jp, then headers will be encoded with base64, bodies
will not be encoded, but output text will be converted from the euc-jp
character set to the iso-2022-jp character set.

Charset instances have the following data attributes:

	
input_charset

	The initial character set specified. Common aliases are converted to
their official email names (e.g. latin_1 is converted to
iso-8859-1). Defaults to 7-bit us-ascii.

	
header_encoding

	If the character set must be encoded before it can be used in an email
header, this attribute will be set to Charset.QP (for
quoted-printable), Charset.BASE64 (for base64 encoding), or
Charset.SHORTEST for the shortest of QP or BASE64 encoding. Otherwise,
it will be None.

	
body_encoding

	Same as header_encoding, but describes the encoding for the mail
message’s body, which indeed may be different than the header encoding.
Charset.SHORTEST is not allowed for body_encoding.

	
output_charset

	Some character sets must be converted before they can be used in email headers
or bodies. If the input_charset is one of them, this attribute will
contain the name of the character set output will be converted to. Otherwise, it will
be None.

	
input_codec

	The name of the Python codec used to convert the input_charset to
Unicode. If no conversion codec is necessary, this attribute will be
None.

	
output_codec

	The name of the Python codec used to convert Unicode to the
output_charset. If no conversion codec is necessary, this attribute
will have the same value as the input_codec.

Charset instances also have the following methods:

	
get_body_encoding()

	Return the content transfer encoding used for body encoding.

This is either the string quoted-printable or base64 depending on
the encoding used, or it is a function, in which case you should call the
function with a single argument, the Message object being encoded. The
function should then set the Content-Transfer-Encoding
header itself to whatever is appropriate.

Returns the string quoted-printable if body_encoding is QP,
returns the string base64 if body_encoding is BASE64, and
returns the string 7bit otherwise.

	
convert(s)

	Convert the string s from the input_codec to the output_codec.

	
to_splittable(s)

	Convert a possibly multibyte string to a safely splittable format. s is
the string to split.

Uses the input_codec to try and convert the string to Unicode, so it can
be safely split on character boundaries (even for multibyte characters).

Returns the string as-is if it isn’t known how to convert s to Unicode
with the input_charset.

Characters that could not be converted to Unicode will be replaced with
the Unicode replacement character 'U+FFFD'.

	
from_splittable(ustr[, to_output])

	Convert a splittable string back into an encoded string. ustr is a
Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from
Unicode back into an encoded format. Return the string as-is if it is not
Unicode, or if it could not be converted from Unicode.

Characters that could not be converted from Unicode will be replaced with
an appropriate character (usually '?').

If to_output is True (the default), uses output_codec to convert
to an encoded format. If to_output is False, it uses input_codec.

	
get_output_charset()

	Return the output character set.

This is the output_charset attribute if that is not None, otherwise
it is input_charset.

	
encoded_header_len()

	Return the length of the encoded header string, properly calculating for
quoted-printable or base64 encoding.

	
header_encode(s[, convert])

	Header-encode the string s.

If convert is True, the string will be converted from the input
charset to the output charset automatically. This is not useful for
multibyte character sets, which have line length issues (multibyte
characters must be split on a character, not a byte boundary); use the
higher-level Header class to deal with these issues
(see email.header). convert defaults to False.

The type of encoding (base64 or quoted-printable) will be based on the
header_encoding attribute.

	
body_encode(s[, convert])

	Body-encode the string s.

If convert is True (the default), the string will be converted from
the input charset to output charset automatically. Unlike
header_encode(), there are no issues with byte boundaries and
multibyte charsets in email bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based on the
body_encoding attribute.

The Charset class also provides a number of methods to support
standard operations and built-in functions.

	
__str__()

	Returns input_charset as a string coerced to lower
case. __repr__() is an alias for __str__().

	
__eq__(other)

	This method allows you to compare two Charset instances for
equality.

	
__ne__(other)

	This method allows you to compare two Charset instances for
inequality.

The email.charset module also provides the following functions for adding
new entries to the global character set, alias, and codec registries:

	
email.charset.add_charset(charset[, header_enc[, body_enc[, output_charset]]])

	Add character properties to the global registry.

charset is the input character set, and must be the canonical name of a
character set.

Optional header_enc and body_enc is either Charset.QP for
quoted-printable, Charset.BASE64 for base64 encoding,
Charset.SHORTEST for the shortest of quoted-printable or base64 encoding,
or None for no encoding. SHORTEST is only valid for
header_enc. The default is None for no encoding.

Optional output_charset is the character set that the output should be in.
Conversions will proceed from input charset, to Unicode, to the output charset
when the method Charset.convert() is called. The default is to output in
the same character set as the input.

Both input_charset and output_charset must have Unicode codec entries in the
module’s character set-to-codec mapping; use add_codec() to add codecs the
module does not know about. See the codecs module’s documentation for
more information.

The global character set registry is kept in the module global dictionary
CHARSETS.

	
email.charset.add_alias(alias, canonical)

	Add a character set alias. alias is the alias name, e.g. latin-1.
canonical is the character set’s canonical name, e.g. iso-8859-1.

The global charset alias registry is kept in the module global dictionary
ALIASES.

	
email.charset.add_codec(charset, codecname)

	Add a codec that map characters in the given character set to and from Unicode.

charset is the canonical name of a character set. codecname is the name of a
Python codec, as appropriate for the second argument to the unicode()
built-in, or to the encode() method of a Unicode string.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.7. email: Encoders

When creating Message objects from scratch, you often
need to encode the payloads for transport through compliant mail servers. This
is especially true for image/* and text/* type messages
containing binary data.

The email package provides some convenient encodings in its
encoders module. These encoders are actually used by the
MIMEAudio and MIMEImage
class constructors to provide default encodings. All encoder functions take
exactly one argument, the message object to encode. They usually extract the
payload, encode it, and reset the payload to this newly encoded value. They
should also set the Content-Transfer-Encoding header as appropriate.

Here are the encoding functions provided:

	
email.encoders.encode_quopri(msg)

	Encodes the payload into quoted-printable form and sets the
Content-Transfer-Encoding header to quoted-printable [1].
This is a good encoding to use when most of your payload is normal printable
data, but contains a few unprintable characters.

	
email.encoders.encode_base64(msg)

	Encodes the payload into base64 form and sets the
Content-Transfer-Encoding header to base64. This is a good
encoding to use when most of your payload is unprintable data since it is a more
compact form than quoted-printable. The drawback of base64 encoding is that it
renders the text non-human readable.

	
email.encoders.encode_7or8bit(msg)

	This doesn’t actually modify the message’s payload, but it does set the
Content-Transfer-Encoding header to either 7bit or 8bit as
appropriate, based on the payload data.

	
email.encoders.encode_noop(msg)

	This does nothing; it doesn’t even set the
Content-Transfer-Encoding header.

Footnotes

	[1]	Note that encoding with encode_quopri() also encodes all tabs and space
characters in the data.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.8. email: Exception and Defect classes

The following exception classes are defined in the email.errors module:

	
exception email.errors.MessageError

	This is the base class for all exceptions that the email package can
raise. It is derived from the standard Exception class and defines no
additional methods.

	
exception email.errors.MessageParseError

	This is the base class for exceptions raised by the Parser
class. It is derived from MessageError.

	
exception email.errors.HeaderParseError

	Raised under some error conditions when parsing the RFC 2822 [http://tools.ietf.org/html/rfc2822.html] headers of a
message, this class is derived from MessageParseError. It can be raised
from the Parser.parse() or Parser.parsestr() methods.

Situations where it can be raised include finding an envelope header after the
first RFC 2822 [http://tools.ietf.org/html/rfc2822.html] header of the message, finding a continuation line before the
first RFC 2822 [http://tools.ietf.org/html/rfc2822.html] header is found, or finding a line in the headers which is
neither a header or a continuation line.

	
exception email.errors.BoundaryError

	Raised under some error conditions when parsing the RFC 2822 [http://tools.ietf.org/html/rfc2822.html] headers of a
message, this class is derived from MessageParseError. It can be raised
from the Parser.parse() or Parser.parsestr() methods.

Situations where it can be raised include not being able to find the starting or
terminating boundary in a multipart/* message when strict parsing
is used.

	
exception email.errors.MultipartConversionError

	Raised when a payload is added to a Message object using
add_payload(), but the payload is already a scalar and the message’s
Content-Type main type is not either multipart or
missing. MultipartConversionError multiply inherits from
MessageError and the built-in TypeError.

Since Message.add_payload() is deprecated, this exception is rarely raised
in practice. However the exception may also be raised if the attach()
method is called on an instance of a class derived from
MIMENonMultipart (e.g.
MIMEImage).

Here’s the list of the defects that the FeedParser
can find while parsing messages. Note that the defects are added to the message
where the problem was found, so for example, if a message nested inside a
multipart/alternative had a malformed header, that nested message
object would have a defect, but the containing messages would not.

All defect classes are subclassed from email.errors.MessageDefect, but
this class is not an exception!

New in version 2.4: All the defect classes were added.

	NoBoundaryInMultipartDefect – A message claimed to be a multipart,
but had no boundary parameter.

	StartBoundaryNotFoundDefect – The start boundary claimed in the
Content-Type header was never found.

	FirstHeaderLineIsContinuationDefect – The message had a continuation
line as its first header line.

	MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the
middle of a header block.

	MalformedHeaderDefect – A header was found that was missing a colon,
or was otherwise malformed.

	MultipartInvariantViolationDefect – A message claimed to be a
multipart, but no subparts were found. Note that when a message has
this defect, its is_multipart() method may return false even though its
content type claims to be multipart.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.9. email: Miscellaneous utilities

There are several useful utilities provided in the email.utils module:

	
email.utils.quote(str)

	Return a new string with backslashes in str replaced by two backslashes, and
double quotes replaced by backslash-double quote.

	
email.utils.unquote(str)

	Return a new string which is an unquoted version of str. If str ends and
begins with double quotes, they are stripped off. Likewise if str ends and
begins with angle brackets, they are stripped off.

	
email.utils.parseaddr(address)

	Parse address – which should be the value of some address-containing field such
as To or Cc – into its constituent realname and
email address parts. Returns a tuple of that information, unless the parse
fails, in which case a 2-tuple of ('', '') is returned.

	
email.utils.formataddr(pair)

	The inverse of parseaddr(), this takes a 2-tuple of the form (realname,
email_address) and returns the string value suitable for a To or
Cc header. If the first element of pair is false, then the
second element is returned unmodified.

	
email.utils.getaddresses(fieldvalues)

	This method returns a list of 2-tuples of the form returned by parseaddr().
fieldvalues is a sequence of header field values as might be returned by
Message.get_all(). Here’s a simple example that gets all the recipients
of a message:

from email.utils import getaddresses

tos = msg.get_all('to', [])
ccs = msg.get_all('cc', [])
resent_tos = msg.get_all('resent-to', [])
resent_ccs = msg.get_all('resent-cc', [])
all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

	
email.utils.parsedate(date)

	Attempts to parse a date according to the rules in RFC 2822 [http://tools.ietf.org/html/rfc2822.html]. however, some
mailers don’t follow that format as specified, so parsedate() tries to
guess correctly in such cases. date is a string containing an RFC 2822 [http://tools.ietf.org/html/rfc2822.html]
date, such as "Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing
the date, parsedate() returns a 9-tuple that can be passed directly to
time.mktime(); otherwise None will be returned. Note that indexes 6,
7, and 8 of the result tuple are not usable.

	
email.utils.parsedate_tz(date)

	Performs the same function as parsedate(), but returns either None or
a 10-tuple; the first 9 elements make up a tuple that can be passed directly to
time.mktime(), and the tenth is the offset of the date’s timezone from UTC
(which is the official term for Greenwich Mean Time) [1]. If the input string
has no timezone, the last element of the tuple returned is None. Note that
indexes 6, 7, and 8 of the result tuple are not usable.

	
email.utils.mktime_tz(tuple)

	Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp. It
the timezone item in the tuple is None, assume local time. Minor
deficiency: mktime_tz() interprets the first 8 elements of tuple as a
local time and then compensates for the timezone difference. This may yield a
slight error around changes in daylight savings time, though not worth worrying
about for common use.

	
email.utils.formatdate([timeval[, localtime][, usegmt]])

	Returns a date string as per RFC 2822 [http://tools.ietf.org/html/rfc2822.html], e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted by
time.gmtime() and time.localtime(), otherwise the current time is
used.

Optional localtime is a flag that when True, interprets timeval, and
returns a date relative to the local timezone instead of UTC, properly taking
daylight savings time into account. The default is False meaning UTC is
used.

Optional usegmt is a flag that when True, outputs a date string with the
timezone as an ascii string GMT, rather than a numeric -0000. This is
needed for some protocols (such as HTTP). This only applies when localtime is
False. The default is False.

New in version 2.4.

	
email.utils.make_msgid([idstring])

	Returns a string suitable for an RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-compliant
Message-ID header. Optional idstring if given, is a string used
to strengthen the uniqueness of the message id.

	
email.utils.decode_rfc2231(s)

	Decode the string s according to RFC 2231 [http://tools.ietf.org/html/rfc2231.html].

	
email.utils.encode_rfc2231(s[, charset[, language]])

	Encode the string s according to RFC 2231 [http://tools.ietf.org/html/rfc2231.html]. Optional charset and
language, if given is the character set name and language name to use. If
neither is given, s is returned as-is. If charset is given but language
is not, the string is encoded using the empty string for language.

	
email.utils.collapse_rfc2231_value(value[, errors[, fallback_charset]])

	When a header parameter is encoded in RFC 2231 [http://tools.ietf.org/html/rfc2231.html] format,
Message.get_param() may return a 3-tuple containing the character set,
language, and value. collapse_rfc2231_value() turns this into a unicode
string. Optional errors is passed to the errors argument of the built-in
unicode() function; it defaults to replace. Optional
fallback_charset specifies the character set to use if the one in the
RFC 2231 [http://tools.ietf.org/html/rfc2231.html] header is not known by Python; it defaults to us-ascii.

For convenience, if the value passed to collapse_rfc2231_value() is not
a tuple, it should be a string and it is returned unquoted.

	
email.utils.decode_params(params)

	Decode parameters list according to RFC 2231 [http://tools.ietf.org/html/rfc2231.html]. params is a sequence of
2-tuples containing elements of the form (content-type, string-value).

Changed in version 2.4: The dump_address_pair() function has been removed; use formataddr()
instead.

Changed in version 2.4: The decode() function has been removed; use the
Header.decode_header() method instead.

Changed in version 2.4: The encode() function has been removed; use the Header.encode()
method instead.

Footnotes

	[1]	Note that the sign of the timezone offset is the opposite of the sign of the
time.timezone variable for the same timezone; the latter variable follows
the POSIX standard while this module follows RFC 2822 [http://tools.ietf.org/html/rfc2822.html].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.10. email: Iterators

Iterating over a message object tree is fairly easy with the
Message.walk() method. The email.iterators module provides some
useful higher level iterations over message object trees.

	
email.iterators.body_line_iterator(msg[, decode])

	This iterates over all the payloads in all the subparts of msg, returning the
string payloads line-by-line. It skips over all the subpart headers, and it
skips over any subpart with a payload that isn’t a Python string. This is
somewhat equivalent to reading the flat text representation of the message from
a file using readline(), skipping over all the intervening headers.

Optional decode is passed through to Message.get_payload().

	
email.iterators.typed_subpart_iterator(msg[, maintype[, subtype]])

	This iterates over all the subparts of msg, returning only those subparts that
match the MIME type specified by maintype and subtype.

Note that subtype is optional; if omitted, then subpart MIME type matching is
done only with the main type. maintype is optional too; it defaults to
text.

Thus, by default typed_subpart_iterator() returns each subpart that has a
MIME type of text/*.

The following function has been added as a useful debugging tool. It should
not be considered part of the supported public interface for the package.

	
email.iterators._structure(msg[, fp[, level]])

	Prints an indented representation of the content types of the message object
structure. For example:

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed
 text/plain
 text/plain
 multipart/digest
 message/rfc822
 text/plain
 message/rfc822
 text/plain
 message/rfc822
 text/plain
 message/rfc822
 text/plain
 message/rfc822
 text/plain
 text/plain

Optional fp is a file-like object to print the output to. It must be suitable
for Python’s extended print statement. level is used internally.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

 	18.1. email — An email and MIME handling package

18.1.11. email: Examples

Here are a few examples of how to use the email package to read, write,
and send simple email messages, as well as more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we'll need
from email.mime.text import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.
fp = open(textfile, 'rb')
Create a text/plain message
msg = MIMEText(fp.read())
fp.close()

me == the sender's email address
you == the recipient's email address
msg['Subject'] = 'The contents of %s' % textfile
msg['From'] = me
msg['To'] = you

Send the message via our own SMTP server, but don't include the
envelope header.
s = smtplib.SMTP('localhost')
s.sendmail(me, [you], msg.as_string())
s.quit()

And parsing RFC822 headers can easily be done by the parse(filename) or
parsestr(message_as_string) methods of the Parser() class:

Import the email modules we'll need
from email.parser import Parser

If the e-mail headers are in a file, uncomment this line:
#headers = Parser().parse(open(messagefile, 'r'))

Or for parsing headers in a string, use:
headers = Parser().parsestr('From: <user@example.com>\n'
 'To: <someone_else@example.com>\n'
 'Subject: Test message\n'
 '\n'
 'Body would go here\n')

Now the header items can be accessed as a dictionary:
print 'To: %s' % headers['to']
print 'From: %s' % headers['from']
print 'Subject: %s' % headers['subject']

Here’s an example of how to send a MIME message containing a bunch of family
pictures that may be residing in a directory:

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we'll need
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

COMMASPACE = ', '

Create the container (outer) email message.
msg = MIMEMultipart()
msg['Subject'] = 'Our family reunion'
me == the sender's email address
family = the list of all recipients' email addresses
msg['From'] = me
msg['To'] = COMMASPACE.join(family)
msg.preamble = 'Our family reunion'

Assume we know that the image files are all in PNG format
for file in pngfiles:
 # Open the files in binary mode. Let the MIMEImage class automatically
 # guess the specific image type.
 fp = open(file, 'rb')
 img = MIMEImage(fp.read())
 fp.close()
 msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP('localhost')
s.sendmail(me, family, msg.as_string())
s.quit()

Here’s an example of how to send the entire contents of a directory as an email
message: [1]

#!/usr/bin/env python

"""Send the contents of a directory as a MIME message."""

import os
import sys
import smtplib
For guessing MIME type based on file name extension
import mimetypes

from optparse import OptionParser

from email import encoders
from email.message import Message
from email.mime.audio import MIMEAudio
from email.mime.base import MIMEBase
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

COMMASPACE = ', '

def main():
 parser = OptionParser(usage="""\
Send the contents of a directory as a MIME message.

Usage: %prog [options]

Unless the -o option is given, the email is sent by forwarding to your local
SMTP server, which then does the normal delivery process. Your local machine
must be running an SMTP server.
""")
 parser.add_option('-d', '--directory',
 type='string', action='store',
 help="""Mail the contents of the specified directory,
 otherwise use the current directory. Only the regular
 files in the directory are sent, and we don't recurse to
 subdirectories.""")
 parser.add_option('-o', '--output',
 type='string', action='store', metavar='FILE',
 help="""Print the composed message to FILE instead of
 sending the message to the SMTP server.""")
 parser.add_option('-s', '--sender',
 type='string', action='store', metavar='SENDER',
 help='The value of the From: header (required)')
 parser.add_option('-r', '--recipient',
 type='string', action='append', metavar='RECIPIENT',
 default=[], dest='recipients',
 help='A To: header value (at least one required)')
 opts, args = parser.parse_args()
 if not opts.sender or not opts.recipients:
 parser.print_help()
 sys.exit(1)
 directory = opts.directory
 if not directory:
 directory = '.'
 # Create the enclosing (outer) message
 outer = MIMEMultipart()
 outer['Subject'] = 'Contents of directory %s' % os.path.abspath(directory)
 outer['To'] = COMMASPACE.join(opts.recipients)
 outer['From'] = opts.sender
 outer.preamble = 'You will not see this in a MIME-aware mail reader.\n'

 for filename in os.listdir(directory):
 path = os.path.join(directory, filename)
 if not os.path.isfile(path):
 continue
 # Guess the content type based on the file's extension. Encoding
 # will be ignored, although we should check for simple things like
 # gzip'd or compressed files.
 ctype, encoding = mimetypes.guess_type(path)
 if ctype is None or encoding is not None:
 # No guess could be made, or the file is encoded (compressed), so
 # use a generic bag-of-bits type.
 ctype = 'application/octet-stream'
 maintype, subtype = ctype.split('/', 1)
 if maintype == 'text':
 fp = open(path)
 # Note: we should handle calculating the charset
 msg = MIMEText(fp.read(), _subtype=subtype)
 fp.close()
 elif maintype == 'image':
 fp = open(path, 'rb')
 msg = MIMEImage(fp.read(), _subtype=subtype)
 fp.close()
 elif maintype == 'audio':
 fp = open(path, 'rb')
 msg = MIMEAudio(fp.read(), _subtype=subtype)
 fp.close()
 else:
 fp = open(path, 'rb')
 msg = MIMEBase(maintype, subtype)
 msg.set_payload(fp.read())
 fp.close()
 # Encode the payload using Base64
 encoders.encode_base64(msg)
 # Set the filename parameter
 msg.add_header('Content-Disposition', 'attachment', filename=filename)
 outer.attach(msg)
 # Now send or store the message
 composed = outer.as_string()
 if opts.output:
 fp = open(opts.output, 'w')
 fp.write(composed)
 fp.close()
 else:
 s = smtplib.SMTP('localhost')
 s.sendmail(opts.sender, opts.recipients, composed)
 s.quit()

if __name__ == '__main__':
 main()

Here’s an example of how to unpack a MIME message like the one
above, into a directory of files:

#!/usr/bin/env python

"""Unpack a MIME message into a directory of files."""

import os
import sys
import email
import errno
import mimetypes

from optparse import OptionParser

def main():
 parser = OptionParser(usage="""\
Unpack a MIME message into a directory of files.

Usage: %prog [options] msgfile
""")
 parser.add_option('-d', '--directory',
 type='string', action='store',
 help="""Unpack the MIME message into the named
 directory, which will be created if it doesn't already
 exist.""")
 opts, args = parser.parse_args()
 if not opts.directory:
 parser.print_help()
 sys.exit(1)

 try:
 msgfile = args[0]
 except IndexError:
 parser.print_help()
 sys.exit(1)

 try:
 os.mkdir(opts.directory)
 except OSError, e:
 # Ignore directory exists error
 if e.errno != errno.EEXIST:
 raise

 fp = open(msgfile)
 msg = email.message_from_file(fp)
 fp.close()

 counter = 1
 for part in msg.walk():
 # multipart/* are just containers
 if part.get_content_maintype() == 'multipart':
 continue
 # Applications should really sanitize the given filename so that an
 # email message can't be used to overwrite important files
 filename = part.get_filename()
 if not filename:
 ext = mimetypes.guess_extension(part.get_content_type())
 if not ext:
 # Use a generic bag-of-bits extension
 ext = '.bin'
 filename = 'part-%03d%s' % (counter, ext)
 counter += 1
 fp = open(os.path.join(opts.directory, filename), 'wb')
 fp.write(part.get_payload(decode=True))
 fp.close()

if __name__ == '__main__':
 main()

Here’s an example of how to create an HTML message with an alternative plain
text version: [2]

#!/usr/bin/env python

import smtplib

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

me == my email address
you == recipient's email address
me = "my@email.com"
you = "your@email.com"

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart('alternative')
msg['Subject'] = "Link"
msg['From'] = me
msg['To'] = you

Create the body of the message (a plain-text and an HTML version).
text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.python.org"
html = """\
<html>
 <head></head>
 <body>
 <p>Hi!

 How are you?

 Here is the link you wanted.
 </p>
 </body>
</html>
"""

Record the MIME types of both parts - text/plain and text/html.
part1 = MIMEText(text, 'plain')
part2 = MIMEText(html, 'html')

Attach parts into message container.
According to RFC 2046, the last part of a multipart message, in this case
the HTML message, is best and preferred.
msg.attach(part1)
msg.attach(part2)

Send the message via local SMTP server.
s = smtplib.SMTP('localhost')
sendmail function takes 3 arguments: sender's address, recipient's address
and message to send - here it is sent as one string.
s.sendmail(me, you, msg.as_string())
s.quit()

Footnotes

	[1]	Thanks to Matthew Dixon Cowles for the original inspiration and examples.

	[2]	Contributed by Martin Matejek.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.2. json — JSON encoder and decoder

New in version 2.6.

JSON (JavaScript Object Notation) [http://json.org] is a subset of JavaScript
syntax (ECMA-262 3rd edition) used as a lightweight data interchange format.

json exposes an API familiar to users of the standard library
marshal and pickle modules.

Encoding basic Python object hierarchies:

>>> import json
>>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
'["foo", {"bar": ["baz", null, 1.0, 2]}]'
>>> print json.dumps("\"foo\bar")
"\"foo\bar"
>>> print json.dumps(u'\u1234')
"\u1234"
>>> print json.dumps('\\')
"\\"
>>> print json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True)
{"a": 0, "b": 0, "c": 0}
>>> from StringIO import StringIO
>>> io = StringIO()
>>> json.dump(['streaming API'], io)
>>> io.getvalue()
'["streaming API"]'

Compact encoding:

>>> import json
>>> json.dumps([1,2,3,{'4': 5, '6': 7}], separators=(',',':'))
'[1,2,3,{"4":5,"6":7}]'

Pretty printing:

>>> import json
>>> print json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4)
{
 "4": 5,
 "6": 7
}

Decoding JSON:

>>> import json
>>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]')
[u'foo', {u'bar': [u'baz', None, 1.0, 2]}]
>>> json.loads('"\\"foo\\bar"')
u'"foo\x08ar'
>>> from StringIO import StringIO
>>> io = StringIO('["streaming API"]')
>>> json.load(io)
[u'streaming API']

Specializing JSON object decoding:

>>> import json
>>> def as_complex(dct):
... if '__complex__' in dct:
... return complex(dct['real'], dct['imag'])
... return dct
...
>>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',
... object_hook=as_complex)
(1+2j)
>>> import decimal
>>> json.loads('1.1', parse_float=decimal.Decimal)
Decimal('1.1')

Extending JSONEncoder:

>>> import json
>>> class ComplexEncoder(json.JSONEncoder):
... def default(self, obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... return json.JSONEncoder.default(self, obj)
...
>>> dumps(2 + 1j, cls=ComplexEncoder)
'[2.0, 1.0]'
>>> ComplexEncoder().encode(2 + 1j)
'[2.0, 1.0]'
>>> list(ComplexEncoder().iterencode(2 + 1j))
['[', '2.0', ', ', '1.0', ']']

Using json.tool from the shell to validate and pretty-print:

$ echo '{"json":"obj"}' | python -mjson.tool
{
 "json": "obj"
}
$ echo '{ 1.2:3.4}' | python -mjson.tool
Expecting property name: line 1 column 2 (char 2)

Note

The JSON produced by this module’s default settings is a subset of
YAML, so it may be used as a serializer for that as well.

18.2.1. Basic Usage

	
json.dump(obj, fp[, skipkeys[, ensure_ascii[, check_circular[, allow_nan[, cls[, indent[, separators[, encoding[, default[, **kw]]]]]]]]]])

	Serialize obj as a JSON formatted stream to fp (a .write()-supporting
file-like object).

If skipkeys is True (default: False), then dict keys that are not
of a basic type (str, unicode, int, long,
float, bool, None) will be skipped instead of raising a
TypeError.

If ensure_ascii is False (default: True), then some chunks written
to fp may be unicode instances, subject to normal Python
str to unicode coercion rules. Unless fp.write()
explicitly understands unicode (as in codecs.getwriter()) this
is likely to cause an error.

If check_circular is False (default: True), then the circular
reference check for container types will be skipped and a circular reference
will result in an OverflowError (or worse).

If allow_nan is False (default: True), then it will be a
ValueError to serialize out of range float values (nan,
inf, -inf) in strict compliance of the JSON specification, instead of
using the JavaScript equivalents (NaN, Infinity, -Infinity).

If indent is a non-negative integer, then JSON array elements and object
members will be pretty-printed with that indent level. An indent level of 0,
or negative, will only insert newlines. None (the default) selects the
most compact representation.

If separators is an (item_separator, dict_separator) tuple, then it
will be used instead of the default (', ', ': ') separators. (',',
':') is the most compact JSON representation.

encoding is the character encoding for str instances, default is UTF-8.

default(obj) is a function that should return a serializable version of
obj or raise TypeError. The default simply raises TypeError.

To use a custom JSONEncoder subclass (e.g. one that overrides the
default() method to serialize additional types), specify it with the
cls kwarg; otherwise JSONEncoder is used.

Note

Unlike pickle and marshal, JSON is not a framed protocol so
trying to serialize more objects with repeated calls to dump() and
the same fp will result in an invalid JSON file.

	
json.dumps(obj[, skipkeys[, ensure_ascii[, check_circular[, allow_nan[, cls[, indent[, separators[, encoding[, default[, **kw]]]]]]]]]])

	Serialize obj to a JSON formatted str.

If ensure_ascii is False, then the return value will be a
unicode instance. The other arguments have the same meaning as in
dump().

	
json.load(fp[, encoding[, cls[, object_hook[, parse_float[, parse_int[, parse_constant[, object_pairs_hook[, **kw]]]]]]]])

	Deserialize fp (a .read()-supporting file-like object containing a JSON
document) to a Python object.

If the contents of fp are encoded with an ASCII based encoding other than
UTF-8 (e.g. latin-1), then an appropriate encoding name must be specified.
Encodings that are not ASCII based (such as UCS-2) are not allowed, and
should be wrapped with codecs.getreader(encoding)(fp), or simply decoded
to a unicode object and passed to loads().

object_hook is an optional function that will be called with the result of
any object literal decoded (a dict). The return value of
object_hook will be used instead of the dict. This feature can be used
to implement custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the
result of any object literal decoded with an ordered list of pairs. The
return value of object_pairs_hook will be used instead of the
dict. This feature can be used to implement custom decoders that
rely on the order that the key and value pairs are decoded (for example,
collections.OrderedDict() will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

Changed in version 2.7: Added support for object_pairs_hook.

parse_float, if specified, will be called with the string of every JSON
float to be decoded. By default, this is equivalent to float(num_str).
This can be used to use another datatype or parser for JSON floats
(e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int
to be decoded. By default, this is equivalent to int(num_str). This can
be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant, if specified, will be called with one of the following
strings: '-Infinity', 'Infinity', 'NaN', 'null', 'true',
'false'. This can be used to raise an exception if invalid JSON numbers
are encountered.

To use a custom JSONDecoder subclass, specify it with the cls
kwarg; otherwise JSONDecoder is used. Additional keyword arguments
will be passed to the constructor of the class.

	
json.loads(s[, encoding[, cls[, object_hook[, parse_float[, parse_int[, parse_constant[, object_pairs_hook[, **kw]]]]]]]])

	Deserialize s (a str or unicode instance containing a JSON
document) to a Python object.

If s is a str instance and is encoded with an ASCII based encoding
other than UTF-8 (e.g. latin-1), then an appropriate encoding name must be
specified. Encodings that are not ASCII based (such as UCS-2) are not
allowed and should be decoded to unicode first.

The other arguments have the same meaning as in load().

18.2.2. Encoders and decoders

	
class json.JSONDecoder([encoding[, object_hook[, parse_float[, parse_int[, parse_constant[, strict[, object_pairs_hook]]]]]]])

	Simple JSON decoder.

Performs the following translations in decoding by default:

	JSON
	Python

	object
	dict

	array
	list

	string
	unicode

	number (int)
	int, long

	number (real)
	float

	true
	True

	false
	False

	null
	None

It also understands NaN, Infinity, and -Infinity as their
corresponding float values, which is outside the JSON spec.

encoding determines the encoding used to interpret any str objects
decoded by this instance (UTF-8 by default). It has no effect when decoding
unicode objects.

Note that currently only encodings that are a superset of ASCII work, strings
of other encodings should be passed in as unicode.

object_hook, if specified, will be called with the result of every JSON
object decoded and its return value will be used in place of the given
dict. This can be used to provide custom deserializations (e.g. to
support JSON-RPC class hinting).

object_pairs_hook, if specified will be called with the result of every
JSON object decoded with an ordered list of pairs. The return value of
object_pairs_hook will be used instead of the dict. This
feature can be used to implement custom decoders that rely on the order
that the key and value pairs are decoded (for example,
collections.OrderedDict() will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

Changed in version 2.7: Added support for object_pairs_hook.

parse_float, if specified, will be called with the string of every JSON
float to be decoded. By default, this is equivalent to float(num_str).
This can be used to use another datatype or parser for JSON floats
(e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int
to be decoded. By default, this is equivalent to int(num_str). This can
be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant, if specified, will be called with one of the following
strings: '-Infinity', 'Infinity', 'NaN', 'null', 'true',
'false'. This can be used to raise an exception if invalid JSON numbers
are encountered.

If strict is False (True is the default), then control characters
will be allowed inside strings. Control characters in this context are
those with character codes in the 0-31 range, including '\t' (tab),
'\n', '\r' and '\0'.

	
decode(s)

	Return the Python representation of s (a str or
unicode instance containing a JSON document)

	
raw_decode(s)

	Decode a JSON document from s (a str or unicode
beginning with a JSON document) and return a 2-tuple of the Python
representation and the index in s where the document ended.

This can be used to decode a JSON document from a string that may have
extraneous data at the end.

	
class json.JSONEncoder([skipkeys[, ensure_ascii[, check_circular[, allow_nan[, sort_keys[, indent[, separators[, encoding[, default]]]]]]]]])

	Extensible JSON encoder for Python data structures.

Supports the following objects and types by default:

	Python
	JSON

	dict
	object

	list, tuple
	array

	str, unicode
	string

	int, long, float
	number

	True
	true

	False
	false

	None
	null

To extend this to recognize other objects, subclass and implement a
default() method with another method that returns a serializable object
for o if possible, otherwise it should call the superclass implementation
(to raise TypeError).

If skipkeys is False (the default), then it is a TypeError to
attempt encoding of keys that are not str, int, long, float or None. If
skipkeys is True, such items are simply skipped.

If ensure_ascii is True (the default), the output is guaranteed to be
str objects with all incoming unicode characters escaped. If
ensure_ascii is False, the output will be a unicode object.

If check_circular is True (the default), then lists, dicts, and custom
encoded objects will be checked for circular references during encoding to
prevent an infinite recursion (which would cause an OverflowError).
Otherwise, no such check takes place.

If allow_nan is True (the default), then NaN, Infinity, and
-Infinity will be encoded as such. This behavior is not JSON
specification compliant, but is consistent with most JavaScript based
encoders and decoders. Otherwise, it will be a ValueError to encode
such floats.

If sort_keys is True (default False), then the output of dictionaries
will be sorted by key; this is useful for regression tests to ensure that
JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer (it is None by default), then JSON
array elements and object members will be pretty-printed with that indent
level. An indent level of 0 will only insert newlines. None is the most
compact representation.

If specified, separators should be an (item_separator, key_separator)
tuple. The default is (', ', ': '). To get the most compact JSON
representation, you should specify (',', ':') to eliminate whitespace.

If specified, default is a function that gets called for objects that can’t
otherwise be serialized. It should return a JSON encodable version of the
object or raise a TypeError.

If encoding is not None, then all input strings will be transformed
into unicode using that encoding prior to JSON-encoding. The default is
UTF-8.

	
default(o)

	Implement this method in a subclass such that it returns a serializable
object for o, or calls the base implementation (to raise a
TypeError).

For example, to support arbitrary iterators, you could implement default
like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 return JSONEncoder.default(self, o)

	
encode(o)

	Return a JSON string representation of a Python data structure, o. For
example:

>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'

	
iterencode(o)

	Encode the given object, o, and yield each string representation as
available. For example:

for chunk in JSONEncoder().iterencode(bigobject):
 mysocket.write(chunk)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.3. mailcap — Mailcap file handling

Mailcap files are used to configure how MIME-aware applications such as mail
readers and Web browsers react to files with different MIME types. (The name
“mailcap” is derived from the phrase “mail capability”.) For example, a mailcap
file might contain a line like video/mpeg; xmpeg %s. Then, if the user
encounters an email message or Web document with the MIME type
video/mpeg, %s will be replaced by a filename (usually one
belonging to a temporary file) and the xmpeg program can be
automatically started to view the file.

The mailcap format is documented in RFC 1524 [http://tools.ietf.org/html/rfc1524.html], “A User Agent Configuration
Mechanism For Multimedia Mail Format Information,” but is not an Internet
standard. However, mailcap files are supported on most Unix systems.

	
mailcap.findmatch(caps, MIMEtype[, key[, filename[, plist]]])

	Return a 2-tuple; the first element is a string containing the command line to
be executed (which can be passed to os.system()), and the second element
is the mailcap entry for a given MIME type. If no matching MIME type can be
found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to
be performed; the default value is ‘view’, since in the most common case you
simply want to view the body of the MIME-typed data. Other possible values
might be ‘compose’ and ‘edit’, if you wanted to create a new body of the given
MIME type or alter the existing body data. See RFC 1524 [http://tools.ietf.org/html/rfc1524.html] for a complete list
of these fields.

filename is the filename to be substituted for %s in the command line; the
default value is '/dev/null' which is almost certainly not what you want, so
usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply
an empty list. Each entry in the list must be a string containing the parameter
name, an equals sign ('='), and the parameter’s value. Mailcap entries can
contain named parameters like %{foo}, which will be replaced by the value
of the parameter named ‘foo’. For example, if the command line showpartial
%{id} %{number} %{total} was in a mailcap file, and plist was set to
['id=1', 'number=2', 'total=3'], the resulting command line would be
'showpartial 1 2 3'.

In a mailcap file, the “test” field can optionally be specified to test some
external condition (such as the machine architecture, or the window system in
use) to determine whether or not the mailcap line applies. findmatch()
will automatically check such conditions and skip the entry if the check fails.

	
mailcap.getcaps()

	Returns a dictionary mapping MIME types to a list of mailcap file entries. This
dictionary must be passed to the findmatch() function. An entry is stored
as a list of dictionaries, but it shouldn’t be necessary to know the details of
this representation.

The information is derived from all of the mailcap files found on the system.
Settings in the user’s mailcap file $HOME/.mailcap will override
settings in the system mailcap files /etc/mailcap,
/usr/etc/mailcap, and /usr/local/etc/mailcap.

An example usage:

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, 'video/mpeg', filename='/tmp/tmp1223')
('xmpeg /tmp/tmp1223', {'view': 'xmpeg %s'})

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.4. mailbox — Manipulate mailboxes in various formats

This module defines two classes, Mailbox and Message, for
accessing and manipulating on-disk mailboxes and the messages they contain.
Mailbox offers a dictionary-like mapping from keys to messages.
Message extends the email.Message module’s Message
class with format-specific state and behavior. Supported mailbox formats are
Maildir, mbox, MH, Babyl, and MMDF.

See also

	Module email

	Represent and manipulate messages.

18.4.1. Mailbox objects

	
class mailbox.Mailbox

	A mailbox, which may be inspected and modified.

The Mailbox class defines an interface and is not intended to be
instantiated. Instead, format-specific subclasses should inherit from
Mailbox and your code should instantiate a particular subclass.

The Mailbox interface is dictionary-like, with small keys
corresponding to messages. Keys are issued by the Mailbox instance
with which they will be used and are only meaningful to that Mailbox
instance. A key continues to identify a message even if the corresponding
message is modified, such as by replacing it with another message.

Messages may be added to a Mailbox instance using the set-like
method add() and removed using a del statement or the set-like
methods remove() and discard().

Mailbox interface semantics differ from dictionary semantics in some
noteworthy ways. Each time a message is requested, a new representation
(typically a Message instance) is generated based upon the current
state of the mailbox. Similarly, when a message is added to a
Mailbox instance, the provided message representation’s contents are
copied. In neither case is a reference to the message representation kept by
the Mailbox instance.

The default Mailbox iterator iterates over message representations,
not keys as the default dictionary iterator does. Moreover, modification of a
mailbox during iteration is safe and well-defined. Messages added to the
mailbox after an iterator is created will not be seen by the
iterator. Messages removed from the mailbox before the iterator yields them
will be silently skipped, though using a key from an iterator may result in a
KeyError exception if the corresponding message is subsequently
removed.

Warning

Be very cautious when modifying mailboxes that might be simultaneously
changed by some other process. The safest mailbox format to use for such
tasks is Maildir; try to avoid using single-file formats such as mbox for
concurrent writing. If you’re modifying a mailbox, you must lock it by
calling the lock() and unlock() methods before reading any
messages in the file or making any changes by adding or deleting a
message. Failing to lock the mailbox runs the risk of losing messages or
corrupting the entire mailbox.

Mailbox instances have the following methods:

	
add(message)

	Add message to the mailbox and return the key that has been assigned to
it.

Parameter message may be a Message instance, an
email.Message.Message instance, a string, or a file-like object
(which should be open in text mode). If message is an instance of the
appropriate format-specific Message subclass (e.g., if it’s an
mboxMessage instance and this is an mbox instance), its
format-specific information is used. Otherwise, reasonable defaults for
format-specific information are used.

	
remove(key)

	
__delitem__(key)

	
discard(key)

	Delete the message corresponding to key from the mailbox.

If no such message exists, a KeyError exception is raised if the
method was called as remove() or __delitem__() but no
exception is raised if the method was called as discard(). The
behavior of discard() may be preferred if the underlying mailbox
format supports concurrent modification by other processes.

	
__setitem__(key, message)

	Replace the message corresponding to key with message. Raise a
KeyError exception if no message already corresponds to key.

As with add(), parameter message may be a Message
instance, an email.Message.Message instance, a string, or a
file-like object (which should be open in text mode). If message is an
instance of the appropriate format-specific Message subclass
(e.g., if it’s an mboxMessage instance and this is an
mbox instance), its format-specific information is
used. Otherwise, the format-specific information of the message that
currently corresponds to key is left unchanged.

	
iterkeys()

	
keys()

	Return an iterator over all keys if called as iterkeys() or return a
list of keys if called as keys().

	
itervalues()

	
__iter__()

	
values()

	Return an iterator over representations of all messages if called as
itervalues() or __iter__() or return a list of such
representations if called as values(). The messages are represented
as instances of the appropriate format-specific Message subclass
unless a custom message factory was specified when the Mailbox
instance was initialized.

Note

The behavior of __iter__() is unlike that of dictionaries, which
iterate over keys.

	
iteritems()

	
items()

	Return an iterator over (key, message) pairs, where key is a key and
message is a message representation, if called as iteritems() or
return a list of such pairs if called as items(). The messages are
represented as instances of the appropriate format-specific
Message subclass unless a custom message factory was specified
when the Mailbox instance was initialized.

	
get(key[, default=None])

	
__getitem__(key)

	Return a representation of the message corresponding to key. If no such
message exists, default is returned if the method was called as
get() and a KeyError exception is raised if the method was
called as __getitem__(). The message is represented as an instance
of the appropriate format-specific Message subclass unless a
custom message factory was specified when the Mailbox instance
was initialized.

	
get_message(key)

	Return a representation of the message corresponding to key as an
instance of the appropriate format-specific Message subclass, or
raise a KeyError exception if no such message exists.

	
get_string(key)

	Return a string representation of the message corresponding to key, or
raise a KeyError exception if no such message exists.

	
get_file(key)

	Return a file-like representation of the message corresponding to key,
or raise a KeyError exception if no such message exists. The
file-like object behaves as if open in binary mode. This file should be
closed once it is no longer needed.

Note

Unlike other representations of messages, file-like representations are
not necessarily independent of the Mailbox instance that
created them or of the underlying mailbox. More specific documentation
is provided by each subclass.

	
has_key(key)

	
__contains__(key)

	Return True if key corresponds to a message, False otherwise.

	
__len__()

	Return a count of messages in the mailbox.

	
clear()

	Delete all messages from the mailbox.

	
pop(key[, default])

	Return a representation of the message corresponding to key and delete
the message. If no such message exists, return default if it was
supplied or else raise a KeyError exception. The message is
represented as an instance of the appropriate format-specific
Message subclass unless a custom message factory was specified
when the Mailbox instance was initialized.

	
popitem()

	Return an arbitrary (key, message) pair, where key is a key and
message is a message representation, and delete the corresponding
message. If the mailbox is empty, raise a KeyError exception. The
message is represented as an instance of the appropriate format-specific
Message subclass unless a custom message factory was specified
when the Mailbox instance was initialized.

	
update(arg)

	Parameter arg should be a key-to-message mapping or an iterable of
(key, message) pairs. Updates the mailbox so that, for each given
key and message, the message corresponding to key is set to
message as if by using __setitem__(). As with __setitem__(),
each key must already correspond to a message in the mailbox or else a
KeyError exception will be raised, so in general it is incorrect
for arg to be a Mailbox instance.

Note

Unlike with dictionaries, keyword arguments are not supported.

	
flush()

	Write any pending changes to the filesystem. For some Mailbox
subclasses, changes are always written immediately and flush() does
nothing, but you should still make a habit of calling this method.

	
lock()

	Acquire an exclusive advisory lock on the mailbox so that other processes
know not to modify it. An ExternalClashError is raised if the lock
is not available. The particular locking mechanisms used depend upon the
mailbox format. You should always lock the mailbox before making any
modifications to its contents.

	
unlock()

	Release the lock on the mailbox, if any.

	
close()

	Flush the mailbox, unlock it if necessary, and close any open files. For
some Mailbox subclasses, this method does nothing.

18.4.1.1. Maildir

	
class mailbox.Maildir(dirname[, factory=rfc822.Message[, create=True]])

	A subclass of Mailbox for mailboxes in Maildir format. Parameter
factory is a callable object that accepts a file-like message representation
(which behaves as if opened in binary mode) and returns a custom representation.
If factory is None, MaildirMessage is used as the default message
representation. If create is True, the mailbox is created if it does not
exist.

It is for historical reasons that factory defaults to rfc822.Message
and that dirname is named as such rather than path. For a Maildir
instance that behaves like instances of other Mailbox subclasses, set
factory to None.

Maildir is a directory-based mailbox format invented for the qmail mail
transfer agent and now widely supported by other programs. Messages in a
Maildir mailbox are stored in separate files within a common directory
structure. This design allows Maildir mailboxes to be accessed and modified
by multiple unrelated programs without data corruption, so file locking is
unnecessary.

Maildir mailboxes contain three subdirectories, namely: tmp,
new, and cur. Messages are created momentarily in the
tmp subdirectory and then moved to the new subdirectory to
finalize delivery. A mail user agent may subsequently move the message to the
cur subdirectory and store information about the state of the message
in a special “info” section appended to its file name.

Folders of the style introduced by the Courier mail transfer agent are also
supported. Any subdirectory of the main mailbox is considered a folder if
'.' is the first character in its name. Folder names are represented by
Maildir without the leading '.'. Each folder is itself a Maildir
mailbox but should not contain other folders. Instead, a logical nesting is
indicated using '.' to delimit levels, e.g., “Archived.2005.07”.

Note

The Maildir specification requires the use of a colon (':') in certain
message file names. However, some operating systems do not permit this
character in file names, If you wish to use a Maildir-like format on such
an operating system, you should specify another character to use
instead. The exclamation point ('!') is a popular choice. For
example:

import mailbox
mailbox.Maildir.colon = '!'

The colon attribute may also be set on a per-instance basis.

Maildir instances have all of the methods of Mailbox in
addition to the following:

	
list_folders()

	Return a list of the names of all folders.

	
get_folder(folder)

	Return a Maildir instance representing the folder whose name is
folder. A NoSuchMailboxError exception is raised if the folder
does not exist.

	
add_folder(folder)

	Create a folder whose name is folder and return a Maildir
instance representing it.

	
remove_folder(folder)

	Delete the folder whose name is folder. If the folder contains any
messages, a NotEmptyError exception will be raised and the folder
will not be deleted.

	
clean()

	Delete temporary files from the mailbox that have not been accessed in the
last 36 hours. The Maildir specification says that mail-reading programs
should do this occasionally.

Some Mailbox methods implemented by Maildir deserve special
remarks:

	
add(message)

	
__setitem__(key, message)

	
update(arg)

	
Warning

These methods generate unique file names based upon the current process
ID. When using multiple threads, undetected name clashes may occur and
cause corruption of the mailbox unless threads are coordinated to avoid
using these methods to manipulate the same mailbox simultaneously.

	
flush()

	All changes to Maildir mailboxes are immediately applied, so this method
does nothing.

	
lock()

	
unlock()

	Maildir mailboxes do not support (or require) locking, so these methods do
nothing.

	
close()

	Maildir instances do not keep any open files and the underlying
mailboxes do not support locking, so this method does nothing.

	
get_file(key)

	Depending upon the host platform, it may not be possible to modify or
remove the underlying message while the returned file remains open.

See also

	maildir man page from qmail [http://www.qmail.org/man/man5/maildir.html]

	The original specification of the format.

	Using maildir format [http://cr.yp.to/proto/maildir.html]

	Notes on Maildir by its inventor. Includes an updated name-creation scheme and
details on “info” semantics.

	maildir man page from Courier [http://www.courier-mta.org/maildir.html]

	Another specification of the format. Describes a common extension for supporting
folders.

18.4.1.2. mbox

	
class mailbox.mbox(path[, factory=None[, create=True]])

	A subclass of Mailbox for mailboxes in mbox format. Parameter factory
is a callable object that accepts a file-like message representation (which
behaves as if opened in binary mode) and returns a custom representation. If
factory is None, mboxMessage is used as the default message
representation. If create is True, the mailbox is created if it does not
exist.

The mbox format is the classic format for storing mail on Unix systems. All
messages in an mbox mailbox are stored in a single file with the beginning of
each message indicated by a line whose first five characters are “From ”.

Several variations of the mbox format exist to address perceived shortcomings in
the original. In the interest of compatibility, mbox implements the
original format, which is sometimes referred to as mboxo. This means that
the Content-Length header, if present, is ignored and that any
occurrences of “From ” at the beginning of a line in a message body are
transformed to “>From ” when storing the message, although occurrences of “>From
” are not transformed to “From ” when reading the message.

Some Mailbox methods implemented by mbox deserve special
remarks:

	
get_file(key)

	Using the file after calling flush() or close() on the
mbox instance may yield unpredictable results or raise an
exception.

	
lock()

	
unlock()

	Three locking mechanisms are used—dot locking and, if available, the
flock() and lockf() system calls.

See also

	mbox man page from qmail [http://www.qmail.org/man/man5/mbox.html]

	A specification of the format and its variations.

	mbox man page from tin [http://www.tin.org/bin/man.cgi?section=5&topic=mbox]

	Another specification of the format, with details on locking.

	Configuring Netscape Mail on Unix: Why The Content-Length Format is Bad [http://www.jwz.org/doc/content-length.html]

	An argument for using the original mbox format rather than a variation.

	“mbox” is a family of several mutually incompatible mailbox formats [http://homepages.tesco.net./~J.deBoynePollard/FGA/mail-mbox-formats.html]

	A history of mbox variations.

18.4.1.3. MH

	
class mailbox.MH(path[, factory=None[, create=True]])

	A subclass of Mailbox for mailboxes in MH format. Parameter factory
is a callable object that accepts a file-like message representation (which
behaves as if opened in binary mode) and returns a custom representation. If
factory is None, MHMessage is used as the default message
representation. If create is True, the mailbox is created if it does not
exist.

MH is a directory-based mailbox format invented for the MH Message Handling
System, a mail user agent. Each message in an MH mailbox resides in its own
file. An MH mailbox may contain other MH mailboxes (called folders) in
addition to messages. Folders may be nested indefinitely. MH mailboxes also
support sequences, which are named lists used to logically group
messages without moving them to sub-folders. Sequences are defined in a file
called .mh_sequences in each folder.

The MH class manipulates MH mailboxes, but it does not attempt to
emulate all of mh‘s behaviors. In particular, it does not modify
and is not affected by the context or .mh_profile files that
are used by mh to store its state and configuration.

MH instances have all of the methods of Mailbox in addition
to the following:

	
list_folders()

	Return a list of the names of all folders.

	
get_folder(folder)

	Return an MH instance representing the folder whose name is
folder. A NoSuchMailboxError exception is raised if the folder
does not exist.

	
add_folder(folder)

	Create a folder whose name is folder and return an MH instance
representing it.

	
remove_folder(folder)

	Delete the folder whose name is folder. If the folder contains any
messages, a NotEmptyError exception will be raised and the folder
will not be deleted.

	
get_sequences()

	Return a dictionary of sequence names mapped to key lists. If there are no
sequences, the empty dictionary is returned.

	
set_sequences(sequences)

	Re-define the sequences that exist in the mailbox based upon sequences,
a dictionary of names mapped to key lists, like returned by
get_sequences().

	
pack()

	Rename messages in the mailbox as necessary to eliminate gaps in
numbering. Entries in the sequences list are updated correspondingly.

Note

Already-issued keys are invalidated by this operation and should not be
subsequently used.

Some Mailbox methods implemented by MH deserve special
remarks:

	
remove(key)

	
__delitem__(key)

	
discard(key)

	These methods immediately delete the message. The MH convention of marking
a message for deletion by prepending a comma to its name is not used.

	
lock()

	
unlock()

	Three locking mechanisms are used—dot locking and, if available, the
flock() and lockf() system calls. For MH mailboxes, locking
the mailbox means locking the .mh_sequences file and, only for the
duration of any operations that affect them, locking individual message
files.

	
get_file(key)

	Depending upon the host platform, it may not be possible to remove the
underlying message while the returned file remains open.

	
flush()

	All changes to MH mailboxes are immediately applied, so this method does
nothing.

	
close()

	MH instances do not keep any open files, so this method is
equivalent to unlock().

See also

	nmh - Message Handling System [http://www.nongnu.org/nmh/]

	Home page of nmh, an updated version of the original mh.

	MH & nmh: Email for Users & Programmers [http://rand-mh.sourceforge.net/book/]

	A GPL-licensed book on mh and nmh, with some information
on the mailbox format.

18.4.1.4. Babyl

	
class mailbox.Babyl(path[, factory=None[, create=True]])

	A subclass of Mailbox for mailboxes in Babyl format. Parameter
factory is a callable object that accepts a file-like message representation
(which behaves as if opened in binary mode) and returns a custom representation.
If factory is None, BabylMessage is used as the default message
representation. If create is True, the mailbox is created if it does not
exist.

Babyl is a single-file mailbox format used by the Rmail mail user agent
included with Emacs. The beginning of a message is indicated by a line
containing the two characters Control-Underscore ('\037') and Control-L
('\014'). The end of a message is indicated by the start of the next
message or, in the case of the last message, a line containing a
Control-Underscore ('\037') character.

Messages in a Babyl mailbox have two sets of headers, original headers and
so-called visible headers. Visible headers are typically a subset of the
original headers that have been reformatted or abridged to be more
attractive. Each message in a Babyl mailbox also has an accompanying list of
labels, or short strings that record extra information about the
message, and a list of all user-defined labels found in the mailbox is kept
in the Babyl options section.

Babyl instances have all of the methods of Mailbox in
addition to the following:

	
get_labels()

	Return a list of the names of all user-defined labels used in the mailbox.

Note

The actual messages are inspected to determine which labels exist in
the mailbox rather than consulting the list of labels in the Babyl
options section, but the Babyl section is updated whenever the mailbox
is modified.

Some Mailbox methods implemented by Babyl deserve special
remarks:

	
get_file(key)

	In Babyl mailboxes, the headers of a message are not stored contiguously
with the body of the message. To generate a file-like representation, the
headers and body are copied together into a StringIO instance
(from the StringIO module), which has an API identical to that of a
file. As a result, the file-like object is truly independent of the
underlying mailbox but does not save memory compared to a string
representation.

	
lock()

	
unlock()

	Three locking mechanisms are used—dot locking and, if available, the
flock() and lockf() system calls.

See also

	Format of Version 5 Babyl Files [http://quimby.gnus.org/notes/BABYL]

	A specification of the Babyl format.

	Reading Mail with Rmail [http://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail.html]

	The Rmail manual, with some information on Babyl semantics.

18.4.1.5. MMDF

	
class mailbox.MMDF(path[, factory=None[, create=True]])

	A subclass of Mailbox for mailboxes in MMDF format. Parameter factory
is a callable object that accepts a file-like message representation (which
behaves as if opened in binary mode) and returns a custom representation. If
factory is None, MMDFMessage is used as the default message
representation. If create is True, the mailbox is created if it does not
exist.

MMDF is a single-file mailbox format invented for the Multichannel Memorandum
Distribution Facility, a mail transfer agent. Each message is in the same
form as an mbox message but is bracketed before and after by lines containing
four Control-A ('\001') characters. As with the mbox format, the
beginning of each message is indicated by a line whose first five characters
are “From ”, but additional occurrences of “From ” are not transformed to
“>From ” when storing messages because the extra message separator lines
prevent mistaking such occurrences for the starts of subsequent messages.

Some Mailbox methods implemented by MMDF deserve special
remarks:

	
get_file(key)

	Using the file after calling flush() or close() on the
MMDF instance may yield unpredictable results or raise an
exception.

	
lock()

	
unlock()

	Three locking mechanisms are used—dot locking and, if available, the
flock() and lockf() system calls.

See also

	mmdf man page from tin [http://www.tin.org/bin/man.cgi?section=5&topic=mmdf]

	A specification of MMDF format from the documentation of tin, a newsreader.

	MMDF [http://en.wikipedia.org/wiki/MMDF]

	A Wikipedia article describing the Multichannel Memorandum Distribution
Facility.

18.4.2. Message objects

	
class mailbox.Message([message])

	A subclass of the email.Message module’s Message. Subclasses of
mailbox.Message add mailbox-format-specific state and behavior.

If message is omitted, the new instance is created in a default, empty state.
If message is an email.Message.Message instance, its contents are
copied; furthermore, any format-specific information is converted insofar as
possible if message is a Message instance. If message is a string
or a file, it should contain an RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-compliant message, which is read
and parsed.

The format-specific state and behaviors offered by subclasses vary, but in
general it is only the properties that are not specific to a particular
mailbox that are supported (although presumably the properties are specific
to a particular mailbox format). For example, file offsets for single-file
mailbox formats and file names for directory-based mailbox formats are not
retained, because they are only applicable to the original mailbox. But state
such as whether a message has been read by the user or marked as important is
retained, because it applies to the message itself.

There is no requirement that Message instances be used to represent
messages retrieved using Mailbox instances. In some situations, the
time and memory required to generate Message representations might
not not acceptable. For such situations, Mailbox instances also
offer string and file-like representations, and a custom message factory may
be specified when a Mailbox instance is initialized.

18.4.2.1. MaildirMessage

	
class mailbox.MaildirMessage([message])

	A message with Maildir-specific behaviors. Parameter message has the same
meaning as with the Message constructor.

Typically, a mail user agent application moves all of the messages in the
new subdirectory to the cur subdirectory after the first time
the user opens and closes the mailbox, recording that the messages are old
whether or not they’ve actually been read. Each message in cur has an
“info” section added to its file name to store information about its state.
(Some mail readers may also add an “info” section to messages in
new.) The “info” section may take one of two forms: it may contain
“2,” followed by a list of standardized flags (e.g., “2,FR”) or it may
contain “1,” followed by so-called experimental information. Standard flags
for Maildir messages are as follows:

	Flag
	Meaning
	Explanation

	D
	Draft
	Under composition

	F
	Flagged
	Marked as important

	P
	Passed
	Forwarded, resent, or bounced

	R
	Replied
	Replied to

	S
	Seen
	Read

	T
	Trashed
	Marked for subsequent deletion

MaildirMessage instances offer the following methods:

	
get_subdir()

	Return either “new” (if the message should be stored in the new
subdirectory) or “cur” (if the message should be stored in the cur
subdirectory).

Note

A message is typically moved from new to cur after its
mailbox has been accessed, whether or not the message is has been
read. A message msg has been read if "S" in msg.get_flags() is
True.

	
set_subdir(subdir)

	Set the subdirectory the message should be stored in. Parameter subdir
must be either “new” or “cur”.

	
get_flags()

	Return a string specifying the flags that are currently set. If the
message complies with the standard Maildir format, the result is the
concatenation in alphabetical order of zero or one occurrence of each of
'D', 'F', 'P', 'R', 'S', and 'T'. The empty string
is returned if no flags are set or if “info” contains experimental
semantics.

	
set_flags(flags)

	Set the flags specified by flags and unset all others.

	
add_flag(flag)

	Set the flag(s) specified by flag without changing other flags. To add
more than one flag at a time, flag may be a string of more than one
character. The current “info” is overwritten whether or not it contains
experimental information rather than flags.

	
remove_flag(flag)

	Unset the flag(s) specified by flag without changing other flags. To
remove more than one flag at a time, flag maybe a string of more than
one character. If “info” contains experimental information rather than
flags, the current “info” is not modified.

	
get_date()

	Return the delivery date of the message as a floating-point number
representing seconds since the epoch.

	
set_date(date)

	Set the delivery date of the message to date, a floating-point number
representing seconds since the epoch.

	
get_info()

	Return a string containing the “info” for a message. This is useful for
accessing and modifying “info” that is experimental (i.e., not a list of
flags).

	
set_info(info)

	Set “info” to info, which should be a string.

When a MaildirMessage instance is created based upon an
mboxMessage or MMDFMessage instance, the Status
and X-Status headers are omitted and the following conversions
take place:

	Resulting state
	mboxMessage or MMDFMessage
state

	“cur” subdirectory
	O flag

	F flag
	F flag

	R flag
	A flag

	S flag
	R flag

	T flag
	D flag

When a MaildirMessage instance is created based upon an
MHMessage instance, the following conversions take place:

	Resulting state
	MHMessage state

	“cur” subdirectory
	“unseen” sequence

	“cur” subdirectory and S flag
	no “unseen” sequence

	F flag
	“flagged” sequence

	R flag
	“replied” sequence

When a MaildirMessage instance is created based upon a
BabylMessage instance, the following conversions take place:

	Resulting state
	BabylMessage state

	“cur” subdirectory
	“unseen” label

	“cur” subdirectory and S flag
	no “unseen” label

	P flag
	“forwarded” or “resent” label

	R flag
	“answered” label

	T flag
	“deleted” label

18.4.2.2. mboxMessage

	
class mailbox.mboxMessage([message])

	A message with mbox-specific behaviors. Parameter message has the same meaning
as with the Message constructor.

Messages in an mbox mailbox are stored together in a single file. The
sender’s envelope address and the time of delivery are typically stored in a
line beginning with “From ” that is used to indicate the start of a message,
though there is considerable variation in the exact format of this data among
mbox implementations. Flags that indicate the state of the message, such as
whether it has been read or marked as important, are typically stored in
Status and X-Status headers.

Conventional flags for mbox messages are as follows:

	Flag
	Meaning
	Explanation

	R
	Read
	Read

	O
	Old
	Previously detected by MUA

	D
	Deleted
	Marked for subsequent deletion

	F
	Flagged
	Marked as important

	A
	Answered
	Replied to

The “R” and “O” flags are stored in the Status header, and the
“D”, “F”, and “A” flags are stored in the X-Status header. The
flags and headers typically appear in the order mentioned.

mboxMessage instances offer the following methods:

	
get_from()

	Return a string representing the “From ” line that marks the start of the
message in an mbox mailbox. The leading “From ” and the trailing newline
are excluded.

	
set_from(from_[, time_=None])

	Set the “From ” line to from_, which should be specified without a
leading “From ” or trailing newline. For convenience, time_ may be
specified and will be formatted appropriately and appended to from_. If
time_ is specified, it should be a struct_time instance, a
tuple suitable for passing to time.strftime(), or True (to use
time.gmtime()).

	
get_flags()

	Return a string specifying the flags that are currently set. If the
message complies with the conventional format, the result is the
concatenation in the following order of zero or one occurrence of each of
'R', 'O', 'D', 'F', and 'A'.

	
set_flags(flags)

	Set the flags specified by flags and unset all others. Parameter flags
should be the concatenation in any order of zero or more occurrences of
each of 'R', 'O', 'D', 'F', and 'A'.

	
add_flag(flag)

	Set the flag(s) specified by flag without changing other flags. To add
more than one flag at a time, flag may be a string of more than one
character.

	
remove_flag(flag)

	Unset the flag(s) specified by flag without changing other flags. To
remove more than one flag at a time, flag maybe a string of more than
one character.

When an mboxMessage instance is created based upon a
MaildirMessage instance, a “From ” line is generated based upon the
MaildirMessage instance’s delivery date, and the following conversions
take place:

	Resulting state
	MaildirMessage state

	R flag
	S flag

	O flag
	“cur” subdirectory

	D flag
	T flag

	F flag
	F flag

	A flag
	R flag

When an mboxMessage instance is created based upon an
MHMessage instance, the following conversions take place:

	Resulting state
	MHMessage state

	R flag and O flag
	no “unseen” sequence

	O flag
	“unseen” sequence

	F flag
	“flagged” sequence

	A flag
	“replied” sequence

When an mboxMessage instance is created based upon a
BabylMessage instance, the following conversions take place:

	Resulting state
	BabylMessage state

	R flag and O flag
	no “unseen” label

	O flag
	“unseen” label

	D flag
	“deleted” label

	A flag
	“answered” label

When a Message instance is created based upon an MMDFMessage
instance, the “From ” line is copied and all flags directly correspond:

	Resulting state
	MMDFMessage state

	R flag
	R flag

	O flag
	O flag

	D flag
	D flag

	F flag
	F flag

	A flag
	A flag

18.4.2.3. MHMessage

	
class mailbox.MHMessage([message])

	A message with MH-specific behaviors. Parameter message has the same meaning
as with the Message constructor.

MH messages do not support marks or flags in the traditional sense, but they
do support sequences, which are logical groupings of arbitrary messages. Some
mail reading programs (although not the standard mh and
nmh) use sequences in much the same way flags are used with other
formats, as follows:

	Sequence
	Explanation

	unseen
	Not read, but previously detected by MUA

	replied
	Replied to

	flagged
	Marked as important

MHMessage instances offer the following methods:

	
get_sequences()

	Return a list of the names of sequences that include this message.

	
set_sequences(sequences)

	Set the list of sequences that include this message.

	
add_sequence(sequence)

	Add sequence to the list of sequences that include this message.

	
remove_sequence(sequence)

	Remove sequence from the list of sequences that include this message.

When an MHMessage instance is created based upon a
MaildirMessage instance, the following conversions take place:

	Resulting state
	MaildirMessage state

	“unseen” sequence
	no S flag

	“replied” sequence
	R flag

	“flagged” sequence
	F flag

When an MHMessage instance is created based upon an
mboxMessage or MMDFMessage instance, the Status
and X-Status headers are omitted and the following conversions
take place:

	Resulting state
	mboxMessage or MMDFMessage
state

	“unseen” sequence
	no R flag

	“replied” sequence
	A flag

	“flagged” sequence
	F flag

When an MHMessage instance is created based upon a
BabylMessage instance, the following conversions take place:

	Resulting state
	BabylMessage state

	“unseen” sequence
	“unseen” label

	“replied” sequence
	“answered” label

18.4.2.4. BabylMessage

	
class mailbox.BabylMessage([message])

	A message with Babyl-specific behaviors. Parameter message has the same
meaning as with the Message constructor.

Certain message labels, called attributes, are defined by convention
to have special meanings. The attributes are as follows:

	Label
	Explanation

	unseen
	Not read, but previously detected by MUA

	deleted
	Marked for subsequent deletion

	filed
	Copied to another file or mailbox

	answered
	Replied to

	forwarded
	Forwarded

	edited
	Modified by the user

	resent
	Resent

By default, Rmail displays only visible headers. The BabylMessage
class, though, uses the original headers because they are more
complete. Visible headers may be accessed explicitly if desired.

BabylMessage instances offer the following methods:

	
get_labels()

	Return a list of labels on the message.

	
set_labels(labels)

	Set the list of labels on the message to labels.

	
add_label(label)

	Add label to the list of labels on the message.

	
remove_label(label)

	Remove label from the list of labels on the message.

	
get_visible()

	Return an Message instance whose headers are the message’s
visible headers and whose body is empty.

	
set_visible(visible)

	Set the message’s visible headers to be the same as the headers in
message. Parameter visible should be a Message instance, an
email.Message.Message instance, a string, or a file-like object
(which should be open in text mode).

	
update_visible()

	When a BabylMessage instance’s original headers are modified, the
visible headers are not automatically modified to correspond. This method
updates the visible headers as follows: each visible header with a
corresponding original header is set to the value of the original header,
each visible header without a corresponding original header is removed,
and any of Date, From, Reply-To,
To, CC, and Subject that are
present in the original headers but not the visible headers are added to
the visible headers.

When a BabylMessage instance is created based upon a
MaildirMessage instance, the following conversions take place:

	Resulting state
	MaildirMessage state

	“unseen” label
	no S flag

	“deleted” label
	T flag

	“answered” label
	R flag

	“forwarded” label
	P flag

When a BabylMessage instance is created based upon an
mboxMessage or MMDFMessage instance, the Status
and X-Status headers are omitted and the following conversions
take place:

	Resulting state
	mboxMessage or MMDFMessage
state

	“unseen” label
	no R flag

	“deleted” label
	D flag

	“answered” label
	A flag

When a BabylMessage instance is created based upon an
MHMessage instance, the following conversions take place:

	Resulting state
	MHMessage state

	“unseen” label
	“unseen” sequence

	“answered” label
	“replied” sequence

18.4.2.5. MMDFMessage

	
class mailbox.MMDFMessage([message])

	A message with MMDF-specific behaviors. Parameter message has the same meaning
as with the Message constructor.

As with message in an mbox mailbox, MMDF messages are stored with the
sender’s address and the delivery date in an initial line beginning with
“From ”. Likewise, flags that indicate the state of the message are
typically stored in Status and X-Status headers.

Conventional flags for MMDF messages are identical to those of mbox message
and are as follows:

	Flag
	Meaning
	Explanation

	R
	Read
	Read

	O
	Old
	Previously detected by MUA

	D
	Deleted
	Marked for subsequent deletion

	F
	Flagged
	Marked as important

	A
	Answered
	Replied to

The “R” and “O” flags are stored in the Status header, and the
“D”, “F”, and “A” flags are stored in the X-Status header. The
flags and headers typically appear in the order mentioned.

MMDFMessage instances offer the following methods, which are
identical to those offered by mboxMessage:

	
get_from()

	Return a string representing the “From ” line that marks the start of the
message in an mbox mailbox. The leading “From ” and the trailing newline
are excluded.

	
set_from(from_[, time_=None])

	Set the “From ” line to from_, which should be specified without a
leading “From ” or trailing newline. For convenience, time_ may be
specified and will be formatted appropriately and appended to from_. If
time_ is specified, it should be a struct_time instance, a
tuple suitable for passing to time.strftime(), or True (to use
time.gmtime()).

	
get_flags()

	Return a string specifying the flags that are currently set. If the
message complies with the conventional format, the result is the
concatenation in the following order of zero or one occurrence of each of
'R', 'O', 'D', 'F', and 'A'.

	
set_flags(flags)

	Set the flags specified by flags and unset all others. Parameter flags
should be the concatenation in any order of zero or more occurrences of
each of 'R', 'O', 'D', 'F', and 'A'.

	
add_flag(flag)

	Set the flag(s) specified by flag without changing other flags. To add
more than one flag at a time, flag may be a string of more than one
character.

	
remove_flag(flag)

	Unset the flag(s) specified by flag without changing other flags. To
remove more than one flag at a time, flag maybe a string of more than
one character.

When an MMDFMessage instance is created based upon a
MaildirMessage instance, a “From ” line is generated based upon the
MaildirMessage instance’s delivery date, and the following conversions
take place:

	Resulting state
	MaildirMessage state

	R flag
	S flag

	O flag
	“cur” subdirectory

	D flag
	T flag

	F flag
	F flag

	A flag
	R flag

When an MMDFMessage instance is created based upon an
MHMessage instance, the following conversions take place:

	Resulting state
	MHMessage state

	R flag and O flag
	no “unseen” sequence

	O flag
	“unseen” sequence

	F flag
	“flagged” sequence

	A flag
	“replied” sequence

When an MMDFMessage instance is created based upon a
BabylMessage instance, the following conversions take place:

	Resulting state
	BabylMessage state

	R flag and O flag
	no “unseen” label

	O flag
	“unseen” label

	D flag
	“deleted” label

	A flag
	“answered” label

When an MMDFMessage instance is created based upon an
mboxMessage instance, the “From ” line is copied and all flags directly
correspond:

	Resulting state
	mboxMessage state

	R flag
	R flag

	O flag
	O flag

	D flag
	D flag

	F flag
	F flag

	A flag
	A flag

18.4.3. Exceptions

The following exception classes are defined in the mailbox module:

	
exception mailbox.Error

	The based class for all other module-specific exceptions.

	
exception mailbox.NoSuchMailboxError

	Raised when a mailbox is expected but is not found, such as when instantiating a
Mailbox subclass with a path that does not exist (and with the create
parameter set to False), or when opening a folder that does not exist.

	
exception mailbox.NotEmptyError

	Raised when a mailbox is not empty but is expected to be, such as when deleting
a folder that contains messages.

	
exception mailbox.ExternalClashError

	Raised when some mailbox-related condition beyond the control of the program
causes it to be unable to proceed, such as when failing to acquire a lock that
another program already holds a lock, or when a uniquely-generated file name
already exists.

	
exception mailbox.FormatError

	Raised when the data in a file cannot be parsed, such as when an MH
instance attempts to read a corrupted .mh_sequences file.

18.4.4. Deprecated classes and methods

Deprecated since version 2.6.

Older versions of the mailbox module do not support modification of
mailboxes, such as adding or removing message, and do not provide classes to
represent format-specific message properties. For backward compatibility, the
older mailbox classes are still available, but the newer classes should be used
in preference to them. The old classes will be removed in Python 3.0.

Older mailbox objects support only iteration and provide a single public method:

	
oldmailbox.next()

	Return the next message in the mailbox, created with the optional factory
argument passed into the mailbox object’s constructor. By default this is an
rfc822.Message object (see the rfc822 module). Depending on the
mailbox implementation the fp attribute of this object may be a true file
object or a class instance simulating a file object, taking care of things like
message boundaries if multiple mail messages are contained in a single file,
etc. If no more messages are available, this method returns None.

Most of the older mailbox classes have names that differ from the current
mailbox class names, except for Maildir. For this reason, the new
Maildir class defines a next() method and its constructor differs
slightly from those of the other new mailbox classes.

The older mailbox classes whose names are not the same as their newer
counterparts are as follows:

	
class mailbox.UnixMailbox(fp[, factory])

	Access to a classic Unix-style mailbox, where all messages are contained in a
single file and separated by From (a.k.a. From_) lines. The file object
fp points to the mailbox file. The optional factory parameter is a callable
that should create new message objects. factory is called with one argument,
fp by the next() method of the mailbox object. The default is the
rfc822.Message class (see the rfc822 module – and the note
below).

Note

For reasons of this module’s internal implementation, you will probably want to
open the fp object in binary mode. This is especially important on Windows.

For maximum portability, messages in a Unix-style mailbox are separated by any
line that begins exactly with the string 'From ' (note the trailing space)
if preceded by exactly two newlines. Because of the wide-range of variations in
practice, nothing else on the From_ line should be considered. However, the
current implementation doesn’t check for the leading two newlines. This is
usually fine for most applications.

The UnixMailbox class implements a more strict version of From_
line checking, using a regular expression that usually correctly matched
From_ delimiters. It considers delimiter line to be separated by From
name time lines. For maximum portability, use the
PortableUnixMailbox class instead. This class is identical to
UnixMailbox except that individual messages are separated by only
From lines.

	
class mailbox.PortableUnixMailbox(fp[, factory])

	A less-strict version of UnixMailbox, which considers only the From
at the beginning of the line separating messages. The “name time” portion
of the From line is ignored, to protect against some variations that are
observed in practice. This works since lines in the message which begin with
'From ' are quoted by mail handling software at delivery-time.

	
class mailbox.MmdfMailbox(fp[, factory])

	Access an MMDF-style mailbox, where all messages are contained in a single file
and separated by lines consisting of 4 control-A characters. The file object
fp points to the mailbox file. Optional factory is as with the
UnixMailbox class.

	
class mailbox.MHMailbox(dirname[, factory])

	Access an MH mailbox, a directory with each message in a separate file with a
numeric name. The name of the mailbox directory is passed in dirname.
factory is as with the UnixMailbox class.

	
class mailbox.BabylMailbox(fp[, factory])

	Access a Babyl mailbox, which is similar to an MMDF mailbox. In Babyl format,
each message has two sets of headers, the original headers and the visible
headers. The original headers appear before a line containing only '*** EOOH
***' (End-Of-Original-Headers) and the visible headers appear after the
EOOH line. Babyl-compliant mail readers will show you only the visible
headers, and BabylMailbox objects will return messages containing only
the visible headers. You’ll have to do your own parsing of the mailbox file to
get at the original headers. Mail messages start with the EOOH line and end
with a line containing only '\037\014'. factory is as with the
UnixMailbox class.

If you wish to use the older mailbox classes with the email module rather
than the deprecated rfc822 module, you can do so as follows:

import email
import email.Errors
import mailbox

def msgfactory(fp):
 try:
 return email.message_from_file(fp)
 except email.Errors.MessageParseError:
 # Don't return None since that will
 # stop the mailbox iterator
 return ''

mbox = mailbox.UnixMailbox(fp, msgfactory)

Alternatively, if you know your mailbox contains only well-formed MIME messages,
you can simplify this to:

import email
import mailbox

mbox = mailbox.UnixMailbox(fp, email.message_from_file)

18.4.5. Examples

A simple example of printing the subjects of all messages in a mailbox that seem
interesting:

import mailbox
for message in mailbox.mbox('~/mbox'):
 subject = message['subject'] # Could possibly be None.
 if subject and 'python' in subject.lower():
 print subject

To copy all mail from a Babyl mailbox to an MH mailbox, converting all of the
format-specific information that can be converted:

import mailbox
destination = mailbox.MH('~/Mail')
destination.lock()
for message in mailbox.Babyl('~/RMAIL'):
 destination.add(mailbox.MHMessage(message))
destination.flush()
destination.unlock()

This example sorts mail from several mailing lists into different mailboxes,
being careful to avoid mail corruption due to concurrent modification by other
programs, mail loss due to interruption of the program, or premature termination
due to malformed messages in the mailbox:

import mailbox
import email.Errors

list_names = ('python-list', 'python-dev', 'python-bugs')

boxes = dict((name, mailbox.mbox('~/email/%s' % name)) for name in list_names)
inbox = mailbox.Maildir('~/Maildir', factory=None)

for key in inbox.iterkeys():
 try:
 message = inbox[key]
 except email.Errors.MessageParseError:
 continue # The message is malformed. Just leave it.

 for name in list_names:
 list_id = message['list-id']
 if list_id and name in list_id:
 # Get mailbox to use
 box = boxes[name]

 # Write copy to disk before removing original.
 # If there's a crash, you might duplicate a message, but
 # that's better than losing a message completely.
 box.lock()
 box.add(message)
 box.flush()
 box.unlock()

 # Remove original message
 inbox.lock()
 inbox.discard(key)
 inbox.flush()
 inbox.unlock()
 break # Found destination, so stop looking.

for box in boxes.itervalues():
 box.close()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.5. mhlib — Access to MH mailboxes

Deprecated since version 2.6: The mhlib module has been removed in Python 3.0. Use the
mailbox instead.

The mhlib module provides a Python interface to MH folders and their
contents.

The module contains three basic classes, MH, which represents a
particular collection of folders, Folder, which represents a single
folder, and Message, which represents a single message.

	
class mhlib.MH([path[, profile]])

	MH represents a collection of MH folders.

	
class mhlib.Folder(mh, name)

	The Folder class represents a single folder and its messages.

	
class mhlib.Message(folder, number[, name])

	Message objects represent individual messages in a folder. The Message
class is derived from mimetools.Message.

18.5.1. MH Objects

MH instances have the following methods:

	
MH.error(format[, ...])

	Print an error message – can be overridden.

	
MH.getprofile(key)

	Return a profile entry (None if not set).

	
MH.getpath()

	Return the mailbox pathname.

	
MH.getcontext()

	Return the current folder name.

	
MH.setcontext(name)

	Set the current folder name.

	
MH.listfolders()

	Return a list of top-level folders.

	
MH.listallfolders()

	Return a list of all folders.

	
MH.listsubfolders(name)

	Return a list of direct subfolders of the given folder.

	
MH.listallsubfolders(name)

	Return a list of all subfolders of the given folder.

	
MH.makefolder(name)

	Create a new folder.

	
MH.deletefolder(name)

	Delete a folder – must have no subfolders.

	
MH.openfolder(name)

	Return a new open folder object.

18.5.2. Folder Objects

Folder instances represent open folders and have the following methods:

	
Folder.error(format[, ...])

	Print an error message – can be overridden.

	
Folder.getfullname()

	Return the folder’s full pathname.

	
Folder.getsequencesfilename()

	Return the full pathname of the folder’s sequences file.

	
Folder.getmessagefilename(n)

	Return the full pathname of message n of the folder.

	
Folder.listmessages()

	Return a list of messages in the folder (as numbers).

	
Folder.getcurrent()

	Return the current message number.

	
Folder.setcurrent(n)

	Set the current message number to n.

	
Folder.parsesequence(seq)

	Parse msgs syntax into list of messages.

	
Folder.getlast()

	Get last message, or 0 if no messages are in the folder.

	
Folder.setlast(n)

	Set last message (internal use only).

	
Folder.getsequences()

	Return dictionary of sequences in folder. The sequence names are used as keys,
and the values are the lists of message numbers in the sequences.

	
Folder.putsequences(dict)

	Return dictionary of sequences in folder name: list.

	
Folder.removemessages(list)

	Remove messages in list from folder.

	
Folder.refilemessages(list, tofolder)

	Move messages in list to other folder.

	
Folder.movemessage(n, tofolder, ton)

	Move one message to a given destination in another folder.

	
Folder.copymessage(n, tofolder, ton)

	Copy one message to a given destination in another folder.

18.5.3. Message Objects

The Message class adds one method to those of
mimetools.Message:

	
Message.openmessage(n)

	Return a new open message object (costs a file descriptor).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.6. mimetools — Tools for parsing MIME messages

Deprecated since version 2.3: The email package should be used in preference to the mimetools
module. This module is present only to maintain backward compatibility, and
it has been removed in 3.x.

This module defines a subclass of the rfc822 module’s Message
class and a number of utility functions that are useful for the manipulation for
MIME multipart or encoded message.

It defines the following items:

	
class mimetools.Message(fp[, seekable])

	Return a new instance of the Message class. This is a subclass of the
rfc822.Message class, with some additional methods (see below). The
seekable argument has the same meaning as for rfc822.Message.

	
mimetools.choose_boundary()

	Return a unique string that has a high likelihood of being usable as a part
boundary. The string has the form 'hostipaddr.uid.pid.timestamp.random'.

	
mimetools.decode(input, output, encoding)

	Read data encoded using the allowed MIME encoding from open file object
input and write the decoded data to open file object output. Valid values
for encoding include 'base64', 'quoted-printable', 'uuencode',
'x-uuencode', 'uue', 'x-uue', '7bit', and '8bit'. Decoding
messages encoded in '7bit' or '8bit' has no effect. The input is simply
copied to the output.

	
mimetools.encode(input, output, encoding)

	Read data from open file object input and write it encoded using the allowed
MIME encoding to open file object output. Valid values for encoding are
the same as for decode().

	
mimetools.copyliteral(input, output)

	Read lines from open file input until EOF and write them to open file
output.

	
mimetools.copybinary(input, output)

	Read blocks until EOF from open file input and write them to open file
output. The block size is currently fixed at 8192.

See also

	Module email

	Comprehensive email handling package; supersedes the mimetools module.

	Module rfc822

	Provides the base class for mimetools.Message.

	Module multifile

	Support for reading files which contain distinct parts, such as MIME data.

	http://faqs.cs.uu.nl/na-dir/mail/mime-faq/.html

	The MIME Frequently Asked Questions document. For an overview of MIME, see the
answer to question 1.1 in Part 1 of this document.

18.6.1. Additional Methods of Message Objects

The Message class defines the following methods in addition to the
rfc822.Message methods:

	
Message.getplist()

	Return the parameter list of the Content-Type header. This is a
list of strings. For parameters of the form key=value, key is converted
to lower case but value is not. For example, if the message contains the
header Content-type: text/html; spam=1; Spam=2; Spam then getplist()
will return the Python list ['spam=1', 'spam=2', 'Spam'].

	
Message.getparam(name)

	Return the value of the first parameter (as returned by getplist()) of
the form name=value for the given name. If value is surrounded by
quotes of the form ‘<...>‘ or ‘"..."‘, these are removed.

	
Message.getencoding()

	Return the encoding specified in the Content-Transfer-Encoding
message header. If no such header exists, return '7bit'. The encoding is
converted to lower case.

	
Message.gettype()

	Return the message type (of the form type/subtype) as specified in the
Content-Type header. If no such header exists, return
'text/plain'. The type is converted to lower case.

	
Message.getmaintype()

	Return the main type as specified in the Content-Type header. If
no such header exists, return 'text'. The main type is converted to lower
case.

	
Message.getsubtype()

	Return the subtype as specified in the Content-Type header. If no
such header exists, return 'plain'. The subtype is converted to lower case.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.7. mimetypes — Map filenames to MIME types

The mimetypes module converts between a filename or URL and the MIME type
associated with the filename extension. Conversions are provided from filename
to MIME type and from MIME type to filename extension; encodings are not
supported for the latter conversion.

The module provides one class and a number of convenience functions. The
functions are the normal interface to this module, but some applications may be
interested in the class as well.

The functions described below provide the primary interface for this module. If
the module has not been initialized, they will call init() if they rely on
the information init() sets up.

	
mimetypes.guess_type(filename[, strict])

	Guess the type of a file based on its filename or URL, given by filename. The
return value is a tuple (type, encoding) where type is None if the
type can’t be guessed (missing or unknown suffix) or a string of the form
'type/subtype', usable for a MIME content-type header.

encoding is None for no encoding or the name of the program used to encode
(e.g. compress or gzip). The encoding is suitable for use
as a Content-Encoding header, not as a
Content-Transfer-Encoding header. The mappings are table driven.
Encoding suffixes are case sensitive; type suffixes are first tried case
sensitively, then case insensitively.

Optional strict is a flag specifying whether the list of known MIME types
is limited to only the official types registered with IANA [http://www.iana.org/assignments/media-types/] are recognized.
When strict is true (the default), only the IANA types are supported; when
strict is false, some additional non-standard but commonly used MIME types
are also recognized.

	
mimetypes.guess_all_extensions(type[, strict])

	Guess the extensions for a file based on its MIME type, given by type. The
return value is a list of strings giving all possible filename extensions,
including the leading dot ('.'). The extensions are not guaranteed to have
been associated with any particular data stream, but would be mapped to the MIME
type type by guess_type().

Optional strict has the same meaning as with the guess_type() function.

	
mimetypes.guess_extension(type[, strict])

	Guess the extension for a file based on its MIME type, given by type. The
return value is a string giving a filename extension, including the leading dot
('.'). The extension is not guaranteed to have been associated with any
particular data stream, but would be mapped to the MIME type type by
guess_type(). If no extension can be guessed for type, None is
returned.

Optional strict has the same meaning as with the guess_type() function.

Some additional functions and data items are available for controlling the
behavior of the module.

	
mimetypes.init([files])

	Initialize the internal data structures. If given, files must be a sequence
of file names which should be used to augment the default type map. If omitted,
the file names to use are taken from knownfiles; on Windows, the
current registry settings are loaded. Each file named in files or
knownfiles takes precedence over those named before it. Calling
init() repeatedly is allowed.

Changed in version 2.7: Previously, Windows registry settings were ignored.

	
mimetypes.read_mime_types(filename)

	Load the type map given in the file filename, if it exists. The type map is
returned as a dictionary mapping filename extensions, including the leading dot
('.'), to strings of the form 'type/subtype'. If the file filename
does not exist or cannot be read, None is returned.

	
mimetypes.add_type(type, ext[, strict])

	Add a mapping from the mimetype type to the extension ext. When the
extension is already known, the new type will replace the old one. When the type
is already known the extension will be added to the list of known extensions.

When strict is True (the default), the mapping will added to the official MIME
types, otherwise to the non-standard ones.

	
mimetypes.inited

	Flag indicating whether or not the global data structures have been initialized.
This is set to true by init().

	
mimetypes.knownfiles

	List of type map file names commonly installed. These files are typically named
mime.types and are installed in different locations by different
packages.

	
mimetypes.suffix_map

	Dictionary mapping suffixes to suffixes. This is used to allow recognition of
encoded files for which the encoding and the type are indicated by the same
extension. For example, the .tgz extension is mapped to .tar.gz
to allow the encoding and type to be recognized separately.

	
mimetypes.encodings_map

	Dictionary mapping filename extensions to encoding types.

	
mimetypes.types_map

	Dictionary mapping filename extensions to MIME types.

	
mimetypes.common_types

	Dictionary mapping filename extensions to non-standard, but commonly found MIME
types.

The MimeTypes class may be useful for applications which may want more
than one MIME-type database:

	
class mimetypes.MimeTypes([filenames])

	This class represents a MIME-types database. By default, it provides access to
the same database as the rest of this module. The initial database is a copy of
that provided by the module, and may be extended by loading additional
mime.types-style files into the database using the read() or
readfp() methods. The mapping dictionaries may also be cleared before
loading additional data if the default data is not desired.

The optional filenames parameter can be used to cause additional files to be
loaded “on top” of the default database.

New in version 2.2.

An example usage of the module:

>>> import mimetypes
>>> mimetypes.init()
>>> mimetypes.knownfiles
['/etc/mime.types', '/etc/httpd/mime.types', ...]
>>> mimetypes.suffix_map['.tgz']
'.tar.gz'
>>> mimetypes.encodings_map['.gz']
'gzip'
>>> mimetypes.types_map['.tgz']
'application/x-tar-gz'

18.7.1. MimeTypes Objects

MimeTypes instances provide an interface which is very like that of the
mimetypes module.

	
MimeTypes.suffix_map

	Dictionary mapping suffixes to suffixes. This is used to allow recognition of
encoded files for which the encoding and the type are indicated by the same
extension. For example, the .tgz extension is mapped to .tar.gz
to allow the encoding and type to be recognized separately. This is initially a
copy of the global suffix_map defined in the module.

	
MimeTypes.encodings_map

	Dictionary mapping filename extensions to encoding types. This is initially a
copy of the global encodings_map defined in the module.

	
MimeTypes.types_map

	Dictionary mapping filename extensions to MIME types. This is initially a copy
of the global types_map defined in the module.

	
MimeTypes.common_types

	Dictionary mapping filename extensions to non-standard, but commonly found MIME
types. This is initially a copy of the global common_types defined in the
module.

	
MimeTypes.guess_extension(type[, strict])

	Similar to the guess_extension() function, using the tables stored as part
of the object.

	
MimeTypes.guess_all_extensions(type[, strict])

	Similar to the guess_all_extensions() function, using the tables stored as part
of the object.

	
MimeTypes.guess_type(url[, strict])

	Similar to the guess_type() function, using the tables stored as part of
the object.

	
MimeTypes.read(path)

	Load MIME information from a file named path. This uses readfp() to
parse the file.

	
MimeTypes.readfp(file)

	Load MIME type information from an open file. The file must have the format of
the standard mime.types files.

	
MimeTypes.read_windows_registry()

	Load MIME type information from the Windows registry. Availability: Windows.

New in version 2.7.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.8. MimeWriter — Generic MIME file writer

Deprecated since version 2.3: The email package should be used in preference to the MimeWriter
module. This module is present only to maintain backward compatibility.

This module defines the class MimeWriter. The MimeWriter
class implements a basic formatter for creating MIME multi-part files. It
doesn’t seek around the output file nor does it use large amounts of buffer
space. You must write the parts out in the order that they should occur in the
final file. MimeWriter does buffer the headers you add, allowing you
to rearrange their order.

	
class MimeWriter.MimeWriter(fp)

	Return a new instance of the MimeWriter class. The only argument
passed, fp, is a file object to be used for writing. Note that a
StringIO object could also be used.

18.8.1. MimeWriter Objects

MimeWriter instances have the following methods:

	
MimeWriter.addheader(key, value[, prefix])

	Add a header line to the MIME message. The key is the name of the header,
where the value obviously provides the value of the header. The optional
argument prefix determines where the header is inserted; 0 means append
at the end, 1 is insert at the start. The default is to append.

	
MimeWriter.flushheaders()

	Causes all headers accumulated so far to be written out (and forgotten). This is
useful if you don’t need a body part at all, e.g. for a subpart of type
message/rfc822 that’s (mis)used to store some header-like
information.

	
MimeWriter.startbody(ctype[, plist[, prefix]])

	Returns a file-like object which can be used to write to the body of the
message. The content-type is set to the provided ctype, and the optional
parameter plist provides additional parameters for the content-type
declaration. prefix functions as in addheader() except that the default
is to insert at the start.

	
MimeWriter.startmultipartbody(subtype[, boundary[, plist[, prefix]]])

	Returns a file-like object which can be used to write to the body of the
message. Additionally, this method initializes the multi-part code, where
subtype provides the multipart subtype, boundary may provide a user-defined
boundary specification, and plist provides optional parameters for the
subtype. prefix functions as in startbody(). Subparts should be created
using nextpart().

	
MimeWriter.nextpart()

	Returns a new instance of MimeWriter which represents an individual
part in a multipart message. This may be used to write the part as well as
used for creating recursively complex multipart messages. The message must first
be initialized with startmultipartbody() before using nextpart().

	
MimeWriter.lastpart()

	This is used to designate the last part of a multipart message, and should
always be used when writing multipart messages.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.9. mimify — MIME processing of mail messages

Deprecated since version 2.3: The email package should be used in preference to the mimify
module. This module is present only to maintain backward compatibility.

The mimify module defines two functions to convert mail messages to and
from MIME format. The mail message can be either a simple message or a
so-called multipart message. Each part is treated separately. Mimifying (a part
of) a message entails encoding the message as quoted-printable if it contains
any characters that cannot be represented using 7-bit ASCII. Unmimifying (a
part of) a message entails undoing the quoted-printable encoding. Mimify and
unmimify are especially useful when a message has to be edited before being
sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable
variables:

	
mimify.mimify(infile, outfile)

	Copy the message in infile to outfile, converting parts to quoted-printable
and adding MIME mail headers when necessary. infile and outfile can be file
objects (actually, any object that has a readline() method (for infile)
or a write() method (for outfile)) or strings naming the files. If
infile and outfile are both strings, they may have the same value.

	
mimify.unmimify(infile, outfile[, decode_base64])

	Copy the message in infile to outfile, decoding all quoted-printable parts.
infile and outfile can be file objects (actually, any object that has a
readline() method (for infile) or a write() method (for
outfile)) or strings naming the files. If infile and outfile are both
strings, they may have the same value. If the decode_base64 argument is
provided and tests true, any parts that are coded in the base64 encoding are
decoded as well.

	
mimify.mime_decode_header(line)

	Return a decoded version of the encoded header line in line. This only
supports the ISO 8859-1 charset (Latin-1).

	
mimify.mime_encode_header(line)

	Return a MIME-encoded version of the header line in line.

	
mimify.MAXLEN

	By default, a part will be encoded as quoted-printable when it contains any
non-ASCII characters (characters with the 8th bit set), or if there are any
lines longer than MAXLEN characters (default value 200).

	
mimify.CHARSET

	When not specified in the mail headers, a character set must be filled in. The
string used is stored in CHARSET, and the default value is ISO-8859-1
(also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively. infile defaults to
standard input, outfile defaults to standard output. The same file can be
specified for input and output.

If the -l option is given when encoding, if there are any lines longer than
the specified length, the containing part will be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as
well.

See also

	Module quopri

	Encode and decode MIME quoted-printable files.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.10. multifile — Support for files containing distinct parts

Deprecated since version 2.5: The email package should be used in preference to the multifile
module. This module is present only to maintain backward compatibility.

The MultiFile object enables you to treat sections of a text file as
file-like input objects, with '' being returned by readline() when a
given delimiter pattern is encountered. The defaults of this class are designed
to make it useful for parsing MIME multipart messages, but by subclassing it and
overriding methods it can be easily adapted for more general use.

	
class multifile.MultiFile(fp[, seekable])

	Create a multi-file. You must instantiate this class with an input object
argument for the MultiFile instance to get lines from, such as a file
object returned by open().

MultiFile only ever looks at the input object’s readline(),
seek() and tell() methods, and the latter two are only needed if you
want random access to the individual MIME parts. To use MultiFile on a
non-seekable stream object, set the optional seekable argument to false; this
will prevent using the input object’s seek() and tell() methods.

It will be useful to know that in MultiFile‘s view of the world, text
is composed of three kinds of lines: data, section-dividers, and end-markers.
MultiFile is designed to support parsing of messages that may have multiple
nested message parts, each with its own pattern for section-divider and
end-marker lines.

See also

	Module email

	Comprehensive email handling package; supersedes the multifile module.

18.10.1. MultiFile Objects

A MultiFile instance has the following methods:

	
MultiFile.readline(str)

	Read a line. If the line is data (not a section-divider or end-marker or real
EOF) return it. If the line matches the most-recently-stacked boundary, return
'' and set self.last to 1 or 0 according as the match is or is not an
end-marker. If the line matches any other stacked boundary, raise an error. On
encountering end-of-file on the underlying stream object, the method raises
Error unless all boundaries have been popped.

	
MultiFile.readlines(str)

	Return all lines remaining in this part as a list of strings.

	
MultiFile.read()

	Read all lines, up to the next section. Return them as a single (multiline)
string. Note that this doesn’t take a size argument!

	
MultiFile.seek(pos[, whence])

	Seek. Seek indices are relative to the start of the current section. The pos
and whence arguments are interpreted as for a file seek.

	
MultiFile.tell()

	Return the file position relative to the start of the current section.

	
MultiFile.next()

	Skip lines to the next section (that is, read lines until a section-divider or
end-marker has been consumed). Return true if there is such a section, false if
an end-marker is seen. Re-enable the most-recently-pushed boundary.

	
MultiFile.is_data(str)

	Return true if str is data and false if it might be a section boundary. As
written, it tests for a prefix other than '--' at start of line (which
all MIME boundaries have) but it is declared so it can be overridden in derived
classes.

Note that this test is used intended as a fast guard for the real boundary
tests; if it always returns false it will merely slow processing, not cause it
to fail.

	
MultiFile.push(str)

	Push a boundary string. When a decorated version of this boundary is found as
an input line, it will be interpreted as a section-divider or end-marker
(depending on the decoration, see RFC 2045 [http://tools.ietf.org/html/rfc2045.html]). All subsequent reads will
return the empty string to indicate end-of-file, until a call to pop()
removes the boundary a or next() call reenables it.

It is possible to push more than one boundary. Encountering the
most-recently-pushed boundary will return EOF; encountering any other
boundary will raise an error.

	
MultiFile.pop()

	Pop a section boundary. This boundary will no longer be interpreted as EOF.

	
MultiFile.section_divider(str)

	Turn a boundary into a section-divider line. By default, this method
prepends '--' (which MIME section boundaries have) but it is declared so
it can be overridden in derived classes. This method need not append LF or
CR-LF, as comparison with the result ignores trailing whitespace.

	
MultiFile.end_marker(str)

	Turn a boundary string into an end-marker line. By default, this method
prepends '--' and appends '--' (like a MIME-multipart end-of-message
marker) but it is declared so it can be overridden in derived classes. This
method need not append LF or CR-LF, as comparison with the result ignores
trailing whitespace.

Finally, MultiFile instances have two public instance variables:

	
MultiFile.level

	Nesting depth of the current part.

	
MultiFile.last

	True if the last end-of-file was for an end-of-message marker.

18.10.2. MultiFile Example

import mimetools
import multifile
import StringIO

def extract_mime_part_matching(stream, mimetype):
 """Return the first element in a multipart MIME message on stream
 matching mimetype."""

 msg = mimetools.Message(stream)
 msgtype = msg.gettype()
 params = msg.getplist()

 data = StringIO.StringIO()
 if msgtype[:10] == "multipart/":

 file = multifile.MultiFile(stream)
 file.push(msg.getparam("boundary"))
 while file.next():
 submsg = mimetools.Message(file)
 try:
 data = StringIO.StringIO()
 mimetools.decode(file, data, submsg.getencoding())
 except ValueError:
 continue
 if submsg.gettype() == mimetype:
 break
 file.pop()
 return data.getvalue()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.11. rfc822 — Parse RFC 2822 mail headers

Deprecated since version 2.3: The email package should be used in preference to the rfc822
module. This module is present only to maintain backward compatibility, and
has been removed in 3.0.

This module defines a class, Message, which represents an “email
message” as defined by the Internet standard RFC 2822 [http://tools.ietf.org/html/rfc2822.html]. [1] Such messages
consist of a collection of message headers, and a message body. This module
also defines a helper class AddressList for parsing RFC 2822 [http://tools.ietf.org/html/rfc2822.html]
addresses. Please refer to the RFC for information on the specific syntax of
RFC 2822 [http://tools.ietf.org/html/rfc2822.html] messages.

The mailbox module provides classes to read mailboxes produced by
various end-user mail programs.

	
class rfc822.Message(file[, seekable])

	A Message instance is instantiated with an input object as parameter.
Message relies only on the input object having a readline() method; in
particular, ordinary file objects qualify. Instantiation reads headers from the
input object up to a delimiter line (normally a blank line) and stores them in
the instance. The message body, following the headers, is not consumed.

This class can work with any input object that supports a readline()
method. If the input object has seek and tell capability, the
rewindbody() method will work; also, illegal lines will be pushed back
onto the input stream. If the input object lacks seek but has an unread()
method that can push back a line of input, Message will use that to
push back illegal lines. Thus this class can be used to parse messages coming
from a buffered stream.

The optional seekable argument is provided as a workaround for certain stdio
libraries in which tell() discards buffered data before discovering that
the lseek() system call doesn’t work. For maximum portability, you
should set the seekable argument to zero to prevent that initial tell()
when passing in an unseekable object such as a file object created from a socket
object.

Input lines as read from the file may either be terminated by CR-LF or by a
single linefeed; a terminating CR-LF is replaced by a single linefeed before the
line is stored.

All header matching is done independent of upper or lower case; e.g.
m['From'], m['from'] and m['FROM'] all yield the same result.

	
class rfc822.AddressList(field)

	You may instantiate the AddressList helper class using a single string
parameter, a comma-separated list of RFC 2822 [http://tools.ietf.org/html/rfc2822.html] addresses to be parsed. (The
parameter None yields an empty list.)

	
rfc822.quote(str)

	Return a new string with backslashes in str replaced by two backslashes and
double quotes replaced by backslash-double quote.

	
rfc822.unquote(str)

	Return a new string which is an unquoted version of str. If str ends and
begins with double quotes, they are stripped off. Likewise if str ends and
begins with angle brackets, they are stripped off.

	
rfc822.parseaddr(address)

	Parse address, which should be the value of some address-containing field such
as To or Cc, into its constituent “realname” and
“email address” parts. Returns a tuple of that information, unless the parse
fails, in which case a 2-tuple (None, None) is returned.

	
rfc822.dump_address_pair(pair)

	The inverse of parseaddr(), this takes a 2-tuple of the form (realname,
email_address) and returns the string value suitable for a To or
Cc header. If the first element of pair is false, then the
second element is returned unmodified.

	
rfc822.parsedate(date)

	Attempts to parse a date according to the rules in RFC 2822 [http://tools.ietf.org/html/rfc2822.html]. however, some
mailers don’t follow that format as specified, so parsedate() tries to
guess correctly in such cases. date is a string containing an RFC 2822 [http://tools.ietf.org/html/rfc2822.html]
date, such as 'Mon, 20 Nov 1995 19:12:08 -0500'. If it succeeds in parsing
the date, parsedate() returns a 9-tuple that can be passed directly to
time.mktime(); otherwise None will be returned. Note that indexes 6,
7, and 8 of the result tuple are not usable.

	
rfc822.parsedate_tz(date)

	Performs the same function as parsedate(), but returns either None or
a 10-tuple; the first 9 elements make up a tuple that can be passed directly to
time.mktime(), and the tenth is the offset of the date’s timezone from UTC
(which is the official term for Greenwich Mean Time). (Note that the sign of
the timezone offset is the opposite of the sign of the time.timezone
variable for the same timezone; the latter variable follows the POSIX standard
while this module follows RFC 2822 [http://tools.ietf.org/html/rfc2822.html].) If the input string has no timezone,
the last element of the tuple returned is None. Note that indexes 6, 7, and
8 of the result tuple are not usable.

	
rfc822.mktime_tz(tuple)

	Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp. If
the timezone item in the tuple is None, assume local time. Minor
deficiency: this first interprets the first 8 elements as a local time and then
compensates for the timezone difference; this may yield a slight error around
daylight savings time switch dates. Not enough to worry about for common use.

See also

	Module email

	Comprehensive email handling package; supersedes the rfc822 module.

	Module mailbox

	Classes to read various mailbox formats produced by end-user mail programs.

	Module mimetools

	Subclass of rfc822.Message that handles MIME encoded messages.

18.11.1. Message Objects

A Message instance has the following methods:

	
Message.rewindbody()

	Seek to the start of the message body. This only works if the file object is
seekable.

	
Message.isheader(line)

	Returns a line’s canonicalized fieldname (the dictionary key that will be used
to index it) if the line is a legal RFC 2822 [http://tools.ietf.org/html/rfc2822.html] header; otherwise returns
None (implying that parsing should stop here and the line be pushed back on
the input stream). It is sometimes useful to override this method in a
subclass.

	
Message.islast(line)

	Return true if the given line is a delimiter on which Message should stop. The
delimiter line is consumed, and the file object’s read location positioned
immediately after it. By default this method just checks that the line is
blank, but you can override it in a subclass.

	
Message.iscomment(line)

	Return True if the given line should be ignored entirely, just skipped. By
default this is a stub that always returns False, but you can override it in
a subclass.

	
Message.getallmatchingheaders(name)

	Return a list of lines consisting of all headers matching name, if any. Each
physical line, whether it is a continuation line or not, is a separate list
item. Return the empty list if no header matches name.

	
Message.getfirstmatchingheader(name)

	Return a list of lines comprising the first header matching name, and its
continuation line(s), if any. Return None if there is no header matching
name.

	
Message.getrawheader(name)

	Return a single string consisting of the text after the colon in the first
header matching name. This includes leading whitespace, the trailing
linefeed, and internal linefeeds and whitespace if there any continuation
line(s) were present. Return None if there is no header matching name.

	
Message.getheader(name[, default])

	Return a single string consisting of the last header matching name,
but strip leading and trailing whitespace.
Internal whitespace is not stripped. The optional default argument can be
used to specify a different default to be returned when there is no header
matching name; it defaults to None.
This is the preferred way to get parsed headers.

	
Message.get(name[, default])

	An alias for getheader(), to make the interface more compatible with
regular dictionaries.

	
Message.getaddr(name)

	Return a pair (full name, email address) parsed from the string returned by
getheader(name). If no header matching name exists, return (None,
None); otherwise both the full name and the address are (possibly empty)
strings.

Example: If m‘s first From header contains the string
'jack@cwi.nl (Jack Jansen)', then m.getaddr('From') will yield the pair
('Jack Jansen', 'jack@cwi.nl'). If the header contained 'Jack Jansen
<jack@cwi.nl>' instead, it would yield the exact same result.

	
Message.getaddrlist(name)

	This is similar to getaddr(list), but parses a header containing a list of
email addresses (e.g. a To header) and returns a list of (full
name, email address) pairs (even if there was only one address in the header).
If there is no header matching name, return an empty list.

If multiple headers exist that match the named header (e.g. if there are several
Cc headers), all are parsed for addresses. Any continuation lines
the named headers contain are also parsed.

	
Message.getdate(name)

	Retrieve a header using getheader() and parse it into a 9-tuple compatible
with time.mktime(); note that fields 6, 7, and 8 are not usable. If
there is no header matching name, or it is unparsable, return None.

Date parsing appears to be a black art, and not all mailers adhere to the
standard. While it has been tested and found correct on a large collection of
email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

	
Message.getdate_tz(name)

	Retrieve a header using getheader() and parse it into a 10-tuple; the
first 9 elements will make a tuple compatible with time.mktime(), and the
10th is a number giving the offset of the date’s timezone from UTC. Note that
fields 6, 7, and 8 are not usable. Similarly to getdate(), if there is
no header matching name, or it is unparsable, return None.

Message instances also support a limited mapping interface. In
particular: m[name] is like m.getheader(name) but raises KeyError
if there is no matching header; and len(m), m.get(name[, default]),
name in m, m.keys(), m.values() m.items(), and
m.setdefault(name[, default]) act as expected, with the one difference
that setdefault() uses an empty string as the default value.
Message instances also support the mapping writable interface m[name]
= value and del m[name]. Message objects do not support the
clear(), copy(), popitem(), or update() methods of the
mapping interface. (Support for get() and setdefault() was only
added in Python 2.2.)

Finally, Message instances have some public instance variables:

	
Message.headers

	A list containing the entire set of header lines, in the order in which they
were read (except that setitem calls may disturb this order). Each line contains
a trailing newline. The blank line terminating the headers is not contained in
the list.

	
Message.fp

	The file or file-like object passed at instantiation time. This can be used to
read the message content.

	
Message.unixfrom

	The Unix From line, if the message had one, or an empty string. This is
needed to regenerate the message in some contexts, such as an mbox-style
mailbox file.

18.11.2. AddressList Objects

An AddressList instance has the following methods:

	
AddressList.__len__()

	Return the number of addresses in the address list.

	
AddressList.__str__()

	Return a canonicalized string representation of the address list. Addresses are
rendered in “name” <host@domain> form, comma-separated.

	
AddressList.__add__(alist)

	Return a new AddressList instance that contains all addresses in both
AddressList operands, with duplicates removed (set union).

	
AddressList.__iadd__(alist)

	In-place version of __add__(); turns this AddressList instance
into the union of itself and the right-hand instance, alist.

	
AddressList.__sub__(alist)

	Return a new AddressList instance that contains every address in the
left-hand AddressList operand that is not present in the right-hand
address operand (set difference).

	
AddressList.__isub__(alist)

	In-place version of __sub__(), removing addresses in this list which are
also in alist.

Finally, AddressList instances have one public instance variable:

	
AddressList.addresslist

	A list of tuple string pairs, one per address. In each member, the first is the
canonicalized name part, the second is the actual route-address ('@'-separated username-host.domain pair).

Footnotes

	[1]	This module originally conformed to RFC 822 [http://tools.ietf.org/html/rfc822.html], hence the name. Since then,
RFC 2822 [http://tools.ietf.org/html/rfc2822.html] has been released as an update to RFC 822 [http://tools.ietf.org/html/rfc822.html]. This module should be
considered RFC 2822 [http://tools.ietf.org/html/rfc2822.html]-conformant, especially in cases where the syntax or
semantics have changed since RFC 822 [http://tools.ietf.org/html/rfc822.html].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.12. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

This module provides data encoding and decoding as specified in RFC 3548 [http://tools.ietf.org/html/rfc3548.html].
This standard defines the Base16, Base32, and Base64 algorithms for encoding and
decoding arbitrary binary strings into text strings that can be safely sent by
email, used as parts of URLs, or included as part of an HTTP POST request. The
encoding algorithm is not the same as the uuencode program.

There are two interfaces provided by this module. The modern interface supports
encoding and decoding string objects using all three alphabets. The legacy
interface provides for encoding and decoding to and from file-like objects as
well as strings, but only using the Base64 standard alphabet.

The modern interface, which was introduced in Python 2.4, provides:

	
base64.b64encode(s[, altchars])

	Encode a string use Base64.

s is the string to encode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies an alternative
alphabet for the + and / characters. This allows an application to e.g.
generate URL or filesystem safe Base64 strings. The default is None, for
which the standard Base64 alphabet is used.

The encoded string is returned.

	
base64.b64decode(s[, altchars])

	Decode a Base64 encoded string.

s is the string to decode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies the alternative
alphabet used instead of the + and / characters.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

	
base64.standard_b64encode(s)

	Encode string s using the standard Base64 alphabet.

	
base64.standard_b64decode(s)

	Decode string s using the standard Base64 alphabet.

	
base64.urlsafe_b64encode(s)

	Encode string s using a URL-safe alphabet, which substitutes - instead of
+ and _ instead of / in the standard Base64 alphabet. The result
can still contain =.

	
base64.urlsafe_b64decode(s)

	Decode string s using a URL-safe alphabet, which substitutes - instead of
+ and _ instead of / in the standard Base64 alphabet.

	
base64.b32encode(s)

	Encode a string using Base32. s is the string to encode. The encoded string
is returned.

	
base64.b32decode(s[, casefold[, map01]])

	Decode a Base32 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether a
lowercase alphabet is acceptable as input. For security purposes, the default
is False.

RFC 3548 [http://tools.ietf.org/html/rfc3548.html] allows for optional mapping of the digit 0 (zero) to the letter O
(oh), and for optional mapping of the digit 1 (one) to either the letter I (eye)
or letter L (el). The optional argument map01 when not None, specifies
which letter the digit 1 should be mapped to (when map01 is not None, the
digit 0 is always mapped to the letter O). For security purposes the default is
None, so that 0 and 1 are not allowed in the input.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

	
base64.b16encode(s)

	Encode a string using Base16.

s is the string to encode. The encoded string is returned.

	
base64.b16decode(s[, casefold])

	Decode a Base16 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether a
lowercase alphabet is acceptable as input. For security purposes, the default
is False.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

The legacy interface:

	
base64.decode(input, output)

	Decode the contents of the input file and write the resulting binary data to
the output file. input and output must either be file objects or objects
that mimic the file object interface. input will be read until
input.read() returns an empty string.

	
base64.decodestring(s)

	Decode the string s, which must contain one or more lines of base64 encoded
data, and return a string containing the resulting binary data.

	
base64.encode(input, output)

	Encode the contents of the input file and write the resulting base64 encoded
data to the output file. input and output must either be file objects or
objects that mimic the file object interface. input will be read until
input.read() returns an empty string. encode() returns the encoded
data plus a trailing newline character ('\n').

	
base64.encodestring(s)

	Encode the string s, which can contain arbitrary binary data, and return a
string containing one or more lines of base64-encoded data.
encodestring() returns a string containing one or more lines of
base64-encoded data always including an extra trailing newline ('\n').

An example usage of the module:

>>> import base64
>>> encoded = base64.b64encode('data to be encoded')
>>> encoded
'ZGF0YSB0byBiZSBlbmNvZGVk'
>>> data = base64.b64decode(encoded)
>>> data
'data to be encoded'

See also

	Module binascii

	Support module containing ASCII-to-binary and binary-to-ASCII conversions.

	RFC 1521 [http://tools.ietf.org/html/rfc1521.html] - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies

	Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the
base64 encoding.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.13. binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing
representation of Macintosh files in ASCII. On the Macintosh, both forks of a
file and the finder information are encoded (or decoded), on other platforms
only the data fork is handled.

Note

In Python 3.x, special Macintosh support has been removed.

The binhex module defines the following functions:

	
binhex.binhex(input, output)

	Convert a binary file with filename input to binhex file output. The
output parameter can either be a filename or a file-like object (any object
supporting a write() and close() method).

	
binhex.hexbin(input[, output])

	Decode a binhex file input. input may be a filename or a file-like object
supporting read() and close() methods. The resulting file is written
to a file named output, unless the argument is omitted in which case the
output filename is read from the binhex file.

The following exception is also defined:

	
exception binhex.Error

	Exception raised when something can’t be encoded using the binhex format (for
example, a filename is too long to fit in the filename field), or when input is
not properly encoded binhex data.

See also

	Module binascii

	Support module containing ASCII-to-binary and binary-to-ASCII conversions.

18.13.1. Notes

There is an alternative, more powerful interface to the coder and decoder, see
the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use
the old Macintosh newline convention (carriage-return as end of line).

As of this writing, hexbin() appears to not work in all cases.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.14. binascii — Convert between binary and ASCII

The binascii module contains a number of methods to convert between
binary and various ASCII-encoded binary representations. Normally, you will not
use these functions directly but use wrapper modules like uu,
base64, or binhex instead. The binascii module contains
low-level functions written in C for greater speed that are used by the
higher-level modules.

The binascii module defines the following functions:

	
binascii.a2b_uu(string)

	Convert a single line of uuencoded data back to binary and return the binary
data. Lines normally contain 45 (binary) bytes, except for the last line. Line
data may be followed by whitespace.

	
binascii.b2a_uu(data)

	Convert binary data to a line of ASCII characters, the return value is the
converted line, including a newline char. The length of data should be at most
45.

	
binascii.a2b_base64(string)

	Convert a block of base64 data back to binary and return the binary data. More
than one line may be passed at a time.

	
binascii.b2a_base64(data)

	Convert binary data to a line of ASCII characters in base64 coding. The return
value is the converted line, including a newline char. The length of data
should be at most 57 to adhere to the base64 standard.

	
binascii.a2b_qp(string[, header])

	Convert a block of quoted-printable data back to binary and return the binary
data. More than one line may be passed at a time. If the optional argument
header is present and true, underscores will be decoded as spaces.

	
binascii.b2a_qp(data[, quotetabs, istext, header])

	Convert binary data to a line(s) of ASCII characters in quoted-printable
encoding. The return value is the converted line(s). If the optional argument
quotetabs is present and true, all tabs and spaces will be encoded. If the
optional argument istext is present and true, newlines are not encoded but
trailing whitespace will be encoded. If the optional argument header is
present and true, spaces will be encoded as underscores per RFC1522. If the
optional argument header is present and false, newline characters will be
encoded as well; otherwise linefeed conversion might corrupt the binary data
stream.

	
binascii.a2b_hqx(string)

	Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression.
The string should contain a complete number of binary bytes, or (in case of the
last portion of the binhex4 data) have the remaining bits zero.

	
binascii.rledecode_hqx(data)

	Perform RLE-decompression on the data, as per the binhex4 standard. The
algorithm uses 0x90 after a byte as a repeat indicator, followed by a count.
A count of 0 specifies a byte value of 0x90. The routine returns the
decompressed data, unless data input data ends in an orphaned repeat indicator,
in which case the Incomplete exception is raised.

	
binascii.rlecode_hqx(data)

	Perform binhex4 style RLE-compression on data and return the result.

	
binascii.b2a_hqx(data)

	Perform hexbin4 binary-to-ASCII translation and return the resulting string. The
argument should already be RLE-coded, and have a length divisible by 3 (except
possibly the last fragment).

	
binascii.crc_hqx(data, crc)

	Compute the binhex4 crc value of data, starting with an initial crc and
returning the result.

	
binascii.crc32(data[, crc])

	Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This
is consistent with the ZIP file checksum. Since the algorithm is designed for
use as a checksum algorithm, it is not suitable for use as a general hash
algorithm. Use as follows:

print binascii.crc32("hello world")
Or, in two pieces:
crc = binascii.crc32("hello")
crc = binascii.crc32(" world", crc) & 0xffffffff
print 'crc32 = 0x%08x' % crc

Note

To generate the same numeric value across all Python versions and
platforms use crc32(data) & 0xffffffff. If you are only using
the checksum in packed binary format this is not necessary as the
return value is the correct 32bit binary representation
regardless of sign.

Changed in version 2.6: The return value is in the range [-2**31, 2**31-1]
regardless of platform. In the past the value would be signed on
some platforms and unsigned on others. Use & 0xffffffff on the
value if you want it to match 3.0 behavior.

Changed in version 3.0: The return value is unsigned and in the range [0, 2**32-1]
regardless of platform.

	
binascii.b2a_hex(data)

	
binascii.hexlify(data)

	Return the hexadecimal representation of the binary data. Every byte of
data is converted into the corresponding 2-digit hex representation. The
resulting string is therefore twice as long as the length of data.

	
binascii.a2b_hex(hexstr)

	
binascii.unhexlify(hexstr)

	Return the binary data represented by the hexadecimal string hexstr. This
function is the inverse of b2a_hex(). hexstr must contain an even number
of hexadecimal digits (which can be upper or lower case), otherwise a
TypeError is raised.

	
exception binascii.Error

	Exception raised on errors. These are usually programming errors.

	
exception binascii.Incomplete

	Exception raised on incomplete data. These are usually not programming errors,
but may be handled by reading a little more data and trying again.

See also

	Module base64

	Support for base64 encoding used in MIME email messages.

	Module binhex

	Support for the binhex format used on the Macintosh.

	Module uu

	Support for UU encoding used on Unix.

	Module quopri

	Support for quoted-printable encoding used in MIME email messages.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.15. quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as
defined in RFC 1521 [http://tools.ietf.org/html/rfc1521.html]: “MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies”.
The quoted-printable encoding is designed for data where there are relatively
few nonprintable characters; the base64 encoding scheme available via the
base64 module is more compact if there are many such characters, as when
sending a graphics file.

See also

Latest version of the quopri module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/quopri.py?view=markup]

	
quopri.decode(input, output[, header])

	Decode the contents of the input file and write the resulting decoded binary
data to the output file. input and output must either be file objects or
objects that mimic the file object interface. input will be read until
input.readline() returns an empty string. If the optional argument header
is present and true, underscore will be decoded as space. This is used to decode
“Q”-encoded headers as described in RFC 1522 [http://tools.ietf.org/html/rfc1522.html]: “MIME (Multipurpose Internet
Mail Extensions) Part Two: Message Header Extensions for Non-ASCII Text”.

	
quopri.encode(input, output, quotetabs)

	Encode the contents of the input file and write the resulting quoted-printable
data to the output file. input and output must either be file objects or
objects that mimic the file object interface. input will be read until
input.readline() returns an empty string. quotetabs is a flag which
controls whether to encode embedded spaces and tabs; when true it encodes such
embedded whitespace, and when false it leaves them unencoded. Note that spaces
and tabs appearing at the end of lines are always encoded, as per RFC 1521 [http://tools.ietf.org/html/rfc1521.html].

	
quopri.decodestring(s[, header])

	Like decode(), except that it accepts a source string and returns the
corresponding decoded string.

	
quopri.encodestring(s[, quotetabs])

	Like encode(), except that it accepts a source string and returns the
corresponding encoded string. quotetabs is optional (defaulting to 0), and is
passed straight through to encode().

See also

	Module mimify

	General utilities for processing of MIME messages.

	Module base64

	Encode and decode MIME base64 data

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	18. Internet Data Handling

18.16. uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary
binary data to be transferred over ASCII-only connections. Wherever a file
argument is expected, the methods accept a file-like object. For backwards
compatibility, a string containing a pathname is also accepted, and the
corresponding file will be opened for reading and writing; the pathname '-'
is understood to mean the standard input or output. However, this interface is
deprecated; it’s better for the caller to open the file itself, and be sure
that, when required, the mode is 'rb' or 'wb' on Windows.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

See also

Latest version of the uu module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/uu.py?view=markup]

The uu module defines the following functions:

	
uu.encode(in_file, out_file[, name[, mode]])

	Uuencode file in_file into file out_file. The uuencoded file will have the
header specifying name and mode as the defaults for the results of decoding
the file. The default defaults are taken from in_file, or '-' and 0666
respectively.

	
uu.decode(in_file[, out_file[, mode[, quiet]]])

	This call decodes uuencoded file in_file placing the result on file
out_file. If out_file is a pathname, mode is used to set the permission
bits if the file must be created. Defaults for out_file and mode are taken
from the uuencode header. However, if the file specified in the header already
exists, a uu.Error is raised.

decode() may print a warning to standard error if the input was produced
by an incorrect uuencoder and Python could recover from that error. Setting
quiet to a true value silences this warning.

	
exception uu.Error

	Subclass of Exception, this can be raised by uu.decode() under
various situations, such as described above, but also including a badly
formatted header, or truncated input file.

See also

	Module binascii

	Support module containing ASCII-to-binary and binary-to-ASCII conversions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

19. Structured Markup Processing Tools

Python supports a variety of modules to work with various forms of structured
data markup. This includes modules to work with the Standard Generalized Markup
Language (SGML) and the Hypertext Markup Language (HTML), and several interfaces
for working with the Extensible Markup Language (XML).

It is important to note that modules in the xml package require that
there be at least one SAX-compliant XML parser available. Starting with Python
2.3, the Expat parser is included with Python, so the xml.parsers.expat
module will always be available. You may still want to be aware of the PyXML
add-on package [http://pyxml.sourceforge.net/]; that package provides an
extended set of XML libraries for Python.

The documentation for the xml.dom and xml.sax packages are the
definition of the Python bindings for the DOM and SAX interfaces.

	19.1. HTMLParser — Simple HTML and XHTML parser
	19.1.1. Example HTML Parser Application

	19.2. sgmllib — Simple SGML parser

	19.3. htmllib — A parser for HTML documents
	19.3.1. HTMLParser Objects

	19.4. htmlentitydefs — Definitions of HTML general entities

	19.5. xml.parsers.expat — Fast XML parsing using Expat
	19.5.1. XMLParser Objects

	19.5.2. ExpatError Exceptions

	19.5.3. Example

	19.5.4. Content Model Descriptions

	19.5.5. Expat error constants

	19.6. xml.dom — The Document Object Model API
	19.6.1. Module Contents

	19.6.2. Objects in the DOM
	19.6.2.1. DOMImplementation Objects

	19.6.2.2. Node Objects

	19.6.2.3. NodeList Objects

	19.6.2.4. DocumentType Objects

	19.6.2.5. Document Objects

	19.6.2.6. Element Objects

	19.6.2.7. Attr Objects

	19.6.2.8. NamedNodeMap Objects

	19.6.2.9. Comment Objects

	19.6.2.10. Text and CDATASection Objects

	19.6.2.11. ProcessingInstruction Objects

	19.6.2.12. Exceptions

	19.6.3. Conformance
	19.6.3.1. Type Mapping

	19.6.3.2. Accessor Methods

	19.7. xml.dom.minidom — Lightweight DOM implementation
	19.7.1. DOM Objects

	19.7.2. DOM Example

	19.7.3. minidom and the DOM standard

	19.8. xml.dom.pulldom — Support for building partial DOM trees
	19.8.1. DOMEventStream Objects

	19.9. xml.sax — Support for SAX2 parsers
	19.9.1. SAXException Objects

	19.10. xml.sax.handler — Base classes for SAX handlers
	19.10.1. ContentHandler Objects

	19.10.2. DTDHandler Objects

	19.10.3. EntityResolver Objects

	19.10.4. ErrorHandler Objects

	19.11. xml.sax.saxutils — SAX Utilities

	19.12. xml.sax.xmlreader — Interface for XML parsers
	19.12.1. XMLReader Objects

	19.12.2. IncrementalParser Objects

	19.12.3. Locator Objects

	19.12.4. InputSource Objects

	19.12.5. The Attributes Interface

	19.12.6. The AttributesNS Interface

	19.13. xml.etree.ElementTree — The ElementTree XML API
	19.13.1. Functions

	19.13.2. Element Objects

	19.13.3. ElementTree Objects

	19.13.4. QName Objects

	19.13.5. TreeBuilder Objects

	19.13.6. XMLParser Objects

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.1. HTMLParser — Simple HTML and XHTML parser

Note

The HTMLParser module has been renamed to html.parser in Python
3.0. The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

New in version 2.2.

This module defines a class HTMLParser which serves as the basis for
parsing text files formatted in HTML (HyperText Mark-up Language) and XHTML.
Unlike the parser in htmllib, this parser is not based on the SGML parser
in sgmllib.

	
class HTMLParser.HTMLParser

	The HTMLParser class is instantiated without arguments.

An HTMLParser instance is fed HTML data and calls handler functions when tags
begin and end. The HTMLParser class is meant to be overridden by the
user to provide a desired behavior.

Unlike the parser in htmllib, this parser does not check that end tags
match start tags or call the end-tag handler for elements which are closed
implicitly by closing an outer element.

An exception is defined as well:

	
exception HTMLParser.HTMLParseError

	Exception raised by the HTMLParser class when it encounters an error
while parsing. This exception provides three attributes: msg is a brief
message explaining the error, lineno is the number of the line on which
the broken construct was detected, and offset is the number of
characters into the line at which the construct starts.

HTMLParser instances have the following methods:

	
HTMLParser.reset()

	Reset the instance. Loses all unprocessed data. This is called implicitly at
instantiation time.

	
HTMLParser.feed(data)

	Feed some text to the parser. It is processed insofar as it consists of
complete elements; incomplete data is buffered until more data is fed or
close() is called.

	
HTMLParser.close()

	Force processing of all buffered data as if it were followed by an end-of-file
mark. This method may be redefined by a derived class to define additional
processing at the end of the input, but the redefined version should always call
the HTMLParser base class method close().

	
HTMLParser.getpos()

	Return current line number and offset.

	
HTMLParser.get_starttag_text()

	Return the text of the most recently opened start tag. This should not normally
be needed for structured processing, but may be useful in dealing with HTML “as
deployed” or for re-generating input with minimal changes (whitespace between
attributes can be preserved, etc.).

	
HTMLParser.handle_starttag(tag, attrs)

	This method is called to handle the start of a tag. It is intended to be
overridden by a derived class; the base class implementation does nothing.

The tag argument is the name of the tag converted to lower case. The attrs
argument is a list of (name, value) pairs containing the attributes found
inside the tag’s <> brackets. The name will be translated to lower case,
and quotes in the value have been removed, and character and entity references
have been replaced. For instance, for the tag , this method would be called as
handle_starttag('a', [('href', 'http://www.cwi.nl/')]).

Changed in version 2.6: All entity references from htmlentitydefs are now replaced in the attribute
values.

	
HTMLParser.handle_startendtag(tag, attrs)

	Similar to handle_starttag(), but called when the parser encounters an
XHTML-style empty tag (<a .../>). This method may be overridden by
subclasses which require this particular lexical information; the default
implementation simple calls handle_starttag() and handle_endtag().

	
HTMLParser.handle_endtag(tag)

	This method is called to handle the end tag of an element. It is intended to be
overridden by a derived class; the base class implementation does nothing. The
tag argument is the name of the tag converted to lower case.

	
HTMLParser.handle_data(data)

	This method is called to process arbitrary data. It is intended to be
overridden by a derived class; the base class implementation does nothing.

	
HTMLParser.handle_charref(name)

	This method is called to process a character reference of the form &#ref;.
It is intended to be overridden by a derived class; the base class
implementation does nothing.

	
HTMLParser.handle_entityref(name)

	This method is called to process a general entity reference of the form
&name; where name is an general entity reference. It is intended to be
overridden by a derived class; the base class implementation does nothing.

	
HTMLParser.handle_comment(data)

	This method is called when a comment is encountered. The comment argument is
a string containing the text between the -- and -- delimiters, but not
the delimiters themselves. For example, the comment <!--text--> will cause
this method to be called with the argument 'text'. It is intended to be
overridden by a derived class; the base class implementation does nothing.

	
HTMLParser.handle_decl(decl)

	Method called when an SGML doctype declaration is read by the parser.
The decl parameter will be the entire contents of the declaration inside
the <!...> markup. It is intended to be overridden by a derived class;
the base class implementation does nothing.

	
HTMLParser.unknown_decl(data)

	Method called when an unrecognized SGML declaration is read by the parser.
The data parameter will be the entire contents of the declaration inside
the <!...> markup. It is sometimes useful to be overridden by a
derived class; the base class implementation throws an HTMLParseError.

	
HTMLParser.handle_pi(data)

	Method called when a processing instruction is encountered. The data
parameter will contain the entire processing instruction. For example, for the
processing instruction <?proc color='red'>, this method would be called as
handle_pi("proc color='red'"). It is intended to be overridden by a derived
class; the base class implementation does nothing.

Note

The HTMLParser class uses the SGML syntactic rules for processing
instructions. An XHTML processing instruction using the trailing '?' will
cause the '?' to be included in data.

19.1.1. Example HTML Parser Application

As a basic example, below is a very basic HTML parser that uses the
HTMLParser class to print out tags as they are encountered:

from HTMLParser import HTMLParser

class MyHTMLParser(HTMLParser):

 def handle_starttag(self, tag, attrs):
 print "Encountered the beginning of a %s tag" % tag

 def handle_endtag(self, tag):
 print "Encountered the end of a %s tag" % tag

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.2. sgmllib — Simple SGML parser

Deprecated since version 2.6: The sgmllib module has been removed in Python 3.0.

This module defines a class SGMLParser which serves as the basis for
parsing text files formatted in SGML (Standard Generalized Mark-up Language).
In fact, it does not provide a full SGML parser — it only parses SGML insofar
as it is used by HTML, and the module only exists as a base for the
htmllib module. Another HTML parser which supports XHTML and offers a
somewhat different interface is available in the HTMLParser module.

	
class sgmllib.SGMLParser

	The SGMLParser class is instantiated without arguments. The parser is
hardcoded to recognize the following constructs:

	Opening and closing tags of the form <tag attr="value" ...> and
</tag>, respectively.

	Numeric character references of the form &#name;.

	Entity references of the form &name;.

	SGML comments of the form <!--text-->. Note that spaces, tabs, and
newlines are allowed between the trailing > and the immediately preceding
--.

A single exception is defined as well:

	
exception sgmllib.SGMLParseError

	Exception raised by the SGMLParser class when it encounters an error
while parsing.

New in version 2.1.

SGMLParser instances have the following methods:

	
SGMLParser.reset()

	Reset the instance. Loses all unprocessed data. This is called implicitly at
instantiation time.

	
SGMLParser.setnomoretags()

	Stop processing tags. Treat all following input as literal input (CDATA).
(This is only provided so the HTML tag <PLAINTEXT> can be implemented.)

	
SGMLParser.setliteral()

	Enter literal mode (CDATA mode).

	
SGMLParser.feed(data)

	Feed some text to the parser. It is processed insofar as it consists of
complete elements; incomplete data is buffered until more data is fed or
close() is called.

	
SGMLParser.close()

	Force processing of all buffered data as if it were followed by an end-of-file
mark. This method may be redefined by a derived class to define additional
processing at the end of the input, but the redefined version should always call
close().

	
SGMLParser.get_starttag_text()

	Return the text of the most recently opened start tag. This should not normally
be needed for structured processing, but may be useful in dealing with HTML “as
deployed” or for re-generating input with minimal changes (whitespace between
attributes can be preserved, etc.).

	
SGMLParser.handle_starttag(tag, method, attributes)

	This method is called to handle start tags for which either a start_tag()
or do_tag() method has been defined. The tag argument is the name of
the tag converted to lower case, and the method argument is the bound method
which should be used to support semantic interpretation of the start tag. The
attributes argument is a list of (name, value) pairs containing the
attributes found inside the tag’s <> brackets.

The name has been translated to lower case. Double quotes and backslashes in
the value have been interpreted, as well as known character references and
known entity references terminated by a semicolon (normally, entity references
can be terminated by any non-alphanumerical character, but this would break the
very common case of when eggs is a valid
entity name).

For instance, for the tag , this method would
be called as unknown_starttag('a', [('href', 'http://www.cwi.nl/')]). The
base implementation simply calls method with attributes as the only
argument.

New in version 2.5: Handling of entity and character references within attribute values.

	
SGMLParser.handle_endtag(tag, method)

	This method is called to handle endtags for which an end_tag() method has
been defined. The tag argument is the name of the tag converted to lower
case, and the method argument is the bound method which should be used to
support semantic interpretation of the end tag. If no end_tag() method is
defined for the closing element, this handler is not called. The base
implementation simply calls method.

	
SGMLParser.handle_data(data)

	This method is called to process arbitrary data. It is intended to be
overridden by a derived class; the base class implementation does nothing.

	
SGMLParser.handle_charref(ref)

	This method is called to process a character reference of the form &#ref;.
The base implementation uses convert_charref() to convert the reference to
a string. If that method returns a string, it is passed to handle_data(),
otherwise unknown_charref(ref) is called to handle the error.

Changed in version 2.5: Use convert_charref() instead of hard-coding the conversion.

	
SGMLParser.convert_charref(ref)

	Convert a character reference to a string, or None. ref is the reference
passed in as a string. In the base implementation, ref must be a decimal
number in the range 0-255. It converts the code point found using the
convert_codepoint() method. If ref is invalid or out of range, this
method returns None. This method is called by the default
handle_charref() implementation and by the attribute value parser.

New in version 2.5.

	
SGMLParser.convert_codepoint(codepoint)

	Convert a codepoint to a str value. Encodings can be handled here if
appropriate, though the rest of sgmllib is oblivious on this matter.

New in version 2.5.

	
SGMLParser.handle_entityref(ref)

	This method is called to process a general entity reference of the form
&ref; where ref is an general entity reference. It converts ref by
passing it to convert_entityref(). If a translation is returned, it calls
the method handle_data() with the translation; otherwise, it calls the
method unknown_entityref(ref). The default entitydefs defines
translations for &, &apos, >, <, and ".

Changed in version 2.5: Use convert_entityref() instead of hard-coding the conversion.

	
SGMLParser.convert_entityref(ref)

	Convert a named entity reference to a str value, or None. The
resulting value will not be parsed. ref will be only the name of the entity.
The default implementation looks for ref in the instance (or class) variable
entitydefs which should be a mapping from entity names to corresponding
translations. If no translation is available for ref, this method returns
None. This method is called by the default handle_entityref()
implementation and by the attribute value parser.

New in version 2.5.

	
SGMLParser.handle_comment(comment)

	This method is called when a comment is encountered. The comment argument is
a string containing the text between the <!-- and --> delimiters, but
not the delimiters themselves. For example, the comment <!--text--> will
cause this method to be called with the argument 'text'. The default method
does nothing.

	
SGMLParser.handle_decl(data)

	Method called when an SGML declaration is read by the parser. In practice, the
DOCTYPE declaration is the only thing observed in HTML, but the parser does
not discriminate among different (or broken) declarations. Internal subsets in
a DOCTYPE declaration are not supported. The data parameter will be the
entire contents of the declaration inside the <!...> markup. The
default implementation does nothing.

	
SGMLParser.report_unbalanced(tag)

	This method is called when an end tag is found which does not correspond to any
open element.

	
SGMLParser.unknown_starttag(tag, attributes)

	This method is called to process an unknown start tag. It is intended to be
overridden by a derived class; the base class implementation does nothing.

	
SGMLParser.unknown_endtag(tag)

	This method is called to process an unknown end tag. It is intended to be
overridden by a derived class; the base class implementation does nothing.

	
SGMLParser.unknown_charref(ref)

	This method is called to process unresolvable numeric character references.
Refer to handle_charref() to determine what is handled by default. It is
intended to be overridden by a derived class; the base class implementation does
nothing.

	
SGMLParser.unknown_entityref(ref)

	This method is called to process an unknown entity reference. It is intended to
be overridden by a derived class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may
also define methods of the following form to define processing of specific tags.
Tag names in the input stream are case independent; the tag occurring in
method names must be in lower case:

	
SGMLParser.start_tag(attributes)

	This method is called to process an opening tag tag. It has preference over
do_tag(). The attributes argument has the same meaning as described for
handle_starttag() above.

	
SGMLParser.do_tag(attributes)

	This method is called to process an opening tag tag for which no
start_tag() method is defined. The attributes argument has the same
meaning as described for handle_starttag() above.

	
SGMLParser.end_tag()

	This method is called to process a closing tag tag.

Note that the parser maintains a stack of open elements for which no end tag has
been found yet. Only tags processed by start_tag() are pushed on this
stack. Definition of an end_tag() method is optional for these tags. For
tags processed by do_tag() or by unknown_tag(), no end_tag()
method must be defined; if defined, it will not be used. If both
start_tag() and do_tag() methods exist for a tag, the
start_tag() method takes precedence.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.3. htmllib — A parser for HTML documents

Deprecated since version 2.6: The htmllib module has been removed in Python 3.0.

This module defines a class which can serve as a base for parsing text files
formatted in the HyperText Mark-up Language (HTML). The class is not directly
concerned with I/O — it must be provided with input in string form via a
method, and makes calls to methods of a “formatter” object in order to produce
output. The HTMLParser class is designed to be used as a base class
for other classes in order to add functionality, and allows most of its methods
to be extended or overridden. In turn, this class is derived from and extends
the SGMLParser class defined in module sgmllib. The
HTMLParser implementation supports the HTML 2.0 language as described
in RFC 1866 [http://tools.ietf.org/html/rfc1866.html]. Two implementations of formatter objects are provided in the
formatter module; refer to the documentation for that module for
information on the formatter interface.

The following is a summary of the interface defined by
sgmllib.SGMLParser:

	The interface to feed data to an instance is through the feed() method,
which takes a string argument. This can be called with as little or as much
text at a time as desired; p.feed(a); p.feed(b) has the same effect as
p.feed(a+b). When the data contains complete HTML markup constructs, these
are processed immediately; incomplete constructs are saved in a buffer. To
force processing of all unprocessed data, call the close() method.

For example, to parse the entire contents of a file, use:

parser.feed(open('myfile.html').read())
parser.close()

	The interface to define semantics for HTML tags is very simple: derive a class
and define methods called start_tag(), end_tag(), or do_tag().
The parser will call these at appropriate moments: start_tag() or
do_tag() is called when an opening tag of the form <tag ...> is
encountered; end_tag() is called when a closing tag of the form <tag>
is encountered. If an opening tag requires a corresponding closing tag, like
<H1> ... </H1>, the class should define the start_tag() method; if
a tag requires no closing tag, like <P>, the class should define the
do_tag() method.

The module defines a parser class and an exception:

	
class htmllib.HTMLParser(formatter)

	This is the basic HTML parser class. It supports all entity names required by
the XHTML 1.0 Recommendation (http://www.w3.org/TR/xhtml1). It also defines
handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

	
exception htmllib.HTMLParseError

	Exception raised by the HTMLParser class when it encounters an error
while parsing.

New in version 2.4.

See also

	Module formatter

	Interface definition for transforming an abstract flow of formatting events into
specific output events on writer objects.

	Module HTMLParser

	Alternate HTML parser that offers a slightly lower-level view of the input, but
is designed to work with XHTML, and does not implement some of the SGML syntax
not used in “HTML as deployed” and which isn’t legal for XHTML.

	Module htmlentitydefs

	Definition of replacement text for XHTML 1.0 entities.

	Module sgmllib

	Base class for HTMLParser.

19.3.1. HTMLParser Objects

In addition to tag methods, the HTMLParser class provides some
additional methods and instance variables for use within tag methods.

	
HTMLParser.formatter

	This is the formatter instance associated with the parser.

	
HTMLParser.nofill

	Boolean flag which should be true when whitespace should not be collapsed, or
false when it should be. In general, this should only be true when character
data is to be treated as “preformatted” text, as within a <PRE> element.
The default value is false. This affects the operation of handle_data()
and save_end().

	
HTMLParser.anchor_bgn(href, name, type)

	This method is called at the start of an anchor region. The arguments
correspond to the attributes of the <A> tag with the same names. The
default implementation maintains a list of hyperlinks (defined by the HREF
attribute for <A> tags) within the document. The list of hyperlinks is
available as the data attribute anchorlist.

	
HTMLParser.anchor_end()

	This method is called at the end of an anchor region. The default
implementation adds a textual footnote marker using an index into the list of
hyperlinks created by anchor_bgn().

	
HTMLParser.handle_image(source, alt[, ismap[, align[, width[, height]]]])

	This method is called to handle images. The default implementation simply
passes the alt value to the handle_data() method.

	
HTMLParser.save_bgn()

	Begins saving character data in a buffer instead of sending it to the formatter
object. Retrieve the stored data via save_end(). Use of the
save_bgn() / save_end() pair may not be nested.

	
HTMLParser.save_end()

	Ends buffering character data and returns all data saved since the preceding
call to save_bgn(). If the nofill flag is false, whitespace is
collapsed to single spaces. A call to this method without a preceding call to
save_bgn() will raise a TypeError exception.

19.4. htmlentitydefs — Definitions of HTML general entities

Note

The htmlentitydefs module has been renamed to html.entities in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

This module defines three dictionaries, name2codepoint, codepoint2name,
and entitydefs. entitydefs is used by the htmllib module to
provide the entitydefs member of the HTMLParser class. The
definition provided here contains all the entities defined by XHTML 1.0 that
can be handled using simple textual substitution in the Latin-1 character set
(ISO-8859-1).

	
htmlentitydefs.entitydefs

	A dictionary mapping XHTML 1.0 entity definitions to their replacement text in
ISO Latin-1.

	
htmlentitydefs.name2codepoint

	A dictionary that maps HTML entity names to the Unicode codepoints.

New in version 2.3.

	
htmlentitydefs.codepoint2name

	A dictionary that maps Unicode codepoints to HTML entity names.

New in version 2.3.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.5. xml.parsers.expat — Fast XML parsing using Expat

New in version 2.0.

The xml.parsers.expat module is a Python interface to the Expat
non-validating XML parser. The module provides a single extension type,
xmlparser, that represents the current state of an XML parser. After
an xmlparser object has been created, various attributes of the object
can be set to handler functions. When an XML document is then fed to the
parser, the handler functions are called for the character data and markup in
the XML document.

This module uses the pyexpat module to provide access to the Expat
parser. Direct use of the pyexpat module is deprecated.

This module provides one exception and one type object:

	
exception xml.parsers.expat.ExpatError

	The exception raised when Expat reports an error. See section
ExpatError Exceptions for more information on interpreting Expat errors.

	
exception xml.parsers.expat.error

	Alias for ExpatError.

	
xml.parsers.expat.XMLParserType

	The type of the return values from the ParserCreate() function.

The xml.parsers.expat module contains two functions:

	
xml.parsers.expat.ErrorString(errno)

	Returns an explanatory string for a given error number errno.

	
xml.parsers.expat.ParserCreate([encoding[, namespace_separator]])

	Creates and returns a new xmlparser object. encoding, if specified,
must be a string naming the encoding used by the XML data. Expat doesn’t
support as many encodings as Python does, and its repertoire of encodings can’t
be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII. If
encoding [1] is given it will override the implicit or explicit encoding of the
document.

Expat can optionally do XML namespace processing for you, enabled by providing a
value for namespace_separator. The value must be a one-character string; a
ValueError will be raised if the string has an illegal length (None
is considered the same as omission). When namespace processing is enabled,
element type names and attribute names that belong to a namespace will be
expanded. The element name passed to the element handlers
StartElementHandler and EndElementHandler will be the
concatenation of the namespace URI, the namespace separator character, and the
local part of the name. If the namespace separator is a zero byte (chr(0))
then the namespace URI and the local part will be concatenated without any
separator.

For example, if namespace_separator is set to a space character (' ') and
the following document is parsed:

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"
 xmlns:py = "http://www.python.org/ns/">
 <py:elem1 />
 <elem2 xmlns="" />
</root>

StartElementHandler will receive the following strings for each
element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

See also

	The Expat XML Parser [http://www.libexpat.org/]

	Home page of the Expat project.

19.5.1. XMLParser Objects

xmlparser objects have the following methods:

	
xmlparser.Parse(data[, isfinal])

	Parses the contents of the string data, calling the appropriate handler
functions to process the parsed data. isfinal must be true on the final call
to this method. data can be the empty string at any time.

	
xmlparser.ParseFile(file)

	Parse XML data reading from the object file. file only needs to provide
the read(nbytes) method, returning the empty string when there’s no more
data.

	
xmlparser.SetBase(base)

	Sets the base to be used for resolving relative URIs in system identifiers in
declarations. Resolving relative identifiers is left to the application: this
value will be passed through as the base argument to the
ExternalEntityRefHandler(), NotationDeclHandler(), and
UnparsedEntityDeclHandler() functions.

	
xmlparser.GetBase()

	Returns a string containing the base set by a previous call to SetBase(),
or None if SetBase() hasn’t been called.

	
xmlparser.GetInputContext()

	Returns the input data that generated the current event as a string. The data is
in the encoding of the entity which contains the text. When called while an
event handler is not active, the return value is None.

New in version 2.1.

	
xmlparser.ExternalEntityParserCreate(context[, encoding])

	Create a “child” parser which can be used to parse an external parsed entity
referred to by content parsed by the parent parser. The context parameter
should be the string passed to the ExternalEntityRefHandler() handler
function, described below. The child parser is created with the
ordered_attributes, returns_unicode and
specified_attributes set to the values of this parser.

	
xmlparser.SetParamEntityParsing(flag)

	Control parsing of parameter entities (including the external DTD subset).
Possible flag values are XML_PARAM_ENTITY_PARSING_NEVER,
XML_PARAM_ENTITY_PARSING_UNLESS_STANDALONE and
XML_PARAM_ENTITY_PARSING_ALWAYS. Return true if setting the flag
was successful.

	
xmlparser.UseForeignDTD([flag])

	Calling this with a true value for flag (the default) will cause Expat to call
the ExternalEntityRefHandler with None for all arguments to
allow an alternate DTD to be loaded. If the document does not contain a
document type declaration, the ExternalEntityRefHandler will still be
called, but the StartDoctypeDeclHandler and
EndDoctypeDeclHandler will not be called.

Passing a false value for flag will cancel a previous call that passed a true
value, but otherwise has no effect.

This method can only be called before the Parse() or ParseFile()
methods are called; calling it after either of those have been called causes
ExpatError to be raised with the code attribute set to
errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING.

New in version 2.3.

xmlparser objects have the following attributes:

	
xmlparser.buffer_size

	The size of the buffer used when buffer_text is true.
A new buffer size can be set by assigning a new integer value
to this attribute.
When the size is changed, the buffer will be flushed.

New in version 2.3.

Changed in version 2.6: The buffer size can now be changed.

	
xmlparser.buffer_text

	Setting this to true causes the xmlparser object to buffer textual
content returned by Expat to avoid multiple calls to the
CharacterDataHandler() callback whenever possible. This can improve
performance substantially since Expat normally breaks character data into chunks
at every line ending. This attribute is false by default, and may be changed at
any time.

New in version 2.3.

	
xmlparser.buffer_used

	If buffer_text is enabled, the number of bytes stored in the buffer.
These bytes represent UTF-8 encoded text. This attribute has no meaningful
interpretation when buffer_text is false.

New in version 2.3.

	
xmlparser.ordered_attributes

	Setting this attribute to a non-zero integer causes the attributes to be
reported as a list rather than a dictionary. The attributes are presented in
the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this
module also used this format.) By default, this attribute is false; it may be
changed at any time.

New in version 2.1.

	
xmlparser.returns_unicode

	If this attribute is set to a non-zero integer, the handler functions will be
passed Unicode strings. If returns_unicode is False, 8-bit
strings containing UTF-8 encoded data will be passed to the handlers. This is
True by default when Python is built with Unicode support.

Changed in version 1.6: Can be changed at any time to affect the result type.

	
xmlparser.specified_attributes

	If set to a non-zero integer, the parser will report only those attributes which
were specified in the document instance and not those which were derived from
attribute declarations. Applications which set this need to be especially
careful to use what additional information is available from the declarations as
needed to comply with the standards for the behavior of XML processors. By
default, this attribute is false; it may be changed at any time.

New in version 2.1.

The following attributes contain values relating to the most recent error
encountered by an xmlparser object, and will only have correct values
once a call to Parse() or ParseFile() has raised a
xml.parsers.expat.ExpatError exception.

	
xmlparser.ErrorByteIndex

	Byte index at which an error occurred.

	
xmlparser.ErrorCode

	Numeric code specifying the problem. This value can be passed to the
ErrorString() function, or compared to one of the constants defined in the
errors object.

	
xmlparser.ErrorColumnNumber

	Column number at which an error occurred.

	
xmlparser.ErrorLineNumber

	Line number at which an error occurred.

The following attributes contain values relating to the current parse location
in an xmlparser object. During a callback reporting a parse event they
indicate the location of the first of the sequence of characters that generated
the event. When called outside of a callback, the position indicated will be
just past the last parse event (regardless of whether there was an associated
callback).

New in version 2.4.

	
xmlparser.CurrentByteIndex

	Current byte index in the parser input.

	
xmlparser.CurrentColumnNumber

	Current column number in the parser input.

	
xmlparser.CurrentLineNumber

	Current line number in the parser input.

Here is the list of handlers that can be set. To set a handler on an
xmlparser object o, use o.handlername = func. handlername must
be taken from the following list, and func must be a callable object accepting
the correct number of arguments. The arguments are all strings, unless
otherwise stated.

	
xmlparser.XmlDeclHandler(version, encoding, standalone)

	Called when the XML declaration is parsed. The XML declaration is the
(optional) declaration of the applicable version of the XML recommendation, the
encoding of the document text, and an optional “standalone” declaration.
version and encoding will be strings of the type dictated by the
returns_unicode attribute, and standalone will be 1 if the
document is declared standalone, 0 if it is declared not to be standalone,
or -1 if the standalone clause was omitted. This is only available with
Expat version 1.95.0 or newer.

New in version 2.1.

	
xmlparser.StartDoctypeDeclHandler(doctypeName, systemId, publicId, has_internal_subset)

	Called when Expat begins parsing the document type declaration (<!DOCTYPE
...). The doctypeName is provided exactly as presented. The systemId and
publicId parameters give the system and public identifiers if specified, or
None if omitted. has_internal_subset will be true if the document
contains and internal document declaration subset. This requires Expat version
1.2 or newer.

	
xmlparser.EndDoctypeDeclHandler()

	Called when Expat is done parsing the document type declaration. This requires
Expat version 1.2 or newer.

	
xmlparser.ElementDeclHandler(name, model)

	Called once for each element type declaration. name is the name of the
element type, and model is a representation of the content model.

	
xmlparser.AttlistDeclHandler(elname, attname, type, default, required)

	Called for each declared attribute for an element type. If an attribute list
declaration declares three attributes, this handler is called three times, once
for each attribute. elname is the name of the element to which the
declaration applies and attname is the name of the attribute declared. The
attribute type is a string passed as type; the possible values are
'CDATA', 'ID', 'IDREF', ... default gives the default value for
the attribute used when the attribute is not specified by the document instance,
or None if there is no default value (#IMPLIED values). If the
attribute is required to be given in the document instance, required will be
true. This requires Expat version 1.95.0 or newer.

	
xmlparser.StartElementHandler(name, attributes)

	Called for the start of every element. name is a string containing the
element name, and attributes is a dictionary mapping attribute names to their
values.

	
xmlparser.EndElementHandler(name)

	Called for the end of every element.

	
xmlparser.ProcessingInstructionHandler(target, data)

	Called for every processing instruction.

	
xmlparser.CharacterDataHandler(data)

	Called for character data. This will be called for normal character data, CDATA
marked content, and ignorable whitespace. Applications which must distinguish
these cases can use the StartCdataSectionHandler,
EndCdataSectionHandler, and ElementDeclHandler callbacks to
collect the required information.

	
xmlparser.UnparsedEntityDeclHandler(entityName, base, systemId, publicId, notationName)

	Called for unparsed (NDATA) entity declarations. This is only present for
version 1.2 of the Expat library; for more recent versions, use
EntityDeclHandler instead. (The underlying function in the Expat
library has been declared obsolete.)

	
xmlparser.EntityDeclHandler(entityName, is_parameter_entity, value, base, systemId, publicId, notationName)

	Called for all entity declarations. For parameter and internal entities,
value will be a string giving the declared contents of the entity; this will
be None for external entities. The notationName parameter will be
None for parsed entities, and the name of the notation for unparsed
entities. is_parameter_entity will be true if the entity is a parameter entity
or false for general entities (most applications only need to be concerned with
general entities). This is only available starting with version 1.95.0 of the
Expat library.

New in version 2.1.

	
xmlparser.NotationDeclHandler(notationName, base, systemId, publicId)

	Called for notation declarations. notationName, base, and systemId, and
publicId are strings if given. If the public identifier is omitted,
publicId will be None.

	
xmlparser.StartNamespaceDeclHandler(prefix, uri)

	Called when an element contains a namespace declaration. Namespace declarations
are processed before the StartElementHandler is called for the element
on which declarations are placed.

	
xmlparser.EndNamespaceDeclHandler(prefix)

	Called when the closing tag is reached for an element that contained a
namespace declaration. This is called once for each namespace declaration on
the element in the reverse of the order for which the
StartNamespaceDeclHandler was called to indicate the start of each
namespace declaration’s scope. Calls to this handler are made after the
corresponding EndElementHandler for the end of the element.

	
xmlparser.CommentHandler(data)

	Called for comments. data is the text of the comment, excluding the leading
‘<!--‘ and trailing ‘-->‘.

	
xmlparser.StartCdataSectionHandler()

	Called at the start of a CDATA section. This and EndCdataSectionHandler
are needed to be able to identify the syntactical start and end for CDATA
sections.

	
xmlparser.EndCdataSectionHandler()

	Called at the end of a CDATA section.

	
xmlparser.DefaultHandler(data)

	Called for any characters in the XML document for which no applicable handler
has been specified. This means characters that are part of a construct which
could be reported, but for which no handler has been supplied.

	
xmlparser.DefaultHandlerExpand(data)

	This is the same as the DefaultHandler(), but doesn’t inhibit expansion
of internal entities. The entity reference will not be passed to the default
handler.

	
xmlparser.NotStandaloneHandler()

	Called if the XML document hasn’t been declared as being a standalone document.
This happens when there is an external subset or a reference to a parameter
entity, but the XML declaration does not set standalone to yes in an XML
declaration. If this handler returns 0, then the parser will raise an
XML_ERROR_NOT_STANDALONE error. If this handler is not set, no
exception is raised by the parser for this condition.

	
xmlparser.ExternalEntityRefHandler(context, base, systemId, publicId)

	Called for references to external entities. base is the current base, as set
by a previous call to SetBase(). The public and system identifiers,
systemId and publicId, are strings if given; if the public identifier is not
given, publicId will be None. The context value is opaque and should
only be used as described below.

For external entities to be parsed, this handler must be implemented. It is
responsible for creating the sub-parser using
ExternalEntityParserCreate(context), initializing it with the appropriate
callbacks, and parsing the entity. This handler should return an integer; if it
returns 0, the parser will raise an
XML_ERROR_EXTERNAL_ENTITY_HANDLING error, otherwise parsing will
continue.

If this handler is not provided, external entities are reported by the
DefaultHandler callback, if provided.

19.5.2. ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

	
ExpatError.code

	Expat’s internal error number for the specific error. This will match one of
the constants defined in the errors object from this module.

New in version 2.1.

	
ExpatError.lineno

	Line number on which the error was detected. The first line is numbered 1.

New in version 2.1.

	
ExpatError.offset

	Character offset into the line where the error occurred. The first column is
numbered 0.

New in version 2.1.

19.5.3. Example

The following program defines three handlers that just print out their
arguments.

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):
 print 'Start element:', name, attrs
def end_element(name):
 print 'End element:', name
def char_data(data):
 print 'Character data:', repr(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""", 1)

The output from this program is:

Start element: parent {'id': 'top'}
Start element: child1 {'name': 'paul'}
Character data: 'Text goes here'
End element: child1
Character data: '\n'
Start element: child2 {'name': 'fred'}
Character data: 'More text'
End element: child2
Character data: '\n'
End element: parent

19.5.4. Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four
values: the type, the quantifier, the name, and a tuple of children. Children
are simply additional content module descriptions.

The values of the first two fields are constants defined in the model object
of the xml.parsers.expat module. These constants can be collected in two
groups: the model type group and the quantifier group.

The constants in the model type group are:

	
xml.parsers.expat.XML_CTYPE_ANY

	The element named by the model name was declared to have a content model of
ANY.

	
xml.parsers.expat.XML_CTYPE_CHOICE

	The named element allows a choice from a number of options; this is used for
content models such as (A | B | C).

	
xml.parsers.expat.XML_CTYPE_EMPTY

	Elements which are declared to be EMPTY have this model type.

	
xml.parsers.expat.XML_CTYPE_MIXED

	

	
xml.parsers.expat.XML_CTYPE_NAME

	

	
xml.parsers.expat.XML_CTYPE_SEQ

	Models which represent a series of models which follow one after the other are
indicated with this model type. This is used for models such as (A, B, C).

The constants in the quantifier group are:

	
xml.parsers.expat.XML_CQUANT_NONE

	No modifier is given, so it can appear exactly once, as for A.

	
xml.parsers.expat.XML_CQUANT_OPT

	The model is optional: it can appear once or not at all, as for A?.

	
xml.parsers.expat.XML_CQUANT_PLUS

	The model must occur one or more times (like A+).

	
xml.parsers.expat.XML_CQUANT_REP

	The model must occur zero or more times, as for A*.

19.5.5. Expat error constants

The following constants are provided in the errors object of the
xml.parsers.expat module. These constants are useful in interpreting
some of the attributes of the ExpatError exception objects raised when an
error has occurred.

The errors object has the following attributes:

	
xml.parsers.expat.XML_ERROR_ASYNC_ENTITY

	

	
xml.parsers.expat.XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

	An entity reference in an attribute value referred to an external entity instead
of an internal entity.

	
xml.parsers.expat.XML_ERROR_BAD_CHAR_REF

	A character reference referred to a character which is illegal in XML (for
example, character 0, or ‘�‘).

	
xml.parsers.expat.XML_ERROR_BINARY_ENTITY_REF

	An entity reference referred to an entity which was declared with a notation, so
cannot be parsed.

	
xml.parsers.expat.XML_ERROR_DUPLICATE_ATTRIBUTE

	An attribute was used more than once in a start tag.

	
xml.parsers.expat.XML_ERROR_INCORRECT_ENCODING

	

	
xml.parsers.expat.XML_ERROR_INVALID_TOKEN

	Raised when an input byte could not properly be assigned to a character; for
example, a NUL byte (value 0) in a UTF-8 input stream.

	
xml.parsers.expat.XML_ERROR_JUNK_AFTER_DOC_ELEMENT

	Something other than whitespace occurred after the document element.

	
xml.parsers.expat.XML_ERROR_MISPLACED_XML_PI

	An XML declaration was found somewhere other than the start of the input data.

	
xml.parsers.expat.XML_ERROR_NO_ELEMENTS

	The document contains no elements (XML requires all documents to contain exactly
one top-level element)..

	
xml.parsers.expat.XML_ERROR_NO_MEMORY

	Expat was not able to allocate memory internally.

	
xml.parsers.expat.XML_ERROR_PARAM_ENTITY_REF

	A parameter entity reference was found where it was not allowed.

	
xml.parsers.expat.XML_ERROR_PARTIAL_CHAR

	An incomplete character was found in the input.

	
xml.parsers.expat.XML_ERROR_RECURSIVE_ENTITY_REF

	An entity reference contained another reference to the same entity; possibly via
a different name, and possibly indirectly.

	
xml.parsers.expat.XML_ERROR_SYNTAX

	Some unspecified syntax error was encountered.

	
xml.parsers.expat.XML_ERROR_TAG_MISMATCH

	An end tag did not match the innermost open start tag.

	
xml.parsers.expat.XML_ERROR_UNCLOSED_TOKEN

	Some token (such as a start tag) was not closed before the end of the stream or
the next token was encountered.

	
xml.parsers.expat.XML_ERROR_UNDEFINED_ENTITY

	A reference was made to a entity which was not defined.

	
xml.parsers.expat.XML_ERROR_UNKNOWN_ENCODING

	The document encoding is not supported by Expat.

	
xml.parsers.expat.XML_ERROR_UNCLOSED_CDATA_SECTION

	A CDATA marked section was not closed.

	
xml.parsers.expat.XML_ERROR_EXTERNAL_ENTITY_HANDLING

	

	
xml.parsers.expat.XML_ERROR_NOT_STANDALONE

	The parser determined that the document was not “standalone” though it declared
itself to be in the XML declaration, and the NotStandaloneHandler was
set and returned 0.

	
xml.parsers.expat.XML_ERROR_UNEXPECTED_STATE

	

	
xml.parsers.expat.XML_ERROR_ENTITY_DECLARED_IN_PE

	

	
xml.parsers.expat.XML_ERROR_FEATURE_REQUIRES_XML_DTD

	An operation was requested that requires DTD support to be compiled in, but
Expat was configured without DTD support. This should never be reported by a
standard build of the xml.parsers.expat module.

	
xml.parsers.expat.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

	A behavioral change was requested after parsing started that can only be changed
before parsing has started. This is (currently) only raised by
UseForeignDTD().

	
xml.parsers.expat.XML_ERROR_UNBOUND_PREFIX

	An undeclared prefix was found when namespace processing was enabled.

	
xml.parsers.expat.XML_ERROR_UNDECLARING_PREFIX

	The document attempted to remove the namespace declaration associated with a
prefix.

	
xml.parsers.expat.XML_ERROR_INCOMPLETE_PE

	A parameter entity contained incomplete markup.

	
xml.parsers.expat.XML_ERROR_XML_DECL

	The document contained no document element at all.

	
xml.parsers.expat.XML_ERROR_TEXT_DECL

	There was an error parsing a text declaration in an external entity.

	
xml.parsers.expat.XML_ERROR_PUBLICID

	Characters were found in the public id that are not allowed.

	
xml.parsers.expat.XML_ERROR_SUSPENDED

	The requested operation was made on a suspended parser, but isn’t allowed. This
includes attempts to provide additional input or to stop the parser.

	
xml.parsers.expat.XML_ERROR_NOT_SUSPENDED

	An attempt to resume the parser was made when the parser had not been suspended.

	
xml.parsers.expat.XML_ERROR_ABORTED

	This should not be reported to Python applications.

	
xml.parsers.expat.XML_ERROR_FINISHED

	The requested operation was made on a parser which was finished parsing input,
but isn’t allowed. This includes attempts to provide additional input or to
stop the parser.

	
xml.parsers.expat.XML_ERROR_SUSPEND_PE

	

Footnotes

	[1]	The encoding string included in XML output should conform to the
appropriate standards. For example, “UTF-8” is valid, but “UTF8” is
not. See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
and http://www.iana.org/assignments/character-sets .

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.6. xml.dom — The Document Object Model API

New in version 2.0.

The Document Object Model, or “DOM,” is a cross-language API from the World Wide
Web Consortium (W3C) for accessing and modifying XML documents. A DOM
implementation presents an XML document as a tree structure, or allows client
code to build such a structure from scratch. It then gives access to the
structure through a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you
a view of one bit of the document at a time. If you are looking at one SAX
element, you have no access to another. If you are looking at a text node, you
have no access to a containing element. When you write a SAX application, you
need to keep track of your program’s position in the document somewhere in your
own code. SAX does not do it for you. Also, if you need to look ahead in the
XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access
to a tree. Of course you could build some sort of tree yourself in SAX events,
but the DOM allows you to avoid writing that code. The DOM is a standard tree
representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in
their terminology. The Python mapping of the API is substantially based on the
DOM Level 2 recommendation.

DOM applications typically start by parsing some XML into a DOM. How this is
accomplished is not covered at all by DOM Level 1, and Level 2 provides only
limited improvements: There is a DOMImplementation object class which
provides access to Document creation methods, but no way to access an
XML reader/parser/Document builder in an implementation-independent way. There
is also no well-defined way to access these methods without an existing
Document object. In Python, each DOM implementation will provide a
function getDOMImplementation(). DOM Level 3 adds a Load/Store
specification, which defines an interface to the reader, but this is not yet
available in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML
document through its properties and methods. These properties are defined in
the DOM specification; this portion of the reference manual describes the
interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript,
and OMG IDL. The Python mapping defined here is based in large part on the IDL
version of the specification, but strict compliance is not required (though
implementations are free to support the strict mapping from IDL). See section
Conformance for a detailed discussion of mapping requirements.

See also

	Document Object Model (DOM) Level 2 Specification [http://www.w3.org/TR/DOM-Level-2-Core/]

	The W3C recommendation upon which the Python DOM API is based.

	Document Object Model (DOM) Level 1 Specification [http://www.w3.org/TR/REC-DOM-Level-1/]

	The W3C recommendation for the DOM supported by xml.dom.minidom.

	Python Language Mapping Specification [http://www.omg.org/spec/PYTH/1.2/PDF]

	This specifies the mapping from OMG IDL to Python.

19.6.1. Module Contents

The xml.dom contains the following functions:

	
xml.dom.registerDOMImplementation(name, factory)

	Register the factory function with the name name. The factory function
should return an object which implements the DOMImplementation
interface. The factory function can return the same object every time, or a new
one for each call, as appropriate for the specific implementation (e.g. if that
implementation supports some customization).

	
xml.dom.getDOMImplementation([name[, features]])

	Return a suitable DOM implementation. The name is either well-known, the
module name of a DOM implementation, or None. If it is not None, imports
the corresponding module and returns a DOMImplementation object if the
import succeeds. If no name is given, and if the environment variable
PYTHON_DOM is set, this variable is used to find the implementation.

If name is not given, this examines the available implementations to find one
with the required feature set. If no implementation can be found, raise an
ImportError. The features list must be a sequence of (feature,
version) pairs which are passed to the hasFeature() method on available
DOMImplementation objects.

Some convenience constants are also provided:

	
xml.dom.EMPTY_NAMESPACE

	The value used to indicate that no namespace is associated with a node in the
DOM. This is typically found as the namespaceURI of a node, or used as
the namespaceURI parameter to a namespaces-specific method.

New in version 2.2.

	
xml.dom.XML_NAMESPACE

	The namespace URI associated with the reserved prefix xml, as defined by
Namespaces in XML [http://www.w3.org/TR/REC-xml-names/] (section 4).

New in version 2.2.

	
xml.dom.XMLNS_NAMESPACE

	The namespace URI for namespace declarations, as defined by Document Object
Model (DOM) Level 2 Core Specification [http://www.w3.org/TR/DOM-Level-2-Core/core.html] (section 1.1.8).

New in version 2.2.

	
xml.dom.XHTML_NAMESPACE

	The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible
HyperText Markup Language [http://www.w3.org/TR/xhtml1/] (section 3.1.1).

New in version 2.2.

In addition, xml.dom contains a base Node class and the DOM
exception classes. The Node class provided by this module does not
implement any of the methods or attributes defined by the DOM specification;
concrete DOM implementations must provide those. The Node class
provided as part of this module does provide the constants used for the
nodeType attribute on concrete Node objects; they are located
within the class rather than at the module level to conform with the DOM
specifications.

19.6.2. Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple
strings. It is fairly rare that you must do this, however, so this usage is not
yet documented.

	Interface
	Section
	Purpose

	DOMImplementation
	DOMImplementation Objects
	Interface to the underlying
implementation.

	Node
	Node Objects
	Base interface for most objects
in a document.

	NodeList
	NodeList Objects
	Interface for a sequence of
nodes.

	DocumentType
	DocumentType Objects
	Information about the
declarations needed to process
a document.

	Document
	Document Objects
	Object which represents an
entire document.

	Element
	Element Objects
	Element nodes in the document
hierarchy.

	Attr
	Attr Objects
	Attribute value nodes on
element nodes.

	Comment
	Comment Objects
	Representation of comments in
the source document.

	Text
	Text and CDATASection Objects
	Nodes containing textual
content from the document.

	ProcessingInstruction
	ProcessingInstruction Objects
	Processing instruction
representation.

An additional section describes the exceptions defined for working with the DOM
in Python.

19.6.2.1. DOMImplementation Objects

The DOMImplementation interface provides a way for applications to
determine the availability of particular features in the DOM they are using.
DOM Level 2 added the ability to create new Document and
DocumentType objects using the DOMImplementation as well.

	
DOMImplementation.hasFeature(feature, version)

	Return true if the feature identified by the pair of strings feature and
version is implemented.

	
DOMImplementation.createDocument(namespaceUri, qualifiedName, doctype)

	Return a new Document object (the root of the DOM), with a child
Element object having the given namespaceUri and qualifiedName. The
doctype must be a DocumentType object created by
createDocumentType(), or None. In the Python DOM API, the first two
arguments can also be None in order to indicate that no Element
child is to be created.

	
DOMImplementation.createDocumentType(qualifiedName, publicId, systemId)

	Return a new DocumentType object that encapsulates the given
qualifiedName, publicId, and systemId strings, representing the
information contained in an XML document type declaration.

19.6.2.2. Node Objects

All of the components of an XML document are subclasses of Node.

	
Node.nodeType

	An integer representing the node type. Symbolic constants for the types are on
the Node object: ELEMENT_NODE, ATTRIBUTE_NODE,
TEXT_NODE, CDATA_SECTION_NODE, ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE, COMMENT_NODE,
DOCUMENT_NODE, DOCUMENT_TYPE_NODE, NOTATION_NODE.
This is a read-only attribute.

	
Node.parentNode

	The parent of the current node, or None for the document node. The value is
always a Node object or None. For Element nodes, this
will be the parent element, except for the root element, in which case it will
be the Document object. For Attr nodes, this is always
None. This is a read-only attribute.

	
Node.attributes

	A NamedNodeMap of attribute objects. Only elements have actual values
for this; others provide None for this attribute. This is a read-only
attribute.

	
Node.previousSibling

	The node that immediately precedes this one with the same parent. For
instance the element with an end-tag that comes just before the self
element’s start-tag. Of course, XML documents are made up of more than just
elements so the previous sibling could be text, a comment, or something else.
If this node is the first child of the parent, this attribute will be
None. This is a read-only attribute.

	
Node.nextSibling

	The node that immediately follows this one with the same parent. See also
previousSibling. If this is the last child of the parent, this
attribute will be None. This is a read-only attribute.

	
Node.childNodes

	A list of nodes contained within this node. This is a read-only attribute.

	
Node.firstChild

	The first child of the node, if there are any, or None. This is a read-only
attribute.

	
Node.lastChild

	The last child of the node, if there are any, or None. This is a read-only
attribute.

	
Node.localName

	The part of the tagName following the colon if there is one, else the
entire tagName. The value is a string.

	
Node.prefix

	The part of the tagName preceding the colon if there is one, else the
empty string. The value is a string, or None

	
Node.namespaceURI

	The namespace associated with the element name. This will be a string or
None. This is a read-only attribute.

	
Node.nodeName

	This has a different meaning for each node type; see the DOM specification for
details. You can always get the information you would get here from another
property such as the tagName property for elements or the name
property for attributes. For all node types, the value of this attribute will be
either a string or None. This is a read-only attribute.

	
Node.nodeValue

	This has a different meaning for each node type; see the DOM specification for
details. The situation is similar to that with nodeName. The value is
a string or None.

	
Node.hasAttributes()

	Returns true if the node has any attributes.

	
Node.hasChildNodes()

	Returns true if the node has any child nodes.

	
Node.isSameNode(other)

	Returns true if other refers to the same node as this node. This is especially
useful for DOM implementations which use any sort of proxy architecture (because
more than one object can refer to the same node).

Note

This is based on a proposed DOM Level 3 API which is still in the “working
draft” stage, but this particular interface appears uncontroversial. Changes
from the W3C will not necessarily affect this method in the Python DOM interface
(though any new W3C API for this would also be supported).

	
Node.appendChild(newChild)

	Add a new child node to this node at the end of the list of
children, returning newChild. If the node was already in
in the tree, it is removed first.

	
Node.insertBefore(newChild, refChild)

	Insert a new child node before an existing child. It must be the case that
refChild is a child of this node; if not, ValueError is raised.
newChild is returned. If refChild is None, it inserts newChild at the
end of the children’s list.

	
Node.removeChild(oldChild)

	Remove a child node. oldChild must be a child of this node; if not,
ValueError is raised. oldChild is returned on success. If oldChild
will not be used further, its unlink() method should be called.

	
Node.replaceChild(newChild, oldChild)

	Replace an existing node with a new node. It must be the case that oldChild
is a child of this node; if not, ValueError is raised.

	
Node.normalize()

	Join adjacent text nodes so that all stretches of text are stored as single
Text instances. This simplifies processing text from a DOM tree for
many applications.

New in version 2.1.

	
Node.cloneNode(deep)

	Clone this node. Setting deep means to clone all child nodes as well. This
returns the clone.

19.6.2.3. NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in
two ways in the DOM Core recommendation: the Element objects provides
one as its list of child nodes, and the getElementsByTagName() and
getElementsByTagNameNS() methods of Node return objects with this
interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these
objects:

	
NodeList.item(i)

	Return the i‘th item from the sequence, if there is one, or None. The
index i is not allowed to be less then zero or greater than or equal to the
length of the sequence.

	
NodeList.length

	The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is
provided to allow NodeList objects to be used as Python sequences. All
NodeList implementations must include support for __len__() and
__getitem__(); this allows iteration over the NodeList in
for statements and proper support for the len() built-in
function.

If a DOM implementation supports modification of the document, the
NodeList implementation must also support the __setitem__() and
__delitem__() methods.

19.6.2.4. DocumentType Objects

Information about the notations and entities declared by a document (including
the external subset if the parser uses it and can provide the information) is
available from a DocumentType object. The DocumentType for a
document is available from the Document object’s doctype
attribute; if there is no DOCTYPE declaration for the document, the
document’s doctype attribute will be set to None instead of an
instance of this interface.

DocumentType is a specialization of Node, and adds the
following attributes:

	
DocumentType.publicId

	The public identifier for the external subset of the document type definition.
This will be a string or None.

	
DocumentType.systemId

	The system identifier for the external subset of the document type definition.
This will be a URI as a string, or None.

	
DocumentType.internalSubset

	A string giving the complete internal subset from the document. This does not
include the brackets which enclose the subset. If the document has no internal
subset, this should be None.

	
DocumentType.name

	The name of the root element as given in the DOCTYPE declaration, if
present.

	
DocumentType.entities

	This is a NamedNodeMap giving the definitions of external entities.
For entity names defined more than once, only the first definition is provided
(others are ignored as required by the XML recommendation). This may be
None if the information is not provided by the parser, or if no entities are
defined.

	
DocumentType.notations

	This is a NamedNodeMap giving the definitions of notations. For
notation names defined more than once, only the first definition is provided
(others are ignored as required by the XML recommendation). This may be
None if the information is not provided by the parser, or if no notations
are defined.

19.6.2.5. Document Objects

A Document represents an entire XML document, including its constituent
elements, attributes, processing instructions, comments etc. Remember that it
inherits properties from Node.

	
Document.documentElement

	The one and only root element of the document.

	
Document.createElement(tagName)

	Create and return a new element node. The element is not inserted into the
document when it is created. You need to explicitly insert it with one of the
other methods such as insertBefore() or appendChild().

	
Document.createElementNS(namespaceURI, tagName)

	Create and return a new element with a namespace. The tagName may have a
prefix. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such as
insertBefore() or appendChild().

	
Document.createTextNode(data)

	Create and return a text node containing the data passed as a parameter. As
with the other creation methods, this one does not insert the node into the
tree.

	
Document.createComment(data)

	Create and return a comment node containing the data passed as a parameter. As
with the other creation methods, this one does not insert the node into the
tree.

	
Document.createProcessingInstruction(target, data)

	Create and return a processing instruction node containing the target and
data passed as parameters. As with the other creation methods, this one does
not insert the node into the tree.

	
Document.createAttribute(name)

	Create and return an attribute node. This method does not associate the
attribute node with any particular element. You must use
setAttributeNode() on the appropriate Element object to use the
newly created attribute instance.

	
Document.createAttributeNS(namespaceURI, qualifiedName)

	Create and return an attribute node with a namespace. The tagName may have a
prefix. This method does not associate the attribute node with any particular
element. You must use setAttributeNode() on the appropriate
Element object to use the newly created attribute instance.

	
Document.getElementsByTagName(tagName)

	Search for all descendants (direct children, children’s children, etc.) with a
particular element type name.

	
Document.getElementsByTagNameNS(namespaceURI, localName)

	Search for all descendants (direct children, children’s children, etc.) with a
particular namespace URI and localname. The localname is the part of the
namespace after the prefix.

19.6.2.6. Element Objects

Element is a subclass of Node, so inherits all the attributes
of that class.

	
Element.tagName

	The element type name. In a namespace-using document it may have colons in it.
The value is a string.

	
Element.getElementsByTagName(tagName)

	Same as equivalent method in the Document class.

	
Element.getElementsByTagNameNS(namespaceURI, localName)

	Same as equivalent method in the Document class.

	
Element.hasAttribute(name)

	Returns true if the element has an attribute named by name.

	
Element.hasAttributeNS(namespaceURI, localName)

	Returns true if the element has an attribute named by namespaceURI and
localName.

	
Element.getAttribute(name)

	Return the value of the attribute named by name as a string. If no such
attribute exists, an empty string is returned, as if the attribute had no value.

	
Element.getAttributeNode(attrname)

	Return the Attr node for the attribute named by attrname.

	
Element.getAttributeNS(namespaceURI, localName)

	Return the value of the attribute named by namespaceURI and localName as a
string. If no such attribute exists, an empty string is returned, as if the
attribute had no value.

	
Element.getAttributeNodeNS(namespaceURI, localName)

	Return an attribute value as a node, given a namespaceURI and localName.

	
Element.removeAttribute(name)

	Remove an attribute by name. If there is no matching attribute, a
NotFoundErr is raised.

	
Element.removeAttributeNode(oldAttr)

	Remove and return oldAttr from the attribute list, if present. If oldAttr is
not present, NotFoundErr is raised.

	
Element.removeAttributeNS(namespaceURI, localName)

	Remove an attribute by name. Note that it uses a localName, not a qname. No
exception is raised if there is no matching attribute.

	
Element.setAttribute(name, value)

	Set an attribute value from a string.

	
Element.setAttributeNode(newAttr)

	Add a new attribute node to the element, replacing an existing attribute if
necessary if the name attribute matches. If a replacement occurs, the
old attribute node will be returned. If newAttr is already in use,
InuseAttributeErr will be raised.

	
Element.setAttributeNodeNS(newAttr)

	Add a new attribute node to the element, replacing an existing attribute if
necessary if the namespaceURI and localName attributes match.
If a replacement occurs, the old attribute node will be returned. If newAttr
is already in use, InuseAttributeErr will be raised.

	
Element.setAttributeNS(namespaceURI, qname, value)

	Set an attribute value from a string, given a namespaceURI and a qname.
Note that a qname is the whole attribute name. This is different than above.

19.6.2.7. Attr Objects

Attr inherits from Node, so inherits all its attributes.

	
Attr.name

	The attribute name.
In a namespace-using document it may include a colon.

	
Attr.localName

	The part of the name following the colon if there is one, else the
entire name.
This is a read-only attribute.

	
Attr.prefix

	The part of the name preceding the colon if there is one, else the
empty string.

	
Attr.value

	The text value of the attribute. This is a synonym for the
nodeValue attribute.

19.6.2.8. NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

	
NamedNodeMap.length

	The length of the attribute list.

	
NamedNodeMap.item(index)

	Return an attribute with a particular index. The order you get the attributes
in is arbitrary but will be consistent for the life of a DOM. Each item is an
attribute node. Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior.
You can use them or you can use the standardized getAttribute*() family
of methods on the Element objects.

19.6.2.9. Comment Objects

Comment represents a comment in the XML document. It is a subclass of
Node, but cannot have child nodes.

	
Comment.data

	The content of the comment as a string. The attribute contains all characters
between the leading <!-- and trailing -->, but does not
include them.

19.6.2.10. Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser
and DOM implementation support the DOM’s XML extension, portions of the text
enclosed in CDATA marked sections are stored in CDATASection objects.
These two interfaces are identical, but provide different values for the
nodeType attribute.

These interfaces extend the Node interface. They cannot have child
nodes.

	
Text.data

	The content of the text node as a string.

Note

The use of a CDATASection node does not indicate that the node
represents a complete CDATA marked section, only that the content of the node
was part of a CDATA section. A single CDATA section may be represented by more
than one node in the document tree. There is no way to determine whether two
adjacent CDATASection nodes represent different CDATA marked sections.

19.6.2.11. ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the
Node interface and cannot have child nodes.

	
ProcessingInstruction.target

	The content of the processing instruction up to the first whitespace character.
This is a read-only attribute.

	
ProcessingInstruction.data

	The content of the processing instruction following the first whitespace
character.

19.6.2.12. Exceptions

New in version 2.1.

The DOM Level 2 recommendation defines a single exception, DOMException,
and a number of constants that allow applications to determine what sort of
error occurred. DOMException instances carry a code attribute
that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of
exceptions so that a specific exception exists for each of the exception codes
defined by the DOM. The implementations must raise the appropriate specific
exception, each of which carries the appropriate value for the code
attribute.

	
exception xml.dom.DOMException

	Base exception class used for all specific DOM exceptions. This exception class
cannot be directly instantiated.

	
exception xml.dom.DomstringSizeErr

	Raised when a specified range of text does not fit into a string. This is not
known to be used in the Python DOM implementations, but may be received from DOM
implementations not written in Python.

	
exception xml.dom.HierarchyRequestErr

	Raised when an attempt is made to insert a node where the node type is not
allowed.

	
exception xml.dom.IndexSizeErr

	Raised when an index or size parameter to a method is negative or exceeds the
allowed values.

	
exception xml.dom.InuseAttributeErr

	Raised when an attempt is made to insert an Attr node that is already
present elsewhere in the document.

	
exception xml.dom.InvalidAccessErr

	Raised if a parameter or an operation is not supported on the underlying object.

	
exception xml.dom.InvalidCharacterErr

	This exception is raised when a string parameter contains a character that is
not permitted in the context it’s being used in by the XML 1.0 recommendation.
For example, attempting to create an Element node with a space in the
element type name will cause this error to be raised.

	
exception xml.dom.InvalidModificationErr

	Raised when an attempt is made to modify the type of a node.

	
exception xml.dom.InvalidStateErr

	Raised when an attempt is made to use an object that is not defined or is no
longer usable.

	
exception xml.dom.NamespaceErr

	If an attempt is made to change any object in a way that is not permitted with
regard to the Namespaces in XML [http://www.w3.org/TR/REC-xml-names/]
recommendation, this exception is raised.

	
exception xml.dom.NotFoundErr

	Exception when a node does not exist in the referenced context. For example,
NamedNodeMap.removeNamedItem() will raise this if the node passed in does
not exist in the map.

	
exception xml.dom.NotSupportedErr

	Raised when the implementation does not support the requested type of object or
operation.

	
exception xml.dom.NoDataAllowedErr

	This is raised if data is specified for a node which does not support data.

	
exception xml.dom.NoModificationAllowedErr

	Raised on attempts to modify an object where modifications are not allowed (such
as for read-only nodes).

	
exception xml.dom.SyntaxErr

	Raised when an invalid or illegal string is specified.

	
exception xml.dom.WrongDocumentErr

	Raised when a node is inserted in a different document than it currently belongs
to, and the implementation does not support migrating the node from one document
to the other.

The exception codes defined in the DOM recommendation map to the exceptions
described above according to this table:

	Constant
	Exception

	DOMSTRING_SIZE_ERR
	DomstringSizeErr

	HIERARCHY_REQUEST_ERR
	HierarchyRequestErr

	INDEX_SIZE_ERR
	IndexSizeErr

	INUSE_ATTRIBUTE_ERR
	InuseAttributeErr

	INVALID_ACCESS_ERR
	InvalidAccessErr

	INVALID_CHARACTER_ERR
	InvalidCharacterErr

	INVALID_MODIFICATION_ERR
	InvalidModificationErr

	INVALID_STATE_ERR
	InvalidStateErr

	NAMESPACE_ERR
	NamespaceErr

	NOT_FOUND_ERR
	NotFoundErr

	NOT_SUPPORTED_ERR
	NotSupportedErr

	NO_DATA_ALLOWED_ERR
	NoDataAllowedErr

	NO_MODIFICATION_ALLOWED_ERR
	NoModificationAllowedErr

	SYNTAX_ERR
	SyntaxErr

	WRONG_DOCUMENT_ERR
	WrongDocumentErr

19.6.3. Conformance

This section describes the conformance requirements and relationships between
the Python DOM API, the W3C DOM recommendations, and the OMG IDL mapping for
Python.

19.6.3.1. Type Mapping

The primitive IDL types used in the DOM specification are mapped to Python types
according to the following table.

	IDL Type
	Python Type

	boolean
	IntegerType (with a value of 0 or
1)

	int
	IntegerType

	long int
	IntegerType

	unsigned int
	IntegerType

Additionally, the DOMString defined in the recommendation is mapped to
a Python string or Unicode string. Applications should be able to handle
Unicode whenever a string is returned from the DOM.

The IDL null value is mapped to None, which may be accepted or
provided by the implementation whenever null is allowed by the API.

19.6.3.2. Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL
attribute declarations in much the way the Java mapping does.
Mapping the IDL declarations

readonly attribute string someValue;
 attribute string anotherValue;

yields three accessor functions: a “get” method for someValue
(_get_someValue()), and “get” and “set” methods for anotherValue
(_get_anotherValue() and _set_anotherValue()). The mapping, in
particular, does not require that the IDL attributes are accessible as normal
Python attributes: object.someValue is not required to work, and may
raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work.
This means that the typical surrogates generated by Python IDL compilers are not
likely to work, and wrapper objects may be needed on the client if the DOM
objects are accessed via CORBA. While this does require some additional
consideration for CORBA DOM clients, the implementers with experience using DOM
over CORBA from Python do not consider this a problem. Attributes that are
declared readonly may not restrict write access in all DOM
implementations.

In the Python DOM API, accessor functions are not required. If provided, they
should take the form defined by the Python IDL mapping, but these methods are
considered unnecessary since the attributes are accessible directly from Python.
“Set” accessors should never be provided for readonly attributes.

The IDL definitions do not fully embody the requirements of the W3C DOM API,
such as the notion of certain objects, such as the return value of
getElementsByTagName(), being “live”. The Python DOM API does not require
implementations to enforce such requirements.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.7. xml.dom.minidom — Lightweight DOM implementation

New in version 2.0.

xml.dom.minidom is a light-weight implementation of the Document Object
Model interface. It is intended to be simpler than the full DOM and also
significantly smaller.

DOM applications typically start by parsing some XML into a DOM. With
xml.dom.minidom, this is done through the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse('c:\\temp\\mydata.xml') # parse an XML file by name

datasource = open('c:\\temp\\mydata.xml')
dom2 = parse(datasource) # parse an open file

dom3 = parseString('<myxml>Some data<empty/> some more data</myxml>')

The parse() function can take either a filename or an open file object.

	
xml.dom.minidom.parse(filename_or_file[, parser[, bufsize]])

	Return a Document from the given input. filename_or_file may be
either a file name, or a file-like object. parser, if given, must be a SAX2
parser object. This function will change the document handler of the parser and
activate namespace support; other parser configuration (like setting an entity
resolver) must have been done in advance.

If you have XML in a string, you can use the parseString() function
instead:

	
xml.dom.minidom.parseString(string[, parser])

	Return a Document that represents the string. This method creates a
StringIO object for the string and passes that on to parse().

Both functions return a Document object representing the content of the
document.

What the parse() and parseString() functions do is connect an XML
parser with a “DOM builder” that can accept parse events from any SAX parser and
convert them into a DOM tree. The name of the functions are perhaps misleading,
but are easy to grasp when learning the interfaces. The parsing of the document
will be completed before these functions return; it’s simply that these
functions do not provide a parser implementation themselves.

You can also create a Document by calling a method on a “DOM
Implementation” object. You can get this object either by calling the
getDOMImplementation() function in the xml.dom package or the
xml.dom.minidom module. Using the implementation from the
xml.dom.minidom module will always return a Document instance
from the minidom implementation, while the version from xml.dom may
provide an alternate implementation (this is likely if you have the PyXML
package [http://pyxml.sourceforge.net/] installed). Once you have a
Document, you can add child nodes to it to populate the DOM:

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)
top_element = newdoc.documentElement
text = newdoc.createTextNode('Some textual content.')
top_element.appendChild(text)

Once you have a DOM document object, you can access the parts of your XML
document through its properties and methods. These properties are defined in
the DOM specification. The main property of the document object is the
documentElement property. It gives you the main element in the XML
document: the one that holds all others. Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM tree, you may optionally call the
unlink() method to encourage early cleanup of the now-unneeded
objects. unlink() is a xml.dom.minidom-specific
extension to the DOM API that renders the node and its descendants are
essentially useless. Otherwise, Python’s garbage collector will
eventually take care of the objects in the tree.

See also

	Document Object Model (DOM) Level 1 Specification [http://www.w3.org/TR/REC-DOM-Level-1/]

	The W3C recommendation for the DOM supported by xml.dom.minidom.

19.7.1. DOM Objects

The definition of the DOM API for Python is given as part of the xml.dom
module documentation. This section lists the differences between the API and
xml.dom.minidom.

	
Node.unlink()

	Break internal references within the DOM so that it will be garbage collected on
versions of Python without cyclic GC. Even when cyclic GC is available, using
this can make large amounts of memory available sooner, so calling this on DOM
objects as soon as they are no longer needed is good practice. This only needs
to be called on the Document object, but may be called on child nodes
to discard children of that node.

	
Node.writexml(writer[, indent=""[, addindent=""[, newl=""]]])

	Write XML to the writer object. The writer should have a write() method
which matches that of the file object interface. The indent parameter is the
indentation of the current node. The addindent parameter is the incremental
indentation to use for subnodes of the current one. The newl parameter
specifies the string to use to terminate newlines.

For the Document node, an additional keyword argument encoding can
be used to specify the encoding field of the XML header.

Changed in version 2.1: The optional keyword parameters indent, addindent, and newl were added to
support pretty output.

Changed in version 2.3: For the Document node, an additional keyword argument
encoding can be used to specify the encoding field of the XML header.

	
Node.toxml([encoding])

	Return the XML that the DOM represents as a string.

With no argument, the XML header does not specify an encoding, and the result is
Unicode string if the default encoding cannot represent all characters in the
document. Encoding this string in an encoding other than UTF-8 is likely
incorrect, since UTF-8 is the default encoding of XML.

With an explicit encoding [1] argument, the result is a byte string in the
specified encoding. It is recommended that this argument is always specified. To
avoid UnicodeError exceptions in case of unrepresentable text data, the
encoding argument should be specified as “utf-8”.

Changed in version 2.3: the encoding argument was introduced; see writexml().

	
Node.toprettyxml([indent=""[, newl=""[, encoding=""]]])

	Return a pretty-printed version of the document. indent specifies the
indentation string and defaults to a tabulator; newl specifies the string
emitted at the end of each line and defaults to \n.

New in version 2.1.

Changed in version 2.3: the encoding argument was introduced; see writexml().

The following standard DOM methods have special considerations with
xml.dom.minidom:

	
Node.cloneNode(deep)

	Although this method was present in the version of xml.dom.minidom
packaged with Python 2.0, it was seriously broken. This has been corrected for
subsequent releases.

19.7.2. DOM Example

This example program is a fairly realistic example of a simple program. In this
particular case, we do not take much advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

def getText(nodelist):
 rc = []
 for node in nodelist:
 if node.nodeType == node.TEXT_NODE:
 rc.append(node.data)
 return ''.join(rc)

def handleSlideshow(slideshow):
 print "<html>"
 handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
 slides = slideshow.getElementsByTagName("slide")
 handleToc(slides)
 handleSlides(slides)
 print "</html>"

def handleSlides(slides):
 for slide in slides:
 handleSlide(slide)

def handleSlide(slide):
 handleSlideTitle(slide.getElementsByTagName("title")[0])
 handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
 print "<title>%s</title>" % getText(title.childNodes)

def handleSlideTitle(title):
 print "<h2>%s</h2>" % getText(title.childNodes)

def handlePoints(points):
 print ""
 for point in points:
 handlePoint(point)
 print ""

def handlePoint(point):
 print "%s" % getText(point.childNodes)

def handleToc(slides):
 for slide in slides:
 title = slide.getElementsByTagName("title")[0]
 print "<p>%s</p>" % getText(title.childNodes)

handleSlideshow(dom)

19.7.3. minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with
some DOM 2 features (primarily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping
rules apply:

	Interfaces are accessed through instance objects. Applications should not
instantiate the classes themselves; they should use the creator functions
available on the Document object. Derived interfaces support all
operations (and attributes) from the base interfaces, plus any new operations.

	Operations are used as methods. Since the DOM uses only in
parameters, the arguments are passed in normal order (from left to right).
There are no optional arguments. void operations return None.

	IDL attributes map to instance attributes. For compatibility with the OMG IDL
language mapping for Python, an attribute foo can also be accessed through
accessor methods _get_foo() and _set_foo(). readonly
attributes must not be changed; this is not enforced at runtime.

	The types short int, unsigned int, unsigned long long, and
boolean all map to Python integer objects.

	The type DOMString maps to Python strings. xml.dom.minidom supports
either byte or Unicode strings, but will normally produce Unicode strings.
Values of type DOMString may also be None where allowed to have the IDL
null value by the DOM specification from the W3C.

	const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE); they must not be changed.

	DOMException is currently not supported in xml.dom.minidom.
Instead, xml.dom.minidom uses standard Python exceptions such as
TypeError and AttributeError.

	NodeList objects are implemented using Python’s built-in list type.
Starting with Python 2.2, these objects provide the interface defined in the DOM
specification, but with earlier versions of Python they do not support the
official API. They are, however, much more “Pythonic” than the interface
defined in the W3C recommendations.

The following interfaces have no implementation in xml.dom.minidom:

	DOMTimeStamp

	DocumentType (added in Python 2.1)

	DOMImplementation (added in Python 2.1)

	CharacterData

	CDATASection

	Notation

	Entity

	EntityReference

	DocumentFragment

Most of these reflect information in the XML document that is not of general
utility to most DOM users.

Footnotes

	[1]	The encoding string included in XML output should conform to the
appropriate standards. For example, “UTF-8” is valid, but “UTF8” is
not. See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
and http://www.iana.org/assignments/character-sets .

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.8. xml.dom.pulldom — Support for building partial DOM trees

New in version 2.0.

xml.dom.pulldom allows building only selected portions of a Document
Object Model representation of a document from SAX events.

	
class xml.dom.pulldom.PullDOM([documentFactory])

	xml.sax.handler.ContentHandler implementation that ...

	
class xml.dom.pulldom.DOMEventStream(stream, parser, bufsize)

	...

	
class xml.dom.pulldom.SAX2DOM([documentFactory])

	xml.sax.handler.ContentHandler implementation that ...

	
xml.dom.pulldom.parse(stream_or_string[, parser[, bufsize]])

	...

	
xml.dom.pulldom.parseString(string[, parser])

	...

	
xml.dom.pulldom.default_bufsize

	Default value for the bufsize parameter to parse().

Changed in version 2.1: The value of this variable can be changed before calling parse() and the
new value will take effect.

19.8.1. DOMEventStream Objects

	
DOMEventStream.getEvent()

	...

	
DOMEventStream.expandNode(node)

	...

	
DOMEventStream.reset()

	...

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.9. xml.sax — Support for SAX2 parsers

New in version 2.0.

The xml.sax package provides a number of modules which implement the
Simple API for XML (SAX) interface for Python. The package itself provides the
SAX exceptions and the convenience functions which will be most used by users of
the SAX API.

The convenience functions are:

	
xml.sax.make_parser([parser_list])

	Create and return a SAX XMLReader object. The first parser found will
be used. If parser_list is provided, it must be a sequence of strings which
name modules that have a function named create_parser(). Modules listed
in parser_list will be used before modules in the default list of parsers.

	
xml.sax.parse(filename_or_stream, handler[, error_handler])

	Create a SAX parser and use it to parse a document. The document, passed in as
filename_or_stream, can be a filename or a file object. The handler
parameter needs to be a SAX ContentHandler instance. If
error_handler is given, it must be a SAX ErrorHandler instance; if
omitted, SAXParseException will be raised on all errors. There is no
return value; all work must be done by the handler passed in.

	
xml.sax.parseString(string, handler[, error_handler])

	Similar to parse(), but parses from a buffer string received as a
parameter.

A typical SAX application uses three kinds of objects: readers, handlers and
input sources. “Reader” in this context is another term for parser, i.e. some
piece of code that reads the bytes or characters from the input source, and
produces a sequence of events. The events then get distributed to the handler
objects, i.e. the reader invokes a method on the handler. A SAX application
must therefore obtain a reader object, create or open the input sources, create
the handlers, and connect these objects all together. As the final step of
preparation, the reader is called to parse the input. During parsing, methods on
the handler objects are called based on structural and syntactic events from the
input data.

For these objects, only the interfaces are relevant; they are normally not
instantiated by the application itself. Since Python does not have an explicit
notion of interface, they are formally introduced as classes, but applications
may use implementations which do not inherit from the provided classes. The
InputSource, Locator, Attributes,
AttributesNS, and XMLReader interfaces are defined in the
module xml.sax.xmlreader. The handler interfaces are defined in
xml.sax.handler. For convenience, InputSource (which is often
instantiated directly) and the handler classes are also available from
xml.sax. These interfaces are described below.

In addition to these classes, xml.sax provides the following exception
classes.

	
exception xml.sax.SAXException(msg[, exception])

	Encapsulate an XML error or warning. This class can contain basic error or
warning information from either the XML parser or the application: it can be
subclassed to provide additional functionality or to add localization. Note
that although the handlers defined in the ErrorHandler interface
receive instances of this exception, it is not required to actually raise the
exception — it is also useful as a container for information.

When instantiated, msg should be a human-readable description of the error.
The optional exception parameter, if given, should be None or an exception
that was caught by the parsing code and is being passed along as information.

This is the base class for the other SAX exception classes.

	
exception xml.sax.SAXParseException(msg, exception, locator)

	Subclass of SAXException raised on parse errors. Instances of this class
are passed to the methods of the SAX ErrorHandler interface to provide
information about the parse error. This class supports the SAX Locator
interface as well as the SAXException interface.

	
exception xml.sax.SAXNotRecognizedException(msg[, exception])

	Subclass of SAXException raised when a SAX XMLReader is
confronted with an unrecognized feature or property. SAX applications and
extensions may use this class for similar purposes.

	
exception xml.sax.SAXNotSupportedException(msg[, exception])

	Subclass of SAXException raised when a SAX XMLReader is asked to
enable a feature that is not supported, or to set a property to a value that the
implementation does not support. SAX applications and extensions may use this
class for similar purposes.

See also

	SAX: The Simple API for XML [http://www.saxproject.org/]

	This site is the focal point for the definition of the SAX API. It provides a
Java implementation and online documentation. Links to implementations and
historical information are also available.

	Module xml.sax.handler

	Definitions of the interfaces for application-provided objects.

	Module xml.sax.saxutils

	Convenience functions for use in SAX applications.

	Module xml.sax.xmlreader

	Definitions of the interfaces for parser-provided objects.

19.9.1. SAXException Objects

The SAXException exception class supports the following methods:

	
SAXException.getMessage()

	Return a human-readable message describing the error condition.

	
SAXException.getException()

	Return an encapsulated exception object, or None.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.10. xml.sax.handler — Base classes for SAX handlers

New in version 2.0.

The SAX API defines four kinds of handlers: content handlers, DTD handlers,
error handlers, and entity resolvers. Applications normally only need to
implement those interfaces whose events they are interested in; they can
implement the interfaces in a single object or in multiple objects. Handler
implementations should inherit from the base classes provided in the module
xml.sax.handler, so that all methods get default implementations.

	
class xml.sax.handler.ContentHandler

	This is the main callback interface in SAX, and the one most important to
applications. The order of events in this interface mirrors the order of the
information in the document.

	
class xml.sax.handler.DTDHandler

	Handle DTD events.

This interface specifies only those DTD events required for basic parsing
(unparsed entities and attributes).

	
class xml.sax.handler.EntityResolver

	Basic interface for resolving entities. If you create an object implementing
this interface, then register the object with your Parser, the parser will call
the method in your object to resolve all external entities.

	
class xml.sax.handler.ErrorHandler

	Interface used by the parser to present error and warning messages to the
application. The methods of this object control whether errors are immediately
converted to exceptions or are handled in some other way.

In addition to these classes, xml.sax.handler provides symbolic constants
for the feature and property names.

	
xml.sax.handler.feature_namespaces

	
value: "http://xml.org/sax/features/namespaces"

true: Perform Namespace processing.

false: Optionally do not perform Namespace processing (implies
namespace-prefixes; default).

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.feature_namespace_prefixes

	
value: "http://xml.org/sax/features/namespace-prefixes"

true: Report the original prefixed names and attributes used for Namespace
declarations.

false: Do not report attributes used for Namespace declarations, and
optionally do not report original prefixed names (default).

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.feature_string_interning

	
value: "http://xml.org/sax/features/string-interning"

true: All element names, prefixes, attribute names, Namespace URIs, and
local names are interned using the built-in intern function.

false: Names are not necessarily interned, although they may be (default).

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.feature_validation

	
value: "http://xml.org/sax/features/validation"

true: Report all validation errors (implies external-general-entities and
external-parameter-entities).

false: Do not report validation errors.

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.feature_external_ges

	
value: "http://xml.org/sax/features/external-general-entities"

true: Include all external general (text) entities.

false: Do not include external general entities.

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.feature_external_pes

	
value: "http://xml.org/sax/features/external-parameter-entities"

true: Include all external parameter entities, including the external DTD
subset.

false: Do not include any external parameter entities, even the external
DTD subset.

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.all_features

	List of all features.

	
xml.sax.handler.property_lexical_handler

	
value: "http://xml.org/sax/properties/lexical-handler"

data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)

description: An optional extension handler for lexical events like
comments.

access: read/write

	
xml.sax.handler.property_declaration_handler

	
value: "http://xml.org/sax/properties/declaration-handler"

data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)

description: An optional extension handler for DTD-related events other
than notations and unparsed entities.

access: read/write

	
xml.sax.handler.property_dom_node

	
value: "http://xml.org/sax/properties/dom-node"

data type: org.w3c.dom.Node (not supported in Python 2)

description: When parsing, the current DOM node being visited if this is
a DOM iterator; when not parsing, the root DOM node for iteration.

access: (parsing) read-only; (not parsing) read/write

	
xml.sax.handler.property_xml_string

	
value: "http://xml.org/sax/properties/xml-string"

data type: String

description: The literal string of characters that was the source for the
current event.

access: read-only

	
xml.sax.handler.all_properties

	List of all known property names.

19.10.1. ContentHandler Objects

Users are expected to subclass ContentHandler to support their
application. The following methods are called by the parser on the appropriate
events in the input document:

	
ContentHandler.setDocumentLocator(locator)

	Called by the parser to give the application a locator for locating the origin
of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a
locator: if it does so, it must supply the locator to the application by
invoking this method before invoking any of the other methods in the
DocumentHandler interface.

The locator allows the application to determine the end position of any
document-related event, even if the parser is not reporting an error. Typically,
the application will use this information for reporting its own errors (such as
character content that does not match an application’s business rules). The
information returned by the locator is probably not sufficient for use with a
search engine.

Note that the locator will return correct information only during the invocation
of the events in this interface. The application should not attempt to use it at
any other time.

	
ContentHandler.startDocument()

	Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in
this interface or in DTDHandler (except for setDocumentLocator()).

	
ContentHandler.endDocument()

	Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method
invoked during the parse. The parser shall not invoke this method until it has
either abandoned parsing (because of an unrecoverable error) or reached the end
of input.

	
ContentHandler.startPrefixMapping(prefix, uri)

	Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace
processing: the SAX XML reader will automatically replace prefixes for element
and attribute names when the feature_namespaces feature is enabled (the
default).

There are cases, however, when applications need to use prefixes in character
data or in attribute values, where they cannot safely be expanded automatically;
the startPrefixMapping() and endPrefixMapping() events supply the
information to the application to expand prefixes in those contexts itself, if
necessary.

Note that startPrefixMapping() and endPrefixMapping() events are not
guaranteed to be properly nested relative to each-other: all
startPrefixMapping() events will occur before the corresponding
startElement() event, and all endPrefixMapping() events will occur
after the corresponding endElement() event, but their order is not
guaranteed.

	
ContentHandler.endPrefixMapping(prefix)

	End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after
the corresponding endElement() event, but the order of
endPrefixMapping() events is not otherwise guaranteed.

	
ContentHandler.startElement(name, attrs)

	Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a
string and the attrs parameter holds an object of the Attributes
interface (see The Attributes Interface) containing the attributes of
the element. The object passed as attrs may be re-used by the parser; holding
on to a reference to it is not a reliable way to keep a copy of the attributes.
To keep a copy of the attributes, use the copy() method of the attrs
object.

	
ContentHandler.endElement(name)

	Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the
startElement() event.

	
ContentHandler.startElementNS(name, qname, attrs)

	Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri,
localname) tuple, the qname parameter contains the raw XML 1.0 name used in
the source document, and the attrs parameter holds an instance of the
AttributesNS interface (see The AttributesNS Interface)
containing the attributes of the element. If no namespace is associated with
the element, the uri component of name will be None. The object passed
as attrs may be re-used by the parser; holding on to a reference to it is not
a reliable way to keep a copy of the attributes. To keep a copy of the
attributes, use the copy() method of the attrs object.

Parsers may set the qname parameter to None, unless the
feature_namespace_prefixes feature is activated.

	
ContentHandler.endElementNS(name, qname)

	Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the
startElementNS() method, likewise the qname parameter.

	
ContentHandler.characters(content)

	Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX
parsers may return all contiguous character data in a single chunk, or they may
split it into several chunks; however, all of the characters in any single event
must come from the same external entity so that the Locator provides useful
information.

content may be a Unicode string or a byte string; the expat reader module
produces always Unicode strings.

Note

The earlier SAX 1 interface provided by the Python XML Special Interest Group
used a more Java-like interface for this method. Since most parsers used from
Python did not take advantage of the older interface, the simpler signature was
chosen to replace it. To convert old code to the new interface, use content
instead of slicing content with the old offset and length parameters.

	
ContentHandler.ignorableWhitespace(whitespace)

	Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable
whitespace (see the W3C XML 1.0 recommendation, section 2.10): non-validating
parsers may also use this method if they are capable of parsing and using
content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may
split it into several chunks; however, all of the characters in any single event
must come from the same external entity, so that the Locator provides useful
information.

	
ContentHandler.processingInstruction(target, data)

	Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found:
note that processing instructions may occur before or after the main document
element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a
text declaration (XML 1.0, section 4.3.1) using this method.

	
ContentHandler.skippedEntity(name)

	Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating
processors may skip entities if they have not seen the declarations (because,
for example, the entity was declared in an external DTD subset). All processors
may skip external entities, depending on the values of the
feature_external_ges and the feature_external_pes properties.

19.10.2. DTDHandler Objects

DTDHandler instances provide the following methods:

	
DTDHandler.notationDecl(name, publicId, systemId)

	Handle a notation declaration event.

	
DTDHandler.unparsedEntityDecl(name, publicId, systemId, ndata)

	Handle an unparsed entity declaration event.

19.10.3. EntityResolver Objects

	
EntityResolver.resolveEntity(publicId, systemId)

	Resolve the system identifier of an entity and return either the system
identifier to read from as a string, or an InputSource to read from. The default
implementation returns systemId.

19.10.4. ErrorHandler Objects

Objects with this interface are used to receive error and warning information
from the XMLReader. If you create an object that implements this
interface, then register the object with your XMLReader, the parser
will call the methods in your object to report all warnings and errors. There
are three levels of errors available: warnings, (possibly) recoverable errors,
and unrecoverable errors. All methods take a SAXParseException as the
only parameter. Errors and warnings may be converted to an exception by raising
the passed-in exception object.

	
ErrorHandler.error(exception)

	Called when the parser encounters a recoverable error. If this method does not
raise an exception, parsing may continue, but further document information
should not be expected by the application. Allowing the parser to continue may
allow additional errors to be discovered in the input document.

	
ErrorHandler.fatalError(exception)

	Called when the parser encounters an error it cannot recover from; parsing is
expected to terminate when this method returns.

	
ErrorHandler.warning(exception)

	Called when the parser presents minor warning information to the application.
Parsing is expected to continue when this method returns, and document
information will continue to be passed to the application. Raising an exception
in this method will cause parsing to end.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.11. xml.sax.saxutils — SAX Utilities

New in version 2.0.

The module xml.sax.saxutils contains a number of classes and functions
that are commonly useful when creating SAX applications, either in direct use,
or as base classes.

	
xml.sax.saxutils.escape(data[, entities])

	Escape '&', '<', and '>' in a string of data.

You can escape other strings of data by passing a dictionary as the optional
entities parameter. The keys and values must all be strings; each key will be
replaced with its corresponding value. The characters '&', '<' and
'>' are always escaped, even if entities is provided.

	
xml.sax.saxutils.unescape(data[, entities])

	Unescape '&', '<', and '>' in a string of data.

You can unescape other strings of data by passing a dictionary as the optional
entities parameter. The keys and values must all be strings; each key will be
replaced with its corresponding value. '&', '<', and '>'
are always unescaped, even if entities is provided.

New in version 2.3.

	
xml.sax.saxutils.quoteattr(data[, entities])

	Similar to escape(), but also prepares data to be used as an
attribute value. The return value is a quoted version of data with any
additional required replacements. quoteattr() will select a quote
character based on the content of data, attempting to avoid encoding any
quote characters in the string. If both single- and double-quote characters
are already in data, the double-quote characters will be encoded and data
will be wrapped in double-quotes. The resulting string can be used directly
as an attribute value:

>>> print "<element attr=%s>" % quoteattr("ab ' cd \" ef")
<element attr="ab ' cd " ef">

This function is useful when generating attribute values for HTML or any SGML
using the reference concrete syntax.

New in version 2.2.

	
class xml.sax.saxutils.XMLGenerator([out[, encoding]])

	This class implements the ContentHandler interface by writing SAX
events back into an XML document. In other words, using an XMLGenerator
as the content handler will reproduce the original document being parsed. out
should be a file-like object which will default to sys.stdout. encoding is
the encoding of the output stream which defaults to 'iso-8859-1'.

	
class xml.sax.saxutils.XMLFilterBase(base)

	This class is designed to sit between an XMLReader and the client
application’s event handlers. By default, it does nothing but pass requests up
to the reader and events on to the handlers unmodified, but subclasses can
override specific methods to modify the event stream or the configuration
requests as they pass through.

	
xml.sax.saxutils.prepare_input_source(source[, base])

	This function takes an input source and an optional base URL and returns a fully
resolved InputSource object ready for reading. The input source can be
given as a string, a file-like object, or an InputSource object;
parsers will use this function to implement the polymorphic source argument to
their parse() method.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.12. xml.sax.xmlreader — Interface for XML parsers

New in version 2.0.

SAX parsers implement the XMLReader interface. They are implemented in
a Python module, which must provide a function create_parser(). This
function is invoked by xml.sax.make_parser() with no arguments to create
a new parser object.

	
class xml.sax.xmlreader.XMLReader

	Base class which can be inherited by SAX parsers.

	
class xml.sax.xmlreader.IncrementalParser

	In some cases, it is desirable not to parse an input source at once, but to feed
chunks of the document as they get available. Note that the reader will normally
not read the entire file, but read it in chunks as well; still parse()
won’t return until the entire document is processed. So these interfaces should
be used if the blocking behaviour of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the
feed method immediately. After parsing has been finished with a call to close
the reset method must be called to make the parser ready to accept new data,
either from feed or using the parse method.

Note that these methods must not be called during parsing, that is, after
parse has been called and before it returns.

By default, the class also implements the parse method of the XMLReader
interface using the feed, close and reset methods of the IncrementalParser
interface as a convenience to SAX 2.0 driver writers.

	
class xml.sax.xmlreader.Locator

	Interface for associating a SAX event with a document location. A locator object
will return valid results only during calls to DocumentHandler methods; at any
other time, the results are unpredictable. If information is not available,
methods may return None.

	
class xml.sax.xmlreader.InputSource([systemId])

	Encapsulation of the information needed by the XMLReader to read
entities.

This class may include information about the public identifier, system
identifier, byte stream (possibly with character encoding information) and/or
the character stream of an entity.

Applications will create objects of this class for use in the
XMLReader.parse() method and for returning from
EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is
not allowed to modify InputSource objects passed to it from the
application, although it may make copies and modify those.

	
class xml.sax.xmlreader.AttributesImpl(attrs)

	This is an implementation of the Attributes interface (see section
The Attributes Interface). This is a dictionary-like object which
represents the element attributes in a startElement() call. In addition
to the most useful dictionary operations, it supports a number of other
methods as described by the interface. Objects of this class should be
instantiated by readers; attrs must be a dictionary-like object containing
a mapping from attribute names to attribute values.

	
class xml.sax.xmlreader.AttributesNSImpl(attrs, qnames)

	Namespace-aware variant of AttributesImpl, which will be passed to
startElementNS(). It is derived from AttributesImpl, but
understands attribute names as two-tuples of namespaceURI and
localname. In addition, it provides a number of methods expecting qualified
names as they appear in the original document. This class implements the
AttributesNS interface (see section The AttributesNS Interface).

19.12.1. XMLReader Objects

The XMLReader interface supports the following methods:

	
XMLReader.parse(source)

	Process an input source, producing SAX events. The source object can be a
system identifier (a string identifying the input source – typically a file
name or an URL), a file-like object, or an InputSource object. When
parse() returns, the input is completely processed, and the parser object
can be discarded or reset. As a limitation, the current implementation only
accepts byte streams; processing of character streams is for further study.

	
XMLReader.getContentHandler()

	Return the current ContentHandler.

	
XMLReader.setContentHandler(handler)

	Set the current ContentHandler. If no ContentHandler is set,
content events will be discarded.

	
XMLReader.getDTDHandler()

	Return the current DTDHandler.

	
XMLReader.setDTDHandler(handler)

	Set the current DTDHandler. If no DTDHandler is set, DTD
events will be discarded.

	
XMLReader.getEntityResolver()

	Return the current EntityResolver.

	
XMLReader.setEntityResolver(handler)

	Set the current EntityResolver. If no EntityResolver is set,
attempts to resolve an external entity will result in opening the system
identifier for the entity, and fail if it is not available.

	
XMLReader.getErrorHandler()

	Return the current ErrorHandler.

	
XMLReader.setErrorHandler(handler)

	Set the current error handler. If no ErrorHandler is set, errors will
be raised as exceptions, and warnings will be printed.

	
XMLReader.setLocale(locale)

	Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if
they cannot support the requested locale, however, they must raise a SAX
exception. Applications may request a locale change in the middle of a parse.

	
XMLReader.getFeature(featurename)

	Return the current setting for feature featurename. If the feature is not
recognized, SAXNotRecognizedException is raised. The well-known
featurenames are listed in the module xml.sax.handler.

	
XMLReader.setFeature(featurename, value)

	Set the featurename to value. If the feature is not recognized,
SAXNotRecognizedException is raised. If the feature or its setting is not
supported by the parser, SAXNotSupportedException is raised.

	
XMLReader.getProperty(propertyname)

	Return the current setting for property propertyname. If the property is not
recognized, a SAXNotRecognizedException is raised. The well-known
propertynames are listed in the module xml.sax.handler.

	
XMLReader.setProperty(propertyname, value)

	Set the propertyname to value. If the property is not recognized,
SAXNotRecognizedException is raised. If the property or its setting is
not supported by the parser, SAXNotSupportedException is raised.

19.12.2. IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

	
IncrementalParser.feed(data)

	Process a chunk of data.

	
IncrementalParser.close()

	Assume the end of the document. That will check well-formedness conditions that
can be checked only at the end, invoke handlers, and may clean up resources
allocated during parsing.

	
IncrementalParser.reset()

	This method is called after close has been called to reset the parser so that it
is ready to parse new documents. The results of calling parse or feed after
close without calling reset are undefined.

19.12.3. Locator Objects

Instances of Locator provide these methods:

	
Locator.getColumnNumber()

	Return the column number where the current event ends.

	
Locator.getLineNumber()

	Return the line number where the current event ends.

	
Locator.getPublicId()

	Return the public identifier for the current event.

	
Locator.getSystemId()

	Return the system identifier for the current event.

19.12.4. InputSource Objects

	
InputSource.setPublicId(id)

	Sets the public identifier of this InputSource.

	
InputSource.getPublicId()

	Returns the public identifier of this InputSource.

	
InputSource.setSystemId(id)

	Sets the system identifier of this InputSource.

	
InputSource.getSystemId()

	Returns the system identifier of this InputSource.

	
InputSource.setEncoding(encoding)

	Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see
section 4.3.3 of the XML recommendation).

The encoding attribute of the InputSource is ignored if the
InputSource also contains a character stream.

	
InputSource.getEncoding()

	Get the character encoding of this InputSource.

	
InputSource.setByteStream(bytefile)

	Set the byte stream (a Python file-like object which does not perform
byte-to-character conversion) for this input source.

The SAX parser will ignore this if there is also a character stream specified,
but it will use a byte stream in preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should
set it with the setEncoding method.

	
InputSource.getByteStream()

	Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream,
or None if unknown.

	
InputSource.setCharacterStream(charfile)

	Set the character stream for this input source. (The stream must be a Python 1.6
Unicode-wrapped file-like that performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte
stream and will not attempt to open a URI connection to the system identifier.

	
InputSource.getCharacterStream()

	Get the character stream for this input source.

19.12.5. The Attributes Interface

Attributes objects implement a portion of the mapping protocol,
including the methods copy(), get(), has_key(), items(),
keys(), and values(). The following methods are also provided:

	
Attributes.getLength()

	Return the number of attributes.

	
Attributes.getNames()

	Return the names of the attributes.

	
Attributes.getType(name)

	Returns the type of the attribute name, which is normally 'CDATA'.

	
Attributes.getValue(name)

	Return the value of attribute name.

19.12.6. The AttributesNS Interface

This interface is a subtype of the Attributes interface (see section
The Attributes Interface). All methods supported by that interface are also
available on AttributesNS objects.

The following methods are also available:

	
AttributesNS.getValueByQName(name)

	Return the value for a qualified name.

	
AttributesNS.getNameByQName(name)

	Return the (namespace, localname) pair for a qualified name.

	
AttributesNS.getQNameByName(name)

	Return the qualified name for a (namespace, localname) pair.

	
AttributesNS.getQNames()

	Return the qualified names of all attributes.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	19. Structured Markup Processing Tools

19.13. xml.etree.ElementTree — The ElementTree XML API

New in version 2.5.

The Element type is a flexible container object, designed to store
hierarchical data structures in memory. The type can be described as a cross
between a list and a dictionary.

Each element has a number of properties associated with it:

	a tag which is a string identifying what kind of data this element represents
(the element type, in other words).

	a number of attributes, stored in a Python dictionary.

	a text string.

	an optional tail string.

	a number of child elements, stored in a Python sequence

To create an element instance, use the Element constructor or the
SubElement() factory function.

The ElementTree class can be used to wrap an element structure, and
convert it from and to XML.

A C implementation of this API is available as xml.etree.cElementTree.

See http://effbot.org/zone/element-index.htm for tutorials and links to other
docs. Fredrik Lundh’s page is also the location of the development version of
the xml.etree.ElementTree.

Changed in version 2.7: The ElementTree API is updated to 1.3. For more information, see
Introducing ElementTree 1.3 [http://effbot.org/zone/elementtree-13-intro.htm].

19.13.1. Functions

	
xml.etree.ElementTree.Comment(text=None)

	Comment element factory. This factory function creates a special element
that will be serialized as an XML comment by the standard serializer. The
comment string can be either a bytestring or a Unicode string. text is a
string containing the comment string. Returns an element instance
representing a comment.

	
xml.etree.ElementTree.dump(elem)

	Writes an element tree or element structure to sys.stdout. This function
should be used for debugging only.

The exact output format is implementation dependent. In this version, it’s
written as an ordinary XML file.

elem is an element tree or an individual element.

	
xml.etree.ElementTree.fromstring(text)

	Parses an XML section from a string constant. Same as XML(). text
is a string containing XML data. Returns an Element instance.

	
xml.etree.ElementTree.fromstringlist(sequence, parser=None)

	Parses an XML document from a sequence of string fragments. sequence is a
list or other sequence containing XML data fragments. parser is an
optional parser instance. If not given, the standard XMLParser
parser is used. Returns an Element instance.

New in version 2.7.

	
xml.etree.ElementTree.iselement(element)

	Checks if an object appears to be a valid element object. element is an
element instance. Returns a true value if this is an element object.

	
xml.etree.ElementTree.iterparse(source, events=None, parser=None)

	Parses an XML section into an element tree incrementally, and reports what’s
going on to the user. source is a filename or file object containing XML
data. events is a list of events to report back. If omitted, only “end”
events are reported. parser is an optional parser instance. If not
given, the standard XMLParser parser is used. Returns an
iterator providing (event, elem) pairs.

Note

iterparse() only guarantees that it has seen the “>”
character of a starting tag when it emits a “start” event, so the
attributes are defined, but the contents of the text and tail attributes
are undefined at that point. The same applies to the element children;
they may or may not be present.

If you need a fully populated element, look for “end” events instead.

	
xml.etree.ElementTree.parse(source, parser=None)

	Parses an XML section into an element tree. source is a filename or file
object containing XML data. parser is an optional parser instance. If
not given, the standard XMLParser parser is used. Returns an
ElementTree instance.

	
xml.etree.ElementTree.ProcessingInstruction(target, text=None)

	PI element factory. This factory function creates a special element that
will be serialized as an XML processing instruction. target is a string
containing the PI target. text is a string containing the PI contents, if
given. Returns an element instance, representing a processing instruction.

	
xml.etree.ElementTree.register_namespace(prefix, uri)

	Registers a namespace prefix. The registry is global, and any existing
mapping for either the given prefix or the namespace URI will be removed.
prefix is a namespace prefix. uri is a namespace uri. Tags and
attributes in this namespace will be serialized with the given prefix, if at
all possible.

New in version 2.7.

	
xml.etree.ElementTree.SubElement(parent, tag, attrib={}, **extra)

	Subelement factory. This function creates an element instance, and appends
it to an existing element.

The element name, attribute names, and attribute values can be either
bytestrings or Unicode strings. parent is the parent element. tag is
the subelement name. attrib is an optional dictionary, containing element
attributes. extra contains additional attributes, given as keyword
arguments. Returns an element instance.

	
xml.etree.ElementTree.tostring(element, encoding="us-ascii", method="xml")

	Generates a string representation of an XML element, including all
subelements. element is an Element instance. encoding [1] is
the output encoding (default is US-ASCII). method is either "xml",
"html" or "text" (default is "xml"). Returns an encoded string
containing the XML data.

	
xml.etree.ElementTree.tostringlist(element, encoding="us-ascii", method="xml")

	Generates a string representation of an XML element, including all
subelements. element is an Element instance. encoding [1] is
the output encoding (default is US-ASCII). method is either "xml",
"html" or "text" (default is "xml"). Returns a list of encoded
strings containing the XML data. It does not guarantee any specific
sequence, except that "".join(tostringlist(element)) ==
tostring(element).

New in version 2.7.

	
xml.etree.ElementTree.XML(text, parser=None)

	Parses an XML section from a string constant. This function can be used to
embed “XML literals” in Python code. text is a string containing XML
data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns an Element instance.

	
xml.etree.ElementTree.XMLID(text, parser=None)

	Parses an XML section from a string constant, and also returns a dictionary
which maps from element id:s to elements. text is a string containing XML
data. parser is an optional parser instance. If not given, the standard
XMLParser parser is used. Returns a tuple containing an
Element instance and a dictionary.

19.13.2. Element Objects

	
class xml.etree.ElementTree.Element(tag, attrib={}, **extra)

	Element class. This class defines the Element interface, and provides a
reference implementation of this interface.

The element name, attribute names, and attribute values can be either
bytestrings or Unicode strings. tag is the element name. attrib is
an optional dictionary, containing element attributes. extra contains
additional attributes, given as keyword arguments.

	
tag

	A string identifying what kind of data this element represents (the
element type, in other words).

	
text

	The text attribute can be used to hold additional data associated with
the element. As the name implies this attribute is usually a string but
may be any application-specific object. If the element is created from
an XML file the attribute will contain any text found between the element
tags.

	
tail

	The tail attribute can be used to hold additional data associated with
the element. This attribute is usually a string but may be any
application-specific object. If the element is created from an XML file
the attribute will contain any text found after the element’s end tag and
before the next tag.

	
attrib

	A dictionary containing the element’s attributes. Note that while the
attrib value is always a real mutable Python dictionary, an ElementTree
implementation may choose to use another internal representation, and
create the dictionary only if someone asks for it. To take advantage of
such implementations, use the dictionary methods below whenever possible.

The following dictionary-like methods work on the element attributes.

	
clear()

	Resets an element. This function removes all subelements, clears all
attributes, and sets the text and tail attributes to None.

	
get(key, default=None)

	Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

	
items()

	Returns the element attributes as a sequence of (name, value) pairs. The
attributes are returned in an arbitrary order.

	
keys()

	Returns the elements attribute names as a list. The names are returned
in an arbitrary order.

	
set(key, value)

	Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

	
append(subelement)

	Adds the element subelement to the end of this elements internal list
of subelements.

	
extend(subelements)

	Appends subelements from a sequence object with zero or more elements.
Raises AssertionError if a subelement is not a valid object.

New in version 2.7.

	
find(match)

	Finds the first subelement matching match. match may be a tag name
or path. Returns an element instance or None.

	
findall(match)

	Finds all matching subelements, by tag name or path. Returns a list
containing all matching elements in document order.

	
findtext(match, default=None)

	Finds text for the first subelement matching match. match may be
a tag name or path. Returns the text content of the first matching
element, or default if no element was found. Note that if the matching
element has no text content an empty string is returned.

	
getchildren()

	
Deprecated since version 2.7: Use list(elem) or iteration.

	
getiterator(tag=None)

	
Deprecated since version 2.7: Use method Element.iter() instead.

	
insert(index, element)

	Inserts a subelement at the given position in this element.

	
iter(tag=None)

	Creates a tree iterator with the current element as the root.
The iterator iterates over this element and all elements below it, in
document (depth first) order. If tag is not None or '*', only
elements whose tag equals tag are returned from the iterator. If the
tree structure is modified during iteration, the result is undefined.

	
iterfind(match)

	Finds all matching subelements, by tag name or path. Returns an iterable
yielding all matching elements in document order.

New in version 2.7.

	
itertext()

	Creates a text iterator. The iterator loops over this element and all
subelements, in document order, and returns all inner text.

New in version 2.7.

	
makeelement(tag, attrib)

	Creates a new element object of the same type as this element. Do not
call this method, use the SubElement() factory function instead.

	
remove(subelement)

	Removes subelement from the element. Unlike the find* methods this
method compares elements based on the instance identity, not on tag value
or contents.

Element objects also support the following sequence type methods
for working with subelements: __delitem__(), __getitem__(),
__setitem__(), __len__().

Caution: Elements with no subelements will test as False. This behavior
will change in future versions. Use specific len(elem) or elem is
None test instead.

element = root.find('foo')

if not element: # careful!
 print "element not found, or element has no subelements"

if element is None:
 print "element not found"

19.13.3. ElementTree Objects

	
class xml.etree.ElementTree.ElementTree(element=None, file=None)

	ElementTree wrapper class. This class represents an entire element
hierarchy, and adds some extra support for serialization to and from
standard XML.

element is the root element. The tree is initialized with the contents
of the XML file if given.

	
_setroot(element)

	Replaces the root element for this tree. This discards the current
contents of the tree, and replaces it with the given element. Use with
care. element is an element instance.

	
find(match)

	Finds the first toplevel element matching match. match may be a tag
name or path. Same as getroot().find(match). Returns the first matching
element, or None if no element was found.

	
findall(match)

	Finds all matching subelements, by tag name or path. Same as
getroot().findall(match). match may be a tag name or path. Returns a
list containing all matching elements, in document order.

	
findtext(match, default=None)

	Finds the element text for the first toplevel element with given tag.
Same as getroot().findtext(match). match may be a tag name or path.
default is the value to return if the element was not found. Returns
the text content of the first matching element, or the default value no
element was found. Note that if the element is found, but has no text
content, this method returns an empty string.

	
getiterator(tag=None)

	
Deprecated since version 2.7: Use method ElementTree.iter() instead.

	
getroot()

	Returns the root element for this tree.

	
iter(tag=None)

	Creates and returns a tree iterator for the root element. The iterator
loops over all elements in this tree, in section order. tag is the tag
to look for (default is to return all elements)

	
iterfind(match)

	Finds all matching subelements, by tag name or path. Same as
getroot().iterfind(match). Returns an iterable yielding all matching
elements in document order.

New in version 2.7.

	
parse(source, parser=None)

	Loads an external XML section into this element tree. source is a file
name or file object. parser is an optional parser instance. If not
given, the standard XMLParser parser is used. Returns the section
root element.

	
write(file, encoding="us-ascii", xml_declaration=None, method="xml")

	Writes the element tree to a file, as XML. file is a file name, or a
file object opened for writing. encoding [1] is the output encoding
(default is US-ASCII). xml_declaration controls if an XML declaration
should be added to the file. Use False for never, True for always, None
for only if not US-ASCII or UTF-8 (default is None). method is either
"xml", "html" or "text" (default is "xml"). Returns an
encoded string.

This is the XML file that is going to be manipulated:

<html>
 <head>
 <title>Example page</title>
 </head>
 <body>
 <p>Moved to example.org
 or example.com.</p>
 </body>
</html>

Example of changing the attribute “target” of every link in first paragraph:

>>> from xml.etree.ElementTree import ElementTree
>>> tree = ElementTree()
>>> tree.parse("index.xhtml")
<Element 'html' at 0xb77e6fac>
>>> p = tree.find("body/p") # Finds first occurrence of tag p in body
>>> p
<Element 'p' at 0xb77ec26c>
>>> links = list(p.iter("a")) # Returns list of all links
>>> links
[<Element 'a' at 0xb77ec2ac>, <Element 'a' at 0xb77ec1cc>]
>>> for i in links: # Iterates through all found links
... i.attrib["target"] = "blank"
>>> tree.write("output.xhtml")

19.13.4. QName Objects

	
class xml.etree.ElementTree.QName(text_or_uri, tag=None)

	QName wrapper. This can be used to wrap a QName attribute value, in order
to get proper namespace handling on output. text_or_uri is a string
containing the QName value, in the form {uri}local, or, if the tag argument
is given, the URI part of a QName. If tag is given, the first argument is
interpreted as an URI, and this argument is interpreted as a local name.
QName instances are opaque.

19.13.5. TreeBuilder Objects

	
class xml.etree.ElementTree.TreeBuilder(element_factory=None)

	Generic element structure builder. This builder converts a sequence of
start, data, and end method calls to a well-formed element structure. You
can use this class to build an element structure using a custom XML parser,
or a parser for some other XML-like format. The element_factory is called
to create new Element instances when given.

	
close()

	Flushes the builder buffers, and returns the toplevel document
element. Returns an Element instance.

	
data(data)

	Adds text to the current element. data is a string. This should be
either a bytestring, or a Unicode string.

	
end(tag)

	Closes the current element. tag is the element name. Returns the
closed element.

	
start(tag, attrs)

	Opens a new element. tag is the element name. attrs is a dictionary
containing element attributes. Returns the opened element.

In addition, a custom TreeBuilder object can provide the
following method:

	
doctype(name, pubid, system)

	Handles a doctype declaration. name is the doctype name. pubid is
the public identifier. system is the system identifier. This method
does not exist on the default TreeBuilder class.

New in version 2.7.

19.13.6. XMLParser Objects

	
class xml.etree.ElementTree.XMLParser(html=0, target=None, encoding=None)

	Element structure builder for XML source data, based on the expat
parser. html are predefined HTML entities. This flag is not supported by
the current implementation. target is the target object. If omitted, the
builder uses an instance of the standard TreeBuilder class. encoding [1]
is optional. If given, the value overrides the encoding specified in the
XML file.

	
close()

	Finishes feeding data to the parser. Returns an element structure.

	
doctype(name, pubid, system)

	
Deprecated since version 2.7: Define the TreeBuilder.doctype() method on a custom TreeBuilder
target.

	
feed(data)

	Feeds data to the parser. data is encoded data.

XMLParser.feed() calls target‘s start() method
for each opening tag, its end() method for each closing tag,
and data is processed by method data(). XMLParser.close()
calls target‘s method close().
XMLParser can be used not only for building a tree structure.
This is an example of counting the maximum depth of an XML file:

>>> from xml.etree.ElementTree import XMLParser
>>> class MaxDepth: # The target object of the parser
... maxDepth = 0
... depth = 0
... def start(self, tag, attrib): # Called for each opening tag.
... self.depth += 1
... if self.depth > self.maxDepth:
... self.maxDepth = self.depth
... def end(self, tag): # Called for each closing tag.
... self.depth -= 1
... def data(self, data):
... pass # We do not need to do anything with data.
... def close(self): # Called when all data has been parsed.
... return self.maxDepth
...
>>> target = MaxDepth()
>>> parser = XMLParser(target=target)
>>> exampleXml = """
... <a>
...
...
...
... <c>
... <d>
... </d>
... </c>
...
... """
>>> parser.feed(exampleXml)
>>> parser.close()
4

Footnotes

	[1]	The encoding string included in XML output should conform to the
appropriate standards. For example, “UTF-8” is valid, but “UTF8” is
not. See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
and http://www.iana.org/assignments/character-sets.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

20. Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support
for related technology. They are all implemented in Python. Most of these
modules require the presence of the system-dependent module socket, which
is currently supported on most popular platforms. Here is an overview:

	20.1. webbrowser — Convenient Web-browser controller
	20.1.1. Browser Controller Objects

	20.2. cgi — Common Gateway Interface support
	20.2.1. Introduction

	20.2.2. Using the cgi module

	20.2.3. Higher Level Interface

	20.2.4. Old classes

	20.2.5. Functions

	20.2.6. Caring about security

	20.2.7. Installing your CGI script on a Unix system

	20.2.8. Testing your CGI script

	20.2.9. Debugging CGI scripts

	20.2.10. Common problems and solutions

	20.3. cgitb — Traceback manager for CGI scripts

	20.4. wsgiref — WSGI Utilities and Reference Implementation
	20.4.1. wsgiref.util – WSGI environment utilities

	20.4.2. wsgiref.headers – WSGI response header tools

	20.4.3. wsgiref.simple_server – a simple WSGI HTTP server

	20.4.4. wsgiref.validate — WSGI conformance checker

	20.4.5. wsgiref.handlers – server/gateway base classes

	20.4.6. Examples

	20.5. urllib — Open arbitrary resources by URL
	20.5.1. High-level interface

	20.5.2. Utility functions

	20.5.3. URL Opener objects

	20.5.4. urllib Restrictions

	20.5.5. Examples

	20.6. urllib2 — extensible library for opening URLs
	20.6.1. Request Objects

	20.6.2. OpenerDirector Objects

	20.6.3. BaseHandler Objects

	20.6.4. HTTPRedirectHandler Objects

	20.6.5. HTTPCookieProcessor Objects

	20.6.6. ProxyHandler Objects

	20.6.7. HTTPPasswordMgr Objects

	20.6.8. AbstractBasicAuthHandler Objects

	20.6.9. HTTPBasicAuthHandler Objects

	20.6.10. ProxyBasicAuthHandler Objects

	20.6.11. AbstractDigestAuthHandler Objects

	20.6.12. HTTPDigestAuthHandler Objects

	20.6.13. ProxyDigestAuthHandler Objects

	20.6.14. HTTPHandler Objects

	20.6.15. HTTPSHandler Objects

	20.6.16. FileHandler Objects

	20.6.17. FTPHandler Objects

	20.6.18. CacheFTPHandler Objects

	20.6.19. UnknownHandler Objects

	20.6.20. HTTPErrorProcessor Objects

	20.6.21. Examples

	20.7. httplib — HTTP protocol client
	20.7.1. HTTPConnection Objects

	20.7.2. HTTPResponse Objects

	20.7.3. Examples

	20.8. ftplib — FTP protocol client
	20.8.1. FTP Objects

	20.8.2. FTP_TLS Objects

	20.9. poplib — POP3 protocol client
	20.9.1. POP3 Objects

	20.9.2. POP3 Example

	20.10. imaplib — IMAP4 protocol client
	20.10.1. IMAP4 Objects

	20.10.2. IMAP4 Example

	20.11. nntplib — NNTP protocol client
	20.11.1. NNTP Objects

	20.12. smtplib — SMTP protocol client
	20.12.1. SMTP Objects

	20.12.2. SMTP Example

	20.13. smtpd — SMTP Server
	20.13.1. SMTPServer Objects

	20.13.2. DebuggingServer Objects

	20.13.3. PureProxy Objects

	20.13.4. MailmanProxy Objects

	20.14. telnetlib — Telnet client
	20.14.1. Telnet Objects

	20.14.2. Telnet Example

	20.15. uuid — UUID objects according to RFC 4122
	20.15.1. Example

	20.16. urlparse — Parse URLs into components
	20.16.1. Results of urlparse() and urlsplit()

	20.17. SocketServer — A framework for network servers
	20.17.1. Server Creation Notes

	20.17.2. Server Objects

	20.17.3. RequestHandler Objects

	20.17.4. Examples
	20.17.4.1. SocketServer.TCPServer Example

	20.17.4.2. SocketServer.UDPServer Example

	20.17.4.3. Asynchronous Mixins

	20.18. BaseHTTPServer — Basic HTTP server
	20.18.1. More examples

	20.19. SimpleHTTPServer — Simple HTTP request handler

	20.20. CGIHTTPServer — CGI-capable HTTP request handler

	20.21. cookielib — Cookie handling for HTTP clients
	20.21.1. CookieJar and FileCookieJar Objects

	20.21.2. FileCookieJar subclasses and co-operation with web browsers

	20.21.3. CookiePolicy Objects

	20.21.4. DefaultCookiePolicy Objects

	20.21.5. Cookie Objects

	20.21.6. Examples

	20.22. Cookie — HTTP state management
	20.22.1. Cookie Objects

	20.22.2. Morsel Objects

	20.22.3. Example

	20.23. xmlrpclib — XML-RPC client access
	20.23.1. ServerProxy Objects

	20.23.2. Boolean Objects

	20.23.3. DateTime Objects

	20.23.4. Binary Objects

	20.23.5. Fault Objects

	20.23.6. ProtocolError Objects

	20.23.7. MultiCall Objects

	20.23.8. Convenience Functions

	20.23.9. Example of Client Usage

	20.23.10. Example of Client and Server Usage

	20.24. SimpleXMLRPCServer — Basic XML-RPC server
	20.24.1. SimpleXMLRPCServer Objects
	20.24.1.1. SimpleXMLRPCServer Example

	20.24.2. CGIXMLRPCRequestHandler

	20.25. DocXMLRPCServer — Self-documenting XML-RPC server
	20.25.1. DocXMLRPCServer Objects

	20.25.2. DocCGIXMLRPCRequestHandler

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.1. webbrowser — Convenient Web-browser controller

The webbrowser module provides a high-level interface to allow displaying
Web-based documents to users. Under most circumstances, simply calling the
open() function from this module will do the right thing.

Under Unix, graphical browsers are preferred under X11, but text-mode browsers
will be used if graphical browsers are not available or an X11 display isn’t
available. If text-mode browsers are used, the calling process will block until
the user exits the browser.

If the environment variable BROWSER exists, it is interpreted to
override the platform default list of browsers, as a os.pathsep-separated
list of browsers to try in order. When the value of a list part contains the
string %s, then it is interpreted as a literal browser command line to be
used with the argument URL substituted for %s; if the part does not contain
%s, it is simply interpreted as the name of the browser to launch. [1]

For non-Unix platforms, or when a remote browser is available on Unix, the
controlling process will not wait for the user to finish with the browser, but
allow the remote browser to maintain its own windows on the display. If remote
browsers are not available on Unix, the controlling process will launch a new
browser and wait.

The script webbrowser can be used as a command-line interface for the
module. It accepts an URL as the argument. It accepts the following optional
parameters: -n opens the URL in a new browser window, if possible;
-t opens the URL in a new browser page (“tab”). The options are,
naturally, mutually exclusive.

The following exception is defined:

	
exception webbrowser.Error

	Exception raised when a browser control error occurs.

The following functions are defined:

	
webbrowser.open(url[, new=0[, autoraise=True]])

	Display url using the default browser. If new is 0, the url is opened
in the same browser window if possible. If new is 1, a new browser window
is opened if possible. If new is 2, a new browser page (“tab”) is opened
if possible. If autoraise is True, the window is raised if possible
(note that under many window managers this will occur regardless of the
setting of this variable).

Note that on some platforms, trying to open a filename using this function,
may work and start the operating system’s associated program. However, this
is neither supported nor portable.

Changed in version 2.5: new can now be 2.

	
webbrowser.open_new(url)

	Open url in a new window of the default browser, if possible, otherwise, open
url in the only browser window.

	
webbrowser.open_new_tab(url)

	Open url in a new page (“tab”) of the default browser, if possible, otherwise
equivalent to open_new().

New in version 2.5.

	
webbrowser.get([name])

	Return a controller object for the browser type name. If name is empty,
return a controller for a default browser appropriate to the caller’s
environment.

	
webbrowser.register(name, constructor[, instance])

	Register the browser type name. Once a browser type is registered, the
get() function can return a controller for that browser type. If
instance is not provided, or is None, constructor will be called without
parameters to create an instance when needed. If instance is provided,
constructor will never be called, and may be None.

This entry point is only useful if you plan to either set the BROWSER
variable or call get() with a nonempty argument matching the name of a
handler you declare.

A number of browser types are predefined. This table gives the type names that
may be passed to the get() function and the corresponding instantiations
for the controller classes, all defined in this module.

	Type Name
	Class Name
	Notes

	'mozilla'
	Mozilla('mozilla')
	

	'firefox'
	Mozilla('mozilla')
	

	'netscape'
	Mozilla('netscape')
	

	'galeon'
	Galeon('galeon')
	

	'epiphany'
	Galeon('epiphany')
	

	'skipstone'
	BackgroundBrowser('skipstone')
	

	'kfmclient'
	Konqueror()
	(1)

	'konqueror'
	Konqueror()
	(1)

	'kfm'
	Konqueror()
	(1)

	'mosaic'
	BackgroundBrowser('mosaic')
	

	'opera'
	Opera()
	

	'grail'
	Grail()
	

	'links'
	GenericBrowser('links')
	

	'elinks'
	Elinks('elinks')
	

	'lynx'
	GenericBrowser('lynx')
	

	'w3m'
	GenericBrowser('w3m')
	

	'windows-default'
	WindowsDefault
	(2)

	'internet-config'
	InternetConfig
	(3)

	'macosx'
	MacOSX('default')
	(4)

Notes:

	“Konqueror” is the file manager for the KDE desktop environment for Unix, and
only makes sense to use if KDE is running. Some way of reliably detecting KDE
would be nice; the KDEDIR variable is not sufficient. Note also that
the name “kfm” is used even when using the konqueror command with KDE
2 — the implementation selects the best strategy for running Konqueror.

	Only on Windows platforms.

	Only on Mac OS platforms; requires the standard MacPython ic module.

	Only on Mac OS X platform.

Here are some simple examples:

url = 'http://www.python.org/'

Open URL in a new tab, if a browser window is already open.
webbrowser.open_new_tab(url + 'doc/')

Open URL in new window, raising the window if possible.
webbrowser.open_new(url)

20.1.1. Browser Controller Objects

Browser controllers provide these methods which parallel three of the
module-level convenience functions:

	
controller.open(url[, new=0[, autoraise=True]])

	Display url using the browser handled by this controller. If new is 1, a new
browser window is opened if possible. If new is 2, a new browser page (“tab”)
is opened if possible.

	
controller.open_new(url)

	Open url in a new window of the browser handled by this controller, if
possible, otherwise, open url in the only browser window. Alias
open_new().

	
controller.open_new_tab(url)

	Open url in a new page (“tab”) of the browser handled by this controller, if
possible, otherwise equivalent to open_new().

New in version 2.5.

Footnotes

	[1]	Executables named here without a full path will be searched in the
directories given in the PATH environment variable.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.2. cgi — Common Gateway Interface support

Support module for Common Gateway Interface (CGI) scripts.

This module defines a number of utilities for use by CGI scripts written in
Python.

20.2.1. Introduction

A CGI script is invoked by an HTTP server, usually to process user input
submitted through an HTML <FORM> or <ISINDEX> element.

Most often, CGI scripts live in the server’s special cgi-bin directory.
The HTTP server places all sorts of information about the request (such as the
client’s hostname, the requested URL, the query string, and lots of other
goodies) in the script’s shell environment, executes the script, and sends the
script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data
is read this way; at other times the form data is passed via the “query string”
part of the URL. This module is intended to take care of the different cases
and provide a simpler interface to the Python script. It also provides a number
of utilities that help in debugging scripts, and the latest addition is support
for file uploads from a form (if your browser supports it).

The output of a CGI script should consist of two sections, separated by a blank
line. The first section contains a number of headers, telling the client what
kind of data is following. Python code to generate a minimal header section
looks like this:

print "Content-Type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display
nicely formatted text with header, in-line images, etc. Here’s Python code that
prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

20.2.2. Using the cgi module

Begin by writing import cgi. Do not use from cgi import * — the
module defines all sorts of names for its own use or for backward compatibility
that you don’t want in your namespace.

When you write a new script, consider adding these lines:

import cgitb
cgitb.enable()

This activates a special exception handler that will display detailed reports in
the Web browser if any errors occur. If you’d rather not show the guts of your
program to users of your script, you can have the reports saved to files
instead, with code like this:

import cgitb
cgitb.enable(display=0, logdir="/tmp")

It’s very helpful to use this feature during script development. The reports
produced by cgitb provide information that can save you a lot of time in
tracking down bugs. You can always remove the cgitb line later when you
have tested your script and are confident that it works correctly.

To get at submitted form data, it’s best to use the FieldStorage class.
The other classes defined in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the
form contents from standard input or the environment (depending on the value of
various environment variables set according to the CGI standard). Since it may
consume standard input, it should be instantiated only once.

The FieldStorage instance can be indexed like a Python dictionary.
It allows membership testing with the in operator, and also supports
the standard dictionary method keys() and the built-in function
len(). Form fields containing empty strings are ignored and do not appear
in the dictionary; to keep such values, provide a true value for the optional
keep_blank_values keyword parameter when creating the FieldStorage
instance.

For instance, the following code (which assumes that the
Content-Type header and blank line have already been printed)
checks that the fields name and addr are both set to a non-empty
string:

form = cgi.FieldStorage()
if "name" not in form or "addr" not in form:
 print "<H1>Error</H1>"
 print "Please fill in the name and addr fields."
 return
print "<p>name:", form["name"].value
print "<p>addr:", form["addr"].value
...further form processing here...

Here the fields, accessed through form[key], are themselves instances of
FieldStorage (or MiniFieldStorage, depending on the form
encoding). The value attribute of the instance yields the string value
of the field. The getvalue() method returns this string value directly;
it also accepts an optional second argument as a default to return if the
requested key is not present.

If the submitted form data contains more than one field with the same name, the
object retrieved by form[key] is not a FieldStorage or
MiniFieldStorage instance but a list of such instances. Similarly, in
this situation, form.getvalue(key) would return a list of strings. If you
expect this possibility (when your HTML form contains multiple fields with the
same name), use the getlist() function, which always returns a list of
values (so that you do not need to special-case the single item case). For
example, this code concatenates any number of username fields, separated by
commas:

value = form.getlist("username")
usernames = ",".join(value)

If a field represents an uploaded file, accessing the value via the
value attribute or the getvalue() method reads the entire file in
memory as a string. This may not be what you want. You can test for an uploaded
file by testing either the filename attribute or the file
attribute. You can then read the data at leisure from the file
attribute:

fileitem = form["userfile"]
if fileitem.file:
 # It's an uploaded file; count lines
 linecount = 0
 while 1:
 line = fileitem.file.readline()
 if not line: break
 linecount = linecount + 1

If an error is encountered when obtaining the contents of an uploaded file
(for example, when the user interrupts the form submission by clicking on
a Back or Cancel button) the done attribute of the object for the
field will be set to the value -1.

The file upload draft standard entertains the possibility of uploading multiple
files from one field (using a recursive multipart/* encoding).
When this occurs, the item will be a dictionary-like FieldStorage item.
This can be determined by testing its type attribute, which should be
multipart/form-data (or perhaps another MIME type matching
multipart/*). In this case, it can be iterated over recursively
just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single
data part of type application/x-www-form-urlencoded), the items will
actually be instances of the class MiniFieldStorage. In this case, the
list, file, and filename attributes are always None.

A form submitted via POST that also has a query string will contain both
FieldStorage and MiniFieldStorage items.

20.2.3. Higher Level Interface

New in version 2.2.

The previous section explains how to read CGI form data using the
FieldStorage class. This section describes a higher level interface
which was added to this class to allow one to do it in a more readable and
intuitive way. The interface doesn’t make the techniques described in previous
sections obsolete — they are still useful to process file uploads efficiently,
for example.

The interface consists of two simple methods. Using the methods you can process
form data in a generic way, without the need to worry whether only one or more
values were posted under one name.

In the previous section, you learned to write following code anytime you
expected a user to post more than one value under one name:

item = form.getvalue("item")
if isinstance(item, list):
 # The user is requesting more than one item.
else:
 # The user is requesting only one item.

This situation is common for example when a form contains a group of multiple
checkboxes with the same name:

<input type="checkbox" name="item" value="1" />
<input type="checkbox" name="item" value="2" />

In most situations, however, there’s only one form control with a particular
name in a form and then you expect and need only one value associated with this
name. So you write a script containing for example this code:

user = form.getvalue("user").upper()

The problem with the code is that you should never expect that a client will
provide valid input to your scripts. For example, if a curious user appends
another user=foo pair to the query string, then the script would crash,
because in this situation the getvalue("user") method call returns a list
instead of a string. Calling the upper() method on a list is not valid
(since lists do not have a method of this name) and results in an
AttributeError exception.

Therefore, the appropriate way to read form data values was to always use the
code which checks whether the obtained value is a single value or a list of
values. That’s annoying and leads to less readable scripts.

A more convenient approach is to use the methods getfirst() and
getlist() provided by this higher level interface.

	
FieldStorage.getfirst(name[, default])

	This method always returns only one value associated with form field name.
The method returns only the first value in case that more values were posted
under such name. Please note that the order in which the values are received
may vary from browser to browser and should not be counted on. [1] If no such
form field or value exists then the method returns the value specified by the
optional parameter default. This parameter defaults to None if not
specified.

	
FieldStorage.getlist(name)

	This method always returns a list of values associated with form field name.
The method returns an empty list if no such form field or value exists for
name. It returns a list consisting of one item if only one such value exists.

Using these methods you can write nice compact code:

import cgi
form = cgi.FieldStorage()
user = form.getfirst("user", "").upper() # This way it's safe.
for item in form.getlist("item"):
 do_something(item)

20.2.4. Old classes

Deprecated since version 2.6.

SvFormContentDict stores single value form content as dictionary; it
assumes each field name occurs in the form only once.

FormContentDict stores multiple value form content as a dictionary (the
form items are lists of values). Useful if your form contains multiple fields
with the same name.

Other classes (FormContent, InterpFormContentDict) are present
for backwards compatibility with really old applications only.

20.2.5. Functions

These are useful if you want more control, or if you want to employ some of the
algorithms implemented in this module in other circumstances.

	
cgi.parse(fp[, keep_blank_values[, strict_parsing]])

	Parse a query in the environment or from a file (the file defaults to
sys.stdin). The keep_blank_values and strict_parsing parameters are
passed to urlparse.parse_qs() unchanged.

	
cgi.parse_qs(qs[, keep_blank_values[, strict_parsing]])

	This function is deprecated in this module. Use urlparse.parse_qs()
instead. It is maintained here only for backward compatiblity.

	
cgi.parse_qsl(qs[, keep_blank_values[, strict_parsing]])

	This function is deprecated in this module. Use urlparse.parse_qsl()
instead. It is maintained here only for backward compatiblity.

	
cgi.parse_multipart(fp, pdict)

	Parse input of type multipart/form-data (for file uploads).
Arguments are fp for the input file and pdict for a dictionary containing
other parameters in the Content-Type header.

Returns a dictionary just like urlparse.parse_qs() keys are the field names, each
value is a list of values for that field. This is easy to use but not much good
if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — use
FieldStorage for that.

	
cgi.parse_header(string)

	Parse a MIME header (such as Content-Type) into a main value and a
dictionary of parameters.

	
cgi.test()

	Robust test CGI script, usable as main program. Writes minimal HTTP headers and
formats all information provided to the script in HTML form.

	
cgi.print_environ()

	Format the shell environment in HTML.

	
cgi.print_form(form)

	Format a form in HTML.

	
cgi.print_directory()

	Format the current directory in HTML.

	
cgi.print_environ_usage()

	Print a list of useful (used by CGI) environment variables in HTML.

	
cgi.escape(s[, quote])

	Convert the characters '&', '<' and '>' in string s to HTML-safe
sequences. Use this if you need to display text that might contain such
characters in HTML. If the optional flag quote is true, the quotation mark
character (") is also translated; this helps for inclusion in an HTML
attribute value delimited by double quotes, as in . Note
that single quotes are never translated.

If the value to be quoted might include single- or double-quote characters,
or both, consider using the quoteattr() function in the
xml.sax.saxutils module instead.

20.2.6. Caring about security

There’s one important rule: if you invoke an external program (via the
os.system() or os.popen() functions. or others with similar
functionality), make very sure you don’t pass arbitrary strings received from
the client to the shell. This is a well-known security hole whereby clever
hackers anywhere on the Web can exploit a gullible CGI script to invoke
arbitrary shell commands. Even parts of the URL or field names cannot be
trusted, since the request doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell
command, you should make sure the string contains only alphanumeric characters,
dashes, underscores, and periods.

20.2.7. Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system
administrator to find the directory where CGI scripts should be installed;
usually this is in a directory cgi-bin in the server tree.

Make sure that your script is readable and executable by “others”; the Unix file
mode should be 0755 octal (use chmod 0755 filename). Make sure that the
first line of the script contains #! starting in column 1 followed by the
pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or
writable, respectively, by “others” — their mode should be 0644 for
readable and 0666 for writable. This is because, for security reasons, the
HTTP server executes your script as user “nobody”, without any special
privileges. It can only read (write, execute) files that everybody can read
(write, execute). The current directory at execution time is also different (it
is usually the server’s cgi-bin directory) and the set of environment variables
is also different from what you get when you log in. In particular, don’t count
on the shell’s search path for executables (PATH) or the Python module
search path (PYTHONPATH) to be set to anything interesting.

If you need to load modules from a directory which is not on Python’s default
module search path, you can change the path in your script, before importing
other modules. For example:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server’s
documentation (it will usually have a section on CGI scripts).

20.2.8. Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the
command line, and a script that works perfectly from the command line may fail
mysteriously when run from the server. There’s one reason why you should still
test your script from the command line: if it contains a syntax error, the
Python interpreter won’t execute it at all, and the HTTP server will most likely
send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no
choice but to read the next section.

20.2.9. Debugging CGI scripts

First of all, check for trivial installation errors — reading the section
above on installing your CGI script carefully can save you a lot of time. If
you wonder whether you have understood the installation procedure correctly, try
installing a copy of this module file (cgi.py) as a CGI script. When
invoked as a script, the file will dump its environment and the contents of the
form in HTML form. Give it the right mode etc, and send it a request. If it’s
installed in the standard cgi-bin directory, it should be possible to
send it a request by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps
you need to install it in a different directory. If it gives another error,
there’s an installation problem that you should fix before trying to go any
further. If you get a nicely formatted listing of the environment and form
content (in this example, the fields should be listed as “addr” with value “At
Home” and “name” with value “Joe Blow”), the cgi.py script has been
installed correctly. If you follow the same procedure for your own script, you
should now be able to debug it.

The next step could be to call the cgi module’s test() function
from your script: replace its main code with the single statement

cgi.test()

This should produce the same results as those gotten from installing the
cgi.py file itself.

When an ordinary Python script raises an unhandled exception (for whatever
reason: of a typo in a module name, a file that can’t be opened, etc.), the
Python interpreter prints a nice traceback and exits. While the Python
interpreter will still do this when your CGI script raises an exception, most
likely the traceback will end up in one of the HTTP server’s log files, or be
discarded altogether.

Fortunately, once you have managed to get your script to execute some code,
you can easily send tracebacks to the Web browser using the cgitb module.
If you haven’t done so already, just add the lines:

import cgitb
cgitb.enable()

to the top of your script. Then try running it again; when a problem occurs,
you should see a detailed report that will likely make apparent the cause of the
crash.

If you suspect that there may be a problem in importing the cgitb module,
you can use an even more robust approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print "Content-Type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type
of the output is set to plain text, which disables all HTML processing. If your
script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback
will be displayed. Because no HTML interpretation is going on, the traceback
will be readable.

20.2.10. Common problems and solutions

	Most HTTP servers buffer the output from CGI scripts until the script is
completed. This means that it is not possible to display a progress report on
the client’s display while the script is running.

	Check the installation instructions above.

	Check the HTTP server’s log files. (tail -f logfile in a separate window
may be useful!)

	Always check a script for syntax errors first, by doing something like
python script.py.

	If your script does not have any syntax errors, try adding import cgitb;
cgitb.enable() to the top of the script.

	When invoking external programs, make sure they can be found. Usually, this
means using absolute path names — PATH is usually not set to a very
useful value in a CGI script.

	When reading or writing external files, make sure they can be read or written
by the userid under which your CGI script will be running: this is typically the
userid under which the web server is running, or some explicitly specified
userid for a web server’s suexec feature.

	Don’t try to give a CGI script a set-uid mode. This doesn’t work on most
systems, and is a security liability as well.

Footnotes

	[1]	Note that some recent versions of the HTML specification do state what order the
field values should be supplied in, but knowing whether a request was
received from a conforming browser, or even from a browser at all, is tedious
and error-prone.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.3. cgitb — Traceback manager for CGI scripts

New in version 2.2.

The cgitb module provides a special exception handler for Python scripts.
(Its name is a bit misleading. It was originally designed to display extensive
traceback information in HTML for CGI scripts. It was later generalized to also
display this information in plain text.) After this module is activated, if an
uncaught exception occurs, a detailed, formatted report will be displayed. The
report includes a traceback showing excerpts of the source code for each level,
as well as the values of the arguments and local variables to currently running
functions, to help you debug the problem. Optionally, you can save this
information to a file instead of sending it to the browser.

To enable this feature, simply add this to the top of your CGI script:

import cgitb
cgitb.enable()

The options to the enable() function control whether the report is
displayed in the browser and whether the report is logged to a file for later
analysis.

	
cgitb.enable([display[, logdir[, context[, format]]]])

	This function causes the cgitb module to take over the interpreter’s
default handling for exceptions by setting the value of sys.excepthook.

The optional argument display defaults to 1 and can be set to 0 to
suppress sending the traceback to the browser. If the argument logdir is
present, the traceback reports are written to files. The value of logdir
should be a directory where these files will be placed. The optional argument
context is the number of lines of context to display around the current line
of source code in the traceback; this defaults to 5. If the optional
argument format is "html", the output is formatted as HTML. Any other
value forces plain text output. The default value is "html".

	
cgitb.handler([info])

	This function handles an exception using the default settings (that is, show a
report in the browser, but don’t log to a file). This can be used when you’ve
caught an exception and want to report it using cgitb. The optional
info argument should be a 3-tuple containing an exception type, exception
value, and traceback object, exactly like the tuple returned by
sys.exc_info(). If the info argument is not supplied, the current
exception is obtained from sys.exc_info().

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.4. wsgiref — WSGI Utilities and Reference Implementation

New in version 2.5.

The Web Server Gateway Interface (WSGI) is a standard interface between web
server software and web applications written in Python. Having a standard
interface makes it easy to use an application that supports WSGI with a number
of different web servers.

Only authors of web servers and programming frameworks need to know every detail
and corner case of the WSGI design. You don’t need to understand every detail
of WSGI just to install a WSGI application or to write a web application using
an existing framework.

wsgiref is a reference implementation of the WSGI specification that can
be used to add WSGI support to a web server or framework. It provides utilities
for manipulating WSGI environment variables and response headers, base classes
for implementing WSGI servers, a demo HTTP server that serves WSGI applications,
and a validation tool that checks WSGI servers and applications for conformance
to the WSGI specification (PEP 333 [http://www.python.org/dev/peps/pep-0333]).

See http://www.wsgi.org for more information about WSGI, and links to tutorials
and other resources.

20.4.1. wsgiref.util – WSGI environment utilities

This module provides a variety of utility functions for working with WSGI
environments. A WSGI environment is a dictionary containing HTTP request
variables as described in PEP 333 [http://www.python.org/dev/peps/pep-0333]. All of the functions taking an environ
parameter expect a WSGI-compliant dictionary to be supplied; please see
PEP 333 [http://www.python.org/dev/peps/pep-0333] for a detailed specification.

	
wsgiref.util.guess_scheme(environ)

	Return a guess for whether wsgi.url_scheme should be “http” or “https”, by
checking for a HTTPS environment variable in the environ dictionary. The
return value is a string.

This function is useful when creating a gateway that wraps CGI or a CGI-like
protocol such as FastCGI. Typically, servers providing such protocols will
include a HTTPS variable with a value of “1” “yes”, or “on” when a request
is received via SSL. So, this function returns “https” if such a value is
found, and “http” otherwise.

	
wsgiref.util.request_uri(environ[, include_query=1])

	Return the full request URI, optionally including the query string, using the
algorithm found in the “URL Reconstruction” section of PEP 333 [http://www.python.org/dev/peps/pep-0333]. If
include_query is false, the query string is not included in the resulting URI.

	
wsgiref.util.application_uri(environ)

	Similar to request_uri(), except that the PATH_INFO and
QUERY_STRING variables are ignored. The result is the base URI of the
application object addressed by the request.

	
wsgiref.util.shift_path_info(environ)

	Shift a single name from PATH_INFO to SCRIPT_NAME and return the name.
The environ dictionary is modified in-place; use a copy if you need to keep
the original PATH_INFO or SCRIPT_NAME intact.

If there are no remaining path segments in PATH_INFO, None is returned.

Typically, this routine is used to process each portion of a request URI path,
for example to treat the path as a series of dictionary keys. This routine
modifies the passed-in environment to make it suitable for invoking another WSGI
application that is located at the target URI. For example, if there is a WSGI
application at /foo, and the request URI path is /foo/bar/baz, and the
WSGI application at /foo calls shift_path_info(), it will receive the
string “bar”, and the environment will be updated to be suitable for passing to
a WSGI application at /foo/bar. That is, SCRIPT_NAME will change from
/foo to /foo/bar, and PATH_INFO will change from /bar/baz to
/baz.

When PATH_INFO is just a “/”, this routine returns an empty string and
appends a trailing slash to SCRIPT_NAME, even though empty path segments are
normally ignored, and SCRIPT_NAME doesn’t normally end in a slash. This is
intentional behavior, to ensure that an application can tell the difference
between URIs ending in /x from ones ending in /x/ when using this
routine to do object traversal.

	
wsgiref.util.setup_testing_defaults(environ)

	Update environ with trivial defaults for testing purposes.

This routine adds various parameters required for WSGI, including HTTP_HOST,
SERVER_NAME, SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME,
PATH_INFO, and all of the PEP 333 [http://www.python.org/dev/peps/pep-0333]-defined wsgi.* variables. It
only supplies default values, and does not replace any existing settings for
these variables.

This routine is intended to make it easier for unit tests of WSGI servers and
applications to set up dummy environments. It should NOT be used by actual WSGI
servers or applications, since the data is fake!

Example usage:

from wsgiref.util import setup_testing_defaults
from wsgiref.simple_server import make_server

A relatively simple WSGI application. It's going to print out the
environment dictionary after being updated by setup_testing_defaults
def simple_app(environ, start_response):
 setup_testing_defaults(environ)

 status = '200 OK'
 headers = [('Content-type', 'text/plain')]

 start_response(status, headers)

 ret = ["%s: %s\n" % (key, value)
 for key, value in environ.iteritems()]
 return ret

httpd = make_server('', 8000, simple_app)
print "Serving on port 8000..."
httpd.serve_forever()

In addition to the environment functions above, the wsgiref.util module
also provides these miscellaneous utilities:

	
wsgiref.util.is_hop_by_hop(header_name)

	Return true if ‘header_name’ is an HTTP/1.1 “Hop-by-Hop” header, as defined by
RFC 2616 [http://tools.ietf.org/html/rfc2616.html].

	
class wsgiref.util.FileWrapper(filelike[, blksize=8192])

	A wrapper to convert a file-like object to an iterator. The resulting objects
support both __getitem__() and __iter__() iteration styles, for
compatibility with Python 2.1 and Jython. As the object is iterated over, the
optional blksize parameter will be repeatedly passed to the filelike
object’s read() method to obtain strings to yield. When read()
returns an empty string, iteration is ended and is not resumable.

If filelike has a close() method, the returned object will also have a
close() method, and it will invoke the filelike object’s close()
method when called.

Example usage:

from StringIO import StringIO
from wsgiref.util import FileWrapper

We're using a StringIO-buffer for as the file-like object
filelike = StringIO("This is an example file-like object"*10)
wrapper = FileWrapper(filelike, blksize=5)

for chunk in wrapper:
 print chunk

20.4.2. wsgiref.headers – WSGI response header tools

This module provides a single class, Headers, for convenient
manipulation of WSGI response headers using a mapping-like interface.

	
class wsgiref.headers.Headers(headers)

	Create a mapping-like object wrapping headers, which must be a list of header
name/value tuples as described in PEP 333 [http://www.python.org/dev/peps/pep-0333]. Any changes made to the new
Headers object will directly update the headers list it was created
with.

Headers objects support typical mapping operations including
__getitem__(), get(), __setitem__(), setdefault(),
__delitem__(), __contains__() and has_key(). For each of
these methods, the key is the header name (treated case-insensitively), and the
value is the first value associated with that header name. Setting a header
deletes any existing values for that header, then adds a new value at the end of
the wrapped header list. Headers’ existing order is generally maintained, with
new headers added to the end of the wrapped list.

Unlike a dictionary, Headers objects do not raise an error when you try
to get or delete a key that isn’t in the wrapped header list. Getting a
nonexistent header just returns None, and deleting a nonexistent header does
nothing.

Headers objects also support keys(), values(), and
items() methods. The lists returned by keys() and items() can
include the same key more than once if there is a multi-valued header. The
len() of a Headers object is the same as the length of its
items(), which is the same as the length of the wrapped header list. In
fact, the items() method just returns a copy of the wrapped header list.

Calling str() on a Headers object returns a formatted string
suitable for transmission as HTTP response headers. Each header is placed on a
line with its value, separated by a colon and a space. Each line is terminated
by a carriage return and line feed, and the string is terminated with a blank
line.

In addition to their mapping interface and formatting features, Headers
objects also have the following methods for querying and adding multi-valued
headers, and for adding headers with MIME parameters:

	
get_all(name)

	Return a list of all the values for the named header.

The returned list will be sorted in the order they appeared in the original
header list or were added to this instance, and may contain duplicates. Any
fields deleted and re-inserted are always appended to the header list. If no
fields exist with the given name, returns an empty list.

	
add_header(name, value, **_params)

	Add a (possibly multi-valued) header, with optional MIME parameters specified
via keyword arguments.

name is the header field to add. Keyword arguments can be used to set MIME
parameters for the header field. Each parameter must be a string or None.
Underscores in parameter names are converted to dashes, since dashes are illegal
in Python identifiers, but many MIME parameter names include dashes. If the
parameter value is a string, it is added to the header value parameters in the
form name="value". If it is None, only the parameter name is added.
(This is used for MIME parameters without a value.) Example usage:

h.add_header('content-disposition', 'attachment', filename='bud.gif')

The above will add a header that looks like this:

Content-Disposition: attachment; filename="bud.gif"

20.4.3. wsgiref.simple_server – a simple WSGI HTTP server

This module implements a simple HTTP server (based on BaseHTTPServer)
that serves WSGI applications. Each server instance serves a single WSGI
application on a given host and port. If you want to serve multiple
applications on a single host and port, you should create a WSGI application
that parses PATH_INFO to select which application to invoke for each
request. (E.g., using the shift_path_info() function from
wsgiref.util.)

	
wsgiref.simple_server.make_server(host, port, app[, server_class=WSGIServer[, handler_class=WSGIRequestHandler]])

	Create a new WSGI server listening on host and port, accepting connections
for app. The return value is an instance of the supplied server_class, and
will process requests using the specified handler_class. app must be a WSGI
application object, as defined by PEP 333 [http://www.python.org/dev/peps/pep-0333].

Example usage:

from wsgiref.simple_server import make_server, demo_app

httpd = make_server('', 8000, demo_app)
print "Serving HTTP on port 8000..."

Respond to requests until process is killed
httpd.serve_forever()

Alternative: serve one request, then exit
httpd.handle_request()

	
wsgiref.simple_server.demo_app(environ, start_response)

	This function is a small but complete WSGI application that returns a text page
containing the message “Hello world!” and a list of the key/value pairs provided
in the environ parameter. It’s useful for verifying that a WSGI server (such
as wsgiref.simple_server) is able to run a simple WSGI application
correctly.

	
class wsgiref.simple_server.WSGIServer(server_address, RequestHandlerClass)

	Create a WSGIServer instance. server_address should be a
(host,port) tuple, and RequestHandlerClass should be the subclass of
BaseHTTPServer.BaseHTTPRequestHandler that will be used to process
requests.

You do not normally need to call this constructor, as the make_server()
function can handle all the details for you.

WSGIServer is a subclass of BaseHTTPServer.HTTPServer, so all
of its methods (such as serve_forever() and handle_request()) are
available. WSGIServer also provides these WSGI-specific methods:

	
set_app(application)

	Sets the callable application as the WSGI application that will receive
requests.

	
get_app()

	Returns the currently-set application callable.

Normally, however, you do not need to use these additional methods, as
set_app() is normally called by make_server(), and the
get_app() exists mainly for the benefit of request handler instances.

	
class wsgiref.simple_server.WSGIRequestHandler(request, client_address, server)

	Create an HTTP handler for the given request (i.e. a socket), client_address
(a (host,port) tuple), and server (WSGIServer instance).

You do not need to create instances of this class directly; they are
automatically created as needed by WSGIServer objects. You can,
however, subclass this class and supply it as a handler_class to the
make_server() function. Some possibly relevant methods for overriding in
subclasses:

	
get_environ()

	Returns a dictionary containing the WSGI environment for a request. The default
implementation copies the contents of the WSGIServer object’s
base_environ dictionary attribute and then adds various headers derived
from the HTTP request. Each call to this method should return a new dictionary
containing all of the relevant CGI environment variables as specified in
PEP 333 [http://www.python.org/dev/peps/pep-0333].

	
get_stderr()

	Return the object that should be used as the wsgi.errors stream. The default
implementation just returns sys.stderr.

	
handle()

	Process the HTTP request. The default implementation creates a handler instance
using a wsgiref.handlers class to implement the actual WSGI application
interface.

20.4.4. wsgiref.validate — WSGI conformance checker

When creating new WSGI application objects, frameworks, servers, or middleware,
it can be useful to validate the new code’s conformance using
wsgiref.validate. This module provides a function that creates WSGI
application objects that validate communications between a WSGI server or
gateway and a WSGI application object, to check both sides for protocol
conformance.

Note that this utility does not guarantee complete PEP 333 [http://www.python.org/dev/peps/pep-0333] compliance; an
absence of errors from this module does not necessarily mean that errors do not
exist. However, if this module does produce an error, then it is virtually
certain that either the server or application is not 100% compliant.

This module is based on the paste.lint module from Ian Bicking’s “Python
Paste” library.

	
wsgiref.validate.validator(application)

	Wrap application and return a new WSGI application object. The returned
application will forward all requests to the original application, and will
check that both the application and the server invoking it are conforming to
the WSGI specification and to RFC 2616.

Any detected nonconformance results in an AssertionError being raised;
note, however, that how these errors are handled is server-dependent. For
example, wsgiref.simple_server and other servers based on
wsgiref.handlers (that don’t override the error handling methods to do
something else) will simply output a message that an error has occurred, and
dump the traceback to sys.stderr or some other error stream.

This wrapper may also generate output using the warnings module to
indicate behaviors that are questionable but which may not actually be
prohibited by PEP 333 [http://www.python.org/dev/peps/pep-0333]. Unless they are suppressed using Python command-line
options or the warnings API, any such warnings will be written to
sys.stderr (not wsgi.errors, unless they happen to be the same
object).

Example usage:

from wsgiref.validate import validator
from wsgiref.simple_server import make_server

Our callable object which is intentionally not compliant to the
standard, so the validator is going to break
def simple_app(environ, start_response):
 status = '200 OK' # HTTP Status
 headers = [('Content-type', 'text/plain')] # HTTP Headers
 start_response(status, headers)

 # This is going to break because we need to return a list, and
 # the validator is going to inform us
 return "Hello World"

This is the application wrapped in a validator
validator_app = validator(simple_app)

httpd = make_server('', 8000, validator_app)
print "Listening on port 8000...."
httpd.serve_forever()

20.4.5. wsgiref.handlers – server/gateway base classes

This module provides base handler classes for implementing WSGI servers and
gateways. These base classes handle most of the work of communicating with a
WSGI application, as long as they are given a CGI-like environment, along with
input, output, and error streams.

	
class wsgiref.handlers.CGIHandler

	CGI-based invocation via sys.stdin, sys.stdout, sys.stderr and
os.environ. This is useful when you have a WSGI application and want to run
it as a CGI script. Simply invoke CGIHandler().run(app), where app is
the WSGI application object you wish to invoke.

This class is a subclass of BaseCGIHandler that sets wsgi.run_once
to true, wsgi.multithread to false, and wsgi.multiprocess to true, and
always uses sys and os to obtain the necessary CGI streams and
environment.

	
class wsgiref.handlers.BaseCGIHandler(stdin, stdout, stderr, environ[, multithread=True[, multiprocess=False]])

	Similar to CGIHandler, but instead of using the sys and
os modules, the CGI environment and I/O streams are specified explicitly.
The multithread and multiprocess values are used to set the
wsgi.multithread and wsgi.multiprocess flags for any applications run by
the handler instance.

This class is a subclass of SimpleHandler intended for use with
software other than HTTP “origin servers”. If you are writing a gateway
protocol implementation (such as CGI, FastCGI, SCGI, etc.) that uses a
Status: header to send an HTTP status, you probably want to subclass this
instead of SimpleHandler.

	
class wsgiref.handlers.SimpleHandler(stdin, stdout, stderr, environ[, multithread=True[, multiprocess=False]])

	Similar to BaseCGIHandler, but designed for use with HTTP origin
servers. If you are writing an HTTP server implementation, you will probably
want to subclass this instead of BaseCGIHandler

This class is a subclass of BaseHandler. It overrides the
__init__(), get_stdin(), get_stderr(), add_cgi_vars(),
_write(), and _flush() methods to support explicitly setting the
environment and streams via the constructor. The supplied environment and
streams are stored in the stdin, stdout, stderr, and
environ attributes.

	
class wsgiref.handlers.BaseHandler

	This is an abstract base class for running WSGI applications. Each instance
will handle a single HTTP request, although in principle you could create a
subclass that was reusable for multiple requests.

BaseHandler instances have only one method intended for external use:

	
run(app)

	Run the specified WSGI application, app.

All of the other BaseHandler methods are invoked by this method in the
process of running the application, and thus exist primarily to allow
customizing the process.

The following methods MUST be overridden in a subclass:

	
_write(data)

	Buffer the string data for transmission to the client. It’s okay if this
method actually transmits the data; BaseHandler just separates write
and flush operations for greater efficiency when the underlying system actually
has such a distinction.

	
_flush()

	Force buffered data to be transmitted to the client. It’s okay if this method
is a no-op (i.e., if _write() actually sends the data).

	
get_stdin()

	Return an input stream object suitable for use as the wsgi.input of the
request currently being processed.

	
get_stderr()

	Return an output stream object suitable for use as the wsgi.errors of the
request currently being processed.

	
add_cgi_vars()

	Insert CGI variables for the current request into the environ attribute.

Here are some other methods and attributes you may wish to override. This list
is only a summary, however, and does not include every method that can be
overridden. You should consult the docstrings and source code for additional
information before attempting to create a customized BaseHandler
subclass.

Attributes and methods for customizing the WSGI environment:

	
wsgi_multithread

	The value to be used for the wsgi.multithread environment variable. It
defaults to true in BaseHandler, but may have a different default (or
be set by the constructor) in the other subclasses.

	
wsgi_multiprocess

	The value to be used for the wsgi.multiprocess environment variable. It
defaults to true in BaseHandler, but may have a different default (or
be set by the constructor) in the other subclasses.

	
wsgi_run_once

	The value to be used for the wsgi.run_once environment variable. It
defaults to false in BaseHandler, but CGIHandler sets it to
true by default.

	
os_environ

	The default environment variables to be included in every request’s WSGI
environment. By default, this is a copy of os.environ at the time that
wsgiref.handlers was imported, but subclasses can either create their own
at the class or instance level. Note that the dictionary should be considered
read-only, since the default value is shared between multiple classes and
instances.

	
server_software

	If the origin_server attribute is set, this attribute’s value is used to
set the default SERVER_SOFTWARE WSGI environment variable, and also to set a
default Server: header in HTTP responses. It is ignored for handlers (such
as BaseCGIHandler and CGIHandler) that are not HTTP origin
servers.

	
get_scheme()

	Return the URL scheme being used for the current request. The default
implementation uses the guess_scheme() function from wsgiref.util
to guess whether the scheme should be “http” or “https”, based on the current
request’s environ variables.

	
setup_environ()

	Set the environ attribute to a fully-populated WSGI environment. The
default implementation uses all of the above methods and attributes, plus the
get_stdin(), get_stderr(), and add_cgi_vars() methods and the
wsgi_file_wrapper attribute. It also inserts a SERVER_SOFTWARE key
if not present, as long as the origin_server attribute is a true value
and the server_software attribute is set.

Methods and attributes for customizing exception handling:

	
log_exception(exc_info)

	Log the exc_info tuple in the server log. exc_info is a (type, value,
traceback) tuple. The default implementation simply writes the traceback to
the request’s wsgi.errors stream and flushes it. Subclasses can override
this method to change the format or retarget the output, mail the traceback to
an administrator, or whatever other action may be deemed suitable.

	
traceback_limit

	The maximum number of frames to include in tracebacks output by the default
log_exception() method. If None, all frames are included.

	
error_output(environ, start_response)

	This method is a WSGI application to generate an error page for the user. It is
only invoked if an error occurs before headers are sent to the client.

This method can access the current error information using sys.exc_info(),
and should pass that information to start_response when calling it (as
described in the “Error Handling” section of PEP 333 [http://www.python.org/dev/peps/pep-0333]).

The default implementation just uses the error_status,
error_headers, and error_body attributes to generate an output
page. Subclasses can override this to produce more dynamic error output.

Note, however, that it’s not recommended from a security perspective to spit out
diagnostics to any old user; ideally, you should have to do something special to
enable diagnostic output, which is why the default implementation doesn’t
include any.

	
error_status

	The HTTP status used for error responses. This should be a status string as
defined in PEP 333 [http://www.python.org/dev/peps/pep-0333]; it defaults to a 500 code and message.

	
error_headers

	The HTTP headers used for error responses. This should be a list of WSGI
response headers ((name, value) tuples), as described in PEP 333 [http://www.python.org/dev/peps/pep-0333]. The
default list just sets the content type to text/plain.

	
error_body

	The error response body. This should be an HTTP response body string. It
defaults to the plain text, “A server error occurred. Please contact the
administrator.”

Methods and attributes for PEP 333 [http://www.python.org/dev/peps/pep-0333]‘s “Optional Platform-Specific File
Handling” feature:

	
wsgi_file_wrapper

	A wsgi.file_wrapper factory, or None. The default value of this
attribute is the FileWrapper class from wsgiref.util.

	
sendfile()

	Override to implement platform-specific file transmission. This method is
called only if the application’s return value is an instance of the class
specified by the wsgi_file_wrapper attribute. It should return a true
value if it was able to successfully transmit the file, so that the default
transmission code will not be executed. The default implementation of this
method just returns a false value.

Miscellaneous methods and attributes:

	
origin_server

	This attribute should be set to a true value if the handler’s _write() and
_flush() are being used to communicate directly to the client, rather than
via a CGI-like gateway protocol that wants the HTTP status in a special
Status: header.

This attribute’s default value is true in BaseHandler, but false in
BaseCGIHandler and CGIHandler.

	
http_version

	If origin_server is true, this string attribute is used to set the HTTP
version of the response set to the client. It defaults to "1.0".

20.4.6. Examples

This is a working “Hello World” WSGI application:

from wsgiref.simple_server import make_server

Every WSGI application must have an application object - a callable
object that accepts two arguments. For that purpose, we're going to
use a function (note that you're not limited to a function, you can
use a class for example). The first argument passed to the function
is a dictionary containing CGI-style envrironment variables and the
second variable is the callable object (see PEP 333).
def hello_world_app(environ, start_response):
 status = '200 OK' # HTTP Status
 headers = [('Content-type', 'text/plain')] # HTTP Headers
 start_response(status, headers)

 # The returned object is going to be printed
 return ["Hello World"]

httpd = make_server('', 8000, hello_world_app)
print "Serving on port 8000..."

Serve until process is killed
httpd.serve_forever()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.5. urllib — Open arbitrary resources by URL

Note

The urllib module has been split into parts and renamed in
Python 3.0 to urllib.request, urllib.parse,
and urllib.error. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.
Also note that the urllib.urlopen() function has been removed in
Python 3.0 in favor of urllib2.urlopen().

This module provides a high-level interface for fetching data across the World
Wide Web. In particular, the urlopen() function is similar to the
built-in function open(), but accepts Universal Resource Locators (URLs)
instead of filenames. Some restrictions apply — it can only open URLs for
reading, and no seek operations are available.

Warning

When opening HTTPS URLs, it is not attempted to validate the
server certificate. Use at your own risk!

20.5.1. High-level interface

	
urllib.urlopen(url[, data[, proxies]])

	Open a network object denoted by a URL for reading. If the URL does not have a
scheme identifier, or if it has file: as its scheme identifier, this
opens a local file (without universal newlines); otherwise it opens a socket to
a server somewhere on the network. If the connection cannot be made the
IOError exception is raised. If all went well, a file-like object is
returned. This supports the following methods: read(), readline(),
readlines(), fileno(), close(), info(), getcode() and
geturl(). It also has proper support for the iterator protocol. One
caveat: the read() method, if the size argument is omitted or negative,
may not read until the end of the data stream; there is no good way to determine
that the entire stream from a socket has been read in the general case.

Except for the info(), getcode() and geturl() methods,
these methods have the same interface as for file objects — see section
File Objects in this manual. (It is not a built-in file object,
however, so it can’t be used at those few places where a true built-in file
object is required.)

The info() method returns an instance of the class
mimetools.Message containing meta-information associated with the
URL. When the method is HTTP, these headers are those returned by the server
at the head of the retrieved HTML page (including Content-Length and
Content-Type). When the method is FTP, a Content-Length header will be
present if (as is now usual) the server passed back a file length in response
to the FTP retrieval request. A Content-Type header will be present if the
MIME type can be guessed. When the method is local-file, returned headers
will include a Date representing the file’s last-modified time, a
Content-Length giving file size, and a Content-Type containing a guess at the
file’s type. See also the description of the mimetools module.

The geturl() method returns the real URL of the page. In some cases, the
HTTP server redirects a client to another URL. The urlopen() function
handles this transparently, but in some cases the caller needs to know which URL
the client was redirected to. The geturl() method can be used to get at
this redirected URL.

The getcode() method returns the HTTP status code that was sent with the
response, or None if the URL is no HTTP URL.

If the url uses the http: scheme identifier, the optional data
argument may be given to specify a POST request (normally the request type
is GET). The data argument must be in standard
application/x-www-form-urlencoded format; see the urlencode()
function below.

The urlopen() function works transparently with proxies which do not
require authentication. In a Unix or Windows environment, set the
http_proxy, or ftp_proxy environment variables to a URL that
identifies the proxy server before starting the Python interpreter. For example
(the '%' is the command prompt):

% http_proxy="http://www.someproxy.com:3128"
% export http_proxy
% python
...

The no_proxy environment variable can be used to specify hosts which
shouldn’t be reached via proxy; if set, it should be a comma-separated list
of hostname suffixes, optionally with :port appended, for example
cern.ch,ncsa.uiuc.edu,some.host:8080.

In a Windows environment, if no proxy environment variables are set, proxy
settings are obtained from the registry’s Internet Settings section.

In a Mac OS X environment, urlopen() will retrieve proxy information
from the OS X System Configuration Framework, which can be managed with
Network System Preferences panel.

Alternatively, the optional proxies argument may be used to explicitly specify
proxies. It must be a dictionary mapping scheme names to proxy URLs, where an
empty dictionary causes no proxies to be used, and None (the default value)
causes environmental proxy settings to be used as discussed above. For
example:

Use http://www.someproxy.com:3128 for http proxying
proxies = {'http': 'http://www.someproxy.com:3128'}
filehandle = urllib.urlopen(some_url, proxies=proxies)
Don't use any proxies
filehandle = urllib.urlopen(some_url, proxies={})
Use proxies from environment - both versions are equivalent
filehandle = urllib.urlopen(some_url, proxies=None)
filehandle = urllib.urlopen(some_url)

Proxies which require authentication for use are not currently supported; this
is considered an implementation limitation.

Changed in version 2.3: Added the proxies support.

Changed in version 2.6: Added getcode() to returned object and support for the
no_proxy environment variable.

Deprecated since version 2.6: The urlopen() function has been removed in Python 3.0 in favor
of urllib2.urlopen().

	
urllib.urlretrieve(url[, filename[, reporthook[, data]]])

	Copy a network object denoted by a URL to a local file, if necessary. If the URL
points to a local file, or a valid cached copy of the object exists, the object
is not copied. Return a tuple (filename, headers) where filename is the
local file name under which the object can be found, and headers is whatever
the info() method of the object returned by urlopen() returned (for
a remote object, possibly cached). Exceptions are the same as for
urlopen().

The second argument, if present, specifies the file location to copy to (if
absent, the location will be a tempfile with a generated name). The third
argument, if present, is a hook function that will be called once on
establishment of the network connection and once after each block read
thereafter. The hook will be passed three arguments; a count of blocks
transferred so far, a block size in bytes, and the total size of the file. The
third argument may be -1 on older FTP servers which do not return a file
size in response to a retrieval request.

If the url uses the http: scheme identifier, the optional data
argument may be given to specify a POST request (normally the request type
is GET). The data argument must in standard
application/x-www-form-urlencoded format; see the urlencode()
function below.

Changed in version 2.5: urlretrieve() will raise ContentTooShortError when it detects that
the amount of data available was less than the expected amount (which is the
size reported by a Content-Length header). This can occur, for example, when
the download is interrupted.The Content-Length is treated as a lower bound: if there’s more data to read,
urlretrieve() reads more data, but if less data is available, it raises
the exception.

You can still retrieve the downloaded data in this case, it is stored in the
content attribute of the exception instance.

If no Content-Length header was supplied, urlretrieve() can not check
the size of the data it has downloaded, and just returns it. In this case you
just have to assume that the download was successful.

	
urllib._urlopener

	The public functions urlopen() and urlretrieve() create an instance
of the FancyURLopener class and use it to perform their requested
actions. To override this functionality, programmers can create a subclass of
URLopener or FancyURLopener, then assign an instance of that
class to the urllib._urlopener variable before calling the desired function.
For example, applications may want to specify a different
User-Agent header than URLopener defines. This can be
accomplished with the following code:

import urllib

class AppURLopener(urllib.FancyURLopener):
 version = "App/1.7"

urllib._urlopener = AppURLopener()

	
urllib.urlcleanup()

	Clear the cache that may have been built up by previous calls to
urlretrieve().

20.5.2. Utility functions

	
urllib.quote(string[, safe])

	Replace special characters in string using the %xx escape. Letters,
digits, and the characters '_.-' are never quoted. By default, this
function is intended for quoting the path section of the URL.The optional
safe parameter specifies additional characters that should not be quoted
— its default value is '/'.

Example: quote('/~connolly/') yields '/%7econnolly/'.

	
urllib.quote_plus(string[, safe])

	Like quote(), but also replaces spaces by plus signs, as required for
quoting HTML form values when building up a query string to go into a URL.
Plus signs in the original string are escaped unless they are included in
safe. It also does not have safe default to '/'.

	
urllib.unquote(string)

	Replace %xx escapes by their single-character equivalent.

Example: unquote('/%7Econnolly/') yields '/~connolly/'.

	
urllib.unquote_plus(string)

	Like unquote(), but also replaces plus signs by spaces, as required for
unquoting HTML form values.

	
urllib.urlencode(query[, doseq])

	Convert a mapping object or a sequence of two-element tuples to a
“percent-encoded” string, suitable to pass to urlopen() above as the
optional data argument. This is useful to pass a dictionary of form
fields to a POST request. The resulting string is a series of
key=value pairs separated by '&' characters, where both key and
value are quoted using quote_plus() above. When a sequence of
two-element tuples is used as the query argument, the first element of
each tuple is a key and the second is a value. The value element in itself
can be a sequence and in that case, if the optional parameter doseq is
evaluates to True, individual key=value pairs separated by '&' are
generated for each element of the value sequence for the key. The order of
parameters in the encoded string will match the order of parameter tuples in
the sequence. The urlparse module provides the functions
parse_qs() and parse_qsl() which are used to parse query strings
into Python data structures.

	
urllib.pathname2url(path)

	Convert the pathname path from the local syntax for a path to the form used in
the path component of a URL. This does not produce a complete URL. The return
value will already be quoted using the quote() function.

	
urllib.url2pathname(path)

	Convert the path component path from an percent-encoded URL to the local syntax for a
path. This does not accept a complete URL. This function uses unquote()
to decode path.

	
urllib.getproxies()

	This helper function returns a dictionary of scheme to proxy server URL
mappings. It scans the environment for variables named <scheme>_proxy
for all operating systems first, and when it cannot find it, looks for proxy
information from Mac OSX System Configuration for Mac OS X and Windows
Systems Registry for Windows.

20.5.3. URL Opener objects

	
class urllib.URLopener([proxies[, **x509]])

	Base class for opening and reading URLs. Unless you need to support opening
objects using schemes other than http:, ftp:, or file:,
you probably want to use FancyURLopener.

By default, the URLopener class sends a User-Agent header
of urllib/VVV, where VVV is the urllib version number.
Applications can define their own User-Agent header by subclassing
URLopener or FancyURLopener and setting the class attribute
version to an appropriate string value in the subclass definition.

The optional proxies parameter should be a dictionary mapping scheme names to
proxy URLs, where an empty dictionary turns proxies off completely. Its default
value is None, in which case environmental proxy settings will be used if
present, as discussed in the definition of urlopen(), above.

Additional keyword parameters, collected in x509, may be used for
authentication of the client when using the https: scheme. The keywords
key_file and cert_file are supported to provide an SSL key and certificate;
both are needed to support client authentication.

URLopener objects will raise an IOError exception if the server
returns an error code.

	
open(fullurl[, data])

	Open fullurl using the appropriate protocol. This method sets up cache and
proxy information, then calls the appropriate open method with its input
arguments. If the scheme is not recognized, open_unknown() is called.
The data argument has the same meaning as the data argument of
urlopen().

	
open_unknown(fullurl[, data])

	Overridable interface to open unknown URL types.

	
retrieve(url[, filename[, reporthook[, data]]])

	Retrieves the contents of url and places it in filename. The return value
is a tuple consisting of a local filename and either a
mimetools.Message object containing the response headers (for remote
URLs) or None (for local URLs). The caller must then open and read the
contents of filename. If filename is not given and the URL refers to a
local file, the input filename is returned. If the URL is non-local and
filename is not given, the filename is the output of tempfile.mktemp()
with a suffix that matches the suffix of the last path component of the input
URL. If reporthook is given, it must be a function accepting three numeric
parameters. It will be called after each chunk of data is read from the
network. reporthook is ignored for local URLs.

If the url uses the http: scheme identifier, the optional data
argument may be given to specify a POST request (normally the request type
is GET). The data argument must in standard
application/x-www-form-urlencoded format; see the urlencode()
function below.

	
version

	Variable that specifies the user agent of the opener object. To get
urllib to tell servers that it is a particular user agent, set this in a
subclass as a class variable or in the constructor before calling the base
constructor.

	
class urllib.FancyURLopener(...)

	FancyURLopener subclasses URLopener providing default handling
for the following HTTP response codes: 301, 302, 303, 307 and 401. For the 30x
response codes listed above, the Location header is used to fetch
the actual URL. For 401 response codes (authentication required), basic HTTP
authentication is performed. For the 30x response codes, recursion is bounded
by the value of the maxtries attribute, which defaults to 10.

For all other response codes, the method http_error_default() is called
which you can override in subclasses to handle the error appropriately.

Note

According to the letter of RFC 2616 [http://tools.ietf.org/html/rfc2616.html], 301 and 302 responses to POST requests
must not be automatically redirected without confirmation by the user. In
reality, browsers do allow automatic redirection of these responses, changing
the POST to a GET, and urllib reproduces this behaviour.

The parameters to the constructor are the same as those for URLopener.

Note

When performing basic authentication, a FancyURLopener instance calls
its prompt_user_passwd() method. The default implementation asks the
users for the required information on the controlling terminal. A subclass may
override this method to support more appropriate behavior if needed.

The FancyURLopener class offers one additional method that should be
overloaded to provide the appropriate behavior:

	
prompt_user_passwd(host, realm)

	Return information needed to authenticate the user at the given host in the
specified security realm. The return value should be a tuple, (user,
password), which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application
should override this method to use an appropriate interaction model in the local
environment.

	
exception urllib.ContentTooShortError(msg[, content])

	This exception is raised when the urlretrieve() function detects that the
amount of the downloaded data is less than the expected amount (given by the
Content-Length header). The content attribute stores the downloaded
(and supposedly truncated) data.

New in version 2.5.

20.5.4. urllib Restrictions

	Currently, only the following protocols are supported: HTTP, (versions 0.9 and
1.0), FTP, and local files.

	The caching feature of urlretrieve() has been disabled until I find the
time to hack proper processing of Expiration time headers.

	There should be a function to query whether a particular URL is in the cache.

	For backward compatibility, if a URL appears to point to a local file but the
file can’t be opened, the URL is re-interpreted using the FTP protocol. This
can sometimes cause confusing error messages.

	The urlopen() and urlretrieve() functions can cause arbitrarily
long delays while waiting for a network connection to be set up. This means
that it is difficult to build an interactive Web client using these functions
without using threads.

	The data returned by urlopen() or urlretrieve() is the raw data
returned by the server. This may be binary data (such as an image), plain text
or (for example) HTML. The HTTP protocol provides type information in the reply
header, which can be inspected by looking at the Content-Type
header. If the returned data is HTML, you can use the module htmllib to
parse it.

	The code handling the FTP protocol cannot differentiate between a file and a
directory. This can lead to unexpected behavior when attempting to read a URL
that points to a file that is not accessible. If the URL ends in a /, it is
assumed to refer to a directory and will be handled accordingly. But if an
attempt to read a file leads to a 550 error (meaning the URL cannot be found or
is not accessible, often for permission reasons), then the path is treated as a
directory in order to handle the case when a directory is specified by a URL but
the trailing / has been left off. This can cause misleading results when
you try to fetch a file whose read permissions make it inaccessible; the FTP
code will try to read it, fail with a 550 error, and then perform a directory
listing for the unreadable file. If fine-grained control is needed, consider
using the ftplib module, subclassing FancyURLopener, or changing
_urlopener to meet your needs.

	This module does not support the use of proxies which require authentication.
This may be implemented in the future.

	Although the urllib module contains (undocumented) routines to parse
and unparse URL strings, the recommended interface for URL manipulation is in
module urlparse.

20.5.5. Examples

Here is an example session that uses the GET method to retrieve a URL
containing parameters:

>>> import urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()

The following example uses the POST method instead:

>>> import urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()

The following example uses an explicitly specified HTTP proxy, overriding
environment settings:

>>> import urllib
>>> proxies = {'http': 'http://proxy.example.com:8080/'}
>>> opener = urllib.FancyURLopener(proxies)
>>> f = opener.open("http://www.python.org")
>>> f.read()

The following example uses no proxies at all, overriding environment settings:

>>> import urllib
>>> opener = urllib.FancyURLopener({})
>>> f = opener.open("http://www.python.org/")
>>> f.read()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.6. urllib2 — extensible library for opening URLs

Note

The urllib2 module has been split across several modules in
Python 3.0 named urllib.request and urllib.error.
The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

The urllib2 module defines functions and classes which help in opening
URLs (mostly HTTP) in a complex world — basic and digest authentication,
redirections, cookies and more.

The urllib2 module defines the following functions:

	
urllib2.urlopen(url[, data][, timeout])

	Open the URL url, which can be either a string or a Request object.

Warning

HTTPS requests do not do any verification of the server’s certificate.

data may be a string specifying additional data to send to the server, or
None if no such data is needed. Currently HTTP requests are the only ones
that use data; the HTTP request will be a POST instead of a GET when the
data parameter is provided. data should be a buffer in the standard
application/x-www-form-urlencoded format. The
urllib.urlencode() function takes a mapping or sequence of 2-tuples and
returns a string in this format. urllib2 module sends HTTP/1.1 requests with
Connection:close header included.

The optional timeout parameter specifies a timeout in seconds for blocking
operations like the connection attempt (if not specified, the global default
timeout setting will be used). This actually only works for HTTP, HTTPS and
FTP connections.

This function returns a file-like object with two additional methods:

	geturl() — return the URL of the resource retrieved, commonly used to
determine if a redirect was followed

	info() — return the meta-information of the page, such as headers,
in the form of an mimetools.Message instance
(see Quick Reference to HTTP Headers [http://www.cs.tut.fi/~jkorpela/http.html])

Raises URLError on errors.

Note that None may be returned if no handler handles the request (though the
default installed global OpenerDirector uses UnknownHandler to
ensure this never happens).

In addition, default installed ProxyHandler makes sure the requests
are handled through the proxy when they are set.

Changed in version 2.6: timeout was added.

	
urllib2.install_opener(opener)

	Install an OpenerDirector instance as the default global opener.
Installing an opener is only necessary if you want urlopen to use that opener;
otherwise, simply call OpenerDirector.open() instead of urlopen().
The code does not check for a real OpenerDirector, and any class with
the appropriate interface will work.

	
urllib2.build_opener([handler, ...])

	Return an OpenerDirector instance, which chains the handlers in the
order given. handlers can be either instances of BaseHandler, or
subclasses of BaseHandler (in which case it must be possible to call
the constructor without any parameters). Instances of the following classes
will be in front of the handlers, unless the handlers contain them,
instances of them or subclasses of them: ProxyHandler,
UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler,
HTTPRedirectHandler, FTPHandler, FileHandler,
HTTPErrorProcessor.

If the Python installation has SSL support (i.e., if the ssl module can be imported),
HTTPSHandler will also be added.

Beginning in Python 2.3, a BaseHandler subclass may also change its
handler_order member variable to modify its position in the handlers
list.

The following exceptions are raised as appropriate:

	
exception urllib2.URLError

	The handlers raise this exception (or derived exceptions) when they run into a
problem. It is a subclass of IOError.

	
reason

	The reason for this error. It can be a message string or another exception
instance (socket.error for remote URLs, OSError for local
URLs).

	
exception urllib2.HTTPError

	Though being an exception (a subclass of URLError), an HTTPError
can also function as a non-exceptional file-like return value (the same thing
that urlopen() returns). This is useful when handling exotic HTTP
errors, such as requests for authentication.

	
code

	An HTTP status code as defined in RFC 2616 [http://www.faqs.org/rfcs/rfc2616.html].
This numeric value corresponds to a value found in the dictionary of
codes as found in BaseHTTPServer.BaseHTTPRequestHandler.responses.

The following classes are provided:

	
class urllib2.Request(url[, data][, headers][, origin_req_host][, unverifiable])

	This class is an abstraction of a URL request.

url should be a string containing a valid URL.

data may be a string specifying additional data to send to the server, or
None if no such data is needed. Currently HTTP requests are the only ones
that use data; the HTTP request will be a POST instead of a GET when the
data parameter is provided. data should be a buffer in the standard
application/x-www-form-urlencoded format. The
urllib.urlencode() function takes a mapping or sequence of 2-tuples and
returns a string in this format.

headers should be a dictionary, and will be treated as if add_header()
was called with each key and value as arguments. This is often used to “spoof”
the User-Agent header, which is used by a browser to identify itself –
some HTTP servers only allow requests coming from common browsers as opposed
to scripts. For example, Mozilla Firefox may identify itself as "Mozilla/5.0
(X11; U; Linux i686) Gecko/20071127 Firefox/2.0.0.11", while urllib2‘s
default user agent string is "Python-urllib/2.6" (on Python 2.6).

The final two arguments are only of interest for correct handling of third-party
HTTP cookies:

origin_req_host should be the request-host of the origin transaction, as
defined by RFC 2965 [http://tools.ietf.org/html/rfc2965.html]. It defaults to cookielib.request_host(self). This
is the host name or IP address of the original request that was initiated by the
user. For example, if the request is for an image in an HTML document, this
should be the request-host of the request for the page containing the image.

unverifiable should indicate whether the request is unverifiable, as defined
by RFC 2965. It defaults to False. An unverifiable request is one whose URL
the user did not have the option to approve. For example, if the request is for
an image in an HTML document, and the user had no option to approve the
automatic fetching of the image, this should be true.

	
class urllib2.OpenerDirector

	The OpenerDirector class opens URLs via BaseHandlers chained
together. It manages the chaining of handlers, and recovery from errors.

	
class urllib2.BaseHandler

	This is the base class for all registered handlers — and handles only the
simple mechanics of registration.

	
class urllib2.HTTPDefaultErrorHandler

	A class which defines a default handler for HTTP error responses; all responses
are turned into HTTPError exceptions.

	
class urllib2.HTTPRedirectHandler

	A class to handle redirections.

	
class urllib2.HTTPCookieProcessor([cookiejar])

	A class to handle HTTP Cookies.

	
class urllib2.ProxyHandler([proxies])

	Cause requests to go through a proxy. If proxies is given, it must be a
dictionary mapping protocol names to URLs of proxies. The default is to read
the list of proxies from the environment variables
<protocol>_proxy. If no proxy environment variables are set, in a
Windows environment, proxy settings are obtained from the registry’s
Internet Settings section and in a Mac OS X environment, proxy information
is retrieved from the OS X System Configuration Framework.

To disable autodetected proxy pass an empty dictionary.

	
class urllib2.HTTPPasswordMgr

	Keep a database of (realm, uri) -> (user, password) mappings.

	
class urllib2.HTTPPasswordMgrWithDefaultRealm

	Keep a database of (realm, uri) -> (user, password) mappings. A realm of
None is considered a catch-all realm, which is searched if no other realm
fits.

	
class urllib2.AbstractBasicAuthHandler([password_mgr])

	This is a mixin class that helps with HTTP authentication, both to the remote
host and to a proxy. password_mgr, if given, should be something that is
compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be
supported.

	
class urllib2.HTTPBasicAuthHandler([password_mgr])

	Handle authentication with the remote host. password_mgr, if given, should be
something that is compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be
supported.

	
class urllib2.ProxyBasicAuthHandler([password_mgr])

	Handle authentication with the proxy. password_mgr, if given, should be
something that is compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be
supported.

	
class urllib2.AbstractDigestAuthHandler([password_mgr])

	This is a mixin class that helps with HTTP authentication, both to the remote
host and to a proxy. password_mgr, if given, should be something that is
compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be
supported.

	
class urllib2.HTTPDigestAuthHandler([password_mgr])

	Handle authentication with the remote host. password_mgr, if given, should be
something that is compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be
supported.

	
class urllib2.ProxyDigestAuthHandler([password_mgr])

	Handle authentication with the proxy. password_mgr, if given, should be
something that is compatible with HTTPPasswordMgr; refer to section
HTTPPasswordMgr Objects for information on the interface that must be
supported.

	
class urllib2.HTTPHandler

	A class to handle opening of HTTP URLs.

	
class urllib2.HTTPSHandler

	A class to handle opening of HTTPS URLs.

	
class urllib2.FileHandler

	Open local files.

	
class urllib2.FTPHandler

	Open FTP URLs.

	
class urllib2.CacheFTPHandler

	Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

	
class urllib2.UnknownHandler

	A catch-all class to handle unknown URLs.

20.6.1. Request Objects

The following methods describe all of Request‘s public interface, and
so all must be overridden in subclasses.

	
Request.add_data(data)

	Set the Request data to data. This is ignored by all handlers except
HTTP handlers — and there it should be a byte string, and will change the
request to be POST rather than GET.

	
Request.get_method()

	Return a string indicating the HTTP request method. This is only meaningful for
HTTP requests, and currently always returns 'GET' or 'POST'.

	
Request.has_data()

	Return whether the instance has a non-None data.

	
Request.get_data()

	Return the instance’s data.

	
Request.add_header(key, val)

	Add another header to the request. Headers are currently ignored by all
handlers except HTTP handlers, where they are added to the list of headers sent
to the server. Note that there cannot be more than one header with the same
name, and later calls will overwrite previous calls in case the key collides.
Currently, this is no loss of HTTP functionality, since all headers which have
meaning when used more than once have a (header-specific) way of gaining the
same functionality using only one header.

	
Request.add_unredirected_header(key, header)

	Add a header that will not be added to a redirected request.

New in version 2.4.

	
Request.has_header(header)

	Return whether the instance has the named header (checks both regular and
unredirected).

New in version 2.4.

	
Request.get_full_url()

	Return the URL given in the constructor.

	
Request.get_type()

	Return the type of the URL — also known as the scheme.

	
Request.get_host()

	Return the host to which a connection will be made.

	
Request.get_selector()

	Return the selector — the part of the URL that is sent to the server.

	
Request.set_proxy(host, type)

	Prepare the request by connecting to a proxy server. The host and type will
replace those of the instance, and the instance’s selector will be the original
URL given in the constructor.

	
Request.get_origin_req_host()

	Return the request-host of the origin transaction, as defined by RFC 2965 [http://tools.ietf.org/html/rfc2965.html].
See the documentation for the Request constructor.

	
Request.is_unverifiable()

	Return whether the request is unverifiable, as defined by RFC 2965. See the
documentation for the Request constructor.

20.6.2. OpenerDirector Objects

OpenerDirector instances have the following methods:

	
OpenerDirector.add_handler(handler)

	handler should be an instance of BaseHandler. The following
methods are searched, and added to the possible chains (note that HTTP errors
are a special case).

	protocol_open — signal that the handler knows how to open
protocol URLs.

	http_error_type — signal that the handler knows how to handle
HTTP errors with HTTP error code type.

	protocol_error — signal that the handler knows how to handle
errors from (non-http) protocol.

	protocol_request — signal that the handler knows how to
pre-process protocol requests.

	protocol_response — signal that the handler knows how to
post-process protocol responses.

	
OpenerDirector.open(url[, data][, timeout])

	Open the given url (which can be a request object or a string), optionally
passing the given data. Arguments, return values and exceptions raised are
the same as those of urlopen() (which simply calls the open()
method on the currently installed global OpenerDirector). The
optional timeout parameter specifies a timeout in seconds for blocking
operations like the connection attempt (if not specified, the global default
timeout setting will be used). The timeout feature actually works only for
HTTP, HTTPS and FTP connections).

Changed in version 2.6: timeout was added.

	
OpenerDirector.error(proto[, arg[, ...]])

	Handle an error of the given protocol. This will call the registered error
handlers for the given protocol with the given arguments (which are protocol
specific). The HTTP protocol is a special case which uses the HTTP response
code to determine the specific error handler; refer to the http_error_*()
methods of the handler classes.

Return values and exceptions raised are the same as those of urlopen().

OpenerDirector objects open URLs in three stages:

The order in which these methods are called within each stage is determined by
sorting the handler instances.

	Every handler with a method named like protocol_request has that
method called to pre-process the request.

	Handlers with a method named like protocol_open are called to handle
the request. This stage ends when a handler either returns a non-None
value (ie. a response), or raises an exception (usually URLError).
Exceptions are allowed to propagate.

In fact, the above algorithm is first tried for methods named
default_open(). If all such methods return None, the
algorithm is repeated for methods named like protocol_open. If all
such methods return None, the algorithm is repeated for methods
named unknown_open().

Note that the implementation of these methods may involve calls of the parent
OpenerDirector instance’s open() and
error() methods.

	Every handler with a method named like protocol_response has that
method called to post-process the response.

20.6.3. BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly
useful, and others that are meant to be used by derived classes. These are
intended for direct use:

	
BaseHandler.add_parent(director)

	Add a director as parent.

	
BaseHandler.close()

	Remove any parents.

The following members and methods should only be used by classes derived from
BaseHandler.

Note

The convention has been adopted that subclasses defining
protocol_request() or protocol_response() methods are named
*Processor; all others are named *Handler.

	
BaseHandler.parent

	A valid OpenerDirector, which can be used to open using a different
protocol, or handle errors.

	
BaseHandler.default_open(req)

	This method is not defined in BaseHandler, but subclasses should
define it if they want to catch all URLs.

This method, if implemented, will be called by the parent
OpenerDirector. It should return a file-like object as described in
the return value of the open() of OpenerDirector, or None.
It should raise URLError, unless a truly exceptional thing happens (for
example, MemoryError should not be mapped to URLError).

This method will be called before any protocol-specific open method.

	
BaseHandler.protocol_open(req)

	(“protocol” is to be replaced by the protocol name.)

This method is not defined in BaseHandler, but subclasses should
define it if they want to handle URLs with the given protocol.

This method, if defined, will be called by the parent OpenerDirector.
Return values should be the same as for default_open().

	
BaseHandler.unknown_open(req)

	This method is not defined in BaseHandler, but subclasses should
define it if they want to catch all URLs with no specific registered handler to
open it.

This method, if implemented, will be called by the parent
OpenerDirector. Return values should be the same as for
default_open().

	
BaseHandler.http_error_default(req, fp, code, msg, hdrs)

	This method is not defined in BaseHandler, but subclasses should
override it if they intend to provide a catch-all for otherwise unhandled HTTP
errors. It will be called automatically by the OpenerDirector getting
the error, and should not normally be called in other circumstances.

req will be a Request object, fp will be a file-like object with
the HTTP error body, code will be the three-digit code of the error, msg
will be the user-visible explanation of the code and hdrs will be a mapping
object with the headers of the error.

Return values and exceptions raised should be the same as those of
urlopen().

	
BaseHandler.http_error_nnn(req, fp, code, msg, hdrs)

	nnn should be a three-digit HTTP error code. This method is also not defined
in BaseHandler, but will be called, if it exists, on an instance of a
subclass, when an HTTP error with code nnn occurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as for
http_error_default().

	
BaseHandler.protocol_request(req)

	(“protocol” is to be replaced by the protocol name.)

This method is not defined in BaseHandler, but subclasses should
define it if they want to pre-process requests of the given protocol.

This method, if defined, will be called by the parent OpenerDirector.
req will be a Request object. The return value should be a
Request object.

	
BaseHandler.protocol_response(req, response)

	(“protocol” is to be replaced by the protocol name.)

This method is not defined in BaseHandler, but subclasses should
define it if they want to post-process responses of the given protocol.

This method, if defined, will be called by the parent OpenerDirector.
req will be a Request object. response will be an object
implementing the same interface as the return value of urlopen(). The
return value should implement the same interface as the return value of
urlopen().

20.6.4. HTTPRedirectHandler Objects

Note

Some HTTP redirections require action from this module’s client code. If this
is the case, HTTPError is raised. See RFC 2616 [http://tools.ietf.org/html/rfc2616.html] for details of the
precise meanings of the various redirection codes.

	
HTTPRedirectHandler.redirect_request(req, fp, code, msg, hdrs, newurl)

	Return a Request or None in response to a redirect. This is called
by the default implementations of the http_error_30*() methods when a
redirection is received from the server. If a redirection should take place,
return a new Request to allow http_error_30*() to perform the
redirect to newurl. Otherwise, raise HTTPError if no other handler
should try to handle this URL, or return None if you can’t but another
handler might.

Note

The default implementation of this method does not strictly follow RFC 2616 [http://tools.ietf.org/html/rfc2616.html],
which says that 301 and 302 responses to POST requests must not be
automatically redirected without confirmation by the user. In reality, browsers
do allow automatic redirection of these responses, changing the POST to a
GET, and the default implementation reproduces this behavior.

	
HTTPRedirectHandler.http_error_301(req, fp, code, msg, hdrs)

	Redirect to the Location: or URI: URL. This method is called by the
parent OpenerDirector when getting an HTTP ‘moved permanently’ response.

	
HTTPRedirectHandler.http_error_302(req, fp, code, msg, hdrs)

	The same as http_error_301(), but called for the ‘found’ response.

	
HTTPRedirectHandler.http_error_303(req, fp, code, msg, hdrs)

	The same as http_error_301(), but called for the ‘see other’ response.

	
HTTPRedirectHandler.http_error_307(req, fp, code, msg, hdrs)

	The same as http_error_301(), but called for the ‘temporary redirect’
response.

20.6.5. HTTPCookieProcessor Objects

New in version 2.4.

HTTPCookieProcessor instances have one attribute:

	
HTTPCookieProcessor.cookiejar

	The cookielib.CookieJar in which cookies are stored.

20.6.6. ProxyHandler Objects

	
ProxyHandler.protocol_open(request)

	(“protocol” is to be replaced by the protocol name.)

The ProxyHandler will have a method protocol_open for every
protocol which has a proxy in the proxies dictionary given in the
constructor. The method will modify requests to go through the proxy, by
calling request.set_proxy(), and call the next handler in the chain to
actually execute the protocol.

20.6.7. HTTPPasswordMgr Objects

These methods are available on HTTPPasswordMgr and
HTTPPasswordMgrWithDefaultRealm objects.

	
HTTPPasswordMgr.add_password(realm, uri, user, passwd)

	uri can be either a single URI, or a sequence of URIs. realm, user and
passwd must be strings. This causes (user, passwd) to be used as
authentication tokens when authentication for realm and a super-URI of any of
the given URIs is given.

	
HTTPPasswordMgr.find_user_password(realm, authuri)

	Get user/password for given realm and URI, if any. This method will return
(None, None) if there is no matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realm None will be
searched if the given realm has no matching user/password.

20.6.8. AbstractBasicAuthHandler Objects

	
AbstractBasicAuthHandler.http_error_auth_reqed(authreq, host, req, headers)

	Handle an authentication request by getting a user/password pair, and re-trying
the request. authreq should be the name of the header where the information
about the realm is included in the request, host specifies the URL and path to
authenticate for, req should be the (failed) Request object, and
headers should be the error headers.

host is either an authority (e.g. "python.org") or a URL containing an
authority component (e.g. "http://python.org/"). In either case, the
authority must not contain a userinfo component (so, "python.org" and
"python.org:80" are fine, "joe:password@python.org" is not).

20.6.9. HTTPBasicAuthHandler Objects

	
HTTPBasicAuthHandler.http_error_401(req, fp, code, msg, hdrs)

	Retry the request with authentication information, if available.

20.6.10. ProxyBasicAuthHandler Objects

	
ProxyBasicAuthHandler.http_error_407(req, fp, code, msg, hdrs)

	Retry the request with authentication information, if available.

20.6.11. AbstractDigestAuthHandler Objects

	
AbstractDigestAuthHandler.http_error_auth_reqed(authreq, host, req, headers)

	authreq should be the name of the header where the information about the realm
is included in the request, host should be the host to authenticate to, req
should be the (failed) Request object, and headers should be the
error headers.

20.6.12. HTTPDigestAuthHandler Objects

	
HTTPDigestAuthHandler.http_error_401(req, fp, code, msg, hdrs)

	Retry the request with authentication information, if available.

20.6.13. ProxyDigestAuthHandler Objects

	
ProxyDigestAuthHandler.http_error_407(req, fp, code, msg, hdrs)

	Retry the request with authentication information, if available.

20.6.14. HTTPHandler Objects

	
HTTPHandler.http_open(req)

	Send an HTTP request, which can be either GET or POST, depending on
req.has_data().

20.6.15. HTTPSHandler Objects

	
HTTPSHandler.https_open(req)

	Send an HTTPS request, which can be either GET or POST, depending on
req.has_data().

20.6.16. FileHandler Objects

	
FileHandler.file_open(req)

	Open the file locally, if there is no host name, or the host name is
'localhost'. Change the protocol to ftp otherwise, and retry opening it
using parent.

20.6.17. FTPHandler Objects

	
FTPHandler.ftp_open(req)

	Open the FTP file indicated by req. The login is always done with empty
username and password.

20.6.18. CacheFTPHandler Objects

CacheFTPHandler objects are FTPHandler objects with the
following additional methods:

	
CacheFTPHandler.setTimeout(t)

	Set timeout of connections to t seconds.

	
CacheFTPHandler.setMaxConns(m)

	Set maximum number of cached connections to m.

20.6.19. UnknownHandler Objects

	
UnknownHandler.unknown_open()

	Raise a URLError exception.

20.6.20. HTTPErrorProcessor Objects

New in version 2.4.

	
HTTPErrorProcessor.unknown_open()

	Process HTTP error responses.

For 200 error codes, the response object is returned immediately.

For non-200 error codes, this simply passes the job on to the
protocol_error_code handler methods, via
OpenerDirector.error(). Eventually,
urllib2.HTTPDefaultErrorHandler will raise an HTTPError if no
other handler handles the error.

20.6.21. Examples

This example gets the python.org main page and displays the first 100 bytes of
it:

>>> import urllib2
>>> f = urllib2.urlopen('http://www.python.org/')
>>> print f.read(100)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<?xml-stylesheet href="./css/ht2html

Here we are sending a data-stream to the stdin of a CGI and reading the data it
returns to us. Note that this example will only work when the Python
installation supports SSL.

>>> import urllib2
>>> req = urllib2.Request(url='https://localhost/cgi-bin/test.cgi',
... data='This data is passed to stdin of the CGI')
>>> f = urllib2.urlopen(req)
>>> print f.read()
Got Data: "This data is passed to stdin of the CGI"

The code for the sample CGI used in the above example is:

#!/usr/bin/env python
import sys
data = sys.stdin.read()
print 'Content-type: text-plain\n\nGot Data: "%s"' % data

Use of Basic HTTP Authentication:

import urllib2
Create an OpenerDirector with support for Basic HTTP Authentication...
auth_handler = urllib2.HTTPBasicAuthHandler()
auth_handler.add_password(realm='PDQ Application',
 uri='https://mahler:8092/site-updates.py',
 user='klem',
 passwd='kadidd!ehopper')
opener = urllib2.build_opener(auth_handler)
...and install it globally so it can be used with urlopen.
urllib2.install_opener(opener)
urllib2.urlopen('http://www.example.com/login.html')

build_opener() provides many handlers by default, including a
ProxyHandler. By default, ProxyHandler uses the environment
variables named <scheme>_proxy, where <scheme> is the URL scheme
involved. For example, the http_proxy environment variable is read to
obtain the HTTP proxy’s URL.

This example replaces the default ProxyHandler with one that uses
programmatically-supplied proxy URLs, and adds proxy authorization support with
ProxyBasicAuthHandler.

proxy_handler = urllib2.ProxyHandler({'http': 'http://www.example.com:3128/'})
proxy_auth_handler = urllib2.ProxyBasicAuthHandler()
proxy_auth_handler.add_password('realm', 'host', 'username', 'password')

opener = urllib2.build_opener(proxy_handler, proxy_auth_handler)
This time, rather than install the OpenerDirector, we use it directly:
opener.open('http://www.example.com/login.html')

Adding HTTP headers:

Use the headers argument to the Request constructor, or:

import urllib2
req = urllib2.Request('http://www.example.com/')
req.add_header('Referer', 'http://www.python.org/')
r = urllib2.urlopen(req)

OpenerDirector automatically adds a User-Agent header to
every Request. To change this:

import urllib2
opener = urllib2.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
opener.open('http://www.example.com/')

Also, remember that a few standard headers (Content-Length,
Content-Type and Host) are added when the
Request is passed to urlopen() (or OpenerDirector.open()).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.7. httplib — HTTP protocol client

Note

The httplib module has been renamed to http.client in Python
3.0. The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

This module defines classes which implement the client side of the HTTP and
HTTPS protocols. It is normally not used directly — the module urllib
uses it to handle URLs that use HTTP and HTTPS.

Note

HTTPS support is only available if the socket module was compiled with
SSL support.

Note

The public interface for this module changed substantially in Python 2.0. The
HTTP class is retained only for backward compatibility with 1.5.2. It
should not be used in new code. Refer to the online docstrings for usage.

The module provides the following classes:

	
class httplib.HTTPConnection(host[, port[, strict[, timeout[, source_address]]]])

	An HTTPConnection instance represents one transaction with an HTTP
server. It should be instantiated passing it a host and optional port
number. If no port number is passed, the port is extracted from the host
string if it has the form host:port, else the default HTTP port (80) is
used. When True, the optional parameter strict (which defaults to a false
value) causes BadStatusLine to
be raised if the status line can’t be parsed as a valid HTTP/1.0 or 1.1
status line. If the optional timeout parameter is given, blocking
operations (like connection attempts) will timeout after that many seconds
(if it is not given, the global default timeout setting is used).
The optional source_address parameter may be a tuple of a (host, port)
to use as the source address the HTTP connection is made from.

For example, the following calls all create instances that connect to the server
at the same host and port:

>>> h1 = httplib.HTTPConnection('www.cwi.nl')
>>> h2 = httplib.HTTPConnection('www.cwi.nl:80')
>>> h3 = httplib.HTTPConnection('www.cwi.nl', 80)
>>> h3 = httplib.HTTPConnection('www.cwi.nl', 80, timeout=10)

New in version 2.0.

Changed in version 2.6: timeout was added.

Changed in version 2.7: source_address was added.

	
class httplib.HTTPSConnection(host[, port[, key_file[, cert_file[, strict[, timeout[, source_address]]]]]])

	A subclass of HTTPConnection that uses SSL for communication with
secure servers. Default port is 443. key_file is the name of a PEM
formatted file that contains your private key. cert_file is a PEM formatted
certificate chain file.

Warning

This does not do any verification of the server’s certificate.

New in version 2.0.

Changed in version 2.6: timeout was added.

Changed in version 2.7: source_address was added.

	
class httplib.HTTPResponse(sock[, debuglevel=0][, strict=0])

	Class whose instances are returned upon successful connection. Not instantiated
directly by user.

New in version 2.0.

	
class httplib.HTTPMessage

	An HTTPMessage instance is used to hold the headers from an HTTP
response. It is implemented using the mimetools.Message class and
provides utility functions to deal with HTTP Headers. It is not directly
instantiated by the users.

The following exceptions are raised as appropriate:

	
exception httplib.HTTPException

	The base class of the other exceptions in this module. It is a subclass of
Exception.

New in version 2.0.

	
exception httplib.NotConnected

	A subclass of HTTPException.

New in version 2.0.

	
exception httplib.InvalidURL

	A subclass of HTTPException, raised if a port is given and is either
non-numeric or empty.

New in version 2.3.

	
exception httplib.UnknownProtocol

	A subclass of HTTPException.

New in version 2.0.

	
exception httplib.UnknownTransferEncoding

	A subclass of HTTPException.

New in version 2.0.

	
exception httplib.UnimplementedFileMode

	A subclass of HTTPException.

New in version 2.0.

	
exception httplib.IncompleteRead

	A subclass of HTTPException.

New in version 2.0.

	
exception httplib.ImproperConnectionState

	A subclass of HTTPException.

New in version 2.0.

	
exception httplib.CannotSendRequest

	A subclass of ImproperConnectionState.

New in version 2.0.

	
exception httplib.CannotSendHeader

	A subclass of ImproperConnectionState.

New in version 2.0.

	
exception httplib.ResponseNotReady

	A subclass of ImproperConnectionState.

New in version 2.0.

	
exception httplib.BadStatusLine

	A subclass of HTTPException. Raised if a server responds with a HTTP
status code that we don’t understand.

New in version 2.0.

The constants defined in this module are:

	
httplib.HTTP_PORT

	The default port for the HTTP protocol (always 80).

	
httplib.HTTPS_PORT

	The default port for the HTTPS protocol (always 443).

and also the following constants for integer status codes:

	Constant
	Value
	Definition

	CONTINUE
	100
	HTTP/1.1, RFC 2616, Section
10.1.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.1]

	SWITCHING_PROTOCOLS
	101
	HTTP/1.1, RFC 2616, Section
10.1.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2]

	PROCESSING
	102
	WEBDAV, RFC 2518, Section 10.1 [http://www.webdav.org/specs/rfc2518.html#STATUS_102]

	OK
	200
	HTTP/1.1, RFC 2616, Section
10.2.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1]

	CREATED
	201
	HTTP/1.1, RFC 2616, Section
10.2.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2]

	ACCEPTED
	202
	HTTP/1.1, RFC 2616, Section
10.2.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3]

	NON_AUTHORITATIVE_INFORMATION
	203
	HTTP/1.1, RFC 2616, Section
10.2.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.4]

	NO_CONTENT
	204
	HTTP/1.1, RFC 2616, Section
10.2.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5]

	RESET_CONTENT
	205
	HTTP/1.1, RFC 2616, Section
10.2.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6]

	PARTIAL_CONTENT
	206
	HTTP/1.1, RFC 2616, Section
10.2.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7]

	MULTI_STATUS
	207
	WEBDAV RFC 2518, Section 10.2 [http://www.webdav.org/specs/rfc2518.html#STATUS_207]

	IM_USED
	226
	Delta encoding in HTTP,
RFC 3229 [http://tools.ietf.org/html/rfc3229.html], Section 10.4.1

	MULTIPLE_CHOICES
	300
	HTTP/1.1, RFC 2616, Section
10.3.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.1]

	MOVED_PERMANENTLY
	301
	HTTP/1.1, RFC 2616, Section
10.3.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2]

	FOUND
	302
	HTTP/1.1, RFC 2616, Section
10.3.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3]

	SEE_OTHER
	303
	HTTP/1.1, RFC 2616, Section
10.3.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4]

	NOT_MODIFIED
	304
	HTTP/1.1, RFC 2616, Section
10.3.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5]

	USE_PROXY
	305
	HTTP/1.1, RFC 2616, Section
10.3.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.6]

	TEMPORARY_REDIRECT
	307
	HTTP/1.1, RFC 2616, Section
10.3.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.8]

	BAD_REQUEST
	400
	HTTP/1.1, RFC 2616, Section
10.4.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1]

	UNAUTHORIZED
	401
	HTTP/1.1, RFC 2616, Section
10.4.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2]

	PAYMENT_REQUIRED
	402
	HTTP/1.1, RFC 2616, Section
10.4.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3]

	FORBIDDEN
	403
	HTTP/1.1, RFC 2616, Section
10.4.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4]

	NOT_FOUND
	404
	HTTP/1.1, RFC 2616, Section
10.4.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5]

	METHOD_NOT_ALLOWED
	405
	HTTP/1.1, RFC 2616, Section
10.4.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6]

	NOT_ACCEPTABLE
	406
	HTTP/1.1, RFC 2616, Section
10.4.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7]

	PROXY_AUTHENTICATION_REQUIRED
	407
	HTTP/1.1, RFC 2616, Section
10.4.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.8]

	REQUEST_TIMEOUT
	408
	HTTP/1.1, RFC 2616, Section
10.4.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9]

	CONFLICT
	409
	HTTP/1.1, RFC 2616, Section
10.4.10 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10]

	GONE
	410
	HTTP/1.1, RFC 2616, Section
10.4.11 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11]

	LENGTH_REQUIRED
	411
	HTTP/1.1, RFC 2616, Section
10.4.12 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.12]

	PRECONDITION_FAILED
	412
	HTTP/1.1, RFC 2616, Section
10.4.13 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13]

	REQUEST_ENTITY_TOO_LARGE
	413
	HTTP/1.1, RFC 2616, Section
10.4.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14]

	REQUEST_URI_TOO_LONG
	414
	HTTP/1.1, RFC 2616, Section
10.4.15 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.15]

	UNSUPPORTED_MEDIA_TYPE
	415
	HTTP/1.1, RFC 2616, Section
10.4.16 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16]

	REQUESTED_RANGE_NOT_SATISFIABLE
	416
	HTTP/1.1, RFC 2616, Section
10.4.17 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.17]

	EXPECTATION_FAILED
	417
	HTTP/1.1, RFC 2616, Section
10.4.18 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.18]

	UNPROCESSABLE_ENTITY
	422
	WEBDAV, RFC 2518, Section 10.3 [http://www.webdav.org/specs/rfc2518.html#STATUS_422]

	LOCKED
	423
	WEBDAV RFC 2518, Section 10.4 [http://www.webdav.org/specs/rfc2518.html#STATUS_423]

	FAILED_DEPENDENCY
	424
	WEBDAV, RFC 2518, Section 10.5 [http://www.webdav.org/specs/rfc2518.html#STATUS_424]

	UPGRADE_REQUIRED
	426
	HTTP Upgrade to TLS,
RFC 2817 [http://tools.ietf.org/html/rfc2817.html], Section 6

	INTERNAL_SERVER_ERROR
	500
	HTTP/1.1, RFC 2616, Section
10.5.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1]

	NOT_IMPLEMENTED
	501
	HTTP/1.1, RFC 2616, Section
10.5.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2]

	BAD_GATEWAY
	502
	HTTP/1.1 RFC 2616, Section
10.5.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.3]

	SERVICE_UNAVAILABLE
	503
	HTTP/1.1, RFC 2616, Section
10.5.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4]

	GATEWAY_TIMEOUT
	504
	HTTP/1.1 RFC 2616, Section
10.5.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.5]

	HTTP_VERSION_NOT_SUPPORTED
	505
	HTTP/1.1, RFC 2616, Section
10.5.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.6]

	INSUFFICIENT_STORAGE
	507
	WEBDAV, RFC 2518, Section 10.6 [http://www.webdav.org/specs/rfc2518.html#STATUS_507]

	NOT_EXTENDED
	510
	An HTTP Extension Framework,
RFC 2774 [http://tools.ietf.org/html/rfc2774.html], Section 7

	
httplib.responses

	This dictionary maps the HTTP 1.1 status codes to the W3C names.

Example: httplib.responses[httplib.NOT_FOUND] is 'Not Found'.

New in version 2.5.

20.7.1. HTTPConnection Objects

HTTPConnection instances have the following methods:

	
HTTPConnection.request(method, url[, body[, headers]])

	This will send a request to the server using the HTTP request method method
and the selector url. If the body argument is present, it should be a
string of data to send after the headers are finished. Alternatively, it may
be an open file object, in which case the contents of the file is sent; this
file object should support fileno() and read() methods. The header
Content-Length is automatically set to the correct value. The headers
argument should be a mapping of extra HTTP headers to send with the request.

Changed in version 2.6: body can be a file object.

	
HTTPConnection.getresponse()

	Should be called after a request is sent to get the response from the server.
Returns an HTTPResponse instance.

Note

Note that you must have read the whole response before you can send a new
request to the server.

	
HTTPConnection.set_debuglevel(level)

	Set the debugging level (the amount of debugging output printed). The default
debug level is 0, meaning no debugging output is printed.

	
HTTPConnection.set_tunnel(host, port=None, headers=None)

	Set the host and the port for HTTP Connect Tunnelling. Normally used when
it is required to do HTTPS Conection through a proxy server.

The headers argument should be a mapping of extra HTTP headers to to sent
with the CONNECT request.

New in version 2.7.

	
HTTPConnection.connect()

	Connect to the server specified when the object was created.

	
HTTPConnection.close()

	Close the connection to the server.

As an alternative to using the request() method described above, you can
also send your request step by step, by using the four functions below.

	
HTTPConnection.putrequest(request, selector[, skip_host[, skip_accept_encoding]])

	This should be the first call after the connection to the server has been made.
It sends a line to the server consisting of the request string, the selector
string, and the HTTP version (HTTP/1.1). To disable automatic sending of
Host: or Accept-Encoding: headers (for example to accept additional
content encodings), specify skip_host or skip_accept_encoding with non-False
values.

Changed in version 2.4: skip_accept_encoding argument added.

	
HTTPConnection.putheader(header, argument[, ...])

	Send an RFC 822 [http://tools.ietf.org/html/rfc822.html]-style header to the server. It sends a line to the server
consisting of the header, a colon and a space, and the first argument. If more
arguments are given, continuation lines are sent, each consisting of a tab and
an argument.

	
HTTPConnection.endheaders()

	Send a blank line to the server, signalling the end of the headers.

	
HTTPConnection.send(data)

	Send data to the server. This should be used directly only after the
endheaders() method has been called and before getresponse() is
called.

20.7.2. HTTPResponse Objects

HTTPResponse instances have the following methods and attributes:

	
HTTPResponse.read([amt])

	Reads and returns the response body, or up to the next amt bytes.

	
HTTPResponse.getheader(name[, default])

	Get the contents of the header name, or default if there is no matching
header.

	
HTTPResponse.getheaders()

	Return a list of (header, value) tuples.

New in version 2.4.

	
HTTPResponse.fileno()

	Returns the fileno of the underlying socket.

	
HTTPResponse.msg

	A mimetools.Message instance containing the response headers.

	
HTTPResponse.version

	HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1.

	
HTTPResponse.status

	Status code returned by server.

	
HTTPResponse.reason

	Reason phrase returned by server.

20.7.3. Examples

Here is an example session that uses the GET method:

>>> import httplib
>>> conn = httplib.HTTPConnection("www.python.org")
>>> conn.request("GET", "/index.html")
>>> r1 = conn.getresponse()
>>> print r1.status, r1.reason
200 OK
>>> data1 = r1.read()
>>> conn.request("GET", "/parrot.spam")
>>> r2 = conn.getresponse()
>>> print r2.status, r2.reason
404 Not Found
>>> data2 = r2.read()
>>> conn.close()

Here is an example session that uses the HEAD method. Note that the
HEAD method never returns any data.

>>> import httplib
>>> conn = httplib.HTTPConnection("www.python.org")
>>> conn.request("HEAD","/index.html")
>>> res = conn.getresponse()
>>> print res.status, res.reason
200 OK
>>> data = res.read()
>>> print len(data)
0
>>> data == ''
True

Here is an example session that shows how to POST requests:

>>> import httplib, urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> headers = {"Content-type": "application/x-www-form-urlencoded",
... "Accept": "text/plain"}
>>> conn = httplib.HTTPConnection("musi-cal.mojam.com:80")
>>> conn.request("POST", "/cgi-bin/query", params, headers)
>>> response = conn.getresponse()
>>> print response.status, response.reason
200 OK
>>> data = response.read()
>>> conn.close()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.8. ftplib — FTP protocol client

This module defines the class FTP and a few related items. The
FTP class implements the client side of the FTP protocol. You can use
this to write Python programs that perform a variety of automated FTP jobs, such
as mirroring other ftp servers. It is also used by the module urllib to
handle URLs that use FTP. For more information on FTP (File Transfer Protocol),
see Internet RFC 959 [http://tools.ietf.org/html/rfc959.html].

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP
>>> ftp = FTP('ftp.cwi.nl') # connect to host, default port
>>> ftp.login() # user anonymous, passwd anonymous@
>>> ftp.retrlines('LIST') # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX
 .
 .
 .
>>> ftp.retrbinary('RETR README', open('README', 'wb').write)
'226 Transfer complete.'
>>> ftp.quit()

The module defines the following items:

	
class ftplib.FTP([host[, user[, passwd[, acct[, timeout]]]]])

	Return a new instance of the FTP class. When host is given, the
method call connect(host) is made. When user is given, additionally
the method call login(user, passwd, acct) is made (where passwd and
acct default to the empty string when not given). The optional timeout
parameter specifies a timeout in seconds for blocking operations like the
connection attempt (if is not specified, the global default timeout setting
will be used).

Changed in version 2.6: timeout was added.

	
class ftplib.FTP_TLS([host[, user[, passwd[, acct[, keyfile[, certfile[, timeout]]]]]]])

	A FTP subclass which adds TLS support to FTP as described in
RFC 4217 [http://tools.ietf.org/html/rfc4217.html].
Connect as usual to port 21 implicitly securing the FTP control connection
before authenticating. Securing the data connection requires the user to
explicitly ask for it by calling the prot_p() method.
keyfile and certfile are optional – they can contain a PEM formatted
private key and certificate chain file name for the SSL connection.

New in version 2.7.

Here’s a sample session using the FTP_TLS class:

>>> from ftplib import FTP_TLS
>>> ftps = FTP_TLS('ftp.python.org')
>>> ftps.login() # login anonymously before securing control channel
>>> ftps.prot_p() # switch to secure data connection
>>> ftps.retrlines('LIST') # list directory content securely
total 9
drwxr-xr-x 8 root wheel 1024 Jan 3 1994 .
drwxr-xr-x 8 root wheel 1024 Jan 3 1994 ..
drwxr-xr-x 2 root wheel 1024 Jan 3 1994 bin
drwxr-xr-x 2 root wheel 1024 Jan 3 1994 etc
d-wxrwxr-x 2 ftp wheel 1024 Sep 5 13:43 incoming
drwxr-xr-x 2 root wheel 1024 Nov 17 1993 lib
drwxr-xr-x 6 1094 wheel 1024 Sep 13 19:07 pub
drwxr-xr-x 3 root wheel 1024 Jan 3 1994 usr
-rw-r--r-- 1 root root 312 Aug 1 1994 welcome.msg
'226 Transfer complete.'
>>> ftps.quit()
>>>

	
exception ftplib.error_reply

	Exception raised when an unexpected reply is received from the server.

	
exception ftplib.error_temp

	Exception raised when an error code signifying a temporary error (response
codes in the range 400–499) is received.

	
exception ftplib.error_perm

	Exception raised when an error code signifying a permanent error (response
codes in the range 500–599) is received.

	
exception ftplib.error_proto

	Exception raised when a reply is received from the server that does not fit
the response specifications of the File Transfer Protocol, i.e. begin with a
digit in the range 1–5.

	
ftplib.all_errors

	The set of all exceptions (as a tuple) that methods of FTP
instances may raise as a result of problems with the FTP connection (as
opposed to programming errors made by the caller). This set includes the
four exceptions listed above as well as socket.error and
IOError.

See also

	Module netrc

	Parser for the .netrc file format. The file .netrc is
typically used by FTP clients to load user authentication information
before prompting the user.

The file Tools/scripts/ftpmirror.py in the Python source distribution is
a script that can mirror FTP sites, or portions thereof, using the ftplib
module. It can be used as an extended example that applies this module.

20.8.1. FTP Objects

Several methods are available in two flavors: one for handling text files and
another for binary files. These are named for the command which is used
followed by lines for the text version or binary for the binary version.

FTP instances have the following methods:

	
FTP.set_debuglevel(level)

	Set the instance’s debugging level. This controls the amount of debugging
output printed. The default, 0, produces no debugging output. A value of
1 produces a moderate amount of debugging output, generally a single line
per request. A value of 2 or higher produces the maximum amount of
debugging output, logging each line sent and received on the control connection.

	
FTP.connect(host[, port[, timeout]])

	Connect to the given host and port. The default port number is 21, as
specified by the FTP protocol specification. It is rarely needed to specify a
different port number. This function should be called only once for each
instance; it should not be called at all if a host was given when the instance
was created. All other methods can only be used after a connection has been
made.

The optional timeout parameter specifies a timeout in seconds for the
connection attempt. If no timeout is passed, the global default timeout
setting will be used.

Changed in version 2.6: timeout was added.

	
FTP.getwelcome()

	Return the welcome message sent by the server in reply to the initial
connection. (This message sometimes contains disclaimers or help information
that may be relevant to the user.)

	
FTP.login([user[, passwd[, acct]]])

	Log in as the given user. The passwd and acct parameters are optional and
default to the empty string. If no user is specified, it defaults to
'anonymous'. If user is 'anonymous', the default passwd is
'anonymous@'. This function should be called only once for each instance,
after a connection has been established; it should not be called at all if a
host and user were given when the instance was created. Most FTP commands are
only allowed after the client has logged in. The acct parameter supplies
“accounting information”; few systems implement this.

	
FTP.abort()

	Abort a file transfer that is in progress. Using this does not always work, but
it’s worth a try.

	
FTP.sendcmd(command)

	Send a simple command string to the server and return the response string.

	
FTP.voidcmd(command)

	Send a simple command string to the server and handle the response. Return
nothing if a response code corresponding to success (codes in the range
200–299) is received. Raise error_reply otherwise.

	
FTP.retrbinary(command, callback[, maxblocksize[, rest]])

	Retrieve a file in binary transfer mode. command should be an appropriate
RETR command: 'RETR filename'. The callback function is called for
each block of data received, with a single string argument giving the data
block. The optional maxblocksize argument specifies the maximum chunk size to
read on the low-level socket object created to do the actual transfer (which
will also be the largest size of the data blocks passed to callback). A
reasonable default is chosen. rest means the same thing as in the
transfercmd() method.

	
FTP.retrlines(command[, callback])

	Retrieve a file or directory listing in ASCII transfer mode. command
should be an appropriate RETR command (see retrbinary()) or a
command such as LIST, NLST or MLSD (usually just the string
'LIST'). LIST retrieves a list of files and information about those files.
NLST retrieves a list of file names. On some servers, MLSD retrieves
a machine readable list of files and information about those files. The callback
function is called for each line with a string argument containing the line with
the trailing CRLF stripped. The default callback prints the line to sys.stdout.

	
FTP.set_pasv(boolean)

	Enable “passive” mode if boolean is true, other disable passive mode. (In
Python 2.0 and before, passive mode was off by default; in Python 2.1 and later,
it is on by default.)

	
FTP.storbinary(command, file[, blocksize, callback, rest])

	Store a file in binary transfer mode. command should be an appropriate
STOR command: "STOR filename". file is an open file object which is
read until EOF using its read() method in blocks of size blocksize to
provide the data to be stored. The blocksize argument defaults to 8192.
callback is an optional single parameter callable that is called
on each block of data after it is sent. rest means the same thing as in
the transfercmd() method.

Changed in version 2.1: default for blocksize added.

Changed in version 2.6: callback parameter added.

Changed in version 2.7: rest parameter added.

	
FTP.storlines(command, file[, callback])

	Store a file in ASCII transfer mode. command should be an appropriate
STOR command (see storbinary()). Lines are read until EOF from the
open file object file using its readline() method to provide the data to
be stored. callback is an optional single parameter callable
that is called on each line after it is sent.

Changed in version 2.6: callback parameter added.

	
FTP.transfercmd(cmd[, rest])

	Initiate a transfer over the data connection. If the transfer is active, send a
EPRT or PORT command and the transfer command specified by cmd, and
accept the connection. If the server is passive, send a EPSV or PASV
command, connect to it, and start the transfer command. Either way, return the
socket for the connection.

If optional rest is given, a REST command is sent to the server, passing
rest as an argument. rest is usually a byte offset into the requested file,
telling the server to restart sending the file’s bytes at the requested offset,
skipping over the initial bytes. Note however that RFC 959 requires only that
rest be a string containing characters in the printable range from ASCII code
33 to ASCII code 126. The transfercmd() method, therefore, converts
rest to a string, but no check is performed on the string’s contents. If the
server does not recognize the REST command, an error_reply exception
will be raised. If this happens, simply call transfercmd() without a
rest argument.

	
FTP.ntransfercmd(cmd[, rest])

	Like transfercmd(), but returns a tuple of the data connection and the
expected size of the data. If the expected size could not be computed, None
will be returned as the expected size. cmd and rest means the same thing as
in transfercmd().

	
FTP.nlst(argument[, ...])

	Return a list of file names as returned by the NLST command. The
optional argument is a directory to list (default is the current server
directory). Multiple arguments can be used to pass non-standard options to
the NLST command.

	
FTP.dir(argument[, ...])

	Produce a directory listing as returned by the LIST command, printing it to
standard output. The optional argument is a directory to list (default is the
current server directory). Multiple arguments can be used to pass non-standard
options to the LIST command. If the last argument is a function, it is used
as a callback function as for retrlines(); the default prints to
sys.stdout. This method returns None.

	
FTP.rename(fromname, toname)

	Rename file fromname on the server to toname.

	
FTP.delete(filename)

	Remove the file named filename from the server. If successful, returns the
text of the response, otherwise raises error_perm on permission errors or
error_reply on other errors.

	
FTP.cwd(pathname)

	Set the current directory on the server.

	
FTP.mkd(pathname)

	Create a new directory on the server.

	
FTP.pwd()

	Return the pathname of the current directory on the server.

	
FTP.rmd(dirname)

	Remove the directory named dirname on the server.

	
FTP.size(filename)

	Request the size of the file named filename on the server. On success, the
size of the file is returned as an integer, otherwise None is returned.
Note that the SIZE command is not standardized, but is supported by many
common server implementations.

	
FTP.quit()

	Send a QUIT command to the server and close the connection. This is the
“polite” way to close a connection, but it may raise an exception if the server
responds with an error to the QUIT command. This implies a call to the
close() method which renders the FTP instance useless for
subsequent calls (see below).

	
FTP.close()

	Close the connection unilaterally. This should not be applied to an already
closed connection such as after a successful call to quit(). After this
call the FTP instance should not be used any more (after a call to
close() or quit() you cannot reopen the connection by issuing
another login() method).

20.8.2. FTP_TLS Objects

FTP_TLS class inherits from FTP, defining these additional objects:

	
FTP_TLS.ssl_version

	The SSL version to use (defaults to TLSv1).

	
FTP_TLS.auth()

	Set up secure control connection by using TLS or SSL, depending on what specified in ssl_version() attribute.

	
FTP_TLS.prot_p()

	Set up secure data connection.

	
FTP_TLS.prot_c()

	Set up clear text data connection.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.9. poplib — POP3 protocol client

This module defines a class, POP3, which encapsulates a connection to a
POP3 server and implements the protocol as defined in RFC 1725 [http://tools.ietf.org/html/rfc1725.html]. The
POP3 class supports both the minimal and optional command sets.
Additionally, this module provides a class POP3_SSL, which provides
support for connecting to POP3 servers that use SSL as an underlying protocol
layer.

Note that POP3, though widely supported, is obsolescent. The implementation
quality of POP3 servers varies widely, and too many are quite poor. If your
mailserver supports IMAP, you would be better off using the
imaplib.IMAP4 class, as IMAP servers tend to be better implemented.

A single class is provided by the poplib module:

	
class poplib.POP3(host[, port[, timeout]])

	This class implements the actual POP3 protocol. The connection is created when
the instance is initialized. If port is omitted, the standard POP3 port (110)
is used. The optional timeout parameter specifies a timeout in seconds for the
connection attempt (if not specified, the global default timeout setting will
be used).

Changed in version 2.6: timeout was added.

	
class poplib.POP3_SSL(host[, port[, keyfile[, certfile]]])

	This is a subclass of POP3 that connects to the server over an SSL
encrypted socket. If port is not specified, 995, the standard POP3-over-SSL
port is used. keyfile and certfile are also optional - they can contain a
PEM formatted private key and certificate chain file for the SSL connection.

New in version 2.4.

One exception is defined as an attribute of the poplib module:

	
exception poplib.error_proto

	Exception raised on any errors from this module (errors from socket
module are not caught). The reason for the exception is passed to the
constructor as a string.

See also

	Module imaplib

	The standard Python IMAP module.

	Frequently Asked Questions About Fetchmail [http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html]

	The FAQ for the fetchmail POP/IMAP client collects information on
POP3 server variations and RFC noncompliance that may be useful if you need to
write an application based on the POP protocol.

20.9.1. POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case;
most return the response text sent by the server.

An POP3 instance has the following methods:

	
POP3.set_debuglevel(level)

	Set the instance’s debugging level. This controls the amount of debugging
output printed. The default, 0, produces no debugging output. A value of
1 produces a moderate amount of debugging output, generally a single line
per request. A value of 2 or higher produces the maximum amount of
debugging output, logging each line sent and received on the control connection.

	
POP3.getwelcome()

	Returns the greeting string sent by the POP3 server.

	
POP3.user(username)

	Send user command, response should indicate that a password is required.

	
POP3.pass_(password)

	Send password, response includes message count and mailbox size. Note: the
mailbox on the server is locked until quit() is called.

	
POP3.apop(user, secret)

	Use the more secure APOP authentication to log into the POP3 server.

	
POP3.rpop(user)

	Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

	
POP3.stat()

	Get mailbox status. The result is a tuple of 2 integers: (message count,
mailbox size).

	
POP3.list([which])

	Request message list, result is in the form (response, ['mesg_num octets',
...], octets). If which is set, it is the message to list.

	
POP3.retr(which)

	Retrieve whole message number which, and set its seen flag. Result is in form
(response, ['line', ...], octets).

	
POP3.dele(which)

	Flag message number which for deletion. On most servers deletions are not
actually performed until QUIT (the major exception is Eudora QPOP, which
deliberately violates the RFCs by doing pending deletes on any disconnect).

	
POP3.rset()

	Remove any deletion marks for the mailbox.

	
POP3.noop()

	Do nothing. Might be used as a keep-alive.

	
POP3.quit()

	Signoff: commit changes, unlock mailbox, drop connection.

	
POP3.top(which, howmuch)

	Retrieves the message header plus howmuch lines of the message after the
header of message number which. Result is in form (response, ['line', ...],
octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the
message’s seen flag; unfortunately, TOP is poorly specified in the RFCs and is
frequently broken in off-brand servers. Test this method by hand against the
POP3 servers you will use before trusting it.

	
POP3.uidl([which])

	Return message digest (unique id) list. If which is specified, result contains
the unique id for that message in the form 'response mesgnum uid, otherwise
result is list (response, ['mesgnum uid', ...], octets).

Instances of POP3_SSL have no additional methods. The interface of this
subclass is identical to its parent.

20.9.2. POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and
retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3('localhost')
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):
 for j in M.retr(i+1)[1]:
 print j

At the end of the module, there is a test section that contains a more extensive
example of usage.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.10. imaplib — IMAP4 protocol client

This module defines three classes, IMAP4, IMAP4_SSL and
IMAP4_stream, which encapsulate a connection to an IMAP4 server and
implement a large subset of the IMAP4rev1 client protocol as defined in
RFC 2060 [http://tools.ietf.org/html/rfc2060.html]. It is backward compatible with IMAP4 (RFC 1730 [http://tools.ietf.org/html/rfc1730.html]) servers, but
note that the STATUS command is not supported in IMAP4.

Three classes are provided by the imaplib module, IMAP4 is the
base class:

	
class imaplib.IMAP4([host[, port]])

	This class implements the actual IMAP4 protocol. The connection is created and
protocol version (IMAP4 or IMAP4rev1) is determined when the instance is
initialized. If host is not specified, '' (the local host) is used. If
port is omitted, the standard IMAP4 port (143) is used.

Three exceptions are defined as attributes of the IMAP4 class:

	
exception IMAP4.error

	Exception raised on any errors. The reason for the exception is passed to the
constructor as a string.

	
exception IMAP4.abort

	IMAP4 server errors cause this exception to be raised. This is a sub-class of
IMAP4.error. Note that closing the instance and instantiating a new one
will usually allow recovery from this exception.

	
exception IMAP4.readonly

	This exception is raised when a writable mailbox has its status changed by the
server. This is a sub-class of IMAP4.error. Some other client now has
write permission, and the mailbox will need to be re-opened to re-obtain write
permission.

There’s also a subclass for secure connections:

	
class imaplib.IMAP4_SSL([host[, port[, keyfile[, certfile]]]])

	This is a subclass derived from IMAP4 that connects over an SSL
encrypted socket (to use this class you need a socket module that was compiled
with SSL support). If host is not specified, '' (the local host) is used.
If port is omitted, the standard IMAP4-over-SSL port (993) is used. keyfile
and certfile are also optional - they can contain a PEM formatted private key
and certificate chain file for the SSL connection.

The second subclass allows for connections created by a child process:

	
class imaplib.IMAP4_stream(command)

	This is a subclass derived from IMAP4 that connects to the
stdin/stdout file descriptors created by passing command to
os.popen2().

New in version 2.3.

The following utility functions are defined:

	
imaplib.Internaldate2tuple(datestr)

	Parse an IMAP4 INTERNALDATE string and return corresponding local
time. The return value is a time.struct_time instance or
None if the string has wrong format.

	
imaplib.Int2AP(num)

	Converts an integer into a string representation using characters from the set
[A .. P].

	
imaplib.ParseFlags(flagstr)

	Converts an IMAP4 FLAGS response to a tuple of individual flags.

	
imaplib.Time2Internaldate(date_time)

	Convert date_time to an IMAP4 INTERNALDATE representation. The
return value is a string in the form: "DD-Mmm-YYYY HH:MM:SS
+HHMM" (including double-quotes). The date_time argument can be a
number (int or float) representing seconds since epoch (as returned
by time.time()), a 9-tuple representing local time (as returned by
time.localtime()), or a double-quoted string. In the last case, it
is assumed to already be in the correct format.

Note that IMAP4 message numbers change as the mailbox changes; in particular,
after an EXPUNGE command performs deletions the remaining messages are
renumbered. So it is highly advisable to use UIDs instead, with the UID command.

At the end of the module, there is a test section that contains a more extensive
example of usage.

See also

Documents describing the protocol, and sources and binaries for servers
implementing it, can all be found at the University of Washington’s IMAP
Information Center (http://www.washington.edu/imap/).

20.10.1. IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either
upper-case or lower-case.

All arguments to commands are converted to strings, except for AUTHENTICATE,
and the last argument to APPEND which is passed as an IMAP4 literal. If
necessary (the string contains IMAP4 protocol-sensitive characters and isn’t
enclosed with either parentheses or double quotes) each string is quoted.
However, the password argument to the LOGIN command is always quoted. If
you want to avoid having an argument string quoted (eg: the flags argument to
STORE) then enclose the string in parentheses (eg: r'(\Deleted)').

Each command returns a tuple: (type, [data, ...]) where type is usually
'OK' or 'NO', and data is either the text from the command response,
or mandated results from the command. Each data is either a string, or a
tuple. If a tuple, then the first part is the header of the response, and the
second part contains the data (ie: ‘literal’ value).

The message_set options to commands below is a string specifying one or more
messages to be acted upon. It may be a simple message number ('1'), a range
of message numbers ('2:4'), or a group of non-contiguous ranges separated by
commas ('1:3,6:9'). A range can contain an asterisk to indicate an infinite
upper bound ('3:*').

An IMAP4 instance has the following methods:

	
IMAP4.append(mailbox, flags, date_time, message)

	Append message to named mailbox.

	
IMAP4.authenticate(mechanism, authobject)

	Authenticate command — requires response processing.

mechanism specifies which authentication mechanism is to be used - it should
appear in the instance variable capabilities in the form AUTH=mechanism.

authobject must be a callable object:

data = authobject(response)

It will be called to process server continuation responses. It should return
data that will be encoded and sent to server. It should return None if
the client abort response * should be sent instead.

	
IMAP4.check()

	Checkpoint mailbox on server.

	
IMAP4.close()

	Close currently selected mailbox. Deleted messages are removed from writable
mailbox. This is the recommended command before LOGOUT.

	
IMAP4.copy(message_set, new_mailbox)

	Copy message_set messages onto end of new_mailbox.

	
IMAP4.create(mailbox)

	Create new mailbox named mailbox.

	
IMAP4.delete(mailbox)

	Delete old mailbox named mailbox.

	
IMAP4.deleteacl(mailbox, who)

	Delete the ACLs (remove any rights) set for who on mailbox.

New in version 2.4.

	
IMAP4.expunge()

	Permanently remove deleted items from selected mailbox. Generates an EXPUNGE
response for each deleted message. Returned data contains a list of EXPUNGE
message numbers in order received.

	
IMAP4.fetch(message_set, message_parts)

	Fetch (parts of) messages. message_parts should be a string of message part
names enclosed within parentheses, eg: "(UID BODY[TEXT])". Returned data
are tuples of message part envelope and data.

	
IMAP4.getacl(mailbox)

	Get the ACLs for mailbox. The method is non-standard, but is supported
by the Cyrus server.

	
IMAP4.getannotation(mailbox, entry, attribute)

	Retrieve the specified ANNOTATIONs for mailbox. The method is
non-standard, but is supported by the Cyrus server.

New in version 2.5.

	
IMAP4.getquota(root)

	Get the quota root‘s resource usage and limits. This method is part of the
IMAP4 QUOTA extension defined in rfc2087.

New in version 2.3.

	
IMAP4.getquotaroot(mailbox)

	Get the list of quota roots for the named mailbox. This method is part
of the IMAP4 QUOTA extension defined in rfc2087.

New in version 2.3.

	
IMAP4.list([directory[, pattern]])

	List mailbox names in directory matching pattern. directory defaults to
the top-level mail folder, and pattern defaults to match anything. Returned
data contains a list of LIST responses.

	
IMAP4.login(user, password)

	Identify the client using a plaintext password. The password will be quoted.

	
IMAP4.login_cram_md5(user, password)

	Force use of CRAM-MD5 authentication when identifying the client to protect
the password. Will only work if the server CAPABILITY response includes the
phrase AUTH=CRAM-MD5.

New in version 2.3.

	
IMAP4.logout()

	Shutdown connection to server. Returns server BYE response.

	
IMAP4.lsub([directory[, pattern]])

	List subscribed mailbox names in directory matching pattern. directory
defaults to the top level directory and pattern defaults to match any mailbox.
Returned data are tuples of message part envelope and data.

	
IMAP4.myrights(mailbox)

	Show my ACLs for a mailbox (i.e. the rights that I have on mailbox).

New in version 2.4.

	
IMAP4.namespace()

	Returns IMAP namespaces as defined in RFC2342.

New in version 2.3.

	
IMAP4.noop()

	Send NOOP to server.

	
IMAP4.open(host, port)

	Opens socket to port at host. This method is implicitly called by
the IMAP4 constructor. The connection objects established by this
method will be used in the read, readline, send, and shutdown
methods. You may override this method.

	
IMAP4.partial(message_num, message_part, start, length)

	Fetch truncated part of a message. Returned data is a tuple of message part
envelope and data.

	
IMAP4.proxyauth(user)

	Assume authentication as user. Allows an authorised administrator to proxy
into any user’s mailbox.

New in version 2.3.

	
IMAP4.read(size)

	Reads size bytes from the remote server. You may override this method.

	
IMAP4.readline()

	Reads one line from the remote server. You may override this method.

	
IMAP4.recent()

	Prompt server for an update. Returned data is None if no new messages, else
value of RECENT response.

	
IMAP4.rename(oldmailbox, newmailbox)

	Rename mailbox named oldmailbox to newmailbox.

	
IMAP4.response(code)

	Return data for response code if received, or None. Returns the given
code, instead of the usual type.

	
IMAP4.search(charset, criterion[, ...])

	Search mailbox for matching messages. charset may be None, in which case
no CHARSET will be specified in the request to the server. The IMAP
protocol requires that at least one criterion be specified; an exception will be
raised when the server returns an error.

Example:

M is a connected IMAP4 instance...
typ, msgnums = M.search(None, 'FROM', '"LDJ"')

or:
typ, msgnums = M.search(None, '(FROM "LDJ")')

	
IMAP4.select([mailbox[, readonly]])

	Select a mailbox. Returned data is the count of messages in mailbox
(EXISTS response). The default mailbox is 'INBOX'. If the readonly
flag is set, modifications to the mailbox are not allowed.

	
IMAP4.send(data)

	Sends data to the remote server. You may override this method.

	
IMAP4.setacl(mailbox, who, what)

	Set an ACL for mailbox. The method is non-standard, but is supported by
the Cyrus server.

	
IMAP4.setannotation(mailbox, entry, attribute[, ...])

	Set ANNOTATIONs for mailbox. The method is non-standard, but is
supported by the Cyrus server.

New in version 2.5.

	
IMAP4.setquota(root, limits)

	Set the quota root‘s resource limits. This method is part of the IMAP4
QUOTA extension defined in rfc2087.

New in version 2.3.

	
IMAP4.shutdown()

	Close connection established in open. This method is implicitly
called by IMAP4.logout(). You may override this method.

	
IMAP4.socket()

	Returns socket instance used to connect to server.

	
IMAP4.sort(sort_criteria, charset, search_criterion[, ...])

	The sort command is a variant of search with sorting semantics for the
results. Returned data contains a space separated list of matching message
numbers.

Sort has two arguments before the search_criterion argument(s); a
parenthesized list of sort_criteria, and the searching charset. Note that
unlike search, the searching charset argument is mandatory. There is also
a uid sort command which corresponds to sort the way that uid search
corresponds to search. The sort command first searches the mailbox for
messages that match the given searching criteria using the charset argument for
the interpretation of strings in the searching criteria. It then returns the
numbers of matching messages.

This is an IMAP4rev1 extension command.

	
IMAP4.status(mailbox, names)

	Request named status conditions for mailbox.

	
IMAP4.store(message_set, command, flag_list)

	Alters flag dispositions for messages in mailbox. command is specified by
section 6.4.6 of RFC 2060 [http://tools.ietf.org/html/rfc2060.html] as being one of “FLAGS”, “+FLAGS”, or “-FLAGS”,
optionally with a suffix of ”.SILENT”.

For example, to set the delete flag on all messages:

typ, data = M.search(None, 'ALL')
for num in data[0].split():
 M.store(num, '+FLAGS', '\\Deleted')
M.expunge()

	
IMAP4.subscribe(mailbox)

	Subscribe to new mailbox.

	
IMAP4.thread(threading_algorithm, charset, search_criterion[, ...])

	The thread command is a variant of search with threading semantics for
the results. Returned data contains a space separated list of thread members.

Thread members consist of zero or more messages numbers, delimited by spaces,
indicating successive parent and child.

Thread has two arguments before the search_criterion argument(s); a
threading_algorithm, and the searching charset. Note that unlike
search, the searching charset argument is mandatory. There is also a
uid thread command which corresponds to thread the way that uid
search corresponds to search. The thread command first searches the
mailbox for messages that match the given searching criteria using the charset
argument for the interpretation of strings in the searching criteria. It then
returns the matching messages threaded according to the specified threading
algorithm.

This is an IMAP4rev1 extension command.

New in version 2.4.

	
IMAP4.uid(command, arg[, ...])

	Execute command args with messages identified by UID, rather than message
number. Returns response appropriate to command. At least one argument must be
supplied; if none are provided, the server will return an error and an exception
will be raised.

	
IMAP4.unsubscribe(mailbox)

	Unsubscribe from old mailbox.

	
IMAP4.xatom(name[, arg[, ...]])

	Allow simple extension commands notified by server in CAPABILITY response.

Instances of IMAP4_SSL have just one additional method:

	
IMAP4_SSL.ssl()

	Returns SSLObject instance used for the secure connection with the server.

The following attributes are defined on instances of IMAP4:

	
IMAP4.PROTOCOL_VERSION

	The most recent supported protocol in the CAPABILITY response from the
server.

	
IMAP4.debug

	Integer value to control debugging output. The initialize value is taken from
the module variable Debug. Values greater than three trace each command.

20.10.2. IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and
retrieves and prints all messages:

import getpass, imaplib

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, 'ALL')
for num in data[0].split():
 typ, data = M.fetch(num, '(RFC822)')
 print 'Message %s\n%s\n' % (num, data[0][1])
M.close()
M.logout()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.11. nntplib — NNTP protocol client

This module defines the class NNTP which implements the client side of
the NNTP protocol. It can be used to implement a news reader or poster, or
automated news processors. For more information on NNTP (Network News Transfer
Protocol), see Internet RFC 977 [http://tools.ietf.org/html/rfc977.html].

Here are two small examples of how it can be used. To list some statistics
about a newsgroup and print the subjects of the last 10 articles:

>>> s = NNTP('news.gmane.org')
>>> resp, count, first, last, name = s.group('gmane.comp.python.committers')
>>> print 'Group', name, 'has', count, 'articles, range', first, 'to', last
Group gmane.comp.python.committers has 1071 articles, range 1 to 1071
>>> resp, subs = s.xhdr('subject', first + '-' + last)
>>> for id, sub in subs[-10:]: print id, sub
...
1062 Re: Mercurial Status?
1063 Re: [python-committers] (Windows) buildbots on 3.x
1064 Re: Mercurial Status?
1065 Re: Mercurial Status?
1066 Python 2.6.6 status
1067 Commit Privileges for Ask Solem
1068 Re: Commit Privileges for Ask Solem
1069 Re: Commit Privileges for Ask Solem
1070 Re: Commit Privileges for Ask Solem
1071 2.6.6 rc 2
>>> s.quit()
'205 Bye!'

To post an article from a file (this assumes that the article has valid
headers, and that you have right to post on the particular newsgroup):

>>> s = NNTP('news.gmane.org')
>>> f = open('/tmp/article')
>>> s.post(f)
'240 Article posted successfully.'
>>> s.quit()
'205 Bye!'

The module itself defines the following items:

	
class nntplib.NNTP(host[, port [, user[, password [, readermode] [, usenetrc]]]])

	Return a new instance of the NNTP class, representing a connection
to the NNTP server running on host host, listening at port port. The
default port is 119. If the optional user and password are provided,
or if suitable credentials are present in /.netrc and the optional
flag usenetrc is true (the default), the AUTHINFO USER and AUTHINFO
PASS commands are used to identify and authenticate the user to the server.
If the optional flag readermode is true, then a mode reader command is
sent before authentication is performed. Reader mode is sometimes necessary
if you are connecting to an NNTP server on the local machine and intend to
call reader-specific commands, such as group. If you get unexpected
NNTPPermanentErrors, you might need to set readermode.
readermode defaults to None. usenetrc defaults to True.

Changed in version 2.4: usenetrc argument added.

	
exception nntplib.NNTPError

	Derived from the standard exception Exception, this is the base class for
all exceptions raised by the nntplib module.

	
exception nntplib.NNTPReplyError

	Exception raised when an unexpected reply is received from the server. For
backwards compatibility, the exception error_reply is equivalent to this
class.

	
exception nntplib.NNTPTemporaryError

	Exception raised when an error code in the range 400–499 is received. For
backwards compatibility, the exception error_temp is equivalent to this
class.

	
exception nntplib.NNTPPermanentError

	Exception raised when an error code in the range 500–599 is received. For
backwards compatibility, the exception error_perm is equivalent to this
class.

	
exception nntplib.NNTPProtocolError

	Exception raised when a reply is received from the server that does not begin
with a digit in the range 1–5. For backwards compatibility, the exception
error_proto is equivalent to this class.

	
exception nntplib.NNTPDataError

	Exception raised when there is some error in the response data. For backwards
compatibility, the exception error_data is equivalent to this class.

20.11.1. NNTP Objects

NNTP instances have the following methods. The response that is returned as
the first item in the return tuple of almost all methods is the server’s
response: a string beginning with a three-digit code. If the server’s response
indicates an error, the method raises one of the above exceptions.

	
NNTP.getwelcome()

	Return the welcome message sent by the server in reply to the initial
connection. (This message sometimes contains disclaimers or help information
that may be relevant to the user.)

	
NNTP.set_debuglevel(level)

	Set the instance’s debugging level. This controls the amount of debugging
output printed. The default, 0, produces no debugging output. A value of
1 produces a moderate amount of debugging output, generally a single line
per request or response. A value of 2 or higher produces the maximum amount
of debugging output, logging each line sent and received on the connection
(including message text).

	
NNTP.newgroups(date, time[, file])

	Send a NEWGROUPS command. The date argument should be a string of the
form 'yymmdd' indicating the date, and time should be a string of the form
'hhmmss' indicating the time. Return a pair (response, groups) where
groups is a list of group names that are new since the given date and time. If
the file parameter is supplied, then the output of the NEWGROUPS command
is stored in a file. If file is a string, then the method will open a file
object with that name, write to it then close it. If file is a file object,
then it will start calling write() on it to store the lines of the command
output. If file is supplied, then the returned list is an empty list.

	
NNTP.newnews(group, date, time[, file])

	Send a NEWNEWS command. Here, group is a group name or '*', and
date and time have the same meaning as for newgroups(). Return a pair
(response, articles) where articles is a list of message ids. If the
file parameter is supplied, then the output of the NEWNEWS command is
stored in a file. If file is a string, then the method will open a file
object with that name, write to it then close it. If file is a file object,
then it will start calling write() on it to store the lines of the command
output. If file is supplied, then the returned list is an empty list.

	
NNTP.list([file])

	Send a LIST command. Return a pair (response, list) where list is a
list of tuples. Each tuple has the form (group, last, first, flag), where
group is a group name, last and first are the last and first article
numbers (as strings), and flag is 'y' if posting is allowed, 'n' if
not, and 'm' if the newsgroup is moderated. (Note the ordering: last,
first.) If the file parameter is supplied, then the output of the LIST
command is stored in a file. If file is a string, then the method will open
a file object with that name, write to it then close it. If file is a file
object, then it will start calling write() on it to store the lines of the
command output. If file is supplied, then the returned list is an empty
list.

	
NNTP.descriptions(grouppattern)

	Send a LIST NEWSGROUPS command, where grouppattern is a wildmat string as
specified in RFC2980 (it’s essentially the same as DOS or UNIX shell wildcard
strings). Return a pair (response, list), where list is a list of tuples
containing (name, title).

New in version 2.4.

	
NNTP.description(group)

	Get a description for a single group group. If more than one group matches
(if ‘group’ is a real wildmat string), return the first match. If no group
matches, return an empty string.

This elides the response code from the server. If the response code is needed,
use descriptions().

New in version 2.4.

	
NNTP.group(name)

	Send a GROUP command, where name is the group name. Return a tuple
(response, count, first, last, name) where count is the (estimated) number
of articles in the group, first is the first article number in the group,
last is the last article number in the group, and name is the group name.
The numbers are returned as strings.

	
NNTP.help([file])

	Send a HELP command. Return a pair (response, list) where list is a
list of help strings. If the file parameter is supplied, then the output of
the HELP command is stored in a file. If file is a string, then the
method will open a file object with that name, write to it then close it. If
file is a file object, then it will start calling write() on it to store
the lines of the command output. If file is supplied, then the returned list
is an empty list.

	
NNTP.stat(id)

	Send a STAT command, where id is the message id (enclosed in '<' and
'>') or an article number (as a string). Return a triple (response,
number, id) where number is the article number (as a string) and id is the
message id (enclosed in '<' and '>').

	
NNTP.next()

	Send a NEXT command. Return as for stat().

	
NNTP.last()

	Send a LAST command. Return as for stat().

	
NNTP.head(id)

	Send a HEAD command, where id has the same meaning as for stat().
Return a tuple (response, number, id, list) where the first three are the
same as for stat(), and list is a list of the article’s headers (an
uninterpreted list of lines, without trailing newlines).

	
NNTP.body(id[, file])

	Send a BODY command, where id has the same meaning as for stat().
If the file parameter is supplied, then the body is stored in a file. If
file is a string, then the method will open a file object with that name,
write to it then close it. If file is a file object, then it will start
calling write() on it to store the lines of the body. Return as for
head(). If file is supplied, then the returned list is an empty list.

	
NNTP.article(id)

	Send an ARTICLE command, where id has the same meaning as for
stat(). Return as for head().

	
NNTP.slave()

	Send a SLAVE command. Return the server’s response.

	
NNTP.xhdr(header, string[, file])

	Send an XHDR command. This command is not defined in the RFC but is a
common extension. The header argument is a header keyword, e.g.
'subject'. The string argument should have the form 'first-last'
where first and last are the first and last article numbers to search.
Return a pair (response, list), where list is a list of pairs (id,
text), where id is an article number (as a string) and text is the text of
the requested header for that article. If the file parameter is supplied, then
the output of the XHDR command is stored in a file. If file is a string,
then the method will open a file object with that name, write to it then close
it. If file is a file object, then it will start calling write() on it
to store the lines of the command output. If file is supplied, then the
returned list is an empty list.

	
NNTP.post(file)

	Post an article using the POST command. The file argument is an open file
object which is read until EOF using its readline() method. It should be
a well-formed news article, including the required headers. The post()
method automatically escapes lines beginning with ..

	
NNTP.ihave(id, file)

	Send an IHAVE command. id is a message id (enclosed in '<' and
'>'). If the response is not an error, treat file exactly as for the
post() method.

	
NNTP.date()

	Return a triple (response, date, time), containing the current date and time
in a form suitable for the newnews() and newgroups() methods. This
is an optional NNTP extension, and may not be supported by all servers.

	
NNTP.xgtitle(name[, file])

	Process an XGTITLE command, returning a pair (response, list), where
list is a list of tuples containing (name, title). If the file parameter
is supplied, then the output of the XGTITLE command is stored in a file.
If file is a string, then the method will open a file object with that name,
write to it then close it. If file is a file object, then it will start
calling write() on it to store the lines of the command output. If file
is supplied, then the returned list is an empty list. This is an optional NNTP
extension, and may not be supported by all servers.

RFC2980 says “It is suggested that this extension be deprecated”. Use
descriptions() or description() instead.

	
NNTP.xover(start, end[, file])

	Return a pair (resp, list). list is a list of tuples, one for each
article in the range delimited by the start and end article numbers. Each
tuple is of the form (article number, subject, poster, date, id, references,
size, lines). If the file parameter is supplied, then the output of the
XOVER command is stored in a file. If file is a string, then the method
will open a file object with that name, write to it then close it. If file
is a file object, then it will start calling write() on it to store the
lines of the command output. If file is supplied, then the returned list is
an empty list. This is an optional NNTP extension, and may not be supported by
all servers.

	
NNTP.xpath(id)

	Return a pair (resp, path), where path is the directory path to the
article with message ID id. This is an optional NNTP extension, and may not
be supported by all servers.

	
NNTP.quit()

	Send a QUIT command and close the connection. Once this method has been
called, no other methods of the NNTP object should be called.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.12. smtplib — SMTP protocol client

The smtplib module defines an SMTP client session object that can be used
to send mail to any Internet machine with an SMTP or ESMTP listener daemon. For
details of SMTP and ESMTP operation, consult RFC 821 [http://tools.ietf.org/html/rfc821.html] (Simple Mail Transfer
Protocol) and RFC 1869 [http://tools.ietf.org/html/rfc1869.html] (SMTP Service Extensions).

	
class smtplib.SMTP([host[, port[, local_hostname[, timeout]]]])

	A SMTP instance encapsulates an SMTP connection. It has methods
that support a full repertoire of SMTP and ESMTP operations. If the optional
host and port parameters are given, the SMTP connect() method is called
with those parameters during initialization. An SMTPConnectError is
raised if the specified host doesn’t respond correctly. The optional
timeout parameter specifies a timeout in seconds for blocking operations
like the connection attempt (if not specified, the global default timeout
setting will be used).

For normal use, you should only require the initialization/connect,
sendmail(), and quit() methods. An example is included below.

Changed in version 2.6: timeout was added.

	
class smtplib.SMTP_SSL([host[, port[, local_hostname[, keyfile[, certfile[, timeout]]]]]])

	A SMTP_SSL instance behaves exactly the same as instances of
SMTP. SMTP_SSL should be used for situations where SSL is
required from the beginning of the connection and using starttls() is
not appropriate. If host is not specified, the local host is used. If
port is omitted, the standard SMTP-over-SSL port (465) is used. keyfile
and certfile are also optional, and can contain a PEM formatted private key
and certificate chain file for the SSL connection. The optional timeout
parameter specifies a timeout in seconds for blocking operations like the
connection attempt (if not specified, the global default timeout setting
will be used).

New in version 2.6.

	
class smtplib.LMTP([host[, port[, local_hostname]]])

	The LMTP protocol, which is very similar to ESMTP, is heavily based on the
standard SMTP client. It’s common to use Unix sockets for LMTP, so our connect()
method must support that as well as a regular host:port server. To specify a
Unix socket, you must use an absolute path for host, starting with a ‘/’.

Authentication is supported, using the regular SMTP mechanism. When using a Unix
socket, LMTP generally don’t support or require any authentication, but your
mileage might vary.

New in version 2.6.

A nice selection of exceptions is defined as well:

	
exception smtplib.SMTPException

	Base exception class for all exceptions raised by this module.

	
exception smtplib.SMTPServerDisconnected

	This exception is raised when the server unexpectedly disconnects, or when an
attempt is made to use the SMTP instance before connecting it to a
server.

	
exception smtplib.SMTPResponseException

	Base class for all exceptions that include an SMTP error code. These exceptions
are generated in some instances when the SMTP server returns an error code. The
error code is stored in the smtp_code attribute of the error, and the
smtp_error attribute is set to the error message.

	
exception smtplib.SMTPSenderRefused

	Sender address refused. In addition to the attributes set by on all
SMTPResponseException exceptions, this sets ‘sender’ to the string that
the SMTP server refused.

	
exception smtplib.SMTPRecipientsRefused

	All recipient addresses refused. The errors for each recipient are accessible
through the attribute recipients, which is a dictionary of exactly the
same sort as SMTP.sendmail() returns.

	
exception smtplib.SMTPDataError

	The SMTP server refused to accept the message data.

	
exception smtplib.SMTPConnectError

	Error occurred during establishment of a connection with the server.

	
exception smtplib.SMTPHeloError

	The server refused our HELO message.

	
exception smtplib.SMTPAuthenticationError

	SMTP authentication went wrong. Most probably the server didn’t accept the
username/password combination provided.

See also

	RFC 821 [http://tools.ietf.org/html/rfc821.html] - Simple Mail Transfer Protocol

	Protocol definition for SMTP. This document covers the model, operating
procedure, and protocol details for SMTP.

	RFC 1869 [http://tools.ietf.org/html/rfc1869.html] - SMTP Service Extensions

	Definition of the ESMTP extensions for SMTP. This describes a framework for
extending SMTP with new commands, supporting dynamic discovery of the commands
provided by the server, and defines a few additional commands.

20.12.1. SMTP Objects

An SMTP instance has the following methods:

	
SMTP.set_debuglevel(level)

	Set the debug output level. A true value for level results in debug messages
for connection and for all messages sent to and received from the server.

	
SMTP.connect([host[, port]])

	Connect to a host on a given port. The defaults are to connect to the local
host at the standard SMTP port (25). If the hostname ends with a colon (':')
followed by a number, that suffix will be stripped off and the number
interpreted as the port number to use. This method is automatically invoked by
the constructor if a host is specified during instantiation.

	
SMTP.docmd(cmd[, argstring])

	Send a command cmd to the server. The optional argument argstring is simply
concatenated to the command, separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual
response line (multiline responses are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly.
It is used to implement other methods and may be useful for testing private
extensions.

If the connection to the server is lost while waiting for the reply,
SMTPServerDisconnected will be raised.

	
SMTP.helo([hostname])

	Identify yourself to the SMTP server using HELO. The hostname argument
defaults to the fully qualified domain name of the local host.
The message returned by the server is stored as the helo_resp attribute
of the object.

In normal operation it should not be necessary to call this method explicitly.
It will be implicitly called by the sendmail() when necessary.

	
SMTP.ehlo([hostname])

	Identify yourself to an ESMTP server using EHLO. The hostname argument
defaults to the fully qualified domain name of the local host. Examine the
response for ESMTP option and store them for use by has_extn().
Also sets several informational attributes: the message returned by
the server is stored as the ehlo_resp attribute, does_esmtp
is set to true or false depending on whether the server supports ESMTP, and
esmtp_features will be a dictionary containing the names of the
SMTP service extensions this server supports, and their
parameters (if any).

Unless you wish to use has_extn() before sending mail, it should not be
necessary to call this method explicitly. It will be implicitly called by
sendmail() when necessary.

	
SMTP.ehlo_or_helo_if_needed()

	This method call ehlo() and or helo() if there has been no
previous EHLO or HELO command this session. It tries ESMTP EHLO
first.

	SMTPHeloError

	The server didn’t reply properly to the HELO greeting.

New in version 2.6.

	
SMTP.has_extn(name)

	Return True if name is in the set of SMTP service extensions returned
by the server, False otherwise. Case is ignored.

	
SMTP.verify(address)

	Check the validity of an address on this server using SMTP VRFY. Returns a
tuple consisting of code 250 and a full RFC 822 [http://tools.ietf.org/html/rfc822.html] address (including human
name) if the user address is valid. Otherwise returns an SMTP error code of 400
or greater and an error string.

Note

Many sites disable SMTP VRFY in order to foil spammers.

	
SMTP.login(user, password)

	Log in on an SMTP server that requires authentication. The arguments are the
username and the password to authenticate with. If there has been no previous
EHLO or HELO command this session, this method tries ESMTP EHLO
first. This method will return normally if the authentication was successful, or
may raise the following exceptions:

	SMTPHeloError

	The server didn’t reply properly to the HELO greeting.

	SMTPAuthenticationError

	The server didn’t accept the username/password combination.

	SMTPException

	No suitable authentication method was found.

	
SMTP.starttls([keyfile[, certfile]])

	Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP
commands that follow will be encrypted. You should then call ehlo()
again.

If keyfile and certfile are provided, these are passed to the socket
module’s ssl() function.

If there has been no previous EHLO or HELO command this session,
this method tries ESMTP EHLO first.

Changed in version 2.6.

	SMTPHeloError

	The server didn’t reply properly to the HELO greeting.

	SMTPException

	The server does not support the STARTTLS extension.

Changed in version 2.6.

	RuntimeError

	SSL/TLS support is not available to your Python interpreter.

	
SMTP.sendmail(from_addr, to_addrs, msg[, mail_options, rcpt_options])

	Send mail. The required arguments are an RFC 822 [http://tools.ietf.org/html/rfc822.html] from-address string, a list
of RFC 822 [http://tools.ietf.org/html/rfc822.html] to-address strings (a bare string will be treated as a list with 1
address), and a message string. The caller may pass a list of ESMTP options
(such as 8bitmime) to be used in MAIL FROM commands as mail_options.
ESMTP options (such as DSN commands) that should be used with all RCPT
commands can be passed as rcpt_options. (If you need to use different ESMTP
options to different recipients you have to use the low-level methods such as
mail(), rcpt() and data() to send the message.)

Note

The from_addr and to_addrs parameters are used to construct the message
envelope used by the transport agents. The SMTP does not modify the
message headers in any way.

If there has been no previous EHLO or HELO command this session, this
method tries ESMTP EHLO first. If the server does ESMTP, message size and
each of the specified options will be passed to it (if the option is in the
feature set the server advertises). If EHLO fails, HELO will be tried
and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one
recipient. Otherwise it will raise an exception. That is, if this method does
not raise an exception, then someone should get your mail. If this method does
not raise an exception, it returns a dictionary, with one entry for each
recipient that was refused. Each entry contains a tuple of the SMTP error code
and the accompanying error message sent by the server.

This method may raise the following exceptions:

	SMTPRecipientsRefused

	All recipients were refused. Nobody got the mail. The recipients
attribute of the exception object is a dictionary with information about the
refused recipients (like the one returned when at least one recipient was
accepted).

	SMTPHeloError

	The server didn’t reply properly to the HELO greeting.

	SMTPSenderRefused

	The server didn’t accept the from_addr.

	SMTPDataError

	The server replied with an unexpected error code (other than a refusal of a
recipient).

Unless otherwise noted, the connection will be open even after an exception is
raised.

	
SMTP.quit()

	Terminate the SMTP session and close the connection. Return the result of
the SMTP QUIT command.

Changed in version 2.6: Return a value.

Low-level methods corresponding to the standard SMTP/ESMTP commands HELP,
RSET, NOOP, MAIL, RCPT, and DATA are also supported.
Normally these do not need to be called directly, so they are not documented
here. For details, consult the module code.

20.12.2. SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’
and ‘From’ addresses), and the message to be delivered. Note that the headers
to be included with the message must be included in the message as entered; this
example doesn’t do any processing of the RFC 822 [http://tools.ietf.org/html/rfc822.html] headers. In particular, the
‘To’ and ‘From’ addresses must be included in the message headers explicitly.

import smtplib

def prompt(prompt):
 return raw_input(prompt).strip()

fromaddr = prompt("From: ")
toaddrs = prompt("To: ").split()
print "Enter message, end with ^D (Unix) or ^Z (Windows):"

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"
 % (fromaddr, ", ".join(toaddrs)))
while 1:
 try:
 line = raw_input()
 except EOFError:
 break
 if not line:
 break
 msg = msg + line

print "Message length is " + repr(len(msg))

server = smtplib.SMTP('localhost')
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

Note

In general, you will want to use the email package’s features to
construct an email message, which you can then convert to a string and send
via sendmail(); see email: Examples.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.13. smtpd — SMTP Server

This module offers several classes to implement SMTP servers. One is a generic
do-nothing implementation, which can be overridden, while the other two offer
specific mail-sending strategies.

20.13.1. SMTPServer Objects

	
class smtpd.SMTPServer(localaddr, remoteaddr)

	Create a new SMTPServer object, which binds to local address
localaddr. It will treat remoteaddr as an upstream SMTP relayer. It
inherits from asyncore.dispatcher, and so will insert itself into
asyncore‘s event loop on instantiation.

	
process_message(peer, mailfrom, rcpttos, data)

	Raise NotImplementedError exception. Override this in subclasses to
do something useful with this message. Whatever was passed in the
constructor as remoteaddr will be available as the _remoteaddr
attribute. peer is the remote host’s address, mailfrom is the envelope
originator, rcpttos are the envelope recipients and data is a string
containing the contents of the e-mail (which should be in RFC 2822 [http://tools.ietf.org/html/rfc2822.html]
format).

20.13.2. DebuggingServer Objects

	
class smtpd.DebuggingServer(localaddr, remoteaddr)

	Create a new debugging server. Arguments are as per SMTPServer.
Messages will be discarded, and printed on stdout.

20.13.3. PureProxy Objects

	
class smtpd.PureProxy(localaddr, remoteaddr)

	Create a new pure proxy server. Arguments are as per SMTPServer.
Everything will be relayed to remoteaddr. Note that running this has a good
chance to make you into an open relay, so please be careful.

20.13.4. MailmanProxy Objects

	
class smtpd.MailmanProxy(localaddr, remoteaddr)

	Create a new pure proxy server. Arguments are as per SMTPServer.
Everything will be relayed to remoteaddr, unless local mailman configurations
knows about an address, in which case it will be handled via mailman. Note that
running this has a good chance to make you into an open relay, so please be
careful.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.14. telnetlib — Telnet client

The telnetlib module provides a Telnet class that implements the
Telnet protocol. See RFC 854 [http://tools.ietf.org/html/rfc854.html] for details about the protocol. In addition, it
provides symbolic constants for the protocol characters (see below), and for the
telnet options. The symbolic names of the telnet options follow the definitions
in arpa/telnet.h, with the leading TELOPT_ removed. For symbolic names
of options which are traditionally not included in arpa/telnet.h, see the
module source itself.

The symbolic constants for the telnet commands are: IAC, DONT, DO, WONT, WILL,
SE (Subnegotiation End), NOP (No Operation), DM (Data Mark), BRK (Break), IP
(Interrupt process), AO (Abort output), AYT (Are You There), EC (Erase
Character), EL (Erase Line), GA (Go Ahead), SB (Subnegotiation Begin).

	
class telnetlib.Telnet([host[, port[, timeout]]])

	Telnet represents a connection to a Telnet server. The instance is
initially not connected by default; the open() method must be used to
establish a connection. Alternatively, the host name and optional port
number can be passed to the constructor, to, in which case the connection to
the server will be established before the constructor returns. The optional
timeout parameter specifies a timeout in seconds for blocking operations
like the connection attempt (if not specified, the global default timeout
setting will be used).

Do not reopen an already connected instance.

This class has many read_*() methods. Note that some of them raise
EOFError when the end of the connection is read, because they can return
an empty string for other reasons. See the individual descriptions below.

Changed in version 2.6: timeout was added.

See also

	RFC 854 [http://tools.ietf.org/html/rfc854.html] - Telnet Protocol Specification

	Definition of the Telnet protocol.

20.14.1. Telnet Objects

Telnet instances have the following methods:

	
Telnet.read_until(expected[, timeout])

	Read until a given string, expected, is encountered or until timeout seconds
have passed.

When no match is found, return whatever is available instead, possibly the empty
string. Raise EOFError if the connection is closed and no cooked data is
available.

	
Telnet.read_all()

	Read all data until EOF; block until connection closed.

	
Telnet.read_some()

	Read at least one byte of cooked data unless EOF is hit. Return '' if EOF is
hit. Block if no data is immediately available.

	
Telnet.read_very_eager()

	Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return
'' if no cooked data available otherwise. Do not block unless in the midst
of an IAC sequence.

	
Telnet.read_eager()

	Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return
'' if no cooked data available otherwise. Do not block unless in the midst
of an IAC sequence.

	
Telnet.read_lazy()

	Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return ''
if no cooked data available otherwise. Do not block unless in the midst of an
IAC sequence.

	
Telnet.read_very_lazy()

	Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return ''
if no cooked data available otherwise. This method never blocks.

	
Telnet.read_sb_data()

	Return the data collected between a SB/SE pair (suboption begin/end). The
callback should access these data when it was invoked with a SE command.
This method never blocks.

New in version 2.3.

	
Telnet.open(host[, port[, timeout]])

	Connect to a host. The optional second argument is the port number, which
defaults to the standard Telnet port (23). The optional timeout parameter
specifies a timeout in seconds for blocking operations like the connection
attempt (if not specified, the global default timeout setting will be used).

Do not try to reopen an already connected instance.

Changed in version 2.6: timeout was added.

	
Telnet.msg(msg[, *args])

	Print a debug message when the debug level is > 0. If extra arguments are
present, they are substituted in the message using the standard string
formatting operator.

	
Telnet.set_debuglevel(debuglevel)

	Set the debug level. The higher the value of debuglevel, the more debug
output you get (on sys.stdout).

	
Telnet.close()

	Close the connection.

	
Telnet.get_socket()

	Return the socket object used internally.

	
Telnet.fileno()

	Return the file descriptor of the socket object used internally.

	
Telnet.write(buffer)

	Write a string to the socket, doubling any IAC characters. This can block if the
connection is blocked. May raise socket.error if the connection is
closed.

	
Telnet.interact()

	Interaction function, emulates a very dumb Telnet client.

	
Telnet.mt_interact()

	Multithreaded version of interact().

	
Telnet.expect(list[, timeout])

	Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled
(re.RegexObject instances) or uncompiled (strings). The optional second
argument is a timeout, in seconds; the default is to block indefinitely.

Return a tuple of three items: the index in the list of the first regular
expression that matches; the match object returned; and the text read up till
and including the match.

If end of file is found and no text was read, raise EOFError. Otherwise,
when nothing matches, return (-1, None, text) where text is the text
received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (such as .*) or if more
than one expression can match the same input, the results are
non-deterministic, and may depend on the I/O timing.

	
Telnet.set_option_negotiation_callback(callback)

	Each time a telnet option is read on the input flow, this callback (if set) is
called with the following parameters : callback(telnet socket, command
(DO/DONT/WILL/WONT), option). No other action is done afterwards by telnetlib.

20.14.2. Telnet Example

A simple example illustrating typical use:

import getpass
import sys
import telnetlib

HOST = "localhost"
user = raw_input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")
tn.write(user + "\n")
if password:
 tn.read_until("Password: ")
 tn.write(password + "\n")

tn.write("ls\n")
tn.write("exit\n")

print tn.read_all()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.15. uuid — UUID objects according to RFC 4122

New in version 2.5.

This module provides immutable UUID objects (the UUID class)
and the functions uuid1(), uuid3(), uuid4(), uuid5() for
generating version 1, 3, 4, and 5 UUIDs as specified in RFC 4122 [http://tools.ietf.org/html/rfc4122.html].

If all you want is a unique ID, you should probably call uuid1() or
uuid4(). Note that uuid1() may compromise privacy since it creates
a UUID containing the computer’s network address. uuid4() creates a
random UUID.

	
class uuid.UUID([hex[, bytes[, bytes_le[, fields[, int[, version]]]]]])

	Create a UUID from either a string of 32 hexadecimal digits, a string of 16
bytes as the bytes argument, a string of 16 bytes in little-endian order as
the bytes_le argument, a tuple of six integers (32-bit time_low, 16-bit
time_mid, 16-bit time_hi_version, 8-bit clock_seq_hi_variant, 8-bit
clock_seq_low, 48-bit node) as the fields argument, or a single 128-bit
integer as the int argument. When a string of hex digits is given, curly
braces, hyphens, and a URN prefix are all optional. For example, these
expressions all yield the same UUID:

UUID('{12345678-1234-5678-1234-567812345678}')
UUID('12345678123456781234567812345678')
UUID('urn:uuid:12345678-1234-5678-1234-567812345678')
UUID(bytes='\x12\x34\x56\x78'*4)
UUID(bytes_le='\x78\x56\x34\x12\x34\x12\x78\x56' +
 '\x12\x34\x56\x78\x12\x34\x56\x78')
UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))
UUID(int=0x12345678123456781234567812345678)

Exactly one of hex, bytes, bytes_le, fields, or int must be given.
The version argument is optional; if given, the resulting UUID will have its
variant and version number set according to RFC 4122, overriding bits in the
given hex, bytes, bytes_le, fields, or int.

UUID instances have these read-only attributes:

	
UUID.bytes

	The UUID as a 16-byte string (containing the six integer fields in big-endian
byte order).

	
UUID.bytes_le

	The UUID as a 16-byte string (with time_low, time_mid, and time_hi_version
in little-endian byte order).

	
UUID.fields

	A tuple of the six integer fields of the UUID, which are also available as six
individual attributes and two derived attributes:

	Field
	Meaning

	time_low
	the first 32 bits of the UUID

	time_mid
	the next 16 bits of the UUID

	time_hi_version
	the next 16 bits of the UUID

	clock_seq_hi_variant
	the next 8 bits of the UUID

	clock_seq_low
	the next 8 bits of the UUID

	node
	the last 48 bits of the UUID

	time
	the 60-bit timestamp

	clock_seq
	the 14-bit sequence number

	
UUID.hex

	The UUID as a 32-character hexadecimal string.

	
UUID.int

	The UUID as a 128-bit integer.

	
UUID.urn

	The UUID as a URN as specified in RFC 4122.

	
UUID.variant

	The UUID variant, which determines the internal layout of the UUID. This will be
one of the integer constants RESERVED_NCS, RFC_4122,
RESERVED_MICROSOFT, or RESERVED_FUTURE.

	
UUID.version

	The UUID version number (1 through 5, meaningful only when the variant is
RFC_4122).

The uuid module defines the following functions:

	
uuid.getnode()

	Get the hardware address as a 48-bit positive integer. The first time this
runs, it may launch a separate program, which could be quite slow. If all
attempts to obtain the hardware address fail, we choose a random 48-bit number
with its eighth bit set to 1 as recommended in RFC 4122. “Hardware address”
means the MAC address of a network interface, and on a machine with multiple
network interfaces the MAC address of any one of them may be returned.

	
uuid.uuid1([node[, clock_seq]])

	Generate a UUID from a host ID, sequence number, and the current time. If node
is not given, getnode() is used to obtain the hardware address. If
clock_seq is given, it is used as the sequence number; otherwise a random
14-bit sequence number is chosen.

	
uuid.uuid3(namespace, name)

	Generate a UUID based on the MD5 hash of a namespace identifier (which is a
UUID) and a name (which is a string).

	
uuid.uuid4()

	Generate a random UUID.

	
uuid.uuid5(namespace, name)

	Generate a UUID based on the SHA-1 hash of a namespace identifier (which is a
UUID) and a name (which is a string).

The uuid module defines the following namespace identifiers for use with
uuid3() or uuid5().

	
uuid.NAMESPACE_DNS

	When this namespace is specified, the name string is a fully-qualified domain
name.

	
uuid.NAMESPACE_URL

	When this namespace is specified, the name string is a URL.

	
uuid.NAMESPACE_OID

	When this namespace is specified, the name string is an ISO OID.

	
uuid.NAMESPACE_X500

	When this namespace is specified, the name string is an X.500 DN in DER or a
text output format.

The uuid module defines the following constants for the possible values
of the variant attribute:

	
uuid.RESERVED_NCS

	Reserved for NCS compatibility.

	
uuid.RFC_4122

	Specifies the UUID layout given in RFC 4122 [http://tools.ietf.org/html/rfc4122.html].

	
uuid.RESERVED_MICROSOFT

	Reserved for Microsoft compatibility.

	
uuid.RESERVED_FUTURE

	Reserved for future definition.

See also

	RFC 4122 [http://tools.ietf.org/html/rfc4122.html] - A Universally Unique IDentifier (UUID) URN Namespace

	This specification defines a Uniform Resource Name namespace for UUIDs, the
internal format of UUIDs, and methods of generating UUIDs.

20.15.1. Example

Here are some examples of typical usage of the uuid module:

>>> import uuid

make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

make a random UUID
>>> uuid.uuid4()
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

make a UUID from a string of hex digits (braces and hyphens ignored)
>>> x = uuid.UUID('{00010203-0405-0607-0809-0a0b0c0d0e0f}')

convert a UUID to a string of hex digits in standard form
>>> str(x)
'00010203-0405-0607-0809-0a0b0c0d0e0f'

get the raw 16 bytes of the UUID
>>> x.bytes
'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f'

make a UUID from a 16-byte string
>>> uuid.UUID(bytes=x.bytes)
UUID('00010203-0405-0607-0809-0a0b0c0d0e0f')

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.16. urlparse — Parse URLs into components

Note

The urlparse module is renamed to urllib.parse in Python 3.0.
The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

This module defines a standard interface to break Uniform Resource Locator (URL)
strings up in components (addressing scheme, network location, path etc.), to
combine the components back into a URL string, and to convert a “relative URL”
to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform
Resource Locators (and discovered a bug in an earlier draft!). It supports the
following URL schemes: file, ftp, gopher, hdl, http,
https, imap, mailto, mms, news, nntp, prospero,
rsync, rtsp, rtspu, sftp, shttp, sip, sips,
snews, svn, svn+ssh, telnet, wais.

New in version 2.5: Support for the sftp and sips schemes.

See also

Latest version of the urlparse module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/urlparse.py?view=markup]

The urlparse module defines the following functions:

	
urlparse.urlparse(urlstring[, scheme[, allow_fragments]])

	Parse a URL into six components, returning a 6-tuple. This corresponds to the
general structure of a URL: scheme://netloc/path;parameters?query#fragment.
Each tuple item is a string, possibly empty. The components are not broken up in
smaller parts (for example, the network location is a single string), and %
escapes are not expanded. The delimiters as shown above are not part of the
result, except for a leading slash in the path component, which is retained if
present. For example:

>>> from urlparse import urlparse
>>> o = urlparse('http://www.cwi.nl:80/%7Eguido/Python.html')
>>> o
ParseResult(scheme='http', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html',
 params='', query='', fragment='')
>>> o.scheme
'http'
>>> o.port
80
>>> o.geturl()
'http://www.cwi.nl:80/%7Eguido/Python.html'

Following the syntax specifications in RFC 1808 [http://tools.ietf.org/html/rfc1808.html], urlparse recognizes
a netloc only if it is properly introduced by ‘//’. Otherwise the
input is presumed to be a relative URL and thus to start with
a path component.

>>> from urlparse import urlparse
>>> urlparse('//www.cwi.nl:80/%7Eguido/Python.html')
ParseResult(scheme='', netloc='www.cwi.nl:80', path='/%7Eguido/Python.html',
 params='', query='', fragment='')
>>> urlparse('www.cwi.nl:80/%7Eguido/Python.html')
ParseResult(scheme='', netloc='', path='www.cwi.nl:80/%7Eguido/Python.html',
 params='', query='', fragment='')
>>> urlparse('help/Python.html')
ParseResult(scheme='', netloc='', path='help/Python.html', params='',
 query='', fragment='')

If the scheme argument is specified, it gives the default addressing
scheme, to be used only if the URL does not specify one. The default value for
this argument is the empty string.

If the allow_fragments argument is false, fragment identifiers are not
allowed, even if the URL’s addressing scheme normally does support them. The
default value for this argument is True.

The return value is actually an instance of a subclass of tuple. This
class has the following additional read-only convenience attributes:

	Attribute
	Index
	Value
	Value if not present

	scheme
	0
	URL scheme specifier
	empty string

	netloc
	1
	Network location part
	empty string

	path
	2
	Hierarchical path
	empty string

	params
	3
	Parameters for last path
element
	empty string

	query
	4
	Query component
	empty string

	fragment
	5
	Fragment identifier
	empty string

	username
	
	User name
	None

	password
	
	Password
	None

	hostname
	
	Host name (lower case)
	None

	port
	
	Port number as integer,
if present
	None

See section Results of urlparse() and urlsplit() for more information on the result
object.

Changed in version 2.5: Added attributes to return value.

Changed in version 2.7: Added IPv6 URL parsing capabilities.

	
urlparse.parse_qs(qs[, keep_blank_values[, strict_parsing]])

	Parse a query string given as a string argument (data of type
application/x-www-form-urlencoded). Data are returned as a
dictionary. The dictionary keys are the unique query variable names and the
values are lists of values for each name.

The optional argument keep_blank_values is a flag indicating whether blank
values in percent-encoded queries should be treated as blank strings. A true value
indicates that blanks should be retained as blank strings. The default false
value indicates that blank values are to be ignored and treated as if they were
not included.

The optional argument strict_parsing is a flag indicating what to do with
parsing errors. If false (the default), errors are silently ignored. If true,
errors raise a ValueError exception.

Use the urllib.urlencode() function to convert such dictionaries into
query strings.

New in version 2.6: Copied from the cgi module.

	
urlparse.parse_qsl(qs[, keep_blank_values[, strict_parsing]])

	Parse a query string given as a string argument (data of type
application/x-www-form-urlencoded). Data are returned as a list of
name, value pairs.

The optional argument keep_blank_values is a flag indicating whether blank
values in percent-encoded queries should be treated as blank strings. A true value
indicates that blanks should be retained as blank strings. The default false
value indicates that blank values are to be ignored and treated as if they were
not included.

The optional argument strict_parsing is a flag indicating what to do with
parsing errors. If false (the default), errors are silently ignored. If true,
errors raise a ValueError exception.

Use the urllib.urlencode() function to convert such lists of pairs into
query strings.

New in version 2.6: Copied from the cgi module.

	
urlparse.urlunparse(parts)

	Construct a URL from a tuple as returned by urlparse(). The parts argument
can be any six-item iterable. This may result in a slightly different, but
equivalent URL, if the URL that was parsed originally had unnecessary delimiters
(for example, a ? with an empty query; the RFC states that these are
equivalent).

	
urlparse.urlsplit(urlstring[, scheme[, allow_fragments]])

	This is similar to urlparse(), but does not split the params from the URL.
This should generally be used instead of urlparse() if the more recent URL
syntax allowing parameters to be applied to each segment of the path portion
of the URL (see RFC 2396 [http://tools.ietf.org/html/rfc2396.html]) is wanted. A separate function is needed to
separate the path segments and parameters. This function returns a 5-tuple:
(addressing scheme, network location, path, query, fragment identifier).

The return value is actually an instance of a subclass of tuple. This
class has the following additional read-only convenience attributes:

	Attribute
	Index
	Value
	Value if not present

	scheme
	0
	URL scheme specifier
	empty string

	netloc
	1
	Network location part
	empty string

	path
	2
	Hierarchical path
	empty string

	query
	3
	Query component
	empty string

	fragment
	4
	Fragment identifier
	empty string

	username
	
	User name
	None

	password
	
	Password
	None

	hostname
	
	Host name (lower case)
	None

	port
	
	Port number as integer,
if present
	None

See section Results of urlparse() and urlsplit() for more information on the result
object.

New in version 2.2.

Changed in version 2.5: Added attributes to return value.

	
urlparse.urlunsplit(parts)

	Combine the elements of a tuple as returned by urlsplit() into a complete
URL as a string. The parts argument can be any five-item iterable. This may
result in a slightly different, but equivalent URL, if the URL that was parsed
originally had unnecessary delimiters (for example, a ? with an empty query; the
RFC states that these are equivalent).

New in version 2.2.

	
urlparse.urljoin(base, url[, allow_fragments])

	Construct a full (“absolute”) URL by combining a “base URL” (base) with
another URL (url). Informally, this uses components of the base URL, in
particular the addressing scheme, the network location and (part of) the path,
to provide missing components in the relative URL. For example:

>>> from urlparse import urljoin
>>> urljoin('http://www.cwi.nl/%7Eguido/Python.html', 'FAQ.html')
'http://www.cwi.nl/%7Eguido/FAQ.html'

The allow_fragments argument has the same meaning and default as for
urlparse().

Note

If url is an absolute URL (that is, starting with // or scheme://),
the url‘s host name and/or scheme will be present in the result. For example:

>>> urljoin('http://www.cwi.nl/%7Eguido/Python.html',
... '//www.python.org/%7Eguido')
'http://www.python.org/%7Eguido'

If you do not want that behavior, preprocess the url with urlsplit() and
urlunsplit(), removing possible scheme and netloc parts.

	
urlparse.urldefrag(url)

	If url contains a fragment identifier, returns a modified version of url
with no fragment identifier, and the fragment identifier as a separate string.
If there is no fragment identifier in url, returns url unmodified and an
empty string.

See also

	RFC 3986 [http://tools.ietf.org/html/rfc3986.html] - Uniform Resource Identifiers

	This is the current standard (STD66). Any changes to urlparse module
should conform to this. Certain deviations could be observed, which are
mostly due backward compatiblity purposes and for certain de-facto
parsing requirements as commonly observed in major browsers.

	RFC 2732 [http://tools.ietf.org/html/rfc2732.html] - Format for Literal IPv6 Addresses in URL’s.

	This specifies the parsing requirements of IPv6 URLs.

	RFC 2396 [http://tools.ietf.org/html/rfc2396.html] - Uniform Resource Identifiers (URI): Generic Syntax

	Document describing the generic syntactic requirements for both Uniform Resource
Names (URNs) and Uniform Resource Locators (URLs).

	RFC 2368 [http://tools.ietf.org/html/rfc2368.html] - The mailto URL scheme.

	Parsing requirements for mailto url schemes.

	RFC 1808 [http://tools.ietf.org/html/rfc1808.html] - Relative Uniform Resource Locators

	This Request For Comments includes the rules for joining an absolute and a
relative URL, including a fair number of “Abnormal Examples” which govern the
treatment of border cases.

	RFC 1738 [http://tools.ietf.org/html/rfc1738.html] - Uniform Resource Locators (URL)

	This specifies the formal syntax and semantics of absolute URLs.

20.16.1. Results of urlparse() and urlsplit()

The result objects from the urlparse() and urlsplit() functions are
subclasses of the tuple type. These subclasses add the attributes
described in those functions, as well as provide an additional method:

	
ParseResult.geturl()

	Return the re-combined version of the original URL as a string. This may differ
from the original URL in that the scheme will always be normalized to lower case
and empty components may be dropped. Specifically, empty parameters, queries,
and fragment identifiers will be removed.

The result of this method is a fixpoint if passed back through the original
parsing function:

>>> import urlparse
>>> url = 'HTTP://www.Python.org/doc/#'

>>> r1 = urlparse.urlsplit(url)
>>> r1.geturl()
'http://www.Python.org/doc/'

>>> r2 = urlparse.urlsplit(r1.geturl())
>>> r2.geturl()
'http://www.Python.org/doc/'

New in version 2.5.

The following classes provide the implementations of the parse results:

	
class urlparse.BaseResult

	Base class for the concrete result classes. This provides most of the attribute
definitions. It does not provide a geturl() method. It is derived from
tuple, but does not override the __init__() or __new__()
methods.

	
class urlparse.ParseResult(scheme, netloc, path, params, query, fragment)

	Concrete class for urlparse() results. The __new__() method is
overridden to support checking that the right number of arguments are passed.

	
class urlparse.SplitResult(scheme, netloc, path, query, fragment)

	Concrete class for urlsplit() results. The __new__() method is
overridden to support checking that the right number of arguments are passed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.17. SocketServer — A framework for network servers

Note

The SocketServer module has been renamed to socketserver in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

The SocketServer module simplifies the task of writing network servers.

There are four basic server classes: TCPServer uses the Internet TCP
protocol, which provides for continuous streams of data between the client and
server. UDPServer uses datagrams, which are discrete packets of
information that may arrive out of order or be lost while in transit. The more
infrequently used UnixStreamServer and UnixDatagramServer
classes are similar, but use Unix domain sockets; they’re not available on
non-Unix platforms. For more details on network programming, consult a book
such as
W. Richard Steven’s UNIX Network Programming or Ralph Davis’s Win32 Network
Programming.

These four classes process requests synchronously; each request must be
completed before the next request can be started. This isn’t suitable if each
request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The
solution is to create a separate process or thread to handle each request; the
ForkingMixIn and ThreadingMixIn mix-in classes can be used to
support asynchronous behaviour.

Creating a server requires several steps. First, you must create a request
handler class by subclassing the BaseRequestHandler class and
overriding its handle() method; this method will process incoming
requests. Second, you must instantiate one of the server classes, passing it
the server’s address and the request handler class. Finally, call the
handle_request() or serve_forever() method of the server object to
process one or many requests.

When inheriting from ThreadingMixIn for threaded connection behavior,
you should explicitly declare how you want your threads to behave on an abrupt
shutdown. The ThreadingMixIn class defines an attribute
daemon_threads, which indicates whether or not the server should wait for
thread termination. You should set the flag explicitly if you would like threads
to behave autonomously; the default is False, meaning that Python will
not exit until all threads created by ThreadingMixIn have exited.

Server classes have the same external methods and attributes, no matter what
network protocol they use.

20.17.1. Server Creation Notes

There are five classes in an inheritance diagram, four of which represent
synchronous servers of four types:

+------------+
| BaseServer |
+------------+
 |
 v
+-----------+ +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+ +------------------+
 |
 v
+-----------+ +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+ +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from
UnixStreamServer — the only difference between an IP and a Unix
stream server is the address family, which is simply repeated in both Unix
server classes.

Forking and threading versions of each type of server can be created using the
ForkingMixIn and ThreadingMixIn mix-in classes. For instance,
a threading UDP server class is created as follows:

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

The mix-in class must come first, since it overrides a method defined in
UDPServer. Setting the various member variables also changes the
behavior of the underlying server mechanism.

To implement a service, you must derive a class from BaseRequestHandler
and redefine its handle() method. You can then run various versions of
the service by combining one of the server classes with your request handler
class. The request handler class must be different for datagram or stream
services. This can be hidden by using the handler subclasses
StreamRequestHandler or DatagramRequestHandler.

Of course, you still have to use your head! For instance, it makes no sense to
use a forking server if the service contains state in memory that can be
modified by different requests, since the modifications in the child process
would never reach the initial state kept in the parent process and passed to
each child. In this case, you can use a threading server, but you will probably
have to use locks to protect the integrity of the shared data.

On the other hand, if you are building an HTTP server where all data is stored
externally (for instance, in the file system), a synchronous class will
essentially render the service “deaf” while one request is being handled –
which may be for a very long time if a client is slow to receive all the data it
has requested. Here a threading or forking server is appropriate.

In some cases, it may be appropriate to process part of a request synchronously,
but to finish processing in a forked child depending on the request data. This
can be implemented by using a synchronous server and doing an explicit fork in
the request handler class handle() method.

Another approach to handling multiple simultaneous requests in an environment
that supports neither threads nor fork() (or where these are too expensive
or inappropriate for the service) is to maintain an explicit table of partially
finished requests and to use select() to decide which request to work on
next (or whether to handle a new incoming request). This is particularly
important for stream services where each client can potentially be connected for
a long time (if threads or subprocesses cannot be used). See asyncore for
another way to manage this.

20.17.2. Server Objects

	
class SocketServer.BaseServer

	This is the superclass of all Server objects in the module. It defines the
interface, given below, but does not implement most of the methods, which is
done in subclasses.

	
BaseServer.fileno()

	Return an integer file descriptor for the socket on which the server is
listening. This function is most commonly passed to select.select(), to
allow monitoring multiple servers in the same process.

	
BaseServer.handle_request()

	Process a single request. This function calls the following methods in
order: get_request(), verify_request(), and
process_request(). If the user-provided handle() method of the
handler class raises an exception, the server’s handle_error() method
will be called. If no request is received within self.timeout
seconds, handle_timeout() will be called and handle_request()
will return.

	
BaseServer.serve_forever(poll_interval=0.5)

	Handle requests until an explicit shutdown() request. Polls for
shutdown every poll_interval seconds.

	
BaseServer.shutdown()

	Tells the serve_forever() loop to stop and waits until it does.

New in version 2.6.

	
BaseServer.address_family

	The family of protocols to which the server’s socket belongs.
Common examples are socket.AF_INET and socket.AF_UNIX.

	
BaseServer.RequestHandlerClass

	The user-provided request handler class; an instance of this class is created
for each request.

	
BaseServer.server_address

	The address on which the server is listening. The format of addresses varies
depending on the protocol family; see the documentation for the socket module
for details. For Internet protocols, this is a tuple containing a string giving
the address, and an integer port number: ('127.0.0.1', 80), for example.

	
BaseServer.socket

	The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

	
BaseServer.allow_reuse_address

	Whether the server will allow the reuse of an address. This defaults to
False, and can be set in subclasses to change the policy.

	
BaseServer.request_queue_size

	The size of the request queue. If it takes a long time to process a single
request, any requests that arrive while the server is busy are placed into a
queue, up to request_queue_size requests. Once the queue is full,
further requests from clients will get a “Connection denied” error. The default
value is usually 5, but this can be overridden by subclasses.

	
BaseServer.socket_type

	The type of socket used by the server; socket.SOCK_STREAM and
socket.SOCK_DGRAM are two common values.

	
BaseServer.timeout

	Timeout duration, measured in seconds, or None if no timeout is
desired. If handle_request() receives no incoming requests within the
timeout period, the handle_timeout() method is called.

There are various server methods that can be overridden by subclasses of base
server classes like TCPServer; these methods aren’t useful to external
users of the server object.

	
BaseServer.finish_request()

	Actually processes the request by instantiating RequestHandlerClass and
calling its handle() method.

	
BaseServer.get_request()

	Must accept a request from the socket, and return a 2-tuple containing the new
socket object to be used to communicate with the client, and the client’s
address.

	
BaseServer.handle_error(request, client_address)

	This function is called if the RequestHandlerClass‘s handle()
method raises an exception. The default action is to print the traceback to
standard output and continue handling further requests.

	
BaseServer.handle_timeout()

	This function is called when the timeout attribute has been set to a
value other than None and the timeout period has passed with no
requests being received. The default action for forking servers is
to collect the status of any child processes that have exited, while
in threading servers this method does nothing.

	
BaseServer.process_request(request, client_address)

	Calls finish_request() to create an instance of the
RequestHandlerClass. If desired, this function can create a new process
or thread to handle the request; the ForkingMixIn and
ThreadingMixIn classes do this.

	
BaseServer.server_activate()

	Called by the server’s constructor to activate the server. The default behavior
just listen()s to the server’s socket. May be overridden.

	
BaseServer.server_bind()

	Called by the server’s constructor to bind the socket to the desired address.
May be overridden.

	
BaseServer.verify_request(request, client_address)

	Must return a Boolean value; if the value is True, the request will be
processed, and if it’s False, the request will be denied. This function
can be overridden to implement access controls for a server. The default
implementation always returns True.

20.17.3. RequestHandler Objects

The request handler class must define a new handle() method, and can
override any of the following methods. A new instance is created for each
request.

	
RequestHandler.finish()

	Called after the handle() method to perform any clean-up actions
required. The default implementation does nothing. If setup() or
handle() raise an exception, this function will not be called.

	
RequestHandler.handle()

	This function must do all the work required to service a request. The
default implementation does nothing. Several instance attributes are
available to it; the request is available as self.request; the client
address as self.client_address; and the server instance as
self.server, in case it needs access to per-server information.

The type of self.request is different for datagram or stream
services. For stream services, self.request is a socket object; for
datagram services, self.request is a pair of string and socket.
However, this can be hidden by using the request handler subclasses
StreamRequestHandler or DatagramRequestHandler, which
override the setup() and finish() methods, and provide
self.rfile and self.wfile attributes. self.rfile and
self.wfile can be read or written, respectively, to get the request
data or return data to the client.

	
RequestHandler.setup()

	Called before the handle() method to perform any initialization actions
required. The default implementation does nothing.

20.17.4. Examples

20.17.4.1. SocketServer.TCPServer Example

This is the server side:

import SocketServer

class MyTCPHandler(SocketServer.BaseRequestHandler):
 """
 The RequestHandler class for our server.

 It is instantiated once per connection to the server, and must
 override the handle() method to implement communication to the
 client.
 """

 def handle(self):
 # self.request is the TCP socket connected to the client
 self.data = self.request.recv(1024).strip()
 print "%s wrote:" % self.client_address[0]
 print self.data
 # just send back the same data, but upper-cased
 self.request.send(self.data.upper())

if __name__ == "__main__":
 HOST, PORT = "localhost", 9999

 # Create the server, binding to localhost on port 9999
 server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

 # Activate the server; this will keep running until you
 # interrupt the program with Ctrl-C
 server.serve_forever()

An alternative request handler class that makes use of streams (file-like
objects that simplify communication by providing the standard file interface):

class MyTCPHandler(SocketServer.StreamRequestHandler):

 def handle(self):
 # self.rfile is a file-like object created by the handler;
 # we can now use e.g. readline() instead of raw recv() calls
 self.data = self.rfile.readline().strip()
 print "%s wrote:" % self.client_address[0]
 print self.data
 # Likewise, self.wfile is a file-like object used to write back
 # to the client
 self.wfile.write(self.data.upper())

The difference is that the readline() call in the second handler will call
recv() multiple times until it encounters a newline character, while the
single recv() call in the first handler will just return what has been sent
from the client in one send() call.

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

Create a socket (SOCK_STREAM means a TCP socket)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect to server and send data
sock.connect((HOST, PORT))
sock.send(data + "\n")

Receive data from the server and shut down
received = sock.recv(1024)
sock.close()

print "Sent: %s" % data
print "Received: %s" % received

The output of the example should look something like this:

Server:

$ python TCPServer.py
127.0.0.1 wrote:
hello world with TCP
127.0.0.1 wrote:
python is nice

Client:

$ python TCPClient.py hello world with TCP
Sent: hello world with TCP
Received: HELLO WORLD WITH TCP
$ python TCPClient.py python is nice
Sent: python is nice
Received: PYTHON IS NICE

20.17.4.2. SocketServer.UDPServer Example

This is the server side:

import SocketServer

class MyUDPHandler(SocketServer.BaseRequestHandler):
 """
 This class works similar to the TCP handler class, except that
 self.request consists of a pair of data and client socket, and since
 there is no connection the client address must be given explicitly
 when sending data back via sendto().
 """

 def handle(self):
 data = self.request[0].strip()
 socket = self.request[1]
 print "%s wrote:" % self.client_address[0]
 print data
 socket.sendto(data.upper(), self.client_address)

if __name__ == "__main__":
 HOST, PORT = "localhost", 9999
 server = SocketServer.UDPServer((HOST, PORT), MyUDPHandler)
 server.serve_forever()

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

SOCK_DGRAM is the socket type to use for UDP sockets
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

As you can see, there is no connect() call; UDP has no connections.
Instead, data is directly sent to the recipient via sendto().
sock.sendto(data + "\n", (HOST, PORT))
received = sock.recv(1024)

print "Sent: %s" % data
print "Received: %s" % received

The output of the example should look exactly like for the TCP server example.

20.17.4.3. Asynchronous Mixins

To build asynchronous handlers, use the ThreadingMixIn and
ForkingMixIn classes.

An example for the ThreadingMixIn class:

import socket
import threading
import SocketServer

class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler):

 def handle(self):
 data = self.request.recv(1024)
 cur_thread = threading.currentThread()
 response = "%s: %s" % (cur_thread.getName(), data)
 self.request.send(response)

class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):
 pass

def client(ip, port, message):
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.connect((ip, port))
 sock.send(message)
 response = sock.recv(1024)
 print "Received: %s" % response
 sock.close()

if __name__ == "__main__":
 # Port 0 means to select an arbitrary unused port
 HOST, PORT = "localhost", 0

 server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)
 ip, port = server.server_address

 # Start a thread with the server -- that thread will then start one
 # more thread for each request
 server_thread = threading.Thread(target=server.serve_forever)
 # Exit the server thread when the main thread terminates
 server_thread.setDaemon(True)
 server_thread.start()
 print "Server loop running in thread:", server_thread.getName()

 client(ip, port, "Hello World 1")
 client(ip, port, "Hello World 2")
 client(ip, port, "Hello World 3")

 server.shutdown()

The output of the example should look something like this:

$ python ThreadedTCPServer.py
Server loop running in thread: Thread-1
Received: Thread-2: Hello World 1
Received: Thread-3: Hello World 2
Received: Thread-4: Hello World 3

The ForkingMixIn class is used in the same way, except that the server
will spawn a new process for each request.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.18. BaseHTTPServer — Basic HTTP server

Note

The BaseHTTPServer module has been merged into http.server in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

This module defines two classes for implementing HTTP servers (Web servers).
Usually, this module isn’t used directly, but is used as a basis for building
functioning Web servers. See the SimpleHTTPServer and
CGIHTTPServer modules.

The first class, HTTPServer, is a SocketServer.TCPServer
subclass, and therefore implements the SocketServer.BaseServer
interface. It creates and listens at the HTTP socket, dispatching the requests
to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
 handler_class=BaseHTTPServer.BaseHTTPRequestHandler):
 server_address = ('', 8000)
 httpd = server_class(server_address, handler_class)
 httpd.serve_forever()

	
class BaseHTTPServer.HTTPServer(server_address, RequestHandlerClass)

	This class builds on the TCPServer class by storing the server
address as instance variables named server_name and
server_port. The server is accessible by the handler, typically
through the handler’s server instance variable.

	
class BaseHTTPServer.BaseHTTPRequestHandler(request, client_address, server)

	This class is used to handle the HTTP requests that arrive at the server. By
itself, it cannot respond to any actual HTTP requests; it must be subclassed
to handle each request method (e.g. GET or
POST). BaseHTTPRequestHandler provides a number of class and
instance variables, and methods for use by subclasses.

The handler will parse the request and the headers, then call a method
specific to the request type. The method name is constructed from the
request. For example, for the request method SPAM, the do_SPAM()
method will be called with no arguments. All of the relevant information is
stored in instance variables of the handler. Subclasses should not need to
override or extend the __init__() method.

BaseHTTPRequestHandler has the following instance variables:

	
client_address

	Contains a tuple of the form (host, port) referring to the client’s
address.

	
server

	Contains the server instance.

	
command

	Contains the command (request type). For example, 'GET'.

	
path

	Contains the request path.

	
request_version

	Contains the version string from the request. For example, 'HTTP/1.0'.

	
headers

	Holds an instance of the class specified by the MessageClass class
variable. This instance parses and manages the headers in the HTTP
request.

	
rfile

	Contains an input stream, positioned at the start of the optional input
data.

	
wfile

	Contains the output stream for writing a response back to the
client. Proper adherence to the HTTP protocol must be used when writing to
this stream.

BaseHTTPRequestHandler has the following class variables:

	
server_version

	Specifies the server software version. You may want to override this. The
format is multiple whitespace-separated strings, where each string is of
the form name[/version]. For example, 'BaseHTTP/0.2'.

	
sys_version

	Contains the Python system version, in a form usable by the
version_string method and the server_version class
variable. For example, 'Python/1.4'.

	
error_message_format

	Specifies a format string for building an error response to the client. It
uses parenthesized, keyed format specifiers, so the format operand must be
a dictionary. The code key should be an integer, specifying the numeric
HTTP error code value. message should be a string containing a
(detailed) error message of what occurred, and explain should be an
explanation of the error code number. Default message and explain
values can found in the responses class variable.

	
error_content_type

	Specifies the Content-Type HTTP header of error responses sent to the
client. The default value is 'text/html'.

New in version 2.6: Previously, the content type was always 'text/html'.

	
protocol_version

	This specifies the HTTP protocol version used in responses. If set to
'HTTP/1.1', the server will permit HTTP persistent connections;
however, your server must then include an accurate Content-Length
header (using send_header()) in all of its responses to clients.
For backwards compatibility, the setting defaults to 'HTTP/1.0'.

	
MessageClass

	Specifies a rfc822.Message-like class to parse HTTP headers.
Typically, this is not overridden, and it defaults to
mimetools.Message.

	
responses

	This variable contains a mapping of error code integers to two-element tuples
containing a short and long message. For example, {code: (shortmessage,
longmessage)}. The shortmessage is usually used as the message key in an
error response, and longmessage as the explain key (see the
error_message_format class variable).

A BaseHTTPRequestHandler instance has the following methods:

	
handle()

	Calls handle_one_request() once (or, if persistent connections are
enabled, multiple times) to handle incoming HTTP requests. You should
never need to override it; instead, implement appropriate do_*()
methods.

	
handle_one_request()

	This method will parse and dispatch the request to the appropriate
do_*() method. You should never need to override it.

	
send_error(code[, message])

	Sends and logs a complete error reply to the client. The numeric code
specifies the HTTP error code, with message as optional, more specific text. A
complete set of headers is sent, followed by text composed using the
error_message_format class variable.

	
send_response(code[, message])

	Sends a response header and logs the accepted request. The HTTP response
line is sent, followed by Server and Date headers. The values for
these two headers are picked up from the version_string() and
date_time_string() methods, respectively.

	
send_header(keyword, value)

	Writes a specific HTTP header to the output stream. keyword should
specify the header keyword, with value specifying its value.

	
end_headers()

	Sends a blank line, indicating the end of the HTTP headers in the
response.

	
log_request([code[, size]])

	Logs an accepted (successful) request. code should specify the numeric
HTTP code associated with the response. If a size of the response is
available, then it should be passed as the size parameter.

	
log_error(...)

	Logs an error when a request cannot be fulfilled. By default, it passes
the message to log_message(), so it takes the same arguments
(format and additional values).

	
log_message(format, ...)

	Logs an arbitrary message to sys.stderr. This is typically overridden
to create custom error logging mechanisms. The format argument is a
standard printf-style format string, where the additional arguments to
log_message() are applied as inputs to the formatting. The client
address and current date and time are prefixed to every message logged.

	
version_string()

	Returns the server software’s version string. This is a combination of the
server_version and sys_version class variables.

	
date_time_string([timestamp])

	Returns the date and time given by timestamp (which must be in the
format returned by time.time()), formatted for a message header. If
timestamp is omitted, it uses the current date and time.

The result looks like 'Sun, 06 Nov 1994 08:49:37 GMT'.

New in version 2.5: The timestamp parameter.

	
log_date_time_string()

	Returns the current date and time, formatted for logging.

	
address_string()

	Returns the client address, formatted for logging. A name lookup is
performed on the client’s IP address.

20.18.1. More examples

To create a server that doesn’t run forever, but until some condition is
fulfilled:

def run_while_true(server_class=BaseHTTPServer.HTTPServer,
 handler_class=BaseHTTPServer.BaseHTTPRequestHandler):
 """
 This assumes that keep_running() is a function of no arguments which
 is tested initially and after each request. If its return value
 is true, the server continues.
 """
 server_address = ('', 8000)
 httpd = server_class(server_address, handler_class)
 while keep_running():
 httpd.handle_request()

See also

	Module CGIHTTPServer

	Extended request handler that supports CGI scripts.

	Module SimpleHTTPServer

	Basic request handler that limits response to files actually under the
document root.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.19. SimpleHTTPServer — Simple HTTP request handler

Note

The SimpleHTTPServer module has been merged into http.server in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

The SimpleHTTPServer module defines a single class,
SimpleHTTPRequestHandler, which is interface-compatible with
BaseHTTPServer.BaseHTTPRequestHandler.

The SimpleHTTPServer module defines the following class:

	
class SimpleHTTPServer.SimpleHTTPRequestHandler(request, client_address, server)

	This class serves files from the current directory and below, directly
mapping the directory structure to HTTP requests.

A lot of the work, such as parsing the request, is done by the base class
BaseHTTPServer.BaseHTTPRequestHandler. This class implements the
do_GET() and do_HEAD() functions.

The following are defined as class-level attributes of
SimpleHTTPRequestHandler:

	
server_version

	

This will be "SimpleHTTP/" + __version__, where __version__ is
defined at the module level.

	
extensions_map

	A dictionary mapping suffixes into MIME types. The default is
signified by an empty string, and is considered to be
application/octet-stream. The mapping is used case-insensitively,
and so should contain only lower-cased keys.

The SimpleHTTPRequestHandler class defines the following methods:

	
do_HEAD()

	This method serves the 'HEAD' request type: it sends the headers it
would send for the equivalent GET request. See the do_GET()
method for a more complete explanation of the possible headers.

	
do_GET()

	The request is mapped to a local file by interpreting the request as a
path relative to the current working directory.

If the request was mapped to a directory, the directory is checked for a
file named index.html or index.htm (in that order). If found, the
file’s contents are returned; otherwise a directory listing is generated
by calling the list_directory() method. This method uses
os.listdir() to scan the directory, and returns a 404 error
response if the listdir() fails.

If the request was mapped to a file, it is opened and the contents are
returned. Any IOError exception in opening the requested file is
mapped to a 404, 'File not found' error. Otherwise, the content
type is guessed by calling the guess_type() method, which in turn
uses the extensions_map variable.

A 'Content-type:' header with the guessed content type is output,
followed by a 'Content-Length:' header with the file’s size and a
'Last-Modified:' header with the file’s modification time.

Then follows a blank line signifying the end of the headers, and then the
contents of the file are output. If the file’s MIME type starts with
text/ the file is opened in text mode; otherwise binary mode is used.

The test() function in the SimpleHTTPServer module is an
example which creates a server using the SimpleHTTPRequestHandler
as the Handler.

New in version 2.5: The 'Last-Modified' header.

The SimpleHTTPServer module can be used in the following manner in order
to set up a very basic web server serving files relative to the current
directory.

import SimpleHTTPServer
import SocketServer

PORT = 8000

Handler = SimpleHTTPServer.SimpleHTTPRequestHandler

httpd = SocketServer.TCPServer(("", PORT), Handler)

print "serving at port", PORT
httpd.serve_forever()

The SimpleHTTPServer module can also be invoked directly using the
-m switch of the interpreter with a port number argument.
Similar to the previous example, this serves the files relative to the
current directory.

python -m SimpleHTTPServer 8000

See also

	Module BaseHTTPServer

	Base class implementation for Web server and request handler.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.20. CGIHTTPServer — CGI-capable HTTP request handler

Note

The CGIHTTPServer module has been merged into http.server in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

The CGIHTTPServer module defines a request-handler class, interface
compatible with BaseHTTPServer.BaseHTTPRequestHandler and inherits
behavior from SimpleHTTPServer.SimpleHTTPRequestHandler but can also
run CGI scripts.

Note

This module can run CGI scripts on Unix and Windows systems.

Note

CGI scripts run by the CGIHTTPRequestHandler class cannot execute
redirects (HTTP code 302), because code 200 (script output follows) is sent
prior to execution of the CGI script. This pre-empts the status code.

The CGIHTTPServer module defines the following class:

	
class CGIHTTPServer.CGIHTTPRequestHandler(request, client_address, server)

	This class is used to serve either files or output of CGI scripts from the
current directory and below. Note that mapping HTTP hierarchic structure to
local directory structure is exactly as in
SimpleHTTPServer.SimpleHTTPRequestHandler.

The class will however, run the CGI script, instead of serving it as a file, if
it guesses it to be a CGI script. Only directory-based CGI are used — the
other common server configuration is to treat special extensions as denoting CGI
scripts.

The do_GET() and do_HEAD() functions are modified to run CGI scripts
and serve the output, instead of serving files, if the request leads to
somewhere below the cgi_directories path.

The CGIHTTPRequestHandler defines the following data member:

	
cgi_directories

	This defaults to ['/cgi-bin', '/htbin'] and describes directories to
treat as containing CGI scripts.

The CGIHTTPRequestHandler defines the following methods:

	
do_POST()

	This method serves the 'POST' request type, only allowed for CGI
scripts. Error 501, “Can only POST to CGI scripts”, is output when trying
to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons.
Problems with the CGI script will be translated to error 403.

For example usage, see the implementation of the test() function.

See also

	Module BaseHTTPServer

	Base class implementation for Web server and request handler.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.21. cookielib — Cookie handling for HTTP clients

Note

The cookielib module has been renamed to http.cookiejar in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

New in version 2.4.

The cookielib module defines classes for automatic handling of HTTP
cookies. It is useful for accessing web sites that require small pieces of data
– cookies – to be set on the client machine by an HTTP response from a
web server, and then returned to the server in later HTTP requests.

Both the regular Netscape cookie protocol and the protocol defined by
RFC 2965 [http://tools.ietf.org/html/rfc2965.html] are handled. RFC 2965 handling is switched off by default.
RFC 2109 [http://tools.ietf.org/html/rfc2109.html] cookies are parsed as Netscape cookies and subsequently treated
either as Netscape or RFC 2965 cookies according to the ‘policy’ in effect.
Note that the great majority of cookies on the Internet are Netscape cookies.
cookielib attempts to follow the de-facto Netscape cookie protocol (which
differs substantially from that set out in the original Netscape specification),
including taking note of the max-age and port cookie-attributes
introduced with RFC 2965.

Note

The various named parameters found in Set-Cookie and
Set-Cookie2 headers (eg. domain and expires) are
conventionally referred to as attributes. To distinguish them from
Python attributes, the documentation for this module uses the term
cookie-attribute instead.

The module defines the following exception:

	
exception cookielib.LoadError

	Instances of FileCookieJar raise this exception on failure to load
cookies from a file.

Note

For backwards-compatibility with Python 2.4 (which raised an IOError),
LoadError is a subclass of IOError.

The following classes are provided:

	
class cookielib.CookieJar(policy=None)

	policy is an object implementing the CookiePolicy interface.

The CookieJar class stores HTTP cookies. It extracts cookies from HTTP
requests, and returns them in HTTP responses. CookieJar instances
automatically expire contained cookies when necessary. Subclasses are also
responsible for storing and retrieving cookies from a file or database.

	
class cookielib.FileCookieJar(filename, delayload=None, policy=None)

	policy is an object implementing the CookiePolicy interface. For the
other arguments, see the documentation for the corresponding attributes.

A CookieJar which can load cookies from, and perhaps save cookies to, a
file on disk. Cookies are NOT loaded from the named file until either the
load() or revert() method is called. Subclasses of this class are
documented in section FileCookieJar subclasses and co-operation with web browsers.

	
class cookielib.CookiePolicy

	This class is responsible for deciding whether each cookie should be accepted
from / returned to the server.

	
class cookielib.DefaultCookiePolicy(blocked_domains=None, allowed_domains=None, netscape=True, rfc2965=False, rfc2109_as_netscape=None, hide_cookie2=False, strict_domain=False, strict_rfc2965_unverifiable=True, strict_ns_unverifiable=False, strict_ns_domain=DefaultCookiePolicy.DomainLiberal, strict_ns_set_initial_dollar=False, strict_ns_set_path=False)

	Constructor arguments should be passed as keyword arguments only.
blocked_domains is a sequence of domain names that we never accept cookies
from, nor return cookies to. allowed_domains if not None, this is a
sequence of the only domains for which we accept and return cookies. For all
other arguments, see the documentation for CookiePolicy and
DefaultCookiePolicy objects.

DefaultCookiePolicy implements the standard accept / reject rules for
Netscape and RFC 2965 cookies. By default, RFC 2109 cookies (ie. cookies
received in a Set-Cookie header with a version cookie-attribute of
1) are treated according to the RFC 2965 rules. However, if RFC 2965 handling
is turned off or rfc2109_as_netscape is True, RFC 2109 cookies are
‘downgraded’ by the CookieJar instance to Netscape cookies, by
setting the version attribute of the Cookie instance to 0.
DefaultCookiePolicy also provides some parameters to allow some
fine-tuning of policy.

	
class cookielib.Cookie

	This class represents Netscape, RFC 2109 and RFC 2965 cookies. It is not
expected that users of cookielib construct their own Cookie
instances. Instead, if necessary, call make_cookies() on a
CookieJar instance.

See also

	Module urllib2

	URL opening with automatic cookie handling.

	Module Cookie

	HTTP cookie classes, principally useful for server-side code. The
cookielib and Cookie modules do not depend on each other.

	http://wp.netscape.com/newsref/std/cookie_spec.html

	The specification of the original Netscape cookie protocol. Though this is
still the dominant protocol, the ‘Netscape cookie protocol’ implemented by all
the major browsers (and cookielib) only bears a passing resemblance to
the one sketched out in cookie_spec.html.

	RFC 2109 [http://tools.ietf.org/html/rfc2109.html] - HTTP State Management Mechanism

	Obsoleted by RFC 2965. Uses Set-Cookie with version=1.

	RFC 2965 [http://tools.ietf.org/html/rfc2965.html] - HTTP State Management Mechanism

	The Netscape protocol with the bugs fixed. Uses Set-Cookie2 in
place of Set-Cookie. Not widely used.

	http://kristol.org/cookie/errata.html

	Unfinished errata to RFC 2965.

RFC 2964 [http://tools.ietf.org/html/rfc2964.html] - Use of HTTP State Management

20.21.1. CookieJar and FileCookieJar Objects

CookieJar objects support the iterator protocol for iterating over
contained Cookie objects.

CookieJar has the following methods:

	
CookieJar.add_cookie_header(request)

	Add correct Cookie header to request.

If policy allows (ie. the rfc2965 and hide_cookie2 attributes of
the CookieJar‘s CookiePolicy instance are true and false
respectively), the Cookie2 header is also added when appropriate.

The request object (usually a urllib2.Request instance) must support
the methods get_full_url(), get_host(), get_type(),
unverifiable(), get_origin_req_host(), has_header(),
get_header(), header_items(), and add_unredirected_header(),as
documented by urllib2.

	
CookieJar.extract_cookies(response, request)

	Extract cookies from HTTP response and store them in the CookieJar,
where allowed by policy.

The CookieJar will look for allowable Set-Cookie and
Set-Cookie2 headers in the response argument, and store cookies
as appropriate (subject to the CookiePolicy.set_ok() method’s approval).

The response object (usually the result of a call to urllib2.urlopen(),
or similar) should support an info() method, which returns an object with
a getallmatchingheaders() method (usually a mimetools.Message
instance).

The request object (usually a urllib2.Request instance) must support
the methods get_full_url(), get_host(), unverifiable(), and
get_origin_req_host(), as documented by urllib2. The request is
used to set default values for cookie-attributes as well as for checking that
the cookie is allowed to be set.

	
CookieJar.set_policy(policy)

	Set the CookiePolicy instance to be used.

	
CookieJar.make_cookies(response, request)

	Return sequence of Cookie objects extracted from response object.

See the documentation for extract_cookies() for the interfaces required of
the response and request arguments.

	
CookieJar.set_cookie_if_ok(cookie, request)

	Set a Cookie if policy says it’s OK to do so.

	
CookieJar.set_cookie(cookie)

	Set a Cookie, without checking with policy to see whether or not it
should be set.

	
CookieJar.clear([domain[, path[, name]]])

	Clear some cookies.

If invoked without arguments, clear all cookies. If given a single argument,
only cookies belonging to that domain will be removed. If given two arguments,
cookies belonging to the specified domain and URL path are removed. If
given three arguments, then the cookie with the specified domain, path and
name is removed.

Raises KeyError if no matching cookie exists.

	
CookieJar.clear_session_cookies()

	Discard all session cookies.

Discards all contained cookies that have a true discard attribute
(usually because they had either no max-age or expires cookie-attribute,
or an explicit discard cookie-attribute). For interactive browsers, the end
of a session usually corresponds to closing the browser window.

Note that the save() method won’t save session cookies anyway, unless you
ask otherwise by passing a true ignore_discard argument.

FileCookieJar implements the following additional methods:

	
FileCookieJar.save(filename=None, ignore_discard=False, ignore_expires=False)

	Save cookies to a file.

This base class raises NotImplementedError. Subclasses may leave this
method unimplemented.

filename is the name of file in which to save cookies. If filename is not
specified, self.filename is used (whose default is the value passed to
the constructor, if any); if self.filename is None,
ValueError is raised.

ignore_discard: save even cookies set to be discarded. ignore_expires: save
even cookies that have expired

The file is overwritten if it already exists, thus wiping all the cookies it
contains. Saved cookies can be restored later using the load() or
revert() methods.

	
FileCookieJar.load(filename=None, ignore_discard=False, ignore_expires=False)

	Load cookies from a file.

Old cookies are kept unless overwritten by newly loaded ones.

Arguments are as for save().

The named file must be in the format understood by the class, or
LoadError will be raised. Also, IOError may be raised, for
example if the file does not exist.

Note

For backwards-compatibility with Python 2.4 (which raised an IOError),
LoadError is a subclass of IOError.

	
FileCookieJar.revert(filename=None, ignore_discard=False, ignore_expires=False)

	Clear all cookies and reload cookies from a saved file.

revert() can raise the same exceptions as load(). If there is a
failure, the object’s state will not be altered.

FileCookieJar instances have the following public attributes:

	
FileCookieJar.filename

	Filename of default file in which to keep cookies. This attribute may be
assigned to.

	
FileCookieJar.delayload

	If true, load cookies lazily from disk. This attribute should not be assigned
to. This is only a hint, since this only affects performance, not behaviour
(unless the cookies on disk are changing). A CookieJar object may
ignore it. None of the FileCookieJar classes included in the standard
library lazily loads cookies.

20.21.2. FileCookieJar subclasses and co-operation with web browsers

The following CookieJar subclasses are provided for reading and
writing .

	
class cookielib.MozillaCookieJar(filename, delayload=None, policy=None)

	A FileCookieJar that can load from and save cookies to disk in the
Mozilla cookies.txt file format (which is also used by the Lynx and Netscape
browsers).

Note

Version 3 of the Firefox web browser no longer writes cookies in the
cookies.txt file format.

Note

This loses information about RFC 2965 cookies, and also about newer or
non-standard cookie-attributes such as port.

Warning

Back up your cookies before saving if you have cookies whose loss / corruption
would be inconvenient (there are some subtleties which may lead to slight
changes in the file over a load / save round-trip).

Also note that cookies saved while Mozilla is running will get clobbered by
Mozilla.

	
class cookielib.LWPCookieJar(filename, delayload=None, policy=None)

	A FileCookieJar that can load from and save cookies to disk in format
compatible with the libwww-perl library’s Set-Cookie3 file format. This is
convenient if you want to store cookies in a human-readable file.

20.21.3. CookiePolicy Objects

Objects implementing the CookiePolicy interface have the following
methods:

	
CookiePolicy.set_ok(cookie, request)

	Return boolean value indicating whether cookie should be accepted from server.

cookie is a cookielib.Cookie instance. request is an object
implementing the interface defined by the documentation for
CookieJar.extract_cookies().

	
CookiePolicy.return_ok(cookie, request)

	Return boolean value indicating whether cookie should be returned to server.

cookie is a cookielib.Cookie instance. request is an object
implementing the interface defined by the documentation for
CookieJar.add_cookie_header().

	
CookiePolicy.domain_return_ok(domain, request)

	Return false if cookies should not be returned, given cookie domain.

This method is an optimization. It removes the need for checking every cookie
with a particular domain (which might involve reading many files). Returning
true from domain_return_ok() and path_return_ok() leaves all the
work to return_ok().

If domain_return_ok() returns true for the cookie domain,
path_return_ok() is called for the cookie path. Otherwise,
path_return_ok() and return_ok() are never called for that cookie
domain. If path_return_ok() returns true, return_ok() is called
with the Cookie object itself for a full check. Otherwise,
return_ok() is never called for that cookie path.

Note that domain_return_ok() is called for every cookie domain, not just
for the request domain. For example, the function might be called with both
".example.com" and "www.example.com" if the request domain is
"www.example.com". The same goes for path_return_ok().

The request argument is as documented for return_ok().

	
CookiePolicy.path_return_ok(path, request)

	Return false if cookies should not be returned, given cookie path.

See the documentation for domain_return_ok().

In addition to implementing the methods above, implementations of the
CookiePolicy interface must also supply the following attributes,
indicating which protocols should be used, and how. All of these attributes may
be assigned to.

	
CookiePolicy.netscape

	Implement Netscape protocol.

	
CookiePolicy.rfc2965

	Implement RFC 2965 protocol.

	
CookiePolicy.hide_cookie2

	Don’t add Cookie2 header to requests (the presence of this header
indicates to the server that we understand RFC 2965 cookies).

The most useful way to define a CookiePolicy class is by subclassing
from DefaultCookiePolicy and overriding some or all of the methods
above. CookiePolicy itself may be used as a ‘null policy’ to allow
setting and receiving any and all cookies (this is unlikely to be useful).

20.21.4. DefaultCookiePolicy Objects

Implements the standard rules for accepting and returning cookies.

Both RFC 2965 and Netscape cookies are covered. RFC 2965 handling is switched
off by default.

The easiest way to provide your own policy is to override this class and call
its methods in your overridden implementations before adding your own additional
checks:

import cookielib
class MyCookiePolicy(cookielib.DefaultCookiePolicy):
 def set_ok(self, cookie, request):
 if not cookielib.DefaultCookiePolicy.set_ok(self, cookie, request):
 return False
 if i_dont_want_to_store_this_cookie(cookie):
 return False
 return True

In addition to the features required to implement the CookiePolicy
interface, this class allows you to block and allow domains from setting and
receiving cookies. There are also some strictness switches that allow you to
tighten up the rather loose Netscape protocol rules a little bit (at the cost of
blocking some benign cookies).

A domain blacklist and whitelist is provided (both off by default). Only domains
not in the blacklist and present in the whitelist (if the whitelist is active)
participate in cookie setting and returning. Use the blocked_domains
constructor argument, and blocked_domains() and
set_blocked_domains() methods (and the corresponding argument and methods
for allowed_domains). If you set a whitelist, you can turn it off again by
setting it to None.

Domains in block or allow lists that do not start with a dot must equal the
cookie domain to be matched. For example, "example.com" matches a blacklist
entry of "example.com", but "www.example.com" does not. Domains that do
start with a dot are matched by more specific domains too. For example, both
"www.example.com" and "www.coyote.example.com" match ".example.com"
(but "example.com" itself does not). IP addresses are an exception, and
must match exactly. For example, if blocked_domains contains "192.168.1.2"
and ".168.1.2", 192.168.1.2 is blocked, but 193.168.1.2 is not.

DefaultCookiePolicy implements the following additional methods:

	
DefaultCookiePolicy.blocked_domains()

	Return the sequence of blocked domains (as a tuple).

	
DefaultCookiePolicy.set_blocked_domains(blocked_domains)

	Set the sequence of blocked domains.

	
DefaultCookiePolicy.is_blocked(domain)

	Return whether domain is on the blacklist for setting or receiving cookies.

	
DefaultCookiePolicy.allowed_domains()

	Return None, or the sequence of allowed domains (as a tuple).

	
DefaultCookiePolicy.set_allowed_domains(allowed_domains)

	Set the sequence of allowed domains, or None.

	
DefaultCookiePolicy.is_not_allowed(domain)

	Return whether domain is not on the whitelist for setting or receiving
cookies.

DefaultCookiePolicy instances have the following attributes, which are
all initialised from the constructor arguments of the same name, and which may
all be assigned to.

	
DefaultCookiePolicy.rfc2109_as_netscape

	If true, request that the CookieJar instance downgrade RFC 2109 cookies
(ie. cookies received in a Set-Cookie header with a version
cookie-attribute of 1) to Netscape cookies by setting the version attribute of
the Cookie instance to 0. The default value is None, in which
case RFC 2109 cookies are downgraded if and only if RFC 2965 handling is turned
off. Therefore, RFC 2109 cookies are downgraded by default.

New in version 2.5.

General strictness switches:

	
DefaultCookiePolicy.strict_domain

	Don’t allow sites to set two-component domains with country-code top-level
domains like .co.uk, .gov.uk, .co.nz.etc. This is far from perfect
and isn’t guaranteed to work!

RFC 2965 protocol strictness switches:

	
DefaultCookiePolicy.strict_rfc2965_unverifiable

	Follow RFC 2965 rules on unverifiable transactions (usually, an unverifiable
transaction is one resulting from a redirect or a request for an image hosted on
another site). If this is false, cookies are never blocked on the basis of
verifiability

Netscape protocol strictness switches:

	
DefaultCookiePolicy.strict_ns_unverifiable

	apply RFC 2965 rules on unverifiable transactions even to Netscape cookies

	
DefaultCookiePolicy.strict_ns_domain

	Flags indicating how strict to be with domain-matching rules for Netscape
cookies. See below for acceptable values.

	
DefaultCookiePolicy.strict_ns_set_initial_dollar

	Ignore cookies in Set-Cookie: headers that have names starting with '$'.

	
DefaultCookiePolicy.strict_ns_set_path

	Don’t allow setting cookies whose path doesn’t path-match request URI.

strict_ns_domain is a collection of flags. Its value is constructed by
or-ing together (for example, DomainStrictNoDots|DomainStrictNonDomain means
both flags are set).

	
DefaultCookiePolicy.DomainStrictNoDots

	When setting cookies, the ‘host prefix’ must not contain a dot (eg.
www.foo.bar.com can’t set a cookie for .bar.com, because www.foo
contains a dot).

	
DefaultCookiePolicy.DomainStrictNonDomain

	Cookies that did not explicitly specify a domain cookie-attribute can only
be returned to a domain equal to the domain that set the cookie (eg.
spam.example.com won’t be returned cookies from example.com that had no
domain cookie-attribute).

	
DefaultCookiePolicy.DomainRFC2965Match

	When setting cookies, require a full RFC 2965 domain-match.

The following attributes are provided for convenience, and are the most useful
combinations of the above flags:

	
DefaultCookiePolicy.DomainLiberal

	Equivalent to 0 (ie. all of the above Netscape domain strictness flags switched
off).

	
DefaultCookiePolicy.DomainStrict

	Equivalent to DomainStrictNoDots|DomainStrictNonDomain.

20.21.5. Cookie Objects

Cookie instances have Python attributes roughly corresponding to the
standard cookie-attributes specified in the various cookie standards. The
correspondence is not one-to-one, because there are complicated rules for
assigning default values, because the max-age and expires
cookie-attributes contain equivalent information, and because RFC 2109 cookies
may be ‘downgraded’ by cookielib from version 1 to version 0 (Netscape)
cookies.

Assignment to these attributes should not be necessary other than in rare
circumstances in a CookiePolicy method. The class does not enforce
internal consistency, so you should know what you’re doing if you do that.

	
Cookie.version

	Integer or None. Netscape cookies have version 0. RFC 2965 and
RFC 2109 cookies have a version cookie-attribute of 1. However, note that
cookielib may ‘downgrade’ RFC 2109 cookies to Netscape cookies, in which
case version is 0.

	
Cookie.name

	Cookie name (a string).

	
Cookie.value

	Cookie value (a string), or None.

	
Cookie.port

	String representing a port or a set of ports (eg. ‘80’, or ‘80,8080’), or
None.

	
Cookie.path

	Cookie path (a string, eg. '/acme/rocket_launchers').

	
Cookie.secure

	True if cookie should only be returned over a secure connection.

	
Cookie.expires

	Integer expiry date in seconds since epoch, or None. See also the
is_expired() method.

	
Cookie.discard

	True if this is a session cookie.

	
Cookie.comment

	String comment from the server explaining the function of this cookie, or
None.

	
Cookie.comment_url

	URL linking to a comment from the server explaining the function of this cookie,
or None.

	
Cookie.rfc2109

	True if this cookie was received as an RFC 2109 cookie (ie. the cookie
arrived in a Set-Cookie header, and the value of the Version
cookie-attribute in that header was 1). This attribute is provided because
cookielib may ‘downgrade’ RFC 2109 cookies to Netscape cookies, in
which case version is 0.

New in version 2.5.

	
Cookie.port_specified

	True if a port or set of ports was explicitly specified by the server (in the
Set-Cookie / Set-Cookie2 header).

	
Cookie.domain_specified

	True if a domain was explicitly specified by the server.

	
Cookie.domain_initial_dot

	True if the domain explicitly specified by the server began with a dot
('.').

Cookies may have additional non-standard cookie-attributes. These may be
accessed using the following methods:

	
Cookie.has_nonstandard_attr(name)

	Return true if cookie has the named cookie-attribute.

	
Cookie.get_nonstandard_attr(name, default=None)

	If cookie has the named cookie-attribute, return its value. Otherwise, return
default.

	
Cookie.set_nonstandard_attr(name, value)

	Set the value of the named cookie-attribute.

The Cookie class also defines the following method:

	
Cookie.is_expired([now=None])

	True if cookie has passed the time at which the server requested it should
expire. If now is given (in seconds since the epoch), return whether the
cookie has expired at the specified time.

20.21.6. Examples

The first example shows the most common usage of cookielib:

import cookielib, urllib2
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

This example illustrates how to open a URL using your Netscape, Mozilla, or Lynx
cookies (assumes Unix/Netscape convention for location of the cookies file):

import os, cookielib, urllib2
cj = cookielib.MozillaCookieJar()
cj.load(os.path.join(os.path.expanduser("~"), ".netscape", "cookies.txt"))
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

The next example illustrates the use of DefaultCookiePolicy. Turn on
RFC 2965 cookies, be more strict about domains when setting and returning
Netscape cookies, and block some domains from setting cookies or having them
returned:

import urllib2
from cookielib import CookieJar, DefaultCookiePolicy
policy = DefaultCookiePolicy(
 rfc2965=True, strict_ns_domain=DefaultCookiePolicy.DomainStrict,
 blocked_domains=["ads.net", ".ads.net"])
cj = CookieJar(policy)
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.22. Cookie — HTTP state management

Note

The Cookie module has been renamed to http.cookies in Python
3.0. The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

The Cookie module defines classes for abstracting the concept of
cookies, an HTTP state management mechanism. It supports both simple string-only
cookies, and provides an abstraction for having any serializable data-type as
cookie value.

The module formerly strictly applied the parsing rules described in the
RFC 2109 [http://tools.ietf.org/html/rfc2109.html] and RFC 2068 [http://tools.ietf.org/html/rfc2068.html] specifications. It has since been discovered that
MSIE 3.0x doesn’t follow the character rules outlined in those specs. As a
result, the parsing rules used are a bit less strict.

Note

On encountering an invalid cookie, CookieError is raised, so if your
cookie data comes from a browser you should always prepare for invalid data
and catch CookieError on parsing.

	
exception Cookie.CookieError

	Exception failing because of RFC 2109 [http://tools.ietf.org/html/rfc2109.html] invalidity: incorrect attributes,
incorrect Set-Cookie header, etc.

	
class Cookie.BaseCookie([input])

	This class is a dictionary-like object whose keys are strings and whose values
are Morsel instances. Note that upon setting a key to a value, the
value is first converted to a Morsel containing the key and the value.

If input is given, it is passed to the load() method.

	
class Cookie.SimpleCookie([input])

	This class derives from BaseCookie and overrides value_decode()
and value_encode() to be the identity and str() respectively.

	
class Cookie.SerialCookie([input])

	This class derives from BaseCookie and overrides value_decode()
and value_encode() to be the pickle.loads() and
pickle.dumps().

Deprecated since version 2.3: Reading pickled values from untrusted cookie data is a huge security hole, as
pickle strings can be crafted to cause arbitrary code to execute on your server.
It is supported for backwards compatibility only, and may eventually go away.

	
class Cookie.SmartCookie([input])

	This class derives from BaseCookie. It overrides value_decode()
to be pickle.loads() if it is a valid pickle, and otherwise the value
itself. It overrides value_encode() to be pickle.dumps() unless it
is a string, in which case it returns the value itself.

Deprecated since version 2.3: The same security warning from SerialCookie applies here.

A further security note is warranted. For backwards compatibility, the
Cookie module exports a class named Cookie which is just an
alias for SmartCookie. This is probably a mistake and will likely be
removed in a future version. You should not use the Cookie class in
your applications, for the same reason why you should not use the
SerialCookie class.

See also

	Module cookielib

	HTTP cookie handling for web clients. The cookielib and Cookie
modules do not depend on each other.

	RFC 2109 [http://tools.ietf.org/html/rfc2109.html] - HTTP State Management Mechanism

	This is the state management specification implemented by this module.

20.22.1. Cookie Objects

	
BaseCookie.value_decode(val)

	Return a decoded value from a string representation. Return value can be any
type. This method does nothing in BaseCookie — it exists so it can be
overridden.

	
BaseCookie.value_encode(val)

	Return an encoded value. val can be any type, but return value must be a
string. This method does nothing in BaseCookie — it exists so it can
be overridden

In general, it should be the case that value_encode() and
value_decode() are inverses on the range of value_decode.

	
BaseCookie.output([attrs[, header[, sep]]])

	Return a string representation suitable to be sent as HTTP headers. attrs and
header are sent to each Morsel‘s output() method. sep is used
to join the headers together, and is by default the combination '\r\n'
(CRLF).

Changed in version 2.5: The default separator has been changed from '\n' to match the cookie
specification.

	
BaseCookie.js_output([attrs])

	Return an embeddable JavaScript snippet, which, if run on a browser which
supports JavaScript, will act the same as if the HTTP headers was sent.

The meaning for attrs is the same as in output().

	
BaseCookie.load(rawdata)

	If rawdata is a string, parse it as an HTTP_COOKIE and add the values
found there as Morsels. If it is a dictionary, it is equivalent to:

for k, v in rawdata.items():
 cookie[k] = v

20.22.2. Morsel Objects

	
class Cookie.Morsel

	Abstract a key/value pair, which has some RFC 2109 [http://tools.ietf.org/html/rfc2109.html] attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid
RFC 2109 [http://tools.ietf.org/html/rfc2109.html] attributes, which are

	expires

	path

	comment

	domain

	max-age

	secure

	version

	httponly

The attribute httponly specifies that the cookie is only transfered
in HTTP requests, and is not accessible through JavaScript. This is intended
to mitigate some forms of cross-site scripting.

The keys are case-insensitive.

New in version 2.6: The httponly attribute was added.

	
Morsel.value

	The value of the cookie.

	
Morsel.coded_value

	The encoded value of the cookie — this is what should be sent.

	
Morsel.key

	The name of the cookie.

	
Morsel.set(key, value, coded_value)

	Set the key, value and coded_value members.

	
Morsel.isReservedKey(K)

	Whether K is a member of the set of keys of a Morsel.

	
Morsel.output([attrs[, header]])

	Return a string representation of the Morsel, suitable to be sent as an HTTP
header. By default, all the attributes are included, unless attrs is given, in
which case it should be a list of attributes to use. header is by default
"Set-Cookie:".

	
Morsel.js_output([attrs])

	Return an embeddable JavaScript snippet, which, if run on a browser which
supports JavaScript, will act the same as if the HTTP header was sent.

The meaning for attrs is the same as in output().

	
Morsel.OutputString([attrs])

	Return a string representing the Morsel, without any surrounding HTTP or
JavaScript.

The meaning for attrs is the same as in output().

20.22.3. Example

The following example demonstrates how to use the Cookie module.

>>> import Cookie
>>> C = Cookie.SimpleCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> print C # generate HTTP headers
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> print C.output() # same thing
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> C = Cookie.SimpleCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print C.output(header="Cookie:")
Cookie: rocky=road; Path=/cookie
>>> print C.output(attrs=[], header="Cookie:")
Cookie: rocky=road
>>> C = Cookie.SimpleCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> print C
Set-Cookie: chips=ahoy
Set-Cookie: vienna=finger
>>> C = Cookie.SimpleCookie()
>>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";')
>>> print C
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"
>>> C = Cookie.SimpleCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print C
Set-Cookie: oreo=doublestuff; Path=/
>>> C["twix"] = "none for you"
>>> C["twix"].value
'none for you'
>>> C = Cookie.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
'7'
>>> C["string"].value
'seven'
>>> print C
Set-Cookie: number=7
Set-Cookie: string=seven
>>> # SerialCookie and SmartCookie are deprecated
>>> # using it can cause security loopholes in your code.
>>> C = Cookie.SerialCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
'seven'
>>> print C
Set-Cookie: number="I7\012."
Set-Cookie: string="S'seven'\012p1\012."
>>> C = Cookie.SmartCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
'seven'
>>> print C
Set-Cookie: number="I7\012."
Set-Cookie: string=seven

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.23. xmlrpclib — XML-RPC client access

Note

The xmlrpclib module has been renamed to xmlrpc.client in
Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

New in version 2.2.

XML-RPC is a Remote Procedure Call method that uses XML passed via HTTP as a
transport. With it, a client can call methods with parameters on a remote
server (the server is named by a URI) and get back structured data. This module
supports writing XML-RPC client code; it handles all the details of translating
between conformable Python objects and XML on the wire.

	
class xmlrpclib.ServerProxy(uri[, transport[, encoding[, verbose[, allow_none[, use_datetime]]]]])

	A ServerProxy instance is an object that manages communication with a
remote XML-RPC server. The required first argument is a URI (Uniform Resource
Indicator), and will normally be the URL of the server. The optional second
argument is a transport factory instance; by default it is an internal
SafeTransport instance for https: URLs and an internal HTTP
Transport instance otherwise. The optional third argument is an
encoding, by default UTF-8. The optional fourth argument is a debugging flag.
If allow_none is true, the Python constant None will be translated into
XML; the default behaviour is for None to raise a TypeError. This is
a commonly-used extension to the XML-RPC specification, but isn’t supported by
all clients and servers; see http://ontosys.com/xml-rpc/extensions.php for a
description. The use_datetime flag can be used to cause date/time values to
be presented as datetime.datetime objects; this is false by default.
datetime.datetime objects may be passed to calls.

Both the HTTP and HTTPS transports support the URL syntax extension for HTTP
Basic Authentication: http://user:pass@host:port/path. The user:pass
portion will be base64-encoded as an HTTP ‘Authorization’ header, and sent to
the remote server as part of the connection process when invoking an XML-RPC
method. You only need to use this if the remote server requires a Basic
Authentication user and password.

The returned instance is a proxy object with methods that can be used to invoke
corresponding RPC calls on the remote server. If the remote server supports the
introspection API, the proxy can also be used to query the remote server for the
methods it supports (service discovery) and fetch other server-associated
metadata.

ServerProxy instance methods take Python basic types and objects as
arguments and return Python basic types and classes. Types that are conformable
(e.g. that can be marshalled through XML), include the following (and except
where noted, they are unmarshalled as the same Python type):

	Name
	Meaning

	boolean
	The True and False
constants

	integers
	Pass in directly

	floating-point numbers
	Pass in directly

	strings
	Pass in directly

	arrays
	Any Python sequence type containing
conformable elements. Arrays are returned
as lists

	structures
	A Python dictionary. Keys must be strings,
values may be any conformable type. Objects
of user-defined classes can be passed in;
only their __dict__ attribute is
transmitted.

	dates
	in seconds since the epoch (pass in an
instance of the DateTime class) or
a datetime.datetime instance.

	binary data
	pass in an instance of the Binary
wrapper class

This is the full set of data types supported by XML-RPC. Method calls may also
raise a special Fault instance, used to signal XML-RPC server errors, or
ProtocolError used to signal an error in the HTTP/HTTPS transport layer.
Both Fault and ProtocolError derive from a base class called
Error. Note that even though starting with Python 2.2 you can subclass
built-in types, the xmlrpclib module currently does not marshal instances of such
subclasses.

When passing strings, characters special to XML such as <, >, and &
will be automatically escaped. However, it’s the caller’s responsibility to
ensure that the string is free of characters that aren’t allowed in XML, such as
the control characters with ASCII values between 0 and 31 (except, of course,
tab, newline and carriage return); failing to do this will result in an XML-RPC
request that isn’t well-formed XML. If you have to pass arbitrary strings via
XML-RPC, use the Binary wrapper class described below.

Server is retained as an alias for ServerProxy for backwards
compatibility. New code should use ServerProxy.

Changed in version 2.5: The use_datetime flag was added.

Changed in version 2.6: Instances of new-style classes can be passed in if they have an
__dict__ attribute and don’t have a base class that is marshalled in a
special way.

See also

	XML-RPC HOWTO [http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html]

	A good description of XML-RPC operation and client software in several languages.
Contains pretty much everything an XML-RPC client developer needs to know.

	XML-RPC Introspection [http://xmlrpc-c.sourceforge.net/introspection.html]

	Describes the XML-RPC protocol extension for introspection.

	XML-RPC Specification [http://www.xmlrpc.com/spec]

	The official specification.

	Unofficial XML-RPC Errata [http://effbot.org/zone/xmlrpc-errata.htm]

	Fredrik Lundh’s “unofficial errata, intended to clarify certain
details in the XML-RPC specification, as well as hint at
‘best practices’ to use when designing your own XML-RPC
implementations.”

20.23.1. ServerProxy Objects

A ServerProxy instance has a method corresponding to each remote
procedure call accepted by the XML-RPC server. Calling the method performs an
RPC, dispatched by both name and argument signature (e.g. the same method name
can be overloaded with multiple argument signatures). The RPC finishes by
returning a value, which may be either returned data in a conformant type or a
Fault or ProtocolError object indicating an error.

Servers that support the XML introspection API support some common methods
grouped under the reserved system member:

	
ServerProxy.system.listMethods()

	This method returns a list of strings, one for each (non-system) method
supported by the XML-RPC server.

	
ServerProxy.system.methodSignature(name)

	This method takes one parameter, the name of a method implemented by the XML-RPC
server. It returns an array of possible signatures for this method. A signature
is an array of types. The first of these types is the return type of the method,
the rest are parameters.

Because multiple signatures (ie. overloading) is permitted, this method returns
a list of signatures rather than a singleton.

Signatures themselves are restricted to the top level parameters expected by a
method. For instance if a method expects one array of structs as a parameter,
and it returns a string, its signature is simply “string, array”. If it expects
three integers and returns a string, its signature is “string, int, int, int”.

If no signature is defined for the method, a non-array value is returned. In
Python this means that the type of the returned value will be something other
than list.

	
ServerProxy.system.methodHelp(name)

	This method takes one parameter, the name of a method implemented by the XML-RPC
server. It returns a documentation string describing the use of that method. If
no such string is available, an empty string is returned. The documentation
string may contain HTML markup.

20.23.2. Boolean Objects

This class may be initialized from any Python value; the instance returned
depends only on its truth value. It supports various Python operators through
__cmp__(), __repr__(), __int__(), and __nonzero__()
methods, all implemented in the obvious ways.

It also has the following method, supported mainly for internal use by the
unmarshalling code:

	
Boolean.encode(out)

	Write the XML-RPC encoding of this Boolean item to the out stream object.

A working example follows. The server code:

import xmlrpclib
from SimpleXMLRPCServer import SimpleXMLRPCServer

def is_even(n):
 return n%2 == 0

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(is_even, "is_even")
server.serve_forever()

The client code for the preceding server:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
print "3 is even: %s" % str(proxy.is_even(3))
print "100 is even: %s" % str(proxy.is_even(100))

20.23.3. DateTime Objects

This class may be initialized with seconds since the epoch, a time
tuple, an ISO 8601 time/date string, or a datetime.datetime
instance. It has the following methods, supported mainly for internal
use by the marshalling/unmarshalling code:

	
DateTime.decode(string)

	Accept a string as the instance’s new time value.

	
DateTime.encode(out)

	Write the XML-RPC encoding of this DateTime item to the out stream
object.

It also supports certain of Python’s built-in operators through __cmp__()
and __repr__() methods.

A working example follows. The server code:

import datetime
from SimpleXMLRPCServer import SimpleXMLRPCServer
import xmlrpclib

def today():
 today = datetime.datetime.today()
 return xmlrpclib.DateTime(today)

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(today, "today")
server.serve_forever()

The client code for the preceding server:

import xmlrpclib
import datetime

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")

today = proxy.today()
convert the ISO8601 string to a datetime object
converted = datetime.datetime.strptime(today.value, "%Y%m%dT%H:%M:%S")
print "Today: %s" % converted.strftime("%d.%m.%Y, %H:%M")

20.23.4. Binary Objects

This class may be initialized from string data (which may include NULs). The
primary access to the content of a Binary object is provided by an
attribute:

	
Binary.data

	The binary data encapsulated by the Binary instance. The data is
provided as an 8-bit string.

Binary objects have the following methods, supported mainly for
internal use by the marshalling/unmarshalling code:

	
Binary.decode(string)

	Accept a base64 string and decode it as the instance’s new data.

	
Binary.encode(out)

	Write the XML-RPC base 64 encoding of this binary item to the out stream object.

The encoded data will have newlines every 76 characters as per
RFC 2045 section 6.8 [http://tools.ietf.org/html/rfc2045#section-6.8],
which was the de facto standard base64 specification when the
XML-RPC spec was written.

It also supports certain of Python’s built-in operators through a
__cmp__() method.

Example usage of the binary objects. We’re going to transfer an image over
XMLRPC:

from SimpleXMLRPCServer import SimpleXMLRPCServer
import xmlrpclib

def python_logo():
 with open("python_logo.jpg", "rb") as handle:
 return xmlrpclib.Binary(handle.read())

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(python_logo, 'python_logo')

server.serve_forever()

The client gets the image and saves it to a file:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
with open("fetched_python_logo.jpg", "wb") as handle:
 handle.write(proxy.python_logo().data)

20.23.5. Fault Objects

A Fault object encapsulates the content of an XML-RPC fault tag. Fault
objects have the following members:

	
Fault.faultCode

	A string indicating the fault type.

	
Fault.faultString

	A string containing a diagnostic message associated with the fault.

In the following example we’re going to intentionally cause a Fault by
returning a complex type object. The server code:

from SimpleXMLRPCServer import SimpleXMLRPCServer

A marshalling error is going to occur because we're returning a
complex number
def add(x,y):
 return x+y+0j

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(add, 'add')

server.serve_forever()

The client code for the preceding server:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
try:
 proxy.add(2, 5)
except xmlrpclib.Fault, err:
 print "A fault occurred"
 print "Fault code: %d" % err.faultCode
 print "Fault string: %s" % err.faultString

20.23.6. ProtocolError Objects

A ProtocolError object describes a protocol error in the underlying
transport layer (such as a 404 ‘not found’ error if the server named by the URI
does not exist). It has the following members:

	
ProtocolError.url

	The URI or URL that triggered the error.

	
ProtocolError.errcode

	The error code.

	
ProtocolError.errmsg

	The error message or diagnostic string.

	
ProtocolError.headers

	A string containing the headers of the HTTP/HTTPS request that triggered the
error.

In the following example we’re going to intentionally cause a ProtocolError
by providing an URI that doesn’t point to an XMLRPC server:

import xmlrpclib

create a ServerProxy with an URI that doesn't respond to XMLRPC requests
proxy = xmlrpclib.ServerProxy("http://www.google.com/")

try:
 proxy.some_method()
except xmlrpclib.ProtocolError, err:
 print "A protocol error occurred"
 print "URL: %s" % err.url
 print "HTTP/HTTPS headers: %s" % err.headers
 print "Error code: %d" % err.errcode
 print "Error message: %s" % err.errmsg

20.23.7. MultiCall Objects

New in version 2.4.

In http://www.xmlrpc.com/discuss/msgReader%241208, an approach is presented to
encapsulate multiple calls to a remote server into a single request.

	
class xmlrpclib.MultiCall(server)

	Create an object used to boxcar method calls. server is the eventual target of
the call. Calls can be made to the result object, but they will immediately
return None, and only store the call name and parameters in the
MultiCall object. Calling the object itself causes all stored calls to
be transmitted as a single system.multicall request. The result of this call
is a generator; iterating over this generator yields the individual
results.

A usage example of this class follows. The server code

from SimpleXMLRPCServer import SimpleXMLRPCServer

def add(x,y):
 return x+y

def subtract(x, y):
 return x-y

def multiply(x, y):
 return x*y

def divide(x, y):
 return x/y

A simple server with simple arithmetic functions
server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_multicall_functions()
server.register_function(add, 'add')
server.register_function(subtract, 'subtract')
server.register_function(multiply, 'multiply')
server.register_function(divide, 'divide')
server.serve_forever()

The client code for the preceding server:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
multicall = xmlrpclib.MultiCall(proxy)
multicall.add(7,3)
multicall.subtract(7,3)
multicall.multiply(7,3)
multicall.divide(7,3)
result = multicall()

print "7+3=%d, 7-3=%d, 7*3=%d, 7/3=%d" % tuple(result)

20.23.8. Convenience Functions

	
xmlrpclib.boolean(value)

	Convert any Python value to one of the XML-RPC Boolean constants, True or
False.

	
xmlrpclib.dumps(params[, methodname[, methodresponse[, encoding[, allow_none]]]])

	Convert params into an XML-RPC request. or into a response if methodresponse
is true. params can be either a tuple of arguments or an instance of the
Fault exception class. If methodresponse is true, only a single value
can be returned, meaning that params must be of length 1. encoding, if
supplied, is the encoding to use in the generated XML; the default is UTF-8.
Python’s None value cannot be used in standard XML-RPC; to allow using
it via an extension, provide a true value for allow_none.

	
xmlrpclib.loads(data[, use_datetime])

	Convert an XML-RPC request or response into Python objects, a (params,
methodname). params is a tuple of argument; methodname is a string, or
None if no method name is present in the packet. If the XML-RPC packet
represents a fault condition, this function will raise a Fault exception.
The use_datetime flag can be used to cause date/time values to be presented as
datetime.datetime objects; this is false by default.

Changed in version 2.5: The use_datetime flag was added.

20.23.9. Example of Client Usage

simple test program (from the XML-RPC specification)
from xmlrpclib import ServerProxy, Error

server = ServerProxy("http://localhost:8000") # local server
server = ServerProxy("http://betty.userland.com")

print server

try:
 print server.examples.getStateName(41)
except Error, v:
 print "ERROR", v

To access an XML-RPC server through a proxy, you need to define a custom
transport. The following example shows how:

import xmlrpclib, httplib

class ProxiedTransport(xmlrpclib.Transport):
 def set_proxy(self, proxy):
 self.proxy = proxy
 def make_connection(self, host):
 self.realhost = host
 h = httplib.HTTP(self.proxy)
 return h
 def send_request(self, connection, handler, request_body):
 connection.putrequest("POST", 'http://%s%s' % (self.realhost, handler))
 def send_host(self, connection, host):
 connection.putheader('Host', self.realhost)

p = ProxiedTransport()
p.set_proxy('proxy-server:8080')
server = xmlrpclib.Server('http://time.xmlrpc.com/RPC2', transport=p)
print server.currentTime.getCurrentTime()

20.23.10. Example of Client and Server Usage

See SimpleXMLRPCServer Example.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.24. SimpleXMLRPCServer — Basic XML-RPC server

New in version 2.2.

The SimpleXMLRPCServer module provides a basic server framework for
XML-RPC servers written in Python. Servers can either be free standing, using
SimpleXMLRPCServer, or embedded in a CGI environment, using
CGIXMLRPCRequestHandler.

	
class SimpleXMLRPCServer.SimpleXMLRPCServer(addr[, requestHandler[, logRequests[, allow_none[, encoding[, bind_and_activate]]]])

	Create a new server instance. This class provides methods for registration of
functions that can be called by the XML-RPC protocol. The requestHandler
parameter should be a factory for request handler instances; it defaults to
SimpleXMLRPCRequestHandler. The addr and requestHandler parameters
are passed to the SocketServer.TCPServer constructor. If logRequests
is true (the default), requests will be logged; setting this parameter to false
will turn off logging. The allow_none and encoding parameters are passed
on to xmlrpclib and control the XML-RPC responses that will be returned
from the server. The bind_and_activate parameter controls whether
server_bind() and server_activate() are called immediately by the
constructor; it defaults to true. Setting it to false allows code to manipulate
the allow_reuse_address class variable before the address is bound.

Changed in version 2.5: The allow_none and encoding parameters were added.

Changed in version 2.6: The bind_and_activate parameter was added.

	
class SimpleXMLRPCServer.CGIXMLRPCRequestHandler([allow_none[, encoding]])

	Create a new instance to handle XML-RPC requests in a CGI environment. The
allow_none and encoding parameters are passed on to xmlrpclib and
control the XML-RPC responses that will be returned from the server.

New in version 2.3.

Changed in version 2.5: The allow_none and encoding parameters were added.

	
class SimpleXMLRPCServer.SimpleXMLRPCRequestHandler

	Create a new request handler instance. This request handler supports POST
requests and modifies logging so that the logRequests parameter to the
SimpleXMLRPCServer constructor parameter is honored.

20.24.1. SimpleXMLRPCServer Objects

The SimpleXMLRPCServer class is based on
SocketServer.TCPServer and provides a means of creating simple, stand
alone XML-RPC servers.

	
SimpleXMLRPCServer.register_function(function[, name])

	Register a function that can respond to XML-RPC requests. If name is given,
it will be the method name associated with function, otherwise
function.__name__ will be used. name can be either a normal or Unicode
string, and may contain characters not legal in Python identifiers, including
the period character.

	
SimpleXMLRPCServer.register_instance(instance[, allow_dotted_names])

	Register an object which is used to expose method names which have not been
registered using register_function(). If instance contains a
_dispatch() method, it is called with the requested method name and the
parameters from the request. Its API is def _dispatch(self, method, params)
(note that params does not represent a variable argument list). If it calls
an underlying function to perform its task, that function is called as
func(*params), expanding the parameter list. The return value from
_dispatch() is returned to the client as the result. If instance does
not have a _dispatch() method, it is searched for an attribute matching
the name of the requested method.

If the optional allow_dotted_names argument is true and the instance does not
have a _dispatch() method, then if the requested method name contains
periods, each component of the method name is searched for individually, with
the effect that a simple hierarchical search is performed. The value found from
this search is then called with the parameters from the request, and the return
value is passed back to the client.

Warning

Enabling the allow_dotted_names option allows intruders to access your
module’s global variables and may allow intruders to execute arbitrary code on
your machine. Only use this option on a secure, closed network.

Changed in version 2.3.5,: 2.4.1
allow_dotted_names was added to plug a security hole; prior versions are
insecure.

	
SimpleXMLRPCServer.register_introspection_functions()

	Registers the XML-RPC introspection functions system.listMethods,
system.methodHelp and system.methodSignature.

New in version 2.3.

	
SimpleXMLRPCServer.register_multicall_functions()

	Registers the XML-RPC multicall function system.multicall.

	
SimpleXMLRPCRequestHandler.rpc_paths

	An attribute value that must be a tuple listing valid path portions of the URL
for receiving XML-RPC requests. Requests posted to other paths will result in a
404 “no such page” HTTP error. If this tuple is empty, all paths will be
considered valid. The default value is ('/', '/RPC2').

New in version 2.5.

	
SimpleXMLRPCRequestHandler.encode_threshold

	If this attribute is not None, responses larger than this value
will be encoded using the gzip transfer encoding, if permitted by
the client. The default is 1400 which corresponds roughly
to a single TCP packet.

New in version 2.7.

20.24.1.1. SimpleXMLRPCServer Example

Server code:

from SimpleXMLRPCServer import SimpleXMLRPCServer
from SimpleXMLRPCServer import SimpleXMLRPCRequestHandler

Restrict to a particular path.
class RequestHandler(SimpleXMLRPCRequestHandler):
 rpc_paths = ('/RPC2',)

Create server
server = SimpleXMLRPCServer(("localhost", 8000),
 requestHandler=RequestHandler)
server.register_introspection_functions()

Register pow() function; this will use the value of
pow.__name__ as the name, which is just 'pow'.
server.register_function(pow)

Register a function under a different name
def adder_function(x,y):
 return x + y
server.register_function(adder_function, 'add')

Register an instance; all the methods of the instance are
published as XML-RPC methods (in this case, just 'div').
class MyFuncs:
 def div(self, x, y):
 return x // y

server.register_instance(MyFuncs())

Run the server's main loop
server.serve_forever()

The following client code will call the methods made available by the preceding
server:

import xmlrpclib

s = xmlrpclib.ServerProxy('http://localhost:8000')
print s.pow(2,3) # Returns 2**3 = 8
print s.add(2,3) # Returns 5
print s.div(5,2) # Returns 5//2 = 2

Print list of available methods
print s.system.listMethods()

20.24.2. CGIXMLRPCRequestHandler

The CGIXMLRPCRequestHandler class can be used to handle XML-RPC
requests sent to Python CGI scripts.

	
CGIXMLRPCRequestHandler.register_function(function[, name])

	Register a function that can respond to XML-RPC requests. If name is given,
it will be the method name associated with function, otherwise
function.__name__ will be used. name can be either a normal or Unicode
string, and may contain characters not legal in Python identifiers, including
the period character.

	
CGIXMLRPCRequestHandler.register_instance(instance)

	Register an object which is used to expose method names which have not been
registered using register_function(). If instance contains a
_dispatch() method, it is called with the requested method name and the
parameters from the request; the return value is returned to the client as the
result. If instance does not have a _dispatch() method, it is searched
for an attribute matching the name of the requested method; if the requested
method name contains periods, each component of the method name is searched for
individually, with the effect that a simple hierarchical search is performed.
The value found from this search is then called with the parameters from the
request, and the return value is passed back to the client.

	
CGIXMLRPCRequestHandler.register_introspection_functions()

	Register the XML-RPC introspection functions system.listMethods,
system.methodHelp and system.methodSignature.

	
CGIXMLRPCRequestHandler.register_multicall_functions()

	Register the XML-RPC multicall function system.multicall.

	
CGIXMLRPCRequestHandler.handle_request([request_text = None])

	Handle a XML-RPC request. If request_text is given, it should be the POST
data provided by the HTTP server, otherwise the contents of stdin will be used.

Example:

class MyFuncs:
 def div(self, x, y) : return x // y

handler = CGIXMLRPCRequestHandler()
handler.register_function(pow)
handler.register_function(lambda x,y: x+y, 'add')
handler.register_introspection_functions()
handler.register_instance(MyFuncs())
handler.handle_request()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	20. Internet Protocols and Support

20.25. DocXMLRPCServer — Self-documenting XML-RPC server

Note

The DocXMLRPCServer module has been merged into xmlrpc.server
in Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

New in version 2.3.

The DocXMLRPCServer module extends the classes found in
SimpleXMLRPCServer to serve HTML documentation in response to HTTP GET
requests. Servers can either be free standing, using DocXMLRPCServer,
or embedded in a CGI environment, using DocCGIXMLRPCRequestHandler.

	
class DocXMLRPCServer.DocXMLRPCServer(addr[, requestHandler[, logRequests[, allow_none[, encoding[, bind_and_activate]]]]])

	Create a new server instance. All parameters have the same meaning as for
SimpleXMLRPCServer.SimpleXMLRPCServer; requestHandler defaults to
DocXMLRPCRequestHandler.

	
class DocXMLRPCServer.DocCGIXMLRPCRequestHandler

	Create a new instance to handle XML-RPC requests in a CGI environment.

	
class DocXMLRPCServer.DocXMLRPCRequestHandler

	Create a new request handler instance. This request handler supports XML-RPC
POST requests, documentation GET requests, and modifies logging so that the
logRequests parameter to the DocXMLRPCServer constructor parameter is
honored.

20.25.1. DocXMLRPCServer Objects

The DocXMLRPCServer class is derived from
SimpleXMLRPCServer.SimpleXMLRPCServer and provides a means of creating
self-documenting, stand alone XML-RPC servers. HTTP POST requests are handled as
XML-RPC method calls. HTTP GET requests are handled by generating pydoc-style
HTML documentation. This allows a server to provide its own web-based
documentation.

	
DocXMLRPCServer.set_server_title(server_title)

	Set the title used in the generated HTML documentation. This title will be used
inside the HTML “title” element.

	
DocXMLRPCServer.set_server_name(server_name)

	Set the name used in the generated HTML documentation. This name will appear at
the top of the generated documentation inside a “h1” element.

	
DocXMLRPCServer.set_server_documentation(server_documentation)

	Set the description used in the generated HTML documentation. This description
will appear as a paragraph, below the server name, in the documentation.

20.25.2. DocCGIXMLRPCRequestHandler

The DocCGIXMLRPCRequestHandler class is derived from
SimpleXMLRPCServer.CGIXMLRPCRequestHandler and provides a means of
creating self-documenting, XML-RPC CGI scripts. HTTP POST requests are handled
as XML-RPC method calls. HTTP GET requests are handled by generating pydoc-style
HTML documentation. This allows a server to provide its own web-based
documentation.

	
DocCGIXMLRPCRequestHandler.set_server_title(server_title)

	Set the title used in the generated HTML documentation. This title will be used
inside the HTML “title” element.

	
DocCGIXMLRPCRequestHandler.set_server_name(server_name)

	Set the name used in the generated HTML documentation. This name will appear at
the top of the generated documentation inside a “h1” element.

	
DocCGIXMLRPCRequestHandler.set_server_documentation(server_documentation)

	Set the description used in the generated HTML documentation. This description
will appear as a paragraph, below the server name, in the documentation.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

21. Multimedia Services

The modules described in this chapter implement various algorithms or interfaces
that are mainly useful for multimedia applications. They are available at the
discretion of the installation. Here’s an overview:

	21.1. audioop — Manipulate raw audio data

	21.2. imageop — Manipulate raw image data

	21.3. aifc — Read and write AIFF and AIFC files

	21.4. sunau — Read and write Sun AU files
	21.4.1. AU_read Objects

	21.4.2. AU_write Objects

	21.5. wave — Read and write WAV files
	21.5.1. Wave_read Objects

	21.5.2. Wave_write Objects

	21.6. chunk — Read IFF chunked data

	21.7. colorsys — Conversions between color systems

	21.8. imghdr — Determine the type of an image

	21.9. sndhdr — Determine type of sound file

	21.10. ossaudiodev — Access to OSS-compatible audio devices
	21.10.1. Audio Device Objects

	21.10.2. Mixer Device Objects

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.1. audioop — Manipulate raw audio data

The audioop module contains some useful operations on sound fragments.
It operates on sound fragments consisting of signed integer samples 8, 16 or 32
bits wide, stored in Python strings. This is the same format as used by the
al and sunaudiodev modules. All scalar items are integers, unless
specified otherwise.

This module provides support for a-LAW, u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the
sample size (in bytes) is always a parameter of the operation.

The module defines the following variables and functions:

	
exception audioop.error

	This exception is raised on all errors, such as unknown number of bytes per
sample, etc.

	
audioop.add(fragment1, fragment2, width)

	Return a fragment which is the addition of the two samples passed as parameters.
width is the sample width in bytes, either 1, 2 or 4. Both
fragments should have the same length.

	
audioop.adpcm2lin(adpcmfragment, width, state)

	Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the
description of lin2adpcm() for details on ADPCM coding. Return a tuple
(sample, newstate) where the sample has the width specified in width.

	
audioop.alaw2lin(fragment, width)

	Convert sound fragments in a-LAW encoding to linearly encoded sound fragments.
a-LAW encoding always uses 8 bits samples, so width refers only to the sample
width of the output fragment here.

New in version 2.5.

	
audioop.avg(fragment, width)

	Return the average over all samples in the fragment.

	
audioop.avgpp(fragment, width)

	Return the average peak-peak value over all samples in the fragment. No
filtering is done, so the usefulness of this routine is questionable.

	
audioop.bias(fragment, width, bias)

	Return a fragment that is the original fragment with a bias added to each
sample.

	
audioop.cross(fragment, width)

	Return the number of zero crossings in the fragment passed as an argument.

	
audioop.findfactor(fragment, reference)

	Return a factor F such that rms(add(fragment, mul(reference, -F))) is
minimal, i.e., return the factor with which you should multiply reference to
make it match as well as possible to fragment. The fragments should both
contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

	
audioop.findfit(fragment, reference)

	Try to match reference as well as possible to a portion of fragment (which
should be the longer fragment). This is (conceptually) done by taking slices
out of fragment, using findfactor() to compute the best match, and
minimizing the result. The fragments should both contain 2-byte samples.
Return a tuple (offset, factor) where offset is the (integer) offset into
fragment where the optimal match started and factor is the (floating-point)
factor as per findfactor().

	
audioop.findmax(fragment, length)

	Search fragment for a slice of length length samples (not bytes!) with
maximum energy, i.e., return i for which rms(fragment[i*2:(i+length)*2])
is maximal. The fragments should both contain 2-byte samples.

The routine takes time proportional to len(fragment).

	
audioop.getsample(fragment, width, index)

	Return the value of sample index from the fragment.

	
audioop.lin2adpcm(fragment, width, state)

	Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive
coding scheme, whereby each 4 bit number is the difference between one sample
and the next, divided by a (varying) step. The Intel/DVI ADPCM algorithm has
been selected for use by the IMA, so it may well become a standard.

state is a tuple containing the state of the coder. The coder returns a tuple
(adpcmfrag, newstate), and the newstate should be passed to the next call
of lin2adpcm(). In the initial call, None can be passed as the state.
adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

	
audioop.lin2alaw(fragment, width)

	Convert samples in the audio fragment to a-LAW encoding and return this as a
Python string. a-LAW is an audio encoding format whereby you get a dynamic
range of about 13 bits using only 8 bit samples. It is used by the Sun audio
hardware, among others.

New in version 2.5.

	
audioop.lin2lin(fragment, width, newwidth)

	Convert samples between 1-, 2- and 4-byte formats.

Note

In some audio formats, such as .WAV files, 16 and 32 bit samples are
signed, but 8 bit samples are unsigned. So when converting to 8 bit wide
samples for these formats, you need to also add 128 to the result:

new_frames = audioop.lin2lin(frames, old_width, 1)
new_frames = audioop.bias(new_frames, 1, 128)

The same, in reverse, has to be applied when converting from 8 to 16 or 32
bit width samples.

	
audioop.lin2ulaw(fragment, width)

	Convert samples in the audio fragment to u-LAW encoding and return this as a
Python string. u-LAW is an audio encoding format whereby you get a dynamic
range of about 14 bits using only 8 bit samples. It is used by the Sun audio
hardware, among others.

	
audioop.minmax(fragment, width)

	Return a tuple consisting of the minimum and maximum values of all samples in
the sound fragment.

	
audioop.max(fragment, width)

	Return the maximum of the absolute value of all samples in a fragment.

	
audioop.maxpp(fragment, width)

	Return the maximum peak-peak value in the sound fragment.

	
audioop.mul(fragment, width, factor)

	Return a fragment that has all samples in the original fragment multiplied by
the floating-point value factor. Overflow is silently ignored.

	
audioop.ratecv(fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])

	Convert the frame rate of the input fragment.

state is a tuple containing the state of the converter. The converter returns
a tuple (newfragment, newstate), and newstate should be passed to the next
call of ratecv(). The initial call should pass None as the state.

The weightA and weightB arguments are parameters for a simple digital filter
and default to 1 and 0 respectively.

	
audioop.reverse(fragment, width)

	Reverse the samples in a fragment and returns the modified fragment.

	
audioop.rms(fragment, width)

	Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).

This is a measure of the power in an audio signal.

	
audioop.tomono(fragment, width, lfactor, rfactor)

	Convert a stereo fragment to a mono fragment. The left channel is multiplied by
lfactor and the right channel by rfactor before adding the two channels to
give a mono signal.

	
audioop.tostereo(fragment, width, lfactor, rfactor)

	Generate a stereo fragment from a mono fragment. Each pair of samples in the
stereo fragment are computed from the mono sample, whereby left channel samples
are multiplied by lfactor and right channel samples by rfactor.

	
audioop.ulaw2lin(fragment, width)

	Convert sound fragments in u-LAW encoding to linearly encoded sound fragments.
u-LAW encoding always uses 8 bits samples, so width refers only to the sample
width of the output fragment here.

Note that operations such as mul() or max() make no distinction
between mono and stereo fragments, i.e. all samples are treated equal. If this
is a problem the stereo fragment should be split into two mono fragments first
and recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
 lsample = audioop.tomono(sample, width, 1, 0)
 rsample = audioop.tomono(sample, width, 0, 1)
 lsample = audioop.mul(lsample, width, lfactor)
 rsample = audioop.mul(rsample, width, rfactor)
 lsample = audioop.tostereo(lsample, width, 1, 0)
 rsample = audioop.tostereo(rsample, width, 0, 1)
 return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol
to be stateless (i.e. to be able to tolerate packet loss) you should not only
transmit the data but also the state. Note that you should send the initial
state (the one you passed to lin2adpcm()) along to the decoder, not the
final state (as returned by the coder). If you want to use
struct.struct() to store the state in binary you can code the first
element (the predicted value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against
themselves. It could well be that I misinterpreted the standards in which case
they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are
primarily meant to do echo cancellation. A reasonably fast way to do this is to
pick the most energetic piece of the output sample, locate that in the input
sample and subtract the whole output sample from the input sample:

def echocancel(outputdata, inputdata):
 pos = audioop.findmax(outputdata, 800) # one tenth second
 out_test = outputdata[pos*2:]
 in_test = inputdata[pos*2:]
 ipos, factor = audioop.findfit(in_test, out_test)
 # Optional (for better cancellation):
 # factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
 # out_test)
 prefill = '\0'*(pos+ipos)*2
 postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
 outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
 return audioop.add(inputdata, outputdata, 2)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.2. imageop — Manipulate raw image data

Deprecated since version 2.6: The imageop module has been removed in Python 3.0.

The imageop module contains some useful operations on images. It operates
on images consisting of 8 or 32 bit pixels stored in Python strings. This is
the same format as used by gl.lrectwrite() and the imgfile module.

The module defines the following variables and functions:

	
exception imageop.error

	This exception is raised on all errors, such as unknown number of bits per
pixel, etc.

	
imageop.crop(image, psize, width, height, x0, y0, x1, y1)

	Return the selected part of image, which should be width by height in size
and consist of pixels of psize bytes. x0, y0, x1 and y1 are like the
gl.lrectread() parameters, i.e. the boundary is included in the new image.
The new boundaries need not be inside the picture. Pixels that fall outside the
old image will have their value set to zero. If x0 is bigger than x1 the
new image is mirrored. The same holds for the y coordinates.

	
imageop.scale(image, psize, width, height, newwidth, newheight)

	Return image scaled to size newwidth by newheight. No interpolation is
done, scaling is done by simple-minded pixel duplication or removal. Therefore,
computer-generated images or dithered images will not look nice after scaling.

	
imageop.tovideo(image, psize, width, height)

	Run a vertical low-pass filter over an image. It does so by computing each
destination pixel as the average of two vertically-aligned source pixels. The
main use of this routine is to forestall excessive flicker if the image is
displayed on a video device that uses interlacing, hence the name.

	
imageop.grey2mono(image, width, height, threshold)

	Convert a 8-bit deep greyscale image to a 1-bit deep image by thresholding all
the pixels. The resulting image is tightly packed and is probably only useful
as an argument to mono2grey().

	
imageop.dither2mono(image, width, height)

	Convert an 8-bit greyscale image to a 1-bit monochrome image using a
(simple-minded) dithering algorithm.

	
imageop.mono2grey(image, width, height, p0, p1)

	Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All
pixels that are zero-valued on input get value p0 on output and all one-value
input pixels get value p1 on output. To convert a monochrome black-and-white
image to greyscale pass the values 0 and 255 respectively.

	
imageop.grey2grey4(image, width, height)

	Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

	
imageop.grey2grey2(image, width, height)

	Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

	
imageop.dither2grey2(image, width, height)

	Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As
for dither2mono(), the dithering algorithm is currently very simple.

	
imageop.grey42grey(image, width, height)

	Convert a 4-bit greyscale image to an 8-bit greyscale image.

	
imageop.grey22grey(image, width, height)

	Convert a 2-bit greyscale image to an 8-bit greyscale image.

	
imageop.backward_compatible

	If set to 0, the functions in this module use a non-backward compatible way
of representing multi-byte pixels on little-endian systems. The SGI for
which this module was originally written is a big-endian system, so setting
this variable will have no effect. However, the code wasn’t originally
intended to run on anything else, so it made assumptions about byte order
which are not universal. Setting this variable to 0 will cause the byte
order to be reversed on little-endian systems, so that it then is the same as
on big-endian systems.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.3. aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files.
AIFF is Audio Interchange File Format, a format for storing digital audio
samples in a file. AIFF-C is a newer version of the format that includes the
ability to compress the audio data.

Note

Some operations may only work under IRIX; these will raise ImportError
when attempting to import the cl module, which is only available on
IRIX.

Audio files have a number of parameters that describe the audio data. The
sampling rate or frame rate is the number of times per second the sound is
sampled. The number of channels indicate if the audio is mono, stereo, or
quadro. Each frame consists of one sample per channel. The sample size is the
size in bytes of each sample. Thus a frame consists of
nchannels**samplesize* bytes, and a second’s worth of audio consists of
nchannels**samplesize***framerate* bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two
channels (stereo) and has a frame rate of 44,100 frames/second. This gives a
frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes
(176,400 bytes).

Module aifc defines the following function:

	
aifc.open(file[, mode])

	Open an AIFF or AIFF-C file and return an object instance with methods that are
described below. The argument file is either a string naming a file or a file
object. mode must be 'r' or 'rb' when the file must be opened for
reading, or 'w' or 'wb' when the file must be opened for writing. If
omitted, file.mode is used if it exists, otherwise 'rb' is used. When
used for writing, the file object should be seekable, unless you know ahead of
time how many samples you are going to write in total and use
writeframesraw() and setnframes().

Objects returned by open() when a file is opened for reading have the
following methods:

	
aifc.getnchannels()

	Return the number of audio channels (1 for mono, 2 for stereo).

	
aifc.getsampwidth()

	Return the size in bytes of individual samples.

	
aifc.getframerate()

	Return the sampling rate (number of audio frames per second).

	
aifc.getnframes()

	Return the number of audio frames in the file.

	
aifc.getcomptype()

	Return a four-character string describing the type of compression used in the
audio file. For AIFF files, the returned value is 'NONE'.

	
aifc.getcompname()

	Return a human-readable description of the type of compression used in the audio
file. For AIFF files, the returned value is 'not compressed'.

	
aifc.getparams()

	Return a tuple consisting of all of the above values in the above order.

	
aifc.getmarkers()

	Return a list of markers in the audio file. A marker consists of a tuple of
three elements. The first is the mark ID (an integer), the second is the mark
position in frames from the beginning of the data (an integer), the third is the
name of the mark (a string).

	
aifc.getmark(id)

	Return the tuple as described in getmarkers() for the mark with the given
id.

	
aifc.readframes(nframes)

	Read and return the next nframes frames from the audio file. The returned
data is a string containing for each frame the uncompressed samples of all
channels.

	
aifc.rewind()

	Rewind the read pointer. The next readframes() will start from the
beginning.

	
aifc.setpos(pos)

	Seek to the specified frame number.

	
aifc.tell()

	Return the current frame number.

	
aifc.close()

	Close the AIFF file. After calling this method, the object can no longer be
used.

Objects returned by open() when a file is opened for writing have all the
above methods, except for readframes() and setpos(). In addition
the following methods exist. The get*() methods can only be called after
the corresponding set*() methods have been called. Before the first
writeframes() or writeframesraw(), all parameters except for the
number of frames must be filled in.

	
aifc.aiff()

	Create an AIFF file. The default is that an AIFF-C file is created, unless the
name of the file ends in '.aiff' in which case the default is an AIFF file.

	
aifc.aifc()

	Create an AIFF-C file. The default is that an AIFF-C file is created, unless
the name of the file ends in '.aiff' in which case the default is an AIFF
file.

	
aifc.setnchannels(nchannels)

	Specify the number of channels in the audio file.

	
aifc.setsampwidth(width)

	Specify the size in bytes of audio samples.

	
aifc.setframerate(rate)

	Specify the sampling frequency in frames per second.

	
aifc.setnframes(nframes)

	Specify the number of frames that are to be written to the audio file. If this
parameter is not set, or not set correctly, the file needs to support seeking.

	
aifc.setcomptype(type, name)

	Specify the compression type. If not specified, the audio data will not be
compressed. In AIFF files, compression is not possible. The name parameter
should be a human-readable description of the compression type, the type
parameter should be a four-character string. Currently the following
compression types are supported: NONE, ULAW, ALAW, G722.

	
aifc.setparams(nchannels, sampwidth, framerate, comptype, compname)

	Set all the above parameters at once. The argument is a tuple consisting of the
various parameters. This means that it is possible to use the result of a
getparams() call as argument to setparams().

	
aifc.setmark(id, pos, name)

	Add a mark with the given id (larger than 0), and the given name at the given
position. This method can be called at any time before close().

	
aifc.tell()

	Return the current write position in the output file. Useful in combination
with setmark().

	
aifc.writeframes(data)

	Write data to the output file. This method can only be called after the audio
file parameters have been set.

	
aifc.writeframesraw(data)

	Like writeframes(), except that the header of the audio file is not
updated.

	
aifc.close()

	Close the AIFF file. The header of the file is updated to reflect the actual
size of the audio data. After calling this method, the object can no longer be
used.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.4. sunau — Read and write Sun AU files

The sunau module provides a convenient interface to the Sun AU sound
format. Note that this module is interface-compatible with the modules
aifc and wave.

An audio file consists of a header followed by the data. The fields of the
header are:

	Field
	Contents

	magic word
	The four bytes .snd.

	header size
	Size of the header, including info, in bytes.

	data size
	Physical size of the data, in bytes.

	encoding
	Indicates how the audio samples are encoded.

	sample rate
	The sampling rate.

	# of channels
	The number of channels in the samples.

	info
	ASCII string giving a description of the
audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all
32-bit unsigned integers encoded in big-endian byte order.

The sunau module defines the following functions:

	
sunau.open(file, mode)

	If file is a string, open the file by that name, otherwise treat it as a
seekable file-like object. mode can be any of

	'r'

	Read only mode.

	'w'

	Write only mode.

Note that it does not allow read/write files.

A mode of 'r' returns a AU_read object, while a mode of 'w'
or 'wb' returns a AU_write object.

	
sunau.openfp(file, mode)

	A synonym for open(), maintained for backwards compatibility.

The sunau module defines the following exception:

	
exception sunau.Error

	An error raised when something is impossible because of Sun AU specs or
implementation deficiency.

The sunau module defines the following data items:

	
sunau.AUDIO_FILE_MAGIC

	An integer every valid Sun AU file begins with, stored in big-endian form. This
is the string .snd interpreted as an integer.

	
sunau.AUDIO_FILE_ENCODING_MULAW_8

	
sunau.AUDIO_FILE_ENCODING_LINEAR_8

	
sunau.AUDIO_FILE_ENCODING_LINEAR_16

	
sunau.AUDIO_FILE_ENCODING_LINEAR_24

	
sunau.AUDIO_FILE_ENCODING_LINEAR_32

	
sunau.AUDIO_FILE_ENCODING_ALAW_8

	Values of the encoding field from the AU header which are supported by this
module.

	
sunau.AUDIO_FILE_ENCODING_FLOAT

	
sunau.AUDIO_FILE_ENCODING_DOUBLE

	
sunau.AUDIO_FILE_ENCODING_ADPCM_G721

	
sunau.AUDIO_FILE_ENCODING_ADPCM_G722

	
sunau.AUDIO_FILE_ENCODING_ADPCM_G723_3

	
sunau.AUDIO_FILE_ENCODING_ADPCM_G723_5

	Additional known values of the encoding field from the AU header, but which are
not supported by this module.

21.4.1. AU_read Objects

AU_read objects, as returned by open() above, have the following methods:

	
AU_read.close()

	Close the stream, and make the instance unusable. (This is called automatically
on deletion.)

	
AU_read.getnchannels()

	Returns number of audio channels (1 for mone, 2 for stereo).

	
AU_read.getsampwidth()

	Returns sample width in bytes.

	
AU_read.getframerate()

	Returns sampling frequency.

	
AU_read.getnframes()

	Returns number of audio frames.

	
AU_read.getcomptype()

	Returns compression type. Supported compression types are 'ULAW', 'ALAW'
and 'NONE'.

	
AU_read.getcompname()

	Human-readable version of getcomptype(). The supported types have the
respective names 'CCITT G.711 u-law', 'CCITT G.711 A-law' and 'not
compressed'.

	
AU_read.getparams()

	Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype,
compname), equivalent to output of the get*() methods.

	
AU_read.readframes(n)

	Reads and returns at most n frames of audio, as a string of bytes. The data
will be returned in linear format. If the original data is in u-LAW format, it
will be converted.

	
AU_read.rewind()

	Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between
them, and is otherwise implementation dependent.

	
AU_read.setpos(pos)

	Set the file pointer to the specified position. Only values returned from
tell() should be used for pos.

	
AU_read.tell()

	Return current file pointer position. Note that the returned value has nothing
to do with the actual position in the file.

The following two functions are defined for compatibility with the aifc,
and don’t do anything interesting.

	
AU_read.getmarkers()

	Returns None.

	
AU_read.getmark(id)

	Raise an error.

21.4.2. AU_write Objects

AU_write objects, as returned by open() above, have the following methods:

	
AU_write.setnchannels(n)

	Set the number of channels.

	
AU_write.setsampwidth(n)

	Set the sample width (in bytes.)

	
AU_write.setframerate(n)

	Set the frame rate.

	
AU_write.setnframes(n)

	Set the number of frames. This can be later changed, when and if more frames
are written.

	
AU_write.setcomptype(type, name)

	Set the compression type and description. Only 'NONE' and 'ULAW' are
supported on output.

	
AU_write.setparams(tuple)

	The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,
compname), with values valid for the set*() methods. Set all
parameters.

	
AU_write.tell()

	Return current position in the file, with the same disclaimer for the
AU_read.tell() and AU_read.setpos() methods.

	
AU_write.writeframesraw(data)

	Write audio frames, without correcting nframes.

	
AU_write.writeframes(data)

	Write audio frames and make sure nframes is correct.

	
AU_write.close()

	Make sure nframes is correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after calling writeframes()
or writeframesraw().

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.5. wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format.
It does not support compression/decompression, but it does support mono/stereo.

The wave module defines the following function and exception:

	
wave.open(file[, mode])

	If file is a string, open the file by that name, otherwise treat it as a
seekable file-like object. mode can be any of

	'r', 'rb'

	Read only mode.

	'w', 'wb'

	Write only mode.

Note that it does not allow read/write WAV files.

A mode of 'r' or 'rb' returns a Wave_read object, while a
mode of 'w' or 'wb' returns a Wave_write object. If
mode is omitted and a file-like object is passed as file, file.mode
is used as the default value for mode (the 'b' flag is still added if
necessary).

If you pass in a file-like object, the wave object will not close it when its
close() method is called; it is the caller’s responsibility to close
the file object.

	
wave.openfp(file, mode)

	A synonym for open(), maintained for backwards compatibility.

	
exception wave.Error

	An error raised when something is impossible because it violates the WAV
specification or hits an implementation deficiency.

21.5.1. Wave_read Objects

Wave_read objects, as returned by open(), have the following methods:

	
Wave_read.close()

	Close the stream if it was opened by wave, and make the instance
unusable. This is called automatically on object collection.

	
Wave_read.getnchannels()

	Returns number of audio channels (1 for mono, 2 for stereo).

	
Wave_read.getsampwidth()

	Returns sample width in bytes.

	
Wave_read.getframerate()

	Returns sampling frequency.

	
Wave_read.getnframes()

	Returns number of audio frames.

	
Wave_read.getcomptype()

	Returns compression type ('NONE' is the only supported type).

	
Wave_read.getcompname()

	Human-readable version of getcomptype(). Usually 'not compressed'
parallels 'NONE'.

	
Wave_read.getparams()

	Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype,
compname), equivalent to output of the get*() methods.

	
Wave_read.readframes(n)

	Reads and returns at most n frames of audio, as a string of bytes.

	
Wave_read.rewind()

	Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifc
module, and don’t do anything interesting.

	
Wave_read.getmarkers()

	Returns None.

	
Wave_read.getmark(id)

	Raise an error.

The following two methods define a term “position” which is compatible between
them, and is otherwise implementation dependent.

	
Wave_read.setpos(pos)

	Set the file pointer to the specified position.

	
Wave_read.tell()

	Return current file pointer position.

21.5.2. Wave_write Objects

Wave_write objects, as returned by open(), have the following methods:

	
Wave_write.close()

	Make sure nframes is correct, and close the file if it was opened by
wave. This method is called upon object collection.

	
Wave_write.setnchannels(n)

	Set the number of channels.

	
Wave_write.setsampwidth(n)

	Set the sample width to n bytes.

	
Wave_write.setframerate(n)

	Set the frame rate to n.

	
Wave_write.setnframes(n)

	Set the number of frames to n. This will be changed later if more frames are
written.

	
Wave_write.setcomptype(type, name)

	Set the compression type and description. At the moment, only compression type
NONE is supported, meaning no compression.

	
Wave_write.setparams(tuple)

	The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,
compname), with values valid for the set*() methods. Sets all
parameters.

	
Wave_write.tell()

	Return current position in the file, with the same disclaimer for the
Wave_read.tell() and Wave_read.setpos() methods.

	
Wave_write.writeframesraw(data)

	Write audio frames, without correcting nframes.

	
Wave_write.writeframes(data)

	Write audio frames and make sure nframes is correct.

Note that it is invalid to set any parameters after calling writeframes()
or writeframesraw(), and any attempt to do so will raise
wave.Error.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.6. chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks.
[1] This format is used in at least the Audio Interchange File Format
(AIFF/AIFF-C) and the Real Media File Format (RMFF). The WAVE audio file format
is closely related and can also be read using this module.

A chunk has the following structure:

	Offset
	Length
	Contents

	0
	4
	Chunk ID

	4
	4
	Size of chunk in big-endian
byte order, not including the
header

	8
	n
	Data bytes, where n is the
size given in the preceding
field

	8 + n
	0 or 1
	Pad byte needed if n is odd
and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the
size of the chunk data, not including the 8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of
the Chunk class defined here is to instantiate an instance at the start
of each chunk and read from the instance until it reaches the end, after which a
new instance can be instantiated. At the end of the file, creating a new
instance will fail with a EOFError exception.

	
class chunk.Chunk(file[, align, bigendian, inclheader])

	Class which represents a chunk. The file argument is expected to be a
file-like object. An instance of this class is specifically allowed. The
only method that is needed is read(). If the methods seek() and
tell() are present and don’t raise an exception, they are also used.
If these methods are present and raise an exception, they are expected to not
have altered the object. If the optional argument align is true, chunks
are assumed to be aligned on 2-byte boundaries. If align is false, no
alignment is assumed. The default value is true. If the optional argument
bigendian is false, the chunk size is assumed to be in little-endian order.
This is needed for WAVE audio files. The default value is true. If the
optional argument inclheader is true, the size given in the chunk header
includes the size of the header. The default value is false.

A Chunk object supports the following methods:

	
getname()

	Returns the name (ID) of the chunk. This is the first 4 bytes of the
chunk.

	
getsize()

	Returns the size of the chunk.

	
close()

	Close and skip to the end of the chunk. This does not close the
underlying file.

The remaining methods will raise IOError if called after the
close() method has been called.

	
isatty()

	Returns False.

	
seek(pos[, whence])

	Set the chunk’s current position. The whence argument is optional and
defaults to 0 (absolute file positioning); other values are 1
(seek relative to the current position) and 2 (seek relative to the
file’s end). There is no return value. If the underlying file does not
allow seek, only forward seeks are allowed.

	
tell()

	Return the current position into the chunk.

	
read([size])

	Read at most size bytes from the chunk (less if the read hits the end of
the chunk before obtaining size bytes). If the size argument is
negative or omitted, read all data until the end of the chunk. The bytes
are returned as a string object. An empty string is returned when the end
of the chunk is encountered immediately.

	
skip()

	Skip to the end of the chunk. All further calls to read() for the
chunk will return ''. If you are not interested in the contents of
the chunk, this method should be called so that the file points to the
start of the next chunk.

Footnotes

	[1]	“EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic
Arts, January 1985.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.7. colorsys — Conversions between color systems

The colorsys module defines bidirectional conversions of color values
between colors expressed in the RGB (Red Green Blue) color space used in
computer monitors and three other coordinate systems: YIQ, HLS (Hue Lightness
Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color
spaces are floating point values. In the YIQ space, the Y coordinate is between
0 and 1, but the I and Q coordinates can be positive or negative. In all other
spaces, the coordinates are all between 0 and 1.

See also

More information about color spaces can be found at
http://www.poynton.com/ColorFAQ.html and
http://www.cambridgeincolour.com/tutorials/color-spaces.htm.

The colorsys module defines the following functions:

	
colorsys.rgb_to_yiq(r, g, b)

	Convert the color from RGB coordinates to YIQ coordinates.

	
colorsys.yiq_to_rgb(y, i, q)

	Convert the color from YIQ coordinates to RGB coordinates.

	
colorsys.rgb_to_hls(r, g, b)

	Convert the color from RGB coordinates to HLS coordinates.

	
colorsys.hls_to_rgb(h, l, s)

	Convert the color from HLS coordinates to RGB coordinates.

	
colorsys.rgb_to_hsv(r, g, b)

	Convert the color from RGB coordinates to HSV coordinates.

	
colorsys.hsv_to_rgb(h, s, v)

	Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(.3, .4, .2)
(0.25, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)
(0.3, 0.4, 0.2)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.8. imghdr — Determine the type of an image

The imghdr module determines the type of image contained in a file or
byte stream.

The imghdr module defines the following function:

	
imghdr.what(filename[, h])

	Tests the image data contained in the file named by filename, and returns a
string describing the image type. If optional h is provided, the filename
is ignored and h is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value
from what():

	Value
	Image format

	'rgb'
	SGI ImgLib Files

	'gif'
	GIF 87a and 89a Files

	'pbm'
	Portable Bitmap Files

	'pgm'
	Portable Graymap Files

	'ppm'
	Portable Pixmap Files

	'tiff'
	TIFF Files

	'rast'
	Sun Raster Files

	'xbm'
	X Bitmap Files

	'jpeg'
	JPEG data in JFIF or Exif formats

	'bmp'
	BMP files

	'png'
	Portable Network Graphics

New in version 2.5: Exif detection.

You can extend the list of file types imghdr can recognize by appending
to this variable:

	
imghdr.tests

	A list of functions performing the individual tests. Each function takes two
arguments: the byte-stream and an open file-like object. When what() is
called with a byte-stream, the file-like object will be None.

The test function should return a string describing the image type if the test
succeeded, or None if it failed.

Example:

>>> import imghdr
>>> imghdr.what('/tmp/bass.gif')
'gif'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.9. sndhdr — Determine type of sound file

The sndhdr provides utility functions which attempt to determine the type
of sound data which is in a file. When these functions are able to determine
what type of sound data is stored in a file, they return a tuple (type,
sampling_rate, channels, frames, bits_per_sample). The value for type
indicates the data type and will be one of the strings 'aifc', 'aiff',
'au', 'hcom', 'sndr', 'sndt', 'voc', 'wav', '8svx',
'sb', 'ub', or 'ul'. The sampling_rate will be either the actual
value or 0 if unknown or difficult to decode. Similarly, channels will be
either the number of channels or 0 if it cannot be determined or if the
value is difficult to decode. The value for frames will be either the number
of frames or -1. The last item in the tuple, bits_per_sample, will either
be the sample size in bits or 'A' for A-LAW or 'U' for u-LAW.

	
sndhdr.what(filename)

	Determines the type of sound data stored in the file filename using
whathdr(). If it succeeds, returns a tuple as described above, otherwise
None is returned.

	
sndhdr.whathdr(filename)

	Determines the type of sound data stored in a file based on the file header.
The name of the file is given by filename. This function returns a tuple as
described above on success, or None.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	21. Multimedia Services

21.10. ossaudiodev — Access to OSS-compatible audio devices

New in version 2.3.

This module allows you to access the OSS (Open Sound System) audio interface.
OSS is available for a wide range of open-source and commercial Unices, and is
the standard audio interface for Linux and recent versions of FreeBSD.

See also

	Open Sound System Programmer’s Guide [http://www.opensound.com/pguide/oss.pdf]

	the official documentation for the OSS C API

The module defines a large number of constants supplied by the OSS device
driver; see <sys/soundcard.h> on either Linux or FreeBSD for a listing .

ossaudiodev defines the following variables and functions:

	
exception ossaudiodev.OSSAudioError

	This exception is raised on certain errors. The argument is a string describing
what went wrong.

(If ossaudiodev receives an error from a system call such as
open(), write(), or ioctl(), it raises IOError.
Errors detected directly by ossaudiodev result in OSSAudioError.)

(For backwards compatibility, the exception class is also available as
ossaudiodev.error.)

	
ossaudiodev.open([device], mode)

	Open an audio device and return an OSS audio device object. This object
supports many file-like methods, such as read(), write(), and
fileno() (although there are subtle differences between conventional Unix
read/write semantics and those of OSS audio devices). It also supports a number
of audio-specific methods; see below for the complete list of methods.

device is the audio device filename to use. If it is not specified, this
module first looks in the environment variable AUDIODEV for a device
to use. If not found, it falls back to /dev/dsp.

mode is one of 'r' for read-only (record) access, 'w' for
write-only (playback) access and 'rw' for both. Since many sound cards
only allow one process to have the recorder or player open at a time, it is a
good idea to open the device only for the activity needed. Further, some
sound cards are half-duplex: they can be opened for reading or writing, but
not both at once.

Note the unusual calling syntax: the first argument is optional, and the
second is required. This is a historical artifact for compatibility with the
older linuxaudiodev module which ossaudiodev supersedes.

	
ossaudiodev.openmixer([device])

	Open a mixer device and return an OSS mixer device object. device is the
mixer device filename to use. If it is not specified, this module first looks
in the environment variable MIXERDEV for a device to use. If not
found, it falls back to /dev/mixer.

21.10.1. Audio Device Objects

Before you can write to or read from an audio device, you must call three
methods in the correct order:

	setfmt() to set the output format

	channels() to set the number of channels

	speed() to set the sample rate

Alternately, you can use the setparameters() method to set all three audio
parameters at once. This is more convenient, but may not be as flexible in all
cases.

The audio device objects returned by open() define the following methods
and (read-only) attributes:

	
oss_audio_device.close()

	Explicitly close the audio device. When you are done writing to or reading from
an audio device, you should explicitly close it. A closed device cannot be used
again.

	
oss_audio_device.fileno()

	Return the file descriptor associated with the device.

	
oss_audio_device.read(size)

	Read size bytes from the audio input and return them as a Python string.
Unlike most Unix device drivers, OSS audio devices in blocking mode (the
default) will block read() until the entire requested amount of data is
available.

	
oss_audio_device.write(data)

	Write the Python string data to the audio device and return the number of
bytes written. If the audio device is in blocking mode (the default), the
entire string is always written (again, this is different from usual Unix device
semantics). If the device is in non-blocking mode, some data may not be written
—see writeall().

	
oss_audio_device.writeall(data)

	Write the entire Python string data to the audio device: waits until the audio
device is able to accept data, writes as much data as it will accept, and
repeats until data has been completely written. If the device is in blocking
mode (the default), this has the same effect as write(); writeall()
is only useful in non-blocking mode. Has no return value, since the amount of
data written is always equal to the amount of data supplied.

The following methods each map to exactly one ioctl() system call. The
correspondence is obvious: for example, setfmt() corresponds to the
SNDCTL_DSP_SETFMT ioctl, and sync() to SNDCTL_DSP_SYNC (this can
be useful when consulting the OSS documentation). If the underlying
ioctl() fails, they all raise IOError.

	
oss_audio_device.nonblock()

	Put the device into non-blocking mode. Once in non-blocking mode, there is no
way to return it to blocking mode.

	
oss_audio_device.getfmts()

	Return a bitmask of the audio output formats supported by the soundcard. Some
of the formats supported by OSS are:

	Format
	Description

	AFMT_MU_LAW
	a logarithmic encoding (used by Sun .au
files and /dev/audio)

	AFMT_A_LAW
	a logarithmic encoding

	AFMT_IMA_ADPCM
	a 4:1 compressed format defined by the
Interactive Multimedia Association

	AFMT_U8
	Unsigned, 8-bit audio

	AFMT_S16_LE
	Signed, 16-bit audio, little-endian byte
order (as used by Intel processors)

	AFMT_S16_BE
	Signed, 16-bit audio, big-endian byte order
(as used by 68k, PowerPC, Sparc)

	AFMT_S8
	Signed, 8 bit audio

	AFMT_U16_LE
	Unsigned, 16-bit little-endian audio

	AFMT_U16_BE
	Unsigned, 16-bit big-endian audio

Consult the OSS documentation for a full list of audio formats, and note that
most devices support only a subset of these formats. Some older devices only
support AFMT_U8; the most common format used today is
AFMT_S16_LE.

	
oss_audio_device.setfmt(format)

	Try to set the current audio format to format—see getfmts() for a
list. Returns the audio format that the device was set to, which may not be the
requested format. May also be used to return the current audio format—do this
by passing an “audio format” of AFMT_QUERY.

	
oss_audio_device.channels(nchannels)

	Set the number of output channels to nchannels. A value of 1 indicates
monophonic sound, 2 stereophonic. Some devices may have more than 2 channels,
and some high-end devices may not support mono. Returns the number of channels
the device was set to.

	
oss_audio_device.speed(samplerate)

	Try to set the audio sampling rate to samplerate samples per second. Returns
the rate actually set. Most sound devices don’t support arbitrary sampling
rates. Common rates are:

	Rate
	Description

	8000
	default rate for /dev/audio

	11025
	speech recording

	22050
	

	44100
	CD quality audio (at 16 bits/sample and 2
channels)

	96000
	DVD quality audio (at 24 bits/sample)

	
oss_audio_device.sync()

	Wait until the sound device has played every byte in its buffer. (This happens
implicitly when the device is closed.) The OSS documentation recommends closing
and re-opening the device rather than using sync().

	
oss_audio_device.reset()

	Immediately stop playing or recording and return the device to a state where it
can accept commands. The OSS documentation recommends closing and re-opening
the device after calling reset().

	
oss_audio_device.post()

	Tell the driver that there is likely to be a pause in the output, making it
possible for the device to handle the pause more intelligently. You might use
this after playing a spot sound effect, before waiting for user input, or before
doing disk I/O.

The following convenience methods combine several ioctls, or one ioctl and some
simple calculations.

	
oss_audio_device.setparameters(format, nchannels, samplerate[, strict=False])

	Set the key audio sampling parameters—sample format, number of channels, and
sampling rate—in one method call. format, nchannels, and samplerate
should be as specified in the setfmt(), channels(), and
speed() methods. If strict is true, setparameters() checks to
see if each parameter was actually set to the requested value, and raises
OSSAudioError if not. Returns a tuple (format, nchannels,
samplerate) indicating the parameter values that were actually set by the
device driver (i.e., the same as the return values of setfmt(),
channels(), and speed()).

For example,

(fmt, channels, rate) = dsp.setparameters(fmt, channels, rate)

is equivalent to

fmt = dsp.setfmt(fmt)
channels = dsp.channels(channels)
rate = dsp.rate(channels)

	
oss_audio_device.bufsize()

	Returns the size of the hardware buffer, in samples.

	
oss_audio_device.obufcount()

	Returns the number of samples that are in the hardware buffer yet to be played.

	
oss_audio_device.obuffree()

	Returns the number of samples that could be queued into the hardware buffer to
be played without blocking.

Audio device objects also support several read-only attributes:

	
oss_audio_device.closed

	Boolean indicating whether the device has been closed.

	
oss_audio_device.name

	String containing the name of the device file.

	
oss_audio_device.mode

	The I/O mode for the file, either "r", "rw", or "w".

21.10.2. Mixer Device Objects

The mixer object provides two file-like methods:

	
oss_mixer_device.close()

	This method closes the open mixer device file. Any further attempts to use the
mixer after this file is closed will raise an IOError.

	
oss_mixer_device.fileno()

	Returns the file handle number of the open mixer device file.

The remaining methods are specific to audio mixing:

	
oss_mixer_device.controls()

	This method returns a bitmask specifying the available mixer controls (“Control”
being a specific mixable “channel”, such as SOUND_MIXER_PCM or
SOUND_MIXER_SYNTH). This bitmask indicates a subset of all available
mixer controls—the SOUND_MIXER_* constants defined at module level.
To determine if, for example, the current mixer object supports a PCM mixer, use
the following Python code:

mixer=ossaudiodev.openmixer()
if mixer.controls() & (1 << ossaudiodev.SOUND_MIXER_PCM):
 # PCM is supported
 ... code ...

For most purposes, the SOUND_MIXER_VOLUME (master volume) and
SOUND_MIXER_PCM controls should suffice—but code that uses the mixer
should be flexible when it comes to choosing mixer controls. On the Gravis
Ultrasound, for example, SOUND_MIXER_VOLUME does not exist.

	
oss_mixer_device.stereocontrols()

	Returns a bitmask indicating stereo mixer controls. If a bit is set, the
corresponding control is stereo; if it is unset, the control is either
monophonic or not supported by the mixer (use in combination with
controls() to determine which).

See the code example for the controls() function for an example of getting
data from a bitmask.

	
oss_mixer_device.reccontrols()

	Returns a bitmask specifying the mixer controls that may be used to record. See
the code example for controls() for an example of reading from a bitmask.

	
oss_mixer_device.get(control)

	Returns the volume of a given mixer control. The returned volume is a 2-tuple
(left_volume,right_volume). Volumes are specified as numbers from 0
(silent) to 100 (full volume). If the control is monophonic, a 2-tuple is still
returned, but both volumes are the same.

Raises OSSAudioError if an invalid control was is specified, or
IOError if an unsupported control is specified.

	
oss_mixer_device.set(control, (left, right))

	Sets the volume for a given mixer control to (left,right). left and
right must be ints and between 0 (silent) and 100 (full volume). On
success, the new volume is returned as a 2-tuple. Note that this may not be
exactly the same as the volume specified, because of the limited resolution of
some soundcard’s mixers.

Raises OSSAudioError if an invalid mixer control was specified, or if the
specified volumes were out-of-range.

	
oss_mixer_device.get_recsrc()

	This method returns a bitmask indicating which control(s) are currently being
used as a recording source.

	
oss_mixer_device.set_recsrc(bitmask)

	Call this function to specify a recording source. Returns a bitmask indicating
the new recording source (or sources) if successful; raises IOError if an
invalid source was specified. To set the current recording source to the
microphone input:

mixer.setrecsrc (1 << ossaudiodev.SOUND_MIXER_MIC)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

22. Internationalization

The modules described in this chapter help you write software that is
independent of language and locale by providing mechanisms for selecting a
language to be used in program messages or by tailoring output to match local
conventions.

The list of modules described in this chapter is:

	22.1. gettext — Multilingual internationalization services
	22.1.1. GNU gettext API

	22.1.2. Class-based API
	22.1.2.1. The NullTranslations class

	22.1.2.2. The GNUTranslations class

	22.1.2.3. Solaris message catalog support

	22.1.2.4. The Catalog constructor

	22.1.3. Internationalizing your programs and modules
	22.1.3.1. Localizing your module

	22.1.3.2. Localizing your application

	22.1.3.3. Changing languages on the fly

	22.1.3.4. Deferred translations

	22.1.3.5. gettext() vs. lgettext()

	22.1.4. Acknowledgements

	22.2. locale — Internationalization services
	22.2.1. Background, details, hints, tips and caveats

	22.2.2. For extension writers and programs that embed Python

	22.2.3. Access to message catalogs

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	22. Internationalization

22.1. gettext — Multilingual internationalization services

The gettext module provides internationalization (I18N) and localization
(L10N) services for your Python modules and applications. It supports both the
GNU gettext message catalog API and a higher level, class-based API that may
be more appropriate for Python files. The interface described below allows you
to write your module and application messages in one natural language, and
provide a catalog of translated messages for running under different natural
languages.

Some hints on localizing your Python modules and applications are also given.

22.1.1. GNU gettext API

The gettext module defines the following API, which is very similar to
the GNU gettext API. If you use this API you will affect the
translation of your entire application globally. Often this is what you want if
your application is monolingual, with the choice of language dependent on the
locale of your user. If you are localizing a Python module, or if your
application needs to switch languages on the fly, you probably want to use the
class-based API instead.

	
gettext.bindtextdomain(domain[, localedir])

	Bind the domain to the locale directory localedir. More concretely,
gettext will look for binary .mo files for the given domain using
the path (on Unix): localedir/language/LC_MESSAGES/domain.mo, where
languages is searched for in the environment variables LANGUAGE,
LC_ALL, LC_MESSAGES, and LANG respectively.

If localedir is omitted or None, then the current binding for domain is
returned. [1]

	
gettext.bind_textdomain_codeset(domain[, codeset])

	Bind the domain to codeset, changing the encoding of strings returned by the
gettext() family of functions. If codeset is omitted, then the current
binding is returned.

New in version 2.4.

	
gettext.textdomain([domain])

	Change or query the current global domain. If domain is None, then the
current global domain is returned, otherwise the global domain is set to
domain, which is returned.

	
gettext.gettext(message)

	Return the localized translation of message, based on the current global
domain, language, and locale directory. This function is usually aliased as
_() in the local namespace (see examples below).

	
gettext.lgettext(message)

	Equivalent to gettext(), but the translation is returned in the preferred
system encoding, if no other encoding was explicitly set with
bind_textdomain_codeset().

New in version 2.4.

	
gettext.dgettext(domain, message)

	Like gettext(), but look the message up in the specified domain.

	
gettext.ldgettext(domain, message)

	Equivalent to dgettext(), but the translation is returned in the preferred
system encoding, if no other encoding was explicitly set with
bind_textdomain_codeset().

New in version 2.4.

	
gettext.ngettext(singular, plural, n)

	Like gettext(), but consider plural forms. If a translation is found,
apply the plural formula to n, and return the resulting message (some
languages have more than two plural forms). If no translation is found, return
singular if n is 1; return plural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python
expression that has a free variable n; the expression evaluates to the index
of the plural in the catalog. See the GNU gettext documentation for the precise
syntax to be used in .po files and the formulas for a variety of
languages.

New in version 2.3.

	
gettext.lngettext(singular, plural, n)

	Equivalent to ngettext(), but the translation is returned in the preferred
system encoding, if no other encoding was explicitly set with
bind_textdomain_codeset().

New in version 2.4.

	
gettext.dngettext(domain, singular, plural, n)

	Like ngettext(), but look the message up in the specified domain.

New in version 2.3.

	
gettext.ldngettext(domain, singular, plural, n)

	Equivalent to dngettext(), but the translation is returned in the
preferred system encoding, if no other encoding was explicitly set with
bind_textdomain_codeset().

New in version 2.4.

Note that GNU gettext also defines a dcgettext() method, but
this was deemed not useful and so it is currently unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain('myapplication', '/path/to/my/language/directory')
gettext.textdomain('myapplication')
_ = gettext.gettext
...
print _('This is a translatable string.')

22.1.2. Class-based API

The class-based API of the gettext module gives you more flexibility and
greater convenience than the GNU gettext API. It is the recommended
way of localizing your Python applications and modules. gettext defines
a “translations” class which implements the parsing of GNU .mo format
files, and has methods for returning either standard 8-bit strings or Unicode
strings. Instances of this “translations” class can also install themselves in
the built-in namespace as the function _().

	
gettext.find(domain[, localedir[, languages[, all]]])

	This function implements the standard .mo file search algorithm. It
takes a domain, identical to what textdomain() takes. Optional
localedir is as in bindtextdomain() Optional languages is a list of
strings, where each string is a language code.

If localedir is not given, then the default system locale directory is used.
[2] If languages is not given, then the following environment variables are
searched: LANGUAGE, LC_ALL, LC_MESSAGES, and
LANG. The first one returning a non-empty value is used for the
languages variable. The environment variables should contain a colon separated
list of languages, which will be split on the colon to produce the expected list
of language code strings.

find() then expands and normalizes the languages, and then iterates
through them, searching for an existing file built of these components:

localedir/language/LC_MESSAGES/domain.mo

The first such file name that exists is returned by find(). If no such
file is found, then None is returned. If all is given, it returns a list
of all file names, in the order in which they appear in the languages list or
the environment variables.

	
gettext.translation(domain[, localedir[, languages[, class_[, fallback[, codeset]]]]])

	Return a Translations instance based on the domain, localedir, and
languages, which are first passed to find() to get a list of the
associated .mo file paths. Instances with identical .mo file
names are cached. The actual class instantiated is either class_ if provided,
otherwise GNUTranslations. The class’s constructor must take a single
file object argument. If provided, codeset will change the charset used to
encode translated strings.

If multiple files are found, later files are used as fallbacks for earlier ones.
To allow setting the fallback, copy.copy() is used to clone each
translation object from the cache; the actual instance data is still shared with
the cache.

If no .mo file is found, this function raises IOError if
fallback is false (which is the default), and returns a
NullTranslations instance if fallback is true.

Changed in version 2.4: Added the codeset parameter.

	
gettext.install(domain[, localedir[, unicode[, codeset[, names]]]])

	This installs the function _() in Python’s builtins namespace, based on
domain, localedir, and codeset which are passed to the function
translation(). The unicode flag is passed to the resulting translation
object’s install() method.

For the names parameter, please see the description of the translation
object’s install() method.

As seen below, you usually mark the strings in your application that are
candidates for translation, by wrapping them in a call to the _()
function, like this:

print _('This string will be translated.')

For convenience, you want the _() function to be installed in Python’s
builtins namespace, so it is easily accessible in all modules of your
application.

Changed in version 2.4: Added the codeset parameter.

Changed in version 2.5: Added the names parameter.

22.1.2.1. The NullTranslations class

Translation classes are what actually implement the translation of original
source file message strings to translated message strings. The base class used
by all translation classes is NullTranslations; this provides the basic
interface you can use to write your own specialized translation classes. Here
are the methods of NullTranslations:

	
class gettext.NullTranslations([fp])

	Takes an optional file object fp, which is ignored by the base class.
Initializes “protected” instance variables _info and _charset which are set
by derived classes, as well as _fallback, which is set through
add_fallback(). It then calls self._parse(fp) if fp is not
None.

	
_parse(fp)

	No-op’d in the base class, this method takes file object fp, and reads
the data from the file, initializing its message catalog. If you have an
unsupported message catalog file format, you should override this method
to parse your format.

	
add_fallback(fallback)

	Add fallback as the fallback object for the current translation
object. A translation object should consult the fallback if it cannot provide a
translation for a given message.

	
gettext(message)

	If a fallback has been set, forward gettext() to the
fallback. Otherwise, return the translated message. Overridden in derived
classes.

	
lgettext(message)

	If a fallback has been set, forward lgettext() to the
fallback. Otherwise, return the translated message. Overridden in derived
classes.

New in version 2.4.

	
ugettext(message)

	If a fallback has been set, forward ugettext() to the
fallback. Otherwise, return the translated message as a Unicode
string. Overridden in derived classes.

	
ngettext(singular, plural, n)

	If a fallback has been set, forward ngettext() to the
fallback. Otherwise, return the translated message. Overridden in derived
classes.

New in version 2.3.

	
lngettext(singular, plural, n)

	If a fallback has been set, forward ngettext() to the
fallback. Otherwise, return the translated message. Overridden in derived
classes.

New in version 2.4.

	
ungettext(singular, plural, n)

	If a fallback has been set, forward ungettext() to the fallback.
Otherwise, return the translated message as a Unicode string. Overridden
in derived classes.

New in version 2.3.

	
info()

	Return the “protected” _info variable.

	
charset()

	Return the “protected” _charset variable.

	
output_charset()

	Return the “protected” _output_charset variable, which defines the
encoding used to return translated messages.

New in version 2.4.

	
set_output_charset(charset)

	Change the “protected” _output_charset variable, which defines the
encoding used to return translated messages.

New in version 2.4.

	
install([unicode[, names]])

	If the unicode flag is false, this method installs self.gettext()
into the built-in namespace, binding it to _. If unicode is true,
it binds self.ugettext() instead. By default, unicode is false.

If the names parameter is given, it must be a sequence containing the
names of functions you want to install in the builtins namespace in
addition to _(). Supported names are 'gettext' (bound to
self.gettext() or self.ugettext() according to the unicode
flag), 'ngettext' (bound to self.ngettext() or
self.ungettext() according to the unicode flag), 'lgettext'
and 'lngettext'.

Note that this is only one way, albeit the most convenient way, to make
the _() function available to your application. Because it affects
the entire application globally, and specifically the built-in namespace,
localized modules should never install _(). Instead, they should use
this code to make _() available to their module:

import gettext
t = gettext.translation('mymodule', ...)
_ = t.gettext

This puts _() only in the module’s global namespace and so only
affects calls within this module.

Changed in version 2.5: Added the names parameter.

22.1.2.2. The GNUTranslations class

The gettext module provides one additional class derived from
NullTranslations: GNUTranslations. This class overrides
_parse() to enable reading GNU gettext format .mo files
in both big-endian and little-endian format. It also coerces both message ids
and message strings to Unicode.

GNUTranslations parses optional meta-data out of the translation
catalog. It is convention with GNU gettext to include meta-data as
the translation for the empty string. This meta-data is in RFC 822 [http://tools.ietf.org/html/rfc822.html]-style
key: value pairs, and should contain the Project-Id-Version key. If the
key Content-Type is found, then the charset property is used to
initialize the “protected” _charset instance variable, defaulting to
None if not found. If the charset encoding is specified, then all message
ids and message strings read from the catalog are converted to Unicode using
this encoding. The ugettext() method always returns a Unicode, while the
gettext() returns an encoded 8-bit string. For the message id arguments
of both methods, either Unicode strings or 8-bit strings containing only
US-ASCII characters are acceptable. Note that the Unicode version of the
methods (i.e. ugettext() and ungettext()) are the recommended
interface to use for internationalized Python programs.

The entire set of key/value pairs are placed into a dictionary and set as the
“protected” _info instance variable.

If the .mo file’s magic number is invalid, or if other problems occur
while reading the file, instantiating a GNUTranslations class can raise
IOError.

The following methods are overridden from the base class implementation:

	
GNUTranslations.gettext(message)

	Look up the message id in the catalog and return the corresponding message
string, as an 8-bit string encoded with the catalog’s charset encoding, if
known. If there is no entry in the catalog for the message id, and a fallback
has been set, the look up is forwarded to the fallback’s gettext() method.
Otherwise, the message id is returned.

	
GNUTranslations.lgettext(message)

	Equivalent to gettext(), but the translation is returned in the preferred
system encoding, if no other encoding was explicitly set with
set_output_charset().

New in version 2.4.

	
GNUTranslations.ugettext(message)

	Look up the message id in the catalog and return the corresponding message
string, as a Unicode string. If there is no entry in the catalog for the
message id, and a fallback has been set, the look up is forwarded to the
fallback’s ugettext() method. Otherwise, the message id is returned.

	
GNUTranslations.ngettext(singular, plural, n)

	Do a plural-forms lookup of a message id. singular is used as the message id
for purposes of lookup in the catalog, while n is used to determine which
plural form to use. The returned message string is an 8-bit string encoded with
the catalog’s charset encoding, if known.

If the message id is not found in the catalog, and a fallback is specified, the
request is forwarded to the fallback’s ngettext() method. Otherwise, when
n is 1 singular is returned, and plural is returned in all other cases.

New in version 2.3.

	
GNUTranslations.lngettext(singular, plural, n)

	Equivalent to gettext(), but the translation is returned in the preferred
system encoding, if no other encoding was explicitly set with
set_output_charset().

New in version 2.4.

	
GNUTranslations.ungettext(singular, plural, n)

	Do a plural-forms lookup of a message id. singular is used as the message id
for purposes of lookup in the catalog, while n is used to determine which
plural form to use. The returned message string is a Unicode string.

If the message id is not found in the catalog, and a fallback is specified, the
request is forwarded to the fallback’s ungettext() method. Otherwise,
when n is 1 singular is returned, and plural is returned in all other
cases.

Here is an example:

n = len(os.listdir('.'))
cat = GNUTranslations(somefile)
message = cat.ungettext(
 'There is %(num)d file in this directory',
 'There are %(num)d files in this directory',
 n) % {'num': n}

New in version 2.3.

22.1.2.3. Solaris message catalog support

The Solaris operating system defines its own binary .mo file format, but
since no documentation can be found on this format, it is not supported at this
time.

22.1.2.4. The Catalog constructor

GNOME uses a version of the gettext module by James Henstridge, but this
version has a slightly different API. Its documented usage was:

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print _('hello world')

For compatibility with this older module, the function Catalog() is an
alias for the translation() function described above.

One difference between this module and Henstridge’s: his catalog objects
supported access through a mapping API, but this appears to be unused and so is
not currently supported.

22.1.3. Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made
aware of multiple languages. Localization (L10N) refers to the adaptation of
your program, once internationalized, to the local language and cultural habits.
In order to provide multilingual messages for your Python programs, you need to
take the following steps:

	prepare your program or module by specially marking translatable strings

	run a suite of tools over your marked files to generate raw messages catalogs

	create language specific translations of the message catalogs

	use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in
your files. Any string that needs to be translated should be marked by wrapping
it in _('...') — that is, a call to the function _(). For example:

filename = 'mylog.txt'
message = _('writing a log message')
fp = open(filename, 'w')
fp.write(message)
fp.close()

In this example, the string 'writing a log message' is marked as a candidate
for translation, while the strings 'mylog.txt' and 'w' are not.

The Python distribution comes with two tools which help you generate the message
catalogs once you’ve prepared your source code. These may or may not be
available from a binary distribution, but they can be found in a source
distribution, in the Tools/i18n directory.

The pygettext [3] program scans all your Python source code looking
for the strings you previously marked as translatable. It is similar to the GNU
gettext program except that it understands all the intricacies of
Python source code, but knows nothing about C or C++ source code. You don’t
need GNU gettext unless you’re also going to be translating C code (such as
C extension modules).

pygettext generates textual Uniforum-style human readable message
catalog .pot files, essentially structured human readable files which
contain every marked string in the source code, along with a placeholder for the
translation strings. pygettext is a command line script that supports
a similar command line interface as xgettext; for details on its use,
run:

pygettext.py --help

Copies of these .pot files are then handed over to the individual human
translators who write language-specific versions for every supported natural
language. They send you back the filled in language-specific versions as a
.po file. Using the msgfmt.py [4] program (in the
Tools/i18n directory), you take the .po files from your
translators and generate the machine-readable .mo binary catalog files.
The .mo files are what the gettext module uses for the actual
translation processing during run-time.

How you use the gettext module in your code depends on whether you are
internationalizing a single module or your entire application. The next two
sections will discuss each case.

22.1.3.1. Localizing your module

If you are localizing your module, you must take care not to make global
changes, e.g. to the built-in namespace. You should not use the GNU gettext
API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language
translation .mo files reside in /usr/share/locale in GNU
gettext format. Here’s what you would put at the top of your
module:

import gettext
t = gettext.translation('spam', '/usr/share/locale')
_ = t.lgettext

If your translators were providing you with Unicode strings in their .po
files, you’d instead do:

import gettext
t = gettext.translation('spam', '/usr/share/locale')
_ = t.ugettext

22.1.3.2. Localizing your application

If you are localizing your application, you can install the _() function
globally into the built-in namespace, usually in the main driver file of your
application. This will let all your application-specific files just use
_('...') without having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main
driver file of your application:

import gettext
gettext.install('myapplication')

If you need to set the locale directory or the unicode flag, you can pass
these into the install() function:

import gettext
gettext.install('myapplication', '/usr/share/locale', unicode=1)

22.1.3.3. Changing languages on the fly

If your program needs to support many languages at the same time, you may want
to create multiple translation instances and then switch between them
explicitly, like so:

import gettext

lang1 = gettext.translation('myapplication', languages=['en'])
lang2 = gettext.translation('myapplication', languages=['fr'])
lang3 = gettext.translation('myapplication', languages=['de'])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

22.1.3.4. Deferred translations

In most coding situations, strings are translated where they are coded.
Occasionally however, you need to mark strings for translation, but defer actual
translation until later. A classic example is:

animals = ['mollusk',
 'albatross',
 'rat',
 'penguin',
 'python',]
...
for a in animals:
 print a

Here, you want to mark the strings in the animals list as being
translatable, but you don’t actually want to translate them until they are
printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_('mollusk'),
 _('albatross'),
 _('rat'),
 _('penguin'),
 _('python'),]

del _

...
for a in animals:
 print _(a)

This works because the dummy definition of _() simply returns the string
unchanged. And this dummy definition will temporarily override any definition
of _() in the built-in namespace (until the del command). Take
care, though if you have a previous definition of _() in the local
namespace.

Note that the second use of _() will not identify “a” as being
translatable to the pygettext program, since it is not a string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_('mollusk'),
 N_('albatross'),
 N_('rat'),
 N_('penguin'),
 N_('python'),]

...
for a in animals:
 print _(a)

In this case, you are marking translatable strings with the function N_(),
[5] which won’t conflict with any definition of _(). However, you will
need to teach your message extraction program to look for translatable strings
marked with N_(). pygettext and xpot both support
this through the use of command line switches.

22.1.3.5. gettext() vs. lgettext()

In Python 2.4 the lgettext() family of functions were introduced. The
intention of these functions is to provide an alternative which is more
compliant with the current implementation of GNU gettext. Unlike
gettext(), which returns strings encoded with the same codeset used in the
translation file, lgettext() will return strings encoded with the
preferred system encoding, as returned by locale.getpreferredencoding().
Also notice that Python 2.4 introduces new functions to explicitly choose the
codeset used in translated strings. If a codeset is explicitly set, even
lgettext() will return translated strings in the requested codeset, as
would be expected in the GNU gettext implementation.

22.1.4. Acknowledgements

The following people contributed code, feedback, design suggestions, previous
implementations, and valuable experience to the creation of this module:

	Peter Funk

	James Henstridge

	Juan David Ibáñez Palomar

	Marc-André Lemburg

	Martin von Löwis

	François Pinard

	Barry Warsaw

	Gustavo Niemeyer

Footnotes

	[1]	The default locale directory is system dependent; for example, on RedHat Linux
it is /usr/share/locale, but on Solaris it is /usr/lib/locale.
The gettext module does not try to support these system dependent
defaults; instead its default is sys.prefix/share/locale. For this
reason, it is always best to call bindtextdomain() with an explicit
absolute path at the start of your application.

	[2]	See the footnote for bindtextdomain() above.

	[3]	François Pinard has written a program called xpot which does a
similar job. It is available as part of his po-utils package at http
://po-utils.progiciels-bpi.ca/.

	[4]	msgfmt.py is binary compatible with GNU msgfmt except that
it provides a simpler, all-Python implementation. With this and
pygettext.py, you generally won’t need to install the GNU
gettext package to internationalize your Python applications.

	[5]	The choice of N_() here is totally arbitrary; it could have just as easily
been MarkThisStringForTranslation().

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	22. Internationalization

22.2. locale — Internationalization services

The locale module opens access to the POSIX locale database and
functionality. The POSIX locale mechanism allows programmers to deal with
certain cultural issues in an application, without requiring the programmer to
know all the specifics of each country where the software is executed.

The locale module is implemented on top of the _locale module,
which in turn uses an ANSI C locale implementation if available.

The locale module defines the following exception and functions:

	
exception locale.Error

	Exception raised when setlocale() fails.

	
locale.setlocale(category[, locale])

	If locale is specified, it may be a string, a tuple of the form (language
code, encoding), or None. If it is a tuple, it is converted to a string
using the locale aliasing engine. If locale is given and not None,
setlocale() modifies the locale setting for the category. The available
categories are listed in the data description below. The value is the name of a
locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the exception Error is raised. If
successful, the new locale setting is returned.

If locale is omitted or None, the current setting for category is
returned.

setlocale() is not thread-safe on most systems. Applications typically
start with a call of

import locale
locale.setlocale(locale.LC_ALL, '')

This sets the locale for all categories to the user’s default setting (typically
specified in the LANG environment variable). If the locale is not
changed thereafter, using multithreading should not cause problems.

Changed in version 2.0: Added support for tuple values of the locale parameter.

	
locale.localeconv()

	Returns the database of the local conventions as a dictionary. This dictionary
has the following strings as keys:

	Category
	Key
	Meaning

	LC_NUMERIC
	'decimal_point'
	Decimal point character.

	
	'grouping'
	Sequence of numbers specifying
which relative positions the
'thousands_sep' is
expected. If the sequence is
terminated with
CHAR_MAX, no further
grouping is performed. If the
sequence terminates with a
0, the last group size is
repeatedly used.

	
	'thousands_sep'
	Character used between groups.

	LC_MONETARY
	'int_curr_symbol'
	International currency symbol.

	
	'currency_symbol'
	Local currency symbol.

	
	'p_cs_precedes/n_cs_precedes'
	Whether the currency symbol
precedes the value (for
positive resp. negative
values).

	
	'p_sep_by_space/n_sep_by_space'
	Whether the currency symbol is
separated from the value by a
space (for positive resp.
negative values).

	
	'mon_decimal_point'
	Decimal point used for
monetary values.

	
	'frac_digits'
	Number of fractional digits
used in local formatting of
monetary values.

	
	'int_frac_digits'
	Number of fractional digits
used in international
formatting of monetary values.

	
	'mon_thousands_sep'
	Group separator used for
monetary values.

	
	'mon_grouping'
	Equivalent to 'grouping',
used for monetary values.

	
	'positive_sign'
	Symbol used to annotate a
positive monetary value.

	
	'negative_sign'
	Symbol used to annotate a
negative monetary value.

	
	'p_sign_posn/n_sign_posn'
	The position of the sign (for
positive resp. negative
values), see below.

All numeric values can be set to CHAR_MAX to indicate that there is no
value specified in this locale.

The possible values for 'p_sign_posn' and 'n_sign_posn' are given below.

	Value
	Explanation

	0
	Currency and value are surrounded by
parentheses.

	1
	The sign should precede the value and
currency symbol.

	2
	The sign should follow the value and
currency symbol.

	3
	The sign should immediately precede the
value.

	4
	The sign should immediately follow the
value.

	CHAR_MAX
	Nothing is specified in this locale.

	
locale.nl_langinfo(option)

	Return some locale-specific information as a string. This function is not
available on all systems, and the set of possible options might also vary
across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

The nl_langinfo() function accepts one of the following keys. Most
descriptions are taken from the corresponding description in the GNU C
library.

	
locale.CODESET

	Get a string with the name of the character encoding used in the
selected locale.

	
locale.D_T_FMT

	Get a string that can be used as a format string for strftime() to
represent date and time in a locale-specific way.

	
locale.D_FMT

	Get a string that can be used as a format string for strftime() to
represent a date in a locale-specific way.

	
locale.T_FMT

	Get a string that can be used as a format string for strftime() to
represent a time in a locale-specific way.

	
locale.T_FMT_AMPM

	Get a format string for strftime() to represent time in the am/pm
format.

	
DAY_1 ... DAY_7

	Get the name of the n-th day of the week.

Note

This follows the US convention of DAY_1 being Sunday, not the
international convention (ISO 8601) that Monday is the first day of the
week.

	
ABDAY_1 ... ABDAY_7

	Get the abbreviated name of the n-th day of the week.

	
MON_1 ... MON_12

	Get the name of the n-th month.

	
ABMON_1 ... ABMON_12

	Get the abbreviated name of the n-th month.

	
locale.RADIXCHAR

	Get the radix character (decimal dot, decimal comma, etc.)

	
locale.THOUSEP

	Get the separator character for thousands (groups of three digits).

	
locale.YESEXPR

	Get a regular expression that can be used with the regex function to
recognize a positive response to a yes/no question.

Note

The expression is in the syntax suitable for the regex() function
from the C library, which might differ from the syntax used in re.

	
locale.NOEXPR

	Get a regular expression that can be used with the regex(3) function to
recognize a negative response to a yes/no question.

	
locale.CRNCYSTR

	Get the currency symbol, preceded by “-” if the symbol should appear before
the value, “+” if the symbol should appear after the value, or ”.” if the
symbol should replace the radix character.

	
locale.ERA

	Get a string that represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does
define this value is the Japanese one. In Japan, the traditional
representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying
the E modifier in their format strings causes the strftime()
function to use this information. The format of the returned string is not
specified, and therefore you should not assume knowledge of it on different
systems.

	
locale.ERA_D_T_FMT

	Get a format string for strftime() to represent date and time in a
locale-specific era-based way.

	
locale.ERA_D_FMT

	Get a format string for strftime() to represent a date in a
locale-specific era-based way.

	
locale.ERA_T_FMT

	Get a format string for strftime() to represent a time in a
locale-specific era-based way.

	
locale.ALT_DIGITS

	Get a representation of up to 100 values used to represent the values
0 to 99.

	
locale.getdefaultlocale([envvars])

	Tries to determine the default locale settings and returns them as a tuple of
the form (language code, encoding).

According to POSIX, a program which has not called setlocale(LC_ALL, '')
runs using the portable 'C' locale. Calling setlocale(LC_ALL, '') lets
it use the default locale as defined by the LANG variable. Since we
do not want to interfere with the current locale setting we thus emulate the
behavior in the way described above.

To maintain compatibility with other platforms, not only the LANG
variable is tested, but a list of variables given as envvars parameter. The
first found to be defined will be used. envvars defaults to the search path
used in GNU gettext; it must always contain the variable name LANG. The GNU
gettext search path contains 'LANGUAGE', 'LC_ALL', 'LC_CTYPE', and
'LANG', in that order.

Except for the code 'C', the language code corresponds to RFC 1766 [http://tools.ietf.org/html/rfc1766.html].
language code and encoding may be None if their values cannot be
determined.

New in version 2.0.

	
locale.getlocale([category])

	Returns the current setting for the given locale category as sequence containing
language code, encoding. category may be one of the LC_* values
except LC_ALL. It defaults to LC_CTYPE.

Except for the code 'C', the language code corresponds to RFC 1766 [http://tools.ietf.org/html/rfc1766.html].
language code and encoding may be None if their values cannot be
determined.

New in version 2.0.

	
locale.getpreferredencoding([do_setlocale])

	Return the encoding used for text data, according to user preferences. User
preferences are expressed differently on different systems, and might not be
available programmatically on some systems, so this function only returns a
guess.

On some systems, it is necessary to invoke setlocale() to obtain the user
preferences, so this function is not thread-safe. If invoking setlocale is not
necessary or desired, do_setlocale should be set to False.

New in version 2.3.

	
locale.normalize(localename)

	Returns a normalized locale code for the given locale name. The returned locale
code is formatted for use with setlocale(). If normalization fails, the
original name is returned unchanged.

If the given encoding is not known, the function defaults to the default
encoding for the locale code just like setlocale().

New in version 2.0.

	
locale.resetlocale([category])

	Sets the locale for category to the default setting.

The default setting is determined by calling getdefaultlocale().
category defaults to LC_ALL.

New in version 2.0.

	
locale.strcoll(string1, string2)

	Compares two strings according to the current LC_COLLATE setting. As
any other compare function, returns a negative, or a positive value, or 0,
depending on whether string1 collates before or after string2 or is equal to
it.

	
locale.strxfrm(string)

	Transforms a string to one that can be used for the built-in function
cmp(), and still returns locale-aware results. This function can be used
when the same string is compared repeatedly, e.g. when collating a sequence of
strings.

	
locale.format(format, val[, grouping[, monetary]])

	Formats a number val according to the current LC_NUMERIC setting.
The format follows the conventions of the % operator. For floating point
values, the decimal point is modified if appropriate. If grouping is true,
also takes the grouping into account.

If monetary is true, the conversion uses monetary thousands separator and
grouping strings.

Please note that this function will only work for exactly one %char specifier.
For whole format strings, use format_string().

Changed in version 2.5: Added the monetary parameter.

	
locale.format_string(format, val[, grouping])

	Processes formatting specifiers as in format % val, but takes the current
locale settings into account.

New in version 2.5.

	
locale.currency(val[, symbol[, grouping[, international]]])

	Formats a number val according to the current LC_MONETARY settings.

The returned string includes the currency symbol if symbol is true, which is
the default. If grouping is true (which is not the default), grouping is done
with the value. If international is true (which is not the default), the
international currency symbol is used.

Note that this function will not work with the ‘C’ locale, so you have to set a
locale via setlocale() first.

New in version 2.5.

	
locale.str(float)

	Formats a floating point number using the same format as the built-in function
str(float), but takes the decimal point into account.

	
locale.atof(string)

	Converts a string to a floating point number, following the LC_NUMERIC
settings.

	
locale.atoi(string)

	Converts a string to an integer, following the LC_NUMERIC conventions.

	
locale.LC_CTYPE

	Locale category for the character type functions. Depending on the settings of
this category, the functions of module string dealing with case change
their behaviour.

	
locale.LC_COLLATE

	Locale category for sorting strings. The functions strcoll() and
strxfrm() of the locale module are affected.

	
locale.LC_TIME

	Locale category for the formatting of time. The function time.strftime()
follows these conventions.

	
locale.LC_MONETARY

	Locale category for formatting of monetary values. The available options are
available from the localeconv() function.

	
locale.LC_MESSAGES

	Locale category for message display. Python currently does not support
application specific locale-aware messages. Messages displayed by the operating
system, like those returned by os.strerror() might be affected by this
category.

	
locale.LC_NUMERIC

	Locale category for formatting numbers. The functions format(),
atoi(), atof() and str() of the locale module are
affected by that category. All other numeric formatting operations are not
affected.

	
locale.LC_ALL

	Combination of all locale settings. If this flag is used when the locale is
changed, setting the locale for all categories is attempted. If that fails for
any category, no category is changed at all. When the locale is retrieved using
this flag, a string indicating the setting for all categories is returned. This
string can be later used to restore the settings.

	
locale.CHAR_MAX

	This is a symbolic constant used for different values returned by
localeconv().

Example:

>>> import locale
>>> loc = locale.getlocale() # get current locale
use German locale; name might vary with platform
>>> locale.setlocale(locale.LC_ALL, 'de_DE')
>>> locale.strcoll('f\xe4n', 'foo') # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, '') # use user's preferred locale
>>> locale.setlocale(locale.LC_ALL, 'C') # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

22.2.1. Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be
relatively expensive to change. On top of that, some implementation are broken
in such a way that frequent locale changes may cause core dumps. This makes the
locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the C locale, no matter
what the user’s preferred locale is. The program must explicitly say that it
wants the user’s preferred locale settings by calling setlocale(LC_ALL, '').

It is generally a bad idea to call setlocale() in some library routine,
since as a side effect it affects the entire program. Saving and restoring it
is almost as bad: it is expensive and affects other threads that happen to run
before the settings have been restored.

If, when coding a module for general use, you need a locale independent version
of an operation that is affected by the locale (such as string.lower(), or
certain formats used with time.strftime()), you will have to find a way to
do it without using the standard library routine. Even better is convincing
yourself that using locale settings is okay. Only as a last resort should you
document that your module is not compatible with non-C locale settings.

The case conversion functions in the string module are affected by the
locale settings. When a call to the setlocale() function changes the
LC_CTYPE settings, the variables string.lowercase,
string.uppercase and string.letters are recalculated. Note that code
that uses these variable through ‘from ... import ...’,
e.g. from string import letters, is not affected by subsequent
setlocale() calls.

The only way to perform numeric operations according to the locale is to use the
special functions defined by this module: atof(), atoi(),
format(), str().

22.2.2. For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what
the current locale is. But since the return value can only be used portably to
restore it, that is not very useful (except perhaps to find out whether or not
the locale is C).

When Python code uses the locale module to change the locale, this also
affects the embedding application. If the embedding application doesn’t want
this to happen, it should remove the _locale extension module (which does
all the work) from the table of built-in modules in the config.c file,
and make sure that the _locale module is not accessible as a shared
library.

22.2.3. Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that
provide this interface. It consists of the functions gettext(),
dgettext(), dcgettext(), textdomain(), bindtextdomain(),
and bind_textdomain_codeset(). These are similar to the same functions in
the gettext module, but use the C library’s binary format for message
catalogs, and the C library’s search algorithms for locating message catalogs.

Python applications should normally find no need to invoke these functions, and
should use gettext instead. A known exception to this rule are
applications that link with additional C libraries which internally invoke
gettext() or dcgettext(). For these applications, it may be
necessary to bind the text domain, so that the libraries can properly locate
their message catalogs.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

23. Program Frameworks

The modules described in this chapter are frameworks that will largely dictate
the structure of your program. Currently the modules described here are all
oriented toward writing command-line interfaces.

The full list of modules described in this chapter is:

	23.1. cmd — Support for line-oriented command interpreters
	23.1.1. Cmd Objects

	23.2. shlex — Simple lexical analysis
	23.2.1. shlex Objects

	23.2.2. Parsing Rules

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	23. Program Frameworks

23.1. cmd — Support for line-oriented command interpreters

The Cmd class provides a simple framework for writing line-oriented
command interpreters. These are often useful for test harnesses, administrative
tools, and prototypes that will later be wrapped in a more sophisticated
interface.

See also

Latest version of the cmd module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/cmd.py?view=markup]

	
class cmd.Cmd([completekey[, stdin[, stdout]]])

	A Cmd instance or subclass instance is a line-oriented interpreter
framework. There is no good reason to instantiate Cmd itself; rather,
it’s useful as a superclass of an interpreter class you define yourself in order
to inherit Cmd‘s methods and encapsulate action methods.

The optional argument completekey is the readline name of a completion
key; it defaults to Tab. If completekey is not None and
readline is available, command completion is done automatically.

The optional arguments stdin and stdout specify the input and output file
objects that the Cmd instance or subclass instance will use for input and
output. If not specified, they will default to sys.stdin and
sys.stdout.

If you want a given stdin to be used, make sure to set the instance’s
use_rawinput attribute to False, otherwise stdin will be
ignored.

Changed in version 2.3: The stdin and stdout parameters were added.

23.1.1. Cmd Objects

A Cmd instance has the following methods:

	
Cmd.cmdloop([intro])

	Repeatedly issue a prompt, accept input, parse an initial prefix off the
received input, and dispatch to action methods, passing them the remainder of
the line as argument.

The optional argument is a banner or intro string to be issued before the first
prompt (this overrides the intro class member).

If the readline module is loaded, input will automatically inherit
bash-like history-list editing (e.g. Control-P scrolls back
to the last command, Control-N forward to the next one, Control-F
moves the cursor to the right non-destructively, Control-B moves the
cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string 'EOF'.

An interpreter instance will recognize a command name foo if and only if it
has a method do_foo(). As a special case, a line beginning with the
character '?' is dispatched to the method do_help(). As another
special case, a line beginning with the character '!' is dispatched to the
method do_shell() (if such a method is defined).

This method will return when the postcmd() method returns a true value.
The stop argument to postcmd() is the return value from the command’s
corresponding do_*() method.

If completion is enabled, completing commands will be done automatically, and
completing of commands args is done by calling complete_foo() with
arguments text, line, begidx, and endidx. text is the string prefix
we are attempting to match: all returned matches must begin with it. line is
the current input line with leading whitespace removed, begidx and endidx
are the beginning and ending indexes of the prefix text, which could be used to
provide different completion depending upon which position the argument is in.

All subclasses of Cmd inherit a predefined do_help(). This
method, called with an argument 'bar', invokes the corresponding method
help_bar(), and if that is not present, prints the docstring of
do_bar(), if available. With no argument, do_help() lists all
available help topics (that is, all commands with corresponding
help_*() methods or commands that have docstrings), and also lists any
undocumented commands.

	
Cmd.onecmd(str)

	Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the
precmd() and postcmd() methods for useful execution hooks. The
return value is a flag indicating whether interpretation of commands by the
interpreter should stop. If there is a do_*() method for the command
str, the return value of that method is returned, otherwise the return value
from the default() method is returned.

	
Cmd.emptyline()

	Method called when an empty line is entered in response to the prompt. If this
method is not overridden, it repeats the last nonempty command entered.

	
Cmd.default(line)

	Method called on an input line when the command prefix is not recognized. If
this method is not overridden, it prints an error message and returns.

	
Cmd.completedefault(text, line, begidx, endidx)

	Method called to complete an input line when no command-specific
complete_*() method is available. By default, it returns an empty list.

	
Cmd.precmd(line)

	Hook method executed just before the command line line is interpreted, but
after the input prompt is generated and issued. This method is a stub in
Cmd; it exists to be overridden by subclasses. The return value is
used as the command which will be executed by the onecmd() method; the
precmd() implementation may re-write the command or simply return line
unchanged.

	
Cmd.postcmd(stop, line)

	Hook method executed just after a command dispatch is finished. This method is
a stub in Cmd; it exists to be overridden by subclasses. line is the
command line which was executed, and stop is a flag which indicates whether
execution will be terminated after the call to postcmd(); this will be the
return value of the onecmd() method. The return value of this method will
be used as the new value for the internal flag which corresponds to stop;
returning false will cause interpretation to continue.

	
Cmd.preloop()

	Hook method executed once when cmdloop() is called. This method is a stub
in Cmd; it exists to be overridden by subclasses.

	
Cmd.postloop()

	Hook method executed once when cmdloop() is about to return. This method
is a stub in Cmd; it exists to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

	
Cmd.prompt

	The prompt issued to solicit input.

	
Cmd.identchars

	The string of characters accepted for the command prefix.

	
Cmd.lastcmd

	The last nonempty command prefix seen.

	
Cmd.intro

	A string to issue as an intro or banner. May be overridden by giving the
cmdloop() method an argument.

	
Cmd.doc_header

	The header to issue if the help output has a section for documented commands.

	
Cmd.misc_header

	The header to issue if the help output has a section for miscellaneous help
topics (that is, there are help_*() methods without corresponding
do_*() methods).

	
Cmd.undoc_header

	The header to issue if the help output has a section for undocumented commands
(that is, there are do_*() methods without corresponding help_*()
methods).

	
Cmd.ruler

	The character used to draw separator lines under the help-message headers. If
empty, no ruler line is drawn. It defaults to '='.

	
Cmd.use_rawinput

	A flag, defaulting to true. If true, cmdloop() uses raw_input() to
display a prompt and read the next command; if false, sys.stdout.write()
and sys.stdin.readline() are used. (This means that by importing
readline, on systems that support it, the interpreter will automatically
support Emacs-like line editing and command-history keystrokes.)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	23. Program Frameworks

23.2. shlex — Simple lexical analysis

New in version 1.5.2.

The shlex class makes it easy to write lexical analyzers for simple
syntaxes resembling that of the Unix shell. This will often be useful for
writing minilanguages, (for example, in run control files for Python
applications) or for parsing quoted strings.

Note

The shlex module currently does not support Unicode input.

The shlex module defines the following functions:

	
shlex.split(s[, comments[, posix]])

	Split the string s using shell-like syntax. If comments is False
(the default), the parsing of comments in the given string will be disabled
(setting the commenters member of the shlex instance to the
empty string). This function operates in POSIX mode by default, but uses
non-POSIX mode if the posix argument is false.

New in version 2.3.

Changed in version 2.6: Added the posix parameter.

Note

Since the split() function instantiates a shlex instance, passing
None for s will read the string to split from standard input.

The shlex module defines the following class:

	
class shlex.shlex([instream[, infile[, posix]]])

	A shlex instance or subclass instance is a lexical analyzer object.
The initialization argument, if present, specifies where to read characters
from. It must be a file-/stream-like object with read() and
readline() methods, or a string (strings are accepted since Python 2.3).
If no argument is given, input will be taken from sys.stdin. The second
optional argument is a filename string, which sets the initial value of the
infile member. If the instream argument is omitted or equal to
sys.stdin, this second argument defaults to “stdin”. The posix argument
was introduced in Python 2.3, and defines the operational mode. When posix is
not true (default), the shlex instance will operate in compatibility
mode. When operating in POSIX mode, shlex will try to be as close as
possible to the POSIX shell parsing rules.

See also

	Module ConfigParser

	Parser for configuration files similar to the Windows .ini files.

23.2.1. shlex Objects

A shlex instance has the following methods:

	
shlex.get_token()

	Return a token. If tokens have been stacked using push_token(), pop a
token off the stack. Otherwise, read one from the input stream. If reading
encounters an immediate end-of-file, self.eof is returned (the empty
string ('') in non-POSIX mode, and None in POSIX mode).

	
shlex.push_token(str)

	Push the argument onto the token stack.

	
shlex.read_token()

	Read a raw token. Ignore the pushback stack, and do not interpret source
requests. (This is not ordinarily a useful entry point, and is documented here
only for the sake of completeness.)

	
shlex.sourcehook(filename)

	When shlex detects a source request (see source below) this
method is given the following token as argument, and expected to return a tuple
consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result
is an absolute pathname, or there was no previous source request in effect, or
the previous source was a stream (such as sys.stdin), the result is left
alone. Otherwise, if the result is a relative pathname, the directory part of
the name of the file immediately before it on the source inclusion stack is
prepended (this behavior is like the way the C preprocessor handles #include
"file.h").

The result of the manipulations is treated as a filename, and returned as the
first component of the tuple, with open() called on it to yield the second
component. (Note: this is the reverse of the order of arguments in instance
initialization!)

This hook is exposed so that you can use it to implement directory search paths,
addition of file extensions, and other namespace hacks. There is no
corresponding ‘close’ hook, but a shlex instance will call the close()
method of the sourced input stream when it returns EOF.

For more explicit control of source stacking, use the push_source() and
pop_source() methods.

	
shlex.push_source(stream[, filename])

	Push an input source stream onto the input stack. If the filename argument is
specified it will later be available for use in error messages. This is the
same method used internally by the sourcehook() method.

New in version 2.1.

	
shlex.pop_source()

	Pop the last-pushed input source from the input stack. This is the same method
used internally when the lexer reaches EOF on a stacked input stream.

New in version 2.1.

	
shlex.error_leader([file[, line]])

	This method generates an error message leader in the format of a Unix C compiler
error label; the format is '"%s", line %d: ', where the %s is replaced
with the name of the current source file and the %d with the current input
line number (the optional arguments can be used to override these).

This convenience is provided to encourage shlex users to generate error
messages in the standard, parseable format understood by Emacs and other Unix
tools.

Instances of shlex subclasses have some public instance variables which
either control lexical analysis or can be used for debugging:

	
shlex.commenters

	The string of characters that are recognized as comment beginners. All
characters from the comment beginner to end of line are ignored. Includes just
'#' by default.

	
shlex.wordchars

	The string of characters that will accumulate into multi-character tokens. By
default, includes all ASCII alphanumerics and underscore.

	
shlex.whitespace

	Characters that will be considered whitespace and skipped. Whitespace bounds
tokens. By default, includes space, tab, linefeed and carriage-return.

	
shlex.escape

	Characters that will be considered as escape. This will be only used in POSIX
mode, and includes just '\' by default.

New in version 2.3.

	
shlex.quotes

	Characters that will be considered string quotes. The token accumulates until
the same quote is encountered again (thus, different quote types protect each
other as in the shell.) By default, includes ASCII single and double quotes.

	
shlex.escapedquotes

	Characters in quotes that will interpret escape characters defined in
escape. This is only used in POSIX mode, and includes just '"' by
default.

New in version 2.3.

	
shlex.whitespace_split

	If True, tokens will only be split in whitespaces. This is useful, for
example, for parsing command lines with shlex, getting tokens in a
similar way to shell arguments.

New in version 2.3.

	
shlex.infile

	The name of the current input file, as initially set at class instantiation time
or stacked by later source requests. It may be useful to examine this when
constructing error messages.

	
shlex.instream

	The input stream from which this shlex instance is reading characters.

	
shlex.source

	This member is None by default. If you assign a string to it, that string
will be recognized as a lexical-level inclusion request similar to the
source keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream until EOF, at which
point the close() method of that stream will be called and the input
source will again become the original input stream. Source requests may be
stacked any number of levels deep.

	
shlex.debug

	If this member is numeric and 1 or more, a shlex instance will
print verbose progress output on its behavior. If you need to use this, you can
read the module source code to learn the details.

	
shlex.lineno

	Source line number (count of newlines seen so far plus one).

	
shlex.token

	The token buffer. It may be useful to examine this when catching exceptions.

	
shlex.eof

	Token used to determine end of file. This will be set to the empty string
(''), in non-POSIX mode, and to None in POSIX mode.

New in version 2.3.

23.2.2. Parsing Rules

When operating in non-POSIX mode, shlex will try to obey to the
following rules.

	Quote characters are not recognized within words (Do"Not"Separate is
parsed as the single word Do"Not"Separate);

	Escape characters are not recognized;

	Enclosing characters in quotes preserve the literal value of all characters
within the quotes;

	Closing quotes separate words ("Do"Separate is parsed as "Do" and
Separate);

	If whitespace_split is False, any character not declared to be a
word character, whitespace, or a quote will be returned as a single-character
token. If it is True, shlex will only split words in whitespaces;

	EOF is signaled with an empty string ('');

	It’s not possible to parse empty strings, even if quoted.

When operating in POSIX mode, shlex will try to obey to the following
parsing rules.

	Quotes are stripped out, and do not separate words ("Do"Not"Separate" is
parsed as the single word DoNotSeparate);

	Non-quoted escape characters (e.g. '\') preserve the literal value of the
next character that follows;

	Enclosing characters in quotes which are not part of escapedquotes
(e.g. "'") preserve the literal value of all characters within the quotes;

	Enclosing characters in quotes which are part of escapedquotes (e.g.
'"') preserves the literal value of all characters within the quotes, with
the exception of the characters mentioned in escape. The escape
characters retain its special meaning only when followed by the quote in use, or
the escape character itself. Otherwise the escape character will be considered a
normal character.

	EOF is signaled with a None value;

	Quoted empty strings ('') are allowed;

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

24. Graphical User Interfaces with Tk

Tk/Tcl has long been an integral part of Python. It provides a robust and
platform independent windowing toolkit, that is available to Python programmers
using the Tkinter module, and its extensions, the Tix and
the ttk modules.

The Tkinter module is a thin object-oriented layer on top of Tcl/Tk. To
use Tkinter, you don’t need to write Tcl code, but you will need to
consult the Tk documentation, and occasionally the Tcl documentation.
Tkinter is a set of wrappers that implement the Tk widgets as Python
classes. In addition, the internal module _tkinter provides a threadsafe
mechanism which allows Python and Tcl to interact.

Tkinter‘s chief virtues are that it is fast, and that it usually comes
bundled with Python. Although its standard documentation is weak, good
material is available, which includes: references, tutorials, a book and
others. Tkinter is also famous for having an outdated look and feel,
which has been vastly improved in Tk 8.5. Nevertheless, there are many other
GUI libraries that you could be interested in. For more information about
alternatives, see the Other Graphical User Interface Packages section.

	24.1. Tkinter — Python interface to Tcl/Tk
	24.1.1. Tkinter Modules

	24.1.2. Tkinter Life Preserver
	24.1.2.1. How To Use This Section

	24.1.2.2. A Simple Hello World Program

	24.1.3. A (Very) Quick Look at Tcl/Tk

	24.1.4. Mapping Basic Tk into Tkinter

	24.1.5. How Tk and Tkinter are Related

	24.1.6. Handy Reference
	24.1.6.1. Setting Options

	24.1.6.2. The Packer

	24.1.6.3. Packer Options

	24.1.6.4. Coupling Widget Variables

	24.1.6.5. The Window Manager

	24.1.6.6. Tk Option Data Types

	24.1.6.7. Bindings and Events

	24.1.6.8. The index Parameter

	24.1.6.9. Images

	24.2. ttk — Tk themed widgets
	24.2.1. Using Ttk

	24.2.2. Ttk Widgets

	24.2.3. Widget
	24.2.3.1. Standard Options

	24.2.3.2. Scrollable Widget Options

	24.2.3.3. Label Options

	24.2.3.4. Compatibility Options

	24.2.3.5. Widget States

	24.2.3.6. ttk.Widget

	24.2.4. Combobox
	24.2.4.1. Options

	24.2.4.2. Virtual events

	24.2.4.3. ttk.Combobox

	24.2.5. Notebook
	24.2.5.1. Options

	24.2.5.2. Tab Options

	24.2.5.3. Tab Identifiers

	24.2.5.4. Virtual Events

	24.2.5.5. ttk.Notebook

	24.2.6. Progressbar
	24.2.6.1. Options

	24.2.6.2. ttk.Progressbar

	24.2.7. Separator
	24.2.7.1. Options

	24.2.8. Sizegrip
	24.2.8.1. Platform-specific notes

	24.2.8.2. Bugs

	24.2.9. Treeview
	24.2.9.1. Options

	24.2.9.2. Item Options

	24.2.9.3. Tag Options

	24.2.9.4. Column Identifiers

	24.2.9.5. Virtual Events

	24.2.9.6. ttk.Treeview

	24.2.10. Ttk Styling
	24.2.10.1. Layouts

	24.3. Tix — Extension widgets for Tk
	24.3.1. Using Tix

	24.3.2. Tix Widgets
	24.3.2.1. Basic Widgets

	24.3.2.2. File Selectors

	24.3.2.3. Hierarchical ListBox

	24.3.2.4. Tabular ListBox

	24.3.2.5. Manager Widgets

	24.3.2.6. Image Types

	24.3.2.7. Miscellaneous Widgets

	24.3.2.8. Form Geometry Manager

	24.3.3. Tix Commands

	24.4. ScrolledText — Scrolled Text Widget

	24.5. turtle — Turtle graphics for Tk
	24.5.1. Introduction

	24.5.2. Overview over available Turtle and Screen methods
	24.5.2.1. Turtle methods

	24.5.2.2. Methods of TurtleScreen/Screen

	24.5.3. Methods of RawTurtle/Turtle and corresponding functions
	24.5.3.1. Turtle motion

	24.5.3.2. Tell Turtle’s state

	24.5.3.3. Settings for measurement

	24.5.3.4. Pen control
	24.5.3.4.1. Drawing state

	24.5.3.4.2. Color control

	24.5.3.4.3. Filling

	24.5.3.4.4. More drawing control

	24.5.3.5. Turtle state
	24.5.3.5.1. Visibility

	24.5.3.5.2. Appearance

	24.5.3.6. Using events

	24.5.3.7. Special Turtle methods

	24.5.3.8. Excursus about the use of compound shapes

	24.5.4. Methods of TurtleScreen/Screen and corresponding functions
	24.5.4.1. Window control

	24.5.4.2. Animation control

	24.5.4.3. Using screen events

	24.5.4.4. Settings and special methods

	24.5.4.5. Methods specific to Screen, not inherited from TurtleScreen

	24.5.5. The public classes of the module turtle

	24.5.6. Help and configuration
	24.5.6.1. How to use help

	24.5.6.2. Translation of docstrings into different languages

	24.5.6.3. How to configure Screen and Turtles

	24.5.7. Demo scripts

	24.6. IDLE
	24.6.1. Menus
	24.6.1.1. File menu

	24.6.1.2. Edit menu

	24.6.1.3. Windows menu

	24.6.1.4. Debug menu (in the Python Shell window only)

	24.6.2. Basic editing and navigation
	24.6.2.1. Automatic indentation

	24.6.2.2. Python Shell window

	24.6.3. Syntax colors

	24.6.4. Startup
	24.6.4.1. Command line usage

	24.7. Other Graphical User Interface Packages

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.1. Tkinter — Python interface to Tcl/Tk

The Tkinter module (“Tk interface”) is the standard Python interface to
the Tk GUI toolkit. Both Tk and Tkinter are available on most Unix
platforms, as well as on Windows systems. (Tk itself is not part of Python; it
is maintained at ActiveState.)

Note

Tkinter has been renamed to tkinter in Python 3.0. The
2to3 tool will automatically adapt imports when converting your
sources to 3.0.

See also

	Python Tkinter Resources [http://www.python.org/topics/tkinter/]

	The Python Tkinter Topic Guide provides a great deal of information on using Tk
from Python and links to other sources of information on Tk.

	An Introduction to Tkinter [http://www.pythonware.com/library/an-introduction-to-tkinter.htm]

	Fredrik Lundh’s on-line reference material.

	Tkinter reference: a GUI for Python [http://infohost.nmt.edu/tcc/help/pubs/lang.html]

	On-line reference material.

	Python and Tkinter Programming [http://www.amazon.com/exec/obidos/ASIN/1884777813]

	The book by John Grayson (ISBN 1-884777-81-3).

24.1.1. Tkinter Modules

Most of the time, the Tkinter module is all you really need, but a number
of additional modules are available as well. The Tk interface is located in a
binary module named _tkinter. This module contains the low-level
interface to Tk, and should never be used directly by application programmers.
It is usually a shared library (or DLL), but might in some cases be statically
linked with the Python interpreter.

In addition to the Tk interface module, Tkinter includes a number of
Python modules. The two most important modules are the Tkinter module
itself, and a module called Tkconstants. The former automatically imports
the latter, so to use Tkinter, all you need to do is to import one module:

import Tkinter

Or, more often:

from Tkinter import *

	
class Tkinter.Tk(screenName=None, baseName=None, className='Tk', useTk=1)

	The Tk class is instantiated without arguments. This creates a toplevel
widget of Tk which usually is the main window of an application. Each instance
has its own associated Tcl interpreter.

Changed in version 2.4: The useTk parameter was added.

	
Tkinter.Tcl(screenName=None, baseName=None, className='Tk', useTk=0)

	The Tcl() function is a factory function which creates an object much like
that created by the Tk class, except that it does not initialize the Tk
subsystem. This is most often useful when driving the Tcl interpreter in an
environment where one doesn’t want to create extraneous toplevel windows, or
where one cannot (such as Unix/Linux systems without an X server). An object
created by the Tcl() object can have a Toplevel window created (and the Tk
subsystem initialized) by calling its loadtk() method.

New in version 2.4.

Other modules that provide Tk support include:

	ScrolledText

	Text widget with a vertical scroll bar built in.

	tkColorChooser

	Dialog to let the user choose a color.

	tkCommonDialog

	Base class for the dialogs defined in the other modules listed here.

	tkFileDialog

	Common dialogs to allow the user to specify a file to open or save.

	tkFont

	Utilities to help work with fonts.

	tkMessageBox

	Access to standard Tk dialog boxes.

	tkSimpleDialog

	Basic dialogs and convenience functions.

	Tkdnd

	Drag-and-drop support for Tkinter. This is experimental and should become
deprecated when it is replaced with the Tk DND.

	turtle

	Turtle graphics in a Tk window.

These have been renamed as well in Python 3.0; they were all made submodules of
the new tkinter package.

24.1.2. Tkinter Life Preserver

This section is not designed to be an exhaustive tutorial on either Tk or
Tkinter. Rather, it is intended as a stop gap, providing some introductory
orientation on the system.

Credits:

	Tkinter was written by Steen Lumholt and Guido van Rossum.

	Tk was written by John Ousterhout while at Berkeley.

	This Life Preserver was written by Matt Conway at the University of Virginia.

	The html rendering, and some liberal editing, was produced from a FrameMaker
version by Ken Manheimer.

	Fredrik Lundh elaborated and revised the class interface descriptions, to get
them current with Tk 4.2.

	Mike Clarkson converted the documentation to LaTeX, and compiled the User
Interface chapter of the reference manual.

24.1.2.1. How To Use This Section

This section is designed in two parts: the first half (roughly) covers
background material, while the second half can be taken to the keyboard as a
handy reference.

When trying to answer questions of the form “how do I do blah”, it is often best
to find out how to do”blah” in straight Tk, and then convert this back into the
corresponding Tkinter call. Python programmers can often guess at the
correct Python command by looking at the Tk documentation. This means that in
order to use Tkinter, you will have to know a little bit about Tk. This document
can’t fulfill that role, so the best we can do is point you to the best
documentation that exists. Here are some hints:

	The authors strongly suggest getting a copy of the Tk man pages. Specifically,
the man pages in the mann directory are most useful. The man3 man pages
describe the C interface to the Tk library and thus are not especially helpful
for script writers.

	Addison-Wesley publishes a book called Tcl and the Tk Toolkit by John
Ousterhout (ISBN 0-201-63337-X) which is a good introduction to Tcl and Tk for
the novice. The book is not exhaustive, and for many details it defers to the
man pages.

	Tkinter.py is a last resort for most, but can be a good place to go
when nothing else makes sense.

See also

	ActiveState Tcl Home Page [http://tcl.activestate.com/]

	The Tk/Tcl development is largely taking place at ActiveState.

	Tcl and the Tk Toolkit [http://www.amazon.com/exec/obidos/ASIN/020163337X]

	The book by John Ousterhout, the inventor of Tcl .

	Practical Programming in Tcl and Tk [http://www.amazon.com/exec/obidos/ASIN/0130220280]

	Brent Welch’s encyclopedic book.

24.1.2.2. A Simple Hello World Program

from Tkinter import *

class Application(Frame):
 def say_hi(self):
 print "hi there, everyone!"

 def createWidgets(self):
 self.QUIT = Button(self)
 self.QUIT["text"] = "QUIT"
 self.QUIT["fg"] = "red"
 self.QUIT["command"] = self.quit

 self.QUIT.pack({"side": "left"})

 self.hi_there = Button(self)
 self.hi_there["text"] = "Hello",
 self.hi_there["command"] = self.say_hi

 self.hi_there.pack({"side": "left"})

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()
root.destroy()

24.1.3. A (Very) Quick Look at Tcl/Tk

The class hierarchy looks complicated, but in actual practice, application
programmers almost always refer to the classes at the very bottom of the
hierarchy.

Notes:

	These classes are provided for the purposes of organizing certain functions
under one namespace. They aren’t meant to be instantiated independently.

	The Tk class is meant to be instantiated only once in an application.
Application programmers need not instantiate one explicitly, the system creates
one whenever any of the other classes are instantiated.

	The Widget class is not meant to be instantiated, it is meant only
for subclassing to make “real” widgets (in C++, this is called an ‘abstract
class’).

To make use of this reference material, there will be times when you will need
to know how to read short passages of Tk and how to identify the various parts
of a Tk command. (See section Mapping Basic Tk into Tkinter for the
Tkinter equivalents of what’s below.)

Tk scripts are Tcl programs. Like all Tcl programs, Tk scripts are just lists
of tokens separated by spaces. A Tk widget is just its class, the options
that help configure it, and the actions that make it do useful things.

To make a widget in Tk, the command is always of the form:

classCommand newPathname options

	classCommand

	denotes which kind of widget to make (a button, a label, a menu...)

	newPathname

	is the new name for this widget. All names in Tk must be unique. To help
enforce this, widgets in Tk are named with pathnames, just like files in a
file system. The top level widget, the root, is called . (period) and
children are delimited by more periods. For example,
.myApp.controlPanel.okButton might be the name of a widget.

	options

	configure the widget’s appearance and in some cases, its behavior. The options
come in the form of a list of flags and values. Flags are preceded by a ‘-‘,
like Unix shell command flags, and values are put in quotes if they are more
than one word.

For example:

button .fred -fg red -text "hi there"
 ^ ^ _____________________/
 | | |
 class new options
command widget (-opt val -opt val ...)

Once created, the pathname to the widget becomes a new command. This new
widget command is the programmer’s handle for getting the new widget to
perform some action. In C, you’d express this as someAction(fred,
someOptions), in C++, you would express this as fred.someAction(someOptions),
and in Tk, you say:

.fred someAction someOptions

Note that the object name, .fred, starts with a dot.

As you’d expect, the legal values for someAction will depend on the widget’s
class: .fred disable works if fred is a button (fred gets greyed out), but
does not work if fred is a label (disabling of labels is not supported in Tk).

The legal values of someOptions is action dependent. Some actions, like
disable, require no arguments, others, like a text-entry box’s delete
command, would need arguments to specify what range of text to delete.

24.1.4. Mapping Basic Tk into Tkinter

Class commands in Tk correspond to class constructors in Tkinter.

button .fred =====> fred = Button()

The master of an object is implicit in the new name given to it at creation
time. In Tkinter, masters are specified explicitly.

button .panel.fred =====> fred = Button(panel)

The configuration options in Tk are given in lists of hyphened tags followed by
values. In Tkinter, options are specified as keyword-arguments in the instance
constructor, and keyword-args for configure calls or as instance indices, in
dictionary style, for established instances. See section
Setting Options on setting options.

button .fred -fg red =====> fred = Button(panel, fg = "red")
.fred configure -fg red =====> fred["fg"] = red
 OR ==> fred.config(fg = "red")

In Tk, to perform an action on a widget, use the widget name as a command, and
follow it with an action name, possibly with arguments (options). In Tkinter,
you call methods on the class instance to invoke actions on the widget. The
actions (methods) that a given widget can perform are listed in the Tkinter.py
module.

.fred invoke =====> fred.invoke()

To give a widget to the packer (geometry manager), you call pack with optional
arguments. In Tkinter, the Pack class holds all this functionality, and the
various forms of the pack command are implemented as methods. All widgets in
Tkinter are subclassed from the Packer, and so inherit all the packing
methods. See the Tix module documentation for additional information on
the Form geometry manager.

pack .fred -side left =====> fred.pack(side = "left")

24.1.5. How Tk and Tkinter are Related

From the top down:

	Your App Here (Python)

	A Python application makes a Tkinter call.

	Tkinter (Python Module)

	This call (say, for example, creating a button widget), is implemented in the
Tkinter module, which is written in Python. This Python function will parse
the commands and the arguments and convert them into a form that makes them look
as if they had come from a Tk script instead of a Python script.

	tkinter (C)

	These commands and their arguments will be passed to a C function in the
tkinter - note the lowercase - extension module.

	Tk Widgets (C and Tcl)

	This C function is able to make calls into other C modules, including the C
functions that make up the Tk library. Tk is implemented in C and some Tcl.
The Tcl part of the Tk widgets is used to bind certain default behaviors to
widgets, and is executed once at the point where the Python Tkinter
module is imported. (The user never sees this stage).

	Tk (C)

	The Tk part of the Tk Widgets implement the final mapping to ...

	Xlib (C)

	the Xlib library to draw graphics on the screen.

24.1.6. Handy Reference

24.1.6.1. Setting Options

Options control things like the color and border width of a widget. Options can
be set in three ways:

	At object creation time, using keyword arguments

	fred = Button(self, fg = "red", bg = "blue")

	After object creation, treating the option name like a dictionary index

	fred["fg"] = "red"
fred["bg"] = "blue"

	Use the config() method to update multiple attrs subsequent to object creation

	fred.config(fg = "red", bg = "blue")

For a complete explanation of a given option and its behavior, see the Tk man
pages for the widget in question.

Note that the man pages list “STANDARD OPTIONS” and “WIDGET SPECIFIC OPTIONS”
for each widget. The former is a list of options that are common to many
widgets, the latter are the options that are idiosyncratic to that particular
widget. The Standard Options are documented on the options(3) man
page.

No distinction between standard and widget-specific options is made in this
document. Some options don’t apply to some kinds of widgets. Whether a given
widget responds to a particular option depends on the class of the widget;
buttons have a command option, labels do not.

The options supported by a given widget are listed in that widget’s man page, or
can be queried at runtime by calling the config() method without
arguments, or by calling the keys() method on that widget. The return
value of these calls is a dictionary whose key is the name of the option as a
string (for example, 'relief') and whose values are 5-tuples.

Some options, like bg are synonyms for common options with long names
(bg is shorthand for “background”). Passing the config() method the name
of a shorthand option will return a 2-tuple, not 5-tuple. The 2-tuple passed
back will contain the name of the synonym and the “real” option (such as
('bg', 'background')).

	Index
	Meaning
	Example

	0
	option name
	'relief'

	1
	option name for database lookup
	'relief'

	2
	option class for database
lookup
	'Relief'

	3
	default value
	'raised'

	4
	current value
	'groove'

Example:

>>> print fred.config()
{'relief' : ('relief', 'relief', 'Relief', 'raised', 'groove')}

Of course, the dictionary printed will include all the options available and
their values. This is meant only as an example.

24.1.6.2. The Packer

The packer is one of Tk’s geometry-management mechanisms. Geometry managers
are used to specify the relative positioning of the positioning of widgets
within their container - their mutual master. In contrast to the more
cumbersome placer (which is used less commonly, and we do not cover here), the
packer takes qualitative relationship specification - above, to the left of,
filling, etc - and works everything out to determine the exact placement
coordinates for you.

The size of any master widget is determined by the size of the “slave widgets”
inside. The packer is used to control where slave widgets appear inside the
master into which they are packed. You can pack widgets into frames, and frames
into other frames, in order to achieve the kind of layout you desire.
Additionally, the arrangement is dynamically adjusted to accommodate incremental
changes to the configuration, once it is packed.

Note that widgets do not appear until they have had their geometry specified
with a geometry manager. It’s a common early mistake to leave out the geometry
specification, and then be surprised when the widget is created but nothing
appears. A widget will appear only after it has had, for example, the packer’s
pack() method applied to it.

The pack() method can be called with keyword-option/value pairs that control
where the widget is to appear within its container, and how it is to behave when
the main application window is resized. Here are some examples:

fred.pack() # defaults to side = "top"
fred.pack(side = "left")
fred.pack(expand = 1)

24.1.6.3. Packer Options

For more extensive information on the packer and the options that it can take,
see the man pages and page 183 of John Ousterhout’s book.

	anchor

	Anchor type. Denotes where the packer is to place each slave in its parcel.

	expand

	Boolean, 0 or 1.

	fill

	Legal values: 'x', 'y', 'both', 'none'.

	ipadx and ipady

	A distance - designating internal padding on each side of the slave widget.

	padx and pady

	A distance - designating external padding on each side of the slave widget.

	side

	Legal values are: 'left', 'right', 'top', 'bottom'.

24.1.6.4. Coupling Widget Variables

The current-value setting of some widgets (like text entry widgets) can be
connected directly to application variables by using special options. These
options are variable, textvariable, onvalue, offvalue, and
value. This connection works both ways: if the variable changes for any
reason, the widget it’s connected to will be updated to reflect the new value.

Unfortunately, in the current implementation of Tkinter it is not
possible to hand over an arbitrary Python variable to a widget through a
variable or textvariable option. The only kinds of variables for which
this works are variables that are subclassed from a class called Variable,
defined in the Tkinter module.

There are many useful subclasses of Variable already defined:
StringVar, IntVar, DoubleVar, and
BooleanVar. To read the current value of such a variable, call the
get() method on it, and to change its value you call the set()
method. If you follow this protocol, the widget will always track the value of
the variable, with no further intervention on your part.

For example:

class App(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()

 self.entrythingy = Entry()
 self.entrythingy.pack()

 # here is the application variable
 self.contents = StringVar()
 # set it to some value
 self.contents.set("this is a variable")
 # tell the entry widget to watch this variable
 self.entrythingy["textvariable"] = self.contents

 # and here we get a callback when the user hits return.
 # we will have the program print out the value of the
 # application variable when the user hits return
 self.entrythingy.bind('<Key-Return>',
 self.print_contents)

 def print_contents(self, event):
 print "hi. contents of entry is now ---->", \
 self.contents.get()

24.1.6.5. The Window Manager

In Tk, there is a utility command, wm, for interacting with the window
manager. Options to the wm command allow you to control things like titles,
placement, icon bitmaps, and the like. In Tkinter, these commands have
been implemented as methods on the Wm class. Toplevel widgets are
subclassed from the Wm class, and so can call the Wm methods
directly.

To get at the toplevel window that contains a given widget, you can often just
refer to the widget’s master. Of course if the widget has been packed inside of
a frame, the master won’t represent a toplevel window. To get at the toplevel
window that contains an arbitrary widget, you can call the _root() method.
This method begins with an underscore to denote the fact that this function is
part of the implementation, and not an interface to Tk functionality.

Here are some examples of typical usage:

from Tkinter import *
class App(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()

create the application
myapp = App()

#
here are method calls to the window manager class
#
myapp.master.title("My Do-Nothing Application")
myapp.master.maxsize(1000, 400)

start the program
myapp.mainloop()

24.1.6.6. Tk Option Data Types

	anchor

	Legal values are points of the compass: "n", "ne", "e", "se",
"s", "sw", "w", "nw", and also "center".

	bitmap

	There are eight built-in, named bitmaps: 'error', 'gray25',
'gray50', 'hourglass', 'info', 'questhead', 'question',
'warning'. To specify an X bitmap filename, give the full path to the file,
preceded with an @, as in "@/usr/contrib/bitmap/gumby.bit".

	boolean

	You can pass integers 0 or 1 or the strings "yes" or "no" .

	callback

	This is any Python function that takes no arguments. For example:

def print_it():
 print "hi there"
fred["command"] = print_it

	color

	Colors can be given as the names of X colors in the rgb.txt file, or as strings
representing RGB values in 4 bit: "#RGB", 8 bit: "#RRGGBB", 12 bit”
"#RRRGGGBBB", or 16 bit "#RRRRGGGGBBBB" ranges, where R,G,B here
represent any legal hex digit. See page 160 of Ousterhout’s book for details.

	cursor

	The standard X cursor names from cursorfont.h can be used, without the
XC_ prefix. For example to get a hand cursor (XC_hand2), use the
string "hand2". You can also specify a bitmap and mask file of your own.
See page 179 of Ousterhout’s book.

	distance

	Screen distances can be specified in either pixels or absolute distances.
Pixels are given as numbers and absolute distances as strings, with the trailing
character denoting units: c for centimetres, i for inches, m for
millimetres, p for printer’s points. For example, 3.5 inches is expressed
as "3.5i".

	font

	Tk uses a list font name format, such as {courier 10 bold}. Font sizes with
positive numbers are measured in points; sizes with negative numbers are
measured in pixels.

	geometry

	This is a string of the form widthxheight, where width and height are
measured in pixels for most widgets (in characters for widgets displaying text).
For example: fred["geometry"] = "200x100".

	justify

	Legal values are the strings: "left", "center", "right", and
"fill".

	region

	This is a string with four space-delimited elements, each of which is a legal
distance (see above). For example: "2 3 4 5" and "3i 2i 4.5i 2i" and
"3c 2c 4c 10.43c" are all legal regions.

	relief

	Determines what the border style of a widget will be. Legal values are:
"raised", "sunken", "flat", "groove", and "ridge".

	scrollcommand

	This is almost always the set() method of some scrollbar widget, but can
be any widget method that takes a single argument. Refer to the file
Demo/tkinter/matt/canvas-with-scrollbars.py in the Python source
distribution for an example.

	wrap:

	Must be one of: "none", "char", or "word".

24.1.6.7. Bindings and Events

The bind method from the widget command allows you to watch for certain events
and to have a callback function trigger when that event type occurs. The form
of the bind method is:

def bind(self, sequence, func, add=''):

where:

	sequence

	is a string that denotes the target kind of event. (See the bind man page and
page 201 of John Ousterhout’s book for details).

	func

	is a Python function, taking one argument, to be invoked when the event occurs.
An Event instance will be passed as the argument. (Functions deployed this way
are commonly known as callbacks.)

	add

	is optional, either '' or '+'. Passing an empty string denotes that
this binding is to replace any other bindings that this event is associated
with. Passing a '+' means that this function is to be added to the list
of functions bound to this event type.

For example:

def turnRed(self, event):
 event.widget["activeforeground"] = "red"

self.button.bind("<Enter>", self.turnRed)

Notice how the widget field of the event is being accessed in the
turnRed() callback. This field contains the widget that caught the X
event. The following table lists the other event fields you can access, and how
they are denoted in Tk, which can be useful when referring to the Tk man pages.

Tk Tkinter Event Field Tk Tkinter Event Field
-- ------------------- -- -------------------
%f focus %A char
%h height %E send_event
%k keycode %K keysym
%s state %N keysym_num
%t time %T type
%w width %W widget
%x x %X x_root
%y y %Y y_root

24.1.6.8. The index Parameter

A number of widgets require”index” parameters to be passed. These are used to
point at a specific place in a Text widget, or to particular characters in an
Entry widget, or to particular menu items in a Menu widget.

	Entry widget indexes (index, view index, etc.)

	Entry widgets have options that refer to character positions in the text being
displayed. You can use these Tkinter functions to access these special
points in text widgets:

	AtEnd()

	refers to the last position in the text

	AtInsert()

	refers to the point where the text cursor is

	AtSelFirst()

	indicates the beginning point of the selected text

	AtSelLast()

	denotes the last point of the selected text and finally

	At(x[, y])

	refers to the character at pixel location x, y (with y not used in the
case of a text entry widget, which contains a single line of text).

	Text widget indexes

	The index notation for Text widgets is very rich and is best described in the Tk
man pages.

	Menu indexes (menu.invoke(), menu.entryconfig(), etc.)

	Some options and methods for menus manipulate specific menu entries. Anytime a
menu index is needed for an option or a parameter, you may pass in:

	an integer which refers to the numeric position of the entry in the widget,
counted from the top, starting with 0;

	the string 'active', which refers to the menu position that is currently
under the cursor;

	the string "last" which refers to the last menu item;

	An integer preceded by @, as in @6, where the integer is interpreted
as a y pixel coordinate in the menu’s coordinate system;

	the string "none", which indicates no menu entry at all, most often used
with menu.activate() to deactivate all entries, and finally,

	a text string that is pattern matched against the label of the menu entry, as
scanned from the top of the menu to the bottom. Note that this index type is
considered after all the others, which means that matches for menu items
labelled last, active, or none may be interpreted as the above
literals, instead.

24.1.6.9. Images

Bitmap/Pixelmap images can be created through the subclasses of
Tkinter.Image:

	BitmapImage can be used for X11 bitmap data.

	PhotoImage can be used for GIF and PPM/PGM color bitmaps.

Either type of image is created through either the file or the data
option (other options are available as well).

The image object can then be used wherever an image option is supported by
some widget (e.g. labels, buttons, menus). In these cases, Tk will not keep a
reference to the image. When the last Python reference to the image object is
deleted, the image data is deleted as well, and Tk will display an empty box
wherever the image was used.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.2. ttk — Tk themed widgets

The ttk module provides access to the Tk themed widget set, which has
been introduced in Tk 8.5. If Python is not compiled against Tk 8.5 code may
still use this module as long as Tile is installed. However, some features
provided by the new Tk, like anti-aliased font rendering under X11, window
transparency (on X11 you will need a composition window manager) will be
missing.

The basic idea of ttk is to separate, to the extent possible, the code
implementing a widget’s behavior from the code implementing its appearance.

See also

	Tk Widget Styling Support [http://www.tcl.tk/cgi-bin/tct/tip/48]

	The document which brought up theming support for Tk

24.2.1. Using Ttk

To start using Ttk, import its module:

import ttk

But code like this:

from Tkinter import *

may optionally want to use this:

from Tkinter import *
from ttk import *

And then several ttk widgets (Button, Checkbutton,
Entry, Frame, Label, LabelFrame,
Menubutton, PanedWindow, Radiobutton, Scale
and Scrollbar) will automatically substitute for the Tk widgets.

This has the direct benefit of using the new widgets, giving better look & feel
across platforms, but be aware that they are not totally compatible. The main
difference is that widget options such as “fg”, “bg” and others related to
widget styling are no longer present in Ttk widgets. Use ttk.Style to
achieve the same (or better) styling.

See also

	Converting existing applications to use the Tile widgets [http://tktable.sourceforge.net/tile/doc/converting.txt]

	A text which talks in Tcl terms about differences typically found when
converting applications to use the new widgets.

24.2.2. Ttk Widgets

Ttk comes with 17 widgets, 11 of which already exist in Tkinter:
Button, Checkbutton, Entry, Frame,
Label, LabelFrame, Menubutton,
PanedWindow, Radiobutton, Scale and
Scrollbar. The 6 new widget classes are: Combobox,
Notebook, Progressbar, Separator,
Sizegrip and Treeview. All of these classes are
subclasses of Widget.

As said previously, you will notice changes in look-and-feel as well in the
styling code. To demonstrate the latter, a very simple example is shown below.

Tk code:

l1 = Tkinter.Label(text="Test", fg="black", bg="white")
l2 = Tkinter.Label(text="Test", fg="black", bg="white")

Corresponding Ttk code:

style = ttk.Style()
style.configure("BW.TLabel", foreground="black", background="white")

l1 = ttk.Label(text="Test", style="BW.TLabel")
l2 = ttk.Label(text="Test", style="BW.TLabel")

For more information about TtkStyling read the Style class
documentation.

24.2.3. Widget

ttk.Widget defines standard options and methods supported by Tk
themed widgets and is not supposed to be directly instantiated.

24.2.3.1. Standard Options

All the ttk widgets accept the following options:

	Option
	Description

	class
	Specifies the window class. The class is used when querying
the option database for the window’s other options, to
determine the default bindtags for the window, and to select
the widget’s default layout and style. This is a read-only
option which may only be specified when the window is
created.

	cursor
	Specifies the mouse cursor to be used for the widget. If set
to the empty string (the default), the cursor is inherited
from the parent widget.

	takefocus
	Determines whether the window accepts the focus during
keyboard traversal. 0, 1 or an empty string is returned.
If 0, the window should be skipped entirely
during keyboard traversal. If 1, the window
should receive the input focus as long as it is viewable.
An empty string means that the traversal scripts make the
decision about whether or not to focus on the window.

	style
	May be used to specify a custom widget style.

24.2.3.2. Scrollable Widget Options

The following options are supported by widgets that are controlled by a
scrollbar.

	option
	description

	xscrollcommand
	Used to communicate with horizontal scrollbars.

When the view in the widget’s window changes, the widget
will generate a Tcl command based on the scrollcommand.

Usually this option consists of the
Scrollbar.set() method of some scrollbar. This
will cause
the scrollbar to be updated whenever the view in the
window changes.

	yscrollcommand
	Used to communicate with vertical scrollbars.
For more information, see above.

24.2.3.3. Label Options

The following options are supported by labels, buttons and other button-like
widgets.

	option
	description

	text
	Specifies a text string to be displayed inside the widget.

	textvariable
	Specifies a name whose value will be used in place of the
text option resource.

	underline
	If set, specifies the index (0-based) of a character to
underline in the text string. The underline character is
used for mnemonic activation.

	image
	Specifies an image to display. This is a list of 1 or more
elements. The first element is the default image name. The
rest of the list is a sequence of statespec/value pairs as
defined by Style.map(), specifying different images
to use when the widget is in a particular state or a
combination of states. All images in the list should have
the same size.

	compound
	Specifies how to display the image relative to the text,
in the case both text and image options are present.
Valid values are:

	text: display text only

	image: display image only

	top, bottom, left, right: display image above, below,
left of, or right of the text, respectively.

	none: the default. display the image if present,
otherwise the text.

	width
	If greater than zero, specifies how much space, in
character widths, to allocate for the text label; if less
than zero, specifies a minimum width. If zero or
unspecified, the natural width of the text label is used.

24.2.3.4. Compatibility Options

	option
	description

	state
	May be set to “normal” or “disabled” to control the “disabled”
state bit. This is a write-only option: setting it changes the
widget state, but the Widget.state() method does not
affect this option.

24.2.3.5. Widget States

The widget state is a bitmap of independent state flags.

	flag
	description

	active
	The mouse cursor is over the widget and pressing a mouse
button will cause some action to occur.

	disabled
	Widget is disabled under program control.

	focus
	Widget has keyboard focus.

	pressed
	Widget is being pressed.

	selected
	“On”, “true”, or “current” for things like Checkbuttons and
radiobuttons.

	background
	Windows and Mac have a notion of an “active” or foreground
window. The background state is set for widgets in a
background window, and cleared for those in the foreground
window.

	readonly
	Widget should not allow user modification.

	alternate
	A widget-specific alternate display format.

	invalid
	The widget’s value is invalid.

A state specification is a sequence of state names, optionally prefixed with
an exclamation point indicating that the bit is off.

24.2.3.6. ttk.Widget

Besides the methods described below, the ttk.Widget class supports the
Tkinter.Widget.cget() and Tkinter.Widget.configure() methods.

	
class ttk.Widget

	
	
identify(x, y)

	Returns the name of the element at position x y, or the empty string
if the point does not lie within any element.

x and y are pixel coordinates relative to the widget.

	
instate(statespec[, callback=None[, *args[, **kw]]])

	Test the widget’s state. If a callback is not specified, returns True
if the widget state matches statespec and False otherwise. If callback
is specified then it is called with args if widget state matches
statespec.

	
state([statespec=None])

	Modify or read widget state. If statespec is specified, sets the
widget state accordingly and returns a new statespec indicating
which flags were changed. If statespec is not specified, returns
the currently-enabled state flags.

statespec will usually be a list or a tuple.

24.2.4. Combobox

The ttk.Combobox widget combines a text field with a pop-down list of
values. This widget is a subclass of Entry.

Besides the methods inherited from Widget (Widget.cget(),
Widget.configure(), Widget.identify(), Widget.instate()
and Widget.state()) and those inherited from Entry
(Entry.bbox(), Entry.delete(), Entry.icursor(),
Entry.index(), Entry.inset(), Entry.selection(),
Entry.xview()), this class has some other methods, described at
ttk.Combobox.

24.2.4.1. Options

This widget accepts the following options:

	option
	description

	exportselection
	Boolean value. If set, the widget selection is linked
to the Window Manager selection (which can be returned
by invoking Misc.selection_get(), for example).

	justify
	Specifies how the text is aligned within the widget.
One of “left”, “center”, or “right”.

	height
	Specifies the height of the pop-down listbox, in rows.

	postcommand
	A script (possibly registered with
Misc.register()) that
is called immediately before displaying the values. It
may specify which values to display.

	state
	One of “normal”, “readonly”, or “disabled”. In the
“readonly” state, the value may not be edited directly,
and the user can only select one of the values from the
dropdown list. In the “normal” state, the text field is
directly editable. In the “disabled” state, no
interaction is possible.

	textvariable
	Specifies a name whose value is linked to the widget
value. Whenever the value associated with that name
changes, the widget value is updated, and vice versa.
See Tkinter.StringVar.

	values
	Specifies the list of values to display in the
drop-down listbox.

	width
	Specifies an integer value indicating the desired width
of the entry window, in average-size characters of the
widget’s font.

24.2.4.2. Virtual events

The combobox widget generates a <<ComboboxSelected>> virtual event
when the user selects an element from the list of values.

24.2.4.3. ttk.Combobox

	
class ttk.Combobox

	
	
current([newindex=None])

	If newindex is specified, sets the combobox value to the element
position newindex. Otherwise, returns the index of the current value or
-1 if the current value is not in the values list.

	
get()

	Returns the current value of the combobox.

	
set(value)

	Sets the value of the combobox to value.

24.2.5. Notebook

The Ttk Notebook widget manages a collection of windows and displays a single
one at a time. Each child window is associated with a tab, which the user
may select to change the currently-displayed window.

24.2.5.1. Options

This widget accepts the following specific options:

	option
	description

	height
	If present and greater than zero, specifies the desired height
of the pane area (not including internal padding or tabs).
Otherwise, the maximum height of all panes is used.

	padding
	Specifies the amount of extra space to add around the outside
of the notebook. The padding is a list of up to four length
specifications: left top right bottom. If fewer than four
elements are specified, bottom defaults to top, right defaults
to left, and top defaults to left.

	width
	If present and greater than zero, specifies the desired width
of the pane area (not including internal padding). Otherwise,
the maximum width of all panes is used.

24.2.5.2. Tab Options

There are also specific options for tabs:

	option
	description

	state
	Either “normal”, “disabled” or “hidden”. If “disabled”, then
the tab is not selectable. If “hidden”, then the tab is not
shown.

	sticky
	Specifies how the child window is positioned within the pane
area. Value is a string containing zero or more of the
characters “n”, “s”, “e” or “w”. Each letter refers to a
side (north, south, east or west) that the child window will
stick to, as per the grid() geometry manager.

	padding
	Specifies the amount of extra space to add between the
notebook and this pane. Syntax is the same as for the option
padding used by this widget.

	text
	Specifies a text to be displayed in the tab.

	image
	Specifies an image to display in the tab. See the option
image described in Widget.

	compound
	Specifies how to display the image relative to the text, in
the case both text and image options are present. See
Label Options for legal values.

	underline
	Specifies the index (0-based) of a character to underline in
the text string. The underlined character is used for
mnemonic activation if Notebook.enable_traversal() is
called.

24.2.5.3. Tab Identifiers

The tab_id present in several methods of ttk.Notebook may take any
of the following forms:

	An integer between zero and the number of tabs.

	The name of a child window.

	A positional specification of the form “@x,y”, which identifies the tab.

	The literal string “current”, which identifies the currently-selected tab.

	The literal string “end”, which returns the number of tabs (only valid for
Notebook.index()).

24.2.5.4. Virtual Events

This widget generates a <<NotebookTabChanged>> virtual event after a new
tab is selected.

24.2.5.5. ttk.Notebook

	
class ttk.Notebook

	
	
add(child, **kw)

	Adds a new tab to the notebook.

If window is currently managed by the notebook but hidden, it is
restored to its previous position.

See Tab Options for the list of available options.

	
forget(tab_id)

	Removes the tab specified by tab_id, unmaps and unmanages the
associated window.

	
hide(tab_id)

	Hides the tab specified by tab_id.

The tab will not be displayed, but the associated window remains
managed by the notebook and its configuration remembered. Hidden tabs
may be restored with the add() command.

	
identify(x, y)

	Returns the name of the tab element at position x, y, or the empty
string if none.

	
index(tab_id)

	Returns the numeric index of the tab specified by tab_id, or the total
number of tabs if tab_id is the string “end”.

	
insert(pos, child, **kw)

	Inserts a pane at the specified position.

pos is either the string “end”, an integer index, or the name of a
managed child. If child is already managed by the notebook, moves it to
the specified position.

See Tab Options for the list of available options.

	
select([tab_id])

	Selects the specified tab_id.

The associated child window will be displayed, and the
previously-selected window (if different) is unmapped. If tab_id is
omitted, returns the widget name of the currently selected pane.

	
tab(tab_id[, option=None[, **kw]])

	Query or modify the options of the specific tab_id.

If kw is not given, returns a dictionary of the tab option values. If
option is specified, returns the value of that option. Otherwise,
sets the options to the corresponding values.

	
tabs()

	Returns a list of windows managed by the notebook.

	
enable_traversal()

	Enable keyboard traversal for a toplevel window containing this notebook.

This will extend the bindings for the toplevel window containing the
notebook as follows:

	Control-Tab: selects the tab following the currently selected one.

	Shift-Control-Tab: selects the tab preceding the currently selected one.

	Alt-K: where K is the mnemonic (underlined) character of any tab, will
select that tab.

Multiple notebooks in a single toplevel may be enabled for traversal,
including nested notebooks. However, notebook traversal only works
properly if all panes have the notebook they are in as master.

24.2.6. Progressbar

The ttk.Progressbar widget shows the status of a long-running
operation. It can operate in two modes: determinate mode shows the amount
completed relative to the total amount of work to be done, and indeterminate
mode provides an animated display to let the user know that something is
happening.

24.2.6.1. Options

This widget accepts the following specific options:

	option
	description

	orient
	One of “horizontal” or “vertical”. Specifies the orientation
of the progress bar.

	length
	Specifies the length of the long axis of the progress bar
(width if horizontal, height if vertical).

	mode
	One of “determinate” or “indeterminate”.

	maximum
	A number specifying the maximum value. Defaults to 100.

	value
	The current value of the progress bar. In “determinate” mode,
this represents the amount of work completed. In
“indeterminate” mode, it is interpreted as modulo maximum;
that is, the progress bar completes one “cycle” when its value
increases by maximum.

	variable
	A name which is linked to the option value. If specified, the
value of the progress bar is automatically set to the value of
this name whenever the latter is modified.

	phase
	Read-only option. The widget periodically increments the value
of this option whenever its value is greater than 0 and, in
determinate mode, less than maximum. This option may be used
by the current theme to provide additional animation effects.

24.2.6.2. ttk.Progressbar

	
class ttk.Progressbar

	
	
start([interval])

	Begin autoincrement mode: schedules a recurring timer event that calls
Progressbar.step() every interval milliseconds. If omitted,
interval defaults to 50 milliseconds.

	
step([amount])

	Increments the progress bar’s value by amount.

amount defaults to 1.0 if omitted.

	
stop()

	Stop autoincrement mode: cancels any recurring timer event initiated by
Progressbar.start() for this progress bar.

24.2.7. Separator

The ttk.Separator widget displays a horizontal or vertical separator
bar.

It has no other methods besides the ones inherited from ttk.Widget.

24.2.7.1. Options

This widget accepts the following specific option:

	option
	description

	orient
	One of “horizontal” or “vertical”. Specifies the orientation of
the separator.

24.2.8. Sizegrip

The ttk.Sizegrip widget (also known as a grow box) allows the user to
resize the containing toplevel window by pressing and dragging the grip.

This widget has neither specific options nor specific methods, besides the
ones inherited from ttk.Widget.

24.2.8.1. Platform-specific notes

	On Mac OS X, toplevel windows automatically include a built-in size grip
by default. Adding a Sizegrip is harmless, since the built-in
grip will just mask the widget.

24.2.8.2. Bugs

	If the containing toplevel’s position was specified relative to the right
or bottom of the screen (e.g.), the Sizegrip widget will
not resize the window.

	This widget supports only “southeast” resizing.

24.2.9. Treeview

The ttk.Treeview widget displays a hierarchical collection of items.
Each item has a textual label, an optional image, and an optional list of data
values. The data values are displayed in successive columns after the tree
label.

The order in which data values are displayed may be controlled by setting
the widget option displaycolumns. The tree widget can also display column
headings. Columns may be accessed by number or symbolic names listed in the
widget option columns. See Column Identifiers.

Each item is identified by an unique name. The widget will generate item IDs
if they are not supplied by the caller. There is a distinguished root item,
named {}. The root item itself is not displayed; its children appear at the
top level of the hierarchy.

Each item also has a list of tags, which can be used to associate event bindings
with individual items and control the appearance of the item.

The Treeview widget supports horizontal and vertical scrolling, according to
the options described in Scrollable Widget Options and the methods
Treeview.xview() and Treeview.yview().

24.2.9.1. Options

This widget accepts the following specific options:

	option
	description

	columns
	A list of column identifiers, specifying the number of
columns and their names.

	displaycolumns
	A list of column identifiers (either symbolic or
integer indices) specifying which data columns are
displayed and the order in which they appear, or the
string “#all”.

	height
	Specifies the number of rows which should be visible.
Note: the requested width is determined from the sum
of the column widths.

	padding
	Specifies the internal padding for the widget. The
padding is a list of up to four length specifications.

	selectmode
	Controls how the built-in class bindings manage the
selection. One of “extended”, “browse” or “none”.
If set to “extended” (the default), multiple items may
be selected. If “browse”, only a single item will be
selected at a time. If “none”, the selection will not
be changed.

Note that the application code and tag bindings can set
the selection however they wish, regardless of the
value of this option.

	show
	A list containing zero or more of the following values,
specifying which elements of the tree to display.

	tree: display tree labels in column #0.

	headings: display the heading row.

The default is “tree headings”, i.e., show all
elements.

Note: Column #0 always refers to the tree column,
even if show=”tree” is not specified.

24.2.9.2. Item Options

The following item options may be specified for items in the insert and item
widget commands.

	option
	description

	text
	The textual label to display for the item.

	image
	A Tk Image, displayed to the left of the label.

	values
	The list of values associated with the item.

Each item should have the same number of values as the widget
option columns. If there are fewer values than columns, the
remaining values are assumed empty. If there are more values
than columns, the extra values are ignored.

	open
	True/False value indicating whether the item’s children should
be displayed or hidden.

	tags
	A list of tags associated with this item.

24.2.9.3. Tag Options

The following options may be specified on tags:

	option
	description

	foreground
	Specifies the text foreground color.

	background
	Specifies the cell or item background color.

	font
	Specifies the font to use when drawing text.

	image
	Specifies the item image, in case the item’s image option
is empty.

24.2.9.4. Column Identifiers

Column identifiers take any of the following forms:

	A symbolic name from the list of columns option.

	An integer n, specifying the nth data column.

	A string of the form #n, where n is an integer, specifying the nth display
column.

Notes:

	Item’s option values may be displayed in a different order than the order
in which they are stored.

	Column #0 always refers to the tree column, even if show=”tree” is not
specified.

A data column number is an index into an item’s option values list; a display
column number is the column number in the tree where the values are displayed.
Tree labels are displayed in column #0. If option displaycolumns is not set,
then data column n is displayed in column #n+1. Again, column #0 always
refers to the tree column.

24.2.9.5. Virtual Events

The Treeview widget generates the following virtual events.

	event
	description

	<<TreeviewSelect>>
	Generated whenever the selection changes.

	<<TreeviewOpen>>
	Generated just before settings the focus item to
open=True.

	<<TreeviewClose>>
	Generated just after setting the focus item to
open=False.

The Treeview.focus() and Treeview.selection() methods can be used
to determine the affected item or items.

24.2.9.6. ttk.Treeview

	
class ttk.Treeview

	
	
bbox(item[, column=None])

	Returns the bounding box (relative to the treeview widget’s window) of
the specified item in the form (x, y, width, height).

If column is specified, returns the bounding box of that cell. If the
item is not visible (i.e., if it is a descendant of a closed item or is
scrolled offscreen), returns an empty string.

	
get_children([item])

	Returns the list of children belonging to item.

If item is not specified, returns root children.

	
set_children(item, *newchildren)

	Replaces item‘s child with newchildren.

Children present in item that are not present in newchildren are
detached from the tree. No items in newchildren may be an ancestor of
item. Note that not specifying newchildren results in detaching
item‘s children.

	
column(column[, option=None[, **kw]])

	Query or modify the options for the specified column.

If kw is not given, returns a dict of the column option values. If
option is specified then the value for that option is returned.
Otherwise, sets the options to the corresponding values.

The valid options/values are:

	
	id

	Returns the column name. This is a read-only option.

	
	anchor: One of the standard Tk anchor values.

	Specifies how the text in this column should be aligned with respect
to the cell.

	
	minwidth: width

	The minimum width of the column in pixels. The treeview widget will
not make the column any smaller than specified by this option when
the widget is resized or the user drags a column.

	
	stretch: True/False

	Specifies whether the column’s width should be adjusted when
the widget is resized.

	
	width: width

	The width of the column in pixels.

To configure the tree column, call this with column = “#0”

	
delete(*items)

	Delete all specified items and all their descendants.

The root item may not be deleted.

	
detach(*items)

	Unlinks all of the specified items from the tree.

The items and all of their descendants are still present, and may be
reinserted at another point in the tree, but will not be displayed.

The root item may not be detached.

	
exists(item)

	Returns True if the specified item is present in the tree.

	
focus([item=None])

	If item is specified, sets the focus item to item. Otherwise, returns
the current focus item, or ‘’ if there is none.

	
heading(column[, option=None[, **kw]])

	Query or modify the heading options for the specified column.

If kw is not given, returns a dict of the heading option values. If
option is specified then the value for that option is returned.
Otherwise, sets the options to the corresponding values.

The valid options/values are:

	
	text: text

	The text to display in the column heading.

	
	image: imageName

	Specifies an image to display to the right of the column heading.

	
	anchor: anchor

	Specifies how the heading text should be aligned. One of the standard
Tk anchor values.

	
	command: callback

	A callback to be invoked when the heading label is pressed.

To configure the tree column heading, call this with column = “#0”.

	
identify(component, x, y)

	Returns a description of the specified component under the point given
by x and y, or the empty string if no such component is present at
that position.

	
identify_row(y)

	Returns the item ID of the item at position y.

	
identify_column(x)

	Returns the data column identifier of the cell at position x.

The tree column has ID #0.

	
identify_region(x, y)

	Returns one of:

	region
	meaning

	heading
	Tree heading area.

	separator
	Space between two columns headings.

	tree
	The tree area.

	cell
	A data cell.

Availability: Tk 8.6.

	
identify_element(x, y)

	Returns the element at position x, y.

Availability: Tk 8.6.

	
index(item)

	Returns the integer index of item within its parent’s list of children.

	
insert(parent, index[, iid=None[, **kw]])

	Creates a new item and returns the item identifier of the newly created
item.

parent is the item ID of the parent item, or the empty string to create
a new top-level item. index is an integer, or the value “end”,
specifying where in the list of parent’s children to insert the new item.
If index is less than or equal to zero, the new node is inserted at
the beginning; if index is greater than or equal to the current number
of children, it is inserted at the end. If iid is specified, it is used
as the item identifier; iid must not already exist in the tree.
Otherwise, a new unique identifier is generated.

See Item Options for the list of available points.

	
item(item[, option[, **kw]])

	Query or modify the options for the specified item.

If no options are given, a dict with options/values for the item is
returned.
If option is specified then the value for that option is returned.
Otherwise, sets the options to the corresponding values as given by kw.

	
move(item, parent, index)

	Moves item to position index in parent‘s list of children.

It is illegal to move an item under one of its descendants. If index is
less than or equal to zero, item is moved to the beginning; if greater
than or equal to the number of children, it is moved to the end. If item
was detached it is reattached.

	
next(item)

	Returns the identifier of item‘s next sibling, or ‘’ if item is the
last child of its parent.

	
parent(item)

	Returns the ID of the parent of item, or ‘’ if item is at the top
level of the hierarchy.

	
prev(item)

	Returns the identifier of item‘s previous sibling, or ‘’ if item is
the first child of its parent.

	
reattach(item, parent, index)

	An alias for Treeview.move().

	
see(item)

	Ensure that item is visible.

Sets all of item‘s ancestors open option to True, and scrolls the
widget if necessary so that item is within the visible portion of
the tree.

	
selection([selop=None[, items=None]])

	If selop is not specified, returns selected items. Otherwise, it will
act according to the following selection methods.

	
selection_set(items)

	items becomes the new selection.

	
selection_add(items)

	Add items to the selection.

	
selection_remove(items)

	Remove items from the selection.

	
selection_toggle(items)

	Toggle the selection state of each item in items.

	
set(item[, column=None[, value=None]])

	With one argument, returns a dictionary of column/value pairs for the
specified item. With two arguments, returns the current value of the
specified column. With three arguments, sets the value of given
column in given item to the specified value.

	
tag_bind(tagname[, sequence=None[, callback=None]])

	Bind a callback for the given event sequence to the tag tagname.
When an event is delivered to an item, the callbacks for each of the
item’s tags option are called.

	
tag_configure(tagname[, option=None[, **kw]])

	Query or modify the options for the specified tagname.

If kw is not given, returns a dict of the option settings for
tagname. If option is specified, returns the value for that option
for the specified tagname. Otherwise, sets the options to the
corresponding values for the given tagname.

	
tag_has(tagname[, item])

	If item is specified, returns 1 or 0 depending on whether the specified
item has the given tagname. Otherwise, returns a list of all items
that have the specified tag.

Availability: Tk 8.6

	
xview(*args)

	Query or modify horizontal position of the treeview.

	
yview(*args)

	Query or modify vertical position of the treeview.

24.2.10. Ttk Styling

Each widget in ttk is assigned a style, which specifies the set of
elements making up the widget and how they are arranged, along with dynamic and
default settings for element options. By default the style name is the same as
the widget’s class name, but it may be overridden by the widget’s style
option. If the class name of a widget is unknown, use the method
Misc.winfo_class() (somewidget.winfo_class()).

See also

	Tcl‘2004 conference presentation [http://tktable.sourceforge.net/tile/tile-tcl2004.pdf]

	This document explains how the theme engine works

	
class ttk.Style

	This class is used to manipulate the style database.

	
configure(style, query_opt=None, **kw)

	Query or set the default value of the specified option(s) in style.

Each key in kw is an option and each value is a string identifying
the value for that option.

For example, to change every default button to be a flat button with some
padding and a different background color do:

import ttk
import Tkinter

root = Tkinter.Tk()

ttk.Style().configure("TButton", padding=6, relief="flat",
 background="#ccc")

btn = ttk.Button(text="Sample")
btn.pack()

root.mainloop()

	
map(style, query_opt=None, **kw)

	Query or sets dynamic values of the specified option(s) in style.

Each key in kw is an option and each value should be a list or a
tuple (usually) containing statespecs grouped in tuples, lists, or
something else of your preference. A statespec is a compound of one
or more states and then a value.

An example:

import Tkinter
import ttk

root = Tkinter.Tk()

style = ttk.Style()
style.map("C.TButton",
 foreground=[('pressed', 'red'), ('active', 'blue')],
 background=[('pressed', '!disabled', 'black'), ('active', 'white')]
)

colored_btn = ttk.Button(text="Test", style="C.TButton").pack()

root.mainloop()

Note that the order of the (states, value) sequences for an
option matters. In the previous example, if you change the
order to [('active', 'blue'), ('pressed', 'red')] in the
foreground option, for example, you would get a blue foreground
when the widget is in the active or pressed states.

	
lookup(style, option[, state=None[, default=None]])

	Returns the value specified for option in style.

If state is specified, it is expected to be a sequence of one or more
states. If the default argument is set, it is used as a fallback value
in case no specification for option is found.

To check what font a Button uses by default, do:

import ttk

print ttk.Style().lookup("TButton", "font")

	
layout(style[, layoutspec=None])

	Define the widget layout for given style. If layoutspec is omitted,
return the layout specification for given style.

layoutspec, if specified, is expected to be a list or some other
sequence type (excluding strings), where each item should be a tuple and
the first item is the layout name and the second item should have the
format described described in Layouts.

To understand the format, see the following example (it is not
intended to do anything useful):

import ttk
import Tkinter

root = Tkinter.Tk()

style = ttk.Style()
style.layout("TMenubutton", [
 ("Menubutton.background", None),
 ("Menubutton.button", {"children":
 [("Menubutton.focus", {"children":
 [("Menubutton.padding", {"children":
 [("Menubutton.label", {"side": "left", "expand": 1})]
 })]
 })]
 }),
])

mbtn = ttk.Menubutton(text='Text')
mbtn.pack()
root.mainloop()

	
element_create(elementname, etype, *args, **kw)

	Create a new element in the current theme, of the given etype which is
expected to be either “image”, “from” or “vsapi”. The latter is only
available in Tk 8.6a for Windows XP and Vista and is not described here.

If “image” is used, args should contain the default image name followed
by statespec/value pairs (this is the imagespec), and kw may have the
following options:

	
	border=padding

	padding is a list of up to four integers, specifying the left, top,
right, and bottom borders, respectively.

	
	height=height

	Specifies a minimum height for the element. If less than zero, the
base image’s height is used as a default.

	
	padding=padding

	Specifies the element’s interior padding. Defaults to border’s value
if not specified.

	
	sticky=spec

	Specifies how the image is placed within the final parcel. spec
contains zero or more characters “n”, “s”, “w”, or “e”.

	
	width=width

	Specifies a minimum width for the element. If less than zero, the
base image’s width is used as a default.

If “from” is used as the value of etype,
element_create() will clone an existing
element. args is expected to contain a themename, from which
the element will be cloned, and optionally an element to clone from.
If this element to clone from is not specified, an empty element will
be used. kw is discarded.

	
element_names()

	Returns the list of elements defined in the current theme.

	
element_options(elementname)

	Returns the list of elementname‘s options.

	
theme_create(themename[, parent=None[, settings=None]])

	Create a new theme.

It is an error if themename already exists. If parent is specified,
the new theme will inherit styles, elements and layouts from the parent
theme. If settings are present they are expected to have the same
syntax used for theme_settings().

	
theme_settings(themename, settings)

	Temporarily sets the current theme to themename, apply specified
settings and then restore the previous theme.

Each key in settings is a style and each value may contain the keys
‘configure’, ‘map’, ‘layout’ and ‘element create’ and they are expected
to have the same format as specified by the methods
Style.configure(), Style.map(), Style.layout() and
Style.element_create() respectively.

As an example, let’s change the Combobox for the default theme a bit:

import ttk
import Tkinter

root = Tkinter.Tk()

style = ttk.Style()
style.theme_settings("default", {
 "TCombobox": {
 "configure": {"padding": 5},
 "map": {
 "background": [("active", "green2"),
 ("!disabled", "green4")],
 "fieldbackground": [("!disabled", "green3")],
 "foreground": [("focus", "OliveDrab1"),
 ("!disabled", "OliveDrab2")]
 }
 }
})

combo = ttk.Combobox().pack()

root.mainloop()

	
theme_names()

	Returns a list of all known themes.

	
theme_use([themename])

	If themename is not given, returns the theme in use. Otherwise, sets
the current theme to themename, refreshes all widgets and emits a
<<ThemeChanged>> event.

24.2.10.1. Layouts

A layout can be just None, if it takes no options, or a dict of
options specifying how to arrange the element. The layout mechanism
uses a simplified version of the pack geometry manager: given an
initial cavity, each element is allocated a parcel. Valid
options/values are:

	
	side: whichside

	Specifies which side of the cavity to place the element; one of
top, right, bottom or left. If omitted, the element occupies the
entire cavity.

	
	sticky: nswe

	Specifies where the element is placed inside its allocated parcel.

	
	unit: 0 or 1

	If set to 1, causes the element and all of its descendants to be treated as
a single element for the purposes of Widget.identify() et al. It’s
used for things like scrollbar thumbs with grips.

	
	children: [sublayout...]

	Specifies a list of elements to place inside the element. Each
element is a tuple (or other sequence type) where the first item is
the layout name, and the other is a Layout.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.3. Tix — Extension widgets for Tk

The Tix (Tk Interface Extension) module provides an additional rich set
of widgets. Although the standard Tk library has many useful widgets, they are
far from complete. The Tix library provides most of the commonly needed
widgets that are missing from standard Tk: HList, ComboBox,
Control (a.k.a. SpinBox) and an assortment of scrollable widgets.
Tix also includes many more widgets that are generally useful in a wide
range of applications: NoteBook, FileEntry,
PanedWindow, etc; there are more than 40 of them.

With all these new widgets, you can introduce new interaction techniques into
applications, creating more useful and more intuitive user interfaces. You can
design your application by choosing the most appropriate widgets to match the
special needs of your application and users.

Note

Tix has been renamed to tkinter.tix in Python 3.0. The
2to3 tool will automatically adapt imports when converting your
sources to 3.0.

See also

	Tix Homepage [http://tix.sourceforge.net/]

	The home page for Tix. This includes links to additional documentation
and downloads.

	Tix Man Pages [http://tix.sourceforge.net/dist/current/man/]

	On-line version of the man pages and reference material.

	Tix Programming Guide [http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html]

	On-line version of the programmer’s reference material.

	Tix Development Applications [http://tix.sourceforge.net/Tixapps/src/Tide.html]

	Tix applications for development of Tix and Tkinter programs. Tide applications
work under Tk or Tkinter, and include TixInspect, an inspector to
remotely modify and debug Tix/Tk/Tkinter applications.

24.3.1. Using Tix

	
class Tix.Tix(screenName[, baseName[, className]])

	Toplevel widget of Tix which represents mostly the main window of an
application. It has an associated Tcl interpreter.

Classes in the Tix module subclasses the classes in the Tkinter
module. The former imports the latter, so to use Tix with Tkinter, all
you need to do is to import one module. In general, you can just import
Tix, and replace the toplevel call to Tkinter.Tk with
Tix.Tk:

import Tix
from Tkconstants import *
root = Tix.Tk()

To use Tix, you must have the Tix widgets installed, usually
alongside your installation of the Tk widgets. To test your installation, try
the following:

import Tix
root = Tix.Tk()
root.tk.eval('package require Tix')

If this fails, you have a Tk installation problem which must be resolved before
proceeding. Use the environment variable TIX_LIBRARY to point to the
installed Tix library directory, and make sure you have the dynamic
object library (tix8183.dll or libtix8183.so) in the same
directory that contains your Tk dynamic object library (tk8183.dll or
libtk8183.so). The directory with the dynamic object library should also
have a file called pkgIndex.tcl (case sensitive), which contains the
line:

package ifneeded Tix 8.1 [list load "[file join $dir tix8183.dll]" Tix]

24.3.2. Tix Widgets

Tix [http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm]
introduces over 40 widget classes to the Tkinter repertoire. There is a
demo of all the Tix widgets in the Demo/tix directory of the
standard distribution.

24.3.2.1. Basic Widgets

	
class Tix.Balloon

	A Balloon [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm] that
pops up over a widget to provide help. When the user moves the cursor inside a
widget to which a Balloon widget has been bound, a small pop-up window with a
descriptive message will be shown on the screen.

	
class Tix.ButtonBox

	The ButtonBox [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm]
widget creates a box of buttons, such as is commonly used for Ok Cancel.

	
class Tix.ComboBox

	The ComboBox [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm]
widget is similar to the combo box control in MS Windows. The user can select a
choice by either typing in the entry subwdget or selecting from the listbox
subwidget.

	
class Tix.Control

	The Control [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm]
widget is also known as the SpinBox widget. The user can adjust the
value by pressing the two arrow buttons or by entering the value directly into
the entry. The new value will be checked against the user-defined upper and
lower limits.

	
class Tix.LabelEntry

	The LabelEntry [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm]
widget packages an entry widget and a label into one mega widget. It can be used
be used to simplify the creation of “entry-form” type of interface.

	
class Tix.LabelFrame

	The LabelFrame [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm]
widget packages a frame widget and a label into one mega widget. To create
widgets inside a LabelFrame widget, one creates the new widgets relative to the
frame subwidget and manage them inside the frame subwidget.

	
class Tix.Meter

	The Meter [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm] widget
can be used to show the progress of a background job which may take a long time
to execute.

	
class Tix.OptionMenu

	The OptionMenu [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm]
creates a menu button of options.

	
class Tix.PopupMenu

	The PopupMenu [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm]
widget can be used as a replacement of the tk_popup command. The advantage
of the Tix PopupMenu widget is it requires less application code
to manipulate.

	
class Tix.Select

	The Select [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm] widget
is a container of button subwidgets. It can be used to provide radio-box or
check-box style of selection options for the user.

	
class Tix.StdButtonBox

	The StdButtonBox [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm]
widget is a group of standard buttons for Motif-like dialog boxes.

24.3.2.2. File Selectors

	
class Tix.DirList

	The DirList [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm]
widget displays a list view of a directory, its previous directories and its
sub-directories. The user can choose one of the directories displayed in the
list or change to another directory.

	
class Tix.DirTree

	The DirTree [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm]
widget displays a tree view of a directory, its previous directories and its
sub-directories. The user can choose one of the directories displayed in the
list or change to another directory.

	
class Tix.DirSelectDialog

	The DirSelectDialog [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm]
widget presents the directories in the file system in a dialog window. The user
can use this dialog window to navigate through the file system to select the
desired directory.

	
class Tix.DirSelectBox

	The DirSelectBox is similar to the standard Motif(TM)
directory-selection box. It is generally used for the user to choose a
directory. DirSelectBox stores the directories mostly recently selected into
a ComboBox widget so that they can be quickly selected again.

	
class Tix.ExFileSelectBox

	The ExFileSelectBox [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm]
widget is usually embedded in a tixExFileSelectDialog widget. It provides an
convenient method for the user to select files. The style of the
ExFileSelectBox widget is very similar to the standard file dialog on
MS Windows 3.1.

	
class Tix.FileSelectBox

	The FileSelectBox [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm]
is similar to the standard Motif(TM) file-selection box. It is generally used
for the user to choose a file. FileSelectBox stores the files mostly recently
selected into a ComboBox widget so that they can be quickly selected
again.

	
class Tix.FileEntry

	The FileEntry [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm]
widget can be used to input a filename. The user can type in the filename
manually. Alternatively, the user can press the button widget that sits next to
the entry, which will bring up a file selection dialog.

24.3.2.3. Hierarchical ListBox

	
class Tix.HList

	The HList [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm] widget
can be used to display any data that have a hierarchical structure, for example,
file system directory trees. The list entries are indented and connected by
branch lines according to their places in the hierarchy.

	
class Tix.CheckList

	The CheckList [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm]
widget displays a list of items to be selected by the user. CheckList acts
similarly to the Tk checkbutton or radiobutton widgets, except it is capable of
handling many more items than checkbuttons or radiobuttons.

	
class Tix.Tree

	The Tree [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm] widget
can be used to display hierarchical data in a tree form. The user can adjust the
view of the tree by opening or closing parts of the tree.

24.3.2.4. Tabular ListBox

	
class Tix.TList

	The TList [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm] widget
can be used to display data in a tabular format. The list entries of a
TList widget are similar to the entries in the Tk listbox widget. The
main differences are (1) the TList widget can display the list entries
in a two dimensional format and (2) you can use graphical images as well as
multiple colors and fonts for the list entries.

24.3.2.5. Manager Widgets

	
class Tix.PanedWindow

	The PanedWindow [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm]
widget allows the user to interactively manipulate the sizes of several panes.
The panes can be arranged either vertically or horizontally. The user changes
the sizes of the panes by dragging the resize handle between two panes.

	
class Tix.ListNoteBook

	The ListNoteBook [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm]
widget is very similar to the TixNoteBook widget: it can be used to
display many windows in a limited space using a notebook metaphor. The notebook
is divided into a stack of pages (windows). At one time only one of these pages
can be shown. The user can navigate through these pages by choosing the name of
the desired page in the hlist subwidget.

	
class Tix.NoteBook

	The NoteBook [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm]
widget can be used to display many windows in a limited space using a notebook
metaphor. The notebook is divided into a stack of pages. At one time only one of
these pages can be shown. The user can navigate through these pages by choosing
the visual “tabs” at the top of the NoteBook widget.

24.3.2.6. Image Types

The Tix module adds:

	pixmap [http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm]
capabilities to all Tix and Tkinter widgets to create color images
from XPM files.

	Compound [http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.htm] image
types can be used to create images that consists of multiple horizontal lines;
each line is composed of a series of items (texts, bitmaps, images or spaces)
arranged from left to right. For example, a compound image can be used to
display a bitmap and a text string simultaneously in a Tk Button
widget.

24.3.2.7. Miscellaneous Widgets

	
class Tix.InputOnly

	The InputOnly [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm]
widgets are to accept inputs from the user, which can be done with the bind
command (Unix only).

24.3.2.8. Form Geometry Manager

In addition, Tix augments Tkinter by providing:

	
class Tix.Form

	The Form [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm] geometry
manager based on attachment rules for all Tk widgets.

24.3.3. Tix Commands

	
class Tix.tixCommand

	The tix commands [http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm] provide
access to miscellaneous elements of Tix‘s internal state and the
Tix application context. Most of the information manipulated by these
methods pertains to the application as a whole, or to a screen or display,
rather than to a particular window.

To view the current settings, the common usage is:

import Tix
root = Tix.Tk()
print root.tix_configure()

	
tixCommand.tix_configure([cnf], **kw)

	Query or modify the configuration options of the Tix application context. If no
option is specified, returns a dictionary all of the available options. If
option is specified with no value, then the method returns a list describing the
one named option (this list will be identical to the corresponding sublist of
the value returned if no option is specified). If one or more option-value
pairs are specified, then the method modifies the given option(s) to have the
given value(s); in this case the method returns an empty string. Option may be
any of the configuration options.

	
tixCommand.tix_cget(option)

	Returns the current value of the configuration option given by option. Option
may be any of the configuration options.

	
tixCommand.tix_getbitmap(name)

	Locates a bitmap file of the name name.xpm or name in one of the bitmap
directories (see the tix_addbitmapdir() method). By using
tix_getbitmap(), you can avoid hard coding the pathnames of the bitmap
files in your application. When successful, it returns the complete pathname of
the bitmap file, prefixed with the character @. The returned value can be
used to configure the bitmap option of the Tk and Tix widgets.

	
tixCommand.tix_addbitmapdir(directory)

	Tix maintains a list of directories under which the tix_getimage() and
tix_getbitmap() methods will search for image files. The standard bitmap
directory is $TIX_LIBRARY/bitmaps. The tix_addbitmapdir() method
adds directory into this list. By using this method, the image files of an
applications can also be located using the tix_getimage() or
tix_getbitmap() method.

	
tixCommand.tix_filedialog([dlgclass])

	Returns the file selection dialog that may be shared among different calls from
this application. This method will create a file selection dialog widget when
it is called the first time. This dialog will be returned by all subsequent
calls to tix_filedialog(). An optional dlgclass parameter can be passed
as a string to specified what type of file selection dialog widget is desired.
Possible options are tix, FileSelectDialog or tixExFileSelectDialog.

	
tixCommand.tix_getimage(self, name)

	Locates an image file of the name name.xpm, name.xbm or
name.ppm in one of the bitmap directories (see the
tix_addbitmapdir() method above). If more than one file with the same name
(but different extensions) exist, then the image type is chosen according to the
depth of the X display: xbm images are chosen on monochrome displays and color
images are chosen on color displays. By using tix_getimage(), you can
avoid hard coding the pathnames of the image files in your application. When
successful, this method returns the name of the newly created image, which can
be used to configure the image option of the Tk and Tix widgets.

	
tixCommand.tix_option_get(name)

	Gets the options maintained by the Tix scheme mechanism.

	
tixCommand.tix_resetoptions(newScheme, newFontSet[, newScmPrio])

	Resets the scheme and fontset of the Tix application to newScheme and
newFontSet, respectively. This affects only those widgets created after this
call. Therefore, it is best to call the resetoptions method before the creation
of any widgets in a Tix application.

The optional parameter newScmPrio can be given to reset the priority level of
the Tk options set by the Tix schemes.

Because of the way Tk handles the X option database, after Tix has been has
imported and inited, it is not possible to reset the color schemes and font sets
using the tix_config() method. Instead, the tix_resetoptions()
method must be used.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.4. ScrolledText — Scrolled Text Widget

The ScrolledText module provides a class of the same name which
implements a basic text widget which has a vertical scroll bar configured to do
the “right thing.” Using the ScrolledText class is a lot easier than
setting up a text widget and scroll bar directly. The constructor is the same
as that of the Tkinter.Text class.

Note

ScrolledText has been renamed to tkinter.scrolledtext in Python
3.0. The 2to3 tool will automatically adapt imports when converting
your sources to 3.0.

The text widget and scrollbar are packed together in a Frame, and the
methods of the Grid and Pack geometry managers are acquired
from the Frame object. This allows the ScrolledText widget to
be used directly to achieve most normal geometry management behavior.

Should more specific control be necessary, the following attributes are
available:

	
ScrolledText.frame

	The frame which surrounds the text and scroll bar widgets.

	
ScrolledText.vbar

	The scroll bar widget.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.5. turtle — Turtle graphics for Tk

24.5.1. Introduction

Turtle graphics is a popular way for introducing programming to kids. It was
part of the original Logo programming language developed by Wally Feurzig and
Seymour Papert in 1966.

Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it the
command turtle.forward(15), and it moves (on-screen!) 15 pixels in the
direction it is facing, drawing a line as it moves. Give it the command
turtle.left(25), and it rotates in-place 25 degrees clockwise.

By combining together these and similar commands, intricate shapes and pictures
can easily be drawn.

The turtle module is an extended reimplementation of the same-named
module from the Python standard distribution up to version Python 2.5.

It tries to keep the merits of the old turtle module and to be (nearly) 100%
compatible with it. This means in the first place to enable the learning
programmer to use all the commands, classes and methods interactively when using
the module from within IDLE run with the -n switch.

The turtle module provides turtle graphics primitives, in both object-oriented
and procedure-oriented ways. Because it uses Tkinter for the underlying
graphics, it needs a version of Python installed with Tk support.

The object-oriented interface uses essentially two+two classes:

	The TurtleScreen class defines graphics windows as a playground for
the drawing turtles. Its constructor needs a Tkinter.Canvas or a
ScrolledCanvas as argument. It should be used when turtle is
used as part of some application.

The function Screen() returns a singleton object of a
TurtleScreen subclass. This function should be used when
turtle is used as a standalone tool for doing graphics.
As a singleton object, inheriting from its class is not possible.

All methods of TurtleScreen/Screen also exist as functions, i.e. as part of
the procedure-oriented interface.

	RawTurtle (alias: RawPen) defines Turtle objects which draw
on a TurtleScreen. Its constructor needs a Canvas, ScrolledCanvas
or TurtleScreen as argument, so the RawTurtle objects know where to draw.

Derived from RawTurtle is the subclass Turtle (alias: Pen),
which draws on “the” Screen - instance which is automatically
created, if not already present.

All methods of RawTurtle/Turtle also exist as functions, i.e. part of the
procedure-oriented interface.

The procedural interface provides functions which are derived from the methods
of the classes Screen and Turtle. They have the same names as
the corresponding methods. A screen object is automatically created whenever a
function derived from a Screen method is called. An (unnamed) turtle object is
automatically created whenever any of the functions derived from a Turtle method
is called.

To use multiple turtles an a screen one has to use the object-oriented interface.

Note

In the following documentation the argument list for functions is given.
Methods, of course, have the additional first argument self which is
omitted here.

24.5.2. Overview over available Turtle and Screen methods

24.5.2.1. Turtle methods

	Turtle motion

	
	Move and draw

	
forward() | fd()

backward() | bk() | back()

right() | rt()

left() | lt()

goto() | setpos() | setposition()

setx()

sety()

setheading() | seth()

home()

circle()

dot()

stamp()

clearstamp()

clearstamps()

undo()

speed()

	Tell Turtle’s state

	
position() | pos()

towards()

xcor()

ycor()

heading()

distance()

	Setting and measurement

	
degrees()

radians()

	Pen control

	
	Drawing state

	
pendown() | pd() | down()

penup() | pu() | up()

pensize() | width()

pen()

isdown()

	Color control

	
color()

pencolor()

fillcolor()

	Filling

	
fill()

begin_fill()

end_fill()

	More drawing control

	
reset()

clear()

write()

	Turtle state

	
	Visibility

	
showturtle() | st()

hideturtle() | ht()

isvisible()

	Appearance

	
shape()

resizemode()

shapesize() | turtlesize()

settiltangle()

tiltangle()

tilt()

	Using events

	
onclick()

onrelease()

ondrag()

	Special Turtle methods

	
begin_poly()

end_poly()

get_poly()

clone()

getturtle() | getpen()

getscreen()

setundobuffer()

undobufferentries()

tracer()

window_width()

window_height()

24.5.2.2. Methods of TurtleScreen/Screen

	Window control

	
bgcolor()

bgpic()

clear() | clearscreen()

reset() | resetscreen()

screensize()

setworldcoordinates()

	Animation control

	
delay()

tracer()

update()

	Using screen events

	
listen()

onkey()

onclick() | onscreenclick()

ontimer()

	Settings and special methods

	
mode()

colormode()

getcanvas()

getshapes()

register_shape() | addshape()

turtles()

window_height()

window_width()

	Methods specific to Screen

	
bye()

exitonclick()

setup()

title()

24.5.3. Methods of RawTurtle/Turtle and corresponding functions

Most of the examples in this section refer to a Turtle instance called
turtle.

24.5.3.1. Turtle motion

	
turtle.forward(distance)

	
turtle.fd(distance)

	

	Parameters:	distance – a number (integer or float)

Move the turtle forward by the specified distance, in the direction the
turtle is headed.

>>> turtle.position()
(0.00,0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)

	
turtle.back(distance)

	
turtle.bk(distance)

	
turtle.backward(distance)

	

	Parameters:	distance – a number

Move the turtle backward by distance, opposite to the direction the
turtle is headed. Do not change the turtle’s heading.

>>> turtle.position()
(0.00,0.00)
>>> turtle.backward(30)
>>> turtle.position()
(-30.00,0.00)

	
turtle.right(angle)

	
turtle.rt(angle)

	

	Parameters:	angle – a number (integer or float)

Turn turtle right by angle units. (Units are by default degrees, but
can be set via the degrees() and radians() functions.) Angle
orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.right(45)
>>> turtle.heading()
337.0

	
turtle.left(angle)

	
turtle.lt(angle)

	

	Parameters:	angle – a number (integer or float)

Turn turtle left by angle units. (Units are by default degrees, but
can be set via the degrees() and radians() functions.) Angle
orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0

	
turtle.goto(x, y=None)

	
turtle.setpos(x, y=None)

	
turtle.setposition(x, y=None)

	

	Parameters:	
	x – a number or a pair/vector of numbers

	y – a number or None

If y is None, x must be a pair of coordinates or a Vec2D
(e.g. as returned by pos()).

Move turtle to an absolute position. If the pen is down, draw line. Do
not change the turtle’s orientation.

>>> tp = turtle.pos()
>>> tp
(0.00,0.00)
>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)
>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)
>>> turtle.setpos(tp)
>>> turtle.pos()
(0.00,0.00)

	
turtle.setx(x)

	

	Parameters:	x – a number (integer or float)

Set the turtle’s first coordinate to x, leave second coordinate
unchanged.

>>> turtle.position()
(0.00,240.00)
>>> turtle.setx(10)
>>> turtle.position()
(10.00,240.00)

	
turtle.sety(y)

	

	Parameters:	y – a number (integer or float)

Set the turtle’s second coordinate to y, leave first coordinate unchanged.

>>> turtle.position()
(0.00,40.00)
>>> turtle.sety(-10)
>>> turtle.position()
(0.00,-10.00)

	
turtle.setheading(to_angle)

	
turtle.seth(to_angle)

	

	Parameters:	to_angle – a number (integer or float)

Set the orientation of the turtle to to_angle. Here are some common
directions in degrees:

	standard mode
	logo mode

	0 - east
	0 - north

	90 - north
	90 - east

	180 - west
	180 - south

	270 - south
	270 - west

>>> turtle.setheading(90)
>>> turtle.heading()
90.0

	
turtle.home()

	Move turtle to the origin – coordinates (0,0) – and set its heading to
its start-orientation (which depends on the mode, see mode()).

>>> turtle.heading()
90.0
>>> turtle.position()
(0.00,-10.00)
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

	
turtle.circle(radius, extent=None, steps=None)

	

	Parameters:	
	radius – a number

	extent – a number (or None)

	steps – an integer (or None)

Draw a circle with given radius. The center is radius units left of
the turtle; extent – an angle – determines which part of the circle
is drawn. If extent is not given, draw the entire circle. If extent
is not a full circle, one endpoint of the arc is the current pen
position. Draw the arc in counterclockwise direction if radius is
positive, otherwise in clockwise direction. Finally the direction of the
turtle is changed by the amount of extent.

As the circle is approximated by an inscribed regular polygon, steps
determines the number of steps to use. If not given, it will be
calculated automatically. May be used to draw regular polygons.

>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180) # draw a semicircle
>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0

	
turtle.dot(size=None, *color)

	

	Parameters:	
	size – an integer >= 1 (if given)

	color – a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color. If size is
not given, the maximum of pensize+4 and 2*pensize is used.

>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0

	
turtle.stamp()

	Stamp a copy of the turtle shape onto the canvas at the current turtle
position. Return a stamp_id for that stamp, which can be used to delete
it by calling clearstamp(stamp_id).

>>> turtle.color("blue")
>>> turtle.stamp()
11
>>> turtle.fd(50)

	
turtle.clearstamp(stampid)

	

	Parameters:	stampid – an integer, must be return value of previous
stamp() call

Delete stamp with given stampid.

>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)

	
turtle.clearstamps(n=None)

	

	Parameters:	n – an integer (or None)

Delete all or first/last n of turtle’s stamps. If n is None, delete
all stamps, if n > 0 delete first n stamps, else if n < 0 delete
last n stamps.

>>> for i in range(8):
... turtle.stamp(); turtle.fd(30)
13
14
15
16
17
18
19
20
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()

	
turtle.undo()

	Undo (repeatedly) the last turtle action(s). Number of available
undo actions is determined by the size of the undobuffer.

>>> for i in range(4):
... turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
... turtle.undo()

	
turtle.speed(speed=None)

	

	Parameters:	speed – an integer in the range 0..10 or a speedstring (see below)

Set the turtle’s speed to an integer value in the range 0..10. If no
argument is given, return current speed.

If input is a number greater than 10 or smaller than 0.5, speed is set
to 0. Speedstrings are mapped to speedvalues as follows:

	“fastest”: 0

	“fast”: 10

	“normal”: 6

	“slow”: 3

	“slowest”: 1

Speeds from 1 to 10 enforce increasingly faster animation of line drawing
and turtle turning.

Attention: speed = 0 means that no animation takes
place. forward/back makes turtle jump and likewise left/right make the
turtle turn instantly.

>>> turtle.speed()
3
>>> turtle.speed('normal')
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9

24.5.3.2. Tell Turtle’s state

	
turtle.position()

	
turtle.pos()

	Return the turtle’s current location (x,y) (as a Vec2D vector).

>>> turtle.pos()
(440.00,-0.00)

	
turtle.towards(x, y=None)

	

	Parameters:	
	x – a number or a pair/vector of numbers or a turtle instance

	y – a number if x is a number, else None

Return the angle between the line from turtle position to position specified
by (x,y), the vector or the other turtle. This depends on the turtle’s start
orientation which depends on the mode - “standard”/”world” or “logo”).

>>> turtle.goto(10, 10)
>>> turtle.towards(0,0)
225.0

	
turtle.xcor()

	Return the turtle’s x coordinate.

>>> turtle.home()
>>> turtle.left(50)
>>> turtle.forward(100)
>>> turtle.pos()
(64.28,76.60)
>>> print turtle.xcor()
64.2787609687

	
turtle.ycor()

	Return the turtle’s y coordinate.

>>> turtle.home()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print turtle.pos()
(50.00,86.60)
>>> print turtle.ycor()
86.6025403784

	
turtle.heading()

	Return the turtle’s current heading (value depends on the turtle mode, see
mode()).

>>> turtle.home()
>>> turtle.left(67)
>>> turtle.heading()
67.0

	
turtle.distance(x, y=None)

	

	Parameters:	
	x – a number or a pair/vector of numbers or a turtle instance

	y – a number if x is a number, else None

Return the distance from the turtle to (x,y), the given vector, or the given
other turtle, in turtle step units.

>>> turtle.home()
>>> turtle.distance(30,40)
50.0
>>> turtle.distance((30,40))
50.0
>>> joe = Turtle()
>>> joe.forward(77)
>>> turtle.distance(joe)
77.0

24.5.3.3. Settings for measurement

	
turtle.degrees(fullcircle=360.0)

	

	Parameters:	fullcircle – a number

Set angle measurement units, i.e. set number of “degrees” for a full circle.
Default value is 360 degrees.

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0

Change angle measurement unit to grad (also known as gon,
grade, or gradian and equals 1/100-th of the right angle.)
>>> turtle.degrees(400.0)
>>> turtle.heading()
100.0
>>> turtle.degrees(360)
>>> turtle.heading()
90.0

	
turtle.radians()

	Set the angle measurement units to radians. Equivalent to
degrees(2*math.pi).

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

24.5.3.4. Pen control

24.5.3.4.1. Drawing state

	
turtle.pendown()

	
turtle.pd()

	
turtle.down()

	Pull the pen down – drawing when moving.

	
turtle.penup()

	
turtle.pu()

	
turtle.up()

	Pull the pen up – no drawing when moving.

	
turtle.pensize(width=None)

	
turtle.width(width=None)

	

	Parameters:	width – a positive number

Set the line thickness to width or return it. If resizemode is set to
“auto” and turtleshape is a polygon, that polygon is drawn with the same line
thickness. If no argument is given, the current pensize is returned.

>>> turtle.pensize()
1
>>> turtle.pensize(10) # from here on lines of width 10 are drawn

	
turtle.pen(pen=None, **pendict)

	

	Parameters:	
	pen – a dictionary with some or all of the below listed keys

	pendict – one or more keyword-arguments with the below listed keys as keywords

Return or set the pen’s attributes in a “pen-dictionary” with the following
key/value pairs:

	“shown”: True/False

	“pendown”: True/False

	“pencolor”: color-string or color-tuple

	“fillcolor”: color-string or color-tuple

	“pensize”: positive number

	“speed”: number in range 0..10

	“resizemode”: “auto” or “user” or “noresize”

	“stretchfactor”: (positive number, positive number)

	“outline”: positive number

	“tilt”: number

This dictionary can be used as argument for a subsequent call to pen()
to restore the former pen-state. Moreover one or more of these attributes
can be provided as keyword-arguments. This can be used to set several pen
attributes in one statement.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[('fillcolor', 'black'), ('outline', 1), ('pencolor', 'red'),
 ('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),
 ('shown', True), ('speed', 9), ('stretchfactor', (1, 1)), ('tilt', 0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())
[('fillcolor', ''), ('outline', 1), ('pencolor', 'yellow'),
 ('pendown', False), ('pensize', 10), ('resizemode', 'noresize'),
 ('shown', True), ('speed', 9), ('stretchfactor', (1, 1)), ('tilt', 0)]
>>> turtle.pen(penstate, fillcolor="green")
>>> sorted(turtle.pen().items())
[('fillcolor', 'green'), ('outline', 1), ('pencolor', 'red'),
 ('pendown', True), ('pensize', 10), ('resizemode', 'noresize'),
 ('shown', True), ('speed', 9), ('stretchfactor', (1, 1)), ('tilt', 0)]

	
turtle.isdown()

	Return True if pen is down, False if it’s up.

>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

24.5.3.4.2. Color control

	
turtle.pencolor(*args)

	Return or set the pencolor.

Four input formats are allowed:

	pencolor()

	Return the current pencolor as color specification string or
as a tuple (see example). May be used as input to another
color/pencolor/fillcolor call.

	pencolor(colorstring)

	Set pencolor to colorstring, which is a Tk color specification string,
such as "red", "yellow", or "#33cc8c".

	pencolor((r, g, b))

	Set pencolor to the RGB color represented by the tuple of r, g, and
b. Each of r, g, and b must be in the range 0..colormode, where
colormode is either 1.0 or 255 (see colormode()).

	pencolor(r, g, b)

	
Set pencolor to the RGB color represented by r, g, and b. Each of
r, g, and b must be in the range 0..colormode.

If turtleshape is a polygon, the outline of that polygon is drawn with the
newly set pencolor.

>>> colormode()
1.0
>>> turtle.pencolor()
'red'
>>> turtle.pencolor("brown")
>>> turtle.pencolor()
'brown'
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
(0.2, 0.8, 0.5490196078431373)
>>> colormode(255)
>>> turtle.pencolor()
(51, 204, 140)
>>> turtle.pencolor('#32c18f')
>>> turtle.pencolor()
(50, 193, 143)

	
turtle.fillcolor(*args)

	Return or set the fillcolor.

Four input formats are allowed:

	fillcolor()

	Return the current fillcolor as color specification string, possibly
in tuple format (see example). May be used as input to another
color/pencolor/fillcolor call.

	fillcolor(colorstring)

	Set fillcolor to colorstring, which is a Tk color specification string,
such as "red", "yellow", or "#33cc8c".

	fillcolor((r, g, b))

	Set fillcolor to the RGB color represented by the tuple of r, g, and
b. Each of r, g, and b must be in the range 0..colormode, where
colormode is either 1.0 or 255 (see colormode()).

	fillcolor(r, g, b)

	
Set fillcolor to the RGB color represented by r, g, and b. Each of
r, g, and b must be in the range 0..colormode.

If turtleshape is a polygon, the interior of that polygon is drawn
with the newly set fillcolor.

>>> turtle.fillcolor("violet")
>>> turtle.fillcolor()
'violet'
>>> col = turtle.pencolor()
>>> col
(50, 193, 143)
>>> turtle.fillcolor(col)
>>> turtle.fillcolor()
(50, 193, 143)
>>> turtle.fillcolor('#ffffff')
>>> turtle.fillcolor()
(255, 255, 255)

	
turtle.color(*args)

	Return or set pencolor and fillcolor.

Several input formats are allowed. They use 0 to 3 arguments as
follows:

	color()

	Return the current pencolor and the current fillcolor as a pair of color
specification strings or tuples as returned by pencolor() and
fillcolor().

	color(colorstring), color((r,g,b)), color(r,g,b)

	Inputs as in pencolor(), set both, fillcolor and pencolor, to the
given value.

	color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

	
Equivalent to pencolor(colorstring1) and fillcolor(colorstring2)
and analogously if the other input format is used.

If turtleshape is a polygon, outline and interior of that polygon is drawn
with the newly set colors.

>>> turtle.color("red", "green")
>>> turtle.color()
('red', 'green')
>>> color("#285078", "#a0c8f0")
>>> color()
((40, 80, 120), (160, 200, 240))

See also: Screen method colormode().

24.5.3.4.3. Filling

	
turtle.fill(flag)

	

	Parameters:	flag – True/False (or 1/0 respectively)

Call fill(True) before drawing the shape you want to fill, and
fill(False) when done. When used without argument: return fillstate
(True if filling, False else).

>>> turtle.fill(True)
>>> for _ in range(3):
... turtle.forward(100)
... turtle.left(120)
...
>>> turtle.fill(False)

	
turtle.begin_fill()

	Call just before drawing a shape to be filled. Equivalent to fill(True).

	
turtle.end_fill()

	Fill the shape drawn after the last call to begin_fill(). Equivalent
to fill(False).

>>> turtle.color("black", "red")
>>> turtle.begin_fill()
>>> turtle.circle(80)
>>> turtle.end_fill()

24.5.3.4.4. More drawing control

	
turtle.reset()

	Delete the turtle’s drawings from the screen, re-center the turtle and set
variables to the default values.

>>> turtle.goto(0,-22)
>>> turtle.left(100)
>>> turtle.position()
(0.00,-22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

	
turtle.clear()

	Delete the turtle’s drawings from the screen. Do not move turtle. State and
position of the turtle as well as drawings of other turtles are not affected.

	
turtle.write(arg, move=False, align="left", font=("Arial", 8, "normal"))

	

	Parameters:	
	arg – object to be written to the TurtleScreen

	move – True/False

	align – one of the strings “left”, “center” or right”

	font – a triple (fontname, fontsize, fonttype)

Write text - the string representation of arg - at the current turtle
position according to align (“left”, “center” or right”) and with the given
font. If move is True, the pen is moved to the bottom-right corner of the
text. By default, move is False.

>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)

24.5.3.5. Turtle state

24.5.3.5.1. Visibility

	
turtle.hideturtle()

	
turtle.ht()

	Make the turtle invisible. It’s a good idea to do this while you’re in the
middle of doing some complex drawing, because hiding the turtle speeds up the
drawing observably.

>>> turtle.hideturtle()

	
turtle.showturtle()

	
turtle.st()

	Make the turtle visible.

>>> turtle.showturtle()

	
turtle.isvisible()

	Return True if the Turtle is shown, False if it’s hidden.

>>> turtle.hideturtle()
>>> turtle.isvisible()
False
>>> turtle.showturtle()
>>> turtle.isvisible()
True

24.5.3.5.2. Appearance

	
turtle.shape(name=None)

	

	Parameters:	name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return
name of current shape. Shape with name must exist in the TurtleScreen’s
shape dictionary. Initially there are the following polygon shapes: “arrow”,
“turtle”, “circle”, “square”, “triangle”, “classic”. To learn about how to
deal with shapes see Screen method register_shape().

>>> turtle.shape()
'classic'
>>> turtle.shape("turtle")
>>> turtle.shape()
'turtle'

	
turtle.resizemode(rmode=None)

	

	Parameters:	rmode – one of the strings “auto”, “user”, “noresize”

Set resizemode to one of the values: “auto”, “user”, “noresize”. If rmode
is not given, return current resizemode. Different resizemodes have the
following effects:

	“auto”: adapts the appearance of the turtle corresponding to the value of pensize.

	“user”: adapts the appearance of the turtle according to the values of
stretchfactor and outlinewidth (outline), which are set by
shapesize().

	“noresize”: no adaption of the turtle’s appearance takes place.

resizemode(“user”) is called by shapesize() when used with arguments.

>>> turtle.resizemode()
'noresize'
>>> turtle.resizemode("auto")
>>> turtle.resizemode()
'auto'

	
turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)

	
turtle.turtlesize(stretch_wid=None, stretch_len=None, outline=None)

	

	Parameters:	
	stretch_wid – positive number

	stretch_len – positive number

	outline – positive number

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set
resizemode to “user”. If and only if resizemode is set to “user”, the turtle
will be displayed stretched according to its stretchfactors: stretch_wid is
stretchfactor perpendicular to its orientation, stretch_len is
stretchfactor in direction of its orientation, outline determines the width
of the shapes’s outline.

>>> turtle.shapesize()
(1, 1, 1)
>>> turtle.resizemode("user")
>>> turtle.shapesize(5, 5, 12)
>>> turtle.shapesize()
(5, 5, 12)
>>> turtle.shapesize(outline=8)
>>> turtle.shapesize()
(5, 5, 8)

	
turtle.tilt(angle)

	

	Parameters:	angle – a number

Rotate the turtleshape by angle from its current tilt-angle, but do not
change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(30)
>>> turtle.fd(50)
>>> turtle.tilt(30)
>>> turtle.fd(50)

	
turtle.settiltangle(angle)

	

	Parameters:	angle – a number

Rotate the turtleshape to point in the direction specified by angle,
regardless of its current tilt-angle. Do not change the turtle’s heading
(direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.settiltangle(45)
>>> turtle.fd(50)
>>> turtle.settiltangle(-45)
>>> turtle.fd(50)

	
turtle.tiltangle()

	Return the current tilt-angle, i.e. the angle between the orientation of the
turtleshape and the heading of the turtle (its direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(45)
>>> turtle.tiltangle()
45.0

24.5.3.6. Using events

	
turtle.onclick(fun, btn=1, add=None)

	

	Parameters:	
	fun – a function with two arguments which will be called with the
coordinates of the clicked point on the canvas

	num – number of the mouse-button, defaults to 1 (left mouse button)

	add – True or False – if True, a new binding will be
added, otherwise it will replace a former binding

Bind fun to mouse-click events on this turtle. If fun is None,
existing bindings are removed. Example for the anonymous turtle, i.e. the
procedural way:

>>> def turn(x, y):
... left(180)
...
>>> onclick(turn) # Now clicking into the turtle will turn it.
>>> onclick(None) # event-binding will be removed

	
turtle.onrelease(fun, btn=1, add=None)

	

	Parameters:	
	fun – a function with two arguments which will be called with the
coordinates of the clicked point on the canvas

	num – number of the mouse-button, defaults to 1 (left mouse button)

	add – True or False – if True, a new binding will be
added, otherwise it will replace a former binding

Bind fun to mouse-button-release events on this turtle. If fun is
None, existing bindings are removed.

>>> class MyTurtle(Turtle):
... def glow(self,x,y):
... self.fillcolor("red")
... def unglow(self,x,y):
... self.fillcolor("")
...
>>> turtle = MyTurtle()
>>> turtle.onclick(turtle.glow) # clicking on turtle turns fillcolor red,
>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.

	
turtle.ondrag(fun, btn=1, add=None)

	

	Parameters:	
	fun – a function with two arguments which will be called with the
coordinates of the clicked point on the canvas

	num – number of the mouse-button, defaults to 1 (left mouse button)

	add – True or False – if True, a new binding will be
added, otherwise it will replace a former binding

Bind fun to mouse-move events on this turtle. If fun is None,
existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a
mouse-click event on that turtle.

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across
the screen thereby producing handdrawings (if pen is down).

24.5.3.7. Special Turtle methods

	
turtle.begin_poly()

	Start recording the vertices of a polygon. Current turtle position is first
vertex of polygon.

	
turtle.end_poly()

	Stop recording the vertices of a polygon. Current turtle position is last
vertex of polygon. This will be connected with the first vertex.

	
turtle.get_poly()

	Return the last recorded polygon.

>>> turtle.home()
>>> turtle.begin_poly()
>>> turtle.fd(100)
>>> turtle.left(20)
>>> turtle.fd(30)
>>> turtle.left(60)
>>> turtle.fd(50)
>>> turtle.end_poly()
>>> p = turtle.get_poly()
>>> register_shape("myFavouriteShape", p)

	
turtle.clone()

	Create and return a clone of the turtle with same position, heading and
turtle properties.

>>> mick = Turtle()
>>> joe = mick.clone()

	
turtle.getturtle()

	
turtle.getpen()

	Return the Turtle object itself. Only reasonable use: as a function to
return the “anonymous turtle”:

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<turtle.Turtle object at 0x...>

	
turtle.getscreen()

	Return the TurtleScreen object the turtle is drawing on.
TurtleScreen methods can then be called for that object.

>>> ts = turtle.getscreen()
>>> ts
<turtle._Screen object at 0x...>
>>> ts.bgcolor("pink")

	
turtle.setundobuffer(size)

	

	Parameters:	size – an integer or None

Set or disable undobuffer. If size is an integer an empty undobuffer of
given size is installed. size gives the maximum number of turtle actions
that can be undone by the undo() method/function. If size is
None, the undobuffer is disabled.

>>> turtle.setundobuffer(42)

	
turtle.undobufferentries()

	Return number of entries in the undobuffer.

>>> while undobufferentries():
... undo()

	
turtle.tracer(flag=None, delay=None)

	A replica of the corresponding TurtleScreen method.

Deprecated since version 2.6.

	
turtle.window_width()

	
turtle.window_height()

	Both are replicas of the corresponding TurtleScreen methods.

Deprecated since version 2.6.

24.5.3.8. Excursus about the use of compound shapes

To use compound turtle shapes, which consist of several polygons of different
color, you must use the helper class Shape explicitly as described
below:

	Create an empty Shape object of type “compound”.

	Add as many components to this object as desired, using the
addcomponent() method.

For example:

>>> s = Shape("compound")
>>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s.addcomponent(poly1, "red", "blue")
>>> poly2 = ((0,0),(10,-5),(-10,-5))
>>> s.addcomponent(poly2, "blue", "red")

	Now add the Shape to the Screen’s shapelist and use it:

>>> register_shape("myshape", s)
>>> shape("myshape")

Note

The Shape class is used internally by the register_shape()
method in different ways. The application programmer has to deal with the
Shape class only when using compound shapes like shown above!

24.5.4. Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called
screen.

24.5.4.1. Window control

	
turtle.bgcolor(*args)

	

	Parameters:	args – a color string or three numbers in the range 0..colormode or a
3-tuple of such numbers

Set or return background color of the TurtleScreen.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
'orange'
>>> screen.bgcolor("#800080")
>>> screen.bgcolor()
(128, 0, 128)

	
turtle.bgpic(picname=None)

	

	Parameters:	picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname
is a filename, set the corresponding image as background. If picname is
"nopic", delete background image, if present. If picname is None,
return the filename of the current backgroundimage.

>>> screen.bgpic()
'nopic'
>>> screen.bgpic("landscape.gif")
>>> screen.bgpic()
"landscape.gif"

	
turtle.clear()

	
turtle.clearscreen()

	Delete all drawings and all turtles from the TurtleScreen. Reset the now
empty TurtleScreen to its initial state: white background, no background
image, no event bindings and tracing on.

Note

This TurtleScreen method is available as a global function only under the
name clearscreen. The global function clear is another one
derived from the Turtle method clear.

	
turtle.reset()

	
turtle.resetscreen()

	Reset all Turtles on the Screen to their initial state.

Note

This TurtleScreen method is available as a global function only under the
name resetscreen. The global function reset is another one
derived from the Turtle method reset.

	
turtle.screensize(canvwidth=None, canvheight=None, bg=None)

	

	Parameters:	
	canvwidth – positive integer, new width of canvas in pixels

	canvheight – positive integer, new height of canvas in pixels

	bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else
resize the canvas the turtles are drawing on. Do not alter the drawing
window. To observe hidden parts of the canvas, use the scrollbars. With this
method, one can make visible those parts of a drawing which were outside the
canvas before.

>>> screen.screensize()
(400, 300)
>>> screen.screensize(2000,1500)
>>> screen.screensize()
(2000, 1500)

e.g. to search for an erroneously escaped turtle ;-)

	
turtle.setworldcoordinates(llx, lly, urx, ury)

	

	Parameters:	
	llx – a number, x-coordinate of lower left corner of canvas

	lly – a number, y-coordinate of lower left corner of canvas

	urx – a number, x-coordinate of upper right corner of canvas

	ury – a number, y-coordinate of upper right corner of canvas

Set up user-defined coordinate system and switch to mode “world” if
necessary. This performs a screen.reset(). If mode “world” is already
active, all drawings are redrawn according to the new coordinates.

ATTENTION: in user-defined coordinate systems angles may appear
distorted.

>>> screen.reset()
>>> screen.setworldcoordinates(-50,-7.5,50,7.5)
>>> for _ in range(72):
... left(10)
...
>>> for _ in range(8):
... left(45); fd(2) # a regular octagon

24.5.4.2. Animation control

	
turtle.delay(delay=None)

	

	Parameters:	delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately
the time interval between two consecutive canvas updates.) The longer the
drawing delay, the slower the animation.

Optional argument:

>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5

	
turtle.tracer(n=None, delay=None)

	

	Parameters:	
	n – nonnegative integer

	delay – nonnegative integer

Turn turtle animation on/off and set delay for update drawings. If n is
given, only each n-th regular screen update is really performed. (Can be
used to accelerate the drawing of complex graphics.) Second argument sets
delay value (see delay()).

>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):
... fd(dist)
... rt(90)
... dist += 2

	
turtle.update()

	Perform a TurtleScreen update. To be used when tracer is turned off.

See also the RawTurtle/Turtle method speed().

24.5.4.3. Using screen events

	
turtle.listen(xdummy=None, ydummy=None)

	Set focus on TurtleScreen (in order to collect key-events). Dummy arguments
are provided in order to be able to pass listen() to the onclick method.

	
turtle.onkey(fun, key)

	

	Parameters:	
	fun – a function with no arguments or None

	key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-release event of key. If fun is None, event bindings
are removed. Remark: in order to be able to register key-events, TurtleScreen
must have the focus. (See method listen().)

>>> def f():
... fd(50)
... lt(60)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()

	
turtle.onclick(fun, btn=1, add=None)

	
turtle.onscreenclick(fun, btn=1, add=None)

	

	Parameters:	
	fun – a function with two arguments which will be called with the
coordinates of the clicked point on the canvas

	num – number of the mouse-button, defaults to 1 (left mouse button)

	add – True or False – if True, a new binding will be
added, otherwise it will replace a former binding

Bind fun to mouse-click events on this screen. If fun is None,
existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance
named turtle:

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen will
>>> # make the turtle move to the clicked point.
>>> screen.onclick(None) # remove event binding again

Note

This TurtleScreen method is available as a global function only under the
name onscreenclick. The global function onclick is another one
derived from the Turtle method onclick.

	
turtle.ontimer(fun, t=0)

	

	Parameters:	
	fun – a function with no arguments

	t – a number >= 0

Install a timer that calls fun after t milliseconds.

>>> running = True
>>> def f():
... if running:
... fd(50)
... lt(60)
... screen.ontimer(f, 250)
>>> f() ### makes the turtle march around
>>> running = False

24.5.4.4. Settings and special methods

	
turtle.mode(mode=None)

	

	Parameters:	mode – one of the strings “standard”, “logo” or “world”

Set turtle mode (“standard”, “logo” or “world”) and perform reset. If mode
is not given, current mode is returned.

Mode “standard” is compatible with old turtle. Mode “logo” is
compatible with most Logo turtle graphics. Mode “world” uses user-defined
“world coordinates”. Attention: in this mode angles appear distorted if
x/y unit-ratio doesn’t equal 1.

	Mode
	Initial turtle heading
	positive angles

	“standard”
	to the right (east)
	counterclockwise

	“logo”
	upward (north)
	clockwise

>>> mode("logo") # resets turtle heading to north
>>> mode()
'logo'

	
turtle.colormode(cmode=None)

	

	Parameters:	cmode – one of the values 1.0 or 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b
values of color triples have to be in the range 0..cmode.

>>> screen.colormode(1)
>>> turtle.pencolor(240, 160, 80)
Traceback (most recent call last):
 ...
TurtleGraphicsError: bad color sequence: (240, 160, 80)
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> screen.colormode()
255
>>> turtle.pencolor(240,160,80)

	
turtle.getcanvas()

	Return the Canvas of this TurtleScreen. Useful for insiders who know what to
do with a Tkinter Canvas.

>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas instance at 0x...>

	
turtle.getshapes()

	Return a list of names of all currently available turtle shapes.

>>> screen.getshapes()
['arrow', 'blank', 'circle', ..., 'turtle']

	
turtle.register_shape(name, shape=None)

	
turtle.addshape(name, shape=None)

	There are three different ways to call this function:

	name is the name of a gif-file and shape is None: Install the
corresponding image shape.

>>> screen.register_shape("turtle.gif")

Note

Image shapes do not rotate when turning the turtle, so they do not
display the heading of the turtle!

	name is an arbitrary string and shape is a tuple of pairs of
coordinates: Install the corresponding polygon shape.

>>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))

	name is an arbitrary string and shape is a (compound) Shape
object: Install the corresponding compound shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered
shapes can be used by issuing the command shape(shapename).

	
turtle.turtles()

	Return the list of turtles on the screen.

>>> for turtle in screen.turtles():
... turtle.color("red")

	
turtle.window_height()

	Return the height of the turtle window.

>>> screen.window_height()
480

	
turtle.window_width()

	Return the width of the turtle window.

>>> screen.window_width()
640

24.5.4.5. Methods specific to Screen, not inherited from TurtleScreen

	
turtle.bye()

	Shut the turtlegraphics window.

	
turtle.exitonclick()

	Bind bye() method to mouse clicks on the Screen.

If the value “using_IDLE” in the configuration dictionary is False
(default value), also enter mainloop. Remark: If IDLE with the -n switch
(no subprocess) is used, this value should be set to True in
turtle.cfg. In this case IDLE’s own mainloop is active also for the
client script.

	
turtle.setup(width=_CFG["width"], height=_CFG["height"], startx=_CFG["leftright"], starty=_CFG["topbottom"])

	Set the size and position of the main window. Default values of arguments
are stored in the configuration dictionary and can be changed via a
turtle.cfg file.

	Parameters:	
	width – if an integer, a size in pixels, if a float, a fraction of the
screen; default is 50% of screen

	height – if an integer, the height in pixels, if a float, a fraction of
the screen; default is 75% of screen

	startx – if positive, starting position in pixels from the left
edge of the screen, if negative from the right edge, if None,
center window horizontally

	startx – if positive, starting position in pixels from the top
edge of the screen, if negative from the bottom edge, if None,
center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)
>>> # sets window to 200x200 pixels, in upper left of screen
>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)
>>> # sets window to 75% of screen by 50% of screen and centers

	
turtle.title(titlestring)

	

	Parameters:	titlestring – a string that is shown in the titlebar of the turtle
graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

24.5.5. The public classes of the module turtle

	
class turtle.RawTurtle(canvas)

	
class turtle.RawPen(canvas)

	

	Parameters:	canvas – a Tkinter.Canvas, a ScrolledCanvas or a
TurtleScreen

Create a turtle. The turtle has all methods described above as “methods of
Turtle/RawTurtle”.

	
class turtle.Turtle

	Subclass of RawTurtle, has the same interface but draws on a default
Screen object created automatically when needed for the first time.

	
class turtle.TurtleScreen(cv)

	

	Parameters:	cv – a Tkinter.Canvas

Provides screen oriented methods like setbg() etc. that are described
above.

	
class turtle.Screen

	Subclass of TurtleScreen, with four methods added.

	
class turtle.ScrolledCanvas(master)

	

	Parameters:	master – some Tkinter widget to contain the ScrolledCanvas, i.e.
a Tkinter-canvas with scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as
playground for the turtles.

	
class turtle.Shape(type_, data)

	

	Parameters:	type_ – one of the strings “polygon”, “image”, “compound”

Data structure modeling shapes. The pair (type_, data) must follow this
specification:

	type_
	data

	“polygon”
	a polygon-tuple, i.e. a tuple of pairs of coordinates

	“image”
	an image (in this form only used internally!)

	“compound”
	None (a compound shape has to be constructed using the
addcomponent() method)

	
addcomponent(poly, fill, outline=None)

	

	Parameters:	
	poly – a polygon, i.e. a tuple of pairs of numbers

	fill – a color the poly will be filled with

	outline – a color for the poly’s outline (if given)

Example:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s = Shape("compound")
>>> s.addcomponent(poly, "red", "blue")
>>> # ... add more components and then use register_shape()

See Excursus about the use of compound shapes.

	
class turtle.Vec2D(x, y)

	A two-dimensional vector class, used as a helper class for implementing
turtle graphics. May be useful for turtle graphics programs too. Derived
from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

	a + b vector addition

	a - b vector subtraction

	a * b inner product

	k * a and a * k multiplication with scalar

	abs(a) absolute value of a

	a.rotate(angle) rotation

24.5.6. Help and configuration

24.5.6.1. How to use help

The public methods of the Screen and Turtle classes are documented extensively
via docstrings. So these can be used as online-help via the Python help
facilities:

	When using IDLE, tooltips show the signatures and first lines of the
docstrings of typed in function-/method calls.

	Calling help() on methods or functions displays the docstrings:

>>> help(Screen.bgcolor)
Help on method bgcolor in module turtle:

bgcolor(self, *args) unbound turtle.Screen method
 Set or return backgroundcolor of the TurtleScreen.

 Arguments (if given): a color string or three numbers
 in the range 0..colormode or a 3-tuple of such numbers.

 >>> screen.bgcolor("orange")
 >>> screen.bgcolor()
 "orange"
 >>> screen.bgcolor(0.5,0,0.5)
 >>> screen.bgcolor()
 "#800080"

>>> help(Turtle.penup)
Help on method penup in module turtle:

penup(self) unbound turtle.Turtle method
 Pull the pen up -- no drawing when moving.

 Aliases: penup | pu | up

 No argument

 >>> turtle.penup()

	The docstrings of the functions which are derived from methods have a modified
form:

>>> help(bgcolor)
Help on function bgcolor in module turtle:

bgcolor(*args)
 Set or return backgroundcolor of the TurtleScreen.

 Arguments (if given): a color string or three numbers
 in the range 0..colormode or a 3-tuple of such numbers.

 Example::

 >>> bgcolor("orange")
 >>> bgcolor()
 "orange"
 >>> bgcolor(0.5,0,0.5)
 >>> bgcolor()
 "#800080"

>>> help(penup)
Help on function penup in module turtle:

penup()
 Pull the pen up -- no drawing when moving.

 Aliases: penup | pu | up

 No argument

 Example:
 >>> penup()

These modified docstrings are created automatically together with the function
definitions that are derived from the methods at import time.

24.5.6.2. Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names
and the values of which are the docstrings of the public methods of the classes
Screen and Turtle.

	
turtle.write_docstringdict(filename="turtle_docstringdict")

	

	Parameters:	filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given
filename. This function has to be called explicitly (it is not used by the
turtle graphics classes). The docstring dictionary will be written to the
Python script filename.py. It is intended to serve as a template
for translation of the docstrings into different languages.

If you (or your students) want to use turtle with online help in your
native language, you have to translate the docstrings and save the resulting
file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary
will be read in at import time and will replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in
Italian. (Requests please to glingl@aon.at.)

24.5.6.3. How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the
old turtle module in order to retain best possible compatibility with it.

If you want to use a different configuration which better reflects the features
of this module or which better fits to your needs, e.g. for use in a classroom,
you can prepare a configuration file turtle.cfg which will be read at import
time and modify the configuration according to its settings.

The built in configuration would correspond to the following turtle.cfg:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize = 1000
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle = turtle
examplescreen = screen
title = Python Turtle Graphics
using_IDLE = False

Short explanation of selected entries:

	The first four lines correspond to the arguments of the Screen.setup()
method.

	Line 5 and 6 correspond to the arguments of the method
Screen.screensize().

	shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more
info try help(shape).

	If you want to use no fillcolor (i.e. make the turtle transparent), you have
to write fillcolor = "" (but all nonempty strings must not have quotes in
the cfg-file).

	If you want to reflect the turtle its state, you have to use resizemode =
auto.

	If you set e.g. language = italian the docstringdict
turtle_docstringdict_italian.py will be loaded at import time (if
present on the import path, e.g. in the same directory as turtle.

	The entries exampleturtle and examplescreen define the names of these
objects as they occur in the docstrings. The transformation of
method-docstrings to function-docstrings will delete these names from the
docstrings.

	using_IDLE: Set this to True if you regularly work with IDLE and its -n
switch (“no subprocess”). This will prevent exitonclick() to enter the
mainloop.

There can be a turtle.cfg file in the directory where turtle is
stored and an additional one in the current working directory. The latter will
override the settings of the first one.

The Demo/turtle directory contains a turtle.cfg file. You can
study it as an example and see its effects when running the demos (preferably
not from within the demo-viewer).

24.5.7. Demo scripts

There is a set of demo scripts in the turtledemo directory located in the
Demo/turtle directory in the source distribution.

It contains:

	a set of 15 demo scripts demonstrating different features of the new module
turtle

	a demo viewer turtleDemo.py which can be used to view the sourcecode
of the scripts and run them at the same time. 14 of the examples can be
accessed via the Examples menu; all of them can also be run standalone.

	The example turtledemo_two_canvases.py demonstrates the simultaneous
use of two canvases with the turtle module. Therefore it only can be run
standalone.

	There is a turtle.cfg file in this directory, which also serves as an
example for how to write and use such files.

The demoscripts are:

	Name
	Description
	Features

	bytedesign
	complex classical
turtlegraphics pattern
	tracer(), delay,
update()

	chaos
	graphs Verhulst dynamics,
shows that computer’s
computations can generate
results sometimes against the
common sense expectations
	world coordinates

	clock
	analog clock showing time
of your computer
	turtles as clock’s
hands, ontimer

	colormixer
	experiment with r, g, b
	ondrag()

	fractalcurves
	Hilbert & Koch curves
	recursion

	lindenmayer
	ethnomathematics
(indian kolams)
	L-System

	minimal_hanoi
	Towers of Hanoi
	Rectangular Turtles
as Hanoi discs
(shape, shapesize)

	paint
	super minimalistic
drawing program
	onclick()

	peace
	elementary
	turtle: appearance
and animation

	penrose
	aperiodic tiling with
kites and darts
	stamp()

	planet_and_moon
	simulation of
gravitational system
	compound shapes,
Vec2D

	tree
	a (graphical) breadth
first tree (using generators)
	clone()

	wikipedia
	a pattern from the wikipedia
article on turtle graphics
	clone(),
undo()

	yingyang
	another elementary example
	circle()

Have fun!

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.6. IDLE

IDLE is the Python IDE built with the tkinter GUI toolkit.

IDLE has the following features:

	coded in 100% pure Python, using the tkinter GUI toolkit

	cross-platform: works on Windows and Unix

	multi-window text editor with multiple undo, Python colorizing and many other
features, e.g. smart indent and call tips

	Python shell window (a.k.a. interactive interpreter)

	debugger (not complete, but you can set breakpoints, view and step)

24.6.1. Menus

24.6.1.1. File menu

	New window

	create a new editing window

	Open...

	open an existing file

	Open module...

	open an existing module (searches sys.path)

	Class browser

	show classes and methods in current file

	Path browser

	show sys.path directories, modules, classes and methods

	Save

	save current window to the associated file (unsaved windows have a * before and
after the window title)

	Save As...

	save current window to new file, which becomes the associated file

	Save Copy As...

	save current window to different file without changing the associated file

	Close

	close current window (asks to save if unsaved)

	Exit

	close all windows and quit IDLE (asks to save if unsaved)

24.6.1.2. Edit menu

	Undo

	Undo last change to current window (max 1000 changes)

	Redo

	Redo last undone change to current window

	Cut

	Copy selection into system-wide clipboard; then delete selection

	Copy

	Copy selection into system-wide clipboard

	Paste

	Insert system-wide clipboard into window

	Select All

	Select the entire contents of the edit buffer

	Find...

	Open a search dialog box with many options

	Find again

	Repeat last search

	Find selection

	Search for the string in the selection

	Find in Files...

	Open a search dialog box for searching files

	Replace...

	Open a search-and-replace dialog box

	Go to line

	Ask for a line number and show that line

	Indent region

	Shift selected lines right 4 spaces

	Dedent region

	Shift selected lines left 4 spaces

	Comment out region

	Insert ## in front of selected lines

	Uncomment region

	Remove leading # or ## from selected lines

	Tabify region

	Turns leading stretches of spaces into tabs

	Untabify region

	Turn all tabs into the right number of spaces

	Expand word

	Expand the word you have typed to match another word in the same buffer; repeat
to get a different expansion

	Format Paragraph

	Reformat the current blank-line-separated paragraph

	Import module

	Import or reload the current module

	Run script

	Execute the current file in the __main__ namespace

24.6.1.3. Windows menu

	Zoom Height

	toggles the window between normal size (24x80) and maximum height.

The rest of this menu lists the names of all open windows; select one to bring
it to the foreground (deiconifying it if necessary).

24.6.1.4. Debug menu (in the Python Shell window only)

	Go to file/line

	look around the insert point for a filename and linenumber, open the file, and
show the line.

	Open stack viewer

	show the stack traceback of the last exception

	Debugger toggle

	Run commands in the shell under the debugger

	JIT Stack viewer toggle

	Open stack viewer on traceback

24.6.2. Basic editing and navigation

	Backspace deletes to the left; Del deletes to the right

	Arrow keys and Page Up/Page Down to move around

	Home/End go to begin/end of line

	C-Home/C-End go to begin/end of file

	Some Emacs bindings may also work, including C-B,
C-P, C-A, C-E, C-D, C-L

24.6.2.1. Automatic indentation

After a block-opening statement, the next line is indented by 4 spaces (in the
Python Shell window by one tab). After certain keywords (break, return etc.)
the next line is dedented. In leading indentation, Backspace deletes up
to 4 spaces if they are there. Tab inserts 1-4 spaces (in the Python
Shell window one tab). See also the indent/dedent region commands in the edit
menu.

24.6.2.2. Python Shell window

	C-C interrupts executing command

	C-D sends end-of-file; closes window if typed at a >>> prompt

	Alt-p retrieves previous command matching what you have typed

	Alt-n retrieves next

	Return while on any previous command retrieves that command

	Alt-/ (Expand word) is also useful here

24.6.3. Syntax colors

The coloring is applied in a background “thread,” so you may occasionally see
uncolorized text. To change the color scheme, edit the [Colors] section in
config.txt.

	Python syntax colors:

	
	Keywords

	orange

	Strings

	green

	Comments

	red

	Definitions

	blue

	Shell colors:

	
	Console output

	brown

	stdout

	blue

	stderr

	dark green

	stdin

	black

24.6.4. Startup

Upon startup with the -s option, IDLE will execute the file referenced by
the environment variables IDLESTARTUP or PYTHONSTARTUP.
Idle first checks for IDLESTARTUP; if IDLESTARTUP is present the file
referenced is run. If IDLESTARTUP is not present, Idle checks for
PYTHONSTARTUP. Files referenced by these environment variables are
convenient places to store functions that are used frequently from the Idle
shell, or for executing import statements to import common modules.

In addition, Tk also loads a startup file if it is present. Note that the
Tk file is loaded unconditionally. This additional file is .Idle.py and is
looked for in the user’s home directory. Statements in this file will be
executed in the Tk namespace, so this file is not useful for importing functions
to be used from Idle’s Python shell.

24.6.4.1. Command line usage

idle.py [-c command] [-d] [-e] [-s] [-t title] [arg] ...

-c command run this command
-d enable debugger
-e edit mode; arguments are files to be edited
-s run $IDLESTARTUP or $PYTHONSTARTUP first
-t title set title of shell window

If there are arguments:

	If -e is used, arguments are files opened for editing and
sys.argv reflects the arguments passed to IDLE itself.

	Otherwise, if -c is used, all arguments are placed in
sys.argv[1:...], with sys.argv[0] set to '-c'.

	Otherwise, if neither -e nor -c is used, the first
argument is a script which is executed with the remaining arguments in
sys.argv[1:...] and sys.argv[0] set to the script name. If the script
name is ‘-‘, no script is executed but an interactive Python session is started;
the arguments are still available in sys.argv.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	24. Graphical User Interfaces with Tk

24.7. Other Graphical User Interface Packages

There are an number of extension widget sets to Tkinter.

See also

	Python megawidgets [http://pmw.sourceforge.net/]

	is a toolkit for building high-level compound widgets in Python using the
Tkinter module. It consists of a set of base classes and a library of
flexible and extensible megawidgets built on this foundation. These megawidgets
include notebooks, comboboxes, selection widgets, paned widgets, scrolled
widgets, dialog windows, etc. Also, with the Pmw.Blt interface to BLT, the
busy, graph, stripchart, tabset and vector commands are be available.

The initial ideas for Pmw were taken from the Tk itcl extensions [incr
Tk] by Michael McLennan and [incr Widgets] by Mark Ulferts. Several of the
megawidgets are direct translations from the itcl to Python. It offers most of
the range of widgets that [incr Widgets] does, and is almost as complete as
Tix, lacking however Tix’s fast HList widget for drawing trees.

	Tkinter3000 Widget Construction Kit (WCK) [http://tkinter.effbot.org/]

	is a library that allows you to write new Tkinter widgets in pure Python. The
WCK framework gives you full control over widget creation, configuration, screen
appearance, and event handling. WCK widgets can be very fast and light-weight,
since they can operate directly on Python data structures, without having to
transfer data through the Tk/Tcl layer.

The major cross-platform (Windows, Mac OS X, Unix-like) GUI toolkits that are
also available for Python:

See also

	PyGTK [http://www.pygtk.org/]

	is a set of bindings for the GTK [http://www.gtk.org/] widget set. It
provides an object oriented interface that is slightly higher level than
the C one. It comes with many more widgets than Tkinter provides, and has
good Python-specific reference documentation. There are also bindings to
GNOME [http://www.gnome.org]. One well known PyGTK application is
PythonCAD [http://www.pythoncad.org/]. An online tutorial [http://www.pygtk.org/pygtk2tutorial/index.html] is available.

	PyQt [http://www.riverbankcomputing.co.uk/software/pyqt/]

	PyQt is a sip-wrapped binding to the Qt toolkit. Qt is an
extensive C++ GUI application development framework that is
available for Unix, Windows and Mac OS X. sip is a tool
for generating bindings for C++ libraries as Python classes, and
is specifically designed for Python. The PyQt3 bindings have a
book, GUI Programming with Python: QT Edition [http://www.commandprompt.com/community/pyqt/] by Boudewijn
Rempt. The PyQt4 bindings also have a book, Rapid GUI Programming
with Python and Qt [http://www.qtrac.eu/pyqtbook.html], by Mark
Summerfield.

	wxPython [http://www.wxpython.org]

	wxPython is a cross-platform GUI toolkit for Python that is built around
the popular wxWidgets [http://www.wxwidgets.org/] (formerly wxWindows)
C++ toolkit. It provides a native look and feel for applications on
Windows, Mac OS X, and Unix systems by using each platform’s native
widgets where ever possible, (GTK+ on Unix-like systems). In addition to
an extensive set of widgets, wxPython provides classes for online
documentation and context sensitive help, printing, HTML viewing,
low-level device context drawing, drag and drop, system clipboard access,
an XML-based resource format and more, including an ever growing library
of user-contributed modules. wxPython has a book, wxPython in Action [http://www.amazon.com/exec/obidos/ASIN/1932394621], by Noel Rappin and
Robin Dunn.

PyGTK, PyQt, and wxPython, all have a modern look and feel and more
widgets than Tkinter. In addition, there are many other GUI toolkits for
Python, both cross-platform, and platform-specific. See the GUI Programming [http://wiki.python.org/moin/GuiProgramming] page in the Python Wiki for a
much more complete list, and also for links to documents where the
different GUI toolkits are compared.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

25. Development Tools

The modules described in this chapter help you write software. For example, the
pydoc module takes a module and generates documentation based on the
module’s contents. The doctest and unittest modules contains
frameworks for writing unit tests that automatically exercise code and verify
that the expected output is produced. 2to3 can translate Python 2.x
source code into valid Python 3.x code.

The list of modules described in this chapter is:

	25.1. pydoc — Documentation generator and online help system

	25.2. doctest — Test interactive Python examples
	25.2.1. Simple Usage: Checking Examples in Docstrings

	25.2.2. Simple Usage: Checking Examples in a Text File

	25.2.3. How It Works
	25.2.3.1. Which Docstrings Are Examined?

	25.2.3.2. How are Docstring Examples Recognized?

	25.2.3.3. What’s the Execution Context?

	25.2.3.4. What About Exceptions?

	25.2.3.5. Option Flags and Directives

	25.2.3.6. Warnings

	25.2.4. Basic API

	25.2.5. Unittest API

	25.2.6. Advanced API
	25.2.6.1. DocTest Objects

	25.2.6.2. Example Objects

	25.2.6.3. DocTestFinder objects

	25.2.6.4. DocTestParser objects

	25.2.6.5. DocTestRunner objects

	25.2.6.6. OutputChecker objects

	25.2.7. Debugging

	25.2.8. Soapbox

	25.3. unittest — Unit testing framework
	25.3.1. Basic example

	25.3.2. Command-Line Interface
	25.3.2.1. Command-line options

	25.3.3. Test Discovery

	25.3.4. Organizing test code

	25.3.5. Re-using old test code

	25.3.6. Skipping tests and expected failures

	25.3.7. Classes and functions
	25.3.7.1. Test cases
	25.3.7.1.1. Deprecated aliases

	25.3.7.2. Grouping tests

	25.3.7.3. Loading and running tests
	25.3.7.3.1. load_tests Protocol

	25.3.8. Class and Module Fixtures
	25.3.8.1. setUpClass and tearDownClass

	25.3.8.2. setUpModule and tearDownModule

	25.3.9. Signal Handling

	25.4. 2to3 - Automated Python 2 to 3 code translation
	25.4.1. Using 2to3

	25.4.2. Fixers

	25.4.3. lib2to3 - 2to3’s library

	25.5. test — Regression tests package for Python
	25.5.1. Writing Unit Tests for the test package

	25.5.2. Running tests using the command-line interface

	25.6. test.test_support — Utility functions for tests

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	25. Development Tools

25.1. pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python
modules. The documentation can be presented as pages of text on the console,
served to a Web browser, or saved to HTML files.

The built-in function help() invokes the online help system in the
interactive interpreter, which uses pydoc to generate its documentation
as text on the console. The same text documentation can also be viewed from
outside the Python interpreter by running pydoc as a script at the
operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on the sys module, in a
style similar to the manual pages shown by the Unix man command. The
argument to pydoc can be the name of a function, module, or package,
or a dotted reference to a class, method, or function within a module or module
in a package. If the argument to pydoc looks like a path (that is,
it contains the path separator for your operating system, such as a slash in
Unix), and refers to an existing Python source file, then documentation is
produced for that file.

Note

In order to find objects and their documentation, pydoc imports the
module(s) to be documented. Therefore, any code on module level will be
executed on that occasion. Use an if __name__ == '__main__': guard to
only execute code when a file is invoked as a script and not just imported.

Specifying a -w flag before the argument will cause HTML documentation
to be written out to a file in the current directory, instead of displaying text
on the console.

Specifying a -k flag before the argument will search the synopsis
lines of all available modules for the keyword given as the argument, again in a
manner similar to the Unix man command. The synopsis line of a
module is the first line of its documentation string.

You can also use pydoc to start an HTTP server on the local machine
that will serve documentation to visiting Web browsers. pydoc -p 1234
will start a HTTP server on port 1234, allowing you to browse
the documentation at http://localhost:1234/ in your preferred Web browser.
pydoc -g will start the server and additionally bring up a
small Tkinter-based graphical interface to help you search for
documentation pages.

When pydoc generates documentation, it uses the current environment
and path to locate modules. Thus, invoking pydoc spam
documents precisely the version of the module you would get if you started the
Python interpreter and typed import spam.

Module docs for core modules are assumed to reside in
http://docs.python.org/library/. This can be overridden by setting the
PYTHONDOCS environment variable to a different URL or to a local
directory containing the Library Reference Manual pages.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	25. Development Tools

25.2. doctest — Test interactive Python examples

The doctest module searches for pieces of text that look like interactive
Python sessions, and then executes those sessions to verify that they work
exactly as shown. There are several common ways to use doctest:

	To check that a module’s docstrings are up-to-date by verifying that all
interactive examples still work as documented.

	To perform regression testing by verifying that interactive examples from a
test file or a test object work as expected.

	To write tutorial documentation for a package, liberally illustrated with
input-output examples. Depending on whether the examples or the expository text
are emphasized, this has the flavor of “literate testing” or “executable
documentation”.

Here’s a complete but small example module:

"""
This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)
120
"""

def factorial(n):
 """Return the factorial of n, an exact integer >= 0.

 If the result is small enough to fit in an int, return an int.
 Else return a long.

 >>> [factorial(n) for n in range(6)]
 [1, 1, 2, 6, 24, 120]
 >>> [factorial(long(n)) for n in range(6)]
 [1, 1, 2, 6, 24, 120]
 >>> factorial(30)
 265252859812191058636308480000000L
 >>> factorial(30L)
 265252859812191058636308480000000L
 >>> factorial(-1)
 Traceback (most recent call last):
 ...
 ValueError: n must be >= 0

 Factorials of floats are OK, but the float must be an exact integer:
 >>> factorial(30.1)
 Traceback (most recent call last):
 ...
 ValueError: n must be exact integer
 >>> factorial(30.0)
 265252859812191058636308480000000L

 It must also not be ridiculously large:
 >>> factorial(1e100)
 Traceback (most recent call last):
 ...
 OverflowError: n too large
 """

 import math
 if not n >= 0:
 raise ValueError("n must be >= 0")
 if math.floor(n) != n:
 raise ValueError("n must be exact integer")
 if n+1 == n: # catch a value like 1e300
 raise OverflowError("n too large")
 result = 1
 factor = 2
 while factor <= n:
 result *= factor
 factor += 1
 return result

if __name__ == "__main__":
 import doctest
 doctest.testmod()

If you run example.py directly from the command line, doctest
works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass
-v to the script, and doctest prints a detailed log of what
it’s trying, and prints a summary at the end:

$ python example.py -v
Trying:
 factorial(5)
Expecting:
 120
ok
Trying:
 [factorial(n) for n in range(6)]
Expecting:
 [1, 1, 2, 6, 24, 120]
ok
Trying:
 [factorial(long(n)) for n in range(6)]
Expecting:
 [1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

Trying:
 factorial(1e100)
Expecting:
 Traceback (most recent call last):
 ...
 OverflowError: n too large
ok
2 items passed all tests:
 1 tests in __main__
 8 tests in __main__.factorial
9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest!
Jump in. The following sections provide full details. Note that there are many
examples of doctests in the standard Python test suite and libraries.
Especially useful examples can be found in the standard test file
Lib/test/test_doctest.py.

25.2.1. Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll
continue to do it) is to end each module M with:

if __name__ == "__main__":
 import doctest
 doctest.testmod()

doctest then examines docstrings in module M.

Running the module as a script causes the examples in the docstrings to get
executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing
example(s) and the cause(s) of the failure(s) are printed to stdout, and the
final line of output is ***Test Failed*** N failures., where N is the
number of examples that failed.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along
with assorted summaries at the end.

You can force verbose mode by passing verbose=True to testmod(), or
prohibit it by passing verbose=False. In either of those cases,
sys.argv is not examined by testmod() (so passing -v or not
has no effect).

Since Python 2.6, there is also a command line shortcut for running
testmod(). You can instruct the Python interpreter to run the doctest
module directly from the standard library and pass the module name(s) on the
command line:

python -m doctest -v example.py

This will import example.py as a standalone module and run
testmod() on it. Note that this may not work correctly if the file is
part of a package and imports other submodules from that package.

For more information on testmod(), see section Basic API.

25.2.2. Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text
file. This can be done with the testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples
contained in the file example.txt. The file content is treated as if it
were a single giant docstring; the file doesn’t need to contain a Python
program! For example, perhaps example.txt contains this:

The ``example`` module
======================

Using ``factorial``

This is an example text file in reStructuredText format. First import
``factorial`` from the ``example`` module:

 >>> from example import factorial

Now use it:

 >>> factorial(6)
 120

Running doctest.testfile("example.txt") then finds the error in this
documentation:

File "./example.txt", line 14, in example.txt
Failed example:
 factorial(6)
Expected:
 120
Got:
 720

As with testmod(), testfile() won’t display anything unless an
example fails. If an example does fail, then the failing example(s) and the
cause(s) of the failure(s) are printed to stdout, using the same format as
testmod().

By default, testfile() looks for files in the calling module’s directory.
See section Basic API for a description of the optional arguments
that can be used to tell it to look for files in other locations.

Like testmod(), testfile()‘s verbosity can be set with the
-v command-line switch or with the optional keyword argument
verbose.

Since Python 2.6, there is also a command line shortcut for running
testfile(). You can instruct the Python interpreter to run the doctest
module directly from the standard library and pass the file name(s) on the
command line:

python -m doctest -v example.txt

Because the file name does not end with .py, doctest infers that
it must be run with testfile(), not testmod().

For more information on testfile(), see section Basic API.

25.2.3. How It Works

This section examines in detail how doctest works: which docstrings it looks at,
how it finds interactive examples, what execution context it uses, how it
handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for
information about actually running doctest on these examples, see the following
sections.

25.2.3.1. Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are
searched. Objects imported into the module are not searched.

In addition, if M.__test__ exists and “is true”, it must be a dict, and each
entry maps a (string) name to a function object, class object, or string.
Function and class object docstrings found from M.__test__ are searched, and
strings are treated as if they were docstrings. In output, a key K in
M.__test__ appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in
their contained methods and nested classes.

Changed in version 2.4: A “private name” concept is deprecated and no longer documented.

25.2.3.2. How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine,
but doctest isn’t trying to do an exact emulation of any specific Python shell.

>>> # comments are ignored
>>> x = 12
>>> x
12
>>> if x == 13:
... print "yes"
... else:
... print "no"
... print "NO"
... print "NO!!!"
...
no
NO
NO!!!
>>>

Any expected output must immediately follow the final '>>> ' or '... '
line containing the code, and the expected output (if any) extends to the next
'>>> ' or all-whitespace line.

The fine print:

	Expected output cannot contain an all-whitespace line, since such a line is
taken to signal the end of expected output. If expected output does contain a
blank line, put <BLANKLINE> in your doctest example each place a blank line
is expected.

New in version 2.4: <BLANKLINE> was added; there was no way to use expected output containing
empty lines in previous versions.

	All hard tab characters are expanded to spaces, using 8-column tab stops.
Tabs in output generated by the tested code are not modified. Because any
hard tabs in the sample output are expanded, this means that if the code
output includes hard tabs, the only way the doctest can pass is if the
NORMALIZE_WHITESPACE option or directive is in effect.
Alternatively, the test can be rewritten to capture the output and compare it
to an expected value as part of the test. This handling of tabs in the
source was arrived at through trial and error, and has proven to be the least
error prone way of handling them. It is possible to use a different
algorithm for handling tabs by writing a custom DocTestParser class.

Changed in version 2.4: Expanding tabs to spaces is new; previous versions tried to preserve hard tabs,
with confusing results.

	Output to stdout is captured, but not output to stderr (exception tracebacks
are captured via a different means).

	If you continue a line via backslashing in an interactive session, or for any
other reason use a backslash, you should use a raw docstring, which will
preserve your backslashes exactly as you type them:

>>> def f(x):
... r'''Backslashes in a raw docstring: m\n'''
>>> print f.__doc__
Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example,
the “\” above would be interpreted as a newline character. Alternatively, you
can double each backslash in the doctest version (and not use a raw string):

>>> def f(x):
... '''Backslashes in a raw docstring: m\\n'''
>>> print f.__doc__
Backslashes in a raw docstring: m\n

	The starting column doesn’t matter:

>>> assert "Easy!"
 >>> import math
 >>> math.floor(1.9)
 1.0

and as many leading whitespace characters are stripped from the expected output
as appeared in the initial '>>> ' line that started the example.

25.2.3.3. What’s the Execution Context?

By default, each time doctest finds a docstring to test, it uses a
shallow copy of M‘s globals, so that running tests doesn’t change the
module’s real globals, and so that one test in M can’t leave behind
crumbs that accidentally allow another test to work. This means examples can
freely use any names defined at top-level in M, and names defined earlier
in the docstring being run. Examples cannot see names defined in other
docstrings.

You can force use of your own dict as the execution context by passing
globs=your_dict to testmod() or testfile() instead.

25.2.3.4. What About Exceptions?

No problem, provided that the traceback is the only output produced by the
example: just paste in the traceback. [1] Since tracebacks contain details
that are likely to change rapidly (for example, exact file paths and line
numbers), this is one case where doctest works hard to be flexible in what it
accepts.

Simple example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

That doctest succeeds if ValueError is raised, with the list.remove(x):
x not in list detail as shown.

The expected output for an exception must start with a traceback header, which
may be either of the following two lines, indented the same as the first line of
the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents
are ignored by doctest. The traceback stack is typically omitted, or copied
verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s)
containing the exception type and detail. This is usually the last line of a
traceback, but can extend across multiple lines if the exception has a
multi-line detail:

>>> raise ValueError('multi\n line\ndetail')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: multi
 line
detail

The last three lines (starting with ValueError) are compared against the
exception’s type and detail, and the rest are ignored.

Changed in version 2.4: Previous versions were unable to handle multi-line exception details.

Best practice is to omit the traceback stack, unless it adds significant
documentation value to the example. So the last example is probably better as:

>>> raise ValueError('multi\n line\ndetail')
Traceback (most recent call last):
 ...
ValueError: multi
 line
detail

Note that tracebacks are treated very specially. In particular, in the
rewritten example, the use of ... is independent of doctest’s
ELLIPSIS option. The ellipsis in that example could be left out, or
could just as well be three (or three hundred) commas or digits, or an indented
transcript of a Monty Python skit.

Some details you should read once, but won’t need to remember:

	Doctest can’t guess whether your expected output came from an exception
traceback or from ordinary printing. So, e.g., an example that expects
ValueError: 42 is prime will pass whether ValueError is actually
raised or if the example merely prints that traceback text. In practice,
ordinary output rarely begins with a traceback header line, so this doesn’t
create real problems.

	Each line of the traceback stack (if present) must be indented further than
the first line of the example, or start with a non-alphanumeric character.
The first line following the traceback header indented the same and starting
with an alphanumeric is taken to be the start of the exception detail. Of
course this does the right thing for genuine tracebacks.

	When the IGNORE_EXCEPTION_DETAIL doctest option is specified,
everything following the leftmost colon and any module information in the
exception name is ignored.

	The interactive shell omits the traceback header line for some
SyntaxErrors. But doctest uses the traceback header line to
distinguish exceptions from non-exceptions. So in the rare case where you need
to test a SyntaxError that omits the traceback header, you will need to
manually add the traceback header line to your test example.

	For some SyntaxErrors, Python displays the character position of the
syntax error, using a ^ marker:

>>> 1 1
 File "<stdin>", line 1
 1 1
 ^
SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type
and detail, they are not checked by doctest. For example, the following test
would pass, even though it puts the ^ marker in the wrong location:

>>> 1 1
 File "<stdin>", line 1
 1 1
 ^
SyntaxError: invalid syntax

25.2.3.5. Option Flags and Directives

A number of option flags control various aspects of doctest’s behavior.
Symbolic names for the flags are supplied as module constants, which can be
or’ed together and passed to various functions. The names can also be used in
doctest directives (see below).

The first group of options define test semantics, controlling aspects of how
doctest decides whether actual output matches an example’s expected output:

	
doctest.DONT_ACCEPT_TRUE_FOR_1

	By default, if an expected output block contains just 1, an actual output
block containing just 1 or just True is considered to be a match, and
similarly for 0 versus False. When DONT_ACCEPT_TRUE_FOR_1 is
specified, neither substitution is allowed. The default behavior caters to that
Python changed the return type of many functions from integer to boolean;
doctests expecting “little integer” output still work in these cases. This
option will probably go away, but not for several years.

	
doctest.DONT_ACCEPT_BLANKLINE

	By default, if an expected output block contains a line containing only the
string <BLANKLINE>, then that line will match a blank line in the actual
output. Because a genuinely blank line delimits the expected output, this is
the only way to communicate that a blank line is expected. When
DONT_ACCEPT_BLANKLINE is specified, this substitution is not allowed.

	
doctest.NORMALIZE_WHITESPACE

	When specified, all sequences of whitespace (blanks and newlines) are treated as
equal. Any sequence of whitespace within the expected output will match any
sequence of whitespace within the actual output. By default, whitespace must
match exactly. NORMALIZE_WHITESPACE is especially useful when a line of
expected output is very long, and you want to wrap it across multiple lines in
your source.

	
doctest.ELLIPSIS

	When specified, an ellipsis marker (...) in the expected output can match
any substring in the actual output. This includes substrings that span line
boundaries, and empty substrings, so it’s best to keep usage of this simple.
Complicated uses can lead to the same kinds of “oops, it matched too much!”
surprises that .* is prone to in regular expressions.

	
doctest.IGNORE_EXCEPTION_DETAIL

	When specified, an example that expects an exception passes if an exception of
the expected type is raised, even if the exception detail does not match. For
example, an example expecting ValueError: 42 will pass if the actual
exception raised is ValueError: 3*14, but will fail, e.g., if
TypeError is raised.

It will also ignore the module name used in Python 3 doctest reports. Hence
both these variations will work regardless of whether the test is run under
Python 2.7 or Python 3.2 (or later versions):

>>> raise CustomError('message')
Traceback (most recent call last):
CustomError: message

>>> raise CustomError('message')
Traceback (most recent call last):
my_module.CustomError: message

Note that ELLIPSIS can also be used to ignore the
details of the exception message, but such a test may still fail based
on whether or not the module details are printed as part of the
exception name. Using IGNORE_EXCEPTION_DETAIL and the details
from Python 2.3 is also the only clear way to write a doctest that doesn’t
care about the exception detail yet continues to pass under Python 2.3 or
earlier (those releases do not support doctest directives and ignore them
as irrelevant comments). For example,

>>> (1, 2)[3] = 'moo'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment

passes under Python 2.3 and later Python versions, even though the detail
changed in Python 2.4 to say “does not” instead of “doesn’t”.

Changed in version 2.7: IGNORE_EXCEPTION_DETAIL now also ignores any information
relating to the module containing the exception under test

	
doctest.SKIP

	When specified, do not run the example at all. This can be useful in contexts
where doctest examples serve as both documentation and test cases, and an
example should be included for documentation purposes, but should not be
checked. E.g., the example’s output might be random; or the example might
depend on resources which would be unavailable to the test driver.

The SKIP flag can also be used for temporarily “commenting out” examples.

New in version 2.5.

	
doctest.COMPARISON_FLAGS

	A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

	
doctest.REPORT_UDIFF

	When specified, failures that involve multi-line expected and actual outputs are
displayed using a unified diff.

	
doctest.REPORT_CDIFF

	When specified, failures that involve multi-line expected and actual outputs
will be displayed using a context diff.

	
doctest.REPORT_NDIFF

	When specified, differences are computed by difflib.Differ, using the same
algorithm as the popular ndiff.py utility. This is the only method that
marks differences within lines as well as across lines. For example, if a line
of expected output contains digit 1 where actual output contains letter
l, a line is inserted with a caret marking the mismatching column positions.

	
doctest.REPORT_ONLY_FIRST_FAILURE

	When specified, display the first failing example in each doctest, but suppress
output for all remaining examples. This will prevent doctest from reporting
correct examples that break because of earlier failures; but it might also hide
incorrect examples that fail independently of the first failure. When
REPORT_ONLY_FIRST_FAILURE is specified, the remaining examples are
still run, and still count towards the total number of failures reported; only
the output is suppressed.

	
doctest.REPORTING_FLAGS

	A bitmask or’ing together all the reporting flags above.

“Doctest directives” may be used to modify the option flags for individual
examples. Doctest directives are expressed as a special Python comment
following an example’s source code:

directive ::= "#" "doctest:" directive_options
directive_options ::= directive_option ("," directive_option)*
directive_option ::= on_or_off directive_option_name
on_or_off ::= "+" \| "-"
directive_option_name ::= "DONT_ACCEPT_BLANKLINE" \| "NORMALIZE_WHITESPACE" \| ...

Whitespace is not allowed between the + or - and the directive option
name. The directive option name can be any of the option flag names explained
above.

An example’s doctest directives modify doctest’s behavior for that single
example. Use + to enable the named behavior, or - to disable it.

For example, this test passes:

>>> print range(20)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have
two blanks before the single-digit list elements, and because the actual output
is on a single line. This test also passes, and also requires a directive to do
so:

>>> print range(20)
[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print range(20)
[0, 1, ..., 18, 19]

If multiple directive comments are used for a single example, then they are
combined:

>>> print range(20)
...
[0, 1, ..., 18, 19]

As the previous example shows, you can add ... lines to your example
containing only directives. This can be useful when an example is too long for
a directive to comfortably fit on the same line:

>>> print range(5) + range(10,20) + range(30,40) + range(50,60)
...
[0, ..., 4, 10, ..., 19, 30, ..., 39, 50, ..., 59]

Note that since all options are disabled by default, and directives apply only
to the example they appear in, enabling options (via + in a directive) is
usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases,
disabling an option via - in a directive can be useful.

New in version 2.4: Doctest directives and the associated constants
DONT_ACCEPT_BLANKLINE, NORMALIZE_WHITESPACE,
ELLIPSIS, IGNORE_EXCEPTION_DETAIL, REPORT_UDIFF,
REPORT_CDIFF, REPORT_NDIFF,
REPORT_ONLY_FIRST_FAILURE, COMPARISON_FLAGS and
REPORTING_FLAGS were added.

There’s also a way to register new option flag names, although this isn’t useful
unless you intend to extend doctest internals via subclassing:

	
doctest.register_optionflag(name)

	Create a new option flag with a given name, and return the new flag’s integer
value. register_optionflag() can be used when subclassing
OutputChecker or DocTestRunner to create new options that are
supported by your subclasses. register_optionflag() should always be
called using the following idiom:

MY_FLAG = register_optionflag('MY_FLAG')

New in version 2.4.

25.2.3.6. Warnings

doctest is serious about requiring exact matches in expected output. If
even a single character doesn’t match, the test fails. This will probably
surprise you a few times, as you learn exactly what Python does and doesn’t
guarantee about output. For example, when printing a dict, Python doesn’t
guarantee that the key-value pairs will be printed in any particular order, so a
test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d
[('Harry', 'broomstick'), ('Hermione', 'hippogryph')]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>> class C: pass
>>> C() # the default repr() for instances embeds an address
<__main__.C instance at 0x00AC18F0>

The ELLIPSIS directive gives a nice approach for the last example:

>>> C()
<__main__.C instance at 0x...>

Floating-point numbers are also subject to small output variations across
platforms, because Python defers to the platform C library for float formatting,
and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285
>>> print 1./7 # safer
0.142857142857
>>> print round(1./7, 6) # much safer
0.142857

Numbers of the form I/2.**J are safe across all platforms, and I often
contrive doctest examples to produce numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for
better documentation.

25.2.4. Basic API

The functions testmod() and testfile() provide a simple interface to
doctest that should be sufficient for most basic uses. For a less formal
introduction to these two functions, see sections Simple Usage: Checking Examples in Docstrings
and Simple Usage: Checking Examples in a Text File.

	
doctest.testfile(filename[, module_relative][, name][, package][, globs][, verbose][, report][, optionflags][, extraglobs][, raise_on_error][, parser][, encoding])

	All arguments except filename are optional, and should be specified in keyword
form.

Test examples in the file named filename. Return (failure_count,
test_count).

Optional argument module_relative specifies how the filename should be
interpreted:

	If module_relative is True (the default), then filename specifies an
OS-independent module-relative path. By default, this path is relative to the
calling module’s directory; but if the package argument is specified, then it
is relative to that package. To ensure OS-independence, filename should use
/ characters to separate path segments, and may not be an absolute path
(i.e., it may not begin with /).

	If module_relative is False, then filename specifies an OS-specific
path. The path may be absolute or relative; relative paths are resolved with
respect to the current working directory.

Optional argument name gives the name of the test; by default, or if None,
os.path.basename(filename) is used.

Optional argument package is a Python package or the name of a Python package
whose directory should be used as the base directory for a module-relative
filename. If no package is specified, then the calling module’s directory is
used as the base directory for module-relative filenames. It is an error to
specify package if module_relative is False.

Optional argument globs gives a dict to be used as the globals when executing
examples. A new shallow copy of this dict is created for the doctest, so its
examples start with a clean slate. By default, or if None, a new empty dict
is used.

Optional argument extraglobs gives a dict merged into the globals used to
execute examples. This works like dict.update(): if globs and
extraglobs have a common key, the associated value in extraglobs appears in
the combined dict. By default, or if None, no extra globals are used. This
is an advanced feature that allows parameterization of doctests. For example, a
doctest can be written for a base class, using a generic name for the class,
then reused to test any number of subclasses by passing an extraglobs dict
mapping the generic name to the subclass to be tested.

Optional argument verbose prints lots of stuff if true, and prints only
failures if false; by default, or if None, it’s true if and only if '-v'
is in sys.argv.

Optional argument report prints a summary at the end when true, else prints
nothing at the end. In verbose mode, the summary is detailed, else the summary
is very brief (in fact, empty if all tests passed).

Optional argument optionflags or’s together option flags. See section
Option Flags and Directives.

Optional argument raise_on_error defaults to false. If true, an exception is
raised upon the first failure or unexpected exception in an example. This
allows failures to be post-mortem debugged. Default behavior is to continue
running examples.

Optional argument parser specifies a DocTestParser (or subclass) that
should be used to extract tests from the files. It defaults to a normal parser
(i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to
convert the file to unicode.

New in version 2.4.

Changed in version 2.5: The parameter encoding was added.

	
doctest.testmod([m][, name][, globs][, verbose][, report][, optionflags][, extraglobs][, raise_on_error][, exclude_empty])

	All arguments are optional, and all except for m should be specified in
keyword form.

Test examples in docstrings in functions and classes reachable from module m
(or module __main__ if m is not supplied or is None), starting with
m.__doc__.

Also test examples reachable from dict m.__test__, if it exists and is not
None. m.__test__ maps names (strings) to functions, classes and
strings; function and class docstrings are searched for examples; strings are
searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to module m are searched.

Return (failure_count, test_count).

Optional argument name gives the name of the module; by default, or if
None, m.__name__ is used.

Optional argument exclude_empty defaults to false. If true, objects for which
no doctests are found are excluded from consideration. The default is a backward
compatibility hack, so that code still using doctest.master.summarize() in
conjunction with testmod() continues to get output for objects with no
tests. The exclude_empty argument to the newer DocTestFinder
constructor defaults to true.

Optional arguments extraglobs, verbose, report, optionflags,
raise_on_error, and globs are the same as for function testfile()
above, except that globs defaults to m.__dict__.

Changed in version 2.3: The parameter optionflags was added.

Changed in version 2.4: The parameters extraglobs, raise_on_error and exclude_empty were added.

Changed in version 2.5: The optional argument isprivate, deprecated in 2.4, was removed.

There’s also a function to run the doctests associated with a single object.
This function is provided for backward compatibility. There are no plans to
deprecate it, but it’s rarely useful:

	
doctest.run_docstring_examples(f, globs[, verbose][, name][, compileflags][, optionflags])

	Test examples associated with object f; for example, f may be a module,
function, or class object.

A shallow copy of dictionary argument globs is used for the execution context.

Optional argument name is used in failure messages, and defaults to
"NoName".

If optional argument verbose is true, output is generated even if there are no
failures. By default, output is generated only in case of an example failure.

Optional argument compileflags gives the set of flags that should be used by
the Python compiler when running the examples. By default, or if None,
flags are deduced corresponding to the set of future features found in globs.

Optional argument optionflags works as for function testfile() above.

25.2.5. Unittest API

As your collection of doctest’ed modules grows, you’ll want a way to run all
their doctests systematically. Prior to Python 2.4, doctest had a barely
documented Tester class that supplied a rudimentary way to combine
doctests from multiple modules. Tester was feeble, and in practice most
serious Python testing frameworks build on the unittest module, which
supplies many flexible ways to combine tests from multiple sources. So, in
Python 2.4, doctest‘s Tester class is deprecated, and
doctest provides two functions that can be used to create unittest
test suites from modules and text files containing doctests. To integrate with
unittest test discovery, include a load_tests() function in your
test module:

import unittest
import doctest
import my_module_with_doctests

def load_tests(loader, tests, ignore):
 tests.addTests(doctest.DocTestSuite(my_module_with_doctests))
 return tests

There are two main functions for creating unittest.TestSuite instances
from text files and modules with doctests:

	
doctest.DocFileSuite(*paths, [module_relative][, package][, setUp][, tearDown][, globs][, optionflags][, parser][, encoding])

	Convert doctest tests from one or more text files to a
unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework
and runs the interactive examples in each file. If an example in any file
fails, then the synthesized unit test fails, and a failureException
exception is raised showing the name of the file containing the test and a
(sometimes approximate) line number.

Pass one or more paths (as strings) to text files to be examined.

Options may be provided as keyword arguments:

Optional argument module_relative specifies how the filenames in paths
should be interpreted:

	If module_relative is True (the default), then each filename in
paths specifies an OS-independent module-relative path. By default, this
path is relative to the calling module’s directory; but if the package
argument is specified, then it is relative to that package. To ensure
OS-independence, each filename should use / characters to separate path
segments, and may not be an absolute path (i.e., it may not begin with
/).

	If module_relative is False, then each filename in paths specifies
an OS-specific path. The path may be absolute or relative; relative paths
are resolved with respect to the current working directory.

Optional argument package is a Python package or the name of a Python
package whose directory should be used as the base directory for
module-relative filenames in paths. If no package is specified, then the
calling module’s directory is used as the base directory for module-relative
filenames. It is an error to specify package if module_relative is
False.

Optional argument setUp specifies a set-up function for the test suite.
This is called before running the tests in each file. The setUp function
will be passed a DocTest object. The setUp function can access the
test globals as the globs attribute of the test passed.

Optional argument tearDown specifies a tear-down function for the test
suite. This is called after running the tests in each file. The tearDown
function will be passed a DocTest object. The setUp function can
access the test globals as the globs attribute of the test passed.

Optional argument globs is a dictionary containing the initial global
variables for the tests. A new copy of this dictionary is created for each
test. By default, globs is a new empty dictionary.

Optional argument optionflags specifies the default doctest options for the
tests, created by or-ing together individual option flags. See section
Option Flags and Directives. See function set_unittest_reportflags() below
for a better way to set reporting options.

Optional argument parser specifies a DocTestParser (or subclass)
that should be used to extract tests from the files. It defaults to a normal
parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to
convert the file to unicode.

New in version 2.4.

Changed in version 2.5: The global __file__ was added to the globals provided to doctests
loaded from a text file using DocFileSuite().

Changed in version 2.5: The parameter encoding was added.

	
doctest.DocTestSuite([module][, globs][, extraglobs][, test_finder][, setUp][, tearDown][, checker])

	Convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework
and runs each doctest in the module. If any of the doctests fail, then the
synthesized unit test fails, and a failureException exception is raised
showing the name of the file containing the test and a (sometimes approximate)
line number.

Optional argument module provides the module to be tested. It can be a module
object or a (possibly dotted) module name. If not specified, the module calling
this function is used.

Optional argument globs is a dictionary containing the initial global
variables for the tests. A new copy of this dictionary is created for each
test. By default, globs is a new empty dictionary.

Optional argument extraglobs specifies an extra set of global variables, which
is merged into globs. By default, no extra globals are used.

Optional argument test_finder is the DocTestFinder object (or a
drop-in replacement) that is used to extract doctests from the module.

Optional arguments setUp, tearDown, and optionflags are the same as for
function DocFileSuite() above.

New in version 2.3.

Changed in version 2.4: The parameters globs, extraglobs, test_finder, setUp, tearDown, and
optionflags were added; this function now uses the same search technique as
testmod().

Under the covers, DocTestSuite() creates a unittest.TestSuite out
of doctest.DocTestCase instances, and DocTestCase is a
subclass of unittest.TestCase. DocTestCase isn’t documented
here (it’s an internal detail), but studying its code can answer questions about
the exact details of unittest integration.

Similarly, DocFileSuite() creates a unittest.TestSuite out of
doctest.DocFileCase instances, and DocFileCase is a subclass
of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of
DocTestCase. This is important for a subtle reason: when you run
doctest functions yourself, you can control the doctest options in
use directly, by passing option flags to doctest functions. However, if
you’re writing a unittest framework, unittest ultimately controls
when and how tests get run. The framework author typically wants to control
doctest reporting options (perhaps, e.g., specified by command line
options), but there’s no way to pass options through unittest to
doctest test runners.

For this reason, doctest also supports a notion of doctest
reporting flags specific to unittest support, via this function:

	
doctest.set_unittest_reportflags(flags)

	Set the doctest reporting flags to use.

Argument flags or’s together option flags. See section
Option Flags and Directives. Only “reporting flags” can be used.

This is a module-global setting, and affects all future doctests run by module
unittest: the runTest() method of DocTestCase looks at
the option flags specified for the test case when the DocTestCase
instance was constructed. If no reporting flags were specified (which is the
typical and expected case), doctest‘s unittest reporting flags are
or’ed into the option flags, and the option flags so augmented are passed to the
DocTestRunner instance created to run the doctest. If any reporting
flags were specified when the DocTestCase instance was constructed,
doctest‘s unittest reporting flags are ignored.

The value of the unittest reporting flags in effect before the function
was called is returned by the function.

New in version 2.4.

25.2.6. Advanced API

The basic API is a simple wrapper that’s intended to make doctest easy to use.
It is fairly flexible, and should meet most users’ needs; however, if you
require more fine-grained control over testing, or wish to extend doctest’s
capabilities, then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store
the interactive examples extracted from doctest cases:

	Example: A single Python statement, paired with its expected
output.

	DocTest: A collection of Examples, typically extracted
from a single docstring or text file.

Additional processing classes are defined to find, parse, and run, and check
doctest examples:

	DocTestFinder: Finds all docstrings in a given module, and uses a
DocTestParser to create a DocTest from every docstring that
contains interactive examples.

	DocTestParser: Creates a DocTest object from a string (such
as an object’s docstring).

	DocTestRunner: Executes the examples in a DocTest, and uses
an OutputChecker to verify their output.

	OutputChecker: Compares the actual output from a doctest example with
the expected output, and decides whether they match.

The relationships among these processing classes are summarized in the following
diagram:

 list of:
+------+ +---------+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
+------+ | ^ +---------+ | ^ (printed)
 | | | Example | | |
 v | | ... | v |
 DocTestParser | Example | OutputChecker
 +---------+

25.2.6.1. DocTest Objects

	
class doctest.DocTest(examples, globs, name, filename, lineno, docstring)

	A collection of doctest examples that should be run in a single namespace. The
constructor arguments are used to initialize the member variables of the same
names.

New in version 2.4.

DocTest defines the following member variables. They are initialized by
the constructor, and should not be modified directly.

	
examples

	A list of Example objects encoding the individual interactive Python
examples that should be run by this test.

	
globs

	The namespace (aka globals) that the examples should be run in. This is a
dictionary mapping names to values. Any changes to the namespace made by the
examples (such as binding new variables) will be reflected in globs
after the test is run.

	
name

	A string name identifying the DocTest. Typically, this is the name
of the object or file that the test was extracted from.

	
filename

	The name of the file that this DocTest was extracted from; or
None if the filename is unknown, or if the DocTest was not
extracted from a file.

	
lineno

	The line number within filename where this DocTest begins, or
None if the line number is unavailable. This line number is zero-based
with respect to the beginning of the file.

	
docstring

	The string that the test was extracted from, or ‘None’ if the string is
unavailable, or if the test was not extracted from a string.

25.2.6.2. Example Objects

	
class doctest.Example(source, want[, exc_msg][, lineno][, indent][, options])

	A single interactive example, consisting of a Python statement and its expected
output. The constructor arguments are used to initialize the member variables
of the same names.

New in version 2.4.

Example defines the following member variables. They are initialized by
the constructor, and should not be modified directly.

	
source

	A string containing the example’s source code. This source code consists of a
single Python statement, and always ends with a newline; the constructor adds
a newline when necessary.

	
want

	The expected output from running the example’s source code (either from
stdout, or a traceback in case of exception). want ends with a
newline unless no output is expected, in which case it’s an empty string. The
constructor adds a newline when necessary.

	
exc_msg

	The exception message generated by the example, if the example is expected to
generate an exception; or None if it is not expected to generate an
exception. This exception message is compared against the return value of
traceback.format_exception_only(). exc_msg ends with a newline
unless it’s None. The constructor adds a newline if needed.

	
lineno

	The line number within the string containing this example where the example
begins. This line number is zero-based with respect to the beginning of the
containing string.

	
indent

	The example’s indentation in the containing string, i.e., the number of space
characters that precede the example’s first prompt.

	
options

	A dictionary mapping from option flags to True or False, which is used
to override default options for this example. Any option flags not contained
in this dictionary are left at their default value (as specified by the
DocTestRunner‘s optionflags). By default, no options are set.

25.2.6.3. DocTestFinder objects

	
class doctest.DocTestFinder([verbose][, parser][, recurse][, exclude_empty])

	A processing class used to extract the DocTests that are relevant to
a given object, from its docstring and the docstrings of its contained objects.
DocTests can currently be extracted from the following object types:
modules, functions, classes, methods, staticmethods, classmethods, and
properties.

The optional argument verbose can be used to display the objects searched by
the finder. It defaults to False (no output).

The optional argument parser specifies the DocTestParser object (or a
drop-in replacement) that is used to extract doctests from docstrings.

If the optional argument recurse is false, then DocTestFinder.find()
will only examine the given object, and not any contained objects.

If the optional argument exclude_empty is false, then
DocTestFinder.find() will include tests for objects with empty docstrings.

New in version 2.4.

DocTestFinder defines the following method:

	
find(obj[, name][, module][, globs][, extraglobs])

	Return a list of the DocTests that are defined by obj‘s
docstring, or by any of its contained objects’ docstrings.

The optional argument name specifies the object’s name; this name will be
used to construct names for the returned DocTests. If name is
not specified, then obj.__name__ is used.

The optional parameter module is the module that contains the given object.
If the module is not specified or is None, then the test finder will attempt
to automatically determine the correct module. The object’s module is used:

	As a default namespace, if globs is not specified.

	To prevent the DocTestFinder from extracting DocTests from objects that are
imported from other modules. (Contained objects with modules other than
module are ignored.)

	To find the name of the file containing the object.

	To help find the line number of the object within its file.

If module is False, no attempt to find the module will be made. This is
obscure, of use mostly in testing doctest itself: if module is False, or
is None but cannot be found automatically, then all objects are considered
to belong to the (non-existent) module, so all contained objects will
(recursively) be searched for doctests.

The globals for each DocTest is formed by combining globs and
extraglobs (bindings in extraglobs override bindings in globs). A new
shallow copy of the globals dictionary is created for each DocTest.
If globs is not specified, then it defaults to the module’s __dict__, if
specified, or {} otherwise. If extraglobs is not specified, then it
defaults to {}.

25.2.6.4. DocTestParser objects

	
class doctest.DocTestParser

	A processing class used to extract interactive examples from a string, and use
them to create a DocTest object.

New in version 2.4.

DocTestParser defines the following methods:

	
get_doctest(string, globs, name, filename, lineno)

	Extract all doctest examples from the given string, and collect them into a
DocTest object.

globs, name, filename, and lineno are attributes for the new
DocTest object. See the documentation for DocTest for more
information.

	
get_examples(string[, name])

	Extract all doctest examples from the given string, and return them as a list
of Example objects. Line numbers are 0-based. The optional argument
name is a name identifying this string, and is only used for error messages.

	
parse(string[, name])

	Divide the given string into examples and intervening text, and return them as
a list of alternating Examples and strings. Line numbers for the
Examples are 0-based. The optional argument name is a name
identifying this string, and is only used for error messages.

25.2.6.5. DocTestRunner objects

	
class doctest.DocTestRunner([checker][, verbose][, optionflags])

	A processing class used to execute and verify the interactive examples in a
DocTest.

The comparison between expected outputs and actual outputs is done by an
OutputChecker. This comparison may be customized with a number of
option flags; see section Option Flags and Directives for more information. If the
option flags are insufficient, then the comparison may also be customized by
passing a subclass of OutputChecker to the constructor.

The test runner’s display output can be controlled in two ways. First, an output
function can be passed to TestRunner.run(); this function will be called
with strings that should be displayed. It defaults to sys.stdout.write. If
capturing the output is not sufficient, then the display output can be also
customized by subclassing DocTestRunner, and overriding the methods
report_start(), report_success(),
report_unexpected_exception(), and report_failure().

The optional keyword argument checker specifies the OutputChecker
object (or drop-in replacement) that should be used to compare the expected
outputs to the actual outputs of doctest examples.

The optional keyword argument verbose controls the DocTestRunner‘s
verbosity. If verbose is True, then information is printed about each
example, as it is run. If verbose is False, then only failures are
printed. If verbose is unspecified, or None, then verbose output is used
iff the command-line switch -v is used.

The optional keyword argument optionflags can be used to control how the test
runner compares expected output to actual output, and how it displays failures.
For more information, see section Option Flags and Directives.

New in version 2.4.

DocTestParser defines the following methods:

	
report_start(out, test, example)

	Report that the test runner is about to process the given example. This method
is provided to allow subclasses of DocTestRunner to customize their
output; it should not be called directly.

example is the example about to be processed. test is the test
containing example. out is the output function that was passed to
DocTestRunner.run().

	
report_success(out, test, example, got)

	Report that the given example ran successfully. This method is provided to
allow subclasses of DocTestRunner to customize their output; it
should not be called directly.

example is the example about to be processed. got is the actual output
from the example. test is the test containing example. out is the
output function that was passed to DocTestRunner.run().

	
report_failure(out, test, example, got)

	Report that the given example failed. This method is provided to allow
subclasses of DocTestRunner to customize their output; it should not
be called directly.

example is the example about to be processed. got is the actual output
from the example. test is the test containing example. out is the
output function that was passed to DocTestRunner.run().

	
report_unexpected_exception(out, test, example, exc_info)

	Report that the given example raised an unexpected exception. This method is
provided to allow subclasses of DocTestRunner to customize their
output; it should not be called directly.

example is the example about to be processed. exc_info is a tuple
containing information about the unexpected exception (as returned by
sys.exc_info()). test is the test containing example. out is the
output function that was passed to DocTestRunner.run().

	
run(test[, compileflags][, out][, clear_globs])

	Run the examples in test (a DocTest object), and display the
results using the writer function out.

The examples are run in the namespace test.globs. If clear_globs is
true (the default), then this namespace will be cleared after the test runs,
to help with garbage collection. If you would like to examine the namespace
after the test completes, then use clear_globs=False.

compileflags gives the set of flags that should be used by the Python
compiler when running the examples. If not specified, then it will default to
the set of future-import flags that apply to globs.

The output of each example is checked using the DocTestRunner‘s
output checker, and the results are formatted by the
DocTestRunner.report_*() methods.

	
summarize([verbose])

	Print a summary of all the test cases that have been run by this DocTestRunner,
and return a named tuple TestResults(failed, attempted).

The optional verbose argument controls how detailed the summary is. If the
verbosity is not specified, then the DocTestRunner‘s verbosity is
used.

Changed in version 2.6: Use a named tuple.

25.2.6.6. OutputChecker objects

	
class doctest.OutputChecker

	A class used to check the whether the actual output from a doctest example
matches the expected output. OutputChecker defines two methods:
check_output(), which compares a given pair of outputs, and returns true
if they match; and output_difference(), which returns a string describing
the differences between two outputs.

New in version 2.4.

OutputChecker defines the following methods:

	
check_output(want, got, optionflags)

	Return True iff the actual output from an example (got) matches the
expected output (want). These strings are always considered to match if
they are identical; but depending on what option flags the test runner is
using, several non-exact match types are also possible. See section
Option Flags and Directives for more information about option flags.

	
output_difference(example, got, optionflags)

	Return a string describing the differences between the expected output for a
given example (example) and the actual output (got). optionflags is the
set of option flags used to compare want and got.

25.2.7. Debugging

Doctest provides several mechanisms for debugging doctest examples:

	Several functions convert doctests to executable Python programs, which can be
run under the Python debugger, pdb.

	The DebugRunner class is a subclass of DocTestRunner that
raises an exception for the first failing example, containing information about
that example. This information can be used to perform post-mortem debugging on
the example.

	The unittest cases generated by DocTestSuite() support the
debug() method defined by unittest.TestCase.

	You can add a call to pdb.set_trace() in a doctest example, and you’ll
drop into the Python debugger when that line is executed. Then you can inspect
current values of variables, and so on. For example, suppose a.py
contains just this module docstring:

"""
>>> def f(x):
... g(x*2)
>>> def g(x):
... print x+3
... import pdb; pdb.set_trace()
>>> f(3)
9
"""

Then an interactive Python session may look like this:

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list
 1 def g(x):
 2 print x+3
 3 -> import pdb; pdb.set_trace()
[EOF]
(Pdb) print x
6
(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list
 1 def f(x):
 2 -> g(x*2)
[EOF]
(Pdb) print x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> f(3)
(Pdb) cont
(0, 3)
>>>

Changed in version 2.4: The ability to use pdb.set_trace() usefully inside doctests was added.

Functions that convert doctests to Python code, and possibly run the synthesized
code under the debugger:

	
doctest.script_from_examples(s)

	Convert text with examples to a script.

Argument s is a string containing doctest examples. The string is converted
to a Python script, where doctest examples in s are converted to regular code,
and everything else is converted to Python comments. The generated script is
returned as a string. For example,

import doctest
print doctest.script_from_examples(r"""
 Set x and y to 1 and 2.
 >>> x, y = 1, 2

 Print their sum:
 >>> print x+y
 3
""")

displays:

Set x and y to 1 and 2.
x, y = 1, 2
#
Print their sum:
print x+y
Expected:
3

This function is used internally by other functions (see below), but can also be
useful when you want to transform an interactive Python session into a Python
script.

New in version 2.4.

	
doctest.testsource(module, name)

	Convert the doctest for an object to a script.

Argument module is a module object, or dotted name of a module, containing the
object whose doctests are of interest. Argument name is the name (within the
module) of the object with the doctests of interest. The result is a string,
containing the object’s docstring converted to a Python script, as described for
script_from_examples() above. For example, if module a.py
contains a top-level function f(), then

import a, doctest
print doctest.testsource(a, "a.f")

prints a script version of function f()‘s docstring, with doctests
converted to code, and the rest placed in comments.

New in version 2.3.

	
doctest.debug(module, name[, pm])

	Debug the doctests for an object.

The module and name arguments are the same as for function
testsource() above. The synthesized Python script for the named object’s
docstring is written to a temporary file, and then that file is run under the
control of the Python debugger, pdb.

A shallow copy of module.__dict__ is used for both local and global
execution context.

Optional argument pm controls whether post-mortem debugging is used. If pm
has a true value, the script file is run directly, and the debugger gets
involved only if the script terminates via raising an unhandled exception. If
it does, then post-mortem debugging is invoked, via pdb.post_mortem(),
passing the traceback object from the unhandled exception. If pm is not
specified, or is false, the script is run under the debugger from the start, via
passing an appropriate execfile() call to pdb.run().

New in version 2.3.

Changed in version 2.4: The pm argument was added.

	
doctest.debug_src(src[, pm][, globs])

	Debug the doctests in a string.

This is like function debug() above, except that a string containing
doctest examples is specified directly, via the src argument.

Optional argument pm has the same meaning as in function debug() above.

Optional argument globs gives a dictionary to use as both local and global
execution context. If not specified, or None, an empty dictionary is used.
If specified, a shallow copy of the dictionary is used.

New in version 2.4.

The DebugRunner class, and the special exceptions it may raise, are of
most interest to testing framework authors, and will only be sketched here. See
the source code, and especially DebugRunner‘s docstring (which is a
doctest!) for more details:

	
class doctest.DebugRunner([checker][, verbose][, optionflags])

	A subclass of DocTestRunner that raises an exception as soon as a
failure is encountered. If an unexpected exception occurs, an
UnexpectedException exception is raised, containing the test, the
example, and the original exception. If the output doesn’t match, then a
DocTestFailure exception is raised, containing the test, the example, and
the actual output.

For information about the constructor parameters and methods, see the
documentation for DocTestRunner in section Advanced API.

There are two exceptions that may be raised by DebugRunner instances:

	
exception doctest.DocTestFailure(test, example, got)

	An exception raised by DocTestRunner to signal that a doctest example’s
actual output did not match its expected output. The constructor arguments are
used to initialize the member variables of the same names.

DocTestFailure defines the following member variables:

	
DocTestFailure.test

	The DocTest object that was being run when the example failed.

	
DocTestFailure.example

	The Example that failed.

	
DocTestFailure.got

	The example’s actual output.

	
exception doctest.UnexpectedException(test, example, exc_info)

	An exception raised by DocTestRunner to signal that a doctest
example raised an unexpected exception. The constructor arguments are used
to initialize the member variables of the same names.

UnexpectedException defines the following member variables:

	
UnexpectedException.test

	The DocTest object that was being run when the example failed.

	
UnexpectedException.example

	The Example that failed.

	
UnexpectedException.exc_info

	A tuple containing information about the unexpected exception, as returned by
sys.exc_info().

25.2.8. Soapbox

As mentioned in the introduction, doctest has grown to have three primary
uses:

	Checking examples in docstrings.

	Regression testing.

	Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them.
In particular, filling your docstrings with obscure test cases makes for bad
documentation.

When writing a docstring, choose docstring examples with care. There’s an art to
this that needs to be learned—it may not be natural at first. Examples should
add genuine value to the documentation. A good example can often be worth many
words. If done with care, the examples will be invaluable for your users, and
will pay back the time it takes to collect them many times over as the years go
by and things change. I’m still amazed at how often one of my doctest
examples stops working after a “harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you
don’t skimp on explanatory text. By interleaving prose and examples, it becomes
much easier to keep track of what’s actually being tested, and why. When a test
fails, good prose can make it much easier to figure out what the problem is, and
how it should be fixed. It’s true that you could write extensive comments in
code-based testing, but few programmers do. Many have found that using doctest
approaches instead leads to much clearer tests. Perhaps this is simply because
doctest makes writing prose a little easier than writing code, while writing
comments in code is a little harder. I think it goes deeper than just that:
the natural attitude when writing a doctest-based test is that you want to
explain the fine points of your software, and illustrate them with examples.
This in turn naturally leads to test files that start with the simplest
features, and logically progress to complications and edge cases. A coherent
narrative is the result, instead of a collection of isolated functions that test
isolated bits of functionality seemingly at random. It’s a different attitude,
and produces different results, blurring the distinction between testing and
explaining.

Regression testing is best confined to dedicated objects or files. There are
several options for organizing tests:

	Write text files containing test cases as interactive examples, and test the
files using testfile() or DocFileSuite(). This is recommended,
although is easiest to do for new projects, designed from the start to use
doctest.

	Define functions named _regrtest_topic that consist of single docstrings,
containing test cases for the named topics. These functions can be included in
the same file as the module, or separated out into a separate test file.

	Define a __test__ dictionary mapping from regression test topics to
docstrings containing test cases.

Footnotes

	[1]	Examples containing both expected output and an exception are not supported.
Trying to guess where one ends and the other begins is too error-prone, and that
also makes for a confusing test.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	25. Development Tools

25.3. unittest — Unit testing framework

New in version 2.1.

(If you are already familiar with the basic concepts of testing, you might want
to skip to the list of assert methods.)

The Python unit testing framework, sometimes referred to as “PyUnit,” is a
Python language version of JUnit, by Kent Beck and Erich Gamma. JUnit is, in
turn, a Java version of Kent’s Smalltalk testing framework. Each is the de
facto standard unit testing framework for its respective language.

unittest supports test automation, sharing of setup and shutdown code for
tests, aggregation of tests into collections, and independence of the tests from
the reporting framework. The unittest module provides classes that make
it easy to support these qualities for a set of tests.

To achieve this, unittest supports some important concepts:

	test fixture

	A test fixture represents the preparation needed to perform one or more
tests, and any associate cleanup actions. This may involve, for example,
creating temporary or proxy databases, directories, or starting a server
process.

	test case

	A test case is the smallest unit of testing. It checks for a specific
response to a particular set of inputs. unittest provides a base class,
TestCase, which may be used to create new test cases.

	test suite

	A test suite is a collection of test cases, test suites, or both. It is
used to aggregate tests that should be executed together.

	test runner

	A test runner is a component which orchestrates the execution of tests
and provides the outcome to the user. The runner may use a graphical interface,
a textual interface, or return a special value to indicate the results of
executing the tests.

The test case and test fixture concepts are supported through the
TestCase and FunctionTestCase classes; the former should be
used when creating new tests, and the latter can be used when integrating
existing test code with a unittest-driven framework. When building test
fixtures using TestCase, the setUp() and
tearDown() methods can be overridden to provide initialization
and cleanup for the fixture. With FunctionTestCase, existing functions
can be passed to the constructor for these purposes. When the test is run, the
fixture initialization is run first; if it succeeds, the cleanup method is run
after the test has been executed, regardless of the outcome of the test. Each
instance of the TestCase will only be used to run a single test method,
so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This class allows
individual tests and test suites to be aggregated; when the suite is executed,
all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single method,
run(), which accepts a TestCase or TestSuite
object as a parameter, and returns a result object. The class
TestResult is provided for use as the result object. unittest
provides the TextTestRunner as an example test runner which reports
test results on the standard error stream by default. Alternate runners can be
implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See also

	Module doctest

	Another test-support module with a very different flavor.

	unittest2: A backport of new unittest features for Python 2.4-2.6 [http://pypi.python.org/pypi/unittest2]

	Many new features were added to unittest in Python 2.7, including test
discovery. unittest2 allows you to use these features with earlier
versions of Python.

	Simple Smalltalk Testing: With Patterns [http://www.XProgramming.com/testfram.htm]

	Kent Beck’s original paper on testing frameworks using the pattern shared
by unittest.

	Nose [http://code.google.com/p/python-nose/] and py.test [http://pytest.org]

	Third-party unittest frameworks with a lighter-weight syntax for writing
tests. For example, assert func(10) == 42.

	The Python Testing Tools Taxonomy [http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy]

	An extensive list of Python testing tools including functional testing
frameworks and mock object libraries.

	Testing in Python Mailing List [http://lists.idyll.org/listinfo/testing-in-python]

	A special-interest-group for discussion of testing, and testing tools,
in Python.

25.3.1. Basic example

The unittest module provides a rich set of tools for constructing and
running tests. This section demonstrates that a small subset of the tools
suffice to meet the needs of most users.

Here is a short script to test three functions from the random module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

 def setUp(self):
 self.seq = range(10)

 def test_shuffle(self):
 # make sure the shuffled sequence does not lose any elements
 random.shuffle(self.seq)
 self.seq.sort()
 self.assertEqual(self.seq, range(10))

 # should raise an exception for an immutable sequence
 self.assertRaises(TypeError, random.shuffle, (1,2,3))

 def test_choice(self):
 element = random.choice(self.seq)
 self.assertTrue(element in self.seq)

 def test_sample(self):
 with self.assertRaises(ValueError):
 random.sample(self.seq, 20)
 for element in random.sample(self.seq, 5):
 self.assertTrue(element in self.seq)

if __name__ == '__main__':
 unittest.main()

A testcase is created by subclassing unittest.TestCase. The three
individual tests are defined with methods whose names start with the letters
test. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call to assertEqual() to check for an
expected result; assertTrue() to verify a condition; or
assertRaises() to verify that an expected exception gets raised.
These methods are used instead of the assert statement so the test
runner can accumulate all test results and produce a report.

When a setUp() method is defined, the test runner will run that
method prior to each test. Likewise, if a tearDown() method is
defined, the test runner will invoke that method after each test. In the
example, setUp() was used to create a fresh sequence for each
test.

The final block shows a simple way to run the tests. unittest.main()
provides a command-line interface to the test script. When run from the command
line, the above script produces an output that looks like this:

...
--
Ran 3 tests in 0.000s

OK

Instead of unittest.main(), there are other ways to run the tests with a
finer level of control, less terse output, and no requirement to be run from the
command line. For example, the last two lines may be replaced with:

suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)
unittest.TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the
following output:

test_choice (__main__.TestSequenceFunctions) ... ok
test_sample (__main__.TestSequenceFunctions) ... ok
test_shuffle (__main__.TestSequenceFunctions) ... ok

--
Ran 3 tests in 0.110s

OK

The above examples show the most commonly used unittest features which
are sufficient to meet many everyday testing needs. The remainder of the
documentation explores the full feature set from first principles.

25.3.2. Command-Line Interface

The unittest module can be used from the command line to run tests from
modules, classes or even individual test methods:

python -m unittest test_module1 test_module2
python -m unittest test_module.TestClass
python -m unittest test_module.TestClass.test_method

You can pass in a list with any combination of module names, and fully
qualified class or method names.

You can run tests with more detail (higher verbosity) by passing in the -v flag:

python -m unittest -v test_module

For a list of all the command-line options:

python -m unittest -h

Changed in version 2.7: In earlier versions it was only possible to run individual test methods and
not modules or classes.

25.3.2.1. Command-line options

unittest supports these command-line options:

	
-b, --buffer

	The standard output and standard error streams are buffered during the test
run. Output during a passing test is discarded. Output is echoed normally
on test fail or error and is added to the failure messages.

	
-c, --catch

	Control-C during the test run waits for the current test to end and then
reports all the results so far. A second control-C raises the normal
KeyboardInterrupt exception.

See Signal Handling for the functions that provide this functionality.

	
-f, --failfast

	Stop the test run on the first error or failure.

New in version 2.7: The command-line options -b, -c and -f were added.

The command line can also be used for test discovery, for running all of the
tests in a project or just a subset.

25.3.3. Test Discovery

New in version 2.7.

Unittest supports simple test discovery. In order to be compatible with test
discovery, all of the test files must be modules or
packages importable from the top-level directory of
the project (this means that their filenames must be valid
identifiers).

Test discovery is implemented in TestLoader.discover(), but can also be
used from the command line. The basic command-line usage is:

cd project_directory
python -m unittest discover

The discover sub-command has the following options:

	
-v, --verbose

	Verbose output

	
-s directory

	Directory to start discovery (‘.’ default)

	
-p pattern

	Pattern to match test files (‘test*.py’ default)

	
-t directory

	Top level directory of project (defaults to start directory)

The -s, -p, and -t options can be passed in
as positional arguments in that order. The following two command lines
are equivalent:

python -m unittest discover -s project_directory -p '*_test.py'
python -m unittest discover project_directory '*_test.py'

As well as being a path it is possible to pass a package name, for example
myproject.subpackage.test, as the start directory. The package name you
supply will then be imported and its location on the filesystem will be used
as the start directory.

Caution

Test discovery loads tests by importing them. Once test discovery has
found all the test files from the start directory you specify it turns the
paths into package names to import. For example foo/bar/baz.py will be
imported as foo.bar.baz.

If you have a package installed globally and attempt test discovery on
a different copy of the package then the import could happen from the
wrong place. If this happens test discovery will warn you and exit.

If you supply the start directory as a package name rather than a
path to a directory then discover assumes that whichever location it
imports from is the location you intended, so you will not get the
warning.

Test modules and packages can customize test loading and discovery by through
the load_tests protocol.

25.3.4. Organizing test code

The basic building blocks of unit testing are test cases — single
scenarios that must be set up and checked for correctness. In unittest,
test cases are represented by instances of unittest‘s TestCase
class. To make your own test cases you must write subclasses of
TestCase, or use FunctionTestCase.

An instance of a TestCase-derived class is an object that can
completely run a single test method, together with optional set-up and tidy-up
code.

The testing code of a TestCase instance should be entirely self
contained, such that it can be run either in isolation or in arbitrary
combination with any number of other test cases.

The simplest TestCase subclass will simply override the
runTest() method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
 def runTest(self):
 widget = Widget('The widget')
 self.assertEqual(widget.size(), (50, 50), 'incorrect default size')

Note that in order to test something, we use the one of the assert*()
methods provided by the TestCase base class. If the test fails, an
exception will be raised, and unittest will identify the test case as a
failure. Any other exceptions will be treated as errors. This
helps you identify where the problem is: failures are caused by incorrect
results - a 5 where you expected a 6. Errors are caused by incorrect
code - e.g., a TypeError caused by an incorrect function call.

The way to run a test case will be described later. For now, note that to
construct an instance of such a test case, we call its constructor without
arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In
the above case, constructing a Widget in each of 100 Widget test case
subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method called
setUp(), which the testing framework will automatically call for
us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
 def setUp(self):
 self.widget = Widget('The widget')

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
 def runTest(self):
 self.assertEqual(self.widget.size(), (50,50),
 'incorrect default size')

class WidgetResizeTestCase(SimpleWidgetTestCase):
 def runTest(self):
 self.widget.resize(100,150)
 self.assertEqual(self.widget.size(), (100,150),
 'wrong size after resize')

If the setUp() method raises an exception while the test is
running, the framework will consider the test to have suffered an error, and the
runTest() method will not be executed.

Similarly, we can provide a tearDown() method that tidies up
after the runTest() method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
 def setUp(self):
 self.widget = Widget('The widget')

 def tearDown(self):
 self.widget.dispose()
 self.widget = None

If setUp() succeeded, the tearDown() method will
be run whether runTest() succeeded or not.

Such a working environment for the testing code is called a fixture.

Often, many small test cases will use the same fixture. In this case, we would
end up subclassing SimpleWidgetTestCase into many small one-method
classes such as DefaultWidgetSizeTestCase. This is time-consuming and
discouraging, so in the same vein as JUnit, unittest provides a simpler
mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
 def setUp(self):
 self.widget = Widget('The widget')

 def tearDown(self):
 self.widget.dispose()
 self.widget = None

 def test_default_size(self):
 self.assertEqual(self.widget.size(), (50,50),
 'incorrect default size')

 def test_resize(self):
 self.widget.resize(100,150)
 self.assertEqual(self.widget.size(), (100,150),
 'wrong size after resize')

Here we have not provided a runTest() method, but have instead
provided two different test methods. Class instances will now each run one of
the test_*() methods, with self.widget created and destroyed
separately for each instance. When creating an instance we must specify the
test method it is to run. We do this by passing the method name in the
constructor:

defaultSizeTestCase = WidgetTestCase('test_default_size')
resizeTestCase = WidgetTestCase('test_resize')

Test case instances are grouped together according to the features they test.
unittest provides a mechanism for this: the test suite,
represented by unittest‘s TestSuite class:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase('test_default_size'))
widgetTestSuite.addTest(WidgetTestCase('test_resize'))

For the ease of running tests, as we will see later, it is a good idea to
provide in each test module a callable object that returns a pre-built test
suite:

def suite():
 suite = unittest.TestSuite()
 suite.addTest(WidgetTestCase('test_default_size'))
 suite.addTest(WidgetTestCase('test_resize'))
 return suite

or even:

def suite():
 tests = ['test_default_size', 'test_resize']

 return unittest.TestSuite(map(WidgetTestCase, tests))

Since it is a common pattern to create a TestCase subclass with many
similarly named test functions, unittest provides a TestLoader
class that can be used to automate the process of creating a test suite and
populating it with individual tests. For example,

suite = unittest.TestLoader().loadTestsFromTestCase(WidgetTestCase)

will create a test suite that will run WidgetTestCase.test_default_size() and
WidgetTestCase.test_resize. TestLoader uses the 'test' method
name prefix to identify test methods automatically.

Note that the order in which the various test cases will be run is
determined by sorting the test function names with respect to the
built-in ordering for strings.

Often it is desirable to group suites of test cases together, so as to run tests
for the whole system at once. This is easy, since TestSuite instances
can be added to a TestSuite just as TestCase instances can be
added to a TestSuite:

suite1 = module1.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite([suite1, suite2])

You can place the definitions of test cases and test suites in the same modules
as the code they are to test (such as widget.py), but there are several
advantages to placing the test code in a separate module, such as
test_widget.py:

	The test module can be run standalone from the command line.

	The test code can more easily be separated from shipped code.

	There is less temptation to change test code to fit the code it tests without
a good reason.

	Test code should be modified much less frequently than the code it tests.

	Tested code can be refactored more easily.

	Tests for modules written in C must be in separate modules anyway, so why not
be consistent?

	If the testing strategy changes, there is no need to change the source code.

25.3.5. Re-using old test code

Some users will find that they have existing test code that they would like to
run from unittest, without converting every old test function to a
TestCase subclass.

For this reason, unittest provides a FunctionTestCase class.
This subclass of TestCase can be used to wrap an existing test
function. Set-up and tear-down functions can also be provided.

Given the following test function:

def testSomething():
 something = makeSomething()
 assert something.name is not None
 # ...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as
part of the test case’s operation, they can also be provided like so:

testcase = unittest.FunctionTestCase(testSomething,
 setUp=makeSomethingDB,
 tearDown=deleteSomethingDB)

To make migrating existing test suites easier, unittest supports tests
raising AssertionError to indicate test failure. However, it is
recommended that you use the explicit TestCase.fail*() and
TestCase.assert*() methods instead, as future versions of unittest
may treat AssertionError differently.

Note

Even though FunctionTestCase can be used to quickly convert an
existing test base over to a unittest-based system, this approach is
not recommended. Taking the time to set up proper TestCase
subclasses will make future test refactorings infinitely easier.

In some cases, the existing tests may have been written using the doctest
module. If so, doctest provides a DocTestSuite class that can
automatically build unittest.TestSuite instances from the existing
doctest-based tests.

25.3.6. Skipping tests and expected failures

New in version 2.7.

Unittest supports skipping individual test methods and even whole classes of
tests. In addition, it supports marking a test as a “expected failure,” a test
that is broken and will fail, but shouldn’t be counted as a failure on a
TestResult.

Skipping a test is simply a matter of using the skip() decorator
or one of its conditional variants.

Basic skipping looks like this:

class MyTestCase(unittest.TestCase):

 @unittest.skip("demonstrating skipping")
 def test_nothing(self):
 self.fail("shouldn't happen")

 @unittest.skipIf(mylib.__version__ < (1, 3),
 "not supported in this library version")
 def test_format(self):
 # Tests that work for only a certain version of the library.
 pass

 @unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
 def test_windows_support(self):
 # windows specific testing code
 pass

This is the output of running the example above in verbose mode:

test_format (__main__.MyTestCase) ... skipped 'not supported in this library version'
test_nothing (__main__.MyTestCase) ... skipped 'demonstrating skipping'
test_windows_support (__main__.MyTestCase) ... skipped 'requires Windows'

--
Ran 3 tests in 0.005s

OK (skipped=3)

Classes can be skipped just like methods:

@skip("showing class skipping")
class MySkippedTestCase(unittest.TestCase):
 def test_not_run(self):
 pass

TestCase.setUp() can also skip the test. This is useful when a resource
that needs to be set up is not available.

Expected failures use the expectedFailure() decorator.

class ExpectedFailureTestCase(unittest.TestCase):
 @unittest.expectedFailure
 def test_fail(self):
 self.assertEqual(1, 0, "broken")

It’s easy to roll your own skipping decorators by making a decorator that calls
skip() on the test when it wants it to be skipped. This decorator skips
the test unless the passed object has a certain attribute:

def skipUnlessHasattr(obj, attr):
 if hasattr(obj, attr):
 return lambda func: func
 return unittest.skip("{0!r} doesn't have {1!r}".format(obj, attr))

The following decorators implement test skipping and expected failures:

	
unittest.skip(reason)

	Unconditionally skip the decorated test. reason should describe why the
test is being skipped.

	
unittest.skipIf(condition, reason)

	Skip the decorated test if condition is true.

	
unittest.skipUnless(condition, reason)

	Skip the decorated test unless condition is true.

	
unittest.expectedFailure()

	Mark the test as an expected failure. If the test fails when run, the test
is not counted as a failure.

Skipped tests will not have setUp() or tearDown() run around them.
Skipped classes will not have setUpClass() or tearDownClass() run.

25.3.7. Classes and functions

This section describes in depth the API of unittest.

25.3.7.1. Test cases

	
class unittest.TestCase(methodName='runTest')

	Instances of the TestCase class represent the smallest testable units
in the unittest universe. This class is intended to be used as a base
class, with specific tests being implemented by concrete subclasses. This class
implements the interface needed by the test runner to allow it to drive the
test, and methods that the test code can use to check for and report various
kinds of failure.

Each instance of TestCase will run a single test method: the method
named methodName. If you remember, we had an earlier example that went
something like this:

def suite():
 suite = unittest.TestSuite()
 suite.addTest(WidgetTestCase('test_default_size'))
 suite.addTest(WidgetTestCase('test_resize'))
 return suite

Here, we create two instances of WidgetTestCase, each of which runs a
single test.

methodName defaults to runTest().

TestCase instances provide three groups of methods: one group used
to run the test, another used by the test implementation to check conditions
and report failures, and some inquiry methods allowing information about the
test itself to be gathered.

Methods in the first group (running the test) are:

	
setUp()

	Method called to prepare the test fixture. This is called immediately
before calling the test method; any exception raised by this method will
be considered an error rather than a test failure. The default
implementation does nothing.

	
tearDown()

	Method called immediately after the test method has been called and the
result recorded. This is called even if the test method raised an
exception, so the implementation in subclasses may need to be particularly
careful about checking internal state. Any exception raised by this
method will be considered an error rather than a test failure. This
method will only be called if the setUp() succeeds, regardless of
the outcome of the test method. The default implementation does nothing.

	
setUpClass()

	A class method called before tests in an individual class run.
setUpClass is called with the class as the only argument
and must be decorated as a classmethod():

@classmethod
def setUpClass(cls):
 ...

See Class and Module Fixtures for more details.

New in version 2.7.

	
tearDownClass()

	A class method called after tests in an individual class have run.
tearDownClass is called with the class as the only argument
and must be decorated as a classmethod():

@classmethod
def tearDownClass(cls):
 ...

See Class and Module Fixtures for more details.

New in version 2.7.

	
run(result=None)

	Run the test, collecting the result into the test result object passed as
result. If result is omitted or None, a temporary result
object is created (by calling the defaultTestResult() method) and
used. The result object is not returned to run()‘s caller.

The same effect may be had by simply calling the TestCase
instance.

	
skipTest(reason)

	Calling this during a test method or setUp() skips the current
test. See Skipping tests and expected failures for more information.

New in version 2.7.

	
debug()

	Run the test without collecting the result. This allows exceptions raised
by the test to be propagated to the caller, and can be used to support
running tests under a debugger.

The TestCase class provides a number of methods to check for and
report failures, such as:

	Method
	Checks that
	New in

	assertEqual(a, b)
	a == b
	

	assertNotEqual(a, b)
	a != b
	

	assertTrue(x)
	bool(x) is True
	

	assertFalse(x)
	bool(x) is False
	

	assertIs(a, b)
	a is b
	2.7

	assertIsNot(a, b)
	a is not b
	2.7

	assertIsNone(x)
	x is None
	2.7

	assertIsNotNone(x)
	x is not None
	2.7

	assertIn(a, b)
	a in b
	2.7

	assertNotIn(a, b)
	a not in b
	2.7

	assertIsInstance(a, b)
	isinstance(a, b)
	2.7

	assertNotIsInstance(a, b)
	not isinstance(a, b)
	2.7

All the assert methods (except assertRaises(),
assertRaisesRegexp())
accept a msg argument that, if specified, is used as the error message on
failure (see also longMessage).

	
assertEqual(first, second, msg=None)

	Test that first and second are equal. If the values do not compare
equal, the test will fail.

In addition, if first and second are the exact same type and one of
list, tuple, dict, set, frozenset or unicode or any type that a subclass
registers with addTypeEqualityFunc() the type specific equality
function will be called in order to generate a more useful default
error message (see also the list of type-specific methods).

Changed in version 2.7: Added the automatic calling of type specific equality function.

	
assertNotEqual(first, second, msg=None)

	Test that first and second are not equal. If the values do compare
equal, the test will fail.

	
assertTrue(expr, msg=None)

	
assertFalse(expr, msg=None)

	Test that expr is true (or false).

Note that this is equivalent to bool(expr) is True and not to expr
is True (use assertIs(expr, True) for the latter). This method
should also be avoided when more specific methods are available (e.g.
assertEqual(a, b) instead of assertTrue(a == b)), because they
provide a better error message in case of failure.

	
assertIs(first, second, msg=None)

	
assertIsNot(first, second, msg=None)

	Test that first and second evaluate (or don’t evaluate) to the same object.

New in version 2.7.

	
assertIsNone(expr, msg=None)

	
assertIsNotNone(expr, msg=None)

	Test that expr is (or is not) None.

New in version 2.7.

	
assertIn(first, second, msg=None)

	
assertNotIn(first, second, msg=None)

	Test that first is (or is not) in second.

New in version 2.7.

	
assertIsInstance(obj, cls, msg=None)

	
assertNotIsInstance(obj, cls, msg=None)

	Test that obj is (or is not) an instance of cls (which can be a
class or a tuple of classes, as supported by isinstance()).

New in version 2.7.

It is also possible to check that exceptions and warnings are raised using
the following methods:

	Method
	Checks that
	New in

	assertRaises(exc, fun, *args, **kwds)
	fun(*args, **kwds) raises exc
	

	assertRaisesRegexp(exc, re, fun, *args, **kwds)
	fun(*args, **kwds) raises exc
and the message matches re
	2.7

	
assertRaises(exception, callable, *args, **kwds)

	
assertRaises(exception)

	Test that an exception is raised when callable is called with any
positional or keyword arguments that are also passed to
assertRaises(). The test passes if exception is raised, is an
error if another exception is raised, or fails if no exception is raised.
To catch any of a group of exceptions, a tuple containing the exception
classes may be passed as exception.

If only the exception argument is given, returns a context manager so
that the code under test can be written inline rather than as a function:

with self.assertRaises(SomeException):
 do_something()

The context manager will store the caught exception object in its
exception attribute. This can be useful if the intention
is to perform additional checks on the exception raised:

with self.assertRaises(SomeException) as cm:
 do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

Changed in version 2.7: Added the ability to use assertRaises() as a context manager.

	
assertRaisesRegexp(exception, regexp, callable, *args, **kwds)

	
assertRaisesRegexp(exception, regexp)

	Like assertRaises() but also tests that regexp matches
on the string representation of the raised exception. regexp may be
a regular expression object or a string containing a regular expression
suitable for use by re.search(). Examples:

self.assertRaisesRegexp(ValueError, 'invalid literal for.*XYZ$',
 int, 'XYZ')

or:

with self.assertRaisesRegexp(ValueError, 'literal'):
 int('XYZ')

New in version 2.7.

There are also other methods used to perform more specific checks, such as:

	Method
	Checks that
	New in

	assertAlmostEqual(a, b)
	round(a-b, 7) == 0
	

	assertNotAlmostEqual(a, b)
	round(a-b, 7) != 0
	

	assertGreater(a, b)
	a > b
	2.7

	assertGreaterEqual(a, b)
	a >= b
	2.7

	assertLess(a, b)
	a < b
	2.7

	assertLessEqual(a, b)
	a <= b
	2.7

	assertRegexpMatches(s, re)
	regex.search(s)
	2.7

	assertNotRegexpMatches(s, re)
	not regex.search(s)
	2.7

	assertItemsEqual(a, b)
	sorted(a) == sorted(b) and
works with unhashable objs
	2.7

	assertDictContainsSubset(a, b)
	all the key/value pairs
in a exist in b
	2.7

	
assertAlmostEqual(first, second, places=7, msg=None, delta=None)

	
assertNotAlmostEqual(first, second, places=7, msg=None, delta=None)

	Test that first and second are approximately (or not approximately)
equal by computing the difference, rounding to the given number of
decimal places (default 7), and comparing to zero. Note that these
methods round the values to the given number of decimal places (i.e.
like the round() function) and not significant digits.

If delta is supplied instead of places then the difference
between first and second must be less (or more) than delta.

Supplying both delta and places raises a TypeError.

Changed in version 2.7: assertAlmostEqual() automatically considers almost equal objects
that compare equal. assertNotAlmostEqual() automatically fails
if the objects compare equal. Added the delta keyword argument.

	
assertGreater(first, second, msg=None)

	
assertGreaterEqual(first, second, msg=None)

	
assertLess(first, second, msg=None)

	
assertLessEqual(first, second, msg=None)

	Test that first is respectively >, >=, < or <= than second depending
on the method name. If not, the test will fail:

>>> self.assertGreaterEqual(3, 4)
AssertionError: "3" unexpectedly not greater than or equal to "4"

New in version 2.7.

	
assertRegexpMatches(text, regexp, msg=None)

	Test that a regexp search matches text. In case
of failure, the error message will include the pattern and the text (or
the pattern and the part of text that unexpectedly matched). regexp
may be a regular expression object or a string containing a regular
expression suitable for use by re.search().

New in version 2.7.

	
assertNotRegexpMatches(text, regexp, msg=None)

	Verifies that a regexp search does not match text. Fails with an error
message including the pattern and the part of text that matches. regexp
may be a regular expression object or a string containing a regular
expression suitable for use by re.search().

New in version 2.7.

	
assertItemsEqual(actual, expected, msg=None)

	Test that sequence expected contains the same elements as actual,
regardless of their order. When they don’t, an error message listing the
differences between the sequences will be generated.

Duplicate elements are not ignored when comparing actual and
expected. It verifies if each element has the same count in both
sequences. It is the equivalent of assertEqual(sorted(expected),
sorted(actual)) but it works with sequences of unhashable objects as
well.

New in version 2.7.

	
assertDictContainsSubset(expected, actual, msg=None)

	Tests whether the key/value pairs in dictionary actual are a
superset of those in expected. If not, an error message listing
the missing keys and mismatched values is generated.

New in version 2.7.

Deprecated since version 3.2.

The assertEqual() method dispatches the equality check for objects of
the same type to different type-specific methods. These methods are already
implemented for most of the built-in types, but it’s also possible to
register new methods using addTypeEqualityFunc():

	
addTypeEqualityFunc(typeobj, function)

	Registers a type-specific method called by assertEqual() to check
if two objects of exactly the same typeobj (not subclasses) compare
equal. function must take two positional arguments and a third msg=None
keyword argument just as assertEqual() does. It must raise
self.failureException(msg) when inequality
between the first two parameters is detected – possibly providing useful
information and explaining the inequalities in details in the error
message.

New in version 2.7.

The list of type-specific methods automatically used by
assertEqual() are summarized in the following table. Note
that it’s usually not necessary to invoke these methods directly.

	Method
	Used to compare
	New in

	assertMultiLineEqual(a, b)
	strings
	2.7

	assertSequenceEqual(a, b)
	sequences
	2.7

	assertListEqual(a, b)
	lists
	2.7

	assertTupleEqual(a, b)
	tuples
	2.7

	assertSetEqual(a, b)
	sets or frozensets
	2.7

	assertDictEqual(a, b)
	dicts
	2.7

	
assertMultiLineEqual(first, second, msg=None)

	Test that the multiline string first is equal to the string second.
When not equal a diff of the two strings highlighting the differences
will be included in the error message. This method is used by default
when comparing strings with assertEqual().

New in version 2.7.

	
assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)

	Tests that two sequences are equal. If a seq_type is supplied, both
seq1 and seq2 must be instances of seq_type or a failure will
be raised. If the sequences are different an error message is
constructed that shows the difference between the two.

This method is not called directly by assertEqual(), but
it’s used to implement assertListEqual() and
assertTupleEqual().

New in version 2.7.

	
assertListEqual(list1, list2, msg=None)

	
assertTupleEqual(tuple1, tuple2, msg=None)

	Tests that two lists or tuples are equal. If not an error message is
constructed that shows only the differences between the two. An error
is also raised if either of the parameters are of the wrong type.
These methods are used by default when comparing lists or tuples with
assertEqual().

New in version 2.7.

	
assertSetEqual(set1, set2, msg=None)

	Tests that two sets are equal. If not, an error message is constructed
that lists the differences between the sets. This method is used by
default when comparing sets or frozensets with assertEqual().

Fails if either of set1 or set2 does not have a set.difference()
method.

New in version 2.7.

	
assertDictEqual(expected, actual, msg=None)

	Test that two dictionaries are equal. If not, an error message is
constructed that shows the differences in the dictionaries. This
method will be used by default to compare dictionaries in
calls to assertEqual().

New in version 2.7.

Finally the TestCase provides the following methods and attributes:

	
fail(msg=None)

	Signals a test failure unconditionally, with msg or None for
the error message.

	
failureException

	This class attribute gives the exception raised by the test method. If a
test framework needs to use a specialized exception, possibly to carry
additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute is
AssertionError.

	
longMessage

	If set to True then any explicit failure message you pass in to the
assert methods will be appended to the end of the
normal failure message. The normal messages contain useful information
about the objects involved, for example the message from assertEqual
shows you the repr of the two unequal objects. Setting this attribute
to True allows you to have a custom error message in addition to the
normal one.

This attribute defaults to False, meaning that a custom message passed
to an assert method will silence the normal message.

The class setting can be overridden in individual tests by assigning an
instance attribute to True or False before calling the assert methods.

New in version 2.7.

	
maxDiff

	This attribute controls the maximum length of diffs output by assert
methods that report diffs on failure. It defaults to 80*8 characters.
Assert methods affected by this attribute are
assertSequenceEqual() (including all the sequence comparison
methods that delegate to it), assertDictEqual() and
assertMultiLineEqual().

Setting maxDiff to None means that there is no maximum length of
diffs.

New in version 2.7.

Testing frameworks can use the following methods to collect information on
the test:

	
countTestCases()

	Return the number of tests represented by this test object. For
TestCase instances, this will always be 1.

	
defaultTestResult()

	Return an instance of the test result class that should be used for this
test case class (if no other result instance is provided to the
run() method).

For TestCase instances, this will always be an instance of
TestResult; subclasses of TestCase should override this
as necessary.

	
id()

	Return a string identifying the specific test case. This is usually the
full name of the test method, including the module and class name.

	
shortDescription()

	Returns a description of the test, or None if no description
has been provided. The default implementation of this method
returns the first line of the test method’s docstring, if available,
or None.

	
addCleanup(function, *args, **kwargs)

	Add a function to be called after tearDown() to cleanup resources
used during the test. Functions will be called in reverse order to the
order they are added (LIFO). They are called with any arguments and
keyword arguments passed into addCleanup() when they are
added.

If setUp() fails, meaning that tearDown() is not called,
then any cleanup functions added will still be called.

New in version 2.7.

	
doCleanups()

	This method is called unconditionally after tearDown(), or
after setUp() if setUp() raises an exception.

It is responsible for calling all the cleanup functions added by
addCleanup(). If you need cleanup functions to be called
prior to tearDown() then you can call doCleanups()
yourself.

doCleanups() pops methods off the stack of cleanup
functions one at a time, so it can be called at any time.

New in version 2.7.

	
class unittest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)

	This class implements the portion of the TestCase interface which
allows the test runner to drive the test, but does not provide the methods
which test code can use to check and report errors. This is used to create
test cases using legacy test code, allowing it to be integrated into a
unittest-based test framework.

25.3.7.1.1. Deprecated aliases

For historical reasons, some of the TestCase methods had one or more
aliases that are now deprecated. The following table lists the correct names
along with their deprecated aliases:

	Method Name
	Deprecated alias(es)

	assertEqual()
	failUnlessEqual, assertEquals

	assertNotEqual()
	failIfEqual

	assertTrue()
	failUnless, assert_

	assertFalse()
	failIf

	assertRaises()
	failUnlessRaises

	assertAlmostEqual()
	failUnlessAlmostEqual

	assertNotAlmostEqual()
	failIfAlmostEqual

Deprecated since version 2.7: the aliases listed in the second column

25.3.7.2. Grouping tests

	
class unittest.TestSuite(tests=())

	This class represents an aggregation of individual tests cases and test suites.
The class presents the interface needed by the test runner to allow it to be run
as any other test case. Running a TestSuite instance is the same as
iterating over the suite, running each test individually.

If tests is given, it must be an iterable of individual test cases or other
test suites that will be used to build the suite initially. Additional methods
are provided to add test cases and suites to the collection later on.

TestSuite objects behave much like TestCase objects, except
they do not actually implement a test. Instead, they are used to aggregate
tests into groups of tests that should be run together. Some additional
methods are available to add tests to TestSuite instances:

	
addTest(test)

	Add a TestCase or TestSuite to the suite.

	
addTests(tests)

	Add all the tests from an iterable of TestCase and TestSuite
instances to this test suite.

This is equivalent to iterating over tests, calling addTest() for
each element.

TestSuite shares the following methods with TestCase:

	
run(result)

	Run the tests associated with this suite, collecting the result into the
test result object passed as result. Note that unlike
TestCase.run(), TestSuite.run() requires the result object to
be passed in.

	
debug()

	Run the tests associated with this suite without collecting the
result. This allows exceptions raised by the test to be propagated to the
caller and can be used to support running tests under a debugger.

	
countTestCases()

	Return the number of tests represented by this test object, including all
individual tests and sub-suites.

	
__iter__()

	Tests grouped by a TestSuite are always accessed by iteration.
Subclasses can lazily provide tests by overriding __iter__(). Note
that this method maybe called several times on a single suite
(for example when counting tests or comparing for equality)
so the tests returned must be the same for repeated iterations.

Changed in version 2.7: In earlier versions the TestSuite accessed tests directly rather
than through iteration, so overriding __iter__() wasn’t sufficient
for providing tests.

In the typical usage of a TestSuite object, the run() method
is invoked by a TestRunner rather than by the end-user test harness.

25.3.7.3. Loading and running tests

	
class unittest.TestLoader

	The TestLoader class is used to create test suites from classes and
modules. Normally, there is no need to create an instance of this class; the
unittest module provides an instance that can be shared as
unittest.defaultTestLoader. Using a subclass or instance, however, allows
customization of some configurable properties.

TestLoader objects have the following methods:

	
loadTestsFromTestCase(testCaseClass)

	Return a suite of all tests cases contained in the TestCase-derived
testCaseClass.

	
loadTestsFromModule(module)

	Return a suite of all tests cases contained in the given module. This
method searches module for classes derived from TestCase and
creates an instance of the class for each test method defined for the
class.

Note

While using a hierarchy of TestCase-derived classes can be
convenient in sharing fixtures and helper functions, defining test
methods on base classes that are not intended to be instantiated
directly does not play well with this method. Doing so, however, can
be useful when the fixtures are different and defined in subclasses.

If a module provides a load_tests function it will be called to
load the tests. This allows modules to customize test loading.
This is the load_tests protocol.

Changed in version 2.7: Support for load_tests added.

	
loadTestsFromName(name, module=None)

	Return a suite of all tests cases given a string specifier.

The specifier name is a “dotted name” that may resolve either to a
module, a test case class, a test method within a test case class, a
TestSuite instance, or a callable object which returns a
TestCase or TestSuite instance. These checks are
applied in the order listed here; that is, a method on a possible test
case class will be picked up as “a test method within a test case class”,
rather than “a callable object”.

For example, if you have a module SampleTests containing a
TestCase-derived class SampleTestCase with three test
methods (test_one(), test_two(), and test_three()), the
specifier 'SampleTests.SampleTestCase' would cause this method to
return a suite which will run all three test methods. Using the specifier
'SampleTests.SampleTestCase.test_two' would cause it to return a test
suite which will run only the test_two() test method. The specifier
can refer to modules and packages which have not been imported; they will
be imported as a side-effect.

The method optionally resolves name relative to the given module.

	
loadTestsFromNames(names, module=None)

	Similar to loadTestsFromName(), but takes a sequence of names rather
than a single name. The return value is a test suite which supports all
the tests defined for each name.

	
getTestCaseNames(testCaseClass)

	Return a sorted sequence of method names found within testCaseClass;
this should be a subclass of TestCase.

	
discover(start_dir, pattern='test*.py', top_level_dir=None)

	Find and return all test modules from the specified start directory,
recursing into subdirectories to find them. Only test files that match
pattern will be loaded. (Using shell style pattern matching.) Only
module names that are importable (i.e. are valid Python identifiers) will
be loaded.

All test modules must be importable from the top level of the project. If
the start directory is not the top level directory then the top level
directory must be specified separately.

If importing a module fails, for example due to a syntax error, then this
will be recorded as a single error and discovery will continue.

If a test package name (directory with __init__.py) matches the
pattern then the package will be checked for a load_tests
function. If this exists then it will be called with loader, tests,
pattern.

If load_tests exists then discovery does not recurse into the package,
load_tests is responsible for loading all tests in the package.

The pattern is deliberately not stored as a loader attribute so that
packages can continue discovery themselves. top_level_dir is stored so
load_tests does not need to pass this argument in to
loader.discover().

start_dir can be a dotted module name as well as a directory.

New in version 2.7.

The following attributes of a TestLoader can be configured either by
subclassing or assignment on an instance:

	
testMethodPrefix

	String giving the prefix of method names which will be interpreted as test
methods. The default value is 'test'.

This affects getTestCaseNames() and all the loadTestsFrom*()
methods.

	
sortTestMethodsUsing

	Function to be used to compare method names when sorting them in
getTestCaseNames() and all the loadTestsFrom*() methods. The
default value is the built-in cmp() function; the attribute can also
be set to None to disable the sort.

	
suiteClass

	Callable object that constructs a test suite from a list of tests. No
methods on the resulting object are needed. The default value is the
TestSuite class.

This affects all the loadTestsFrom*() methods.

	
class unittest.TestResult

	This class is used to compile information about which tests have succeeded
and which have failed.

A TestResult object stores the results of a set of tests. The
TestCase and TestSuite classes ensure that results are
properly recorded; test authors do not need to worry about recording the
outcome of tests.

Testing frameworks built on top of unittest may want access to the
TestResult object generated by running a set of tests for reporting
purposes; a TestResult instance is returned by the
TestRunner.run() method for this purpose.

TestResult instances have the following attributes that will be of
interest when inspecting the results of running a set of tests:

	
errors

	A list containing 2-tuples of TestCase instances and strings
holding formatted tracebacks. Each tuple represents a test which raised an
unexpected exception.

Changed in version 2.2: Contains formatted tracebacks instead of sys.exc_info() results.

	
failures

	A list containing 2-tuples of TestCase instances and strings
holding formatted tracebacks. Each tuple represents a test where a failure
was explicitly signalled using the TestCase.fail*() or
TestCase.assert*() methods.

Changed in version 2.2: Contains formatted tracebacks instead of sys.exc_info() results.

	
skipped

	A list containing 2-tuples of TestCase instances and strings
holding the reason for skipping the test.

New in version 2.7.

	
expectedFailures

	A list containing 2-tuples of TestCase instances and strings
holding formatted tracebacks. Each tuple represents an expected failure
of the test case.

	
unexpectedSuccesses

	A list containing TestCase instances that were marked as expected
failures, but succeeded.

	
shouldStop

	Set to True when the execution of tests should stop by stop().

	
testsRun

	The total number of tests run so far.

	
buffer

	If set to true, sys.stdout and sys.stderr will be buffered in between
startTest() and stopTest() being called. Collected output will
only be echoed onto the real sys.stdout and sys.stderr if the test
fails or errors. Any output is also attached to the failure / error message.

New in version 2.7.

	
failfast

	If set to true stop() will be called on the first failure or error,
halting the test run.

New in version 2.7.

	
wasSuccessful()

	Return True if all tests run so far have passed, otherwise returns
False.

	
stop()

	This method can be called to signal that the set of tests being run should
be aborted by setting the shouldStop attribute to True.
TestRunner objects should respect this flag and return without
running any additional tests.

For example, this feature is used by the TextTestRunner class to
stop the test framework when the user signals an interrupt from the
keyboard. Interactive tools which provide TestRunner
implementations can use this in a similar manner.

The following methods of the TestResult class are used to maintain
the internal data structures, and may be extended in subclasses to support
additional reporting requirements. This is particularly useful in building
tools which support interactive reporting while tests are being run.

	
startTest(test)

	Called when the test case test is about to be run.

	
stopTest(test)

	Called after the test case test has been executed, regardless of the
outcome.

	
startTestRun(test)

	Called once before any tests are executed.

New in version 2.7.

	
stopTestRun(test)

	Called once after all tests are executed.

New in version 2.7.

	
addError(test, err)

	Called when the test case test raises an unexpected exception err is a
tuple of the form returned by sys.exc_info(): (type, value,
traceback).

The default implementation appends a tuple (test, formatted_err) to
the instance’s errors attribute, where formatted_err is a
formatted traceback derived from err.

	
addFailure(test, err)

	Called when the test case test signals a failure. err is a tuple of
the form returned by sys.exc_info(): (type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to
the instance’s failures attribute, where formatted_err is a
formatted traceback derived from err.

	
addSuccess(test)

	Called when the test case test succeeds.

The default implementation does nothing.

	
addSkip(test, reason)

	Called when the test case test is skipped. reason is the reason the
test gave for skipping.

The default implementation appends a tuple (test, reason) to the
instance’s skipped attribute.

	
addExpectedFailure(test, err)

	Called when the test case test fails, but was marked with the
expectedFailure() decorator.

The default implementation appends a tuple (test, formatted_err) to
the instance’s expectedFailures attribute, where formatted_err
is a formatted traceback derived from err.

	
addUnexpectedSuccess(test)

	Called when the test case test was marked with the
expectedFailure() decorator, but succeeded.

The default implementation appends the test to the instance’s
unexpectedSuccesses attribute.

	
class unittest.TextTestResult(stream, descriptions, verbosity)

	A concrete implementation of TestResult used by the
TextTestRunner.

New in version 2.7: This class was previously named _TextTestResult. The old name still
exists as an alias but is deprecated.

	
unittest.defaultTestLoader

	Instance of the TestLoader class intended to be shared. If no
customization of the TestLoader is needed, this instance can be used
instead of repeatedly creating new instances.

	
class unittest.TextTestRunner(stream=sys.stderr, descriptions=True, verbosity=1)

	A basic test runner implementation which prints results on standard error. It
has a few configurable parameters, but is essentially very simple. Graphical
applications which run test suites should provide alternate implementations.

	
_makeResult()

	This method returns the instance of TestResult used by run().
It is not intended to be called directly, but can be overridden in
subclasses to provide a custom TestResult.

_makeResult() instantiates the class or callable passed in the
TextTestRunner constructor as the resultclass argument. It
defaults to TextTestResult if no resultclass is provided.
The result class is instantiated with the following arguments:

stream, descriptions, verbosity

	
unittest.main([module[, defaultTest[, argv[, testRunner[, testLoader[, exit[, verbosity[, failfast[, catchbreak[, buffer]]]]]]]]]])

	A command-line program that runs a set of tests; this is primarily for making
test modules conveniently executable. The simplest use for this function is to
include the following line at the end of a test script:

if __name__ == '__main__':
 unittest.main()

You can run tests with more detailed information by passing in the verbosity
argument:

if __name__ == '__main__':
 unittest.main(verbosity=2)

The testRunner argument can either be a test runner class or an already
created instance of it. By default main calls sys.exit() with
an exit code indicating success or failure of the tests run.

main supports being used from the interactive interpreter by passing in the
argument exit=False. This displays the result on standard output without
calling sys.exit():

>>> from unittest import main
>>> main(module='test_module', exit=False)

The failfast, catchbreak and buffer parameters have the same
effect as the same-name command-line options.

Calling main actually returns an instance of the TestProgram class.
This stores the result of the tests run as the result attribute.

Changed in version 2.7: The exit, verbosity, failfast, catchbreak and buffer
parameters were added.

25.3.7.3.1. load_tests Protocol

New in version 2.7.

Modules or packages can customize how tests are loaded from them during normal
test runs or test discovery by implementing a function called load_tests.

If a test module defines load_tests it will be called by
TestLoader.loadTestsFromModule() with the following arguments:

load_tests(loader, standard_tests, None)

It should return a TestSuite.

loader is the instance of TestLoader doing the loading.
standard_tests are the tests that would be loaded by default from the
module. It is common for test modules to only want to add or remove tests
from the standard set of tests.
The third argument is used when loading packages as part of test discovery.

A typical load_tests function that loads tests from a specific set of
TestCase classes may look like:

test_cases = (TestCase1, TestCase2, TestCase3)

def load_tests(loader, tests, pattern):
 suite = TestSuite()
 for test_class in test_cases:
 tests = loader.loadTestsFromTestCase(test_class)
 suite.addTests(tests)
 return suite

If discovery is started, either from the command line or by calling
TestLoader.discover(), with a pattern that matches a package
name then the package __init__.py will be checked for load_tests.

Note

The default pattern is ‘test*.py’. This matches all Python files
that start with ‘test’ but won’t match any test directories.

A pattern like ‘test*’ will match test packages as well as
modules.

If the package __init__.py defines load_tests then it will be
called and discovery not continued into the package. load_tests
is called with the following arguments:

load_tests(loader, standard_tests, pattern)

This should return a TestSuite representing all the tests
from the package. (standard_tests will only contain tests
collected from __init__.py.)

Because the pattern is passed into load_tests the package is free to
continue (and potentially modify) test discovery. A ‘do nothing’
load_tests function for a test package would look like:

def load_tests(loader, standard_tests, pattern):
 # top level directory cached on loader instance
 this_dir = os.path.dirname(__file__)
 package_tests = loader.discover(start_dir=this_dir, pattern=pattern)
 standard_tests.addTests(package_tests)
 return standard_tests

25.3.8. Class and Module Fixtures

Class and module level fixtures are implemented in TestSuite. When
the test suite encounters a test from a new class then tearDownClass()
from the previous class (if there is one) is called, followed by
setUpClass() from the new class.

Similarly if a test is from a different module from the previous test then
tearDownModule from the previous module is run, followed by
setUpModule from the new module.

After all the tests have run the final tearDownClass and
tearDownModule are run.

Note that shared fixtures do not play well with [potential] features like test
parallelization and they break test isolation. They should be used with care.

The default ordering of tests created by the unittest test loaders is to group
all tests from the same modules and classes together. This will lead to
setUpClass / setUpModule (etc) being called exactly once per class and
module. If you randomize the order, so that tests from different modules and
classes are adjacent to each other, then these shared fixture functions may be
called multiple times in a single test run.

Shared fixtures are not intended to work with suites with non-standard
ordering. A BaseTestSuite still exists for frameworks that don’t want to
support shared fixtures.

If there are any exceptions raised during one of the shared fixture functions
the test is reported as an error. Because there is no corresponding test
instance an _ErrorHolder object (that has the same interface as a
TestCase) is created to represent the error. If you are just using
the standard unittest test runner then this detail doesn’t matter, but if you
are a framework author it may be relevant.

25.3.8.1. setUpClass and tearDownClass

These must be implemented as class methods:

import unittest

class Test(unittest.TestCase):
 @classmethod
 def setUpClass(cls):
 cls._connection = createExpensiveConnectionObject()

 @classmethod
 def tearDownClass(cls):
 cls._connection.destroy()

If you want the setUpClass and tearDownClass on base classes called
then you must call up to them yourself. The implementations in
TestCase are empty.

If an exception is raised during a setUpClass then the tests in the class
are not run and the tearDownClass is not run. Skipped classes will not
have setUpClass or tearDownClass run. If the exception is a
SkipTest exception then the class will be reported as having been skipped
instead of as an error.

25.3.8.2. setUpModule and tearDownModule

These should be implemented as functions:

def setUpModule():
 createConnection()

def tearDownModule():
 closeConnection()

If an exception is raised in a setUpModule then none of the tests in the
module will be run and the tearDownModule will not be run. If the exception is a
SkipTest exception then the module will be reported as having been skipped
instead of as an error.

25.3.9. Signal Handling

The -c/--catch command-line option to unittest,
along with the catchbreak parameter to unittest.main(), provide
more friendly handling of control-C during a test run. With catch break
behavior enabled control-C will allow the currently running test to complete,
and the test run will then end and report all the results so far. A second
control-c will raise a KeyboardInterrupt in the usual way.

The control-c handling signal handler attempts to remain compatible with code or
tests that install their own signal.SIGINT handler. If the unittest
handler is called but isn’t the installed signal.SIGINT handler,
i.e. it has been replaced by the system under test and delegated to, then it
calls the default handler. This will normally be the expected behavior by code
that replaces an installed handler and delegates to it. For individual tests
that need unittest control-c handling disabled the removeHandler()
decorator can be used.

There are a few utility functions for framework authors to enable control-c
handling functionality within test frameworks.

	
unittest.installHandler()

	Install the control-c handler. When a signal.SIGINT is received
(usually in response to the user pressing control-c) all registered results
have stop() called.

New in version 2.7.

	
unittest.registerResult(result)

	Register a TestResult object for control-c handling. Registering a
result stores a weak reference to it, so it doesn’t prevent the result from
being garbage collected.

Registering a TestResult object has no side-effects if control-c
handling is not enabled, so test frameworks can unconditionally register
all results they create independently of whether or not handling is enabled.

New in version 2.7.

	
unittest.removeResult(result)

	Remove a registered result. Once a result has been removed then
stop() will no longer be called on that result object in
response to a control-c.

New in version 2.7.

	
unittest.removeHandler(function=None)

	When called without arguments this function removes the control-c handler
if it has been installed. This function can also be used as a test decorator
to temporarily remove the handler whilst the test is being executed:

@unittest.removeHandler
def test_signal_handling(self):
 ...

New in version 2.7.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	25. Development Tools

25.4. 2to3 - Automated Python 2 to 3 code translation

2to3 is a Python program that reads Python 2.x source code and applies a series
of fixers to transform it into valid Python 3.x code. The standard library
contains a rich set of fixers that will handle almost all code. 2to3 supporting
library lib2to3 is, however, a flexible and generic library, so it is
possible to write your own fixers for 2to3. lib2to3 could also be
adapted to custom applications in which Python code needs to be edited
automatically.

25.4.1. Using 2to3

2to3 will usually be installed with the Python interpreter as a script. It is
also located in the Tools/scripts directory of the Python root.

2to3’s basic arguments are a list of files or directories to transform. The
directories are to recursively traversed for Python sources.

Here is a sample Python 2.x source file, example.py:

def greet(name):
 print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

It can be converted to Python 3.x code via 2to3 on the command line:

$ 2to3 example.py

A diff against the original source file is printed. 2to3 can also write the
needed modifications right back to the source file. (A backup of the original
file is made unless -n is also given.) Writing the changes back is
enabled with the -w flag:

$ 2to3 -w example.py

After transformation, example.py looks like this:

def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

Comments and exact indentation are preserved throughout the translation process.

By default, 2to3 runs a set of predefined fixers. The
-l flag lists all available fixers. An explicit set of fixers to run
can be given with -f. Likewise the -x explicitly disables a
fixer. The following example runs only the imports and has_key fixers:

$ 2to3 -f imports -f has_key example.py

This command runs every fixer except the apply fixer:

$ 2to3 -x apply example.py

Some fixers are explicit, meaning they aren’t run by default and must be
listed on the command line to be run. Here, in addition to the default fixers,
the idioms fixer is run:

$ 2to3 -f all -f idioms example.py

Notice how passing all enables all default fixers.

Sometimes 2to3 will find a place in your source code that needs to be changed,
but 2to3 cannot fix automatically. In this case, 2to3 will print a warning
beneath the diff for a file. You should address the warning in order to have
compliant 3.x code.

2to3 can also refactor doctests. To enable this mode, use the -d
flag. Note that only doctests will be refactored. This also doesn’t require
the module to be valid Python. For example, doctest like examples in a reST
document could also be refactored with this option.

The -v option enables output of more information on the translation
process.

Since some print statements can be parsed as function calls or statements, 2to3
cannot always read files containing the print function. When 2to3 detects the
presence of the from __future__ import print_function compiler directive, it
modifies its internal grammar to interpret print() as a function. This
change can also be enabled manually with the -p flag. Use
-p to run fixers on code that already has had its print statements
converted.

25.4.2. Fixers

Each step of transforming code is encapsulated in a fixer. The command 2to3
-l lists them. As documented above, each can be turned on
and off individually. They are described here in more detail.

	
apply

	Removes usage of apply(). For example apply(function, *args,
**kwargs) is converted to function(*args, **kwargs).

	
basestring

	Converts basestring to str.

	
buffer

	Converts buffer to memoryview. This fixer is optional
because the memoryview API is similar but not exactly the same as
that of buffer.

	
callable

	Converts callable(x) to isinstance(x, collections.Callable), adding
an import to collections if needed.

	
dict

	Fixes dictionary iteration methods. dict.iteritems() is converted to
dict.items(), dict.iterkeys() to dict.keys(), and
dict.itervalues() to dict.values(). Similarly,
dict.viewitems(), dict.viewkeys() and dict.viewvalues() are
converted respectively to dict.items(), dict.keys() and
dict.values(). It also wraps existing usages of dict.items(),
dict.keys(), and dict.values() in a call to list.

	
except

	Converts except X, T to except X as T.

	
exec

	Converts the exec statement to the exec() function.

	
execfile

	Removes usage of execfile(). The argument to execfile() is
wrapped in calls to open(), compile(), and exec().

	
exitfunc

	Changes assignment of sys.exitfunc to use of the atexit
module.

	
filter

	Wraps filter() usage in a list call.

	
funcattrs

	Fixes function attributes that have been renamed. For example,
my_function.func_closure is converted to my_function.__closure__.

	
future

	Removes from __future__ import new_feature statements.

	
getcwdu

	Renames os.getcwdu() to os.getcwd().

	
has_key

	Changes dict.has_key(key) to key in dict.

	
idioms

	This optional fixer performs several transformations that make Python code
more idiomatic. Type comparisons like type(x) is SomeClass and
type(x) == SomeClass are converted to isinstance(x, SomeClass).
while 1 becomes while True. This fixer also tries to make use of
sorted() in appropriate places. For example, this block

L = list(some_iterable)
L.sort()

is changed to

L = sorted(some_iterable)

	
import

	Detects sibling imports and converts them to relative imports.

	
imports

	Handles module renames in the standard library.

	
imports2

	Handles other modules renames in the standard library. It is separate from
the imports fixer only because of technical limitations.

	
input

	Converts input(prompt) to eval(input(prompt))

	
intern

	Converts intern() to sys.intern().

	
isinstance

	Fixes duplicate types in the second argument of isinstance(). For
example, isinstance(x, (int, int)) is converted to isinstance(x,
(int)).

	
itertools_imports

	Removes imports of itertools.ifilter(), itertools.izip(), and
itertools.imap(). Imports of itertools.ifilterfalse() are also
changed to itertools.filterfalse().

	
itertools

	Changes usage of itertools.ifilter(), itertools.izip(), and
itertools.imap() to their built-in equivalents.
itertools.ifilterfalse() is changed to itertools.filterfalse().

	
long

	Strips the L prefix on long literals and renames long to
int.

	
map

	Wraps map() in a list call. It also changes map(None, x)
to list(x). Using from future_builtins import map disables this
fixer.

	
metaclass

	Converts the old metaclass syntax (__metaclass__ = Meta in the class
body) to the new (class X(metaclass=Meta)).

	
methodattrs

	Fixes old method attribute names. For example, meth.im_func is converted
to meth.__func__.

	
ne

	Converts the old not-equal syntax, <>, to !=.

	
next

	Converts the use of iterator’s next() methods to the
next() function. It also renames next() methods to
__next__().

	
nonzero

	Renames __nonzero__() to __bool__().

	
numliterals

	Converts octal literals into the new syntax.

	
paren

	Add extra parenthesis where they are required in list comprehensions. For
example, [x for x in 1, 2] becomes [x for x in (1, 2)].

	
print

	Converts the print statement to the print() function.

	
raise

	Converts raise E, V to raise E(V), and raise E, V, T to raise
E(V).with_traceback(T). If E is a tuple, the translation will be
incorrect because substituting tuples for exceptions has been removed in 3.0.

	
raw_input

	Converts raw_input() to input().

	
reduce

	Handles the move of reduce() to functools.reduce().

	
renames

	Changes sys.maxint to sys.maxsize.

	
repr

	Replaces backtick repr with the repr() function.

	
set_literal

	Replaces use of the set constructor with set literals. This fixer
is optional.

	
standard_error

	Renames StandardError to Exception.

	
sys_exc

	Changes the deprecated sys.exc_value, sys.exc_type,
sys.exc_traceback to use sys.exc_info().

	
throw

	Fixes the API change in generator’s throw() method.

	
tuple_params

	Removes implicit tuple parameter unpacking. This fixer inserts temporary
variables.

	
types

	Fixes code broken from the removal of some members in the types
module.

	
unicode

	Renames unicode to str.

	
urllib

	Handles the rename of urllib and urllib2 to the urllib
package.

	
ws_comma

	Removes excess whitespace from comma separated items. This fixer is
optional.

	
xrange

	Renames xrange() to range() and wraps existing range()
calls with list.

	
xreadlines

	Changes for x in file.xreadlines() to for x in file.

	
zip

	Wraps zip() usage in a list call. This is disabled when
from future_builtins import zip appears.

25.4.3. lib2to3 - 2to3’s library

Note

The lib2to3 API should be considered unstable and may change
drastically in the future.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	25. Development Tools

25.5. test — Regression tests package for Python

Note

The test package is meant for internal use by Python only. It is
documented for the benefit of the core developers of Python. Any use of
this package outside of Python’s standard library is discouraged as code
mentioned here can change or be removed without notice between releases of
Python.

The test package contains all regression tests for Python as well as the
modules test.test_support and test.regrtest.
test.test_support is used to enhance your tests while
test.regrtest drives the testing suite.

Each module in the test package whose name starts with test_ is a
testing suite for a specific module or feature. All new tests should be written
using the unittest or doctest module. Some older tests are
written using a “traditional” testing style that compares output printed to
sys.stdout; this style of test is considered deprecated.

See also

	Module unittest

	Writing PyUnit regression tests.

	Module doctest

	Tests embedded in documentation strings.

25.5.1. Writing Unit Tests for the test package

It is preferred that tests that use the unittest module follow a few
guidelines. One is to name the test module by starting it with test_ and end
it with the name of the module being tested. The test methods in the test module
should start with test_ and end with a description of what the method is
testing. This is needed so that the methods are recognized by the test driver as
test methods. Also, no documentation string for the method should be included. A
comment (such as # Tests function returns only True or False) should be used
to provide documentation for test methods. This is done because documentation
strings get printed out if they exist and thus what test is being run is not
stated.

A basic boilerplate is often used:

import unittest
from test import test_support

class MyTestCase1(unittest.TestCase):

 # Only use setUp() and tearDown() if necessary

 def setUp(self):
 ... code to execute in preparation for tests ...

 def tearDown(self):
 ... code to execute to clean up after tests ...

 def test_feature_one(self):
 # Test feature one.
 ... testing code ...

 def test_feature_two(self):
 # Test feature two.
 ... testing code ...

 ... more test methods ...

class MyTestCase2(unittest.TestCase):
 ... same structure as MyTestCase1 ...

... more test classes ...

def test_main():
 test_support.run_unittest(MyTestCase1,
 MyTestCase2,
 ... list other tests ...
)

if __name__ == '__main__':
 test_main()

This boilerplate code allows the testing suite to be run by test.regrtest
as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few
guidelines to be followed:

	The testing suite should exercise all classes, functions, and constants. This
includes not just the external API that is to be presented to the outside
world but also “private” code.

	Whitebox testing (examining the code being tested when the tests are being
written) is preferred. Blackbox testing (testing only the published user
interface) is not complete enough to make sure all boundary and edge cases
are tested.

	Make sure all possible values are tested including invalid ones. This makes
sure that not only all valid values are acceptable but also that improper
values are handled correctly.

	Exhaust as many code paths as possible. Test where branching occurs and thus
tailor input to make sure as many different paths through the code are taken.

	Add an explicit test for any bugs discovered for the tested code. This will
make sure that the error does not crop up again if the code is changed in the
future.

	Make sure to clean up after your tests (such as close and remove all temporary
files).

	If a test is dependent on a specific condition of the operating system then
verify the condition already exists before attempting the test.

	Import as few modules as possible and do it as soon as possible. This
minimizes external dependencies of tests and also minimizes possible anomalous
behavior from side-effects of importing a module.

	Try to maximize code reuse. On occasion, tests will vary by something as small
as what type of input is used. Minimize code duplication by subclassing a
basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):

 func = mySuperWhammyFunction

 def test_func(self):
 self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
 arg = [1, 2, 3]

class AcceptStrings(TestFuncAcceptsSequences):
 arg = 'abc'

class AcceptTuples(TestFuncAcceptsSequences):
 arg = (1, 2, 3)

See also

	Test Driven Development

	A book by Kent Beck on writing tests before code.

25.5.2. Running tests using the command-line interface

The test.regrtest module can be run as a script to drive Python’s regression
test suite, thanks to the -m option: python -m test.regrtest.
Running the script by itself automatically starts running all regression
tests in the test package. It does this by finding all modules in the
package whose name starts with test_, importing them, and executing the
function test_main() if present. The names of tests to execute may also
be passed to the script. Specifying a single regression test (python
-m test.regrtest test_spam) will minimize output and only print whether
the test passed or failed and thus minimize output.

Running test.regrtest directly allows what resources are available for
tests to use to be set. You do this by using the -u command-line
option. Run python -m test.regrtest -uall to turn on all
resources; specifying all as an option for -u enables all
possible resources. If all but one resource is desired (a more common case), a
comma-separated list of resources that are not desired may be listed after
all. The command python -m test.regrtest -uall,-audio,-largefile
will run test.regrtest with all resources except the audio and
largefile resources. For a list of all resources and more command-line
options, run python -m test.regrtest -h.

Some other ways to execute the regression tests depend on what platform the
tests are being executed on. On Unix, you can run make test at the
top-level directory where Python was built. On Windows, executing
rt.bat from your PCBuild directory will run all regression
tests.

25.6. test.test_support — Utility functions for tests

Note

The test.test_support module has been renamed to test.support
in Python 3.x.

The test.test_support module provides support for Python’s regression
tests.

This module defines the following exceptions:

	
exception test.test_support.TestFailed

	Exception to be raised when a test fails. This is deprecated in favor of
unittest-based tests and unittest.TestCase‘s assertion
methods.

	
exception test.test_support.ResourceDenied

	Subclass of unittest.SkipTest. Raised when a resource (such as a
network connection) is not available. Raised by the requires()
function.

The test.test_support module defines the following constants:

	
test.test_support.verbose

	True when verbose output is enabled. Should be checked when more
detailed information is desired about a running test. verbose is set by
test.regrtest.

	
test.test_support.have_unicode

	True when Unicode support is available.

	
test.test_support.is_jython

	True if the running interpreter is Jython.

	
test.test_support.TESTFN

	Set to a name that is safe to use as the name of a temporary file. Any
temporary file that is created should be closed and unlinked (removed).

The test.test_support module defines the following functions:

	
test.test_support.forget(module_name)

	Remove the module named module_name from sys.modules and delete any
byte-compiled files of the module.

	
test.test_support.is_resource_enabled(resource)

	Return True if resource is enabled and available. The list of
available resources is only set when test.regrtest is executing the
tests.

	
test.test_support.requires(resource[, msg])

	Raise ResourceDenied if resource is not available. msg is the
argument to ResourceDenied if it is raised. Always returns
True if called by a function whose __name__ is '__main__'.
Used when tests are executed by test.regrtest.

	
test.test_support.findfile(filename)

	Return the path to the file named filename. If no match is found
filename is returned. This does not equal a failure since it could be the
path to the file.

	
test.test_support.run_unittest(*classes)

	Execute unittest.TestCase subclasses passed to the function. The
function scans the classes for methods starting with the prefix test_
and executes the tests individually.

It is also legal to pass strings as parameters; these should be keys in
sys.modules. Each associated module will be scanned by
unittest.TestLoader.loadTestsFromModule(). This is usually seen in the
following test_main() function:

def test_main():
 test_support.run_unittest(__name__)

This will run all tests defined in the named module.

	
test.test_support.check_warnings(*filters, quiet=True)

	A convenience wrapper for warnings.catch_warnings() that makes it
easier to test that a warning was correctly raised. It is approximately
equivalent to calling warnings.catch_warnings(record=True) with
warnings.simplefilter() set to always and with the option to
automatically validate the results that are recorded.

check_warnings accepts 2-tuples of the form ("message regexp",
WarningCategory) as positional arguments. If one or more filters are
provided, or if the optional keyword argument quiet is False,
it checks to make sure the warnings are as expected: each specified filter
must match at least one of the warnings raised by the enclosed code or the
test fails, and if any warnings are raised that do not match any of the
specified filters the test fails. To disable the first of these checks,
set quiet to True.

If no arguments are specified, it defaults to:

check_warnings(("", Warning), quiet=True)

In this case all warnings are caught and no errors are raised.

On entry to the context manager, a WarningRecorder instance is
returned. The underlying warnings list from
catch_warnings() is available via the recorder object’s
warnings attribute. As a convenience, the attributes of the object
representing the most recent warning can also be accessed directly through
the recorder object (see example below). If no warning has been raised,
then any of the attributes that would otherwise be expected on an object
representing a warning will return None.

The recorder object also has a reset() method, which clears the
warnings list.

The context manager is designed to be used like this:

with check_warnings(("assertion is always true", SyntaxWarning),
 ("", UserWarning)):
 exec('assert(False, "Hey!")')
 warnings.warn(UserWarning("Hide me!"))

In this case if either warning was not raised, or some other warning was
raised, check_warnings() would raise an error.

When a test needs to look more deeply into the warnings, rather than
just checking whether or not they occurred, code like this can be used:

with check_warnings(quiet=True) as w:
 warnings.warn("foo")
 assert str(w.args[0]) == "foo"
 warnings.warn("bar")
 assert str(w.args[0]) == "bar"
 assert str(w.warnings[0].args[0]) == "foo"
 assert str(w.warnings[1].args[0]) == "bar"
 w.reset()
 assert len(w.warnings) == 0

Here all warnings will be caught, and the test code tests the captured
warnings directly.

New in version 2.6.

Changed in version 2.7: New optional arguments filters and quiet.

	
test.test_support.check_py3k_warnings(*filters, quiet=False)

	Similar to check_warnings(), but for Python 3 compatibility warnings.
If sys.py3kwarning == 1, it checks if the warning is effectively raised.
If sys.py3kwarning == 0, it checks that no warning is raised. It
accepts 2-tuples of the form ("message regexp", WarningCategory) as
positional arguments. When the optional keyword argument quiet is
True, it does not fail if a filter catches nothing. Without
arguments, it defaults to:

check_py3k_warnings(("", DeprecationWarning), quiet=False)

New in version 2.7.

	
test.test_support.captured_stdout()

	This is a context manager that runs the with statement body using
a StringIO.StringIO object as sys.stdout. That object can be
retrieved using the as clause of the with statement.

Example use:

with captured_stdout() as s:
 print "hello"
assert s.getvalue() == "hello"

New in version 2.6.

	
test.test_support.import_module(name, deprecated=False)

	This function imports and returns the named module. Unlike a normal
import, this function raises unittest.SkipTest if the module
cannot be imported.

Module and package deprecation messages are suppressed during this import
if deprecated is True.

New in version 2.7.

	
test.test_support.import_fresh_module(name, fresh=(), blocked=(), deprecated=False)

	This function imports and returns a fresh copy of the named Python module
by removing the named module from sys.modules before doing the import.
Note that unlike reload(), the original module is not affected by
this operation.

fresh is an iterable of additional module names that are also removed
from the sys.modules cache before doing the import.

blocked is an iterable of module names that are replaced with 0
in the module cache during the import to ensure that attempts to import
them raise ImportError.

The named module and any modules named in the fresh and blocked
parameters are saved before starting the import and then reinserted into
sys.modules when the fresh import is complete.

Module and package deprecation messages are suppressed during this import
if deprecated is True.

This function will raise unittest.SkipTest is the named module
cannot be imported.

Example use:

Get copies of the warnings module for testing without
affecting the version being used by the rest of the test suite
One copy uses the C implementation, the other is forced to use
the pure Python fallback implementation
py_warnings = import_fresh_module('warnings', blocked=['_warnings'])
c_warnings = import_fresh_module('warnings', fresh=['_warnings'])

New in version 2.7.

The test.test_support module defines the following classes:

	
class test.test_support.TransientResource(exc[, **kwargs])

	Instances are a context manager that raises ResourceDenied if the
specified exception type is raised. Any keyword arguments are treated as
attribute/value pairs to be compared against any exception raised within the
with statement. Only if all pairs match properly against
attributes on the exception is ResourceDenied raised.

New in version 2.6.

	
class test.test_support.EnvironmentVarGuard

	Class used to temporarily set or unset environment variables. Instances can
be used as a context manager and have a complete dictionary interface for
querying/modifying the underlying os.environ. After exit from the
context manager all changes to environment variables done through this
instance will be rolled back.

New in version 2.6.

Changed in version 2.7: Added dictionary interface.

	
EnvironmentVarGuard.set(envvar, value)

	Temporarily set the environment variable envvar to the value of
value.

	
EnvironmentVarGuard.unset(envvar)

	Temporarily unset the environment variable envvar.

	
class test.test_support.WarningsRecorder

	Class used to record warnings for unit tests. See documentation of
check_warnings() above for more details.

New in version 2.6.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

26. Debugging and Profiling

These libraries help you with Python development: the debugger enables you to
step through code, analyze stack frames and set breakpoints etc., and the
profilers run code and give you a detailed breakdown of execution times,
allowing you to identify bottlenecks in your programs.

	26.1. bdb — Debugger framework

	26.2. pdb — The Python Debugger

	26.3. Debugger Commands

	26.4. The Python Profilers
	26.4.1. Introduction to the profilers

	26.4.2. Instant User’s Manual

	26.4.3. What Is Deterministic Profiling?

	26.4.4. Reference Manual – profile and cProfile
	26.4.4.1. The Stats Class

	26.4.5. Limitations

	26.4.6. Calibration

	26.4.7. Extensions — Deriving Better Profilers

	26.5. hotshot — High performance logging profiler
	26.5.1. Profile Objects

	26.5.2. Using hotshot data

	26.5.3. Example Usage

	26.6. timeit — Measure execution time of small code snippets
	26.6.1. Command Line Interface

	26.6.2. Examples

	26.7. trace — Trace or track Python statement execution
	26.7.1. Command-Line Usage
	26.7.1.1. Main options

	26.7.1.2. Modifiers

	26.7.1.3. Filters

	26.7.2. Programmatic Interface

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.1. bdb — Debugger framework

The bdb module handles basic debugger functions, like setting breakpoints
or managing execution via the debugger.

The following exception is defined:

	
exception bdb.BdbQuit

	Exception raised by the Bdb class for quitting the debugger.

The bdb module also defines two classes:

	
class bdb.Breakpoint(self, file, line[, temporary=0[, cond=None[, funcname=None]]])

	This class implements temporary breakpoints, ignore counts, disabling and
(re-)enabling, and conditionals.

Breakpoints are indexed by number through a list called bpbynumber
and by (file, line) pairs through bplist. The former points to a
single instance of class Breakpoint. The latter points to a list of
such instances since there may be more than one breakpoint per line.

When creating a breakpoint, its associated filename should be in canonical
form. If a funcname is defined, a breakpoint hit will be counted when the
first line of that function is executed. A conditional breakpoint always
counts a hit.

Breakpoint instances have the following methods:

	
deleteMe()

	Delete the breakpoint from the list associated to a file/line. If it is
the last breakpoint in that position, it also deletes the entry for the
file/line.

	
enable()

	Mark the breakpoint as enabled.

	
disable()

	Mark the breakpoint as disabled.

	
pprint([out])

	Print all the information about the breakpoint:

	The breakpoint number.

	If it is temporary or not.

	Its file,line position.

	The condition that causes a break.

	If it must be ignored the next N times.

	The breakpoint hit count.

	
class bdb.Bdb(skip=None)

	The Bdb class acts as a generic Python debugger base class.

This class takes care of the details of the trace facility; a derived class
should implement user interaction. The standard debugger class
(pdb.Pdb) is an example.

The skip argument, if given, must be an iterable of glob-style
module name patterns. The debugger will not step into frames that
originate in a module that matches one of these patterns. Whether a
frame is considered to originate in a certain module is determined
by the __name__ in the frame globals.

New in version 2.7: The skip argument.

The following methods of Bdb normally don’t need to be overridden.

	
canonic(filename)

	Auxiliary method for getting a filename in a canonical form, that is, as a
case-normalized (on case-insensitive filesystems) absolute path, stripped
of surrounding angle brackets.

	
reset()

	Set the botframe, stopframe, returnframe and
quitting attributes with values ready to start debugging.

	
trace_dispatch(frame, event, arg)

	This function is installed as the trace function of debugged frames. Its
return value is the new trace function (in most cases, that is, itself).

The default implementation decides how to dispatch a frame, depending on
the type of event (passed as a string) that is about to be executed.
event can be one of the following:

	"line": A new line of code is going to be executed.

	"call": A function is about to be called, or another code block
entered.

	"return": A function or other code block is about to return.

	"exception": An exception has occurred.

	"c_call": A C function is about to be called.

	"c_return": A C function has returned.

	"c_exception": A C function has raised an exception.

For the Python events, specialized functions (see below) are called. For
the C events, no action is taken.

The arg parameter depends on the previous event.

See the documentation for sys.settrace() for more information on the
trace function. For more information on code and frame objects, refer to
The standard type hierarchy.

	
dispatch_line(frame)

	If the debugger should stop on the current line, invoke the
user_line() method (which should be overridden in subclasses).
Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_line()). Return a reference to the
trace_dispatch() method for further tracing in that scope.

	
dispatch_call(frame, arg)

	If the debugger should stop on this function call, invoke the
user_call() method (which should be overridden in subclasses).
Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_call()). Return a reference to the
trace_dispatch() method for further tracing in that scope.

	
dispatch_return(frame, arg)

	If the debugger should stop on this function return, invoke the
user_return() method (which should be overridden in subclasses).
Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_return()). Return a reference to the
trace_dispatch() method for further tracing in that scope.

	
dispatch_exception(frame, arg)

	If the debugger should stop at this exception, invokes the
user_exception() method (which should be overridden in subclasses).
Raise a BdbQuit exception if the Bdb.quitting flag is set
(which can be set from user_exception()). Return a reference to the
trace_dispatch() method for further tracing in that scope.

Normally derived classes don’t override the following methods, but they may
if they want to redefine the definition of stopping and breakpoints.

	
stop_here(frame)

	This method checks if the frame is somewhere below botframe in
the call stack. botframe is the frame in which debugging started.

	
break_here(frame)

	This method checks if there is a breakpoint in the filename and line
belonging to frame or, at least, in the current function. If the
breakpoint is a temporary one, this method deletes it.

	
break_anywhere(frame)

	This method checks if there is a breakpoint in the filename of the current
frame.

Derived classes should override these methods to gain control over debugger
operation.

	
user_call(frame, argument_list)

	This method is called from dispatch_call() when there is the
possibility that a break might be necessary anywhere inside the called
function.

	
user_line(frame)

	This method is called from dispatch_line() when either
stop_here() or break_here() yields True.

	
user_return(frame, return_value)

	This method is called from dispatch_return() when stop_here()
yields True.

	
user_exception(frame, exc_info)

	This method is called from dispatch_exception() when
stop_here() yields True.

	
do_clear(arg)

	Handle how a breakpoint must be removed when it is a temporary one.

This method must be implemented by derived classes.

Derived classes and clients can call the following methods to affect the
stepping state.

	
set_step()

	Stop after one line of code.

	
set_next(frame)

	Stop on the next line in or below the given frame.

	
set_return(frame)

	Stop when returning from the given frame.

	
set_until(frame)

	Stop when the line with the line no greater than the current one is
reached or when returning from current frame

	
set_trace([frame])

	Start debugging from frame. If frame is not specified, debugging
starts from caller’s frame.

	
set_continue()

	Stop only at breakpoints or when finished. If there are no breakpoints,
set the system trace function to None.

	
set_quit()

	Set the quitting attribute to True. This raises BdbQuit in
the next call to one of the dispatch_*() methods.

Derived classes and clients can call the following methods to manipulate
breakpoints. These methods return a string containing an error message if
something went wrong, or None if all is well.

	
set_break(filename, lineno[, temporary=0[, cond[, funcname]]])

	Set a new breakpoint. If the lineno line doesn’t exist for the
filename passed as argument, return an error message. The filename
should be in canonical form, as described in the canonic() method.

	
clear_break(filename, lineno)

	Delete the breakpoints in filename and lineno. If none were set, an
error message is returned.

	
clear_bpbynumber(arg)

	Delete the breakpoint which has the index arg in the
Breakpoint.bpbynumber. If arg is not numeric or out of range,
return an error message.

	
clear_all_file_breaks(filename)

	Delete all breakpoints in filename. If none were set, an error message
is returned.

	
clear_all_breaks()

	Delete all existing breakpoints.

	
get_break(filename, lineno)

	Check if there is a breakpoint for lineno of filename.

	
get_breaks(filename, lineno)

	Return all breakpoints for lineno in filename, or an empty list if
none are set.

	
get_file_breaks(filename)

	Return all breakpoints in filename, or an empty list if none are set.

	
get_all_breaks()

	Return all breakpoints that are set.

Derived classes and clients can call the following methods to get a data
structure representing a stack trace.

	
get_stack(f, t)

	Get a list of records for a frame and all higher (calling) and lower
frames, and the size of the higher part.

	
format_stack_entry(frame_lineno[, lprefix=': '])

	Return a string with information about a stack entry, identified by a
(frame, lineno) tuple:

	The canonical form of the filename which contains the frame.

	The function name, or "<lambda>".

	The input arguments.

	The return value.

	The line of code (if it exists).

The following two methods can be called by clients to use a debugger to debug
a statement, given as a string.

	
run(cmd[, globals[, locals]])

	Debug a statement executed via the exec statement. globals
defaults to __main__.__dict__, locals defaults to globals.

	
runeval(expr[, globals[, locals]])

	Debug an expression executed via the eval() function. globals and
locals have the same meaning as in run().

	
runctx(cmd, globals, locals)

	For backwards compatibility. Calls the run() method.

	
runcall(func, *args, **kwds)

	Debug a single function call, and return its result.

Finally, the module defines the following functions:

	
bdb.checkfuncname(b, frame)

	Check whether we should break here, depending on the way the breakpoint b
was set.

If it was set via line number, it checks if b.line is the same as the one
in the frame also passed as argument. If the breakpoint was set via function
name, we have to check we are in the right frame (the right function) and if
we are in its first executable line.

	
bdb.effective(file, line, frame)

	Determine if there is an effective (active) breakpoint at this line of code.
Return a tuple of the breakpoint and a boolean that indicates if it is ok
to delete a temporary breakpoint. Return (None, None) if there is no
matching breakpoint.

	
bdb.set_trace()

	Start debugging with a Bdb instance from caller’s frame.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.2. pdb — The Python Debugger

The module pdb defines an interactive source code debugger for Python
programs. It supports setting (conditional) breakpoints and single stepping at
the source line level, inspection of stack frames, source code listing, and
evaluation of arbitrary Python code in the context of any stack frame. It also
supports post-mortem debugging and can be called under program control.

The debugger is extensible — it is actually defined as the class Pdb.
This is currently undocumented but easily understood by reading the source. The
extension interface uses the modules bdb and cmd.

The debugger’s prompt is (Pdb). Typical usage to run a program under control
of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.test()')
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: 'spam'
> <string>(1)?()
(Pdb)

pdb.py can also be invoked as a script to debug other scripts. For
example:

python -m pdb myscript.py

When invoked as a script, pdb will automatically enter post-mortem debugging if
the program being debugged exits abnormally. After post-mortem debugging (or
after normal exit of the program), pdb will restart the program. Automatic
restarting preserves pdb’s state (such as breakpoints) and in most cases is more
useful than quitting the debugger upon program’s exit.

New in version 2.4: Restarting post-mortem behavior added.

The typical usage to break into the debugger from a running program is to
insert

import pdb; pdb.set_trace()

at the location you want to break into the debugger. You can then step through
the code following this statement, and continue running without the debugger using
the c command.

The typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "./mymodule.py", line 4, in test
 test2()
 File "./mymodule.py", line 3, in test2
 print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a
slightly different way:

	
pdb.run(statement[, globals[, locals]])

	Execute the statement (given as a string) under debugger control. The
debugger prompt appears before any code is executed; you can set breakpoints and
type continue, or you can step through the statement using step or
next (all these commands are explained below). The optional globals and
locals arguments specify the environment in which the code is executed; by
default the dictionary of the module __main__ is used. (See the
explanation of the exec statement or the eval() built-in
function.)

	
pdb.runeval(expression[, globals[, locals]])

	Evaluate the expression (given as a string) under debugger control. When
runeval() returns, it returns the value of the expression. Otherwise this
function is similar to run().

	
pdb.runcall(function[, argument, ...])

	Call the function (a function or method object, not a string) with the given
arguments. When runcall() returns, it returns whatever the function call
returned. The debugger prompt appears as soon as the function is entered.

	
pdb.set_trace()

	Enter the debugger at the calling stack frame. This is useful to hard-code a
breakpoint at a given point in a program, even if the code is not otherwise
being debugged (e.g. when an assertion fails).

	
pdb.post_mortem([traceback])

	Enter post-mortem debugging of the given traceback object. If no
traceback is given, it uses the one of the exception that is currently
being handled (an exception must be being handled if the default is to be
used).

	
pdb.pm()

	Enter post-mortem debugging of the traceback found in
sys.last_traceback.

The run* functions and set_trace() are aliases for instantiating the
Pdb class and calling the method of the same name. If you want to
access further features, you have to do this yourself:

	
class pdb.Pdb(completekey='tab', stdin=None, stdout=None, skip=None)

	Pdb is the debugger class.

The completekey, stdin and stdout arguments are passed to the
underlying cmd.Cmd class; see the description there.

The skip argument, if given, must be an iterable of glob-style module name
patterns. The debugger will not step into frames that originate in a module
that matches one of these patterns. [1]

Example call to enable tracing with skip:

import pdb; pdb.Pdb(skip=['django.*']).set_trace()

New in version 2.7: The skip argument.

	
run(statement[, globals[, locals]])

	
runeval(expression[, globals[, locals]])

	
runcall(function[, argument, ...])

	
set_trace()

	See the documentation for the functions explained above.

26.3. Debugger Commands

The debugger recognizes the following commands. Most commands can be
abbreviated to one or two letters; e.g. h(elp) means that either h or
help can be used to enter the help command (but not he or hel, nor
H or Help or HELP). Arguments to commands must be separated by
whitespace (spaces or tabs). Optional arguments are enclosed in square brackets
([]) in the command syntax; the square brackets must not be typed.
Alternatives in the command syntax are separated by a vertical bar (|).

Entering a blank line repeats the last command entered. Exception: if the last
command was a list command, the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements
and are executed in the context of the program being debugged. Python
statements can also be prefixed with an exclamation point (!). This is a
powerful way to inspect the program being debugged; it is even possible to
change a variable or call a function. When an exception occurs in such a
statement, the exception name is printed but the debugger’s state is not
changed.

Multiple commands may be entered on a single line, separated by ;;. (A
single ; is not used as it is the separator for multiple commands in a line
that is passed to the Python parser.) No intelligence is applied to separating
the commands; the input is split at the first ;; pair, even if it is in the
middle of a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a
certain level of adaptability to the context under examination.

If a file .pdbrc exists in the user’s home directory or in the current
directory, it is read in and executed as if it had been typed at the debugger
prompt. This is particularly useful for aliases. If both files exist, the one
in the home directory is read first and aliases defined there can be overridden
by the local file.

	h(elp) [command]

	Without argument, print the list of available commands. With a command as
argument, print help about that command. help pdb displays the full
documentation file; if the environment variable PAGER is defined, the
file is piped through that command instead. Since the command argument must
be an identifier, help exec must be entered to get help on the !
command.

	w(here)

	Print a stack trace, with the most recent frame at the bottom. An arrow
indicates the current frame, which determines the context of most commands.

	d(own)

	Move the current frame one level down in the stack trace (to a newer frame).

	u(p)

	Move the current frame one level up in the stack trace (to an older frame).

	b(reak) [[filename:]lineno | function[, condition]]

	With a lineno argument, set a break there in the current file. With a
function argument, set a break at the first executable statement within that
function. The line number may be prefixed with a filename and a colon, to
specify a breakpoint in another file (probably one that hasn’t been loaded yet).
The file is searched on sys.path. Note that each breakpoint is assigned a
number to which all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true
before the breakpoint is honored.

Without argument, list all breaks, including for each breakpoint, the number of
times that breakpoint has been hit, the current ignore count, and the associated
condition if any.

	tbreak [[filename:]lineno | function[, condition]]

	Temporary breakpoint, which is removed automatically when it is first hit. The
arguments are the same as break.

	cl(ear) [filename:lineno | bpnumber [bpnumber ...]]

	With a filename:lineno argument, clear all the breakpoints at this line.
With a space separated list of breakpoint numbers, clear those breakpoints.
Without argument, clear all breaks (but first ask confirmation).

	disable [bpnumber [bpnumber ...]]

	Disables the breakpoints given as a space separated list of breakpoint numbers.
Disabling a breakpoint means it cannot cause the program to stop execution, but
unlike clearing a breakpoint, it remains in the list of breakpoints and can be
(re-)enabled.

	enable [bpnumber [bpnumber ...]]

	Enables the breakpoints specified.

	ignore bpnumber [count]

	Sets the ignore count for the given breakpoint number. If count is omitted, the
ignore count is set to 0. A breakpoint becomes active when the ignore count is
zero. When non-zero, the count is decremented each time the breakpoint is
reached and the breakpoint is not disabled and any associated condition
evaluates to true.

	condition bpnumber [condition]

	Condition is an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the
breakpoint is made unconditional.

	commands [bpnumber]

	Specify a list of commands for breakpoint number bpnumber. The commands
themselves appear on the following lines. Type a line containing just ‘end’ to
terminate the commands. An example:

(Pdb) commands 1
(com) print some_variable
(com) end
(Pdb)

To remove all commands from a breakpoint, type commands and follow it
immediately with end; that is, give no commands.

With no bpnumber argument, commands refers to the last breakpoint set.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Specifying any command resuming execution (currently continue, step, next,
return, jump, quit and their abbreviations) terminates the command list (as if
that command was immediately followed by end). This is because any time you
resume execution (even with a simple next or step), you may encounter another
breakpoint–which could have its own command list, leading to ambiguities about
which list to execute.

If you use the ‘silent’ command in the command list, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints
that are to print a specific message and then continue. If none of the other
commands print anything, you see no sign that the breakpoint was reached.

New in version 2.5.

	s(tep)

	Execute the current line, stop at the first possible occasion (either in a
function that is called or on the next line in the current function).

	n(ext)

	Continue execution until the next line in the current function is reached or it
returns. (The difference between next and step is that step stops
inside a called function, while next executes called functions at (nearly)
full speed, only stopping at the next line in the current function.)

	unt(il)

	Continue execution until the line with the line number greater than the
current one is reached or when returning from current frame.

New in version 2.6.

	r(eturn)

	Continue execution until the current function returns.

	c(ont(inue))

	Continue execution, only stop when a breakpoint is encountered.

	j(ump) lineno

	Set the next line that will be executed. Only available in the bottom-most
frame. This lets you jump back and execute code again, or jump forward to skip
code that you don’t want to run.

It should be noted that not all jumps are allowed — for instance it is not
possible to jump into the middle of a for loop or out of a
finally clause.

	l(ist) [first[, last]]

	List source code for the current file. Without arguments, list 11 lines around
the current line or continue the previous listing. With one argument, list 11
lines around at that line. With two arguments, list the given range; if the
second argument is less than the first, it is interpreted as a count.

	a(rgs)

	Print the argument list of the current function.

	p expression

	Evaluate the expression in the current context and print its value.

Note

print can also be used, but is not a debugger command — this executes the
Python print statement.

	pp expression

	Like the p command, except the value of the expression is pretty-printed
using the pprint module.

	alias [name [command]]

	Creates an alias called name that executes command. The command must not
be enclosed in quotes. Replaceable parameters can be indicated by %1,
%2, and so on, while %* is replaced by all the parameters. If no
command is given, the current alias for name is shown. If no arguments are
given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the
pdb prompt. Note that internal pdb commands can be overridden by aliases.
Such a command is then hidden until the alias is removed. Aliasing is
recursively applied to the first word of the command line; all other words in
the line are left alone.

As an example, here are two useful aliases (especially when placed in the
.pdbrc file):

#Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]
#Print instance variables in self
alias ps pi self

	unalias name

	Deletes the specified alias.

	[!]statement

	Execute the (one-line) statement in the context of the current stack frame.
The exclamation point can be omitted unless the first word of the statement
resembles a debugger command. To set a global variable, you can prefix the
assignment command with a global command on the same line, e.g.:

(Pdb) global list_options; list_options = ['-l']
(Pdb)

	run [args ...]

	Restart the debugged Python program. If an argument is supplied, it is split
with “shlex” and the result is used as the new sys.argv. History, breakpoints,
actions and debugger options are preserved. “restart” is an alias for “run”.

New in version 2.6.

	q(uit)

	Quit from the debugger. The program being executed is aborted.

Footnotes

	[1]	Whether a frame is considered to originate in a certain module
is determined by the __name__ in the frame globals.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.4. The Python Profilers

Copyright © 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind. [1]

Permission to use, copy, modify, and distribute this Python software and its
associated documentation for any purpose (subject to the restriction in the
following sentence) without fee is hereby granted, provided that the above
copyright notice appears in all copies, and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of
InfoSeek not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software to remain
in Python, compiled Python, or other languages (such as C) wherein the modified
or derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

26.4.1. Introduction to the profilers

A profiler is a program that describes the run time performance
of a program, providing a variety of statistics. This documentation
describes the profiler functionality provided in the modules
cProfile, profile and pstats. This profiler
provides deterministic profiling of Python programs. It also
provides a series of report generation tools to allow users to rapidly
examine the results of a profile operation.

The Python standard library provides three different profilers:

	cProfile is recommended for most users; it’s a C extension
with reasonable overhead
that makes it suitable for profiling long-running programs.
Based on lsprof,
contributed by Brett Rosen and Ted Czotter.

New in version 2.5.

	profile, a pure Python module whose interface is imitated by
cProfile. Adds significant overhead to profiled programs.
If you’re trying to extend
the profiler in some way, the task might be easier with this module.
Copyright © 1994, by InfoSeek Corporation.

Changed in version 2.4: Now also reports the time spent in calls to built-in functions and methods.

	hotshot was an experimental C module that focused on minimizing
the overhead of profiling, at the expense of longer data
post-processing times. It is no longer maintained and may be
dropped in a future version of Python.

Changed in version 2.5: The results should be more meaningful than in the past: the timing core
contained a critical bug.

The profile and cProfile modules export the same interface, so
they are mostly interchangeable; cProfile has a much lower overhead but
is newer and might not be available on all systems.
cProfile is really a compatibility layer on top of the internal
_lsprof module. The hotshot module is reserved for specialized
usage.

26.4.2. Instant User’s Manual

This section is provided for users that “don’t want to read the manual.” It
provides a very brief overview, and allows a user to rapidly perform profiling
on an existing application.

To profile an application with a main entry point of foo(), you would add
the following to your module:

import cProfile
cProfile.run('foo()')

(Use profile instead of cProfile if the latter is not available on
your system.)

The above action would cause foo() to be run, and a series of informative
lines (the profile) to be printed. The above approach is most useful when
working with the interpreter. If you would like to save the results of a
profile into a file for later examination, you can supply a file name as the
second argument to the run() function:

import cProfile
cProfile.run('foo()', 'fooprof')

The file cProfile.py can also be invoked as a script to profile another
script. For example:

python -m cProfile myscript.py

cProfile.py accepts two optional arguments on the command line:

cProfile.py [-o output_file] [-s sort_order]

-s only applies to standard output (-o is not supplied).
Look in the Stats documentation for valid sort values.

When you wish to review the profile, you should use the methods in the
pstats module. Typically you would load the statistics data as follows:

import pstats
p = pstats.Stats('fooprof')

The class Stats (the above code just created an instance of this class)
has a variety of methods for manipulating and printing the data that was just
read into p. When you ran cProfile.run() above, what was printed was
the result of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The
second method sorted all the entries according to the standard module/line/name
string that is printed. The third method printed out all the statistics. You
might try the following sort calls:

p.sort_stats('name')
p.print_stats()

The first call will actually sort the list by function name, and the second call
will print out the statistics. The following are some interesting calls to
experiment with:

p.sort_stats('cumulative').print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints
the ten most significant lines. If you want to understand what algorithms are
taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot
of time, you would do:

p.sort_stats('time').print_stats(10)

to sort according to time spent within each function, and then print the
statistics for the top ten functions.

You might also try:

p.sort_stats('file').print_stats('__init__')

This will sort all the statistics by file name, and then print out statistics
for only the class init methods (since they are spelled with __init__ in
them). As one final example, you could try:

p.sort_stats('time', 'cum').print_stats(.5, 'init')

This line sorts statistics with a primary key of time, and a secondary key of
cumulative time, and then prints out some of the statistics. To be specific, the
list is first culled down to 50% (re: .5) of its original size, then only
lines containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (p
is still sorted according to the last criteria) do:

p.print_callers(.5, 'init')

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or
guess what the following functions do:

p.print_callees()
p.add('fooprof')

Invoked as a script, the pstats module is a statistics browser for
reading and examining profile dumps. It has a simple line-oriented interface
(implemented using cmd) and interactive help.

26.4.3. What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function
call, function return, and exception events are monitored, and precise
timings are made for the intervals between these events (during which time the
user’s code is executing). In contrast, statistical profiling (which is
not done by this module) randomly samples the effective instruction pointer, and
deduces where time is being spent. The latter technique traditionally involves
less overhead (as the code does not need to be instrumented), but provides only
relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence
of instrumented code is not required to do deterministic profiling. Python
automatically provides a hook (optional callback) for each event. In
addition, the interpreted nature of Python tends to add so much overhead to
execution, that deterministic profiling tends to only add small processing
overhead in typical applications. The result is that deterministic profiling is
not that expensive, yet provides extensive run time statistics about the
execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts),
and to identify possible inline-expansion points (high call counts). Internal
time statistics can be used to identify “hot loops” that should be carefully
optimized. Cumulative time statistics should be used to identify high level
errors in the selection of algorithms. Note that the unusual handling of
cumulative times in this profiler allows statistics for recursive
implementations of algorithms to be directly compared to iterative
implementations.

26.4.4. Reference Manual – profile and cProfile

The primary entry point for the profiler is the global function
profile.run() (resp. cProfile.run()). It is typically used to create
any profile information. The reports are formatted and printed using methods of
the class pstats.Stats. The following is a description of all of these
standard entry points and functions. For a more in-depth view of some of the
code, consider reading the later section on Profiler Extensions, which includes
discussion of how to derive “better” profilers from the classes presented, or
reading the source code for these modules.

	
cProfile.run(command[, filename])

	This function takes a single argument that can be passed to the
exec statement, and an optional file name. In all cases this
routine attempts to exec its first argument, and gather profiling
statistics from the execution. If no file name is present, then this function
automatically prints a simple profiling report, sorted by the standard name
string (file/line/function-name) that is presented in each line. The
following is a typical output from such a call:

 2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)
 43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
 ...

The first line indicates that 2706 calls were monitored. Of those calls, 2004
were primitive. We define primitive to mean that the call was not
induced via recursion. The next line: Ordered by: standard name, indicates
that the text string in the far right column was used to sort the output. The
column headings include:

	ncalls

	for the number of calls,

	tottime

	for the total time spent in the given function (and excluding time made in calls
to sub-functions),

	percall

	is the quotient of tottime divided by ncalls

	cumtime

	is the total time spent in this and all subfunctions (from invocation till
exit). This figure is accurate even for recursive functions.

	percall

	is the quotient of cumtime divided by primitive calls

	filename:lineno(function)

	provides the respective data of each function

When there are two numbers in the first column (for example, 43/3), then the
latter is the number of primitive calls, and the former is the actual number of
calls. Note that when the function does not recurse, these two values are the
same, and only the single figure is printed.

	
cProfile.runctx(command, globals, locals[, filename])

	This function is similar to run(), with added arguments to supply the
globals and locals dictionaries for the command string.

Analysis of the profiler data is done using the Stats class.

Note

The Stats class is defined in the pstats module.

	
class pstats.Stats(filename[, stream=sys.stdout[, ...]])

	This class constructor creates an instance of a “statistics object” from a
filename (or set of filenames). Stats objects are manipulated by
methods, in order to print useful reports. You may specify an alternate output
stream by giving the keyword argument, stream.

The file selected by the above constructor must have been created by the
corresponding version of profile or cProfile. To be specific,
there is no file compatibility guaranteed with future versions of this
profiler, and there is no compatibility with files produced by other profilers.
If several files are provided, all the statistics for identical functions will
be coalesced, so that an overall view of several processes can be considered in
a single report. If additional files need to be combined with data in an
existing Stats object, the add() method can be used.

Changed in version 2.5: The stream parameter was added.

26.4.4.1. The Stats Class

Stats objects have the following methods:

	
Stats.strip_dirs()

	This method for the Stats class removes all leading path information
from file names. It is very useful in reducing the size of the printout to fit
within (close to) 80 columns. This method modifies the object, and the stripped
information is lost. After performing a strip operation, the object is
considered to have its entries in a “random” order, as it was just after object
initialization and loading. If strip_dirs() causes two function names to
be indistinguishable (they are on the same line of the same filename, and have
the same function name), then the statistics for these two entries are
accumulated into a single entry.

	
Stats.add(filename[, ...])

	This method of the Stats class accumulates additional profiling
information into the current profiling object. Its arguments should refer to
filenames created by the corresponding version of profile.run() or
cProfile.run(). Statistics for identically named (re: file, line, name)
functions are automatically accumulated into single function statistics.

	
Stats.dump_stats(filename)

	Save the data loaded into the Stats object to a file named filename.
The file is created if it does not exist, and is overwritten if it already
exists. This is equivalent to the method of the same name on the
profile.Profile and cProfile.Profile classes.

New in version 2.3.

	
Stats.sort_stats(key[, ...])

	This method modifies the Stats object by sorting it according to the
supplied criteria. The argument is typically a string identifying the basis of
a sort (example: 'time' or 'name').

When more than one key is provided, then additional keys are used as secondary
criteria when there is equality in all keys selected before them. For example,
sort_stats('name', 'file') will sort all the entries according to their
function name, and resolve all ties (identical function names) by sorting by
file name.

Abbreviations can be used for any key names, as long as the abbreviation is
unambiguous. The following are the keys currently defined:

	Valid Arg
	Meaning

	'calls'
	call count

	'cumulative'
	cumulative time

	'file'
	file name

	'module'
	file name

	'pcalls'
	primitive call count

	'line'
	line number

	'name'
	function name

	'nfl'
	name/file/line

	'stdname'
	standard name

	'time'
	internal time

Note that all sorts on statistics are in descending order (placing most time
consuming items first), where as name, file, and line number searches are in
ascending order (alphabetical). The subtle distinction between 'nfl' and
'stdname' is that the standard name is a sort of the name as printed, which
means that the embedded line numbers get compared in an odd way. For example,
lines 3, 20, and 40 would (if the file names were the same) appear in the string
order 20, 3 and 40. In contrast, 'nfl' does a numeric compare of the line
numbers. In fact, sort_stats('nfl') is the same as sort_stats('name',
'file', 'line').

For backward-compatibility reasons, the numeric arguments -1, 0, 1,
and 2 are permitted. They are interpreted as 'stdname', 'calls',
'time', and 'cumulative' respectively. If this old style format
(numeric) is used, only one sort key (the numeric key) will be used, and
additional arguments will be silently ignored.

	
Stats.reverse_order()

	This method for the Stats class reverses the ordering of the basic list
within the object. Note that by default ascending vs descending order is
properly selected based on the sort key of choice.

	
Stats.print_stats([restriction, ...])

	This method for the Stats class prints out a report as described in the
profile.run() definition.

The order of the printing is based on the last sort_stats() operation done
on the object (subject to caveats in add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the
significant entries. Initially, the list is taken to be the complete set of
profiled functions. Each restriction is either an integer (to select a count of
lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a
percentage of lines), or a regular expression (to pattern match the standard
name that is printed; as of Python 1.5b1, this uses the Perl-style regular
expression syntax defined by the re module). If several restrictions are
provided, then they are applied sequentially. For example:

print_stats(.1, 'foo:')

would first limit the printing to first 10% of list, and then only print
functions that were part of filename .*foo:. In contrast, the
command:

print_stats('foo:', .1)

would limit the list to all functions having file names .*foo:, and
then proceed to only print the first 10% of them.

	
Stats.print_callers([restriction, ...])

	This method for the Stats class prints a list of all functions that
called each function in the profiled database. The ordering is identical to
that provided by print_stats(), and the definition of the restricting
argument is also identical. Each caller is reported on its own line. The
format differs slightly depending on the profiler that produced the stats:

	With profile, a number is shown in parentheses after each caller to
show how many times this specific call was made. For convenience, a second
non-parenthesized number repeats the cumulative time spent in the function
at the right.

	With cProfile, each caller is preceded by three numbers: the number of
times this specific call was made, and the total and cumulative times spent in
the current function while it was invoked by this specific caller.

	
Stats.print_callees([restriction, ...])

	This method for the Stats class prints a list of all function that were
called by the indicated function. Aside from this reversal of direction of
calls (re: called vs was called by), the arguments and ordering are identical to
the print_callers() method.

26.4.5. Limitations

One limitation has to do with accuracy of timing information. There is a
fundamental problem with deterministic profilers involving accuracy. The most
obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate
than the underlying clock. If enough measurements are taken, then the “error”
will tend to average out. Unfortunately, removing this first error induces a
second source of error.

The second problem is that it “takes a while” from when an event is dispatched
until the profiler’s call to get the time actually gets the state of the
clock. Similarly, there is a certain lag when exiting the profiler event
handler from the time that the clock’s value was obtained (and then squirreled
away), until the user’s code is once again executing. As a result, functions
that are called many times, or call many functions, will typically accumulate
this error. The error that accumulates in this fashion is typically less than
the accuracy of the clock (less than one clock tick), but it can accumulate
and become very significant.

The problem is more important with profile than with the lower-overhead
cProfile. For this reason, profile provides a means of
calibrating itself for a given platform so that this error can be
probabilistically (on the average) removed. After the profiler is calibrated, it
will be more accurate (in a least square sense), but it will sometimes produce
negative numbers (when call counts are exceptionally low, and the gods of
probability work against you :-).) Do not be alarmed by negative numbers in
the profile. They should only appear if you have calibrated your profiler,
and the results are actually better than without calibration.

26.4.6. Calibration

The profiler of the profile module subtracts a constant from each event
handling time to compensate for the overhead of calling the time function, and
socking away the results. By default, the constant is 0. The following
procedure can be used to obtain a better constant for a given platform (see
discussion in section Limitations above).

import profile
pr = profile.Profile()
for i in range(5):
 print pr.calibrate(10000)

The method executes the number of Python calls given by the argument, directly
and again under the profiler, measuring the time for both. It then computes the
hidden overhead per profiler event, and returns that as a float. For example,
on an 800 MHz Pentium running Windows 2000, and using Python’s time.clock() as
the timer, the magical number is about 12.5e-6.

The object of this exercise is to get a fairly consistent result. If your
computer is very fast, or your timer function has poor resolution, you might
have to pass 100000, or even 1000000, to get consistent results.

When you have a consistent answer, there are three ways you can use it: [2]

import profile

1. Apply computed bias to all Profile instances created hereafter.
profile.Profile.bias = your_computed_bias

2. Apply computed bias to a specific Profile instance.
pr = profile.Profile()
pr.bias = your_computed_bias

3. Specify computed bias in instance constructor.
pr = profile.Profile(bias=your_computed_bias)

If you have a choice, you are better off choosing a smaller constant, and then
your results will “less often” show up as negative in profile statistics.

26.4.7. Extensions — Deriving Better Profilers

The Profile class of both modules, profile and cProfile,
were written so that derived classes could be developed to extend the profiler.
The details are not described here, as doing this successfully requires an
expert understanding of how the Profile class works internally. Study
the source code of the module carefully if you want to pursue this.

If all you want to do is change how current time is determined (for example, to
force use of wall-clock time or elapsed process time), pass the timing function
you want to the Profile class constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will then call your_time_func().

	profile.Profile

	your_time_func() should return a single number, or a list of numbers whose
sum is the current time (like what os.times() returns). If the function
returns a single time number, or the list of returned numbers has length 2, then
you will get an especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function
that you choose. For most machines, a timer that returns a lone integer value
will provide the best results in terms of low overhead during profiling.
(os.times() is pretty bad, as it returns a tuple of floating point
values). If you want to substitute a better timer in the cleanest fashion,
derive a class and hardwire a replacement dispatch method that best handles your
timer call, along with the appropriate calibration constant.

	cProfile.Profile

	your_time_func() should return a single number. If it returns plain
integers, you can also invoke the class constructor with a second argument
specifying the real duration of one unit of time. For example, if
your_integer_time_func() returns times measured in thousands of seconds,
you would construct the Profile instance as follows:

pr = profile.Profile(your_integer_time_func, 0.001)

As the cProfile.Profile class cannot be calibrated, custom timer
functions should be used with care and should be as fast as possible. For the
best results with a custom timer, it might be necessary to hard-code it in the C
source of the internal _lsprof module.

Footnotes

	[1]	Updated and converted to LaTeX by Guido van Rossum. Further updated by Armin
Rigo to integrate the documentation for the new cProfile module of Python
2.5.

	[2]	Prior to Python 2.2, it was necessary to edit the profiler source code to embed
the bias as a literal number. You still can, but that method is no longer
described, because no longer needed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.5. hotshot — High performance logging profiler

New in version 2.2.

This module provides a nicer interface to the _hotshot C module. Hotshot
is a replacement for the existing profile module. As it’s written mostly
in C, it should result in a much smaller performance impact than the existing
profile module.

Note

The hotshot module focuses on minimizing the overhead while profiling, at
the expense of long data post-processing times. For common usage it is
recommended to use cProfile instead. hotshot is not maintained and
might be removed from the standard library in the future.

Changed in version 2.5: The results should be more meaningful than in the past: the timing core
contained a critical bug.

Note

The hotshot profiler does not yet work well with threads. It is useful to
use an unthreaded script to run the profiler over the code you’re interested in
measuring if at all possible.

	
class hotshot.Profile(logfile[, lineevents[, linetimings]])

	The profiler object. The argument logfile is the name of a log file to use for
logged profile data. The argument lineevents specifies whether to generate
events for every source line, or just on function call/return. It defaults to
0 (only log function call/return). The argument linetimings specifies
whether to record timing information. It defaults to 1 (store timing
information).

26.5.1. Profile Objects

Profile objects have the following methods:

	
Profile.addinfo(key, value)

	Add an arbitrary labelled value to the profile output.

	
Profile.close()

	Close the logfile and terminate the profiler.

	
Profile.fileno()

	Return the file descriptor of the profiler’s log file.

	
Profile.run(cmd)

	Profile an exec-compatible string in the script environment. The
globals from the __main__ module are used as both the globals and locals
for the script.

	
Profile.runcall(func, *args, **keywords)

	Profile a single call of a callable. Additional positional and keyword arguments
may be passed along; the result of the call is returned, and exceptions are
allowed to propagate cleanly, while ensuring that profiling is disabled on the
way out.

	
Profile.runctx(cmd, globals, locals)

	Evaluate an exec-compatible string in a specific environment. The
string is compiled before profiling begins.

	
Profile.start()

	Start the profiler.

	
Profile.stop()

	Stop the profiler.

26.5.2. Using hotshot data

New in version 2.2.

This module loads hotshot profiling data into the standard pstats Stats
objects.

	
hotshot.stats.load(filename)

	Load hotshot data from filename. Returns an instance of the
pstats.Stats class.

See also

	Module profile

	The profile module’s Stats class

26.5.3. Example Usage

Note that this example runs the Python “benchmark” pystones. It can take some
time to run, and will produce large output files.

>>> import hotshot, hotshot.stats, test.pystone
>>> prof = hotshot.Profile("stones.prof")
>>> benchtime, stones = prof.runcall(test.pystone.pystones)
>>> prof.close()
>>> stats = hotshot.stats.load("stones.prof")
>>> stats.strip_dirs()
>>> stats.sort_stats('time', 'calls')
>>> stats.print_stats(20)
 850004 function calls in 10.090 CPU seconds

 Ordered by: internal time, call count

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 3.295 3.295 10.090 10.090 pystone.py:79(Proc0)
 150000 1.315 0.000 1.315 0.000 pystone.py:203(Proc7)
 50000 1.313 0.000 1.463 0.000 pystone.py:229(Func2)
 .
 .
 .

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.6. timeit — Measure execution time of small code snippets

New in version 2.3.

This module provides a simple way to time small bits of Python code. It has both
command line as well as callable interfaces. It avoids a number of common traps
for measuring execution times. See also Tim Peters’ introduction to the
“Algorithms” chapter in the Python Cookbook, published by O’Reilly.

The module defines the following public class:

	
class timeit.Timer([stmt='pass'[, setup='pass'[, timer=<timer function>]]])

	Class for timing execution speed of small code snippets.

The constructor takes a statement to be timed, an additional statement used for
setup, and a timer function. Both statements default to 'pass'; the timer
function is platform-dependent (see the module doc string). stmt and setup
may also contain multiple statements separated by ; or newlines, as long as
they don’t contain multi-line string literals.

To measure the execution time of the first statement, use the timeit()
method. The repeat() method is a convenience to call timeit()
multiple times and return a list of results.

Changed in version 2.6: The stmt and setup parameters can now also take objects that are callable
without arguments. This will embed calls to them in a timer function that will
then be executed by timeit(). Note that the timing overhead is a little
larger in this case because of the extra function calls.

	
Timer.print_exc([file=None])

	Helper to print a traceback from the timed code.

Typical use:

t = Timer(...) # outside the try/except
try:
 t.timeit(...) # or t.repeat(...)
except:
 t.print_exc()

The advantage over the standard traceback is that source lines in the compiled
template will be displayed. The optional file argument directs where the
traceback is sent; it defaults to sys.stderr.

	
Timer.repeat([repeat=3[, number=1000000]])

	Call timeit() a few times.

This is a convenience function that calls the timeit() repeatedly,
returning a list of results. The first argument specifies how many times to
call timeit(). The second argument specifies the number argument for
timeit().

Note

It’s tempting to calculate mean and standard deviation from the result vector
and report these. However, this is not very useful. In a typical case, the
lowest value gives a lower bound for how fast your machine can run the given
code snippet; higher values in the result vector are typically not caused by
variability in Python’s speed, but by other processes interfering with your
timing accuracy. So the min() of the result is probably the only number
you should be interested in. After that, you should look at the entire vector
and apply common sense rather than statistics.

	
Timer.timeit([number=1000000])

	Time number executions of the main statement. This executes the setup
statement once, and then returns the time it takes to execute the main statement
a number of times, measured in seconds as a float. The argument is the number
of times through the loop, defaulting to one million. The main statement, the
setup statement and the timer function to be used are passed to the constructor.

Note

By default, timeit() temporarily turns off garbage collection
during the timing. The advantage of this approach is that it makes
independent timings more comparable. This disadvantage is that GC may be
an important component of the performance of the function being measured.
If so, GC can be re-enabled as the first statement in the setup string.
For example:

timeit.Timer('for i in xrange(10): oct(i)', 'gc.enable()').timeit()

Starting with version 2.6, the module also defines two convenience functions:

	
timeit.repeat(stmt[, setup[, timer[, repeat=3[, number=1000000]]]])

	Create a Timer instance with the given statement, setup code and timer
function and run its repeat() method with the given repeat count and
number executions.

New in version 2.6.

	
timeit.timeit(stmt[, setup[, timer[, number=1000000]]])

	Create a Timer instance with the given statement, setup code and timer
function and run its timeit() method with number executions.

New in version 2.6.

26.6.1. Command Line Interface

When called as a program from the command line, the following form is used:

python -m timeit [-n N] [-r N] [-s S] [-t] [-c] [-h] [statement ...]

Where the following options are understood:

	
-n N, --number=N

	how many times to execute ‘statement’

	
-r N, --repeat=N

	how many times to repeat the timer (default 3)

	
-s S, --setup=S

	statement to be executed once initially (default pass)

	
-t, --time

	use time.time() (default on all platforms but Windows)

	
-c, --clock

	use time.clock() (default on Windows)

	
-v, --verbose

	print raw timing results; repeat for more digits precision

	
-h, --help

	print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate
statement argument; indented lines are possible by enclosing an argument in
quotes and using leading spaces. Multiple -s options are treated
similarly.

If -n is not given, a suitable number of loops is calculated by trying
successive powers of 10 until the total time is at least 0.2 seconds.

The default timer function is platform dependent. On Windows,
time.clock() has microsecond granularity but time.time()‘s
granularity is 1/60th of a second; on Unix, time.clock() has 1/100th of a
second granularity and time.time() is much more precise. On either
platform, the default timer functions measure wall clock time, not the CPU time.
This means that other processes running on the same computer may interfere with
the timing. The best thing to do when accurate timing is necessary is to repeat
the timing a few times and use the best time. The -r option is good
for this; the default of 3 repetitions is probably enough in most cases. On
Unix, you can use time.clock() to measure CPU time.

Note

There is a certain baseline overhead associated with executing a pass statement.
The code here doesn’t try to hide it, but you should be aware of it. The
baseline overhead can be measured by invoking the program without arguments.

The baseline overhead differs between Python versions! Also, to fairly compare
older Python versions to Python 2.3, you may want to use Python’s -O
option for the older versions to avoid timing SET_LINENO instructions.

26.6.2. Examples

Here are two example sessions (one using the command line, one using the module
interface) that compare the cost of using hasattr() vs.
try/except to test for missing and present object
attributes.

% timeit.py 'try:' ' str.__nonzero__' 'except AttributeError:' ' pass'
100000 loops, best of 3: 15.7 usec per loop
% timeit.py 'if hasattr(str, "__nonzero__"): pass'
100000 loops, best of 3: 4.26 usec per loop
% timeit.py 'try:' ' int.__nonzero__' 'except AttributeError:' ' pass'
1000000 loops, best of 3: 1.43 usec per loop
% timeit.py 'if hasattr(int, "__nonzero__"): pass'
100000 loops, best of 3: 2.23 usec per loop

>>> import timeit
>>> s = """\
... try:
... str.__nonzero__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
17.09 usec/pass
>>> s = """\
... if hasattr(str, '__nonzero__'): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
4.85 usec/pass
>>> s = """\
... try:
... int.__nonzero__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
1.97 usec/pass
>>> s = """\
... if hasattr(int, '__nonzero__'): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
3.15 usec/pass

To give the timeit module access to functions you define, you can pass a
setup parameter which contains an import statement:

def test():
 "Stupid test function"
 L = []
 for i in range(100):
 L.append(i)

if __name__=='__main__':
 from timeit import Timer
 t = Timer("test()", "from __main__ import test")
 print t.timeit()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	26. Debugging and Profiling

26.7. trace — Trace or track Python statement execution

The trace module allows you to trace program execution, generate
annotated statement coverage listings, print caller/callee relationships and
list functions executed during a program run. It can be used in another program
or from the command line.

See also

Latest version of the trace module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/trace.py?view=markup]

26.7.1. Command-Line Usage

The trace module can be invoked from the command line. It can be as
simple as

python -m trace --count -C . somefile.py ...

The above will execute somefile.py and generate annotated listings of
all Python modules imported during the execution into the current directory.

	
--help

	Display usage and exit.

	
--version

	Display the version of the module and exit.

26.7.1.1. Main options

At least one of the following options must be specified when invoking
trace. The --listfuncs option is mutually exclusive with
the --trace and --counts options . When
--listfuncs is provided, neither --counts nor
--trace are accepted, and vice versa.

	
-c, --count

	Produce a set of annotated listing files upon program completion that shows
how many times each statement was executed. See also
--coverdir, --file and
--no-report below.

	
-t, --trace

	Display lines as they are executed.

	
-l, --listfuncs

	Display the functions executed by running the program.

	
-r, --report

	Produce an annotated list from an earlier program run that used the
--count and --file option. This does not
execute any code.

	
-T, --trackcalls

	Display the calling relationships exposed by running the program.

26.7.1.2. Modifiers

	
-f, --file=<file>

	Name of a file to accumulate counts over several tracing runs. Should be
used with the --count option.

	
-C, --coverdir=<dir>

	Directory where the report files go. The coverage report for
package.module is written to file dir/package/module.cover.

	
-m, --missing

	When generating annotated listings, mark lines which were not executed with
>>>>>>.

	
-s, --summary

	When using --count or --report, write a brief
summary to stdout for each file processed.

	
-R, --no-report

	Do not generate annotated listings. This is useful if you intend to make
several runs with --count, and then produce a single set of
annotated listings at the end.

	
-g, --timing

	Prefix each line with the time since the program started. Only used while
tracing.

26.7.1.3. Filters

These options may be repeated multiple times.

	
--ignore-module=<mod>

	Ignore each of the given module names and its submodules (if it is a
package). The argument can be a list of names separated by a comma.

	
--ignore-dir=<dir>

	Ignore all modules and packages in the named directory and subdirectories.
The argument can be a list of directories separated by os.pathsep.

26.7.2. Programmatic Interface

	
class trace.Trace([count=1[, trace=1[, countfuncs=0[, countcallers=0[, ignoremods=()[, ignoredirs=()[, infile=None[, outfile=None[, timing=False]]]]]]]]])

	Create an object to trace execution of a single statement or expression. All
parameters are optional. count enables counting of line numbers. trace
enables line execution tracing. countfuncs enables listing of the
functions called during the run. countcallers enables call relationship
tracking. ignoremods is a list of modules or packages to ignore.
ignoredirs is a list of directories whose modules or packages should be
ignored. infile is the name of the file from which to read stored count
information. outfile is the name of the file in which to write updated
count information. timing enables a timestamp relative to when tracing was
started to be displayed.

	
run(cmd)

	Execute the command and gather statistics from the execution with
the current tracing parameters. cmd must be a string or code object,
suitable for passing into exec().

	
runctx(cmd[, globals=None[, locals=None]])

	Execute the command and gather statistics from the execution with the
current tracing parameters, in the defined global and local
environments. If not defined, globals and locals default to empty
dictionaries.

	
runfunc(func, *args, **kwds)

	Call func with the given arguments under control of the Trace
object with the current tracing parameters.

	
results()

	Return a CoverageResults object that contains the cumulative
results of all previous calls to run, runctx and runfunc
for the given Trace instance. Does not reset the accumulated
trace results.

	
class trace.CoverageResults

	A container for coverage results, created by Trace.results(). Should
not be created directly by the user.

	
update(other)

	Merge in data from another CoverageResults object.

	
write_results([show_missing=True[, summary=False[, coverdir=None]]])

	Write coverage results. Set show_missing to show lines that had no
hits. Set summary to include in the output the coverage summary per
module. coverdir specifies the directory into which the coverage
result files will be output. If None, the results for each source
file are placed in its directory.

A simple example demonstrating the use of the programmatic interface:

import sys
import trace

create a Trace object, telling it what to ignore, and whether to
do tracing or line-counting or both.
tracer = trace.Trace(
 ignoredirs=[sys.prefix, sys.exec_prefix],
 trace=0,
 count=1)

run the new command using the given tracer
tracer.run('main()')

make a report, placing output in /tmp
r = tracer.results()
r.write_results(show_missing=True, coverdir="/tmp")

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

27. Python Runtime Services

The modules described in this chapter provide a wide range of services related
to the Python interpreter and its interaction with its environment. Here’s an
overview:

	27.1. sys — System-specific parameters and functions

	27.2. sysconfig — Provide access to Python’s configuration information
	27.2.1. Configuration variables

	27.2.2. Installation paths

	27.2.3. Other functions

	27.3. __builtin__ — Built-in objects

	27.4. future_builtins — Python 3 builtins

	27.5. __main__ — Top-level script environment

	27.6. warnings — Warning control
	27.6.1. Warning Categories

	27.6.2. The Warnings Filter
	27.6.2.1. Default Warning Filters

	27.6.3. Temporarily Suppressing Warnings

	27.6.4. Testing Warnings

	27.6.5. Updating Code For New Versions of Python

	27.6.6. Available Functions

	27.6.7. Available Context Managers

	27.7. contextlib — Utilities for with-statement contexts

	27.8. abc — Abstract Base Classes

	27.9. atexit — Exit handlers
	27.9.1. atexit Example

	27.10. traceback — Print or retrieve a stack traceback
	27.10.1. Traceback Examples

	27.11. __future__ — Future statement definitions

	27.12. gc — Garbage Collector interface

	27.13. inspect — Inspect live objects
	27.13.1. Types and members

	27.13.2. Retrieving source code

	27.13.3. Classes and functions

	27.13.4. The interpreter stack

	27.14. site — Site-specific configuration hook

	27.15. user — User-specific configuration hook

	27.16. fpectl — Floating point exception control
	27.16.1. Example

	27.16.2. Limitations and other considerations

	27.17. distutils — Building and installing Python modules

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.1. sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the
interpreter and to functions that interact strongly with the interpreter. It is
always available.

	
sys.argv

	The list of command line arguments passed to a Python script. argv[0] is the
script name (it is operating system dependent whether this is a full pathname or
not). If the command was executed using the -c command line option to
the interpreter, argv[0] is set to the string '-c'. If no script name
was passed to the Python interpreter, argv[0] is the empty string.

To loop over the standard input, or the list of files given on the
command line, see the fileinput module.

	
sys.byteorder

	An indicator of the native byte order. This will have the value 'big' on
big-endian (most-significant byte first) platforms, and 'little' on
little-endian (least-significant byte first) platforms.

New in version 2.0.

	
sys.subversion

	A triple (repo, branch, version) representing the Subversion information of the
Python interpreter. repo is the name of the repository, 'CPython'.
branch is a string of one of the forms 'trunk', 'branches/name' or
'tags/name'. version is the output of svnversion, if the interpreter
was built from a Subversion checkout; it contains the revision number (range)
and possibly a trailing ‘M’ if there were local modifications. If the tree was
exported (or svnversion was not available), it is the revision of
Include/patchlevel.h if the branch is a tag. Otherwise, it is None.

New in version 2.5.

	
sys.builtin_module_names

	A tuple of strings giving the names of all modules that are compiled into this
Python interpreter. (This information is not available in any other way —
modules.keys() only lists the imported modules.)

	
sys.call_tracing(func, args)

	Call func(*args), while tracing is enabled. The tracing state is saved,
and restored afterwards. This is intended to be called from a debugger from
a checkpoint, to recursively debug some other code.

	
sys.copyright

	A string containing the copyright pertaining to the Python interpreter.

	
sys._clear_type_cache()

	Clear the internal type cache. The type cache is used to speed up attribute
and method lookups. Use the function only to drop unnecessary references
during reference leak debugging.

This function should be used for internal and specialized purposes only.

New in version 2.6.

	
sys._current_frames()

	Return a dictionary mapping each thread’s identifier to the topmost stack frame
currently active in that thread at the time the function is called. Note that
functions in the traceback module can build the call stack given such a
frame.

This is most useful for debugging deadlock: this function does not require the
deadlocked threads’ cooperation, and such threads’ call stacks are frozen for as
long as they remain deadlocked. The frame returned for a non-deadlocked thread
may bear no relationship to that thread’s current activity by the time calling
code examines the frame.

This function should be used for internal and specialized purposes only.

New in version 2.5.

	
sys.dllhandle

	Integer specifying the handle of the Python DLL. Availability: Windows.

	
sys.displayhook(value)

	If value is not None, this function prints it to sys.stdout, and saves
it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression
entered in an interactive Python session. The display of these values can be
customized by assigning another one-argument function to sys.displayhook.

	
sys.excepthook(type, value, traceback)

	This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls
sys.excepthook with three arguments, the exception class, exception
instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be
customized by assigning another three-argument function to sys.excepthook.

	
sys.__displayhook__

	
sys.__excepthook__

	These objects contain the original values of displayhook and excepthook
at the start of the program. They are saved so that displayhook and
excepthook can be restored in case they happen to get replaced with broken
objects.

	
sys.exc_info()

	This function returns a tuple of three values that give information about the
exception that is currently being handled. The information returned is specific
both to the current thread and to the current stack frame. If the current stack
frame is not handling an exception, the information is taken from the calling
stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing
or having executed an except clause.” For any stack frame, only information
about the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three
None values is returned. Otherwise, the values returned are (type, value,
traceback). Their meaning is: type gets the exception type of the exception
being handled (a class object); value gets the exception parameter (its
associated value or the second argument to raise, which is
always a class instance if the exception type is a class object); traceback
gets a traceback object (see the Reference Manual) which encapsulates the call
stack at the point where the exception originally occurred.

If exc_clear() is called, this function will return three None values
until either another exception is raised in the current thread or the execution
stack returns to a frame where another exception is being handled.

Warning

Assigning the traceback return value to a local variable in a function that is
handling an exception will cause a circular reference. This will prevent
anything referenced by a local variable in the same function or by the traceback
from being garbage collected. Since most functions don’t need access to the
traceback, the best solution is to use something like exctype, value =
sys.exc_info()[:2] to extract only the exception type and value. If you do
need the traceback, make sure to delete it after use (best done with a
try ... finally statement) or to call exc_info() in
a function that does not itself handle an exception.

Note

Beginning with Python 2.2, such cycles are automatically reclaimed when garbage
collection is enabled and they become unreachable, but it remains more efficient
to avoid creating cycles.

	
sys.exc_clear()

	This function clears all information relating to the current or last exception
that occurred in the current thread. After calling this function,
exc_info() will return three None values until another exception is
raised in the current thread or the execution stack returns to a frame where
another exception is being handled.

This function is only needed in only a few obscure situations. These include
logging and error handling systems that report information on the last or
current exception. This function can also be used to try to free resources and
trigger object finalization, though no guarantee is made as to what objects will
be freed, if any.

New in version 2.3.

	
sys.exc_type

	
sys.exc_value

	
sys.exc_traceback

	
Deprecated since version 1.5: Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so
their use is not safe in a multi-threaded program. When no exception is being
handled, exc_type is set to None and the other two are undefined.

	
sys.exec_prefix

	A string giving the site-specific directory prefix where the platform-dependent
Python files are installed; by default, this is also '/usr/local'. This can
be set at build time with the --exec-prefix argument to the
configure script. Specifically, all configuration files (e.g. the
pyconfig.h header file) are installed in the directory exec_prefix +
'/lib/pythonversion/config', and shared library modules are installed in
exec_prefix + '/lib/pythonversion/lib-dynload', where version is equal to
version[:3].

	
sys.executable

	A string giving the name of the executable binary for the Python interpreter, on
systems where this makes sense.

	
sys.exit([arg])

	Exit from Python. This is implemented by raising the SystemExit
exception, so cleanup actions specified by finally clauses of try
statements are honored, and it is possible to intercept the exit attempt at
an outer level.

The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero
is considered “successful termination” and any nonzero value is considered
“abnormal termination” by shells and the like. Most systems require it to be
in the range 0-127, and produce undefined results otherwise. Some systems
have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of
object is passed, None is equivalent to passing zero, and any other
object is printed to stderr and results in an exit code of 1. In
particular, sys.exit("some error message") is a quick way to exit a
program when an error occurs.

Since exit() ultimately “only” raises an exception, it will only exit
the process when called from the main thread, and the exception is not
intercepted.

	
sys.exitfunc

	This value is not actually defined by the module, but can be set by the user (or
by a program) to specify a clean-up action at program exit. When set, it should
be a parameterless function. This function will be called when the interpreter
exits. Only one function may be installed in this way; to allow multiple
functions which will be called at termination, use the atexit module.

Note

The exit function is not called when the program is killed by a signal, when a
Python fatal internal error is detected, or when os._exit() is called.

Deprecated since version 2.4: Use atexit instead.

	
sys.flags

	The struct sequence flags exposes the status of command line flags. The
attributes are read only.

	attribute
	flag

	debug
	-d

	py3k_warning
	-3

	division_warning
	-Q

	division_new
	-Qnew

	inspect
	-i

	interactive
	-i

	optimize
	-O or -OO

	dont_write_bytecode
	-B

	no_user_site
	-s

	no_site
	-S

	ignore_environment
	-E

	tabcheck
	-t or -tt

	verbose
	-v

	unicode
	-U

	bytes_warning
	-b

New in version 2.6.

	
sys.float_info

	A structseq holding information about the float type. It contains low level
information about the precision and internal representation. The values
correspond to the various floating-point constants defined in the standard
header file float.h for the ‘C’ programming language; see section
5.2.4.2.2 of the 1999 ISO/IEC C standard [C99], ‘Characteristics of
floating types’, for details.

	attribute
	float.h macro
	explanation

	epsilon
	DBL_EPSILON
	difference between 1 and the least value greater
than 1 that is representable as a float

	dig
	DBL_DIG
	maximum number of decimal digits that can be
faithfully represented in a float; see below

	mant_dig
	DBL_MANT_DIG
	float precision: the number of base-radix
digits in the significand of a float

	max
	DBL_MAX
	maximum representable finite float

	max_exp
	DBL_MAX_EXP
	maximum integer e such that radix**(e-1) is
a representable finite float

	max_10_exp
	DBL_MAX_10_EXP
	maximum integer e such that 10**e is in the
range of representable finite floats

	min
	DBL_MIN
	minimum positive normalized float

	min_exp
	DBL_MIN_EXP
	minimum integer e such that radix**(e-1) is
a normalized float

	min_10_exp
	DBL_MIN_10_EXP
	minimum integer e such that 10**e is a
normalized float

	radix
	FLT_RADIX
	radix of exponent representation

	rounds
	FLT_ROUNDS
	constant representing rounding mode
used for arithmetic operations

The attribute sys.float_info.dig needs further explanation. If
s is any string representing a decimal number with at most
sys.float_info.dig significant digits, then converting s to a
float and back again will recover a string representing the same decimal
value:

>>> import sys
>>> sys.float_info.dig
15
>>> s = '3.14159265358979' # decimal string with 15 significant digits
>>> format(float(s), '.15g') # convert to float and back -> same value
'3.14159265358979'

But for strings with more than sys.float_info.dig significant digits,
this isn’t always true:

>>> s = '9876543211234567' # 16 significant digits is too many!
>>> format(float(s), '.16g') # conversion changes value
'9876543211234568'

New in version 2.6.

	
sys.float_repr_style

	A string indicating how the repr() function behaves for
floats. If the string has value 'short' then for a finite
float x, repr(x) aims to produce a short string with the
property that float(repr(x)) == x. This is the usual behaviour
in Python 2.7 and later. Otherwise, float_repr_style has value
'legacy' and repr(x) behaves in the same way as it did in
versions of Python prior to 2.7.

New in version 2.7.

	
sys.getcheckinterval()

	Return the interpreter’s “check interval”; see setcheckinterval().

New in version 2.3.

	
sys.getdefaultencoding()

	Return the name of the current default string encoding used by the Unicode
implementation.

New in version 2.0.

	
sys.getdlopenflags()

	Return the current value of the flags that are used for dlopen() calls.
The flag constants are defined in the dl and DLFCN modules.
Availability: Unix.

New in version 2.2.

	
sys.getfilesystemencoding()

	Return the name of the encoding used to convert Unicode filenames into system
file names, or None if the system default encoding is used. The result value
depends on the operating system:

	On Mac OS X, the encoding is 'utf-8'.

	On Unix, the encoding is the user’s preference according to the result of
nl_langinfo(CODESET), or None if the nl_langinfo(CODESET)
failed.

	On Windows NT+, file names are Unicode natively, so no conversion is
performed. getfilesystemencoding() still returns 'mbcs', as
this is the encoding that applications should use when they explicitly
want to convert Unicode strings to byte strings that are equivalent when
used as file names.

	On Windows 9x, the encoding is 'mbcs'.

New in version 2.3.

	
sys.getrefcount(object)

	Return the reference count of the object. The count returned is generally one
higher than you might expect, because it includes the (temporary) reference as
an argument to getrefcount().

	
sys.getrecursionlimit()

	Return the current value of the recursion limit, the maximum depth of the Python
interpreter stack. This limit prevents infinite recursion from causing an
overflow of the C stack and crashing Python. It can be set by
setrecursionlimit().

	
sys.getsizeof(object[, default])

	Return the size of an object in bytes. The object can be any type of
object. All built-in objects will return correct results, but this
does not have to hold true for third-party extensions as it is implementation
specific.

If given, default will be returned if the object does not provide means to
retrieve the size. Otherwise a TypeError will be raised.

getsizeof() calls the object’s __sizeof__ method and adds an
additional garbage collector overhead if the object is managed by the garbage
collector.

New in version 2.6.

	
sys._getframe([depth])

	Return a frame object from the call stack. If optional integer depth is
given, return the frame object that many calls below the top of the stack. If
that is deeper than the call stack, ValueError is raised. The default
for depth is zero, returning the frame at the top of the call stack.

CPython implementation detail: This function should be used for internal and specialized purposes only.
It is not guaranteed to exist in all implementations of Python.

	
sys.getprofile()

	Get the profiler function as set by setprofile().

New in version 2.6.

	
sys.gettrace()

	Get the trace function as set by settrace().

CPython implementation detail: The gettrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the
implementation platform, rather than part of the language definition, and
thus may not be available in all Python implementations.

New in version 2.6.

	
sys.getwindowsversion()

	Return a named tuple describing the Windows version
currently running. The named elements are major, minor,
build, platform, service_pack, service_pack_minor,
service_pack_major, suite_mask, and product_type.
service_pack contains a string while all other values are
integers. The components can also be accessed by name, so
sys.getwindowsversion()[0] is equivalent to
sys.getwindowsversion().major. For compatibility with prior
versions, only the first 5 elements are retrievable by indexing.

platform may be one of the following values:

	Constant
	Platform

	0 (VER_PLATFORM_WIN32s)
	Win32s on Windows 3.1

	1 (VER_PLATFORM_WIN32_WINDOWS)
	Windows 95/98/ME

	2 (VER_PLATFORM_WIN32_NT)
	Windows NT/2000/XP/x64

	3 (VER_PLATFORM_WIN32_CE)
	Windows CE

product_type may be one of the following values:

	Constant
	Meaning

	1 (VER_NT_WORKSTATION)
	The system is a workstation.

	2 (VER_NT_DOMAIN_CONTROLLER)
	The system is a domain
controller.

	3 (VER_NT_SERVER)
	The system is a server, but not
a domain controller.

This function wraps the Win32 GetVersionEx() function; see the
Microsoft documentation on OSVERSIONINFOEX() for more information
about these fields.

Availability: Windows.

New in version 2.3.

Changed in version 2.7: Changed to a named tuple and added service_pack_minor,
service_pack_major, suite_mask, and product_type.

	
sys.hexversion

	The version number encoded as a single integer. This is guaranteed to increase
with each version, including proper support for non-production releases. For
example, to test that the Python interpreter is at least version 1.5.2, use:

if sys.hexversion >= 0x010502F0:
 # use some advanced feature
 ...
else:
 # use an alternative implementation or warn the user
 ...

This is called hexversion since it only really looks meaningful when viewed
as the result of passing it to the built-in hex() function. The
version_info value may be used for a more human-friendly encoding of the
same information.

The hexversion is a 32-bit number with the following layout:

	Bits (big endian order)
	Meaning

	1-8
	PY_MAJOR_VERSION (the 2 in
2.1.0a3)

	9-16
	PY_MINOR_VERSION (the 1 in
2.1.0a3)

	17-24
	PY_MICRO_VERSION (the 0 in
2.1.0a3)

	25-28
	PY_RELEASE_LEVEL (0xA for alpha,
0xB for beta, 0xC for release
candidate and 0xF for final)

	29-32
	PY_RELEASE_SERIAL (the 3 in
2.1.0a3, zero for final releases)

Thus 2.1.0a3 is hexversion 0x020100a3.

New in version 1.5.2.

	
sys.long_info

	A struct sequence that holds information about Python’s
internal representation of integers. The attributes are read only.

	Attribute
	Explanation

	bits_per_digit
	number of bits held in each digit. Python
integers are stored internally in base
2**long_info.bits_per_digit

	sizeof_digit
	size in bytes of the C type used to
represent a digit

New in version 2.7.

	
sys.last_type

	
sys.last_value

	
sys.last_traceback

	These three variables are not always defined; they are set when an exception is
not handled and the interpreter prints an error message and a stack traceback.
Their intended use is to allow an interactive user to import a debugger module
and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical use is import pdb; pdb.pm() to enter the
post-mortem debugger; see chapter pdb — The Python Debugger for
more information.)

The meaning of the variables is the same as that of the return values from
exc_info() above. (Since there is only one interactive thread,
thread-safety is not a concern for these variables, unlike for exc_type
etc.)

	
sys.maxint

	The largest positive integer supported by Python’s regular integer type. This
is at least 2**31-1. The largest negative integer is -maxint-1 — the
asymmetry results from the use of 2’s complement binary arithmetic.

	
sys.maxsize

	The largest positive integer supported by the platform’s Py_ssize_t type,
and thus the maximum size lists, strings, dicts, and many other containers
can have.

	
sys.maxunicode

	An integer giving the largest supported code point for a Unicode character. The
value of this depends on the configuration option that specifies whether Unicode
characters are stored as UCS-2 or UCS-4.

	
sys.meta_path

	A list of finder objects that have their find_module()
methods called to see if one of the objects can find the module to be
imported. The find_module() method is called at least with the
absolute name of the module being imported. If the module to be imported is
contained in package then the parent package’s __path__ attribute
is passed in as a second argument. The method returns None if
the module cannot be found, else returns a loader.

sys.meta_path is searched before any implicit default finders or
sys.path.

See PEP 302 [http://www.python.org/dev/peps/pep-0302] for the original specification.

	
sys.modules

	This is a dictionary that maps module names to modules which have already been
loaded. This can be manipulated to force reloading of modules and other tricks.
Note that removing a module from this dictionary is not the same as calling
reload() on the corresponding module object.

	
sys.path

	A list of strings that specifies the search path for modules. Initialized from
the environment variable PYTHONPATH, plus an installation-dependent
default.

As initialized upon program startup, the first item of this list, path[0],
is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard input),
path[0] is the empty string, which directs Python to search modules in the
current directory first. Notice that the script directory is inserted before
the entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.

Changed in version 2.3: Unicode strings are no longer ignored.

See also

Module site This describes how to use .pth files to extend
sys.path.

	
sys.path_hooks

	A list of callables that take a path argument to try to create a
finder for the path. If a finder can be created, it is to be
returned by the callable, else raise ImportError.

Originally specified in PEP 302 [http://www.python.org/dev/peps/pep-0302].

	
sys.path_importer_cache

	A dictionary acting as a cache for finder objects. The keys are
paths that have been passed to sys.path_hooks and the values are
the finders that are found. If a path is a valid file system path but no
explicit finder is found on sys.path_hooks then None is
stored to represent the implicit default finder should be used. If the path
is not an existing path then imp.NullImporter is set.

Originally specified in PEP 302 [http://www.python.org/dev/peps/pep-0302].

	
sys.platform

	This string contains a platform identifier that can be used to append
platform-specific components to sys.path, for instance.

For Unix systems, this is the lowercased OS name as returned by uname -s
with the first part of the version as returned by uname -r appended,
e.g. 'sunos5' or 'linux2', at the time when Python was built.
For other systems, the values are:

	System
	platform value

	Windows
	'win32'

	Windows/Cygwin
	'cygwin'

	Mac OS X
	'darwin'

	OS/2
	'os2'

	OS/2 EMX
	'os2emx'

	RiscOS
	'riscos'

	AtheOS
	'atheos'

	
sys.prefix

	A string giving the site-specific directory prefix where the platform
independent Python files are installed; by default, this is the string
'/usr/local'. This can be set at build time with the --prefix
argument to the configure script. The main collection of Python
library modules is installed in the directory prefix + '/lib/pythonversion'
while the platform independent header files (all except pyconfig.h) are
stored in prefix + '/include/pythonversion', where version is equal to
version[:3].

	
sys.ps1

	
sys.ps2

	Strings specifying the primary and secondary prompt of the interpreter. These
are only defined if the interpreter is in interactive mode. Their initial
values in this case are '>>> ' and '... '. If a non-string object is
assigned to either variable, its str() is re-evaluated each time the
interpreter prepares to read a new interactive command; this can be used to
implement a dynamic prompt.

	
sys.py3kwarning

	Bool containing the status of the Python 3.0 warning flag. It’s True
when Python is started with the -3 option. (This should be considered
read-only; setting it to a different value doesn’t have an effect on
Python 3.0 warnings.)

New in version 2.6.

	
sys.dont_write_bytecode

	If this is true, Python won’t try to write .pyc or .pyo files on the
import of source modules. This value is initially set to True or False
depending on the -B command line option and the PYTHONDONTWRITEBYTECODE
environment variable, but you can set it yourself to control bytecode file
generation.

New in version 2.6.

	
sys.setcheckinterval(interval)

	Set the interpreter’s “check interval”. This integer value determines how often
the interpreter checks for periodic things such as thread switches and signal
handlers. The default is 100, meaning the check is performed every 100
Python virtual instructions. Setting it to a larger value may increase
performance for programs using threads. Setting it to a value <= 0 checks
every virtual instruction, maximizing responsiveness as well as overhead.

	
sys.setdefaultencoding(name)

	Set the current default string encoding used by the Unicode implementation. If
name does not match any available encoding, LookupError is raised.
This function is only intended to be used by the site module
implementation and, where needed, by sitecustomize. Once used by the
site module, it is removed from the sys module’s namespace.

New in version 2.0.

	
sys.setdlopenflags(n)

	Set the flags used by the interpreter for dlopen() calls, such as when
the interpreter loads extension modules. Among other things, this will enable a
lazy resolving of symbols when importing a module, if called as
sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL). Symbolic names for the
flag modules can be either found in the dl module, or in the DLFCN
module. If DLFCN is not available, it can be generated from
/usr/include/dlfcn.h using the h2py script. Availability:
Unix.

New in version 2.2.

	
sys.setprofile(profilefunc)

	Set the system’s profile function, which allows you to implement a Python source
code profiler in Python. See chapter The Python Profilers for more information on the
Python profiler. The system’s profile function is called similarly to the
system’s trace function (see settrace()), but it isn’t called for each
executed line of code (only on call and return, but the return event is reported
even when an exception has been set). The function is thread-specific, but
there is no way for the profiler to know about context switches between threads,
so it does not make sense to use this in the presence of multiple threads. Also,
its return value is not used, so it can simply return None.

	
sys.setrecursionlimit(limit)

	Set the maximum depth of the Python interpreter stack to limit. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing
Python.

The highest possible limit is platform-dependent. A user may need to set the
limit higher when she has a program that requires deep recursion and a platform
that supports a higher limit. This should be done with care, because a too-high
limit can lead to a crash.

	
sys.settrace(tracefunc)

	Set the system’s trace function, which allows you to implement a Python
source code debugger in Python. The function is thread-specific; for a
debugger to support multiple threads, it must be registered using
settrace() for each thread being debugged.

Trace functions should have three arguments: frame, event, and
arg. frame is the current stack frame. event is a string: 'call',
'line', 'return', 'exception', 'c_call', 'c_return', or
'c_exception'. arg depends on the event type.

The trace function is invoked (with event set to 'call') whenever a new
local scope is entered; it should return a reference to a local trace
function to be used that scope, or None if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another
function for further tracing in that scope), or None to turn off tracing
in that scope.

The events have the following meaning:

	'call'

	A function is called (or some other code block entered). The
global trace function is called; arg is None; the return value
specifies the local trace function.

	'line'

	The interpreter is about to execute a new line of code or re-execute the
condition of a loop. The local trace function is called; arg is
None; the return value specifies the new local trace function. See
Objects/lnotab_notes.txt for a detailed explanation of how this
works.

	'return'

	A function (or other code block) is about to return. The local trace
function is called; arg is the value that will be returned, or None
if the event is caused by an exception being raised. The trace function’s
return value is ignored.

	'exception'

	An exception has occurred. The local trace function is called; arg is a
tuple (exception, value, traceback); the return value specifies the
new local trace function.

	'c_call'

	A C function is about to be called. This may be an extension function or
a built-in. arg is the C function object.

	'c_return'

	A C function has returned. arg is the C function object.

	'c_exception'

	A C function has raised an exception. arg is the C function object.

Note that as an exception is propagated down the chain of callers, an
'exception' event is generated at each level.

For more information on code and frame objects, refer to The standard type hierarchy.

CPython implementation detail: The settrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the
implementation platform, rather than part of the language definition, and
thus may not be available in all Python implementations.

	
sys.settscdump(on_flag)

	Activate dumping of VM measurements using the Pentium timestamp counter, if
on_flag is true. Deactivate these dumps if on_flag is off. The function is
available only if Python was compiled with --with-tsc. To understand
the output of this dump, read Python/ceval.c in the Python sources.

New in version 2.4.

CPython implementation detail: This function is intimately bound to CPython implementation details and
thus not likely to be implemented elsewhere.

	
sys.stdin

	
sys.stdout

	
sys.stderr

	File objects corresponding to the interpreter’s standard input, output and error
streams. stdin is used for all interpreter input except for scripts but
including calls to input() and raw_input(). stdout is used for
the output of print and expression statements and for the
prompts of input() and raw_input(). The interpreter’s own prompts
and (almost all of) its error messages go to stderr. stdout and
stderr needn’t be built-in file objects: any object is acceptable as long
as it has a write() method that takes a string argument. (Changing these
objects doesn’t affect the standard I/O streams of processes executed by
os.popen(), os.system() or the exec*() family of functions in
the os module.)

	
sys.__stdin__

	
sys.__stdout__

	
sys.__stderr__

	These objects contain the original values of stdin, stderr and
stdout at the start of the program. They are used during finalization,
and could be useful to print to the actual standard stream no matter if the
sys.std* object has been redirected.

It can also be used to restore the actual files to known working file objects
in case they have been overwritten with a broken object. However, the
preferred way to do this is to explicitly save the previous stream before
replacing it, and restore the saved object.

	
sys.tracebacklimit

	When this variable is set to an integer value, it determines the maximum number
of levels of traceback information printed when an unhandled exception occurs.
The default is 1000. When set to 0 or less, all traceback information
is suppressed and only the exception type and value are printed.

	
sys.version

	A string containing the version number of the Python interpreter plus additional
information on the build number and compiler used. This string is displayed
when the interactive interpreter is started. Do not extract version information
out of it, rather, use version_info and the functions provided by the
platform module.

	
sys.api_version

	The C API version for this interpreter. Programmers may find this useful when
debugging version conflicts between Python and extension modules.

New in version 2.3.

	
sys.version_info

	A tuple containing the five components of the version number: major, minor,
micro, releaselevel, and serial. All values except releaselevel are
integers; the release level is 'alpha', 'beta', 'candidate', or
'final'. The version_info value corresponding to the Python version 2.0
is (2, 0, 0, 'final', 0). The components can also be accessed by name,
so sys.version_info[0] is equivalent to sys.version_info.major
and so on.

New in version 2.0.

Changed in version 2.7: Added named component attributes

	
sys.warnoptions

	This is an implementation detail of the warnings framework; do not modify this
value. Refer to the warnings module for more information on the warnings
framework.

	
sys.winver

	The version number used to form registry keys on Windows platforms. This is
stored as string resource 1000 in the Python DLL. The value is normally the
first three characters of version. It is provided in the sys
module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

Citations

	[C99]	ISO/IEC 9899:1999. “Programming languages – C.” A public draft of this standard is available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf .

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.2. sysconfig — Provide access to Python’s configuration information

New in version 2.7.

The sysconfig module provides access to Python’s configuration
information like the list of installation paths and the configuration variables
relevant for the current platform.

27.2.1. Configuration variables

A Python distribution contains a Makefile and a pyconfig.h
header file that are necessary to build both the Python binary itself and
third-party C extensions compiled using distutils.

sysconfig puts all variables found in these files in a dictionary that
can be accessed using get_config_vars() or get_config_var().

Notice that on Windows, it’s a much smaller set.

	
sysconfig.get_config_vars(*args)

	With no arguments, return a dictionary of all configuration variables
relevant for the current platform.

With arguments, return a list of values that result from looking up each
argument in the configuration variable dictionary.

For each argument, if the value is not found, return None.

	
sysconfig.get_config_var(name)

	Return the value of a single variable name. Equivalent to
get_config_vars().get(name).

If name is not found, return None.

Example of usage:

>>> import sysconfig
>>> sysconfig.get_config_var('Py_ENABLE_SHARED')
0
>>> sysconfig.get_config_var('LIBDIR')
'/usr/local/lib'
>>> sysconfig.get_config_vars('AR', 'CXX')
['ar', 'g++']

27.2.2. Installation paths

Python uses an installation scheme that differs depending on the platform and on
the installation options. These schemes are stored in sysconfig under
unique identifiers based on the value returned by os.name.

Every new component that is installed using distutils or a
Distutils-based system will follow the same scheme to copy its file in the right
places.

Python currently supports seven schemes:

	posix_prefix: scheme for Posix platforms like Linux or Mac OS X. This is
the default scheme used when Python or a component is installed.

	posix_home: scheme for Posix platforms used when a home option is used
upon installation. This scheme is used when a component is installed through
Distutils with a specific home prefix.

	posix_user: scheme for Posix platforms used when a component is installed
through Distutils and the user option is used. This scheme defines paths
located under the user home directory.

	nt: scheme for NT platforms like Windows.

	nt_user: scheme for NT platforms, when the user option is used.

	os2: scheme for OS/2 platforms.

	os2_home: scheme for OS/2 patforms, when the user option is used.

Each scheme is itself composed of a series of paths and each path has a unique
identifier. Python currently uses eight paths:

	stdlib: directory containing the standard Python library files that are not
platform-specific.

	platstdlib: directory containing the standard Python library files that are
platform-specific.

	platlib: directory for site-specific, platform-specific files.

	purelib: directory for site-specific, non-platform-specific files.

	include: directory for non-platform-specific header files.

	platinclude: directory for platform-specific header files.

	scripts: directory for script files.

	data: directory for data files.

sysconfig provides some functions to determine these paths.

	
sysconfig.get_scheme_names()

	Return a tuple containing all schemes currently supported in
sysconfig.

	
sysconfig.get_path_names()

	Return a tuple containing all path names currently supported in
sysconfig.

	
sysconfig.get_path(name[, scheme[, vars[, expand]]])

	Return an installation path corresponding to the path name, from the
install scheme named scheme.

name has to be a value from the list returned by get_path_names().

sysconfig stores installation paths corresponding to each path name,
for each platform, with variables to be expanded. For instance the stdlib
path for the nt scheme is: {base}/Lib.

get_path() will use the variables returned by get_config_vars()
to expand the path. All variables have default values for each platform so
one may call this function and get the default value.

If scheme is provided, it must be a value from the list returned by
get_path_names(). Otherwise, the default scheme for the current
platform is used.

If vars is provided, it must be a dictionary of variables that will update
the dictionary return by get_config_vars().

If expand is set to False, the path will not be expanded using the
variables.

If name is not found, return None.

	
sysconfig.get_paths([scheme[, vars[, expand]]])

	Return a dictionary containing all installation paths corresponding to an
installation scheme. See get_path() for more information.

If scheme is not provided, will use the default scheme for the current
platform.

If vars is provided, it must be a dictionary of variables that will
update the dictionary used to expand the paths.

If expand is set to False, the paths will not be expanded.

If scheme is not an existing scheme, get_paths() will raise a
KeyError.

27.2.3. Other functions

	
sysconfig.get_python_version()

	Return the MAJOR.MINOR Python version number as a string. Similar to
sys.version[:3].

	
sysconfig.get_platform()

	Return a string that identifies the current platform.

This is used mainly to distinguish platform-specific build directories and
platform-specific built distributions. Typically includes the OS name and
version and the architecture (as supplied by os.uname()), although the
exact information included depends on the OS; e.g. for IRIX the architecture
isn’t particularly important (IRIX only runs on SGI hardware), but for Linux
the kernel version isn’t particularly important.

Examples of returned values:

	linux-i586

	linux-alpha (?)

	solaris-2.6-sun4u

	irix-5.3

	irix64-6.2

Windows will return one of:

	win-amd64 (64bit Windows on AMD64 (aka x86_64, Intel64, EM64T, etc)

	win-ia64 (64bit Windows on Itanium)

	win32 (all others - specifically, sys.platform is returned)

Mac OS X can return:

	macosx-10.6-ppc

	macosx-10.4-ppc64

	macosx-10.3-i386

	macosx-10.4-fat

For other non-POSIX platforms, currently just returns sys.platform.

	
sysconfig.is_python_build()

	Return True if the current Python installation was built from source.

	
sysconfig.parse_config_h(fp[, vars])

	Parse a config.h-style file.

fp is a file-like object pointing to the config.h-like file.

A dictionary containing name/value pairs is returned. If an optional
dictionary is passed in as the second argument, it is used instead of a new
dictionary, and updated with the values read in the file.

	
sysconfig.get_config_h_filename()

	Return the path of pyconfig.h.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.3. __builtin__ — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for
example, __builtin__.open is the full name for the built-in function
open().

This module is not normally accessed explicitly by most applications, but can be
useful in modules that provide objects with the same name as a built-in value,
but in which the built-in of that name is also needed. For example, in a module
that wants to implement an open() function that wraps the built-in
open(), this module can be used directly:

import __builtin__

def open(path):
 f = __builtin__.open(path, 'r')
 return UpperCaser(f)

class UpperCaser:
 '''Wrapper around a file that converts output to upper-case.'''

 def __init__(self, f):
 self._f = f

 def read(self, count=-1):
 return self._f.read(count).upper()

 # ...

CPython implementation detail: Most modules have the name __builtins__ (note the 's') made available
as part of their globals. The value of __builtins__ is normally either
this module or the value of this modules’s __dict__ attribute. Since
this is an implementation detail, it may not be used by alternate
implementations of Python.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.4. future_builtins — Python 3 builtins

New in version 2.6.

This module provides functions that exist in 2.x, but have different behavior in
Python 3, so they cannot be put into the 2.x builtins namespace.

Instead, if you want to write code compatible with Python 3 builtins, import
them from this module, like this:

from future_builtins import map, filter

... code using Python 3-style map and filter ...

The 2to3 tool that ports Python 2 code to Python 3 will recognize
this usage and leave the new builtins alone.

Note

The Python 3 print() function is already in the builtins, but cannot be
accessed from Python 2 code unless you use the appropriate future statement:

from __future__ import print_function

Available builtins are:

	
future_builtins.ascii(object)

	Returns the same as repr(). In Python 3, repr() will return
printable Unicode characters unescaped, while ascii() will always
backslash-escape them. Using future_builtins.ascii() instead of
repr() in 2.6 code makes it clear that you need a pure ASCII return
value.

	
future_builtins.filter(function, iterable)

	Works like itertools.ifilter().

	
future_builtins.hex(object)

	Works like the built-in hex(), but instead of __hex__() it will
use the __index__() method on its argument to get an integer that is
then converted to hexadecimal.

	
future_builtins.map(function, iterable, ...)

	Works like itertools.imap().

	
future_builtins.oct(object)

	Works like the built-in oct(), but instead of __oct__() it will
use the __index__() method on its argument to get an integer that is
then converted to octal.

	
future_builtins.zip(*iterables)

	Works like itertools.izip().

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.5. __main__ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the
interpreter’s main program executes — commands read either from standard
input, from a script file, or from an interactive prompt. It is this
environment in which the idiomatic “conditional script” stanza causes a script
to run:

if __name__ == "__main__":
 main()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.6. warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert
the user of some condition in a program, where that condition (normally) doesn’t
warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling the warn() function defined
in this module. (C programmers use PyErr_WarnEx(); see
exceptionhandling for details).

Warning messages are normally written to sys.stderr, but their disposition
can be changed flexibly, from ignoring all warnings to turning them into
exceptions. The disposition of warnings can vary based on the warning category
(see below), the text of the warning message, and the source location where it
is issued. Repetitions of a particular warning for the same source location are
typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a
determination is made whether a message should be issued or not; next, if a
message is to be issued, it is formatted and printed using a user-settable hook.

The determination whether to issue a warning message is controlled by the
warning filter, which is a sequence of matching rules and actions. Rules can be
added to the filter by calling filterwarnings() and reset to its default
state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which
may be overridden; the default implementation of this function formats the
message by calling formatwarning(), which is also available for use by
custom implementations.

27.6.1. Warning Categories

There are a number of built-in exceptions that represent warning categories.
This categorization is useful to be able to filter out groups of warnings. The
following warnings category classes are currently defined:

	Class
	Description

	Warning
	This is the base class of all warning
category classes. It is a subclass of
Exception.

	UserWarning
	The default category for warn().

	DeprecationWarning
	Base category for warnings about deprecated
features (ignored by default).

	SyntaxWarning
	Base category for warnings about dubious
syntactic features.

	RuntimeWarning
	Base category for warnings about dubious
runtime features.

	FutureWarning
	Base category for warnings about constructs
that will change semantically in the future.

	PendingDeprecationWarning
	Base category for warnings about features
that will be deprecated in the future
(ignored by default).

	ImportWarning
	Base category for warnings triggered during
the process of importing a module (ignored by
default).

	UnicodeWarning
	Base category for warnings related to
Unicode.

While these are technically built-in exceptions, they are documented here,
because conceptually they belong to the warnings mechanism.

User code can define additional warning categories by subclassing one of the
standard warning categories. A warning category must always be a subclass of
the Warning class.

Changed in version 2.7: DeprecationWarning is ignored by default.

27.6.2. The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned
into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter
specifications; any specific warning is matched against each filter
specification in the list in turn until a match is found; the match determines
the disposition of the match. Each entry is a tuple of the form (action,
message, category, module, lineno), where:

	action is one of the following strings:

	Value

	Disposition

	"error"

	turn matching warnings into exceptions

	"ignore"

	never print matching warnings

	"always"

	always print matching warnings

	"default"

	print the first occurrence of matching
warnings for each location where the warning
is issued

	"module"

	print the first occurrence of matching
warnings for each module where the warning
is issued

	"once"

	print only the first occurrence of matching
warnings, regardless of location

	message is a string containing a regular expression that the warning message
must match (the match is compiled to always be case-insensitive).

	category is a class (a subclass of Warning) of which the warning
category must be a subclass in order to match.

	module is a string containing a regular expression that the module name must
match (the match is compiled to be case-sensitive).

	lineno is an integer that the line number where the warning occurred must
match, or 0 to match all line numbers.

Since the Warning class is derived from the built-in Exception
class, to turn a warning into an error we simply raise category(message).

The warnings filter is initialized by -W options passed to the Python
interpreter command line. The interpreter saves the arguments for all
-W options without interpretation in sys.warnoptions; the
warnings module parses these when it is first imported (invalid options
are ignored, after printing a message to sys.stderr).

27.6.2.1. Default Warning Filters

By default, Python installs several warning filters, which can be overridden by
the command-line options passed to -W and calls to
filterwarnings().

	PendingDeprecationWarning, and ImportWarning are ignored.

	BytesWarning is ignored unless the -b option is given once or
twice; in this case this warning is either printed (-b) or turned into an
exception (-bb).

27.6.3. Temporarily Suppressing Warnings

If you are using code that you know will raise a warning, such as a deprecated
function, but do not want to see the warning, then it is possible to suppress
the warning using the catch_warnings context manager:

import warnings

def fxn():
 warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 fxn()

While within the context manager all warnings will simply be ignored. This
allows you to use known-deprecated code without having to see the warning while
not suppressing the warning for other code that might not be aware of its use
of deprecated code. Note: this can only be guaranteed in a single-threaded
application. If two or more threads use the catch_warnings context
manager at the same time, the behavior is undefined.

27.6.4. Testing Warnings

To test warnings raised by code, use the catch_warnings context
manager. With it you can temporarily mutate the warnings filter to facilitate
your testing. For instance, do the following to capture all raised warnings to
check:

import warnings

def fxn():
 warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings(record=True) as w:
 # Cause all warnings to always be triggered.
 warnings.simplefilter("always")
 # Trigger a warning.
 fxn()
 # Verify some things
 assert len(w) == 1
 assert issubclass(w[-1].category, DeprecationWarning)
 assert "deprecated" in str(w[-1].message)

One can also cause all warnings to be exceptions by using error instead of
always. One thing to be aware of is that if a warning has already been
raised because of a once/default rule, then no matter what filters are
set the warning will not be seen again unless the warnings registry related to
the warning has been cleared.

Once the context manager exits, the warnings filter is restored to its state
when the context was entered. This prevents tests from changing the warnings
filter in unexpected ways between tests and leading to indeterminate test
results. The showwarning() function in the module is also restored to
its original value. Note: this can only be guaranteed in a single-threaded
application. If two or more threads use the catch_warnings context
manager at the same time, the behavior is undefined.

When testing multiple operations that raise the same kind of warning, it
is important to test them in a manner that confirms each operation is raising
a new warning (e.g. set warnings to be raised as exceptions and check the
operations raise exceptions, check that the length of the warning list
continues to increase after each operation, or else delete the previous
entries from the warnings list before each new operation).

27.6.5. Updating Code For New Versions of Python

Warnings that are only of interest to the developer are ignored by default. As
such you should make sure to test your code with typically ignored warnings
made visible. You can do this from the command-line by passing -Wd
to the interpreter (this is shorthand for -W default). This enables
default handling for all warnings, including those that are ignored by default.
To change what action is taken for encountered warnings you simply change what
argument is passed to -W, e.g. -W error. See the
-W flag for more details on what is possible.

To programmatically do the same as -Wd, use:

warnings.simplefilter('default')

Make sure to execute this code as soon as possible. This prevents the
registering of what warnings have been raised from unexpectedly influencing how
future warnings are treated.

Having certain warnings ignored by default is done to prevent a user from
seeing warnings that are only of interest to the developer. As you do not
necessarily have control over what interpreter a user uses to run their code,
it is possible that a new version of Python will be released between your
release cycles. The new interpreter release could trigger new warnings in your
code that were not there in an older interpreter, e.g.
DeprecationWarning for a module that you are using. While you as a
developer want to be notified that your code is using a deprecated module, to a
user this information is essentially noise and provides no benefit to them.

27.6.6. Available Functions

	
warnings.warn(message[, category[, stacklevel]])

	Issue a warning, or maybe ignore it or raise an exception. The category
argument, if given, must be a warning category class (see above); it defaults to
UserWarning. Alternatively message can be a Warning instance,
in which case category will be ignored and message.__class__ will be used.
In this case the message text will be str(message). This function raises an
exception if the particular warning issued is changed into an error by the
warnings filter see above. The stacklevel argument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
 warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecation()‘s caller, rather than to the
source of deprecation() itself (since the latter would defeat the purpose
of the warning message).

	
warnings.warn_explicit(message, category, filename, lineno[, module[, registry[, module_globals]]])

	This is a low-level interface to the functionality of warn(), passing in
explicitly the message, category, filename and line number, and optionally the
module name and the registry (which should be the __warningregistry__
dictionary of the module). The module name defaults to the filename with
.py stripped; if no registry is passed, the warning is never suppressed.
message must be a string and category a subclass of Warning or
message may be a Warning instance, in which case category will be
ignored.

module_globals, if supplied, should be the global namespace in use by the code
for which the warning is issued. (This argument is used to support displaying
source for modules found in zipfiles or other non-filesystem import
sources).

Changed in version 2.5: Added the module_globals parameter.

	
warnings.warnpy3k(message[, category[, stacklevel]])

	Issue a warning related to Python 3.x deprecation. Warnings are only shown
when Python is started with the -3 option. Like warn() message must
be a string and category a subclass of Warning. warnpy3k()
is using DeprecationWarning as default warning class.

New in version 2.6.

	
warnings.showwarning(message, category, filename, lineno[, file[, line]])

	Write a warning to a file. The default implementation calls
formatwarning(message, category, filename, lineno, line) and writes the
resulting string to file, which defaults to sys.stderr. You may replace
this function with an alternative implementation by assigning to
warnings.showwarning.
line is a line of source code to be included in the warning
message; if line is not supplied, showwarning() will
try to read the line specified by filename and lineno.

Changed in version 2.7: The line argument is required to be supported.

	
warnings.formatwarning(message, category, filename, lineno[, line])

	Format a warning the standard way. This returns a string which may contain
embedded newlines and ends in a newline. line is a line of source code to
be included in the warning message; if line is not supplied,
formatwarning() will try to read the line specified by filename and
lineno.

Changed in version 2.6: Added the line argument.

	
warnings.filterwarnings(action[, message[, category[, module[, lineno[, append]]]]])

	Insert an entry into the list of warnings filter specifications. The entry is inserted at the front by default; if
append is true, it is inserted at the end. This checks the types of the
arguments, compiles the message and module regular expressions, and
inserts them as a tuple in the list of warnings filters. Entries closer to
the front of the list override entries later in the list, if both match a
particular warning. Omitted arguments default to a value that matches
everything.

	
warnings.simplefilter(action[, category[, lineno[, append]]])

	Insert a simple entry into the list of warnings filter specifications. The meaning of the function parameters is as for
filterwarnings(), but regular expressions are not needed as the filter
inserted always matches any message in any module as long as the category and
line number match.

	
warnings.resetwarnings()

	Reset the warnings filter. This discards the effect of all previous calls to
filterwarnings(), including that of the -W command line options
and calls to simplefilter().

27.6.7. Available Context Managers

	
class warnings.catch_warnings([*, record=False, module=None])

	A context manager that copies and, upon exit, restores the warnings filter
and the showwarning() function.
If the record argument is False (the default) the context manager
returns None on entry. If record is True, a list is
returned that is progressively populated with objects as seen by a custom
showwarning() function (which also suppresses output to sys.stdout).
Each object in the list has attributes with the same names as the arguments to
showwarning().

The module argument takes a module that will be used instead of the
module returned when you import warnings whose filter will be
protected. This argument exists primarily for testing the warnings
module itself.

Note

The catch_warnings manager works by replacing and
then later restoring the module’s
showwarning() function and internal list of filter
specifications. This means the context manager is modifying
global state and therefore is not thread-safe.

Note

In Python 3.0, the arguments to the constructor for
catch_warnings are keyword-only arguments.

New in version 2.6.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.7. contextlib — Utilities for with-statement contexts

New in version 2.5.

This module provides utilities for common tasks involving the with
statement. For more information see also Context Manager Types and
With Statement Context Managers.

See also

Latest version of the contextlib Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/contextlib.py?view=markup]

Functions provided:

	
contextlib.contextmanager(func)

	This function is a decorator that can be used to define a factory
function for with statement context managers, without needing to
create a class or separate __enter__() and __exit__() methods.

A simple example (this is not recommended as a real way of generating HTML!):

from contextlib import contextmanager

@contextmanager
def tag(name):
 print "<%s>" % name
 yield
 print "</%s>" % name

>>> with tag("h1"):
... print "foo"
...
<h1>
foo
</h1>

The function being decorated must return a generator-iterator when
called. This iterator must yield exactly one value, which will be bound to
the targets in the with statement’s as clause, if any.

At the point where the generator yields, the block nested in the with
statement is executed. The generator is then resumed after the block is exited.
If an unhandled exception occurs in the block, it is reraised inside the
generator at the point where the yield occurred. Thus, you can use a
try...except...finally statement to trap
the error (if any), or ensure that some cleanup takes place. If an exception is
trapped merely in order to log it or to perform some action (rather than to
suppress it entirely), the generator must reraise that exception. Otherwise the
generator context manager will indicate to the with statement that
the exception has been handled, and execution will resume with the statement
immediately following the with statement.

	
contextlib.nested(mgr1[, mgr2[, ...]])

	Combine multiple context managers into a single nested context manager.

This function has been deprecated in favour of the multiple manager form
of the with statement.

The one advantage of this function over the multiple manager form of the
with statement is that argument unpacking allows it to be
used with a variable number of context managers as follows:

from contextlib import nested

with nested(*managers):
 do_something()

Note that if the __exit__() method of one of the nested context managers
indicates an exception should be suppressed, no exception information will be
passed to any remaining outer context managers. Similarly, if the
__exit__() method of one of the nested managers raises an exception, any
previous exception state will be lost; the new exception will be passed to the
__exit__() methods of any remaining outer context managers. In general,
__exit__() methods should avoid raising exceptions, and in particular they
should not re-raise a passed-in exception.

This function has two major quirks that have led to it being deprecated. Firstly,
as the context managers are all constructed before the function is invoked, the
__new__() and __init__() methods of the inner context managers are
not actually covered by the scope of the outer context managers. That means, for
example, that using nested() to open two files is a programming error as the
first file will not be closed promptly if an exception is thrown when opening
the second file.

Secondly, if the __enter__() method of one of the inner context managers
raises an exception that is caught and suppressed by the __exit__() method
of one of the outer context managers, this construct will raise
RuntimeError rather than skipping the body of the with
statement.

Developers that need to support nesting of a variable number of context managers
can either use the warnings module to suppress the DeprecationWarning
raised by this function or else use this function as a model for an application
specific implementation.

Deprecated since version 2.7: The with-statement now supports this functionality directly (without the
confusing error prone quirks).

	
contextlib.closing(thing)

	Return a context manager that closes thing upon completion of the block. This
is basically equivalent to:

from contextlib import contextmanager

@contextmanager
def closing(thing):
 try:
 yield thing
 finally:
 thing.close()

And lets you write code like this:

from contextlib import closing
import urllib

with closing(urllib.urlopen('http://www.python.org')) as page:
 for line in page:
 print line

without needing to explicitly close page. Even if an error occurs,
page.close() will be called when the with block is exited.

See also

	PEP 0343 [http://www.python.org/dev/peps/pep-0343] - The “with” statement

	The specification, background, and examples for the Python with
statement.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.8. abc — Abstract Base Classes

New in version 2.6.

This module provides the infrastructure for defining an abstract base
class (ABCs) in Python, as outlined in PEP 3119 [http://www.python.org/dev/peps/pep-3119]; see the PEP for why this
was added to Python. (See also PEP 3141 [http://www.python.org/dev/peps/pep-3141] and the numbers module
regarding a type hierarchy for numbers based on ABCs.)

The collections module has some concrete classes that derive from
ABCs; these can, of course, be further derived. In addition the
collections module has some ABCs that can be used to test whether
a class or instance provides a particular interface, for example, is it
hashable or a mapping.

This module provides the following class:

	
class abc.ABCMeta

	Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC. An ABC can be subclassed directly, and
then acts as a mix-in class. You can also register unrelated concrete
classes (even built-in classes) and unrelated ABCs as “virtual subclasses” –
these and their descendants will be considered subclasses of the registering
ABC by the built-in issubclass() function, but the registering ABC
won’t show up in their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not even via
super()). [1]

Classes created with a metaclass of ABCMeta have the following method:

	
register(subclass)

	Register subclass as a “virtual subclass” of this ABC. For
example:

from abc import ABCMeta

class MyABC:
 __metaclass__ = ABCMeta

MyABC.register(tuple)

assert issubclass(tuple, MyABC)
assert isinstance((), MyABC)

You can also override this method in an abstract base class:

	
__subclasshook__(subclass)

	(Must be defined as a class method.)

Check whether subclass is considered a subclass of this ABC. This means
that you can customize the behavior of issubclass further without the
need to call register() on every class you want to consider a
subclass of the ABC. (This class method is called from the
__subclasscheck__() method of the ABC.)

This method should return True, False or NotImplemented. If
it returns True, the subclass is considered a subclass of this ABC.
If it returns False, the subclass is not considered a subclass of
this ABC, even if it would normally be one. If it returns
NotImplemented, the subclass check is continued with the usual
mechanism.

For a demonstration of these concepts, look at this example ABC definition:

class Foo(object):
 def __getitem__(self, index):
 ...
 def __len__(self):
 ...
 def get_iterator(self):
 return iter(self)

class MyIterable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __iter__(self):
 while False:
 yield None

 def get_iterator(self):
 return self.__iter__()

 @classmethod
 def __subclasshook__(cls, C):
 if cls is MyIterable:
 if any("__iter__" in B.__dict__ for B in C.__mro__):
 return True
 return NotImplemented

MyIterable.register(Foo)

The ABC MyIterable defines the standard iterable method,
__iter__(), as an abstract method. The implementation given here can
still be called from subclasses. The get_iterator() method is also
part of the MyIterable abstract base class, but it does not have to be
overridden in non-abstract derived classes.

The __subclasshook__() class method defined here says that any class
that has an __iter__() method in its __dict__ (or in that of
one of its base classes, accessed via the __mro__ list) is
considered a MyIterable too.

Finally, the last line makes Foo a virtual subclass of MyIterable,
even though it does not define an __iter__() method (it uses the
old-style iterable protocol, defined in terms of __len__() and
__getitem__()). Note that this will not make get_iterator
available as a method of Foo, so it is provided separately.

It also provides the following decorators:

	
abc.abstractmethod(function)

	A decorator indicating abstract methods.

Using this decorator requires that the class’s metaclass is ABCMeta or
is derived from it.
A class that has a metaclass derived from ABCMeta
cannot be instantiated unless all of its abstract methods and
properties are overridden.
The abstract methods can be called using any of the normal ‘super’ call
mechanisms.

Dynamically adding abstract methods to a class, or attempting to modify the
abstraction status of a method or class once it is created, are not
supported. The abstractmethod() only affects subclasses derived using
regular inheritance; “virtual subclasses” registered with the ABC’s
register() method are not affected.

Usage:

class C:
 __metaclass__ = ABCMeta
 @abstractmethod
 def my_abstract_method(self, ...):
 ...

Note

Unlike Java abstract methods, these abstract
methods may have an implementation. This implementation can be
called via the super() mechanism from the class that
overrides it. This could be useful as an end-point for a
super-call in a framework that uses cooperative
multiple-inheritance.

	
abc.abstractproperty([fget[, fset[, fdel[, doc]]]])

	A subclass of the built-in property(), indicating an abstract property.

Using this function requires that the class’s metaclass is ABCMeta or
is derived from it.
A class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract methods and properties are overridden.
The abstract properties can be called using any of the normal
‘super’ call mechanisms.

Usage:

class C:
 __metaclass__ = ABCMeta
 @abstractproperty
 def my_abstract_property(self):
 ...

This defines a read-only property; you can also define a read-write abstract
property using the ‘long’ form of property declaration:

class C:
 __metaclass__ = ABCMeta
 def getx(self): ...
 def setx(self, value): ...
 x = abstractproperty(getx, setx)

Footnotes

	[1]	C++ programmers should note that Python’s virtual base class
concept is not the same as C++’s.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.9. atexit — Exit handlers

New in version 2.0.

The atexit module defines a single function to register cleanup
functions. Functions thus registered are automatically executed upon normal
interpreter termination.

See also

Latest version of the atexit Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/atexit.py?view=markup]

Note: the functions registered via this module are not called when the program
is killed by a signal not handled by Python, when a Python fatal internal error
is detected, or when os._exit() is called.

This is an alternate interface to the functionality provided by the
sys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that
sets sys.exitfunc. In particular, other core Python modules are free to use
atexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to use atexit instead. The
simplest way to convert code that sets sys.exitfunc is to import
atexit and register the function that had been bound to sys.exitfunc.

	
atexit.register(func[, *args[, **kargs]])

	Register func as a function to be executed at termination. Any optional
arguments that are to be passed to func must be passed as arguments to
register().

At normal program termination (for instance, if sys.exit() is called or
the main module’s execution completes), all functions registered are called in
last in, first out order. The assumption is that lower level modules will
normally be imported before higher level modules and thus must be cleaned up
later.

If an exception is raised during execution of the exit handlers, a traceback is
printed (unless SystemExit is raised) and the exception information is
saved. After all exit handlers have had a chance to run the last exception to
be raised is re-raised.

Changed in version 2.6: This function now returns func which makes it possible to use it as a
decorator without binding the original name to None.

See also

	Module readline

	Useful example of atexit to read and write readline history files.

27.9.1. atexit Example

The following simple example demonstrates how a module can initialize a counter
from a file when it is imported and save the counter’s updated value
automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:
 _count = int(open("/tmp/counter").read())
except IOError:
 _count = 0

def incrcounter(n):
 global _count
 _count = _count + n

def savecounter():
 open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passed to register() to be
passed along to the registered function when it is called:

def goodbye(name, adjective):
 print 'Goodbye, %s, it was %s to meet you.' % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny', 'nice')

or:
atexit.register(goodbye, adjective='nice', name='Donny')

Usage as a decorator:

import atexit

@atexit.register
def goodbye():
 print "You are now leaving the Python sector."

This obviously only works with functions that don’t take arguments.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.10. traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack
traces of Python programs. It exactly mimics the behavior of the Python
interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the
interpreter.

The module uses traceback objects — this is the object type that is stored in
the variables sys.exc_traceback (deprecated) and sys.last_traceback and
returned as the third item from sys.exc_info().

The module defines the following functions:

	
traceback.print_tb(traceback[, limit[, file]])

	Print up to limit stack trace entries from traceback. If limit is omitted
or None, all entries are printed. If file is omitted or None, the
output goes to sys.stderr; otherwise it should be an open file or file-like
object to receive the output.

	
traceback.print_exception(type, value, traceback[, limit[, file]])

	Print exception information and up to limit stack trace entries from
traceback to file. This differs from print_tb() in the following ways:
(1) if traceback is not None, it prints a header Traceback (most recent
call last):; (2) it prints the exception type and value after the stack
trace; (3) if type is SyntaxError and value has the appropriate
format, it prints the line where the syntax error occurred with a caret
indicating the approximate position of the error.

	
traceback.print_exc([limit[, file]])

	This is a shorthand for print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit, file). (In fact, it uses sys.exc_info() to
retrieve the same information in a thread-safe way instead of using the
deprecated variables.)

	
traceback.format_exc([limit])

	This is like print_exc(limit) but returns a string instead of printing to a
file.

New in version 2.4.

	
traceback.print_last([limit[, file]])

	This is a shorthand for print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file). In general it will work only after
an exception has reached an interactive prompt (see sys.last_type).

	
traceback.print_stack([f[, limit[, file]]])

	This function prints a stack trace from its invocation point. The optional f
argument can be used to specify an alternate stack frame to start. The optional
limit and file arguments have the same meaning as for
print_exception().

	
traceback.extract_tb(traceback[, limit])

	Return a list of up to limit “pre-processed” stack trace entries extracted
from the traceback object traceback. It is useful for alternate formatting of
stack traces. If limit is omitted or None, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number,
function name, text) representing the information that is usually printed
for a stack trace. The text is a string with leading and trailing whitespace
stripped; if the source is not available it is None.

	
traceback.extract_stack([f[, limit]])

	Extract the raw traceback from the current stack frame. The return value has
the same format as for extract_tb(). The optional f and limit
arguments have the same meaning as for print_stack().

	
traceback.format_list(list)

	Given a list of tuples as returned by extract_tb() or
extract_stack(), return a list of strings ready for printing. Each string
in the resulting list corresponds to the item with the same index in the
argument list. Each string ends in a newline; the strings may contain internal
newlines as well, for those items whose source text line is not None.

	
traceback.format_exception_only(type, value)

	Format the exception part of a traceback. The arguments are the exception type
and value such as given by sys.last_type and sys.last_value. The return
value is a list of strings, each ending in a newline. Normally, the list
contains a single string; however, for SyntaxError exceptions, it
contains several lines that (when printed) display detailed information about
where the syntax error occurred. The message indicating which exception
occurred is the always last string in the list.

	
traceback.format_exception(type, value, tb[, limit])

	Format a stack trace and the exception information. The arguments have the
same meaning as the corresponding arguments to print_exception(). The
return value is a list of strings, each ending in a newline and some containing
internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as does print_exception().

	
traceback.format_tb(tb[, limit])

	A shorthand for format_list(extract_tb(tb, limit)).

	
traceback.format_stack([f[, limit]])

	A shorthand for format_list(extract_stack(f, limit)).

	
traceback.tb_lineno(tb)

	This function returns the current line number set in the traceback object. This
function was necessary because in versions of Python prior to 2.3 when the
-O flag was passed to Python the tb.tb_lineno was not updated
correctly. This function has no use in versions past 2.3.

27.10.1. Traceback Examples

This simple example implements a basic read-eval-print loop, similar to (but
less useful than) the standard Python interactive interpreter loop. For a more
complete implementation of the interpreter loop, refer to the code
module.

import sys, traceback

def run_user_code(envdir):
 source = raw_input(">>> ")
 try:
 exec source in envdir
 except:
 print "Exception in user code:"
 print '-'*60
 traceback.print_exc(file=sys.stdout)
 print '-'*60

envdir = {}
while 1:
 run_user_code(envdir)

The following example demonstrates the different ways to print and format the
exception and traceback:

import sys, traceback

def lumberjack():
 bright_side_of_death()

def bright_side_of_death():
 return tuple()[0]

try:
 lumberjack()
except IndexError:
 exc_type, exc_value, exc_traceback = sys.exc_info()
 print "*** print_tb:"
 traceback.print_tb(exc_traceback, limit=1, file=sys.stdout)
 print "*** print_exception:"
 traceback.print_exception(exc_type, exc_value, exc_traceback,
 limit=2, file=sys.stdout)
 print "*** print_exc:"
 traceback.print_exc()
 print "*** format_exc, first and last line:"
 formatted_lines = traceback.format_exc().splitlines()
 print formatted_lines[0]
 print formatted_lines[-1]
 print "*** format_exception:"
 print repr(traceback.format_exception(exc_type, exc_value,
 exc_traceback))
 print "*** extract_tb:"
 print repr(traceback.extract_tb(exc_traceback))
 print "*** format_tb:"
 print repr(traceback.format_tb(exc_traceback))
 print "*** tb_lineno:", exc_traceback.tb_lineno

The output for the example would look similar to this:

*** print_tb:
 File "<doctest...>", line 10, in <module>
 lumberjack()
*** print_exception:
Traceback (most recent call last):
 File "<doctest...>", line 10, in <module>
 lumberjack()
 File "<doctest...>", line 4, in lumberjack
 bright_side_of_death()
IndexError: tuple index out of range
*** print_exc:
Traceback (most recent call last):
 File "<doctest...>", line 10, in <module>
 lumberjack()
 File "<doctest...>", line 4, in lumberjack
 bright_side_of_death()
IndexError: tuple index out of range
*** format_exc, first and last line:
Traceback (most recent call last):
IndexError: tuple index out of range
*** format_exception:
['Traceback (most recent call last):\n',
 ' File "<doctest...>", line 10, in <module>\n lumberjack()\n',
 ' File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n',
 ' File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n',
 'IndexError: tuple index out of range\n']
*** extract_tb:
[('<doctest...>', 10, '<module>', 'lumberjack()'),
 ('<doctest...>', 4, 'lumberjack', 'bright_side_of_death()'),
 ('<doctest...>', 7, 'bright_side_of_death', 'return tuple()[0]')]
*** format_tb:
[' File "<doctest...>", line 10, in <module>\n lumberjack()\n',
 ' File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n',
 ' File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n']
*** tb_lineno: 10

The following example shows the different ways to print and format the stack:

>>> import traceback
>>> def another_function():
... lumberstack()
...
>>> def lumberstack():
... traceback.print_stack()
... print repr(traceback.extract_stack())
... print repr(traceback.format_stack())
...
>>> another_function()
 File "<doctest>", line 10, in <module>
 another_function()
 File "<doctest>", line 3, in another_function
 lumberstack()
 File "<doctest>", line 6, in lumberstack
 traceback.print_stack()
[('<doctest>', 10, '<module>', 'another_function()'),
 ('<doctest>', 3, 'another_function', 'lumberstack()'),
 ('<doctest>', 7, 'lumberstack', 'print repr(traceback.extract_stack())')]
[' File "<doctest>", line 10, in <module>\n another_function()\n',
 ' File "<doctest>", line 3, in another_function\n lumberstack()\n',
 ' File "<doctest>", line 8, in lumberstack\n print repr(traceback.format_stack())\n']

This last example demonstrates the final few formatting functions:

>>> import traceback
>>> traceback.format_list([('spam.py', 3, '<module>', 'spam.eggs()'),
... ('eggs.py', 42, 'eggs', 'return "bacon"')])
[' File "spam.py", line 3, in <module>\n spam.eggs()\n',
 ' File "eggs.py", line 42, in eggs\n return "bacon"\n']
>>> an_error = IndexError('tuple index out of range')
>>> traceback.format_exception_only(type(an_error), an_error)
['IndexError: tuple index out of range\n']

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.11. __future__ — Future statement definitions

__future__ is a real module, and serves three purposes:

	To avoid confusing existing tools that analyze import statements and expect to
find the modules they’re importing.

	To ensure that future statements run under releases prior to
2.1 at least yield runtime exceptions (the import of __future__ will
fail, because there was no module of that name prior to 2.1).

	To document when incompatible changes were introduced, and when they will be
— or were — made mandatory. This is a form of executable documentation, and
can be inspected programmatically via importing __future__ and examining
its contents.

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,
 CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are
5-tuples of the same form as sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
 PY_MINOR_VERSION, # the 1; an int
 PY_MICRO_VERSION, # the 0; an int
 PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
 PY_RELEASE_SERIAL # the 3; an int
)

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred,
MandatoryRelease predicts the release in which the feature will become part of
the language.

Else MandatoryRelease records when the feature became part of the language; in
releases at or after that, modules no longer need a future statement to use the
feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got
dropped.

Instances of class _Feature have two corresponding methods,
getOptionalRelease() and getMandatoryRelease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth
argument to the built-in function compile() to enable the feature in
dynamically compiled code. This flag is stored in the compiler_flag
attribute on _Feature instances.

No feature description will ever be deleted from __future__. Since its
introduction in Python 2.1 the following features have found their way into the
language using this mechanism:

	feature
	optional in
	mandatory in
	effect

	nested_scopes
	2.1.0b1
	2.2
	PEP 227 [http://www.python.org/dev/peps/pep-0227]:
Statically Nested Scopes

	generators
	2.2.0a1
	2.3
	PEP 255 [http://www.python.org/dev/peps/pep-0255]:
Simple Generators

	division
	2.2.0a2
	3.0
	PEP 238 [http://www.python.org/dev/peps/pep-0238]:
Changing the Division Operator

	absolute_import
	2.5.0a1
	2.7
	PEP 328 [http://www.python.org/dev/peps/pep-0328]:
Imports: Multi-Line and Absolute/Relative

	with_statement
	2.5.0a1
	2.6
	PEP 343 [http://www.python.org/dev/peps/pep-0343]:
The “with” Statement

	print_function
	2.6.0a2
	3.0
	PEP 3105 [http://www.python.org/dev/peps/pep-3105]:
Make print a function

	unicode_literals
	2.6.0a2
	3.0
	PEP 3112 [http://www.python.org/dev/peps/pep-3112]:
Bytes literals in Python 3000

See also

	Future statements

	How the compiler treats future imports.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.12. gc — Garbage Collector interface

This module provides an interface to the optional garbage collector. It
provides the ability to disable the collector, tune the collection frequency,
and set debugging options. It also provides access to unreachable objects that
the collector found but cannot free. Since the collector supplements the
reference counting already used in Python, you can disable the collector if you
are sure your program does not create reference cycles. Automatic collection
can be disabled by calling gc.disable(). To debug a leaking program call
gc.set_debug(gc.DEBUG_LEAK). Notice that this includes
gc.DEBUG_SAVEALL, causing garbage-collected objects to be saved in
gc.garbage for inspection.

The gc module provides the following functions:

	
gc.enable()

	Enable automatic garbage collection.

	
gc.disable()

	Disable automatic garbage collection.

	
gc.isenabled()

	Returns true if automatic collection is enabled.

	
gc.collect([generation])

	With no arguments, run a full collection. The optional argument generation
may be an integer specifying which generation to collect (from 0 to 2). A
ValueError is raised if the generation number is invalid. The number of
unreachable objects found is returned.

Changed in version 2.5: The optional generation argument was added.

Changed in version 2.6: The free lists maintained for a number of built-in types are cleared
whenever a full collection or collection of the highest generation (2)
is run. Not all items in some free lists may be freed due to the
particular implementation, in particular int and float.

	
gc.set_debug(flags)

	Set the garbage collection debugging flags. Debugging information will be
written to sys.stderr. See below for a list of debugging flags which can be
combined using bit operations to control debugging.

	
gc.get_debug()

	Return the debugging flags currently set.

	
gc.get_objects()

	Returns a list of all objects tracked by the collector, excluding the list
returned.

New in version 2.2.

	
gc.set_threshold(threshold0[, threshold1[, threshold2]])

	Set the garbage collection thresholds (the collection frequency). Setting
threshold0 to zero disables collection.

The GC classifies objects into three generations depending on how many
collection sweeps they have survived. New objects are placed in the youngest
generation (generation 0). If an object survives a collection it is moved
into the next older generation. Since generation 2 is the oldest
generation, objects in that generation remain there after a collection. In
order to decide when to run, the collector keeps track of the number object
allocations and deallocations since the last collection. When the number of
allocations minus the number of deallocations exceeds threshold0, collection
starts. Initially only generation 0 is examined. If generation 0 has
been examined more than threshold1 times since generation 1 has been
examined, then generation 1 is examined as well. Similarly, threshold2
controls the number of collections of generation 1 before collecting
generation 2.

	
gc.get_count()

	Return the current collection counts as a tuple of (count0, count1,
count2).

New in version 2.5.

	
gc.get_threshold()

	Return the current collection thresholds as a tuple of (threshold0,
threshold1, threshold2).

	
gc.get_referrers(*objs)

	Return the list of objects that directly refer to any of objs. This function
will only locate those containers which support garbage collection; extension
types which do refer to other objects but do not support garbage collection will
not be found.

Note that objects which have already been dereferenced, but which live in cycles
and have not yet been collected by the garbage collector can be listed among the
resulting referrers. To get only currently live objects, call collect()
before calling get_referrers().

Care must be taken when using objects returned by get_referrers() because
some of them could still be under construction and hence in a temporarily
invalid state. Avoid using get_referrers() for any purpose other than
debugging.

New in version 2.2.

	
gc.get_referents(*objs)

	Return a list of objects directly referred to by any of the arguments. The
referents returned are those objects visited by the arguments’ C-level
tp_traverse methods (if any), and may not be all objects actually
directly reachable. tp_traverse methods are supported only by objects
that support garbage collection, and are only required to visit objects that may
be involved in a cycle. So, for example, if an integer is directly reachable
from an argument, that integer object may or may not appear in the result list.

New in version 2.3.

	
gc.is_tracked(obj)

	Returns True if the object is currently tracked by the garbage collector,
False otherwise. As a general rule, instances of atomic types aren’t
tracked and instances of non-atomic types (containers, user-defined
objects...) are. However, some type-specific optimizations can be present
in order to suppress the garbage collector footprint of simple instances
(e.g. dicts containing only atomic keys and values):

>>> gc.is_tracked(0)
False
>>> gc.is_tracked("a")
False
>>> gc.is_tracked([])
True
>>> gc.is_tracked({})
False
>>> gc.is_tracked({"a": 1})
False
>>> gc.is_tracked({"a": []})
True

New in version 2.7.

The following variable is provided for read-only access (you can mutate its
value but should not rebind it):

	
gc.garbage

	A list of objects which the collector found to be unreachable but could not be
freed (uncollectable objects). By default, this list contains only objects with
__del__() methods. [1] Objects that have __del__() methods and are
part of a reference cycle cause the entire reference cycle to be uncollectable,
including objects not necessarily in the cycle but reachable only from it.
Python doesn’t collect such cycles automatically because, in general, it isn’t
possible for Python to guess a safe order in which to run the __del__()
methods. If you know a safe order, you can force the issue by examining the
garbage list, and explicitly breaking cycles due to your objects within the
list. Note that these objects are kept alive even so by virtue of being in the
garbage list, so they should be removed from garbage too. For example,
after breaking cycles, do del gc.garbage[:] to empty the list. It’s
generally better to avoid the issue by not creating cycles containing objects
with __del__() methods, and garbage can be examined in that case to
verify that no such cycles are being created.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to
this list rather than freed.

The following constants are provided for use with set_debug():

	
gc.DEBUG_STATS

	Print statistics during collection. This information can be useful when tuning
the collection frequency.

	
gc.DEBUG_COLLECTABLE

	Print information on collectable objects found.

	
gc.DEBUG_UNCOLLECTABLE

	Print information of uncollectable objects found (objects which are not
reachable but cannot be freed by the collector). These objects will be added to
the garbage list.

	
gc.DEBUG_INSTANCES

	When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print
information about instance objects found.

	
gc.DEBUG_OBJECTS

	When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print
information about objects other than instance objects found.

	
gc.DEBUG_SAVEALL

	When set, all unreachable objects found will be appended to garbage rather
than being freed. This can be useful for debugging a leaking program.

	
gc.DEBUG_LEAK

	The debugging flags necessary for the collector to print information about a
leaking program (equal to DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE |
DEBUG_INSTANCES | DEBUG_OBJECTS | DEBUG_SAVEALL).

Footnotes

	[1]	Prior to Python 2.2, the list contained all instance objects in unreachable
cycles, not only those with __del__() methods.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.13. inspect — Inspect live objects

New in version 2.1.

The inspect module provides several useful functions to help get
information about live objects such as modules, classes, methods, functions,
tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract
and format the argument list for a function, or get all the information you need
to display a detailed traceback.

There are four main kinds of services provided by this module: type checking,
getting source code, inspecting classes and functions, and examining the
interpreter stack.

27.13.1. Types and members

The getmembers() function retrieves the members of an object such as a
class or module. The sixteen functions whose names begin with “is” are mainly
provided as convenient choices for the second argument to getmembers().
They also help you determine when you can expect to find the following special
attributes:

	Type
	Attribute
	Description
	Notes

	module
	__doc__
	documentation string
	

	
	__file__
	filename (missing for
built-in modules)
	

	class
	__doc__
	documentation string
	

	
	__module__
	name of module in which
this class was defined
	

	method
	__doc__
	documentation string
	

	
	__name__
	name with which this
method was defined
	

	
	im_class
	class object that asked
for this method
	(1)

	
	im_func or
__func__
	function object
containing implementation
of method
	

	
	im_self or
__self__
	instance to which this
method is bound, or
None
	

	function
	__doc__
	documentation string
	

	
	__name__
	name with which this
function was defined
	

	
	func_code
	code object containing
compiled function
bytecode
	

	
	func_defaults
	tuple of any default
values for arguments
	

	
	func_doc
	(same as __doc__)
	

	
	func_globals
	global namespace in which
this function was defined
	

	
	func_name
	(same as __name__)
	

	generator
	__iter__
	defined to support
iteration over container
	

	
	close
	raises new GeneratorExit
exception inside the
generator to terminate
the iteration
	

	
	gi_code
	code object
	

	
	gi_frame
	frame object or possibly
None once the generator
has been exhausted
	

	
	gi_running
	set to 1 when generator
is executing, 0 otherwise
	

	
	next
	return the next item from
the container
	

	
	send
	resumes the generator and
“sends” a value that
becomes the result of the
current yield-expression
	

	
	throw
	used to raise an
exception inside the
generator
	

	traceback
	tb_frame
	frame object at this
level
	

	
	tb_lasti
	index of last attempted
instruction in bytecode
	

	
	tb_lineno
	current line number in
Python source code
	

	
	tb_next
	next inner traceback
object (called by this
level)
	

	frame
	f_back
	next outer frame object
(this frame’s caller)
	

	
	f_builtins
	builtins namespace seen
by this frame
	

	
	f_code
	code object being
executed in this frame
	

	
	f_exc_traceback
	traceback if raised in
this frame, or None
	

	
	f_exc_type
	exception type if raised
in this frame, or
None
	

	
	f_exc_value
	exception value if raised
in this frame, or
None
	

	
	f_globals
	global namespace seen by
this frame
	

	
	f_lasti
	index of last attempted
instruction in bytecode
	

	
	f_lineno
	current line number in
Python source code
	

	
	f_locals
	local namespace seen by
this frame
	

	
	f_restricted
	0 or 1 if frame is in
restricted execution mode
	

	
	f_trace
	tracing function for this
frame, or None
	

	code
	co_argcount
	number of arguments (not
including * or **
args)
	

	
	co_code
	string of raw compiled
bytecode
	

	
	co_consts
	tuple of constants used
in the bytecode
	

	
	co_filename
	name of file in which
this code object was
created
	

	
	co_firstlineno
	number of first line in
Python source code
	

	
	co_flags
	bitmap: 1=optimized |
2=newlocals | 4=*arg
| 8=**arg
	

	
	co_lnotab
	encoded mapping of line
numbers to bytecode
indices
	

	
	co_name
	name with which this code
object was defined
	

	
	co_names
	tuple of names of local
variables
	

	
	co_nlocals
	number of local variables
	

	
	co_stacksize
	virtual machine stack
space required
	

	
	co_varnames
	tuple of names of
arguments and local
variables
	

	builtin
	__doc__
	documentation string
	

	
	__name__
	original name of this
function or method
	

	
	__self__
	instance to which a
method is bound, or
None
	

Note:

	
Changed in version 2.2: im_class used to refer to the class that defined the method.

	
inspect.getmembers(object[, predicate])

	Return all the members of an object in a list of (name, value) pairs sorted by
name. If the optional predicate argument is supplied, only members for which
the predicate returns a true value are included.

Note

getmembers() does not return metaclass attributes when the argument
is a class (this behavior is inherited from the dir() function).

	
inspect.getmoduleinfo(path)

	Return a tuple of values that describe how Python will interpret the file
identified by path if it is a module, or None if it would not be
identified as a module. The return tuple is (name, suffix, mode,
module_type), where name is the name of the module without the name of
any enclosing package, suffix is the trailing part of the file name (which
may not be a dot-delimited extension), mode is the open() mode that
would be used ('r' or 'rb'), and module_type is an integer giving
the type of the module. module_type will have a value which can be
compared to the constants defined in the imp module; see the
documentation for that module for more information on module types.

Changed in version 2.6: Returns a named tuple ModuleInfo(name, suffix, mode,
module_type).

	
inspect.getmodulename(path)

	Return the name of the module named by the file path, without including the
names of enclosing packages. This uses the same algorithm as the interpreter
uses when searching for modules. If the name cannot be matched according to the
interpreter’s rules, None is returned.

	
inspect.ismodule(object)

	Return true if the object is a module.

	
inspect.isclass(object)

	Return true if the object is a class, whether built-in or created in Python
code.

	
inspect.ismethod(object)

	Return true if the object is a bound method written in Python.

	
inspect.isfunction(object)

	Return true if the object is a Python function, which includes functions
created by a lambda expression.

	
inspect.isgeneratorfunction(object)

	Return true if the object is a Python generator function.

New in version 2.6.

	
inspect.isgenerator(object)

	Return true if the object is a generator.

New in version 2.6.

	
inspect.istraceback(object)

	Return true if the object is a traceback.

	
inspect.isframe(object)

	Return true if the object is a frame.

	
inspect.iscode(object)

	Return true if the object is a code.

	
inspect.isbuiltin(object)

	Return true if the object is a built-in function or a bound built-in method.

	
inspect.isroutine(object)

	Return true if the object is a user-defined or built-in function or method.

	
inspect.isabstract(object)

	Return true if the object is an abstract base class.

New in version 2.6.

	
inspect.ismethoddescriptor(object)

	Return true if the object is a method descriptor, but not if
ismethod(), isclass(), isfunction() or isbuiltin()
are true.

This is new as of Python 2.2, and, for example, is true of
int.__add__. An object passing this test has a __get__ attribute
but not a __set__ attribute, but beyond that the set of attributes
varies. __name__ is usually sensible, and __doc__ often is.

Methods implemented via descriptors that also pass one of the other tests
return false from the ismethoddescriptor() test, simply because the
other tests promise more – you can, e.g., count on having the
im_func attribute (etc) when an object passes ismethod().

	
inspect.isdatadescriptor(object)

	Return true if the object is a data descriptor.

Data descriptors have both a __get__ and a __set__ attribute.
Examples are properties (defined in Python), getsets, and members. The
latter two are defined in C and there are more specific tests available for
those types, which is robust across Python implementations. Typically, data
descriptors will also have __name__ and __doc__ attributes
(properties, getsets, and members have both of these attributes), but this is
not guaranteed.

New in version 2.3.

	
inspect.isgetsetdescriptor(object)

	Return true if the object is a getset descriptor.

CPython implementation detail: getsets are attributes defined in extension modules via
PyGetSetDef structures. For Python implementations without such
types, this method will always return False.

New in version 2.5.

	
inspect.ismemberdescriptor(object)

	Return true if the object is a member descriptor.

CPython implementation detail: Member descriptors are attributes defined in extension modules via
PyMemberDef structures. For Python implementations without such
types, this method will always return False.

New in version 2.5.

27.13.2. Retrieving source code

	
inspect.getdoc(object)

	Get the documentation string for an object, cleaned up with cleandoc().

	
inspect.getcomments(object)

	Return in a single string any lines of comments immediately preceding the
object’s source code (for a class, function, or method), or at the top of the
Python source file (if the object is a module).

	
inspect.getfile(object)

	Return the name of the (text or binary) file in which an object was defined.
This will fail with a TypeError if the object is a built-in module,
class, or function.

	
inspect.getmodule(object)

	Try to guess which module an object was defined in.

	
inspect.getsourcefile(object)

	Return the name of the Python source file in which an object was defined. This
will fail with a TypeError if the object is a built-in module, class, or
function.

	
inspect.getsourcelines(object)

	Return a list of source lines and starting line number for an object. The
argument may be a module, class, method, function, traceback, frame, or code
object. The source code is returned as a list of the lines corresponding to the
object and the line number indicates where in the original source file the first
line of code was found. An IOError is raised if the source code cannot
be retrieved.

	
inspect.getsource(object)

	Return the text of the source code for an object. The argument may be a module,
class, method, function, traceback, frame, or code object. The source code is
returned as a single string. An IOError is raised if the source code
cannot be retrieved.

	
inspect.cleandoc(doc)

	Clean up indentation from docstrings that are indented to line up with blocks
of code. Any whitespace that can be uniformly removed from the second line
onwards is removed. Also, all tabs are expanded to spaces.

New in version 2.6.

27.13.3. Classes and functions

	
inspect.getclasstree(classes[, unique])

	Arrange the given list of classes into a hierarchy of nested lists. Where a
nested list appears, it contains classes derived from the class whose entry
immediately precedes the list. Each entry is a 2-tuple containing a class and a
tuple of its base classes. If the unique argument is true, exactly one entry
appears in the returned structure for each class in the given list. Otherwise,
classes using multiple inheritance and their descendants will appear multiple
times.

	
inspect.getargspec(func)

	Get the names and default values of a Python function’s arguments. A tuple of
four things is returned: (args, varargs, keywords, defaults). args is a
list of the argument names (it may contain nested lists). varargs and
keywords are the names of the * and ** arguments or
None. defaults is a tuple of default argument values or None if there
are no default arguments; if this tuple has n elements, they correspond to
the last n elements listed in args.

Changed in version 2.6: Returns a named tuple ArgSpec(args, varargs, keywords,
defaults).

	
inspect.getargvalues(frame)

	Get information about arguments passed into a particular frame. A tuple of
four things is returned: (args, varargs, keywords, locals). args is a
list of the argument names (it may contain nested lists). varargs and
keywords are the names of the * and ** arguments or None.
locals is the locals dictionary of the given frame.

Changed in version 2.6: Returns a named tuple ArgInfo(args, varargs, keywords,
locals).

	
inspect.formatargspec(args[, varargs, varkw, defaults, formatarg, formatvarargs, formatvarkw, formatvalue, join])

	Format a pretty argument spec from the four values returned by
getargspec(). The format* arguments are the corresponding optional
formatting functions that are called to turn names and values into strings.

	
inspect.formatargvalues(args[, varargs, varkw, locals, formatarg, formatvarargs, formatvarkw, formatvalue, join])

	Format a pretty argument spec from the four values returned by
getargvalues(). The format* arguments are the corresponding optional
formatting functions that are called to turn names and values into strings.

	
inspect.getmro(cls)

	Return a tuple of class cls’s base classes, including cls, in method resolution
order. No class appears more than once in this tuple. Note that the method
resolution order depends on cls’s type. Unless a very peculiar user-defined
metatype is in use, cls will be the first element of the tuple.

	
inspect.getcallargs(func[, *args][, **kwds])

	Bind the args and kwds to the argument names of the Python function or
method func, as if it was called with them. For bound methods, bind also the
first argument (typically named self) to the associated instance. A dict
is returned, mapping the argument names (including the names of the * and
** arguments, if any) to their values from args and kwds. In case of
invoking func incorrectly, i.e. whenever func(*args, **kwds) would raise
an exception because of incompatible signature, an exception of the same type
and the same or similar message is raised. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{'a': 1, 'named': {}, 'b': 2, 'pos': (3,)}
>>> getcallargs(f, a=2, x=4)
{'a': 2, 'named': {'x': 4}, 'b': 1, 'pos': ()}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

New in version 2.7.

27.13.4. The interpreter stack

When the following functions return “frame records,” each record is a tuple of
six items: the frame object, the filename, the line number of the current line,
the function name, a list of lines of context from the source code, and the
index of the current line within that list.

Note

Keeping references to frame objects, as found in the first element of the frame
records these functions return, can cause your program to create reference
cycles. Once a reference cycle has been created, the lifespan of all objects
which can be accessed from the objects which form the cycle can become much
longer even if Python’s optional cycle detector is enabled. If such cycles must
be created, it is important to ensure they are explicitly broken to avoid the
delayed destruction of objects and increased memory consumption which occurs.

Though the cycle detector will catch these, destruction of the frames (and local
variables) can be made deterministic by removing the cycle in a
finally clause. This is also important if the cycle detector was
disabled when Python was compiled or using gc.disable(). For example:

def handle_stackframe_without_leak():
 frame = inspect.currentframe()
 try:
 # do something with the frame
 finally:
 del frame

The optional context argument supported by most of these functions specifies
the number of lines of context to return, which are centered around the current
line.

	
inspect.getframeinfo(frame[, context])

	Get information about a frame or traceback object. A 5-tuple is returned, the
last five elements of the frame’s frame record.

Changed in version 2.6: Returns a named tuple Traceback(filename, lineno, function,
code_context, index).

	
inspect.getouterframes(frame[, context])

	Get a list of frame records for a frame and all outer frames. These frames
represent the calls that lead to the creation of frame. The first entry in the
returned list represents frame; the last entry represents the outermost call
on frame‘s stack.

	
inspect.getinnerframes(traceback[, context])

	Get a list of frame records for a traceback’s frame and all inner frames. These
frames represent calls made as a consequence of frame. The first entry in the
list represents traceback; the last entry represents where the exception was
raised.

	
inspect.currentframe()

	Return the frame object for the caller’s stack frame.

CPython implementation detail: This function relies on Python stack frame support in the interpreter,
which isn’t guaranteed to exist in all implementations of Python. If
running in an implementation without Python stack frame support this
function returns None.

	
inspect.stack([context])

	Return a list of frame records for the caller’s stack. The first entry in the
returned list represents the caller; the last entry represents the outermost
call on the stack.

	
inspect.trace([context])

	Return a list of frame records for the stack between the current frame and the
frame in which an exception currently being handled was raised in. The first
entry in the list represents the caller; the last entry represents where the
exception was raised.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.14. site — Site-specific configuration hook

This module is automatically imported during initialization. The automatic
import can be suppressed using the interpreter’s -S option.

Importing this module will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part.
For the head part, it uses sys.prefix and sys.exec_prefix; empty heads
are skipped. For the tail part, it uses the empty string and then
lib/site-packages (on Windows) or
lib/python|version|/site-packages and then lib/site-python (on
Unix and Macintosh). For each of the distinct head-tail combinations, it sees
if it refers to an existing directory, and if so, adds it to sys.path and
also inspects the newly added path for configuration files.

A path configuration file is a file whose name has the form package.pth
and exists in one of the four directories mentioned above; its contents are
additional items (one per line) to be added to sys.path. Non-existing items
are never added to sys.path, but no check is made that the item refers to a
directory (rather than a file). No item is added to sys.path more than
once. Blank lines and lines beginning with # are skipped. Lines starting
with import (followed by space or tab) are executed.

Changed in version 2.6: A space or tab is now required after the import keyword.

For example, suppose sys.prefix and sys.exec_prefix are set to
/usr/local. The Python X.Y library is then installed in
/usr/local/lib/pythonX.Y (where only the first three characters of
sys.version are used to form the installation path name). Suppose this has
a subdirectory /usr/local/lib/pythonX.Y/site-packages with three
subsubdirectories, foo, bar and spam, and two path
configuration files, foo.pth and bar.pth. Assume
foo.pth contains the following:

foo package configuration

foo
bar
bletch

and bar.pth contains:

bar package configuration

bar

Then the following version-specific directories are added to
sys.path, in this order:

/usr/local/lib/pythonX.Y/site-packages/bar
/usr/local/lib/pythonX.Y/site-packages/foo

Note that bletch is omitted because it doesn’t exist; the bar
directory precedes the foo directory because bar.pth comes
alphabetically before foo.pth; and spam is omitted because it is
not mentioned in either path configuration file.

After these path manipulations, an attempt is made to import a module named
sitecustomize, which can perform arbitrary site-specific customizations.
If this import fails with an ImportError exception, it is silently
ignored.

Note that for some non-Unix systems, sys.prefix and sys.exec_prefix are
empty, and the path manipulations are skipped; however the import of
sitecustomize is still attempted.

	
site.PREFIXES

	A list of prefixes for site package directories

New in version 2.6.

	
site.ENABLE_USER_SITE

	Flag showing the status of the user site directory. True means the
user site directory is enabled and added to sys.path. When the flag
is None the user site directory is disabled for security reasons.

New in version 2.6.

	
site.USER_SITE

	Path to the user site directory for the current Python version or None

New in version 2.6.

	
site.USER_BASE

	Path to the base directory for user site directories

New in version 2.6.

	
PYTHONNOUSERSITE

	
New in version 2.6.

	
PYTHONUSERBASE

	
New in version 2.6.

	
site.addsitedir(sitedir, known_paths=None)

	Adds a directory to sys.path and processes its pth files.

	
site.getsitepackages()

	Returns a list containing all global site-packages directories
(and possibly site-python).

New in version 2.7.

	
site.getuserbase()

	Returns the “user base” directory path.

The “user base” directory can be used to store data. If the global
variable USER_BASE is not initialized yet, this function will also set
it.

New in version 2.7.

	
site.getusersitepackages()

	Returns the user-specific site-packages directory path.

If the global variable USER_SITE is not initialized yet, this
function will also set it.

New in version 2.7.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.15. user — User-specific configuration hook

Deprecated since version 2.6: The user module has been removed in Python 3.0.

As a policy, Python doesn’t run user-specified code on startup of Python
programs. (Only interactive sessions execute the script specified in the
PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a
standard customization file, which gets run when a program requests it. This
module implements such a mechanism. A program that wishes to use the mechanism
must execute the statement

import user

The user module looks for a file .pythonrc.py in the user’s home
directory and if it can be opened, executes it (using execfile()) in its
own (the module user‘s) global namespace. Errors during this phase are
not caught; that’s up to the program that imports the user module, if it
wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s .pythonrc.py could conceivably test for sys.version if it
wishes to do different things depending on the Python version.

A warning to users: be very conservative in what you place in your
.pythonrc.py file. Since you don’t know which programs will use it,
changing the behavior of standard modules or functions is generally not a good
idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let
users specify options for your package is to have them define variables in their
.pythonrc.py file that you test in your module. For example, a module
spam that has a verbosity level can look for a variable
user.spam_verbose, as follows:

import user

verbose = bool(getattr(user, "spam_verbose", 0))

(The three-argument form of getattr() is used in case the user has not
defined spam_verbose in their .pythonrc.py file.)

Programs with extensive customization needs are better off reading a
program-specific customization file.

Programs with security or privacy concerns should not import this module; a
user can easily break into a program by placing arbitrary code in the
.pythonrc.py file.

Modules for general use should not import this module; it may interfere with
the operation of the importing program.

See also

	Module site

	Site-wide customization mechanism.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.16. fpectl — Floating point exception control

Note

The fpectl module is not built by default, and its usage is discouraged
and may be dangerous except in the hands of experts. See also the section
Limitations and other considerations on limitations for more details.

Most computers carry out floating point operations in conformance with the
so-called IEEE-754 standard. On any real computer, some floating point
operations produce results that cannot be expressed as a normal floating point
value. For example, try

>>> import math
>>> math.exp(1000)
inf
>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.)
“Inf” is a special, non-numeric value in IEEE-754 that stands for “infinity”,
and “nan” means “not a number.” Note that, other than the non-numeric results,
nothing special happened when you asked Python to carry out those calculations.
That is in fact the default behaviour prescribed in the IEEE-754 standard, and
if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop
processing at the point where the faulty operation was attempted. The
fpectl module is for use in that situation. It provides control over
floating point units from several hardware manufacturers, allowing the user to
turn on the generation of SIGFPE whenever any of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem
with a pair of wrapper macros that are inserted into the C code comprising your
python system, SIGFPE is trapped and converted into the Python
FloatingPointError exception.

The fpectl module defines the following functions and may raise the given
exception:

	
fpectl.turnon_sigfpe()

	Turn on the generation of SIGFPE, and set up an appropriate signal
handler.

	
fpectl.turnoff_sigfpe()

	Reset default handling of floating point exceptions.

	
exception fpectl.FloatingPointError

	After turnon_sigfpe() has been executed, a floating point operation that
raises one of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid
operation will in turn raise this standard Python exception.

27.16.1. Example

The following example demonstrates how to start up and test operation of the
fpectl module.

>>> import fpectl
>>> import fpetest
>>> fpectl.turnon_sigfpe()
>>> fpetest.test()
overflow PASS
FloatingPointError: Overflow

div by 0 PASS
FloatingPointError: Division by zero
 [more output from test elided]
>>> import math
>>> math.exp(1000)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
FloatingPointError: in math_1

27.16.2. Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently
requires custom code on a per-architecture basis. You may have to modify
fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the
wrapper macros PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted
into your code in an appropriate fashion. Python itself has been modified to
support the fpectl module, but many other codes of interest to numerical
analysts have not.

The fpectl module is not thread-safe.

See also

Some files in the source distribution may be interesting in learning more about
how this module operates. The include file Include/pyfpe.h discusses the
implementation of this module at some length. Modules/fpetestmodule.c
gives several examples of use. Many additional examples can be found in
Objects/floatobject.c.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	27. Python Runtime Services

27.17. distutils — Building and installing Python modules

The distutils package provides support for building and installing
additional modules into a Python installation. The new modules may be either
100%-pure Python, or may be extension modules written in C, or may be
collections of Python packages which include modules coded in both Python and C.

This package is discussed in two separate chapters:

See also

	Distributing Python Modules

	The manual for developers and packagers of Python modules. This describes how
to prepare distutils-based packages so that they may be easily
installed into an existing Python installation.

	Installing Python Modules

	An “administrators” manual which includes information on installing modules into
an existing Python installation. You do not need to be a Python programmer to
read this manual.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

28. Custom Python Interpreters

The modules described in this chapter allow writing interfaces similar to
Python’s interactive interpreter. If you want a Python interpreter that
supports some special feature in addition to the Python language, you should
look at the code module. (The codeop module is lower-level, used
to support compiling a possibly-incomplete chunk of Python code.)

The full list of modules described in this chapter is:

	28.1. code — Interpreter base classes
	28.1.1. Interactive Interpreter Objects

	28.1.2. Interactive Console Objects

	28.2. codeop — Compile Python code

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	28. Custom Python Interpreters

28.1. code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in
Python. Two classes and convenience functions are included which can be used to
build applications which provide an interactive interpreter prompt.

	
class code.InteractiveInterpreter([locals])

	This class deals with parsing and interpreter state (the user’s namespace); it
does not deal with input buffering or prompting or input file naming (the
filename is always passed in explicitly). The optional locals argument
specifies the dictionary in which code will be executed; it defaults to a newly
created dictionary with key '__name__' set to '__console__' and key
'__doc__' set to None.

	
class code.InteractiveConsole([locals[, filename]])

	Closely emulate the behavior of the interactive Python interpreter. This class
builds on InteractiveInterpreter and adds prompting using the familiar
sys.ps1 and sys.ps2, and input buffering.

	
code.interact([banner[, readfunc[, local]]])

	Convenience function to run a read-eval-print loop. This creates a new instance
of InteractiveConsole and sets readfunc to be used as the
raw_input() method, if provided. If local is provided, it is passed to
the InteractiveConsole constructor for use as the default namespace for
the interpreter loop. The interact() method of the instance is then run
with banner passed as the banner to use, if provided. The console object is
discarded after use.

	
code.compile_command(source[, filename[, symbol]])

	This function is useful for programs that want to emulate Python’s interpreter
main loop (a.k.a. the read-eval-print loop). The tricky part is to determine
when the user has entered an incomplete command that can be completed by
entering more text (as opposed to a complete command or a syntax error). This
function almost always makes the same decision as the real interpreter main
loop.

source is the source string; filename is the optional filename from which
source was read, defaulting to '<input>'; and symbol is the optional
grammar start symbol, which should be either 'single' (the default) or
'eval'.

Returns a code object (the same as compile(source, filename, symbol)) if the
command is complete and valid; None if the command is incomplete; raises
SyntaxError if the command is complete and contains a syntax error, or
raises OverflowError or ValueError if the command contains an
invalid literal.

28.1.1. Interactive Interpreter Objects

	
InteractiveInterpreter.runsource(source[, filename[, symbol]])

	Compile and run some source in the interpreter. Arguments are the same as for
compile_command(); the default for filename is '<input>', and for
symbol is 'single'. One several things can happen:

	The input is incorrect; compile_command() raised an exception
(SyntaxError or OverflowError). A syntax traceback will be
printed by calling the showsyntaxerror() method. runsource()
returns False.

	The input is incomplete, and more input is required; compile_command()
returned None. runsource() returns True.

	The input is complete; compile_command() returned a code object. The
code is executed by calling the runcode() (which also handles run-time
exceptions, except for SystemExit). runsource() returns False.

The return value can be used to decide whether to use sys.ps1 or sys.ps2
to prompt the next line.

	
InteractiveInterpreter.runcode(code)

	Execute a code object. When an exception occurs, showtraceback() is called
to display a traceback. All exceptions are caught except SystemExit,
which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in
this code, and may not always be caught. The caller should be prepared to deal
with it.

	
InteractiveInterpreter.showsyntaxerror([filename])

	Display the syntax error that just occurred. This does not display a stack
trace because there isn’t one for syntax errors. If filename is given, it is
stuffed into the exception instead of the default filename provided by Python’s
parser, because it always uses '<string>' when reading from a string. The
output is written by the write() method.

	
InteractiveInterpreter.showtraceback()

	Display the exception that just occurred. We remove the first stack item
because it is within the interpreter object implementation. The output is
written by the write() method.

	
InteractiveInterpreter.write(data)

	Write a string to the standard error stream (sys.stderr). Derived classes
should override this to provide the appropriate output handling as needed.

28.1.2. Interactive Console Objects

The InteractiveConsole class is a subclass of
InteractiveInterpreter, and so offers all the methods of the
interpreter objects as well as the following additions.

	
InteractiveConsole.interact([banner])

	Closely emulate the interactive Python console. The optional banner argument
specify the banner to print before the first interaction; by default it prints a
banner similar to the one printed by the standard Python interpreter, followed
by the class name of the console object in parentheses (so as not to confuse
this with the real interpreter – since it’s so close!).

	
InteractiveConsole.push(line)

	Push a line of source text to the interpreter. The line should not have a
trailing newline; it may have internal newlines. The line is appended to a
buffer and the interpreter’s runsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the
command was executed or invalid, the buffer is reset; otherwise, the command is
incomplete, and the buffer is left as it was after the line was appended. The
return value is True if more input is required, False if the line was
dealt with in some way (this is the same as runsource()).

	
InteractiveConsole.resetbuffer()

	Remove any unhandled source text from the input buffer.

	
InteractiveConsole.raw_input([prompt])

	Write a prompt and read a line. The returned line does not include the trailing
newline. When the user enters the EOF key sequence, EOFError is raised.
The base implementation uses the built-in function raw_input(); a subclass
may replace this with a different implementation.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	28. Custom Python Interpreters

28.2. codeop — Compile Python code

The codeop module provides utilities upon which the Python
read-eval-print loop can be emulated, as is done in the code module. As
a result, you probably don’t want to use the module directly; if you want to
include such a loop in your program you probably want to use the code
module instead.

There are two parts to this job:

	Being able to tell if a line of input completes a Python statement: in
short, telling whether to print ‘>>>‘ or ‘...‘ next.

	Remembering which future statements the user has entered, so subsequent
input can be compiled with these in effect.

The codeop module provides a way of doing each of these things, and a way
of doing them both.

To do just the former:

	
codeop.compile_command(source[, filename[, symbol]])

	Tries to compile source, which should be a string of Python code and return a
code object if source is valid Python code. In that case, the filename
attribute of the code object will be filename, which defaults to
'<input>'. Returns None if source is not valid Python code, but is a
prefix of valid Python code.

If there is a problem with source, an exception will be raised.
SyntaxError is raised if there is invalid Python syntax, and
OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement
('single', the default) or as an expression ('eval'). Any
other value will cause ValueError to be raised.

Note

It is possible (but not likely) that the parser stops parsing with a
successful outcome before reaching the end of the source; in this case,
trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage.
This will be fixed once the API for the parser is better.

	
class codeop.Compile

	Instances of this class have __call__() methods identical in signature to
the built-in function compile(), but with the difference that if the
instance compiles program text containing a __future__ statement, the
instance ‘remembers’ and compiles all subsequent program texts with the
statement in force.

	
class codeop.CommandCompiler

	Instances of this class have __call__() methods identical in signature to
compile_command(); the difference is that if the instance compiles program
text containing a __future__ statement, the instance ‘remembers’ and
compiles all subsequent program texts with the statement in force.

A note on version compatibility: the Compile and
CommandCompiler are new in Python 2.2. If you want to enable the
future-tracking features of 2.2 but also retain compatibility with 2.1 and
earlier versions of Python you can either write

try:
 from codeop import CommandCompiler
 compile_command = CommandCompiler()
 del CommandCompiler
except ImportError:
 from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into
your program, or you can write:

try:
 from codeop import CommandCompiler
except ImportError:
 def CommandCompiler():
 from codeop import compile_command
 return compile_command

and then call CommandCompiler every time you need a fresh compiler object.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

29. Restricted Execution

Warning

In Python 2.3 these modules have been disabled due to various known and not
readily fixable security holes. The modules are still documented here to help
in reading old code that uses the rexec and Bastion modules.

Restricted execution is the basic framework in Python that allows for the
segregation of trusted and untrusted code. The framework is based on the notion
that trusted Python code (a supervisor) can create a “padded cell’ (or
environment) with limited permissions, and run the untrusted code within this
cell. The untrusted code cannot break out of its cell, and can only interact
with sensitive system resources through interfaces defined and managed by the
trusted code. The term “restricted execution” is favored over “safe-Python”
since true safety is hard to define, and is determined by the way the restricted
environment is created. Note that the restricted environments can be nested,
with inner cells creating subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the
interfaces presented to untrusted code usually have the same names as those
presented to trusted code. Therefore no special interfaces need to be learned
to write code designed to run in a restricted environment. And because the
exact nature of the padded cell is determined by the supervisor, different
restrictions can be imposed, depending on the application. For example, it
might be deemed “safe” for untrusted code to read any file within a specified
directory, but never to write a file. In this case, the supervisor may redefine
the built-in open() function so that it raises an exception whenever the
mode parameter is 'w'. It might also perform a chroot()-like
operation on the filename parameter, such that root is always relative to some
safe “sandbox” area of the filesystem. In this case, the untrusted code would
still see an built-in open() function in its environment, with the same
calling interface. The semantics would be identical too, with IOErrors
being raised when the supervisor determined that an unallowable parameter is
being used.

The Python run-time determines whether a particular code block is executing in
restricted execution mode based on the identity of the __builtins__ object
in its global variables: if this is (the dictionary of) the standard
__builtin__ module, the code is deemed to be unrestricted, else it is
deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are
designed to prevent it from escaping from the padded cell. For instance, the
function object attribute func_globals and the class and instance object
attribute __dict__ are unavailable.

Two modules provide the framework for setting up restricted execution
environments:

	29.1. rexec — Restricted execution framework
	29.1.1. RExec Objects

	29.1.2. Defining restricted environments

	29.1.3. An example

	29.2. Bastion — Restricting access to objects

See also

	Grail Home Page [http://grail.sourceforge.net/]

	Grail, an Internet browser written in Python, uses these modules to support
Python applets. More information on the use of Python’s restricted execution
mode in Grail is available on the Web site.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	29. Restricted Execution

29.1. rexec — Restricted execution framework

Deprecated since version 2.6: The rexec module has been removed in Python 3.0.

Changed in version 2.3: Disabled module.

Warning

The documentation has been left in place to help in reading old code that uses
the module.

This module contains the RExec class, which supports r_eval(),
r_execfile(), r_exec(), and r_import() methods, which are
restricted versions of the standard Python functions eval(),
execfile() and the exec and import statements. Code
executed in this restricted environment will only have access to modules and
functions that are deemed safe; you can subclass RExec to add or remove
capabilities as desired.

Warning

While the rexec module is designed to perform as described below, it does
have a few known vulnerabilities which could be exploited by carefully written
code. Thus it should not be relied upon in situations requiring “production
ready” security. In such situations, execution via sub-processes or very
careful “cleansing” of both code and data to be processed may be necessary.
Alternatively, help in patching known rexec vulnerabilities would be
welcomed.

Note

The RExec class can prevent code from performing unsafe operations like
reading or writing disk files, or using TCP/IP sockets. However, it does not
protect against code using extremely large amounts of memory or processor time.

	
class rexec.RExec([hooks[, verbose]])

	Returns an instance of the RExec class.

hooks is an instance of the RHooks class or a subclass of it. If it
is omitted or None, the default RHooks class is instantiated.
Whenever the rexec module searches for a module (even a built-in one) or
reads a module’s code, it doesn’t actually go out to the file system itself.
Rather, it calls methods of an RHooks instance that was passed to or
created by its constructor. (Actually, the RExec object doesn’t make
these calls — they are made by a module loader object that’s part of the
RExec object. This allows another level of flexibility, which can be
useful when changing the mechanics of import within the restricted
environment.)

By providing an alternate RHooks object, we can control the file system
accesses made to import a module, without changing the actual algorithm that
controls the order in which those accesses are made. For instance, we could
substitute an RHooks object that passes all filesystem requests to a
file server elsewhere, via some RPC mechanism such as ILU. Grail’s applet
loader uses this to support importing applets from a URL for a directory.

If verbose is true, additional debugging output may be sent to standard
output.

It is important to be aware that code running in a restricted environment can
still call the sys.exit() function. To disallow restricted code from
exiting the interpreter, always protect calls that cause restricted code to run
with a try/except statement that catches the
SystemExit exception. Removing the sys.exit() function from the
restricted environment is not sufficient — the restricted code could still use
raise SystemExit. Removing SystemExit is not a reasonable option;
some library code makes use of this and would break were it not available.

See also

	Grail Home Page [http://grail.sourceforge.net/]

	Grail is a Web browser written entirely in Python. It uses the rexec
module as a foundation for supporting Python applets, and can be used as an
example usage of this module.

29.1.1. RExec Objects

RExec instances support the following methods:

	
RExec.r_eval(code)

	code must either be a string containing a Python expression, or a compiled
code object, which will be evaluated in the restricted environment’s
__main__ module. The value of the expression or code object will be
returned.

	
RExec.r_exec(code)

	code must either be a string containing one or more lines of Python code, or a
compiled code object, which will be executed in the restricted environment’s
__main__ module.

	
RExec.r_execfile(filename)

	Execute the Python code contained in the file filename in the restricted
environment’s __main__ module.

Methods whose names begin with s_ are similar to the functions beginning
with r_, but the code will be granted access to restricted versions of the
standard I/O streams sys.stdin, sys.stderr, and sys.stdout.

	
RExec.s_eval(code)

	code must be a string containing a Python expression, which will be evaluated
in the restricted environment.

	
RExec.s_exec(code)

	code must be a string containing one or more lines of Python code, which will
be executed in the restricted environment.

	
RExec.s_execfile(code)

	Execute the Python code contained in the file filename in the restricted
environment.

RExec objects must also support various methods which will be
implicitly called by code executing in the restricted environment. Overriding
these methods in a subclass is used to change the policies enforced by a
restricted environment.

	
RExec.r_import(modulename[, globals[, locals[, fromlist]]])

	Import the module modulename, raising an ImportError exception if the
module is considered unsafe.

	
RExec.r_open(filename[, mode[, bufsize]])

	Method called when open() is called in the restricted environment. The
arguments are identical to those of open(), and a file object (or a class
instance compatible with file objects) should be returned. RExec‘s
default behaviour is allow opening any file for reading, but forbidding any
attempt to write a file. See the example below for an implementation of a less
restrictive r_open().

	
RExec.r_reload(module)

	Reload the module object module, re-parsing and re-initializing it.

	
RExec.r_unload(module)

	Unload the module object module (remove it from the restricted environment’s
sys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

	
RExec.s_import(modulename[, globals[, locals[, fromlist]]])

	Import the module modulename, raising an ImportError exception if the
module is considered unsafe.

	
RExec.s_reload(module)

	Reload the module object module, re-parsing and re-initializing it.

	
RExec.s_unload(module)

	Unload the module object module.

29.1.2. Defining restricted environments

The RExec class has the following class attributes, which are used by
the __init__() method. Changing them on an existing instance won’t have
any effect; instead, create a subclass of RExec and assign them new
values in the class definition. Instances of the new class will then use those
new values. All these attributes are tuples of strings.

	
RExec.nok_builtin_names

	Contains the names of built-in functions which will not be available to
programs running in the restricted environment. The value for RExec is
('open', 'reload', '__import__'). (This gives the exceptions, because by far
the majority of built-in functions are harmless. A subclass that wants to
override this variable should probably start with the value from the base class
and concatenate additional forbidden functions — when new dangerous built-in
functions are added to Python, they will also be added to this module.)

	
RExec.ok_builtin_modules

	Contains the names of built-in modules which can be safely imported. The value
for RExec is ('audioop', 'array', 'binascii', 'cmath', 'errno',
'imageop', 'marshal', 'math', 'md5', 'operator', 'parser', 'regex', 'select',
'sha', '_sre', 'strop', 'struct', 'time'). A similar remark about overriding
this variable applies — use the value from the base class as a starting point.

	
RExec.ok_path

	Contains the directories which will be searched when an import is
performed in the restricted environment. The value for RExec is the
same as sys.path (at the time the module is loaded) for unrestricted code.

	
RExec.ok_posix_names

	Contains the names of the functions in the os module which will be
available to programs running in the restricted environment. The value for
RExec is ('error', 'fstat', 'listdir', 'lstat', 'readlink', 'stat',
'times', 'uname', 'getpid', 'getppid', 'getcwd', 'getuid', 'getgid', 'geteuid',
'getegid').

	
RExec.ok_sys_names

	Contains the names of the functions and variables in the sys module which
will be available to programs running in the restricted environment. The value
for RExec is ('ps1', 'ps2', 'copyright', 'version', 'platform',
'exit', 'maxint').

	
RExec.ok_file_types

	Contains the file types from which modules are allowed to be loaded. Each file
type is an integer constant defined in the imp module. The meaningful
values are PY_SOURCE, PY_COMPILED, and C_EXTENSION.
The value for RExec is (C_EXTENSION, PY_SOURCE). Adding
PY_COMPILED in subclasses is not recommended; an attacker could exit
the restricted execution mode by putting a forged byte-compiled file
(.pyc) anywhere in your file system, for example by writing it to
/tmp or uploading it to the /incoming directory of your public
FTP server.

29.1.3. An example

Let us say that we want a slightly more relaxed policy than the standard
RExec class. For example, if we’re willing to allow files in
/tmp to be written, we can subclass the RExec class:

class TmpWriterRExec(rexec.RExec):
 def r_open(self, file, mode='r', buf=-1):
 if mode in ('r', 'rb'):
 pass
 elif mode in ('w', 'wb', 'a', 'ab'):
 # check filename : must begin with /tmp/
 if file[:5]!='/tmp/':
 raise IOError("can't write outside /tmp")
 elif (string.find(file, '/../') >= 0 or
 file[:3] == '../' or file[-3:] == '/..'):
 raise IOError("'..' in filename forbidden")
 else: raise IOError("Illegal open() mode")
 return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename;
for example, code in the restricted environment won’t be able to open a file
called /tmp/foo/../bar. To fix this, the r_open() method would
have to simplify the filename to /tmp/bar, which would require splitting
apart the filename and performing various operations on it. In cases where
security is at stake, it may be preferable to write simple code which is
sometimes overly restrictive, instead of more general code that is also more
complex and may harbor a subtle security hole.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	29. Restricted Execution

29.2. Bastion — Restricting access to objects

Deprecated since version 2.6: The Bastion module has been removed in Python 3.0.

Changed in version 2.3: Disabled module.

Note

The documentation has been left in place to help in reading old code that uses
the module.

According to the dictionary, a bastion is “a fortified area or position”, or
“something that is considered a stronghold.” It’s a suitable name for this
module, which provides a way to forbid access to certain attributes of an
object. It must always be used with the rexec module, in order to allow
restricted-mode programs access to certain safe attributes of an object, while
denying access to other, unsafe attributes.

	
Bastion.Bastion(object[, filter[, name[, class]]])

	Protect the object object, returning a bastion for the object. Any attempt to
access one of the object’s attributes will have to be approved by the filter
function; if the access is denied an AttributeError exception will be
raised.

If present, filter must be a function that accepts a string containing an
attribute name, and returns true if access to that attribute will be permitted;
if filter returns false, the access is denied. The default filter denies
access to any function beginning with an underscore ('_'). The bastion’s
string representation will be <Bastion for name> if a value for name is
provided; otherwise, repr(object) will be used.

class, if present, should be a subclass of BastionClass; see the
code in bastion.py for the details. Overriding the default
BastionClass will rarely be required.

	
class Bastion.BastionClass(getfunc, name)

	Class which actually implements bastion objects. This is the default class used
by Bastion(). The getfunc parameter is a function which returns the
value of an attribute which should be exposed to the restricted execution
environment when called with the name of the attribute as the only parameter.
name is used to construct the repr() of the BastionClass
instance.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

30. Importing Modules

The modules described in this chapter provide new ways to import other Python
modules and hooks for customizing the import process.

The full list of modules described in this chapter is:

	30.1. imp — Access the import internals
	30.1.1. Examples

	30.2. importlib – Convenience wrappers for __import__()

	30.3. imputil — Import utilities
	30.3.1. Examples

	30.4. zipimport — Import modules from Zip archives
	30.4.1. zipimporter Objects

	30.4.2. Examples

	30.5. pkgutil — Package extension utility

	30.6. modulefinder — Find modules used by a script
	30.6.1. Example usage of ModuleFinder

	30.7. runpy — Locating and executing Python modules

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.1. imp — Access the import internals

This module provides an interface to the mechanisms used to implement the
import statement. It defines the following constants and functions:

	
imp.get_magic()

	Return the magic string value used to recognize byte-compiled code files
(.pyc files). (This value may be different for each Python version.)

	
imp.get_suffixes()

	Return a list of 3-element tuples, each describing a particular type of
module. Each triple has the form (suffix, mode, type), where suffix is
a string to be appended to the module name to form the filename to search
for, mode is the mode string to pass to the built-in open() function
to open the file (this can be 'r' for text files or 'rb' for binary
files), and type is the file type, which has one of the values
PY_SOURCE, PY_COMPILED, or C_EXTENSION, described
below.

	
imp.find_module(name[, path])

	Try to find the module name. If path is omitted or None, the list of
directory names given by sys.path is searched, but first a few special
places are searched: the function tries to find a built-in module with the
given name (C_BUILTIN), then a frozen module (PY_FROZEN),
and on some systems some other places are looked in as well (on Windows, it
looks in the registry which may point to a specific file).

Otherwise, path must be a list of directory names; each directory is
searched for files with any of the suffixes returned by get_suffixes()
above. Invalid names in the list are silently ignored (but all list items
must be strings).

If search is successful, the return value is a 3-element tuple (file,
pathname, description):

file is an open file object positioned at the beginning, pathname is the
pathname of the file found, and description is a 3-element tuple as
contained in the list returned by get_suffixes() describing the kind of
module found.

If the module does not live in a file, the returned file is None,
pathname is the empty string, and the description tuple contains empty
strings for its suffix and mode; the module type is indicated as given in
parentheses above. If the search is unsuccessful, ImportError is
raised. Other exceptions indicate problems with the arguments or
environment.

If the module is a package, file is None, pathname is the package
path and the last item in the description tuple is PKG_DIRECTORY.

This function does not handle hierarchical module names (names containing
dots). In order to find P.*M*, that is, submodule M of package P, use
find_module() and load_module() to find and load package P, and
then use find_module() with the path argument set to P.__path__.
When P itself has a dotted name, apply this recipe recursively.

	
imp.load_module(name, file, pathname, description)

	Load a module that was previously found by find_module() (or by an
otherwise conducted search yielding compatible results). This function does
more than importing the module: if the module was already imported, it is
equivalent to a reload()! The name argument indicates the full
module name (including the package name, if this is a submodule of a
package). The file argument is an open file, and pathname is the
corresponding file name; these can be None and '', respectively, when
the module is a package or not being loaded from a file. The description
argument is a tuple, as would be returned by get_suffixes(), describing
what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise,
an exception (usually ImportError) is raised.

Important: the caller is responsible for closing the file argument, if
it was not None, even when an exception is raised. This is best done
using a try ... finally statement.

	
imp.new_module(name)

	Return a new empty module object called name. This object is not inserted
in sys.modules.

	
imp.lock_held()

	Return True if the import lock is currently held, else False. On
platforms without threads, always return False.

On platforms with threads, a thread executing an import holds an internal lock
until the import is complete. This lock blocks other threads from doing an
import until the original import completes, which in turn prevents other threads
from seeing incomplete module objects constructed by the original thread while
in the process of completing its import (and the imports, if any, triggered by
that).

	
imp.acquire_lock()

	Acquire the interpreter’s import lock for the current thread. This lock should
be used by import hooks to ensure thread-safety when importing modules.

Once a thread has acquired the import lock, the same thread may acquire it
again without blocking; the thread must release it once for each time it has
acquired it.

On platforms without threads, this function does nothing.

New in version 2.3.

	
imp.release_lock()

	Release the interpreter’s import lock. On platforms without threads, this
function does nothing.

New in version 2.3.

The following constants with integer values, defined in this module, are used to
indicate the search result of find_module().

	
imp.PY_SOURCE

	The module was found as a source file.

	
imp.PY_COMPILED

	The module was found as a compiled code object file.

	
imp.C_EXTENSION

	The module was found as dynamically loadable shared library.

	
imp.PKG_DIRECTORY

	The module was found as a package directory.

	
imp.C_BUILTIN

	The module was found as a built-in module.

	
imp.PY_FROZEN

	The module was found as a frozen module (see init_frozen()).

The following constant and functions are obsolete; their functionality is
available through find_module() or load_module(). They are kept
around for backward compatibility:

	
imp.SEARCH_ERROR

	Unused.

	
imp.init_builtin(name)

	Initialize the built-in module called name and return its module object along
with storing it in sys.modules. If the module was already initialized, it
will be initialized again. Re-initialization involves the copying of the
built-in module’s __dict__ from the cached module over the module’s entry in
sys.modules. If there is no built-in module called name, None is
returned.

	
imp.init_frozen(name)

	Initialize the frozen module called name and return its module object. If
the module was already initialized, it will be initialized again. If there
is no frozen module called name, None is returned. (Frozen modules are
modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python’s freeze
utility. See Tools/freeze/ for now.)

	
imp.is_builtin(name)

	Return 1 if there is a built-in module called name which can be
initialized again. Return -1 if there is a built-in module called name
which cannot be initialized again (see init_builtin()). Return 0 if
there is no built-in module called name.

	
imp.is_frozen(name)

	Return True if there is a frozen module (see init_frozen()) called
name, or False if there is no such module.

	
imp.load_compiled(name, pathname[, file])

	Load and initialize a module implemented as a byte-compiled code file and return
its module object. If the module was already initialized, it will be
initialized again. The name argument is used to create or access a module
object. The pathname argument points to the byte-compiled code file. The
file argument is the byte-compiled code file, open for reading in binary mode,
from the beginning. It must currently be a real file object, not a user-defined
class emulating a file.

	
imp.load_dynamic(name, pathname[, file])

	Load and initialize a module implemented as a dynamically loadable shared
library and return its module object. If the module was already initialized, it
will be initialized again. Re-initialization involves copying the __dict__
attribute of the cached instance of the module over the value used in the module
cached in sys.modules. The pathname argument must point to the shared
library. The name argument is used to construct the name of the
initialization function: an external C function called initname() in the
shared library is called. The optional file argument is ignored. (Note:
using shared libraries is highly system dependent, and not all systems support
it.)

	
imp.load_source(name, pathname[, file])

	Load and initialize a module implemented as a Python source file and return its
module object. If the module was already initialized, it will be initialized
again. The name argument is used to create or access a module object. The
pathname argument points to the source file. The file argument is the
source file, open for reading as text, from the beginning. It must currently be
a real file object, not a user-defined class emulating a file. Note that if a
properly matching byte-compiled file (with suffix .pyc or .pyo)
exists, it will be used instead of parsing the given source file.

	
class imp.NullImporter(path_string)

	The NullImporter type is a PEP 302 [http://www.python.org/dev/peps/pep-0302] import hook that handles
non-directory path strings by failing to find any modules. Calling this type
with an existing directory or empty string raises ImportError.
Otherwise, a NullImporter instance is returned.

Python adds instances of this type to sys.path_importer_cache for any path
entries that are not directories and are not handled by any other path hooks on
sys.path_hooks. Instances have only one method:

	
find_module(fullname[, path])

	This method always returns None, indicating that the requested module could
not be found.

New in version 2.5.

30.1.1. Examples

The following function emulates what was the standard import statement up to
Python 1.4 (no hierarchical module names). (This implementation wouldn’t work
in that version, since find_module() has been extended and
load_module() has been added in 1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
 # Fast path: see if the module has already been imported.
 try:
 return sys.modules[name]
 except KeyError:
 pass

 # If any of the following calls raises an exception,
 # there's a problem we can't handle -- let the caller handle it.

 fp, pathname, description = imp.find_module(name)

 try:
 return imp.load_module(name, fp, pathname, description)
 finally:
 # Since we may exit via an exception, close fp explicitly.
 if fp:
 fp.close()

A more complete example that implements hierarchical module names and includes a
reload() function can be found in the module knee. The knee
module can be found in Demo/imputil/ in the Python source distribution.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.2. importlib – Convenience wrappers for __import__()

New in version 2.7.

This module is a minor subset of what is available in the more full-featured
package of the same name from Python 3.1 that provides a complete
implementation of import. What is here has been provided to
help ease in transitioning from 2.7 to 3.1.

	
importlib.import_module(name, package=None)

	Import a module. The name argument specifies what module to
import in absolute or relative terms
(e.g. either pkg.mod or ..mod). If the name is
specified in relative terms, then the package argument must be
specified to the package which is to act as the anchor for resolving the
package name (e.g. import_module('..mod', 'pkg.subpkg') will import
pkg.mod). The specified module will be inserted into
sys.modules and returned.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.3. imputil — Import utilities

Deprecated since version 2.6: The imputil module has been removed in Python 3.0.

This module provides a very handy and useful mechanism for custom
import hooks. Compared to the older ihooks module,
imputil takes a dramatically simpler and more straight-forward
approach to custom import functions.

	
class imputil.ImportManager([fs_imp])

	Manage the import process.

	
install([namespace])

	Install this ImportManager into the specified namespace.

	
uninstall()

	Restore the previous import mechanism.

	
add_suffix(suffix, importFunc)

	Undocumented.

	
class imputil.Importer

	Base class for replacing standard import functions.

	
import_top(name)

	Import a top-level module.

	
get_code(parent, modname, fqname)

	Find and retrieve the code for the given module.

parent specifies a parent module to define a context for importing.
It may be None, indicating no particular context for the search.

modname specifies a single module (not dotted) within the parent.

fqname specifies the fully-qualified module name. This is a
(potentially) dotted name from the “root” of the module namespace
down to the modname.

If there is no parent, then modname==fqname.

This method should return None, or a 3-tuple.

	If the module was not found, then None should be returned.

	The first item of the 2- or 3-tuple should be the integer 0 or 1,
specifying whether the module that was found is a package or not.

	The second item is the code object for the module (it will be
executed within the new module’s namespace). This item can also
be a fully-loaded module object (e.g. loaded from a shared lib).

	The third item is a dictionary of name/value pairs that will be
inserted into new module before the code object is executed. This
is provided in case the module’s code expects certain values (such
as where the module was found). When the second item is a module
object, then these names/values will be inserted after the module
has been loaded/initialized.

	
class imputil.BuiltinImporter

	Emulate the import mechanism for built-in and frozen modules. This is a
sub-class of the Importer class.

	
get_code(parent, modname, fqname)

	Undocumented.

	
imputil.py_suffix_importer(filename, finfo, fqname)

	Undocumented.

	
class imputil.DynLoadSuffixImporter([desc])

	Undocumented.

	
import_file(filename, finfo, fqname)

	Undocumented.

30.3.1. Examples

This is a re-implementation of hierarchical module import.

This code is intended to be read, not executed. However, it does work
– all you need to do to enable it is “import knee”.

(The name is a pun on the clunkier predecessor of this module, “ni”.)

import sys, imp, __builtin__

Replacement for __import__()
def import_hook(name, globals=None, locals=None, fromlist=None):
 parent = determine_parent(globals)
 q, tail = find_head_package(parent, name)
 m = load_tail(q, tail)
 if not fromlist:
 return q
 if hasattr(m, "__path__"):
 ensure_fromlist(m, fromlist)
 return m

def determine_parent(globals):
 if not globals or not globals.has_key("__name__"):
 return None
 pname = globals['__name__']
 if globals.has_key("__path__"):
 parent = sys.modules[pname]
 assert globals is parent.__dict__
 return parent
 if '.' in pname:
 i = pname.rfind('.')
 pname = pname[:i]
 parent = sys.modules[pname]
 assert parent.__name__ == pname
 return parent
 return None

def find_head_package(parent, name):
 if '.' in name:
 i = name.find('.')
 head = name[:i]
 tail = name[i+1:]
 else:
 head = name
 tail = ""
 if parent:
 qname = "%s.%s" % (parent.__name__, head)
 else:
 qname = head
 q = import_module(head, qname, parent)
 if q: return q, tail
 if parent:
 qname = head
 parent = None
 q = import_module(head, qname, parent)
 if q: return q, tail
 raise ImportError("No module named " + qname)

def load_tail(q, tail):
 m = q
 while tail:
 i = tail.find('.')
 if i < 0: i = len(tail)
 head, tail = tail[:i], tail[i+1:]
 mname = "%s.%s" % (m.__name__, head)
 m = import_module(head, mname, m)
 if not m:
 raise ImportError("No module named " + mname)
 return m

def ensure_fromlist(m, fromlist, recursive=0):
 for sub in fromlist:
 if sub == "*":
 if not recursive:
 try:
 all = m.__all__
 except AttributeError:
 pass
 else:
 ensure_fromlist(m, all, 1)
 continue
 if sub != "*" and not hasattr(m, sub):
 subname = "%s.%s" % (m.__name__, sub)
 submod = import_module(sub, subname, m)
 if not submod:
 raise ImportError("No module named " + subname)

def import_module(partname, fqname, parent):
 try:
 return sys.modules[fqname]
 except KeyError:
 pass
 try:
 fp, pathname, stuff = imp.find_module(partname,
 parent and parent.__path__)
 except ImportError:
 return None
 try:
 m = imp.load_module(fqname, fp, pathname, stuff)
 finally:
 if fp: fp.close()
 if parent:
 setattr(parent, partname, m)
 return m

Replacement for reload()
def reload_hook(module):
 name = module.__name__
 if '.' not in name:
 return import_module(name, name, None)
 i = name.rfind('.')
 pname = name[:i]
 parent = sys.modules[pname]
 return import_module(name[i+1:], name, parent)

Save the original hooks
original_import = __builtin__.__import__
original_reload = __builtin__.reload

Now install our hooks
__builtin__.__import__ = import_hook
__builtin__.reload = reload_hook

Also see the importers module (which can be found
in Demo/imputil/ in the Python source distribution) for additional
examples.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.4. zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modules (*.py,
*.py[co]) and packages from ZIP-format archives. It is usually not
needed to use the zipimport module explicitly; it is automatically used
by the built-in import mechanism for sys.path items that are paths
to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module
also allows an item of sys.path to be a string naming a ZIP file archive.
The ZIP archive can contain a subdirectory structure to support package imports,
and a path within the archive can be specified to only import from a
subdirectory. For example, the path /tmp/example.zip/lib/ would only
import from the lib/ subdirectory within the archive.

Any files may be present in the ZIP archive, but only files .py and
.py[co] are available for import. ZIP import of dynamic modules
(.pyd, .so) is disallowed. Note that if an archive only contains
.py files, Python will not attempt to modify the archive by adding the
corresponding .pyc or .pyo file, meaning that if a ZIP archive
doesn’t contain .pyc files, importing may be rather slow.

Using the built-in reload() function will fail if called on a module
loaded from a ZIP archive; it is unlikely that reload() would be needed,
since this would imply that the ZIP has been altered during runtime.

ZIP archives with an archive comment are currently not supported.

See also

	PKZIP Application Note [http://www.pkware.com/documents/casestudies/APPNOTE.TXT]

	Documentation on the ZIP file format by Phil Katz, the creator of the format and
algorithms used.

	PEP 273 [http://www.python.org/dev/peps/pep-0273] - Import Modules from Zip Archives

	Written by James C. Ahlstrom, who also provided an implementation. Python 2.3
follows the specification in PEP 273, but uses an implementation written by Just
van Rossum that uses the import hooks described in PEP 302.

	PEP 302 [http://www.python.org/dev/peps/pep-0302] - New Import Hooks

	The PEP to add the import hooks that help this module work.

This module defines an exception:

	
exception zipimport.ZipImportError

	Exception raised by zipimporter objects. It’s a subclass of ImportError,
so it can be caught as ImportError, too.

30.4.1. zipimporter Objects

zipimporter is the class for importing ZIP files.

	
class zipimport.zipimporter(archivepath)

	Create a new zipimporter instance. archivepath must be a path to a ZIP
file, or to a specific path within a ZIP file. For example, an archivepath
of foo/bar.zip/lib will look for modules in the lib directory
inside the ZIP file foo/bar.zip (provided that it exists).

ZipImportError is raised if archivepath doesn’t point to a valid ZIP
archive.

	
find_module(fullname[, path])

	Search for a module specified by fullname. fullname must be the fully
qualified (dotted) module name. It returns the zipimporter instance itself
if the module was found, or None if it wasn’t. The optional
path argument is ignored—it’s there for compatibility with the
importer protocol.

	
get_code(fullname)

	Return the code object for the specified module. Raise
ZipImportError if the module couldn’t be found.

	
get_data(pathname)

	Return the data associated with pathname. Raise IOError if the
file wasn’t found.

	
get_filename(fullname)

	Return the value __file__ would be set to if the specified module
was imported. Raise ZipImportError if the module couldn’t be
found.

New in version 2.7.

	
get_source(fullname)

	Return the source code for the specified module. Raise
ZipImportError if the module couldn’t be found, return
None if the archive does contain the module, but has no source
for it.

	
is_package(fullname)

	Return True if the module specified by fullname is a package. Raise
ZipImportError if the module couldn’t be found.

	
load_module(fullname)

	Load the module specified by fullname. fullname must be the fully
qualified (dotted) module name. It returns the imported module, or raises
ZipImportError if it wasn’t found.

	
archive

	The file name of the importer’s associated ZIP file, without a possible
subpath.

	
prefix

	The subpath within the ZIP file where modules are searched. This is the
empty string for zipimporter objects which point to the root of the ZIP
file.

The archive and prefix attributes, when combined with a
slash, equal the original archivepath argument given to the
zipimporter constructor.

30.4.2. Examples

Here is an example that imports a module from a ZIP archive - note that the
zipimport module is not explicitly used.

$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
 Length Date Time Name
 -------- ---- ---- ----
 8467 11-26-02 22:30 jwzthreading.py
 -------- -------
 8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip') # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
'/tmp/example.zip/jwzthreading.py'

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.5. pkgutil — Package extension utility

This module provides utilities for the import system, in particular package
support.

New in version 2.3.

	
pkgutil.extend_path(path, name)

	Extend the search path for the modules which comprise a package. Intended
use is to place the following code in a package’s __init__.py:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

This will add to the package’s __path__ all subdirectories of directories
on sys.path named after the package. This is useful if one wants to
distribute different parts of a single logical package as multiple
directories.

It also looks for *.pkg files beginning where * matches the
name argument. This feature is similar to *.pth files (see the
site module for more information), except that it doesn’t special-case
lines starting with import. A *.pkg file is trusted at face
value: apart from checking for duplicates, all entries found in a
*.pkg file are added to the path, regardless of whether they exist
on the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is
returned unchanged. The input path is not modified; an extended copy is
returned. Items are only appended to the copy at the end.

It is assumed that sys.path is a sequence. Items of sys.path
that are not (Unicode or 8-bit) strings referring to existing directories are
ignored. Unicode items on sys.path that cause errors when used as
filenames may cause this function to raise an exception (in line with
os.path.isdir() behavior).

	
class pkgutil.ImpImporter(dirname=None)

	PEP 302 [http://www.python.org/dev/peps/pep-0302] Importer that wraps Python’s “classic” import algorithm.

If dirname is a string, a PEP 302 [http://www.python.org/dev/peps/pep-0302] importer is created that searches that
directory. If dirname is None, a PEP 302 [http://www.python.org/dev/peps/pep-0302] importer is created that
searches the current sys.path, plus any modules that are frozen or
built-in.

Note that ImpImporter does not currently support being used by
placement on sys.meta_path.

	
class pkgutil.ImpLoader(fullname, file, filename, etc)

	PEP 302 [http://www.python.org/dev/peps/pep-0302] Loader that wraps Python’s “classic” import algorithm.

	
pkgutil.find_loader(fullname)

	Find a PEP 302 [http://www.python.org/dev/peps/pep-0302] “loader” object for fullname.

If fullname contains dots, path must be the containing package’s
__path__. Returns None if the module cannot be found or imported.
This function uses iter_importers(), and is thus subject to the same
limitations regarding platform-specific special import locations such as the
Windows registry.

	
pkgutil.get_importer(path_item)

	Retrieve a PEP 302 [http://www.python.org/dev/peps/pep-0302] importer for the given path_item.

The returned importer is cached in sys.path_importer_cache if it was
newly created by a path hook.

If there is no importer, a wrapper around the basic import machinery is
returned. This wrapper is never inserted into the importer cache (None
is inserted instead).

The cache (or part of it) can be cleared manually if a rescan of
sys.path_hooks is necessary.

	
pkgutil.get_loader(module_or_name)

	Get a PEP 302 [http://www.python.org/dev/peps/pep-0302] “loader” object for module_or_name.

If the module or package is accessible via the normal import mechanism, a
wrapper around the relevant part of that machinery is returned. Returns
None if the module cannot be found or imported. If the named module is
not already imported, its containing package (if any) is imported, in order
to establish the package __path__.

This function uses iter_importers(), and is thus subject to the same
limitations regarding platform-specific special import locations such as the
Windows registry.

	
pkgutil.iter_importers(fullname='')

	Yield PEP 302 [http://www.python.org/dev/peps/pep-0302] importers for the given module name.

If fullname contains a ‘.’, the importers will be for the package containing
fullname, otherwise they will be importers for sys.meta_path,
sys.path, and Python’s “classic” import machinery, in that order. If
the named module is in a package, that package is imported as a side effect
of invoking this function.

Non-PEP 302 [http://www.python.org/dev/peps/pep-0302] mechanisms (e.g. the Windows registry) used by the standard
import machinery to find files in alternative locations are partially
supported, but are searched after sys.path. Normally, these
locations are searched before sys.path, preventing sys.path
entries from shadowing them.

For this to cause a visible difference in behaviour, there must be a module
or package name that is accessible via both sys.path and one of the
non-PEP 302 [http://www.python.org/dev/peps/pep-0302] file system mechanisms. In this case, the emulation will find
the former version, while the builtin import mechanism will find the latter.

Items of the following types can be affected by this discrepancy:
imp.C_EXTENSION, imp.PY_SOURCE, imp.PY_COMPILED,
imp.PKG_DIRECTORY.

	
pkgutil.iter_modules(path=None, prefix='')

	Yields (module_loader, name, ispkg) for all submodules on path, or, if
path is None, all top-level modules on sys.path.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

	
pkgutil.walk_packages(path=None, prefix='', onerror=None)

	Yields (module_loader, name, ispkg) for all modules recursively on
path, or, if path is None, all accessible modules.

path should be either None or a list of paths to look for modules in.

prefix is a string to output on the front of every module name on output.

Note that this function must import all packages (not all modules!) on
the given path, in order to access the __path__ attribute to find
submodules.

onerror is a function which gets called with one argument (the name of the
package which was being imported) if any exception occurs while trying to
import a package. If no onerror function is supplied, ImportErrors
are caught and ignored, while all other exceptions are propagated,
terminating the search.

Examples:

list all modules python can access
walk_packages()

list all submodules of ctypes
walk_packages(ctypes.__path__, ctypes.__name__ + '.')

	
pkgutil.get_data(package, resource)

	Get a resource from a package.

This is a wrapper for the PEP 302 [http://www.python.org/dev/peps/pep-0302] loader get_data() API. The
package argument should be the name of a package, in standard module format
(foo.bar). The resource argument should be in the form of a relative
filename, using / as the path separator. The parent directory name
.. is not allowed, and nor is a rooted name (starting with a /).

The function returns a binary string that is the contents of the specified
resource.

For packages located in the filesystem, which have already been imported,
this is the rough equivalent of:

d = os.path.dirname(sys.modules[package].__file__)
data = open(os.path.join(d, resource), 'rb').read()

If the package cannot be located or loaded, or it uses a PEP 302 [http://www.python.org/dev/peps/pep-0302] loader
which does not support get_data(), then None is returned.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.6. modulefinder — Find modules used by a script

New in version 2.3.

This module provides a ModuleFinder class that can be used to determine
the set of modules imported by a script. modulefinder.py can also be run as
a script, giving the filename of a Python script as its argument, after which a
report of the imported modules will be printed.

	
modulefinder.AddPackagePath(pkg_name, path)

	Record that the package named pkg_name can be found in the specified path.

	
modulefinder.ReplacePackage(oldname, newname)

	Allows specifying that the module named oldname is in fact the package named
newname. The most common usage would be to handle how the _xmlplus
package replaces the xml package.

	
class modulefinder.ModuleFinder([path=None, debug=0, excludes=[], replace_paths=[]])

	This class provides run_script() and report() methods to determine
the set of modules imported by a script. path can be a list of directories to
search for modules; if not specified, sys.path is used. debug sets the
debugging level; higher values make the class print debugging messages about
what it’s doing. excludes is a list of module names to exclude from the
analysis. replace_paths is a list of (oldpath, newpath) tuples that will
be replaced in module paths.

	
report()

	Print a report to standard output that lists the modules imported by the
script and their paths, as well as modules that are missing or seem to be
missing.

	
run_script(pathname)

	Analyze the contents of the pathname file, which must contain Python
code.

	
modules

	A dictionary mapping module names to modules. See
Example usage of ModuleFinder

30.6.1. Example usage of ModuleFinder

The script that is going to get analyzed later on (bacon.py):

import re, itertools

try:
 import baconhameggs
except ImportError:
 pass

try:
 import guido.python.ham
except ImportError:
 pass

The script that will output the report of bacon.py:

from modulefinder import ModuleFinder

finder = ModuleFinder()
finder.run_script('bacon.py')

print 'Loaded modules:'
for name, mod in finder.modules.iteritems():
 print '%s: ' % name,
 print ','.join(mod.globalnames.keys()[:3])

print '-'*50
print 'Modules not imported:'
print '\n'.join(finder.badmodules.iterkeys())

Sample output (may vary depending on the architecture):

Loaded modules:
_types:
copy_reg: _inverted_registry,_slotnames,__all__
sre_compile: isstring,_sre,_optimize_unicode
_sre:
sre_constants: REPEAT_ONE,makedict,AT_END_LINE
sys:
re: __module__,finditer,_expand
itertools:
__main__: re,itertools,baconhameggs
sre_parse: __getslice__,_PATTERNENDERS,SRE_FLAG_UNICODE
array:
types: __module__,IntType,TypeType

Modules not imported:
guido.python.ham
baconhameggs

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	30. Importing Modules

30.7. runpy — Locating and executing Python modules

New in version 2.5.

The runpy module is used to locate and run Python modules without
importing them first. Its main use is to implement the -m command
line switch that allows scripts to be located using the Python module
namespace rather than the filesystem.

The runpy module provides two functions:

	
runpy.run_module(mod_name, init_globals=None, run_name=None, alter_sys=False)

	Execute the code of the specified module and return the resulting module
globals dictionary. The module’s code is first located using the standard
import mechanism (refer to PEP 302 [http://www.python.org/dev/peps/pep-0302] for details) and then executed in a
fresh module namespace.

If the supplied module name refers to a package rather than a normal
module, then that package is imported and the __main__ submodule within
that package is then executed and the resulting module globals dictionary
returned.

The optional dictionary argument init_globals may be used to pre-populate
the module’s globals dictionary before the code is executed. The supplied
dictionary will not be modified. If any of the special global variables
below are defined in the supplied dictionary, those definitions are
overridden by run_module().

The special global variables __name__, __file__, __loader__
and __package__ are set in the globals dictionary before the module
code is executed (Note that this is a minimal set of variables - other
variables may be set implicitly as an interpreter implementation detail).

__name__ is set to run_name if this optional argument is not
None, to mod_name + '.__main__' if the named module is a
package and to the mod_name argument otherwise.

__file__ is set to the name provided by the module loader. If the
loader does not make filename information available, this variable is set
to None.

__loader__ is set to the PEP 302 [http://www.python.org/dev/peps/pep-0302] module loader used to retrieve the
code for the module (This loader may be a wrapper around the standard
import mechanism).

__package__ is set to mod_name if the named module is a package and
to mod_name.rpartition('.')[0] otherwise.

If the argument alter_sys is supplied and evaluates to True,
then sys.argv[0] is updated with the value of __file__ and
sys.modules[__name__] is updated with a temporary module object for the
module being executed. Both sys.argv[0] and sys.modules[__name__]
are restored to their original values before the function returns.

Note that this manipulation of sys is not thread-safe. Other threads
may see the partially initialised module, as well as the altered list of
arguments. It is recommended that the sys module be left alone when
invoking this function from threaded code.

Changed in version 2.7: Added ability to execute packages by looking for a __main__
submodule

	
runpy.run_path(file_path, init_globals=None, run_name=None)

	Execute the code at the named filesystem location and return the resulting
module globals dictionary. As with a script name supplied to the CPython
command line, the supplied path may refer to a Python source file, a
compiled bytecode file or a valid sys.path entry containing a __main__
module (e.g. a zipfile containing a top-level __main__.py file).

For a simple script, the specified code is simply executed in a fresh
module namespace. For a valid sys.path entry (typically a zipfile or
directory), the entry is first added to the beginning of sys.path. The
function then looks for and executes a __main__ module using the
updated path. Note that there is no special protection against invoking
an existing __main__ entry located elsewhere on sys.path if
there is no such module at the specified location.

The optional dictionary argument init_globals may be used to pre-populate
the module’s globals dictionary before the code is executed. The supplied
dictionary will not be modified. If any of the special global variables
below are defined in the supplied dictionary, those definitions are
overridden by run_path().

The special global variables __name__, __file__, __loader__
and __package__ are set in the globals dictionary before the module
code is executed (Note that this is a minimal set of variables - other
variables may be set implicitly as an interpreter implementation detail).

__name__ is set to run_name if this optional argument is not
None and to '<run_path>' otherwise.

__file__ is set to the name provided by the module loader. If the
loader does not make filename information available, this variable is set
to None. For a simple script, this will be set to file_path.

__loader__ is set to the PEP 302 [http://www.python.org/dev/peps/pep-0302] module loader used to retrieve the
code for the module (This loader may be a wrapper around the standard
import mechanism). For a simple script, this will be set to None.

__package__ is set to __name__.rpartition('.')[0].

A number of alterations are also made to the sys module. Firstly,
sys.path may be altered as described above. sys.argv[0] is updated
with the value of file_path and sys.modules[__name__] is updated
with a temporary module object for the module being executed. All
modifications to items in sys are reverted before the function
returns.

Note that, unlike run_module(), the alterations made to sys
are not optional in this function as these adjustments are essential to
allowing the execution of sys.path entries. As the thread-safety
limitations still apply, use of this function in threaded code should be
either serialised with the import lock or delegated to a separate process.

New in version 2.7.

See also

	PEP 338 [http://www.python.org/dev/peps/pep-0338] - Executing modules as scripts

	PEP written and implemented by Nick Coghlan.

	PEP 366 [http://www.python.org/dev/peps/pep-0366] - Main module explicit relative imports

	PEP written and implemented by Nick Coghlan.

Command line and environment - CPython command line details

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

31. Python Language Services

Python provides a number of modules to assist in working with the Python
language. These modules support tokenizing, parsing, syntax analysis, bytecode
disassembly, and various other facilities.

These modules include:

	31.1. parser — Access Python parse trees
	31.1.1. Creating ST Objects

	31.1.2. Converting ST Objects

	31.1.3. Queries on ST Objects

	31.1.4. Exceptions and Error Handling

	31.1.5. ST Objects

	31.1.6. Example: Emulation of compile()

	31.2. Abstract Syntax Trees
	31.2.1. Node classes

	31.2.2. Abstract Grammar

	31.2.3. ast Helpers

	31.3. symtable — Access to the compiler’s symbol tables
	31.3.1. Generating Symbol Tables

	31.3.2. Examining Symbol Tables

	31.4. symbol — Constants used with Python parse trees

	31.5. token — Constants used with Python parse trees

	31.6. keyword — Testing for Python keywords

	31.7. tokenize — Tokenizer for Python source

	31.8. tabnanny — Detection of ambiguous indentation

	31.9. pyclbr — Python class browser support
	31.9.1. Class Objects

	31.9.2. Function Objects

	31.10. py_compile — Compile Python source files

	31.11. compileall — Byte-compile Python libraries
	31.11.1. Command-line use

	31.11.2. Public functions

	31.12. dis — Disassembler for Python bytecode
	31.12.1. Python Bytecode Instructions

	31.13. pickletools — Tools for pickle developers

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.1. parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and
byte-code compiler. The primary purpose for this interface is to allow Python
code to edit the parse tree of a Python expression and create executable code
from this. This is better than trying to parse and modify an arbitrary Python
code fragment as a string because parsing is performed in a manner identical to
the code forming the application. It is also faster.

Note

From Python 2.5 onward, it’s much more convenient to cut in at the Abstract
Syntax Tree (AST) generation and compilation stage, using the ast
module.

The parser module exports the names documented here also with “st”
replaced by “ast”; this is a legacy from the time when there was no other
AST and has nothing to do with the AST found in Python 2.5. This is also the
reason for the functions’ keyword arguments being called ast, not st.
The “ast” functions will be removed in Python 3.0.

There are a few things to note about this module which are important to making
use of the data structures created. This is not a tutorial on editing the parse
trees for Python code, but some examples of using the parser module are
presented.

Most importantly, a good understanding of the Python grammar processed by the
internal parser is required. For full information on the language syntax, refer
to The Python Language Reference. The parser
itself is created from a grammar specification defined in the file
Grammar/Grammar in the standard Python distribution. The parse trees
stored in the ST objects created by this module are the actual output from the
internal parser when created by the expr() or suite() functions,
described below. The ST objects created by sequence2st() faithfully
simulate those structures. Be aware that the values of the sequences which are
considered “correct” will vary from one version of Python to another as the
formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees
to be created in the target version, with the only restriction being that
migrating to an older version of the interpreter will not support more recent
language constructs. The parse trees are not typically compatible from one
version to another, whereas source code has always been forward-compatible.

Each element of the sequences returned by st2list() or st2tuple()
has a simple form. Sequences representing non-terminal elements in the grammar
always have a length greater than one. The first element is an integer which
identifies a production in the grammar. These integers are given symbolic names
in the C header file Include/graminit.h and the Python module
symbol. Each additional element of the sequence represents a component
of the production as recognized in the input string: these are always sequences
which have the same form as the parent. An important aspect of this structure
which should be noted is that keywords used to identify the parent node type,
such as the keyword if in an if_stmt, are included in the
node tree without any special treatment. For example, the if keyword
is represented by the tuple (1, 'if'), where 1 is the numeric value
associated with all NAME tokens, including variable and function names
defined by the user. In an alternate form returned when line number information
is requested, the same token might be represented as (1, 'if', 12), where
the 12 represents the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child
elements and the addition of the source text which was identified. The example
of the if keyword above is representative. The various types of
terminal symbols are defined in the C header file Include/token.h and
the Python module token.

The ST objects are not required to support the functionality of this module,
but are provided for three purposes: to allow an application to amortize the
cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple
representation, and to ease the creation of additional modules in C which
manipulate parse trees. A simple “wrapper” class may be created in Python to
hide the use of ST objects.

The parser module defines functions for a few distinct purposes. The
most important purposes are to create ST objects and to convert ST objects to
other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an
ST object.

See also

	Module symbol

	Useful constants representing internal nodes of the parse tree.

	Module token

	Useful constants representing leaf nodes of the parse tree and functions for
testing node values.

31.1.1. Creating ST Objects

ST objects may be created from source code or from a parse tree. When creating
an ST object from source, different functions are used to create the 'eval'
and 'exec' forms.

	
parser.expr(source)

	The expr() function parses the parameter source as if it were an input
to compile(source, 'file.py', 'eval'). If the parse succeeds, an ST object
is created to hold the internal parse tree representation, otherwise an
appropriate exception is raised.

	
parser.suite(source)

	The suite() function parses the parameter source as if it were an input
to compile(source, 'file.py', 'exec'). If the parse succeeds, an ST object
is created to hold the internal parse tree representation, otherwise an
appropriate exception is raised.

	
parser.sequence2st(sequence)

	This function accepts a parse tree represented as a sequence and builds an
internal representation if possible. If it can validate that the tree conforms
to the Python grammar and all nodes are valid node types in the host version of
Python, an ST object is created from the internal representation and returned
to the called. If there is a problem creating the internal representation, or
if the tree cannot be validated, a ParserError exception is raised. An
ST object created this way should not be assumed to compile correctly; normal
exceptions raised by compilation may still be initiated when the ST object is
passed to compilest(). This may indicate problems not related to syntax
(such as a MemoryError exception), but may also be due to constructs such
as the result of parsing del f(0), which escapes the Python parser but is
checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element
lists of the form (1, 'name') or as three-element lists of the form (1,
'name', 56). If the third element is present, it is assumed to be a valid
line number. The line number may be specified for any subset of the terminal
symbols in the input tree.

	
parser.tuple2st(sequence)

	This is the same function as sequence2st(). This entry point is
maintained for backward compatibility.

31.1.2. Converting ST Objects

ST objects, regardless of the input used to create them, may be converted to
parse trees represented as list- or tuple- trees, or may be compiled into
executable code objects. Parse trees may be extracted with or without line
numbering information.

	
parser.st2list(ast[, line_info])

	This function accepts an ST object from the caller in ast and returns a
Python list representing the equivalent parse tree. The resulting list
representation can be used for inspection or the creation of a new parse tree in
list form. This function does not fail so long as memory is available to build
the list representation. If the parse tree will only be used for inspection,
st2tuple() should be used instead to reduce memory consumption and
fragmentation. When the list representation is required, this function is
significantly faster than retrieving a tuple representation and converting that
to nested lists.

If line_info is true, line number information will be included for all
terminal tokens as a third element of the list representing the token. Note
that the line number provided specifies the line on which the token ends.
This information is omitted if the flag is false or omitted.

	
parser.st2tuple(ast[, line_info])

	This function accepts an ST object from the caller in ast and returns a
Python tuple representing the equivalent parse tree. Other than returning a
tuple instead of a list, this function is identical to st2list().

If line_info is true, line number information will be included for all
terminal tokens as a third element of the list representing the token. This
information is omitted if the flag is false or omitted.

	
parser.compilest(ast[, filename='<syntax-tree>'])

	The Python byte compiler can be invoked on an ST object to produce code objects
which can be used as part of an exec statement or a call to the
built-in eval() function. This function provides the interface to the
compiler, passing the internal parse tree from ast to the parser, using the
source file name specified by the filename parameter. The default value
supplied for filename indicates that the source was an ST object.

Compiling an ST object may result in exceptions related to compilation; an
example would be a SyntaxError caused by the parse tree for del f(0):
this statement is considered legal within the formal grammar for Python but is
not a legal language construct. The SyntaxError raised for this
condition is actually generated by the Python byte-compiler normally, which is
why it can be raised at this point by the parser module. Most causes of
compilation failure can be diagnosed programmatically by inspection of the parse
tree.

31.1.3. Queries on ST Objects

Two functions are provided which allow an application to determine if an ST was
created as an expression or a suite. Neither of these functions can be used to
determine if an ST was created from source code via expr() or
suite() or from a parse tree via sequence2st().

	
parser.isexpr(ast)

	When ast represents an 'eval' form, this function returns true, otherwise
it returns false. This is useful, since code objects normally cannot be queried
for this information using existing built-in functions. Note that the code
objects created by compilest() cannot be queried like this either, and
are identical to those created by the built-in compile() function.

	
parser.issuite(ast)

	This function mirrors isexpr() in that it reports whether an ST object
represents an 'exec' form, commonly known as a “suite.” It is not safe to
assume that this function is equivalent to not isexpr(ast), as additional
syntactic fragments may be supported in the future.

31.1.4. Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in
exceptions from other portions of the Python runtime environment. See each
function for information about the exceptions it can raise.

	
exception parser.ParserError

	Exception raised when a failure occurs within the parser module. This is
generally produced for validation failures rather than the built-in
SyntaxError raised during normal parsing. The exception argument is
either a string describing the reason of the failure or a tuple containing a
sequence causing the failure from a parse tree passed to sequence2st()
and an explanatory string. Calls to sequence2st() need to be able to
handle either type of exception, while calls to other functions in the module
will only need to be aware of the simple string values.

Note that the functions compilest(), expr(), and suite() may
raise exceptions which are normally raised by the parsing and compilation
process. These include the built in exceptions MemoryError,
OverflowError, SyntaxError, and SystemError. In these
cases, these exceptions carry all the meaning normally associated with them.
Refer to the descriptions of each function for detailed information.

31.1.5. ST Objects

Ordered and equality comparisons are supported between ST objects. Pickling of
ST objects (using the pickle module) is also supported.

	
parser.STType

	The type of the objects returned by expr(), suite() and
sequence2st().

ST objects have the following methods:

	
ST.compile([filename])

	Same as compilest(st, filename).

	
ST.isexpr()

	Same as isexpr(st).

	
ST.issuite()

	Same as issuite(st).

	
ST.tolist([line_info])

	Same as st2list(st, line_info).

	
ST.totuple([line_info])

	Same as st2tuple(st, line_info).

31.1.6. Example: Emulation of compile()

While many useful operations may take place between parsing and bytecode
generation, the simplest operation is to do nothing. For this purpose, using
the parser module to produce an intermediate data structure is equivalent
to the code

>>> code = compile('a + 5', 'file.py', 'eval')
>>> a = 5
>>> eval(code)
10

The equivalent operation using the parser module is somewhat longer, and
allows the intermediate internal parse tree to be retained as an ST object:

>>> import parser
>>> st = parser.expr('a + 5')
>>> code = st.compile('file.py')
>>> a = 5
>>> eval(code)
10

An application which needs both ST and code objects can package this code into
readily available functions:

import parser

def load_suite(source_string):
 st = parser.suite(source_string)
 return st, st.compile()

def load_expression(source_string):
 st = parser.expr(source_string)
 return st, st.compile()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.2. Abstract Syntax Trees

New in version 2.5: The low-level _ast module containing only the node classes.

New in version 2.6: The high-level ast module containing all helpers.

The ast module helps Python applications to process trees of the Python
abstract syntax grammar. The abstract syntax itself might change with each
Python release; this module helps to find out programmatically what the current
grammar looks like.

An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as
a flag to the compile() built-in function, or using the parse()
helper provided in this module. The result will be a tree of objects whose
classes all inherit from ast.AST. An abstract syntax tree can be
compiled into a Python code object using the built-in compile() function.

See also

Latest version of the ast module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/ast.py?view=markup]

31.2.1. Node classes

	
class ast.AST

	This is the base of all AST node classes. The actual node classes are
derived from the Parser/Python.asdl file, which is reproduced
below. They are defined in the _ast C
module and re-exported in ast.

There is one class defined for each left-hand side symbol in the abstract
grammar (for example, ast.stmt or ast.expr). In addition,
there is one class defined for each constructor on the right-hand side; these
classes inherit from the classes for the left-hand side trees. For example,
ast.BinOp inherits from ast.expr. For production rules
with alternatives (aka “sums”), the left-hand side class is abstract: only
instances of specific constructor nodes are ever created.

	
_fields

	Each concrete class has an attribute _fields which gives the names
of all child nodes.

Each instance of a concrete class has one attribute for each child node,
of the type as defined in the grammar. For example, ast.BinOp
instances have an attribute left of type ast.expr.

If these attributes are marked as optional in the grammar (using a
question mark), the value might be None. If the attributes can have
zero-or-more values (marked with an asterisk), the values are represented
as Python lists. All possible attributes must be present and have valid
values when compiling an AST with compile().

	
lineno

	
col_offset

	Instances of ast.expr and ast.stmt subclasses have
lineno and col_offset attributes. The lineno is
the line number of source text (1-indexed so the first line is line 1) and
the col_offset is the UTF-8 byte offset of the first token that
generated the node. The UTF-8 offset is recorded because the parser uses
UTF-8 internally.

The constructor of a class ast.T parses its arguments as follows:

	If there are positional arguments, there must be as many as there are items
in T._fields; they will be assigned as attributes of these names.

	If there are keyword arguments, they will set the attributes of the same
names to the given values.

For example, to create and populate an ast.UnaryOp node, you could
use

node = ast.UnaryOp()
node.op = ast.USub()
node.operand = ast.Num()
node.operand.n = 5
node.operand.lineno = 0
node.operand.col_offset = 0
node.lineno = 0
node.col_offset = 0

or the more compact

node = ast.UnaryOp(ast.USub(), ast.Num(5, lineno=0, col_offset=0),
 lineno=0, col_offset=0)

New in version 2.6: The constructor as explained above was added. In Python 2.5 nodes had
to be created by calling the class constructor without arguments and
setting the attributes afterwards.

31.2.2. Abstract Grammar

The module defines a string constant __version__ which is the decimal
Subversion revision number of the file shown below.

The abstract grammar is currently defined as follows:

31.2.3. ast Helpers

New in version 2.6.

Apart from the node classes, ast module defines these utility functions
and classes for traversing abstract syntax trees:

	
ast.parse(source, filename='<unknown>', mode='exec')

	Parse the source into an AST node. Equivalent to compile(source,
filename, mode, ast.PyCF_ONLY_AST).

	
ast.literal_eval(node_or_string)

	Safely evaluate an expression node or a string containing a Python
expression. The string or node provided may only consist of the following
Python literal structures: strings, numbers, tuples, lists, dicts, booleans,
and None.

This can be used for safely evaluating strings containing Python expressions
from untrusted sources without the need to parse the values oneself.

	
ast.get_docstring(node, clean=True)

	Return the docstring of the given node (which must be a
FunctionDef, ClassDef or Module node), or None
if it has no docstring. If clean is true, clean up the docstring’s
indentation with inspect.cleandoc().

	
ast.fix_missing_locations(node)

	When you compile a node tree with compile(), the compiler expects
lineno and col_offset attributes for every node that supports
them. This is rather tedious to fill in for generated nodes, so this helper
adds these attributes recursively where not already set, by setting them to
the values of the parent node. It works recursively starting at node.

	
ast.increment_lineno(node, n=1)

	Increment the line number of each node in the tree starting at node by n.
This is useful to “move code” to a different location in a file.

	
ast.copy_location(new_node, old_node)

	Copy source location (lineno and col_offset) from old_node
to new_node if possible, and return new_node.

	
ast.iter_fields(node)

	Yield a tuple of (fieldname, value) for each field in node._fields
that is present on node.

	
ast.iter_child_nodes(node)

	Yield all direct child nodes of node, that is, all fields that are nodes
and all items of fields that are lists of nodes.

	
ast.walk(node)

	Recursively yield all descendant nodes in the tree starting at node
(including node itself), in no specified order. This is useful if you only
want to modify nodes in place and don’t care about the context.

	
class ast.NodeVisitor

	A node visitor base class that walks the abstract syntax tree and calls a
visitor function for every node found. This function may return a value
which is forwarded by the visit() method.

This class is meant to be subclassed, with the subclass adding visitor
methods.

	
visit(node)

	Visit a node. The default implementation calls the method called
self.visit_classname where classname is the name of the node
class, or generic_visit() if that method doesn’t exist.

	
generic_visit(node)

	This visitor calls visit() on all children of the node.

Note that child nodes of nodes that have a custom visitor method won’t be
visited unless the visitor calls generic_visit() or visits them
itself.

Don’t use the NodeVisitor if you want to apply changes to nodes
during traversal. For this a special visitor exists
(NodeTransformer) that allows modifications.

	
class ast.NodeTransformer

	A NodeVisitor subclass that walks the abstract syntax tree and
allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of
the visitor methods to replace or remove the old node. If the return value
of the visitor method is None, the node will be removed from its
location, otherwise it is replaced with the return value. The return value
may be the original node in which case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups
(foo) to data['foo']:

class RewriteName(NodeTransformer):

 def visit_Name(self, node):
 return copy_location(Subscript(
 value=Name(id='data', ctx=Load()),
 slice=Index(value=Str(s=node.id)),
 ctx=node.ctx
), node)

Keep in mind that if the node you’re operating on has child nodes you must
either transform the child nodes yourself or call the generic_visit()
method for the node first.

For nodes that were part of a collection of statements (that applies to all
statement nodes), the visitor may also return a list of nodes rather than
just a single node.

Usually you use the transformer like this:

node = YourTransformer().visit(node)

	
ast.dump(node, annotate_fields=True, include_attributes=False)

	Return a formatted dump of the tree in node. This is mainly useful for
debugging purposes. The returned string will show the names and the values
for fields. This makes the code impossible to evaluate, so if evaluation is
wanted annotate_fields must be set to False. Attributes such as line
numbers and column offsets are not dumped by default. If this is wanted,
include_attributes can be set to True.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.3. symtable — Access to the compiler’s symbol tables

Symbol tables are generated by the compiler from AST just before bytecode is
generated. The symbol table is responsible for calculating the scope of every
identifier in the code. symtable provides an interface to examine these
tables.

31.3.1. Generating Symbol Tables

	
symtable.symtable(code, filename, compile_type)

	Return the toplevel SymbolTable for the Python source code.
filename is the name of the file containing the code. compile_type is
like the mode argument to compile().

31.3.2. Examining Symbol Tables

	
class symtable.SymbolTable

	A namespace table for a block. The constructor is not public.

	
get_type()

	Return the type of the symbol table. Possible values are 'class',
'module', and 'function'.

	
get_id()

	Return the table’s identifier.

	
get_name()

	Return the table’s name. This is the name of the class if the table is
for a class, the name of the function if the table is for a function, or
'top' if the table is global (get_type() returns 'module').

	
get_lineno()

	Return the number of the first line in the block this table represents.

	
is_optimized()

	Return True if the locals in this table can be optimized.

	
is_nested()

	Return True if the block is a nested class or function.

	
has_children()

	Return True if the block has nested namespaces within it. These can
be obtained with get_children().

	
has_exec()

	Return True if the block uses exec.

	
has_import_star()

	Return True if the block uses a starred from-import.

	
get_identifiers()

	Return a list of names of symbols in this table.

	
lookup(name)

	Lookup name in the table and return a Symbol instance.

	
get_symbols()

	Return a list of Symbol instances for names in the table.

	
get_children()

	Return a list of the nested symbol tables.

	
class symtable.Function

	A namespace for a function or method. This class inherits
SymbolTable.

	
get_parameters()

	Return a tuple containing names of parameters to this function.

	
get_locals()

	Return a tuple containing names of locals in this function.

	
get_globals()

	Return a tuple containing names of globals in this function.

	
get_frees()

	Return a tuple containing names of free variables in this function.

	
class symtable.Class

	A namespace of a class. This class inherits SymbolTable.

	
get_methods()

	Return a tuple containing the names of methods declared in the class.

	
class symtable.Symbol

	An entry in a SymbolTable corresponding to an identifier in the
source. The constructor is not public.

	
get_name()

	Return the symbol’s name.

	
is_referenced()

	Return True if the symbol is used in its block.

	
is_imported()

	Return True if the symbol is created from an import statement.

	
is_parameter()

	Return True if the symbol is a parameter.

	
is_global()

	Return True if the symbol is global.

	
is_declared_global()

	Return True if the symbol is declared global with a global statement.

	
is_local()

	Return True if the symbol is local to its block.

	
is_free()

	Return True if the symbol is referenced in its block, but not assigned
to.

	
is_assigned()

	Return True if the symbol is assigned to in its block.

	
is_namespace()

	Return True if name binding introduces new namespace.

If the name is used as the target of a function or class statement, this
will be true.

For example:

>>> table = symtable.symtable("def some_func(): pass", "string", "exec")
>>> table.lookup("some_func").is_namespace()
True

Note that a single name can be bound to multiple objects. If the result
is True, the name may also be bound to other objects, like an int or
list, that does not introduce a new namespace.

	
get_namespaces()

	Return a list of namespaces bound to this name.

	
get_namespace()

	Return the namespace bound to this name. If more than one namespace is
bound, a ValueError is raised.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.4. symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal
nodes of the parse tree. Unlike most Python constants, these use lower-case
names. Refer to the file Grammar/Grammar in the Python distribution for
the definitions of the names in the context of the language grammar. The
specific numeric values which the names map to may change between Python
versions.

This module also provides one additional data object:

	
symbol.sym_name

	Dictionary mapping the numeric values of the constants defined in this module
back to name strings, allowing more human-readable representation of parse trees
to be generated.

See also

	Module parser

	The second example for the parser module shows how to use the
symbol module.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.5. token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes
of the parse tree (terminal tokens). Refer to the file Grammar/Grammar
in the Python distribution for the definitions of the names in the context of
the language grammar. The specific numeric values which the names map to may
change between Python versions.

The module also provides a mapping from numeric codes to names and some
functions. The functions mirror definitions in the Python C header files.

	
token.tok_name

	Dictionary mapping the numeric values of the constants defined in this module
back to name strings, allowing more human-readable representation of parse trees
to be generated.

	
token.ISTERMINAL(x)

	Return true for terminal token values.

	
token.ISNONTERMINAL(x)

	Return true for non-terminal token values.

	
token.ISEOF(x)

	Return true if x is the marker indicating the end of input.

The token constants are:

	
token.ENDMARKER

	
token.NAME

	
token.NUMBER

	
token.STRING

	
token.NEWLINE

	
token.INDENT

	
token.DEDENT

	
token.LPAR

	
token.RPAR

	
token.LSQB

	
token.RSQB

	
token.COLON

	
token.COMMA

	
token.SEMI

	
token.PLUS

	
token.MINUS

	
token.STAR

	
token.SLASH

	
token.VBAR

	
token.AMPER

	
token.LESS

	
token.GREATER

	
token.EQUAL

	
token.DOT

	
token.PERCENT

	
token.BACKQUOTE

	
token.LBRACE

	
token.RBRACE

	
token.EQEQUAL

	
token.NOTEQUAL

	
token.LESSEQUAL

	
token.GREATEREQUAL

	
token.TILDE

	
token.CIRCUMFLEX

	
token.LEFTSHIFT

	
token.RIGHTSHIFT

	
token.DOUBLESTAR

	
token.PLUSEQUAL

	
token.MINEQUAL

	
token.STAREQUAL

	
token.SLASHEQUAL

	
token.PERCENTEQUAL

	
token.AMPEREQUAL

	
token.VBAREQUAL

	
token.CIRCUMFLEXEQUAL

	
token.LEFTSHIFTEQUAL

	
token.RIGHTSHIFTEQUAL

	
token.DOUBLESTAREQUAL

	
token.DOUBLESLASH

	
token.DOUBLESLASHEQUAL

	
token.AT

	
token.OP

	
token.ERRORTOKEN

	
token.N_TOKENS

	
token.NT_OFFSET

	

See also

	Module parser

	The second example for the parser module shows how to use the
symbol module.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.6. keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword.

	
keyword.iskeyword(s)

	Return true if s is a Python keyword.

	
keyword.kwlist

	Sequence containing all the keywords defined for the interpreter. If any
keywords are defined to only be active when particular __future__
statements are in effect, these will be included as well.

See also

Latest version of the keyword module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/keyword.py?view=markup]

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.7. tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code,
implemented in Python. The scanner in this module returns comments as tokens as
well, making it useful for implementing “pretty-printers,” including colorizers
for on-screen displays.

See also

Latest version of the tokenize module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/tokenize.py?view=markup]

The primary entry point is a generator:

	
tokenize.generate_tokens(readline)

	The generate_tokens() generator requires one argument, readline,
which must be a callable object which provides the same interface as the
readline() method of built-in file objects (see section
File Objects). Each call to the function should return one line
of input as a string.

The generator produces 5-tuples with these members: the token type; the token
string; a 2-tuple (srow, scol) of ints specifying the row and column
where the token begins in the source; a 2-tuple (erow, ecol) of ints
specifying the row and column where the token ends in the source; and the
line on which the token was found. The line passed (the last tuple item) is
the logical line; continuation lines are included.

New in version 2.2.

An older entry point is retained for backward compatibility:

	
tokenize.tokenize(readline[, tokeneater])

	The tokenize() function accepts two parameters: one representing the input
stream, and one providing an output mechanism for tokenize().

The first parameter, readline, must be a callable object which provides the
same interface as the readline() method of built-in file objects (see
section File Objects). Each call to the function should return one
line of input as a string. Alternately, readline may be a callable object that
signals completion by raising StopIteration.

Changed in version 2.5: Added StopIteration support.

The second parameter, tokeneater, must also be a callable object. It is
called once for each token, with five arguments, corresponding to the tuples
generated by generate_tokens().

All constants from the token module are also exported from
tokenize, as are two additional token type values that might be passed to
the tokeneater function by tokenize():

	
tokenize.COMMENT

	Token value used to indicate a comment.

	
tokenize.NL

	Token value used to indicate a non-terminating newline. The NEWLINE token
indicates the end of a logical line of Python code; NL tokens are generated when
a logical line of code is continued over multiple physical lines.

Another function is provided to reverse the tokenization process. This is useful
for creating tools that tokenize a script, modify the token stream, and write
back the modified script.

	
tokenize.untokenize(iterable)

	Converts tokens back into Python source code. The iterable must return
sequences with at least two elements, the token type and the token string. Any
additional sequence elements are ignored.

The reconstructed script is returned as a single string. The result is
guaranteed to tokenize back to match the input so that the conversion is
lossless and round-trips are assured. The guarantee applies only to the token
type and token string as the spacing between tokens (column positions) may
change.

New in version 2.5.

Example of a script re-writer that transforms float literals into Decimal
objects:

def decistmt(s):
 """Substitute Decimals for floats in a string of statements.

 >>> from decimal import Decimal
 >>> s = 'print +21.3e-5*-.1234/81.7'
 >>> decistmt(s)
 "print +Decimal ('21.3e-5')*-Decimal ('.1234')/Decimal ('81.7')"

 >>> exec(s)
 -3.21716034272e-007
 >>> exec(decistmt(s))
 -3.217160342717258261933904529E-7

 """
 result = []
 g = generate_tokens(StringIO(s).readline) # tokenize the string
 for toknum, tokval, _, _, _ in g:
 if toknum == NUMBER and '.' in tokval: # replace NUMBER tokens
 result.extend([
 (NAME, 'Decimal'),
 (OP, '('),
 (STRING, repr(tokval)),
 (OP, ')')
])
 else:
 result.append((toknum, tokval))
 return untokenize(result)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.8. tabnanny — Detection of ambiguous indentation

For the time being this module is intended to be called as a script. However it
is possible to import it into an IDE and use the function check()
described below.

Note

The API provided by this module is likely to change in future releases; such
changes may not be backward compatible.

	
tabnanny.check(file_or_dir)

	If file_or_dir is a directory and not a symbolic link, then recursively
descend the directory tree named by file_or_dir, checking all .py
files along the way. If file_or_dir is an ordinary Python source file, it is
checked for whitespace related problems. The diagnostic messages are written to
standard output using the print statement.

	
tabnanny.verbose

	Flag indicating whether to print verbose messages. This is incremented by the
-v option if called as a script.

	
tabnanny.filename_only

	Flag indicating whether to print only the filenames of files containing
whitespace related problems. This is set to true by the -q option if called
as a script.

	
exception tabnanny.NannyNag

	Raised by tokeneater() if detecting an ambiguous indent. Captured and
handled in check().

	
tabnanny.tokeneater(type, token, start, end, line)

	This function is used by check() as a callback parameter to the function
tokenize.tokenize().

See also

	Module tokenize

	Lexical scanner for Python source code.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.9. pyclbr — Python class browser support

The pyclbr module can be used to determine some limited information
about the classes, methods and top-level functions defined in a module. The
information provided is sufficient to implement a traditional three-pane
class browser. The information is extracted from the source code rather
than by importing the module, so this module is safe to use with untrusted
code. This restriction makes it impossible to use this module with modules
not implemented in Python, including all standard and optional extension
modules.

	
pyclbr.readmodule(module[, path=None])

	Read a module and return a dictionary mapping class names to class
descriptor objects. The parameter module should be the name of a
module as a string; it may be the name of a module within a package. The
path parameter should be a sequence, and is used to augment the value
of sys.path, which is used to locate module source code.

	
pyclbr.readmodule_ex(module[, path=None])

	Like readmodule(), but the returned dictionary, in addition to
mapping class names to class descriptor objects, also maps top-level
function names to function descriptor objects. Moreover, if the module
being read is a package, the key '__path__' in the returned
dictionary has as its value a list which contains the package search
path.

31.9.1. Class Objects

The Class objects used as values in the dictionary returned by
readmodule() and readmodule_ex() provide the following data
members:

	
Class.module

	The name of the module defining the class described by the class descriptor.

	
Class.name

	The name of the class.

	
Class.super

	A list of Class objects which describe the immediate base
classes of the class being described. Classes which are named as
superclasses but which are not discoverable by readmodule() are
listed as a string with the class name instead of as Class
objects.

	
Class.methods

	A dictionary mapping method names to line numbers.

	
Class.file

	Name of the file containing the class statement defining the class.

	
Class.lineno

	The line number of the class statement within the file named by
file.

31.9.2. Function Objects

The Function objects used as values in the dictionary returned by
readmodule_ex() provide the following data members:

	
Function.module

	The name of the module defining the function described by the function
descriptor.

	
Function.name

	The name of the function.

	
Function.file

	Name of the file containing the def statement defining the function.

	
Function.lineno

	The line number of the def statement within the file named by
file.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.10. py_compile — Compile Python source files

The py_compile module provides a function to generate a byte-code file
from a source file, and another function used when the module source file is
invoked as a script.

Though not often needed, this function can be useful when installing modules for
shared use, especially if some of the users may not have permission to write the
byte-code cache files in the directory containing the source code.

	
exception py_compile.PyCompileError

	Exception raised when an error occurs while attempting to compile the file.

	
py_compile.compile(file[, cfile[, dfile[, doraise]]])

	Compile a source file to byte-code and write out the byte-code cache file. The
source code is loaded from the file name file. The byte-code is written to
cfile, which defaults to file + 'c' ('o' if optimization is
enabled in the current interpreter). If dfile is specified, it is used as the
name of the source file in error messages instead of file. If doraise is
true, a PyCompileError is raised when an error is encountered while
compiling file. If doraise is false (the default), an error string is
written to sys.stderr, but no exception is raised.

	
py_compile.main([args])

	Compile several source files. The files named in args (or on the command
line, if args is not specified) are compiled and the resulting bytecode is
cached in the normal manner. This function does not search a directory
structure to locate source files; it only compiles files named explicitly.
If '-' is the only parameter in args, the list of files is taken from
standard input.

Changed in version 2.7: Added support for '-'.

When this module is run as a script, the main() is used to compile all the
files named on the command line. The exit status is nonzero if one of the files
could not be compiled.

Changed in version 2.6: Added the nonzero exit status when module is run as a script.

See also

	Module compileall

	Utilities to compile all Python source files in a directory tree.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.11. compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python
libraries. These functions compile Python source files in a directory tree.
This module can be used to create the cached byte-code files at library
installation time, which makes them available for use even by users who don’t
have write permission to the library directories.

31.11.1. Command-line use

This module can work as a script (using python -m compileall) to
compile Python sources.

	
[directory|file]...

	Positional arguments are files to compile or directories that contain
source files, traversed recursively. If no argument is given, behave as if
the command line was -l <directories from sys.path>.

	
-l

	Do not recurse into subdirectories, only compile source code files directly
contained in the named or implied directories.

	
-f

	Force rebuild even if timestamps are up-to-date.

	
-q

	Do not print the list of files compiled, print only error messages.

	
-d destdir

	Directory prepended to the path to each file being compiled. This will
appear in compilation time tracebacks, and is also compiled in to the
byte-code file, where it will be used in tracebacks and other messages in
cases where the source file does not exist at the time the byte-code file is
executed.

	
-x regex

	regex is used to search the full path to each file considered for
compilation, and if the regex produces a match, the file is skipped.

	
-i list

	Read the file list and add each line that it contains to the list of
files and directories to compile. If list is -, read lines from
stdin.

Changed in version 2.7: Added the -i option.

31.11.2. Public functions

	
compileall.compile_dir(dir[, maxlevels[, ddir[, force[, rx[, quiet]]]]])

	Recursively descend the directory tree named by dir, compiling all .py
files along the way.

The maxlevels parameter is used to limit the depth of the recursion; it
defaults to 10.

If ddir is given, it is prepended to the path to each file being compiled
for use in compilation time tracebacks, and is also compiled in to the
byte-code file, where it will be used in tracebacks and other messages in
cases where the source file does not exist at the time the byte-code file is
executed.

If force is true, modules are re-compiled even if the timestamps are up to
date.

If rx is given, its search method is called on the complete path to each
file considered for compilation, and if it returns a true value, the file
is skipped.

If quiet is true, nothing is printed to the standard output unless errors
occur.

	
compileall.compile_file(fullname[, ddir[, force[, rx[, quiet]]]])

	Compile the file with path fullname.

If ddir is given, it is prepended to the path to the file being compiled
for use in compilation time tracebacks, and is also compiled in to the
byte-code file, where it will be used in tracebacks and other messages in
cases where the source file does not exist at the time the byte-code file is
executed.

If rx is given, its search method is passed the full path name to the
file being compiled, and if it returns a true value, the file is not
compiled and True is returned.

If quiet is true, nothing is printed to the standard output unless errors
occur.

New in version 2.7.

	
compileall.compile_path([skip_curdir[, maxlevels[, force]]])

	Byte-compile all the .py files found along sys.path. If
skip_curdir is true (the default), the current directory is not included
in the search. All other parameters are passed to the compile_dir()
function. Note that unlike the other compile functions, maxlevels
defaults to 0.

To force a recompile of all the .py files in the Lib/
subdirectory and all its subdirectories:

import compileall

compileall.compile_dir('Lib/', force=True)

Perform same compilation, excluding files in .svn directories.
import re
compileall.compile_dir('Lib/', rx=re.compile('/[.]svn'), force=True)

See also

	Module py_compile

	Byte-compile a single source file.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.12. dis — Disassembler for Python bytecode

The dis module supports the analysis of CPython bytecode by
disassembling it. The CPython bytecode which this module takes as an
input is defined in the file Include/opcode.h and used by the compiler
and the interpreter.

See also

Latest version of the dis module Python source code [http://svn.python.org/view/python/branches/release27-maint/Lib/dis.py?view=markup]

CPython implementation detail: Bytecode is an implementation detail of the CPython interpreter! No
guarantees are made that bytecode will not be added, removed, or changed
between versions of Python. Use of this module should not be considered to
work across Python VMs or Python releases.

Example: Given the function myfunc():

def myfunc(alist):
 return len(alist)

the following command can be used to get the disassembly of myfunc():

>>> dis.dis(myfunc)
 2 0 LOAD_GLOBAL 0 (len)
 3 LOAD_FAST 0 (alist)
 6 CALL_FUNCTION 1
 9 RETURN_VALUE

(The “2” is a line number).

The dis module defines the following functions and constants:

	
dis.dis([bytesource])

	Disassemble the bytesource object. bytesource can denote either a module, a
class, a method, a function, or a code object. For a module, it disassembles
all functions. For a class, it disassembles all methods. For a single code
sequence, it prints one line per bytecode instruction. If no object is
provided, it disassembles the last traceback.

	
dis.distb([tb])

	Disassembles the top-of-stack function of a traceback, using the last traceback
if none was passed. The instruction causing the exception is indicated.

	
dis.disassemble(code[, lasti])

	Disassembles a code object, indicating the last instruction if lasti was
provided. The output is divided in the following columns:

	the line number, for the first instruction of each line

	the current instruction, indicated as -->,

	a labelled instruction, indicated with >>,

	the address of the instruction,

	the operation code name,

	operation parameters, and

	interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names,
constant values, branch targets, and compare operators.

	
dis.disco(code[, lasti])

	A synonym for disassemble(). It is more convenient to type, and kept
for compatibility with earlier Python releases.

	
dis.findlinestarts(code)

	This generator function uses the co_firstlineno and co_lnotab
attributes of the code object code to find the offsets which are starts of
lines in the source code. They are generated as (offset, lineno) pairs.

	
dis.findlabels(code)

	Detect all offsets in the code object code which are jump targets, and
return a list of these offsets.

	
dis.opname

	Sequence of operation names, indexable using the bytecode.

	
dis.opmap

	Dictionary mapping operation names to bytecodes.

	
dis.cmp_op

	Sequence of all compare operation names.

	
dis.hasconst

	Sequence of bytecodes that have a constant parameter.

	
dis.hasfree

	Sequence of bytecodes that access a free variable.

	
dis.hasname

	Sequence of bytecodes that access an attribute by name.

	
dis.hasjrel

	Sequence of bytecodes that have a relative jump target.

	
dis.hasjabs

	Sequence of bytecodes that have an absolute jump target.

	
dis.haslocal

	Sequence of bytecodes that access a local variable.

	
dis.hascompare

	Sequence of bytecodes of Boolean operations.

31.12.1. Python Bytecode Instructions

The Python compiler currently generates the following bytecode instructions.

	
STOP_CODE()

	Indicates end-of-code to the compiler, not used by the interpreter.

	
NOP()

	Do nothing code. Used as a placeholder by the bytecode optimizer.

	
POP_TOP()

	Removes the top-of-stack (TOS) item.

	
ROT_TWO()

	Swaps the two top-most stack items.

	
ROT_THREE()

	Lifts second and third stack item one position up, moves top down to position
three.

	
ROT_FOUR()

	Lifts second, third and forth stack item one position up, moves top down to
position four.

	
DUP_TOP()

	Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the
result back on the stack.

	
UNARY_POSITIVE()

	Implements TOS = +TOS.

	
UNARY_NEGATIVE()

	Implements TOS = -TOS.

	
UNARY_NOT()

	Implements TOS = not TOS.

	
UNARY_CONVERT()

	Implements TOS = `TOS`.

	
UNARY_INVERT()

	Implements TOS = ~TOS.

	
GET_ITER()

	Implements TOS = iter(TOS).

Binary operations remove the top of the stack (TOS) and the second top-most
stack item (TOS1) from the stack. They perform the operation, and put the
result back on the stack.

	
BINARY_POWER()

	Implements TOS = TOS1 ** TOS.

	
BINARY_MULTIPLY()

	Implements TOS = TOS1 * TOS.

	
BINARY_DIVIDE()

	Implements TOS = TOS1 / TOS when from __future__ import division is not
in effect.

	
BINARY_FLOOR_DIVIDE()

	Implements TOS = TOS1 // TOS.

	
BINARY_TRUE_DIVIDE()

	Implements TOS = TOS1 / TOS when from __future__ import division is in
effect.

	
BINARY_MODULO()

	Implements TOS = TOS1 % TOS.

	
BINARY_ADD()

	Implements TOS = TOS1 + TOS.

	
BINARY_SUBTRACT()

	Implements TOS = TOS1 - TOS.

	
BINARY_SUBSCR()

	Implements TOS = TOS1[TOS].

	
BINARY_LSHIFT()

	Implements TOS = TOS1 << TOS.

	
BINARY_RSHIFT()

	Implements TOS = TOS1 >> TOS.

	
BINARY_AND()

	Implements TOS = TOS1 & TOS.

	
BINARY_XOR()

	Implements TOS = TOS1 ^ TOS.

	
BINARY_OR()

	Implements TOS = TOS1 | TOS.

In-place operations are like binary operations, in that they remove TOS and
TOS1, and push the result back on the stack, but the operation is done in-place
when TOS1 supports it, and the resulting TOS may be (but does not have to be)
the original TOS1.

	
INPLACE_POWER()

	Implements in-place TOS = TOS1 ** TOS.

	
INPLACE_MULTIPLY()

	Implements in-place TOS = TOS1 * TOS.

	
INPLACE_DIVIDE()

	Implements in-place TOS = TOS1 / TOS when from __future__ import
division is not in effect.

	
INPLACE_FLOOR_DIVIDE()

	Implements in-place TOS = TOS1 // TOS.

	
INPLACE_TRUE_DIVIDE()

	Implements in-place TOS = TOS1 / TOS when from __future__ import
division is in effect.

	
INPLACE_MODULO()

	Implements in-place TOS = TOS1 % TOS.

	
INPLACE_ADD()

	Implements in-place TOS = TOS1 + TOS.

	
INPLACE_SUBTRACT()

	Implements in-place TOS = TOS1 - TOS.

	
INPLACE_LSHIFT()

	Implements in-place TOS = TOS1 << TOS.

	
INPLACE_RSHIFT()

	Implements in-place TOS = TOS1 >> TOS.

	
INPLACE_AND()

	Implements in-place TOS = TOS1 & TOS.

	
INPLACE_XOR()

	Implements in-place TOS = TOS1 ^ TOS.

	
INPLACE_OR()

	Implements in-place TOS = TOS1 | TOS.

The slice opcodes take up to three parameters.

	
SLICE+0()

	Implements TOS = TOS[:].

	
SLICE+1()

	Implements TOS = TOS1[TOS:].

	
SLICE+2()

	Implements TOS = TOS1[:TOS].

	
SLICE+3()

	Implements TOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put
nothing on the stack.

	
STORE_SLICE+0()

	Implements TOS[:] = TOS1.

	
STORE_SLICE+1()

	Implements TOS1[TOS:] = TOS2.

	
STORE_SLICE+2()

	Implements TOS1[:TOS] = TOS2.

	
STORE_SLICE+3()

	Implements TOS2[TOS1:TOS] = TOS3.

	
DELETE_SLICE+0()

	Implements del TOS[:].

	
DELETE_SLICE+1()

	Implements del TOS1[TOS:].

	
DELETE_SLICE+2()

	Implements del TOS1[:TOS].

	
DELETE_SLICE+3()

	Implements del TOS2[TOS1:TOS].

	
STORE_SUBSCR()

	Implements TOS1[TOS] = TOS2.

	
DELETE_SUBSCR()

	Implements del TOS1[TOS].

Miscellaneous opcodes.

	
PRINT_EXPR()

	Implements the expression statement for the interactive mode. TOS is removed
from the stack and printed. In non-interactive mode, an expression statement is
terminated with POP_STACK.

	
PRINT_ITEM()

	Prints TOS to the file-like object bound to sys.stdout. There is one such
instruction for each item in the print statement.

	
PRINT_ITEM_TO()

	Like PRINT_ITEM, but prints the item second from TOS to the file-like object
at TOS. This is used by the extended print statement.

	
PRINT_NEWLINE()

	Prints a new line on sys.stdout. This is generated as the last operation of
a print statement, unless the statement ends with a comma.

	
PRINT_NEWLINE_TO()

	Like PRINT_NEWLINE, but prints the new line on the file-like object on the
TOS. This is used by the extended print statement.

	
BREAK_LOOP()

	Terminates a loop due to a break statement.

	
CONTINUE_LOOP(target)

	Continues a loop due to a continue statement. target is the
address to jump to (which should be a FOR_ITER instruction).

	
LIST_APPEND(i)

	Calls list.append(TOS[-i], TOS). Used to implement list comprehensions.
While the appended value is popped off, the list object remains on the
stack so that it is available for further iterations of the loop.

	
LOAD_LOCALS()

	Pushes a reference to the locals of the current scope on the stack. This is used
in the code for a class definition: After the class body is evaluated, the
locals are passed to the class definition.

	
RETURN_VALUE()

	Returns with TOS to the caller of the function.

	
YIELD_VALUE()

	Pops TOS and yields it from a generator.

	
IMPORT_STAR()

	Loads all symbols not starting with '_' directly from the module TOS to the
local namespace. The module is popped after loading all names. This opcode
implements from module import *.

	
EXEC_STMT()

	Implements exec TOS2,TOS1,TOS. The compiler fills missing optional
parameters with None.

	
POP_BLOCK()

	Removes one block from the block stack. Per frame, there is a stack of blocks,
denoting nested loops, try statements, and such.

	
END_FINALLY()

	Terminates a finally clause. The interpreter recalls whether the
exception has to be re-raised, or whether the function returns, and continues
with the outer-next block.

	
BUILD_CLASS()

	Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of
the names of the base classes, and TOS2 the class name.

	
SETUP_WITH(delta)

	This opcode performs several operations before a with block starts. First,
it loads __exit__() from the context manager and pushes it onto
the stack for later use by WITH_CLEANUP. Then,
__enter__() is called, and a finally block pointing to delta
is pushed. Finally, the result of calling the enter method is pushed onto
the stack. The next opcode will either ignore it (POP_TOP), or
store it in (a) variable(s) (STORE_FAST, STORE_NAME, or
UNPACK_SEQUENCE).

	
WITH_CLEANUP()

	Cleans up the stack when a with statement block exits. On top of
the stack are 1–3 values indicating how/why the finally clause was entered:

	TOP = None

	(TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval

	TOP = WHY_*; no retval below it

	(TOP, SECOND, THIRD) = exc_info()

Under them is EXIT, the context manager’s __exit__() bound method.

In the last case, EXIT(TOP, SECOND, THIRD) is called, otherwise
EXIT(None, None, None).

EXIT is removed from the stack, leaving the values above it in the same
order. In addition, if the stack represents an exception, and the function
call returns a ‘true’ value, this information is “zapped”, to prevent
END_FINALLY from re-raising the exception. (But non-local gotos should
still be resumed.)

All of the following opcodes expect arguments. An argument is two bytes, with
the more significant byte last.

	
STORE_NAME(namei)

	Implements name = TOS. namei is the index of name in the attribute
co_names of the code object. The compiler tries to use STORE_FAST
or STORE_GLOBAL if possible.

	
DELETE_NAME(namei)

	Implements del name, where namei is the index into co_names
attribute of the code object.

	
UNPACK_SEQUENCE(count)

	Unpacks TOS into count individual values, which are put onto the stack
right-to-left.

	
DUP_TOPX(count)

	Duplicate count items, keeping them in the same order. Due to implementation
limits, count should be between 1 and 5 inclusive.

	
STORE_ATTR(namei)

	Implements TOS.name = TOS1, where namei is the index of name in
co_names.

	
DELETE_ATTR(namei)

	Implements del TOS.name, using namei as index into co_names.

	
STORE_GLOBAL(namei)

	Works as STORE_NAME, but stores the name as a global.

	
DELETE_GLOBAL(namei)

	Works as DELETE_NAME, but deletes a global name.

	
LOAD_CONST(consti)

	Pushes co_consts[consti] onto the stack.

	
LOAD_NAME(namei)

	Pushes the value associated with co_names[namei] onto the stack.

	
BUILD_TUPLE(count)

	Creates a tuple consuming count items from the stack, and pushes the resulting
tuple onto the stack.

	
BUILD_LIST(count)

	Works as BUILD_TUPLE, but creates a list.

	
BUILD_MAP(count)

	Pushes a new dictionary object onto the stack. The dictionary is pre-sized
to hold count entries.

	
LOAD_ATTR(namei)

	Replaces TOS with getattr(TOS, co_names[namei]).

	
COMPARE_OP(opname)

	Performs a Boolean operation. The operation name can be found in
cmp_op[opname].

	
IMPORT_NAME(namei)

	Imports the module co_names[namei]. TOS and TOS1 are popped and provide
the fromlist and level arguments of __import__(). The module
object is pushed onto the stack. The current namespace is not affected:
for a proper import statement, a subsequent STORE_FAST instruction
modifies the namespace.

	
IMPORT_FROM(namei)

	Loads the attribute co_names[namei] from the module found in TOS. The
resulting object is pushed onto the stack, to be subsequently stored by a
STORE_FAST instruction.

	
JUMP_FORWARD(delta)

	Increments bytecode counter by delta.

	
POP_JUMP_IF_TRUE(target)

	If TOS is true, sets the bytecode counter to target. TOS is popped.

	
POP_JUMP_IF_FALSE(target)

	If TOS is false, sets the bytecode counter to target. TOS is popped.

	
JUMP_IF_TRUE_OR_POP(target)

	If TOS is true, sets the bytecode counter to target and leaves TOS
on the stack. Otherwise (TOS is false), TOS is popped.

	
JUMP_IF_FALSE_OR_POP(target)

	If TOS is false, sets the bytecode counter to target and leaves
TOS on the stack. Otherwise (TOS is true), TOS is popped.

	
JUMP_ABSOLUTE(target)

	Set bytecode counter to target.

	
FOR_ITER(delta)

	TOS is an iterator. Call its next() method. If this
yields a new value, push it on the stack (leaving the iterator below it). If
the iterator indicates it is exhausted TOS is popped, and the bytecode
counter is incremented by delta.

	
LOAD_GLOBAL(namei)

	Loads the global named co_names[namei] onto the stack.

	
SETUP_LOOP(delta)

	Pushes a block for a loop onto the block stack. The block spans from the
current instruction with a size of delta bytes.

	
SETUP_EXCEPT(delta)

	Pushes a try block from a try-except clause onto the block stack. delta points
to the first except block.

	
SETUP_FINALLY(delta)

	Pushes a try block from a try-except clause onto the block stack. delta points
to the finally block.

	
STORE_MAP()

	Store a key and value pair in a dictionary. Pops the key and value while leaving
the dictionary on the stack.

	
LOAD_FAST(var_num)

	Pushes a reference to the local co_varnames[var_num] onto the stack.

	
STORE_FAST(var_num)

	Stores TOS into the local co_varnames[var_num].

	
DELETE_FAST(var_num)

	Deletes local co_varnames[var_num].

	
LOAD_CLOSURE(i)

	Pushes a reference to the cell contained in slot i of the cell and free
variable storage. The name of the variable is co_cellvars[i] if i is
less than the length of co_cellvars. Otherwise it is co_freevars[i -
len(co_cellvars)].

	
LOAD_DEREF(i)

	Loads the cell contained in slot i of the cell and free variable storage.
Pushes a reference to the object the cell contains on the stack.

	
STORE_DEREF(i)

	Stores TOS into the cell contained in slot i of the cell and free variable
storage.

	
SET_LINENO(lineno)

	This opcode is obsolete.

	
RAISE_VARARGS(argc)

	Raises an exception. argc indicates the number of parameters to the raise
statement, ranging from 0 to 3. The handler will find the traceback as TOS2,
the parameter as TOS1, and the exception as TOS.

	
CALL_FUNCTION(argc)

	Calls a function. The low byte of argc indicates the number of positional
parameters, the high byte the number of keyword parameters. On the stack, the
opcode finds the keyword parameters first. For each keyword argument, the value
is on top of the key. Below the keyword parameters, the positional parameters
are on the stack, with the right-most parameter on top. Below the parameters,
the function object to call is on the stack. Pops all function arguments, and
the function itself off the stack, and pushes the return value.

	
MAKE_FUNCTION(argc)

	Pushes a new function object on the stack. TOS is the code associated with the
function. The function object is defined to have argc default parameters,
which are found below TOS.

	
MAKE_CLOSURE(argc)

	Creates a new function object, sets its func_closure slot, and pushes it on
the stack. TOS is the code associated with the function, TOS1 the tuple
containing cells for the closure’s free variables. The function also has
argc default parameters, which are found below the cells.

	
BUILD_SLICE(argc)

	Pushes a slice object on the stack. argc must be 2 or 3. If it is 2,
slice(TOS1, TOS) is pushed; if it is 3, slice(TOS2, TOS1, TOS) is
pushed. See the slice() built-in function for more information.

	
EXTENDED_ARG(ext)

	Prefixes any opcode which has an argument too big to fit into the default two
bytes. ext holds two additional bytes which, taken together with the
subsequent opcode’s argument, comprise a four-byte argument, ext being the two
most-significant bytes.

	
CALL_FUNCTION_VAR(argc)

	Calls a function. argc is interpreted as in CALL_FUNCTION. The top element
on the stack contains the variable argument list, followed by keyword and
positional arguments.

	
CALL_FUNCTION_KW(argc)

	Calls a function. argc is interpreted as in CALL_FUNCTION. The top element
on the stack contains the keyword arguments dictionary, followed by explicit
keyword and positional arguments.

	
CALL_FUNCTION_VAR_KW(argc)

	Calls a function. argc is interpreted as in CALL_FUNCTION. The top
element on the stack contains the keyword arguments dictionary, followed by the
variable-arguments tuple, followed by explicit keyword and positional arguments.

	
HAVE_ARGUMENT()

	This is not really an opcode. It identifies the dividing line between opcodes
which don’t take arguments < HAVE_ARGUMENT and those which do >=
HAVE_ARGUMENT.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	31. Python Language Services

31.13. pickletools — Tools for pickle developers

New in version 2.3.

This module contains various constants relating to the intimate details of the
pickle module, some lengthy comments about the implementation, and a few
useful functions for analyzing pickled data. The contents of this module are
useful for Python core developers who are working on the pickle and
cPickle implementations; ordinary users of the pickle module
probably won’t find the pickletools module relevant.

	
pickletools.dis(pickle[, out=None, memo=None, indentlevel=4])

	Outputs a symbolic disassembly of the pickle to the file-like object out,
defaulting to sys.stdout. pickle can be a string or a file-like object.
memo can be a Python dictionary that will be used as the pickle’s memo; it can
be used to perform disassemblies across multiple pickles created by the same
pickler. Successive levels, indicated by MARK opcodes in the stream, are
indented by indentlevel spaces.

	
pickletools.genops(pickle)

	Provides an iterator over all of the opcodes in a pickle, returning a
sequence of (opcode, arg, pos) triples. opcode is an instance of an
OpcodeInfo class; arg is the decoded value, as a Python object, of
the opcode’s argument; pos is the position at which this opcode is located.
pickle can be a string or a file-like object.

	
pickletools.optimize(picklestring)

	Returns a new equivalent pickle string after eliminating unused PUT
opcodes. The optimized pickle is shorter, takes less transmission time,
requires less storage space, and unpickles more efficiently.

New in version 2.6.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

32. Python compiler package

Deprecated since version 2.6: The compiler package has been removed in Python 3.0.

The Python compiler package is a tool for analyzing Python source code and
generating Python bytecode. The compiler contains libraries to generate an
abstract syntax tree from Python source code and to generate Python
bytecode from the tree.

The compiler package is a Python source to bytecode translator written in
Python. It uses the built-in parser and standard parser module to
generate a concrete syntax tree. This tree is used to generate an abstract
syntax tree (AST) and then Python bytecode.

The full functionality of the package duplicates the built-in compiler provided
with the Python interpreter. It is intended to match its behavior almost
exactly. Why implement another compiler that does the same thing? The package
is useful for a variety of purposes. It can be modified more easily than the
built-in compiler. The AST it generates is useful for analyzing Python source
code.

This chapter explains how the various components of the compiler package
work. It blends reference material with a tutorial.

32.1. The basic interface

The top-level of the package defines four functions. If you import
compiler, you will get these functions and a collection of modules
contained in the package.

	
compiler.parse(buf)

	Returns an abstract syntax tree for the Python source code in buf. The
function raises SyntaxError if there is an error in the source code. The
return value is a compiler.ast.Module instance that contains the tree.

	
compiler.parseFile(path)

	Return an abstract syntax tree for the Python source code in the file specified
by path. It is equivalent to parse(open(path).read()).

	
compiler.walk(ast, visitor[, verbose])

	Do a pre-order walk over the abstract syntax tree ast. Call the appropriate
method on the visitor instance for each node encountered.

	
compiler.compile(source, filename, mode, flags=None, dont_inherit=None)

	Compile the string source, a Python module, statement or expression, into a
code object that can be executed by the exec statement or eval(). This
function is a replacement for the built-in compile() function.

The filename will be used for run-time error messages.

The mode must be ‘exec’ to compile a module, ‘single’ to compile a single
(interactive) statement, or ‘eval’ to compile an expression.

The flags and dont_inherit arguments affect future-related statements, but
are not supported yet.

	
compiler.compileFile(source)

	Compiles the file source and generates a .pyc file.

The compiler package contains the following modules: ast,
consts, future, misc, pyassem, pycodegen,
symbols, transformer, and visitor.

32.2. Limitations

There are some problems with the error checking of the compiler package. The
interpreter detects syntax errors in two distinct phases. One set of errors is
detected by the interpreter’s parser, the other set by the compiler. The
compiler package relies on the interpreter’s parser, so it get the first phases
of error checking for free. It implements the second phase itself, and that
implementation is incomplete. For example, the compiler package does not raise
an error if a name appears more than once in an argument list: def f(x, x):
...

A future version of the compiler should fix these problems.

32.3. Python Abstract Syntax

The compiler.ast module defines an abstract syntax for Python. In the
abstract syntax tree, each node represents a syntactic construct. The root of
the tree is Module object.

The abstract syntax offers a higher level interface to parsed Python source
code. The parser module and the compiler written in C for the Python
interpreter use a concrete syntax tree. The concrete syntax is tied closely to
the grammar description used for the Python parser. Instead of a single node
for a construct, there are often several levels of nested nodes that are
introduced by Python’s precedence rules.

The abstract syntax tree is created by the compiler.transformer module.
The transformer relies on the built-in Python parser to generate a concrete
syntax tree. It generates an abstract syntax tree from the concrete tree.

The transformer module was created by Greg Stein and Bill Tutt for an
experimental Python-to-C compiler. The current version contains a number of
modifications and improvements, but the basic form of the abstract syntax and of
the transformer are due to Stein and Tutt.

32.3.1. AST Nodes

The compiler.ast module is generated from a text file that describes each
node type and its elements. Each node type is represented as a class that
inherits from the abstract base class compiler.ast.Node and defines a
set of named attributes for child nodes.

	
class compiler.ast.Node

	The Node instances are created automatically by the parser generator.
The recommended interface for specific Node instances is to use the
public attributes to access child nodes. A public attribute may be bound to a
single node or to a sequence of nodes, depending on the Node type. For
example, the bases attribute of the Class node, is bound to a
list of base class nodes, and the doc attribute is bound to a single
node.

Each Node instance has a lineno attribute which may be
None. XXX Not sure what the rules are for which nodes will have a useful
lineno.

All Node objects offer the following methods:

	
getChildren()

	Returns a flattened list of the child nodes and objects in the order they
occur. Specifically, the order of the nodes is the order in which they
appear in the Python grammar. Not all of the children are Node
instances. The names of functions and classes, for example, are plain
strings.

	
getChildNodes()

	Returns a flattened list of the child nodes in the order they occur. This
method is like getChildren(), except that it only returns those
children that are Node instances.

Two examples illustrate the general structure of Node classes. The
while statement is defined by the following grammar production:

while_stmt: "while" expression ":" suite
 ["else" ":" suite]

The While node has three attributes: test, body, and
else_. (If the natural name for an attribute is also a Python reserved
word, it can’t be used as an attribute name. An underscore is appended to the
word to make it a legal identifier, hence else_ instead of
else.)

The if statement is more complicated because it can include several
tests.

if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]

The If node only defines two attributes: tests and
else_. The tests attribute is a sequence of test expression,
consequent body pairs. There is one pair for each if/elif
clause. The first element of the pair is the test expression. The second
elements is a Stmt node that contains the code to execute if the test
is true.

The getChildren() method of If returns a flat list of child
nodes. If there are three if/elif clauses and no
else clause, then getChildren() will return a list of six
elements: the first test expression, the first Stmt, the second text
expression, etc.

The following table lists each of the Node subclasses defined in
compiler.ast and each of the public attributes available on their
instances. The values of most of the attributes are themselves Node
instances or sequences of instances. When the value is something other than an
instance, the type is noted in the comment. The attributes are listed in the
order in which they are returned by getChildren() and
getChildNodes().

	Node type
	Attribute
	Value

	Add
	left
	left operand

	
	right
	right operand

	And
	nodes
	list of operands

	AssAttr
	
	attribute as target of
assignment

	
	expr
	expression on the left-hand
side of the dot

	
	attrname
	the attribute name, a string

	
	flags
	XXX

	AssList
	nodes
	list of list elements being
assigned to

	AssName
	name
	name being assigned to

	
	flags
	XXX

	AssTuple
	nodes
	list of tuple elements being
assigned to

	Assert
	test
	the expression to be tested

	
	fail
	the value of the
AssertionError

	Assign
	nodes
	a list of assignment targets,
one per equal sign

	
	expr
	the value being assigned

	AugAssign
	node
	

	
	op
	

	
	expr
	

	Backquote
	expr
	

	Bitand
	nodes
	

	Bitor
	nodes
	

	Bitxor
	nodes
	

	Break
	
	

	CallFunc
	node
	expression for the callee

	
	args
	a list of arguments

	
	star_args
	the extended *-arg value

	
	dstar_args
	the extended **-arg value

	Class
	name
	the name of the class, a string

	
	bases
	a list of base classes

	
	doc
	doc string, a string or
None

	
	code
	the body of the class statement

	Compare
	expr
	

	
	ops
	

	Const
	value
	

	Continue
	
	

	Decorators
	nodes
	List of function decorator
expressions

	Dict
	items
	

	Discard
	expr
	

	Div
	left
	

	
	right
	

	Ellipsis
	
	

	Expression
	node
	

	Exec
	expr
	

	
	locals
	

	
	globals
	

	FloorDiv
	left
	

	
	right
	

	For
	assign
	

	
	list
	

	
	body
	

	
	else_
	

	From
	modname
	

	
	names
	

	Function
	decorators
	Decorators or None

	
	name
	name used in def, a string

	
	argnames
	list of argument names, as
strings

	
	defaults
	list of default values

	
	flags
	xxx

	
	doc
	doc string, a string or
None

	
	code
	the body of the function

	GenExpr
	code
	

	GenExprFor
	assign
	

	
	iter
	

	
	ifs
	

	GenExprIf
	test
	

	GenExprInner
	expr
	

	
	quals
	

	Getattr
	expr
	

	
	attrname
	

	Global
	names
	

	If
	tests
	

	
	else_
	

	Import
	names
	

	Invert
	expr
	

	Keyword
	name
	

	
	expr
	

	Lambda
	argnames
	

	
	defaults
	

	
	flags
	

	
	code
	

	LeftShift
	left
	

	
	right
	

	List
	nodes
	

	ListComp
	expr
	

	
	quals
	

	ListCompFor
	assign
	

	
	list
	

	
	ifs
	

	ListCompIf
	test
	

	Mod
	left
	

	
	right
	

	Module
	doc
	doc string, a string or
None

	
	node
	body of the module, a
Stmt

	Mul
	left
	

	
	right
	

	Name
	name
	

	Not
	expr
	

	Or
	nodes
	

	Pass
	
	

	Power
	left
	

	
	right
	

	Print
	nodes
	

	
	dest
	

	Printnl
	nodes
	

	
	dest
	

	Raise
	expr1
	

	
	expr2
	

	
	expr3
	

	Return
	value
	

	RightShift
	left
	

	
	right
	

	Slice
	expr
	

	
	flags
	

	
	lower
	

	
	upper
	

	Sliceobj
	nodes
	list of statements

	Stmt
	nodes
	

	Sub
	left
	

	
	right
	

	Subscript
	expr
	

	
	flags
	

	
	subs
	

	TryExcept
	body
	

	
	handlers
	

	
	else_
	

	TryFinally
	body
	

	
	final
	

	Tuple
	nodes
	

	UnaryAdd
	expr
	

	UnarySub
	expr
	

	While
	test
	

	
	body
	

	
	else_
	

	With
	expr
	

	
	vars
	

	
	body
	

	Yield
	value
	

32.3.2. Assignment nodes

There is a collection of nodes used to represent assignments. Each assignment
statement in the source code becomes a single Assign node in the AST.
The nodes attribute is a list that contains a node for each assignment
target. This is necessary because assignment can be chained, e.g. a = b =
2. Each Node in the list will be one of the following classes:
AssAttr, AssList, AssName, or AssTuple.

Each target assignment node will describe the kind of object being assigned to:
AssName for a simple name, e.g. a = 1. AssAttr for an
attribute assigned, e.g. a.x = 1. AssList and AssTuple for
list and tuple expansion respectively, e.g. a, b, c = a_tuple.

The target assignment nodes also have a flags attribute that indicates
whether the node is being used for assignment or in a delete statement. The
AssName is also used to represent a delete statement, e.g. del
x.

When an expression contains several attribute references, an assignment or
delete statement will contain only one AssAttr node – for the final
attribute reference. The other attribute references will be represented as
Getattr nodes in the expr attribute of the AssAttr
instance.

32.3.3. Examples

This section shows several simple examples of ASTs for Python source code. The
examples demonstrate how to use the parse() function, what the repr of an
AST looks like, and how to access attributes of an AST node.

The first module defines a single function. Assume it is stored in
/tmp/doublelib.py.

"""This is an example module.

This is the docstring.
"""

def double(x):
 "Return twice the argument"
 return x * 2

In the interactive interpreter session below, I have reformatted the long AST
reprs for readability. The AST reprs use unqualified class names. If you want
to create an instance from a repr, you must import the class names from the
compiler.ast module.

>>> import compiler
>>> mod = compiler.parseFile("/tmp/doublelib.py")
>>> mod
Module('This is an example module.\n\nThis is the docstring.\n',
 Stmt([Function(None, 'double', ['x'], [], 0,
 'Return twice the argument',
 Stmt([Return(Mul((Name('x'), Const(2))))]))]))
>>> from compiler.ast import *
>>> Module('This is an example module.\n\nThis is the docstring.\n',
... Stmt([Function(None, 'double', ['x'], [], 0,
... 'Return twice the argument',
... Stmt([Return(Mul((Name('x'), Const(2))))]))]))
Module('This is an example module.\n\nThis is the docstring.\n',
 Stmt([Function(None, 'double', ['x'], [], 0,
 'Return twice the argument',
 Stmt([Return(Mul((Name('x'), Const(2))))]))]))
>>> mod.doc
'This is an example module.\n\nThis is the docstring.\n'
>>> for node in mod.node.nodes:
... print node
...
Function(None, 'double', ['x'], [], 0, 'Return twice the argument',
 Stmt([Return(Mul((Name('x'), Const(2))))]))
>>> func = mod.node.nodes[0]
>>> func.code
Stmt([Return(Mul((Name('x'), Const(2))))])

32.4. Using Visitors to Walk ASTs

The visitor pattern is ... The compiler package uses a variant on the
visitor pattern that takes advantage of Python’s introspection features to
eliminate the need for much of the visitor’s infrastructure.

The classes being visited do not need to be programmed to accept visitors. The
visitor need only define visit methods for classes it is specifically interested
in; a default visit method can handle the rest.

XXX The magic visit() method for visitors.

	
compiler.visitor.walk(tree, visitor[, verbose])

	

	
class compiler.visitor.ASTVisitor

	The ASTVisitor is responsible for walking over the tree in the correct
order. A walk begins with a call to preorder(). For each node, it checks
the visitor argument to preorder() for a method named ‘visitNodeType,’
where NodeType is the name of the node’s class, e.g. for a While node a
visitWhile() would be called. If the method exists, it is called with the
node as its first argument.

The visitor method for a particular node type can control how child nodes are
visited during the walk. The ASTVisitor modifies the visitor argument
by adding a visit method to the visitor; this method can be used to visit a
particular child node. If no visitor is found for a particular node type, the
default() method is called.

ASTVisitor objects have the following methods:

XXX describe extra arguments

	
default(node[, ...])

	

	
dispatch(node[, ...])

	

	
preorder(tree, visitor)

	

32.5. Bytecode Generation

The code generator is a visitor that emits bytecodes. Each visit method can
call the emit() method to emit a new bytecode. The basic code generator
is specialized for modules, classes, and functions. An assembler converts that
emitted instructions to the low-level bytecode format. It handles things like
generation of constant lists of code objects and calculation of jump offsets.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

33. Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are
available in all Python versions. Here’s an overview:

	33.1. formatter — Generic output formatting
	33.1.1. The Formatter Interface

	33.1.2. Formatter Implementations

	33.1.3. The Writer Interface

	33.1.4. Writer Implementations

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	33. Miscellaneous Services

33.1. formatter — Generic output formatting

This module supports two interface definitions, each with multiple
implementations. The formatter interface is used by the HTMLParser
class of the htmllib module, and the writer interface is required by
the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific
output events on writer objects. Formatters manage several stack structures to
allow various properties of a writer object to be changed and restored; writers
need not be able to handle relative changes nor any sort of “change back”
operation. Specific writer properties which may be controlled via formatter
objects are horizontal alignment, font, and left margin indentations. A
mechanism is provided which supports providing arbitrary, non-exclusive style
settings to a writer as well. Additional interfaces facilitate formatting
events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file
formats, are supported as well as physical devices. The provided
implementations all work with abstract devices. The interface makes available
mechanisms for setting the properties which formatter objects manage and
inserting data into the output.

33.1.1. The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class
being instantiated. The interfaces described below are the required interfaces
which all formatters must support once initialized.

One data element is defined at the module level:

	
formatter.AS_IS

	Value which can be used in the font specification passed to the push_font()
method described below, or as the new value to any other push_property()
method. Pushing the AS_IS value allows the corresponding pop_property()
method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

	
formatter.writer

	The writer instance with which the formatter interacts.

	
formatter.end_paragraph(blanklines)

	Close any open paragraphs and insert at least blanklines before the next
paragraph.

	
formatter.add_line_break()

	Add a hard line break if one does not already exist. This does not break the
logical paragraph.

	
formatter.add_hor_rule(*args, **kw)

	Insert a horizontal rule in the output. A hard break is inserted if there is
data in the current paragraph, but the logical paragraph is not broken. The
arguments and keywords are passed on to the writer’s send_line_break()
method.

	
formatter.add_flowing_data(data)

	Provide data which should be formatted with collapsed whitespace. Whitespace
from preceding and successive calls to add_flowing_data() is considered as
well when the whitespace collapse is performed. The data which is passed to
this method is expected to be word-wrapped by the output device. Note that any
word-wrapping still must be performed by the writer object due to the need to
rely on device and font information.

	
formatter.add_literal_data(data)

	Provide data which should be passed to the writer unchanged. Whitespace,
including newline and tab characters, are considered legal in the value of
data.

	
formatter.add_label_data(format, counter)

	Insert a label which should be placed to the left of the current left margin.
This should be used for constructing bulleted or numbered lists. If the
format value is a string, it is interpreted as a format specification for
counter, which should be an integer. The result of this formatting becomes the
value of the label; if format is not a string it is used as the label value
directly. The label value is passed as the only argument to the writer’s
send_label_data() method. Interpretation of non-string label values is
dependent on the associated writer.

Format specifications are strings which, in combination with a counter value,
are used to compute label values. Each character in the format string is copied
to the label value, with some characters recognized to indicate a transform on
the counter value. Specifically, the character '1' represents the counter
value formatter as an Arabic number, the characters 'A' and 'a'
represent alphabetic representations of the counter value in upper and lower
case, respectively, and 'I' and 'i' represent the counter value in Roman
numerals, in upper and lower case. Note that the alphabetic and roman
transforms require that the counter value be greater than zero.

	
formatter.flush_softspace()

	Send any pending whitespace buffered from a previous call to
add_flowing_data() to the associated writer object. This should be called
before any direct manipulation of the writer object.

	
formatter.push_alignment(align)

	Push a new alignment setting onto the alignment stack. This may be
AS_IS if no change is desired. If the alignment value is changed from
the previous setting, the writer’s new_alignment() method is called with
the align value.

	
formatter.pop_alignment()

	Restore the previous alignment.

	
formatter.push_font((size, italic, bold, teletype))

	Change some or all font properties of the writer object. Properties which are
not set to AS_IS are set to the values passed in while others are
maintained at their current settings. The writer’s new_font() method is
called with the fully resolved font specification.

	
formatter.pop_font()

	Restore the previous font.

	
formatter.push_margin(margin)

	Increase the number of left margin indentations by one, associating the logical
tag margin with the new indentation. The initial margin level is 0.
Changed values of the logical tag must be true values; false values other than
AS_IS are not sufficient to change the margin.

	
formatter.pop_margin()

	Restore the previous margin.

	
formatter.push_style(*styles)

	Push any number of arbitrary style specifications. All styles are pushed onto
the styles stack in order. A tuple representing the entire stack, including
AS_IS values, is passed to the writer’s new_styles() method.

	
formatter.pop_style([n=1])

	Pop the last n style specifications passed to push_style(). A tuple
representing the revised stack, including AS_IS values, is passed to
the writer’s new_styles() method.

	
formatter.set_spacing(spacing)

	Set the spacing style for the writer.

	
formatter.assert_line_data([flag=1])

	Inform the formatter that data has been added to the current paragraph
out-of-band. This should be used when the writer has been manipulated
directly. The optional flag argument can be set to false if the writer
manipulations produced a hard line break at the end of the output.

33.1.2. Formatter Implementations

Two implementations of formatter objects are provided by this module. Most
applications may use one of these classes without modification or subclassing.

	
class formatter.NullFormatter([writer])

	A formatter which does nothing. If writer is omitted, a NullWriter
instance is created. No methods of the writer are called by
NullFormatter instances. Implementations should inherit from this
class if implementing a writer interface but don’t need to inherit any
implementation.

	
class formatter.AbstractFormatter(writer)

	The standard formatter. This implementation has demonstrated wide applicability
to many writers, and may be used directly in most circumstances. It has been
used to implement a full-featured World Wide Web browser.

33.1.3. The Writer Interface

Interfaces to create writers are dependent on the specific writer class being
instantiated. The interfaces described below are the required interfaces which
all writers must support once initialized. Note that while most applications can
use the AbstractFormatter class as a formatter, the writer must
typically be provided by the application.

	
writer.flush()

	Flush any buffered output or device control events.

	
writer.new_alignment(align)

	Set the alignment style. The align value can be any object, but by convention
is a string or None, where None indicates that the writer’s “preferred”
alignment should be used. Conventional align values are 'left',
'center', 'right', and 'justify'.

	
writer.new_font(font)

	Set the font style. The value of font will be None, indicating that the
device’s default font should be used, or a tuple of the form (size,
italic, bold, teletype). Size will be a string indicating the size of
font that should be used; specific strings and their interpretation must be
defined by the application. The italic, bold, and teletype values are
Boolean values specifying which of those font attributes should be used.

	
writer.new_margin(margin, level)

	Set the margin level to the integer level and the logical tag to margin.
Interpretation of the logical tag is at the writer’s discretion; the only
restriction on the value of the logical tag is that it not be a false value for
non-zero values of level.

	
writer.new_spacing(spacing)

	Set the spacing style to spacing.

	
writer.new_styles(styles)

	Set additional styles. The styles value is a tuple of arbitrary values; the
value AS_IS should be ignored. The styles tuple may be interpreted
either as a set or as a stack depending on the requirements of the application
and writer implementation.

	
writer.send_line_break()

	Break the current line.

	
writer.send_paragraph(blankline)

	Produce a paragraph separation of at least blankline blank lines, or the
equivalent. The blankline value will be an integer. Note that the
implementation will receive a call to send_line_break() before this call
if a line break is needed; this method should not include ending the last line
of the paragraph. It is only responsible for vertical spacing between
paragraphs.

	
writer.send_hor_rule(*args, **kw)

	Display a horizontal rule on the output device. The arguments to this method
are entirely application- and writer-specific, and should be interpreted with
care. The method implementation may assume that a line break has already been
issued via send_line_break().

	
writer.send_flowing_data(data)

	Output character data which may be word-wrapped and re-flowed as needed. Within
any sequence of calls to this method, the writer may assume that spans of
multiple whitespace characters have been collapsed to single space characters.

	
writer.send_literal_data(data)

	Output character data which has already been formatted for display. Generally,
this should be interpreted to mean that line breaks indicated by newline
characters should be preserved and no new line breaks should be introduced. The
data may contain embedded newline and tab characters, unlike data provided to
the send_formatted_data() interface.

	
writer.send_label_data(data)

	Set data to the left of the current left margin, if possible. The value of
data is not restricted; treatment of non-string values is entirely
application- and writer-dependent. This method will only be called at the
beginning of a line.

33.1.4. Writer Implementations

Three implementations of the writer object interface are provided as examples by
this module. Most applications will need to derive new writer classes from the
NullWriter class.

	
class formatter.NullWriter

	A writer which only provides the interface definition; no actions are taken on
any methods. This should be the base class for all writers which do not need to
inherit any implementation methods.

	
class formatter.AbstractWriter

	A writer which can be used in debugging formatters, but not much else. Each
method simply announces itself by printing its name and arguments on standard
output.

	
class formatter.DumbWriter([file[, maxcol=72]])

	Simple writer class which writes output on the file object passed in as file
or, if file is omitted, on standard output. The output is simply word-wrapped
to the number of columns specified by maxcol. This class is suitable for
reflowing a sequence of paragraphs.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

34. MS Windows Specific Services

This chapter describes modules that are only available on MS Windows platforms.

	34.1. msilib — Read and write Microsoft Installer files
	34.1.1. Database Objects

	34.1.2. View Objects

	34.1.3. Summary Information Objects

	34.1.4. Record Objects

	34.1.5. Errors

	34.1.6. CAB Objects

	34.1.7. Directory Objects

	34.1.8. Features

	34.1.9. GUI classes

	34.1.10. Precomputed tables

	34.2. msvcrt – Useful routines from the MS VC++ runtime
	34.2.1. File Operations

	34.2.2. Console I/O

	34.2.3. Other Functions

	34.3. _winreg – Windows registry access
	34.3.1. Constants
	34.3.1.1. HKEY_* Constants

	34.3.1.2. Access Rights
	34.3.1.2.1. 64-bit Specific

	34.3.1.3. Value Types

	34.3.2. Registry Handle Objects

	34.4. winsound — Sound-playing interface for Windows

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	34. MS Windows Specific Services

34.1. msilib — Read and write Microsoft Installer files

New in version 2.5.

The msilib supports the creation of Microsoft Installer (.msi) files.
Because these files often contain an embedded “cabinet” file (.cab), it also
exposes an API to create CAB files. Support for reading .cab files is
currently not implemented; read support for the .msi database is possible.

This package aims to provide complete access to all tables in an .msi file,
therefore, it is a fairly low-level API. Two primary applications of this
package are the distutils command bdist_msi, and the creation of
Python installer package itself (although that currently uses a different
version of msilib).

The package contents can be roughly split into four parts: low-level CAB
routines, low-level MSI routines, higher-level MSI routines, and standard table
structures.

	
msilib.FCICreate(cabname, files)

	Create a new CAB file named cabname. files must be a list of tuples, each
containing the name of the file on disk, and the name of the file inside the CAB
file.

The files are added to the CAB file in the order they appear in the list. All
files are added into a single CAB file, using the MSZIP compression algorithm.

Callbacks to Python for the various steps of MSI creation are currently not
exposed.

	
msilib.UuidCreate()

	Return the string representation of a new unique identifier. This wraps the
Windows API functions UuidCreate() and UuidToString().

	
msilib.OpenDatabase(path, persist)

	Return a new database object by calling MsiOpenDatabase. path is the file
name of the MSI file; persist can be one of the constants
MSIDBOPEN_CREATEDIRECT, MSIDBOPEN_CREATE, MSIDBOPEN_DIRECT,
MSIDBOPEN_READONLY, or MSIDBOPEN_TRANSACT, and may include the flag
MSIDBOPEN_PATCHFILE. See the Microsoft documentation for the meaning of
these flags; depending on the flags, an existing database is opened, or a new
one created.

	
msilib.CreateRecord(count)

	Return a new record object by calling MSICreateRecord(). count is the
number of fields of the record.

	
msilib.init_database(name, schema, ProductName, ProductCode, ProductVersion, Manufacturer)

	Create and return a new database name, initialize it with schema, and set
the properties ProductName, ProductCode, ProductVersion, and
Manufacturer.

schema must be a module object containing tables and
_Validation_records attributes; typically, msilib.schema should be
used.

The database will contain just the schema and the validation records when this
function returns.

	
msilib.add_data(database, table, records)

	Add all records to the table named table in database.

The table argument must be one of the predefined tables in the MSI schema,
e.g. 'Feature', 'File', 'Component', 'Dialog', 'Control',
etc.

records should be a list of tuples, each one containing all fields of a
record according to the schema of the table. For optional fields,
None can be passed.

Field values can be int or long numbers, strings, or instances of the Binary
class.

	
class msilib.Binary(filename)

	Represents entries in the Binary table; inserting such an object using
add_data() reads the file named filename into the table.

	
msilib.add_tables(database, module)

	Add all table content from module to database. module must contain an
attribute tables listing all tables for which content should be added, and one
attribute per table that has the actual content.

This is typically used to install the sequence tables.

	
msilib.add_stream(database, name, path)

	Add the file path into the _Stream table of database, with the stream
name name.

	
msilib.gen_uuid()

	Return a new UUID, in the format that MSI typically requires (i.e. in curly
braces, and with all hexdigits in upper-case).

See also

FCICreateFile [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devnotes/winprog/fcicreate.asp]
UuidCreate [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidcreate.asp]
UuidToString [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidtostring.asp]

34.1.1. Database Objects

	
Database.OpenView(sql)

	Return a view object, by calling MSIDatabaseOpenView(). sql is the SQL
statement to execute.

	
Database.Commit()

	Commit the changes pending in the current transaction, by calling
MSIDatabaseCommit().

	
Database.GetSummaryInformation(count)

	Return a new summary information object, by calling
MsiGetSummaryInformation(). count is the maximum number of updated
values.

See also

MSIDatabaseOpenView [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabaseopenview.asp]
MSIDatabaseCommit [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabasecommit.asp]
MSIGetSummaryInformation [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msigetsummaryinformation.asp]

34.1.2. View Objects

	
View.Execute(params)

	Execute the SQL query of the view, through MSIViewExecute(). If
params is not None, it is a record describing actual values of the
parameter tokens in the query.

	
View.GetColumnInfo(kind)

	Return a record describing the columns of the view, through calling
MsiViewGetColumnInfo(). kind can be either MSICOLINFO_NAMES or
MSICOLINFO_TYPES.

	
View.Fetch()

	Return a result record of the query, through calling MsiViewFetch().

	
View.Modify(kind, data)

	Modify the view, by calling MsiViewModify(). kind can be one of
MSIMODIFY_SEEK, MSIMODIFY_REFRESH, MSIMODIFY_INSERT,
MSIMODIFY_UPDATE, MSIMODIFY_ASSIGN, MSIMODIFY_REPLACE,
MSIMODIFY_MERGE, MSIMODIFY_DELETE, MSIMODIFY_INSERT_TEMPORARY,
MSIMODIFY_VALIDATE, MSIMODIFY_VALIDATE_NEW,
MSIMODIFY_VALIDATE_FIELD, or MSIMODIFY_VALIDATE_DELETE.

data must be a record describing the new data.

	
View.Close()

	Close the view, through MsiViewClose().

See also

MsiViewExecute [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewexecute.asp]
MSIViewGetColumnInfo [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewgetcolumninfo.asp]
MsiViewFetch [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewfetch.asp]
MsiViewModify [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewmodify.asp]
MsiViewClose [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewclose.asp]

34.1.3. Summary Information Objects

	
SummaryInformation.GetProperty(field)

	Return a property of the summary, through MsiSummaryInfoGetProperty().
field is the name of the property, and can be one of the constants
PID_CODEPAGE, PID_TITLE, PID_SUBJECT, PID_AUTHOR,
PID_KEYWORDS, PID_COMMENTS, PID_TEMPLATE, PID_LASTAUTHOR,
PID_REVNUMBER, PID_LASTPRINTED, PID_CREATE_DTM,
PID_LASTSAVE_DTM, PID_PAGECOUNT, PID_WORDCOUNT, PID_CHARCOUNT,
PID_APPNAME, or PID_SECURITY.

	
SummaryInformation.GetPropertyCount()

	Return the number of summary properties, through
MsiSummaryInfoGetPropertyCount().

	
SummaryInformation.SetProperty(field, value)

	Set a property through MsiSummaryInfoSetProperty(). field can have the
same values as in GetProperty(), value is the new value of the property.
Possible value types are integer and string.

	
SummaryInformation.Persist()

	Write the modified properties to the summary information stream, using
MsiSummaryInfoPersist().

See also

MsiSummaryInfoGetProperty [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetproperty.asp]
MsiSummaryInfoGetPropertyCount [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetpropertycount.asp]
MsiSummaryInfoSetProperty [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfosetproperty.asp]
MsiSummaryInfoPersist [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfopersist.asp]

34.1.4. Record Objects

	
Record.GetFieldCount()

	Return the number of fields of the record, through
MsiRecordGetFieldCount().

	
Record.GetInteger(field)

	Return the value of field as an integer where possible. field must
be an integer.

	
Record.GetString(field)

	Return the value of field as a string where possible. field must
be an integer.

	
Record.SetString(field, value)

	Set field to value through MsiRecordSetString(). field must be an
integer; value a string.

	
Record.SetStream(field, value)

	Set field to the contents of the file named value, through
MsiRecordSetStream(). field must be an integer; value a string.

	
Record.SetInteger(field, value)

	Set field to value through MsiRecordSetInteger(). Both field and
value must be an integer.

	
Record.ClearData()

	Set all fields of the record to 0, through MsiRecordClearData().

See also

MsiRecordGetFieldCount [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordgetfieldcount.asp]
MsiRecordSetString [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstring.asp]
MsiRecordSetStream [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstream.asp]
MsiRecordSetInteger [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetinteger.asp]
MsiRecordClear [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordclear.asp]

34.1.5. Errors

All wrappers around MSI functions raise MsiError; the string inside the
exception will contain more detail.

34.1.6. CAB Objects

	
class msilib.CAB(name)

	The class CAB represents a CAB file. During MSI construction, files
will be added simultaneously to the Files table, and to a CAB file. Then,
when all files have been added, the CAB file can be written, then added to the
MSI file.

name is the name of the CAB file in the MSI file.

	
append(full, file, logical)

	Add the file with the pathname full to the CAB file, under the name
logical. If there is already a file named logical, a new file name is
created.

Return the index of the file in the CAB file, and the new name of the file
inside the CAB file.

	
commit(database)

	Generate a CAB file, add it as a stream to the MSI file, put it into the
Media table, and remove the generated file from the disk.

34.1.7. Directory Objects

	
class msilib.Directory(database, cab, basedir, physical, logical, default[, componentflags])

	Create a new directory in the Directory table. There is a current component at
each point in time for the directory, which is either explicitly created through
start_component(), or implicitly when files are added for the first time.
Files are added into the current component, and into the cab file. To create a
directory, a base directory object needs to be specified (can be None), the
path to the physical directory, and a logical directory name. default
specifies the DefaultDir slot in the directory table. componentflags specifies
the default flags that new components get.

	
start_component([component[, feature[, flags[, keyfile[, uuid]]]]])

	Add an entry to the Component table, and make this component the current
component for this directory. If no component name is given, the directory
name is used. If no feature is given, the current feature is used. If no
flags are given, the directory’s default flags are used. If no keyfile
is given, the KeyPath is left null in the Component table.

	
add_file(file[, src[, version[, language]]])

	Add a file to the current component of the directory, starting a new one
if there is no current component. By default, the file name in the source
and the file table will be identical. If the src file is specified, it
is interpreted relative to the current directory. Optionally, a version
and a language can be specified for the entry in the File table.

	
glob(pattern[, exclude])

	Add a list of files to the current component as specified in the glob
pattern. Individual files can be excluded in the exclude list.

	
remove_pyc()

	Remove .pyc/.pyo files on uninstall.

See also

Directory Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/directory_table.asp]
File Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/file_table.asp]
Component Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/component_table.asp]
FeatureComponents Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/featurecomponents_table.asp]

34.1.8. Features

	
class msilib.Feature(database, id, title, desc, display[, level=1[, parent[, directory[, attributes=0]]]])

	Add a new record to the Feature table, using the values id, parent.id,
title, desc, display, level, directory, and attributes. The
resulting feature object can be passed to the start_component() method of
Directory.

	
set_current()

	Make this feature the current feature of msilib. New components are
automatically added to the default feature, unless a feature is explicitly
specified.

See also

Feature Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/feature_table.asp]

34.1.9. GUI classes

msilib provides several classes that wrap the GUI tables in an MSI
database. However, no standard user interface is provided; use bdist_msi
to create MSI files with a user-interface for installing Python packages.

	
class msilib.Control(dlg, name)

	Base class of the dialog controls. dlg is the dialog object the control
belongs to, and name is the control’s name.

	
event(event, argument[, condition=1[, ordering]])

	Make an entry into the ControlEvent table for this control.

	
mapping(event, attribute)

	Make an entry into the EventMapping table for this control.

	
condition(action, condition)

	Make an entry into the ControlCondition table for this control.

	
class msilib.RadioButtonGroup(dlg, name, property)

	Create a radio button control named name. property is the installer property
that gets set when a radio button is selected.

	
add(name, x, y, width, height, text[, value])

	Add a radio button named name to the group, at the coordinates x, y,
width, height, and with the label text. If value is omitted, it
defaults to name.

	
class msilib.Dialog(db, name, x, y, w, h, attr, title, first, default, cancel)

	Return a new Dialog object. An entry in the Dialog table is made,
with the specified coordinates, dialog attributes, title, name of the first,
default, and cancel controls.

	
control(name, type, x, y, width, height, attributes, property, text, control_next, help)

	Return a new Control object. An entry in the Control table is
made with the specified parameters.

This is a generic method; for specific types, specialized methods are
provided.

	
text(name, x, y, width, height, attributes, text)

	Add and return a Text control.

	
bitmap(name, x, y, width, height, text)

	Add and return a Bitmap control.

	
line(name, x, y, width, height)

	Add and return a Line control.

	
pushbutton(name, x, y, width, height, attributes, text, next_control)

	Add and return a PushButton control.

	
radiogroup(name, x, y, width, height, attributes, property, text, next_control)

	Add and return a RadioButtonGroup control.

	
checkbox(name, x, y, width, height, attributes, property, text, next_control)

	Add and return a CheckBox control.

See also

Dialog Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp]
Control Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp]
Control Types [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controls.asp]
ControlCondition Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlcondition_table.asp]
ControlEvent Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlevent_table.asp]
EventMapping Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/eventmapping_table.asp]
RadioButton Table [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp]

34.1.10. Precomputed tables

msilib provides a few subpackages that contain only schema and table
definitions. Currently, these definitions are based on MSI version 2.0.

	
msilib.schema

	This is the standard MSI schema for MSI 2.0, with the tables variable
providing a list of table definitions, and _Validation_records providing the
data for MSI validation.

	
msilib.sequence

	This module contains table contents for the standard sequence tables:
AdminExecuteSequence, AdminUISequence, AdvtExecuteSequence,
InstallExecuteSequence, and InstallUISequence.

	
msilib.text

	This module contains definitions for the UIText and ActionText tables, for the
standard installer actions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	34. MS Windows Specific Services

34.2. msvcrt – Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms.
Some higher-level modules use these functions to build the Windows
implementations of their services. For example, the getpass module uses
this in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API
documentation.

The module implements both the normal and wide char variants of the console I/O
api. The normal API deals only with ASCII characters and is of limited use
for internationalized applications. The wide char API should be used where
ever possible

34.2.1. File Operations

	
msvcrt.locking(fd, mode, nbytes)

	Lock part of a file based on file descriptor fd from the C runtime. Raises
IOError on failure. The locked region of the file extends from the
current file position for nbytes bytes, and may continue beyond the end of the
file. mode must be one of the LK_* constants listed below. Multiple
regions in a file may be locked at the same time, but may not overlap. Adjacent
regions are not merged; they must be unlocked individually.

	
msvcrt.LK_LOCK

	
msvcrt.LK_RLCK

	Locks the specified bytes. If the bytes cannot be locked, the program
immediately tries again after 1 second. If, after 10 attempts, the bytes cannot
be locked, IOError is raised.

	
msvcrt.LK_NBLCK

	
msvcrt.LK_NBRLCK

	Locks the specified bytes. If the bytes cannot be locked, IOError is
raised.

	
msvcrt.LK_UNLCK

	Unlocks the specified bytes, which must have been previously locked.

	
msvcrt.setmode(fd, flags)

	Set the line-end translation mode for the file descriptor fd. To set it to
text mode, flags should be os.O_TEXT; for binary, it should be
os.O_BINARY.

	
msvcrt.open_osfhandle(handle, flags)

	Create a C runtime file descriptor from the file handle handle. The flags
parameter should be a bitwise OR of os.O_APPEND, os.O_RDONLY,
and os.O_TEXT. The returned file descriptor may be used as a parameter
to os.fdopen() to create a file object.

	
msvcrt.get_osfhandle(fd)

	Return the file handle for the file descriptor fd. Raises IOError if
fd is not recognized.

34.2.2. Console I/O

	
msvcrt.kbhit()

	Return true if a keypress is waiting to be read.

	
msvcrt.getch()

	Read a keypress and return the resulting character. Nothing is echoed to the
console. This call will block if a keypress is not already available, but will
not wait for Enter to be pressed. If the pressed key was a special
function key, this will return '\000' or '\xe0'; the next call will
return the keycode. The Control-C keypress cannot be read with this
function.

	
msvcrt.getwch()

	Wide char variant of getch(), returning a Unicode value.

New in version 2.6.

	
msvcrt.getche()

	Similar to getch(), but the keypress will be echoed if it represents a
printable character.

	
msvcrt.getwche()

	Wide char variant of getche(), returning a Unicode value.

New in version 2.6.

	
msvcrt.putch(char)

	Print the character char to the console without buffering.

	
msvcrt.putwch(unicode_char)

	Wide char variant of putch(), accepting a Unicode value.

New in version 2.6.

	
msvcrt.ungetch(char)

	Cause the character char to be “pushed back” into the console buffer; it will
be the next character read by getch() or getche().

	
msvcrt.ungetwch(unicode_char)

	Wide char variant of ungetch(), accepting a Unicode value.

New in version 2.6.

34.2.3. Other Functions

	
msvcrt.heapmin()

	Force the malloc() heap to clean itself up and return unused blocks to
the operating system. On failure, this raises IOError.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	34. MS Windows Specific Services

34.3. _winreg – Windows registry access

Note

The _winreg module has been renamed to winreg in Python 3.0.
The 2to3 tool will automatically adapt imports when converting your
sources to 3.0.

New in version 2.0.

These functions expose the Windows registry API to Python. Instead of using an
integer as the registry handle, a handle object is used
to ensure that the handles are closed correctly, even if the programmer neglects
to explicitly close them.

This module offers the following functions:

	
_winreg.CloseKey(hkey)

	Closes a previously opened registry key. The hkey argument specifies a
previously opened key.

Note

If hkey is not closed using this method (or via hkey.Close()),
it is closed when the hkey object is destroyed by Python.

	
_winreg.ConnectRegistry(computer_name, key)

	Establishes a connection to a predefined registry handle on another computer,
and returns a handle object.

computer_name is the name of the remote computer, of the form
r"\\computername". If None, the local computer is used.

key is the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, a
WindowsError exception is raised.

	
_winreg.CreateKey(key, sub_key)

	Creates or opens the specified key, returning a
handle object.

key is an already open key, or one of the predefined
HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

If key is one of the predefined keys, sub_key may be None. In that
case, the handle returned is the same key handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, a
WindowsError exception is raised.

	
_winreg.CreateKeyEx(key, sub_key[, res[, sam]])

	Creates or opens the specified key, returning a
handle object.

key is an already open key, or one of the predefined
HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired
security access for the key. Default is KEY_ALL_ACCESS. See
Access Rights for other allowed values.

If key is one of the predefined keys, sub_key may be None. In that
case, the handle returned is the same key handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, a
WindowsError exception is raised.

New in version 2.7.

	
_winreg.DeleteKey(key, sub_key)

	Deletes the specified key.

key is an already open key, or any one of the predefined
HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key
parameter. This value must not be None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed.
If the method fails, a WindowsError exception is raised.

	
_winreg.DeleteKeyEx(key, sub_key[, sam[, res]])

	Deletes the specified key.

Note

The DeleteKeyEx() function is implemented with the RegDeleteKeyEx
Windows API function, which is specific to 64-bit versions of Windows.
See the RegDeleteKeyEx documentation [http://msdn.microsoft.com/en-us/library/ms724847%28VS.85%29.aspx].

key is an already open key, or any one of the predefined
HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the
key parameter. This value must not be None, and the key may not have
subkeys.

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired
security access for the key. Default is KEY_WOW64_64KEY. See
Access Rights for other allowed values.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is
removed. If the method fails, a WindowsError exception is raised.

On unsupported Windows versions, NotImplementedError is raised.

New in version 2.7.

	
_winreg.DeleteValue(key, value)

	Removes a named value from a registry key.

key is an already open key, or one of the predefined
HKEY_* constants.

value is a string that identifies the value to remove.

	
_winreg.EnumKey(key, index)

	Enumerates subkeys of an open registry key, returning a string.

key is an already open key, or any one of the predefined
HKEY_* constants.

index is an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is
typically called repeatedly until a WindowsError exception is
raised, indicating, no more values are available.

	
_winreg.EnumValue(key, index)

	Enumerates values of an open registry key, returning a tuple.

key is an already open key, or any one of the predefined
HKEY_* constants.

index is an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is
typically called repeatedly, until a WindowsError exception is
raised, indicating no more values.

The result is a tuple of 3 items:

	Index
	Meaning

	0
	A string that identifies the value name

	1
	An object that holds the value data, and
whose type depends on the underlying
registry type

	2
	An integer that identifies the type of the
value data (see table in docs for
SetValueEx())

	
_winreg.ExpandEnvironmentStrings(unicode)

	Expands environment variable placeholders %NAME% in unicode strings like
REG_EXPAND_SZ:

>>> ExpandEnvironmentStrings(u"%windir%")
u"C:\\Windows"

New in version 2.6.

	
_winreg.FlushKey(key)

	Writes all the attributes of a key to the registry.

key is an already open key, or one of the predefined
HKEY_* constants.

It is not necessary to call FlushKey() to change a key. Registry changes are
flushed to disk by the registry using its lazy flusher. Registry changes are
also flushed to disk at system shutdown. Unlike CloseKey(), the
FlushKey() method returns only when all the data has been written to the
registry. An application should only call FlushKey() if it requires
absolute certainty that registry changes are on disk.

Note

If you don’t know whether a FlushKey() call is required, it probably
isn’t.

	
_winreg.LoadKey(key, sub_key, file_name)

	Creates a subkey under the specified key and stores registration information
from a specified file into that subkey.

key is a handle returned by ConnectRegistry() or one of the constants
HKEY_USERS or HKEY_LOCAL_MACHINE.

sub_key is a string that identifies the subkey to load.

file_name is the name of the file to load registry data from. This file must
have been created with the SaveKey() function. Under the file allocation
table (FAT) file system, the filename may not have an extension.

A call to LoadKey() fails if the calling process does not have the
SE_RESTORE_PRIVILEGE privilege. Note that privileges are different
from permissions – see the RegLoadKey documentation [http://msdn.microsoft.com/en-us/library/ms724889%28v=VS.85%29.aspx] for
more details.

If key is a handle returned by ConnectRegistry(), then the path
specified in file_name is relative to the remote computer.

	
_winreg.OpenKey(key, sub_key[, res[, sam]])

	Opens the specified key, returning a handle object.

key is an already open key, or any one of the predefined
HKEY_* constants.

sub_key is a string that identifies the sub_key to open.

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired
security access for the key. Default is KEY_READ. See
Access Rights for other allowed values.

The result is a new handle to the specified key.

If the function fails, WindowsError is raised.

	
_winreg.OpenKeyEx()

	The functionality of OpenKeyEx() is provided via OpenKey(),
by the use of default arguments.

	
_winreg.QueryInfoKey(key)

	Returns information about a key, as a tuple.

key is an already open key, or one of the predefined
HKEY_* constants.

The result is a tuple of 3 items:

	Index
	Meaning

	0
	An integer giving the number of sub keys
this key has.

	1
	An integer giving the number of values this
key has.

	2
	A long integer giving when the key was last
modified (if available) as 100’s of
nanoseconds since Jan 1, 1600.

	
_winreg.QueryValue(key, sub_key)

	Retrieves the unnamed value for a key, as a string.

key is an already open key, or one of the predefined
HKEY_* constants.

sub_key is a string that holds the name of the subkey with which the value is
associated. If this parameter is None or empty, the function retrieves the
value set by the SetValue() method for the key identified by key.

Values in the registry have name, type, and data components. This method
retrieves the data for a key’s first value that has a NULL name. But the
underlying API call doesn’t return the type, so always use
QueryValueEx() if possible.

	
_winreg.QueryValueEx(key, value_name)

	Retrieves the type and data for a specified value name associated with
an open registry key.

key is an already open key, or one of the predefined
HKEY_* constants.

value_name is a string indicating the value to query.

The result is a tuple of 2 items:

	Index
	Meaning

	0
	The value of the registry item.

	1
	An integer giving the registry type for
this value (see table in docs for
SetValueEx())

	
_winreg.SaveKey(key, file_name)

	Saves the specified key, and all its subkeys to the specified file.

key is an already open key, or one of the predefined
HKEY_* constants.

file_name is the name of the file to save registry data to. This file
cannot already exist. If this filename includes an extension, it cannot be
used on file allocation table (FAT) file systems by the LoadKey()
method.

If key represents a key on a remote computer, the path described by
file_name is relative to the remote computer. The caller of this method must
possess the SeBackupPrivilege security privilege. Note that
privileges are different than permissions – see the
Conflicts Between User Rights and Permissions documentation [http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx]
for more details.

This function passes NULL for security_attributes to the API.

	
_winreg.SetValue(key, sub_key, type, value)

	Associates a value with a specified key.

key is an already open key, or one of the predefined
HKEY_* constants.

sub_key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. Currently this must be
REG_SZ, meaning only strings are supported. Use the SetValueEx()
function for support for other data types.

value is a string that specifies the new value.

If the key specified by the sub_key parameter does not exist, the SetValue
function creates it.

Value lengths are limited by available memory. Long values (more than 2048
bytes) should be stored as files with the filenames stored in the configuration
registry. This helps the registry perform efficiently.

The key identified by the key parameter must have been opened with
KEY_SET_VALUE access.

	
_winreg.SetValueEx(key, value_name, reserved, type, value)

	Stores data in the value field of an open registry key.

key is an already open key, or one of the predefined
HKEY_* constants.

value_name is a string that names the subkey with which the value is
associated.

type is an integer that specifies the type of the data. See
Value Types for the available types.

reserved can be anything – zero is always passed to the API.

value is a string that specifies the new value.

This method can also set additional value and type information for the specified
key. The key identified by the key parameter must have been opened with
KEY_SET_VALUE access.

To open the key, use the CreateKey() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048
bytes) should be stored as files with the filenames stored in the configuration
registry. This helps the registry perform efficiently.

	
_winreg.DisableReflectionKey(key)

	Disables registry reflection for 32-bit processes running on a 64-bit
operating system.

key is an already open key, or one of the predefined
HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit
operating system.

If the key is not on the reflection list, the function succeeds but has no
effect. Disabling reflection for a key does not affect reflection of any
subkeys.

	
_winreg.EnableReflectionKey(key)

	Restores registry reflection for the specified disabled key.

key is an already open key, or one of the predefined
HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit
operating system.

Restoring reflection for a key does not affect reflection of any subkeys.

	
_winreg.QueryReflectionKey(key)

	Determines the reflection state for the specified key.

key is an already open key, or one of the predefined
HKEY_* constants.

Returns True if reflection is disabled.

Will generally raise NotImplemented if executed on a 32-bit
operating system.

34.3.1. Constants

The following constants are defined for use in many _winreg functions.

34.3.1.1. HKEY_* Constants

	
_winreg.HKEY_CLASSES_ROOT

	Registry entries subordinate to this key define types (or classes) of
documents and the properties associated with those types. Shell and
COM applications use the information stored under this key.

	
_winreg.HKEY_CURRENT_USER

	Registry entries subordinate to this key define the preferences of
the current user. These preferences include the settings of
environment variables, data about program groups, colors, printers,
network connections, and application preferences.

	
_winreg.HKEY_LOCAL_MACHINE

	Registry entries subordinate to this key define the physical state
of the computer, including data about the bus type, system memory,
and installed hardware and software.

	
_winreg.HKEY_USERS

	Registry entries subordinate to this key define the default user
configuration for new users on the local computer and the user
configuration for the current user.

	
_winreg.HKEY_PERFORMANCE_DATA

	Registry entries subordinate to this key allow you to access
performance data. The data is not actually stored in the registry;
the registry functions cause the system to collect the data from
its source.

	
_winreg.HKEY_CURRENT_CONFIG

	Contains information about the current hardware profile of the
local computer system.

	
_winreg.HKEY_DYN_DATA

	This key is not used in versions of Windows after 98.

34.3.1.2. Access Rights

For more information, see Registry Key Security and Access [http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx].

	
_winreg.KEY_ALL_ACCESS

	Combines the STANDARD_RIGHTS_REQUIRED, KEY_QUERY_VALUE,
KEY_SET_VALUE, KEY_CREATE_SUB_KEY,
KEY_ENUMERATE_SUB_KEYS, KEY_NOTIFY,
and KEY_CREATE_LINK access rights.

	
_winreg.KEY_WRITE

	Combines the STANDARD_RIGHTS_WRITE, KEY_SET_VALUE, and
KEY_CREATE_SUB_KEY access rights.

	
_winreg.KEY_READ

	Combines the STANDARD_RIGHTS_READ, KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY values.

	
_winreg.KEY_EXECUTE

	Equivalent to KEY_READ.

	
_winreg.KEY_QUERY_VALUE

	Required to query the values of a registry key.

	
_winreg.KEY_SET_VALUE

	Required to create, delete, or set a registry value.

	
_winreg.KEY_CREATE_SUB_KEY

	Required to create a subkey of a registry key.

	
_winreg.KEY_ENUMERATE_SUB_KEYS

	Required to enumerate the subkeys of a registry key.

	
_winreg.KEY_NOTIFY

	Required to request change notifications for a registry key or for
subkeys of a registry key.

	
_winreg.KEY_CREATE_LINK

	Reserved for system use.

34.3.1.2.1. 64-bit Specific

For more information, see Accesing an Alternate Registry View [http://msdn.microsoft.com/en-us/library/aa384129(v=VS.85).aspx].

	
_winreg.KEY_WOW64_64KEY

	Indicates that an application on 64-bit Windows should operate on
the 64-bit registry view.

	
_winreg.KEY_WOW64_32KEY

	Indicates that an application on 64-bit Windows should operate on
the 32-bit registry view.

34.3.1.3. Value Types

For more information, see Registry Value Types [http://msdn.microsoft.com/en-us/library/ms724884%28v=VS.85%29.aspx].

	
_winreg.REG_BINARY

	Binary data in any form.

	
_winreg.REG_DWORD

	32-bit number.

	
_winreg.REG_DWORD_LITTLE_ENDIAN

	A 32-bit number in little-endian format.

	
_winreg.REG_DWORD_BIG_ENDIAN

	A 32-bit number in big-endian format.

	
_winreg.REG_EXPAND_SZ

	Null-terminated string containing references to environment
variables (%PATH%).

	
_winreg.REG_LINK

	A Unicode symbolic link.

	
_winreg.REG_MULTI_SZ

	A sequence of null-terminated strings, terminated by two null characters.
(Python handles this termination automatically.)

	
_winreg.REG_NONE

	No defined value type.

	
_winreg.REG_RESOURCE_LIST

	A device-driver resource list.

	
_winreg.REG_FULL_RESOURCE_DESCRIPTOR

	A hardware setting.

	
_winreg.REG_RESOURCE_REQUIREMENTS_LIST

	A hardware resource list.

	
_winreg.REG_SZ

	A null-terminated string.

34.3.2. Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the
object is destroyed. To guarantee cleanup, you can call either the
Close() method on the object, or the CloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept
an integer, however, use of the handle object is encouraged.

Handle objects provide semantics for __nonzero__() – thus:

if handle:
 print "Yes"

will print Yes if the handle is currently valid (has not been closed or
detached).

The object also support comparison semantics, so handle objects will compare
true if they both reference the same underlying Windows handle value.

Handle objects can be converted to an integer (e.g., using the built-in
int() function), in which case the underlying Windows handle value is
returned. You can also use the Detach() method to return the
integer handle, and also disconnect the Windows handle from the handle object.

	
PyHKEY.Close()

	Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

	
PyHKEY.Detach()

	Detaches the Windows handle from the handle object.

The result is an integer (or long on 64 bit Windows) that holds the value of the
handle before it is detached. If the handle is already detached or closed, this
will return zero.

After calling this function, the handle is effectively invalidated, but the
handle is not closed. You would call this function when you need the
underlying Win32 handle to exist beyond the lifetime of the handle object.

	
PyHKEY.__enter__()

	
PyHKEY.__exit__(*exc_info)

	The HKEY object implements __enter__() and
__exit__() and thus supports the context protocol for the
with statement:

with OpenKey(HKEY_LOCAL_MACHINE, "foo") as key:
 ... # work with key

will automatically close key when control leaves the with block.

New in version 2.6.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	34. MS Windows Specific Services

34.4. winsound — Sound-playing interface for Windows

New in version 1.5.2.

The winsound module provides access to the basic sound-playing machinery
provided by Windows platforms. It includes functions and several constants.

	
winsound.Beep(frequency, duration)

	Beep the PC’s speaker. The frequency parameter specifies frequency, in hertz,
of the sound, and must be in the range 37 through 32,767. The duration
parameter specifies the number of milliseconds the sound should last. If the
system is not able to beep the speaker, RuntimeError is raised.

New in version 1.6.

	
winsound.PlaySound(sound, flags)

	Call the underlying PlaySound() function from the Platform API. The
sound parameter may be a filename, audio data as a string, or None. Its
interpretation depends on the value of flags, which can be a bitwise ORed
combination of the constants described below. If the sound parameter is
None, any currently playing waveform sound is stopped. If the system
indicates an error, RuntimeError is raised.

	
winsound.MessageBeep([type=MB_OK])

	Call the underlying MessageBeep() function from the Platform API. This
plays a sound as specified in the registry. The type argument specifies which
sound to play; possible values are -1, MB_ICONASTERISK,
MB_ICONEXCLAMATION, MB_ICONHAND, MB_ICONQUESTION, and MB_OK, all
described below. The value -1 produces a “simple beep”; this is the final
fallback if a sound cannot be played otherwise.

New in version 2.3.

	
winsound.SND_FILENAME

	The sound parameter is the name of a WAV file. Do not use with
SND_ALIAS.

	
winsound.SND_ALIAS

	The sound parameter is a sound association name from the registry. If the
registry contains no such name, play the system default sound unless
SND_NODEFAULT is also specified. If no default sound is registered,
raise RuntimeError. Do not use with SND_FILENAME.

All Win32 systems support at least the following; most systems support many
more:

	PlaySound() name
	Corresponding Control Panel Sound name

	'SystemAsterisk'
	Asterisk

	'SystemExclamation'
	Exclamation

	'SystemExit'
	Exit Windows

	'SystemHand'
	Critical Stop

	'SystemQuestion'
	Question

For example:

import winsound
Play Windows exit sound.
winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

Probably play Windows default sound, if any is registered (because
"*" probably isn't the registered name of any sound).
winsound.PlaySound("*", winsound.SND_ALIAS)

	
winsound.SND_LOOP

	Play the sound repeatedly. The SND_ASYNC flag must also be used to
avoid blocking. Cannot be used with SND_MEMORY.

	
winsound.SND_MEMORY

	The sound parameter to PlaySound() is a memory image of a WAV file, as a
string.

Note

This module does not support playing from a memory image asynchronously, so a
combination of this flag and SND_ASYNC will raise RuntimeError.

	
winsound.SND_PURGE

	Stop playing all instances of the specified sound.

Note

This flag is not supported on modern Windows platforms.

	
winsound.SND_ASYNC

	Return immediately, allowing sounds to play asynchronously.

	
winsound.SND_NODEFAULT

	If the specified sound cannot be found, do not play the system default sound.

	
winsound.SND_NOSTOP

	Do not interrupt sounds currently playing.

	
winsound.SND_NOWAIT

	Return immediately if the sound driver is busy.

	
winsound.MB_ICONASTERISK

	Play the SystemDefault sound.

	
winsound.MB_ICONEXCLAMATION

	Play the SystemExclamation sound.

	
winsound.MB_ICONHAND

	Play the SystemHand sound.

	
winsound.MB_ICONQUESTION

	Play the SystemQuestion sound.

	
winsound.MB_OK

	Play the SystemDefault sound.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

35. Unix Specific Services

The modules described in this chapter provide interfaces to features that are
unique to the Unix operating system, or in some cases to some or many variants
of it. Here’s an overview:

	35.1. posix — The most common POSIX system calls
	35.1.1. Large File Support

	35.1.2. Notable Module Contents

	35.2. pwd — The password database

	35.3. spwd — The shadow password database

	35.4. grp — The group database

	35.5. crypt — Function to check Unix passwords

	35.6. dl — Call C functions in shared objects
	35.6.1. Dl Objects

	35.7. termios — POSIX style tty control
	35.7.1. Example

	35.8. tty — Terminal control functions

	35.9. pty — Pseudo-terminal utilities

	35.10. fcntl — The fcntl() and ioctl() system calls

	35.11. pipes — Interface to shell pipelines
	35.11.1. Template Objects

	35.12. posixfile — File-like objects with locking support

	35.13. resource — Resource usage information
	35.13.1. Resource Limits

	35.13.2. Resource Usage

	35.14. nis — Interface to Sun’s NIS (Yellow Pages)

	35.15. syslog — Unix syslog library routines
	35.15.1. Examples
	35.15.1.1. Simple example

	35.16. commands — Utilities for running commands

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.1. posix — The most common POSIX system calls

This module provides access to operating system functionality that is
standardized by the C Standard and the POSIX standard (a thinly disguised Unix
interface).

Do not import this module directly. Instead, import the module os,
which provides a portable version of this interface. On Unix, the os
module provides a superset of the posix interface. On non-Unix operating
systems the posix module is not available, but a subset is always
available through the os interface. Once os is imported, there is
no performance penalty in using it instead of posix. In addition,
os provides some additional functionality, such as automatically calling
putenv() when an entry in os.environ is changed.

Errors are reported as exceptions; the usual exceptions are given for type
errors, while errors reported by the system calls raise OSError.

35.1.1. Large File Support

Several operating systems (including AIX, HP-UX, Irix and Solaris) provide
support for files that are larger than 2 GB from a C programming model where
int and long are 32-bit values. This is typically accomplished
by defining the relevant size and offset types as 64-bit values. Such files are
sometimes referred to as large files.

Large file support is enabled in Python when the size of an off_t is
larger than a long and the long long type is available and is
at least as large as an off_t. Python longs are then used to represent
file sizes, offsets and other values that can exceed the range of a Python int.
It may be necessary to configure and compile Python with certain compiler flags
to enable this mode. For example, it is enabled by default with recent versions
of Irix, but with Solaris 2.6 and 2.7 you need to do something like:

CFLAGS="`getconf LFS_CFLAGS`" OPT="-g -O2 $CFLAGS" \
 ./configure

On large-file-capable Linux systems, this might work:

CFLAGS='-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64' OPT="-g -O2 $CFLAGS" \
 ./configure

35.1.2. Notable Module Contents

In addition to many functions described in the os module documentation,
posix defines the following data item:

	
posix.environ

	A dictionary representing the string environment at the time the interpreter
was started. For example, environ['HOME'] is the pathname of your home
directory, equivalent to getenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on by
execv(), popen() or system(); if you need to change the
environment, pass environ to execve() or add variable assignments and
export statements to the command string for system() or popen().

Note

The os module provides an alternate implementation of environ which
updates the environment on modification. Note also that updating os.environ
will render this dictionary obsolete. Use of the os module version of
this is recommended over direct access to the posix module.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.2. pwd — The password database

This module provides access to the Unix user account and password database. It
is available on all Unix versions.

Password database entries are reported as a tuple-like object, whose attributes
correspond to the members of the passwd structure (Attribute field below,
see <pwd.h>):

	Index
	Attribute
	Meaning

	0
	pw_name
	Login name

	1
	pw_passwd
	Optional encrypted password

	2
	pw_uid
	Numerical user ID

	3
	pw_gid
	Numerical group ID

	4
	pw_gecos
	User name or comment field

	5
	pw_dir
	User home directory

	6
	pw_shell
	User command interpreter

The uid and gid items are integers, all others are strings. KeyError is
raised if the entry asked for cannot be found.

Note

In traditional Unix the field pw_passwd usually contains a password
encrypted with a DES derived algorithm (see module crypt). However most
modern unices use a so-called shadow password system. On those unices the
pw_passwd field only contains an asterisk ('*') or the letter 'x'
where the encrypted password is stored in a file /etc/shadow which is
not world readable. Whether the pw_passwd field contains anything useful is
system-dependent. If available, the spwd module should be used where
access to the encrypted password is required.

It defines the following items:

	
pwd.getpwuid(uid)

	Return the password database entry for the given numeric user ID.

	
pwd.getpwnam(name)

	Return the password database entry for the given user name.

	
pwd.getpwall()

	Return a list of all available password database entries, in arbitrary order.

See also

	Module grp

	An interface to the group database, similar to this.

	Module spwd

	An interface to the shadow password database, similar to this.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.3. spwd — The shadow password database

New in version 2.5.

This module provides access to the Unix shadow password database. It is
available on various Unix versions.

You must have enough privileges to access the shadow password database (this
usually means you have to be root).

Shadow password database entries are reported as a tuple-like object, whose
attributes correspond to the members of the spwd structure (Attribute field
below, see <shadow.h>):

	Index
	Attribute
	Meaning

	0
	sp_nam
	Login name

	1
	sp_pwd
	Encrypted password

	2
	sp_lstchg
	Date of last change

	3
	sp_min
	Minimal number of days between
changes

	4
	sp_max
	Maximum number of days between
changes

	5
	sp_warn
	Number of days before password
expires to warn user about it

	6
	sp_inact
	Number of days after password
expires until account is
blocked

	7
	sp_expire
	Number of days since 1970-01-01
until account is disabled

	8
	sp_flag
	Reserved

The sp_nam and sp_pwd items are strings, all others are integers.
KeyError is raised if the entry asked for cannot be found.

It defines the following items:

	
spwd.getspnam(name)

	Return the shadow password database entry for the given user name.

	
spwd.getspall()

	Return a list of all available shadow password database entries, in arbitrary
order.

See also

	Module grp

	An interface to the group database, similar to this.

	Module pwd

	An interface to the normal password database, similar to this.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.4. grp — The group database

This module provides access to the Unix group database. It is available on all
Unix versions.

Group database entries are reported as a tuple-like object, whose attributes
correspond to the members of the group structure (Attribute field below, see
<pwd.h>):

	Index
	Attribute
	Meaning

	0
	gr_name
	the name of the group

	1
	gr_passwd
	the (encrypted) group password;
often empty

	2
	gr_gid
	the numerical group ID

	3
	gr_mem
	all the group member’s user
names

The gid is an integer, name and password are strings, and the member list is a
list of strings. (Note that most users are not explicitly listed as members of
the group they are in according to the password database. Check both databases
to get complete membership information. Also note that a gr_name that
starts with a + or - is likely to be a YP/NIS reference and may not be
accessible via getgrnam() or getgrgid().)

It defines the following items:

	
grp.getgrgid(gid)

	Return the group database entry for the given numeric group ID. KeyError
is raised if the entry asked for cannot be found.

	
grp.getgrnam(name)

	Return the group database entry for the given group name. KeyError is
raised if the entry asked for cannot be found.

	
grp.getgrall()

	Return a list of all available group entries, in arbitrary order.

See also

	Module pwd

	An interface to the user database, similar to this.

	Module spwd

	An interface to the shadow password database, similar to this.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.5. crypt — Function to check Unix passwords

This module implements an interface to the crypt(3) routine, which is
a one-way hash function based upon a modified DES algorithm; see the Unix man
page for further details. Possible uses include allowing Python scripts to
accept typed passwords from the user, or attempting to crack Unix passwords with
a dictionary.

Notice that the behavior of this module depends on the actual implementation of
the crypt(3) routine in the running system. Therefore, any
extensions available on the current implementation will also be available on
this module.

	
crypt.crypt(word, salt)

	word will usually be a user’s password as typed at a prompt or in a graphical
interface. salt is usually a random two-character string which will be used
to perturb the DES algorithm in one of 4096 ways. The characters in salt must
be in the set [./a-zA-Z0-9]. Returns the hashed password as a string, which
will be composed of characters from the same alphabet as the salt (the first two
characters represent the salt itself).

Since a few crypt(3) extensions allow different values, with
different sizes in the salt, it is recommended to use the full crypted
password as salt when checking for a password.

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
 username = raw_input('Python login:')
 cryptedpasswd = pwd.getpwnam(username)[1]
 if cryptedpasswd:
 if cryptedpasswd == 'x' or cryptedpasswd == '*':
 raise NotImplementedError(
 "Sorry, currently no support for shadow passwords")
 cleartext = getpass.getpass()
 return crypt.crypt(cleartext, cryptedpasswd) == cryptedpasswd
 else:
 return 1

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.6. dl — Call C functions in shared objects

Deprecated since version 2.6: The dl module has been removed in Python 3.0. Use the ctypes
module instead.

The dl module defines an interface to the dlopen() function, which
is the most common interface on Unix platforms for handling dynamically linked
libraries. It allows the program to call arbitrary functions in such a library.

Warning

The dl module bypasses the Python type system and error handling. If
used incorrectly it may cause segmentation faults, crashes or other incorrect
behaviour.

Note

This module will not work unless sizeof(int) == sizeof(long) == sizeof(char
*) If this is not the case, SystemError will be raised on import.

The dl module defines the following function:

	
dl.open(name[, mode=RTLD_LAZY])

	Open a shared object file, and return a handle. Mode signifies late binding
(RTLD_LAZY) or immediate binding (RTLD_NOW). Default is
RTLD_LAZY. Note that some systems do not support RTLD_NOW.

Return value is a dlobject.

The dl module defines the following constants:

	
dl.RTLD_LAZY

	Useful as an argument to open().

	
dl.RTLD_NOW

	Useful as an argument to open(). Note that on systems which do not
support immediate binding, this constant will not appear in the module. For
maximum portability, use hasattr() to determine if the system supports
immediate binding.

The dl module defines the following exception:

	
exception dl.error

	Exception raised when an error has occurred inside the dynamic loading and
linking routines.

Example:

>>> import dl, time
>>> a=dl.open('/lib/libc.so.6')
>>> a.call('time'), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of
the fact that using this module is usually a bad alternative.

35.6.1. Dl Objects

Dl objects, as returned by open() above, have the following methods:

	
dl.close()

	Free all resources, except the memory.

	
dl.sym(name)

	Return the pointer for the function named name, as a number, if it exists in
the referenced shared object, otherwise None. This is useful in code like:

>>> if a.sym('time'):
... a.call('time')
... else:
... time.time()

(Note that this function will return a non-zero number, as zero is the NULL
pointer)

	
dl.call(name[, arg1[, arg2...]])

	Call the function named name in the referenced shared object. The arguments
must be either Python integers, which will be passed as is, Python strings, to
which a pointer will be passed, or None, which will be passed as NULL.
Note that strings should only be passed to functions as const char*,
as Python will not like its string mutated.

There must be at most 10 arguments, and arguments not given will be treated as
None. The function’s return value must be a C long, which is a
Python integer.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.7. termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a
complete description of these calls, see the POSIX or Unix manual pages. It is
only available for those Unix versions that support POSIX termios style tty
I/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first
argument. This can be an integer file descriptor, such as returned by
sys.stdin.fileno(), or a file object, such as sys.stdin itself.

This module also defines all the constants needed to work with the functions
provided here; these have the same name as their counterparts in C. Please
refer to your system documentation for more information on using these terminal
control interfaces.

The module defines the following functions:

	
termios.tcgetattr(fd)

	Return a list containing the tty attributes for file descriptor fd, as
follows: [iflag, oflag, cflag, lflag, ispeed, ospeed, cc] where cc is a
list of the tty special characters (each a string of length 1, except the
items with indices VMIN and VTIME, which are integers when
these fields are defined). The interpretation of the flags and the speeds as
well as the indexing in the cc array must be done using the symbolic
constants defined in the termios module.

	
termios.tcsetattr(fd, when, attributes)

	Set the tty attributes for file descriptor fd from the attributes, which is
a list like the one returned by tcgetattr(). The when argument
determines when the attributes are changed: TCSANOW to change
immediately, TCSADRAIN to change after transmitting all queued output,
or TCSAFLUSH to change after transmitting all queued output and
discarding all queued input.

	
termios.tcsendbreak(fd, duration)

	Send a break on file descriptor fd. A zero duration sends a break for 0.25
–0.5 seconds; a nonzero duration has a system dependent meaning.

	
termios.tcdrain(fd)

	Wait until all output written to file descriptor fd has been transmitted.

	
termios.tcflush(fd, queue)

	Discard queued data on file descriptor fd. The queue selector specifies
which queue: TCIFLUSH for the input queue, TCOFLUSH for the
output queue, or TCIOFLUSH for both queues.

	
termios.tcflow(fd, action)

	Suspend or resume input or output on file descriptor fd. The action
argument can be TCOOFF to suspend output, TCOON to restart
output, TCIOFF to suspend input, or TCION to restart input.

See also

	Module tty

	Convenience functions for common terminal control operations.

35.7.1. Example

Here’s a function that prompts for a password with echoing turned off. Note the
technique using a separate tcgetattr() call and a try ...
finally statement to ensure that the old tty attributes are restored
exactly no matter what happens:

def getpass(prompt="Password: "):
 import termios, sys
 fd = sys.stdin.fileno()
 old = termios.tcgetattr(fd)
 new = termios.tcgetattr(fd)
 new[3] = new[3] & ~termios.ECHO # lflags
 try:
 termios.tcsetattr(fd, termios.TCSADRAIN, new)
 passwd = raw_input(prompt)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old)
 return passwd

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.8. tty — Terminal control functions

The tty module defines functions for putting the tty into cbreak and raw
modes.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

	
tty.setraw(fd[, when])

	Change the mode of the file descriptor fd to raw. If when is omitted, it
defaults to termios.TCSAFLUSH, and is passed to
termios.tcsetattr().

	
tty.setcbreak(fd[, when])

	Change the mode of file descriptor fd to cbreak. If when is omitted, it
defaults to termios.TCSAFLUSH, and is passed to
termios.tcsetattr().

See also

	Module termios

	Low-level terminal control interface.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.9. pty — Pseudo-terminal utilities

The pty module defines operations for handling the pseudo-terminal
concept: starting another process and being able to write to and read from its
controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependent, there is code to
do it only for Linux. (The Linux code is supposed to work on other platforms,
but hasn’t been tested yet.)

The pty module defines the following functions:

	
pty.fork()

	Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return
value is (pid, fd). Note that the child gets pid 0, and the fd is
invalid. The parent’s return value is the pid of the child, and fd is a
file descriptor connected to the child’s controlling terminal (and also to the
child’s standard input and output).

	
pty.openpty()

	Open a new pseudo-terminal pair, using os.openpty() if possible, or
emulation code for generic Unix systems. Return a pair of file descriptors
(master, slave), for the master and the slave end, respectively.

	
pty.spawn(argv[, master_read[, stdin_read]])

	Spawn a process, and connect its controlling terminal with the current
process’s standard io. This is often used to baffle programs which insist on
reading from the controlling terminal.

The functions master_read and stdin_read should be functions which read from
a file descriptor. The defaults try to read 1024 bytes each time they are
called.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.10. fcntl — The fcntl() and ioctl() system calls

This module performs file control and I/O control on file descriptors. It is an
interface to the fcntl() and ioctl() Unix routines.

All functions in this module take a file descriptor fd as their first
argument. This can be an integer file descriptor, such as returned by
sys.stdin.fileno(), or a file object, such as sys.stdin itself, which
provides a fileno() which returns a genuine file descriptor.

The module defines the following functions:

	
fcntl.fcntl(fd, op[, arg])

	Perform the requested operation on file descriptor fd (file objects providing
a fileno() method are accepted as well). The operation is defined by op
and is operating system dependent. These codes are also found in the
fcntl module. The argument arg is optional, and defaults to the integer
value 0. When present, it can either be an integer value, or a string.
With the argument missing or an integer value, the return value of this function
is the integer return value of the C fcntl() call. When the argument is
a string it represents a binary structure, e.g. created by struct.pack().
The binary data is copied to a buffer whose address is passed to the C
fcntl() call. The return value after a successful call is the contents
of the buffer, converted to a string object. The length of the returned string
will be the same as the length of the arg argument. This is limited to 1024
bytes. If the information returned in the buffer by the operating system is
larger than 1024 bytes, this is most likely to result in a segmentation
violation or a more subtle data corruption.

If the fcntl() fails, an IOError is raised.

	
fcntl.ioctl(fd, op[, arg[, mutate_flag]])

	This function is identical to the fcntl() function, except that the
operations are typically defined in the library module termios and the
argument handling is even more complicated.

The op parameter is limited to values that can fit in 32-bits.

The parameter arg can be one of an integer, absent (treated identically to the
integer 0), an object supporting the read-only buffer interface (most likely
a plain Python string) or an object supporting the read-write buffer interface.

In all but the last case, behaviour is as for the fcntl() function.

If a mutable buffer is passed, then the behaviour is determined by the value of
the mutate_flag parameter.

If it is false, the buffer’s mutability is ignored and behaviour is as for a
read-only buffer, except that the 1024 byte limit mentioned above is avoided –
so long as the buffer you pass is as least as long as what the operating system
wants to put there, things should work.

If mutate_flag is true, then the buffer is (in effect) passed to the
underlying ioctl() system call, the latter’s return code is passed back to
the calling Python, and the buffer’s new contents reflect the action of the
ioctl(). This is a slight simplification, because if the supplied buffer
is less than 1024 bytes long it is first copied into a static buffer 1024 bytes
long which is then passed to ioctl() and copied back into the supplied
buffer.

If mutate_flag is not supplied, then from Python 2.5 it defaults to true,
which is a change from versions 2.3 and 2.4. Supply the argument explicitly if
version portability is a priority.

An example:

>>> import array, fcntl, struct, termios, os
>>> os.getpgrp()
13341
>>> struct.unpack('h', fcntl.ioctl(0, termios.TIOCGPGRP, " "))[0]
13341
>>> buf = array.array('h', [0])
>>> fcntl.ioctl(0, termios.TIOCGPGRP, buf, 1)
0
>>> buf
array('h', [13341])

	
fcntl.flock(fd, op)

	Perform the lock operation op on file descriptor fd (file objects providing
a fileno() method are accepted as well). See the Unix manual
flock(2) for details. (On some systems, this function is emulated
using fcntl().)

	
fcntl.lockf(fd, operation[, length[, start[, whence]]])

	This is essentially a wrapper around the fcntl() locking calls. fd is
the file descriptor of the file to lock or unlock, and operation is one of the
following values:

	LOCK_UN – unlock

	LOCK_SH – acquire a shared lock

	LOCK_EX – acquire an exclusive lock

When operation is LOCK_SH or LOCK_EX, it can also be
bitwise ORed with LOCK_NB to avoid blocking on lock acquisition.
If LOCK_NB is used and the lock cannot be acquired, an
IOError will be raised and the exception will have an errno
attribute set to EACCES or EAGAIN (depending on the
operating system; for portability, check for both values). On at least some
systems, LOCK_EX can only be used if the file descriptor refers to a
file opened for writing.

length is the number of bytes to lock, start is the byte offset at which the
lock starts, relative to whence, and whence is as with fileobj.seek(),
specifically:

	0 – relative to the start of the file (SEEK_SET)

	1 – relative to the current buffer position (SEEK_CUR)

	2 – relative to the end of the file (SEEK_END)

The default for start is 0, which means to start at the beginning of the file.
The default for length is 0 which means to lock to the end of the file. The
default for whence is also 0.

Examples (all on a SVR4 compliant system):

import struct, fcntl, os

f = open(...)
rv = fcntl.fcntl(f, fcntl.F_SETFL, os.O_NDELAY)

lockdata = struct.pack('hhllhh', fcntl.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(f, fcntl.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an
integer value; in the second example it will hold a string value. The structure
lay-out for the lockdata variable is system dependent — therefore using the
flock() call may be better.

See also

	Module os

	If the locking flags O_SHLOCK and O_EXLOCK are present
in the os module (on BSD only), the os.open() function
provides an alternative to the lockf() and flock() functions.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.11. pipes — Interface to shell pipelines

The pipes module defines a class to abstract the concept of a pipeline
— a sequence of converters from one file to another.

Because the module uses /bin/sh command lines, a POSIX or compatible
shell for os.system() and os.popen() is required.

The pipes module defines the following class:

	
class pipes.Template

	An abstraction of a pipeline.

Example:

>>> import pipes
>>> t=pipes.Template()
>>> t.append('tr a-z A-Z', '--')
>>> f=t.open('/tmp/1', 'w')
>>> f.write('hello world')
>>> f.close()
>>> open('/tmp/1').read()
'HELLO WORLD'

35.11.1. Template Objects

Template objects following methods:

	
Template.reset()

	Restore a pipeline template to its initial state.

	
Template.clone()

	Return a new, equivalent, pipeline template.

	
Template.debug(flag)

	If flag is true, turn debugging on. Otherwise, turn debugging off. When
debugging is on, commands to be executed are printed, and the shell is given
set -x command to be more verbose.

	
Template.append(cmd, kind)

	Append a new action at the end. The cmd variable must be a valid bourne shell
command. The kind variable consists of two letters.

The first letter can be either of '-' (which means the command reads its
standard input), 'f' (which means the commands reads a given file on the
command line) or '.' (which means the commands reads no input, and hence
must be first.)

Similarly, the second letter can be either of '-' (which means the command
writes to standard output), 'f' (which means the command writes a file on
the command line) or '.' (which means the command does not write anything,
and hence must be last.)

	
Template.prepend(cmd, kind)

	Add a new action at the beginning. See append() for explanations of the
arguments.

	
Template.open(file, mode)

	Return a file-like object, open to file, but read from or written to by the
pipeline. Note that only one of 'r', 'w' may be given.

	
Template.copy(infile, outfile)

	Copy infile to outfile through the pipe.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.12. posixfile — File-like objects with locking support

Deprecated since version 1.5: The locking operation that this module provides is done better and more portably
by the fcntl.lockf() call.

This module implements some additional functionality over the built-in file
objects. In particular, it implements file locking, control over the file
flags, and an easy interface to duplicate the file object. The module defines a
new file object, the posixfile object. It has all the standard file object
methods and adds the methods described below. This module only works for
certain flavors of Unix, since it uses fcntl.fcntl() for file locking.

To instantiate a posixfile object, use the posixfile.open() function. The
resulting object looks and feels roughly the same as a standard file object.

The posixfile module defines the following constants:

	
posixfile.SEEK_SET

	Offset is calculated from the start of the file.

	
posixfile.SEEK_CUR

	Offset is calculated from the current position in the file.

	
posixfile.SEEK_END

	Offset is calculated from the end of the file.

The posixfile module defines the following functions:

	
posixfile.open(filename[, mode[, bufsize]])

	Create a new posixfile object with the given filename and mode. The filename,
mode and bufsize arguments are interpreted the same way as by the built-in
open() function.

	
posixfile.fileopen(fileobject)

	Create a new posixfile object with the given standard file object. The resulting
object has the same filename and mode as the original file object.

The posixfile object defines the following additional methods:

	
posixfile.lock(fmt[, len[, start[, whence]]])

	Lock the specified section of the file that the file object is referring to.
The format is explained below in a table. The len argument specifies the
length of the section that should be locked. The default is 0. start
specifies the starting offset of the section, where the default is 0. The
whence argument specifies where the offset is relative to. It accepts one of
the constants SEEK_SET, SEEK_CUR or SEEK_END. The
default is SEEK_SET. For more information about the arguments refer to
the fcntl(2) manual page on your system.

	
posixfile.flags([flags])

	Set the specified flags for the file that the file object is referring to. The
new flags are ORed with the old flags, unless specified otherwise. The format
is explained below in a table. Without the flags argument a string indicating
the current flags is returned (this is the same as the ? modifier). For
more information about the flags refer to the fcntl(2) manual page on
your system.

	
posixfile.dup()

	Duplicate the file object and the underlying file pointer and file descriptor.
The resulting object behaves as if it were newly opened.

	
posixfile.dup2(fd)

	Duplicate the file object and the underlying file pointer and file descriptor.
The new object will have the given file descriptor. Otherwise the resulting
object behaves as if it were newly opened.

	
posixfile.file()

	Return the standard file object that the posixfile object is based on. This is
sometimes necessary for functions that insist on a standard file object.

All methods raise IOError when the request fails.

Format characters for the lock() method have the following meaning:

	Format
	Meaning

	u
	unlock the specified region

	r
	request a read lock for the specified section

	w
	request a write lock for the specified
section

In addition the following modifiers can be added to the format:

	Modifier
	Meaning
	Notes

	|
	wait until the lock has been
granted
	

	?
	return the first lock
conflicting with the requested
lock, or None if there is
no conflict.
	(1)

Note:

	The lock returned is in the format (mode, len, start, whence, pid) where
mode is a character representing the type of lock (‘r’ or ‘w’). This modifier
prevents a request from being granted; it is for query purposes only.

Format characters for the flags() method have the following meanings:

	Format
	Meaning

	a
	append only flag

	c
	close on exec flag

	n
	no delay flag (also called non-blocking flag)

	s
	synchronization flag

In addition the following modifiers can be added to the format:

	Modifier
	Meaning
	Notes

	!
	turn the specified flags ‘off’,
instead of the default ‘on’
	(1)

	=
	replace the flags, instead of
the default ‘OR’ operation
	(1)

	?
	return a string in which the
characters represent the flags
that are set.
	(2)

Notes:

	The ! and = modifiers are mutually exclusive.

	This string represents the flags after they may have been altered by the same
call.

Examples:

import posixfile

file = posixfile.open('/tmp/test', 'w')
file.lock('w|')
...
file.lock('u')
file.close()

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.13. resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system
resources utilized by a program.

Symbolic constants are used to specify particular system resources and to
request usage information about either the current process or its children.

A single exception is defined for errors:

	
exception resource.error

	The functions described below may raise this error if the underlying system call
failures unexpectedly.

35.13.1. Resource Limits

Resources usage can be limited using the setrlimit() function described
below. Each resource is controlled by a pair of limits: a soft limit and a hard
limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard
limit can be lowered to any value greater than the soft limit, but not raised.
(Only processes with the effective UID of the super-user can raise a hard
limit.)

The specific resources that can be limited are system dependent. They are
described in the getrlimit(2) man page. The resources listed below
are supported when the underlying operating system supports them; resources
which cannot be checked or controlled by the operating system are not defined in
this module for those platforms.

	
resource.getrlimit(resource)

	Returns a tuple (soft, hard) with the current soft and hard limits of
resource. Raises ValueError if an invalid resource is specified, or
error if the underlying system call fails unexpectedly.

	
resource.setrlimit(resource, limits)

	Sets new limits of consumption of resource. The limits argument must be a
tuple (soft, hard) of two integers describing the new limits. A value of
-1 can be used to specify the maximum possible upper limit.

Raises ValueError if an invalid resource is specified, if the new soft
limit exceeds the hard limit, or if a process tries to raise its hard limit
(unless the process has an effective UID of super-user). Can also raise
error if the underlying system call fails.

These symbols define resources whose consumption can be controlled using the
setrlimit() and getrlimit() functions described below. The values of
these symbols are exactly the constants used by C programs.

The Unix man page for getrlimit(2) lists the available resources.
Note that not all systems use the same symbol or same value to denote the same
resource. This module does not attempt to mask platform differences — symbols
not defined for a platform will not be available from this module on that
platform.

	
resource.RLIMIT_CORE

	The maximum size (in bytes) of a core file that the current process can create.
This may result in the creation of a partial core file if a larger core would be
required to contain the entire process image.

	
resource.RLIMIT_CPU

	The maximum amount of processor time (in seconds) that a process can use. If
this limit is exceeded, a SIGXCPU signal is sent to the process. (See
the signal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

	
resource.RLIMIT_FSIZE

	The maximum size of a file which the process may create. This only affects the
stack of the main thread in a multi-threaded process.

	
resource.RLIMIT_DATA

	The maximum size (in bytes) of the process’s heap.

	
resource.RLIMIT_STACK

	The maximum size (in bytes) of the call stack for the current process.

	
resource.RLIMIT_RSS

	The maximum resident set size that should be made available to the process.

	
resource.RLIMIT_NPROC

	The maximum number of processes the current process may create.

	
resource.RLIMIT_NOFILE

	The maximum number of open file descriptors for the current process.

	
resource.RLIMIT_OFILE

	The BSD name for RLIMIT_NOFILE.

	
resource.RLIMIT_MEMLOCK

	The maximum address space which may be locked in memory.

	
resource.RLIMIT_VMEM

	The largest area of mapped memory which the process may occupy.

	
resource.RLIMIT_AS

	The maximum area (in bytes) of address space which may be taken by the process.

35.13.2. Resource Usage

These functions are used to retrieve resource usage information:

	
resource.getrusage(who)

	This function returns an object that describes the resources consumed by either
the current process or its children, as specified by the who parameter. The
who parameter should be specified using one of the RUSAGE_*
constants described below.

The fields of the return value each describe how a particular system resource
has been used, e.g. amount of time spent running is user mode or number of times
the process was swapped out of main memory. Some values are dependent on the
clock tick internal, e.g. the amount of memory the process is using.

For backward compatibility, the return value is also accessible as a tuple of 16
elements.

The fields ru_utime and ru_stime of the return value are
floating point values representing the amount of time spent executing in user
mode and the amount of time spent executing in system mode, respectively. The
remaining values are integers. Consult the getrusage(2) man page for
detailed information about these values. A brief summary is presented here:

	Index
	Field
	Resource

	0
	ru_utime
	time in user mode (float)

	1
	ru_stime
	time in system mode (float)

	2
	ru_maxrss
	maximum resident set size

	3
	ru_ixrss
	shared memory size

	4
	ru_idrss
	unshared memory size

	5
	ru_isrss
	unshared stack size

	6
	ru_minflt
	page faults not requiring I/O

	7
	ru_majflt
	page faults requiring I/O

	8
	ru_nswap
	number of swap outs

	9
	ru_inblock
	block input operations

	10
	ru_oublock
	block output operations

	11
	ru_msgsnd
	messages sent

	12
	ru_msgrcv
	messages received

	13
	ru_nsignals
	signals received

	14
	ru_nvcsw
	voluntary context switches

	15
	ru_nivcsw
	involuntary context switches

This function will raise a ValueError if an invalid who parameter is
specified. It may also raise error exception in unusual circumstances.

Changed in version 2.3: Added access to values as attributes of the returned object.

	
resource.getpagesize()

	Returns the number of bytes in a system page. (This need not be the same as the
hardware page size.) This function is useful for determining the number of bytes
of memory a process is using. The third element of the tuple returned by
getrusage() describes memory usage in pages; multiplying by page size
produces number of bytes.

The following RUSAGE_* symbols are passed to the getrusage()
function to specify which processes information should be provided for.

	
resource.RUSAGE_SELF

	RUSAGE_SELF should be used to request information pertaining only to
the process itself.

	
resource.RUSAGE_CHILDREN

	Pass to getrusage() to request resource information for child processes of
the calling process.

	
resource.RUSAGE_BOTH

	Pass to getrusage() to request resources consumed by both the current
process and child processes. May not be available on all systems.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.14. nis — Interface to Sun’s NIS (Yellow Pages)

The nis module gives a thin wrapper around the NIS library, useful for
central administration of several hosts.

Because NIS exists only on Unix systems, this module is only available for Unix.

The nis module defines the following functions:

	
nis.match(key, mapname[, domain=default_domain])

	Return the match for key in map mapname, or raise an error
(nis.error) if there is none. Both should be strings, key is 8-bit
clean. Return value is an arbitrary array of bytes (may contain NULL and
other joys).

Note that mapname is first checked if it is an alias to another name.

Changed in version 2.5: The domain argument allows to override the NIS domain used for the lookup. If
unspecified, lookup is in the default NIS domain.

	
nis.cat(mapname[, domain=default_domain])

	Return a dictionary mapping key to value such that match(key,
mapname)==value. Note that both keys and values of the dictionary are
arbitrary arrays of bytes.

Note that mapname is first checked if it is an alias to another name.

Changed in version 2.5: The domain argument allows to override the NIS domain used for the lookup. If
unspecified, lookup is in the default NIS domain.

	
nis.maps([domain=default_domain])

	Return a list of all valid maps.

Changed in version 2.5: The domain argument allows to override the NIS domain used for the lookup. If
unspecified, lookup is in the default NIS domain.

	
nis.get_default_domain()

	Return the system default NIS domain.

New in version 2.5.

The nis module defines the following exception:

	
exception nis.error

	An error raised when a NIS function returns an error code.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.15. syslog — Unix syslog library routines

This module provides an interface to the Unix syslog library routines.
Refer to the Unix manual pages for a detailed description of the syslog
facility.

This module wraps the system syslog family of routines. A pure Python
library that can speak to a syslog server is available in the
logging.handlers module as SysLogHandler.

The module defines the following functions:

	
syslog.syslog([priority], message)

	Send the string message to the system logger. A trailing newline is added
if necessary. Each message is tagged with a priority composed of a
facility and a level. The optional priority argument, which defaults
to LOG_INFO, determines the message priority. If the facility is
not encoded in priority using logical-or (LOG_INFO | LOG_USER), the
value given in the openlog() call is used.

If openlog() has not been called prior to the call to syslog(),
openlog() will be called with no arguments.

	
syslog.openlog([ident[, logopt[, facility]]])

	Logging options of subsequent syslog() calls can be set by calling
openlog(). syslog() will call openlog() with no arguments
if the log is not currently open.

The optional ident keyword argument is a string which is prepended to every
message, and defaults to sys.argv[0] with leading path components
stripped. The optional logopt keyword argument (default is 0) is a bit
field – see below for possible values to combine. The optional facility
keyword argument (default is LOG_USER) sets the default facility for
messages which do not have a facility explicitly encoded.

	
syslog.closelog()

	Reset the syslog module values and call the system library closelog().

This causes the module to behave as it does when initially imported. For
example, openlog() will be called on the first syslog() call (if
openlog() hasn’t already been called), and ident and other
openlog() parameters are reset to defaults.

	
syslog.setlogmask(maskpri)

	Set the priority mask to maskpri and return the previous mask value. Calls
to syslog() with a priority level not set in maskpri are ignored.
The default is to log all priorities. The function LOG_MASK(pri)
calculates the mask for the individual priority pri. The function
LOG_UPTO(pri) calculates the mask for all priorities up to and including
pri.

The module defines the following constants:

	Priority levels (high to low):

	LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,
LOG_WARNING, LOG_NOTICE, LOG_INFO,
LOG_DEBUG.

	Facilities:

	LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON,
LOG_AUTH, LOG_LPR, LOG_NEWS, LOG_UUCP,
LOG_CRON and LOG_LOCAL0 to LOG_LOCAL7.

	Log options:

	LOG_PID, LOG_CONS, LOG_NDELAY, LOG_NOWAIT
and LOG_PERROR if defined in <syslog.h>.

35.15.1. Examples

35.15.1.1. Simple example

A simple set of examples:

import syslog

syslog.syslog('Processing started')
if error:
 syslog.syslog(syslog.LOG_ERR, 'Processing started')

An example of setting some log options, these would include the process ID in
logged messages, and write the messages to the destination facility used for
mail logging:

syslog.openlog(logopt=syslog.LOG_PID, facility=syslog.LOG_MAIL)
syslog.syslog('E-mail processing initiated...')

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	35. Unix Specific Services

35.16. commands — Utilities for running commands

Deprecated since version 2.6: The commands module has been removed in Python 3.0. Use the
subprocess module instead.

The commands module contains wrapper functions for os.popen() which
take a system command as a string and return any output generated by the command
and, optionally, the exit status.

The subprocess module provides more powerful facilities for spawning new
processes and retrieving their results. Using the subprocess module is
preferable to using the commands module.

Note

In Python 3.x, getstatus() and two undocumented functions
(mk2arg() and mkarg()) have been removed. Also,
getstatusoutput() and getoutput() have been moved to the
subprocess module.

The commands module defines the following functions:

	
commands.getstatusoutput(cmd)

	Execute the string cmd in a shell with os.popen() and return a 2-tuple
(status, output). cmd is actually run as { cmd ; } 2>&1, so that the
returned output will contain output or error messages. A trailing newline is
stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function wait().

	
commands.getoutput(cmd)

	Like getstatusoutput(), except the exit status is ignored and the return
value is a string containing the command’s output.

	
commands.getstatus(file)

	Return the output of ls -ld file as a string. This function uses the
getoutput() function, and properly escapes backslashes and dollar signs in
the argument.

Deprecated since version 2.6: This function is nonobvious and useless. The name is also misleading in the
presence of getstatusoutput().

Example:

>>> import commands
>>> commands.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')
>>> commands.getstatusoutput('cat /bin/junk')
(256, 'cat: /bin/junk: No such file or directory')
>>> commands.getstatusoutput('/bin/junk')
(256, 'sh: /bin/junk: not found')
>>> commands.getoutput('ls /bin/ls')
'/bin/ls'
>>> commands.getstatus('/bin/ls')
'-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls'

See also

	Module subprocess

	Module for spawning and managing subprocesses.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

36. Mac OS X specific services

This chapter describes modules that are only available on the Mac OS X platform.

See the chapters MacPython OSA Modules and Undocumented Mac OS modules for more
modules, and the HOWTO Using Python on a Macintosh for a general introduction to
Mac-specific Python programming.

Note

These modules are deprecated and have been removed in Python 3.x.

	36.1. ic — Access to the Mac OS X Internet Config
	36.1.1. IC Objects

	36.2. MacOS — Access to Mac OS interpreter features

	36.3. macostools — Convenience routines for file manipulation

	36.4. findertools — The finder‘s Apple Events interface

	36.5. EasyDialogs — Basic Macintosh dialogs
	36.5.1. ProgressBar Objects

	36.6. FrameWork — Interactive application framework
	36.6.1. Application Objects

	36.6.2. Window Objects

	36.6.3. ControlsWindow Object

	36.6.4. ScrolledWindow Object

	36.6.5. DialogWindow Objects

	36.7. autoGIL — Global Interpreter Lock handling in event loops

	36.8. Mac OS Toolbox Modules
	36.8.1. Carbon.AE — Apple Events

	36.8.2. Carbon.AH — Apple Help

	36.8.3. Carbon.App — Appearance Manager

	36.8.4. Carbon.Appearance — Appearance Manager constants

	36.8.5. Carbon.CF — Core Foundation

	36.8.6. Carbon.CG — Core Graphics

	36.8.7. Carbon.CarbonEvt — Carbon Event Manager

	36.8.8. Carbon.CarbonEvents — Carbon Event Manager constants

	36.8.9. Carbon.Cm — Component Manager

	36.8.10. Carbon.Components — Component Manager constants

	36.8.11. Carbon.ControlAccessor — Control Manager accssors

	36.8.12. Carbon.Controls — Control Manager constants

	36.8.13. Carbon.CoreFounation — CoreFounation constants

	36.8.14. Carbon.CoreGraphics — CoreGraphics constants

	36.8.15. Carbon.Ctl — Control Manager

	36.8.16. Carbon.Dialogs — Dialog Manager constants

	36.8.17. Carbon.Dlg — Dialog Manager

	36.8.18. Carbon.Drag — Drag and Drop Manager

	36.8.19. Carbon.Dragconst — Drag and Drop Manager constants

	36.8.20. Carbon.Events — Event Manager constants

	36.8.21. Carbon.Evt — Event Manager

	36.8.22. Carbon.File — File Manager

	36.8.23. Carbon.Files — File Manager constants

	36.8.24. Carbon.Fm — Font Manager

	36.8.25. Carbon.Folder — Folder Manager

	36.8.26. Carbon.Folders — Folder Manager constants

	36.8.27. Carbon.Fonts — Font Manager constants

	36.8.28. Carbon.Help — Help Manager

	36.8.29. Carbon.IBCarbon — Carbon InterfaceBuilder

	36.8.30. Carbon.IBCarbonRuntime — Carbon InterfaceBuilder constants

	36.8.31. Carbon.Icn — Carbon Icon Manager

	36.8.32. Carbon.Icons — Carbon Icon Manager constants

	36.8.33. Carbon.Launch — Carbon Launch Services

	36.8.34. Carbon.LaunchServices — Carbon Launch Services constants

	36.8.35. Carbon.List — List Manager

	36.8.36. Carbon.Lists — List Manager constants

	36.8.37. Carbon.MacHelp — Help Manager constants

	36.8.38. Carbon.MediaDescr — Parsers and generators for Quicktime Media descriptors

	36.8.39. Carbon.Menu — Menu Manager

	36.8.40. Carbon.Menus — Menu Manager constants

	36.8.41. Carbon.Mlte — MultiLingual Text Editor

	36.8.42. Carbon.OSA — Carbon OSA Interface

	36.8.43. Carbon.OSAconst — Carbon OSA Interface constants

	36.8.44. Carbon.QDOffscreen — QuickDraw Offscreen constants

	36.8.45. Carbon.Qd — QuickDraw

	36.8.46. Carbon.Qdoffs — QuickDraw Offscreen

	36.8.47. Carbon.Qt — QuickTime

	36.8.48. Carbon.QuickDraw — QuickDraw constants

	36.8.49. Carbon.QuickTime — QuickTime constants

	36.8.50. Carbon.Res — Resource Manager and Handles

	36.8.51. Carbon.Resources — Resource Manager and Handles constants

	36.8.52. Carbon.Scrap — Scrap Manager

	36.8.53. Carbon.Snd — Sound Manager

	36.8.54. Carbon.Sound — Sound Manager constants

	36.8.55. Carbon.TE — TextEdit

	36.8.56. Carbon.TextEdit — TextEdit constants

	36.8.57. Carbon.Win — Window Manager

	36.8.58. Carbon.Windows — Window Manager constants

	36.9. ColorPicker — Color selection dialog

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.1. ic — Access to the Mac OS X Internet Config

This module provides access to various internet-related preferences set through
System Preferences or the Finder.

Note

This module has been removed in Python 3.x.

There is a low-level companion module icglue which provides the basic
Internet Config access functionality. This low-level module is not documented,
but the docstrings of the routines document the parameters and the routine names
are the same as for the Pascal or C API to Internet Config, so the standard IC
programmers’ documentation can be used if this module is needed.

The ic module defines the error exception and symbolic names for
all error codes Internet Config can produce; see the source for details.

	
exception ic.error

	Exception raised on errors in the ic module.

The ic module defines the following class and function:

	
class ic.IC([signature[, ic]])

	Create an Internet Config object. The signature is a 4-character creator code of
the current application (default 'Pyth') which may influence some of ICs
settings. The optional ic argument is a low-level icglue.icinstance
created beforehand, this may be useful if you want to get preferences from a
different config file, etc.

	
ic.launchurl(url[, hint])

	
ic.parseurl(data[, start[, end[, hint]]])

	
ic.mapfile(file)

	
ic.maptypecreator(type, creator[, filename])

	
ic.settypecreator(file)

	These functions are “shortcuts” to the methods of the same name, described
below.

36.1.1. IC Objects

IC objects have a mapping interface, hence to obtain the mail address
you simply get ic['MailAddress']. Assignment also works, and changes the
option in the configuration file.

The module knows about various datatypes, and converts the internal IC
representation to a “logical” Python data structure. Running the ic
module standalone will run a test program that lists all keys and values in your
IC database, this will have to serve as documentation.

If the module does not know how to represent the data it returns an instance of
the ICOpaqueData type, with the raw data in its data attribute.
Objects of this type are also acceptable values for assignment.

Besides the dictionary interface, IC objects have the following
methods:

	
IC.launchurl(url[, hint])

	Parse the given URL, launch the correct application and pass it the URL. The
optional hint can be a scheme name such as 'mailto:', in which case
incomplete URLs are completed with this scheme. If hint is not provided,
incomplete URLs are invalid.

	
IC.parseurl(data[, start[, end[, hint]]])

	Find an URL somewhere in data and return start position, end position and the
URL. The optional start and end can be used to limit the search, so for
instance if a user clicks in a long text field you can pass the whole text field
and the click-position in start and this routine will return the whole URL in
which the user clicked. As above, hint is an optional scheme used to complete
incomplete URLs.

	
IC.mapfile(file)

	Return the mapping entry for the given file, which can be passed as either a
filename or an FSSpec() result, and which need not exist.

The mapping entry is returned as a tuple (version, type, creator, postcreator,
flags, extension, appname, postappname, mimetype, entryname), where version
is the entry version number, type is the 4-character filetype, creator is
the 4-character creator type, postcreator is the 4-character creator code of
an optional application to post-process the file after downloading, flags are
various bits specifying whether to transfer in binary or ascii and such,
extension is the filename extension for this file type, appname is the
printable name of the application to which this file belongs, postappname is
the name of the postprocessing application, mimetype is the MIME type of this
file and entryname is the name of this entry.

	
IC.maptypecreator(type, creator[, filename])

	Return the mapping entry for files with given 4-character type and creator
codes. The optional filename may be specified to further help finding the
correct entry (if the creator code is '????', for instance).

The mapping entry is returned in the same format as for mapfile.

	
IC.settypecreator(file)

	Given an existing file, specified either as a filename or as an FSSpec()
result, set its creator and type correctly based on its extension. The finder
is told about the change, so the finder icon will be updated quickly.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.2. MacOS — Access to Mac OS interpreter features

This module provides access to MacOS specific functionality in the Python
interpreter, such as how the interpreter eventloop functions and the like. Use
with care.

Note

This module has been removed in Python 3.x.

Note the capitalization of the module name; this is a historical artifact.

	
MacOS.runtimemodel

	Always 'macho', from Python 2.4 on. In earlier versions of Python the value
could also be 'ppc' for the classic Mac OS 8 runtime model or 'carbon'
for the Mac OS 9 runtime model.

	
MacOS.linkmodel

	The way the interpreter has been linked. As extension modules may be
incompatible between linking models, packages could use this information to give
more decent error messages. The value is one of 'static' for a statically
linked Python, 'framework' for Python in a Mac OS X framework, 'shared'
for Python in a standard Unix shared library. Older Pythons could also have the
value 'cfm' for Mac OS 9-compatible Python.

	
exception MacOS.Error

	This exception is raised on MacOS generated errors, either from functions in
this module or from other mac-specific modules like the toolbox interfaces. The
arguments are the integer error code (the OSErr value) and a textual
description of the error code. Symbolic names for all known error codes are
defined in the standard module macerrors.

	
MacOS.GetErrorString(errno)

	Return the textual description of MacOS error code errno.

	
MacOS.DebugStr(message[, object])

	On Mac OS X the string is simply printed to stderr (on older Mac OS systems more
elaborate functionality was available), but it provides a convenient location to
attach a breakpoint in a low-level debugger like gdb.

Note

Not available in 64-bit mode.

	
MacOS.SysBeep()

	Ring the bell.

Note

Not available in 64-bit mode.

	
MacOS.GetTicks()

	Get the number of clock ticks (1/60th of a second) since system boot.

	
MacOS.GetCreatorAndType(file)

	Return the file creator and file type as two four-character strings. The file
parameter can be a pathname or an FSSpec or FSRef object.

Note

It is not possible to use an FSSpec in 64-bit mode.

	
MacOS.SetCreatorAndType(file, creator, type)

	Set the file creator and file type. The file parameter can be a pathname or an
FSSpec or FSRef object. creator and type must be four character
strings.

Note

It is not possible to use an FSSpec in 64-bit mode.

	
MacOS.openrf(name[, mode])

	Open the resource fork of a file. Arguments are the same as for the built-in
function open(). The object returned has file-like semantics, but it is
not a Python file object, so there may be subtle differences.

	
MacOS.WMAvailable()

	Checks whether the current process has access to the window manager. The method
will return False if the window manager is not available, for instance when
running on Mac OS X Server or when logged in via ssh, or when the current
interpreter is not running from a fullblown application bundle. A script runs
from an application bundle either when it has been started with
pythonw instead of python or when running as an applet.

	
MacOS.splash([resourceid])

	Opens a splash screen by resource id. Use resourceid 0 to close
the splash screen.

Note

Not available in 64-bit mode.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.3. macostools — Convenience routines for file manipulation

This module contains some convenience routines for file-manipulation on the
Macintosh. All file parameters can be specified as pathnames, FSRef or
FSSpec objects. This module expects a filesystem which supports forked
files, so it should not be used on UFS partitions.

Note

This module has been removed in Python 3.0.

The macostools module defines the following functions:

	
macostools.copy(src, dst[, createpath[, copytimes]])

	Copy file src to dst. If createpath is non-zero the folders leading to
dst are created if necessary. The method copies data and resource fork and
some finder information (creator, type, flags) and optionally the creation,
modification and backup times (default is to copy them). Custom icons, comments
and icon position are not copied.

Note

This function does not work in 64-bit code because it uses APIs that
are not available in 64-bit mode.

	
macostools.copytree(src, dst)

	Recursively copy a file tree from src to dst, creating folders as needed.
src and dst should be specified as pathnames.

Note

This function does not work in 64-bit code because it uses APIs that
are not available in 64-bit mode.

	
macostools.mkalias(src, dst)

	Create a finder alias dst pointing to src.

Note

This function does not work in 64-bit code because it uses APIs that
are not available in 64-bit mode.

	
macostools.touched(dst)

	Tell the finder that some bits of finder-information such as creator or type for
file dst has changed. The file can be specified by pathname or fsspec. This
call should tell the finder to redraw the files icon.

Deprecated since version 2.6: The function is a no-op on OS X.

	
macostools.BUFSIZ

	The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple
documentation. Hence, aliases created with mkalias() could conceivably
have incompatible behaviour in some cases.

36.4. findertools — The finder‘s Apple Events interface

This module contains routines that give Python programs access to some
functionality provided by the finder. They are implemented as wrappers around
the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames, or as
FSRef or FSSpec objects.

The findertools module defines the following functions:

	
findertools.launch(file)

	Tell the finder to launch file. What launching means depends on the file:
applications are started, folders are opened and documents are opened in the
correct application.

	
findertools.Print(file)

	Tell the finder to print a file. The behaviour is identical to selecting the
file and using the print command in the finder’s file menu.

	
findertools.copy(file, destdir)

	Tell the finder to copy a file or folder file to folder destdir. The
function returns an Alias object pointing to the new file.

	
findertools.move(file, destdir)

	Tell the finder to move a file or folder file to folder destdir. The
function returns an Alias object pointing to the new file.

	
findertools.sleep()

	Tell the finder to put the Macintosh to sleep, if your machine supports it.

	
findertools.restart()

	Tell the finder to perform an orderly restart of the machine.

	
findertools.shutdown()

	Tell the finder to perform an orderly shutdown of the machine.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.5. EasyDialogs — Basic Macintosh dialogs

The EasyDialogs module contains some simple dialogs for the Macintosh.
The dialogs get launched in a separate application which appears in the dock and
must be clicked on for the dialogs be displayed. All routines take an optional
resource ID parameter id with which one can override the DLOG
resource used for the dialog, provided that the dialog items correspond (both
type and item number) to those in the default DLOG resource. See source
code for details.

Note

This module has been removed in Python 3.x.

The EasyDialogs module defines the following functions:

	
EasyDialogs.Message(str[, id[, ok]])

	Displays a modal dialog with the message text str, which should be at most 255
characters long. The button text defaults to “OK”, but is set to the string
argument ok if the latter is supplied. Control is returned when the user
clicks the “OK” button.

	
EasyDialogs.AskString(prompt[, default[, id[, ok[, cancel]]]])

	Asks the user to input a string value via a modal dialog. prompt is the prompt
message, and the optional default supplies the initial value for the string
(otherwise "" is used). The text of the “OK” and “Cancel” buttons can be
changed with the ok and cancel arguments. All strings can be at most 255
bytes long. AskString() returns the string entered or None in
case the user cancelled.

	
EasyDialogs.AskPassword(prompt[, default[, id[, ok[, cancel]]]])

	Asks the user to input a string value via a modal dialog. Like
AskString(), but with the text shown as bullets. The arguments have the
same meaning as for AskString().

	
EasyDialogs.AskYesNoCancel(question[, default[, yes[, no[, cancel[, id]]]]])

	Presents a dialog with prompt question and three buttons labelled “Yes”, “No”,
and “Cancel”. Returns 1 for “Yes”, 0 for “No” and -1 for “Cancel”.
The value of default (or 0 if default is not supplied) is returned when
the RETURN key is pressed. The text of the buttons can be changed with
the yes, no, and cancel arguments; to prevent a button from appearing,
supply "" for the corresponding argument.

	
EasyDialogs.ProgressBar([title[, maxval[, label[, id]]]])

	Displays a modeless progress-bar dialog. This is the constructor for the
ProgressBar class described below. title is the text string displayed
(default “Working...”), maxval is the value at which progress is complete
(default 0, indicating that an indeterminate amount of work remains to be
done), and label is the text that is displayed above the progress bar itself.

	
EasyDialogs.GetArgv([optionlist[commandlist[, addoldfile[, addnewfile[, addfolder[, id]]]]]])

	Displays a dialog which aids the user in constructing a command-line argument
list. Returns the list in sys.argv format, suitable for passing as an
argument to getopt.getopt(). addoldfile, addnewfile, and addfolder
are boolean arguments. When nonzero, they enable the user to insert into the
command line paths to an existing file, a (possibly) not-yet-existent file, and
a folder, respectively. (Note: Option arguments must appear in the command line
before file and folder arguments in order to be recognized by
getopt.getopt().) Arguments containing spaces can be specified by
enclosing them within single or double quotes. A SystemExit exception is
raised if the user presses the “Cancel” button.

optionlist is a list that determines a popup menu from which the allowed
options are selected. Its items can take one of two forms: optstr or
(optstr, descr). When present, descr is a short descriptive string that
is displayed in the dialog while this option is selected in the popup menu. The
correspondence between optstrs and command-line arguments is:

	optstr format
	Command-line format

	x
	-x (short option)

	x: or x=
	-x (short option with value)

	xyz
	--xyz (long option)

	xyz: or xyz=
	--xyz (long option with value)

commandlist is a list of items of the form cmdstr or (cmdstr, descr),
where descr is as above. The cmdstrs will appear in a popup menu. When
chosen, the text of cmdstr will be appended to the command line as is, except
that a trailing ':' or '=' (if present) will be trimmed off.

New in version 2.0.

	
EasyDialogs.AskFileForOpen([message] [, typeList] [, defaultLocation] [, defaultOptionFlags] [, location] [, clientName] [, windowTitle] [, actionButtonLabel] [, cancelButtonLabel] [, preferenceKey] [, popupExtension] [, eventProc] [, previewProc] [, filterProc] [, wanted])

	Post a dialog asking the user for a file to open, and return the file selected
or None if the user cancelled. message is a text message to display,
typeList is a list of 4-char filetypes allowable, defaultLocation is the
pathname, FSSpec or FSRef of the folder to show initially,
location is the (x, y) position on the screen where the dialog is shown,
actionButtonLabel is a string to show instead of “Open” in the OK button,
cancelButtonLabel is a string to show instead of “Cancel” in the cancel
button, wanted is the type of value wanted as a return: str,
unicode, FSSpec, FSRef and subtypes thereof are
acceptable.

For a description of the other arguments please see the Apple Navigation
Services documentation and the EasyDialogs source code.

	
EasyDialogs.AskFileForSave([message] [, savedFileName] [, defaultLocation] [, defaultOptionFlags] [, location] [, clientName] [, windowTitle] [, actionButtonLabel] [, cancelButtonLabel] [, preferenceKey] [, popupExtension] [, fileType] [, fileCreator] [, eventProc] [, wanted])

	Post a dialog asking the user for a file to save to, and return the file
selected or None if the user cancelled. savedFileName is the default
for the file name to save to (the return value). See AskFileForOpen() for
a description of the other arguments.

	
EasyDialogs.AskFolder([message] [, defaultLocation] [, defaultOptionFlags] [, location] [, clientName] [, windowTitle] [, actionButtonLabel] [, cancelButtonLabel] [, preferenceKey] [, popupExtension] [, eventProc] [, filterProc] [, wanted])

	Post a dialog asking the user to select a folder, and return the folder selected
or None if the user cancelled. See AskFileForOpen() for a
description of the arguments.

See also

	Navigation Services Reference [http://developer.apple.com/documentation/Carbon/Reference/Navigation_Services_Ref/]

	Programmer’s reference documentation for the Navigation Services, a part of the
Carbon framework.

36.5.1. ProgressBar Objects

ProgressBar objects provide support for modeless progress-bar dialogs.
Both determinate (thermometer style) and indeterminate (barber-pole style)
progress bars are supported. The bar will be determinate if its maximum value
is greater than zero; otherwise it will be indeterminate.

Changed in version 2.2: Support for indeterminate-style progress bars was added.

The dialog is displayed immediately after creation. If the dialog’s “Cancel”
button is pressed, or if Cmd-. or ESC is typed, the dialog window
is hidden and KeyboardInterrupt is raised (but note that this response
does not occur until the progress bar is next updated, typically via a call to
inc() or set()). Otherwise, the bar remains visible until the
ProgressBar object is discarded.

ProgressBar objects possess the following attributes and methods:

	
ProgressBar.curval

	The current value (of type integer or long integer) of the progress bar. The
normal access methods coerce curval between 0 and maxval.
This attribute should not be altered directly.

	
ProgressBar.maxval

	The maximum value (of type integer or long integer) of the progress bar; the
progress bar (thermometer style) is full when curval equals
maxval. If maxval is 0, the bar will be indeterminate
(barber-pole). This attribute should not be altered directly.

	
ProgressBar.title([newstr])

	Sets the text in the title bar of the progress dialog to newstr.

	
ProgressBar.label([newstr])

	Sets the text in the progress box of the progress dialog to newstr.

	
ProgressBar.set(value[, max])

	Sets the progress bar’s curval to value, and also maxval to
max if the latter is provided. value is first coerced between 0 and
maxval. The thermometer bar is updated to reflect the changes,
including a change from indeterminate to determinate or vice versa.

	
ProgressBar.inc([n])

	Increments the progress bar’s curval by n, or by 1 if n is not
provided. (Note that n may be negative, in which case the effect is a
decrement.) The progress bar is updated to reflect the change. If the bar is
indeterminate, this causes one “spin” of the barber pole. The resulting
curval is coerced between 0 and maxval if incrementing causes it
to fall outside this range.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.6. FrameWork — Interactive application framework

The FrameWork module contains classes that together provide a framework
for an interactive Macintosh application. The programmer builds an application
by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can
often be done on various different levels, i.e. to handle clicks in a single
dialog window in a non-standard way it is not necessary to override the complete
event handling.

Note

This module has been removed in Python 3.x.

Work on the FrameWork has pretty much stopped, now that PyObjC is
available for full Cocoa access from Python, and the documentation describes
only the most important functionality, and not in the most logical manner at
that. Examine the source or the examples for more details. The following are
some comments posted on the MacPython newsgroup about the strengths and
limitations of FrameWork:

The strong point of FrameWork is that it allows you to break into the
control-flow at many different places. W, for instance, uses a different
way to enable/disable menus and that plugs right in leaving the rest intact.
The weak points of FrameWork are that it has no abstract command
interface (but that shouldn’t be difficult), that its dialog support is minimal
and that its control/toolbar support is non-existent.

The FrameWork module defines the following functions:

	
FrameWork.Application()

	An object representing the complete application. See below for a description of
the methods. The default __init__() routine creates an empty window
dictionary and a menu bar with an apple menu.

	
FrameWork.MenuBar()

	An object representing the menubar. This object is usually not created by the
user.

	
FrameWork.Menu(bar, title[, after])

	An object representing a menu. Upon creation you pass the MenuBar the menu
appears in, the title string and a position (1-based) after where the menu
should appear (default: at the end).

	
FrameWork.MenuItem(menu, title[, shortcut, callback])

	Create a menu item object. The arguments are the menu to create, the item title
string and optionally the keyboard shortcut and a callback routine. The callback
is called with the arguments menu-id, item number within menu (1-based), current
front window and the event record.

Instead of a callable object the callback can also be a string. In this case
menu selection causes the lookup of a method in the topmost window and the
application. The method name is the callback string with 'domenu_'
prepended.

Calling the MenuBar fixmenudimstate() method sets the correct dimming
for all menu items based on the current front window.

	
FrameWork.Separator(menu)

	Add a separator to the end of a menu.

	
FrameWork.SubMenu(menu, label)

	Create a submenu named label under menu menu. The menu object is returned.

	
FrameWork.Window(parent)

	Creates a (modeless) window. Parent is the application object to which the
window belongs. The window is not displayed until later.

	
FrameWork.DialogWindow(parent)

	Creates a modeless dialog window.

	
FrameWork.windowbounds(width, height)

	Return a (left, top, right, bottom) tuple suitable for creation of a window
of given width and height. The window will be staggered with respect to previous
windows, and an attempt is made to keep the whole window on-screen. However, the
window will however always be the exact size given, so parts may be offscreen.

	
FrameWork.setwatchcursor()

	Set the mouse cursor to a watch.

	
FrameWork.setarrowcursor()

	Set the mouse cursor to an arrow.

36.6.1. Application Objects

Application objects have the following methods, among others:

	
Application.makeusermenus()

	Override this method if you need menus in your application. Append the menus to
the attribute menubar.

	
Application.getabouttext()

	Override this method to return a text string describing your application.
Alternatively, override the do_about() method for more elaborate “about”
messages.

	
Application.mainloop([mask[, wait]])

	This routine is the main event loop, call it to set your application rolling.
Mask is the mask of events you want to handle, wait is the number of ticks
you want to leave to other concurrent application (default 0, which is probably
not a good idea). While raising self to exit the mainloop is still supported
it is not recommended: call self._quit() instead.

The event loop is split into many small parts, each of which can be overridden.
The default methods take care of dispatching events to windows and dialogs,
handling drags and resizes, Apple Events, events for non-FrameWork windows, etc.

In general, all event handlers should return 1 if the event is fully handled
and 0 otherwise (because the front window was not a FrameWork window, for
instance). This is needed so that update events and such can be passed on to
other windows like the Sioux console window. Calling MacOS.HandleEvent()
is not allowed within our_dispatch or its callees, since this may result in an
infinite loop if the code is called through the Python inner-loop event handler.

	
Application.asyncevents(onoff)

	Call this method with a nonzero parameter to enable asynchronous event handling.
This will tell the inner interpreter loop to call the application event handler
async_dispatch whenever events are available. This will cause FrameWork window
updates and the user interface to remain working during long computations, but
will slow the interpreter down and may cause surprising results in non-reentrant
code (such as FrameWork itself). By default async_dispatch will immediately
call our_dispatch but you may override this to handle only certain events
asynchronously. Events you do not handle will be passed to Sioux and such.

The old on/off value is returned.

	
Application._quit()

	Terminate the running mainloop() call at the next convenient moment.

	
Application.do_char(c, event)

	The user typed character c. The complete details of the event can be found in
the event structure. This method can also be provided in a Window object,
which overrides the application-wide handler if the window is frontmost.

	
Application.do_dialogevent(event)

	Called early in the event loop to handle modeless dialog events. The default
method simply dispatches the event to the relevant dialog (not through the
DialogWindow object involved). Override if you need special handling of
dialog events (keyboard shortcuts, etc).

	
Application.idle(event)

	Called by the main event loop when no events are available. The null-event is
passed (so you can look at mouse position, etc).

36.6.2. Window Objects

Window objects have the following methods, among others:

	
Window.open()

	Override this method to open a window. Store the Mac OS window-id in
self.wid and call the do_postopen() method to register the window
with the parent application.

	
Window.close()

	Override this method to do any special processing on window close. Call the
do_postclose() method to cleanup the parent state.

	
Window.do_postresize(width, height, macoswindowid)

	Called after the window is resized. Override if more needs to be done than
calling InvalRect.

	
Window.do_contentclick(local, modifiers, event)

	The user clicked in the content part of a window. The arguments are the
coordinates (window-relative), the key modifiers and the raw event.

	
Window.do_update(macoswindowid, event)

	An update event for the window was received. Redraw the window.

	
Window.do_activate(activate, event)

	The window was activated (activate == 1) or deactivated (activate == 0).
Handle things like focus highlighting, etc.

36.6.3. ControlsWindow Object

ControlsWindow objects have the following methods besides those of Window
objects:

	
ControlsWindow.do_controlhit(window, control, pcode, event)

	Part pcode of control control was hit by the user. Tracking and such has
already been taken care of.

36.6.4. ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra
methods:

	
ScrolledWindow.scrollbars([wantx[, wanty]])

	Create (or destroy) horizontal and vertical scrollbars. The arguments specify
which you want (default: both). The scrollbars always have minimum 0 and
maximum 32767.

	
ScrolledWindow.getscrollbarvalues()

	You must supply this method. It should return a tuple (x, y) giving the
current position of the scrollbars (between 0 and 32767). You can return
None for either to indicate the whole document is visible in that direction.

	
ScrolledWindow.updatescrollbars()

	Call this method when the document has changed. It will call
getscrollbarvalues() and update the scrollbars.

	
ScrolledWindow.scrollbar_callback(which, what, value)

	Supplied by you and called after user interaction. which will be 'x' or
'y', what will be '-', '--', 'set', '++' or '+'. For
'set', value will contain the new scrollbar position.

	
ScrolledWindow.scalebarvalues(absmin, absmax, curmin, curmax)

	Auxiliary method to help you calculate values to return from
getscrollbarvalues(). You pass document minimum and maximum value and
topmost (leftmost) and bottommost (rightmost) visible values and it returns the
correct number or None.

	
ScrolledWindow.do_activate(onoff, event)

	Takes care of dimming/highlighting scrollbars when a window becomes frontmost.
If you override this method, call this one at the end of your method.

	
ScrolledWindow.do_postresize(width, height, window)

	Moves scrollbars to the correct position. Call this method initially if you
override it.

	
ScrolledWindow.do_controlhit(window, control, pcode, event)

	Handles scrollbar interaction. If you override it call this method first, a
nonzero return value indicates the hit was in the scrollbars and has been
handled.

36.6.5. DialogWindow Objects

DialogWindow objects have the following methods besides those of Window
objects:

	
DialogWindow.open(resid)

	Create the dialog window, from the DLOG resource with id resid. The dialog
object is stored in self.wid.

	
DialogWindow.do_itemhit(item, event)

	Item number item was hit. You are responsible for redrawing toggle buttons,
etc.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.7. autoGIL — Global Interpreter Lock handling in event loops

The autoGIL module provides a function installAutoGIL() that
automatically locks and unlocks Python’s Global Interpreter Lock when
running an event loop.

Note

This module has been removed in Python 3.x.

	
exception autoGIL.AutoGILError

	Raised if the observer callback cannot be installed, for example because the
current thread does not have a run loop.

	
autoGIL.installAutoGIL()

	Install an observer callback in the event loop (CFRunLoop) for the current
thread, that will lock and unlock the Global Interpreter Lock (GIL) at
appropriate times, allowing other Python threads to run while the event loop is
idle.

Availability: OSX 10.1 or later.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.8. Mac OS Toolbox Modules

There are a set of modules that provide interfaces to various Mac OS toolboxes.
If applicable the module will define a number of Python objects for the various
structures declared by the toolbox, and operations will be implemented as
methods of the object. Other operations will be implemented as functions in the
module. Not all operations possible in C will also be possible in Python
(callbacks are often a problem), and parameters will occasionally be different
in Python (input and output buffers, especially). All methods and functions
have a __doc__ string describing their arguments and return values, and
for additional description you are referred to Inside Macintosh [http://developer.apple.com/documentation/macos8/mac8.html] or similar works.

These modules all live in a package called Carbon. Despite that name they
are not all part of the Carbon framework: CF is really in the CoreFoundation
framework and Qt is in the QuickTime framework. The normal use pattern is

from Carbon import AE

Note

The Carbon modules have been removed in Python 3.0.

36.8.1. Carbon.AE — Apple Events

36.8.2. Carbon.AH — Apple Help

36.8.3. Carbon.App — Appearance Manager

36.8.4. Carbon.Appearance — Appearance Manager constants

36.8.5. Carbon.CF — Core Foundation

The CFBase, CFArray, CFData, CFDictionary, CFString and
CFURL objects are supported, some only partially.

36.8.6. Carbon.CG — Core Graphics

36.8.7. Carbon.CarbonEvt — Carbon Event Manager

36.8.8. Carbon.CarbonEvents — Carbon Event Manager constants

36.8.9. Carbon.Cm — Component Manager

36.8.10. Carbon.Components — Component Manager constants

36.8.11. Carbon.ControlAccessor — Control Manager accssors

36.8.12. Carbon.Controls — Control Manager constants

36.8.13. Carbon.CoreFounation — CoreFounation constants

36.8.14. Carbon.CoreGraphics — CoreGraphics constants

36.8.15. Carbon.Ctl — Control Manager

36.8.16. Carbon.Dialogs — Dialog Manager constants

36.8.17. Carbon.Dlg — Dialog Manager

36.8.18. Carbon.Drag — Drag and Drop Manager

36.8.19. Carbon.Dragconst — Drag and Drop Manager constants

36.8.20. Carbon.Events — Event Manager constants

36.8.21. Carbon.Evt — Event Manager

36.8.22. Carbon.File — File Manager

36.8.23. Carbon.Files — File Manager constants

36.8.24. Carbon.Fm — Font Manager

36.8.25. Carbon.Folder — Folder Manager

36.8.26. Carbon.Folders — Folder Manager constants

36.8.27. Carbon.Fonts — Font Manager constants

36.8.28. Carbon.Help — Help Manager

36.8.29. Carbon.IBCarbon — Carbon InterfaceBuilder

36.8.30. Carbon.IBCarbonRuntime — Carbon InterfaceBuilder constants

36.8.31. Carbon.Icn — Carbon Icon Manager

36.8.32. Carbon.Icons — Carbon Icon Manager constants

36.8.33. Carbon.Launch — Carbon Launch Services

36.8.34. Carbon.LaunchServices — Carbon Launch Services constants

36.8.35. Carbon.List — List Manager

36.8.36. Carbon.Lists — List Manager constants

36.8.37. Carbon.MacHelp — Help Manager constants

36.8.38. Carbon.MediaDescr — Parsers and generators for Quicktime Media descriptors

36.8.39. Carbon.Menu — Menu Manager

36.8.40. Carbon.Menus — Menu Manager constants

36.8.41. Carbon.Mlte — MultiLingual Text Editor

36.8.42. Carbon.OSA — Carbon OSA Interface

36.8.43. Carbon.OSAconst — Carbon OSA Interface constants

36.8.44. Carbon.QDOffscreen — QuickDraw Offscreen constants

36.8.45. Carbon.Qd — QuickDraw

36.8.46. Carbon.Qdoffs — QuickDraw Offscreen

36.8.47. Carbon.Qt — QuickTime

36.8.48. Carbon.QuickDraw — QuickDraw constants

36.8.49. Carbon.QuickTime — QuickTime constants

36.8.50. Carbon.Res — Resource Manager and Handles

36.8.51. Carbon.Resources — Resource Manager and Handles constants

36.8.52. Carbon.Scrap — Scrap Manager

This module is only fully available on Mac OS 9 and earlier under classic PPC
MacPython. Very limited functionality is available under Carbon MacPython.

The Scrap Manager supports the simplest form of cut & paste operations on the
Macintosh. It can be use for both inter- and intra-application clipboard
operations.

The Scrap module provides low-level access to the functions of the Scrap
Manager. It contains the following functions:

	
Carbon.Scrap.InfoScrap()

	Return current information about the scrap. The information is encoded as a
tuple containing the fields (size, handle, count, state, path).

	Field
	Meaning

	size
	Size of the scrap in bytes.

	handle
	Resource object representing the scrap.

	count
	Serial number of the scrap contents.

	state
	Integer; positive if in memory, 0 if on
disk, negative if uninitialized.

	path
	Filename of the scrap when stored on disk.

See also

	Scrap Manager [http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-109.html]

	Apple’s documentation for the Scrap Manager gives a lot of useful information
about using the Scrap Manager in applications.

36.8.53. Carbon.Snd — Sound Manager

36.8.54. Carbon.Sound — Sound Manager constants

36.8.55. Carbon.TE — TextEdit

36.8.56. Carbon.TextEdit — TextEdit constants

36.8.57. Carbon.Win — Window Manager

36.8.58. Carbon.Windows — Window Manager constants

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	36. Mac OS X specific services

36.9. ColorPicker — Color selection dialog

The ColorPicker module provides access to the standard color picker
dialog.

Note

This module has been removed in Python 3.x.

	
ColorPicker.GetColor(prompt, rgb)

	Show a standard color selection dialog and allow the user to select a color.
The user is given instruction by the prompt string, and the default color is
set to rgb. rgb must be a tuple giving the red, green, and blue components
of the color. GetColor() returns a tuple giving the user’s selected color
and a flag indicating whether they accepted the selection of cancelled.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

37. MacPython OSA Modules

This chapter describes the current implementation of the Open Scripting
Architecture (OSA, also commonly referred to as AppleScript) for Python,
allowing you to control scriptable applications from your Python program,
and with a fairly pythonic interface. Development on this set of modules has
stopped. For more up-to-date implementation of AppleScript support for Python,
see the third-party py-appscript project: <http://pypi.python.org/pypi/appscript/>.

For a description of the various components of AppleScript and OSA, and to get
an understanding of the architecture and terminology, you should read Apple’s
documentation. The “Applescript Language Guide” explains the conceptual model
and the terminology, and documents the standard suite. The “Open Scripting
Architecture” document explains how to use OSA from an application programmers
point of view. In the Apple Help Viewer these books are located in the Developer
Documentation, Core Technologies section.

As an example of scripting an application, the following piece of AppleScript
will get the name of the frontmost Finder window and print it:

tell application "Finder"
 get name of window 1
end tell

In Python, the following code fragment will do the same:

import Finder

f = Finder.Finder()
print f.get(f.window(1).name)

As distributed the Python library includes packages that implement the standard
suites, plus packages that interface to a small number of common applications.

To send AppleEvents to an application you must first create the Python package
interfacing to the terminology of the application (what Script Editor
calls the “Dictionary”). This can be done from within the PythonIDE
or by running the gensuitemodule.py module as a standalone program from
the command line.

The generated output is a package with a number of modules, one for every suite
used in the program plus an __init__ module to glue it all together. The
Python inheritance graph follows the AppleScript inheritance graph, so if a
program’s dictionary specifies that it includes support for the Standard Suite,
but extends one or two verbs with extra arguments then the output suite will
contain a module Standard_Suite that imports and re-exports everything
from StdSuites.Standard_Suite but overrides the methods that have extra
functionality. The output of gensuitemodule is pretty readable, and
contains the documentation that was in the original AppleScript dictionary in
Python docstrings, so reading it is a good source of documentation.

The output package implements a main class with the same name as the package
which contains all the AppleScript verbs as methods, with the direct object as
the first argument and all optional parameters as keyword arguments. AppleScript
classes are also implemented as Python classes, as are comparisons and all the
other thingies.

The main Python class implementing the verbs also allows access to the
properties and elements declared in the AppleScript class “application”. In the
current release that is as far as the object orientation goes, so in the example
above we need to use f.get(f.window(1).name) instead of the more Pythonic
f.window(1).name.get().

If an AppleScript identifier is not a Python identifier the name is mangled
according to a small number of rules:

	spaces are replaced with underscores

	other non-alphanumeric characters are replaced with _xx_ where xx is
the hexadecimal character value

	any Python reserved word gets an underscore appended

Python also has support for creating scriptable applications in Python, but The
following modules are relevant to MacPython AppleScript support:

	37.1. gensuitemodule — Generate OSA stub packages

	37.2. aetools — OSA client support

	37.3. aepack — Conversion between Python variables and AppleEvent data containers

	37.4. aetypes — AppleEvent objects

	37.5. MiniAEFrame — Open Scripting Architecture server support
	37.5.1. AEServer Objects

In addition, support modules have been pre-generated for Finder,
Terminal, Explorer, Netscape, CodeWarrior,
SystemEvents and StdSuites.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	37. MacPython OSA Modules

37.1. gensuitemodule — Generate OSA stub packages

The gensuitemodule module creates a Python package implementing stub code
for the AppleScript suites that are implemented by a specific application,
according to its AppleScript dictionary.

It is usually invoked by the user through the PythonIDE, but it can
also be run as a script from the command line (pass --help for help on
the options) or imported from Python code. For an example of its use see
Mac/scripts/genallsuites.py in a source distribution, which generates
the stub packages that are included in the standard library.

It defines the following public functions:

	
gensuitemodule.is_scriptable(application)

	Returns true if application, which should be passed as a pathname, appears
to be scriptable. Take the return value with a grain of salt: Internet
Explorer appears not to be scriptable but definitely is.

	
gensuitemodule.processfile(application[, output, basepkgname, edit_modnames, creatorsignature, dump, verbose])

	Create a stub package for application, which should be passed as a full
pathname. For a .app bundle this is the pathname to the bundle, not to
the executable inside the bundle; for an unbundled CFM application you pass the
filename of the application binary.

This function asks the application for its OSA terminology resources, decodes
these resources and uses the resultant data to create the Python code for the
package implementing the client stubs.

output is the pathname where the resulting package is stored, if not
specified a standard “save file as” dialog is presented to the user.
basepkgname is the base package on which this package will build, and
defaults to StdSuites. Only when generating StdSuites itself do
you need to specify this. edit_modnames is a dictionary that can be used to
change modulenames that are too ugly after name mangling. creator_signature
can be used to override the 4-char creator code, which is normally obtained from
the PkgInfo file in the package or from the CFM file creator signature.
When dump is given it should refer to a file object, and processfile
will stop after decoding the resources and dump the Python representation of the
terminology resources to this file. verbose should also be a file object,
and specifying it will cause processfile to tell you what it is doing.

	
gensuitemodule.processfile_fromresource(application[, output, basepkgname, edit_modnames, creatorsignature, dump, verbose])

	This function does the same as processfile, except that it uses a different
method to get the terminology resources. It opens application as a resource
file and reads all "aete" and "aeut" resources from this file.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	37. MacPython OSA Modules

37.2. aetools — OSA client support

The aetools module contains the basic functionality on which Python
AppleScript client support is built. It also imports and re-exports the core
functionality of the aetypes and aepack modules. The stub packages
generated by gensuitemodule import the relevant portions of
aetools, so usually you do not need to import it yourself. The exception
to this is when you cannot use a generated suite package and need lower-level
access to scripting.

The aetools module itself uses the AppleEvent support provided by the
Carbon.AE module. This has one drawback: you need access to the window
manager, see section Running scripts with a GUI for details. This restriction may be
lifted in future releases.

Note

This module has been removed in Python 3.x.

The aetools module defines the following functions:

	
aetools.packevent(ae, parameters, attributes)

	Stores parameters and attributes in a pre-created Carbon.AE.AEDesc object.
parameters and attributes are dictionaries mapping 4-character OSA
parameter keys to Python objects. The objects are packed using
aepack.pack().

	
aetools.unpackevent(ae[, formodulename])

	Recursively unpacks a Carbon.AE.AEDesc event to Python objects. The function
returns the parameter dictionary and the attribute dictionary. The
formodulename argument is used by generated stub packages to control where
AppleScript classes are looked up.

	
aetools.keysubst(arguments, keydict)

	Converts a Python keyword argument dictionary arguments to the format
required by packevent by replacing the keys, which are Python identifiers,
by the four-character OSA keys according to the mapping specified in
keydict. Used by the generated suite packages.

	
aetools.enumsubst(arguments, key, edict)

	If the arguments dictionary contains an entry for key convert the value
for that entry according to dictionary edict. This converts human-readable
Python enumeration names to the OSA 4-character codes. Used by the generated
suite packages.

The aetools module defines the following class:

	
class aetools.TalkTo([signature=None, start=0, timeout=0])

	Base class for the proxy used to talk to an application. signature overrides
the class attribute _signature (which is usually set by subclasses) and is
the 4-char creator code defining the application to talk to. start can be
set to true to enable running the application on class instantiation.
timeout can be specified to change the default timeout used while waiting
for an AppleEvent reply.

	
TalkTo._start()

	Test whether the application is running, and attempt to start it if not.

	
TalkTo.send(code, subcode[, parameters, attributes])

	Create the AppleEvent Carbon.AE.AEDesc for the verb with the OSA designation
code, subcode (which are the usual 4-character strings), pack the
parameters and attributes into it, send it to the target application,
wait for the reply, unpack the reply with unpackevent and return the reply
appleevent, the unpacked return values as a dictionary and the return
attributes.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	37. MacPython OSA Modules

37.3. aepack — Conversion between Python variables and AppleEvent data containers

The aepack module defines functions for converting (packing) Python
variables to AppleEvent descriptors and back (unpacking). Within Python the
AppleEvent descriptor is handled by Python objects of built-in type
AEDesc, defined in module Carbon.AE.

Note

This module has been removed in Python 3.x.

The aepack module defines the following functions:

	
aepack.pack(x[, forcetype])

	Returns an AEDesc object containing a conversion of Python value x. If
forcetype is provided it specifies the descriptor type of the result.
Otherwise, a default mapping of Python types to Apple Event descriptor types is
used, as follows:

	Python type
	descriptor type

	FSSpec
	typeFSS

	FSRef
	typeFSRef

	Alias
	typeAlias

	integer
	typeLong (32 bit integer)

	float
	typeFloat (64 bit floating point)

	string
	typeText

	unicode
	typeUnicodeText

	list
	typeAEList

	dictionary
	typeAERecord

	instance
	see below

If x is a Python instance then this function attempts to call an
__aepack__() method. This method should return an AEDesc object.

If the conversion x is not defined above, this function returns the Python
string representation of a value (the repr() function) encoded as a text
descriptor.

	
aepack.unpack(x[, formodulename])

	x must be an object of type AEDesc. This function returns a Python
object representation of the data in the Apple Event descriptor x. Simple
AppleEvent data types (integer, text, float) are returned as their obvious
Python counterparts. Apple Event lists are returned as Python lists, and the
list elements are recursively unpacked. Object references (ex. line 3 of
document 1) are returned as instances of aetypes.ObjectSpecifier,
unless formodulename is specified. AppleEvent descriptors with descriptor
type typeFSS are returned as FSSpec objects. AppleEvent record
descriptors are returned as Python dictionaries, with 4-character string keys
and elements recursively unpacked.

The optional formodulename argument is used by the stub packages generated
by gensuitemodule, and ensures that the OSA classes for object specifiers
are looked up in the correct module. This ensures that if, say, the Finder
returns an object specifier for a window you get an instance of
Finder.Window and not a generic aetypes.Window. The former knows about
all the properties and elements a window has in the Finder, while the latter
knows no such things.

See also

	Module Carbon.AE

	Built-in access to Apple Event Manager routines.

	Module aetypes

	Python definitions of codes for Apple Event descriptor types.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	37. MacPython OSA Modules

37.4. aetypes — AppleEvent objects

The aetypes defines classes used to represent Apple Event data
descriptors and Apple Event object specifiers.

Apple Event data is contained in descriptors, and these descriptors are typed.
For many descriptors the Python representation is simply the corresponding
Python type: typeText in OSA is a Python string, typeFloat is a float,
etc. For OSA types that have no direct Python counterpart this module declares
classes. Packing and unpacking instances of these classes is handled
automatically by aepack.

An object specifier is essentially an address of an object implemented in a
Apple Event server. An Apple Event specifier is used as the direct object for an
Apple Event or as the argument of an optional parameter. The aetypes
module contains the base classes for OSA classes and properties, which are used
by the packages generated by gensuitemodule to populate the classes and
properties in a given suite.

For reasons of backward compatibility, and for cases where you need to script an
application for which you have not generated the stub package this module also
contains object specifiers for a number of common OSA classes such as
Document, Window, Character, etc.

Note

This module has been removed in Python 3.x.

The AEObjects module defines the following classes to represent Apple
Event descriptor data:

	
class aetypes.Unknown(type, data)

	The representation of OSA descriptor data for which the aepack and
aetypes modules have no support, i.e. anything that is not represented by
the other classes here and that is not equivalent to a simple Python value.

	
class aetypes.Enum(enum)

	An enumeration value with the given 4-character string value.

	
class aetypes.InsertionLoc(of, pos)

	Position pos in object of.

	
class aetypes.Boolean(bool)

	A boolean.

	
class aetypes.StyledText(style, text)

	Text with style information (font, face, etc) included.

	
class aetypes.AEText(script, style, text)

	Text with script system and style information included.

	
class aetypes.IntlText(script, language, text)

	Text with script system and language information included.

	
class aetypes.IntlWritingCode(script, language)

	Script system and language information.

	
class aetypes.QDPoint(v, h)

	A quickdraw point.

	
class aetypes.QDRectangle(v0, h0, v1, h1)

	A quickdraw rectangle.

	
class aetypes.RGBColor(r, g, b)

	A color.

	
class aetypes.Type(type)

	An OSA type value with the given 4-character name.

	
class aetypes.Keyword(name)

	An OSA keyword with the given 4-character name.

	
class aetypes.Range(start, stop)

	A range.

	
class aetypes.Ordinal(abso)

	Non-numeric absolute positions, such as "firs", first, or "midd",
middle.

	
class aetypes.Logical(logc, term)

	The logical expression of applying operator logc to term.

	
class aetypes.Comparison(obj1, relo, obj2)

	The comparison relo of obj1 to obj2.

The following classes are used as base classes by the generated stub packages to
represent AppleScript classes and properties in Python:

	
class aetypes.ComponentItem(which[, fr])

	Abstract baseclass for an OSA class. The subclass should set the class attribute
want to the 4-character OSA class code. Instances of subclasses of this
class are equivalent to AppleScript Object Specifiers. Upon instantiation you
should pass a selector in which, and optionally a parent object in fr.

	
class aetypes.NProperty(fr)

	Abstract baseclass for an OSA property. The subclass should set the class
attributes want and which to designate which property we are talking
about. Instances of subclasses of this class are Object Specifiers.

	
class aetypes.ObjectSpecifier(want, form, seld[, fr])

	Base class of ComponentItem and NProperty, a general OSA Object
Specifier. See the Apple Open Scripting Architecture documentation for the
parameters. Note that this class is not abstract.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	37. MacPython OSA Modules

37.5. MiniAEFrame — Open Scripting Architecture server support

The module MiniAEFrame provides a framework for an application that can
function as an Open Scripting Architecture (OSA) server, i.e. receive and
process AppleEvents. It can be used in conjunction with FrameWork or
standalone. As an example, it is used in PythonCGISlave.

The MiniAEFrame module defines the following classes:

	
class MiniAEFrame.AEServer

	A class that handles AppleEvent dispatch. Your application should subclass this
class together with either MiniApplication or
FrameWork.Application. Your __init__() method should call the
__init__() method for both classes.

	
class MiniAEFrame.MiniApplication

	A class that is more or less compatible with FrameWork.Application but
with less functionality. Its event loop supports the apple menu, command-dot and
AppleEvents; other events are passed on to the Python interpreter and/or Sioux.
Useful if your application wants to use AEServer but does not provide
its own windows, etc.

37.5.1. AEServer Objects

	
AEServer.installaehandler(classe, type, callback)

	Installs an AppleEvent handler. classe and type are the four-character OSA
Class and Type designators, '****' wildcards are allowed. When a matching
AppleEvent is received the parameters are decoded and your callback is invoked.

	
AEServer.callback(_object, **kwargs)

	Your callback is called with the OSA Direct Object as first positional
parameter. The other parameters are passed as keyword arguments, with the
4-character designator as name. Three extra keyword parameters are passed:
_class and _type are the Class and Type designators and _attributes
is a dictionary with the AppleEvent attributes.

The return value of your method is packed with aetools.packevent() and
sent as reply.

Note that there are some serious problems with the current design. AppleEvents
which have non-identifier 4-character designators for arguments are not
implementable, and it is not possible to return an error to the originator. This
will be addressed in a future release.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

38. SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are
unique to SGI’s IRIX operating system (versions 4 and 5).

	38.1. al — Audio functions on the SGI
	38.1.1. Configuration Objects

	38.1.2. Port Objects

	38.2. AL — Constants used with the al module

	38.3. cd — CD-ROM access on SGI systems
	38.3.1. Player Objects

	38.3.2. Parser Objects

	38.4. fl — FORMS library for graphical user interfaces
	38.4.1. Functions Defined in Module fl

	38.4.2. Form Objects

	38.4.3. FORMS Objects

	38.5. FL — Constants used with the fl module

	38.6. flp — Functions for loading stored FORMS designs

	38.7. fm — Font Manager interface

	38.8. gl — Graphics Library interface

	38.9. DEVICE — Constants used with the gl module

	38.10. GL — Constants used with the gl module

	38.11. imgfile — Support for SGI imglib files

	38.12. jpeg — Read and write JPEG files

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.1. al — Audio functions on the SGI

Deprecated since version 2.6: The al module has been deprecated for removal in Python 3.0.

This module provides access to the audio facilities of the SGI Indy and Indigo
workstations. See section 3A of the IRIX man pages for details. You’ll need to
read those man pages to understand what these functions do! Some of the
functions are not available in IRIX releases before 4.0.5. Again, see the
manual to check whether a specific function is available on your platform.

All functions and methods defined in this module are equivalent to the C
functions with AL prefixed to their name.

Symbolic constants from the C header file <audio.h> are defined in the
standard module AL, see below.

Warning

The current version of the audio library may dump core when bad argument values
are passed rather than returning an error status. Unfortunately, since the
precise circumstances under which this may happen are undocumented and hard to
check, the Python interface can provide no protection against this kind of
problems. (One example is specifying an excessive queue size — there is no
documented upper limit.)

The module defines the following functions:

	
al.openport(name, direction[, config])

	The name and direction arguments are strings. The optional config argument is
a configuration object as returned by newconfig(). The return value is an
audio port object; methods of audio port objects are described below.

	
al.newconfig()

	The return value is a new audio configuration object; methods of audio
configuration objects are described below.

	
al.queryparams(device)

	The device argument is an integer. The return value is a list of integers
containing the data returned by ALqueryparams().

	
al.getparams(device, list)

	The device argument is an integer. The list argument is a list such as
returned by queryparams(); it is modified in place (!).

	
al.setparams(device, list)

	The device argument is an integer. The list argument is a list such as
returned by queryparams().

38.1.1. Configuration Objects

Configuration objects returned by newconfig() have the following methods:

	
audio configuration.getqueuesize()

	Return the queue size.

	
audio configuration.setqueuesize(size)

	Set the queue size.

	
audio configuration.getwidth()

	Get the sample width.

	
audio configuration.setwidth(width)

	Set the sample width.

	
audio configuration.getchannels()

	Get the channel count.

	
audio configuration.setchannels(nchannels)

	Set the channel count.

	
audio configuration.getsampfmt()

	Get the sample format.

	
audio configuration.setsampfmt(sampfmt)

	Set the sample format.

	
audio configuration.getfloatmax()

	Get the maximum value for floating sample formats.

	
audio configuration.setfloatmax(floatmax)

	Set the maximum value for floating sample formats.

38.1.2. Port Objects

Port objects, as returned by openport(), have the following methods:

	
audio port.closeport()

	Close the port.

	
audio port.getfd()

	Return the file descriptor as an int.

	
audio port.getfilled()

	Return the number of filled samples.

	
audio port.getfillable()

	Return the number of fillable samples.

	
audio port.readsamps(nsamples)

	Read a number of samples from the queue, blocking if necessary. Return the data
as a string containing the raw data, (e.g., 2 bytes per sample in big-endian
byte order (high byte, low byte) if you have set the sample width to 2 bytes).

	
audio port.writesamps(samples)

	Write samples into the queue, blocking if necessary. The samples are encoded as
described for the readsamps() return value.

	
audio port.getfillpoint()

	Return the ‘fill point’.

	
audio port.setfillpoint(fillpoint)

	Set the ‘fill point’.

	
audio port.getconfig()

	Return a configuration object containing the current configuration of the port.

	
audio port.setconfig(config)

	Set the configuration from the argument, a configuration object.

	
audio port.getstatus(list)

	Get status information on last error.

38.2. AL — Constants used with the al module

Deprecated since version 2.6: The AL module has been deprecated for removal in Python 3.0.

This module defines symbolic constants needed to use the built-in module
al (see above); they are equivalent to those defined in the C header file
<audio.h> except that the name prefix AL_ is omitted. Read the module
source for a complete list of the defined names. Suggested use:

import al
from AL import *

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.3. cd — CD-ROM access on SGI systems

Deprecated since version 2.6: The cd module has been deprecated for removal in Python 3.0.

This module provides an interface to the Silicon Graphics CD library. It is
available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device with
open() and creates a parser to parse the data from the CD with
createparser(). The object returned by open() can be used to read
data from the CD, but also to get status information for the CD-ROM device, and
to get information about the CD, such as the table of contents. Data from the
CD is passed to the parser, which parses the frames, and calls any callback
functions that have previously been added.

An audio CD is divided into tracks or programs (the terms are used
interchangeably). Tracks can be subdivided into indices. An audio CD
contains a table of contents which gives the starts of the tracks on the
CD. Index 0 is usually the pause before the start of a track. The start of the
track as given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a
tuple of three values, minutes, seconds and frames. Most functions use the
latter representation. Positions can be both relative to the beginning of the
CD, and to the beginning of the track.

Module cd defines the following functions and constants:

	
cd.createparser()

	Create and return an opaque parser object. The methods of the parser object are
described below.

	
cd.msftoframe(minutes, seconds, frames)

	Converts a (minutes, seconds, frames) triple representing time in absolute
time code into the corresponding CD frame number.

	
cd.open([device[, mode]])

	Open the CD-ROM device. The return value is an opaque player object; methods of
the player object are described below. The device is the name of the SCSI
device file, e.g. '/dev/scsi/sc0d4l0', or None. If omitted or None,
the hardware inventory is consulted to locate a CD-ROM drive. The mode, if
not omitted, should be the string 'r'.

The module defines the following variables:

	
exception cd.error

	Exception raised on various errors.

	
cd.DATASIZE

	The size of one frame’s worth of audio data. This is the size of the audio data
as passed to the callback of type audio.

	
cd.BLOCKSIZE

	The size of one uninterpreted frame of audio data.

The following variables are states as returned by getstatus():

	
cd.READY

	The drive is ready for operation loaded with an audio CD.

	
cd.NODISC

	The drive does not have a CD loaded.

	
cd.CDROM

	The drive is loaded with a CD-ROM. Subsequent play or read operations will
return I/O errors.

	
cd.ERROR

	An error occurred while trying to read the disc or its table of contents.

	
cd.PLAYING

	The drive is in CD player mode playing an audio CD through its audio jacks.

	
cd.PAUSED

	The drive is in CD layer mode with play paused.

	
cd.STILL

	The equivalent of PAUSED on older (non 3301) model Toshiba CD-ROM
drives. Such drives have never been shipped by SGI.

	
cd.audio

	
cd.pnum

	
cd.index

	
cd.ptime

	
cd.atime

	
cd.catalog

	
cd.ident

	
cd.control

	Integer constants describing the various types of parser callbacks that can be
set by the addcallback() method of CD parser objects (see below).

38.3.1. Player Objects

Player objects (returned by open()) have the following methods:

	
CD player.allowremoval()

	Unlocks the eject button on the CD-ROM drive permitting the user to eject the
caddy if desired.

	
CD player.bestreadsize()

	Returns the best value to use for the num_frames parameter of the
readda() method. Best is defined as the value that permits a continuous
flow of data from the CD-ROM drive.

	
CD player.close()

	Frees the resources associated with the player object. After calling
close(), the methods of the object should no longer be used.

	
CD player.eject()

	Ejects the caddy from the CD-ROM drive.

	
CD player.getstatus()

	Returns information pertaining to the current state of the CD-ROM drive. The
returned information is a tuple with the following values: state, track,
rtime, atime, ttime, first, last, scsi_audio, cur_block. rtime
is the time relative to the start of the current track; atime is the time
relative to the beginning of the disc; ttime is the total time on the disc.
For more information on the meaning of the values, see the man page
CDgetstatus(3dm). The value of state is one of the following:
ERROR, NODISC, READY, PLAYING,
PAUSED, STILL, or CDROM.

	
CD player.gettrackinfo(track)

	Returns information about the specified track. The returned information is a
tuple consisting of two elements, the start time of the track and the duration
of the track.

	
CD player.msftoblock(min, sec, frame)

	Converts a minutes, seconds, frames triple representing a time in absolute time
code into the corresponding logical block number for the given CD-ROM drive.
You should use msftoframe() rather than msftoblock() for comparing
times. The logical block number differs from the frame number by an offset
required by certain CD-ROM drives.

	
CD player.play(start, play)

	Starts playback of an audio CD in the CD-ROM drive at the specified track. The
audio output appears on the CD-ROM drive’s headphone and audio jacks (if
fitted). Play stops at the end of the disc. start is the number of the track
at which to start playing the CD; if play is 0, the CD will be set to an
initial paused state. The method togglepause() can then be used to
commence play.

	
CD player.playabs(minutes, seconds, frames, play)

	Like play(), except that the start is given in minutes, seconds, and
frames instead of a track number.

	
CD player.playtrack(start, play)

	Like play(), except that playing stops at the end of the track.

	
CD player.playtrackabs(track, minutes, seconds, frames, play)

	Like play(), except that playing begins at the specified absolute time and
ends at the end of the specified track.

	
CD player.preventremoval()

	Locks the eject button on the CD-ROM drive thus preventing the user from
arbitrarily ejecting the caddy.

	
CD player.readda(num_frames)

	Reads the specified number of frames from an audio CD mounted in the CD-ROM
drive. The return value is a string representing the audio frames. This string
can be passed unaltered to the parseframe() method of the parser object.

	
CD player.seek(minutes, seconds, frames)

	Sets the pointer that indicates the starting point of the next read of digital
audio data from a CD-ROM. The pointer is set to an absolute time code location
specified in minutes, seconds, and frames. The return value is the
logical block number to which the pointer has been set.

	
CD player.seekblock(block)

	Sets the pointer that indicates the starting point of the next read of digital
audio data from a CD-ROM. The pointer is set to the specified logical block
number. The return value is the logical block number to which the pointer has
been set.

	
CD player.seektrack(track)

	Sets the pointer that indicates the starting point of the next read of digital
audio data from a CD-ROM. The pointer is set to the specified track. The
return value is the logical block number to which the pointer has been set.

	
CD player.stop()

	Stops the current playing operation.

	
CD player.togglepause()

	Pauses the CD if it is playing, and makes it play if it is paused.

38.3.2. Parser Objects

Parser objects (returned by createparser()) have the following methods:

	
CD parser.addcallback(type, func, arg)

	Adds a callback for the parser. The parser has callbacks for eight different
types of data in the digital audio data stream. Constants for these types are
defined at the cd module level (see above). The callback is called as
follows: func(arg, type, data), where arg is the user supplied argument,
type is the particular type of callback, and data is the data returned for
this type of callback. The type of the data depends on the type of callback
as follows:

	Type
	Value

	audio
	String which can be passed unmodified to
al.writesamps().

	pnum
	Integer giving the program (track) number.

	index
	Integer giving the index number.

	ptime
	Tuple consisting of the program time in
minutes, seconds, and frames.

	atime
	Tuple consisting of the absolute time in
minutes, seconds, and frames.

	catalog
	String of 13 characters, giving the catalog
number of the CD.

	ident
	String of 12 characters, giving the ISRC
identification number of the recording.
The string consists of two characters
country code, three characters owner code,
two characters giving the year, and five
characters giving a serial number.

	control
	Integer giving the control bits from the CD
subcode data

	
CD parser.deleteparser()

	Deletes the parser and frees the memory it was using. The object should not be
used after this call. This call is done automatically when the last reference
to the object is removed.

	
CD parser.parseframe(frame)

	Parses one or more frames of digital audio data from a CD such as returned by
readda(). It determines which subcodes are present in the data. If these
subcodes have changed since the last frame, then parseframe() executes a
callback of the appropriate type passing to it the subcode data found in the
frame. Unlike the C function, more than one frame of digital audio data can be
passed to this method.

	
CD parser.removecallback(type)

	Removes the callback for the given type.

	
CD parser.resetparser()

	Resets the fields of the parser used for tracking subcodes to an initial state.
resetparser() should be called after the disc has been changed.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.4. fl — FORMS library for graphical user interfaces

Deprecated since version 2.6: The fl module has been deprecated for removal in Python 3.0.

This module provides an interface to the FORMS Library by Mark Overmars. The
source for the library can be retrieved by anonymous ftp from host
ftp.cs.ruu.nl, directory SGI/FORMS. It was last tested with version
2.0b.

Most functions are literal translations of their C equivalents, dropping the
initial fl_ from their name. Constants used by the library are defined in
module FL described below.

The creation of objects is a little different in Python than in C: instead of
the ‘current form’ maintained by the library to which new FORMS objects are
added, all functions that add a FORMS object to a form are methods of the Python
object representing the form. Consequently, there are no Python equivalents for
the C functions fl_addto_form() and fl_end_form(), and the
equivalent of fl_bgn_form() is called fl.make_form().

Watch out for the somewhat confusing terminology: FORMS uses the word
object for the buttons, sliders etc. that you can place in a form. In
Python, ‘object’ means any value. The Python interface to FORMS introduces two
new Python object types: form objects (representing an entire form) and FORMS
objects (representing one button, slider etc.). Hopefully this isn’t too
confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an
easy way to add object classes written in Python. The FORMS interface to GL
event handling is available, though, so you can mix FORMS with pure GL windows.

Please note: importing fl implies a call to the GL function
foreground() and to the FORMS routine fl_init().

38.4.1. Functions Defined in Module fl

Module fl defines the following functions. For more information about
what they do, see the description of the equivalent C function in the FORMS
documentation:

	
fl.make_form(type, width, height)

	Create a form with given type, width and height. This returns a form
object, whose methods are described below.

	
fl.do_forms()

	The standard FORMS main loop. Returns a Python object representing the FORMS
object needing interaction, or the special value FL.EVENT.

	
fl.check_forms()

	Check for FORMS events. Returns what do_forms() above returns, or
None if there is no event that immediately needs interaction.

	
fl.set_event_call_back(function)

	Set the event callback function.

	
fl.set_graphics_mode(rgbmode, doublebuffering)

	Set the graphics modes.

	
fl.get_rgbmode()

	Return the current rgb mode. This is the value of the C global variable
fl_rgbmode.

	
fl.show_message(str1, str2, str3)

	Show a dialog box with a three-line message and an OK button.

	
fl.show_question(str1, str2, str3)

	Show a dialog box with a three-line message and YES and NO buttons. It returns
1 if the user pressed YES, 0 if NO.

	
fl.show_choice(str1, str2, str3, but1[, but2[, but3]])

	Show a dialog box with a three-line message and up to three buttons. It returns
the number of the button clicked by the user (1, 2 or 3).

	
fl.show_input(prompt, default)

	Show a dialog box with a one-line prompt message and text field in which the
user can enter a string. The second argument is the default input string. It
returns the string value as edited by the user.

	
fl.show_file_selector(message, directory, pattern, default)

	Show a dialog box in which the user can select a file. It returns the absolute
filename selected by the user, or None if the user presses Cancel.

	
fl.get_directory()

	
fl.get_pattern()

	
fl.get_filename()

	These functions return the directory, pattern and filename (the tail part only)
selected by the user in the last show_file_selector() call.

	
fl.qdevice(dev)

	
fl.unqdevice(dev)

	
fl.isqueued(dev)

	
fl.qtest()

	
fl.qread()

	
fl.qreset()

	
fl.qenter(dev, val)

	
fl.get_mouse()

	
fl.tie(button, valuator1, valuator2)

	These functions are the FORMS interfaces to the corresponding GL functions. Use
these if you want to handle some GL events yourself when using
fl.do_events(). When a GL event is detected that FORMS cannot handle,
fl.do_forms() returns the special value FL.EVENT and you should
call fl.qread() to read the event from the queue. Don’t use the
equivalent GL functions!

	
fl.color()

	
fl.mapcolor()

	
fl.getmcolor()

	See the description in the FORMS documentation of fl_color(),
fl_mapcolor() and fl_getmcolor().

38.4.2. Form Objects

Form objects (returned by make_form() above) have the following methods.
Each method corresponds to a C function whose name is prefixed with fl_; and
whose first argument is a form pointer; please refer to the official FORMS
documentation for descriptions.

All the add_*() methods return a Python object representing the FORMS
object. Methods of FORMS objects are described below. Most kinds of FORMS
object also have some methods specific to that kind; these methods are listed
here.

	
form.show_form(placement, bordertype, name)

	Show the form.

	
form.hide_form()

	Hide the form.

	
form.redraw_form()

	Redraw the form.

	
form.set_form_position(x, y)

	Set the form’s position.

	
form.freeze_form()

	Freeze the form.

	
form.unfreeze_form()

	Unfreeze the form.

	
form.activate_form()

	Activate the form.

	
form.deactivate_form()

	Deactivate the form.

	
form.bgn_group()

	Begin a new group of objects; return a group object.

	
form.end_group()

	End the current group of objects.

	
form.find_first()

	Find the first object in the form.

	
form.find_last()

	Find the last object in the form.

	
form.add_box(type, x, y, w, h, name)

	Add a box object to the form. No extra methods.

	
form.add_text(type, x, y, w, h, name)

	Add a text object to the form. No extra methods.

	
form.add_clock(type, x, y, w, h, name)

	Add a clock object to the form. — Method: get_clock().

	
form.add_button(type, x, y, w, h, name)

	Add a button object to the form. — Methods: get_button(),
set_button().

	
form.add_lightbutton(type, x, y, w, h, name)

	Add a lightbutton object to the form. — Methods: get_button(),
set_button().

	
form.add_roundbutton(type, x, y, w, h, name)

	Add a roundbutton object to the form. — Methods: get_button(),
set_button().

	
form.add_slider(type, x, y, w, h, name)

	Add a slider object to the form. — Methods: set_slider_value(),
get_slider_value(), set_slider_bounds(), get_slider_bounds(),
set_slider_return(), set_slider_size(),
set_slider_precision(), set_slider_step().

	
form.add_valslider(type, x, y, w, h, name)

	Add a valslider object to the form. — Methods: set_slider_value(),
get_slider_value(), set_slider_bounds(), get_slider_bounds(),
set_slider_return(), set_slider_size(),
set_slider_precision(), set_slider_step().

	
form.add_dial(type, x, y, w, h, name)

	Add a dial object to the form. — Methods: set_dial_value(),
get_dial_value(), set_dial_bounds(), get_dial_bounds().

	
form.add_positioner(type, x, y, w, h, name)

	Add a positioner object to the form. — Methods:
set_positioner_xvalue(), set_positioner_yvalue(),
set_positioner_xbounds(), set_positioner_ybounds(),
get_positioner_xvalue(), get_positioner_yvalue(),
get_positioner_xbounds(), get_positioner_ybounds().

	
form.add_counter(type, x, y, w, h, name)

	Add a counter object to the form. — Methods: set_counter_value(),
get_counter_value(), set_counter_bounds(), set_counter_step(),
set_counter_precision(), set_counter_return().

	
form.add_input(type, x, y, w, h, name)

	Add a input object to the form. — Methods: set_input(),
get_input(), set_input_color(), set_input_return().

	
form.add_menu(type, x, y, w, h, name)

	Add a menu object to the form. — Methods: set_menu(),
get_menu(), addto_menu().

	
form.add_choice(type, x, y, w, h, name)

	Add a choice object to the form. — Methods: set_choice(),
get_choice(), clear_choice(), addto_choice(),
replace_choice(), delete_choice(), get_choice_text(),
set_choice_fontsize(), set_choice_fontstyle().

	
form.add_browser(type, x, y, w, h, name)

	Add a browser object to the form. — Methods: set_browser_topline(),
clear_browser(), add_browser_line(), addto_browser(),
insert_browser_line(), delete_browser_line(),
replace_browser_line(), get_browser_line(), load_browser(),
get_browser_maxline(), select_browser_line(),
deselect_browser_line(), deselect_browser(),
isselected_browser_line(), get_browser(),
set_browser_fontsize(), set_browser_fontstyle(),
set_browser_specialkey().

	
form.add_timer(type, x, y, w, h, name)

	Add a timer object to the form. — Methods: set_timer(),
get_timer().

Form objects have the following data attributes; see the FORMS documentation:

	Name
	C Type
	Meaning

	window
	int (read-only)
	GL window id

	w
	float
	form width

	h
	float
	form height

	x
	float
	form x origin

	y
	float
	form y origin

	deactivated
	int
	nonzero if form is deactivated

	visible
	int
	nonzero if form is visible

	frozen
	int
	nonzero if form is frozen

	doublebuf
	int
	nonzero if double buffering on

38.4.3. FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects
also have the following methods:

	
FORMS object.set_call_back(function, argument)

	Set the object’s callback function and argument. When the object needs
interaction, the callback function will be called with two arguments: the
object, and the callback argument. (FORMS objects without a callback function
are returned by fl.do_forms() or fl.check_forms() when they need
interaction.) Call this method without arguments to remove the callback
function.

	
FORMS object.delete_object()

	Delete the object.

	
FORMS object.show_object()

	Show the object.

	
FORMS object.hide_object()

	Hide the object.

	
FORMS object.redraw_object()

	Redraw the object.

	
FORMS object.freeze_object()

	Freeze the object.

	
FORMS object.unfreeze_object()

	Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

	Name
	C Type
	Meaning

	objclass
	int (read-only)
	object class

	type
	int (read-only)
	object type

	boxtype
	int
	box type

	x
	float
	x origin

	y
	float
	y origin

	w
	float
	width

	h
	float
	height

	col1
	int
	primary color

	col2
	int
	secondary color

	align
	int
	alignment

	lcol
	int
	label color

	lsize
	float
	label font size

	label
	string
	label string

	lstyle
	int
	label style

	pushed
	int (read-only)
	(see FORMS docs)

	focus
	int (read-only)
	(see FORMS docs)

	belowmouse
	int (read-only)
	(see FORMS docs)

	frozen
	int (read-only)
	(see FORMS docs)

	active
	int (read-only)
	(see FORMS docs)

	input
	int (read-only)
	(see FORMS docs)

	visible
	int (read-only)
	(see FORMS docs)

	radio
	int (read-only)
	(see FORMS docs)

	automatic
	int (read-only)
	(see FORMS docs)

38.5. FL — Constants used with the fl module

Deprecated since version 2.6: The FL module has been deprecated for removal in Python 3.0.

This module defines symbolic constants needed to use the built-in module
fl (see above); they are equivalent to those defined in the C header file
<forms.h> except that the name prefix FL_ is omitted. Read the module
source for a complete list of the defined names. Suggested use:

import fl
from FL import *

38.6. flp — Functions for loading stored FORMS designs

Deprecated since version 2.6: The flp module has been deprecated for removal in Python 3.0.

This module defines functions that can read form definitions created by the
‘form designer’ (fdesign) program that comes with the FORMS library
(see module fl above).

For now, see the file flp.doc in the Python library source directory for
a description.

XXX A complete description should be inserted here!

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.7. fm — Font Manager interface

Deprecated since version 2.6: The fm module has been deprecated for removal in Python 3.0.

This module provides access to the IRIS Font Manager library. It is
available only on Silicon Graphics machines. See also: 4Sight User’s Guide,
section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported
features are: matrix operations; cache operations; character operations (use
string operations instead); some details of font info; individual glyph metrics;
and printer matching.

It supports the following operations:

	
fm.init()

	Initialization function. Calls fminit(). It is normally not necessary to
call this function, since it is called automatically the first time the
fm module is imported.

	
fm.findfont(fontname)

	Return a font handle object. Calls fmfindfont(fontname).

	
fm.enumerate()

	Returns a list of available font names. This is an interface to
fmenumerate().

	
fm.prstr(string)

	Render a string using the current font (see the setfont() font handle
method below). Calls fmprstr(string).

	
fm.setpath(string)

	Sets the font search path. Calls fmsetpath(string). (XXX Does not work!?!)

	
fm.fontpath()

	Returns the current font search path.

Font handle objects support the following operations:

	
font handle.scalefont(factor)

	Returns a handle for a scaled version of this font. Calls fmscalefont(fh,
factor).

	
font handle.setfont()

	Makes this font the current font. Note: the effect is undone silently when the
font handle object is deleted. Calls fmsetfont(fh).

	
font handle.getfontname()

	Returns this font’s name. Calls fmgetfontname(fh).

	
font handle.getcomment()

	Returns the comment string associated with this font. Raises an exception if
there is none. Calls fmgetcomment(fh).

	
font handle.getfontinfo()

	Returns a tuple giving some pertinent data about this font. This is an interface
to fmgetfontinfo(). The returned tuple contains the following numbers:
(printermatched, fixed_width, xorig, yorig, xsize, ysize, height, nglyphs).

	
font handle.getstrwidth(string)

	Returns the width, in pixels, of string when drawn in this font. Calls
fmgetstrwidth(fh, string).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.8. gl — Graphics Library interface

Deprecated since version 2.6: The gl module has been deprecated for removal in Python 3.0.

This module provides access to the Silicon Graphics Graphics Library. It is
available only on Silicon Graphics machines.

Warning

Some illegal calls to the GL library cause the Python interpreter to dump
core. In particular, the use of most GL calls is unsafe before the first
window is opened.

The module is too large to document here in its entirety, but the following
should help you to get started. The parameter conventions for the C functions
are translated to Python as follows:

	All (short, long, unsigned) int values are represented by Python integers.

	All float and double values are represented by Python floating point numbers.
In most cases, Python integers are also allowed.

	All arrays are represented by one-dimensional Python lists. In most cases,
tuples are also allowed.

	All string and character arguments are represented by Python strings, for
instance, winopen('Hi There!') and rotate(900, 'z').

	All (short, long, unsigned) integer arguments or return values that are only
used to specify the length of an array argument are omitted. For example, the C
call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

	Output arguments are omitted from the argument list; they are transmitted as
function return values instead. If more than one value must be returned, the
return value is a tuple. If the C function has both a regular return value (that
is not omitted because of the previous rule) and an output argument, the return
value comes first in the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

	
gl.varray(argument)

	Equivalent to but faster than a number of v3d() calls. The argument is a
list (or tuple) of points. Each point must be a tuple of coordinates (x, y,
z) or (x, y). The points may be 2- or 3-dimensional but must all have the
same dimension. Float and int values may be mixed however. The points are always
converted to 3D double precision points by assuming z = 0.0 if necessary (as
indicated in the man page), and for each point v3d() is called.

	
gl.nvarray()

	Equivalent to but faster than a number of n3f and v3f calls. The
argument is an array (list or tuple) of pairs of normals and points. Each pair
is a tuple of a point and a normal for that point. Each point or normal must be
a tuple of coordinates (x, y, z). Three coordinates must be given. Float and
int values may be mixed. For each pair, n3f() is called for the normal, and
then v3f() is called for the point.

	
gl.vnarray()

	Similar to nvarray() but the pairs have the point first and the normal
second.

	
gl.nurbssurface(s_k, t_k, ctl, s_ord, t_ord, type)

	Defines a nurbs surface. The dimensions of ctl[][] are computed as follows:
[len(s_k) - s_ord], [len(t_k) - t_ord].

	
gl.nurbscurve(knots, ctlpoints, order, type)

	Defines a nurbs curve. The length of ctlpoints is len(knots) - order.

	
gl.pwlcurve(points, type)

	Defines a piecewise-linear curve. points is a list of points. type must be
N_ST.

	
gl.pick(n)

	
gl.select(n)

	The only argument to these functions specifies the desired size of the pick or
select buffer.

	
gl.endpick()

	
gl.endselect()

	These functions have no arguments. They return a list of integers representing
the used part of the pick/select buffer. No method is provided to detect buffer
overrun.

Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():
 gl.foreground()
 gl.prefposition(500, 900, 500, 900)
 w = gl.winopen('CrissCross')
 gl.ortho2(0.0, 400.0, 0.0, 400.0)
 gl.color(GL.WHITE)
 gl.clear()
 gl.color(GL.RED)
 gl.bgnline()
 gl.v2f(0.0, 0.0)
 gl.v2f(400.0, 400.0)
 gl.endline()
 gl.bgnline()
 gl.v2f(400.0, 0.0)
 gl.v2f(0.0, 400.0)
 gl.endline()
 time.sleep(5)

main()

See also

	PyOpenGL: The Python OpenGL Binding [http://pyopengl.sourceforge.net/]

	An interface to OpenGL is also available; see information about the PyOpenGL
project online at http://pyopengl.sourceforge.net/. This may be a better option
if support for SGI hardware from before about 1996 is not required.

38.9. DEVICE — Constants used with the gl module

Deprecated since version 2.6: The DEVICE module has been deprecated for removal in Python 3.0.

This modules defines the constants used by the Silicon Graphics Graphics
Library that C programmers find in the header file <gl/device.h>. Read the
module source file for details.

38.10. GL — Constants used with the gl module

Deprecated since version 2.6: The GL module has been deprecated for removal in Python 3.0.

This module contains constants used by the Silicon Graphics Graphics Library
from the C header file <gl/gl.h>. Read the module source file for details.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.11. imgfile — Support for SGI imglib files

Deprecated since version 2.6: The imgfile module has been deprecated for removal in Python 3.0.

The imgfile module allows Python programs to access SGI imglib image
files (also known as .rgb files). The module is far from complete, but
is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

	
exception imgfile.error

	This exception is raised on all errors, such as unsupported file type, etc.

	
imgfile.getsizes(file)

	This function returns a tuple (x, y, z) where x and y are the size of
the image in pixels and z is the number of bytes per pixel. Only 3 byte RGB
pixels and 1 byte greyscale pixels are currently supported.

	
imgfile.read(file)

	This function reads and decodes the image on the specified file, and returns it
as a Python string. The string has either 1 byte greyscale pixels or 4 byte RGBA
pixels. The bottom left pixel is the first in the string. This format is
suitable to pass to gl.lrectwrite(), for instance.

	
imgfile.readscaled(file, x, y, filter[, blur])

	This function is identical to read but it returns an image that is scaled to the
given x and y sizes. If the filter and blur parameters are omitted
scaling is done by simply dropping or duplicating pixels, so the result will be
less than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smooth the image after
scaling. The filter forms supported are 'impulse', 'box',
'triangle', 'quadratic' and 'gaussian'. If a filter is specified
blur is an optional parameter specifying the blurriness of the filter. It
defaults to 1.0.

readscaled() makes no attempt to keep the aspect ratio correct, so that is
the users’ responsibility.

	
imgfile.ttob(flag)

	This function sets a global flag which defines whether the scan lines of the
image are read or written from bottom to top (flag is zero, compatible with SGI
GL) or from top to bottom(flag is one, compatible with X). The default is zero.

	
imgfile.write(file, data, x, y, z)

	This function writes the RGB or greyscale data in data to image file file.
x and y give the size of the image, z is 1 for 1 byte greyscale images or
3 for RGB images (which are stored as 4 byte values of which only the lower
three bytes are used). These are the formats returned by gl.lrectread().

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	38. SGI IRIX Specific Services

38.12. jpeg — Read and write JPEG files

Deprecated since version 2.6: The jpeg module has been deprecated for removal in Python 3.0.

The module jpeg provides access to the jpeg compressor and decompressor
written by the Independent JPEG Group (IJG). JPEG is a standard for compressing
pictures; it is defined in ISO 10918. For details on JPEG or the Independent
JPEG Group software refer to the JPEG standard or the documentation provided
with the software.

A portable interface to JPEG image files is available with the Python Imaging
Library (PIL) by Fredrik Lundh. Information on PIL is available at
http://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

	
exception jpeg.error

	Exception raised by compress() and decompress() in case of errors.

	
jpeg.compress(data, w, h, b)

	Treat data as a pixmap of width w and height h, with b bytes per pixel.
The data is in SGI GL order, so the first pixel is in the lower-left corner.
This means that gl.lrectread() return data can immediately be passed to
compress(). Currently only 1 byte and 4 byte pixels are allowed, the
former being treated as greyscale and the latter as RGB color. compress()
returns a string that contains the compressed picture, in JFIF format.

	
jpeg.decompress(data)

	Data is a string containing a picture in JFIF format. It returns a tuple
(data, width, height, bytesperpixel). Again, the data is suitable to pass
to gl.lrectwrite().

	
jpeg.setoption(name, value)

	Set various options. Subsequent compress() and decompress() calls
will use these options. The following options are available:

	Option
	Effect

	'forcegray'
	Force output to be grayscale, even if input
is RGB.

	'quality'
	Set the quality of the compressed image to
a value between 0 and 100 (default
is 75). This only affects compression.

	'optimize'
	Perform Huffman table optimization. Takes
longer, but results in smaller compressed
image. This only affects compression.

	'smooth'
	Perform inter-block smoothing on
uncompressed image. Only useful for low-
quality images. This only affects
decompression.

See also

	JPEG Still Image Data Compression Standard

	The canonical reference for the JPEG image format, by Pennebaker and Mitchell.

	Information Technology - Digital Compression and Coding of Continuous-tone Still Images - Requirements and Guidelines [http://www.w3.org/Graphics/JPEG/itu-t81.pdf]

	The ISO standard for JPEG is also published as ITU T.81. This is available
online in PDF form.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

39. SunOS Specific Services

The modules described in this chapter provide interfaces to features that are
unique to SunOS 5 (also known as Solaris version 2).

	39.1. sunaudiodev — Access to Sun audio hardware
	39.1.1. Audio Device Objects

	39.2. SUNAUDIODEV — Constants used with sunaudiodev

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

 	39. SunOS Specific Services

39.1. sunaudiodev — Access to Sun audio hardware

Deprecated since version 2.6: The sunaudiodev module has been deprecated for removal in Python 3.0.

This module allows you to access the Sun audio interface. The Sun audio hardware
is capable of recording and playing back audio data in u-LAW format with a
sample rate of 8K per second. A full description can be found in the
audio(7I) manual page.

The module SUNAUDIODEV defines constants which may be used with this
module.

This module defines the following variables and functions:

	
exception sunaudiodev.error

	This exception is raised on all errors. The argument is a string describing what
went wrong.

	
sunaudiodev.open(mode)

	This function opens the audio device and returns a Sun audio device object. This
object can then be used to do I/O on. The mode parameter is one of 'r' for
record-only access, 'w' for play-only access, 'rw' for both and
'control' for access to the control device. Since only one process is
allowed to have the recorder or player open at the same time it is a good idea
to open the device only for the activity needed. See audio(7I) for
details.

As per the manpage, this module first looks in the environment variable
AUDIODEV for the base audio device filename. If not found, it falls back to
/dev/audio. The control device is calculated by appending “ctl” to the
base audio device.

39.1.1. Audio Device Objects

The audio device objects are returned by open() define the following
methods (except control objects which only provide getinfo(),
setinfo(), fileno(), and drain()):

	
audio device.close()

	This method explicitly closes the device. It is useful in situations where
deleting the object does not immediately close it since there are other
references to it. A closed device should not be used again.

	
audio device.fileno()

	Returns the file descriptor associated with the device. This can be used to set
up SIGPOLL notification, as described below.

	
audio device.drain()

	This method waits until all pending output is processed and then returns.
Calling this method is often not necessary: destroying the object will
automatically close the audio device and this will do an implicit drain.

	
audio device.flush()

	This method discards all pending output. It can be used avoid the slow response
to a user’s stop request (due to buffering of up to one second of sound).

	
audio device.getinfo()

	This method retrieves status information like input and output volume, etc. and
returns it in the form of an audio status object. This object has no methods but
it contains a number of attributes describing the current device status. The
names and meanings of the attributes are described in <sun/audioio.h> and in
the audio(7I) manual page. Member names are slightly different from
their C counterparts: a status object is only a single structure. Members of the
play substructure have o_ prepended to their name and members of
the record structure have i_. So, the C member
play.sample_rate is accessed as o_sample_rate,
record.gain as i_gain and monitor_gain plainly as
monitor_gain.

	
audio device.ibufcount()

	This method returns the number of samples that are buffered on the recording
side, i.e. the program will not block on a read() call of so many samples.

	
audio device.obufcount()

	This method returns the number of samples buffered on the playback side.
Unfortunately, this number cannot be used to determine a number of samples that
can be written without blocking since the kernel output queue length seems to be
variable.

	
audio device.read(size)

	This method reads size samples from the audio input and returns them as a
Python string. The function blocks until enough data is available.

	
audio device.setinfo(status)

	This method sets the audio device status parameters. The status parameter is
an device status object as returned by getinfo() and possibly modified by
the program.

	
audio device.write(samples)

	Write is passed a Python string containing audio samples to be played. If there
is enough buffer space free it will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through
the SIGPOLL signal. Here’s an example of how you might enable this in Python:

def handle_sigpoll(signum, frame):
 print 'I got a SIGPOLL update'

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)
fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

39.2. SUNAUDIODEV — Constants used with sunaudiodev

Deprecated since version 2.6: The SUNAUDIODEV module has been deprecated for removal in Python 3.0.

This is a companion module to sunaudiodev which defines useful symbolic
constants like MIN_GAIN, MAX_GAIN, SPEAKER, etc. The
names of the constants are the same names as used in the C include file
<sun/audioio.h>, with the leading string AUDIO_ stripped.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	The Python Standard Library

40. Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that
should be documented. Feel free to contribute documentation for them! (Send
via email to docs@python.org.)

The idea and original contents for this chapter were taken from a posting by
Fredrik Lundh; the specific contents of this chapter have been substantially
revised.

40.1. Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

	ihooks

	— Import hook support (for rexec; may become obsolete). Removed in
Python 3.x.

40.2. Platform specific modules

These modules are used to implement the os.path module, and are not
documented beyond this mention. There’s little need to document these.

	ntpath

	— Implementation of os.path on Win32, Win64, WinCE, and OS/2 platforms.

	posixpath

	— Implementation of os.path on POSIX.

	bsddb185

	— Backwards compatibility module for systems which still use the Berkeley DB
1.85 module. It is normally only available on certain BSD Unix-based systems.
It should never be used directly.

40.3. Multimedia

	audiodev

	— Platform-independent API for playing audio data. Removed in Python 3.x.

	linuxaudiodev

	— Play audio data on the Linux audio device. Replaced in Python 2.3 by the
ossaudiodev module. Removed in Python 3.x.

	sunaudio

	— Interpret Sun audio headers (may become obsolete or a tool/demo).
Removed in Python 3.x.

	toaiff

	— Convert “arbitrary” sound files to AIFF files; should probably become a tool
or demo. Requires the external program sox. Removed in Python 3.x.

40.4. Undocumented Mac OS modules

40.4.1. applesingle — AppleSingle decoder

Deprecated since version 2.6.

40.4.2. buildtools — Helper module for BuildApplet and Friends

Deprecated since version 2.4.

40.4.3. cfmfile — Code Fragment Resource module

cfmfile is a module that understands Code Fragments and the accompanying
“cfrg” resources. It can parse them and merge them, and is used by
BuildApplication to combine all plugin modules to a single executable.

Deprecated since version 2.4.

40.4.4. icopen — Internet Config replacement for open()

Importing icopen will replace the built-in open() with a version
that uses Internet Config to set file type and creator for new files.

Deprecated since version 2.6.

40.4.5. macerrors — Mac OS Errors

macerrors contains constant definitions for many Mac OS error codes.

Deprecated since version 2.6.

40.4.6. macresource — Locate script resources

macresource helps scripts finding their resources, such as dialogs and
menus, without requiring special case code for when the script is run under
MacPython, as a MacPython applet or under OSX Python.

Deprecated since version 2.6.

40.4.7. Nav — NavServices calls

A low-level interface to Navigation Services.

Deprecated since version 2.6.

40.4.8. PixMapWrapper — Wrapper for PixMap objects

PixMapWrapper wraps a PixMap object with a Python object that allows
access to the fields by name. It also has methods to convert to and from
PIL images.

Deprecated since version 2.6.

40.4.9. videoreader — Read QuickTime movies

videoreader reads and decodes QuickTime movies and passes a stream of
images to your program. It also provides some support for audio tracks.

Deprecated since version 2.6.

40.4.10. W — Widgets built on FrameWork

The W widgets are used extensively in the IDE.

Deprecated since version 2.6.

40.5. Obsolete

These modules are not normally available for import; additional work must be
done to make them available.

These extension modules written in C are not built by default. Under Unix, these
must be enabled by uncommenting the appropriate lines in Modules/Setup
in the build tree and either rebuilding Python if the modules are statically
linked, or building and installing the shared object if using dynamically-loaded
extensions.

	timing

	— Measure time intervals to high resolution (use time.clock()
instead). Removed in Python 3.x.

40.6. SGI-specific Extension modules

The following are SGI specific, and may be out of touch with the current version
of reality.

	cl

	— Interface to the SGI compression library.

	sv

	— Interface to the “simple video” board on SGI Indigo (obsolete hardware).
Removed in Python 3.x.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Extending and Embedding the Python Interpreter

	Release:	2.7

	Date:	November 07, 2013

This document describes how to write modules in C or C++ to extend the Python
interpreter with new modules. Those modules can define new functions but also
new object types and their methods. The document also describes how to embed
the Python interpreter in another application, for use as an extension language.
Finally, it shows how to compile and link extension modules so that they can be
loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal
introduction to the language, see The Python Tutorial. The Python Language Reference
gives a more formal definition of the language. The Python Standard Library documents
the existing object types, functions and modules (both built-in and written in
Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate
c-api-index.

	1. Extending Python with C or C++
	1.1. A Simple Example

	1.2. Intermezzo: Errors and Exceptions

	1.3. Back to the Example

	1.4. The Module’s Method Table and Initialization Function

	1.5. Compilation and Linkage

	1.6. Calling Python Functions from C

	1.7. Extracting Parameters in Extension Functions

	1.8. Keyword Parameters for Extension Functions

	1.9. Building Arbitrary Values

	1.10. Reference Counts

	1.11. Writing Extensions in C++

	1.12. Providing a C API for an Extension Module

	2. Defining New Types
	2.1. The Basics

	2.2. Type Methods

	3. Building C and C++ Extensions with distutils
	3.1. Distributing your extension modules

	4. Building C and C++ Extensions on Windows
	4.1. A Cookbook Approach

	4.2. Differences Between Unix and Windows

	4.3. Using DLLs in Practice

	5. Embedding Python in Another Application
	5.1. Very High Level Embedding

	5.2. Beyond Very High Level Embedding: An overview

	5.3. Pure Embedding

	5.4. Extending Embedded Python

	5.5. Embedding Python in C++

	5.6. Linking Requirements

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Extending and Embedding the Python Interpreter

1. Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to
program in C. Such extension modules can do two things that can’t be
done directly in Python: they can implement new built-in object types, and they
can call C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface)
defines a set of functions, macros and variables that provide access to most
aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on
your system setup; details are given in later chapters.

Do note that if your use case is calling C library functions or system calls,
you should consider using the ctypes module rather than writing custom
C code. Not only does ctypes let you write Python code to interface
with C code, but it is more portable between implementations of Python than
writing and compiling an extension module which typically ties you to CPython.

1.1. A Simple Example

Let’s create an extension module called spam (the favorite food of Monty
Python fans...) and let’s say we want to create a Python interface to the C
library function system(). [1] This function takes a null-terminated
character string as argument and returns an integer. We want this function to
be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls -l")

Begin by creating a file spammodule.c. (Historically, if a module is
called spam, the C file containing its implementation is called
spammodule.c; if the module name is very long, like spammify, the
module name can be just spammify.c.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of
the module and a copyright notice if you like).

Note

Since Python may define some pre-processor definitions which affect the standard
headers on some systems, you must include Python.h before any standard
headers are included.

All user-visible symbols defined by Python.h have a prefix of Py or
PY, except those defined in standard header files. For convenience, and
since they are used extensively by the Python interpreter, "Python.h"
includes a few standard header files: <stdio.h>, <string.h>,
<errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc(), free() and
realloc() directly.

The next thing we add to our module file is the C function that will be called
when the Python expression spam.system(string) is evaluated (we’ll see
shortly how it ends up being called):

static PyObject *
spam_system(PyObject *self, PyObject *args)
{
 const char *command;
 int sts;

 if (!PyArg_ParseTuple(args, "s", &command))
 return NULL;
 sts = system(command);
 return Py_BuildValue("i", sts);
}

There is a straightforward translation from the argument list in Python (for
example, the single expression "ls -l") to the arguments passed to the C
function. The C function always has two arguments, conventionally named self
and args.

The self argument points to the module object for module-level functions;
for a method it would point to the object instance.

The args argument will be a pointer to a Python tuple object containing the
arguments. Each item of the tuple corresponds to an argument in the call’s
argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The function
PyArg_ParseTuple() in the Python API checks the argument types and
converts them to C values. It uses a template string to determine the required
types of the arguments as well as the types of the C variables into which to
store the converted values. More about this later.

PyArg_ParseTuple() returns true (nonzero) if all arguments have the right
type and its components have been stored in the variables whose addresses are
passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can
return NULL immediately (as we saw in the example).

1.2. Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when
a function fails, it should set an exception condition and return an error value
(usually a NULL pointer). Exceptions are stored in a static global variable
inside the interpreter; if this variable is NULL no exception has occurred. A
second global variable stores the “associated value” of the exception (the
second argument to raise). A third variable contains the stack
traceback in case the error originated in Python code. These three variables
are the C equivalents of the Python variables sys.exc_type,
sys.exc_value and sys.exc_traceback (see the section on module
sys in the Python Library Reference). It is important to know about them
to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString(). Its arguments are an exception
object and a C string. The exception object is usually a predefined object like
PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the “associated value”
of the exception.

Another useful function is PyErr_SetFromErrno(), which only takes an
exception argument and constructs the associated value by inspection of the
global variable errno. The most general function is
PyErr_SetObject(), which takes two object arguments, the exception and
its associated value. You don’t need to Py_INCREF() the objects passed
to any of these functions.

You can test non-destructively whether an exception has been set with
PyErr_Occurred(). This returns the current exception object, or NULL
if no exception has occurred. You normally don’t need to call
PyErr_Occurred() to see whether an error occurred in a function call,
since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter
fails, f should itself return an error value (usually NULL or -1). It
should not call one of the PyErr_*() functions — one has already
been called by g. f‘s caller is then supposed to also return an error
indication to its caller, again without calling PyErr_*(), and so on
— the most detailed cause of the error was already reported by the function
that first detected it. Once the error reaches the Python interpreter’s main
loop, this aborts the currently executing Python code and tries to find an
exception handler specified by the Python programmer.

(There are situations where a module can actually give a more detailed error
message by calling another PyErr_*() function, and in such cases it is
fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail
for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception
condition must be cleared explicitly by calling PyErr_Clear(). The only
time C code should call PyErr_Clear() is if it doesn’t want to pass the
error on to the interpreter but wants to handle it completely by itself
(possibly by trying something else, or pretending nothing went wrong).

Every failing malloc() call must be turned into an exception — the
direct caller of malloc() (or realloc()) must call
PyErr_NoMemory() and return a failure indicator itself. All the
object-creating functions (for example, PyInt_FromLong()) already do
this, so this note is only relevant to those who call malloc() directly.

Also note that, with the important exception of PyArg_ParseTuple() and
friends, functions that return an integer status usually return a positive value
or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF() or
Py_DECREF() calls for objects you have already created) when you return
an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared
C objects corresponding to all built-in Python exceptions, such as
PyExc_ZeroDivisionError, which you can use directly. Of course, you
should choose exceptions wisely — don’t use PyExc_TypeError to mean
that a file couldn’t be opened (that should probably be PyExc_IOError).
If something’s wrong with the argument list, the PyArg_ParseTuple()
function usually raises PyExc_TypeError. If you have an argument whose
value must be in a particular range or must satisfy other conditions,
PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you
usually declare a static object variable at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (initspam())
with an exception object (leaving out the error checking for now):

PyMODINIT_FUNC
initspam(void)
{
 PyObject *m;

 m = Py_InitModule("spam", SpamMethods);
 if (m == NULL)
 return;

 SpamError = PyErr_NewException("spam.error", NULL, NULL);
 Py_INCREF(SpamError);
 PyModule_AddObject(m, "error", SpamError);
}

Note that the Python name for the exception object is spam.error. The
PyErr_NewException() function may create a class with the base class
being Exception (unless another class is passed in instead of NULL),
described in Built-in Exceptions.

Note also that the SpamError variable retains a reference to the newly
created exception class; this is intentional! Since the exception could be
removed from the module by external code, an owned reference to the class is
needed to ensure that it will not be discarded, causing SpamError to
become a dangling pointer. Should it become a dangling pointer, C code which
raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this
sample.

The spam.error exception can be raised in your extension module using a
call to PyErr_SetString() as shown below:

static PyObject *
spam_system(PyObject *self, PyObject *args)
{
 const char *command;
 int sts;

 if (!PyArg_ParseTuple(args, "s", &command))
 return NULL;
 sts = system(command);
 if (sts < 0) {
 PyErr_SetString(SpamError, "System command failed");
 return NULL;
 }
 return PyLong_FromLong(sts);
}

1.3. Back to the Example

Going back to our example function, you should now be able to understand this
statement:

if (!PyArg_ParseTuple(args, "s", &command))
 return NULL;

It returns NULL (the error indicator for functions returning object pointers)
if an error is detected in the argument list, relying on the exception set by
PyArg_ParseTuple(). Otherwise the string value of the argument has been
copied to the local variable command. This is a pointer assignment and
you are not supposed to modify the string to which it points (so in Standard C,
the variable command should properly be declared as const char
*command).

The next statement is a call to the Unix function system(), passing it
the string we just got from PyArg_ParseTuple():

sts = system(command);

Our spam.system() function must return the value of sts as a
Python object. This is done using the function Py_BuildValue(), which is
something like the inverse of PyArg_ParseTuple(): it takes a format
string and an arbitrary number of C values, and returns a new Python object.
More info on Py_BuildValue() is given later.

return Py_BuildValue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects
on the heap in Python!)

If you have a C function that returns no useful argument (a function returning
void), the corresponding Python function must return None. You
need this idiom to do so (which is implemented by the Py_RETURN_NONE
macro):

Py_INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python object None. It is a
genuine Python object rather than a NULL pointer, which means “error” in most
contexts, as we have seen.

1.4. The Module’s Method Table and Initialization Function

I promised to show how spam_system() is called from Python programs.
First, we need to list its name and address in a “method table”:

static PyMethodDef SpamMethods[] = {
 ...
 {"system", spam_system, METH_VARARGS,
 "Execute a shell command."},
 ...
 {NULL, NULL, 0, NULL} /* Sentinel */
};

Note the third entry (METH_VARARGS). This is a flag telling the interpreter
the calling convention to be used for the C function. It should normally always
be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0 means
that an obsolete variant of PyArg_ParseTuple() is used.

When using only METH_VARARGS, the function should expect the Python-level
parameters to be passed in as a tuple acceptable for parsing via
PyArg_ParseTuple(); more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword
arguments should be passed to the function. In this case, the C function should
accept a third PyObject * parameter which will be a dictionary of keywords.
Use PyArg_ParseTupleAndKeywords() to parse the arguments to such a
function.

The method table must be passed to the interpreter in the module’s
initialization function. The initialization function must be named
initname(), where name is the name of the module, and should be the
only non-static item defined in the module file:

PyMODINIT_FUNC
initspam(void)
{
 (void) Py_InitModule("spam", SpamMethods);
}

Note that PyMODINIT_FUNC declares the function as void return type,
declares any special linkage declarations required by the platform, and for C++
declares the function as extern "C".

When the Python program imports module spam for the first time,
initspam() is called. (See below for comments about embedding Python.)
It calls Py_InitModule(), which creates a “module object” (which is
inserted in the dictionary sys.modules under the key "spam"), and
inserts built-in function objects into the newly created module based upon the
table (an array of PyMethodDef structures) that was passed as its
second argument. Py_InitModule() returns a pointer to the module object
that it creates (which is unused here). It may abort with a fatal error for
certain errors, or return NULL if the module could not be initialized
satisfactorily.

When embedding Python, the initspam() function is not called
automatically unless there’s an entry in the _PyImport_Inittab table.
The easiest way to handle this is to statically initialize your
statically-linked modules by directly calling initspam() after the call
to Py_Initialize():

int
main(int argc, char *argv[])
{
 /* Pass argv[0] to the Python interpreter */
 Py_SetProgramName(argv[0]);

 /* Initialize the Python interpreter. Required. */
 Py_Initialize();

 /* Add a static module */
 initspam();

An example may be found in the file Demo/embed/demo.c in the Python
source distribution.

Note

Removing entries from sys.modules or importing compiled modules into
multiple interpreters within a process (or following a fork() without an
intervening exec()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data
structures. Note also that the reload() function can be used with
extension modules, and will call the module initialization function
(initspam() in the example), but will not load the module again if it was
loaded from a dynamically loadable object file (.so on Unix,
.dll on Windows).

A more substantial example module is included in the Python source distribution
as Modules/xxmodule.c. This file may be used as a template or simply
read as an example.

1.5. Compilation and Linkage

There are two more things to do before you can use your new extension: compiling
and linking it with the Python system. If you use dynamic loading, the details
may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions with distutils) and additional
information that pertains only to building on Windows (chapter
Building C and C++ Extensions on Windows) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent
part of the Python interpreter, you will have to change the configuration setup
and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule.c for example) in the Modules/ directory
of an unpacked source distribution, add a line to the file
Modules/Setup.local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel
directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile there by running
‘make Makefile’. (This is necessary each time you change the
Setup file.)

If your module requires additional libraries to link with, these can be listed
on the line in the configuration file as well, for instance:

spam spammodule.o -lX11

1.6. Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The
reverse is also useful: calling Python functions from C. This is especially the
case for libraries that support so-called “callback” functions. If a C
interface makes use of callbacks, the equivalent Python often needs to provide a
callback mechanism to the Python programmer; the implementation will require
calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a
standard interface to call a Python function. (I won’t dwell on how to call the
Python parser with a particular string as input — if you’re interested, have a
look at the implementation of the -c command line option in
Modules/main.c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass
you the Python function object. You should provide a function (or some other
interface) to do this. When this function is called, save a pointer to the
Python function object (be careful to Py_INCREF() it!) in a global
variable — or wherever you see fit. For example, the following function might
be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)
{
 PyObject *result = NULL;
 PyObject *temp;

 if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
 if (!PyCallable_Check(temp)) {
 PyErr_SetString(PyExc_TypeError, "parameter must be callable");
 return NULL;
 }
 Py_XINCREF(temp); /* Add a reference to new callback */
 Py_XDECREF(my_callback); /* Dispose of previous callback */
 my_callback = temp; /* Remember new callback */
 /* Boilerplate to return "None" */
 Py_INCREF(Py_None);
 result = Py_None;
 }
 return result;
}

This function must be registered with the interpreter using the
METH_VARARGS flag; this is described in section The Module’s Method Table and Initialization Function. The
PyArg_ParseTuple() function and its arguments are documented in section
Extracting Parameters in Extension Functions.

The macros Py_XINCREF() and Py_XDECREF() increment/decrement the
reference count of an object and are safe in the presence of NULL pointers
(but note that temp will not be NULL in this context). More info on them
in section Reference Counts.

Later, when it is time to call the function, you call the C function
PyObject_CallObject(). This function has two arguments, both pointers to
arbitrary Python objects: the Python function, and the argument list. The
argument list must always be a tuple object, whose length is the number of
arguments. To call the Python function with no arguments, pass in NULL, or
an empty tuple; to call it with one argument, pass a singleton tuple.
Py_BuildValue() returns a tuple when its format string consists of zero
or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyObject_CallObject() returns a Python object pointer: this is the return
value of the Python function. PyObject_CallObject() is
“reference-count-neutral” with respect to its arguments. In the example a new
tuple was created to serve as the argument list, which is Py_DECREF()-ed immediately after the call.

The return value of PyObject_CallObject() is “new”: either it is a brand
new object, or it is an existing object whose reference count has been
incremented. So, unless you want to save it in a global variable, you should
somehow Py_DECREF() the result, even (especially!) if you are not
interested in its value.

Before you do this, however, it is important to check that the return value
isn’t NULL. If it is, the Python function terminated by raising an exception.
If the C code that called PyObject_CallObject() is called from Python, it
should now return an error indication to its Python caller, so the interpreter
can print a stack trace, or the calling Python code can handle the exception.
If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear(). For example:

if (result == NULL)
 return NULL; /* Pass error back */
...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also
have to provide an argument list to PyObject_CallObject(). In some cases
the argument list is also provided by the Python program, through the same
interface that specified the callback function. It can then be saved and used
in the same manner as the function object. In other cases, you may have to
construct a new tuple to pass as the argument list. The simplest way to do this
is to call Py_BuildValue(). For example, if you want to pass an integral
event code, you might use the following code:

PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)
 return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement of Py_DECREF(arglist) immediately after the call, before
the error check! Also note that strictly speaking this code is not complete:
Py_BuildValue() may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using
PyObject_Call(), which supports arguments and keyword arguments. As in
the above example, we use Py_BuildValue() to construct the dictionary.

PyObject *dict;
...
dict = Py_BuildValue("{s:i}", "name", val);
result = PyObject_Call(my_callback, NULL, dict);
Py_DECREF(dict);
if (result == NULL)
 return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

1.7. Extracting Parameters in Extension Functions

The PyArg_ParseTuple() function is declared as follows:

int PyArg_ParseTuple(PyObject *arg, char *format, ...);

The arg argument must be a tuple object containing an argument list passed
from Python to a C function. The format argument must be a format string,
whose syntax is explained in arg-parsing in the Python/C API Reference
Manual. The remaining arguments must be addresses of variables whose type is
determined by the format string.

Note that while PyArg_ParseTuple() checks that the Python arguments have
the required types, it cannot check the validity of the addresses of C variables
passed to the call: if you make mistakes there, your code will probably crash or
at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are
borrowed references; do not decrement their reference count!

Some example calls:

int ok;
int i, j;
long k, l;
const char *s;
int size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
 /* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
 /* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
 /* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
 /* A pair of ints and a string, whose size is also returned */
 /* Possible Python call: f((1, 2), 'three') */

{
 const char *file;
 const char *mode = "r";
 int bufsize = 0;
 ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
 /* A string, and optionally another string and an integer */
 /* Possible Python calls:
 f('spam')
 f('spam', 'w')
 f('spam', 'wb', 100000) */
}

{
 int left, top, right, bottom, h, v;
 ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
 &left, &top, &right, &bottom, &h, &v);
 /* A rectangle and a point */
 /* Possible Python call:
 f(((0, 0), (400, 300)), (10, 10)) */
}

{
 Py_complex c;
 ok = PyArg_ParseTuple(args, "D:myfunction", &c);
 /* a complex, also providing a function name for errors */
 /* Possible Python call: myfunction(1+2j) */
}

1.8. Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
 char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the
PyArg_ParseTuple() function. The kwdict parameter is the dictionary of
keywords received as the third parameter from the Python runtime. The kwlist
parameter is a NULL-terminated list of strings which identify the parameters;
the names are matched with the type information from format from left to
right. On success, PyArg_ParseTupleAndKeywords() returns true, otherwise
it returns false and raises an appropriate exception.

Note

Nested tuples cannot be parsed when using keyword arguments! Keyword parameters
passed in which are not present in the kwlist will cause TypeError to
be raised.

Here is an example module which uses keywords, based on an example by Geoff
Philbrick (philbrick@hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
{
 int voltage;
 char *state = "a stiff";
 char *action = "voom";
 char *type = "Norwegian Blue";

 static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

 if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
 &voltage, &state, &action, &type))
 return NULL;

 printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
 action, voltage);
 printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);

 Py_INCREF(Py_None);

 return Py_None;
}

static PyMethodDef keywdarg_methods[] = {
 /* The cast of the function is necessary since PyCFunction values
 * only take two PyObject* parameters, and keywdarg_parrot() takes
 * three.
 */
 {"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
 "Print a lovely skit to standard output."},
 {NULL, NULL, 0, NULL} /* sentinel */
};

void
initkeywdarg(void)
{
 /* Create the module and add the functions */
 Py_InitModule("keywdarg", keywdarg_methods);
}

1.9. Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple(). It is declared
as follows:

PyObject *Py_BuildValue(char *format, ...);

It recognizes a set of format units similar to the ones recognized by
PyArg_ParseTuple(), but the arguments (which are input to the function,
not output) must not be pointers, just values. It returns a new Python object,
suitable for returning from a C function called from Python.

One difference with PyArg_ParseTuple(): while the latter requires its
first argument to be a tuple (since Python argument lists are always represented
as tuples internally), Py_BuildValue() does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If
the format string is empty, it returns None; if it contains exactly one
format unit, it returns whatever object is described by that format unit. To
force it to return a tuple of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello'
Py_BuildValue("ss", "hello", "world") ('hello', 'world')
Py_BuildValue("s#", "hello", 4) 'hell'
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",
 "abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_BuildValue("((ii)(ii)) (ii)",
 1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

1.10. Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation
and deallocation of memory on the heap. In C, this is done using the functions
malloc() and free(). In C++, the operators new and
delete are used with essentially the same meaning and we’ll restrict
the following discussion to the C case.

Every block of memory allocated with malloc() should eventually be
returned to the pool of available memory by exactly one call to free().
It is important to call free() at the right time. If a block’s address
is forgotten but free() is not called for it, the memory it occupies
cannot be reused until the program terminates. This is called a memory
leak. On the other hand, if a program calls free() for a block and then
continues to use the block, it creates a conflict with re-use of the block
through another malloc() call. This is called using freed memory.
It has the same bad consequences as referencing uninitialized data — core
dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance,
a function may allocate a block of memory, do some calculation, and then free
the block again. Now a change in the requirements for the function may add a
test to the calculation that detects an error condition and can return
prematurely from the function. It’s easy to forget to free the allocated memory
block when taking this premature exit, especially when it is added later to the
code. Such leaks, once introduced, often go undetected for a long time: the
error exit is taken only in a small fraction of all calls, and most modern
machines have plenty of virtual memory, so the leak only becomes apparent in a
long-running process that uses the leaking function frequently. Therefore, it’s
important to prevent leaks from happening by having a coding convention or
strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc() and free(), it needs a
strategy to avoid memory leaks as well as the use of freed memory. The chosen
method is called reference counting. The principle is simple: every
object contains a counter, which is incremented when a reference to the object
is stored somewhere, and which is decremented when a reference to it is deleted.
When the counter reaches zero, the last reference to the object has been deleted
and the object is freed.

An alternative strategy is called automatic garbage collection.
(Sometimes, reference counting is also referred to as a garbage collection
strategy, hence my use of “automatic” to distinguish the two.) The big
advantage of automatic garbage collection is that the user doesn’t need to call
free() explicitly. (Another claimed advantage is an improvement in speed
or memory usage — this is no hard fact however.) The disadvantage is that for
C, there is no truly portable automatic garbage collector, while reference
counting can be implemented portably (as long as the functions malloc()
and free() are available — which the C Standard guarantees). Maybe some
day a sufficiently portable automatic garbage collector will be available for C.
Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also
offers a cycle detector that works to detect reference cycles. This allows
applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference
counting. Reference cycles consist of objects which contain (possibly indirect)
references to themselves, so that each object in the cycle has a reference count
which is non-zero. Typical reference counting implementations are not able to
reclaim the memory belonging to any objects in a reference cycle, or referenced
from the objects in the cycle, even though there are no further references to
the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them so long
as there are no finalizers implemented in Python (__del__() methods).
When there are such finalizers, the detector exposes the cycles through the
gc module (specifically, the
garbage variable in that module). The gc module also exposes a way
to run the detector (the collect() function), as well as configuration
interfaces and the ability to disable the detector at runtime. The cycle
detector is considered an optional component; though it is included by default,
it can be disabled at build time using the --without-cycle-gc option
to the configure script on Unix platforms (including Mac OS X) or by
removing the definition of WITH_CYCLE_GC in the pyconfig.h header on
other platforms. If the cycle detector is disabled in this way, the gc
module will not be available.

1.10.1. Reference Counting in Python

There are two macros, Py_INCREF(x) and Py_DECREF(x), which handle the
incrementing and decrementing of the reference count. Py_DECREF() also
frees the object when the count reaches zero. For flexibility, it doesn’t call
free() directly — rather, it makes a call through a function pointer in
the object’s type object. For this purpose (and others), every object
also contains a pointer to its type object.

The big question now remains: when to use Py_INCREF(x) and Py_DECREF(x)?
Let’s first introduce some terms. Nobody “owns” an object; however, you can
own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is
responsible for calling Py_DECREF() when the reference is no longer
needed. Ownership of a reference can be transferred. There are three ways to
dispose of an owned reference: pass it on, store it, or call Py_DECREF().
Forgetting to dispose of an owned reference creates a memory leak.

It is also possible to borrow [2] a reference to an object. The
borrower of a reference should not call Py_DECREF(). The borrower must
not hold on to the object longer than the owner from which it was borrowed.
Using a borrowed reference after the owner has disposed of it risks using freed
memory and should be avoided completely. [3]

The advantage of borrowing over owning a reference is that you don’t need to
take care of disposing of the reference on all possible paths through the code
— in other words, with a borrowed reference you don’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over owning is
that there are some subtle situations where in seemingly correct code a borrowed
reference can be used after the owner from which it was borrowed has in fact
disposed of it.

A borrowed reference can be changed into an owned reference by calling
Py_INCREF(). This does not affect the status of the owner from which the
reference was borrowed — it creates a new owned reference, and gives full
owner responsibilities (the new owner must dispose of the reference properly, as
well as the previous owner).

1.10.2. Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of
the function’s interface specification whether ownership is transferred with the
reference or not.

Most functions that return a reference to an object pass on ownership with the
reference. In particular, all functions whose function it is to create a new
object, such as PyInt_FromLong() and Py_BuildValue(), pass
ownership to the receiver. Even if the object is not actually new, you still
receive ownership of a new reference to that object. For instance,
PyInt_FromLong() maintains a cache of popular values and can return a
reference to a cached item.

Many functions that extract objects from other objects also transfer ownership
with the reference, for instance PyObject_GetAttrString(). The picture
is less clear, here, however, since a few common routines are exceptions:
PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString() all return references that you borrow from the
tuple, list or dictionary.

The function PyImport_AddModule() also returns a borrowed reference, even
though it may actually create the object it returns: this is possible because an
owned reference to the object is stored in sys.modules.

When you pass an object reference into another function, in general, the
function borrows the reference from you — if it needs to store it, it will use
Py_INCREF() to become an independent owner. There are exactly two
important exceptions to this rule: PyTuple_SetItem() and
PyList_SetItem(). These functions take over ownership of the item passed
to them — even if they fail! (Note that PyDict_SetItem() and friends
don’t take over ownership — they are “normal.”)

When a C function is called from Python, it borrows references to its arguments
from the caller. The caller owns a reference to the object, so the borrowed
reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned
reference by calling Py_INCREF().

The object reference returned from a C function that is called from Python must
be an owned reference — ownership is transferred from the function to its
caller.

1.10.3. Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference
can lead to problems. These all have to do with implicit invocations of the
interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF() on
an unrelated object while borrowing a reference to a list item. For instance:

void
bug(PyObject *list)
{
 PyObject *item = PyList_GetItem(list, 0);

 PyList_SetItem(list, 1, PyInt_FromLong(0L));
 PyObject_Print(item, stdout, 0); /* BUG! */
}

This function first borrows a reference to list[0], then replaces
list[1] with the value 0, and finally prints the borrowed reference.
Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem(). The list owns
references to all its items, so when item 1 is replaced, it has to dispose of
the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined a
__del__() method. If this class instance has a reference count of 1,
disposing of it will call its __del__() method.

Since it is written in Python, the __del__() method can execute arbitrary
Python code. Could it perhaps do something to invalidate the reference to
item in bug()? You bet! Assuming that the list passed into
bug() is accessible to the __del__() method, it could execute a
statement to the effect of del list[0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby
invalidating item.

The solution, once you know the source of the problem, is easy: temporarily
increment the reference count. The correct version of the function reads:

void
no_bug(PyObject *list)
{
 PyObject *item = PyList_GetItem(list, 0);

 Py_INCREF(item);
 PyList_SetItem(list, 1, PyInt_FromLong(0L));
 PyObject_Print(item, stdout, 0);
 Py_DECREF(item);
}

This is a true story. An older version of Python contained variants of this bug
and someone spent a considerable amount of time in a C debugger to figure out
why his __del__() methods would fail...

The second case of problems with a borrowed reference is a variant involving
threads. Normally, multiple threads in the Python interpreter can’t get in each
other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro
Py_BEGIN_ALLOW_THREADS, and to re-acquire it using
Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to
let other threads use the processor while waiting for the I/O to complete.
Obviously, the following function has the same problem as the previous one:

void
bug(PyObject *list)
{
 PyObject *item = PyList_GetItem(list, 0);
 Py_BEGIN_ALLOW_THREADS
 ...some blocking I/O call...
 Py_END_ALLOW_THREADS
 PyObject_Print(item, stdout, 0); /* BUG! */
}

1.10.4. NULL Pointers

In general, functions that take object references as arguments do not expect you
to pass them NULL pointers, and will dump core (or cause later core dumps) if
you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL
arguments is that functions often pass the objects they receive on to other
function — if each function were to test for NULL, there would be a lot of
redundant tests and the code would run more slowly.

It is better to test for NULL only at the “source:” when a pointer that may be
NULL is received, for example, from malloc() or from a function that
may raise an exception.

The macros Py_INCREF() and Py_DECREF() do not check for NULL
pointers — however, their variants Py_XINCREF() and Py_XDECREF()
do.

The macros for checking for a particular object type (Pytype_Check()) don’t
check for NULL pointers — again, there is much code that calls several of
these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL
checking.

The C function calling mechanism guarantees that the argument list passed to C
functions (args in the examples) is never NULL — in fact it guarantees
that it is always a tuple. [4]

It is a severe error to ever let a NULL pointer “escape” to the Python user.

1.11. Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If
the main program (the Python interpreter) is compiled and linked by the C
compiler, global or static objects with constructors cannot be used. This is
not a problem if the main program is linked by the C++ compiler. Functions that
will be called by the Python interpreter (in particular, module initialization
functions) have to be declared using extern "C". It is unnecessary to
enclose the Python header files in extern "C" {...} — they use this form
already if the symbol __cplusplus is defined (all recent C++ compilers
define this symbol).

1.12. Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from
Python, but sometimes the code in an extension module can be useful for other
extension modules. For example, an extension module could implement a type
“collection” which works like lists without order. Just like the standard Python
list type has a C API which permits extension modules to create and manipulate
lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them
static, of course), provide an appropriate header file, and document
the C API. And in fact this would work if all extension modules were always
linked statically with the Python interpreter. When modules are used as shared
libraries, however, the symbols defined in one module may not be visible to
another module. The details of visibility depend on the operating system; some
systems use one global namespace for the Python interpreter and all extension
modules (Windows, for example), whereas others require an explicit list of
imported symbols at module link time (AIX is one example), or offer a choice of
different strategies (most Unices). And even if symbols are globally visible,
the module whose functions one wishes to call might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol
visibility. This means that all symbols in extension modules should be declared
static, except for the module’s initialization function, in order to
avoid name clashes with other extension modules (as discussed in section
The Module’s Method Table and Initialization Function). And it means that symbols that should be accessible from
other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from
one extension module to another one: Capsules. A Capsule is a Python data type
which stores a pointer (void *). Capsules can only be created and
accessed via their C API, but they can be passed around like any other Python
object. In particular, they can be assigned to a name in an extension module’s
namespace. Other extension modules can then import this module, retrieve the
value of this name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an
extension module. Each function could get its own Capsule, or all C API pointers
could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in
different ways between the module providing the code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly.
The function PyCapsule_New() takes a name parameter
(const char *); you’re permitted to pass in a NULL name, but
we strongly encourage you to specify a name. Properly named Capsules provide
a degree of runtime type-safety; there is no feasible way to tell one unnamed
Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following
this convention:

modulename.attributename

The convenience function PyCapsule_Import() makes it easy to
load a C API provided via a Capsule, but only if the Capsule’s name
matches this convention. This behavior gives C API users a high degree
of certainty that the Capsule they load contains the correct C API.

The following example demonstrates an approach that puts most of the burden on
the writer of the exporting module, which is appropriate for commonly used
library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header
file corresponding to the module provides a macro that takes care of importing
the module and retrieving its C API pointers; client modules only have to call
this macro before accessing the C API.

The exporting module is a modification of the spam module from section
A Simple Example. The function spam.system() does not call
the C library function system() directly, but a function
PySpam_System(), which would of course do something more complicated in
reality (such as adding “spam” to every command). This function
PySpam_System() is also exported to other extension modules.

The function PySpam_System() is a plain C function, declared
static like everything else:

static int
PySpam_System(const char *command)
{
 return system(command);
}

The function spam_system() is modified in a trivial way:

static PyObject *
spam_system(PyObject *self, PyObject *args)
{
 const char *command;
 int sts;

 if (!PyArg_ParseTuple(args, "s", &command))
 return NULL;
 sts = PySpam_System(command);
 return Py_BuildValue("i", sts);
}

In the beginning of the module, right after the line

#include "Python.h"

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the
exporting module, not a client module. Finally, the module’s initialization
function must take care of initializing the C API pointer array:

PyMODINIT_FUNC
initspam(void)
{
 PyObject *m;
 static void *PySpam_API[PySpam_API_pointers];
 PyObject *c_api_object;

 m = Py_InitModule("spam", SpamMethods);
 if (m == NULL)
 return;

 /* Initialize the C API pointer array */
 PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;

 /* Create a Capsule containing the API pointer array's address */
 c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);

 if (c_api_object != NULL)
 PyModule_AddObject(m, "_C_API", c_api_object);
}

Note that PySpam_API is declared static; otherwise the pointer
array would disappear when initspam() terminates!

The bulk of the work is in the header file spammodule.h, which looks
like this:

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif

/* Header file for spammodule */

/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_API;

#define PySpam_System \
 (*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

/* Return -1 on error, 0 on success.
 * PyCapsule_Import will set an exception if there's an error.
 */
static int
import_spam(void)
{
 PySpam_API = (void **)PyCapsule_Import("spam._C_API", 0);
 return (PySpam_API != NULL) ? 0 : -1;
}

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function
PySpam_System() is to call the function (or rather macro)
import_spam() in its initialization function:

PyMODINIT_FUNC
initclient(void)
{
 PyObject *m;

 m = Py_InitModule("client", ClientMethods);
 if (m == NULL)
 return;
 if (import_spam() < 0)
 return;
 /* additional initialization can happen here */
}

The main disadvantage of this approach is that the file spammodule.h is
rather complicated. However, the basic structure is the same for each function
that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality,
which is especially useful for memory allocation and deallocation of the pointer
stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section capsules and in the implementation of Capsules (files
Include/pycapsule.h and Objects/pycapsule.c in the Python source
code distribution).

Footnotes

	[1]	An interface for this function already exists in the standard module os
— it was chosen as a simple and straightforward example.

	[2]	The metaphor of “borrowing” a reference is not completely correct: the owner
still has a copy of the reference.

	[3]	Checking that the reference count is at least 1 does not work — the
reference count itself could be in freed memory and may thus be reused for
another object!

	[4]	These guarantees don’t hold when you use the “old” style calling convention —
this is still found in much existing code.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Extending and Embedding the Python Interpreter

2. Defining New Types

As mentioned in the last chapter, Python allows the writer of an extension
module to define new types that can be manipulated from Python code, much like
strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern, but there
are some details that you need to understand before you can get started.

Note

The way new types are defined changed dramatically (and for the better) in
Python 2.2. This document documents how to define new types for Python 2.2 and
later. If you need to support older versions of Python, you will need to refer
to older versions of this documentation [http://www.python.org/doc/versions/].

2.1. The Basics

The Python runtime sees all Python objects as variables of type
PyObject*. A PyObject is not a very magnificent object - it
just contains the refcount and a pointer to the object’s “type object”. This is
where the action is; the type object determines which (C) functions get called
when, for instance, an attribute gets looked up on an object or it is multiplied
by another object. These C functions are called “type methods” to distinguish
them from things like [].append (which we call “object methods”).

So, if you want to define a new object type, you need to create a new type
object.

This sort of thing can only be explained by example, so here’s a minimal, but
complete, module that defines a new type:

#include <Python.h>

typedef struct {
 PyObject_HEAD
 /* Type-specific fields go here. */
} noddy_NoddyObject;

static PyTypeObject noddy_NoddyType = {
 PyObject_HEAD_INIT(NULL)
 0, /*ob_size*/
 "noddy.Noddy", /*tp_name*/
 sizeof(noddy_NoddyObject), /*tp_basicsize*/
 0, /*tp_itemsize*/
 0, /*tp_dealloc*/
 0, /*tp_print*/
 0, /*tp_getattr*/
 0, /*tp_setattr*/
 0, /*tp_compare*/
 0, /*tp_repr*/
 0, /*tp_as_number*/
 0, /*tp_as_sequence*/
 0, /*tp_as_mapping*/
 0, /*tp_hash */
 0, /*tp_call*/
 0, /*tp_str*/
 0, /*tp_getattro*/
 0, /*tp_setattro*/
 0, /*tp_as_buffer*/
 Py_TPFLAGS_DEFAULT, /*tp_flags*/
 "Noddy objects", /* tp_doc */
};

static PyMethodDef noddy_methods[] = {
 {NULL} /* Sentinel */
};

#ifndef PyMODINIT_FUNC	/* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy(void)
{
 PyObject* m;

 noddy_NoddyType.tp_new = PyType_GenericNew;
 if (PyType_Ready(&noddy_NoddyType) < 0)
 return;

 m = Py_InitModule3("noddy", noddy_methods,
 "Example module that creates an extension type.");

 Py_INCREF(&noddy_NoddyType);
 PyModule_AddObject(m, "Noddy", (PyObject *)&noddy_NoddyType);
}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar
from the last chapter.

The first bit that will be new is:

typedef struct {
 PyObject_HEAD
} noddy_NoddyObject;

This is what a Noddy object will contain—in this case, nothing more than every
Python object contains, namely a refcount and a pointer to a type object. These
are the fields the PyObject_HEAD macro brings in. The reason for the macro
is to standardize the layout and to enable special debugging fields in debug
builds. Note that there is no semicolon after the PyObject_HEAD macro; one
is included in the macro definition. Be wary of adding one by accident; it’s
easy to do from habit, and your compiler might not complain, but someone else’s
probably will! (On Windows, MSVC is known to call this an error and refuse to
compile the code.)

For contrast, let’s take a look at the corresponding definition for standard
Python integers:

typedef struct {
 PyObject_HEAD
 long ob_ival;
} PyIntObject;

Moving on, we come to the crunch — the type object.

static PyTypeObject noddy_NoddyType = {
 PyObject_HEAD_INIT(NULL)
 0, /*ob_size*/
 "noddy.Noddy", /*tp_name*/
 sizeof(noddy_NoddyObject), /*tp_basicsize*/
 0, /*tp_itemsize*/
 0, /*tp_dealloc*/
 0, /*tp_print*/
 0, /*tp_getattr*/
 0, /*tp_setattr*/
 0, /*tp_compare*/
 0, /*tp_repr*/
 0, /*tp_as_number*/
 0, /*tp_as_sequence*/
 0, /*tp_as_mapping*/
 0, /*tp_hash */
 0, /*tp_call*/
 0, /*tp_str*/
 0, /*tp_getattro*/
 0, /*tp_setattro*/
 0, /*tp_as_buffer*/
 Py_TPFLAGS_DEFAULT, /*tp_flags*/
 "Noddy objects", /* tp_doc */
};

Now if you go and look up the definition of PyTypeObject in
object.h you’ll see that it has many more fields that the definition
above. The remaining fields will be filled with zeros by the C compiler, and
it’s common practice to not specify them explicitly unless you need them.

This is so important that we’re going to pick the top of it apart still
further:

PyObject_HEAD_INIT(NULL)

This line is a bit of a wart; what we’d like to write is:

PyObject_HEAD_INIT(&PyType_Type)

as the type of a type object is “type”, but this isn’t strictly conforming C and
some compilers complain. Fortunately, this member will be filled in for us by
PyType_Ready().

0, /* ob_size */

The ob_size field of the header is not used; its presence in the type
structure is a historical artifact that is maintained for binary compatibility
with extension modules compiled for older versions of Python. Always set this
field to zero.

"noddy.Noddy", /* tp_name */

The name of our type. This will appear in the default textual representation of
our objects and in some error messages, for example:

>>> "" + noddy.new_noddy()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot add type "noddy.Noddy" to string

Note that the name is a dotted name that includes both the module name and the
name of the type within the module. The module in this case is noddy and
the type is Noddy, so we set the type name to noddy.Noddy.

sizeof(noddy_NoddyObject), /* tp_basicsize */

This is so that Python knows how much memory to allocate when you call
PyObject_New().

Note

If you want your type to be subclassable from Python, and your type has the same
tp_basicsize as its base type, you may have problems with multiple
inheritance. A Python subclass of your type will have to list your type first
in its __bases__, or else it will not be able to call your type’s
__new__() method without getting an error. You can avoid this problem by
ensuring that your type has a larger value for tp_basicsize than its
base type does. Most of the time, this will be true anyway, because either your
base type will be object, or else you will be adding data members to
your base type, and therefore increasing its size.

0, /* tp_itemsize */

This has to do with variable length objects like lists and strings. Ignore this
for now.

Skipping a number of type methods that we don’t provide, we set the class flags
to Py_TPFLAGS_DEFAULT.

Py_TPFLAGS_DEFAULT, /*tp_flags*/

All types should include this constant in their flags. It enables all of the
members defined by the current version of Python.

We provide a doc string for the type in tp_doc.

"Noddy objects", /* tp_doc */

Now we get into the type methods, the things that make your objects different
from the others. We aren’t going to implement any of these in this version of
the module. We’ll expand this example later to have more interesting behavior.

For now, all we want to be able to do is to create new Noddy objects.
To enable object creation, we have to provide a tp_new implementation.
In this case, we can just use the default implementation provided by the API
function PyType_GenericNew(). We’d like to just assign this to the
tp_new slot, but we can’t, for portability sake, On some platforms or
compilers, we can’t statically initialize a structure member with a function
defined in another C module, so, instead, we’ll assign the tp_new slot
in the module initialization function just before calling
PyType_Ready():

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy_NoddyType) < 0)
 return;

All the other type methods are NULL, so we’ll go over them later — that’s
for a later section!

Everything else in the file should be familiar, except for some code in
initnoddy():

if (PyType_Ready(&noddy_NoddyType) < 0)
 return;

This initializes the Noddy type, filing in a number of members,
including ob_type that we initially set to NULL.

PyModule_AddObject(m, "Noddy", (PyObject *)&noddy_NoddyType);

This adds the type to the module dictionary. This allows us to create
Noddy instances by calling the Noddy class:

>>> import noddy
>>> mynoddy = noddy.Noddy()

That’s it! All that remains is to build it; put the above code in a file called
noddy.c and

from distutils.core import setup, Extension
setup(name="noddy", version="1.0",
 ext_modules=[Extension("noddy", ["noddy.c"])])

in a file called setup.py; then typing

$ python setup.py build

at a shell should produce a file noddy.so in a subdirectory; move to
that directory and fire up Python — you should be able to import noddy and
play around with Noddy objects.

That wasn’t so hard, was it?

Of course, the current Noddy type is pretty uninteresting. It has no data and
doesn’t do anything. It can’t even be subclassed.

2.1.1. Adding data and methods to the Basic example

Let’s expend the basic example to add some data and methods. Let’s also make
the type usable as a base class. We’ll create a new module, noddy2 that
adds these capabilities:

#include <Python.h>
#include "structmember.h"

typedef struct {
 PyObject_HEAD
 PyObject *first; /* first name */
 PyObject *last; /* last name */
 int number;
} Noddy;

static void
Noddy_dealloc(Noddy* self)
{
 Py_XDECREF(self->first);
 Py_XDECREF(self->last);
 self->ob_type->tp_free((PyObject*)self);
}

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 Noddy *self;

 self = (Noddy *)type->tp_alloc(type, 0);
 if (self != NULL) {
 self->first = PyString_FromString("");
 if (self->first == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->last = PyString_FromString("");
 if (self->last == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->number = 0;
 }

 return (PyObject *)self;
}

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{
 PyObject *first=NULL, *last=NULL, *tmp;

 static char *kwlist[] = {"first", "last", "number", NULL};

 if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
 &first, &last,
 &self->number))
 return -1;

 if (first) {
 tmp = self->first;
 Py_INCREF(first);
 self->first = first;
 Py_XDECREF(tmp);
 }

 if (last) {
 tmp = self->last;
 Py_INCREF(last);
 self->last = last;
 Py_XDECREF(tmp);
 }

 return 0;
}

static PyMemberDef Noddy_members[] = {
 {"first", T_OBJECT_EX, offsetof(Noddy, first), 0,
 "first name"},
 {"last", T_OBJECT_EX, offsetof(Noddy, last), 0,
 "last name"},
 {"number", T_INT, offsetof(Noddy, number), 0,
 "noddy number"},
 {NULL} /* Sentinel */
};

static PyObject *
Noddy_name(Noddy* self)
{
 static PyObject *format = NULL;
 PyObject *args, *result;

 if (format == NULL) {
 format = PyString_FromString("%s %s");
 if (format == NULL)
 return NULL;
 }

 if (self->first == NULL) {
 PyErr_SetString(PyExc_AttributeError, "first");
 return NULL;
 }

 if (self->last == NULL) {
 PyErr_SetString(PyExc_AttributeError, "last");
 return NULL;
 }

 args = Py_BuildValue("OO", self->first, self->last);
 if (args == NULL)
 return NULL;

 result = PyString_Format(format, args);
 Py_DECREF(args);

 return result;
}

static PyMethodDef Noddy_methods[] = {
 {"name", (PyCFunction)Noddy_name, METH_NOARGS,
 "Return the name, combining the first and last name"
 },
 {NULL} /* Sentinel */
};

static PyTypeObject NoddyType = {
 PyObject_HEAD_INIT(NULL)
 0, /*ob_size*/
 "noddy.Noddy", /*tp_name*/
 sizeof(Noddy), /*tp_basicsize*/
 0, /*tp_itemsize*/
 (destructor)Noddy_dealloc, /*tp_dealloc*/
 0, /*tp_print*/
 0, /*tp_getattr*/
 0, /*tp_setattr*/
 0, /*tp_compare*/
 0, /*tp_repr*/
 0, /*tp_as_number*/
 0, /*tp_as_sequence*/
 0, /*tp_as_mapping*/
 0, /*tp_hash */
 0, /*tp_call*/
 0, /*tp_str*/
 0, /*tp_getattro*/
 0, /*tp_setattro*/
 0, /*tp_as_buffer*/
 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
 "Noddy objects", /* tp_doc */
 0,		 /* tp_traverse */
 0,		 /* tp_clear */
 0,		 /* tp_richcompare */
 0,		 /* tp_weaklistoffset */
 0,		 /* tp_iter */
 0,		 /* tp_iternext */
 Noddy_methods, /* tp_methods */
 Noddy_members, /* tp_members */
 0, /* tp_getset */
 0, /* tp_base */
 0, /* tp_dict */
 0, /* tp_descr_get */
 0, /* tp_descr_set */
 0, /* tp_dictoffset */
 (initproc)Noddy_init, /* tp_init */
 0, /* tp_alloc */
 Noddy_new, /* tp_new */
};

static PyMethodDef module_methods[] = {
 {NULL} /* Sentinel */
};

#ifndef PyMODINIT_FUNC	/* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy2(void)
{
 PyObject* m;

 if (PyType_Ready(&NoddyType) < 0)
 return;

 m = Py_InitModule3("noddy2", module_methods,
 "Example module that creates an extension type.");

 if (m == NULL)
 return;

 Py_INCREF(&NoddyType);
 PyModule_AddObject(m, "Noddy", (PyObject *)&NoddyType);
}

This version of the module has a number of changes.

We’ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as
described a bit later.

The name of the Noddy object structure has been shortened to
Noddy. The type object name has been shortened to NoddyType.

The Noddy type now has three data attributes, first, last, and
number. The first and last variables are Python strings containing first
and last names. The number attribute is an integer.

The object structure is updated accordingly:

typedef struct {
 PyObject_HEAD
 PyObject *first;
 PyObject *last;
 int number;
} Noddy;

Because we now have data to manage, we have to be more careful about object
allocation and deallocation. At a minimum, we need a deallocation method:

static void
Noddy_dealloc(Noddy* self)
{
 Py_XDECREF(self->first);
 Py_XDECREF(self->last);
 self->ob_type->tp_free((PyObject*)self);
}

which is assigned to the tp_dealloc member:

(destructor)Noddy_dealloc, /*tp_dealloc*/

This method decrements the reference counts of the two Python attributes. We use
Py_XDECREF() here because the first and last members
could be NULL. It then calls the tp_free member of the object’s type
to free the object’s memory. Note that the object’s type might not be
NoddyType, because the object may be an instance of a subclass.

We want to make sure that the first and last names are initialized to empty
strings, so we provide a new method:

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 Noddy *self;

 self = (Noddy *)type->tp_alloc(type, 0);
 if (self != NULL) {
 self->first = PyString_FromString("");
 if (self->first == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->last = PyString_FromString("");
 if (self->last == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->number = 0;
 }

 return (PyObject *)self;
}

and install it in the tp_new member:

Noddy_new, /* tp_new */

The new member is responsible for creating (as opposed to initializing) objects
of the type. It is exposed in Python as the __new__() method. See the
paper titled “Unifying types and classes in Python” for a detailed discussion of
the __new__() method. One reason to implement a new method is to assure
the initial values of instance variables. In this case, we use the new method
to make sure that the initial values of the members first and
last are not NULL. If we didn’t care whether the initial values were
NULL, we could have used PyType_GenericNew() as our new method, as we
did before. PyType_GenericNew() initializes all of the instance variable
members to NULL.

The new method is a static method that is passed the type being instantiated and
any arguments passed when the type was called, and that returns the new object
created. New methods always accept positional and keyword arguments, but they
often ignore the arguments, leaving the argument handling to initializer
methods. Note that if the type supports subclassing, the type passed may not be
the type being defined. The new method calls the tp_alloc slot to allocate
memory. We don’t fill the tp_alloc slot ourselves. Rather
PyType_Ready() fills it for us by inheriting it from our base class,
which is object by default. Most types use the default allocation.

Note

If you are creating a co-operative tp_new (one that calls a base type’s
tp_new or __new__()), you must not try to determine what method
to call using method resolution order at runtime. Always statically determine
what type you are going to call, and call its tp_new directly, or via
type->tp_base->tp_new. If you do not do this, Python subclasses of your
type that also inherit from other Python-defined classes may not work correctly.
(Specifically, you may not be able to create instances of such subclasses
without getting a TypeError.)

We provide an initialization function:

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{
 PyObject *first=NULL, *last=NULL, *tmp;

 static char *kwlist[] = {"first", "last", "number", NULL};

 if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
 &first, &last,
 &self->number))
 return -1;

 if (first) {
 tmp = self->first;
 Py_INCREF(first);
 self->first = first;
 Py_XDECREF(tmp);
 }

 if (last) {
 tmp = self->last;
 Py_INCREF(last);
 self->last = last;
 Py_XDECREF(tmp);
 }

 return 0;
}

by filling the tp_init slot.

(initproc)Noddy_init, /* tp_init */

The tp_init slot is exposed in Python as the __init__() method. It
is used to initialize an object after it’s created. Unlike the new method, we
can’t guarantee that the initializer is called. The initializer isn’t called
when unpickling objects and it can be overridden. Our initializer accepts
arguments to provide initial values for our instance. Initializers always accept
positional and keyword arguments.

Initializers can be called multiple times. Anyone can call the __init__()
method on our objects. For this reason, we have to be extra careful when
assigning the new values. We might be tempted, for example to assign the
first member like this:

if (first) {
 Py_XDECREF(self->first);
 Py_INCREF(first);
 self->first = first;
}

But this would be risky. Our type doesn’t restrict the type of the
first member, so it could be any kind of object. It could have a
destructor that causes code to be executed that tries to access the
first member. To be paranoid and protect ourselves against this
possibility, we almost always reassign members before decrementing their
reference counts. When don’t we have to do this?

	when we absolutely know that the reference count is greater than 1

	when we know that deallocation of the object [1] will not cause any calls
back into our type’s code

	when decrementing a reference count in a tp_dealloc handler when
garbage-collections is not supported [2]

We want to expose our instance variables as attributes. There are a
number of ways to do that. The simplest way is to define member definitions:

static PyMemberDef Noddy_members[] = {
 {"first", T_OBJECT_EX, offsetof(Noddy, first), 0,
 "first name"},
 {"last", T_OBJECT_EX, offsetof(Noddy, last), 0,
 "last name"},
 {"number", T_INT, offsetof(Noddy, number), 0,
 "noddy number"},
 {NULL} /* Sentinel */
};

and put the definitions in the tp_members slot:

Noddy_members, /* tp_members */

Each member definition has a member name, type, offset, access flags and
documentation string. See the Generic Attribute Management section below for
details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the
types of objects that can be assigned to the Python attributes. We expect the
first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C pointers to NULL. Even
though we can make sure the members are initialized to non-NULL values, the
members can be set to NULL if the attributes are deleted.

We define a single method, name(), that outputs the objects name as the
concatenation of the first and last names.

static PyObject *
Noddy_name(Noddy* self)
{
 static PyObject *format = NULL;
 PyObject *args, *result;

 if (format == NULL) {
 format = PyString_FromString("%s %s");
 if (format == NULL)
 return NULL;
 }

 if (self->first == NULL) {
 PyErr_SetString(PyExc_AttributeError, "first");
 return NULL;
 }

 if (self->last == NULL) {
 PyErr_SetString(PyExc_AttributeError, "last");
 return NULL;
 }

 args = Py_BuildValue("OO", self->first, self->last);
 if (args == NULL)
 return NULL;

 result = PyString_Format(format, args);
 Py_DECREF(args);

 return result;
}

The method is implemented as a C function that takes a Noddy (or
Noddy subclass) instance as the first argument. Methods always take an
instance as the first argument. Methods often take positional and keyword
arguments as well, but in this cased we don’t take any and don’t need to accept
a positional argument tuple or keyword argument dictionary. This method is
equivalent to the Python method:

def name(self):
 return "%s %s" % (self.first, self.last)

Note that we have to check for the possibility that our first and
last members are NULL. This is because they can be deleted, in which
case they are set to NULL. It would be better to prevent deletion of these
attributes and to restrict the attribute values to be strings. We’ll see how to
do that in the next section.

Now that we’ve defined the method, we need to create an array of method
definitions:

static PyMethodDef Noddy_methods[] = {
 {"name", (PyCFunction)Noddy_name, METH_NOARGS,
 "Return the name, combining the first and last name"
 },
 {NULL} /* Sentinel */
};

and assign them to the tp_methods slot:

Noddy_methods, /* tp_methods */

Note that we used the METH_NOARGS flag to indicate that the method is
passed no arguments.

Finally, we’ll make our type usable as a base class. We’ve written our methods
carefully so far so that they don’t make any assumptions about the type of the
object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/

We rename initnoddy() to initnoddy2() and update the module name
passed to Py_InitModule3().

Finally, we update our setup.py file to build the new module:

from distutils.core import setup, Extension
setup(name="noddy", version="1.0",
 ext_modules=[
 Extension("noddy", ["noddy.c"]),
 Extension("noddy2", ["noddy2.c"]),
])

2.1.2. Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and
last attributes are set in the Noddy example. In the previous
version of our module, the instance variables first and last
could be set to non-string values or even deleted. We want to make sure that
these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
 PyObject_HEAD
 PyObject *first;
 PyObject *last;
 int number;
} Noddy;

static void
Noddy_dealloc(Noddy* self)
{
 Py_XDECREF(self->first);
 Py_XDECREF(self->last);
 self->ob_type->tp_free((PyObject*)self);
}

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 Noddy *self;

 self = (Noddy *)type->tp_alloc(type, 0);
 if (self != NULL) {
 self->first = PyString_FromString("");
 if (self->first == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->last = PyString_FromString("");
 if (self->last == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->number = 0;
 }

 return (PyObject *)self;
}

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{
 PyObject *first=NULL, *last=NULL, *tmp;

 static char *kwlist[] = {"first", "last", "number", NULL};

 if (! PyArg_ParseTupleAndKeywords(args, kwds, "|SSi", kwlist,
 &first, &last,
 &self->number))
 return -1;

 if (first) {
 tmp = self->first;
 Py_INCREF(first);
 self->first = first;
 Py_DECREF(tmp);
 }

 if (last) {
 tmp = self->last;
 Py_INCREF(last);
 self->last = last;
 Py_DECREF(tmp);
 }

 return 0;
}

static PyMemberDef Noddy_members[] = {
 {"number", T_INT, offsetof(Noddy, number), 0,
 "noddy number"},
 {NULL} /* Sentinel */
};

static PyObject *
Noddy_getfirst(Noddy *self, void *closure)
{
 Py_INCREF(self->first);
 return self->first;
}

static int
Noddy_setfirst(Noddy *self, PyObject *value, void *closure)
{
 if (value == NULL) {
 PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
 return -1;
 }

 if (! PyString_Check(value)) {
 PyErr_SetString(PyExc_TypeError,
 "The first attribute value must be a string");
 return -1;
 }

 Py_DECREF(self->first);
 Py_INCREF(value);
 self->first = value;

 return 0;
}

static PyObject *
Noddy_getlast(Noddy *self, void *closure)
{
 Py_INCREF(self->last);
 return self->last;
}

static int
Noddy_setlast(Noddy *self, PyObject *value, void *closure)
{
 if (value == NULL) {
 PyErr_SetString(PyExc_TypeError, "Cannot delete the last attribute");
 return -1;
 }

 if (! PyString_Check(value)) {
 PyErr_SetString(PyExc_TypeError,
 "The last attribute value must be a string");
 return -1;
 }

 Py_DECREF(self->last);
 Py_INCREF(value);
 self->last = value;

 return 0;
}

static PyGetSetDef Noddy_getseters[] = {
 {"first",
 (getter)Noddy_getfirst, (setter)Noddy_setfirst,
 "first name",
 NULL},
 {"last",
 (getter)Noddy_getlast, (setter)Noddy_setlast,
 "last name",
 NULL},
 {NULL} /* Sentinel */
};

static PyObject *
Noddy_name(Noddy* self)
{
 static PyObject *format = NULL;
 PyObject *args, *result;

 if (format == NULL) {
 format = PyString_FromString("%s %s");
 if (format == NULL)
 return NULL;
 }

 args = Py_BuildValue("OO", self->first, self->last);
 if (args == NULL)
 return NULL;

 result = PyString_Format(format, args);
 Py_DECREF(args);

 return result;
}

static PyMethodDef Noddy_methods[] = {
 {"name", (PyCFunction)Noddy_name, METH_NOARGS,
 "Return the name, combining the first and last name"
 },
 {NULL} /* Sentinel */
};

static PyTypeObject NoddyType = {
 PyObject_HEAD_INIT(NULL)
 0, /*ob_size*/
 "noddy.Noddy", /*tp_name*/
 sizeof(Noddy), /*tp_basicsize*/
 0, /*tp_itemsize*/
 (destructor)Noddy_dealloc, /*tp_dealloc*/
 0, /*tp_print*/
 0, /*tp_getattr*/
 0, /*tp_setattr*/
 0, /*tp_compare*/
 0, /*tp_repr*/
 0, /*tp_as_number*/
 0, /*tp_as_sequence*/
 0, /*tp_as_mapping*/
 0, /*tp_hash */
 0, /*tp_call*/
 0, /*tp_str*/
 0, /*tp_getattro*/
 0, /*tp_setattro*/
 0, /*tp_as_buffer*/
 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
 "Noddy objects", /* tp_doc */
 0,		 /* tp_traverse */
 0,		 /* tp_clear */
 0,		 /* tp_richcompare */
 0,		 /* tp_weaklistoffset */
 0,		 /* tp_iter */
 0,		 /* tp_iternext */
 Noddy_methods, /* tp_methods */
 Noddy_members, /* tp_members */
 Noddy_getseters, /* tp_getset */
 0, /* tp_base */
 0, /* tp_dict */
 0, /* tp_descr_get */
 0, /* tp_descr_set */
 0, /* tp_dictoffset */
 (initproc)Noddy_init, /* tp_init */
 0, /* tp_alloc */
 Noddy_new, /* tp_new */
};

static PyMethodDef module_methods[] = {
 {NULL} /* Sentinel */
};

#ifndef PyMODINIT_FUNC	/* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy3(void)
{
 PyObject* m;

 if (PyType_Ready(&NoddyType) < 0)
 return;

 m = Py_InitModule3("noddy3", module_methods,
 "Example module that creates an extension type.");

 if (m == NULL)
 return;

 Py_INCREF(&NoddyType);
 PyModule_AddObject(m, "Noddy", (PyObject *)&NoddyType);
}

To provide greater control, over the first and last attributes,
we’ll use custom getter and setter functions. Here are the functions for
getting and setting the first attribute:

Noddy_getfirst(Noddy *self, void *closure)
{
 Py_INCREF(self->first);
 return self->first;
}

static int
Noddy_setfirst(Noddy *self, PyObject *value, void *closure)
{
 if (value == NULL) {
 PyErr_SetString(PyExc_TypeError, "Cannot delete the first attribute");
 return -1;
 }

 if (! PyString_Check(value)) {
 PyErr_SetString(PyExc_TypeError,
 "The first attribute value must be a string");
 return -1;
 }

 Py_DECREF(self->first);
 Py_INCREF(value);
 self->first = value;

 return 0;
}

The getter function is passed a Noddy object and a “closure”, which is
void pointer. In this case, the closure is ignored. (The closure supports an
advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions
that decide the attribute to get or set based on data in the closure.)

The setter function is passed the Noddy object, the new value, and the
closure. The new value may be NULL, in which case the attribute is being
deleted. In our setter, we raise an error if the attribute is deleted or if the
attribute value is not a string.

We create an array of PyGetSetDef structures:

static PyGetSetDef Noddy_getseters[] = {
 {"first",
 (getter)Noddy_getfirst, (setter)Noddy_setfirst,
 "first name",
 NULL},
 {"last",
 (getter)Noddy_getlast, (setter)Noddy_setlast,
 "last name",
 NULL},
 {NULL} /* Sentinel */
};

and register it in the tp_getset slot:

Noddy_getseters, /* tp_getset */

to register our attribute getters and setters.

The last item in a PyGetSetDef structure is the closure mentioned
above. In this case, we aren’t using the closure, so we just pass NULL.

We also remove the member definitions for these attributes:

static PyMemberDef Noddy_members[] = {
 {"number", T_INT, offsetof(Noddy, number), 0,
 "noddy number"},
 {NULL} /* Sentinel */
};

We also need to update the tp_init handler to only allow strings [3] to
be passed:

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{
 PyObject *first=NULL, *last=NULL, *tmp;

 static char *kwlist[] = {"first", "last", "number", NULL};

 if (! PyArg_ParseTupleAndKeywords(args, kwds, "|SSi", kwlist,
 &first, &last,
 &self->number))
 return -1;

 if (first) {
 tmp = self->first;
 Py_INCREF(first);
 self->first = first;
 Py_DECREF(tmp);
 }

 if (last) {
 tmp = self->last;
 Py_INCREF(last);
 self->last = last;
 Py_DECREF(tmp);
 }

 return 0;
}

With these changes, we can assure that the first and last
members are never NULL so we can remove checks for NULL values in almost all
cases. This means that most of the Py_XDECREF() calls can be converted to
Py_DECREF() calls. The only place we can’t change these calls is in the
deallocator, where there is the possibility that the initialization of these
members failed in the constructor.

We also rename the module initialization function and module name in the
initialization function, as we did before, and we add an extra definition to the
setup.py file.

2.1.3. Supporting cyclic garbage collection

Python has a cyclic-garbage collector that can identify unneeded objects even
when their reference counts are not zero. This can happen when objects are
involved in cycles. For example, consider:

>>> l = []
>>> l.append(l)
>>> del l

In this example, we create a list that contains itself. When we delete it, it
still has a reference from itself. Its reference count doesn’t drop to zero.
Fortunately, Python’s cyclic-garbage collector will eventually figure out that
the list is garbage and free it.

In the second version of the Noddy example, we allowed any kind of
object to be stored in the first or last attributes. [4] This
means that Noddy objects can participate in cycles:

>>> import noddy2
>>> n = noddy2.Noddy()
>>> l = [n]
>>> n.first = l

This is pretty silly, but it gives us an excuse to add support for the
cyclic-garbage collector to the Noddy example. To support cyclic
garbage collection, types need to fill two slots and set a class flag that
enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
 PyObject_HEAD
 PyObject *first;
 PyObject *last;
 int number;
} Noddy;

static int
Noddy_traverse(Noddy *self, visitproc visit, void *arg)
{
 int vret;

 if (self->first) {
 vret = visit(self->first, arg);
 if (vret != 0)
 return vret;
 }
 if (self->last) {
 vret = visit(self->last, arg);
 if (vret != 0)
 return vret;
 }

 return 0;
}

static int
Noddy_clear(Noddy *self)
{
 PyObject *tmp;

 tmp = self->first;
 self->first = NULL;
 Py_XDECREF(tmp);

 tmp = self->last;
 self->last = NULL;
 Py_XDECREF(tmp);

 return 0;
}

static void
Noddy_dealloc(Noddy* self)
{
 Noddy_clear(self);
 self->ob_type->tp_free((PyObject*)self);
}

static PyObject *
Noddy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 Noddy *self;

 self = (Noddy *)type->tp_alloc(type, 0);
 if (self != NULL) {
 self->first = PyString_FromString("");
 if (self->first == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->last = PyString_FromString("");
 if (self->last == NULL)
 {
 Py_DECREF(self);
 return NULL;
 }

 self->number = 0;
 }

 return (PyObject *)self;
}

static int
Noddy_init(Noddy *self, PyObject *args, PyObject *kwds)
{
 PyObject *first=NULL, *last=NULL, *tmp;

 static char *kwlist[] = {"first", "last", "number", NULL};

 if (! PyArg_ParseTupleAndKeywords(args, kwds, "|OOi", kwlist,
 &first, &last,
 &self->number))
 return -1;

 if (first) {
 tmp = self->first;
 Py_INCREF(first);
 self->first = first;
 Py_XDECREF(tmp);
 }

 if (last) {
 tmp = self->last;
 Py_INCREF(last);
 self->last = last;
 Py_XDECREF(tmp);
 }

 return 0;
}

static PyMemberDef Noddy_members[] = {
 {"first", T_OBJECT_EX, offsetof(Noddy, first), 0,
 "first name"},
 {"last", T_OBJECT_EX, offsetof(Noddy, last), 0,
 "last name"},
 {"number", T_INT, offsetof(Noddy, number), 0,
 "noddy number"},
 {NULL} /* Sentinel */
};

static PyObject *
Noddy_name(Noddy* self)
{
 static PyObject *format = NULL;
 PyObject *args, *result;

 if (format == NULL) {
 format = PyString_FromString("%s %s");
 if (format == NULL)
 return NULL;
 }

 if (self->first == NULL) {
 PyErr_SetString(PyExc_AttributeError, "first");
 return NULL;
 }

 if (self->last == NULL) {
 PyErr_SetString(PyExc_AttributeError, "last");
 return NULL;
 }

 args = Py_BuildValue("OO", self->first, self->last);
 if (args == NULL)
 return NULL;

 result = PyString_Format(format, args);
 Py_DECREF(args);

 return result;
}

static PyMethodDef Noddy_methods[] = {
 {"name", (PyCFunction)Noddy_name, METH_NOARGS,
 "Return the name, combining the first and last name"
 },
 {NULL} /* Sentinel */
};

static PyTypeObject NoddyType = {
 PyObject_HEAD_INIT(NULL)
 0, /*ob_size*/
 "noddy.Noddy", /*tp_name*/
 sizeof(Noddy), /*tp_basicsize*/
 0, /*tp_itemsize*/
 (destructor)Noddy_dealloc, /*tp_dealloc*/
 0, /*tp_print*/
 0, /*tp_getattr*/
 0, /*tp_setattr*/
 0, /*tp_compare*/
 0, /*tp_repr*/
 0, /*tp_as_number*/
 0, /*tp_as_sequence*/
 0, /*tp_as_mapping*/
 0, /*tp_hash */
 0, /*tp_call*/
 0, /*tp_str*/
 0, /*tp_getattro*/
 0, /*tp_setattro*/
 0, /*tp_as_buffer*/
 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/
 "Noddy objects", /* tp_doc */
 (traverseproc)Noddy_traverse, /* tp_traverse */
 (inquiry)Noddy_clear, /* tp_clear */
 0,		 /* tp_richcompare */
 0,		 /* tp_weaklistoffset */
 0,		 /* tp_iter */
 0,		 /* tp_iternext */
 Noddy_methods, /* tp_methods */
 Noddy_members, /* tp_members */
 0, /* tp_getset */
 0, /* tp_base */
 0, /* tp_dict */
 0, /* tp_descr_get */
 0, /* tp_descr_set */
 0, /* tp_dictoffset */
 (initproc)Noddy_init, /* tp_init */
 0, /* tp_alloc */
 Noddy_new, /* tp_new */
};

static PyMethodDef module_methods[] = {
 {NULL} /* Sentinel */
};

#ifndef PyMODINIT_FUNC	/* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy4(void)
{
 PyObject* m;

 if (PyType_Ready(&NoddyType) < 0)
 return;

 m = Py_InitModule3("noddy4", module_methods,
 "Example module that creates an extension type.");

 if (m == NULL)
 return;

 Py_INCREF(&NoddyType);
 PyModule_AddObject(m, "Noddy", (PyObject *)&NoddyType);
}

The traversal method provides access to subobjects that could participate in
cycles:

static int
Noddy_traverse(Noddy *self, visitproc visit, void *arg)
{
 int vret;

 if (self->first) {
 vret = visit(self->first, arg);
 if (vret != 0)
 return vret;
 }
 if (self->last) {
 vret = visit(self->last, arg);
 if (vret != 0)
 return vret;
 }

 return 0;
}

For each subobject that can participate in cycles, we need to call the
visit() function, which is passed to the traversal method. The
visit() function takes as arguments the subobject and the extra argument
arg passed to the traversal method. It returns an integer value that must be
returned if it is non-zero.

Python 2.4 and higher provide a Py_VISIT() macro that automates calling
visit functions. With Py_VISIT(), Noddy_traverse() can be
simplified:

static int
Noddy_traverse(Noddy *self, visitproc visit, void *arg)
{
 Py_VISIT(self->first);
 Py_VISIT(self->last);
 return 0;
}

Note

Note that the tp_traverse implementation must name its arguments exactly
visit and arg in order to use Py_VISIT(). This is to encourage
uniformity across these boring implementations.

We also need to provide a method for clearing any subobjects that can
participate in cycles. We implement the method and reimplement the deallocator
to use it:

static int
Noddy_clear(Noddy *self)
{
 PyObject *tmp;

 tmp = self->first;
 self->first = NULL;
 Py_XDECREF(tmp);

 tmp = self->last;
 self->last = NULL;
 Py_XDECREF(tmp);

 return 0;
}

static void
Noddy_dealloc(Noddy* self)
{
 Noddy_clear(self);
 self->ob_type->tp_free((PyObject*)self);
}

Notice the use of a temporary variable in Noddy_clear(). We use the
temporary variable so that we can set each member to NULL before decrementing
its reference count. We do this because, as was discussed earlier, if the
reference count drops to zero, we might cause code to run that calls back into
the object. In addition, because we now support garbage collection, we also
have to worry about code being run that triggers garbage collection. If garbage
collection is run, our tp_traverse handler could get called. We can’t
take a chance of having Noddy_traverse() called when a member’s reference
count has dropped to zero and its value hasn’t been set to NULL.

Python 2.4 and higher provide a Py_CLEAR() that automates the careful
decrementing of reference counts. With Py_CLEAR(), the
Noddy_clear() function can be simplified:

static int
Noddy_clear(Noddy *self)
{
 Py_CLEAR(self->first);
 Py_CLEAR(self->last);
 return 0;
}

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/

That’s pretty much it. If we had written custom tp_alloc or
tp_free slots, we’d need to modify them for cyclic-garbage collection.
Most extensions will use the versions automatically provided.

2.1.4. Subclassing other types

It is possible to create new extension types that are derived from existing
types. It is easiest to inherit from the built in types, since an extension can
easily use the PyTypeObject it needs. It can be difficult to share
these PyTypeObject structures between extension modules.

In this example we will create a Shoddy type that inherits from the
built-in list type. The new type will be completely compatible with
regular lists, but will have an additional increment() method that
increases an internal counter.

>>> import shoddy
>>> s = shoddy.Shoddy(range(3))
>>> s.extend(s)
>>> print len(s)
6
>>> print s.increment()
1
>>> print s.increment()
2

#include <Python.h>

typedef struct {
 PyListObject list;
 int state;
} Shoddy;

static PyObject *
Shoddy_increment(Shoddy *self, PyObject *unused)
{
 self->state++;
 return PyInt_FromLong(self->state);
}

static PyMethodDef Shoddy_methods[] = {
 {"increment", (PyCFunction)Shoddy_increment, METH_NOARGS,
 PyDoc_STR("increment state counter")},
 {NULL,	NULL},
};

static int
Shoddy_init(Shoddy *self, PyObject *args, PyObject *kwds)
{
 if (PyList_Type.tp_init((PyObject *)self, args, kwds) < 0)
 return -1;
 self->state = 0;
 return 0;
}

static PyTypeObject ShoddyType = {
 PyObject_HEAD_INIT(NULL)
 0, /* ob_size */
 "shoddy.Shoddy", /* tp_name */
 sizeof(Shoddy), /* tp_basicsize */
 0, /* tp_itemsize */
 0, /* tp_dealloc */
 0, /* tp_print */
 0, /* tp_getattr */
 0, /* tp_setattr */
 0, /* tp_compare */
 0, /* tp_repr */
 0, /* tp_as_number */
 0, /* tp_as_sequence */
 0, /* tp_as_mapping */
 0, /* tp_hash */
 0, /* tp_call */
 0, /* tp_str */
 0, /* tp_getattro */
 0, /* tp_setattro */
 0, /* tp_as_buffer */
 Py_TPFLAGS_DEFAULT |
 Py_TPFLAGS_BASETYPE, /* tp_flags */
 0, /* tp_doc */
 0, /* tp_traverse */
 0, /* tp_clear */
 0, /* tp_richcompare */
 0, /* tp_weaklistoffset */
 0, /* tp_iter */
 0, /* tp_iternext */
 Shoddy_methods, /* tp_methods */
 0, /* tp_members */
 0, /* tp_getset */
 0, /* tp_base */
 0, /* tp_dict */
 0, /* tp_descr_get */
 0, /* tp_descr_set */
 0, /* tp_dictoffset */
 (initproc)Shoddy_init, /* tp_init */
 0, /* tp_alloc */
 0, /* tp_new */
};

PyMODINIT_FUNC
initshoddy(void)
{
 PyObject *m;

 ShoddyType.tp_base = &PyList_Type;
 if (PyType_Ready(&ShoddyType) < 0)
 return;

 m = Py_InitModule3("shoddy", NULL, "Shoddy module");
 if (m == NULL)
 return;

 Py_INCREF(&ShoddyType);
 PyModule_AddObject(m, "Shoddy", (PyObject *) &ShoddyType);
}

As you can see, the source code closely resembles the Noddy examples in
previous sections. We will break down the main differences between them.

typedef struct {
 PyListObject list;
 int state;
} Shoddy;

The primary difference for derived type objects is that the base type’s object
structure must be the first value. The base type will already include the
PyObject_HEAD() at the beginning of its structure.

When a Python object is a Shoddy instance, its PyObject* pointer can
be safely cast to both PyListObject* and Shoddy*.

static int
Shoddy_init(Shoddy *self, PyObject *args, PyObject *kwds)
{
 if (PyList_Type.tp_init((PyObject *)self, args, kwds) < 0)
 return -1;
 self->state = 0;
 return 0;
}

In the __init__ method for our type, we can see how to call through to
the __init__ method of the base type.

This pattern is important when writing a type with custom new and
dealloc methods. The new method should not actually create the
memory for the object with tp_alloc, that will be handled by the base
class when calling its tp_new.

When filling out the PyTypeObject() for the Shoddy type, you see
a slot for tp_base(). Due to cross platform compiler issues, you can’t
fill that field directly with the PyList_Type(); it can be done later in
the module’s init() function.

PyMODINIT_FUNC
initshoddy(void)
{
 PyObject *m;

 ShoddyType.tp_base = &PyList_Type;
 if (PyType_Ready(&ShoddyType) < 0)
 return;

 m = Py_InitModule3("shoddy", NULL, "Shoddy module");
 if (m == NULL)
 return;

 Py_INCREF(&ShoddyType);
 PyModule_AddObject(m, "Shoddy", (PyObject *) &ShoddyType);
}

Before calling PyType_Ready(), the type structure must have the
tp_base slot filled in. When we are deriving a new type, it is not
necessary to fill out the tp_alloc slot with PyType_GenericNew()
– the allocate function from the base type will be inherited.

After that, calling PyType_Ready() and adding the type object to the
module is the same as with the basic Noddy examples.

2.2. Type Methods

This section aims to give a quick fly-by on the various type methods you can
implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in
debug builds omitted:

typedef struct _typeobject {
 PyObject_VAR_HEAD
 char *tp_name; /* For printing, in format "<module>.<name>" */
 int tp_basicsize, tp_itemsize; /* For allocation */

 /* Methods to implement standard operations */

 destructor tp_dealloc;
 printfunc tp_print;
 getattrfunc tp_getattr;
 setattrfunc tp_setattr;
 cmpfunc tp_compare;
 reprfunc tp_repr;

 /* Method suites for standard classes */

 PyNumberMethods *tp_as_number;
 PySequenceMethods *tp_as_sequence;
 PyMappingMethods *tp_as_mapping;

 /* More standard operations (here for binary compatibility) */

 hashfunc tp_hash;
 ternaryfunc tp_call;
 reprfunc tp_str;
 getattrofunc tp_getattro;
 setattrofunc tp_setattro;

 /* Functions to access object as input/output buffer */
 PyBufferProcs *tp_as_buffer;

 /* Flags to define presence of optional/expanded features */
 long tp_flags;

 char *tp_doc; /* Documentation string */

 /* Assigned meaning in release 2.0 */
 /* call function for all accessible objects */
 traverseproc tp_traverse;

 /* delete references to contained objects */
 inquiry tp_clear;

 /* Assigned meaning in release 2.1 */
 /* rich comparisons */
 richcmpfunc tp_richcompare;

 /* weak reference enabler */
 long tp_weaklistoffset;

 /* Added in release 2.2 */
 /* Iterators */
 getiterfunc tp_iter;
 iternextfunc tp_iternext;

 /* Attribute descriptor and subclassing stuff */
 struct PyMethodDef *tp_methods;
 struct PyMemberDef *tp_members;
 struct PyGetSetDef *tp_getset;
 struct _typeobject *tp_base;
 PyObject *tp_dict;
 descrgetfunc tp_descr_get;
 descrsetfunc tp_descr_set;
 long tp_dictoffset;
 initproc tp_init;
 allocfunc tp_alloc;
 newfunc tp_new;
 freefunc tp_free; /* Low-level free-memory routine */
 inquiry tp_is_gc; /* For PyObject_IS_GC */
 PyObject *tp_bases;
 PyObject *tp_mro; /* method resolution order */
 PyObject *tp_cache;
 PyObject *tp_subclasses;
 PyObject *tp_weaklist;

} PyTypeObject;

Now that’s a lot of methods. Don’t worry too much though - if you have a type
you want to define, the chances are very good that you will only implement a
handful of these.

As you probably expect by now, we’re going to go over this and give more
information about the various handlers. We won’t go in the order they are
defined in the structure, because there is a lot of historical baggage that
impacts the ordering of the fields; be sure your type initialization keeps the
fields in the right order! It’s often easiest to find an example that includes
all the fields you need (even if they’re initialized to 0) and then change
the values to suit your new type.

char *tp_name; /* For printing */

The name of the type - as mentioned in the last section, this will appear in
various places, almost entirely for diagnostic purposes. Try to choose something
that will be helpful in such a situation!

int tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of
this type are created. Python has some built-in support for variable length
structures (think: strings, lists) which is where the tp_itemsize field
comes in. This will be dealt with later.

char *tp_doc;

Here you can put a string (or its address) that you want returned when the
Python script references obj.__doc__ to retrieve the doc string.

Now we come to the basic type methods—the ones most extension types will
implement.

2.2.1. Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is
reduced to zero and the Python interpreter wants to reclaim it. If your type
has memory to free or other clean-up to perform, put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc(newdatatypeobject * obj)
{
 free(obj->obj_UnderlyingDatatypePtr);
 obj->ob_type->tp_free(obj);
}

One important requirement of the deallocator function is that it leaves any
pending exceptions alone. This is important since deallocators are frequently
called as the interpreter unwinds the Python stack; when the stack is unwound
due to an exception (rather than normal returns), nothing is done to protect the
deallocators from seeing that an exception has already been set. Any actions
which a deallocator performs which may cause additional Python code to be
executed may detect that an exception has been set. This can lead to misleading
errors from the interpreter. The proper way to protect against this is to save
a pending exception before performing the unsafe action, and restoring it when
done. This can be done using the PyErr_Fetch() and
PyErr_Restore() functions:

static void
my_dealloc(PyObject *obj)
{
 MyObject *self = (MyObject *) obj;
 PyObject *cbresult;

 if (self->my_callback != NULL) {
 PyObject *err_type, *err_value, *err_traceback;
 int have_error = PyErr_Occurred() ? 1 : 0;

 if (have_error)
 PyErr_Fetch(&err_type, &err_value, &err_traceback);

 cbresult = PyObject_CallObject(self->my_callback, NULL);
 if (cbresult == NULL)
 PyErr_WriteUnraisable(self->my_callback);
 else
 Py_DECREF(cbresult);

 if (have_error)
 PyErr_Restore(err_type, err_value, err_traceback);

 Py_DECREF(self->my_callback);
 }
 obj->ob_type->tp_free((PyObject*)self);
}

2.2.2. Object Presentation

In Python, there are three ways to generate a textual representation of an
object: the repr() function (or equivalent back-tick syntax), the
str() function, and the print statement. For most objects, the
print statement is equivalent to the str() function, but it is
possible to special-case printing to a FILE* if necessary; this should
only be done if efficiency is identified as a problem and profiling suggests
that creating a temporary string object to be written to a file is too
expensive.

These handlers are all optional, and most types at most need to implement the
tp_str and tp_repr handlers.

reprfunc tp_repr;
reprfunc tp_str;
printfunc tp_print;

The tp_repr handler should return a string object containing a
representation of the instance for which it is called. Here is a simple
example:

static PyObject *
newdatatype_repr(newdatatypeobject * obj)
{
 return PyString_FromFormat("Repr-ified_newdatatype{{size:\%d}}",
 obj->obj_UnderlyingDatatypePtr->size);
}

If no tp_repr handler is specified, the interpreter will supply a
representation that uses the type’s tp_name and a uniquely-identifying
value for the object.

The tp_str handler is to str() what the tp_repr handler
described above is to repr(); that is, it is called when Python code calls
str() on an instance of your object. Its implementation is very similar
to the tp_repr function, but the resulting string is intended for human
consumption. If tp_str is not specified, the tp_repr handler is
used instead.

Here is a simple example:

static PyObject *
newdatatype_str(newdatatypeobject * obj)
{
 return PyString_FromFormat("Stringified_newdatatype{{size:\%d}}",
 obj->obj_UnderlyingDatatypePtr->size);
}

The print function will be called whenever Python needs to “print” an instance
of the type. For example, if ‘node’ is an instance of type TreeNode, then the
print function is called when Python code calls:

print node

There is a flags argument and one flag, Py_PRINT_RAW, and it suggests
that you print without string quotes and possibly without interpreting escape
sequences.

The print function receives a file object as an argument. You will likely want
to write to that file object.

Here is a sample print function:

static int
newdatatype_print(newdatatypeobject *obj, FILE *fp, int flags)
{
 if (flags & Py_PRINT_RAW) {
 fprintf(fp, "<{newdatatype object--size: %d}>",
 obj->obj_UnderlyingDatatypePtr->size);
 }
 else {
 fprintf(fp, "\"<{newdatatype object--size: %d}>\"",
 obj->obj_UnderlyingDatatypePtr->size);
 }
 return 0;
}

2.2.3. Attribute Management

For every object which can support attributes, the corresponding type must
provide the functions that control how the attributes are resolved. There needs
to be a function which can retrieve attributes (if any are defined), and another
to set attributes (if setting attributes is allowed). Removing an attribute is
a special case, for which the new value passed to the handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes
only needs to implement the functions for one pair. The difference is that one
pair takes the name of the attribute as a char*, while the other
accepts a PyObject*. Each type can use whichever pair makes more
sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
/* ... */
getattrofunc tp_getattrofunc; /* PyObject * version */
setattrofunc tp_setattrofunc;

If accessing attributes of an object is always a simple operation (this will be
explained shortly), there are generic implementations which can be used to
provide the PyObject* version of the attribute management functions.
The actual need for type-specific attribute handlers almost completely
disappeared starting with Python 2.2, though there are many examples which have
not been updated to use some of the new generic mechanism that is available.

2.2.3.1. Generic Attribute Management

New in version 2.2.

Most extension types only use simple attributes. So, what makes the
attributes simple? There are only a couple of conditions that must be met:

	The name of the attributes must be known when PyType_Ready() is
called.

	No special processing is needed to record that an attribute was looked up or
set, nor do actions need to be taken based on the value.

Note that this list does not place any restrictions on the values of the
attributes, when the values are computed, or how relevant data is stored.

When PyType_Ready() is called, it uses three tables referenced by the
type object to create descriptors which are placed in the dictionary of the
type object. Each descriptor controls access to one attribute of the instance
object. Each of the tables is optional; if all three are NULL, instances of
the type will only have attributes that are inherited from their base type, and
should leave the tp_getattro and tp_setattro fields NULL as
well, allowing the base type to handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of
PyMethodDef structures. Each entry in the table is an instance of this
structure:

typedef struct PyMethodDef {
 char *ml_name; /* method name */
 PyCFunction ml_meth; /* implementation function */
 int ml_flags; /* flags */
 char *ml_doc; /* docstring */
} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are
needed for methods inherited from a base type. One additional entry is needed
at the end; it is a sentinel that marks the end of the array. The
ml_name field of the sentinel must be NULL.

XXX Need to refer to some unified discussion of the structure fields, shared
with the next section.

The second table is used to define attributes which map directly to data stored
in the instance. A variety of primitive C types are supported, and access may
be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
 char *name;
 int type;
 int offset;
 int flags;
 char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the
type which will be able to extract a value from the instance structure. The
type field should contain one of the type codes defined in the
structmember.h header; the value will be used to determine how to
convert Python values to and from C values. The flags field is used to
store flags which control how the attribute can be accessed.

XXX Need to move some of this to a shared section!

The following flag constants are defined in structmember.h; they may be
combined using bitwise-OR.

	Constant
	Meaning

	READONLY
	Never writable.

	RO
	Shorthand for READONLY.

	READ_RESTRICTED
	Not readable in restricted mode.

	WRITE_RESTRICTED
	Not writable in restricted mode.

	RESTRICTED
	Not readable or writable in restricted mode.

An interesting advantage of using the tp_members table to build
descriptors that are used at runtime is that any attribute defined this way can
have an associated doc string simply by providing the text in the table. An
application can use the introspection API to retrieve the descriptor from the
class object, and get the doc string using its __doc__ attribute.

As with the tp_methods table, a sentinel entry with a name value
of NULL is required.

2.2.3.2. Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the
type of the name parameter is the only difference between the char*
and PyObject* flavors of the interface. This example effectively does
the same thing as the generic example above, but does not use the generic
support added in Python 2.2. The value in showing this is two-fold: it
demonstrates how basic attribute management can be done in a way that is
portable to older versions of Python, and explains how the handler functions are
called, so that if you do need to extend their functionality, you’ll understand
what needs to be done.

The tp_getattr handler is called when the object requires an attribute
look-up. It is called in the same situations where the __getattr__()
method of a class would be called.

A likely way to handle this is (1) to implement a set of functions (such as
newdatatype_getSize() and newdatatype_setSize() in the example
below), (2) provide a method table listing these functions, and (3) provide a
getattr function that returns the result of a lookup in that table. The method
table uses the same structure as the tp_methods field of the type
object.

Here is an example:

static PyMethodDef newdatatype_methods[] = {
 {"getSize", (PyCFunction)newdatatype_getSize, METH_VARARGS,
 "Return the current size."},
 {"setSize", (PyCFunction)newdatatype_setSize, METH_VARARGS,
 "Set the size."},
 {NULL, NULL, 0, NULL} /* sentinel */
};

static PyObject *
newdatatype_getattr(newdatatypeobject *obj, char *name)
{
 return Py_FindMethod(newdatatype_methods, (PyObject *)obj, name);
}

The tp_setattr handler is called when the __setattr__() or
__delattr__() method of a class instance would be called. When an
attribute should be deleted, the third parameter will be NULL. Here is an
example that simply raises an exception; if this were really all you wanted, the
tp_setattr handler should be set to NULL.

static int
newdatatype_setattr(newdatatypeobject *obj, char *name, PyObject *v)
{
 (void)PyErr_Format(PyExc_RuntimeError, "Read-only attribute: \%s", name);
 return -1;
}

2.2.4. Object Comparison

cmpfunc tp_compare;

The tp_compare handler is called when comparisons are needed and the
object does not implement the specific rich comparison method which matches the
requested comparison. (It is always used if defined and the
PyObject_Compare() or PyObject_Cmp() functions are used, or if
cmp() is used from Python.) It is analogous to the __cmp__() method.
This function should return -1 if obj1 is less than obj2, 0 if they
are equal, and 1 if obj1 is greater than obj2. (It was previously
allowed to return arbitrary negative or positive integers for less than and
greater than, respectively; as of Python 2.2, this is no longer allowed. In the
future, other return values may be assigned a different meaning.)

A tp_compare handler may raise an exception. In this case it should
return a negative value. The caller has to test for the exception using
PyErr_Occurred().

Here is a sample implementation:

static int
newdatatype_compare(newdatatypeobject * obj1, newdatatypeobject * obj2)
{
 long result;

 if (obj1->obj_UnderlyingDatatypePtr->size <
 obj2->obj_UnderlyingDatatypePtr->size) {
 result = -1;
 }
 else if (obj1->obj_UnderlyingDatatypePtr->size >
 obj2->obj_UnderlyingDatatypePtr->size) {
 result = 1;
 }
 else {
 result = 0;
 }
 return result;
}

2.2.5. Abstract Protocol Support

Python supports a variety of abstract ‘protocols;’ the specific interfaces
provided to use these interfaces are documented in abstract.

A number of these abstract interfaces were defined early in the development of
the Python implementation. In particular, the number, mapping, and sequence
protocols have been part of Python since the beginning. Other protocols have
been added over time. For protocols which depend on several handler routines
from the type implementation, the older protocols have been defined as optional
blocks of handlers referenced by the type object. For newer protocols there are
additional slots in the main type object, with a flag bit being set to indicate
that the slots are present and should be checked by the interpreter. (The flag
bit does not indicate that the slot values are non-NULL. The flag may be set
to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods tp_as_number;
PySequenceMethods tp_as_sequence;
PyMappingMethods tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a
mapping object, then you place the address of a structure that implements the C
type PyNumberMethods, PySequenceMethods, or
PyMappingMethods, respectively. It is up to you to fill in this
structure with appropriate values. You can find examples of the use of each of
these in the Objects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an
instance of your data type. Here is a moderately pointless example:

static long
newdatatype_hash(newdatatypeobject *obj)
{
 long result;
 result = obj->obj_UnderlyingDatatypePtr->size;
 result = result * 3;
 return result;
}

ternaryfunc tp_call;

This function is called when an instance of your data type is “called”, for
example, if obj1 is an instance of your data type and the Python script
contains obj1('hello'), the tp_call handler is invoked.

This function takes three arguments:

	arg1 is the instance of the data type which is the subject of the call. If
the call is obj1('hello'), then arg1 is obj1.

	arg2 is a tuple containing the arguments to the call. You can use
PyArg_ParseTuple() to extract the arguments.

	arg3 is a dictionary of keyword arguments that were passed. If this is
non-NULL and you support keyword arguments, use
PyArg_ParseTupleAndKeywords() to extract the arguments. If you do not
want to support keyword arguments and this is non-NULL, raise a
TypeError with a message saying that keyword arguments are not supported.

Here is a desultory example of the implementation of the call function.

/* Implement the call function.
 * obj1 is the instance receiving the call.
 * obj2 is a tuple containing the arguments to the call, in this
 * case 3 strings.
 */
static PyObject *
newdatatype_call(newdatatypeobject *obj, PyObject *args, PyObject *other)
{
 PyObject *result;
 char *arg1;
 char *arg2;
 char *arg3;

 if (!PyArg_ParseTuple(args, "sss:call", &arg1, &arg2, &arg3)) {
 return NULL;
 }
 result = PyString_FromFormat(
 "Returning -- value: [\%d] arg1: [\%s] arg2: [\%s] arg3: [\%s]\n",
 obj->obj_UnderlyingDatatypePtr->size,
 arg1, arg2, arg3);
 printf("\%s", PyString_AS_STRING(result));
 return result;
}

XXX some fields need to be added here...

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Any object which
wishes to support iteration over its contents (which may be generated during
iteration) must implement the tp_iter handler. Objects which are returned
by a tp_iter handler must implement both the tp_iter and tp_iternext
handlers. Both handlers take exactly one parameter, the instance for which they
are being called, and return a new reference. In the case of an error, they
should set an exception and return NULL.

For an object which represents an iterable collection, the tp_iter handler
must return an iterator object. The iterator object is responsible for
maintaining the state of the iteration. For collections which can support
multiple iterators which do not interfere with each other (as lists and tuples
do), a new iterator should be created and returned. Objects which can only be
iterated over once (usually due to side effects of iteration) should implement
this handler by returning a new reference to themselves, and should also
implement the tp_iternext handler. File objects are an example of such an
iterator.

Iterator objects should implement both handlers. The tp_iter handler should
return a new reference to the iterator (this is the same as the tp_iter
handler for objects which can only be iterated over destructively). The
tp_iternext handler should return a new reference to the next object in the
iteration if there is one. If the iteration has reached the end, it may return
NULL without setting an exception or it may set StopIteration; avoiding
the exception can yield slightly better performance. If an actual error occurs,
it should set an exception and return NULL.

2.2.6. Weak Reference Support

One of the goals of Python’s weak-reference implementation is to allow any type
to participate in the weak reference mechanism without incurring the overhead on
those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must include a
PyObject* field in the instance structure for the use of the weak
reference mechanism; it must be initialized to NULL by the object’s
constructor. It must also set the tp_weaklistoffset field of the
corresponding type object to the offset of the field. For example, the instance
type is defined with the following structure:

typedef struct {
 PyObject_HEAD
 PyClassObject *in_class; /* The class object */
 PyObject *in_dict; /* A dictionary */
 PyObject *in_weakreflist; /* List of weak references */
} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
 PyObject_HEAD_INIT(&PyType_Type)
 0,
 "module.instance",

 /* Lots of stuff omitted for brevity... */

 Py_TPFLAGS_DEFAULT, /* tp_flags */
 0, /* tp_doc */
 0, /* tp_traverse */
 0, /* tp_clear */
 0, /* tp_richcompare */
 offsetof(PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */
};

The type constructor is responsible for initializing the weak reference list to
NULL:

static PyObject *
instance_new() {
 /* Other initialization stuff omitted for brevity */

 self->in_weakreflist = NULL;

 return (PyObject *) self;
}

The only further addition is that the destructor needs to call the weak
reference manager to clear any weak references. This should be done before any
other parts of the destruction have occurred, but is only required if the weak
reference list is non-NULL:

static void
instance_dealloc(PyInstanceObject *inst)
{
 /* Allocate temporaries if needed, but do not begin
 destruction just yet.
 */

 if (inst->in_weakreflist != NULL)
 PyObject_ClearWeakRefs((PyObject *) inst);

 /* Proceed with object destruction normally. */
}

2.2.7. More Suggestions

Remember that you can omit most of these functions, in which case you provide
0 as a value. There are type definitions for each of the functions you must
provide. They are in object.h in the Python include directory that
comes with the source distribution of Python.

In order to learn how to implement any specific method for your new data type,
do the following: Download and unpack the Python source distribution. Go the
Objects directory, then search the C source files for tp_ plus the
function you want (for example, tp_print or tp_compare). You will find
examples of the function you want to implement.

When you need to verify that an object is an instance of the type you are
implementing, use the PyObject_TypeCheck() function. A sample of its use
might be something like the following:

if (! PyObject_TypeCheck(some_object, &MyType)) {
 PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
 return NULL;
}

Footnotes

	[1]	This is true when we know that the object is a basic type, like a string or a
float.

	[2]	We relied on this in the tp_dealloc handler in this example, because our
type doesn’t support garbage collection. Even if a type supports garbage
collection, there are calls that can be made to “untrack” the object from
garbage collection, however, these calls are advanced and not covered here.

	[3]	We now know that the first and last members are strings, so perhaps we could be
less careful about decrementing their reference counts, however, we accept
instances of string subclasses. Even though deallocating normal strings won’t
call back into our objects, we can’t guarantee that deallocating an instance of
a string subclass won’t call back into our objects.

	[4]	Even in the third version, we aren’t guaranteed to avoid cycles. Instances of
string subclasses are allowed and string subclasses could allow cycles even if
normal strings don’t.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Extending and Embedding the Python Interpreter

3. Building C and C++ Extensions with distutils

Starting in Python 1.4, Python provides, on Unix, a special make file for
building make files for building dynamically-linked extensions and custom
interpreters. Starting with Python 2.0, this mechanism (known as related to
Makefile.pre.in, and Setup files) is no longer supported. Building custom
interpreters was rarely used, and extension modules can be built using
distutils.

Building an extension module using distutils requires that distutils is
installed on the build machine, which is included in Python 2.x and available
separately for Python 1.5. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the
extension.

A distutils package contains a driver script, setup.py. This is a plain
Python file, which, in the most simple case, could look like this:

from distutils.core import setup, Extension

module1 = Extension('demo',
 sources = ['demo.c'])

setup (name = 'PackageName',
 version = '1.0',
 description = 'This is a demo package',
 ext_modules = [module1])

With this setup.py, and a file demo.c, running

python setup.py build

will compile demo.c, and produce an extension module named demo in
the build directory. Depending on the system, the module file will end
up in a subdirectory build/lib.system, and may have a name like
demo.so or demo.pyd.

In the setup.py, all execution is performed by calling the setup
function. This takes a variable number of keyword arguments, of which the
example above uses only a subset. Specifically, the example specifies
meta-information to build packages, and it specifies the contents of the
package. Normally, a package will contain of addition modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils
documentation in Distributing Python Modules to learn more about the features of
distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup(), to better structure the
driver script. In the example above, theext_modules argument to
setup() is a list of extension modules, each of which is an instance of
the Extension. In the example, the instance defines an extension named
demo which is build by compiling a single source file, demo.c.

In many cases, building an extension is more complex, since additional
preprocessor defines and libraries may be needed. This is demonstrated in the
example below.

from distutils.core import setup, Extension

module1 = Extension('demo',
 define_macros = [('MAJOR_VERSION', '1'),
 ('MINOR_VERSION', '0')],
 include_dirs = ['/usr/local/include'],
 libraries = ['tcl83'],
 library_dirs = ['/usr/local/lib'],
 sources = ['demo.c'])

setup (name = 'PackageName',
 version = '1.0',
 description = 'This is a demo package',
 author = 'Martin v. Loewis',
 author_email = 'martin@v.loewis.de',
 url = 'http://docs.python.org/extending/building',
 long_description = '''
This is really just a demo package.
''',
 ext_modules = [module1])

In this example, setup() is called with additional meta-information, which
is recommended when distribution packages have to be built. For the extension
itself, it specifies preprocessor defines, include directories, library
directories, and libraries. Depending on the compiler, distutils passes this
information in different ways to the compiler. For example, on Unix, this may
result in the compilation commands

gcc -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC -DMAJOR_VERSION=1 -DMINOR_VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/temp.linux-i686-2.2/demo.o

gcc -shared build/temp.linux-i686-2.2/demo.o -L/usr/local/lib -ltcl83 -o build/lib.linux-i686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust
that distutils gets the invocations right.

3.1. Distributing your extension modules

When an extension has been successfully build, there are three ways to use it.

End-users will typically want to install the module, they do so by running

python setup.py install

Module maintainers should produce source packages; to do so, they run

python setup.py sdist

In some cases, additional files need to be included in a source distribution;
this is done through a MANIFEST.in file; see the distutils documentation
for details.

If the source distribution has been build successfully, maintainers can also
create binary distributions. Depending on the platform, one of the following
commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Extending and Embedding the Python Interpreter

4. Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for
Python using Microsoft Visual C++, and follows with more detailed background
information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer
interested in producing software which can be successfully built on both Unix
and Windows.

Module authors are encouraged to use the distutils approach for building
extension modules, instead of the one described in this section. You will still
need the C compiler that was used to build Python; typically Microsoft Visual
C++.

Note

This chapter mentions a number of filenames that include an encoded Python
version number. These filenames are represented with the version number shown
as XY; in practice, 'X' will be the major version number and 'Y'
will be the minor version number of the Python release you’re working with. For
example, if you are using Python 2.2.1, XY will actually be 22.

4.1. A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there
are on Unix: use the distutils package to control the build process, or
do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules
is available in Distributing Python Modules. This section describes the manual
approach to building Python extensions written in C or C++.

To build extensions using these instructions, you need to have a copy of the
Python sources of the same version as your installed Python. You will need
Microsoft Visual C++ “Developer Studio”; project files are supplied for VC++
version 7.1, but you can use older versions of VC++. Notice that you should use
the same version of VC++that was used to build Python itself. The example files
described here are distributed with the Python sources in the
PC\example_nt\ directory.

	Copy the example files — The example_nt directory is a
subdirectory of the PC directory, in order to keep all the PC-specific
files under the same directory in the source distribution. However, the
example_nt directory can’t actually be used from this location. You
first need to copy or move it up one level, so that example_nt is a
sibling of the PC and Include directories. Do all your work
from within this new location.

	Open the project — From VC++, use the File ‣ Open
Solution dialog (not File ‣ Open!). Navigate to and select
the file example.sln, in the copy of the example_nt directory
you made above. Click Open.

	Build the example DLL — In order to check that everything is set up
right, try building:

	Select a configuration. This step is optional. Choose
Build ‣ Configuration Manager ‣ Active Solution Configuration
and select either Release or Debug. If you skip this
step, VC++ will use the Debug configuration by default.

	Build the DLL. Choose Build ‣ Build Solution. This
creates all intermediate and result files in a subdirectory called either
Debug or Release, depending on which configuration you selected
in the preceding step.

	Testing the debug-mode DLL — Once the Debug build has succeeded, bring
up a DOS box, and change to the example_nt\Debug directory. You should
now be able to repeat the following session (C> is the DOS prompt, >>>
is the Python prompt; note that build information and various debug output from
Python may not match this screen dump exactly):

C>..\..\PCbuild\python_d
Adding parser accelerators ...
Done.
Python 2.2 (#28, Dec 19 2001, 23:26:37) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>> import example
[4897 refs]
>>> example.foo()
Hello, world
[4903 refs]
>>>

Congratulations! You’ve successfully built your first Python extension module.

	Creating your own project — Choose a name and create a directory for
it. Copy your C sources into it. Note that the module source file name does
not necessarily have to match the module name, but the name of the
initialization function should match the module name — you can only import a
module spam if its initialization function is called initspam(),
and it should call Py_InitModule() with the string "spam" as its
first argument (use the minimal example.c in this directory as a guide).
By convention, it lives in a file called spam.c or spammodule.c.
The output file should be called spam.pyd (in Release mode) or
spam_d.pyd (in Debug mode). The extension .pyd was chosen
to avoid confusion with a system library spam.dll to which your module
could be a Python interface.

Changed in version 2.5: Previously, file names like spam.dll (in release mode) or
spam_d.dll (in debug mode) were also recognized.

Now your options are:

	Copy example.sln and example.vcproj, rename them to
spam.*, and edit them by hand, or

	Create a brand new project; instructions are below.

In either case, copy example_nt\example.def to spam\spam.def,
and edit the new spam.def so its second line contains the string
‘initspam‘. If you created a new project yourself, add the file
spam.def to the project now. (This is an annoying little file with only
two lines. An alternative approach is to forget about the .def file,
and add the option /export:initspam somewhere to the Link settings, by
manually editing the setting in Project Properties dialog).

	Creating a brand new project — Use the File ‣ New
‣ Project dialog to create a new Project Workspace. Select Visual
C++ Projects/Win32/ Win32 Project, enter the name (spam), and make sure the
Location is set to parent of the spam directory you have created (which
should be a direct subdirectory of the Python build tree, a sibling of
Include and PC). Select Win32 as the platform (in my version,
this is the only choice). Make sure the Create new workspace radio button is
selected. Click OK.

You should now create the file spam.def as instructed in the previous
section. Add the source files to the project, using Project ‣
Add Existing Item. Set the pattern to *.* and select both spam.c
and spam.def and click OK. (Inserting them one by one is fine too.)

Now open the Project ‣ spam properties dialog. You only need
to change a few settings. Make sure All Configurations is selected
from the Settings for: dropdown list. Select the C/C++ tab. Choose
the General category in the popup menu at the top. Type the following text in
the entry box labeled Additional Include Directories:

..\Include,..\PC

Then, choose the General category in the Linker tab, and enter

..\PCbuild

in the text box labelled Additional library Directories.

Now you need to add some mode-specific settings:

Select Release in the Configuration dropdown list.
Choose the Link tab, choose the Input category, and
append pythonXY.lib to the list in the Additional Dependencies
box.

Select Debug in the Configuration dropdown list, and
append pythonXY_d.lib to the list in the Additional Dependencies
box. Then click the C/C++ tab, select Code Generation, and select
Multi-threaded Debug DLL from the Runtime library
dropdown list.

Select Release again from the Configuration dropdown
list. Select Multi-threaded DLL from the Runtime
library dropdown list.

If your module creates a new type, you may have trouble with this line:

PyObject_HEAD_INIT(&PyType_Type)

Static type object initializers in extension modules may cause
compiles to fail with an error message like “initializer not a
constant”. This shows up when building DLL under MSVC. Change it to:

PyObject_HEAD_INIT(NULL)

and add the following to the module initialization function:

if (PyType_Ready(&MyObject_Type) < 0)
 return NULL;

4.2. Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of
code. Before you try to build a module that can be dynamically loaded, be aware
of how your system works.

In Unix, a shared object (.so) file contains code to be used by the
program, and also the names of functions and data that it expects to find in the
program. When the file is joined to the program, all references to those
functions and data in the file’s code are changed to point to the actual
locations in the program where the functions and data are placed in memory.
This is basically a link operation.

In Windows, a dynamic-link library (.dll) file has no dangling
references. Instead, an access to functions or data goes through a lookup
table. So the DLL code does not have to be fixed up at runtime to refer to the
program’s memory; instead, the code already uses the DLL’s lookup table, and the
lookup table is modified at runtime to point to the functions and data.

In Unix, there is only one type of library file (.a) which contains code
from several object files (.o). During the link step to create a shared
object file (.so), the linker may find that it doesn’t know where an
identifier is defined. The linker will look for it in the object files in the
libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import
library (both called .lib). A static library is like a Unix .a
file; it contains code to be included as necessary. An import library is
basically used only to reassure the linker that a certain identifier is legal,
and will be present in the program when the DLL is loaded. So the linker uses
the information from the import library to build the lookup table for using
identifiers that are not included in the DLL. When an application or a DLL is
linked, an import library may be generated, which will need to be used for all
future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share
another block of code A. On Unix, you would not pass A.a to the
linker for B.so and C.so; that would cause it to be included
twice, so that B and C would each have their own copy. In Windows, building
A.dll will also build A.lib. You do pass A.lib to the
linker for B and C. A.lib does not contain code; it just contains
information which will be used at runtime to access A’s code.

In Windows, using an import library is sort of like using import spam; it
gives you access to spam’s names, but does not create a separate copy. On Unix,
linking with a library is more like from spam import *; it does create a
separate copy.

4.3. Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or
may not work (though Borland seems to). The rest of this section is MSVC++
specific.

When creating DLLs in Windows, you must pass pythonXY.lib to the linker.
To build two DLLs, spam and ni (which uses C functions found in spam), you could
use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and
spam.lib. Spam.dll does not contain any Python functions (such
as PyArg_ParseTuple()), but it does know how to find the Python code
thanks to pythonXY.lib.

The second command created ni.dll (and .obj and .lib),
which knows how to find the necessary functions from spam, and also from the
Python executable.

Not every identifier is exported to the lookup table. If you want any other
modules (including Python) to be able to see your identifiers, you have to say
_declspec(dllexport), as in void _declspec(dllexport) initspam(void) or
PyObject _declspec(dllexport) *NiGetSpamData(void).

Developer Studio will throw in a lot of import libraries that you do not really
need, adding about 100K to your executable. To get rid of them, use the Project
Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvcrtxx.lib to the list of libraries.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Extending and Embedding the Python Interpreter

5. Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the
functionality of Python by attaching a library of C functions to it. It is also
possible to do it the other way around: enrich your C/C++ application by
embedding Python in it. Embedding provides your application with the ability to
implement some of the functionality of your application in Python rather than C
or C++. This can be used for many purposes; one example would be to allow users
to tailor the application to their needs by writing some scripts in Python. You
can also use it yourself if some of the functionality can be written in Python
more easily.

Embedding Python is similar to extending it, but not quite. The difference is
that when you extend Python, the main program of the application is still the
Python interpreter, while if you embed Python, the main program may have nothing
to do with Python — instead, some parts of the application occasionally call
the Python interpreter to run some Python code.

So if you are embedding Python, you are providing your own main program. One of
the things this main program has to do is initialize the Python interpreter. At
the very least, you have to call the function Py_Initialize(). There are
optional calls to pass command line arguments to Python. Then later you can
call the interpreter from any part of the application.

There are several different ways to call the interpreter: you can pass a string
containing Python statements to PyRun_SimpleString(), or you can pass a
stdio file pointer and a file name (for identification in error messages only)
to PyRun_SimpleFile(). You can also call the lower-level operations
described in the previous chapters to construct and use Python objects.

A simple demo of embedding Python can be found in the directory
Demo/embed/ of the source distribution.

See also

	c-api-index

	The details of Python’s C interface are given in this manual. A great deal of
necessary information can be found here.

5.1. Very High Level Embedding

The simplest form of embedding Python is the use of the very high level
interface. This interface is intended to execute a Python script without needing
to interact with the application directly. This can for example be used to
perform some operation on a file.

#include <Python.h>

int
main(int argc, char *argv[])
{
 Py_Initialize();
 PyRun_SimpleString("from time import time,ctime\n"
 "print 'Today is',ctime(time())\n");
 Py_Finalize();
 return 0;
}

The above code first initializes the Python interpreter with
Py_Initialize(), followed by the execution of a hard-coded Python script
that print the date and time. Afterwards, the Py_Finalize() call shuts
the interpreter down, followed by the end of the program. In a real program,
you may want to get the Python script from another source, perhaps a text-editor
routine, a file, or a database. Getting the Python code from a file can better
be done by using the PyRun_SimpleFile() function, which saves you the
trouble of allocating memory space and loading the file contents.

5.2. Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of
Python code from your application, but exchanging data values is quite
cumbersome to say the least. If you want that, you should use lower level calls.
At the cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same
activity, despite the different intent. Most topics discussed in the previous
chapters are still valid. To show this, consider what the extension code from
Python to C really does:

	Convert data values from Python to C,

	Perform a function call to a C routine using the converted values, and

	Convert the data values from the call from C to Python.

When embedding Python, the interface code does:

	Convert data values from C to Python,

	Perform a function call to a Python interface routine using the converted
values, and

	Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the
different direction of the cross-language transfer. The only difference is the
routine that you call between both data conversions. When extending, you call a
C routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice
versa. Also, proper use of references and dealing with errors is assumed to be
understood. Since these aspects do not differ from extending the interpreter,
you can refer to earlier chapters for the required information.

5.3. Pure Embedding

The first program aims to execute a function in a Python script. Like in the
section about the very high level interface, the Python interpreter does not
directly interact with the application (but that will change in the next
section).

The code to run a function defined in a Python script is:

#include <Python.h>

int
main(int argc, char *argv[])
{
 PyObject *pName, *pModule, *pDict, *pFunc;
 PyObject *pArgs, *pValue;
 int i;

 if (argc < 3) {
 fprintf(stderr,"Usage: call pythonfile funcname [args]\n");
 return 1;
 }

 Py_Initialize();
 pName = PyString_FromString(argv[1]);
 /* Error checking of pName left out */

 pModule = PyImport_Import(pName);
 Py_DECREF(pName);

 if (pModule != NULL) {
 pFunc = PyObject_GetAttrString(pModule, argv[2]);
 /* pFunc is a new reference */

 if (pFunc && PyCallable_Check(pFunc)) {
 pArgs = PyTuple_New(argc - 3);
 for (i = 0; i < argc - 3; ++i) {
 pValue = PyInt_FromLong(atoi(argv[i + 3]));
 if (!pValue) {
 Py_DECREF(pArgs);
 Py_DECREF(pModule);
 fprintf(stderr, "Cannot convert argument\n");
 return 1;
 }
 /* pValue reference stolen here: */
 PyTuple_SetItem(pArgs, i, pValue);
 }
 pValue = PyObject_CallObject(pFunc, pArgs);
 Py_DECREF(pArgs);
 if (pValue != NULL) {
 printf("Result of call: %ld\n", PyInt_AsLong(pValue));
 Py_DECREF(pValue);
 }
 else {
 Py_DECREF(pFunc);
 Py_DECREF(pModule);
 PyErr_Print();
 fprintf(stderr,"Call failed\n");
 return 1;
 }
 }
 else {
 if (PyErr_Occurred())
 PyErr_Print();
 fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
 }
 Py_XDECREF(pFunc);
 Py_DECREF(pModule);
 }
 else {
 PyErr_Print();
 fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
 return 1;
 }
 Py_Finalize();
 return 0;
}

This code loads a Python script using argv[1], and calls the function named
in argv[2]. Its integer arguments are the other values of the argv
array. If you compile and link this program (let’s call the finished executable
call), and use it to execute a Python script, such as:

def multiply(a,b):
 print "Will compute", a, "times", b
 c = 0
 for i in range(0, a):
 c = c + b
 return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is
for data conversion between Python and C, and for error reporting. The
interesting part with respect to embedding Python starts with

Py_Initialize();
pName = PyString_FromString(argv[1]);
/* Error checking of pName left out */
pModule = PyImport_Import(pName);

After initializing the interpreter, the script is loaded using
PyImport_Import(). This routine needs a Python string as its argument,
which is constructed using the PyString_FromString() data conversion
routine.

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check(pFunc)) {
 ...
}
Py_XDECREF(pFunc);

Once the script is loaded, the name we’re looking for is retrieved using
PyObject_GetAttrString(). If the name exists, and the object returned is
callable, you can safely assume that it is a function. The program then
proceeds by constructing a tuple of arguments as normal. The call to the Python
function is then made with:

pValue = PyObject_CallObject(pFunc, pArgs);

Upon return of the function, pValue is either NULL or it contains a
reference to the return value of the function. Be sure to release the reference
after examining the value.

5.4. Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from
the application itself. The Python API allows this by extending the embedded
interpreter. That is, the embedded interpreter gets extended with routines
provided by the application. While it sounds complex, it is not so bad. Simply
forget for a while that the application starts the Python interpreter. Instead,
consider the application to be a set of subroutines, and write some glue code
that gives Python access to those routines, just like you would write a normal
Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs(PyObject *self, PyObject *args)
{
 if(!PyArg_ParseTuple(args, ":numargs"))
 return NULL;
 return Py_BuildValue("i", numargs);
}

static PyMethodDef EmbMethods[] = {
 {"numargs", emb_numargs, METH_VARARGS,
 "Return the number of arguments received by the process."},
 {NULL, NULL, 0, NULL}
};

Insert the above code just above the main() function. Also, insert the
following two statements directly after Py_Initialize():

numargs = argc;
Py_InitModule("emb", EmbMethods);

These two lines initialize the numargs variable, and make the
emb.numargs() function accessible to the embedded Python interpreter.
With these extensions, the Python script can do things like

import emb
print "Number of arguments", emb.numargs()

In a real application, the methods will expose an API of the application to
Python.

5.5. Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done
will depend on the details of the C++ system used; in general you will need to
write the main program in C++, and use the C++ compiler to compile and link your
program. There is no need to recompile Python itself using C++.

5.6. Linking Requirements

While the configure script shipped with the Python sources will
correctly build Python to export the symbols needed by dynamically linked
extensions, this is not automatically inherited by applications which embed the
Python library statically, at least on Unix. This is an issue when the
application is linked to the static runtime library (libpython.a) and
needs to load dynamic extensions (implemented as .so files).

The problem is that some entry points are defined by the Python runtime solely
for extension modules to use. If the embedding application does not use any of
these entry points, some linkers will not include those entries in the symbol
table of the finished executable. Some additional options are needed to inform
the linker not to remove these symbols.

Determining the right options to use for any given platform can be quite
difficult, but fortunately the Python configuration already has those values.
To retrieve them from an installed Python interpreter, start an interactive
interpreter and have a short session like this:

>>> import distutils.sysconfig
>>> distutils.sysconfig.get_config_var('LINKFORSHARED')
'-Xlinker -export-dynamic'

The contents of the string presented will be the options that should be used.
If the string is empty, there’s no need to add any additional options. The
LINKFORSHARED definition corresponds to the variable of the same name
in Python’s top-level Makefile.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

IronPython .NET API Reference Manual

This section includes documentation on low-level IronPython APIs that are available for
extending IronPython and providing deep integration with other .NET applications.

	1. Extending IronPython with C#
	1.1. A Simple Example

	2. Parsing and Tokenizing

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	IronPython .NET API Reference Manual

1. Extending IronPython with C#

1.1. A Simple Example

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	IronPython .NET API Reference Manual

2. Parsing and Tokenizing

	
Parser CreateParser(CompilerContextcontext, PythonOptionsoptions)

	Creates a new parser using the given compiler context and options.

	
PythonAst ParseFile(boolmakeModule)

	

	
PythonAst ParseFile(boolmakeModule, boolreturnValue)

	

	
PythonAst ParseInteractiveCode(out ScriptCodeParseResultproperties)

	Parse one or more lines of interactive input

Returns null if input is not yet valid but could be with more lines

	
PythonAst ParseSingleStatement()

	

	
PythonAst ParseTopExpression()

	

	
static int GetNextAutoIndentSize(stringtext, intautoIndentTabWidth)

	Given the interactive text input for a compound statement, calculate what the indentation level of the next line should be

	
ErrorSink ErrorSink { get; set; }

	

	
ParserSink ParserSink { get; set; }

	

	
public int ErrorCode { get; }

	

	
void Reset(SourceUnitsourceUnit, ModuleOptionslanguageFeatures)

	

	
void Reset()

	

	
void Dispose()

	

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Distributing Python Modules

	Authors:	Greg Ward, Anthony Baxter

	Email:	distutils-sig@python.org

	Release:	2.7

	Date:	November 07, 2013

This document describes the Python Distribution Utilities (“Distutils”) from
the module developer’s point of view, describing how to use the Distutils to
make Python modules and extensions easily available to a wider audience with
very little overhead for build/release/install mechanics.

	1. An Introduction to Distutils
	1.1. Concepts & Terminology

	1.2. A Simple Example

	1.3. General Python terminology

	1.4. Distutils-specific terminology

	2. Writing the Setup Script
	2.1. Listing whole packages

	2.2. Listing individual modules

	2.3. Describing extension modules

	2.4. Relationships between Distributions and Packages

	2.5. Installing Scripts

	2.6. Installing Package Data

	2.7. Installing Additional Files

	2.8. Additional meta-data

	2.9. Debugging the setup script

	3. Writing the Setup Configuration File

	4. Creating a Source Distribution
	4.1. Specifying the files to distribute

	4.2. Manifest-related options

	4.3. The MANIFEST.in template

	5. Creating Built Distributions
	5.1. Creating dumb built distributions

	5.2. Creating RPM packages

	5.3. Creating Windows Installers

	5.4. Cross-compiling on Windows

	5.5. Vista User Access Control (UAC)

	6. Registering with the Package Index
	6.1. The .pypirc file

	7. Uploading Packages to the Package Index
	7.1. PyPI package display

	8. Examples
	8.1. Pure Python distribution (by module)

	8.2. Pure Python distribution (by package)

	8.3. Single extension module

	9. Extending Distutils
	9.1. Integrating new commands

	9.2. Adding new distribution types

	10. Command Reference
	10.1. Installing modules: the install command family

	11. API Reference
	11.1. distutils.core — Core Distutils functionality

	11.2. distutils.ccompiler — CCompiler base class

	11.3. distutils.unixccompiler — Unix C Compiler

	11.4. distutils.msvccompiler — Microsoft Compiler

	11.5. distutils.bcppcompiler — Borland Compiler

	11.6. distutils.cygwincompiler — Cygwin Compiler

	11.7. distutils.emxccompiler — OS/2 EMX Compiler

	11.8. distutils.archive_util — Archiving utilities

	11.9. distutils.dep_util — Dependency checking

	11.10. distutils.dir_util — Directory tree operations

	11.11. distutils.file_util — Single file operations

	11.12. distutils.util — Miscellaneous other utility functions

	11.13. distutils.dist — The Distribution class

	11.14. distutils.extension — The Extension class

	11.15. distutils.debug — Distutils debug mode

	11.16. distutils.errors — Distutils exceptions

	11.17. distutils.fancy_getopt — Wrapper around the standard getopt module

	11.18. distutils.filelist — The FileList class

	11.19. distutils.log — Simple PEP 282-style logging

	11.20. distutils.spawn — Spawn a sub-process

	11.21. distutils.sysconfig — System configuration information

	11.22. distutils.text_file — The TextFile class

	11.23. distutils.version — Version number classes

	11.24. distutils.cmd — Abstract base class for Distutils commands

	11.25. Creating a new Distutils command

	11.26. distutils.command — Individual Distutils commands

	11.27. distutils.command.bdist — Build a binary installer

	11.28. distutils.command.bdist_packager — Abstract base class for packagers

	11.29. distutils.command.bdist_dumb — Build a “dumb” installer

	11.30. distutils.command.bdist_msi — Build a Microsoft Installer binary package

	11.31. distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SRPM

	11.32. distutils.command.bdist_wininst — Build a Windows installer

	11.33. distutils.command.sdist — Build a source distribution

	11.34. distutils.command.build — Build all files of a package

	11.35. distutils.command.build_clib — Build any C libraries in a package

	11.36. distutils.command.build_ext — Build any extensions in a package

	11.37. distutils.command.build_py — Build the .py/.pyc files of a package

	11.38. distutils.command.build_scripts — Build the scripts of a package

	11.39. distutils.command.clean — Clean a package build area

	11.40. distutils.command.config — Perform package configuration

	11.41. distutils.command.install — Install a package

	11.42. distutils.command.install_data — Install data files from a package

	11.43. distutils.command.install_headers — Install C/C++ header files from a package

	11.44. distutils.command.install_lib — Install library files from a package

	11.45. distutils.command.install_scripts — Install script files from a package

	11.46. distutils.command.register — Register a module with the Python Package Index

	11.47. distutils.command.check — Check the meta-data of a package

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

1. An Introduction to Distutils

This document covers using the Distutils to distribute your Python modules,
concentrating on the role of developer/distributor: if you’re looking for
information on installing Python modules, you should refer to the
Installing Python Modules chapter.

1.1. Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for
users/administrators installing third-party modules. As a developer, your
responsibilities (apart from writing solid, well-documented and well-tested
code, of course!) are:

	write a setup script (setup.py by convention)

	(optional) write a setup configuration file

	create a source distribution

	(optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it’s not
always feasible to expect them to create a multitude of built distributions. It
is hoped that a class of intermediaries, called packagers, will arise to
address this need. Packagers will take source distributions released by module
developers, build them on one or more platforms, and release the resulting built
distributions. Thus, users on the most popular platforms will be able to
install most popular Python module distributions in the most natural way for
their platform, without having to run a single setup script or compile a line of
code.

1.2. A Simple Example

The setup script is usually quite simple, although since it’s written in Python,
there are no arbitrary limits to what you can do with it, though you should be
careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run
multiple times in the course of building and installing your module
distribution.

If all you want to do is distribute a module called foo, contained in a
file foo.py, then your setup script can be as simple as this:

from distutils.core import setup
setup(name='foo',
 version='1.0',
 py_modules=['foo'],
)

Some observations:

	most information that you supply to the Distutils is supplied as keyword
arguments to the setup() function

	those keyword arguments fall into two categories: package metadata (name,
version number) and information about what’s in the package (a list of pure
Python modules, in this case)

	modules are specified by module name, not filename (the same will hold true
for packages and extensions)

	it’s recommended that you supply a little more metadata, in particular your
name, email address and a URL for the project (see section Writing the Setup Script
for an example)

To create a source distribution for this module, you would create a setup
script, setup.py, containing the above code, and run:

python setup.py sdist

which will create an archive file (e.g., tarball on Unix, ZIP file on Windows)
containing your setup script setup.py, and your module foo.py.
The archive file will be named foo-1.0.tar.gz (or .zip), and
will unpack into a directory foo-1.0.

If an end-user wishes to install your foo module, all she has to do is
download foo-1.0.tar.gz (or .zip), unpack it, and—from the
foo-1.0 directory—run

python setup.py install

which will ultimately copy foo.py to the appropriate directory for
third-party modules in their Python installation.

This simple example demonstrates some fundamental concepts of the Distutils.
First, both developers and installers have the same basic user interface, i.e.
the setup script. The difference is which Distutils commands they use: the
sdist command is almost exclusively for module developers, while
install is more often for installers (although most developers will
want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or
more built distributions for them. For instance, if you are running on a
Windows machine, and want to make things easy for other Windows users, you can
create an executable installer (the most appropriate type of built distribution
for this platform) with the bdist_wininst command. For example:

python setup.py bdist_wininst

will create an executable installer, foo-1.0.win32.exe, in the current
directory.

Other useful built distribution formats are RPM, implemented by the
bdist_rpm command, Solaris pkgtool
(bdist_pkgtool), and HP-UX swinstall
(bdist_sdux). For example, the following command will create an RPM
file called foo-1.0.noarch.rpm:

python setup.py bdist_rpm

(The bdist_rpm command uses the rpm executable, therefore
this has to be run on an RPM-based system such as Red Hat Linux, SuSE Linux, or
Mandrake Linux.)

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

1.3. General Python terminology

If you’re reading this document, you probably have a good idea of what modules,
extensions, and so forth are. Nevertheless, just to be sure that everyone is
operating from a common starting point, we offer the following glossary of
common Python terms:

	module

	the basic unit of code reusability in Python: a block of code imported by some
other code. Three types of modules concern us here: pure Python modules,
extension modules, and packages.

	pure Python module

	a module written in Python and contained in a single .py file (and
possibly associated .pyc and/or .pyo files). Sometimes referred
to as a “pure module.”

	extension module

	a module written in the low-level language of the Python implementation: C/C++
for Python, Java for Jython. Typically contained in a single dynamically
loadable pre-compiled file, e.g. a shared object (.so) file for Python
extensions on Unix, a DLL (given the .pyd extension) for Python
extensions on Windows, or a Java class file for Jython extensions. (Note that
currently, the Distutils only handles C/C++ extensions for Python.)

	package

	a module that contains other modules; typically contained in a directory in the
filesystem and distinguished from other directories by the presence of a file
__init__.py.

	root package

	the root of the hierarchy of packages. (This isn’t really a package, since it
doesn’t have an __init__.py file. But we have to call it something.)
The vast majority of the standard library is in the root package, as are many
small, standalone third-party modules that don’t belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in
many directories: in fact, every directory listed in sys.path contributes
modules to the root package.

1.4. Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python
modules using the Distutils:

	module distribution

	a collection of Python modules distributed together as a single downloadable
resource and meant to be installed en masse. Examples of some well-known
module distributions are Numeric Python, PyXML, PIL (the Python Imaging
Library), or mxBase. (This would be called a package, except that term is
already taken in the Python context: a single module distribution may contain
zero, one, or many Python packages.)

	pure module distribution

	a module distribution that contains only pure Python modules and packages.
Sometimes referred to as a “pure distribution.”

	non-pure module distribution

	a module distribution that contains at least one extension module. Sometimes
referred to as a “non-pure distribution.”

	distribution root

	the top-level directory of your source tree (or source distribution); the
directory where setup.py exists. Generally setup.py will be
run from this directory.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

2. Writing the Setup Script

The setup script is the centre of all activity in building, distributing, and
installing modules using the Distutils. The main purpose of the setup script is
to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in section
A Simple Example above, the setup script consists mainly of a call to
setup(), and most information supplied to the Distutils by the module
developer is supplied as keyword arguments to setup().

Here’s a slightly more involved example, which we’ll follow for the next couple
of sections: the Distutils’ own setup script. (Keep in mind that although the
Distutils are included with Python 1.6 and later, they also have an independent
existence so that Python 1.5.2 users can use them to install other module
distributions. The Distutils’ own setup script, shown here, is used to install
the package into Python 1.5.2.)

#!/usr/bin/env python

from distutils.core import setup

setup(name='Distutils',
 version='1.0',
 description='Python Distribution Utilities',
 author='Greg Ward',
 author_email='gward@python.net',
 url='http://www.python.org/sigs/distutils-sig/',
 packages=['distutils', 'distutils.command'],
)

There are only two differences between this and the trivial one-file
distribution presented in section A Simple Example: more metadata, and the
specification of pure Python modules by package, rather than by module. This is
important since the Distutils consist of a couple of dozen modules split into
(so far) two packages; an explicit list of every module would be tedious to
generate and difficult to maintain. For more information on the additional
meta-data, see section Additional meta-data.

Note that any pathnames (files or directories) supplied in the setup script
should be written using the Unix convention, i.e. slash-separated. The
Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the
pathname. This makes your setup script portable across operating systems, which
of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated.

This, of course, only applies to pathnames given to Distutils functions. If
you, for example, use standard Python functions such as glob.glob() or
os.listdir() to specify files, you should be careful to write portable
code instead of hardcoding path separators:

glob.glob(os.path.join('mydir', 'subdir', '*.html'))
os.listdir(os.path.join('mydir', 'subdir'))

2.1. Listing whole packages

The packages option tells the Distutils to process (build, distribute,
install, etc.) all pure Python modules found in each package mentioned in the
packages list. In order to do this, of course, there has to be a
correspondence between package names and directories in the filesystem. The
default correspondence is the most obvious one, i.e. package distutils is
found in the directory distutils relative to the distribution root.
Thus, when you say packages = ['foo'] in your setup script, you are
promising that the Distutils will find a file foo/__init__.py (which
might be spelled differently on your system, but you get the idea) relative to
the directory where your setup script lives. If you break this promise, the
Distutils will issue a warning but still process the broken package anyways.

If you use a different convention to lay out your source directory, that’s no
problem: you just have to supply the package_dir option to tell the
Distutils about your convention. For example, say you keep all Python source
under lib, so that modules in the “root package” (i.e., not in any
package at all) are in lib, modules in the foo package are in
lib/foo, and so forth. Then you would put

package_dir = {'': 'lib'}

in your setup script. The keys to this dictionary are package names, and an
empty package name stands for the root package. The values are directory names
relative to your distribution root. In this case, when you say packages =
['foo'], you are promising that the file lib/foo/__init__.py exists.

Another possible convention is to put the foo package right in
lib, the foo.bar package in lib/bar, etc. This would be
written in the setup script as

package_dir = {'foo': 'lib'}

A package: dir entry in the package_dir dictionary implicitly
applies to all packages below package, so the foo.bar case is
automatically handled here. In this example, having packages = ['foo',
'foo.bar'] tells the Distutils to look for lib/__init__.py and
lib/bar/__init__.py. (Keep in mind that although package_dir
applies recursively, you must explicitly list all packages in
packages: the Distutils will not recursively scan your source tree
looking for any directory with an __init__.py file.)

2.2. Listing individual modules

For a small module distribution, you might prefer to list all modules rather
than listing packages—especially the case of a single module that goes in the
“root package” (i.e., no package at all). This simplest case was shown in
section A Simple Example; here is a slightly more involved example:

py_modules = ['mod1', 'pkg.mod2']

This describes two modules, one of them in the “root” package, the other in the
pkg package. Again, the default package/directory layout implies that
these two modules can be found in mod1.py and pkg/mod2.py, and
that pkg/__init__.py exists as well. And again, you can override the
package/directory correspondence using the package_dir option.

2.3. Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing
pure Python modules, describing them to the Distutils is a bit more complicated.
Unlike pure modules, it’s not enough just to list modules or packages and expect
the Distutils to go out and find the right files; you have to specify the
extension name, source file(s), and any compile/link requirements (include
directories, libraries to link with, etc.).

All of this is done through another keyword argument to setup(), the
ext_modules option. ext_modules is just a list of
Extension instances, each of which describes a single extension module.
Suppose your distribution includes a single extension, called foo and
implemented by foo.c. If no additional instructions to the
compiler/linker are needed, describing this extension is quite simple:

Extension('foo', ['foo.c'])

The Extension class can be imported from distutils.core along
with setup(). Thus, the setup script for a module distribution that
contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name='foo',
 version='1.0',
 ext_modules=[Extension('foo', ['foo.c'])],
)

The Extension class (actually, the underlying extension-building
machinery implemented by the build_ext command) supports a great deal
of flexibility in describing Python extensions, which is explained in the
following sections.

2.3.1. Extension names and packages

The first argument to the Extension constructor is always the name of
the extension, including any package names. For example,

Extension('foo', ['src/foo1.c', 'src/foo2.c'])

describes an extension that lives in the root package, while

Extension('pkg.foo', ['src/foo1.c', 'src/foo2.c'])

describes the same extension in the pkg package. The source files and
resulting object code are identical in both cases; the only difference is where
in the filesystem (and therefore where in Python’s namespace hierarchy) the
resulting extension lives.

If you have a number of extensions all in the same package (or all under the
same base package), use the ext_package keyword argument to
setup(). For example,

setup(...,
 ext_package='pkg',
 ext_modules=[Extension('foo', ['foo.c']),
 Extension('subpkg.bar', ['bar.c'])],
)

will compile foo.c to the extension pkg.foo, and bar.c to
pkg.subpkg.bar.

2.3.2. Extension source files

The second argument to the Extension constructor is a list of source
files. Since the Distutils currently only support C, C++, and Objective-C
extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++source files: .cc and
.cpp seem to be recognized by both Unix and Windows compilers.)

However, you can also include SWIG interface (.i) files in the list; the
build_ext command knows how to deal with SWIG extensions: it will run
SWIG on the interface file and compile the resulting C/C++ file into your
extension.

This warning notwithstanding, options to SWIG can be currently passed like
this:

setup(...,
 ext_modules=[Extension('_foo', ['foo.i'],
 swig_opts=['-modern', '-I../include'])],
 py_modules=['foo'],
)

Or on the commandline like this:

> python setup.py build_ext --swig-opts="-modern -I../include"

On some platforms, you can include non-source files that are processed by the
compiler and included in your extension. Currently, this just means Windows
message text (.mc) files and resource definition (.rc) files for
Visual C++. These will be compiled to binary resource (.res) files and
linked into the executable.

2.3.3. Preprocessor options

Three optional arguments to Extension will help if you need to specify
include directories to search or preprocessor macros to define/undefine:
include_dirs, define_macros, and undef_macros.

For example, if your extension requires header files in the include
directory under your distribution root, use the include_dirs option:

Extension('foo', ['foo.c'], include_dirs=['include'])

You can specify absolute directories there; if you know that your extension will
only be built on Unix systems with X11R6 installed to /usr, you can get
away with

Extension('foo', ['foo.c'], include_dirs=['/usr/include/X11'])

You should avoid this sort of non-portable usage if you plan to distribute your
code: it’s probably better to write C code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can
take advantage of the fact that header files are installed in a consistent way
by the Distutils install_header command. For example, the Numerical
Python header files are installed (on a standard Unix installation) to
/usr/local/include/python1.5/Numerical. (The exact location will differ
according to your platform and Python installation.) Since the Python include
directory—/usr/local/include/python1.5 in this case—is always
included in the search path when building Python extensions, the best approach
is to write C code like

#include <Numerical/arrayobject.h>

If you must put the Numerical include directory right into your header
search path, though, you can find that directory using the Distutils
distutils.sysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), 'Numerical')
setup(...,
 Extension(..., include_dirs=[incdir]),
)

Even though this is quite portable—it will work on any Python installation,
regardless of platform—it’s probably easier to just write your C code in the
sensible way.

You can define and undefine pre-processor macros with the define_macros and
undef_macros options. define_macros takes a list of (name, value)
tuples, where name is the name of the macro to define (a string) and
value is its value: either a string or None. (Defining a macro FOO
to None is the equivalent of a bare #define FOO in your C source: with
most compilers, this sets FOO to the string 1.) undef_macros is
just a list of macros to undefine.

For example:

Extension(...,
 define_macros=[('NDEBUG', '1'),
 ('HAVE_STRFTIME', None)],
 undef_macros=['HAVE_FOO', 'HAVE_BAR'])

is the equivalent of having this at the top of every C source file:

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

2.3.4. Library options

You can also specify the libraries to link against when building your extension,
and the directories to search for those libraries. The libraries option is
a list of libraries to link against, library_dirs is a list of directories
to search for libraries at link-time, and runtime_library_dirs is a list of
directories to search for shared (dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard
library search path on target systems

Extension(...,
 libraries=['gdbm', 'readline'])

If you need to link with libraries in a non-standard location, you’ll have to
include the location in library_dirs:

Extension(...,
 library_dirs=['/usr/X11R6/lib'],
 libraries=['X11', 'Xt'])

(Again, this sort of non-portable construct should be avoided if you intend to
distribute your code.)

2.3.5. Other options

There are still some other options which can be used to handle special cases.

The optional option is a boolean; if it is true,
a build failure in the extension will not abort the build process, but
instead simply not install the failing extension.

The extra_objects option is a list of object files to be passed to the
linker. These files must not have extensions, as the default extension for the
compiler is used.

extra_compile_args and extra_link_args can be used to
specify additional command line options for the respective compiler and linker
command lines.

export_symbols is only useful on Windows. It can contain a list of
symbols (functions or variables) to be exported. This option is not needed when
building compiled extensions: Distutils will automatically add initmodule
to the list of exported symbols.

The depends option is a list of files that the extension depends on
(for example header files). The build command will call the compiler on the
sources to rebuild extension if any on this files has been modified since the
previous build.

2.4. Relationships between Distributions and Packages

A distribution may relate to packages in three specific ways:

	It can require packages or modules.

	It can provide packages or modules.

	It can obsolete packages or modules.

These relationships can be specified using keyword arguments to the
distutils.core.setup() function.

Dependencies on other Python modules and packages can be specified by supplying
the requires keyword argument to setup(). The value must be a list of
strings. Each string specifies a package that is required, and optionally what
versions are sufficient.

To specify that any version of a module or package is required, the string
should consist entirely of the module or package name. Examples include
'mymodule' and 'xml.parsers.expat'.

If specific versions are required, a sequence of qualifiers can be supplied in
parentheses. Each qualifier may consist of a comparison operator and a version
number. The accepted comparison operators are:

< > ==
<= >= !=

These can be combined by using multiple qualifiers separated by commas (and
optional whitespace). In this case, all of the qualifiers must be matched; a
logical AND is used to combine the evaluations.

Let’s look at a bunch of examples:

	Requires Expression
	Explanation

	==1.0
	Only version 1.0 is compatible

	>1.0, !=1.5.1, <2.0
	Any version after 1.0 and before 2.0
is compatible, except 1.5.1

Now that we can specify dependencies, we also need to be able to specify what we
provide that other distributions can require. This is done using the provides
keyword argument to setup(). The value for this keyword is a list of
strings, each of which names a Python module or package, and optionally
identifies the version. If the version is not specified, it is assumed to match
that of the distribution.

Some examples:

	Provides Expression
	Explanation

	mypkg
	Provide mypkg, using the distribution
version

	mypkg (1.1)
	Provide mypkg version 1.1, regardless of
the distribution version

A package can declare that it obsoletes other packages using the obsoletes
keyword argument. The value for this is similar to that of the requires
keyword: a list of strings giving module or package specifiers. Each specifier
consists of a module or package name optionally followed by one or more version
qualifiers. Version qualifiers are given in parentheses after the module or
package name.

The versions identified by the qualifiers are those that are obsoleted by the
distribution being described. If no qualifiers are given, all versions of the
named module or package are understood to be obsoleted.

2.5. Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are
usually not run by themselves but imported by scripts.

Scripts are files containing Python source code, intended to be started from the
command line. Scripts don’t require Distutils to do anything very complicated.
The only clever feature is that if the first line of the script starts with
#! and contains the word “python”, the Distutils will adjust the first line
to refer to the current interpreter location. By default, it is replaced with
the current interpreter location. The --executable (or -e)
option will allow the interpreter path to be explicitly overridden.

The scripts option simply is a list of files to be handled in this
way. From the PyXML setup script:

setup(...,
 scripts=['scripts/xmlproc_parse', 'scripts/xmlproc_val']
)

Changed in version 2.7: All the scripts will also be added to the MANIFEST
file if no template is provided. See Specifying the files to distribute.

2.6. Installing Package Data

Often, additional files need to be installed into a package. These files are
often data that’s closely related to the package’s implementation, or text files
containing documentation that might be of interest to programmers using the
package. These files are called package data.

Package data can be added to packages using the package_data keyword
argument to the setup() function. The value must be a mapping from
package name to a list of relative path names that should be copied into the
package. The paths are interpreted as relative to the directory containing the
package (information from the package_dir mapping is used if appropriate);
that is, the files are expected to be part of the package in the source
directories. They may contain glob patterns as well.

The path names may contain directory portions; any necessary directories will be
created in the installation.

For example, if a package should contain a subdirectory with several data files,
the files can be arranged like this in the source tree:

setup.py
src/
 mypkg/
 __init__.py
 module.py
 data/
 tables.dat
 spoons.dat
 forks.dat

The corresponding call to setup() might be:

setup(...,
 packages=['mypkg'],
 package_dir={'mypkg': 'src/mypkg'},
 package_data={'mypkg': ['data/*.dat']},
)

New in version 2.4.

Changed in version 2.7: All the files that match package_data will be added to the MANIFEST
file if no template is provided. See Specifying the files to distribute.

2.7. Installing Additional Files

The data_files option can be used to specify additional files needed
by the module distribution: configuration files, message catalogs, data files,
anything which doesn’t fit in the previous categories.

data_files specifies a sequence of (directory, files) pairs in the
following way:

setup(...,
 data_files=[('bitmaps', ['bm/b1.gif', 'bm/b2.gif']),
 ('config', ['cfg/data.cfg']),
 ('/etc/init.d', ['init-script'])]
)

Note that you can specify the directory names where the data files will be
installed, but you cannot rename the data files themselves.

Each (directory, files) pair in the sequence specifies the installation
directory and the files to install there. If directory is a relative path, it
is interpreted relative to the installation prefix (Python’s sys.prefix for
pure-Python packages, sys.exec_prefix for packages that contain extension
modules). Each file name in files is interpreted relative to the
setup.py script at the top of the package source distribution. No
directory information from files is used to determine the final location of
the installed file; only the name of the file is used.

You can specify the data_files options as a simple sequence of files
without specifying a target directory, but this is not recommended, and the
install command will print a warning in this case. To install data
files directly in the target directory, an empty string should be given as the
directory.

Changed in version 2.7: All the files that match data_files will be added to the MANIFEST
file if no template is provided. See Specifying the files to distribute.

2.8. Additional meta-data

The setup script may include additional meta-data beyond the name and version.
This information includes:

	Meta-Data
	Description
	Value
	Notes

	name
	name of the package
	short string
	(1)

	version
	version of this release
	short string
	(1)(2)

	author
	package author’s name
	short string
	(3)

	author_email
	email address of the
package author
	email address
	(3)

	maintainer
	package maintainer’s name
	short string
	(3)

	maintainer_email
	email address of the
package maintainer
	email address
	(3)

	url
	home page for the package
	URL
	(1)

	description
	short, summary
description of the
package
	short string
	

	long_description
	longer description of the
package
	long string
	(5)

	download_url
	location where the
package may be downloaded
	URL
	(4)

	classifiers
	a list of classifiers
	list of strings
	(4)

	platforms
	a list of platforms
	list of strings
	

	license
	license for the package
	short string
	(6)

Notes:

	These fields are required.

	It is recommended that versions take the form major.minor[.patch[.sub]].

	Either the author or the maintainer must be identified.

	These fields should not be used if your package is to be compatible with Python
versions prior to 2.2.3 or 2.3. The list is available from the PyPI website [http://pypi.python.org/pypi].

	The long_description field is used by PyPI when you are registering a
package, to build its home page.

	The license field is a text indicating the license covering the
package where the license is not a selection from the “License” Trove
classifiers. See the Classifier field. Notice that
there’s a licence distribution option which is deprecated but still
acts as an alias for license.

	‘short string’

	A single line of text, not more than 200 characters.

	‘long string’

	Multiple lines of plain text in reStructuredText format (see
http://docutils.sf.net/).

	‘list of strings’

	See below.

None of the string values may be Unicode.

Encoding the version information is an art in itself. Python packages generally
adhere to the version format major.minor[.patch][sub]. The major number is 0
for initial, experimental releases of software. It is incremented for releases
that represent major milestones in a package. The minor number is incremented
when important new features are added to the package. The patch number
increments when bug-fix releases are made. Additional trailing version
information is sometimes used to indicate sub-releases. These are
“a1,a2,...,aN” (for alpha releases, where functionality and API may change),
“b1,b2,...,bN” (for beta releases, which only fix bugs) and “pr1,pr2,...,prN”
(for final pre-release release testing). Some examples:

	0.1.0

	the first, experimental release of a package

	1.0.1a2

	the second alpha release of the first patch version of 1.0

classifiers are specified in a Python list:

setup(...,
 classifiers=[
 'Development Status :: 4 - Beta',
 'Environment :: Console',
 'Environment :: Web Environment',
 'Intended Audience :: End Users/Desktop',
 'Intended Audience :: Developers',
 'Intended Audience :: System Administrators',
 'License :: OSI Approved :: Python Software Foundation License',
 'Operating System :: MacOS :: MacOS X',
 'Operating System :: Microsoft :: Windows',
 'Operating System :: POSIX',
 'Programming Language :: Python',
 'Topic :: Communications :: Email',
 'Topic :: Office/Business',
 'Topic :: Software Development :: Bug Tracking',
],
)

If you wish to include classifiers in your setup.py file and also wish
to remain backwards-compatible with Python releases prior to 2.2.3, then you can
include the following code fragment in your setup.py before the
setup() call.

patch distutils if it can't cope with the "classifiers" or
"download_url" keywords
from sys import version
if version < '2.2.3':
 from distutils.dist import DistributionMetadata
 DistributionMetadata.classifiers = None
 DistributionMetadata.download_url = None

2.9. Debugging the setup script

Sometimes things go wrong, and the setup script doesn’t do what the developer
wants.

Distutils catches any exceptions when running the setup script, and print a
simple error message before the script is terminated. The motivation for this
behaviour is to not confuse administrators who don’t know much about Python and
are trying to install a package. If they get a big long traceback from deep
inside the guts of Distutils, they may think the package or the Python
installation is broken because they don’t read all the way down to the bottom
and see that it’s a permission problem.

On the other hand, this doesn’t help the developer to find the cause of the
failure. For this purpose, the DISTUTILS_DEBUG environment variable can be set
to anything except an empty string, and distutils will now print detailed
information what it is doing, and prints the full traceback in case an exception
occurs.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

3. Writing the Setup Configuration File

Often, it’s not possible to write down everything needed to build a distribution
a priori: you may need to get some information from the user, or from the
user’s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for
example—then providing a configuration file, setup.cfg, for users to
edit is a cheap and easy way to solicit it. Configuration files also let you
provide default values for any command option, which the installer can then
override either on the command-line or by editing the config file.

The setup configuration file is a useful middle-ground between the setup script
—which, ideally, would be opaque to installers [1]—and the command-line to
the setup script, which is outside of your control and entirely up to the
installer. In fact, setup.cfg (and any other Distutils configuration
files present on the target system) are processed after the contents of the
setup script, but before the command-line. This has several useful
consequences:

	installers can override some of what you put in setup.py by editing
setup.cfg

	you can provide non-standard defaults for options that are not easily set in
setup.py

	installers can override anything in setup.cfg using the command-line
options to setup.py

The basic syntax of the configuration file is simple:

[command]
option=value
...

where command is one of the Distutils commands (e.g. build_py,
install), and option is one of the options that command supports.
Any number of options can be supplied for each command, and any number of
command sections can be included in the file. Blank lines are ignored, as are
comments, which run from a '#' character until the end of the line. Long
option values can be split across multiple lines simply by indenting the
continuation lines.

You can find out the list of options supported by a particular command with the
universal --help option, e.g.

> python setup.py --help build_ext
[...]
Options for 'build_ext' command:
 --build-lib (-b) directory for compiled extension modules
 --build-temp (-t) directory for temporary files (build by-products)
 --inplace (-i) ignore build-lib and put compiled extensions into the
 source directory alongside your pure Python modules
 --include-dirs (-I) list of directories to search for header files
 --define (-D) C preprocessor macros to define
 --undef (-U) C preprocessor macros to undefine
 --swig-opts list of SWIG command line options
[...]

Note that an option spelled --foo-bar on the command-line is spelled
foo_bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you
have an extension pkg.ext, and you want the compiled extension file
(ext.so on Unix, say) to be put in the same source directory as your
pure Python modules pkg.mod1 and pkg.mod2. You can always use the
--inplace option on the command-line to ensure this:

python setup.py build_ext --inplace

But this requires that you always specify the build_ext command
explicitly, and remember to provide --inplace. An easier way is to
“set and forget” this option, by encoding it in setup.cfg, the
configuration file for this distribution:

[build_ext]
inplace=1

This will affect all builds of this module distribution, whether or not you
explicitly specify build_ext. If you include setup.cfg in
your source distribution, it will also affect end-user builds—which is
probably a bad idea for this option, since always building extensions in-place
would break installation of the module distribution. In certain peculiar cases,
though, modules are built right in their installation directory, so this is
conceivably a useful ability. (Distributing extensions that expect to be built
in their installation directory is almost always a bad idea, though.)

Another example: certain commands take a lot of options that don’t change from
run to run; for example, bdist_rpm needs to know everything required
to generate a “spec” file for creating an RPM distribution. Some of this
information comes from the setup script, and some is automatically generated by
the Distutils (such as the list of files installed). But some of it has to be
supplied as options to bdist_rpm, which would be very tedious to do
on the command-line for every run. Hence, here is a snippet from the Distutils’
own setup.cfg:

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt
 README.txt
 USAGE.txt
 doc/
 examples/

Note that the doc_files option is simply a whitespace-separated string
split across multiple lines for readability.

See also

	Syntax of config files in “Installing Python Modules”

	More information on the configuration files is available in the manual for
system administrators.

Footnotes

	[1]	This ideal probably won’t be achieved until auto-configuration is fully
supported by the Distutils.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

4. Creating a Source Distribution

As shown in section A Simple Example, you use the sdist command
to create a source distribution. In the simplest case,

python setup.py sdist

(assuming you haven’t specified any sdist options in the setup script
or config file), sdist creates the archive of the default format for
the current platform. The default format is a gzip’ed tar file
(.tar.gz) on Unix, and ZIP file on Windows.

You can specify as many formats as you like using the --formats
option, for example:

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

	Format
	Description
	Notes

	zip
	zip file (.zip)
	(1),(3)

	gztar
	gzip’ed tar file
(.tar.gz)
	(2)

	bztar
	bzip2’ed tar file
(.tar.bz2)
	

	ztar
	compressed tar file
(.tar.Z)
	(4)

	tar
	tar file (.tar)
	

Notes:

	default on Windows

	default on Unix

	requires either external zip utility or zipfile module (part
of the standard Python library since Python 1.6)

	requires the compress program. Notice that this format is now
pending for deprecation and will be removed in the future versions of Python.

When using any tar format (gztar, bztar, ztar or
tar) under Unix, you can specify the owner and group names
that will be set for each member of the archive.

For example, if you want all files of the archive to be owned by root:

python setup.py sdist --owner=root --group=root

4.1. Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to
generate one), the sdist command puts a minimal default set into the
source distribution:

	all Python source files implied by the py_modules and
packages options

	all C source files mentioned in the ext_modules or
libraries options

	scripts identified by the scripts option
See Installing Scripts.

	anything that looks like a test script: test/test*.py (currently, the
Distutils don’t do anything with test scripts except include them in source
distributions, but in the future there will be a standard for testing Python
module distributions)

	README.txt (or README), setup.py (or whatever you
called your setup script), and setup.cfg

	all files that matches the package_data metadata.
See Installing Package Data.

	all files that matches the data_files metadata.
See Installing Additional Files.

Sometimes this is enough, but usually you will want to specify additional files
to distribute. The typical way to do this is to write a manifest template,
called MANIFEST.in by default. The manifest template is just a list of
instructions for how to generate your manifest file, MANIFEST, which is
the exact list of files to include in your source distribution. The
sdist command processes this template and generates a manifest based
on its instructions and what it finds in the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename
per line, regular files (or symlinks to them) only. If you do supply your own
MANIFEST, you must specify everything: the default set of files
described above does not apply in this case.

New in version 2.7: MANIFEST files start with a comment indicating they are generated.
Files without this comment are not overwritten or removed.

See The MANIFEST.in template section for a syntax reference.

4.2. Manifest-related options

The normal course of operations for the sdist command is as follows:

	if the manifest file, MANIFEST doesn’t exist, read MANIFEST.in
and create the manifest

	if neither MANIFEST nor MANIFEST.in exist, create a manifest
with just the default file set

	if either MANIFEST.in or the setup script (setup.py) are more
recent than MANIFEST, recreate MANIFEST by reading
MANIFEST.in

	use the list of files now in MANIFEST (either just generated or read
in) to create the source distribution archive(s)

There are a couple of options that modify this behaviour. First, use the
--no-defaults and --no-prune to disable the standard
“include” and “exclude” sets.

Second, you might just want to (re)generate the manifest, but not create a
source distribution:

python setup.py sdist --manifest-only

-o is a shortcut for --manifest-only.

4.3. The MANIFEST.in template

A MANIFEST.in file can be added in a project to define the list of
files to include in the distribution built by the sdist command.

When sdist is run, it will look for the MANIFEST.in file
and interpret it to generate the MANIFEST file that contains the
list of files that will be included in the package.

This mechanism can be used when the default list of files is not enough.
(See Specifying the files to distribute).

4.3.1. Principle

The manifest template has one command per line, where each command specifies a
set of files to include or exclude from the source distribution. For an
example, let’s look at the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root
matching *.txt, all files anywhere under the examples directory
matching *.txt or *.py, and exclude all directories matching
examples/sample?/build. All of this is done after the standard
include set, so you can exclude files from the standard set with explicit
instructions in the manifest template. (Or, you can use the
--no-defaults option to disable the standard set entirely.)

The order of commands in the manifest template matters: initially, we have the
list of default files as described above, and each command in the template adds
to or removes from that list of files. Once we have fully processed the
manifest template, we remove files that should not be included in the source
distribution:

	all files in the Distutils “build” tree (default build/)

	all files in directories named RCS, CVS, .svn,
.hg, .git, .bzr or _darcs

Now we have our complete list of files, which is written to the manifest for
future reference, and then used to build the source distribution archive(s).

You can disable the default set of included files with the
--no-defaults option, and you can disable the standard exclude set
with --no-prune.

Following the Distutils’ own manifest template, let’s trace how the
sdist command builds the list of files to include in the Distutils
source distribution:

	include all Python source files in the distutils and
distutils/command subdirectories (because packages corresponding to
those two directories were mentioned in the packages option in the
setup script—see section Writing the Setup Script)

	include README.txt, setup.py, and setup.cfg (standard
files)

	include test/test*.py (standard files)

	include *.txt in the distribution root (this will find
README.txt a second time, but such redundancies are weeded out later)

	include anything matching *.txt or *.py in the sub-tree
under examples,

	exclude all files in the sub-trees starting at directories matching
examples/sample?/build—this may exclude files included by the
previous two steps, so it’s important that the prune command in the manifest
template comes after the recursive-include command

	exclude the entire build tree, and any RCS, CVS,
.svn, .hg, .git, .bzr and _darcs
directories

Just like in the setup script, file and directory names in the manifest template
should always be slash-separated; the Distutils will take care of converting
them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

4.3.2. Commands

The manifest template commands are:

	Command
	Description

	include pat1 pat2 ...
	include all files matching any of the listed
patterns

	exclude pat1 pat2 ...
	exclude all files matching any of the listed
patterns

	recursive-include dir pat1 pat2
...
	include all files under dir matching any of
the listed patterns

	recursive-exclude dir pat1 pat2
...
	exclude all files under dir matching any of
the listed patterns

	global-include pat1 pat2 ...
	include all files anywhere in the source tree
matching — & any of the listed patterns

	global-exclude pat1 pat2 ...
	exclude all files anywhere in the source tree
matching — & any of the listed patterns

	prune dir
	exclude all files under dir

	graft dir
	include all files under dir

The patterns here are Unix-style “glob” patterns: * matches any sequence of
regular filename characters, ? matches any single regular filename
character, and [range] matches any of the characters in range (e.g.,
a-z, a-zA-Z, a-f0-9_.). The definition of “regular filename
character” is platform-specific: on Unix it is anything except slash; on Windows
anything except backslash or colon.

Changed in version 2.7: An existing generated MANIFEST will be regenerated without
sdist comparing its modification time to the one of
MANIFEST.in or setup.py.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

5. Creating Built Distributions

A “built distribution” is what you’re probably used to thinking of either as a
“binary package” or an “installer” (depending on your background). It’s not
necessarily binary, though, because it might contain only Python source code
and/or byte-code; and we don’t call it a package, because that word is already
spoken for in Python. (And “installer” is a term specific to the world of
mainstream desktop systems.)

A built distribution is how you make life as easy as possible for installers of
your module distribution: for users of RPM-based Linux systems, it’s a binary
RPM; for Windows users, it’s an executable installer; for Debian-based Linux
users, it’s a Debian package; and so forth. Obviously, no one person will be
able to create built distributions for every platform under the sun, so the
Distutils are designed to enable module developers to concentrate on their
specialty—writing code and creating source distributions—while an
intermediary species called packagers springs up to turn source distributions
into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could
be a volunteer “out there” somewhere who has access to a platform which the
original developer does not; or it could be software periodically grabbing new
source distributions and turning them into built distributions for as many
platforms as the software has access to. Regardless of who they are, a packager
uses the setup script and the bdist command family to generate built
distributions.

As a simple example, if I run the following command in the Distutils source
tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this
case), does a “fake” installation (also in the build directory), and
creates the default type of built distribution for my platform. The default
format for built distributions is a “dumb” tar file on Unix, and a simple
executable installer on Windows. (That tar file is considered “dumb” because it
has to be unpacked in a specific location to work.)

Thus, the above command on a Unix system creates
Distutils-1.0.plat.tar.gz; unpacking this tarball from the right place
installs the Distutils just as though you had downloaded the source distribution
and run python setup.py install. (The “right place” is either the root of
the filesystem or Python’s prefix directory, depending on the options
given to the bdist_dumb command; the default is to make dumb
distributions relative to prefix.)

Obviously, for pure Python distributions, this isn’t any simpler than just
running python setup.py install—but for non-pure distributions, which
include extensions that would need to be compiled, it can mean the difference
between someone being able to use your extensions or not. And creating “smart”
built distributions, such as an RPM package or an executable installer for
Windows, is far more convenient for users even if your distribution doesn’t
include any extensions.

The bdist command has a --formats option, similar to the
sdist command, which you can use to select the types of built
distribution to generate: for example,

python setup.py bdist --format=zip

would, when run on a Unix system, create Distutils-1.0.plat.zip—again, this archive would be unpacked from the root directory to install the
Distutils.

The available formats for built distributions are:

	Format
	Description
	Notes

	gztar
	gzipped tar file
(.tar.gz)
	(1),(3)

	ztar
	compressed tar file
(.tar.Z)
	(3)

	tar
	tar file (.tar)
	(3)

	zip
	zip file (.zip)
	(2),(4)

	rpm
	RPM
	(5)

	pkgtool
	Solaris pkgtool
	

	sdux
	HP-UX swinstall
	

	wininst
	self-extracting ZIP file for
Windows
	(4)

	msi
	Microsoft Installer.
	

Notes:

	default on Unix

	default on Windows

	requires external utilities: tar and possibly one of gzip,
bzip2, or compress

	requires either external zip utility or zipfile module (part
of the standard Python library since Python 1.6)

	requires external rpm utility, version 3.0.4 or better (use rpm
--version to find out which version you have)

You don’t have to use the bdist command with the --formats
option; you can also use the command that directly implements the format you’re
interested in. Some of these bdist “sub-commands” actually generate
several similar formats; for instance, the bdist_dumb command
generates all the “dumb” archive formats (tar, ztar, gztar, and
zip), and bdist_rpm generates both binary and source RPMs. The
bdist sub-commands, and the formats generated by each, are:

	Command
	Formats

	bdist_dumb
	tar, ztar, gztar, zip

	bdist_rpm
	rpm, srpm

	bdist_wininst
	wininst

	bdist_msi
	msi

The following sections give details on the individual bdist_*
commands.

5.1. Creating dumb built distributions

5.2. Creating RPM packages

The RPM format is used by many popular Linux distributions, including Red Hat,
SuSE, and Mandrake. If one of these (or any of the other RPM-based Linux
distributions) is your usual environment, creating RPM packages for other users
of that same distribution is trivial. Depending on the complexity of your module
distribution and differences between Linux distributions, you may also be able
to create RPMs that work on different RPM-based distributions.

The usual way to create an RPM of your module distribution is to run the
bdist_rpm command:

python setup.py bdist_rpm

or the bdist command with the --format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to
easily specify multiple formats in one run. If you need to do both, you can
explicitly specify multiple bdist_* commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@example.org>" \
 bdist_wininst --target-version="2.0"

Creating RPM packages is driven by a .spec file, much as using the
Distutils is driven by the setup script. To make your life easier, the
bdist_rpm command normally creates a .spec file based on the
information you supply in the setup script, on the command line, and in any
Distutils configuration files. Various options and sections in the
.spec file are derived from options in the setup script as follows:

	RPM .spec file option or section
	Distutils setup script option

	Name
	name

	Summary (in preamble)
	description

	Version
	version

	Vendor
	author and author_email,
or — & maintainer and
maintainer_email

	Copyright
	license

	Url
	url

	%description (section)
	long_description

Additionally, there are many options in .spec files that don’t have
corresponding options in the setup script. Most of these are handled through
options to the bdist_rpm command as follows:

	RPM .spec file option
or section
	bdist_rpm option
	default value

	Release
	release
	“1”

	Group
	group
	“Development/Libraries”

	Vendor
	vendor
	(see above)

	Packager
	packager
	(none)

	Provides
	provides
	(none)

	Requires
	requires
	(none)

	Conflicts
	conflicts
	(none)

	Obsoletes
	obsoletes
	(none)

	Distribution
	distribution_name
	(none)

	BuildRequires
	build_requires
	(none)

	Icon
	icon
	(none)

Obviously, supplying even a few of these options on the command-line would be
tedious and error-prone, so it’s usually best to put them in the setup
configuration file, setup.cfg—see section Writing the Setup Configuration File. If
you distribute or package many Python module distributions, you might want to
put options that apply to all of them in your personal Distutils configuration
file (~/.pydistutils.cfg). If you want to temporarily disable
this file, you can pass the –no-user-cfg option to setup.py.

There are three steps to building a binary RPM package, all of which are
handled automatically by the Distutils:

	create a .spec file, which describes the package (analogous to the
Distutils setup script; in fact, much of the information in the setup script
winds up in the .spec file)

	create the source RPM

	create the “binary” RPM (which may or may not contain binary code, depending
on whether your module distribution contains Python extensions)

Normally, RPM bundles the last two steps together; when you use the Distutils,
all three steps are typically bundled together.

If you wish, you can separate these three steps. You can use the
--spec-only option to make bdist_rpm just create the
.spec file and exit; in this case, the .spec file will be
written to the “distribution directory”—normally dist/, but
customizable with the --dist-dir option. (Normally, the .spec
file winds up deep in the “build tree,” in a temporary directory created by
bdist_rpm.)

5.3. Creating Windows Installers

Executable installers are the natural format for binary distributions on
Windows. They display a nice graphical user interface, display some information
about the module distribution to be installed taken from the metadata in the
setup script, let the user select a few options, and start or cancel the
installation.

Since the metadata is taken from the setup script, creating Windows installers
is usually as easy as running:

python setup.py bdist_wininst

or the bdist command with the --formats option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and
packages), the resulting installer will be version independent and have a name
like foo-1.0.win32.exe. These installers can even be created on Unix
platforms or Mac OS X.

If you have a non-pure distribution, the extensions can only be created on a
Windows platform, and will be Python version dependent. The installer filename
will reflect this and now has the form foo-1.0.win32-py2.0.exe. You
have to create a separate installer for every Python version you want to
support.

The installer will try to compile pure modules into bytecode after installation
on the target system in normal and optimizing mode. If you don’t want this to
happen for some reason, you can run the bdist_wininst command with
the --no-target-compile and/or the --no-target-optimize
option.

By default the installer will display the cool “Python Powered” logo when it is
run, but you can also supply your own 152x261 bitmap which must be a Windows
.bmp file with the --bitmap option.

The installer will also display a large title on the desktop background window
when it is run, which is constructed from the name of your distribution and the
version number. This can be changed to another text by using the
--title option.

The installer file will be written to the “distribution directory” — normally
dist/, but customizable with the --dist-dir option.

5.4. Cross-compiling on Windows

Starting with Python 2.6, distutils is capable of cross-compiling between
Windows platforms. In practice, this means that with the correct tools
installed, you can use a 32bit version of Windows to create 64bit extensions
and vice-versa.

To build for an alternate platform, specify the --plat-name option
to the build command. Valid values are currently ‘win32’, ‘win-amd64’ and
‘win-ia64’. For example, on a 32bit version of Windows, you could execute:

python setup.py build --plat-name=win-amd64

to build a 64bit version of your extension. The Windows Installers also
support this option, so the command:

python setup.py build --plat-name=win-amd64 bdist_wininst

would create a 64bit installation executable on your 32bit version of Windows.

To cross-compile, you must download the Python source code and cross-compile
Python itself for the platform you are targetting - it is not possible from a
binary installation of Python (as the .lib etc file for other platforms are
not included.) In practice, this means the user of a 32 bit operating
system will need to use Visual Studio 2008 to open the
PCBuild/PCbuild.sln solution in the Python source tree and build the
“x64” configuration of the ‘pythoncore’ project before cross-compiling
extensions is possible.

Note that by default, Visual Studio 2008 does not install 64bit compilers or
tools. You may need to reexecute the Visual Studio setup process and select
these tools (using Control Panel->[Add/Remove] Programs is a convenient way to
check or modify your existing install.)

5.4.1. The Postinstallation script

Starting with Python 2.3, a postinstallation script can be specified with the
--install-script option. The basename of the script must be
specified, and the script filename must also be listed in the scripts argument
to the setup function.

This script will be run at installation time on the target system after all the
files have been copied, with argv[1] set to -install, and again at
uninstallation time before the files are removed with argv[1] set to
-remove.

The installation script runs embedded in the windows installer, every output
(sys.stdout, sys.stderr) is redirected into a buffer and will be
displayed in the GUI after the script has finished.

Some functions especially useful in this context are available as additional
built-in functions in the installation script.

	
directory_created(path)

	
file_created(path)

	These functions should be called when a directory or file is created by the
postinstall script at installation time. It will register path with the
uninstaller, so that it will be removed when the distribution is uninstalled.
To be safe, directories are only removed if they are empty.

	
get_special_folder_path(csidl_string)

	This function can be used to retrieve special folder locations on Windows like
the Start Menu or the Desktop. It returns the full path to the folder.
csidl_string must be one of the following strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If the folder cannot be retrieved, OSError is raised.

Which folders are available depends on the exact Windows version, and probably
also the configuration. For details refer to Microsoft’s documentation of the
SHGetSpecialFolderPath() function.

	
create_shortcut(target, description, filename[, arguments[, workdir[, iconpath[, iconindex]]]])

	This function creates a shortcut. target is the path to the program to be
started by the shortcut. description is the description of the shortcut.
filename is the title of the shortcut that the user will see. arguments
specifies the command line arguments, if any. workdir is the working directory
for the program. iconpath is the file containing the icon for the shortcut,
and iconindex is the index of the icon in the file iconpath. Again, for
details consult the Microsoft documentation for the IShellLink
interface.

5.5. Vista User Access Control (UAC)

Starting with Python 2.6, bdist_wininst supports a --user-access-control
option. The default is ‘none’ (meaning no UAC handling is done), and other
valid values are ‘auto’ (meaning prompt for UAC elevation if Python was
installed for all users) and ‘force’ (meaning always prompt for elevation).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

6. Registering with the Package Index

The Python Package Index (PyPI) holds meta-data describing distributions
packaged with distutils. The distutils command register is used to
submit your distribution’s meta-data to the index. It is invoked as follows:

python setup.py register

Distutils will respond with the following prompt:

running register
We need to know who you are, so please choose either:
 1. use your existing login,
 2. register as a new user,
 3. have the server generate a new password for you (and email it to you), or
 4. quit
Your selection [default 1]:

Note: if your username and password are saved locally, you will not see this
menu.

If you have not registered with PyPI, then you will need to do so now. You
should choose option 2, and enter your details as required. Soon after
submitting your details, you will receive an email which will be used to confirm
your registration.

Once you are registered, you may choose option 1 from the menu. You will be
prompted for your PyPI username and password, and register will then
submit your meta-data to the index.

You may submit any number of versions of your distribution to the index. If you
alter the meta-data for a particular version, you may submit it again and the
index will be updated.

PyPI holds a record for each (name, version) combination submitted. The first
user to submit information for a given name is designated the Owner of that
name. They may submit changes through the register command or through
the web interface. They may also designate other users as Owners or Maintainers.
Maintainers may edit the package information, but not designate other Owners or
Maintainers.

By default PyPI will list all versions of a given package. To hide certain
versions, the Hidden property should be set to yes. This must be edited through
the web interface.

6.1. The .pypirc file

The format of the .pypirc file is as follows:

[distutils]
index-servers =
 pypi

[pypi]
repository: <repository-url>
username: <username>
password: <password>

The distutils section defines a index-servers variable that lists the
name of all sections describing a repository.

Each section describing a repository defines three variables:

	
	repository, that defines the url of the PyPI server. Defaults to

	http://www.python.org/pypi.

	username, which is the registered username on the PyPI server.

	
	password, that will be used to authenticate. If omitted the user

	will be prompt to type it when needed.

If you want to define another server a new section can be created and
listed in the index-servers variable:

[distutils]
index-servers =
 pypi
 other

[pypi]
repository: <repository-url>
username: <username>
password: <password>

[other]
repository: http://example.com/pypi
username: <username>
password: <password>

register can then be called with the -r option to point the
repository to work with:

python setup.py register -r http://example.com/pypi

For convenience, the name of the section that describes the repository
may also be used:

python setup.py register -r other

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

7. Uploading Packages to the Package Index

New in version 2.5.

The Python Package Index (PyPI) not only stores the package info, but also the
package data if the author of the package wishes to. The distutils command
upload pushes the distribution files to PyPI.

The command is invoked immediately after building one or more distribution
files. For example, the command

python setup.py sdist bdist_wininst upload

will cause the source distribution and the Windows installer to be uploaded to
PyPI. Note that these will be uploaded even if they are built using an earlier
invocation of setup.py, but that only distributions named on the command
line for the invocation including the upload command are uploaded.

The upload command uses the username, password, and repository URL
from the $HOME/.pypirc file (see section The .pypirc file for more on this
file). If a register command was previously called in the same command,
and if the password was entered in the prompt, upload will reuse the
entered password. This is useful if you do not want to store a clear text
password in the $HOME/.pypirc file.

You can specify another PyPI server with the --repository=*url* option:

python setup.py sdist bdist_wininst upload -r http://example.com/pypi

See section The .pypirc file for more on defining several servers.

You can use the --sign option to tell upload to sign each
uploaded file using GPG (GNU Privacy Guard). The gpg program must
be available for execution on the system PATH. You can also specify
which key to use for signing using the --identity=*name* option.

Other upload options include --repository= or
--repository= where url is the url of the server and
section the name of the section in $HOME/.pypirc, and
--show-response (which displays the full response text from the PyPI
server for help in debugging upload problems).

7.1. PyPI package display

The long_description field plays a special role at PyPI. It is used by
the server to display a home page for the registered package.

If you use the reStructuredText [http://docutils.sourceforge.net/rst.html]
syntax for this field, PyPI will parse it and display an HTML output for
the package home page.

The long_description field can be attached to a text file located
in the package:

from distutils.core import setup

with open('README.txt') as file:
 long_description = file.read()

setup(name='Distutils',
 long_description=long_description)

In that case, README.txt is a regular reStructuredText text file located
in the root of the package besides setup.py.

To prevent registering broken reStructuredText content, you can use the
rst2html program that is provided by the docutils package
and check the long_description from the command line:

$ python setup.py --long-description | rst2html.py > output.html

docutils will display a warning if there’s something wrong with your syntax.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

8. Examples

This chapter provides a number of basic examples to help get started with
distutils. Additional information about using distutils can be found in the
Distutils Cookbook.

See also

	Distutils Cookbook [http://wiki.python.org/moin/Distutils/Cookbook]

	Collection of recipes showing how to achieve more control over distutils.

8.1. Pure Python distribution (by module)

If you’re just distributing a couple of modules, especially if they don’t live
in a particular package, you can specify them individually using the
py_modules option in the setup script.

In the simplest case, you’ll have two files to worry about: a setup script and
the single module you’re distributing, foo.py in this example:

<root>/
 setup.py
 foo.py

(In all diagrams in this section, <root> will refer to the distribution root
directory.) A minimal setup script to describe this situation would be:

from distutils.core import setup
setup(name='foo',
 version='1.0',
 py_modules=['foo'],
)

Note that the name of the distribution is specified independently with the
name option, and there’s no rule that says it has to be the same as
the name of the sole module in the distribution (although that’s probably a good
convention to follow). However, the distribution name is used to generate
filenames, so you should stick to letters, digits, underscores, and hyphens.

Since py_modules is a list, you can of course specify multiple
modules, eg. if you’re distributing modules foo and bar, your
setup might look like this:

<root>/
 setup.py
 foo.py
 bar.py

and the setup script might be

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 py_modules=['foo', 'bar'],
)

You can put module source files into another directory, but if you have enough
modules to do that, it’s probably easier to specify modules by package rather
than listing them individually.

8.2. Pure Python distribution (by package)

If you have more than a couple of modules to distribute, especially if they are
in multiple packages, it’s probably easier to specify whole packages rather than
individual modules. This works even if your modules are not in a package; you
can just tell the Distutils to process modules from the root package, and that
works the same as any other package (except that you don’t have to have an
__init__.py file).

The setup script from the last example could also be written as

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 packages=[''],
)

(The empty string stands for the root package.)

If those two files are moved into a subdirectory, but remain in the root
package, e.g.:

<root>/
 setup.py
 src/ foo.py
 bar.py

then you would still specify the root package, but you have to tell the
Distutils where source files in the root package live:

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 package_dir={'': 'src'},
 packages=[''],
)

More typically, though, you will want to distribute multiple modules in the same
package (or in sub-packages). For example, if the foo and bar
modules belong in package foobar, one way to layout your source tree is

<root>/
 setup.py
 foobar/
 __init__.py
 foo.py
 bar.py

This is in fact the default layout expected by the Distutils, and the one that
requires the least work to describe in your setup script:

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 packages=['foobar'],
)

If you want to put modules in directories not named for their package, then you
need to use the package_dir option again. For example, if the
src directory holds modules in the foobar package:

<root>/
 setup.py
 src/
 __init__.py
 foo.py
 bar.py

an appropriate setup script would be

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 package_dir={'foobar': 'src'},
 packages=['foobar'],
)

Or, you might put modules from your main package right in the distribution
root:

<root>/
 setup.py
 __init__.py
 foo.py
 bar.py

in which case your setup script would be

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 package_dir={'foobar': ''},
 packages=['foobar'],
)

(The empty string also stands for the current directory.)

If you have sub-packages, they must be explicitly listed in packages,
but any entries in package_dir automatically extend to sub-packages.
(In other words, the Distutils does not scan your source tree, trying to
figure out which directories correspond to Python packages by looking for
__init__.py files.) Thus, if the default layout grows a sub-package:

<root>/
 setup.py
 foobar/
 __init__.py
 foo.py
 bar.py
 subfoo/
 __init__.py
 blah.py

then the corresponding setup script would be

from distutils.core import setup
setup(name='foobar',
 version='1.0',
 packages=['foobar', 'foobar.subfoo'],
)

(Again, the empty string in package_dir stands for the current
directory.)

8.3. Single extension module

Extension modules are specified using the ext_modules option.
package_dir has no effect on where extension source files are found;
it only affects the source for pure Python modules. The simplest case, a
single extension module in a single C source file, is:

<root>/
 setup.py
 foo.c

If the foo extension belongs in the root package, the setup script for
this could be

from distutils.core import setup
from distutils.extension import Extension
setup(name='foobar',
 version='1.0',
 ext_modules=[Extension('foo', ['foo.c'])],
)

If the extension actually belongs in a package, say foopkg, then

With exactly the same source tree layout, this extension can be put in the
foopkg package simply by changing the name of the extension:

from distutils.core import setup
from distutils.extension import Extension
setup(name='foobar',
 version='1.0',
 ext_modules=[Extension('foopkg.foo', ['foo.c'])],
)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

9. Extending Distutils

Distutils can be extended in various ways. Most extensions take the form of new
commands or replacements for existing commands. New commands may be written to
support new types of platform-specific packaging, for example, while
replacements for existing commands may be made to modify details of how the
command operates on a package.

Most extensions of the distutils are made within setup.py scripts that
want to modify existing commands; many simply add a few file extensions that
should be copied into packages in addition to .py files as a
convenience.

Most distutils command implementations are subclasses of the
distutils.cmd.Command class. New commands may directly inherit from
Command, while replacements often derive from Command
indirectly, directly subclassing the command they are replacing. Commands are
required to derive from Command.

9.1. Integrating new commands

There are different ways to integrate new command implementations into
distutils. The most difficult is to lobby for the inclusion of the new features
in distutils itself, and wait for (and require) a version of Python that
provides that support. This is really hard for many reasons.

The most common, and possibly the most reasonable for most needs, is to include
the new implementations with your setup.py script, and cause the
distutils.core.setup() function use them:

from distutils.command.build_py import build_py as _build_py
from distutils.core import setup

class build_py(_build_py):
 """Specialized Python source builder."""

 # implement whatever needs to be different...

setup(cmdclass={'build_py': build_py},
 ...)

This approach is most valuable if the new implementations must be used to use a
particular package, as everyone interested in the package will need to have the
new command implementation.

Beginning with Python 2.4, a third option is available, intended to allow new
commands to be added which can support existing setup.py scripts without
requiring modifications to the Python installation. This is expected to allow
third-party extensions to provide support for additional packaging systems, but
the commands can be used for anything distutils commands can be used for. A new
configuration option, command_packages (command-line option
--command-packages), can be used to specify additional packages to be
searched for modules implementing commands. Like all distutils options, this
can be specified on the command line or in a configuration file. This option
can only be set in the [global] section of a configuration file, or before
any commands on the command line. If set in a configuration file, it can be
overridden from the command line; setting it to an empty string on the command
line causes the default to be used. This should never be set in a configuration
file provided with a package.

This new option can be used to add any number of packages to the list of
packages searched for command implementations; multiple package names should be
separated by commas. When not specified, the search is only performed in the
distutils.command package. When setup.py is run with the option
--command-packages distcmds,buildcmds, however, the packages
distutils.command, distcmds, and buildcmds will be searched
in that order. New commands are expected to be implemented in modules of the
same name as the command by classes sharing the same name. Given the example
command line option above, the command bdist_openpkg could be
implemented by the class distcmds.bdist_openpkg.bdist_openpkg or
buildcmds.bdist_openpkg.bdist_openpkg.

9.2. Adding new distribution types

Commands that create distributions (files in the dist/ directory) need
to add (command, filename) pairs to self.distribution.dist_files so that
upload can upload it to PyPI. The filename in the pair contains no
path information, only the name of the file itself. In dry-run mode, pairs
should still be added to represent what would have been created.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

10. Command Reference

10.1. Installing modules: the install command family

The install command ensures that the build commands have been run and then runs
the subcommands install_lib, install_data and
install_scripts.

10.1.1. install_data

This command installs all data files provided with the distribution.

10.1.2. install_scripts

This command installs all (Python) scripts in the distribution.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Distributing Python Modules

11. API Reference

11.1. distutils.core — Core Distutils functionality

The distutils.core module is the only module that needs to be installed
to use the Distutils. It provides the setup() (which is called from the
setup script). Indirectly provides the distutils.dist.Distribution and
distutils.cmd.Command class.

	
distutils.core.setup(arguments)

	The basic do-everything function that does most everything you could ever ask
for from a Distutils method.

The setup function takes a large number of arguments. These are laid out in the
following table.

	argument name
	value
	type

	name
	The name of the package
	a string

	version
	The version number of the
package
	See distutils.version

	description
	A single line describing the
package
	a string

	long_description
	Longer description of the
package
	a string

	author
	The name of the package author
	a string

	author_email
	The email address of the
package author
	a string

	maintainer
	The name of the current
maintainer, if different from
the author
	a string

	maintainer_email
	The email address of the
current maintainer, if
different from the author
	

	url
	A URL for the package
(homepage)
	a URL

	download_url
	A URL to download the package
	a URL

	packages
	A list of Python packages that
distutils will manipulate
	a list of strings

	py_modules
	A list of Python modules that
distutils will manipulate
	a list of strings

	scripts
	A list of standalone script
files to be built and
installed
	a list of strings

	ext_modules
	A list of Python extensions to
be built
	A list of instances of
distutils.core.Extension

	classifiers
	A list of categories for the
package
	The list of available
categorizations is at
http://pypi.python.org/pypi?:action=list_classifiers.

	distclass
	the Distribution
class to use
	A subclass of
distutils.core.Distribution

	script_name
	The name of the setup.py
script - defaults to
sys.argv[0]
	a string

	script_args
	Arguments to supply to the
setup script
	a list of strings

	options
	default options for the setup
script
	a string

	license
	The license for the package
	a string

	keywords
	Descriptive meta-data, see
PEP 314 [http://www.python.org/dev/peps/pep-0314]
	

	platforms
	
	

	cmdclass
	A mapping of command names to
Command subclasses
	a dictionary

	data_files
	A list of data files to
install
	a list

	package_dir
	A mapping of package to
directory names
	a dictionary

	
distutils.core.run_setup(script_name[, script_args=None, stop_after='run'])

	Run a setup script in a somewhat controlled environment, and return the
distutils.dist.Distribution instance that drives things. This is
useful if you need to find out the distribution meta-data (passed as keyword
args from script to setup()), or the contents of the config files or
command-line.

script_name is a file that will be run with execfile() sys.argv[0]
will be replaced with script for the duration of the call. script_args is a
list of strings; if supplied, sys.argv[1:] will be replaced by script_args
for the duration of the call.

stop_after tells setup() when to stop processing; possible values:

	value
	description

	init
	Stop after the Distribution
instance has been created and populated
with the keyword arguments to setup()

	config
	Stop after config files have been parsed
(and their data stored in the
Distribution instance)

	commandline
	Stop after the command-line
(sys.argv[1:] or script_args) have
been parsed (and the data stored in the
Distribution instance.)

	run
	Stop after all commands have been run (the
same as if setup() had been called
in the usual way). This is the default
value.

In addition, the distutils.core module exposed a number of classes that
live elsewhere.

	Extension from distutils.extension

	Command from distutils.cmd

	Distribution from distutils.dist

A short description of each of these follows, but see the relevant module for
the full reference.

	
class distutils.core.Extension

	The Extension class describes a single C or C++extension module in a setup
script. It accepts the following keyword arguments in its constructor

	argument name
	value
	type

	name
	the full name of the
extension, including any
packages — ie. not a
filename or pathname, but
Python dotted name
	string

	sources
	list of source filenames,
relative to the distribution
root (where the setup script
lives), in Unix form (slash-
separated) for portability.
Source files may be C, C++,
SWIG (.i), platform-specific
resource files, or whatever
else is recognized by the
build_ext command
as source for a Python
extension.
	string

	include_dirs
	list of directories to search
for C/C++ header files (in
Unix form for portability)
	string

	define_macros
	list of macros to define; each
macro is defined using a
2-tuple (name, value),
where value is
either the string to define it
to or None to define it
without a particular value
(equivalent of #define FOO
in source or -DFOO
on Unix C compiler command
line)
	(string, string) tuple or
(name, None)

	undef_macros
	list of macros to undefine
explicitly
	string

	library_dirs
	list of directories to search
for C/C++ libraries at link
time
	string

	libraries
	list of library names (not
filenames or paths) to link
against
	string

	runtime_library_dirs
	list of directories to search
for C/C++ libraries at run
time (for shared extensions,
this is when the extension is
loaded)
	string

	extra_objects
	list of extra files to link
with (eg. object files not
implied by ‘sources’, static
library that must be
explicitly specified, binary
resource files, etc.)
	string

	extra_compile_args
	any extra platform- and
compiler-specific information
to use when compiling the
source files in ‘sources’. For
platforms and compilers where
a command line makes sense,
this is typically a list of
command-line arguments, but
for other platforms it could
be anything.
	string

	extra_link_args
	any extra platform- and
compiler-specific information
to use when linking object
files together to create the
extension (or to create a new
static Python interpreter).
Similar interpretation as for
‘extra_compile_args’.
	string

	export_symbols
	list of symbols to be exported
from a shared extension. Not
used on all platforms, and not
generally necessary for Python
extensions, which typically
export exactly one symbol:
init + extension_name.
	string

	depends
	list of files that the
extension depends on
	string

	language
	extension language (i.e.
'c', 'c++',
'objc'). Will be detected
from the source extensions if
not provided.
	string

	
class distutils.core.Distribution

	A Distribution describes how to build, install and package up a Python
software package.

See the setup() function for a list of keyword arguments accepted by the
Distribution constructor. setup() creates a Distribution instance.

	
class distutils.core.Command

	A Command class (or rather, an instance of one of its subclasses)
implement a single distutils command.

11.2. distutils.ccompiler — CCompiler base class

This module provides the abstract base class for the CCompiler
classes. A CCompiler instance can be used for all the compile and
link steps needed to build a single project. Methods are provided to set
options for the compiler — macro definitions, include directories, link path,
libraries and the like.

This module provides the following functions.

	
distutils.ccompiler.gen_lib_options(compiler, library_dirs, runtime_library_dirs, libraries)

	Generate linker options for searching library directories and linking with
specific libraries. libraries and library_dirs are, respectively, lists of
library names (not filenames!) and search directories. Returns a list of
command-line options suitable for use with some compiler (depending on the two
format strings passed in).

	
distutils.ccompiler.gen_preprocess_options(macros, include_dirs)

	Generate C pre-processor options (-D, -U, -I) as
used by at least two types of compilers: the typical Unix compiler and Visual
C++. macros is the usual thing, a list of 1- or 2-tuples, where (name,)
means undefine (-U) macro name, and (name, value) means define
(-D) macro name to value. include_dirs is just a list of
directory names to be added to the header file search path (-I).
Returns a list of command-line options suitable for either Unix compilers or
Visual C++.

	
distutils.ccompiler.get_default_compiler(osname, platform)

	Determine the default compiler to use for the given platform.

osname should be one of the standard Python OS names (i.e. the ones returned
by os.name) and platform the common value returned by sys.platform for
the platform in question.

The default values are os.name and sys.platform in case the parameters
are not given.

	
distutils.ccompiler.new_compiler(plat=None, compiler=None, verbose=0, dry_run=0, force=0)

	Factory function to generate an instance of some CCompiler subclass for the
supplied platform/compiler combination. plat defaults to os.name (eg.
'posix', 'nt'), and compiler defaults to the default compiler for
that platform. Currently only 'posix' and 'nt' are supported, and the
default compilers are “traditional Unix interface” (UnixCCompiler
class) and Visual C++ (MSVCCompiler class). Note that it’s perfectly
possible to ask for a Unix compiler object under Windows, and a Microsoft
compiler object under Unix—if you supply a value for compiler, plat is
ignored.

	
distutils.ccompiler.show_compilers()

	Print list of available compilers (used by the --help-compiler options
to build, build_ext, build_clib).

	
class distutils.ccompiler.CCompiler([verbose=0, dry_run=0, force=0])

	The abstract base class CCompiler defines the interface that must be
implemented by real compiler classes. The class also has some utility methods
used by several compiler classes.

The basic idea behind a compiler abstraction class is that each instance can be
used for all the compile/link steps in building a single project. Thus,
attributes common to all of those compile and link steps — include
directories, macros to define, libraries to link against, etc. — are
attributes of the compiler instance. To allow for variability in how individual
files are treated, most of those attributes may be varied on a per-compilation
or per-link basis.

The constructor for each subclass creates an instance of the Compiler object.
Flags are verbose (show verbose output), dry_run (don’t actually execute the
steps) and force (rebuild everything, regardless of dependencies). All of
these flags default to 0 (off). Note that you probably don’t want to
instantiate CCompiler or one of its subclasses directly - use the
distutils.CCompiler.new_compiler() factory function instead.

The following methods allow you to manually alter compiler options for the
instance of the Compiler class.

	
add_include_dir(dir)

	Add dir to the list of directories that will be searched for header files.
The compiler is instructed to search directories in the order in which they are
supplied by successive calls to add_include_dir().

	
set_include_dirs(dirs)

	Set the list of directories that will be searched to dirs (a list of strings).
Overrides any preceding calls to add_include_dir(); subsequent calls to
add_include_dir() add to the list passed to set_include_dirs().
This does not affect any list of standard include directories that the compiler
may search by default.

	
add_library(libname)

	Add libname to the list of libraries that will be included in all links driven
by this compiler object. Note that libname should *not* be the name of a
file containing a library, but the name of the library itself: the actual
filename will be inferred by the linker, the compiler, or the compiler class
(depending on the platform).

The linker will be instructed to link against libraries in the order they were
supplied to add_library() and/or set_libraries(). It is perfectly
valid to duplicate library names; the linker will be instructed to link against
libraries as many times as they are mentioned.

	
set_libraries(libnames)

	Set the list of libraries to be included in all links driven by this compiler
object to libnames (a list of strings). This does not affect any standard
system libraries that the linker may include by default.

	
add_library_dir(dir)

	Add dir to the list of directories that will be searched for libraries
specified to add_library() and set_libraries(). The linker will be
instructed to search for libraries in the order they are supplied to
add_library_dir() and/or set_library_dirs().

	
set_library_dirs(dirs)

	Set the list of library search directories to dirs (a list of strings). This
does not affect any standard library search path that the linker may search by
default.

	
add_runtime_library_dir(dir)

	Add dir to the list of directories that will be searched for shared libraries
at runtime.

	
set_runtime_library_dirs(dirs)

	Set the list of directories to search for shared libraries at runtime to dirs
(a list of strings). This does not affect any standard search path that the
runtime linker may search by default.

	
define_macro(name[, value=None])

	Define a preprocessor macro for all compilations driven by this compiler object.
The optional parameter value should be a string; if it is not supplied, then
the macro will be defined without an explicit value and the exact outcome
depends on the compiler used (XXX true? does ANSI say anything about this?)

	
undefine_macro(name)

	Undefine a preprocessor macro for all compilations driven by this compiler
object. If the same macro is defined by define_macro() and
undefined by undefine_macro() the last call takes precedence
(including multiple redefinitions or undefinitions). If the macro is
redefined/undefined on a per-compilation basis (ie. in the call to
compile()), then that takes precedence.

	
add_link_object(object)

	Add object to the list of object files (or analogues, such as explicitly named
library files or the output of “resource compilers”) to be included in every
link driven by this compiler object.

	
set_link_objects(objects)

	Set the list of object files (or analogues) to be included in every link to
objects. This does not affect any standard object files that the linker may
include by default (such as system libraries).

The following methods implement methods for autodetection of compiler options,
providing some functionality similar to GNU autoconf.

	
detect_language(sources)

	Detect the language of a given file, or list of files. Uses the instance
attributes language_map (a dictionary), and language_order (a
list) to do the job.

	
find_library_file(dirs, lib[, debug=0])

	Search the specified list of directories for a static or shared library file
lib and return the full path to that file. If debug is true, look for a
debugging version (if that makes sense on the current platform). Return
None if lib wasn’t found in any of the specified directories.

	
has_function(funcname[, includes=None, include_dirs=None, libraries=None, library_dirs=None])

	Return a boolean indicating whether funcname is supported on the current
platform. The optional arguments can be used to augment the compilation
environment by providing additional include files and paths and libraries and
paths.

	
library_dir_option(dir)

	Return the compiler option to add dir to the list of directories searched for
libraries.

	
library_option(lib)

	Return the compiler option to add dir to the list of libraries linked into the
shared library or executable.

	
runtime_library_dir_option(dir)

	Return the compiler option to add dir to the list of directories searched for
runtime libraries.

	
set_executables(**args)

	Define the executables (and options for them) that will be run to perform the
various stages of compilation. The exact set of executables that may be
specified here depends on the compiler class (via the ‘executables’ class
attribute), but most will have:

	attribute
	description

	compiler
	the C/C++ compiler

	linker_so
	linker used to create shared objects and
libraries

	linker_exe
	linker used to create binary executables

	archiver
	static library creator

On platforms with a command-line (Unix, DOS/Windows), each of these is a string
that will be split into executable name and (optional) list of arguments.
(Splitting the string is done similarly to how Unix shells operate: words are
delimited by spaces, but quotes and backslashes can override this. See
distutils.util.split_quoted().)

The following methods invoke stages in the build process.

	
compile(sources[, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None])

	Compile one or more source files. Generates object files (e.g. transforms a
.c file to a .o file.)

sources must be a list of filenames, most likely C/C++ files, but in reality
anything that can be handled by a particular compiler and compiler class (eg.
MSVCCompiler can handle resource files in sources). Return a list of
object filenames, one per source filename in sources. Depending on the
implementation, not all source files will necessarily be compiled, but all
corresponding object filenames will be returned.

If output_dir is given, object files will be put under it, while retaining
their original path component. That is, foo/bar.c normally compiles to
foo/bar.o (for a Unix implementation); if output_dir is build, then
it would compile to build/foo/bar.o.

macros, if given, must be a list of macro definitions. A macro definition is
either a (name, value) 2-tuple or a (name,) 1-tuple. The former defines
a macro; if the value is None, the macro is defined without an explicit
value. The 1-tuple case undefines a macro. Later
definitions/redefinitions/undefinitions take precedence.

include_dirs, if given, must be a list of strings, the directories to add to
the default include file search path for this compilation only.

debug is a boolean; if true, the compiler will be instructed to output debug
symbols in (or alongside) the object file(s).

extra_preargs and extra_postargs are implementation-dependent. On platforms
that have the notion of a command-line (e.g. Unix, DOS/Windows), they are most
likely lists of strings: extra command-line arguments to prepend/append to the
compiler command line. On other platforms, consult the implementation class
documentation. In any event, they are intended as an escape hatch for those
occasions when the abstract compiler framework doesn’t cut the mustard.

depends, if given, is a list of filenames that all targets depend on. If a
source file is older than any file in depends, then the source file will be
recompiled. This supports dependency tracking, but only at a coarse
granularity.

Raises CompileError on failure.

	
create_static_lib(objects, output_libname[, output_dir=None, debug=0, target_lang=None])

	Link a bunch of stuff together to create a static library file. The “bunch of
stuff” consists of the list of object files supplied as objects, the extra
object files supplied to add_link_object() and/or
set_link_objects(), the libraries supplied to add_library() and/or
set_libraries(), and the libraries supplied as libraries (if any).

output_libname should be a library name, not a filename; the filename will be
inferred from the library name. output_dir is the directory where the library
file will be put. XXX defaults to what?

debug is a boolean; if true, debugging information will be included in the
library (note that on most platforms, it is the compile step where this matters:
the debug flag is included here just for consistency).

target_lang is the target language for which the given objects are being
compiled. This allows specific linkage time treatment of certain languages.

Raises LibError on failure.

	
link(target_desc, objects, output_filename[, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None])

	Link a bunch of stuff together to create an executable or shared library file.

The “bunch of stuff” consists of the list of object files supplied as objects.
output_filename should be a filename. If output_dir is supplied,
output_filename is relative to it (i.e. output_filename can provide
directory components if needed).

libraries is a list of libraries to link against. These are library names,
not filenames, since they’re translated into filenames in a platform-specific
way (eg. foo becomes libfoo.a on Unix and foo.lib on
DOS/Windows). However, they can include a directory component, which means the
linker will look in that specific directory rather than searching all the normal
locations.

library_dirs, if supplied, should be a list of directories to search for
libraries that were specified as bare library names (ie. no directory
component). These are on top of the system default and those supplied to
add_library_dir() and/or set_library_dirs(). runtime_library_dirs
is a list of directories that will be embedded into the shared library and used
to search for other shared libraries that *it* depends on at run-time. (This
may only be relevant on Unix.)

export_symbols is a list of symbols that the shared library will export.
(This appears to be relevant only on Windows.)

debug is as for compile() and create_static_lib(), with the
slight distinction that it actually matters on most platforms (as opposed to
create_static_lib(), which includes a debug flag mostly for form’s
sake).

extra_preargs and extra_postargs are as for compile() (except of
course that they supply command-line arguments for the particular linker being
used).

target_lang is the target language for which the given objects are being
compiled. This allows specific linkage time treatment of certain languages.

Raises LinkError on failure.

	
link_executable(objects, output_progname[, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, target_lang=None])

	Link an executable. output_progname is the name of the file executable, while
objects are a list of object filenames to link in. Other arguments are as for
the link() method.

	
link_shared_lib(objects, output_libname[, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None])

	Link a shared library. output_libname is the name of the output library,
while objects is a list of object filenames to link in. Other arguments are
as for the link() method.

	
link_shared_object(objects, output_filename[, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None])

	Link a shared object. output_filename is the name of the shared object that
will be created, while objects is a list of object filenames to link in.
Other arguments are as for the link() method.

	
preprocess(source[, output_file=None, macros=None, include_dirs=None, extra_preargs=None, extra_postargs=None])

	Preprocess a single C/C++ source file, named in source. Output will be written
to file named output_file, or stdout if output_file not supplied.
macros is a list of macro definitions as for compile(), which will
augment the macros set with define_macro() and undefine_macro().
include_dirs is a list of directory names that will be added to the default
list, in the same way as add_include_dir().

Raises PreprocessError on failure.

The following utility methods are defined by the CCompiler class, for
use by the various concrete subclasses.

	
executable_filename(basename[, strip_dir=0, output_dir=''])

	Returns the filename of the executable for the given basename. Typically for
non-Windows platforms this is the same as the basename, while Windows will get
a .exe added.

	
library_filename(libname[, lib_type='static', strip_dir=0, output_dir=''])

	Returns the filename for the given library name on the current platform. On Unix
a library with lib_type of 'static' will typically be of the form
liblibname.a, while a lib_type of 'dynamic' will be of the form
liblibname.so.

	
object_filenames(source_filenames[, strip_dir=0, output_dir=''])

	Returns the name of the object files for the given source files.
source_filenames should be a list of filenames.

	
shared_object_filename(basename[, strip_dir=0, output_dir=''])

	Returns the name of a shared object file for the given file name basename.

	
execute(func, args[, msg=None, level=1])

	Invokes distutils.util.execute() This method invokes a Python function
func with the given arguments args, after logging and taking into account
the dry_run flag. XXX see also.

	
spawn(cmd)

	Invokes distutils.util.spawn(). This invokes an external process to run
the given command. XXX see also.

	
mkpath(name[, mode=511])

	Invokes distutils.dir_util.mkpath(). This creates a directory and any
missing ancestor directories. XXX see also.

	
move_file(src, dst)

	Invokes distutils.file_util.move_file(). Renames src to dst. XXX see
also.

	
announce(msg[, level=1])

	Write a message using distutils.log.debug(). XXX see also.

	
warn(msg)

	Write a warning message msg to standard error.

	
debug_print(msg)

	If the debug flag is set on this CCompiler instance, print msg to
standard output, otherwise do nothing.

11.3. distutils.unixccompiler — Unix C Compiler

This module provides the UnixCCompiler class, a subclass of
CCompiler that handles the typical Unix-style command-line C compiler:

	macros defined with -Dname[=value]

	macros undefined with -Uname

	include search directories specified with -Idir

	libraries specified with -llib

	library search directories specified with -Ldir

	compile handled by cc (or similar) executable with -c
option: compiles .c to .o

	link static library handled by ar command (possibly with
ranlib)

	link shared library handled by cc -shared

11.4. distutils.msvccompiler — Microsoft Compiler

This module provides MSVCCompiler, an implementation of the abstract
CCompiler class for Microsoft Visual Studio. Typically, extension
modules need to be compiled with the same compiler that was used to compile
Python. For Python 2.3 and earlier, the compiler was Visual Studio 6. For Python
2.4 and 2.5, the compiler is Visual Studio .NET 2003. The AMD64 and Itanium
binaries are created using the Platform SDK.

MSVCCompiler will normally choose the right compiler, linker etc. on
its own. To override this choice, the environment variables DISTUTILS_USE_SDK
and MSSdk must be both set. MSSdk indicates that the current environment has
been setup by the SDK’s SetEnv.Cmd script, or that the environment variables
had been registered when the SDK was installed; DISTUTILS_USE_SDK indicates
that the distutils user has made an explicit choice to override the compiler
selection by MSVCCompiler.

11.5. distutils.bcppcompiler — Borland Compiler

This module provides BorlandCCompiler, an subclass of the abstract
CCompiler class for the Borland C++ compiler.

11.6. distutils.cygwincompiler — Cygwin Compiler

This module provides the CygwinCCompiler class, a subclass of
UnixCCompiler that handles the Cygwin port of the GNU C compiler to
Windows. It also contains the Mingw32CCompiler class which handles the mingw32
port of GCC (same as cygwin in no-cygwin mode).

11.7. distutils.emxccompiler — OS/2 EMX Compiler

This module provides the EMXCCompiler class, a subclass of
UnixCCompiler that handles the EMX port of the GNU C compiler to OS/2.

11.8. distutils.archive_util — Archiving utilities

This module provides a few functions for creating archive files, such as
tarballs or zipfiles.

	
distutils.archive_util.make_archive(base_name, format[, root_dir=None, base_dir=None, verbose=0, dry_run=0])

	Create an archive file (eg. zip or tar). base_name is the name of
the file to create, minus any format-specific extension; format is the
archive format: one of zip, tar, ztar, or gztar. root_dir is
a directory that will be the root directory of the archive; ie. we typically
chdir into root_dir before creating the archive. base_dir is the
directory where we start archiving from; ie. base_dir will be the common
prefix of all files and directories in the archive. root_dir and base_dir
both default to the current directory. Returns the name of the archive file.

	
distutils.archive_util.make_tarball(base_name, base_dir[, compress='gzip', verbose=0, dry_run=0])

	‘Create an (optional compressed) archive as a tar file from all files in and
under base_dir. compress must be 'gzip' (the default), 'compress',
'bzip2', or None. Both tar and the compression utility named
by compress must be on the default program search path, so this is probably
Unix-specific. The output tar file will be named base_dir.tar,
possibly plus the appropriate compression extension (.gz, .bz2
or .Z). Return the output filename.

	
distutils.archive_util.make_zipfile(base_name, base_dir[, verbose=0, dry_run=0])

	Create a zip file from all files in and under base_dir. The output zip file
will be named base_name + .zip. Uses either the zipfile Python
module (if available) or the InfoZIP zip utility (if installed and
found on the default search path). If neither tool is available, raises
DistutilsExecError. Returns the name of the output zip file.

11.9. distutils.dep_util — Dependency checking

This module provides functions for performing simple, timestamp-based
dependency of files and groups of files; also, functions based entirely on such
timestamp dependency analysis.

	
distutils.dep_util.newer(source, target)

	Return true if source exists and is more recently modified than target, or
if source exists and target doesn’t. Return false if both exist and target
is the same age or newer than source. Raise DistutilsFileError if
source does not exist.

	
distutils.dep_util.newer_pairwise(sources, targets)

	Walk two filename lists in parallel, testing if each source is newer than its
corresponding target. Return a pair of lists (sources, targets) where
source is newer than target, according to the semantics of newer()

	
distutils.dep_util.newer_group(sources, target[, missing='error'])

	Return true if target is out-of-date with respect to any file listed in
sources In other words, if target exists and is newer than every file in
sources, return false; otherwise return true. missing controls what we do
when a source file is missing; the default ('error') is to blow up with an
OSError from inside os.stat(); if it is 'ignore', we silently
drop any missing source files; if it is 'newer', any missing source files
make us assume that target is out-of-date (this is handy in “dry-run” mode:
it’ll make you pretend to carry out commands that wouldn’t work because inputs
are missing, but that doesn’t matter because you’re not actually going to run
the commands).

11.10. distutils.dir_util — Directory tree operations

This module provides functions for operating on directories and trees of
directories.

	
distutils.dir_util.mkpath(name[, mode=0777, verbose=0, dry_run=0])

	Create a directory and any missing ancestor directories. If the directory
already exists (or if name is the empty string, which means the current
directory, which of course exists), then do nothing. Raise
DistutilsFileError if unable to create some directory along the way (eg.
some sub-path exists, but is a file rather than a directory). If verbose is
true, print a one-line summary of each mkdir to stdout. Return the list of
directories actually created.

	
distutils.dir_util.create_tree(base_dir, files[, mode=0777, verbose=0, dry_run=0])

	Create all the empty directories under base_dir needed to put files there.
base_dir is just the a name of a directory which doesn’t necessarily exist
yet; files is a list of filenames to be interpreted relative to base_dir.
base_dir + the directory portion of every file in files will be created if
it doesn’t already exist. mode, verbose and dry_run flags are as for
mkpath().

	
distutils.dir_util.copy_tree(src, dst[, preserve_mode=1, preserve_times=1, preserve_symlinks=0, update=0, verbose=0, dry_run=0])

	Copy an entire directory tree src to a new location dst. Both src and
dst must be directory names. If src is not a directory, raise
DistutilsFileError. If dst does not exist, it is created with
mkpath(). The end result of the copy is that every file in src is
copied to dst, and directories under src are recursively copied to dst.
Return the list of files that were copied or might have been copied, using their
output name. The return value is unaffected by update or dry_run: it is
simply the list of all files under src, with the names changed to be under
dst.

preserve_mode and preserve_times are the same as for copy_file() in
distutils.file_util; note that they only apply to regular files, not to
directories. If preserve_symlinks is true, symlinks will be copied as
symlinks (on platforms that support them!); otherwise (the default), the
destination of the symlink will be copied. update and verbose are the same
as for copy_file().

	
distutils.dir_util.remove_tree(directory[, verbose=0, dry_run=0])

	Recursively remove directory and all files and directories underneath it. Any
errors are ignored (apart from being reported to sys.stdout if verbose is
true).

11.11. distutils.file_util — Single file operations

This module contains some utility functions for operating on individual files.

	
distutils.file_util.copy_file(src, dst[, preserve_mode=1, preserve_times=1, update=0, link=None, verbose=0, dry_run=0])

	Copy file src to dst. If dst is a directory, then src is copied there
with the same name; otherwise, it must be a filename. (If the file exists, it
will be ruthlessly clobbered.) If preserve_mode is true (the default), the
file’s mode (type and permission bits, or whatever is analogous on the
current platform) is copied. If preserve_times is true (the default), the
last-modified and last-access times are copied as well. If update is true,
src will only be copied if dst does not exist, or if dst does exist but
is older than src.

link allows you to make hard links (using os.link()) or symbolic links
(using os.symlink()) instead of copying: set it to 'hard' or
'sym'; if it is None (the default), files are copied. Don’t set link
on systems that don’t support it: copy_file() doesn’t check if hard or
symbolic linking is available. It uses _copy_file_contents() to copy file
contents.

Return a tuple (dest_name, copied): dest_name is the actual name of the
output file, and copied is true if the file was copied (or would have been
copied, if dry_run true).

	
distutils.file_util.move_file(src, dst[, verbose, dry_run])

	Move file src to dst. If dst is a directory, the file will be moved into
it with the same name; otherwise, src is just renamed to dst. Returns the
new full name of the file.

Warning

Handles cross-device moves on Unix using copy_file(). What about
other systems?

	
distutils.file_util.write_file(filename, contents)

	Create a file called filename and write contents (a sequence of strings
without line terminators) to it.

11.12. distutils.util — Miscellaneous other utility functions

This module contains other assorted bits and pieces that don’t fit into any
other utility module.

	
distutils.util.get_platform()

	Return a string that identifies the current platform. This is used mainly to
distinguish platform-specific build directories and platform-specific built
distributions. Typically includes the OS name and version and the architecture
(as supplied by ‘os.uname()’), although the exact information included depends
on the OS; eg. for IRIX the architecture isn’t particularly important (IRIX only
runs on SGI hardware), but for Linux the kernel version isn’t particularly
important.

Examples of returned values:

	linux-i586

	linux-alpha

	solaris-2.6-sun4u

	irix-5.3

	irix64-6.2

For non-POSIX platforms, currently just returns sys.platform.

For Mac OS X systems the OS version reflects the minimal version on which
binaries will run (that is, the value of MACOSX_DEPLOYMENT_TARGET
during the build of Python), not the OS version of the current system.

For universal binary builds on Mac OS X the architecture value reflects
the univeral binary status instead of the architecture of the current
processor. For 32-bit universal binaries the architecture is fat,
for 64-bit universal binaries the architecture is fat64, and
for 4-way universal binaries the architecture is universal. Starting
from Python 2.7 and Python 3.2 the architecture fat3 is used for
a 3-way universal build (ppc, i386, x86_64) and intel is used for
a univeral build with the i386 and x86_64 architectures

Examples of returned values on Mac OS X:

	macosx-10.3-ppc

	macosx-10.3-fat

	macosx-10.5-universal

	macosx-10.6-intel

	
distutils.util.convert_path(pathname)

	Return ‘pathname’ as a name that will work on the native filesystem, i.e. split
it on ‘/’ and put it back together again using the current directory separator.
Needed because filenames in the setup script are always supplied in Unix style,
and have to be converted to the local convention before we can actually use them
in the filesystem. Raises ValueError on non-Unix-ish systems if
pathname either starts or ends with a slash.

	
distutils.util.change_root(new_root, pathname)

	Return pathname with new_root prepended. If pathname is relative, this is
equivalent to os.path.join(new_root,pathname) Otherwise, it requires making
pathname relative and then joining the two, which is tricky on DOS/Windows.

	
distutils.util.check_environ()

	Ensure that ‘os.environ’ has all the environment variables we guarantee that
users can use in config files, command-line options, etc. Currently this
includes:

	HOME - user’s home directory (Unix only)

	PLAT - description of the current platform, including hardware and
OS (see get_platform())

	
distutils.util.subst_vars(s, local_vars)

	Perform shell/Perl-style variable substitution on s. Every occurrence of
$ followed by a name is considered a variable, and variable is substituted
by the value found in the local_vars dictionary, or in os.environ if it’s
not in local_vars. os.environ is first checked/augmented to guarantee that
it contains certain values: see check_environ(). Raise ValueError
for any variables not found in either local_vars or os.environ.

Note that this is not a fully-fledged string interpolation function. A valid
$variable can consist only of upper and lower case letters, numbers and an
underscore. No { } or () style quoting is available.

	
distutils.util.grok_environment_error(exc[, prefix='error: '])

	Generate a useful error message from an EnvironmentError (IOError
or OSError) exception object. Handles Python 1.5.1 and later styles,
and does what it can to deal with exception objects that don’t have a filename
(which happens when the error is due to a two-file operation, such as
rename() or link()). Returns the error message as a string
prefixed with prefix.

	
distutils.util.split_quoted(s)

	Split a string up according to Unix shell-like rules for quotes and backslashes.
In short: words are delimited by spaces, as long as those spaces are not escaped
by a backslash, or inside a quoted string. Single and double quotes are
equivalent, and the quote characters can be backslash-escaped. The backslash is
stripped from any two-character escape sequence, leaving only the escaped
character. The quote characters are stripped from any quoted string. Returns a
list of words.

	
distutils.util.execute(func, args[, msg=None, verbose=0, dry_run=0])

	Perform some action that affects the outside world (for instance, writing to the
filesystem). Such actions are special because they are disabled by the
dry_run flag. This method takes care of all that bureaucracy for you; all
you have to do is supply the function to call and an argument tuple for it (to
embody the “external action” being performed), and an optional message to print.

	
distutils.util.strtobool(val)

	Convert a string representation of truth to true (1) or false (0).

True values are y, yes, t, true, on and 1; false values
are n, no, f, false, off and 0. Raises
ValueError if val is anything else.

	
distutils.util.byte_compile(py_files[, optimize=0, force=0, prefix=None, base_dir=None, verbose=1, dry_run=0, direct=None])

	Byte-compile a collection of Python source files to either .pyc or
.pyo files in the same directory. py_files is a list of files to
compile; any files that don’t end in .py are silently skipped.
optimize must be one of the following:

	0 - don’t optimize (generate .pyc)

	1 - normal optimization (like python -O)

	2 - extra optimization (like python -OO)

If force is true, all files are recompiled regardless of timestamps.

The source filename encoded in each bytecode file defaults to the filenames
listed in py_files; you can modify these with prefix and basedir.
prefix is a string that will be stripped off of each source filename, and
base_dir is a directory name that will be prepended (after prefix is
stripped). You can supply either or both (or neither) of prefix and
base_dir, as you wish.

If dry_run is true, doesn’t actually do anything that would affect the
filesystem.

Byte-compilation is either done directly in this interpreter process with the
standard py_compile module, or indirectly by writing a temporary script
and executing it. Normally, you should let byte_compile() figure out to
use direct compilation or not (see the source for details). The direct flag
is used by the script generated in indirect mode; unless you know what you’re
doing, leave it set to None.

	
distutils.util.rfc822_escape(header)

	Return a version of header escaped for inclusion in an RFC 822 [http://tools.ietf.org/html/rfc822.html] header, by
ensuring there are 8 spaces space after each newline. Note that it does no other
modification of the string.

11.13. distutils.dist — The Distribution class

This module provides the Distribution class, which represents the
module distribution being built/installed/distributed.

11.14. distutils.extension — The Extension class

This module provides the Extension class, used to describe C/C++
extension modules in setup scripts.

11.15. distutils.debug — Distutils debug mode

This module provides the DEBUG flag.

11.16. distutils.errors — Distutils exceptions

Provides exceptions used by the Distutils modules. Note that Distutils modules
may raise standard exceptions; in particular, SystemExit is usually raised for
errors that are obviously the end-user’s fault (eg. bad command-line arguments).

This module is safe to use in from ... import * mode; it only exports
symbols whose names start with Distutils and end with Error.

11.17. distutils.fancy_getopt — Wrapper around the standard getopt module

This module provides a wrapper around the standard getopt module that
provides the following additional features:

	short and long options are tied together

	options have help strings, so fancy_getopt() could potentially create a
complete usage summary

	options set attributes of a passed-in object

	boolean options can have “negative aliases” — eg. if --quiet is
the “negative alias” of --verbose, then --quiet on the
command line sets verbose to false.

	
distutils.fancy_getopt.fancy_getopt(options, negative_opt, object, args)

	Wrapper function. options is a list of (long_option, short_option,
help_string) 3-tuples as described in the constructor for
FancyGetopt. negative_opt should be a dictionary mapping option names
to option names, both the key and value should be in the options list.
object is an object which will be used to store values (see the getopt()
method of the FancyGetopt class). args is the argument list. Will use
sys.argv[1:] if you pass None as args.

	
distutils.fancy_getopt.wrap_text(text, width)

	Wraps text to less than width wide.

	
class distutils.fancy_getopt.FancyGetopt([option_table=None])

	The option_table is a list of 3-tuples: (long_option, short_option,
help_string)

If an option takes an argument, its long_option should have '=' appended;
short_option should just be a single character, no ':' in any case.
short_option should be None if a long_option doesn’t have a
corresponding short_option. All option tuples must have long options.

The FancyGetopt class provides the following methods:

	
FancyGetopt.getopt([args=None, object=None])

	Parse command-line options in args. Store as attributes on object.

If args is None or not supplied, uses sys.argv[1:]. If object is
None or not supplied, creates a new OptionDummy instance, stores
option values there, and returns a tuple (args, object). If object is
supplied, it is modified in place and getopt() just returns args; in
both cases, the returned args is a modified copy of the passed-in args list,
which is left untouched.

	
FancyGetopt.get_option_order()

	Returns the list of (option, value) tuples processed by the previous run of
getopt() Raises RuntimeError if getopt() hasn’t been called
yet.

	
FancyGetopt.generate_help([header=None])

	Generate help text (a list of strings, one per suggested line of output) from
the option table for this FancyGetopt object.

If supplied, prints the supplied header at the top of the help.

11.18. distutils.filelist — The FileList class

This module provides the FileList class, used for poking about the
filesystem and building lists of files.

11.19. distutils.log — Simple PEP 282-style logging

11.20. distutils.spawn — Spawn a sub-process

This module provides the spawn() function, a front-end to various
platform-specific functions for launching another program in a sub-process.
Also provides find_executable() to search the path for a given executable
name.

11.21. distutils.sysconfig — System configuration information

The distutils.sysconfig module provides access to Python’s low-level
configuration information. The specific configuration variables available
depend heavily on the platform and configuration. The specific variables depend
on the build process for the specific version of Python being run; the variables
are those found in the Makefile and configuration header that are
installed with Python on Unix systems. The configuration header is called
pyconfig.h for Python versions starting with 2.2, and config.h
for earlier versions of Python.

Some additional functions are provided which perform some useful manipulations
for other parts of the distutils package.

	
distutils.sysconfig.PREFIX

	The result of os.path.normpath(sys.prefix).

	
distutils.sysconfig.EXEC_PREFIX

	The result of os.path.normpath(sys.exec_prefix).

	
distutils.sysconfig.get_config_var(name)

	Return the value of a single variable. This is equivalent to
get_config_vars().get(name).

	
distutils.sysconfig.get_config_vars(...)

	Return a set of variable definitions. If there are no arguments, this returns a
dictionary mapping names of configuration variables to values. If arguments are
provided, they should be strings, and the return value will be a sequence giving
the associated values. If a given name does not have a corresponding value,
None will be included for that variable.

	
distutils.sysconfig.get_config_h_filename()

	Return the full path name of the configuration header. For Unix, this will be
the header generated by the configure script; for other platforms the
header will have been supplied directly by the Python source distribution. The
file is a platform-specific text file.

	
distutils.sysconfig.get_makefile_filename()

	Return the full path name of the Makefile used to build Python. For
Unix, this will be a file generated by the configure script; the
meaning for other platforms will vary. The file is a platform-specific text
file, if it exists. This function is only useful on POSIX platforms.

	
distutils.sysconfig.get_python_inc([plat_specific[, prefix]])

	Return the directory for either the general or platform-dependent C include
files. If plat_specific is true, the platform-dependent include directory is
returned; if false or omitted, the platform-independent directory is returned.
If prefix is given, it is used as either the prefix instead of
PREFIX, or as the exec-prefix instead of EXEC_PREFIX if
plat_specific is true.

	
distutils.sysconfig.get_python_lib([plat_specific[, standard_lib[, prefix]]])

	Return the directory for either the general or platform-dependent library
installation. If plat_specific is true, the platform-dependent include
directory is returned; if false or omitted, the platform-independent directory
is returned. If prefix is given, it is used as either the prefix instead of
PREFIX, or as the exec-prefix instead of EXEC_PREFIX if
plat_specific is true. If standard_lib is true, the directory for the
standard library is returned rather than the directory for the installation of
third-party extensions.

The following function is only intended for use within the distutils
package.

	
distutils.sysconfig.customize_compiler(compiler)

	Do any platform-specific customization of a
distutils.ccompiler.CCompiler instance.

This function is only needed on Unix at this time, but should be called
consistently to support forward-compatibility. It inserts the information that
varies across Unix flavors and is stored in Python’s Makefile. This
information includes the selected compiler, compiler and linker options, and the
extension used by the linker for shared objects.

This function is even more special-purpose, and should only be used from
Python’s own build procedures.

	
distutils.sysconfig.set_python_build()

	Inform the distutils.sysconfig module that it is being used as part of
the build process for Python. This changes a lot of relative locations for
files, allowing them to be located in the build area rather than in an installed
Python.

11.22. distutils.text_file — The TextFile class

This module provides the TextFile class, which gives an interface to
text files that (optionally) takes care of stripping comments, ignoring blank
lines, and joining lines with backslashes.

	
class distutils.text_file.TextFile([filename=None, file=None, **options])

	This class provides a file-like object that takes care of all the things you
commonly want to do when processing a text file that has some line-by-line
syntax: strip comments (as long as # is your comment character), skip blank
lines, join adjacent lines by escaping the newline (ie. backslash at end of
line), strip leading and/or trailing whitespace. All of these are optional and
independently controllable.

The class provides a warn() method so you can generate warning messages
that report physical line number, even if the logical line in question spans
multiple physical lines. Also provides unreadline() for implementing
line-at-a-time lookahead.

TextFile instances are create with either filename, file, or both.
RuntimeError is raised if both are None. filename should be a
string, and file a file object (or something that provides readline()
and close() methods). It is recommended that you supply at least
filename, so that TextFile can include it in warning messages. If
file is not supplied, TextFile creates its own using the
open() built-in function.

The options are all boolean, and affect the values returned by readline()

	option name
	description
	default

	strip_comments
	strip from '#' to end-of-
line, as well as any
whitespace leading up to the
'#'—unless it is
escaped by a backslash
	true

	lstrip_ws
	strip leading whitespace from
each line before returning it
	false

	rstrip_ws
	strip trailing whitespace
(including line terminator!)
from each line before
returning it.
	true

	skip_blanks
	skip lines that are empty
after stripping comments
and whitespace. (If both
lstrip_ws and rstrip_ws are
false, then some lines may
consist of solely whitespace:
these will *not* be skipped,
even if skip_blanks is
true.)
	true

	join_lines
	if a backslash is the last
non-newline character on a
line after stripping comments
and whitespace, join the
following line to it to form
one logical line; if N
consecutive lines end with a
backslash, then N+1 physical
lines will be joined to form
one logical line.
	false

	collapse_join
	strip leading whitespace from
lines that are joined to their
predecessor; only matters if
(join_lines and not
lstrip_ws)
	false

Note that since rstrip_ws can strip the trailing newline, the semantics of
readline() must differ from those of the built-in file object’s
readline() method! In particular, readline() returns None for
end-of-file: an empty string might just be a blank line (or an all-whitespace
line), if rstrip_ws is true but skip_blanks is not.

	
open(filename)

	Open a new file filename. This overrides any file or filename
constructor arguments.

	
close()

	Close the current file and forget everything we know about it (including the
filename and the current line number).

	
warn(msg[, line=None])

	Print (to stderr) a warning message tied to the current logical line in the
current file. If the current logical line in the file spans multiple physical
lines, the warning refers to the whole range, such as "lines 3-5". If
line is supplied, it overrides the current line number; it may be a list or
tuple to indicate a range of physical lines, or an integer for a single
physical line.

	
readline()

	Read and return a single logical line from the current file (or from an internal
buffer if lines have previously been “unread” with unreadline()). If the
join_lines option is true, this may involve reading multiple physical lines
concatenated into a single string. Updates the current line number, so calling
warn() after readline() emits a warning about the physical line(s)
just read. Returns None on end-of-file, since the empty string can occur
if rstrip_ws is true but strip_blanks is not.

	
readlines()

	Read and return the list of all logical lines remaining in the current file.
This updates the current line number to the last line of the file.

	
unreadline(line)

	Push line (a string) onto an internal buffer that will be checked by future
readline() calls. Handy for implementing a parser with line-at-a-time
lookahead. Note that lines that are “unread” with unreadline() are not
subsequently re-cleansed (whitespace stripped, or whatever) when read with
readline(). If multiple calls are made to unreadline() before a call
to readline(), the lines will be returned most in most recent first order.

11.23. distutils.version — Version number classes

11.24. distutils.cmd — Abstract base class for Distutils commands

This module supplies the abstract base class Command.

	
class distutils.cmd.Command(dist)

	Abstract base class for defining command classes, the “worker bees” of the
Distutils. A useful analogy for command classes is to think of them as
subroutines with local variables called options. The options are declared
in initialize_options() and defined (given their final values) in
finalize_options(), both of which must be defined by every command
class. The distinction between the two is necessary because option values
might come from the outside world (command line, config file, ...), and any
options dependent on other options must be computed after these outside
influences have been processed — hence finalize_options(). The body
of the subroutine, where it does all its work based on the values of its
options, is the run() method, which must also be implemented by every
command class.

The class constructor takes a single argument dist, a Distribution
instance.

11.25. Creating a new Distutils command

This section outlines the steps to create a new Distutils command.

A new command lives in a module in the distutils.command package. There
is a sample template in that directory called command_template. Copy
this file to a new module with the same name as the new command you’re
implementing. This module should implement a class with the same name as the
module (and the command). So, for instance, to create the command
peel_banana (so that users can run setup.py peel_banana), you’d copy
command_template to distutils/command/peel_banana.py, then edit
it so that it’s implementing the class peel_banana, a subclass of
distutils.cmd.Command.

Subclasses of Command must define the following methods.

	
Command.initialize_options()

	Set default values for all the options that this command supports. Note that
these defaults may be overridden by other commands, by the setup script, by
config files, or by the command-line. Thus, this is not the place to code
dependencies between options; generally, initialize_options()
implementations are just a bunch of self.foo = None assignments.

	
Command.finalize_options()

	Set final values for all the options that this command supports. This is
always called as late as possible, ie. after any option assignments from the
command-line or from other commands have been done. Thus, this is the place
to to code option dependencies: if foo depends on bar, then it is safe to
set foo from bar as long as foo still has the same value it was
assigned in initialize_options().

	
Command.run()

	A command’s raison d’etre: carry out the action it exists to perform, controlled
by the options initialized in initialize_options(), customized by other
commands, the setup script, the command-line, and config files, and finalized in
finalize_options(). All terminal output and filesystem interaction should
be done by run().

	
Command.sub_commands

	sub_commands formalizes the notion of a “family” of commands,
e.g. install as the parent with sub-commands install_lib,
install_headers, etc. The parent of a family of commands defines
sub_commands as a class attribute; it’s a list of 2-tuples (command_name,
predicate), with command_name a string and predicate a function, a
string or None. predicate is a method of the parent command that
determines whether the corresponding command is applicable in the current
situation. (E.g. install_headers is only applicable if we have any C
header files to install.) If predicate is None, that command is always
applicable.

sub_commands is usually defined at the end of a class, because
predicates can be methods of the class, so they must already have been
defined. The canonical example is the install command.

11.26. distutils.command — Individual Distutils commands

11.27. distutils.command.bdist — Build a binary installer

11.28. distutils.command.bdist_packager — Abstract base class for packagers

11.29. distutils.command.bdist_dumb — Build a “dumb” installer

11.30. distutils.command.bdist_msi — Build a Microsoft Installer binary package

	
class distutils.command.bdist_msi.bdist_msi(Command)

	Builds a Windows Installer [http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx] (.msi) binary package.

In most cases, the bdist_msi installer is a better choice than the
bdist_wininst installer, because it provides better support for
Win64 platforms, allows administrators to perform non-interactive
installations, and allows installation through group policies.

11.31. distutils.command.bdist_rpm — Build a binary distribution as a Redhat RPM and SRPM

11.32. distutils.command.bdist_wininst — Build a Windows installer

11.33. distutils.command.sdist — Build a source distribution

11.34. distutils.command.build — Build all files of a package

11.35. distutils.command.build_clib — Build any C libraries in a package

11.36. distutils.command.build_ext — Build any extensions in a package

11.37. distutils.command.build_py — Build the .py/.pyc files of a package

11.38. distutils.command.build_scripts — Build the scripts of a package

11.39. distutils.command.clean — Clean a package build area

11.40. distutils.command.config — Perform package configuration

11.41. distutils.command.install — Install a package

11.42. distutils.command.install_data — Install data files from a package

11.43. distutils.command.install_headers — Install C/C++ header files from a package

11.44. distutils.command.install_lib — Install library files from a package

11.45. distutils.command.install_scripts — Install script files from a package

11.46. distutils.command.register — Register a module with the Python Package Index

The register command registers the package with the Python Package Index.
This is described in more detail in PEP 301 [http://www.python.org/dev/peps/pep-0301].

11.47. distutils.command.check — Check the meta-data of a package

The check command performs some tests on the meta-data of a package.
For example, it verifies that all required meta-data are provided as
the arguments passed to the setup() function.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Installing Python Modules

	Author:	Greg Ward

	Release:	2.7

	Date:	November 07, 2013

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the
end-user’s point-of-view, describing how to extend the capabilities of a
standard Python installation by building and installing third-party Python
modules and extensions.

Introduction

Although Python’s extensive standard library covers many programming needs,
there often comes a time when you need to add some new functionality to your
Python installation in the form of third-party modules. This might be necessary
to support your own programming, or to support an application that you want to
use and that happens to be written in Python.

In the past, there has been little support for adding third-party modules to an
existing Python installation. With the introduction of the Python Distribution
Utilities (Distutils for short) in Python 2.0, this changed.

This document is aimed primarily at the people who need to install third-party
Python modules: end-users and system administrators who just need to get some
Python application running, and existing Python programmers who want to add some
new goodies to their toolbox. You don’t need to know Python to read this
document; there will be some brief forays into using Python’s interactive mode
to explore your installation, but that’s it. If you’re looking for information
on how to distribute your own Python modules so that others may use them, see
the Distributing Python Modules manual.

Best case: trivial installation

In the best case, someone will have prepared a special version of the module
distribution you want to install that is targeted specifically at your platform
and is installed just like any other software on your platform. For example,
the module developer might make an executable installer available for Windows
users, an RPM package for users of RPM-based Linux systems (Red Hat, SuSE,
Mandrake, and many others), a Debian package for users of Debian-based Linux
systems, and so forth.

In that case, you would download the installer appropriate to your platform and
do the obvious thing with it: run it if it’s an executable installer, rpm
--install it if it’s an RPM, etc. You don’t need to run Python or a setup
script, you don’t need to compile anything—you might not even need to read any
instructions (although it’s always a good idea to do so anyways).

Of course, things will not always be that easy. You might be interested in a
module distribution that doesn’t have an easy-to-use installer for your
platform. In that case, you’ll have to start with the source distribution
released by the module’s author/maintainer. Installing from a source
distribution is not too hard, as long as the modules are packaged in the
standard way. The bulk of this document is about building and installing
modules from standard source distributions.

The new standard: Distutils

If you download a module source distribution, you can tell pretty quickly if it
was packaged and distributed in the standard way, i.e. using the Distutils.
First, the distribution’s name and version number will be featured prominently
in the name of the downloaded archive, e.g. foo-1.0.tar.gz or
widget-0.9.7.zip. Next, the archive will unpack into a similarly-named
directory: foo-1.0 or widget-0.9.7. Additionally, the
distribution will contain a setup script setup.py, and a file named
README.txt or possibly just README, which should explain that
building and installing the module distribution is a simple matter of running

python setup.py install

If all these things are true, then you already know how to build and install the
modules you’ve just downloaded: Run the command above. Unless you need to
install things in a non-standard way or customize the build process, you don’t
really need this manual. Or rather, the above command is everything you need to
get out of this manual.

Standard Build and Install

As described in section The new standard: Distutils, building and installing a module
distribution using the Distutils is usually one simple command:

python setup.py install

On Unix, you’d run this command from a shell prompt; on Windows, you have to
open a command prompt window (“DOS box”) and do it there; on Mac OS X, you open
a Terminal window to get a shell prompt.

Platform variations

You should always run the setup command from the distribution root directory,
i.e. the top-level subdirectory that the module source distribution unpacks
into. For example, if you’ve just downloaded a module source distribution
foo-1.0.tar.gz onto a Unix system, the normal thing to do is:

gunzip -c foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0
cd foo-1.0
python setup.py install

On Windows, you’d probably download foo-1.0.zip. If you downloaded the
archive file to C:\Temp, then it would unpack into
C:\Temp\foo-1.0; you can use either a archive manipulator with a
graphical user interface (such as WinZip) or a command-line tool (such as
unzip or pkunzip) to unpack the archive. Then, open a
command prompt window (“DOS box”), and run:

cd c:\Temp\foo-1.0
python setup.py install

Splitting the job up

Running setup.py install builds and installs all modules in one run. If you
prefer to work incrementally—especially useful if you want to customize the
build process, or if things are going wrong—you can use the setup script to do
one thing at a time. This is particularly helpful when the build and install
will be done by different users—for example, you might want to build a module
distribution and hand it off to a system administrator for installation (or do
it yourself, with super-user privileges).

For example, you can build everything in one step, and then install everything
in a second step, by invoking the setup script twice:

python setup.py build
python setup.py install

If you do this, you will notice that running the install command
first runs the build command, which—in this case—quickly notices
that it has nothing to do, since everything in the build directory is
up-to-date.

You may not need this ability to break things down often if all you do is
install modules downloaded off the ‘net, but it’s very handy for more advanced
tasks. If you get into distributing your own Python modules and extensions,
you’ll run lots of individual Distutils commands on their own.

How building works

As implied above, the build command is responsible for putting the
files to install into a build directory. By default, this is build
under the distribution root; if you’re excessively concerned with speed, or want
to keep the source tree pristine, you can change the build directory with the
--build-base option. For example:

python setup.py build --build-base=/tmp/pybuild/foo-1.0

(Or you could do this permanently with a directive in your system or personal
Distutils configuration file; see section Distutils Configuration Files.) Normally, this
isn’t necessary.

The default layout for the build tree is as follows:

--- build/ --- lib/
or
--- build/ --- lib.<plat>/
 temp.<plat>/

where <plat> expands to a brief description of the current OS/hardware
platform and Python version. The first form, with just a lib directory,
is used for “pure module distributions”—that is, module distributions that
include only pure Python modules. If a module distribution contains any
extensions (modules written in C/C++), then the second form, with two <plat>
directories, is used. In that case, the temp.plat directory holds
temporary files generated by the compile/link process that don’t actually get
installed. In either case, the lib (or lib.plat) directory
contains all Python modules (pure Python and extensions) that will be installed.

In the future, more directories will be added to handle Python scripts,
documentation, binary executables, and whatever else is needed to handle the job
of installing Python modules and applications.

How installation works

After the build command runs (whether you run it explicitly, or the
install command does it for you), the work of the install
command is relatively simple: all it has to do is copy everything under
build/lib (or build/lib.plat) to your chosen installation
directory.

If you don’t choose an installation directory—i.e., if you just run setup.py
install—then the install command installs to the standard
location for third-party Python modules. This location varies by platform and
by how you built/installed Python itself. On Unix (and Mac OS X, which is also
Unix-based), it also depends on whether the module distribution being installed
is pure Python or contains extensions (“non-pure”):

	Platform
	Standard installation location
	Default value
	Notes

	Unix (pure)
	prefix/lib/pythonX.Y/site-packages
	/usr/local/lib/pythonX.Y/site-packages
	(1)

	Unix (non-pure)
	exec-prefix/lib/pythonX.Y/site-packages
	/usr/local/lib/pythonX.Y/site-packages
	(1)

	Windows
	prefix\Lib\site-packages
	C:\PythonXY\Lib\site-packages
	(2)

Notes:

	Most Linux distributions include Python as a standard part of the system, so
prefix and exec-prefix are usually both /usr on
Linux. If you build Python yourself on Linux (or any Unix-like system), the
default prefix and exec-prefix are /usr/local.

	The default installation directory on Windows was C:\Program
Files\Python under Python 1.6a1, 1.5.2, and earlier.

prefix and exec-prefix stand for the directories that Python
is installed to, and where it finds its libraries at run-time. They are always
the same under Windows, and very often the same under Unix and Mac OS X. You
can find out what your Python installation uses for prefix and
exec-prefix by running Python in interactive mode and typing a few
simple commands. Under Unix, just type python at the shell prompt. Under
Windows, choose Start ‣ Programs ‣ Python X.Y ‣
Python (command line). Once the interpreter is started, you type Python code
at the prompt. For example, on my Linux system, I type the three Python
statements shown below, and get the output as shown, to find out my
prefix and exec-prefix:

Python 2.4 (#26, Aug 7 2004, 17:19:02)
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.prefix
'/usr'
>>> sys.exec_prefix
'/usr'

If you don’t want to install modules to the standard location, or if you don’t
have permission to write there, then you need to read about alternate
installations in section Alternate Installation. If you want to customize your
installation directories more heavily, see section Custom Installation on
custom installations.

Alternate Installation

Often, it is necessary or desirable to install modules to a location other than
the standard location for third-party Python modules. For example, on a Unix
system you might not have permission to write to the standard third-party module
directory. Or you might wish to try out a module before making it a standard
part of your local Python installation. This is especially true when upgrading
a distribution already present: you want to make sure your existing base of
scripts still works with the new version before actually upgrading.

The Distutils install command is designed to make installing module
distributions to an alternate location simple and painless. The basic idea is
that you supply a base directory for the installation, and the
install command picks a set of directories (called an installation
scheme) under this base directory in which to install files. The details
differ across platforms, so read whichever of the following sections applies to
you.

Alternate installation: the home scheme

The idea behind the “home scheme” is that you build and maintain a personal
stash of Python modules. This scheme’s name is derived from the idea of a
“home” directory on Unix, since it’s not unusual for a Unix user to make their
home directory have a layout similar to /usr/ or /usr/local/.
This scheme can be used by anyone, regardless of the operating system they
are installing for.

Installing a new module distribution is as simple as

python setup.py install --home=<dir>

where you can supply any directory you like for the --home option. On
Unix, lazy typists can just type a tilde (~); the install command
will expand this to your home directory:

python setup.py install --home=~

The --home option defines the installation base directory. Files are
installed to the following directories under the installation base as follows:

	Type of file
	Installation Directory
	Override option

	pure module distribution
	home/lib/python
	--install-purelib

	non-pure module distribution
	home/lib/python
	--install-platlib

	scripts
	home/bin
	--install-scripts

	data
	home/share
	--install-data

Changed in version 2.4: The --home option used to be supported only on Unix.

Alternate installation: Unix (the prefix scheme)

The “prefix scheme” is useful when you wish to use one Python installation to
perform the build/install (i.e., to run the setup script), but install modules
into the third-party module directory of a different Python installation (or
something that looks like a different Python installation). If this sounds a
trifle unusual, it is—that’s why the “home scheme” comes first. However,
there are at least two known cases where the prefix scheme will be useful.

First, consider that many Linux distributions put Python in /usr, rather
than the more traditional /usr/local. This is entirely appropriate,
since in those cases Python is part of “the system” rather than a local add-on.
However, if you are installing Python modules from source, you probably want
them to go in /usr/local/lib/python2.X rather than
/usr/lib/python2.X. This can be done with

/usr/bin/python setup.py install --prefix=/usr/local

Another possibility is a network filesystem where the name used to write to a
remote directory is different from the name used to read it: for example, the
Python interpreter accessed as /usr/local/bin/python might search for
modules in /usr/local/lib/python2.X, but those modules would have to
be installed to, say, /mnt/@server/export/lib/python2.X. This could
be done with

/usr/local/bin/python setup.py install --prefix=/mnt/@server/export

In either case, the --prefix option defines the installation base, and
the --exec-prefix option defines the platform-specific installation
base, which is used for platform-specific files. (Currently, this just means
non-pure module distributions, but could be expanded to C libraries, binary
executables, etc.) If --exec-prefix is not supplied, it defaults to
--prefix. Files are installed as follows:

	Type of file
	Installation Directory
	Override option

	pure module distribution
	prefix/lib/pythonX.Y/site-packages
	--install-purelib

	non-pure module distribution
	exec-prefix/lib/pythonX.Y/site-packages
	--install-platlib

	scripts
	prefix/bin
	--install-scripts

	data
	prefix/share
	--install-data

There is no requirement that --prefix or --exec-prefix
actually point to an alternate Python installation; if the directories listed
above do not already exist, they are created at installation time.

Incidentally, the real reason the prefix scheme is important is simply that a
standard Unix installation uses the prefix scheme, but with --prefix
and --exec-prefix supplied by Python itself as sys.prefix and
sys.exec_prefix. Thus, you might think you’ll never use the prefix scheme,
but every time you run python setup.py install without any other options,
you’re using it.

Note that installing extensions to an alternate Python installation has no
effect on how those extensions are built: in particular, the Python header files
(Python.h and friends) installed with the Python interpreter used to run
the setup script will be used in compiling extensions. It is your
responsibility to ensure that the interpreter used to run extensions installed
in this way is compatible with the interpreter used to build them. The best way
to do this is to ensure that the two interpreters are the same version of Python
(possibly different builds, or possibly copies of the same build). (Of course,
if your --prefix and --exec-prefix don’t even point to an
alternate Python installation, this is immaterial.)

Alternate installation: Windows (the prefix scheme)

Windows has no concept of a user’s home directory, and since the standard Python
installation under Windows is simpler than under Unix, the --prefix
option has traditionally been used to install additional packages in separate
locations on Windows.

python setup.py install --prefix="\Temp\Python"

to install modules to the \Temp\Python directory on the current drive.

The installation base is defined by the --prefix option; the
--exec-prefix option is not supported under Windows. Files are
installed as follows:

	Type of file
	Installation Directory
	Override option

	pure module distribution
	prefix
	--install-purelib

	non-pure module distribution
	prefix
	--install-platlib

	scripts
	prefix\Scripts
	--install-scripts

	data
	prefix\Data
	--install-data

Custom Installation

Sometimes, the alternate installation schemes described in section
Alternate Installation just don’t do what you want. You might want to tweak just
one or two directories while keeping everything under the same base directory,
or you might want to completely redefine the installation scheme. In either
case, you’re creating a custom installation scheme.

You probably noticed the column of “override options” in the tables describing
the alternate installation schemes above. Those options are how you define a
custom installation scheme. These override options can be relative, absolute,
or explicitly defined in terms of one of the installation base directories.
(There are two installation base directories, and they are normally the same—
they only differ when you use the Unix “prefix scheme” and supply different
--prefix and --exec-prefix options.)

For example, say you’re installing a module distribution to your home directory
under Unix—but you want scripts to go in ~/scripts rather than
~/bin. As you might expect, you can override this directory with the
--install-scripts option; in this case, it makes most sense to supply
a relative path, which will be interpreted relative to the installation base
directory (your home directory, in this case):

python setup.py install --home=~ --install-scripts=scripts

Another Unix example: suppose your Python installation was built and installed
with a prefix of /usr/local/python, so under a standard installation
scripts will wind up in /usr/local/python/bin. If you want them in
/usr/local/bin instead, you would supply this absolute directory for the
--install-scripts option:

python setup.py install --install-scripts=/usr/local/bin

(This performs an installation using the “prefix scheme,” where the prefix is
whatever your Python interpreter was installed with— /usr/local/python
in this case.)

If you maintain Python on Windows, you might want third-party modules to live in
a subdirectory of prefix, rather than right in prefix
itself. This is almost as easy as customizing the script installation directory
—you just have to remember that there are two types of modules to worry about,
pure modules and non-pure modules (i.e., modules from a non-pure distribution).
For example:

python setup.py install --install-purelib=Site --install-platlib=Site

The specified installation directories are relative to prefix. Of
course, you also have to ensure that these directories are in Python’s module
search path, such as by putting a .pth file in prefix. See
section Modifying Python’s Search Path to find out how to modify Python’s search path.

If you want to define an entire installation scheme, you just have to supply all
of the installation directory options. The recommended way to do this is to
supply relative paths; for example, if you want to maintain all Python
module-related files under python in your home directory, and you want a
separate directory for each platform that you use your home directory from, you
might define the following installation scheme:

python setup.py install --home=~ \
 --install-purelib=python/lib \
 --install-platlib=python/lib.$PLAT \
 --install-scripts=python/scripts
 --install-data=python/data

or, equivalently,

python setup.py install --home=~/python \
 --install-purelib=lib \
 --install-platlib='lib.$PLAT' \
 --install-scripts=scripts
 --install-data=data

$PLAT is not (necessarily) an environment variable—it will be expanded by
the Distutils as it parses your command line options, just as it does when
parsing your configuration file(s).

Obviously, specifying the entire installation scheme every time you install a
new module distribution would be very tedious. Thus, you can put these options
into your Distutils config file (see section Distutils Configuration Files):

[install]
install-base=$HOME
install-purelib=python/lib
install-platlib=python/lib.$PLAT
install-scripts=python/scripts
install-data=python/data

or, equivalently,

[install]
install-base=$HOME/python
install-purelib=lib
install-platlib=lib.$PLAT
install-scripts=scripts
install-data=data

Note that these two are not equivalent if you supply a different installation
base directory when you run the setup script. For example,

python setup.py install --install-base=/tmp

would install pure modules to /tmp/python/lib in the first case, and
to /tmp/lib in the second case. (For the second case, you probably
want to supply an installation base of /tmp/python.)

You probably noticed the use of $HOME and $PLAT in the sample
configuration file input. These are Distutils configuration variables, which
bear a strong resemblance to environment variables. In fact, you can use
environment variables in config files on platforms that have such a notion but
the Distutils additionally define a few extra variables that may not be in your
environment, such as $PLAT. (And of course, on systems that don’t have
environment variables, such as Mac OS 9, the configuration variables supplied by
the Distutils are the only ones you can use.) See section Distutils Configuration Files
for details.

Modifying Python’s Search Path

When the Python interpreter executes an import statement, it searches
for both Python code and extension modules along a search path. A default value
for the path is configured into the Python binary when the interpreter is built.
You can determine the path by importing the sys module and printing the
value of sys.path.

$ python
Python 2.2 (#11, Oct 3 2002, 13:31:27)
[GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-112)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.path
['', '/usr/local/lib/python2.3', '/usr/local/lib/python2.3/plat-linux2',
 '/usr/local/lib/python2.3/lib-tk', '/usr/local/lib/python2.3/lib-dynload',
 '/usr/local/lib/python2.3/site-packages']
>>>

The null string in sys.path represents the current working directory.

The expected convention for locally installed packages is to put them in the
.../site-packages/ directory, but you may want to install Python
modules into some arbitrary directory. For example, your site may have a
convention of keeping all software related to the web server under /www.
Add-on Python modules might then belong in /www/python, and in order to
import them, this directory must be added to sys.path. There are several
different ways to add the directory.

The most convenient way is to add a path configuration file to a directory
that’s already on Python’s path, usually to the .../site-packages/
directory. Path configuration files have an extension of .pth, and each
line must contain a single path that will be appended to sys.path. (Because
the new paths are appended to sys.path, modules in the added directories
will not override standard modules. This means you can’t use this mechanism for
installing fixed versions of standard modules.)

Paths can be absolute or relative, in which case they’re relative to the
directory containing the .pth file. See the documentation of
the site module for more information.

A slightly less convenient way is to edit the site.py file in Python’s
standard library, and modify sys.path. site.py is automatically
imported when the Python interpreter is executed, unless the -S switch
is supplied to suppress this behaviour. So you could simply edit
site.py and add two lines to it:

import sys
sys.path.append('/www/python/')

However, if you reinstall the same major version of Python (perhaps when
upgrading from 2.2 to 2.2.2, for example) site.py will be overwritten by
the stock version. You’d have to remember that it was modified and save a copy
before doing the installation.

There are two environment variables that can modify sys.path.
PYTHONHOME sets an alternate value for the prefix of the Python
installation. For example, if PYTHONHOME is set to /www/python,
the search path will be set to ['', '/www/python/lib/pythonX.Y/',
'/www/python/lib/pythonX.Y/plat-linux2', ...].

The PYTHONPATH variable can be set to a list of paths that will be
added to the beginning of sys.path. For example, if PYTHONPATH is
set to /www/python:/opt/py, the search path will begin with
['/www/python', '/opt/py']. (Note that directories must exist in order to
be added to sys.path; the site module removes paths that don’t
exist.)

Finally, sys.path is just a regular Python list, so any Python application
can modify it by adding or removing entries.

Distutils Configuration Files

As mentioned above, you can use Distutils configuration files to record personal
or site preferences for any Distutils options. That is, any option to any
command can be stored in one of two or three (depending on your platform)
configuration files, which will be consulted before the command-line is parsed.
This means that configuration files will override default values, and the
command-line will in turn override configuration files. Furthermore, if
multiple configuration files apply, values from “earlier” files are overridden
by “later” files.

Location and names of config files

The names and locations of the configuration files vary slightly across
platforms. On Unix and Mac OS X, the three configuration files (in the order
they are processed) are:

	Type of file
	Location and filename
	Notes

	system
	prefix/lib/pythonver/distutils/distutils.cfg
	(1)

	personal
	$HOME/.pydistutils.cfg
	(2)

	local
	setup.cfg
	(3)

And on Windows, the configuration files are:

	Type of file
	Location and filename
	Notes

	system
	prefix\Lib\distutils\distutils.cfg
	(4)

	personal
	%HOME%\pydistutils.cfg
	(5)

	local
	setup.cfg
	(3)

On all platforms, the “personal” file can be temporarily disabled by
passing the –no-user-cfg option.

Notes:

	Strictly speaking, the system-wide configuration file lives in the directory
where the Distutils are installed; under Python 1.6 and later on Unix, this is
as shown. For Python 1.5.2, the Distutils will normally be installed to
prefix/lib/python1.5/site-packages/distutils, so the system
configuration file should be put there under Python 1.5.2.

	On Unix, if the HOME environment variable is not defined, the user’s
home directory will be determined with the getpwuid() function from the
standard pwd module. This is done by the os.path.expanduser()
function used by Distutils.

	I.e., in the current directory (usually the location of the setup script).

	(See also note (1).) Under Python 1.6 and later, Python’s default “installation
prefix” is C:\Python, so the system configuration file is normally
C:\Python\Lib\distutils\distutils.cfg. Under Python 1.5.2, the
default prefix was C:\Program Files\Python, and the Distutils were not
part of the standard library—so the system configuration file would be
C:\Program Files\Python\distutils\distutils.cfg in a standard Python
1.5.2 installation under Windows.

	On Windows, if the HOME environment variable is not defined,
USERPROFILE then HOMEDRIVE and HOMEPATH will
be tried. This is done by the os.path.expanduser() function used
by Distutils.

Syntax of config files

The Distutils configuration files all have the same syntax. The config files
are grouped into sections. There is one section for each Distutils command,
plus a global section for global options that affect every command. Each
section consists of one option per line, specified as option=value.

For example, the following is a complete config file that just forces all
commands to run quietly by default:

[global]
verbose=0

If this is installed as the system config file, it will affect all processing of
any Python module distribution by any user on the current system. If it is
installed as your personal config file (on systems that support them), it will
affect only module distributions processed by you. And if it is used as the
setup.cfg for a particular module distribution, it affects only that
distribution.

You could override the default “build base” directory and make the
build* commands always forcibly rebuild all files with the
following:

[build]
build-base=blib
force=1

which corresponds to the command-line arguments

python setup.py build --build-base=blib --force

except that including the build command on the command-line means
that command will be run. Including a particular command in config files has no
such implication; it only means that if the command is run, the options in the
config file will apply. (Or if other commands that derive values from it are
run, they will use the values in the config file.)

You can find out the complete list of options for any command using the
--help option, e.g.:

python setup.py build --help

and you can find out the complete list of global options by using
--help without a command:

python setup.py --help

See also the “Reference” section of the “Distributing Python Modules” manual.

Building Extensions: Tips and Tricks

Whenever possible, the Distutils try to use the configuration information made
available by the Python interpreter used to run the setup.py script.
For example, the same compiler and linker flags used to compile Python will also
be used for compiling extensions. Usually this will work well, but in
complicated situations this might be inappropriate. This section discusses how
to override the usual Distutils behaviour.

Tweaking compiler/linker flags

Compiling a Python extension written in C or C++ will sometimes require
specifying custom flags for the compiler and linker in order to use a particular
library or produce a special kind of object code. This is especially true if the
extension hasn’t been tested on your platform, or if you’re trying to
cross-compile Python.

In the most general case, the extension author might have foreseen that
compiling the extensions would be complicated, and provided a Setup file
for you to edit. This will likely only be done if the module distribution
contains many separate extension modules, or if they often require elaborate
sets of compiler flags in order to work.

A Setup file, if present, is parsed in order to get a list of extensions
to build. Each line in a Setup describes a single module. Lines have
the following structure:

module ... [sourcefile ...] [cpparg ...] [library ...]

Let’s examine each of the fields in turn.

	module is the name of the extension module to be built, and should be a
valid Python identifier. You can’t just change this in order to rename a module
(edits to the source code would also be needed), so this should be left alone.

	sourcefile is anything that’s likely to be a source code file, at least
judging by the filename. Filenames ending in .c are assumed to be
written in C, filenames ending in .C, .cc, and .c++ are
assumed to be C++, and filenames ending in .m or .mm are assumed
to be in Objective C.

	cpparg is an argument for the C preprocessor, and is anything starting with
-I, -D, -U or -C.

	library is anything ending in .a or beginning with -l or
-L.

If a particular platform requires a special library on your platform, you can
add it by editing the Setup file and running python setup.py build.
For example, if the module defined by the line

foo foomodule.c

must be linked with the math library libm.a on your platform, simply add
-lm to the line:

foo foomodule.c -lm

Arbitrary switches intended for the compiler or the linker can be supplied with
the -Xcompiler arg and -Xlinker arg options:

foo foomodule.c -Xcompiler -o32 -Xlinker -shared -lm

The next option after -Xcompiler and -Xlinker will be
appended to the proper command line, so in the above example the compiler will
be passed the -o32 option, and the linker will be passed
-shared. If a compiler option requires an argument, you’ll have to
supply multiple -Xcompiler options; for example, to pass -x c++
the Setup file would have to contain -Xcompiler -x -Xcompiler c++.

Compiler flags can also be supplied through setting the CFLAGS
environment variable. If set, the contents of CFLAGS will be added to
the compiler flags specified in the Setup file.

Using non-Microsoft compilers on Windows

Borland/CodeGear C++

This subsection describes the necessary steps to use Distutils with the Borland
C++ compiler version 5.5. First you have to know that Borland’s object file
format (OMF) is different from the format used by the Python version you can
download from the Python or ActiveState Web site. (Python is built with
Microsoft Visual C++, which uses COFF as the object file format.) For this
reason you have to convert Python’s library python25.lib into the
Borland format. You can do this as follows:

coff2omf python25.lib python25_bcpp.lib

The coff2omf program comes with the Borland compiler. The file
python25.lib is in the Libs directory of your Python
installation. If your extension uses other libraries (zlib, ...) you have to
convert them too.

The converted files have to reside in the same directories as the normal
libraries.

How does Distutils manage to use these libraries with their changed names? If
the extension needs a library (eg. foo) Distutils checks first if it
finds a library with suffix _bcpp (eg. foo_bcpp.lib) and then
uses this library. In the case it doesn’t find such a special library it uses
the default name (foo.lib.) [1]

To let Distutils compile your extension with Borland C++ you now have to type:

python setup.py build --compiler=bcpp

If you want to use the Borland C++ compiler as the default, you could specify
this in your personal or system-wide configuration file for Distutils (see
section Distutils Configuration Files.)

See also

	C++Builder Compiler [http://www.codegear.com/downloads/free/cppbuilder]

	Information about the free C++ compiler from Borland, including links to the
download pages.

	Creating Python Extensions Using Borland’s Free Compiler [http://www.cyberus.ca/~g_will/pyExtenDL.shtml]

	Document describing how to use Borland’s free command-line C++ compiler to build
Python.

GNU C / Cygwin / MinGW

This section describes the necessary steps to use Distutils with the GNU C/C++
compilers in their Cygwin and MinGW distributions. [2] For a Python interpreter
that was built with Cygwin, everything should work without any of these
following steps.

Not all extensions can be built with MinGW or Cygwin, but many can. Extensions
most likely to not work are those that use C++ or depend on Microsoft Visual C
extensions.

To let Distutils compile your extension with Cygwin you have to type:

python setup.py build --compiler=cygwin

and for Cygwin in no-cygwin mode [3] or for MinGW type:

python setup.py build --compiler=mingw32

If you want to use any of these options/compilers as default, you should
consider writing it in your personal or system-wide configuration file for
Distutils (see section Distutils Configuration Files.)

Older Versions of Python and MinGW

The following instructions only apply if you’re using a version of Python
inferior to 2.4.1 with a MinGW inferior to 3.0.0 (with
binutils-2.13.90-20030111-1).

These compilers require some special libraries. This task is more complex than
for Borland’s C++, because there is no program to convert the library. First
you have to create a list of symbols which the Python DLL exports. (You can find
a good program for this task at
http://www.emmestech.com/software/pexports-0.43/download_pexports.html).

pexports python25.dll >python25.def

The location of an installed python25.dll will depend on the
installation options and the version and language of Windows. In a “just for
me” installation, it will appear in the root of the installation directory. In
a shared installation, it will be located in the system directory.

Then you can create from these information an import library for gcc.

/cygwin/bin/dlltool --dllname python25.dll --def python25.def --output-lib libpython25.a

The resulting library has to be placed in the same directory as
python25.lib. (Should be the libs directory under your Python
installation directory.)

If your extension uses other libraries (zlib,...) you might have to convert
them too. The converted files have to reside in the same directories as the
normal libraries do.

See also

	Building Python modules on MS Windows platform with MinGW [http://www.zope.org/Members/als/tips/win32_mingw_modules]

	Information about building the required libraries for the MinGW environment.

Footnotes

	[1]	This also means you could replace all existing COFF-libraries with OMF-libraries
of the same name.

	[2]	Check http://sources.redhat.com/cygwin/ and http://www.mingw.org/ for more
information

	[3]	Then you have no POSIX emulation available, but you also don’t need
cygwin1.dll.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Documenting Python

The Python language has a substantial body of documentation, much of it
contributed by various authors. The markup used for the Python documentation is
reStructuredText [http://docutils.sf.net/rst.html], developed by the docutils [http://docutils.sf.net/] project, amended by custom
directives and using a toolset named Sphinx [http://sphinx.pocoo.org/] to postprocess the HTML output.

This document describes the style guide for our documentation as well as the
custom reStructuredText markup introduced by Sphinx to support Python
documentation and how it should be used.

Note

If you’re interested in contributing to Python’s documentation, there’s no
need to write reStructuredText if you’re not so inclined; plain text
contributions are more than welcome as well. Send an e-mail to
docs@python.org or open an issue on the tracker.

	1. Introduction

	2. Style Guide

	3. reStructuredText Primer

	4. Additional Markup Constructs

	5. Differences to the LaTeX markup

	6. Building the documentation

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Documenting Python

1. Introduction

Python’s documentation has long been considered to be good for a free
programming language. There are a number of reasons for this, the most
important being the early commitment of Python’s creator, Guido van Rossum, to
providing documentation on the language and its libraries, and the continuing
involvement of the user community in providing assistance for creating and
maintaining documentation.

The involvement of the community takes many forms, from authoring to bug reports
to just plain complaining when the documentation could be more complete or
easier to use.

This document is aimed at authors and potential authors of documentation for
Python. More specifically, it is for people contributing to the standard
documentation and developing additional documents using the same tools as the
standard documents. This guide will be less useful for authors using the Python
documentation tools for topics other than Python, and less useful still for
authors not using the tools at all.

If your interest is in contributing to the Python documentation, but you don’t
have the time or inclination to learn reStructuredText and the markup structures
documented here, there’s a welcoming place for you among the Python contributors
as well. Any time you feel that you can clarify existing documentation or
provide documentation that’s missing, the existing documentation team will
gladly work with you to integrate your text, dealing with the markup for you.
Please don’t let the material in this document stand between the documentation
and your desire to help out!

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Documenting Python

2. Style Guide

The Python documentation should follow the Apple Publications Style Guide [http://developer.apple.com/mac/library/documentation/UserExperience/Conceptual/APStyleGuide/APSG_2009.pdf]
wherever possible. This particular style guide was selected mostly because it
seems reasonable and is easy to get online.

Topics which are not covered in Apple’s style guide will be discussed in
this document.

All reST files use an indentation of 3 spaces. The maximum line length is 80
characters for normal text, but tables, deeply indented code samples and long
links may extend beyond that.

Make generous use of blank lines where applicable; they help grouping things
together.

A sentence-ending period may be followed by one or two spaces; while reST
ignores the second space, it is customarily put in by some users, for example
to aid Emacs’ auto-fill mode.

Footnotes are generally discouraged, though they may be used when they are the
best way to present specific information. When a footnote reference is added at
the end of the sentence, it should follow the sentence-ending punctuation. The
reST markup should appear something like this:

This sentence has a footnote reference. [#]_ This is the next sentence.

Footnotes should be gathered at the end of a file, or if the file is very long,
at the end of a section. The docutils will automatically create backlinks to
the footnote reference.

Footnotes may appear in the middle of sentences where appropriate.

Many special names are used in the Python documentation, including the names of
operating systems, programming languages, standards bodies, and the like. Most
of these entities are not assigned any special markup, but the preferred
spellings are given here to aid authors in maintaining the consistency of
presentation in the Python documentation.

Other terms and words deserve special mention as well; these conventions should
be used to ensure consistency throughout the documentation:

	CPU

	For “central processing unit.” Many style guides say this should be spelled
out on the first use (and if you must use it, do so!). For the Python
documentation, this abbreviation should be avoided since there’s no
reasonable way to predict which occurrence will be the first seen by the
reader. It is better to use the word “processor” instead.

	POSIX

	The name assigned to a particular group of standards. This is always
uppercase.

	Python

	The name of our favorite programming language is always capitalized.

	Unicode

	The name of a character set and matching encoding. This is always written
capitalized.

	Unix

	The name of the operating system developed at AT&T Bell Labs in the early
1970s.

2.1. Affirmative Tone

The documentation focuses on affirmatively stating what the language does and
how to use it effectively.

Except for certain security risks or segfault risks, the docs should avoid
wording along the lines of “feature x is dangerous” or “experts only”. These
kinds of value judgments belong in external blogs and wikis, not in the core
documentation.

Bad example (creating worry in the mind of a reader):

Warning: failing to explicitly close a file could result in lost data or
excessive resource consumption. Never rely on reference counting to
automatically close a file.

Good example (establishing confident knowledge in the effective use of the language):

A best practice for using files is use a try/finally pair to explicitly
close a file after it is used. Alternatively, using a with-statement can
achieve the same effect. This assures that files are flushed and file
descriptor resources are released in a timely manner.

2.2. Economy of Expression

More documentation is not necessarily better documentation. Err on the side
of being succinct.

It is an unfortunate fact that making documentation longer can be an impediment
to understanding and can result in even more ways to misread or misinterpret the
text. Long descriptions full of corner cases and caveats can create the
impression that a function is more complex or harder to use than it actually is.

The documentation for super() is an example of where a good deal of
information was condensed into a few short paragraphs. Discussion of
super() could have filled a chapter in a book, but it is often easier to
grasp a terse description than a lengthy narrative.

2.3. Code Examples

Short code examples can be a useful adjunct to understanding. Readers can often
grasp a simple example more quickly than they can digest a formal description in
prose.

People learn faster with concrete, motivating examples that match the context of
a typical use case. For instance, the str.rpartition() method is better
demonstrated with an example splitting the domain from a URL than it would be
with an example of removing the last word from a line of Monty Python dialog.

The ellipsis for the sys.ps2 secondary interpreter prompt should only be
used sparingly, where it is necessary to clearly differentiate between input
lines and output lines. Besides contributing visual clutter, it makes it
difficult for readers to cut-and-paste examples so they can experiment with
variations.

2.4. Code Equivalents

Giving pure Python code equivalents (or approximate equivalents) can be a useful
adjunct to a prose description. A documenter should carefully weigh whether the
code equivalent adds value.

A good example is the code equivalent for all(). The short 4-line code
equivalent is easily digested; it re-emphasizes the early-out behavior; and it
clarifies the handling of the corner-case where the iterable is empty. In
addition, it serves as a model for people wanting to implement a commonly
requested alternative where all() would return the specific object
evaluating to False whenever the function terminates early.

A more questionable example is the code for itertools.groupby(). Its code
equivalent borders on being too complex to be a quick aid to understanding.
Despite its complexity, the code equivalent was kept because it serves as a
model to alternative implementations and because the operation of the “grouper”
is more easily shown in code than in English prose.

An example of when not to use a code equivalent is for the oct() function.
The exact steps in converting a number to octal doesn’t add value for a user
trying to learn what the function does.

2.5. Audience

The tone of the tutorial (and all the docs) needs to be respectful of the
reader’s intelligence. Don’t presume that the readers are stupid. Lay out the
relevant information, show motivating use cases, provide glossary links, and do
your best to connect the dots, but don’t talk down to them or waste their time.

The tutorial is meant for newcomers, many of whom will be using the tutorial to
evaluate the language as a whole. The experience needs to be positive and not
leave the reader with worries that something bad will happen if they make a
misstep. The tutorial serves as guide for intelligent and curious readers,
saving details for the how-to guides and other sources.

Be careful accepting requests for documentation changes from the rare but vocal
category of reader who is looking for vindication for one of their programming
errors (“I made a mistake, therefore the docs must be wrong ...”). Typically,
the documentation wasn’t consulted until after the error was made. It is
unfortunate, but typically no documentation edit would have saved the user from
making false assumptions about the language (“I was surprised by ...”).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Documenting Python

3. reStructuredText Primer

This section is a brief introduction to reStructuredText (reST) concepts and
syntax, intended to provide authors with enough information to author documents
productively. Since reST was designed to be a simple, unobtrusive markup
language, this will not take too long.

See also

The authoritative reStructuredText User
Documentation [http://docutils.sourceforge.net/rst.html].

3.1. Paragraphs

The paragraph is the most basic block in a reST document. Paragraphs are simply
chunks of text separated by one or more blank lines. As in Python, indentation
is significant in reST, so all lines of the same paragraph must be left-aligned
to the same level of indentation.

3.2. Inline markup

The standard reST inline markup is quite simple: use

	one asterisk: *text* for emphasis (italics),

	two asterisks: **text** for strong emphasis (boldface), and

	backquotes: ``text`` for code samples.

If asterisks or backquotes appear in running text and could be confused with
inline markup delimiters, they have to be escaped with a backslash.

Be aware of some restrictions of this markup:

	it may not be nested,

	content may not start or end with whitespace: * text* is wrong,

	it must be separated from surrounding text by non-word characters. Use a
backslash escaped space to work around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

reST also allows for custom “interpreted text roles”’, which signify that the
enclosed text should be interpreted in a specific way. Sphinx uses this to
provide semantic markup and cross-referencing of identifiers, as described in
the appropriate section. The general syntax is :rolename:`content`.

3.3. Lists and Quotes

List markup is natural: just place an asterisk at the start of a paragraph and
indent properly. The same goes for numbered lists; they can also be
autonumbered using a # sign:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the
parent list items by blank lines:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

Definition lists are created as follows:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Paragraphs are quoted by just indenting them more than the surrounding
paragraphs.

3.4. Source Code

Literal code blocks are introduced by ending a paragraph with the special marker
::. The literal block must be indented:

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:

	If it occurs as a paragraph of its own, that paragraph is completely left
out of the document.

	If it is preceded by whitespace, the marker is removed.

	If it is preceded by non-whitespace, the marker is replaced by a single
colon.

That way, the second sentence in the above example’s first paragraph would be
rendered as “The next paragraph is a code sample:”.

3.5. Hyperlinks

3.5.1. External links

Use `Link text <http://target>`_ for inline web links. If the link text
should be the web address, you don’t need special markup at all, the parser
finds links and mail addresses in ordinary text.

3.5.2. Internal links

Internal linking is done via a special reST role, see the section on specific
markup, Cross-linking markup.

3.6. Sections

Section headers are created by underlining (and optionally overlining) the
section title with a punctuation character, at least as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the
structure is determined from the succession of headings. However, for the
Python documentation, we use this convention:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

3.7. Explicit Markup

“Explicit markup” is used in reST for most constructs that need special
handling, such as footnotes, specially-highlighted paragraphs, comments, and
generic directives.

An explicit markup block begins with a line starting with .. followed by
whitespace and is terminated by the next paragraph at the same level of
indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough
when you write it.)

3.8. Directives

A directive is a generic block of explicit markup. Besides roles, it is one of
the extension mechanisms of reST, and Sphinx makes heavy use of it.

Basically, a directive consists of a name, arguments, options and content. (Keep
this terminology in mind, it is used in the next chapter describing custom
directives.) Looking at this example,

.. function:: foo(x)
 foo(y, z)
 :bar: no

 Return a line of text input from the user.

function is the directive name. It is given two arguments here, the
remainder of the first line and the second line, as well as one option bar
(as you can see, options are given in the lines immediately following the
arguments and indicated by the colons).

The directive content follows after a blank line and is indented relative to the
directive start.

3.9. Footnotes

For footnotes, use [#]_ to mark the footnote location, and add the footnote
body at the bottom of the document after a “Footnotes” rubric heading, like so:

Lorem ipsum [#]_ dolor sit amet ... [#]_

.. rubric:: Footnotes

.. [#] Text of the first footnote.
.. [#] Text of the second footnote.

You can also explicitly number the footnotes for better context.

3.10. Comments

Every explicit markup block which isn’t a valid markup construct (like the
footnotes above) is regarded as a comment.

3.11. Source encoding

Since the easiest way to include special characters like em dashes or copyright
signs in reST is to directly write them as Unicode characters, one has to
specify an encoding:

All Python documentation source files must be in UTF-8 encoding, and the HTML
documents written from them will be in that encoding as well.

3.12. Gotchas

There are some problems one commonly runs into while authoring reST documents:

	Separation of inline markup: As said above, inline markup spans must be
separated from the surrounding text by non-word characters, you have to use
an escaped space to get around that.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Documenting Python

4. Additional Markup Constructs

Sphinx adds a lot of new directives and interpreted text roles to standard reST
markup. This section contains the reference material for these facilities.
Documentation for “standard” reST constructs is not included here, though
they are used in the Python documentation.

Note

This is just an overview of Sphinx’ extended markup capabilities; full
coverage can be found in its own documentation [http://sphinx.pocoo.org/contents.html].

4.1. Meta-information markup

	
sectionauthor

	Identifies the author of the current section. The argument should include
the author’s name such that it can be used for presentation (though it isn’t)
and email address. The domain name portion of the address should be lower
case. Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

Currently, this markup isn’t reflected in the output in any way, but it helps
keep track of contributions.

4.2. Module-specific markup

The markup described in this section is used to provide information about a
module being documented. Each module should be documented in its own file.
Normally this markup appears after the title heading of that file; a typical
file might start like this:

:mod:`parrot` -- Dead parrot access
===================================

.. module:: parrot
 :platform: Unix, Windows
 :synopsis: Analyze and reanimate dead parrots.
.. moduleauthor:: Eric Cleese <eric@python.invalid>
.. moduleauthor:: John Idle <john@python.invalid>

As you can see, the module-specific markup consists of two directives, the
module directive and the moduleauthor directive.

	
module

	This directive marks the beginning of the description of a module (or package
submodule, in which case the name should be fully qualified, including the
package name).

The platform option, if present, is a comma-separated list of the
platforms on which the module is available (if it is available on all
platforms, the option should be omitted). The keys are short identifiers;
examples that are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is
important to use a key which has already been used when applicable.

The synopsis option should consist of one sentence describing the
module’s purpose – it is currently only used in the Global Module Index.

The deprecated option can be given (with no value) to mark a module as
deprecated; it will be designated as such in various locations then.

	
moduleauthor

	The moduleauthor directive, which can appear multiple times, names the
authors of the module code, just like sectionauthor names the author(s)
of a piece of documentation. It too does not result in any output currently.

Note

It is important to make the section title of a module-describing file
meaningful since that value will be inserted in the table-of-contents trees
in overview files.

4.3. Information units

There are a number of directives used to describe specific features provided by
modules. Each directive requires one or more signatures to provide basic
information about what is being described, and the content should be the
description. The basic version makes entries in the general index; if no index
entry is desired, you can give the directive option flag :noindex:. The
following example shows all of the features of this directive type:

.. function:: spam(eggs)
 ham(eggs)
 :noindex:

 Spam or ham the foo.

The signatures of object methods or data attributes should always include the
type name (.. method:: FileInput.input(...)), even if it is obvious from the
context which type they belong to; this is to enable consistent
cross-references. If you describe methods belonging to an abstract protocol,
such as “context managers”, include a (pseudo-)type name too to make the
index entries more informative.

The directives are:

	
cfunction

	Describes a C function. The signature should be given as in C, e.g.:

.. cfunction:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names
of the arguments should be given so they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature,
as it is not parsed by the reST inliner.

	
cmember

	Describes a C struct member. Example signature:

.. cmember:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how
the value should be interpreted, and whether the value can be changed.
References to structure members in text should use the member role.

	
cmacro

	Describes a “simple” C macro. Simple macros are macros which are used
for code expansion, but which do not take arguments so cannot be described as
functions. This is not to be used for simple constant definitions. Examples
of its use in the Python documentation include PyObject_HEAD and
Py_BEGIN_ALLOW_THREADS.

	
ctype

	Describes a C type. The signature should just be the type name.

	
cvar

	Describes a global C variable. The signature should include the type, such
as:

.. cvar:: PyObject* PyClass_Type

	
data

	Describes global data in a module, including both variables and values used
as “defined constants.” Class and object attributes are not documented
using this directive.

	
exception

	Describes an exception class. The signature can, but need not include
parentheses with constructor arguments.

	
function

	Describes a module-level function. The signature should include the
parameters, enclosing optional parameters in brackets. Default values can be
given if it enhances clarity. For example:

.. function:: repeat([repeat=3[, number=1000000]])

Object methods are not documented using this directive. Bound object methods
placed in the module namespace as part of the public interface of the module
are documented using this, as they are equivalent to normal functions for
most purposes.

The description should include information about the parameters required and
how they are used (especially whether mutable objects passed as parameters
are modified), side effects, and possible exceptions. A small example may be
provided.

	
class

	Describes a class. The signature can include parentheses with parameters
which will be shown as the constructor arguments.

	
attribute

	Describes an object data attribute. The description should include
information about the type of the data to be expected and whether it may be
changed directly. This directive should be nested in a class directive,
like in this example:

.. class:: Spam

 Description of the class.

 .. data:: ham

 Description of the attribute.

If is also possible to document an attribute outside of a class directive,
for example if the documentation for different attributes and methods is
split in multiple sections. The class name should then be included
explicitly:

.. data:: Spam.eggs

	
method

	Describes an object method. The parameters should not include the self
parameter. The description should include similar information to that
described for function. This directive should be nested in a class
directive, like in the example above.

	
opcode

	Describes a Python bytecode instruction.

	
cmdoption

	Describes a Python command line option or switch. Option argument names
should be enclosed in angle brackets. Example:

.. cmdoption:: -m <module>

 Run a module as a script.

	
envvar

	Describes an environment variable that Python uses or defines.

There is also a generic version of these directives:

	
describe

	This directive produces the same formatting as the specific ones explained
above but does not create index entries or cross-referencing targets. It is
used, for example, to describe the directives in this document. Example:

.. describe:: opcode

 Describes a Python bytecode instruction.

4.4. Showing code examples

Examples of Python source code or interactive sessions are represented using
standard reST literal blocks. They are started by a :: at the end of the
preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output
along with the Python code. No special markup is required for interactive
sessions. After the last line of input or output presented, there should not be
an “unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is handled in a smart way:

	There is a “highlighting language” for each source file. Per default,
this is 'python' as the majority of files will have to highlight Python
snippets.

	Within Python highlighting mode, interactive sessions are recognized
automatically and highlighted appropriately.

	The highlighting language can be changed using the highlightlang
directive, used as follows:

.. highlightlang:: c

This language is used until the next highlightlang directive is
encountered.

	The values normally used for the highlighting language are:

	python (the default)

	c

	rest

	none (no highlighting)

	If highlighting with the current language fails, the block is not highlighted
in any way.

Longer displays of verbatim text may be included by storing the example text in
an external file containing only plain text. The file may be included using the
literalinclude directive. [1] For example, to include the Python source file
example.py, use:

.. literalinclude:: example.py

The file name is relative to the current file’s path. Documentation-specific
include files should be placed in the Doc/includes subdirectory.

4.5. Inline markup

As said before, Sphinx uses interpreted text roles to insert semantic markup in
documents.

Names of local variables, such as function/method arguments, are an exception,
they should be marked simply with *var*.

For all other roles, you have to write :rolename:`content`.

There are some additional facilities that make cross-referencing roles more
versatile:

	You may supply an explicit title and reference target, like in reST direct
hyperlinks: :role:`title <target>` will refer to target, but the link
text will be title.

	If you prefix the content with !, no reference/hyperlink will be created.

	For the Python object roles, if you prefix the content with ~, the link
text will only be the last component of the target. For example,
:meth:`~Queue.Queue.get` will refer to Queue.Queue.get but only
display get as the link text.

In HTML output, the link’s title attribute (that is e.g. shown as a
tool-tip on mouse-hover) will always be the full target name.

The following roles refer to objects in modules and are possibly hyperlinked if
a matching identifier is found:

	
mod

	The name of a module; a dotted name may be used. This should also be used for
package names.

	
func

	The name of a Python function; dotted names may be used. The role text
should not include trailing parentheses to enhance readability. The
parentheses are stripped when searching for identifiers.

	
data

	The name of a module-level variable or constant.

	
const

	The name of a “defined” constant. This may be a C-language #define
or a Python variable that is not intended to be changed.

	
class

	A class name; a dotted name may be used.

	
meth

	The name of a method of an object. The role text should include the type
name and the method name. A dotted name may be used.

	
attr

	The name of a data attribute of an object.

	
exc

	The name of an exception. A dotted name may be used.

The name enclosed in this markup can include a module name and/or a class name.
For example, :func:`filter` could refer to a function named filter in
the current module, or the built-in function of that name. In contrast,
:func:`foo.filter` clearly refers to the filter function in the foo
module.

Normally, names in these roles are searched first without any further
qualification, then with the current module name prepended, then with the
current module and class name (if any) prepended. If you prefix the name with a
dot, this order is reversed. For example, in the documentation of the
codecs module, :func:`open` always refers to the built-in function,
while :func:`.open` refers to codecs.open().

A similar heuristic is used to determine whether the name is an attribute of
the currently documented class.

The following roles create cross-references to C-language constructs if they
are defined in the API documentation:

	
cdata

	The name of a C-language variable.

	
cfunc

	The name of a C-language function. Should include trailing parentheses.

	
cmacro

	The name of a “simple” C macro, as defined above.

	
ctype

	The name of a C-language type.

The following role does possibly create a cross-reference, but does not refer
to objects:

	
token

	The name of a grammar token (used in the reference manual to create links
between production displays).

The following role creates a cross-reference to the term in the glossary:

	
term

	Reference to a term in the glossary. The glossary is created using the
glossary directive containing a definition list with terms and
definitions. It does not have to be in the same file as the term
markup, in fact, by default the Python docs have one global glossary
in the glossary.rst file.

If you use a term that’s not explained in a glossary, you’ll get a warning
during build.

The following roles don’t do anything special except formatting the text
in a different style:

	
command

	The name of an OS-level command, such as rm.

	
dfn

	Mark the defining instance of a term in the text. (No index entries are
generated.)

	
envvar

	An environment variable. Index entries are generated.

	
file

	The name of a file or directory. Within the contents, you can use curly
braces to indicate a “variable” part, for example:

... is installed in :file:`/usr/lib/python2.{x}/site-packages` ...

In the built documentation, the x will be displayed differently to
indicate that it is to be replaced by the Python minor version.

	
guilabel

	Labels presented as part of an interactive user interface should be marked
using guilabel. This includes labels from text-based interfaces such as
those created using curses or other text-based libraries. Any label
used in the interface should be marked with this role, including button
labels, window titles, field names, menu and menu selection names, and even
values in selection lists.

	
kbd

	Mark a sequence of keystrokes. What form the key sequence takes may depend
on platform- or application-specific conventions. When there are no relevant
conventions, the names of modifier keys should be spelled out, to improve
accessibility for new users and non-native speakers. For example, an
xemacs key sequence may be marked like :kbd:`C-x C-f`, but without
reference to a specific application or platform, the same sequence should be
marked as :kbd:`Control-x Control-f`.

	
keyword

	The name of a keyword in Python.

	
mailheader

	The name of an RFC 822-style mail header. This markup does not imply that
the header is being used in an email message, but can be used to refer to any
header of the same “style.” This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same
way it would normally be found in practice, with the camel-casing conventions
being preferred where there is more than one common usage. For example:
:mailheader:`Content-Type`.

	
makevar

	The name of a make variable.

	
manpage

	A reference to a Unix manual page including the section,
e.g. :manpage:`ls(1)`.

	
menuselection

	Menu selections should be marked using the menuselection role. This is
used to mark a complete sequence of menu selections, including selecting
submenus and choosing a specific operation, or any subsequence of such a
sequence. The names of individual selections should be separated by
-->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the
ellipsis some operating systems use to indicate that the command opens a
dialog, the indicator should be omitted from the selection name.

	
mimetype

	The name of a MIME type, or a component of a MIME type (the major or minor
portion, taken alone).

	
newsgroup

	The name of a Usenet newsgroup.

	
option

	A command-line option of Python. The leading hyphen(s) must be included.
If a matching cmdoption directive exists, it is linked to. For options
of other programs or scripts, use simple ``code`` markup.

	
program

	The name of an executable program. This may differ from the file name for
the executable for some platforms. In particular, the .exe (or other)
extension should be omitted for Windows programs.

	
regexp

	A regular expression. Quotes should not be included.

	
samp

	A piece of literal text, such as code. Within the contents, you can use
curly braces to indicate a “variable” part, as in :file:.

If you don’t need the “variable part” indication, use the standard
``code`` instead.

The following roles generate external links:

	
pep

	A reference to a Python Enhancement Proposal. This generates appropriate
index entries. The text “PEP number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified PEP.

	
rfc

	A reference to an Internet Request for Comments. This generates appropriate
index entries. The text “RFC number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified RFC.

Note that there are no special roles for including hyperlinks as you can use
the standard reST markup for that purpose.

4.6. Cross-linking markup

To support cross-referencing to arbitrary sections in the documentation, the
standard reST labels are “abused” a bit: Every label must precede a section
title; and every label name must be unique throughout the entire documentation
source.

You can then reference to these sections using the :ref:`label-name` role.

Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: invocation is replaced with the section title.

4.7. Paragraph-level markup

These directives create short paragraphs and can be used inside information
units as well as normal text:

	
note

	An especially important bit of information about an API that a user should be
aware of when using whatever bit of API the note pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

.. note::

 This function is not suitable for sending spam e-mails.

	
warning

	An important bit of information about an API that a user should be aware of
when using whatever bit of API the warning pertains to. The content of the
directive should be written in complete sentences and include all appropriate
punctuation. In the interest of not scaring users away from pages filled
with warnings, this directive should only be chosen over note for
information regarding the possibility of crashes, data loss, or security
implications.

	
versionadded

	This directive documents the version of Python which added the described
feature to the library or C API. When this applies to an entire module, it
should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add
a second argument consisting of a brief explanation of the change.

Example:

.. versionadded:: 2.5
 The *spam* parameter.

Note that there must be no blank line between the directive head and the
explanation; this is to make these blocks visually continuous in the markup.

	
versionchanged

	Similar to versionadded, but describes when and what changed in the named
feature in some way (new parameters, changed side effects, etc.).

	
impl-detail

	This directive is used to mark CPython-specific information. Use either with
a block content or a single sentence as an argument, i.e. either

.. impl-detail::

 This describes some implementation detail.

 More explanation.

or

.. impl-detail:: This shortly mentions an implementation detail.

“CPython implementation detail:” is automatically prepended to the
content.

	
seealso

	Many sections include a list of references to module documentation or
external documents. These lists are created using the seealso directive.

The seealso directive is typically placed in a section just before any
sub-sections. For the HTML output, it is shown boxed off from the main flow
of the text.

The content of the seealso directive should be a reST definition list.
Example:

.. seealso::

 Module :mod:`zipfile`
 Documentation of the :mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

	
rubric

	This directive creates a paragraph heading that is not used to create a
table of contents node. It is currently used for the “Footnotes” caption.

	
centered

	This directive creates a centered boldfaced paragraph. Use it as follows:

.. centered::

 Paragraph contents.

4.8. Table-of-contents markup

Since reST does not have facilities to interconnect several documents, or split
documents into multiple output files, Sphinx uses a custom directive to add
relations between the single files the documentation is made of, as well as
tables of contents. The toctree directive is the central element.

	
toctree

	This directive inserts a “TOC tree” at the current location, using the
individual TOCs (including “sub-TOC trees”) of the files given in the
directive body. A numeric maxdepth option may be given to indicate the
depth of the tree; by default, all levels are included.

Consider this example (taken from the library reference index):

.. toctree::
 :maxdepth: 2

 intro
 strings
 datatypes
 numeric
 (many more files listed here)

This accomplishes two things:

	Tables of contents from all those files are inserted, with a maximum depth
of two, that means one nested heading. toctree directives in those
files are also taken into account.

	Sphinx knows that the relative order of the files intro,
strings and so forth, and it knows that they are children of the
shown file, the library index. From this information it generates “next
chapter”, “previous chapter” and “parent chapter” links.

In the end, all files included in the build process must occur in one
toctree directive; Sphinx will emit a warning if it finds a file that is
not included, because that means that this file will not be reachable through
standard navigation.

The special file contents.rst at the root of the source directory is the
“root” of the TOC tree hierarchy; from it the “Contents” page is generated.

4.9. Index-generating markup

Sphinx automatically creates index entries from all information units (like
functions, classes or attributes) like discussed before.

However, there is also an explicit directive available, to make the index more
comprehensive and enable index entries in documents where information is not
mainly contained in information units, such as the language reference.

The directive is index and contains one or more index entries. Each entry
consists of a type and a value, separated by a colon.

For example:

.. index::
 single: execution; context
 module: __main__
 module: sys
 triple: module; search; path

This directive contains five entries, which will be converted to entries in the
generated index which link to the exact location of the index statement (or, in
case of offline media, the corresponding page number).

The possible entry types are:

	single

	Creates a single index entry. Can be made a subentry by separating the
subentry text with a semicolon (this notation is also used below to describe
what entries are created).

	pair

	pair: loop; statement is a shortcut that creates two index entries,
namely loop; statement and statement; loop.

	triple

	Likewise, triple: module; search; path is a shortcut that creates three
index entries, which are module; search path, search; path, module and
path; module search.

	module, keyword, operator, object, exception, statement, builtin

	These all create two index entries. For example, module: hashlib creates
the entries module; hashlib and hashlib; module.

For index directives containing only “single” entries, there is a shorthand
notation:

.. index:: BNF, grammar, syntax, notation

This creates four index entries.

4.10. Grammar production displays

Special markup is available for displaying the productions of a formal grammar.
The markup is simple and does not attempt to model all aspects of BNF (or any
derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to
the definition of the symbol. There is this directive:

	
productionlist

	This directive is used to enclose a group of productions. Each production is
given on a single line and consists of a name, separated by a colon from the
following definition. If the definition spans multiple lines, each
continuation line must begin with a colon placed at the same column as in the
first line.

Blank lines are not allowed within productionlist directive arguments.

The definition can contain token names which are marked as interpreted text
(e.g. unaryneg ::= "-" `integer`) – this generates cross-references
to the productions of these tokens.

Note that no further reST parsing is done in the production, so that you
don’t have to escape * or | characters.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt | try2_stmt
 try1_stmt: "try" ":" `suite`
 : ("except" [`expression` ["," `target`]] ":" `suite`)+
 : ["else" ":" `suite`]
 : ["finally" ":" `suite`]
 try2_stmt: "try" ":" `suite`
 : "finally" ":" `suite`

4.11. Substitutions

The documentation system provides three substitutions that are defined by default.
They are set in the build configuration file conf.py.

	
|release|

	Replaced by the Python release the documentation refers to. This is the full
version string including alpha/beta/release candidate tags, e.g. 2.5.2b3.

	
|version|

	Replaced by the Python version the documentation refers to. This consists
only of the major and minor version parts, e.g. 2.5, even for version
2.5.1.

	
|today|

	Replaced by either today’s date, or the date set in the build configuration
file. Normally has the format April 14, 2007.

Footnotes

	[1]	There is a standard .. include directive, but it raises errors if the
file is not found. This one only emits a warning.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Documenting Python

5. Differences to the LaTeX markup

Though the markup language is different, most of the concepts and markup types
of the old LaTeX docs have been kept – environments as reST directives, inline
commands as reST roles and so forth.

However, there are some differences in the way these work, partly due to the
differences in the markup languages, partly due to improvements in Sphinx. This
section lists these differences, in order to give those familiar with the old
format a quick overview of what they might run into.

5.1. Inline markup

These changes have been made to inline markup:

	Cross-reference roles

Most of the following semantic roles existed previously as inline commands,
but didn’t do anything except formatting the content as code. Now, they
cross-reference to known targets (some names have also been shortened):

mod (previously refmodule or module)

func (previously function)

data (new)

const

class

meth (previously method)

attr (previously member)

exc (previously exception)

cdata

cfunc (previously cfunction)

cmacro (previously csimplemacro)

ctype

Also different is the handling of func and meth: while previously
parentheses were added to the callable name (like \func{str()}), they are
now appended by the build system – appending them in the source will result
in double parentheses. This also means that :func:`str(object)` will not
work as expected – use ``str(object)`` instead!

	Inline commands implemented as directives

These were inline commands in LaTeX, but are now directives in reST:

deprecated

versionadded

versionchanged

These are used like so:

.. deprecated:: 2.5
 Reason of deprecation.

Also, no period is appended to the text for versionadded and
versionchanged.

note

warning

These are used like so:

.. note::

 Content of note.

	Otherwise changed commands

The samp command previously formatted code and added quotation marks around
it. The samp role, however, features a new highlighting system just like
file does:

:samp:`open({filename}, {mode})` results in open(filename, mode)

	Dropped commands

These were commands in LaTeX, but are not available as roles:

bfcode

character (use ``'c'``)

citetitle (use `Title <URL>`_)

code (use ``code``)

email (just write the address in body text)

filenq

filevar (use the {...} highlighting feature of file)

programopt, longprogramopt (use option)

ulink (use `Title <URL>`_)

url (just write the URL in body text)

var (use *var*)

infinity, plusminus (use the Unicode character)

shortversion, version (use the |version| and |release| substitutions)

emph, strong (use the reST markup)

	Backslash escaping

In reST, a backslash must be escaped in normal text, and in the content of
roles. However, in code literals and literal blocks, it must not be escaped.
Example: :file:`C:\\Temp\\my.tmp` vs. ``open("C:\Temp\my.tmp")``.

5.2. Information units

Information units (...desc environments) have been made reST directives.
These changes to information units should be noted:

	New names

“desc” has been removed from every name. Additionally, these directives have
new names:

cfunction (previously cfuncdesc)

cmacro (previously csimplemacrodesc)

exception (previously excdesc)

function (previously funcdesc)

attribute (previously memberdesc)

The classdesc* and excclassdesc environments have been dropped, the
class and exception directives support classes documented with and without
constructor arguments.

	Multiple objects

The equivalent of the ...line commands is:

.. function:: do_foo(bar)
 do_bar(baz)

 Description of the functions.

IOW, just give one signatures per line, at the same indentation level.

	Arguments

There is no optional command. Just give function signatures like they
should appear in the output:

.. function:: open(filename[, mode[, buffering]])

 Description.

Note: markup in the signature is not supported.

	Indexing

The ...descni environments have been dropped. To mark an information unit
as unsuitable for index entry generation, use the noindex option like so:

.. function:: foo_*
 :noindex:

 Description.

	New information units

There are new generic information units: One is called “describe” and can be
used to document things that are not covered by the other units:

.. describe:: a == b

 The equals operator.

The others are:

.. cmdoption:: -O

 Describes a command-line option.

.. envvar:: PYTHONINSPECT

 Describes an environment variable.

5.3. Structure

The LaTeX docs were split in several toplevel manuals. Now, all files are part
of the same documentation tree, as indicated by the toctree directives in the
sources (though individual output formats may choose to split them up into parts
again). Every toctree directive embeds other files as subdocuments of the
current file (this structure is not necessarily mirrored in the filesystem
layout). The toplevel file is contents.rst.

However, most of the old directory structure has been kept, with the
directories renamed as follows:

	api -> c-api

	dist -> distutils, with the single TeX file split up

	doc -> documenting

	ext -> extending

	inst -> installing

	lib -> library

	mac -> merged into library, with mac/using.tex
moved to using/mac.rst

	ref -> reference

	tut -> tutorial, with the single TeX file split up

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Documenting Python

6. Building the documentation

You need to have Python 2.4 or higher installed; the toolset used to build the
docs is written in Python. It is called Sphinx, it is not included in this
tree, but maintained separately. Also needed are the docutils, supplying the
base markup that Sphinx uses, Jinja, a templating engine, and optionally
Pygments, a code highlighter.

6.1. Using make

Luckily, a Makefile has been prepared so that on Unix, provided you have
installed Python and Subversion, you can just run

make html

to check out the necessary toolset in the tools/ subdirectory and build the
HTML output files. To view the generated HTML, point your favorite browser at
the top-level index build/html/index.html after running “make”.

Available make targets are:

	“html”, which builds standalone HTML files for offline viewing.

	“htmlhelp”, which builds HTML files and a HTML Help project file usable to
convert them into a single Compiled HTML (.chm) file – these are popular
under Microsoft Windows, but very handy on every platform.

To create the CHM file, you need to run the Microsoft HTML Help Workshop
over the generated project (.hhp) file.

	“latex”, which builds LaTeX source files as input to “pdflatex” to produce
PDF documents.

	“text”, which builds a plain text file for each source file.

	“linkcheck”, which checks all external references to see whether they are
broken, redirected or malformed, and outputs this information to stdout
as well as a plain-text (.txt) file.

	“changes”, which builds an overview over all versionadded/versionchanged/
deprecated items in the current version. This is meant as a help for the
writer of the “What’s New” document.

	“coverage”, which builds a coverage overview for standard library modules
and C API.

	“pydoc-topics”, which builds a Python module containing a dictionary with
plain text documentation for the labels defined in
tools/sphinxext/pyspecific.py – pydoc needs these to show topic and
keyword help.

A “make update” updates the Subversion checkouts in tools/.

6.2. Without make

You’ll need to install the Sphinx package, either by checking it out via

svn co http://svn.python.org/projects/external/Sphinx-0.6.5/sphinx tools/sphinx

or by installing it from PyPI.

Then, you need to install Docutils, either by checking it out via

svn co http://svn.python.org/projects/external/docutils-0.6/docutils tools/docutils

or by installing it from http://docutils.sf.net/.

You also need Jinja2, either by checking it out via

svn co http://svn.python.org/projects/external/Jinja-2.3.1/jinja2 tools/jinja2

or by installing it from PyPI.

You can optionally also install Pygments, either as a checkout via

svn co http://svn.python.org/projects/external/Pygments-1.3.1/pygments tools/pygments

or from PyPI at http://pypi.python.org/pypi/Pygments.

Then, make an output directory, e.g. under build/, and run

python tools/sphinx-build.py -b<builder> . build/<outputdirectory>

where <builder> is one of html, text, latex, or htmlhelp (for explanations see
the make targets above).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Python HOWTOs

Python HOWTOs are documents that cover a single, specific topic,
and attempt to cover it fairly completely. Modelled on the Linux
Documentation Project’s HOWTO collection, this collection is an
effort to foster documentation that’s more detailed than the
Python Library Reference.

Currently, the HOWTOs are:

	Python Advocacy HOWTO

	Porting Extension Modules to 3.0

	Curses Programming with Python

	Descriptor HowTo Guide

	Idioms and Anti-Idioms in Python

	Functional Programming HOWTO

	Logging HOWTO

	Logging Cookbook

	Regular Expression HOWTO

	Socket Programming HOWTO

	Sorting HOW TO

	Unicode HOWTO

	HOWTO Fetch Internet Resources Using urllib2

	HOWTO Use Python in the web

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Python Advocacy HOWTO

	Author:	A.M. Kuchling

	Release:	0.03

Abstract

It’s usually difficult to get your management to accept open source software,
and Python is no exception to this rule. This document discusses reasons to use
Python, strategies for winning acceptance, facts and arguments you can use, and
cases where you shouldn’t try to use Python.

Reasons to Use Python

There are several reasons to incorporate a scripting language into your
development process, and this section will discuss them, and why Python has some
properties that make it a particularly good choice.

Programmability

Programs are often organized in a modular fashion. Lower-level operations are
grouped together, and called by higher-level functions, which may in turn be
used as basic operations by still further upper levels.

For example, the lowest level might define a very low-level set of functions for
accessing a hash table. The next level might use hash tables to store the
headers of a mail message, mapping a header name like Date to a value such
as Tue, 13 May 1997 20:00:54 -0400. A yet higher level may operate on
message objects, without knowing or caring that message headers are stored in a
hash table, and so forth.

Often, the lowest levels do very simple things; they implement a data structure
such as a binary tree or hash table, or they perform some simple computation,
such as converting a date string to a number. The higher levels then contain
logic connecting these primitive operations. Using the approach, the primitives
can be seen as basic building blocks which are then glued together to produce
the complete product.

Why is this design approach relevant to Python? Because Python is well suited
to functioning as such a glue language. A common approach is to write a Python
module that implements the lower level operations; for the sake of speed, the
implementation might be in C, Java, or even Fortran. Once the primitives are
available to Python programs, the logic underlying higher level operations is
written in the form of Python code. The high-level logic is then more
understandable, and easier to modify.

John Ousterhout wrote a paper that explains this idea at greater length,
entitled “Scripting: Higher Level Programming for the 21st Century”. I
recommend that you read this paper; see the references for the URL. Ousterhout
is the inventor of the Tcl language, and therefore argues that Tcl should be
used for this purpose; he only briefly refers to other languages such as Python,
Perl, and Lisp/Scheme, but in reality, Ousterhout’s argument applies to
scripting languages in general, since you could equally write extensions for any
of the languages mentioned above.

Prototyping

In The Mythical Man-Month, Fredrick Brooks suggests the following rule when
planning software projects: “Plan to throw one away; you will anyway.” Brooks
is saying that the first attempt at a software design often turns out to be
wrong; unless the problem is very simple or you’re an extremely good designer,
you’ll find that new requirements and features become apparent once development
has actually started. If these new requirements can’t be cleanly incorporated
into the program’s structure, you’re presented with two unpleasant choices:
hammer the new features into the program somehow, or scrap everything and write
a new version of the program, taking the new features into account from the
beginning.

Python provides you with a good environment for quickly developing an initial
prototype. That lets you get the overall program structure and logic right, and
you can fine-tune small details in the fast development cycle that Python
provides. Once you’re satisfied with the GUI interface or program output, you
can translate the Python code into C++, Fortran, Java, or some other compiled
language.

Prototyping means you have to be careful not to use too many Python features
that are hard to implement in your other language. Using eval(), or regular
expressions, or the pickle module, means that you’re going to need C or
Java libraries for formula evaluation, regular expressions, and serialization,
for example. But it’s not hard to avoid such tricky code, and in the end the
translation usually isn’t very difficult. The resulting code can be rapidly
debugged, because any serious logical errors will have been removed from the
prototype, leaving only more minor slip-ups in the translation to track down.

This strategy builds on the earlier discussion of programmability. Using Python
as glue to connect lower-level components has obvious relevance for constructing
prototype systems. In this way Python can help you with development, even if
end users never come in contact with Python code at all. If the performance of
the Python version is adequate and corporate politics allow it, you may not need
to do a translation into C or Java, but it can still be faster to develop a
prototype and then translate it, instead of attempting to produce the final
version immediately.

One example of this development strategy is Microsoft Merchant Server. Version
1.0 was written in pure Python, by a company that subsequently was purchased by
Microsoft. Version 2.0 began to translate the code into C++, shipping with some
C++code and some Python code. Version 3.0 didn’t contain any Python at all; all
the code had been translated into C++. Even though the product doesn’t contain
a Python interpreter, the Python language has still served a useful purpose by
speeding up development.

This is a very common use for Python. Past conference papers have also
described this approach for developing high-level numerical algorithms; see
David M. Beazley and Peter S. Lomdahl’s paper “Feeding a Large-scale Physics
Application to Python” in the references for a good example. If an algorithm’s
basic operations are things like “Take the inverse of this 4000x4000 matrix”,
and are implemented in some lower-level language, then Python has almost no
additional performance cost; the extra time required for Python to evaluate an
expression like m.invert() is dwarfed by the cost of the actual computation.
It’s particularly good for applications where seemingly endless tweaking is
required to get things right. GUI interfaces and Web sites are prime examples.

The Python code is also shorter and faster to write (once you’re familiar with
Python), so it’s easier to throw it away if you decide your approach was wrong;
if you’d spent two weeks working on it instead of just two hours, you might
waste time trying to patch up what you’ve got out of a natural reluctance to
admit that those two weeks were wasted. Truthfully, those two weeks haven’t
been wasted, since you’ve learnt something about the problem and the technology
you’re using to solve it, but it’s human nature to view this as a failure of
some sort.

Simplicity and Ease of Understanding

Python is definitely not a toy language that’s only usable for small tasks.
The language features are general and powerful enough to enable it to be used
for many different purposes. It’s useful at the small end, for 10- or 20-line
scripts, but it also scales up to larger systems that contain thousands of lines
of code.

However, this expressiveness doesn’t come at the cost of an obscure or tricky
syntax. While Python has some dark corners that can lead to obscure code, there
are relatively few such corners, and proper design can isolate their use to only
a few classes or modules. It’s certainly possible to write confusing code by
using too many features with too little concern for clarity, but most Python
code can look a lot like a slightly-formalized version of human-understandable
pseudocode.

In The New Hacker’s Dictionary, Eric S. Raymond gives the following definition
for “compact”:

Compact adj. Of a design, describes the valuable property that it can all be
apprehended at once in one’s head. This generally means the thing created from
the design can be used with greater facility and fewer errors than an equivalent
tool that is not compact. Compactness does not imply triviality or lack of
power; for example, C is compact and FORTRAN is not, but C is more powerful than
FORTRAN. Designs become non-compact through accreting features and cruft that
don’t merge cleanly into the overall design scheme (thus, some fans of Classic C
maintain that ANSI C is no longer compact).

(From http://www.catb.org/~esr/jargon/html/C/compact.html)

In this sense of the word, Python is quite compact, because the language has
just a few ideas, which are used in lots of places. Take namespaces, for
example. Import a module with import math, and you create a new namespace
called math. Classes are also namespaces that share many of the properties
of modules, and have a few of their own; for example, you can create instances
of a class. Instances? They’re yet another namespace. Namespaces are currently
implemented as Python dictionaries, so they have the same methods as the
standard dictionary data type: .keys() returns all the keys, and so forth.

This simplicity arises from Python’s development history. The language syntax
derives from different sources; ABC, a relatively obscure teaching language, is
one primary influence, and Modula-3 is another. (For more information about ABC
and Modula-3, consult their respective Web sites at http://www.cwi.nl/~steven/abc/
and http://www.m3.org.) Other features have come from C, Icon,
Algol-68, and even Perl. Python hasn’t really innovated very much, but instead
has tried to keep the language small and easy to learn, building on ideas that
have been tried in other languages and found useful.

Simplicity is a virtue that should not be underestimated. It lets you learn the
language more quickly, and then rapidly write code – code that often works the
first time you run it.

Java Integration

If you’re working with Java, Jython (http://www.jython.org/) is definitely worth
your attention. Jython is a re-implementation of Python in Java that compiles
Python code into Java bytecodes. The resulting environment has very tight,
almost seamless, integration with Java. It’s trivial to access Java classes
from Python, and you can write Python classes that subclass Java classes.
Jython can be used for prototyping Java applications in much the same way
CPython is used, and it can also be used for test suites for Java code, or
embedded in a Java application to add scripting capabilities.

Arguments and Rebuttals

Let’s say that you’ve decided upon Python as the best choice for your
application. How can you convince your management, or your fellow developers,
to use Python? This section lists some common arguments against using Python,
and provides some possible rebuttals.

Python is freely available software that doesn’t cost anything. How good can
it be?

Very good, indeed. These days Linux and Apache, two other pieces of open source
software, are becoming more respected as alternatives to commercial software,
but Python hasn’t had all the publicity.

Python has been around for several years, with many users and developers.
Accordingly, the interpreter has been used by many people, and has gotten most
of the bugs shaken out of it. While bugs are still discovered at intervals,
they’re usually either quite obscure (they’d have to be, for no one to have run
into them before) or they involve interfaces to external libraries. The
internals of the language itself are quite stable.

Having the source code should be viewed as making the software available for
peer review; people can examine the code, suggest (and implement) improvements,
and track down bugs. To find out more about the idea of open source code, along
with arguments and case studies supporting it, go to http://www.opensource.org.

Who’s going to support it?

Python has a sizable community of developers, and the number is still growing.
The Internet community surrounding the language is an active one, and is worth
being considered another one of Python’s advantages. Most questions posted to
the comp.lang.python newsgroup are quickly answered by someone.

Should you need to dig into the source code, you’ll find it’s clear and
well-organized, so it’s not very difficult to write extensions and track down
bugs yourself. If you’d prefer to pay for support, there are companies and
individuals who offer commercial support for Python.

Who uses Python for serious work?

Lots of people; one interesting thing about Python is the surprising diversity
of applications that it’s been used for. People are using Python to:

	Run Web sites

	Write GUI interfaces

	Control number-crunching code on supercomputers

	Make a commercial application scriptable by embedding the Python interpreter
inside it

	Process large XML data sets

	Build test suites for C or Java code

Whatever your application domain is, there’s probably someone who’s used Python
for something similar. Yet, despite being useable for such high-end
applications, Python’s still simple enough to use for little jobs.

See http://wiki.python.org/moin/OrganizationsUsingPython for a list of some of
the organizations that use Python.

What are the restrictions on Python’s use?

They’re practically nonexistent. Consult the Misc/COPYRIGHT file in the
source distribution, or the section History and License for the full
language, but it boils down to three conditions:

	You have to leave the copyright notice on the software; if you don’t include
the source code in a product, you have to put the copyright notice in the
supporting documentation.

	Don’t claim that the institutions that have developed Python endorse your
product in any way.

	If something goes wrong, you can’t sue for damages. Practically all software
licenses contain this condition.

Notice that you don’t have to provide source code for anything that contains
Python or is built with it. Also, the Python interpreter and accompanying
documentation can be modified and redistributed in any way you like, and you
don’t have to pay anyone any licensing fees at all.

Why should we use an obscure language like Python instead of well-known
language X?

I hope this HOWTO, and the documents listed in the final section, will help
convince you that Python isn’t obscure, and has a healthily growing user base.
One word of advice: always present Python’s positive advantages, instead of
concentrating on language X’s failings. People want to know why a solution is
good, rather than why all the other solutions are bad. So instead of attacking
a competing solution on various grounds, simply show how Python’s virtues can
help.

Useful Resources

	http://www.pythonology.com/success

	The Python Success Stories are a collection of stories from successful users of
Python, with the emphasis on business and corporate users.

	http://www.tcl.tk/doc/scripting.html

	John Ousterhout’s white paper on scripting is a good argument for the utility of
scripting languages, though naturally enough, he emphasizes Tcl, the language he
developed. Most of the arguments would apply to any scripting language.

	http://www.python.org/workshops/1997-10/proceedings/beazley.html

	The authors, David M. Beazley and Peter S. Lomdahl, describe their use of
Python at Los Alamos National Laboratory. It’s another good example of how
Python can help get real work done. This quotation from the paper has been
echoed by many people:

Originally developed as a large monolithic application for massively parallel
processing systems, we have used Python to transform our application into a
flexible, highly modular, and extremely powerful system for performing
simulation, data analysis, and visualization. In addition, we describe how
Python has solved a number of important problems related to the development,
debugging, deployment, and maintenance of scientific software.

	http://pythonjournal.cognizor.com/pyj1/Everitt-Feit_interview98-V1.html

	This interview with Andy Feit, discussing Infoseek’s use of Python, can be used
to show that choosing Python didn’t introduce any difficulties into a company’s
development process, and provided some substantial benefits.

	http://www.python.org/workshops/1997-10/proceedings/stein.ps

	For the 6th Python conference, Greg Stein presented a paper that traced Python’s
adoption and usage at a startup called eShop, and later at Microsoft.

	http://www.opensource.org

	Management may be doubtful of the reliability and usefulness of software that
wasn’t written commercially. This site presents arguments that show how open
source software can have considerable advantages over closed-source software.

	http://www.faqs.org/docs/Linux-mini/Advocacy.html

	The Linux Advocacy mini-HOWTO was the inspiration for this document, and is also
well worth reading for general suggestions on winning acceptance for a new
technology, such as Linux or Python. In general, you won’t make much progress
by simply attacking existing systems and complaining about their inadequacies;
this often ends up looking like unfocused whining. It’s much better to point
out some of the many areas where Python is an improvement over other systems.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Porting Extension Modules to 3.0

	author:	Benjamin Peterson

Abstract

Although changing the C-API was not one of Python 3.0’s objectives, the many
Python level changes made leaving 2.x’s API intact impossible. In fact, some
changes such as int() and long() unification are more obvious on
the C level. This document endeavors to document incompatibilities and how
they can be worked around.

Conditional compilation

The easiest way to compile only some code for 3.0 is to check if
PY_MAJOR_VERSION is greater than or equal to 3.

#if PY_MAJOR_VERSION >= 3
#define IS_PY3K
#endif

API functions that are not present can be aliased to their equivalents within
conditional blocks.

Changes to Object APIs

Python 3.0 merged together some types with similar functions while cleanly
separating others.

str/unicode Unification

Python 3.0’s str() (PyString_* functions in C) type is equivalent to
2.x’s unicode() (PyUnicode_*). The old 8-bit string type has become
bytes(). Python 2.6 and later provide a compatibility header,
bytesobject.h, mapping PyBytes names to PyString ones. For best
compatibility with 3.0, PyUnicode should be used for textual data and
PyBytes for binary data. It’s also important to remember that
PyBytes and PyUnicode in 3.0 are not interchangeable like
PyString and PyUnicode are in 2.x. The following example
shows best practices with regards to PyUnicode, PyString,
and PyBytes.

#include "stdlib.h"
#include "Python.h"
#include "bytesobject.h"

/* text example */
static PyObject *
say_hello(PyObject *self, PyObject *args) {
 PyObject *name, *result;

 if (!PyArg_ParseTuple(args, "U:say_hello", &name))
 return NULL;

 result = PyUnicode_FromFormat("Hello, %S!", name);
 return result;
}

/* just a forward */
static char * do_encode(PyObject *);

/* bytes example */
static PyObject *
encode_object(PyObject *self, PyObject *args) {
 char *encoded;
 PyObject *result, *myobj;

 if (!PyArg_ParseTuple(args, "O:encode_object", &myobj))
 return NULL;

 encoded = do_encode(myobj);
 if (encoded == NULL)
 return NULL;
 result = PyBytes_FromString(encoded);
 free(encoded);
 return result;
}

long/int Unification

In Python 3.0, there is only one integer type. It is called int() on the
Python level, but actually corresponds to 2.x’s long() type. In the
C-API, PyInt_* functions are replaced by their PyLong_* neighbors. The
best course of action here is using the PyInt_* functions aliased to
PyLong_* found in intobject.h. The abstract PyNumber_* APIs
can also be used in some cases.

#include "Python.h"
#include "intobject.h"

static PyObject *
add_ints(PyObject *self, PyObject *args) {
 int one, two;
 PyObject *result;

 if (!PyArg_ParseTuple(args, "ii:add_ints", &one, &two))
 return NULL;

 return PyInt_FromLong(one + two);
}

Module initialization and state

Python 3.0 has a revamped extension module initialization system. (See
PEP 3121 [http://www.python.org/dev/peps/pep-3121].) Instead of storing module state in globals, they should be stored
in an interpreter specific structure. Creating modules that act correctly in
both 2.x and 3.0 is tricky. The following simple example demonstrates how.

#include "Python.h"

struct module_state {
 PyObject *error;
};

#if PY_MAJOR_VERSION >= 3
#define GETSTATE(m) ((struct module_state*)PyModule_GetState(m))
#else
#define GETSTATE(m) (&_state)
static struct module_state _state;
#endif

static PyObject *
error_out(PyObject *m) {
 struct module_state *st = GETSTATE(m);
 PyErr_SetString(st->error, "something bad happened");
 return NULL;
}

static PyMethodDef myextension_methods[] = {
 {"error_out", (PyCFunction)error_out, METH_NOARGS, NULL},
 {NULL, NULL}
};

#if PY_MAJOR_VERSION >= 3

static int myextension_traverse(PyObject *m, visitproc visit, void *arg) {
 Py_VISIT(GETSTATE(m)->error);
 return 0;
}

static int myextension_clear(PyObject *m) {
 Py_CLEAR(GETSTATE(m)->error);
 return 0;
}

static struct PyModuleDef moduledef = {
 PyModuleDef_HEAD_INIT,
 "myextension",
 NULL,
 sizeof(struct module_state),
 myextension_methods,
 NULL,
 myextension_traverse,
 myextension_clear,
 NULL
};

#define INITERROR return NULL

PyObject *
PyInit_myextension(void)

#else
#define INITERROR return

void
initmyextension(void)
#endif
{
#if PY_MAJOR_VERSION >= 3
 PyObject *module = PyModule_Create(&moduledef);
#else
 PyObject *module = Py_InitModule("myextension", myextension_methods);
#endif

 if (module == NULL)
 INITERROR;
 struct module_state *st = GETSTATE(module);

 st->error = PyErr_NewException("myextension.Error", NULL, NULL);
 if (st->error == NULL) {
 Py_DECREF(module);
 INITERROR;
 }

#if PY_MAJOR_VERSION >= 3
 return module;
#endif
}

Other options

If you are writing a new extension module, you might consider Cython [http://www.cython.org]. It translates a Python-like language to C. The
extension modules it creates are compatible with Python 3.x and 2.x.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Curses Programming with Python

	Author:	A.M. Kuchling, Eric S. Raymond

	Release:	2.03

Abstract

This document describes how to write text-mode programs with Python 2.x, using
the curses extension module to control the display.

What is curses?

The curses library supplies a terminal-independent screen-painting and
keyboard-handling facility for text-based terminals; such terminals include
VT100s, the Linux console, and the simulated terminal provided by X11 programs
such as xterm and rxvt. Display terminals support various control codes to
perform common operations such as moving the cursor, scrolling the screen, and
erasing areas. Different terminals use widely differing codes, and often have
their own minor quirks.

In a world of X displays, one might ask “why bother”? It’s true that
character-cell display terminals are an obsolete technology, but there are
niches in which being able to do fancy things with them are still valuable. One
is on small-footprint or embedded Unixes that don’t carry an X server. Another
is for tools like OS installers and kernel configurators that may have to run
before X is available.

The curses library hides all the details of different terminals, and provides
the programmer with an abstraction of a display, containing multiple
non-overlapping windows. The contents of a window can be changed in various
ways– adding text, erasing it, changing its appearance–and the curses library
will automagically figure out what control codes need to be sent to the terminal
to produce the right output.

The curses library was originally written for BSD Unix; the later System V
versions of Unix from AT&T added many enhancements and new functions. BSD curses
is no longer maintained, having been replaced by ncurses, which is an
open-source implementation of the AT&T interface. If you’re using an
open-source Unix such as Linux or FreeBSD, your system almost certainly uses
ncurses. Since most current commercial Unix versions are based on System V
code, all the functions described here will probably be available. The older
versions of curses carried by some proprietary Unixes may not support
everything, though.

No one has made a Windows port of the curses module. On a Windows platform, try
the Console module written by Fredrik Lundh. The Console module provides
cursor-addressable text output, plus full support for mouse and keyboard input,
and is available from http://effbot.org/zone/console-index.htm.

The Python curses module

Thy Python module is a fairly simple wrapper over the C functions provided by
curses; if you’re already familiar with curses programming in C, it’s really
easy to transfer that knowledge to Python. The biggest difference is that the
Python interface makes things simpler, by merging different C functions such as
addstr(), mvaddstr(), mvwaddstr(), into a single
addstr() method. You’ll see this covered in more detail later.

This HOWTO is simply an introduction to writing text-mode programs with curses
and Python. It doesn’t attempt to be a complete guide to the curses API; for
that, see the Python library guide’s section on ncurses, and the C manual pages
for ncurses. It will, however, give you the basic ideas.

Starting and ending a curses application

Before doing anything, curses must be initialized. This is done by calling the
initscr() function, which will determine the terminal type, send any
required setup codes to the terminal, and create various internal data
structures. If successful, initscr() returns a window object representing
the entire screen; this is usually called stdscr, after the name of the
corresponding C variable.

import curses
stdscr = curses.initscr()

Usually curses applications turn off automatic echoing of keys to the screen, in
order to be able to read keys and only display them under certain circumstances.
This requires calling the noecho() function.

curses.noecho()

Applications will also commonly need to react to keys instantly, without
requiring the Enter key to be pressed; this is called cbreak mode, as opposed to
the usual buffered input mode.

curses.cbreak()

Terminals usually return special keys, such as the cursor keys or navigation
keys such as Page Up and Home, as a multibyte escape sequence. While you could
write your application to expect such sequences and process them accordingly,
curses can do it for you, returning a special value such as
curses.KEY_LEFT. To get curses to do the job, you’ll have to enable
keypad mode.

stdscr.keypad(1)

Terminating a curses application is much easier than starting one. You’ll need
to call

curses.nocbreak(); stdscr.keypad(0); curses.echo()

to reverse the curses-friendly terminal settings. Then call the endwin()
function to restore the terminal to its original operating mode.

curses.endwin()

A common problem when debugging a curses application is to get your terminal
messed up when the application dies without restoring the terminal to its
previous state. In Python this commonly happens when your code is buggy and
raises an uncaught exception. Keys are no longer be echoed to the screen when
you type them, for example, which makes using the shell difficult.

In Python you can avoid these complications and make debugging much easier by
importing the module curses.wrapper. It supplies a wrapper()
function that takes a callable. It does the initializations described above,
and also initializes colors if color support is present. It then runs your
provided callable and finally deinitializes appropriately. The callable is
called inside a try-catch clause which catches exceptions, performs curses
deinitialization, and then passes the exception upwards. Thus, your terminal
won’t be left in a funny state on exception.

Windows and Pads

Windows are the basic abstraction in curses. A window object represents a
rectangular area of the screen, and supports various methods to display text,
erase it, allow the user to input strings, and so forth.

The stdscr object returned by the initscr() function is a window
object that covers the entire screen. Many programs may need only this single
window, but you might wish to divide the screen into smaller windows, in order
to redraw or clear them separately. The newwin() function creates a new
window of a given size, returning the new window object.

begin_x = 20 ; begin_y = 7
height = 5 ; width = 40
win = curses.newwin(height, width, begin_y, begin_x)

A word about the coordinate system used in curses: coordinates are always passed
in the order y,x, and the top-left corner of a window is coordinate (0,0).
This breaks a common convention for handling coordinates, where the x
coordinate usually comes first. This is an unfortunate difference from most
other computer applications, but it’s been part of curses since it was first
written, and it’s too late to change things now.

When you call a method to display or erase text, the effect doesn’t immediately
show up on the display. This is because curses was originally written with slow
300-baud terminal connections in mind; with these terminals, minimizing the time
required to redraw the screen is very important. This lets curses accumulate
changes to the screen, and display them in the most efficient manner. For
example, if your program displays some characters in a window, and then clears
the window, there’s no need to send the original characters because they’d never
be visible.

Accordingly, curses requires that you explicitly tell it to redraw windows,
using the refresh() method of window objects. In practice, this doesn’t
really complicate programming with curses much. Most programs go into a flurry
of activity, and then pause waiting for a keypress or some other action on the
part of the user. All you have to do is to be sure that the screen has been
redrawn before pausing to wait for user input, by simply calling
stdscr.refresh() or the refresh() method of some other relevant
window.

A pad is a special case of a window; it can be larger than the actual display
screen, and only a portion of it displayed at a time. Creating a pad simply
requires the pad’s height and width, while refreshing a pad requires giving the
coordinates of the on-screen area where a subsection of the pad will be
displayed.

pad = curses.newpad(100, 100)
These loops fill the pad with letters; this is
explained in the next section
for y in range(0, 100):
 for x in range(0, 100):
 try: pad.addch(y,x, ord('a') + (x*x+y*y) % 26)
 except curses.error: pass

Displays a section of the pad in the middle of the screen
pad.refresh(0,0, 5,5, 20,75)

The refresh() call displays a section of the pad in the rectangle
extending from coordinate (5,5) to coordinate (20,75) on the screen; the upper
left corner of the displayed section is coordinate (0,0) on the pad. Beyond
that difference, pads are exactly like ordinary windows and support the same
methods.

If you have multiple windows and pads on screen there is a more efficient way to
go, which will prevent annoying screen flicker at refresh time. Use the
noutrefresh() method of each window to update the data structure
representing the desired state of the screen; then change the physical screen to
match the desired state in one go with the function doupdate(). The
normal refresh() method calls doupdate() as its last act.

Displaying Text

From a C programmer’s point of view, curses may sometimes look like a twisty
maze of functions, all subtly different. For example, addstr() displays a
string at the current cursor location in the stdscr window, while
mvaddstr() moves to a given y,x coordinate first before displaying the
string. waddstr() is just like addstr(), but allows specifying a
window to use, instead of using stdscr by default. mvwaddstr() follows
similarly.

Fortunately the Python interface hides all these details; stdscr is a window
object like any other, and methods like addstr() accept multiple argument
forms. Usually there are four different forms.

	Form
	Description

	str or ch
	Display the string str or character ch at
the current position

	str or ch, attr
	Display the string str or character ch,
using attribute attr at the current
position

	y, x, str or ch
	Move to position y,x within the window, and
display str or ch

	y, x, str or ch, attr
	Move to position y,x within the window, and
display str or ch, using attribute attr

Attributes allow displaying text in highlighted forms, such as in boldface,
underline, reverse code, or in color. They’ll be explained in more detail in
the next subsection.

The addstr() function takes a Python string as the value to be displayed,
while the addch() functions take a character, which can be either a Python
string of length 1 or an integer. If it’s a string, you’re limited to
displaying characters between 0 and 255. SVr4 curses provides constants for
extension characters; these constants are integers greater than 255. For
example, ACS_PLMINUS is a +/- symbol, and ACS_ULCORNER is the
upper left corner of a box (handy for drawing borders).

Windows remember where the cursor was left after the last operation, so if you
leave out the y,x coordinates, the string or character will be displayed
wherever the last operation left off. You can also move the cursor with the
move(y,x) method. Because some terminals always display a flashing cursor,
you may want to ensure that the cursor is positioned in some location where it
won’t be distracting; it can be confusing to have the cursor blinking at some
apparently random location.

If your application doesn’t need a blinking cursor at all, you can call
curs_set(0) to make it invisible. Equivalently, and for compatibility with
older curses versions, there’s a leaveok(bool) function. When bool is
true, the curses library will attempt to suppress the flashing cursor, and you
won’t need to worry about leaving it in odd locations.

Attributes and Color

Characters can be displayed in different ways. Status lines in a text-based
application are commonly shown in reverse video; a text viewer may need to
highlight certain words. curses supports this by allowing you to specify an
attribute for each cell on the screen.

An attribute is a integer, each bit representing a different attribute. You can
try to display text with multiple attribute bits set, but curses doesn’t
guarantee that all the possible combinations are available, or that they’re all
visually distinct. That depends on the ability of the terminal being used, so
it’s safest to stick to the most commonly available attributes, listed here.

	Attribute
	Description

	A_BLINK
	Blinking text

	A_BOLD
	Extra bright or bold text

	A_DIM
	Half bright text

	A_REVERSE
	Reverse-video text

	A_STANDOUT
	The best highlighting mode available

	A_UNDERLINE
	Underlined text

So, to display a reverse-video status line on the top line of the screen, you
could code:

stdscr.addstr(0, 0, "Current mode: Typing mode",
 curses.A_REVERSE)
stdscr.refresh()

The curses library also supports color on those terminals that provide it, The
most common such terminal is probably the Linux console, followed by color
xterms.

To use color, you must call the start_color() function soon after calling
initscr(), to initialize the default color set (the
curses.wrapper.wrapper() function does this automatically). Once that’s
done, the has_colors() function returns TRUE if the terminal in use can
actually display color. (Note: curses uses the American spelling ‘color’,
instead of the Canadian/British spelling ‘colour’. If you’re used to the
British spelling, you’ll have to resign yourself to misspelling it for the sake
of these functions.)

The curses library maintains a finite number of color pairs, containing a
foreground (or text) color and a background color. You can get the attribute
value corresponding to a color pair with the color_pair() function; this
can be bitwise-OR’ed with other attributes such as A_REVERSE, but
again, such combinations are not guaranteed to work on all terminals.

An example, which displays a line of text using color pair 1:

stdscr.addstr("Pretty text", curses.color_pair(1))
stdscr.refresh()

As I said before, a color pair consists of a foreground and background color.
start_color() initializes 8 basic colors when it activates color mode.
They are: 0:black, 1:red, 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and
7:white. The curses module defines named constants for each of these colors:
curses.COLOR_BLACK, curses.COLOR_RED, and so forth.

The init_pair(n, f, b) function changes the definition of color pair n, to
foreground color f and background color b. Color pair 0 is hard-wired to white
on black, and cannot be changed.

Let’s put all this together. To change color 1 to red text on a white
background, you would call:

curses.init_pair(1, curses.COLOR_RED, curses.COLOR_WHITE)

When you change a color pair, any text already displayed using that color pair
will change to the new colors. You can also display new text in this color
with:

stdscr.addstr(0,0, "RED ALERT!", curses.color_pair(1))

Very fancy terminals can change the definitions of the actual colors to a given
RGB value. This lets you change color 1, which is usually red, to purple or
blue or any other color you like. Unfortunately, the Linux console doesn’t
support this, so I’m unable to try it out, and can’t provide any examples. You
can check if your terminal can do this by calling can_change_color(),
which returns TRUE if the capability is there. If you’re lucky enough to have
such a talented terminal, consult your system’s man pages for more information.

User Input

The curses library itself offers only very simple input mechanisms. Python’s
support adds a text-input widget that makes up some of the lack.

The most common way to get input to a window is to use its getch() method.
getch() pauses and waits for the user to hit a key, displaying it if
echo() has been called earlier. You can optionally specify a coordinate
to which the cursor should be moved before pausing.

It’s possible to change this behavior with the method nodelay(). After
nodelay(1), getch() for the window becomes non-blocking and returns
curses.ERR (a value of -1) when no input is ready. There’s also a
halfdelay() function, which can be used to (in effect) set a timer on each
getch(); if no input becomes available within a specified
delay (measured in tenths of a second), curses raises an exception.

The getch() method returns an integer; if it’s between 0 and 255, it
represents the ASCII code of the key pressed. Values greater than 255 are
special keys such as Page Up, Home, or the cursor keys. You can compare the
value returned to constants such as curses.KEY_PPAGE,
curses.KEY_HOME, or curses.KEY_LEFT. Usually the main loop of
your program will look something like this:

while 1:
 c = stdscr.getch()
 if c == ord('p'): PrintDocument()
 elif c == ord('q'): break # Exit the while()
 elif c == curses.KEY_HOME: x = y = 0

The curses.ascii module supplies ASCII class membership functions that
take either integer or 1-character-string arguments; these may be useful in
writing more readable tests for your command interpreters. It also supplies
conversion functions that take either integer or 1-character-string arguments
and return the same type. For example, curses.ascii.ctrl() returns the
control character corresponding to its argument.

There’s also a method to retrieve an entire string, getstr(). It isn’t
used very often, because its functionality is quite limited; the only editing
keys available are the backspace key and the Enter key, which terminates the
string. It can optionally be limited to a fixed number of characters.

curses.echo() # Enable echoing of characters

Get a 15-character string, with the cursor on the top line
s = stdscr.getstr(0,0, 15)

The Python curses.textpad module supplies something better. With it, you
can turn a window into a text box that supports an Emacs-like set of
keybindings. Various methods of Textbox class support editing with
input validation and gathering the edit results either with or without trailing
spaces. See the library documentation on curses.textpad for the
details.

For More Information

This HOWTO didn’t cover some advanced topics, such as screen-scraping or
capturing mouse events from an xterm instance. But the Python library page for
the curses modules is now pretty complete. You should browse it next.

If you’re in doubt about the detailed behavior of any of the ncurses entry
points, consult the manual pages for your curses implementation, whether it’s
ncurses or a proprietary Unix vendor’s. The manual pages will document any
quirks, and provide complete lists of all the functions, attributes, and
ACS_* characters available to you.

Because the curses API is so large, some functions aren’t supported in the
Python interface, not because they’re difficult to implement, but because no one
has needed them yet. Feel free to add them and then submit a patch. Also, we
don’t yet have support for the menu library associated with
ncurses; feel free to add that.

If you write an interesting little program, feel free to contribute it as
another demo. We can always use more of them!

The ncurses FAQ: http://invisible-island.net/ncurses/ncurses.faq.html

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Descriptor HowTo Guide

	Author:	Raymond Hettinger

	Contact:	<python at rcn dot com>

Contents

	Descriptor HowTo Guide
	Abstract

	Definition and Introduction

	Descriptor Protocol

	Invoking Descriptors

	Descriptor Example

	Properties

	Functions and Methods

	Static Methods and Class Methods

Abstract

Defines descriptors, summarizes the protocol, and shows how descriptors are
called. Examines a custom descriptor and several built-in python descriptors
including functions, properties, static methods, and class methods. Shows how
each works by giving a pure Python equivalent and a sample application.

Learning about descriptors not only provides access to a larger toolset, it
creates a deeper understanding of how Python works and an appreciation for the
elegance of its design.

Definition and Introduction

In general, a descriptor is an object attribute with “binding behavior”, one
whose attribute access has been overridden by methods in the descriptor
protocol. Those methods are __get__(), __set__(), and
__delete__(). If any of those methods are defined for an object, it is
said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the
attribute from an object’s dictionary. For instance, a.x has a lookup chain
starting with a.__dict__['x'], then type(a).__dict__['x'], and
continuing through the base classes of type(a) excluding metaclasses. If the
looked-up value is an object defining one of the descriptor methods, then Python
may override the default behavior and invoke the descriptor method instead.
Where this occurs in the precedence chain depends on which descriptor methods
were defined. Note that descriptors are only invoked for new style objects or
classes (a class is new style if it inherits from object or
type).

Descriptors are a powerful, general purpose protocol. They are the mechanism
behind properties, methods, static methods, class methods, and super().
They are used used throughout Python itself to implement the new style classes
introduced in version 2.2. Descriptors simplify the underlying C-code and offer
a flexible set of new tools for everyday Python programs.

Descriptor Protocol

descr.__get__(self, obj, type=None) --> value

descr.__set__(self, obj, value) --> None

descr.__delete__(self, obj) --> None

That is all there is to it. Define any of these methods and an object is
considered a descriptor and can override default behavior upon being looked up
as an attribute.

If an object defines both __get__() and __set__(), it is considered
a data descriptor. Descriptors that only define __get__() are called
non-data descriptors (they are typically used for methods but other uses are
possible).

Data and non-data descriptors differ in how overrides are calculated with
respect to entries in an instance’s dictionary. If an instance’s dictionary
has an entry with the same name as a data descriptor, the data descriptor
takes precedence. If an instance’s dictionary has an entry with the same
name as a non-data descriptor, the dictionary entry takes precedence.

To make a read-only data descriptor, define both __get__() and
__set__() with the __set__() raising an AttributeError when
called. Defining the __set__() method with an exception raising
placeholder is enough to make it a data descriptor.

Invoking Descriptors

A descriptor can be called directly by its method name. For example,
d.__get__(obj).

Alternatively, it is more common for a descriptor to be invoked automatically
upon attribute access. For example, obj.d looks up d in the dictionary
of obj. If d defines the method __get__(), then d.__get__(obj)
is invoked according to the precedence rules listed below.

The details of invocation depend on whether obj is an object or a class.
Either way, descriptors only work for new style objects and classes. A class is
new style if it is a subclass of object.

For objects, the machinery is in object.__getattribute__() which
transforms b.x into type(b).__dict__['x'].__get__(b, type(b)). The
implementation works through a precedence chain that gives data descriptors
priority over instance variables, instance variables priority over non-data
descriptors, and assigns lowest priority to __getattr__() if provided. The
full C implementation can be found in PyObject_GenericGetAttr() in
Objects/object.c [http://svn.python.org/view/python/trunk/Objects/object.c?view=markup].

For classes, the machinery is in type.__getattribute__() which transforms
B.x into B.__dict__['x'].__get__(None, B). In pure Python, it looks
like:

def __getattribute__(self, key):
 "Emulate type_getattro() in Objects/typeobject.c"
 v = object.__getattribute__(self, key)
 if hasattr(v, '__get__'):
 return v.__get__(None, self)
 return v

The important points to remember are:

	descriptors are invoked by the __getattribute__() method

	overriding __getattribute__() prevents automatic descriptor calls

	__getattribute__() is only available with new style classes and objects

	object.__getattribute__() and type.__getattribute__() make
different calls to __get__().

	data descriptors always override instance dictionaries.

	non-data descriptors may be overridden by instance dictionaries.

The object returned by super() also has a custom __getattribute__()
method for invoking descriptors. The call super(B, obj).m() searches
obj.__class__.__mro__ for the base class A immediately following B
and then returns A.__dict__['m'].__get__(obj, A). If not a descriptor,
m is returned unchanged. If not in the dictionary, m reverts to a
search using object.__getattribute__().

Note, in Python 2.2, super(B, obj).m() would only invoke __get__() if
m was a data descriptor. In Python 2.3, non-data descriptors also get
invoked unless an old-style class is involved. The implementation details are
in super_getattro() in
Objects/typeobject.c [http://svn.python.org/view/python/trunk/Objects/typeobject.c?view=markup]
and a pure Python equivalent can be found in Guido’s Tutorial [http://www.python.org/2.2.3/descrintro.html#cooperation].

The details above show that the mechanism for descriptors is embedded in the
__getattribute__() methods for object, type, and
super(). Classes inherit this machinery when they derive from
object or if they have a meta-class providing similar functionality.
Likewise, classes can turn-off descriptor invocation by overriding
__getattribute__().

Descriptor Example

The following code creates a class whose objects are data descriptors which
print a message for each get or set. Overriding __getattribute__() is
alternate approach that could do this for every attribute. However, this
descriptor is useful for monitoring just a few chosen attributes:

class RevealAccess(object):
 """A data descriptor that sets and returns values
 normally and prints a message logging their access.
 """

 def __init__(self, initval=None, name='var'):
 self.val = initval
 self.name = name

 def __get__(self, obj, objtype):
 print 'Retrieving', self.name
 return self.val

 def __set__(self, obj, val):
 print 'Updating' , self.name
 self.val = val

>>> class MyClass(object):
 x = RevealAccess(10, 'var "x"')
 y = 5

>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5

The protocol is simple and offers exciting possibilities. Several use cases are
so common that they have been packaged into individual function calls.
Properties, bound and unbound methods, static methods, and class methods are all
based on the descriptor protocol.

Properties

Calling property() is a succinct way of building a data descriptor that
triggers function calls upon access to an attribute. Its signature is:

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

The documentation shows a typical use to define a managed attribute x:

class C(object):
 def getx(self): return self.__x
 def setx(self, value): self.__x = value
 def delx(self): del self.__x
 x = property(getx, setx, delx, "I'm the 'x' property.")

To see how property() is implemented in terms of the descriptor protocol,
here is a pure Python equivalent:

class Property(object):
 "Emulate PyProperty_Type() in Objects/descrobject.c"

 def __init__(self, fget=None, fset=None, fdel=None, doc=None):
 self.fget = fget
 self.fset = fset
 self.fdel = fdel
 self.__doc__ = doc

 def __get__(self, obj, objtype=None):
 if obj is None:
 return self
 if self.fget is None:
 raise AttributeError, "unreadable attribute"
 return self.fget(obj)

 def __set__(self, obj, value):
 if self.fset is None:
 raise AttributeError, "can't set attribute"
 self.fset(obj, value)

 def __delete__(self, obj):
 if self.fdel is None:
 raise AttributeError, "can't delete attribute"
 self.fdel(obj)

The property() builtin helps whenever a user interface has granted
attribute access and then subsequent changes require the intervention of a
method.

For instance, a spreadsheet class may grant access to a cell value through
Cell('b10').value. Subsequent improvements to the program require the cell
to be recalculated on every access; however, the programmer does not want to
affect existing client code accessing the attribute directly. The solution is
to wrap access to the value attribute in a property data descriptor:

class Cell(object):
 . . .
 def getvalue(self, obj):
 "Recalculate cell before returning value"
 self.recalc()
 return obj._value
 value = property(getvalue)

Functions and Methods

Python’s object oriented features are built upon a function based environment.
Using non-data descriptors, the two are merged seamlessly.

Class dictionaries store methods as functions. In a class definition, methods
are written using def and lambda, the usual tools for
creating functions. The only difference from regular functions is that the
first argument is reserved for the object instance. By Python convention, the
instance reference is called self but may be called this or any other
variable name.

To support method calls, functions include the __get__() method for
binding methods during attribute access. This means that all functions are
non-data descriptors which return bound or unbound methods depending whether
they are invoked from an object or a class. In pure python, it works like
this:

class Function(object):
 . . .
 def __get__(self, obj, objtype=None):
 "Simulate func_descr_get() in Objects/funcobject.c"
 return types.MethodType(self, obj, objtype)

Running the interpreter shows how the function descriptor works in practice:

>>> class D(object):
 def f(self, x):
 return x

>>> d = D()
>>> D.__dict__['f'] # Stored internally as a function
<function f at 0x00C45070>
>>> D.f # Get from a class becomes an unbound method
<unbound method D.f>
>>> d.f # Get from an instance becomes a bound method
<bound method D.f of <__main__.D object at 0x00B18C90>>

The output suggests that bound and unbound methods are two different types.
While they could have been implemented that way, the actual C implementation of
PyMethod_Type in
Objects/classobject.c [http://svn.python.org/view/python/trunk/Objects/classobject.c?view=markup]
is a single object with two different representations depending on whether the
im_self field is set or is NULL (the C equivalent of None).

Likewise, the effects of calling a method object depend on the im_self
field. If set (meaning bound), the original function (stored in the
im_func field) is called as expected with the first argument set to the
instance. If unbound, all of the arguments are passed unchanged to the original
function. The actual C implementation of instancemethod_call() is only
slightly more complex in that it includes some type checking.

Static Methods and Class Methods

Non-data descriptors provide a simple mechanism for variations on the usual
patterns of binding functions into methods.

To recap, functions have a __get__() method so that they can be converted
to a method when accessed as attributes. The non-data descriptor transforms a
obj.f(*args) call into f(obj, *args). Calling klass.f(*args)
becomes f(*args).

This chart summarizes the binding and its two most useful variants:

	Transformation
	Called from an
Object
	Called from a
Class

	function
	f(obj, *args)
	f(*args)

	staticmethod
	f(*args)
	f(*args)

	classmethod
	f(type(obj), *args)
	f(klass, *args)

Static methods return the underlying function without changes. Calling either
c.f or C.f is the equivalent of a direct lookup into
object.__getattribute__(c, "f") or object.__getattribute__(C, "f"). As a
result, the function becomes identically accessible from either an object or a
class.

Good candidates for static methods are methods that do not reference the
self variable.

For instance, a statistics package may include a container class for
experimental data. The class provides normal methods for computing the average,
mean, median, and other descriptive statistics that depend on the data. However,
there may be useful functions which are conceptually related but do not depend
on the data. For instance, erf(x) is handy conversion routine that comes up
in statistical work but does not directly depend on a particular dataset.
It can be called either from an object or the class: s.erf(1.5) --> .9332 or
Sample.erf(1.5) --> .9332.

Since staticmethods return the underlying function with no changes, the example
calls are unexciting:

>>> class E(object):
 def f(x):
 print x
 f = staticmethod(f)

>>> print E.f(3)
3
>>> print E().f(3)
3

Using the non-data descriptor protocol, a pure Python version of
staticmethod() would look like this:

class StaticMethod(object):
 "Emulate PyStaticMethod_Type() in Objects/funcobject.c"

 def __init__(self, f):
 self.f = f

 def __get__(self, obj, objtype=None):
 return self.f

Unlike static methods, class methods prepend the class reference to the
argument list before calling the function. This format is the same
for whether the caller is an object or a class:

>>> class E(object):
 def f(klass, x):
 return klass.__name__, x
 f = classmethod(f)

>>> print E.f(3)
('E', 3)
>>> print E().f(3)
('E', 3)

This behavior is useful whenever the function only needs to have a class
reference and does not care about any underlying data. One use for classmethods
is to create alternate class constructors. In Python 2.3, the classmethod
dict.fromkeys() creates a new dictionary from a list of keys. The pure
Python equivalent is:

class Dict:
 . . .
 def fromkeys(klass, iterable, value=None):
 "Emulate dict_fromkeys() in Objects/dictobject.c"
 d = klass()
 for key in iterable:
 d[key] = value
 return d
 fromkeys = classmethod(fromkeys)

Now a new dictionary of unique keys can be constructed like this:

>>> Dict.fromkeys('abracadabra')
{'a': None, 'r': None, 'b': None, 'c': None, 'd': None}

Using the non-data descriptor protocol, a pure Python version of
classmethod() would look like this:

class ClassMethod(object):
 "Emulate PyClassMethod_Type() in Objects/funcobject.c"

 def __init__(self, f):
 self.f = f

 def __get__(self, obj, klass=None):
 if klass is None:
 klass = type(obj)
 def newfunc(*args):
 return self.f(klass, *args)
 return newfunc

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Idioms and Anti-Idioms in Python

	Author:	Moshe Zadka

This document is placed in the public domain.

Abstract

This document can be considered a companion to the tutorial. It shows how to use
Python, and even more importantly, how not to use Python.

Language Constructs You Should Not Use

While Python has relatively few gotchas compared to other languages, it still
has some constructs which are only useful in corner cases, or are plain
dangerous.

from module import *

Inside Function Definitions

from module import * is invalid inside function definitions. While many
versions of Python do not check for the invalidity, it does not make it more
valid, no more than having a smart lawyer makes a man innocent. Do not use it
like that ever. Even in versions where it was accepted, it made the function
execution slower, because the compiler could not be certain which names are
local and which are global. In Python 2.1 this construct causes warnings, and
sometimes even errors.

At Module Level

While it is valid to use from module import * at module level it is usually
a bad idea. For one, this loses an important property Python otherwise has —
you can know where each toplevel name is defined by a simple “search” function
in your favourite editor. You also open yourself to trouble in the future, if
some module grows additional functions or classes.

One of the most awful question asked on the newsgroup is why this code:

f = open("www")
f.read()

does not work. Of course, it works just fine (assuming you have a file called
“www”.) But it does not work if somewhere in the module, the statement from
os import * is present. The os module has a function called
open() which returns an integer. While it is very useful, shadowing a
builtin is one of its least useful properties.

Remember, you can never know for sure what names a module exports, so either
take what you need — from module import name1, name2, or keep them in the
module and access on a per-need basis — import module;print module.name.

When It Is Just Fine

There are situations in which from module import * is just fine:

	The interactive prompt. For example, from math import * makes Python an
amazing scientific calculator.

	When extending a module in C with a module in Python.

	When the module advertises itself as from import * safe.

Unadorned exec, execfile() and friends

The word “unadorned” refers to the use without an explicit dictionary, in which
case those constructs evaluate code in the current environment. This is
dangerous for the same reasons from import * is dangerous — it might step
over variables you are counting on and mess up things for the rest of your code.
Simply do not do that.

Bad examples:

>>> for name in sys.argv[1:]:
>>> exec "%s=1" % name
>>> def func(s, **kw):
>>> for var, val in kw.items():
>>> exec "s.%s=val" % var # invalid!
>>> execfile("handler.py")
>>> handle()

Good examples:

>>> d = {}
>>> for name in sys.argv[1:]:
>>> d[name] = 1
>>> def func(s, **kw):
>>> for var, val in kw.items():
>>> setattr(s, var, val)
>>> d={}
>>> execfile("handle.py", d, d)
>>> handle = d['handle']
>>> handle()

from module import name1, name2

This is a “don’t” which is much weaker than the previous “don’t”s but is still
something you should not do if you don’t have good reasons to do that. The
reason it is usually bad idea is because you suddenly have an object which lives
in two separate namespaces. When the binding in one namespace changes, the
binding in the other will not, so there will be a discrepancy between them. This
happens when, for example, one module is reloaded, or changes the definition of
a function at runtime.

Bad example:

foo.py
a = 1

bar.py
from foo import a
if something():
 a = 2 # danger: foo.a != a

Good example:

foo.py
a = 1

bar.py
import foo
if something():
 foo.a = 2

except:

Python has the except: clause, which catches all exceptions. Since every
error in Python raises an exception, using except: can make many
programming errors look like runtime problems, which hinders the debugging
process.

The following code shows a great example of why this is bad:

try:
 foo = opne("file") # misspelled "open"
except:
 sys.exit("could not open file!")

The second line triggers a NameError, which is caught by the except
clause. The program will exit, and the error message the program prints will
make you think the problem is the readability of "file" when in fact
the real error has nothing to do with "file".

A better way to write the above is

try:
 foo = opne("file")
except IOError:
 sys.exit("could not open file")

When this is run, Python will produce a traceback showing the NameError,
and it will be immediately apparent what needs to be fixed.

Because except: catches all exceptions, including SystemExit,
KeyboardInterrupt, and GeneratorExit (which is not an error and
should not normally be caught by user code), using a bare except: is almost
never a good idea. In situations where you need to catch all “normal” errors,
such as in a framework that runs callbacks, you can catch the base class for
all normal exceptions, Exception. Unfortunately in Python 2.x it is
possible for third-party code to raise exceptions that do not inherit from
Exception, so in Python 2.x there are some cases where you may have to
use a bare except: and manually re-raise the exceptions you don’t want
to catch.

Exceptions

Exceptions are a useful feature of Python. You should learn to raise them
whenever something unexpected occurs, and catch them only where you can do
something about them.

The following is a very popular anti-idiom

def get_status(file):
 if not os.path.exists(file):
 print "file not found"
 sys.exit(1)
 return open(file).readline()

Consider the case where the file gets deleted between the time the call to
os.path.exists() is made and the time open() is called. In that
case the last line will raise an IOError. The same thing would happen
if file exists but has no read permission. Since testing this on a normal
machine on existent and non-existent files makes it seem bugless, the test
results will seem fine, and the code will get shipped. Later an unhandled
IOError (or perhaps some other EnvironmentError) escapes to the
user, who gets to watch the ugly traceback.

Here is a somewhat better way to do it.

def get_status(file):
 try:
 return open(file).readline()
 except EnvironmentError as err:
 print "Unable to open file: {}".format(err)
 sys.exit(1)

In this version, either the file gets opened and the line is read (so it
works even on flaky NFS or SMB connections), or an error message is printed
that provides all the available information on why the open failed, and the
application is aborted.

However, even this version of get_status() makes too many assumptions —
that it will only be used in a short running script, and not, say, in a long
running server. Sure, the caller could do something like

try:
 status = get_status(log)
except SystemExit:
 status = None

But there is a better way. You should try to use as few except clauses in
your code as you can — the ones you do use will usually be inside calls which
should always succeed, or a catch-all in a main function.

So, an even better version of get_status() is probably

def get_status(file):
 return open(file).readline()

The caller can deal with the exception if it wants (for example, if it tries
several files in a loop), or just let the exception filter upwards to its
caller.

But the last version still has a serious problem — due to implementation
details in CPython, the file would not be closed when an exception is raised
until the exception handler finishes; and, worse, in other implementations
(e.g., Jython) it might not be closed at all regardless of whether or not
an exception is raised.

The best version of this function uses the open() call as a context
manager, which will ensure that the file gets closed as soon as the
function returns:

def get_status(file):
 with open(file) as fp:
 return fp.readline()

Using the Batteries

Every so often, people seem to be writing stuff in the Python library again,
usually poorly. While the occasional module has a poor interface, it is usually
much better to use the rich standard library and data types that come with
Python than inventing your own.

A useful module very few people know about is os.path. It always has the
correct path arithmetic for your operating system, and will usually be much
better than whatever you come up with yourself.

Compare:

ugh!
return dir+"/"+file
better
return os.path.join(dir, file)

More useful functions in os.path: basename(), dirname() and
splitext().

There are also many useful built-in functions people seem not to be aware of
for some reason: min() and max() can find the minimum/maximum of
any sequence with comparable semantics, for example, yet many people write
their own max()/min(). Another highly useful function is
reduce() which can be used to repeatly apply a binary operation to a
sequence, reducing it to a single value. For example, compute a factorial
with a series of multiply operations:

>>> n = 4
>>> import operator
>>> reduce(operator.mul, range(1, n+1))
24

When it comes to parsing numbers, note that float(), int() and
long() all accept string arguments and will reject ill-formed strings
by raising an ValueError.

Using Backslash to Continue Statements

Since Python treats a newline as a statement terminator, and since statements
are often more than is comfortable to put in one line, many people do:

if foo.bar()['first'][0] == baz.quux(1, 2)[5:9] and \
 calculate_number(10, 20) != forbulate(500, 360):
 pass

You should realize that this is dangerous: a stray space after the \ would
make this line wrong, and stray spaces are notoriously hard to see in editors.
In this case, at least it would be a syntax error, but if the code was:

value = foo.bar()['first'][0]*baz.quux(1, 2)[5:9] \
 + calculate_number(10, 20)*forbulate(500, 360)

then it would just be subtly wrong.

It is usually much better to use the implicit continuation inside parenthesis:

This version is bulletproof:

value = (foo.bar()['first'][0]*baz.quux(1, 2)[5:9]
 + calculate_number(10, 20)*forbulate(500, 360))

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Functional Programming HOWTO

	Author:	A. M. Kuchling

	Release:	0.31

In this document, we’ll take a tour of Python’s features suitable for
implementing programs in a functional style. After an introduction to the
concepts of functional programming, we’ll look at language features such as
iterators and generators and relevant library modules such as
itertools and functools.

Introduction

This section explains the basic concept of functional programming; if you’re
just interested in learning about Python language features, skip to the next
section.

Programming languages support decomposing problems in several different ways:

	Most programming languages are procedural: programs are lists of
instructions that tell the computer what to do with the program’s input. C,
Pascal, and even Unix shells are procedural languages.

	In declarative languages, you write a specification that describes the
problem to be solved, and the language implementation figures out how to
perform the computation efficiently. SQL is the declarative language you’re
most likely to be familiar with; a SQL query describes the data set you want
to retrieve, and the SQL engine decides whether to scan tables or use indexes,
which subclauses should be performed first, etc.

	Object-oriented programs manipulate collections of objects. Objects have
internal state and support methods that query or modify this internal state in
some way. Smalltalk and Java are object-oriented languages. C++ and Python
are languages that support object-oriented programming, but don’t force the
use of object-oriented features.

	Functional programming decomposes a problem into a set of functions.
Ideally, functions only take inputs and produce outputs, and don’t have any
internal state that affects the output produced for a given input. Well-known
functional languages include the ML family (Standard ML, OCaml, and other
variants) and Haskell.

The designers of some computer languages choose to emphasize one
particular approach to programming. This often makes it difficult to
write programs that use a different approach. Other languages are
multi-paradigm languages that support several different approaches.
Lisp, C++, and Python are multi-paradigm; you can write programs or
libraries that are largely procedural, object-oriented, or functional
in all of these languages. In a large program, different sections
might be written using different approaches; the GUI might be
object-oriented while the processing logic is procedural or
functional, for example.

In a functional program, input flows through a set of functions. Each function
operates on its input and produces some output. Functional style discourages
functions with side effects that modify internal state or make other changes
that aren’t visible in the function’s return value. Functions that have no side
effects at all are called purely functional. Avoiding side effects means
not using data structures that get updated as a program runs; every function’s
output must only depend on its input.

Some languages are very strict about purity and don’t even have assignment
statements such as a=3 or c = a + b, but it’s difficult to avoid all
side effects. Printing to the screen or writing to a disk file are side
effects, for example. For example, in Python a print statement or a
time.sleep(1) both return no useful value; they’re only called for their
side effects of sending some text to the screen or pausing execution for a
second.

Python programs written in functional style usually won’t go to the extreme of
avoiding all I/O or all assignments; instead, they’ll provide a
functional-appearing interface but will use non-functional features internally.
For example, the implementation of a function will still use assignments to
local variables, but won’t modify global variables or have other side effects.

Functional programming can be considered the opposite of object-oriented
programming. Objects are little capsules containing some internal state along
with a collection of method calls that let you modify this state, and programs
consist of making the right set of state changes. Functional programming wants
to avoid state changes as much as possible and works with data flowing between
functions. In Python you might combine the two approaches by writing functions
that take and return instances representing objects in your application (e-mail
messages, transactions, etc.).

Functional design may seem like an odd constraint to work under. Why should you
avoid objects and side effects? There are theoretical and practical advantages
to the functional style:

	Formal provability.

	Modularity.

	Composability.

	Ease of debugging and testing.

Formal provability

A theoretical benefit is that it’s easier to construct a mathematical proof that
a functional program is correct.

For a long time researchers have been interested in finding ways to
mathematically prove programs correct. This is different from testing a program
on numerous inputs and concluding that its output is usually correct, or reading
a program’s source code and concluding that the code looks right; the goal is
instead a rigorous proof that a program produces the right result for all
possible inputs.

The technique used to prove programs correct is to write down invariants,
properties of the input data and of the program’s variables that are always
true. For each line of code, you then show that if invariants X and Y are true
before the line is executed, the slightly different invariants X’ and Y’ are
true after the line is executed. This continues until you reach the end of
the program, at which point the invariants should match the desired conditions
on the program’s output.

Functional programming’s avoidance of assignments arose because assignments are
difficult to handle with this technique; assignments can break invariants that
were true before the assignment without producing any new invariants that can be
propagated onward.

Unfortunately, proving programs correct is largely impractical and not relevant
to Python software. Even trivial programs require proofs that are several pages
long; the proof of correctness for a moderately complicated program would be
enormous, and few or none of the programs you use daily (the Python interpreter,
your XML parser, your web browser) could be proven correct. Even if you wrote
down or generated a proof, there would then be the question of verifying the
proof; maybe there’s an error in it, and you wrongly believe you’ve proved the
program correct.

Modularity

A more practical benefit of functional programming is that it forces you to
break apart your problem into small pieces. Programs are more modular as a
result. It’s easier to specify and write a small function that does one thing
than a large function that performs a complicated transformation. Small
functions are also easier to read and to check for errors.

Ease of debugging and testing

Testing and debugging a functional-style program is easier.

Debugging is simplified because functions are generally small and clearly
specified. When a program doesn’t work, each function is an interface point
where you can check that the data are correct. You can look at the intermediate
inputs and outputs to quickly isolate the function that’s responsible for a bug.

Testing is easier because each function is a potential subject for a unit test.
Functions don’t depend on system state that needs to be replicated before
running a test; instead you only have to synthesize the right input and then
check that the output matches expectations.

Composability

As you work on a functional-style program, you’ll write a number of functions
with varying inputs and outputs. Some of these functions will be unavoidably
specialized to a particular application, but others will be useful in a wide
variety of programs. For example, a function that takes a directory path and
returns all the XML files in the directory, or a function that takes a filename
and returns its contents, can be applied to many different situations.

Over time you’ll form a personal library of utilities. Often you’ll assemble
new programs by arranging existing functions in a new configuration and writing
a few functions specialized for the current task.

Iterators

I’ll start by looking at a Python language feature that’s an important
foundation for writing functional-style programs: iterators.

An iterator is an object representing a stream of data; this object returns the
data one element at a time. A Python iterator must support a method called
next() that takes no arguments and always returns the next element of the
stream. If there are no more elements in the stream, next() must raise the
StopIteration exception. Iterators don’t have to be finite, though; it’s
perfectly reasonable to write an iterator that produces an infinite stream of
data.

The built-in iter() function takes an arbitrary object and tries to return
an iterator that will return the object’s contents or elements, raising
TypeError if the object doesn’t support iteration. Several of Python’s
built-in data types support iteration, the most common being lists and
dictionaries. An object is called an iterable object if you can get an
iterator for it.

You can experiment with the iteration interface manually:

>>> L = [1,2,3]
>>> it = iter(L)
>>> print it
<...iterator object at ...>
>>> it.next()
1
>>> it.next()
2
>>> it.next()
3
>>> it.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

Python expects iterable objects in several different contexts, the most
important being the for statement. In the statement for X in Y, Y must
be an iterator or some object for which iter() can create an iterator.
These two statements are equivalent:

for i in iter(obj):
 print i

for i in obj:
 print i

Iterators can be materialized as lists or tuples by using the list() or
tuple() constructor functions:

>>> L = [1,2,3]
>>> iterator = iter(L)
>>> t = tuple(iterator)
>>> t
(1, 2, 3)

Sequence unpacking also supports iterators: if you know an iterator will return
N elements, you can unpack them into an N-tuple:

>>> L = [1,2,3]
>>> iterator = iter(L)
>>> a,b,c = iterator
>>> a,b,c
(1, 2, 3)

Built-in functions such as max() and min() can take a single
iterator argument and will return the largest or smallest element. The "in"
and "not in" operators also support iterators: X in iterator is true if
X is found in the stream returned by the iterator. You’ll run into obvious
problems if the iterator is infinite; max(), min(), and "not in"
will never return, and if the element X never appears in the stream, the
"in" operator won’t return either.

Note that you can only go forward in an iterator; there’s no way to get the
previous element, reset the iterator, or make a copy of it. Iterator objects
can optionally provide these additional capabilities, but the iterator protocol
only specifies the next() method. Functions may therefore consume all of
the iterator’s output, and if you need to do something different with the same
stream, you’ll have to create a new iterator.

Data Types That Support Iterators

We’ve already seen how lists and tuples support iterators. In fact, any Python
sequence type, such as strings, will automatically support creation of an
iterator.

Calling iter() on a dictionary returns an iterator that will loop over the
dictionary’s keys:

>>> m = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6,
... 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12}
>>> for key in m:
... print key, m[key]
Mar 3
Feb 2
Aug 8
Sep 9
Apr 4
Jun 6
Jul 7
Jan 1
May 5
Nov 11
Dec 12
Oct 10

Note that the order is essentially random, because it’s based on the hash
ordering of the objects in the dictionary.

Applying iter() to a dictionary always loops over the keys, but dictionaries
have methods that return other iterators. If you want to iterate over keys,
values, or key/value pairs, you can explicitly call the iterkeys(),
itervalues(), or iteritems() methods to get an appropriate iterator.

The dict() constructor can accept an iterator that returns a finite stream
of (key, value) tuples:

>>> L = [('Italy', 'Rome'), ('France', 'Paris'), ('US', 'Washington DC')]
>>> dict(iter(L))
{'Italy': 'Rome', 'US': 'Washington DC', 'France': 'Paris'}

Files also support iteration by calling the readline() method until there
are no more lines in the file. This means you can read each line of a file like
this:

for line in file:
 # do something for each line
 ...

Sets can take their contents from an iterable and let you iterate over the set’s
elements:

S = set((2, 3, 5, 7, 11, 13))
for i in S:
 print i

Generator expressions and list comprehensions

Two common operations on an iterator’s output are 1) performing some operation
for every element, 2) selecting a subset of elements that meet some condition.
For example, given a list of strings, you might want to strip off trailing
whitespace from each line or extract all the strings containing a given
substring.

List comprehensions and generator expressions (short form: “listcomps” and
“genexps”) are a concise notation for such operations, borrowed from the
functional programming language Haskell (http://www.haskell.org/). You can strip
all the whitespace from a stream of strings with the following code:

line_list = [' line 1\n', 'line 2 \n', ...]

Generator expression -- returns iterator
stripped_iter = (line.strip() for line in line_list)

List comprehension -- returns list
stripped_list = [line.strip() for line in line_list]

You can select only certain elements by adding an "if" condition:

stripped_list = [line.strip() for line in line_list
 if line != ""]

With a list comprehension, you get back a Python list; stripped_list is a
list containing the resulting lines, not an iterator. Generator expressions
return an iterator that computes the values as necessary, not needing to
materialize all the values at once. This means that list comprehensions aren’t
useful if you’re working with iterators that return an infinite stream or a very
large amount of data. Generator expressions are preferable in these situations.

Generator expressions are surrounded by parentheses (“()”) and list
comprehensions are surrounded by square brackets (“[]”). Generator expressions
have the form:

(expression for expr in sequence1
 if condition1
 for expr2 in sequence2
 if condition2
 for expr3 in sequence3 ...
 if condition3
 for exprN in sequenceN
 if conditionN)

Again, for a list comprehension only the outside brackets are different (square
brackets instead of parentheses).

The elements of the generated output will be the successive values of
expression. The if clauses are all optional; if present, expression
is only evaluated and added to the result when condition is true.

Generator expressions always have to be written inside parentheses, but the
parentheses signalling a function call also count. If you want to create an
iterator that will be immediately passed to a function you can write:

obj_total = sum(obj.count for obj in list_all_objects())

The for...in clauses contain the sequences to be iterated over. The
sequences do not have to be the same length, because they are iterated over from
left to right, not in parallel. For each element in sequence1,
sequence2 is looped over from the beginning. sequence3 is then looped
over for each resulting pair of elements from sequence1 and sequence2.

To put it another way, a list comprehension or generator expression is
equivalent to the following Python code:

for expr1 in sequence1:
 if not (condition1):
 continue # Skip this element
 for expr2 in sequence2:
 if not (condition2):
 continue # Skip this element
 ...
 for exprN in sequenceN:
 if not (conditionN):
 continue # Skip this element

 # Output the value of
 # the expression.

This means that when there are multiple for...in clauses but no if
clauses, the length of the resulting output will be equal to the product of the
lengths of all the sequences. If you have two lists of length 3, the output
list is 9 elements long:

>>> seq1 = 'abc'
>>> seq2 = (1,2,3)
>>> [(x,y) for x in seq1 for y in seq2]
[('a', 1), ('a', 2), ('a', 3),
 ('b', 1), ('b', 2), ('b', 3),
 ('c', 1), ('c', 2), ('c', 3)]

To avoid introducing an ambiguity into Python’s grammar, if expression is
creating a tuple, it must be surrounded with parentheses. The first list
comprehension below is a syntax error, while the second one is correct:

Syntax error
[x,y for x in seq1 for y in seq2]
Correct
[(x,y) for x in seq1 for y in seq2]

Generators

Generators are a special class of functions that simplify the task of writing
iterators. Regular functions compute a value and return it, but generators
return an iterator that returns a stream of values.

You’re doubtless familiar with how regular function calls work in Python or C.
When you call a function, it gets a private namespace where its local variables
are created. When the function reaches a return statement, the local
variables are destroyed and the value is returned to the caller. A later call
to the same function creates a new private namespace and a fresh set of local
variables. But, what if the local variables weren’t thrown away on exiting a
function? What if you could later resume the function where it left off? This
is what generators provide; they can be thought of as resumable functions.

Here’s the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

Any function containing a yield keyword is a generator function; this is
detected by Python’s bytecode compiler which compiles the function
specially as a result.

When you call a generator function, it doesn’t return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield expression, the generator outputs the value of i, similar to a
return statement. The big difference between yield and a return
statement is that on reaching a yield the generator’s state of execution is
suspended and local variables are preserved. On the next call to the
generator’s .next() method, the function will resume executing.

Here’s a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object generate_ints at ...>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "stdin", line 1, in ?
 File "stdin", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used without a
value, and signals the end of the procession of values; after executing a
return the generator cannot return any further values. return with a
value, such as return 5, is a syntax error inside a generator function. The
end of the generator’s results can also be indicated by raising
StopIteration manually, or by just letting the flow of execution fall off
the bottom of the function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
can be much messier.

The test suite included with Python’s library, test_generators.py, contains
a number of more interesting examples. Here’s one generator that implements an
in-order traversal of a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x

 yield t.label

 for x in inorder(t.right):
 yield x

Two other examples in test_generators.py produce solutions for the N-Queens
problem (placing N queens on an NxN chess board so that no queen threatens
another) and the Knight’s Tour (finding a route that takes a knight to every
square of an NxN chessboard without visiting any square twice).

Passing values into a generator

In Python 2.4 and earlier, generators only produced output. Once a generator’s
code was invoked to create an iterator, there was no way to pass any new
information into the function when its execution is resumed. You could hack
together this ability by making the generator look at a global variable or by
passing in some mutable object that callers then modify, but these approaches
are messy.

In Python 2.5 there’s a simple way to pass values into a generator.
yield became an expression, returning a value that can be assigned to
a variable or otherwise operated on:

val = (yield i)

I recommend that you always put parentheses around a yield expression
when you’re doing something with the returned value, as in the above example.
The parentheses aren’t always necessary, but it’s easier to always add them
instead of having to remember when they’re needed.

(PEP 342 explains the exact rules, which are that a yield-expression must
always be parenthesized except when it occurs at the top-level expression on the
right-hand side of an assignment. This means you can write val = yield i
but have to use parentheses when there’s an operation, as in val = (yield i)
+ 12.)

Values are sent into a generator by calling its send(value) method. This
method resumes the generator’s code and the yield expression returns the
specified value. If the regular next() method is called, the yield
returns None.

Here’s a simple counter that increments by 1 and allows changing the value of
the internal counter.

def counter (maximum):
 i = 0
 while i < maximum:
 val = (yield i)
 # If value provided, change counter
 if val is not None:
 i = val
 else:
 i += 1

And here’s an example of changing the counter:

>>> it = counter(10)
>>> print it.next()
0
>>> print it.next()
1
>>> print it.send(8)
8
>>> print it.next()
9
>>> print it.next()
Traceback (most recent call last):
 File "t.py", line 15, in ?
 print it.next()
StopIteration

Because yield will often be returning None, you should always check for
this case. Don’t just use its value in expressions unless you’re sure that the
send() method will be the only method used resume your generator function.

In addition to send(), there are two other new methods on generators:

	throw(type, value=None, traceback=None) is used to raise an exception
inside the generator; the exception is raised by the yield expression
where the generator’s execution is paused.

	close() raises a GeneratorExit exception inside the generator to
terminate the iteration. On receiving this exception, the generator’s code
must either raise GeneratorExit or StopIteration; catching the
exception and doing anything else is illegal and will trigger a
RuntimeError. close() will also be called by Python’s garbage
collector when the generator is garbage-collected.

If you need to run cleanup code when a GeneratorExit occurs, I suggest
using a try: ... finally: suite instead of catching GeneratorExit.

The cumulative effect of these changes is to turn generators from one-way
producers of information into both producers and consumers.

Generators also become coroutines, a more generalized form of subroutines.
Subroutines are entered at one point and exited at another point (the top of the
function, and a return statement), but coroutines can be entered, exited,
and resumed at many different points (the yield statements).

Built-in functions

Let’s look in more detail at built-in functions often used with iterators.

Two of Python’s built-in functions, map() and filter(), are somewhat
obsolete; they duplicate the features of list comprehensions but return actual
lists instead of iterators.

map(f, iterA, iterB, ...) returns a list containing f(iterA[0], iterB[0]),
f(iterA[1], iterB[1]), f(iterA[2], iterB[2]),

>>> def upper(s):
... return s.upper()

>>> map(upper, ['sentence', 'fragment'])
['SENTENCE', 'FRAGMENT']

>>> [upper(s) for s in ['sentence', 'fragment']]
['SENTENCE', 'FRAGMENT']

As shown above, you can achieve the same effect with a list comprehension. The
itertools.imap() function does the same thing but can handle infinite
iterators; it’ll be discussed later, in the section on the itertools module.

filter(predicate, iter) returns a list that contains all the sequence
elements that meet a certain condition, and is similarly duplicated by list
comprehensions. A predicate is a function that returns the truth value of
some condition; for use with filter(), the predicate must take a single
value.

>>> def is_even(x):
... return (x % 2) == 0

>>> filter(is_even, range(10))
[0, 2, 4, 6, 8]

This can also be written as a list comprehension:

>>> [x for x in range(10) if is_even(x)]
[0, 2, 4, 6, 8]

filter() also has a counterpart in the itertools module,
itertools.ifilter(), that returns an iterator and can therefore handle
infinite sequences just as itertools.imap() can.

reduce(func, iter, [initial_value]) doesn’t have a counterpart in the
itertools module because it cumulatively performs an operation on all the
iterable’s elements and therefore can’t be applied to infinite iterables.
func must be a function that takes two elements and returns a single value.
reduce() takes the first two elements A and B returned by the iterator and
calculates func(A, B). It then requests the third element, C, calculates
func(func(A, B), C), combines this result with the fourth element returned,
and continues until the iterable is exhausted. If the iterable returns no
values at all, a TypeError exception is raised. If the initial value is
supplied, it’s used as a starting point and func(initial_value, A) is the
first calculation.

>>> import operator
>>> reduce(operator.concat, ['A', 'BB', 'C'])
'ABBC'
>>> reduce(operator.concat, [])
Traceback (most recent call last):
 ...
TypeError: reduce() of empty sequence with no initial value
>>> reduce(operator.mul, [1,2,3], 1)
6
>>> reduce(operator.mul, [], 1)
1

If you use operator.add() with reduce(), you’ll add up all the
elements of the iterable. This case is so common that there’s a special
built-in called sum() to compute it:

>>> reduce(operator.add, [1,2,3,4], 0)
10
>>> sum([1,2,3,4])
10
>>> sum([])
0

For many uses of reduce(), though, it can be clearer to just write the
obvious for loop:

Instead of:
product = reduce(operator.mul, [1,2,3], 1)

You can write:
product = 1
for i in [1,2,3]:
 product *= i

enumerate(iter) counts off the elements in the iterable, returning 2-tuples
containing the count and each element.

>>> for item in enumerate(['subject', 'verb', 'object']):
... print item
(0, 'subject')
(1, 'verb')
(2, 'object')

enumerate() is often used when looping through a list and recording the
indexes at which certain conditions are met:

f = open('data.txt', 'r')
for i, line in enumerate(f):
 if line.strip() == '':
 print 'Blank line at line #%i' % i

sorted(iterable, [cmp=None], [key=None], [reverse=False]) collects all the
elements of the iterable into a list, sorts the list, and returns the sorted
result. The cmp, key, and reverse arguments are passed through to
the constructed list’s .sort() method.

>>> import random
>>> # Generate 8 random numbers between [0, 10000)
>>> rand_list = random.sample(range(10000), 8)
>>> rand_list
[769, 7953, 9828, 6431, 8442, 9878, 6213, 2207]
>>> sorted(rand_list)
[769, 2207, 6213, 6431, 7953, 8442, 9828, 9878]
>>> sorted(rand_list, reverse=True)
[9878, 9828, 8442, 7953, 6431, 6213, 2207, 769]

(For a more detailed discussion of sorting, see the Sorting mini-HOWTO in the
Python wiki at http://wiki.python.org/moin/HowTo/Sorting.)

The any(iter) and all(iter) built-ins look at the truth values of an
iterable’s contents. any() returns True if any element in the iterable is
a true value, and all() returns True if all of the elements are true
values:

>>> any([0,1,0])
True
>>> any([0,0,0])
False
>>> any([1,1,1])
True
>>> all([0,1,0])
False
>>> all([0,0,0])
False
>>> all([1,1,1])
True

Small functions and the lambda expression

When writing functional-style programs, you’ll often need little functions that
act as predicates or that combine elements in some way.

If there’s a Python built-in or a module function that’s suitable, you don’t
need to define a new function at all:

stripped_lines = [line.strip() for line in lines]
existing_files = filter(os.path.exists, file_list)

If the function you need doesn’t exist, you need to write it. One way to write
small functions is to use the lambda statement. lambda takes a number
of parameters and an expression combining these parameters, and creates a small
function that returns the value of the expression:

lowercase = lambda x: x.lower()

print_assign = lambda name, value: name + '=' + str(value)

adder = lambda x, y: x+y

An alternative is to just use the def statement and define a function in the
usual way:

def lowercase(x):
 return x.lower()

def print_assign(name, value):
 return name + '=' + str(value)

def adder(x,y):
 return x + y

Which alternative is preferable? That’s a style question; my usual course is to
avoid using lambda.

One reason for my preference is that lambda is quite limited in the
functions it can define. The result has to be computable as a single
expression, which means you can’t have multiway if... elif... else
comparisons or try... except statements. If you try to do too much in a
lambda statement, you’ll end up with an overly complicated expression that’s
hard to read. Quick, what’s the following code doing?

total = reduce(lambda a, b: (0, a[1] + b[1]), items)[1]

You can figure it out, but it takes time to disentangle the expression to figure
out what’s going on. Using a short nested def statements makes things a
little bit better:

def combine (a, b):
 return 0, a[1] + b[1]

total = reduce(combine, items)[1]

But it would be best of all if I had simply used a for loop:

total = 0
for a, b in items:
 total += b

Or the sum() built-in and a generator expression:

total = sum(b for a,b in items)

Many uses of reduce() are clearer when written as for loops.

Fredrik Lundh once suggested the following set of rules for refactoring uses of
lambda:

	Write a lambda function.

	Write a comment explaining what the heck that lambda does.

	Study the comment for a while, and think of a name that captures the essence
of the comment.

	Convert the lambda to a def statement, using that name.

	Remove the comment.

I really like these rules, but you’re free to disagree
about whether this lambda-free style is better.

The itertools module

The itertools module contains a number of commonly-used iterators as well
as functions for combining several iterators. This section will introduce the
module’s contents by showing small examples.

The module’s functions fall into a few broad classes:

	Functions that create a new iterator based on an existing iterator.

	Functions for treating an iterator’s elements as function arguments.

	Functions for selecting portions of an iterator’s output.

	A function for grouping an iterator’s output.

Creating new iterators

itertools.count(n) returns an infinite stream of integers, increasing by 1
each time. You can optionally supply the starting number, which defaults to 0:

itertools.count() =>
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
itertools.count(10) =>
 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

itertools.cycle(iter) saves a copy of the contents of a provided iterable
and returns a new iterator that returns its elements from first to last. The
new iterator will repeat these elements infinitely.

itertools.cycle([1,2,3,4,5]) =>
 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, ...

itertools.repeat(elem, [n]) returns the provided element n times, or
returns the element endlessly if n is not provided.

itertools.repeat('abc') =>
 abc, abc, abc, abc, abc, abc, abc, abc, abc, abc, ...
itertools.repeat('abc', 5) =>
 abc, abc, abc, abc, abc

itertools.chain(iterA, iterB, ...) takes an arbitrary number of iterables as
input, and returns all the elements of the first iterator, then all the elements
of the second, and so on, until all of the iterables have been exhausted.

itertools.chain(['a', 'b', 'c'], (1, 2, 3)) =>
 a, b, c, 1, 2, 3

itertools.izip(iterA, iterB, ...) takes one element from each iterable and
returns them in a tuple:

itertools.izip(['a', 'b', 'c'], (1, 2, 3)) =>
 ('a', 1), ('b', 2), ('c', 3)

It’s similar to the built-in zip() function, but doesn’t construct an
in-memory list and exhaust all the input iterators before returning; instead
tuples are constructed and returned only if they’re requested. (The technical
term for this behaviour is lazy evaluation [http://en.wikipedia.org/wiki/Lazy_evaluation].)

This iterator is intended to be used with iterables that are all of the same
length. If the iterables are of different lengths, the resulting stream will be
the same length as the shortest iterable.

itertools.izip(['a', 'b'], (1, 2, 3)) =>
 ('a', 1), ('b', 2)

You should avoid doing this, though, because an element may be taken from the
longer iterators and discarded. This means you can’t go on to use the iterators
further because you risk skipping a discarded element.

itertools.islice(iter, [start], stop, [step]) returns a stream that’s a
slice of the iterator. With a single stop argument, it will return the
first stop elements. If you supply a starting index, you’ll get
stop-start elements, and if you supply a value for step, elements will
be skipped accordingly. Unlike Python’s string and list slicing, you can’t use
negative values for start, stop, or step.

itertools.islice(range(10), 8) =>
 0, 1, 2, 3, 4, 5, 6, 7
itertools.islice(range(10), 2, 8) =>
 2, 3, 4, 5, 6, 7
itertools.islice(range(10), 2, 8, 2) =>
 2, 4, 6

itertools.tee(iter, [n]) replicates an iterator; it returns n
independent iterators that will all return the contents of the source iterator.
If you don’t supply a value for n, the default is 2. Replicating iterators
requires saving some of the contents of the source iterator, so this can consume
significant memory if the iterator is large and one of the new iterators is
consumed more than the others.

itertools.tee(itertools.count()) =>
 iterA, iterB

where iterA ->
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

and iterB ->
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

Calling functions on elements

Two functions are used for calling other functions on the contents of an
iterable.

itertools.imap(f, iterA, iterB, ...) returns a stream containing
f(iterA[0], iterB[0]), f(iterA[1], iterB[1]), f(iterA[2], iterB[2]), ...:

itertools.imap(operator.add, [5, 6, 5], [1, 2, 3]) =>
 6, 8, 8

The operator module contains a set of functions corresponding to Python’s
operators. Some examples are operator.add(a, b) (adds two values),
operator.ne(a, b) (same as a!=b), and operator.attrgetter('id')
(returns a callable that fetches the "id" attribute).

itertools.starmap(func, iter) assumes that the iterable will return a stream
of tuples, and calls f() using these tuples as the arguments:

itertools.starmap(os.path.join,
 [('/usr', 'bin', 'java'), ('/bin', 'python'),
 ('/usr', 'bin', 'perl'),('/usr', 'bin', 'ruby')])
=>
 /usr/bin/java, /bin/python, /usr/bin/perl, /usr/bin/ruby

Selecting elements

Another group of functions chooses a subset of an iterator’s elements based on a
predicate.

itertools.ifilter(predicate, iter) returns all the elements for which the
predicate returns true:

def is_even(x):
 return (x % 2) == 0

itertools.ifilter(is_even, itertools.count()) =>
 0, 2, 4, 6, 8, 10, 12, 14, ...

itertools.ifilterfalse(predicate, iter) is the opposite, returning all
elements for which the predicate returns false:

itertools.ifilterfalse(is_even, itertools.count()) =>
 1, 3, 5, 7, 9, 11, 13, 15, ...

itertools.takewhile(predicate, iter) returns elements for as long as the
predicate returns true. Once the predicate returns false, the iterator will
signal the end of its results.

def less_than_10(x):
 return (x < 10)

itertools.takewhile(less_than_10, itertools.count()) =>
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

itertools.takewhile(is_even, itertools.count()) =>
 0

itertools.dropwhile(predicate, iter) discards elements while the predicate
returns true, and then returns the rest of the iterable’s results.

itertools.dropwhile(less_than_10, itertools.count()) =>
 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ...

itertools.dropwhile(is_even, itertools.count()) =>
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

Grouping elements

The last function I’ll discuss, itertools.groupby(iter, key_func=None), is
the most complicated. key_func(elem) is a function that can compute a key
value for each element returned by the iterable. If you don’t supply a key
function, the key is simply each element itself.

groupby() collects all the consecutive elements from the underlying iterable
that have the same key value, and returns a stream of 2-tuples containing a key
value and an iterator for the elements with that key.

city_list = [('Decatur', 'AL'), ('Huntsville', 'AL'), ('Selma', 'AL'),
 ('Anchorage', 'AK'), ('Nome', 'AK'),
 ('Flagstaff', 'AZ'), ('Phoenix', 'AZ'), ('Tucson', 'AZ'),
 ...
]

def get_state ((city, state)):
 return state

itertools.groupby(city_list, get_state) =>
 ('AL', iterator-1),
 ('AK', iterator-2),
 ('AZ', iterator-3), ...

where
iterator-1 =>
 ('Decatur', 'AL'), ('Huntsville', 'AL'), ('Selma', 'AL')
iterator-2 =>
 ('Anchorage', 'AK'), ('Nome', 'AK')
iterator-3 =>
 ('Flagstaff', 'AZ'), ('Phoenix', 'AZ'), ('Tucson', 'AZ')

groupby() assumes that the underlying iterable’s contents will already be
sorted based on the key. Note that the returned iterators also use the
underlying iterable, so you have to consume the results of iterator-1 before
requesting iterator-2 and its corresponding key.

The functools module

The functools module in Python 2.5 contains some higher-order functions.
A higher-order function takes one or more functions as input and returns a
new function. The most useful tool in this module is the
functools.partial() function.

For programs written in a functional style, you’ll sometimes want to construct
variants of existing functions that have some of the parameters filled in.
Consider a Python function f(a, b, c); you may wish to create a new function
g(b, c) that’s equivalent to f(1, b, c); you’re filling in a value for
one of f()‘s parameters. This is called “partial function application”.

The constructor for partial takes the arguments (function, arg1, arg2,
... kwarg1=value1, kwarg2=value2). The resulting object is callable, so you
can just call it to invoke function with the filled-in arguments.

Here’s a small but realistic example:

import functools

def log (message, subsystem):
 "Write the contents of 'message' to the specified subsystem."
 print '%s: %s' % (subsystem, message)
 ...

server_log = functools.partial(log, subsystem='server')
server_log('Unable to open socket')

The operator module

The operator module was mentioned earlier. It contains a set of
functions corresponding to Python’s operators. These functions are often useful
in functional-style code because they save you from writing trivial functions
that perform a single operation.

Some of the functions in this module are:

	Math operations: add(), sub(), mul(), div(), floordiv(),
abs(), ...

	Logical operations: not_(), truth().

	Bitwise operations: and_(), or_(), invert().

	Comparisons: eq(), ne(), lt(), le(), gt(), and ge().

	Object identity: is_(), is_not().

Consult the operator module’s documentation for a complete list.

The functional module

Collin Winter’s functional module [http://oakwinter.com/code/functional/]
provides a number of more advanced tools for functional programming. It also
reimplements several Python built-ins, trying to make them more intuitive to
those used to functional programming in other languages.

This section contains an introduction to some of the most important functions in
functional; full documentation can be found at the project’s website [http://oakwinter.com/code/functional/documentation/].

compose(outer, inner, unpack=False)

The compose() function implements function composition. In other words, it
returns a wrapper around the outer and inner callables, such that the
return value from inner is fed directly to outer. That is,

>>> def add(a, b):
... return a + b
...
>>> def double(a):
... return 2 * a
...
>>> compose(double, add)(5, 6)
22

is equivalent to

>>> double(add(5, 6))
22

The unpack keyword is provided to work around the fact that Python functions
are not always fully curried [http://en.wikipedia.org/wiki/Currying]. By
default, it is expected that the inner function will return a single object
and that the outer function will take a single argument. Setting the
unpack argument causes compose to expect a tuple from inner which
will be expanded before being passed to outer. Put simply,

compose(f, g)(5, 6)

is equivalent to:

f(g(5, 6))

while

compose(f, g, unpack=True)(5, 6)

is equivalent to:

f(*g(5, 6))

Even though compose() only accepts two functions, it’s trivial to build up a
version that will compose any number of functions. We’ll use reduce(),
compose() and partial() (the last of which is provided by both
functional and functools).

from functional import compose, partial

multi_compose = partial(reduce, compose)

We can also use map(), compose() and partial() to craft a version of
"".join(...) that converts its arguments to string:

from functional import compose, partial

join = compose("".join, partial(map, str))

flip(func)

flip() wraps the callable in func and causes it to receive its
non-keyword arguments in reverse order.

>>> def triple(a, b, c):
... return (a, b, c)
...
>>> triple(5, 6, 7)
(5, 6, 7)
>>>
>>> flipped_triple = flip(triple)
>>> flipped_triple(5, 6, 7)
(7, 6, 5)

foldl(func, start, iterable)

foldl() takes a binary function, a starting value (usually some kind of
‘zero’), and an iterable. The function is applied to the starting value and the
first element of the list, then the result of that and the second element of the
list, then the result of that and the third element of the list, and so on.

This means that a call such as:

foldl(f, 0, [1, 2, 3])

is equivalent to:

f(f(f(0, 1), 2), 3)

foldl() is roughly equivalent to the following recursive function:

def foldl(func, start, seq):
 if len(seq) == 0:
 return start

 return foldl(func, func(start, seq[0]), seq[1:])

Speaking of equivalence, the above foldl call can be expressed in terms of
the built-in reduce like so:

reduce(f, [1, 2, 3], 0)

We can use foldl(), operator.concat() and partial() to write a
cleaner, more aesthetically-pleasing version of Python’s "".join(...)
idiom:

from functional import foldl, partial from operator import concat

join = partial(foldl, concat, "")

Revision History and Acknowledgements

The author would like to thank the following people for offering suggestions,
corrections and assistance with various drafts of this article: Ian Bicking,
Nick Coghlan, Nick Efford, Raymond Hettinger, Jim Jewett, Mike Krell, Leandro
Lameiro, Jussi Salmela, Collin Winter, Blake Winton.

Version 0.1: posted June 30 2006.

Version 0.11: posted July 1 2006. Typo fixes.

Version 0.2: posted July 10 2006. Merged genexp and listcomp sections into one.
Typo fixes.

Version 0.21: Added more references suggested on the tutor mailing list.

Version 0.30: Adds a section on the functional module written by Collin
Winter; adds short section on the operator module; a few other edits.

References

General

Structure and Interpretation of Computer Programs, by Harold Abelson and
Gerald Jay Sussman with Julie Sussman. Full text at
http://mitpress.mit.edu/sicp/. In this classic textbook of computer science,
chapters 2 and 3 discuss the use of sequences and streams to organize the data
flow inside a program. The book uses Scheme for its examples, but many of the
design approaches described in these chapters are applicable to functional-style
Python code.

http://www.defmacro.org/ramblings/fp.html: A general introduction to functional
programming that uses Java examples and has a lengthy historical introduction.

http://en.wikipedia.org/wiki/Functional_programming: General Wikipedia entry
describing functional programming.

http://en.wikipedia.org/wiki/Coroutine: Entry for coroutines.

http://en.wikipedia.org/wiki/Currying: Entry for the concept of currying.

Python-specific

http://gnosis.cx/TPiP/: The first chapter of David Mertz’s book
Text Processing in Python discusses functional programming
for text processing, in the section titled “Utilizing Higher-Order Functions in
Text Processing”.

Mertz also wrote a 3-part series of articles on functional programming
for IBM’s DeveloperWorks site; see
part 1 [http://www-128.ibm.com/developerworks/library/l-prog.html],
part 2 [http://www-128.ibm.com/developerworks/library/l-prog2.html], and
part 3 [http://www-128.ibm.com/developerworks/linux/library/l-prog3.html],

Python documentation

Documentation for the itertools module.

Documentation for the operator module.

PEP 289 [http://www.python.org/dev/peps/pep-0289]: “Generator Expressions”

PEP 342 [http://www.python.org/dev/peps/pep-0342]: “Coroutines via Enhanced Generators” describes the new generator
features in Python 2.5.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Logging HOWTO

	Author:	Vinay Sajip <vinay_sajip at red-dove dot com>

Basic Logging Tutorial

Logging is a means of tracking events that happen when some software runs. The
software’s developer adds logging calls to their code to indicate that certain
events have occurred. An event is described by a descriptive message which can
optionally contain variable data (i.e. data that is potentially different for
each occurrence of the event). Events also have an importance which the
developer ascribes to the event; the importance can also be called the level
or severity.

When to use logging

Logging provides a set of convenience functions for simple logging usage. These
are debug(), info(), warning(), error() and
critical(). To determine when to use logging, see the table below, which
states, for each of a set of common tasks, the best tool to use for it.

	Task you want to perform
	The best tool for the task

	Display console output for ordinary
usage of a command line script or
program
	print()

	Report events that occur during
normal operation of a program (e.g.
for status monitoring or fault
investigation)
	logging.info() (or
logging.debug() for very
detailed output for diagnostic
purposes)

	Issue a warning regarding a
particular runtime event
	warnings.warn() in library
code if the issue is avoidable and
the client application should be
modified to eliminate the warning

logging.warning() if there is
nothing the client application can do
about the situation, but the event
should still be noted

	Report an error regarding a
particular runtime event
	Raise an exception

	Report suppression of an error
without raising an exception (e.g.
error handler in a long-running
server process)
	logging.error(),
logging.exception() or
logging.critical() as
appropriate for the specific error
and application domain

The logging functions are named after the level or severity of the events
they are used to track. The standard levels and their applicability are
described below (in increasing order of severity):

	Level
	When it’s used

	DEBUG
	Detailed information, typically of interest
only when diagnosing problems.

	INFO
	Confirmation that things are working as
expected.

	WARNING
	An indication that something unexpected
happened, or indicative of some problem in
the near future (e.g. ‘disk space low’).
The software is still working as expected.

	ERROR
	Due to a more serious problem, the software
has not been able to perform some function.

	CRITICAL
	A serious error, indicating that the program
itself may be unable to continue running.

The default level is WARNING, which means that only events of this level
and above will be tracked, unless the logging package is configured to do
otherwise.

Events that are tracked can be handled in different ways. The simplest way of
handling tracked events is to print them to the console. Another common way
is to write them to a disk file.

A simple example

A very simple example is:

import logging
logging.warning('Watch out!') # will print a message to the console
logging.info('I told you so') # will not print anything

If you type these lines into a script and run it, you’ll see:

WARNING:root:Watch out!

printed out on the console. The INFO message doesn’t appear because the
default level is WARNING. The printed message includes the indication of
the level and the description of the event provided in the logging call, i.e.
‘Watch out!’. Don’t worry about the ‘root’ part for now: it will be explained
later. The actual output can be formatted quite flexibly if you need that;
formatting options will also be explained later.

Logging to a file

A very common situation is that of recording logging events in a file, so let’s
look at that next:

import logging
logging.basicConfig(filename='example.log',level=logging.DEBUG)
logging.debug('This message should go to the log file')
logging.info('So should this')
logging.warning('And this, too')

And now if we open the file and look at what we have, we should find the log
messages:

DEBUG:root:This message should go to the log file
INFO:root:So should this
WARNING:root:And this, too

This example also shows how you can set the logging level which acts as the
threshold for tracking. In this case, because we set the threshold to
DEBUG, all of the messages were printed.

If you want to set the logging level from a command-line option such as:

--log=INFO

and you have the value of the parameter passed for --log in some variable
loglevel, you can use:

getattr(logging, loglevel.upper())

to get the value which you’ll pass to basicConfig() via the level
argument. You may want to error check any user input value, perhaps as in the
following example:

assuming loglevel is bound to the string value obtained from the
command line argument. Convert to upper case to allow the user to
specify --log=DEBUG or --log=debug
numeric_level = getattr(logging, loglevel.upper(), None)
if not isinstance(numeric_level, int):
 raise ValueError('Invalid log level: %s' % loglevel)
logging.basicConfig(level=numeric_level, ...)

The call to basicConfig() should come before any calls to debug(),
info() etc. As it’s intended as a one-off simple configuration facility,
only the first call will actually do anything: subsequent calls are effectively
no-ops.

If you run the above script several times, the messages from successive runs
are appended to the file example.log. If you want each run to start afresh,
not remembering the messages from earlier runs, you can specify the filemode
argument, by changing the call in the above example to:

logging.basicConfig(filename='example.log', filemode='w', level=logging.DEBUG)

The output will be the same as before, but the log file is no longer appended
to, so the messages from earlier runs are lost.

Logging from multiple modules

If your program consists of multiple modules, here’s an example of how you
could organize logging in it:

myapp.py
import logging
import mylib

def main():
 logging.basicConfig(filename='myapp.log', level=logging.INFO)
 logging.info('Started')
 mylib.do_something()
 logging.info('Finished')

if __name__ == '__main__':
 main()

mylib.py
import logging

def do_something():
 logging.info('Doing something')

If you run myapp.py, you should see this in myapp.log:

INFO:root:Started
INFO:root:Doing something
INFO:root:Finished

which is hopefully what you were expecting to see. You can generalize this to
multiple modules, using the pattern in mylib.py. Note that for this simple
usage pattern, you won’t know, by looking in the log file, where in your
application your messages came from, apart from looking at the event
description. If you want to track the location of your messages, you’ll need
to refer to the documentation beyond the tutorial level – see
Advanced Logging Tutorial.

Logging variable data

To log variable data, use a format string for the event description message and
append the variable data as arguments. For example:

import logging
logging.warning('%s before you %s', 'Look', 'leap!')

will display:

WARNING:root:Look before you leap!

As you can see, merging of variable data into the event description message
uses the old, %-style of string formatting. This is for backwards
compatibility: the logging package pre-dates newer formatting options such as
str.format() and string.Template. These newer formatting
options are supported, but exploring them is outside the scope of this
tutorial.

Changing the format of displayed messages

To change the format which is used to display messages, you need to
specify the format you want to use:

import logging
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
logging.debug('This message should appear on the console')
logging.info('So should this')
logging.warning('And this, too')

which would print:

DEBUG:This message should appear on the console
INFO:So should this
WARNING:And this, too

Notice that the ‘root’ which appeared in earlier examples has disappeared. For
a full set of things that can appear in format strings, you can refer to the
documentation for LogRecord attributes, but for simple usage, you just
need the levelname (severity), message (event description, including
variable data) and perhaps to display when the event occurred. This is
described in the next section.

Displaying the date/time in messages

To display the date and time of an event, you would place ‘%(asctime)s’ in
your format string:

import logging
logging.basicConfig(format='%(asctime)s %(message)s')
logging.warning('is when this event was logged.')

which should print something like this:

2010-12-12 11:41:42,612 is when this event was logged.

The default format for date/time display (shown above) is ISO8601. If you need
more control over the formatting of the date/time, provide a datefmt
argument to basicConfig, as in this example:

import logging
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p')
logging.warning('is when this event was logged.')

which would display something like this:

12/12/2010 11:46:36 AM is when this event was logged.

The format of the datefmt argument is the same as supported by
time.strftime().

Next Steps

That concludes the basic tutorial. It should be enough to get you up and
running with logging. There’s a lot more that the logging package offers, but
to get the best out of it, you’ll need to invest a little more of your time in
reading the following sections. If you’re ready for that, grab some of your
favourite beverage and carry on.

If your logging needs are simple, then use the above examples to incorporate
logging into your own scripts, and if you run into problems or don’t
understand something, please post a question on the comp.lang.python Usenet
group (available at http://groups.google.com/group/comp.lang.python) and you
should receive help before too long.

Still here? You can carry on reading the next few sections, which provide a
slightly more advanced/in-depth tutorial than the basic one above. After that,
you can take a look at the Logging Cookbook.

Advanced Logging Tutorial

The logging library takes a modular approach and offers several categories
of components: loggers, handlers, filters, and formatters.

	Loggers expose the interface that application code directly uses.

	Handlers send the log records (created by loggers) to the appropriate
destination.

	Filters provide a finer grained facility for determining which log records
to output.

	Formatters specify the layout of log records in the final output.

Logging is performed by calling methods on instances of the Logger
class (hereafter called loggers). Each instance has a name, and they are
conceptually arranged in a namespace hierarchy using dots (periods) as
separators. For example, a logger named ‘scan’ is the parent of loggers
‘scan.text’, ‘scan.html’ and ‘scan.pdf’. Logger names can be anything you want,
and indicate the area of an application in which a logged message originates.

A good convention to use when naming loggers is to use a module-level logger,
in each module which uses logging, named as follows:

logger = logging.getLogger(__name__)

This means that logger names track the package/module hierarchy, and it’s
intuitively obvious where events are logged just from the logger name.

The root of the hierarchy of loggers is called the root logger. That’s the
logger used by the functions debug(), info(), warning(),
error() and critical(), which just call the same-named method of
the root logger. The functions and the methods have the same signatures. The
root logger’s name is printed as ‘root’ in the logged output.

It is, of course, possible to log messages to different destinations. Support
is included in the package for writing log messages to files, HTTP GET/POST
locations, email via SMTP, generic sockets, or OS-specific logging mechanisms
such as syslog or the Windows NT event log. Destinations are served by
handler classes. You can create your own log destination class if you
have special requirements not met by any of the built-in handler classes.

By default, no destination is set for any logging messages. You can specify
a destination (such as console or file) by using basicConfig() as in the
tutorial examples. If you call the functions debug(), info(),
warning(), error() and critical(), they will check to see
if no destination is set; and if one is not set, they will set a destination
of the console (sys.stderr) and a default format for the displayed
message before delegating to the root logger to do the actual message output.

The default format set by basicConfig() for messages is:

severity:logger name:message

You can change this by passing a format string to basicConfig() with the
format keyword argument. For all options regarding how a format string is
constructed, see Formatter Objects.

Loggers

Logger objects have a threefold job. First, they expose several
methods to application code so that applications can log messages at runtime.
Second, logger objects determine which log messages to act upon based upon
severity (the default filtering facility) or filter objects. Third, logger
objects pass along relevant log messages to all interested log handlers.

The most widely used methods on logger objects fall into two categories:
configuration and message sending.

These are the most common configuration methods:

	Logger.setLevel() specifies the lowest-severity log message a logger
will handle, where debug is the lowest built-in severity level and critical
is the highest built-in severity. For example, if the severity level is
INFO, the logger will handle only INFO, WARNING, ERROR, and CRITICAL messages
and will ignore DEBUG messages.

	Logger.addHandler() and Logger.removeHandler() add and remove
handler objects from the logger object. Handlers are covered in more detail
in Handlers.

	Logger.addFilter() and Logger.removeFilter() add and remove filter
objects from the logger object. Filters are covered in more detail in
Filter Objects.

You don’t need to always call these methods on every logger you create. See the
last two paragraphs in this section.

With the logger object configured, the following methods create log messages:

	Logger.debug(), Logger.info(), Logger.warning(),
Logger.error(), and Logger.critical() all create log records with
a message and a level that corresponds to their respective method names. The
message is actually a format string, which may contain the standard string
substitution syntax of %s, %d, %f, and so on. The
rest of their arguments is a list of objects that correspond with the
substitution fields in the message. With regard to **kwargs, the
logging methods care only about a keyword of exc_info and use it to
determine whether to log exception information.

	Logger.exception() creates a log message similar to
Logger.error(). The difference is that Logger.exception() dumps a
stack trace along with it. Call this method only from an exception handler.

	Logger.log() takes a log level as an explicit argument. This is a
little more verbose for logging messages than using the log level convenience
methods listed above, but this is how to log at custom log levels.

getLogger() returns a reference to a logger instance with the specified
name if it is provided, or root if not. The names are period-separated
hierarchical structures. Multiple calls to getLogger() with the same name
will return a reference to the same logger object. Loggers that are further
down in the hierarchical list are children of loggers higher up in the list.
For example, given a logger with a name of foo, loggers with names of
foo.bar, foo.bar.baz, and foo.bam are all descendants of foo.

Loggers have a concept of effective level. If a level is not explicitly set
on a logger, the level of its parent is used instead as its effective level.
If the parent has no explicit level set, its parent is examined, and so on -
all ancestors are searched until an explicitly set level is found. The root
logger always has an explicit level set (WARNING by default). When deciding
whether to process an event, the effective level of the logger is used to
determine whether the event is passed to the logger’s handlers.

Child loggers propagate messages up to the handlers associated with their
ancestor loggers. Because of this, it is unnecessary to define and configure
handlers for all the loggers an application uses. It is sufficient to
configure handlers for a top-level logger and create child loggers as needed.
(You can, however, turn off propagation by setting the propagate
attribute of a logger to False.)

Handlers

Handler objects are responsible for dispatching the
appropriate log messages (based on the log messages’ severity) to the handler’s
specified destination. Logger objects can add zero or more handler objects to
themselves with an addHandler() method. As an example scenario, an
application may want to send all log messages to a log file, all log messages
of error or higher to stdout, and all messages of critical to an email address.
This scenario requires three individual handlers where each handler is
responsible for sending messages of a specific severity to a specific location.

The standard library includes quite a few handler types (see
Useful Handlers); the tutorials use mainly StreamHandler and
FileHandler in its examples.

There are very few methods in a handler for application developers to concern
themselves with. The only handler methods that seem relevant for application
developers who are using the built-in handler objects (that is, not creating
custom handlers) are the following configuration methods:

	The Handler.setLevel() method, just as in logger objects, specifies the
lowest severity that will be dispatched to the appropriate destination. Why
are there two setLevel() methods? The level set in the logger
determines which severity of messages it will pass to its handlers. The level
set in each handler determines which messages that handler will send on.

	setFormatter() selects a Formatter object for this handler to use.

	addFilter() and removeFilter() respectively configure and
deconfigure filter objects on handlers.

Application code should not directly instantiate and use instances of
Handler. Instead, the Handler class is a base class that
defines the interface that all handlers should have and establishes some
default behavior that child classes can use (or override).

Formatters

Formatter objects configure the final order, structure, and contents of the log
message. Unlike the base logging.Handler class, application code may
instantiate formatter classes, although you could likely subclass the formatter
if your application needs special behavior. The constructor takes two
optional arguments – a message format string and a date format string.

	
logging.Formatter.__init__(fmt=None, datefmt=None)

	

If there is no message format string, the default is to use the
raw message. If there is no date format string, the default date format is:

%Y-%m-%d %H:%M:%S

with the milliseconds tacked on at the end.

The message format string uses %(<dictionary key>)s styled string
substitution; the possible keys are documented in LogRecord attributes.

The following message format string will log the time in a human-readable
format, the severity of the message, and the contents of the message, in that
order:

'%(asctime)s - %(levelname)s - %(message)s'

Formatters use a user-configurable function to convert the creation time of a
record to a tuple. By default, time.localtime() is used; to change this
for a particular formatter instance, set the converter attribute of the
instance to a function with the same signature as time.localtime() or
time.gmtime(). To change it for all formatters, for example if you want
all logging times to be shown in GMT, set the converter attribute in the
Formatter class (to time.gmtime for GMT display).

Configuring Logging

Programmers can configure logging in three ways:

	Creating loggers, handlers, and formatters explicitly using Python
code that calls the configuration methods listed above.

	Creating a logging config file and reading it using the fileConfig()
function.

	Creating a dictionary of configuration information and passing it
to the dictConfig() function.

For the reference documentation on the last two options, see
Configuration functions. The following example configures a very simple
logger, a console handler, and a simple formatter using Python code:

import logging

create logger
logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)

create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)

create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

add formatter to ch
ch.setFormatter(formatter)

add ch to logger
logger.addHandler(ch)

'application' code
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')

Running this module from the command line produces the following output:

$ python simple_logging_module.py
2005-03-19 15:10:26,618 - simple_example - DEBUG - debug message
2005-03-19 15:10:26,620 - simple_example - INFO - info message
2005-03-19 15:10:26,695 - simple_example - WARNING - warn message
2005-03-19 15:10:26,697 - simple_example - ERROR - error message
2005-03-19 15:10:26,773 - simple_example - CRITICAL - critical message

The following Python module creates a logger, handler, and formatter nearly
identical to those in the example listed above, with the only difference being
the names of the objects:

import logging
import logging.config

logging.config.fileConfig('logging.conf')

create logger
logger = logging.getLogger('simpleExample')

'application' code
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')

Here is the logging.conf file:

[loggers]
keys=root,simpleExample

[handlers]
keys=consoleHandler

[formatters]
keys=simpleFormatter

[logger_root]
level=DEBUG
handlers=consoleHandler

[logger_simpleExample]
level=DEBUG
handlers=consoleHandler
qualname=simpleExample
propagate=0

[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=simpleFormatter
args=(sys.stdout,)

[formatter_simpleFormatter]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=

The output is nearly identical to that of the non-config-file-based example:

$ python simple_logging_config.py
2005-03-19 15:38:55,977 - simpleExample - DEBUG - debug message
2005-03-19 15:38:55,979 - simpleExample - INFO - info message
2005-03-19 15:38:56,054 - simpleExample - WARNING - warn message
2005-03-19 15:38:56,055 - simpleExample - ERROR - error message
2005-03-19 15:38:56,130 - simpleExample - CRITICAL - critical message

You can see that the config file approach has a few advantages over the Python
code approach, mainly separation of configuration and code and the ability of
noncoders to easily modify the logging properties.

Note that the class names referenced in config files need to be either relative
to the logging module, or absolute values which can be resolved using normal
import mechanisms. Thus, you could use either
WatchedFileHandler (relative to the logging module) or
mypackage.mymodule.MyHandler (for a class defined in package mypackage
and module mymodule, where mypackage is available on the Python import
path).

In Python 2.7, a new means of configuring logging has been introduced, using
dictionaries to hold configuration information. This provides a superset of the
functionality of the config-file-based approach outlined above, and is the
recommended configuration method for new applications and deployments. Because
a Python dictionary is used to hold configuration information, and since you
can populate that dictionary using different means, you have more options for
configuration. For example, you can use a configuration file in JSON format,
or, if you have access to YAML processing functionality, a file in YAML
format, to populate the configuration dictionary. Or, of course, you can
construct the dictionary in Python code, receive it in pickled form over a
socket, or use whatever approach makes sense for your application.

Here’s an example of the same configuration as above, in YAML format for
the new dictionary-based approach:

version: 1
formatters:
 simple:
 format: format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
handlers:
 console:
 class: logging.StreamHandler
 level: DEBUG
 formatter: simple
 stream: ext://sys.stdout
loggers:
 simpleExample:
 level: DEBUG
 handlers: [console]
 propagate: no
root:
 level: DEBUG
 handlers: [console]

For more information about logging using a dictionary, see
Configuration functions.

What happens if no configuration is provided

If no logging configuration is provided, it is possible to have a situation
where a logging event needs to be output, but no handlers can be found to
output the event. The behaviour of the logging package in these
circumstances is dependent on the Python version.

For Python 2.x, the behaviour is as follows:

	If logging.raiseExceptions is False (production mode), the event is
silently dropped.

	If logging.raiseExceptions is True (development mode), a message
‘No handlers could be found for logger X.Y.Z’ is printed once.

Configuring Logging for a Library

When developing a library which uses logging, you should take care to
document how the library uses logging - for example, the names of loggers
used. Some consideration also needs to be given to its logging configuration.
If the using application does not use logging, and library code makes logging
calls, then (as described in the previous section) events of severity
WARNING and greater will be printed to sys.stderr. This is regarded as
the best default behaviour.

If for some reason you don’t want these messages printed in the absence of
any logging configuration, you can attach a do-nothing handler to the top-level
logger for your library. This avoids the message being printed, since a handler
will be always be found for the library’s events: it just doesn’t produce any
output. If the library user configures logging for application use, presumably
that configuration will add some handlers, and if levels are suitably
configured then logging calls made in library code will send output to those
handlers, as normal.

A do-nothing handler is included in the logging package:
NullHandler (since Python 2.7). An instance of this handler
could be added to the top-level logger of the logging namespace used by the
library (if you want to prevent your library’s logged events being output to
sys.stderr in the absence of logging configuration). If all logging by a
library foo is done using loggers with names matching ‘foo.x’, ‘foo.x.y’,
etc. then the code:

import logging
logging.getLogger('foo').addHandler(logging.NullHandler())

should have the desired effect. If an organisation produces a number of
libraries, then the logger name specified can be ‘orgname.foo’ rather than
just ‘foo’.

PLEASE NOTE: It is strongly advised that you do not add any handlers other
than NullHandler to your library’s loggers. This is
because the configuration of handlers is the prerogative of the application
developer who uses your library. The application developer knows their target
audience and what handlers are most appropriate for their application: if you
add handlers ‘under the hood’, you might well interfere with their ability to
carry out unit tests and deliver logs which suit their requirements.

Logging Levels

The numeric values of logging levels are given in the following table. These are
primarily of interest if you want to define your own levels, and need them to
have specific values relative to the predefined levels. If you define a level
with the same numeric value, it overwrites the predefined value; the predefined
name is lost.

	Level
	Numeric value

	CRITICAL
	50

	ERROR
	40

	WARNING
	30

	INFO
	20

	DEBUG
	10

	NOTSET
	0

Levels can also be associated with loggers, being set either by the developer or
through loading a saved logging configuration. When a logging method is called
on a logger, the logger compares its own level with the level associated with
the method call. If the logger’s level is higher than the method call’s, no
logging message is actually generated. This is the basic mechanism controlling
the verbosity of logging output.

Logging messages are encoded as instances of the LogRecord
class. When a logger decides to actually log an event, a
LogRecord instance is created from the logging message.

Logging messages are subjected to a dispatch mechanism through the use of
handlers, which are instances of subclasses of the Handler
class. Handlers are responsible for ensuring that a logged message (in the form
of a LogRecord) ends up in a particular location (or set of locations)
which is useful for the target audience for that message (such as end users,
support desk staff, system administrators, developers). Handlers are passed
LogRecord instances intended for particular destinations. Each logger
can have zero, one or more handlers associated with it (via the
addHandler() method of Logger). In addition to any
handlers directly associated with a logger, all handlers associated with all
ancestors of the logger are called to dispatch the message (unless the
propagate flag for a logger is set to a false value, at which point the
passing to ancestor handlers stops).

Just as for loggers, handlers can have levels associated with them. A handler’s
level acts as a filter in the same way as a logger’s level does. If a handler
decides to actually dispatch an event, the emit() method is used
to send the message to its destination. Most user-defined subclasses of
Handler will need to override this emit().

Custom Levels

Defining your own levels is possible, but should not be necessary, as the
existing levels have been chosen on the basis of practical experience.
However, if you are convinced that you need custom levels, great care should
be exercised when doing this, and it is possibly a very bad idea to define
custom levels if you are developing a library. That’s because if multiple
library authors all define their own custom levels, there is a chance that
the logging output from such multiple libraries used together will be
difficult for the using developer to control and/or interpret, because a
given numeric value might mean different things for different libraries.

Useful Handlers

In addition to the base Handler class, many useful subclasses are
provided:

	StreamHandler instances send messages to streams (file-like
objects).

	FileHandler instances send messages to disk files.

	BaseRotatingHandler is the base class for handlers that
rotate log files at a certain point. It is not meant to be instantiated
directly. Instead, use RotatingFileHandler or
TimedRotatingFileHandler.

	RotatingFileHandler instances send messages to disk
files, with support for maximum log file sizes and log file rotation.

	TimedRotatingFileHandler instances send messages to
disk files, rotating the log file at certain timed intervals.

	SocketHandler instances send messages to TCP/IP
sockets.

	DatagramHandler instances send messages to UDP
sockets.

	SMTPHandler instances send messages to a designated
email address.

	SysLogHandler instances send messages to a Unix
syslog daemon, possibly on a remote machine.

	NTEventLogHandler instances send messages to a
Windows NT/2000/XP event log.

	MemoryHandler instances send messages to a buffer
in memory, which is flushed whenever specific criteria are met.

	HTTPHandler instances send messages to an HTTP
server using either GET or POST semantics.

	WatchedFileHandler instances watch the file they are
logging to. If the file changes, it is closed and reopened using the file
name. This handler is only useful on Unix-like systems; Windows does not
support the underlying mechanism used.

	NullHandler instances do nothing with error messages. They are used
by library developers who want to use logging, but want to avoid the ‘No
handlers could be found for logger XXX’ message which can be displayed if
the library user has not configured logging. See Configuring Logging for a Library for
more information.

New in version 2.7: The NullHandler class.

The NullHandler, StreamHandler and FileHandler
classes are defined in the core logging package. The other handlers are
defined in a sub- module, logging.handlers. (There is also another
sub-module, logging.config, for configuration functionality.)

Logged messages are formatted for presentation through instances of the
Formatter class. They are initialized with a format string suitable for
use with the % operator and a dictionary.

For formatting multiple messages in a batch, instances of
BufferingFormatter can be used. In addition to the format string (which
is applied to each message in the batch), there is provision for header and
trailer format strings.

When filtering based on logger level and/or handler level is not enough,
instances of Filter can be added to both Logger and
Handler instances (through their addFilter() method). Before
deciding to process a message further, both loggers and handlers consult all
their filters for permission. If any filter returns a false value, the message
is not processed further.

The basic Filter functionality allows filtering by specific logger
name. If this feature is used, messages sent to the named logger and its
children are allowed through the filter, and all others dropped.

Exceptions raised during logging

The logging package is designed to swallow exceptions which occur while logging
in production. This is so that errors which occur while handling logging events
- such as logging misconfiguration, network or other similar errors - do not
cause the application using logging to terminate prematurely.

SystemExit and KeyboardInterrupt exceptions are never
swallowed. Other exceptions which occur during the emit() method of a
Handler subclass are passed to its handleError() method.

The default implementation of handleError() in Handler checks
to see if a module-level variable, raiseExceptions, is set. If set, a
traceback is printed to sys.stderr. If not set, the exception is swallowed.

Note: The default value of raiseExceptions is True. This is because
during development, you typically want to be notified of any exceptions that
occur. It’s advised that you set raiseExceptions to False for production
usage.

Using arbitrary objects as messages

In the preceding sections and examples, it has been assumed that the message
passed when logging the event is a string. However, this is not the only
possibility. You can pass an arbitrary object as a message, and its
__str__() method will be called when the logging system needs to convert
it to a string representation. In fact, if you want to, you can avoid
computing a string representation altogether - for example, the
SocketHandler emits an event by pickling it and sending it over the
wire.

Optimization

Formatting of message arguments is deferred until it cannot be avoided.
However, computing the arguments passed to the logging method can also be
expensive, and you may want to avoid doing it if the logger will just throw
away your event. To decide what to do, you can call the isEnabledFor()
method which takes a level argument and returns true if the event would be
created by the Logger for that level of call. You can write code like this:

if logger.isEnabledFor(logging.DEBUG):
 logger.debug('Message with %s, %s', expensive_func1(),
 expensive_func2())

so that if the logger’s threshold is set above DEBUG, the calls to
expensive_func1() and expensive_func2() are never made.

There are other optimizations which can be made for specific applications which
need more precise control over what logging information is collected. Here’s a
list of things you can do to avoid processing during logging which you don’t
need:

	What you don’t want to collect
	How to avoid collecting it

	Information about where calls were made from.
	Set logging._srcfile to None.

	Threading information.
	Set logging.logThreads to 0.

	Process information.
	Set logging.logProcesses to 0.

Also note that the core logging module only includes the basic handlers. If
you don’t import logging.handlers and logging.config, they won’t
take up any memory.

See also

	Module logging

	API reference for the logging module.

	Module logging.config

	Configuration API for the logging module.

	Module logging.handlers

	Useful handlers included with the logging module.

A logging cookbook

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Logging Cookbook

	Author:	Vinay Sajip <vinay_sajip at red-dove dot com>

This page contains a number of recipes related to logging, which have been found
useful in the past.

Using logging in multiple modules

Multiple calls to logging.getLogger('someLogger') return a reference to the
same logger object. This is true not only within the same module, but also
across modules as long as it is in the same Python interpreter process. It is
true for references to the same object; additionally, application code can
define and configure a parent logger in one module and create (but not
configure) a child logger in a separate module, and all logger calls to the
child will pass up to the parent. Here is a main module:

import logging
import auxiliary_module

create logger with 'spam_application'
logger = logging.getLogger('spam_application')
logger.setLevel(logging.DEBUG)
create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)

logger.info('creating an instance of auxiliary_module.Auxiliary')
a = auxiliary_module.Auxiliary()
logger.info('created an instance of auxiliary_module.Auxiliary')
logger.info('calling auxiliary_module.Auxiliary.do_something')
a.do_something()
logger.info('finished auxiliary_module.Auxiliary.do_something')
logger.info('calling auxiliary_module.some_function()')
auxiliary_module.some_function()
logger.info('done with auxiliary_module.some_function()')

Here is the auxiliary module:

import logging

create logger
module_logger = logging.getLogger('spam_application.auxiliary')

class Auxiliary:
 def __init__(self):
 self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
 self.logger.info('creating an instance of Auxiliary')
 def do_something(self):
 self.logger.info('doing something')
 a = 1 + 1
 self.logger.info('done doing something')

def some_function():
 module_logger.info('received a call to "some_function"')

The output looks like this:

2005-03-23 23:47:11,663 - spam_application - INFO -
 creating an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
 creating an instance of Auxiliary
2005-03-23 23:47:11,665 - spam_application - INFO -
 created an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,668 - spam_application - INFO -
 calling auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
 doing something
2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
 done doing something
2005-03-23 23:47:11,670 - spam_application - INFO -
 finished auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,671 - spam_application - INFO -
 calling auxiliary_module.some_function()
2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
 received a call to 'some_function'
2005-03-23 23:47:11,673 - spam_application - INFO -
 done with auxiliary_module.some_function()

Multiple handlers and formatters

Loggers are plain Python objects. The addHandler() method has no minimum
or maximum quota for the number of handlers you may add. Sometimes it will be
beneficial for an application to log all messages of all severities to a text
file while simultaneously logging errors or above to the console. To set this
up, simply configure the appropriate handlers. The logging calls in the
application code will remain unchanged. Here is a slight modification to the
previous simple module-based configuration example:

import logging

logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)
create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
add the handlers to logger
logger.addHandler(ch)
logger.addHandler(fh)

'application' code
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')

Notice that the ‘application’ code does not care about multiple handlers. All
that changed was the addition and configuration of a new handler named fh.

The ability to create new handlers with higher- or lower-severity filters can be
very helpful when writing and testing an application. Instead of using many
print statements for debugging, use logger.debug: Unlike the print
statements, which you will have to delete or comment out later, the logger.debug
statements can remain intact in the source code and remain dormant until you
need them again. At that time, the only change that needs to happen is to
modify the severity level of the logger and/or handler to debug.

Logging to multiple destinations

Let’s say you want to log to console and file with different message formats and
in differing circumstances. Say you want to log messages with levels of DEBUG
and higher to file, and those messages at level INFO and higher to the console.
Let’s also assume that the file should contain timestamps, but the console
messages should not. Here’s how you can achieve this:

import logging

set up logging to file - see previous section for more details
logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
 datefmt='%m-%d %H:%M',
 filename='/temp/myapp.log',
 filemode='w')
define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
tell the handler to use this format
console.setFormatter(formatter)
add the handler to the root logger
logging.getLogger('').addHandler(console)

Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your
application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')

When you run this, on the console you will see

root : INFO Jackdaws love my big sphinx of quartz.
myapp.area1 : INFO How quickly daft jumping zebras vex.
myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR The five boxing wizards jump quickly.

and in the file you will see something like

10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.
10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.
10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.

As you can see, the DEBUG message only shows up in the file. The other messages
are sent to both destinations.

This example uses console and file handlers, but you can use any number and
combination of handlers you choose.

Configuration server example

Here is an example of a module using the logging configuration server:

import logging
import logging.config
import time
import os

read initial config file
logging.config.fileConfig('logging.conf')

create and start listener on port 9999
t = logging.config.listen(9999)
t.start()

logger = logging.getLogger('simpleExample')

try:
 # loop through logging calls to see the difference
 # new configurations make, until Ctrl+C is pressed
 while True:
 logger.debug('debug message')
 logger.info('info message')
 logger.warn('warn message')
 logger.error('error message')
 logger.critical('critical message')
 time.sleep(5)
except KeyboardInterrupt:
 # cleanup
 logging.config.stopListening()
 t.join()

And here is a script that takes a filename and sends that file to the server,
properly preceded with the binary-encoded length, as the new logging
configuration:

#!/usr/bin/env python
import socket, sys, struct

with open(sys.argv[1], 'rb') as f:
 data_to_send = f.read()

HOST = 'localhost'
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print('connecting...')
s.connect((HOST, PORT))
print('sending config...')
s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
s.close()
print('complete')

Sending and receiving logging events across a network

Let’s say you want to send logging events across a network, and handle them at
the receiving end. A simple way of doing this is attaching a
SocketHandler instance to the root logger at the sending end:

import logging, logging.handlers

rootLogger = logging.getLogger('')
rootLogger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler('localhost',
 logging.handlers.DEFAULT_TCP_LOGGING_PORT)
don't bother with a formatter, since a socket handler sends the event as
an unformatted pickle
rootLogger.addHandler(socketHandler)

Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your
application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')

At the receiving end, you can set up a receiver using the socketserver
module. Here is a basic working example:

import pickle
import logging
import logging.handlers
import socketserver
import struct

class LogRecordStreamHandler(socketserver.StreamRequestHandler):
 """Handler for a streaming logging request.

 This basically logs the record using whatever logging policy is
 configured locally.
 """

 def handle(self):
 """
 Handle multiple requests - each expected to be a 4-byte length,
 followed by the LogRecord in pickle format. Logs the record
 according to whatever policy is configured locally.
 """
 while True:
 chunk = self.connection.recv(4)
 if len(chunk) < 4:
 break
 slen = struct.unpack('>L', chunk)[0]
 chunk = self.connection.recv(slen)
 while len(chunk) < slen:
 chunk = chunk + self.connection.recv(slen - len(chunk))
 obj = self.unPickle(chunk)
 record = logging.makeLogRecord(obj)
 self.handleLogRecord(record)

 def unPickle(self, data):
 return pickle.loads(data)

 def handleLogRecord(self, record):
 # if a name is specified, we use the named logger rather than the one
 # implied by the record.
 if self.server.logname is not None:
 name = self.server.logname
 else:
 name = record.name
 logger = logging.getLogger(name)
 # N.B. EVERY record gets logged. This is because Logger.handle
 # is normally called AFTER logger-level filtering. If you want
 # to do filtering, do it at the client end to save wasting
 # cycles and network bandwidth!
 logger.handle(record)

class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
 """
 Simple TCP socket-based logging receiver suitable for testing.
 """

 allow_reuse_address = 1

 def __init__(self, host='localhost',
 port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
 handler=LogRecordStreamHandler):
 socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
 self.abort = 0
 self.timeout = 1
 self.logname = None

 def serve_until_stopped(self):
 import select
 abort = 0
 while not abort:
 rd, wr, ex = select.select([self.socket.fileno()],
 [], [],
 self.timeout)
 if rd:
 self.handle_request()
 abort = self.abort

def main():
 logging.basicConfig(
 format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
 tcpserver = LogRecordSocketReceiver()
 print('About to start TCP server...')
 tcpserver.serve_until_stopped()

if __name__ == '__main__':
 main()

First run the server, and then the client. On the client side, nothing is
printed on the console; on the server side, you should see something like:

About to start TCP server...
 59 root INFO Jackdaws love my big sphinx of quartz.
 59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
 69 myapp.area1 INFO How quickly daft jumping zebras vex.
 69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
 69 myapp.area2 ERROR The five boxing wizards jump quickly.

Note that there are some security issues with pickle in some scenarios. If
these affect you, you can use an alternative serialization scheme by overriding
the makePickle() method and implementing your alternative there, as
well as adapting the above script to use your alternative serialization.

Adding contextual information to your logging output

Sometimes you want logging output to contain contextual information in
addition to the parameters passed to the logging call. For example, in a
networked application, it may be desirable to log client-specific information
in the log (e.g. remote client’s username, or IP address). Although you could
use the extra parameter to achieve this, it’s not always convenient to pass
the information in this way. While it might be tempting to create
Logger instances on a per-connection basis, this is not a good idea
because these instances are not garbage collected. While this is not a problem
in practice, when the number of Logger instances is dependent on the
level of granularity you want to use in logging an application, it could
be hard to manage if the number of Logger instances becomes
effectively unbounded.

Using LoggerAdapters to impart contextual information

An easy way in which you can pass contextual information to be output along
with logging event information is to use the LoggerAdapter class.
This class is designed to look like a Logger, so that you can call
debug(), info(), warning(), error(),
exception(), critical() and log(). These methods have the
same signatures as their counterparts in Logger, so you can use the
two types of instances interchangeably.

When you create an instance of LoggerAdapter, you pass it a
Logger instance and a dict-like object which contains your contextual
information. When you call one of the logging methods on an instance of
LoggerAdapter, it delegates the call to the underlying instance of
Logger passed to its constructor, and arranges to pass the contextual
information in the delegated call. Here’s a snippet from the code of
LoggerAdapter:

def debug(self, msg, *args, **kwargs):
 """
 Delegate a debug call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.debug(msg, *args, **kwargs)

The process() method of LoggerAdapter is where the contextual
information is added to the logging output. It’s passed the message and
keyword arguments of the logging call, and it passes back (potentially)
modified versions of these to use in the call to the underlying logger. The
default implementation of this method leaves the message alone, but inserts
an ‘extra’ key in the keyword argument whose value is the dict-like object
passed to the constructor. Of course, if you had passed an ‘extra’ keyword
argument in the call to the adapter, it will be silently overwritten.

The advantage of using ‘extra’ is that the values in the dict-like object are
merged into the LogRecord instance’s __dict__, allowing you to use
customized strings with your Formatter instances which know about
the keys of the dict-like object. If you need a different method, e.g. if you
want to prepend or append the contextual information to the message string,
you just need to subclass LoggerAdapter and override process()
to do what you need. Here’s an example script which uses this class, which
also illustrates what dict-like behaviour is needed from an arbitrary
‘dict-like’ object for use in the constructor:

import logging

class ConnInfo:
 """
 An example class which shows how an arbitrary class can be used as
 the 'extra' context information repository passed to a LoggerAdapter.
 """

 def __getitem__(self, name):
 """
 To allow this instance to look like a dict.
 """
 from random import choice
 if name == 'ip':
 result = choice(['127.0.0.1', '192.168.0.1'])
 elif name == 'user':
 result = choice(['jim', 'fred', 'sheila'])
 else:
 result = self.__dict__.get(name, '?')
 return result

 def __iter__(self):
 """
 To allow iteration over keys, which will be merged into
 the LogRecord dict before formatting and output.
 """
 keys = ['ip', 'user']
 keys.extend(self.__dict__.keys())
 return keys.__iter__()

if __name__ == '__main__':
 from random import choice
 levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
 a1 = logging.LoggerAdapter(logging.getLogger('a.b.c'),
 { 'ip' : '123.231.231.123', 'user' : 'sheila' })
 logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
 a1.debug('A debug message')
 a1.info('An info message with %s', 'some parameters')
 a2 = logging.LoggerAdapter(logging.getLogger('d.e.f'), ConnInfo())
 for x in range(10):
 lvl = choice(levels)
 lvlname = logging.getLevelName(lvl)
 a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')

When this script is run, the output should look something like this:

2008-01-18 14:49:54,023 a.b.c DEBUG IP: 123.231.231.123 User: sheila A debug message
2008-01-18 14:49:54,023 a.b.c INFO IP: 123.231.231.123 User: sheila An info message with some parameters
2008-01-18 14:49:54,023 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
2008-01-18 14:49:54,033 d.e.f INFO IP: 192.168.0.1 User: jim A message at INFO level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f ERROR IP: 127.0.0.1 User: fred A message at ERROR level with 2 parameters
2008-01-18 14:49:54,033 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: jim A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f INFO IP: 192.168.0.1 User: fred A message at INFO level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 127.0.0.1 User: jim A message at WARNING level with 2 parameters

Using Filters to impart contextual information

You can also add contextual information to log output using a user-defined
Filter. Filter instances are allowed to modify the LogRecords
passed to them, including adding additional attributes which can then be output
using a suitable format string, or if needed a custom Formatter.

For example in a web application, the request being processed (or at least,
the interesting parts of it) can be stored in a threadlocal
(threading.local) variable, and then accessed from a Filter to
add, say, information from the request - say, the remote IP address and remote
user’s username - to the LogRecord, using the attribute names ‘ip’ and
‘user’ as in the LoggerAdapter example above. In that case, the same format
string can be used to get similar output to that shown above. Here’s an example
script:

import logging
from random import choice

class ContextFilter(logging.Filter):
 """
 This is a filter which injects contextual information into the log.

 Rather than use actual contextual information, we just use random
 data in this demo.
 """

 USERS = ['jim', 'fred', 'sheila']
 IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']

 def filter(self, record):

 record.ip = choice(ContextFilter.IPS)
 record.user = choice(ContextFilter.USERS)
 return True

if __name__ == '__main__':
 levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
 logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
 a1 = logging.getLogger('a.b.c')
 a2 = logging.getLogger('d.e.f')

 f = ContextFilter()
 a1.addFilter(f)
 a2.addFilter(f)
 a1.debug('A debug message')
 a1.info('An info message with %s', 'some parameters')
 for x in range(10):
 lvl = choice(levels)
 lvlname = logging.getLevelName(lvl)
 a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')

which, when run, produces something like:

2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug message
2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info message with some parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message at INFO level with 2 parameters

Logging to a single file from multiple processes

Although logging is thread-safe, and logging to a single file from multiple
threads in a single process is supported, logging to a single file from
multiple processes is not supported, because there is no standard way to
serialize access to a single file across multiple processes in Python. If you
need to log to a single file from multiple processes, one way of doing this is
to have all the processes log to a SocketHandler, and have a separate
process which implements a socket server which reads from the socket and logs
to file. (If you prefer, you can dedicate one thread in one of the existing
processes to perform this function.) The following section documents this
approach in more detail and includes a working socket receiver which can be
used as a starting point for you to adapt in your own applications.

If you are using a recent version of Python which includes the
multiprocessing module, you could write your own handler which uses the
Lock class from this module to serialize access to the file from
your processes. The existing FileHandler and subclasses do not make
use of multiprocessing at present, though they may do so in the future.
Note that at present, the multiprocessing module does not provide
working lock functionality on all platforms (see
http://bugs.python.org/issue3770).

Using file rotation

Sometimes you want to let a log file grow to a certain size, then open a new
file and log to that. You may want to keep a certain number of these files, and
when that many files have been created, rotate the files so that the number of
files and the size of the files both remain bounded. For this usage pattern, the
logging package provides a RotatingFileHandler:

import glob
import logging
import logging.handlers

LOG_FILENAME = 'logging_rotatingfile_example.out'

Set up a specific logger with our desired output level
my_logger = logging.getLogger('MyLogger')
my_logger.setLevel(logging.DEBUG)

Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(
 LOG_FILENAME, maxBytes=20, backupCount=5)

my_logger.addHandler(handler)

Log some messages
for i in range(20):
 my_logger.debug('i = %d' % i)

See what files are created
logfiles = glob.glob('%s*' % LOG_FILENAME)

for filename in logfiles:
 print(filename)

The result should be 6 separate files, each with part of the log history for the
application:

logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5

The most current file is always logging_rotatingfile_example.out,
and each time it reaches the size limit it is renamed with the suffix
.1. Each of the existing backup files is renamed to increment the suffix
(.1 becomes .2, etc.) and the .6 file is erased.

Obviously this example sets the log length much much too small as an extreme
example. You would want to set maxBytes to an appropriate value.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Regular Expression HOWTO

	Author:	A.M. Kuchling <amk@amk.ca>

Abstract

This document is an introductory tutorial to using regular expressions in Python
with the re module. It provides a gentler introduction than the
corresponding section in the Library Reference.

Introduction

The re module was added in Python 1.5, and provides Perl-style regular
expression patterns. Earlier versions of Python came with the regex
module, which provided Emacs-style patterns. The regex module was
removed completely in Python 2.5.

Regular expressions (called REs, or regexes, or regex patterns) are essentially
a tiny, highly specialized programming language embedded inside Python and made
available through the re module. Using this little language, you specify
the rules for the set of possible strings that you want to match; this set might
contain English sentences, or e-mail addresses, or TeX commands, or anything you
like. You can then ask questions such as “Does this string match the pattern?”,
or “Is there a match for the pattern anywhere in this string?”. You can also
use REs to modify a string or to split it apart in various ways.

Regular expression patterns are compiled into a series of bytecodes which are
then executed by a matching engine written in C. For advanced use, it may be
necessary to pay careful attention to how the engine will execute a given RE,
and write the RE in a certain way in order to produce bytecode that runs faster.
Optimization isn’t covered in this document, because it requires that you have a
good understanding of the matching engine’s internals.

The regular expression language is relatively small and restricted, so not all
possible string processing tasks can be done using regular expressions. There
are also tasks that can be done with regular expressions, but the expressions
turn out to be very complicated. In these cases, you may be better off writing
Python code to do the processing; while Python code will be slower than an
elaborate regular expression, it will also probably be more understandable.

Simple Patterns

We’ll start by learning about the simplest possible regular expressions. Since
regular expressions are used to operate on strings, we’ll begin with the most
common task: matching characters.

For a detailed explanation of the computer science underlying regular
expressions (deterministic and non-deterministic finite automata), you can refer
to almost any textbook on writing compilers.

Matching Characters

Most letters and characters will simply match themselves. For example, the
regular expression test will match the string test exactly. (You can
enable a case-insensitive mode that would let this RE match Test or TEST
as well; more about this later.)

There are exceptions to this rule; some characters are special
metacharacters, and don’t match themselves. Instead, they signal that
some out-of-the-ordinary thing should be matched, or they affect other portions
of the RE by repeating them or changing their meaning. Much of this document is
devoted to discussing various metacharacters and what they do.

Here’s a complete list of the metacharacters; their meanings will be discussed
in the rest of this HOWTO.

. ^ $ * + ? { } [] \ | ()

The first metacharacters we’ll look at are [and]. They’re used for
specifying a character class, which is a set of characters that you wish to
match. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them by a '-'. For
example, [abc] will match any of the characters a, b, or c; this
is the same as [a-c], which uses a range to express the same set of
characters. If you wanted to match only lowercase letters, your RE would be
[a-z].

Metacharacters are not active inside classes. For example, [akm$] will
match any of the characters 'a', 'k', 'm', or '$'; '$' is
usually a metacharacter, but inside a character class it’s stripped of its
special nature.

You can match the characters not listed within the class by complementing
the set. This is indicated by including a '^' as the first character of the
class; '^' outside a character class will simply match the '^'
character. For example, [^5] will match any character except '5'.

Perhaps the most important metacharacter is the backslash, \. As in Python
string literals, the backslash can be followed by various characters to signal
various special sequences. It’s also used to escape all the metacharacters so
you can still match them in patterns; for example, if you need to match a [
or \, you can precede them with a backslash to remove their special
meaning: \[or \\.

Some of the special sequences beginning with '\' represent predefined sets
of characters that are often useful, such as the set of digits, the set of
letters, or the set of anything that isn’t whitespace. The following predefined
special sequences are a subset of those available. The equivalent classes are
for byte string patterns. For a complete list of sequences and expanded class
definitions for Unicode string patterns, see the last part of
Regular Expression Syntax.

	\d

	Matches any decimal digit; this is equivalent to the class [0-9].

	\D

	Matches any non-digit character; this is equivalent to the class [^0-9].

	\s

	Matches any whitespace character; this is equivalent to the class [
\t\n\r\f\v].

	\S

	Matches any non-whitespace character; this is equivalent to the class [^
\t\n\r\f\v].

	\w

	Matches any alphanumeric character; this is equivalent to the class
[a-zA-Z0-9_].

	\W

	Matches any non-alphanumeric character; this is equivalent to the class
[^a-zA-Z0-9_].

These sequences can be included inside a character class. For example,
[\s,.] is a character class that will match any whitespace character, or
',' or '.'.

The final metacharacter in this section is .. It matches anything except a
newline character, and there’s an alternate mode (re.DOTALL) where it will
match even a newline. '.' is often used where you want to match “any
character”.

Repeating Things

Being able to match varying sets of characters is the first thing regular
expressions can do that isn’t already possible with the methods available on
strings. However, if that was the only additional capability of regexes, they
wouldn’t be much of an advance. Another capability is that you can specify that
portions of the RE must be repeated a certain number of times.

The first metacharacter for repeating things that we’ll look at is *. *
doesn’t match the literal character *; instead, it specifies that the
previous character can be matched zero or more times, instead of exactly once.

For example, ca*t will match ct (0 a characters), cat (1 a),
caaat (3 a characters), and so forth. The RE engine has various
internal limitations stemming from the size of C’s int type that will
prevent it from matching over 2 billion a characters; you probably don’t
have enough memory to construct a string that large, so you shouldn’t run into
that limit.

Repetitions such as * are greedy; when repeating a RE, the matching
engine will try to repeat it as many times as possible. If later portions of the
pattern don’t match, the matching engine will then back up and try again with
few repetitions.

A step-by-step example will make this more obvious. Let’s consider the
expression a[bcd]*b. This matches the letter 'a', zero or more letters
from the class [bcd], and finally ends with a 'b'. Now imagine matching
this RE against the string abcbd.

	Step
	Matched
	Explanation

	1
	a
	The a in the RE matches.

	2
	abcbd
	The engine matches [bcd]*,
going as far as it can, which
is to the end of the string.

	3
	Failure
	The engine tries to match
b, but the current position
is at the end of the string, so
it fails.

	4
	abcb
	Back up, so that [bcd]*
matches one less character.

	5
	Failure
	Try b again, but the
current position is at the last
character, which is a 'd'.

	6
	abc
	Back up again, so that
[bcd]* is only matching
bc.

	6
	abcb
	Try b again. This time
the character at the
current position is 'b', so
it succeeds.

The end of the RE has now been reached, and it has matched abcb. This
demonstrates how the matching engine goes as far as it can at first, and if no
match is found it will then progressively back up and retry the rest of the RE
again and again. It will back up until it has tried zero matches for
[bcd]*, and if that subsequently fails, the engine will conclude that the
string doesn’t match the RE at all.

Another repeating metacharacter is +, which matches one or more times. Pay
careful attention to the difference between * and +; * matches
zero or more times, so whatever’s being repeated may not be present at all,
while + requires at least one occurrence. To use a similar example,
ca+t will match cat (1 a), caaat (3 a‘s), but won’t match
ct.

There are two more repeating qualifiers. The question mark character, ?,
matches either once or zero times; you can think of it as marking something as
being optional. For example, home-?brew matches either homebrew or
home-brew.

The most complicated repeated qualifier is {m,n}, where m and n are
decimal integers. This qualifier means there must be at least m repetitions,
and at most n. For example, a/{1,3}b will match a/b, a//b, and
a///b. It won’t match ab, which has no slashes, or a////b, which
has four.

You can omit either m or n; in that case, a reasonable value is assumed for
the missing value. Omitting m is interpreted as a lower limit of 0, while
omitting n results in an upper bound of infinity — actually, the upper bound
is the 2-billion limit mentioned earlier, but that might as well be infinity.

Readers of a reductionist bent may notice that the three other qualifiers can
all be expressed using this notation. {0,} is the same as *, {1,}
is equivalent to +, and {0,1} is the same as ?. It’s better to use
*, +, or ? when you can, simply because they’re shorter and easier
to read.

Using Regular Expressions

Now that we’ve looked at some simple regular expressions, how do we actually use
them in Python? The re module provides an interface to the regular
expression engine, allowing you to compile REs into objects and then perform
matches with them.

Compiling Regular Expressions

Regular expressions are compiled into pattern objects, which have
methods for various operations such as searching for pattern matches or
performing string substitutions.

>>> import re
>>> p = re.compile('ab*')
>>> print p
<_sre.SRE_Pattern object at 0x...>

re.compile() also accepts an optional flags argument, used to enable
various special features and syntax variations. We’ll go over the available
settings later, but for now a single example will do:

>>> p = re.compile('ab*', re.IGNORECASE)

The RE is passed to re.compile() as a string. REs are handled as strings
because regular expressions aren’t part of the core Python language, and no
special syntax was created for expressing them. (There are applications that
don’t need REs at all, so there’s no need to bloat the language specification by
including them.) Instead, the re module is simply a C extension module
included with Python, just like the socket or zlib modules.

Putting REs in strings keeps the Python language simpler, but has one
disadvantage which is the topic of the next section.

The Backslash Plague

As stated earlier, regular expressions use the backslash character ('\') to
indicate special forms or to allow special characters to be used without
invoking their special meaning. This conflicts with Python’s usage of the same
character for the same purpose in string literals.

Let’s say you want to write a RE that matches the string \section, which
might be found in a LaTeX file. To figure out what to write in the program
code, start with the desired string to be matched. Next, you must escape any
backslashes and other metacharacters by preceding them with a backslash,
resulting in the string \\section. The resulting string that must be passed
to re.compile() must be \\section. However, to express this as a
Python string literal, both backslashes must be escaped again.

	Characters
	Stage

	\section
	Text string to be matched

	\\section
	Escaped backslash for re.compile()

	"\\\\section"
	Escaped backslashes for a string literal

In short, to match a literal backslash, one has to write '\\\\' as the RE
string, because the regular expression must be \\, and each backslash must
be expressed as \\ inside a regular Python string literal. In REs that
feature backslashes repeatedly, this leads to lots of repeated backslashes and
makes the resulting strings difficult to understand.

The solution is to use Python’s raw string notation for regular expressions;
backslashes are not handled in any special way in a string literal prefixed with
'r', so r"\n" is a two-character string containing '\' and 'n',
while "\n" is a one-character string containing a newline. Regular
expressions will often be written in Python code using this raw string notation.

	Regular String
	Raw string

	"ab*"
	r"ab*"

	"\\\\section"
	r"\\section"

	"\\w+\\s+\\1"
	r"\w+\s+\1"

Performing Matches

Once you have an object representing a compiled regular expression, what do you
do with it? Pattern objects have several methods and attributes.
Only the most significant ones will be covered here; consult the re docs
for a complete listing.

	Method/Attribute
	Purpose

	match()
	Determine if the RE matches at the beginning
of the string.

	search()
	Scan through a string, looking for any
location where this RE matches.

	findall()
	Find all substrings where the RE matches, and
returns them as a list.

	finditer()
	Find all substrings where the RE matches, and
returns them as an iterator.

match() and search() return None if no match can be found. If
they’re successful, a MatchObject instance is returned, containing
information about the match: where it starts and ends, the substring it matched,
and more.

You can learn about this by interactively experimenting with the re
module. If you have Tkinter available, you may also want to look at
Tools/scripts/redemo.py, a demonstration program included with the
Python distribution. It allows you to enter REs and strings, and displays
whether the RE matches or fails. redemo.py can be quite useful when
trying to debug a complicated RE. Phil Schwartz’s Kodos [http://kodos.sourceforge.net/] is also an interactive tool for developing and
testing RE patterns.

This HOWTO uses the standard Python interpreter for its examples. First, run the
Python interpreter, import the re module, and compile a RE:

Python 2.2.2 (#1, Feb 10 2003, 12:57:01)
>>> import re
>>> p = re.compile('[a-z]+')
>>> p
<_sre.SRE_Pattern object at 0x...>

Now, you can try matching various strings against the RE [a-z]+. An empty
string shouldn’t match at all, since + means ‘one or more repetitions’.
match() should return None in this case, which will cause the
interpreter to print no output. You can explicitly print the result of
match() to make this clear.

>>> p.match("")
>>> print p.match("")
None

Now, let’s try it on a string that it should match, such as tempo. In this
case, match() will return a MatchObject, so you should store the
result in a variable for later use.

>>> m = p.match('tempo')
>>> print m
<_sre.SRE_Match object at 0x...>

Now you can query the MatchObject for information about the matching
string. MatchObject instances also have several methods and
attributes; the most important ones are:

	Method/Attribute
	Purpose

	group()
	Return the string matched by the RE

	start()
	Return the starting position of the match

	end()
	Return the ending position of the match

	span()
	Return a tuple containing the (start, end)
positions of the match

Trying these methods will soon clarify their meaning:

>>> m.group()
'tempo'
>>> m.start(), m.end()
(0, 5)
>>> m.span()
(0, 5)

group() returns the substring that was matched by the RE. start()
and end() return the starting and ending index of the match. span()
returns both start and end indexes in a single tuple. Since the match()
method only checks if the RE matches at the start of a string, start()
will always be zero. However, the search() method of patterns
scans through the string, so the match may not start at zero in that
case.

>>> print p.match('::: message')
None
>>> m = p.search('::: message') ; print m
<_sre.SRE_Match object at 0x...>
>>> m.group()
'message'
>>> m.span()
(4, 11)

In actual programs, the most common style is to store the MatchObject
in a variable, and then check if it was None. This usually looks like:

p = re.compile(...)
m = p.match('string goes here')
if m:
 print 'Match found: ', m.group()
else:
 print 'No match'

Two pattern methods return all of the matches for a pattern.
findall() returns a list of matching strings:

>>> p = re.compile('\d+')
>>> p.findall('12 drummers drumming, 11 pipers piping, 10 lords a-leaping')
['12', '11', '10']

findall() has to create the entire list before it can be returned as the
result. The finditer() method returns a sequence of MatchObject
instances as an iterator. [1]

>>> iterator = p.finditer('12 drummers drumming, 11 ... 10 ...')
>>> iterator
<callable-iterator object at 0x401833ac>
>>> for match in iterator:
... print match.span()
...
(0, 2)
(22, 24)
(29, 31)

Module-Level Functions

You don’t have to create a pattern object and call its methods; the
re module also provides top-level functions called match(),
search(), findall(), sub(), and so forth. These functions
take the same arguments as the corresponding pattern method, with
the RE string added as the first argument, and still return either None or a
MatchObject instance.

>>> print re.match(r'From\s+', 'Fromage amk')
None
>>> re.match(r'From\s+', 'From amk Thu May 14 19:12:10 1998')
<_sre.SRE_Match object at 0x...>

Under the hood, these functions simply create a pattern object for you
and call the appropriate method on it. They also store the compiled object in a
cache, so future calls using the same RE are faster.

Should you use these module-level functions, or should you get the
pattern and call its methods yourself? That choice depends on how
frequently the RE will be used, and on your personal coding style. If the RE is
being used at only one point in the code, then the module functions are probably
more convenient. If a program contains a lot of regular expressions, or re-uses
the same ones in several locations, then it might be worthwhile to collect all
the definitions in one place, in a section of code that compiles all the REs
ahead of time. To take an example from the standard library, here’s an extract
from xmllib.py:

ref = re.compile(...)
entityref = re.compile(...)
charref = re.compile(...)
starttagopen = re.compile(...)

I generally prefer to work with the compiled object, even for one-time uses, but
few people will be as much of a purist about this as I am.

Compilation Flags

Compilation flags let you modify some aspects of how regular expressions work.
Flags are available in the re module under two names, a long name such as
IGNORECASE and a short, one-letter form such as I. (If you’re
familiar with Perl’s pattern modifiers, the one-letter forms use the same
letters; the short form of re.VERBOSE is re.X, for example.)
Multiple flags can be specified by bitwise OR-ing them; re.I | re.M sets
both the I and M flags, for example.

Here’s a table of the available flags, followed by a more detailed explanation
of each one.

	Flag
	Meaning

	DOTALL, S
	Make . match any character, including
newlines

	IGNORECASE, I
	Do case-insensitive matches

	LOCALE, L
	Do a locale-aware match

	MULTILINE, M
	Multi-line matching, affecting ^ and
$

	VERBOSE, X
	Enable verbose REs, which can be organized
more cleanly and understandably.

	UNICODE, U
	Makes several escapes like \w, \b,
\s and \d dependent on the Unicode
character database.

	
I

	
IGNORECASE

	Perform case-insensitive matching; character class and literal strings will
match letters by ignoring case. For example, [A-Z] will match lowercase
letters, too, and Spam will match Spam, spam, or spAM. This
lowercasing doesn’t take the current locale into account; it will if you also
set the LOCALE flag.

	
L

	
LOCALE

	Make \w, \W, \b, and \B, dependent on the current locale.

Locales are a feature of the C library intended to help in writing programs that
take account of language differences. For example, if you’re processing French
text, you’d want to be able to write \w+ to match words, but \w only
matches the character class [A-Za-z]; it won’t match 'é' or 'ç'. If
your system is configured properly and a French locale is selected, certain C
functions will tell the program that 'é' should also be considered a letter.
Setting the LOCALE flag when compiling a regular expression will cause
the resulting compiled object to use these C functions for \w; this is
slower, but also enables \w+ to match French words as you’d expect.

	
M

	
MULTILINE

	(^ and $ haven’t been explained yet; they’ll be introduced in section
More Metacharacters.)

Usually ^ matches only at the beginning of the string, and $ matches
only at the end of the string and immediately before the newline (if any) at the
end of the string. When this flag is specified, ^ matches at the beginning
of the string and at the beginning of each line within the string, immediately
following each newline. Similarly, the $ metacharacter matches either at
the end of the string and at the end of each line (immediately preceding each
newline).

	
S

	
DOTALL

	Makes the '.' special character match any character at all, including a
newline; without this flag, '.' will match anything except a newline.

	
U

	
UNICODE

	Make \w, \W, \b, \B, \d, \D, \s and \S
dependent on the Unicode character properties database.

	
X

	
VERBOSE

	This flag allows you to write regular expressions that are more readable by
granting you more flexibility in how you can format them. When this flag has
been specified, whitespace within the RE string is ignored, except when the
whitespace is in a character class or preceded by an unescaped backslash; this
lets you organize and indent the RE more clearly. This flag also lets you put
comments within a RE that will be ignored by the engine; comments are marked by
a '#' that’s neither in a character class or preceded by an unescaped
backslash.

For example, here’s a RE that uses re.VERBOSE; see how much easier it
is to read?

charref = re.compile(r"""
 &[#] # Start of a numeric entity reference
 (
 0[0-7]+ # Octal form
 | [0-9]+ # Decimal form
 | x[0-9a-fA-F]+ # Hexadecimal form
)
 ; # Trailing semicolon
""", re.VERBOSE)

Without the verbose setting, the RE would look like this:

charref = re.compile("&#(0[0-7]+"
 "|[0-9]+"
 "|x[0-9a-fA-F]+);")

In the above example, Python’s automatic concatenation of string literals has
been used to break up the RE into smaller pieces, but it’s still more difficult
to understand than the version using re.VERBOSE.

More Pattern Power

So far we’ve only covered a part of the features of regular expressions. In
this section, we’ll cover some new metacharacters, and how to use groups to
retrieve portions of the text that was matched.

More Metacharacters

There are some metacharacters that we haven’t covered yet. Most of them will be
covered in this section.

Some of the remaining metacharacters to be discussed are zero-width
assertions. They don’t cause the engine to advance through the string;
instead, they consume no characters at all, and simply succeed or fail. For
example, \b is an assertion that the current position is located at a word
boundary; the position isn’t changed by the \b at all. This means that
zero-width assertions should never be repeated, because if they match once at a
given location, they can obviously be matched an infinite number of times.

	|

	Alternation, or the “or” operator. If A and B are regular expressions,
A|B will match any string that matches either A or B. | has very
low precedence in order to make it work reasonably when you’re alternating
multi-character strings. Crow|Servo will match either Crow or Servo,
not Cro, a 'w' or an 'S', and ervo.

To match a literal '|', use \|, or enclose it inside a character class,
as in [|].

	^

	Matches at the beginning of lines. Unless the MULTILINE flag has been
set, this will only match at the beginning of the string. In MULTILINE
mode, this also matches immediately after each newline within the string.

For example, if you wish to match the word From only at the beginning of a
line, the RE to use is ^From.

>>> print re.search('^From', 'From Here to Eternity')
<_sre.SRE_Match object at 0x...>
>>> print re.search('^From', 'Reciting From Memory')
None

	$

	Matches at the end of a line, which is defined as either the end of the string,
or any location followed by a newline character.

>>> print re.search('}$', '{block}')
<_sre.SRE_Match object at 0x...>
>>> print re.search('}$', '{block} ')
None
>>> print re.search('}$', '{block}\n')
<_sre.SRE_Match object at 0x...>

To match a literal '$', use \$ or enclose it inside a character class,
as in [$].

	\A

	Matches only at the start of the string. When not in MULTILINE mode,
\A and ^ are effectively the same. In MULTILINE mode, they’re
different: \A still matches only at the beginning of the string, but ^
may match at any location inside the string that follows a newline character.

	\Z

	Matches only at the end of the string.

	\b

	Word boundary. This is a zero-width assertion that matches only at the
beginning or end of a word. A word is defined as a sequence of alphanumeric
characters, so the end of a word is indicated by whitespace or a
non-alphanumeric character.

The following example matches class only when it’s a complete word; it won’t
match when it’s contained inside another word.

>>> p = re.compile(r'\bclass\b')
>>> print p.search('no class at all')
<_sre.SRE_Match object at 0x...>
>>> print p.search('the declassified algorithm')
None
>>> print p.search('one subclass is')
None

There are two subtleties you should remember when using this special sequence.
First, this is the worst collision between Python’s string literals and regular
expression sequences. In Python’s string literals, \b is the backspace
character, ASCII value 8. If you’re not using raw strings, then Python will
convert the \b to a backspace, and your RE won’t match as you expect it to.
The following example looks the same as our previous RE, but omits the 'r'
in front of the RE string.

>>> p = re.compile('\bclass\b')
>>> print p.search('no class at all')
None
>>> print p.search('\b' + 'class' + '\b')
<_sre.SRE_Match object at 0x...>

Second, inside a character class, where there’s no use for this assertion,
\b represents the backspace character, for compatibility with Python’s
string literals.

	\B

	Another zero-width assertion, this is the opposite of \b, only matching when
the current position is not at a word boundary.

Grouping

Frequently you need to obtain more information than just whether the RE matched
or not. Regular expressions are often used to dissect strings by writing a RE
divided into several subgroups which match different components of interest.
For example, an RFC-822 header line is divided into a header name and a value,
separated by a ':', like this:

From: author@example.com
User-Agent: Thunderbird 1.5.0.9 (X11/20061227)
MIME-Version: 1.0
To: editor@example.com

This can be handled by writing a regular expression which matches an entire
header line, and has one group which matches the header name, and another group
which matches the header’s value.

Groups are marked by the '(', ')' metacharacters. '(' and ')'
have much the same meaning as they do in mathematical expressions; they group
together the expressions contained inside them, and you can repeat the contents
of a group with a repeating qualifier, such as *, +, ?, or
{m,n}. For example, (ab)* will match zero or more repetitions of
ab.

>>> p = re.compile('(ab)*')
>>> print p.match('ababababab').span()
(0, 10)

Groups indicated with '(', ')' also capture the starting and ending
index of the text that they match; this can be retrieved by passing an argument
to group(), start(), end(), and span(). Groups are
numbered starting with 0. Group 0 is always present; it’s the whole RE, so
MatchObject methods all have group 0 as their default argument. Later
we’ll see how to express groups that don’t capture the span of text that they
match.

>>> p = re.compile('(a)b')
>>> m = p.match('ab')
>>> m.group()
'ab'
>>> m.group(0)
'ab'

Subgroups are numbered from left to right, from 1 upward. Groups can be nested;
to determine the number, just count the opening parenthesis characters, going
from left to right.

>>> p = re.compile('(a(b)c)d')
>>> m = p.match('abcd')
>>> m.group(0)
'abcd'
>>> m.group(1)
'abc'
>>> m.group(2)
'b'

group() can be passed multiple group numbers at a time, in which case it
will return a tuple containing the corresponding values for those groups.

>>> m.group(2,1,2)
('b', 'abc', 'b')

The groups() method returns a tuple containing the strings for all the
subgroups, from 1 up to however many there are.

>>> m.groups()
('abc', 'b')

Backreferences in a pattern allow you to specify that the contents of an earlier
capturing group must also be found at the current location in the string. For
example, \1 will succeed if the exact contents of group 1 can be found at
the current position, and fails otherwise. Remember that Python’s string
literals also use a backslash followed by numbers to allow including arbitrary
characters in a string, so be sure to use a raw string when incorporating
backreferences in a RE.

For example, the following RE detects doubled words in a string.

>>> p = re.compile(r'(\b\w+)\s+\1')
>>> p.search('Paris in the the spring').group()
'the the'

Backreferences like this aren’t often useful for just searching through a string
— there are few text formats which repeat data in this way — but you’ll soon
find out that they’re very useful when performing string substitutions.

Non-capturing and Named Groups

Elaborate REs may use many groups, both to capture substrings of interest, and
to group and structure the RE itself. In complex REs, it becomes difficult to
keep track of the group numbers. There are two features which help with this
problem. Both of them use a common syntax for regular expression extensions, so
we’ll look at that first.

Perl 5 added several additional features to standard regular expressions, and
the Python re module supports most of them. It would have been
difficult to choose new single-keystroke metacharacters or new special sequences
beginning with \ to represent the new features without making Perl’s regular
expressions confusingly different from standard REs. If you chose & as a
new metacharacter, for example, old expressions would be assuming that & was
a regular character and wouldn’t have escaped it by writing \& or [&].

The solution chosen by the Perl developers was to use (?...) as the
extension syntax. ? immediately after a parenthesis was a syntax error
because the ? would have nothing to repeat, so this didn’t introduce any
compatibility problems. The characters immediately after the ? indicate
what extension is being used, so (?=foo) is one thing (a positive lookahead
assertion) and (?:foo) is something else (a non-capturing group containing
the subexpression foo).

Python adds an extension syntax to Perl’s extension syntax. If the first
character after the question mark is a P, you know that it’s an extension
that’s specific to Python. Currently there are two such extensions:
(?P<name>...) defines a named group, and (?P=name) is a backreference to
a named group. If future versions of Perl 5 add similar features using a
different syntax, the re module will be changed to support the new
syntax, while preserving the Python-specific syntax for compatibility’s sake.

Now that we’ve looked at the general extension syntax, we can return to the
features that simplify working with groups in complex REs. Since groups are
numbered from left to right and a complex expression may use many groups, it can
become difficult to keep track of the correct numbering. Modifying such a
complex RE is annoying, too: insert a new group near the beginning and you
change the numbers of everything that follows it.

Sometimes you’ll want to use a group to collect a part of a regular expression,
but aren’t interested in retrieving the group’s contents. You can make this fact
explicit by using a non-capturing group: (?:...), where you can replace the
... with any other regular expression.

>>> m = re.match("([abc])+", "abc")
>>> m.groups()
('c',)
>>> m = re.match("(?:[abc])+", "abc")
>>> m.groups()
()

Except for the fact that you can’t retrieve the contents of what the group
matched, a non-capturing group behaves exactly the same as a capturing group;
you can put anything inside it, repeat it with a repetition metacharacter such
as *, and nest it within other groups (capturing or non-capturing).
(?:...) is particularly useful when modifying an existing pattern, since you
can add new groups without changing how all the other groups are numbered. It
should be mentioned that there’s no performance difference in searching between
capturing and non-capturing groups; neither form is any faster than the other.

A more significant feature is named groups: instead of referring to them by
numbers, groups can be referenced by a name.

The syntax for a named group is one of the Python-specific extensions:
(?P<name>...). name is, obviously, the name of the group. Named groups
also behave exactly like capturing groups, and additionally associate a name
with a group. The MatchObject methods that deal with capturing groups
all accept either integers that refer to the group by number or strings that
contain the desired group’s name. Named groups are still given numbers, so you
can retrieve information about a group in two ways:

>>> p = re.compile(r'(?P<word>\b\w+\b)')
>>> m = p.search('((((Lots of punctuation)))')
>>> m.group('word')
'Lots'
>>> m.group(1)
'Lots'

Named groups are handy because they let you use easily-remembered names, instead
of having to remember numbers. Here’s an example RE from the imaplib
module:

InternalDate = re.compile(r'INTERNALDATE "'
 r'(?P<day>[123][0-9])-(?P<mon>[A-Z][a-z][a-z])-'
 r'(?P<year>[0-9][0-9][0-9][0-9])'
 r' (?P<hour>[0-9][0-9]):(?P<min>[0-9][0-9]):(?P<sec>[0-9][0-9])'
 r' (?P<zonen>[-+])(?P<zoneh>[0-9][0-9])(?P<zonem>[0-9][0-9])'
 r'"')

It’s obviously much easier to retrieve m.group('zonem'), instead of having
to remember to retrieve group 9.

The syntax for backreferences in an expression such as (...)\1 refers to the
number of the group. There’s naturally a variant that uses the group name
instead of the number. This is another Python extension: (?P=name) indicates
that the contents of the group called name should again be matched at the
current point. The regular expression for finding doubled words,
(\b\w+)\s+\1 can also be written as (?P<word>\b\w+)\s+(?P=word):

>>> p = re.compile(r'(?P<word>\b\w+)\s+(?P=word)')
>>> p.search('Paris in the the spring').group()
'the the'

Lookahead Assertions

Another zero-width assertion is the lookahead assertion. Lookahead assertions
are available in both positive and negative form, and look like this:

	(?=...)

	Positive lookahead assertion. This succeeds if the contained regular
expression, represented here by ..., successfully matches at the current
location, and fails otherwise. But, once the contained expression has been
tried, the matching engine doesn’t advance at all; the rest of the pattern is
tried right where the assertion started.

	(?!...)

	Negative lookahead assertion. This is the opposite of the positive assertion;
it succeeds if the contained expression doesn’t match at the current position
in the string.

To make this concrete, let’s look at a case where a lookahead is useful.
Consider a simple pattern to match a filename and split it apart into a base
name and an extension, separated by a .. For example, in news.rc,
news is the base name, and rc is the filename’s extension.

The pattern to match this is quite simple:

.*[.].*$

Notice that the . needs to be treated specially because it’s a
metacharacter; I’ve put it inside a character class. Also notice the trailing
$; this is added to ensure that all the rest of the string must be included
in the extension. This regular expression matches foo.bar and
autoexec.bat and sendmail.cf and printers.conf.

Now, consider complicating the problem a bit; what if you want to match
filenames where the extension is not bat? Some incorrect attempts:

.*[.][^b].*$ The first attempt above tries to exclude bat by requiring
that the first character of the extension is not a b. This is wrong,
because the pattern also doesn’t match foo.bar.

.*[.]([^b]..|.[^a].|..[^t])$

The expression gets messier when you try to patch up the first solution by
requiring one of the following cases to match: the first character of the
extension isn’t b; the second character isn’t a; or the third character
isn’t t. This accepts foo.bar and rejects autoexec.bat, but it
requires a three-letter extension and won’t accept a filename with a two-letter
extension such as sendmail.cf. We’ll complicate the pattern again in an
effort to fix it.

.*[.]([^b].?.?|.[^a]?.?|..?[^t]?)$

In the third attempt, the second and third letters are all made optional in
order to allow matching extensions shorter than three characters, such as
sendmail.cf.

The pattern’s getting really complicated now, which makes it hard to read and
understand. Worse, if the problem changes and you want to exclude both bat
and exe as extensions, the pattern would get even more complicated and
confusing.

A negative lookahead cuts through all this confusion:

.*[.](?!bat$).*$ The negative lookahead means: if the expression bat
doesn’t match at this point, try the rest of the pattern; if bat$ does
match, the whole pattern will fail. The trailing $ is required to ensure
that something like sample.batch, where the extension only starts with
bat, will be allowed.

Excluding another filename extension is now easy; simply add it as an
alternative inside the assertion. The following pattern excludes filenames that
end in either bat or exe:

.*[.](?!bat$|exe$).*$

Modifying Strings

Up to this point, we’ve simply performed searches against a static string.
Regular expressions are also commonly used to modify strings in various ways,
using the following pattern methods:

	Method/Attribute
	Purpose

	split()
	Split the string into a list, splitting it
wherever the RE matches

	sub()
	Find all substrings where the RE matches, and
replace them with a different string

	subn()
	Does the same thing as sub(), but
returns the new string and the number of
replacements

Splitting Strings

The split() method of a pattern splits a string apart
wherever the RE matches, returning a list of the pieces. It’s similar to the
split() method of strings but provides much more generality in the
delimiters that you can split by; split() only supports splitting by
whitespace or by a fixed string. As you’d expect, there’s a module-level
re.split() function, too.

	
.split(string[, maxsplit=0])

	Split string by the matches of the regular expression. If capturing
parentheses are used in the RE, then their contents will also be returned as
part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
are performed.

You can limit the number of splits made, by passing a value for maxsplit.
When maxsplit is nonzero, at most maxsplit splits will be made, and the
remainder of the string is returned as the final element of the list. In the
following example, the delimiter is any sequence of non-alphanumeric characters.

>>> p = re.compile(r'\W+')
>>> p.split('This is a test, short and sweet, of split().')
['This', 'is', 'a', 'test', 'short', 'and', 'sweet', 'of', 'split', '']
>>> p.split('This is a test, short and sweet, of split().', 3)
['This', 'is', 'a', 'test, short and sweet, of split().']

Sometimes you’re not only interested in what the text between delimiters is, but
also need to know what the delimiter was. If capturing parentheses are used in
the RE, then their values are also returned as part of the list. Compare the
following calls:

>>> p = re.compile(r'\W+')
>>> p2 = re.compile(r'(\W+)')
>>> p.split('This... is a test.')
['This', 'is', 'a', 'test', '']
>>> p2.split('This... is a test.')
['This', '... ', 'is', ' ', 'a', ' ', 'test', '.', '']

The module-level function re.split() adds the RE to be used as the first
argument, but is otherwise the same.

>>> re.split('[\W]+', 'Words, words, words.')
['Words', 'words', 'words', '']
>>> re.split('([\W]+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split('[\W]+', 'Words, words, words.', 1)
['Words', 'words, words.']

Search and Replace

Another common task is to find all the matches for a pattern, and replace them
with a different string. The sub() method takes a replacement value,
which can be either a string or a function, and the string to be processed.

	
.sub(replacement, string[, count=0])

	Returns the string obtained by replacing the leftmost non-overlapping
occurrences of the RE in string by the replacement replacement. If the
pattern isn’t found, string is returned unchanged.

The optional argument count is the maximum number of pattern occurrences to be
replaced; count must be a non-negative integer. The default value of 0 means
to replace all occurrences.

Here’s a simple example of using the sub() method. It replaces colour
names with the word colour:

>>> p = re.compile('(blue|white|red)')
>>> p.sub('colour', 'blue socks and red shoes')
'colour socks and colour shoes'
>>> p.sub('colour', 'blue socks and red shoes', count=1)
'colour socks and red shoes'

The subn() method does the same work, but returns a 2-tuple containing the
new string value and the number of replacements that were performed:

>>> p = re.compile('(blue|white|red)')
>>> p.subn('colour', 'blue socks and red shoes')
('colour socks and colour shoes', 2)
>>> p.subn('colour', 'no colours at all')
('no colours at all', 0)

Empty matches are replaced only when they’re not adjacent to a previous match.

>>> p = re.compile('x*')
>>> p.sub('-', 'abxd')
'-a-b-d-'

If replacement is a string, any backslash escapes in it are processed. That
is, \n is converted to a single newline character, \r is converted to a
carriage return, and so forth. Unknown escapes such as \j are left alone.
Backreferences, such as \6, are replaced with the substring matched by the
corresponding group in the RE. This lets you incorporate portions of the
original text in the resulting replacement string.

This example matches the word section followed by a string enclosed in
{, }, and changes section to subsection:

>>> p = re.compile('section{ ([^}]*) }', re.VERBOSE)
>>> p.sub(r'subsection{\1}','section{First} section{second}')
'subsection{First} subsection{second}'

There’s also a syntax for referring to named groups as defined by the
(?P<name>...) syntax. \g<name> will use the substring matched by the
group named name, and \g<number> uses the corresponding group number.
\g<2> is therefore equivalent to \2, but isn’t ambiguous in a
replacement string such as \g<2>0. (\20 would be interpreted as a
reference to group 20, not a reference to group 2 followed by the literal
character '0'.) The following substitutions are all equivalent, but use all
three variations of the replacement string.

>>> p = re.compile('section{ (?P<name> [^}]*) }', re.VERBOSE)
>>> p.sub(r'subsection{\1}','section{First}')
'subsection{First}'
>>> p.sub(r'subsection{\g<1>}','section{First}')
'subsection{First}'
>>> p.sub(r'subsection{\g<name>}','section{First}')
'subsection{First}'

replacement can also be a function, which gives you even more control. If
replacement is a function, the function is called for every non-overlapping
occurrence of pattern. On each call, the function is passed a
MatchObject argument for the match and can use this information to
compute the desired replacement string and return it.

In the following example, the replacement function translates decimals into
hexadecimal:

>>> def hexrepl(match):
... "Return the hex string for a decimal number"
... value = int(match.group())
... return hex(value)
...
>>> p = re.compile(r'\d+')
>>> p.sub(hexrepl, 'Call 65490 for printing, 49152 for user code.')
'Call 0xffd2 for printing, 0xc000 for user code.'

When using the module-level re.sub() function, the pattern is passed as
the first argument. The pattern may be provided as an object or as a string; if
you need to specify regular expression flags, you must either use a
pattern object as the first parameter, or use embedded modifiers in the
pattern string, e.g. sub("(?i)b+", "x", "bbbb BBBB") returns 'x x'.

Common Problems

Regular expressions are a powerful tool for some applications, but in some ways
their behaviour isn’t intuitive and at times they don’t behave the way you may
expect them to. This section will point out some of the most common pitfalls.

Use String Methods

Sometimes using the re module is a mistake. If you’re matching a fixed
string, or a single character class, and you’re not using any re features
such as the IGNORECASE flag, then the full power of regular expressions
may not be required. Strings have several methods for performing operations with
fixed strings and they’re usually much faster, because the implementation is a
single small C loop that’s been optimized for the purpose, instead of the large,
more generalized regular expression engine.

One example might be replacing a single fixed string with another one; for
example, you might replace word with deed. re.sub() seems like the
function to use for this, but consider the replace() method. Note that
replace() will also replace word inside words, turning swordfish
into sdeedfish, but the naive RE word would have done that, too. (To
avoid performing the substitution on parts of words, the pattern would have to
be \bword\b, in order to require that word have a word boundary on
either side. This takes the job beyond replace()‘s abilities.)

Another common task is deleting every occurrence of a single character from a
string or replacing it with another single character. You might do this with
something like re.sub('\n', ' ', S), but translate() is capable of
doing both tasks and will be faster than any regular expression operation can
be.

In short, before turning to the re module, consider whether your problem
can be solved with a faster and simpler string method.

match() versus search()

The match() function only checks if the RE matches at the beginning of the
string while search() will scan forward through the string for a match.
It’s important to keep this distinction in mind. Remember, match() will
only report a successful match which will start at 0; if the match wouldn’t
start at zero, match() will not report it.

>>> print re.match('super', 'superstition').span()
(0, 5)
>>> print re.match('super', 'insuperable')
None

On the other hand, search() will scan forward through the string,
reporting the first match it finds.

>>> print re.search('super', 'superstition').span()
(0, 5)
>>> print re.search('super', 'insuperable').span()
(2, 7)

Sometimes you’ll be tempted to keep using re.match(), and just add .*
to the front of your RE. Resist this temptation and use re.search()
instead. The regular expression compiler does some analysis of REs in order to
speed up the process of looking for a match. One such analysis figures out what
the first character of a match must be; for example, a pattern starting with
Crow must match starting with a 'C'. The analysis lets the engine
quickly scan through the string looking for the starting character, only trying
the full match if a 'C' is found.

Adding .* defeats this optimization, requiring scanning to the end of the
string and then backtracking to find a match for the rest of the RE. Use
re.search() instead.

Greedy versus Non-Greedy

When repeating a regular expression, as in a*, the resulting action is to
consume as much of the pattern as possible. This fact often bites you when
you’re trying to match a pair of balanced delimiters, such as the angle brackets
surrounding an HTML tag. The naive pattern for matching a single HTML tag
doesn’t work because of the greedy nature of .*.

>>> s = '<html><head><title>Title</title>'
>>> len(s)
32
>>> print re.match('<.*>', s).span()
(0, 32)
>>> print re.match('<.*>', s).group()
<html><head><title>Title</title>

The RE matches the '<' in <html>, and the .* consumes the rest of
the string. There’s still more left in the RE, though, and the > can’t
match at the end of the string, so the regular expression engine has to
backtrack character by character until it finds a match for the >. The
final match extends from the '<' in <html> to the '>' in
</title>, which isn’t what you want.

In this case, the solution is to use the non-greedy qualifiers *?, +?,
??, or {m,n}?, which match as little text as possible. In the above
example, the '>' is tried immediately after the first '<' matches, and
when it fails, the engine advances a character at a time, retrying the '>'
at every step. This produces just the right result:

>>> print re.match('<.*?>', s).group()
<html>

(Note that parsing HTML or XML with regular expressions is painful.
Quick-and-dirty patterns will handle common cases, but HTML and XML have special
cases that will break the obvious regular expression; by the time you’ve written
a regular expression that handles all of the possible cases, the patterns will
be very complicated. Use an HTML or XML parser module for such tasks.)

Using re.VERBOSE

By now you’ve probably noticed that regular expressions are a very compact
notation, but they’re not terribly readable. REs of moderate complexity can
become lengthy collections of backslashes, parentheses, and metacharacters,
making them difficult to read and understand.

For such REs, specifying the re.VERBOSE flag when compiling the regular
expression can be helpful, because it allows you to format the regular
expression more clearly.

The re.VERBOSE flag has several effects. Whitespace in the regular
expression that isn’t inside a character class is ignored. This means that an
expression such as dog | cat is equivalent to the less readable dog|cat,
but [a b] will still match the characters 'a', 'b', or a space. In
addition, you can also put comments inside a RE; comments extend from a #
character to the next newline. When used with triple-quoted strings, this
enables REs to be formatted more neatly:

pat = re.compile(r"""
 \s* # Skip leading whitespace
 (?P<header>[^:]+) # Header name
 \s* : # Whitespace, and a colon
 (?P<value>.*?) # The header's value -- *? used to
 # lose the following trailing whitespace
 \s*$ # Trailing whitespace to end-of-line
""", re.VERBOSE)

This is far more readable than:

pat = re.compile(r"\s*(?P<header>[^:]+)\s*:(?P<value>.*?)\s*$")

Feedback

Regular expressions are a complicated topic. Did this document help you
understand them? Were there parts that were unclear, or Problems you
encountered that weren’t covered here? If so, please send suggestions for
improvements to the author.

The most complete book on regular expressions is almost certainly Jeffrey
Friedl’s Mastering Regular Expressions, published by O’Reilly. Unfortunately,
it exclusively concentrates on Perl and Java’s flavours of regular expressions,
and doesn’t contain any Python material at all, so it won’t be useful as a
reference for programming in Python. (The first edition covered Python’s
now-removed regex module, which won’t help you much.) Consider checking
it out from your library.

Footnotes

	[1]	Introduced in Python 2.2.2.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Socket Programming HOWTO

	Author:	Gordon McMillan

Abstract

Sockets are used nearly everywhere, but are one of the most severely
misunderstood technologies around. This is a 10,000 foot overview of sockets.
It’s not really a tutorial - you’ll still have work to do in getting things
operational. It doesn’t cover the fine points (and there are a lot of them), but
I hope it will give you enough background to begin using them decently.

Sockets

Sockets are used nearly everywhere, but are one of the most severely
misunderstood technologies around. This is a 10,000 foot overview of sockets.
It’s not really a tutorial - you’ll still have work to do in getting things
working. It doesn’t cover the fine points (and there are a lot of them), but I
hope it will give you enough background to begin using them decently.

I’m only going to talk about INET sockets, but they account for at least 99% of
the sockets in use. And I’ll only talk about STREAM sockets - unless you really
know what you’re doing (in which case this HOWTO isn’t for you!), you’ll get
better behavior and performance from a STREAM socket than anything else. I will
try to clear up the mystery of what a socket is, as well as some hints on how to
work with blocking and non-blocking sockets. But I’ll start by talking about
blocking sockets. You’ll need to know how they work before dealing with
non-blocking sockets.

Part of the trouble with understanding these things is that “socket” can mean a
number of subtly different things, depending on context. So first, let’s make a
distinction between a “client” socket - an endpoint of a conversation, and a
“server” socket, which is more like a switchboard operator. The client
application (your browser, for example) uses “client” sockets exclusively; the
web server it’s talking to uses both “server” sockets and “client” sockets.

History

Of the various forms of IPC,
sockets are by far the most popular. On any given platform, there are
likely to be other forms of IPC that are faster, but for
cross-platform communication, sockets are about the only game in town.

They were invented in Berkeley as part of the BSD flavor of Unix. They spread
like wildfire with the Internet. With good reason — the combination of sockets
with INET makes talking to arbitrary machines around the world unbelievably easy
(at least compared to other schemes).

Creating a Socket

Roughly speaking, when you clicked on the link that brought you to this page,
your browser did something like the following:

#create an INET, STREAMing socket
s = socket.socket(
 socket.AF_INET, socket.SOCK_STREAM)
#now connect to the web server on port 80
- the normal http port
s.connect(("www.mcmillan-inc.com", 80))

When the connect completes, the socket s can be used to send
in a request for the text of the page. The same socket will read the
reply, and then be destroyed. That’s right, destroyed. Client sockets
are normally only used for one exchange (or a small set of sequential
exchanges).

What happens in the web server is a bit more complex. First, the web server
creates a “server socket”:

#create an INET, STREAMing socket
serversocket = socket.socket(
 socket.AF_INET, socket.SOCK_STREAM)
#bind the socket to a public host,
and a well-known port
serversocket.bind((socket.gethostname(), 80))
#become a server socket
serversocket.listen(5)

A couple things to notice: we used socket.gethostname() so that the socket
would be visible to the outside world. If we had used s.bind(('', 80)) or
s.bind(('localhost', 80)) or s.bind(('127.0.0.1', 80)) we would still
have a “server” socket, but one that was only visible within the same machine.

A second thing to note: low number ports are usually reserved for “well known”
services (HTTP, SNMP etc). If you’re playing around, use a nice high number (4
digits).

Finally, the argument to listen tells the socket library that we want it to
queue up as many as 5 connect requests (the normal max) before refusing outside
connections. If the rest of the code is written properly, that should be plenty.

Now that we have a “server” socket, listening on port 80, we can enter the
mainloop of the web server:

while 1:
 #accept connections from outside
 (clientsocket, address) = serversocket.accept()
 #now do something with the clientsocket
 #in this case, we'll pretend this is a threaded server
 ct = client_thread(clientsocket)
 ct.run()

There’s actually 3 general ways in which this loop could work - dispatching a
thread to handle clientsocket, create a new process to handle
clientsocket, or restructure this app to use non-blocking sockets, and
mulitplex between our “server” socket and any active clientsockets using
select. More about that later. The important thing to understand now is
this: this is all a “server” socket does. It doesn’t send any data. It doesn’t
receive any data. It just produces “client” sockets. Each clientsocket is
created in response to some other “client” socket doing a connect() to the
host and port we’re bound to. As soon as we’ve created that clientsocket, we
go back to listening for more connections. The two “clients” are free to chat it
up - they are using some dynamically allocated port which will be recycled when
the conversation ends.

IPC

If you need fast IPC between two processes on one machine, you should look into
whatever form of shared memory the platform offers. A simple protocol based
around shared memory and locks or semaphores is by far the fastest technique.

If you do decide to use sockets, bind the “server” socket to 'localhost'. On
most platforms, this will take a shortcut around a couple of layers of network
code and be quite a bit faster.

Using a Socket

The first thing to note, is that the web browser’s “client” socket and the web
server’s “client” socket are identical beasts. That is, this is a “peer to peer”
conversation. Or to put it another way, as the designer, you will have to
decide what the rules of etiquette are for a conversation. Normally, the
connecting socket starts the conversation, by sending in a request, or
perhaps a signon. But that’s a design decision - it’s not a rule of sockets.

Now there are two sets of verbs to use for communication. You can use send
and recv, or you can transform your client socket into a file-like beast and
use read and write. The latter is the way Java presents its sockets.
I’m not going to talk about it here, except to warn you that you need to use
flush on sockets. These are buffered “files”, and a common mistake is to
write something, and then read for a reply. Without a flush in
there, you may wait forever for the reply, because the request may still be in
your output buffer.

Now we come the major stumbling block of sockets - send and recv operate
on the network buffers. They do not necessarily handle all the bytes you hand
them (or expect from them), because their major focus is handling the network
buffers. In general, they return when the associated network buffers have been
filled (send) or emptied (recv). They then tell you how many bytes they
handled. It is your responsibility to call them again until your message has
been completely dealt with.

When a recv returns 0 bytes, it means the other side has closed (or is in
the process of closing) the connection. You will not receive any more data on
this connection. Ever. You may be able to send data successfully; I’ll talk
about that some on the next page.

A protocol like HTTP uses a socket for only one transfer. The client sends a
request, then reads a reply. That’s it. The socket is discarded. This means that
a client can detect the end of the reply by receiving 0 bytes.

But if you plan to reuse your socket for further transfers, you need to realize
that there is no EOT on a socket. I repeat: if a socket
send or recv returns after handling 0 bytes, the connection has been
broken. If the connection has not been broken, you may wait on a recv
forever, because the socket will not tell you that there’s nothing more to
read (for now). Now if you think about that a bit, you’ll come to realize a
fundamental truth of sockets: messages must either be fixed length (yuck), or
be delimited (shrug), or indicate how long they are (much better), or end by
shutting down the connection. The choice is entirely yours, (but some ways are
righter than others).

Assuming you don’t want to end the connection, the simplest solution is a fixed
length message:

class mysocket:
 '''demonstration class only
 - coded for clarity, not efficiency
 '''

 def __init__(self, sock=None):
 if sock is None:
 self.sock = socket.socket(
 socket.AF_INET, socket.SOCK_STREAM)
 else:
 self.sock = sock

 def connect(self, host, port):
 self.sock.connect((host, port))

 def mysend(self, msg):
 totalsent = 0
 while totalsent < MSGLEN:
 sent = self.sock.send(msg[totalsent:])
 if sent == 0:
 raise RuntimeError("socket connection broken")
 totalsent = totalsent + sent

 def myreceive(self):
 msg = ''
 while len(msg) < MSGLEN:
 chunk = self.sock.recv(MSGLEN-len(msg))
 if chunk == '':
 raise RuntimeError("socket connection broken")
 msg = msg + chunk
 return msg

The sending code here is usable for almost any messaging scheme - in Python you
send strings, and you can use len() to determine its length (even if it has
embedded \0 characters). It’s mostly the receiving code that gets more
complex. (And in C, it’s not much worse, except you can’t use strlen if the
message has embedded \0s.)

The easiest enhancement is to make the first character of the message an
indicator of message type, and have the type determine the length. Now you have
two recvs - the first to get (at least) that first character so you can
look up the length, and the second in a loop to get the rest. If you decide to
go the delimited route, you’ll be receiving in some arbitrary chunk size, (4096
or 8192 is frequently a good match for network buffer sizes), and scanning what
you’ve received for a delimiter.

One complication to be aware of: if your conversational protocol allows multiple
messages to be sent back to back (without some kind of reply), and you pass
recv an arbitrary chunk size, you may end up reading the start of a
following message. You’ll need to put that aside and hold onto it, until it’s
needed.

Prefixing the message with it’s length (say, as 5 numeric characters) gets more
complex, because (believe it or not), you may not get all 5 characters in one
recv. In playing around, you’ll get away with it; but in high network loads,
your code will very quickly break unless you use two recv loops - the first
to determine the length, the second to get the data part of the message. Nasty.
This is also when you’ll discover that send does not always manage to get
rid of everything in one pass. And despite having read this, you will eventually
get bit by it!

In the interests of space, building your character, (and preserving my
competitive position), these enhancements are left as an exercise for the
reader. Lets move on to cleaning up.

Binary Data

It is perfectly possible to send binary data over a socket. The major problem is
that not all machines use the same formats for binary data. For example, a
Motorola chip will represent a 16 bit integer with the value 1 as the two hex
bytes 00 01. Intel and DEC, however, are byte-reversed - that same 1 is 01 00.
Socket libraries have calls for converting 16 and 32 bit integers - ntohl,
htonl, ntohs, htons where “n” means network and “h” means host, “s” means
short and “l” means long. Where network order is host order, these do
nothing, but where the machine is byte-reversed, these swap the bytes around
appropriately.

In these days of 32 bit machines, the ascii representation of binary data is
frequently smaller than the binary representation. That’s because a surprising
amount of the time, all those longs have the value 0, or maybe 1. The string “0”
would be two bytes, while binary is four. Of course, this doesn’t fit well with
fixed-length messages. Decisions, decisions.

Disconnecting

Strictly speaking, you’re supposed to use shutdown on a socket before you
close it. The shutdown is an advisory to the socket at the other end.
Depending on the argument you pass it, it can mean “I’m not going to send
anymore, but I’ll still listen”, or “I’m not listening, good riddance!”. Most
socket libraries, however, are so used to programmers neglecting to use this
piece of etiquette that normally a close is the same as shutdown();
close(). So in most situations, an explicit shutdown is not needed.

One way to use shutdown effectively is in an HTTP-like exchange. The client
sends a request and then does a shutdown(1). This tells the server “This
client is done sending, but can still receive.” The server can detect “EOF” by
a receive of 0 bytes. It can assume it has the complete request. The server
sends a reply. If the send completes successfully then, indeed, the client
was still receiving.

Python takes the automatic shutdown a step further, and says that when a socket
is garbage collected, it will automatically do a close if it’s needed. But
relying on this is a very bad habit. If your socket just disappears without
doing a close, the socket at the other end may hang indefinitely, thinking
you’re just being slow. Please close your sockets when you’re done.

When Sockets Die

Probably the worst thing about using blocking sockets is what happens when the
other side comes down hard (without doing a close). Your socket is likely to
hang. SOCKSTREAM is a reliable protocol, and it will wait a long, long time
before giving up on a connection. If you’re using threads, the entire thread is
essentially dead. There’s not much you can do about it. As long as you aren’t
doing something dumb, like holding a lock while doing a blocking read, the
thread isn’t really consuming much in the way of resources. Do not try to kill
the thread - part of the reason that threads are more efficient than processes
is that they avoid the overhead associated with the automatic recycling of
resources. In other words, if you do manage to kill the thread, your whole
process is likely to be screwed up.

Non-blocking Sockets

If you’ve understood the preceding, you already know most of what you need to
know about the mechanics of using sockets. You’ll still use the same calls, in
much the same ways. It’s just that, if you do it right, your app will be almost
inside-out.

In Python, you use socket.setblocking(0) to make it non-blocking. In C, it’s
more complex, (for one thing, you’ll need to choose between the BSD flavor
O_NONBLOCK and the almost indistinguishable Posix flavor O_NDELAY, which
is completely different from TCP_NODELAY), but it’s the exact same idea. You
do this after creating the socket, but before using it. (Actually, if you’re
nuts, you can switch back and forth.)

The major mechanical difference is that send, recv, connect and
accept can return without having done anything. You have (of course) a
number of choices. You can check return code and error codes and generally drive
yourself crazy. If you don’t believe me, try it sometime. Your app will grow
large, buggy and suck CPU. So let’s skip the brain-dead solutions and do it
right.

Use select.

In C, coding select is fairly complex. In Python, it’s a piece of cake, but
it’s close enough to the C version that if you understand select in Python,
you’ll have little trouble with it in C:

ready_to_read, ready_to_write, in_error = \
 select.select(
 potential_readers,
 potential_writers,
 potential_errs,
 timeout)

You pass select three lists: the first contains all sockets that you might
want to try reading; the second all the sockets you might want to try writing
to, and the last (normally left empty) those that you want to check for errors.
You should note that a socket can go into more than one list. The select
call is blocking, but you can give it a timeout. This is generally a sensible
thing to do - give it a nice long timeout (say a minute) unless you have good
reason to do otherwise.

In return, you will get three lists. They contain the sockets that are actually
readable, writable and in error. Each of these lists is a subset (possibly
empty) of the corresponding list you passed in.

If a socket is in the output readable list, you can be
as-close-to-certain-as-we-ever-get-in-this-business that a recv on that
socket will return something. Same idea for the writable list. You’ll be able
to send something. Maybe not all you want to, but something is better than
nothing. (Actually, any reasonably healthy socket will return as writable - it
just means outbound network buffer space is available.)

If you have a “server” socket, put it in the potential_readers list. If it comes
out in the readable list, your accept will (almost certainly) work. If you
have created a new socket to connect to someone else, put it in the
potential_writers list. If it shows up in the writable list, you have a decent
chance that it has connected.

One very nasty problem with select: if somewhere in those input lists of
sockets is one which has died a nasty death, the select will fail. You then
need to loop through every single damn socket in all those lists and do a
select([sock],[],[],0) until you find the bad one. That timeout of 0 means
it won’t take long, but it’s ugly.

Actually, select can be handy even with blocking sockets. It’s one way of
determining whether you will block - the socket returns as readable when there’s
something in the buffers. However, this still doesn’t help with the problem of
determining whether the other end is done, or just busy with something else.

Portability alert: On Unix, select works both with the sockets and
files. Don’t try this on Windows. On Windows, select works with sockets
only. Also note that in C, many of the more advanced socket options are done
differently on Windows. In fact, on Windows I usually use threads (which work
very, very well) with my sockets. Face it, if you want any kind of performance,
your code will look very different on Windows than on Unix.

Performance

There’s no question that the fastest sockets code uses non-blocking sockets and
select to multiplex them. You can put together something that will saturate a
LAN connection without putting any strain on the CPU. The trouble is that an app
written this way can’t do much of anything else - it needs to be ready to
shuffle bytes around at all times.

Assuming that your app is actually supposed to do something more than that,
threading is the optimal solution, (and using non-blocking sockets will be
faster than using blocking sockets). Unfortunately, threading support in Unixes
varies both in API and quality. So the normal Unix solution is to fork a
subprocess to deal with each connection. The overhead for this is significant
(and don’t do this on Windows - the overhead of process creation is enormous
there). It also means that unless each subprocess is completely independent,
you’ll need to use another form of IPC, say a pipe, or shared memory and
semaphores, to communicate between the parent and child processes.

Finally, remember that even though blocking sockets are somewhat slower than
non-blocking, in many cases they are the “right” solution. After all, if your
app is driven by the data it receives over a socket, there’s not much sense in
complicating the logic just so your app can wait on select instead of
recv.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Sorting HOW TO

	Author:	Andrew Dalke and Raymond Hettinger

	Release:	0.1

Python lists have a built-in list.sort() method that modifies the list
in-place. There is also a sorted() built-in function that builds a new
sorted list from an iterable.

In this document, we explore the various techniques for sorting data using Python.

Sorting Basics

A simple ascending sort is very easy: just call the sorted() function. It
returns a new sorted list:

>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

You can also use the list.sort() method of a list. It modifies the list
in-place (and returns None to avoid confusion). Usually it’s less convenient
than sorted() - but if you don’t need the original list, it’s slightly
more efficient.

>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

Another difference is that the list.sort() method is only defined for
lists. In contrast, the sorted() function accepts any iterable.

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]

Key Functions

Starting with Python 2.4, both list.sort() and sorted() added a
key parameter to specify a function to be called on each list element prior to
making comparisons.

For example, here’s a case-insensitive string comparison:

>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

The value of the key parameter should be a function that takes a single argument
and returns a key to use for sorting purposes. This technique is fast because
the key function is called exactly once for each input record.

A common pattern is to sort complex objects using some of the object’s indices
as keys. For example:

>>> student_tuples = [
 ('john', 'A', 15),
 ('jane', 'B', 12),
 ('dave', 'B', 10),
]
>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The same technique works for objects with named attributes. For example:

>>> class Student:
 def __init__(self, name, grade, age):
 self.name = name
 self.grade = grade
 self.age = age
 def __repr__(self):
 return repr((self.name, self.grade, self.age))

>>> student_objects = [
 Student('john', 'A', 15),
 Student('jane', 'B', 12),
 Student('dave', 'B', 10),
]
>>> sorted(student_objects, key=lambda student: student.age) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Operator Module Functions

The key-function patterns shown above are very common, so Python provides
convenience functions to make accessor functions easier and faster. The operator
module has operator.itemgetter(), operator.attrgetter(), and
starting in Python 2.5 a operator.methodcaller() function.

Using those functions, the above examples become simpler and faster:

>>> from operator import itemgetter, attrgetter

>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The operator module functions allow multiple levels of sorting. For example, to
sort by grade then by age:

>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

Ascending and Descending

Both list.sort() and sorted() accept a reverse parameter with a
boolean value. This is using to flag descending sorts. For example, to get the
student data in reverse age order:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

Sort Stability and Complex Sorts

Starting with Python 2.2, sorts are guaranteed to be stable [http://en.wikipedia.org/wiki/Sorting_algorithm#Stability]. That means that
when multiple records have the same key, their original order is preserved.

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

Notice how the two records for blue retain their original order so that
('blue', 1) is guaranteed to precede ('blue', 2).

This wonderful property lets you build complex sorts in a series of sorting
steps. For example, to sort the student data by descending grade and then
ascending age, do the age sort first and then sort again using grade:

>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

The Timsort [http://en.wikipedia.org/wiki/Timsort] algorithm used in Python
does multiple sorts efficiently because it can take advantage of any ordering
already present in a dataset.

The Old Way Using Decorate-Sort-Undecorate

This idiom is called Decorate-Sort-Undecorate after its three steps:

	First, the initial list is decorated with new values that control the sort order.

	Second, the decorated list is sorted.

	Finally, the decorations are removed, creating a list that contains only the
initial values in the new order.

For example, to sort the student data by grade using the DSU approach:

>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated] # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

This idiom works because tuples are compared lexicographically; the first items
are compared; if they are the same then the second items are compared, and so
on.

It is not strictly necessary in all cases to include the index i in the
decorated list, but including it gives two benefits:

	The sort is stable – if two items have the same key, their order will be
preserved in the sorted list.

	The original items do not have to be comparable because the ordering of the
decorated tuples will be determined by at most the first two items. So for
example the original list could contain complex numbers which cannot be sorted
directly.

Another name for this idiom is
Schwartzian transform [http://en.wikipedia.org/wiki/Schwartzian_transform],
after Randal L. Schwartz, who popularized it among Perl programmers.

For large lists and lists where the comparison information is expensive to
calculate, and Python versions before 2.4, DSU is likely to be the fastest way
to sort the list. For 2.4 and later, key functions provide the same
functionality.

The Old Way Using the cmp Parameter

Many constructs given in this HOWTO assume Python 2.4 or later. Before that,
there was no sorted() builtin and list.sort() took no keyword
arguments. Instead, all of the Py2.x versions supported a cmp parameter to
handle user specified comparison functions.

In Py3.0, the cmp parameter was removed entirely (as part of a larger effort to
simplify and unify the language, eliminating the conflict between rich
comparisons and the __cmp__() magic method).

In Py2.x, sort allowed an optional function which can be called for doing the
comparisons. That function should take two arguments to be compared and then
return a negative value for less-than, return zero if they are equal, or return
a positive value for greater-than. For example, we can do:

>>> def numeric_compare(x, y):
 return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
[1, 2, 3, 4, 5]

Or you can reverse the order of comparison with:

>>> def reverse_numeric(x, y):
 return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
[5, 4, 3, 2, 1]

When porting code from Python 2.x to 3.x, the situation can arise when you have
the user supplying a comparison function and you need to convert that to a key
function. The following wrapper makes that easy to do:

def cmp_to_key(mycmp):
 'Convert a cmp= function into a key= function'
 class K(object):
 def __init__(self, obj, *args):
 self.obj = obj
 def __lt__(self, other):
 return mycmp(self.obj, other.obj) < 0
 def __gt__(self, other):
 return mycmp(self.obj, other.obj) > 0
 def __eq__(self, other):
 return mycmp(self.obj, other.obj) == 0
 def __le__(self, other):
 return mycmp(self.obj, other.obj) <= 0
 def __ge__(self, other):
 return mycmp(self.obj, other.obj) >= 0
 def __ne__(self, other):
 return mycmp(self.obj, other.obj) != 0
 return K

To convert to a key function, just wrap the old comparison function:

>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]

In Python 2.7, the functools.cmp_to_key() function was added to the
functools module.

Odd and Ends

	For locale aware sorting, use locale.strxfrm() for a key function or
locale.strcoll() for a comparison function.

	The reverse parameter still maintains sort stability (i.e. records with
equal keys retain the original order). Interestingly, that effect can be
simulated without the parameter by using the builtin reversed() function
twice:

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data))))

	The sort routines are guaranteed to use __lt__() when making comparisons
between two objects. So, it is easy to add a standard sort order to a class by
defining an __lt__() method:

>>> Student.__lt__ = lambda self, other: self.age < other.age
>>> sorted(student_objects)
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

	Key functions need not depend directly on the objects being sorted. A key
function can also access external resources. For instance, if the student grades
are stored in a dictionary, they can be used to sort a separate list of student
names:

>>> students = ['dave', 'john', 'jane']
>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
>>> sorted(students, key=newgrades.__getitem__)
['jane', 'dave', 'john']

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

Unicode HOWTO

	Release:	1.03

This HOWTO discusses Python 2.x’s support for Unicode, and explains
various problems that people commonly encounter when trying to work
with Unicode. (This HOWTO has not yet been updated to cover the 3.x
versions of Python.)

Introduction to Unicode

History of Character Codes

In 1968, the American Standard Code for Information Interchange, better known by
its acronym ASCII, was standardized. ASCII defined numeric codes for various
characters, with the numeric values running from 0 to
127. For example, the lowercase letter ‘a’ is assigned 97 as its code
value.

ASCII was an American-developed standard, so it only defined unaccented
characters. There was an ‘e’, but no ‘é’ or ‘Í’. This meant that languages
which required accented characters couldn’t be faithfully represented in ASCII.
(Actually the missing accents matter for English, too, which contains words such
as ‘naïve’ and ‘café’, and some publications have house styles which require
spellings such as ‘coöperate’.)

For a while people just wrote programs that didn’t display accents. I remember
looking at Apple][BASIC programs, published in French-language publications in
the mid-1980s, that had lines like these:

PRINT "FICHIER EST COMPLETE."
PRINT "CARACTERE NON ACCEPTE."

Those messages should contain accents, and they just look wrong to someone who
can read French.

In the 1980s, almost all personal computers were 8-bit, meaning that bytes could
hold values ranging from 0 to 255. ASCII codes only went up to 127, so some
machines assigned values between 128 and 255 to accented characters. Different
machines had different codes, however, which led to problems exchanging files.
Eventually various commonly used sets of values for the 128-255 range emerged.
Some were true standards, defined by the International Standards Organization,
and some were de facto conventions that were invented by one company or
another and managed to catch on.

255 characters aren’t very many. For example, you can’t fit both the accented
characters used in Western Europe and the Cyrillic alphabet used for Russian
into the 128-255 range because there are more than 127 such characters.

You could write files using different codes (all your Russian files in a coding
system called KOI8, all your French files in a different coding system called
Latin1), but what if you wanted to write a French document that quotes some
Russian text? In the 1980s people began to want to solve this problem, and the
Unicode standardization effort began.

Unicode started out using 16-bit characters instead of 8-bit characters. 16
bits means you have 2^16 = 65,536 distinct values available, making it possible
to represent many different characters from many different alphabets; an initial
goal was to have Unicode contain the alphabets for every single human language.
It turns out that even 16 bits isn’t enough to meet that goal, and the modern
Unicode specification uses a wider range of codes, 0-1,114,111 (0x10ffff in
base-16).

There’s a related ISO standard, ISO 10646. Unicode and ISO 10646 were
originally separate efforts, but the specifications were merged with the 1.1
revision of Unicode.

(This discussion of Unicode’s history is highly simplified. I don’t think the
average Python programmer needs to worry about the historical details; consult
the Unicode consortium site listed in the References for more information.)

Definitions

A character is the smallest possible component of a text. ‘A’, ‘B’, ‘C’,
etc., are all different characters. So are ‘È’ and ‘Í’. Characters are
abstractions, and vary depending on the language or context you’re talking
about. For example, the symbol for ohms (Ω) is usually drawn much like the
capital letter omega (Ω) in the Greek alphabet (they may even be the same in
some fonts), but these are two different characters that have different
meanings.

The Unicode standard describes how characters are represented by code
points. A code point is an integer value, usually denoted in base 16. In the
standard, a code point is written using the notation U+12ca to mean the
character with value 0x12ca (4810 decimal). The Unicode standard contains a lot
of tables listing characters and their corresponding code points:

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
...
007B '{'; LEFT CURLY BRACKET

Strictly, these definitions imply that it’s meaningless to say ‘this is
character U+12ca’. U+12ca is a code point, which represents some particular
character; in this case, it represents the character ‘ETHIOPIC SYLLABLE WI’. In
informal contexts, this distinction between code points and characters will
sometimes be forgotten.

A character is represented on a screen or on paper by a set of graphical
elements that’s called a glyph. The glyph for an uppercase A, for example,
is two diagonal strokes and a horizontal stroke, though the exact details will
depend on the font being used. Most Python code doesn’t need to worry about
glyphs; figuring out the correct glyph to display is generally the job of a GUI
toolkit or a terminal’s font renderer.

Encodings

To summarize the previous section: a Unicode string is a sequence of code
points, which are numbers from 0 to 0x10ffff. This sequence needs to be
represented as a set of bytes (meaning, values from 0-255) in memory. The rules
for translating a Unicode string into a sequence of bytes are called an
encoding.

The first encoding you might think of is an array of 32-bit integers. In this
representation, the string “Python” would look like this:

 P y t h o n
0x50 00 00 00 79 00 00 00 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

This representation is straightforward but using it presents a number of
problems.

	It’s not portable; different processors order the bytes differently.

	It’s very wasteful of space. In most texts, the majority of the code points
are less than 127, or less than 255, so a lot of space is occupied by zero
bytes. The above string takes 24 bytes compared to the 6 bytes needed for an
ASCII representation. Increased RAM usage doesn’t matter too much (desktop
computers have megabytes of RAM, and strings aren’t usually that large), but
expanding our usage of disk and network bandwidth by a factor of 4 is
intolerable.

	It’s not compatible with existing C functions such as strlen(), so a new
family of wide string functions would need to be used.

	Many Internet standards are defined in terms of textual data, and can’t
handle content with embedded zero bytes.

Generally people don’t use this encoding, instead choosing other
encodings that are more efficient and convenient. UTF-8 is probably
the most commonly supported encoding; it will be discussed below.

Encodings don’t have to handle every possible Unicode character, and most
encodings don’t. For example, Python’s default encoding is the ‘ascii’
encoding. The rules for converting a Unicode string into the ASCII encoding are
simple; for each code point:

	If the code point is < 128, each byte is the same as the value of the code
point.

	If the code point is 128 or greater, the Unicode string can’t be represented
in this encoding. (Python raises a UnicodeEncodeError exception in this
case.)

Latin-1, also known as ISO-8859-1, is a similar encoding. Unicode code points
0-255 are identical to the Latin-1 values, so converting to this encoding simply
requires converting code points to byte values; if a code point larger than 255
is encountered, the string can’t be encoded into Latin-1.

Encodings don’t have to be simple one-to-one mappings like Latin-1. Consider
IBM’s EBCDIC, which was used on IBM mainframes. Letter values weren’t in one
block: ‘a’ through ‘i’ had values from 129 to 137, but ‘j’ through ‘r’ were 145
through 153. If you wanted to use EBCDIC as an encoding, you’d probably use
some sort of lookup table to perform the conversion, but this is largely an
internal detail.

UTF-8 is one of the most commonly used encodings. UTF stands for “Unicode
Transformation Format”, and the ‘8’ means that 8-bit numbers are used in the
encoding. (There’s also a UTF-16 encoding, but it’s less frequently used than
UTF-8.) UTF-8 uses the following rules:

	If the code point is <128, it’s represented by the corresponding byte value.

	If the code point is between 128 and 0x7ff, it’s turned into two byte values
between 128 and 255.

	Code points >0x7ff are turned into three- or four-byte sequences, where each
byte of the sequence is between 128 and 255.

UTF-8 has several convenient properties:

	It can handle any Unicode code point.

	A Unicode string is turned into a string of bytes containing no embedded zero
bytes. This avoids byte-ordering issues, and means UTF-8 strings can be
processed by C functions such as strcpy() and sent through protocols that
can’t handle zero bytes.

	A string of ASCII text is also valid UTF-8 text.

	UTF-8 is fairly compact; the majority of code points are turned into two
bytes, and values less than 128 occupy only a single byte.

	If bytes are corrupted or lost, it’s possible to determine the start of the
next UTF-8-encoded code point and resynchronize. It’s also unlikely that
random 8-bit data will look like valid UTF-8.

References

The Unicode Consortium site at <http://www.unicode.org> has character charts, a
glossary, and PDF versions of the Unicode specification. Be prepared for some
difficult reading. <http://www.unicode.org/history/> is a chronology of the
origin and development of Unicode.

To help understand the standard, Jukka Korpela has written an introductory guide
to reading the Unicode character tables, available at
<http://www.cs.tut.fi/~jkorpela/unicode/guide.html>.

Another good introductory article was written by Joel Spolsky
<http://www.joelonsoftware.com/articles/Unicode.html>.
If this introduction didn’t make things clear to you, you should try reading this
alternate article before continuing.

Wikipedia entries are often helpful; see the entries for “character encoding”
<http://en.wikipedia.org/wiki/Character_encoding> and UTF-8
<http://en.wikipedia.org/wiki/UTF-8>, for example.

Python 2.x’s Unicode Support

Now that you’ve learned the rudiments of Unicode, we can look at Python’s
Unicode features.

The Unicode Type

Unicode strings are expressed as instances of the unicode type, one of
Python’s repertoire of built-in types. It derives from an abstract type called
basestring, which is also an ancestor of the str type; you can
therefore check if a value is a string type with isinstance(value,
basestring). Under the hood, Python represents Unicode strings as either 16-
or 32-bit integers, depending on how the Python interpreter was compiled.

The unicode() constructor has the signature unicode(string[, encoding,
errors]). All of its arguments should be 8-bit strings. The first argument
is converted to Unicode using the specified encoding; if you leave off the
encoding argument, the ASCII encoding is used for the conversion, so
characters greater than 127 will be treated as errors:

>>> unicode('abcdef')
u'abcdef'
>>> s = unicode('abcdef')
>>> type(s)
<type 'unicode'>
>>> unicode('abcdef' + chr(255))
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 6:
 ordinal not in range(128)

The errors argument specifies the response when the input string can’t be
converted according to the encoding’s rules. Legal values for this argument are
‘strict’ (raise a UnicodeDecodeError exception), ‘replace’ (add U+FFFD,
‘REPLACEMENT CHARACTER’), or ‘ignore’ (just leave the character out of the
Unicode result). The following examples show the differences:

>>> unicode('\x80abc', errors='strict')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0x80 in position 0:
 ordinal not in range(128)
>>> unicode('\x80abc', errors='replace')
u'\ufffdabc'
>>> unicode('\x80abc', errors='ignore')
u'abc'

Encodings are specified as strings containing the encoding’s name. Python 2.7
comes with roughly 100 different encodings; see the Python Library Reference at
Standard Encodings for a list. Some encodings
have multiple names; for example, ‘latin-1’, ‘iso_8859_1’ and ‘8859’ are all
synonyms for the same encoding.

One-character Unicode strings can also be created with the unichr()
built-in function, which takes integers and returns a Unicode string of length 1
that contains the corresponding code point. The reverse operation is the
built-in ord() function that takes a one-character Unicode string and
returns the code point value:

>>> unichr(40960)
u'\ua000'
>>> ord(u'\ua000')
40960

Instances of the unicode type have many of the same methods as the
8-bit string type for operations such as searching and formatting:

>>> s = u'Was ever feather so lightly blown to and fro as this multitude?'
>>> s.count('e')
5
>>> s.find('feather')
9
>>> s.find('bird')
-1
>>> s.replace('feather', 'sand')
u'Was ever sand so lightly blown to and fro as this multitude?'
>>> s.upper()
u'WAS EVER FEATHER SO LIGHTLY BLOWN TO AND FRO AS THIS MULTITUDE?'

Note that the arguments to these methods can be Unicode strings or 8-bit
strings. 8-bit strings will be converted to Unicode before carrying out the
operation; Python’s default ASCII encoding will be used, so characters greater
than 127 will cause an exception:

>>> s.find('Was\x9f')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0x9f in position 3: ordinal not in range(128)
>>> s.find(u'Was\x9f')
-1

Much Python code that operates on strings will therefore work with Unicode
strings without requiring any changes to the code. (Input and output code needs
more updating for Unicode; more on this later.)

Another important method is .encode([encoding], [errors='strict']), which
returns an 8-bit string version of the Unicode string, encoded in the requested
encoding. The errors parameter is the same as the parameter of the
unicode() constructor, with one additional possibility; as well as ‘strict’,
‘ignore’, and ‘replace’, you can also pass ‘xmlcharrefreplace’ which uses XML’s
character references. The following example shows the different results:

>>> u = unichr(40960) + u'abcd' + unichr(1972)
>>> u.encode('utf-8')
'\xea\x80\x80abcd\xde\xb4'
>>> u.encode('ascii')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode character '\ua000' in position 0: ordinal not in range(128)
>>> u.encode('ascii', 'ignore')
'abcd'
>>> u.encode('ascii', 'replace')
'?abcd?'
>>> u.encode('ascii', 'xmlcharrefreplace')
'ꀀabcd޴'

Python’s 8-bit strings have a .decode([encoding], [errors]) method that
interprets the string using the given encoding:

>>> u = unichr(40960) + u'abcd' + unichr(1972) # Assemble a string
>>> utf8_version = u.encode('utf-8') # Encode as UTF-8
>>> type(utf8_version), utf8_version
(<type 'str'>, '\xea\x80\x80abcd\xde\xb4')
>>> u2 = utf8_version.decode('utf-8') # Decode using UTF-8
>>> u == u2 # The two strings match
True

The low-level routines for registering and accessing the available encodings are
found in the codecs module. However, the encoding and decoding functions
returned by this module are usually more low-level than is comfortable, so I’m
not going to describe the codecs module here. If you need to implement a
completely new encoding, you’ll need to learn about the codecs module
interfaces, but implementing encodings is a specialized task that also won’t be
covered here. Consult the Python documentation to learn more about this module.

The most commonly used part of the codecs module is the
codecs.open() function which will be discussed in the section on input and
output.

Unicode Literals in Python Source Code

In Python source code, Unicode literals are written as strings prefixed with the
‘u’ or ‘U’ character: u'abcdefghijk'. Specific code points can be written
using the \u escape sequence, which is followed by four hex digits giving
the code point. The \U escape sequence is similar, but expects 8 hex
digits, not 4.

Unicode literals can also use the same escape sequences as 8-bit strings,
including \x, but \x only takes two hex digits so it can’t express an
arbitrary code point. Octal escapes can go up to U+01ff, which is octal 777.

>>> s = u"a\xac\u1234\u20ac\U00008000"
 ^^^^ two-digit hex escape
 ^^^^^^ four-digit Unicode escape
 ^^^^^^^^^^ eight-digit Unicode escape
>>> for c in s: print ord(c),
...
97 172 4660 8364 32768

Using escape sequences for code points greater than 127 is fine in small doses,
but becomes an annoyance if you’re using many accented characters, as you would
in a program with messages in French or some other accent-using language. You
can also assemble strings using the unichr() built-in function, but this is
even more tedious.

Ideally, you’d want to be able to write literals in your language’s natural
encoding. You could then edit Python source code with your favorite editor
which would display the accented characters naturally, and have the right
characters used at runtime.

Python supports writing Unicode literals in any encoding, but you have to
declare the encoding being used. This is done by including a special comment as
either the first or second line of the source file:

#!/usr/bin/env python
-*- coding: latin-1 -*-

u = u'abcdé'
print ord(u[-1])

The syntax is inspired by Emacs’s notation for specifying variables local to a
file. Emacs supports many different variables, but Python only supports
‘coding’. The -*- symbols indicate to Emacs that the comment is special;
they have no significance to Python but are a convention. Python looks for
coding: name or coding=name in the comment.

If you don’t include such a comment, the default encoding used will be ASCII.
Versions of Python before 2.4 were Euro-centric and assumed Latin-1 as a default
encoding for string literals; in Python 2.4, characters greater than 127 still
work but result in a warning. For example, the following program has no
encoding declaration:

#!/usr/bin/env python
u = u'abcdé'
print ord(u[-1])

When you run it with Python 2.4, it will output the following warning:

amk:~$ python2.4 p263.py
sys:1: DeprecationWarning: Non-ASCII character '\xe9'
 in file p263.py on line 2, but no encoding declared;
 see http://www.python.org/peps/pep-0263.html for details

Python 2.5 and higher are stricter and will produce a syntax error:

amk:~$ python2.5 p263.py
File "/tmp/p263.py", line 2
SyntaxError: Non-ASCII character '\xc3' in file /tmp/p263.py
 on line 2, but no encoding declared; see
 http://www.python.org/peps/pep-0263.html for details

Unicode Properties

The Unicode specification includes a database of information about code points.
For each code point that’s defined, the information includes the character’s
name, its category, the numeric value if applicable (Unicode has characters
representing the Roman numerals and fractions such as one-third and
four-fifths). There are also properties related to the code point’s use in
bidirectional text and other display-related properties.

The following program displays some information about several characters, and
prints the numeric value of one particular character:

import unicodedata

u = unichr(233) + unichr(0x0bf2) + unichr(3972) + unichr(6000) + unichr(13231)

for i, c in enumerate(u):
 print i, '%04x' % ord(c), unicodedata.category(c),
 print unicodedata.name(c)

Get numeric value of second character
print unicodedata.numeric(u[1])

When run, this prints:

0 00e9 Ll LATIN SMALL LETTER E WITH ACUTE
1 0bf2 No TAMIL NUMBER ONE THOUSAND
2 0f84 Mn TIBETAN MARK HALANTA
3 1770 Lo TAGBANWA LETTER SA
4 33af So SQUARE RAD OVER S SQUARED
1000.0

The category codes are abbreviations describing the nature of the character.
These are grouped into categories such as “Letter”, “Number”, “Punctuation”, or
“Symbol”, which in turn are broken up into subcategories. To take the codes
from the above output, 'Ll' means ‘Letter, lowercase’, 'No' means
“Number, other”, 'Mn' is “Mark, nonspacing”, and 'So' is “Symbol,
other”. See
<http://www.unicode.org/reports/tr44/#General_Category_Values> for a
list of category codes.

References

The Unicode and 8-bit string types are described in the Python library reference
at Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange.

The documentation for the unicodedata module.

The documentation for the codecs module.

Marc-André Lemburg gave a presentation at EuroPython 2002 titled “Python and
Unicode”. A PDF version of his slides is available at
<http://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf>, and is an
excellent overview of the design of Python’s Unicode features.

Reading and Writing Unicode Data

Once you’ve written some code that works with Unicode data, the next problem is
input/output. How do you get Unicode strings into your program, and how do you
convert Unicode into a form suitable for storage or transmission?

It’s possible that you may not need to do anything depending on your input
sources and output destinations; you should check whether the libraries used in
your application support Unicode natively. XML parsers often return Unicode
data, for example. Many relational databases also support Unicode-valued
columns and can return Unicode values from an SQL query.

Unicode data is usually converted to a particular encoding before it gets
written to disk or sent over a socket. It’s possible to do all the work
yourself: open a file, read an 8-bit string from it, and convert the string with
unicode(str, encoding). However, the manual approach is not recommended.

One problem is the multi-byte nature of encodings; one Unicode character can be
represented by several bytes. If you want to read the file in arbitrary-sized
chunks (say, 1K or 4K), you need to write error-handling code to catch the case
where only part of the bytes encoding a single Unicode character are read at the
end of a chunk. One solution would be to read the entire file into memory and
then perform the decoding, but that prevents you from working with files that
are extremely large; if you need to read a 2Gb file, you need 2Gb of RAM.
(More, really, since for at least a moment you’d need to have both the encoded
string and its Unicode version in memory.)

The solution would be to use the low-level decoding interface to catch the case
of partial coding sequences. The work of implementing this has already been
done for you: the codecs module includes a version of the open()
function that returns a file-like object that assumes the file’s contents are in
a specified encoding and accepts Unicode parameters for methods such as
.read() and .write().

The function’s parameters are open(filename, mode='rb', encoding=None,
errors='strict', buffering=1). mode can be 'r', 'w', or 'a',
just like the corresponding parameter to the regular built-in open()
function; add a '+' to update the file. buffering is similarly parallel
to the standard function’s parameter. encoding is a string giving the
encoding to use; if it’s left as None, a regular Python file object that
accepts 8-bit strings is returned. Otherwise, a wrapper object is returned, and
data written to or read from the wrapper object will be converted as needed.
errors specifies the action for encoding errors and can be one of the usual
values of ‘strict’, ‘ignore’, and ‘replace’.

Reading Unicode from a file is therefore simple:

import codecs
f = codecs.open('unicode.rst', encoding='utf-8')
for line in f:
 print repr(line)

It’s also possible to open files in update mode, allowing both reading and
writing:

f = codecs.open('test', encoding='utf-8', mode='w+')
f.write(u'\u4500 blah blah blah\n')
f.seek(0)
print repr(f.readline()[:1])
f.close()

Unicode character U+FEFF is used as a byte-order mark (BOM), and is often
written as the first character of a file in order to assist with autodetection
of the file’s byte ordering. Some encodings, such as UTF-16, expect a BOM to be
present at the start of a file; when such an encoding is used, the BOM will be
automatically written as the first character and will be silently dropped when
the file is read. There are variants of these encodings, such as ‘utf-16-le’
and ‘utf-16-be’ for little-endian and big-endian encodings, that specify one
particular byte ordering and don’t skip the BOM.

Unicode filenames

Most of the operating systems in common use today support filenames that contain
arbitrary Unicode characters. Usually this is implemented by converting the
Unicode string into some encoding that varies depending on the system. For
example, Mac OS X uses UTF-8 while Windows uses a configurable encoding; on
Windows, Python uses the name “mbcs” to refer to whatever the currently
configured encoding is. On Unix systems, there will only be a filesystem
encoding if you’ve set the LANG or LC_CTYPE environment variables; if
you haven’t, the default encoding is ASCII.

The sys.getfilesystemencoding() function returns the encoding to use on
your current system, in case you want to do the encoding manually, but there’s
not much reason to bother. When opening a file for reading or writing, you can
usually just provide the Unicode string as the filename, and it will be
automatically converted to the right encoding for you:

filename = u'filename\u4500abc'
f = open(filename, 'w')
f.write('blah\n')
f.close()

Functions in the os module such as os.stat() will also accept Unicode
filenames.

os.listdir(), which returns filenames, raises an issue: should it return
the Unicode version of filenames, or should it return 8-bit strings containing
the encoded versions? os.listdir() will do both, depending on whether you
provided the directory path as an 8-bit string or a Unicode string. If you pass
a Unicode string as the path, filenames will be decoded using the filesystem’s
encoding and a list of Unicode strings will be returned, while passing an 8-bit
path will return the 8-bit versions of the filenames. For example, assuming the
default filesystem encoding is UTF-8, running the following program:

fn = u'filename\u4500abc'
f = open(fn, 'w')
f.close()

import os
print os.listdir('.')
print os.listdir(u'.')

will produce the following output:

amk:~$ python t.py
['.svn', 'filename\xe4\x94\x80abc', ...]
[u'.svn', u'filename\u4500abc', ...]

The first list contains UTF-8-encoded filenames, and the second list contains
the Unicode versions.

Tips for Writing Unicode-aware Programs

This section provides some suggestions on writing software that deals with
Unicode.

The most important tip is:

Software should only work with Unicode strings internally, converting to a
particular encoding on output.

If you attempt to write processing functions that accept both Unicode and 8-bit
strings, you will find your program vulnerable to bugs wherever you combine the
two different kinds of strings. Python’s default encoding is ASCII, so whenever
a character with an ASCII value > 127 is in the input data, you’ll get a
UnicodeDecodeError because that character can’t be handled by the ASCII
encoding.

It’s easy to miss such problems if you only test your software with data that
doesn’t contain any accents; everything will seem to work, but there’s actually
a bug in your program waiting for the first user who attempts to use characters
> 127. A second tip, therefore, is:

Include characters > 127 and, even better, characters > 255 in your test
data.

When using data coming from a web browser or some other untrusted source, a
common technique is to check for illegal characters in a string before using the
string in a generated command line or storing it in a database. If you’re doing
this, be careful to check the string once it’s in the form that will be used or
stored; it’s possible for encodings to be used to disguise characters. This is
especially true if the input data also specifies the encoding; many encodings
leave the commonly checked-for characters alone, but Python includes some
encodings such as 'base64' that modify every single character.

For example, let’s say you have a content management system that takes a Unicode
filename, and you want to disallow paths with a ‘/’ character. You might write
this code:

def read_file (filename, encoding):
 if '/' in filename:
 raise ValueError("'/' not allowed in filenames")
 unicode_name = filename.decode(encoding)
 f = open(unicode_name, 'r')
 # ... return contents of file ...

However, if an attacker could specify the 'base64' encoding, they could pass
'L2V0Yy9wYXNzd2Q=', which is the base-64 encoded form of the string
'/etc/passwd', to read a system file. The above code looks for '/'
characters in the encoded form and misses the dangerous character in the
resulting decoded form.

References

The PDF slides for Marc-André Lemburg’s presentation “Writing Unicode-aware
Applications in Python” are available at
<http://downloads.egenix.com/python/LSM2005-Developing-Unicode-aware-applications-in-Python.pdf>
and discuss questions of character encodings as well as how to internationalize
and localize an application.

Revision History and Acknowledgements

Thanks to the following people who have noted errors or offered suggestions on
this article: Nicholas Bastin, Marius Gedminas, Kent Johnson, Ken Krugler,
Marc-André Lemburg, Martin von Löwis, Chad Whitacre.

Version 1.0: posted August 5 2005.

Version 1.01: posted August 7 2005. Corrects factual and markup errors; adds
several links.

Version 1.02: posted August 16 2005. Corrects factual errors.

Version 1.03: posted June 20 2010. Notes that Python 3.x is not covered,
and that the HOWTO only covers 2.x.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

HOWTO Fetch Internet Resources Using urllib2

	Author:	Michael Foord [http://www.voidspace.org.uk/python/index.shtml]

Note

There is an French translation of an earlier revision of this
HOWTO, available at urllib2 - Le Manuel manquant [http://www.voidspace.org.uk/python/articles/urllib2_francais.shtml].

Introduction

Related Articles

You may also find useful the following article on fetching web resources
with Python :

	Basic Authentication [http://www.voidspace.org.uk/python/articles/authentication.shtml]

A tutorial on Basic Authentication, with examples in Python.

urllib2 is a Python [http://www.python.org] module for fetching URLs
(Uniform Resource Locators). It offers a very simple interface, in the form of
the urlopen function. This is capable of fetching URLs using a variety of
different protocols. It also offers a slightly more complex interface for
handling common situations - like basic authentication, cookies, proxies and so
on. These are provided by objects called handlers and openers.

urllib2 supports fetching URLs for many “URL schemes” (identified by the string
before the ”:” in URL - for example “ftp” is the URL scheme of
“ftp://python.org/”) using their associated network protocols (e.g. FTP, HTTP).
This tutorial focuses on the most common case, HTTP.

For straightforward situations urlopen is very easy to use. But as soon as you
encounter errors or non-trivial cases when opening HTTP URLs, you will need some
understanding of the HyperText Transfer Protocol. The most comprehensive and
authoritative reference to HTTP is RFC 2616 [http://tools.ietf.org/html/rfc2616.html]. This is a technical document and
not intended to be easy to read. This HOWTO aims to illustrate using urllib2,
with enough detail about HTTP to help you through. It is not intended to replace
the urllib2 docs, but is supplementary to them.

Fetching URLs

The simplest way to use urllib2 is as follows:

import urllib2
response = urllib2.urlopen('http://python.org/')
html = response.read()

Many uses of urllib2 will be that simple (note that instead of an ‘http:’ URL we
could have used an URL starting with ‘ftp:’, ‘file:’, etc.). However, it’s the
purpose of this tutorial to explain the more complicated cases, concentrating on
HTTP.

HTTP is based on requests and responses - the client makes requests and servers
send responses. urllib2 mirrors this with a Request object which represents
the HTTP request you are making. In its simplest form you create a Request
object that specifies the URL you want to fetch. Calling urlopen with this
Request object returns a response object for the URL requested. This response is
a file-like object, which means you can for example call .read() on the
response:

import urllib2

req = urllib2.Request('http://www.voidspace.org.uk')
response = urllib2.urlopen(req)
the_page = response.read()

Note that urllib2 makes use of the same Request interface to handle all URL
schemes. For example, you can make an FTP request like so:

req = urllib2.Request('ftp://example.com/')

In the case of HTTP, there are two extra things that Request objects allow you
to do: First, you can pass data to be sent to the server. Second, you can pass
extra information (“metadata”) about the data or the about request itself, to
the server - this information is sent as HTTP “headers”. Let’s look at each of
these in turn.

Data

Sometimes you want to send data to a URL (often the URL will refer to a CGI
(Common Gateway Interface) script [1] or other web application). With HTTP,
this is often done using what’s known as a POST request. This is often what
your browser does when you submit a HTML form that you filled in on the web. Not
all POSTs have to come from forms: you can use a POST to transmit arbitrary data
to your own application. In the common case of HTML forms, the data needs to be
encoded in a standard way, and then passed to the Request object as the data
argument. The encoding is done using a function from the urllib library
not from urllib2.

import urllib
import urllib2

url = 'http://www.someserver.com/cgi-bin/register.cgi'
values = {'name' : 'Michael Foord',
 'location' : 'Northampton',
 'language' : 'Python' }

data = urllib.urlencode(values)
req = urllib2.Request(url, data)
response = urllib2.urlopen(req)
the_page = response.read()

Note that other encodings are sometimes required (e.g. for file upload from HTML
forms - see HTML Specification, Form Submission [http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.13] for more
details).

If you do not pass the data argument, urllib2 uses a GET request. One
way in which GET and POST requests differ is that POST requests often have
“side-effects”: they change the state of the system in some way (for example by
placing an order with the website for a hundredweight of tinned spam to be
delivered to your door). Though the HTTP standard makes it clear that POSTs are
intended to always cause side-effects, and GET requests never to cause
side-effects, nothing prevents a GET request from having side-effects, nor a
POST requests from having no side-effects. Data can also be passed in an HTTP
GET request by encoding it in the URL itself.

This is done as follows:

>>> import urllib2
>>> import urllib
>>> data = {}
>>> data['name'] = 'Somebody Here'
>>> data['location'] = 'Northampton'
>>> data['language'] = 'Python'
>>> url_values = urllib.urlencode(data)
>>> print url_values
name=Somebody+Here&language=Python&location=Northampton
>>> url = 'http://www.example.com/example.cgi'
>>> full_url = url + '?' + url_values
>>> data = urllib2.open(full_url)

Notice that the full URL is created by adding a ? to the URL, followed by
the encoded values.

Headers

We’ll discuss here one particular HTTP header, to illustrate how to add headers
to your HTTP request.

Some websites [2] dislike being browsed by programs, or send different versions
to different browsers [3] . By default urllib2 identifies itself as
Python-urllib/x.y (where x and y are the major and minor version
numbers of the Python release,
e.g. Python-urllib/2.5), which may confuse the site, or just plain
not work. The way a browser identifies itself is through the
User-Agent header [4]. When you create a Request object you can
pass a dictionary of headers in. The following example makes the same
request as above, but identifies itself as a version of Internet
Explorer [5].

import urllib
import urllib2

url = 'http://www.someserver.com/cgi-bin/register.cgi'
user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
values = {'name' : 'Michael Foord',
 'location' : 'Northampton',
 'language' : 'Python' }
headers = { 'User-Agent' : user_agent }

data = urllib.urlencode(values)
req = urllib2.Request(url, data, headers)
response = urllib2.urlopen(req)
the_page = response.read()

The response also has two useful methods. See the section on info and geturl
which comes after we have a look at what happens when things go wrong.

Handling Exceptions

urlopen raises URLError when it cannot handle a response (though as
usual with Python APIs, built-in exceptions such as ValueError,
TypeError etc. may also be raised).

HTTPError is the subclass of URLError raised in the specific case of
HTTP URLs.

URLError

Often, URLError is raised because there is no network connection (no route to
the specified server), or the specified server doesn’t exist. In this case, the
exception raised will have a ‘reason’ attribute, which is a tuple containing an
error code and a text error message.

e.g.

>>> req = urllib2.Request('http://www.pretend_server.org')
>>> try: urllib2.urlopen(req)
>>> except URLError, e:
>>> print e.reason
>>>
(4, 'getaddrinfo failed')

HTTPError

Every HTTP response from the server contains a numeric “status code”. Sometimes
the status code indicates that the server is unable to fulfil the request. The
default handlers will handle some of these responses for you (for example, if
the response is a “redirection” that requests the client fetch the document from
a different URL, urllib2 will handle that for you). For those it can’t handle,
urlopen will raise an HTTPError. Typical errors include ‘404’ (page not
found), ‘403’ (request forbidden), and ‘401’ (authentication required).

See section 10 of RFC 2616 for a reference on all the HTTP error codes.

The HTTPError instance raised will have an integer ‘code’ attribute, which
corresponds to the error sent by the server.

Error Codes

Because the default handlers handle redirects (codes in the 300 range), and
codes in the 100-299 range indicate success, you will usually only see error
codes in the 400-599 range.

BaseHTTPServer.BaseHTTPRequestHandler.responses is a useful dictionary of
response codes in that shows all the response codes used by RFC 2616. The
dictionary is reproduced here for convenience

Table mapping response codes to messages; entries have the
form {code: (shortmessage, longmessage)}.
responses = {
 100: ('Continue', 'Request received, please continue'),
 101: ('Switching Protocols',
 'Switching to new protocol; obey Upgrade header'),

 200: ('OK', 'Request fulfilled, document follows'),
 201: ('Created', 'Document created, URL follows'),
 202: ('Accepted',
 'Request accepted, processing continues off-line'),
 203: ('Non-Authoritative Information', 'Request fulfilled from cache'),
 204: ('No Content', 'Request fulfilled, nothing follows'),
 205: ('Reset Content', 'Clear input form for further input.'),
 206: ('Partial Content', 'Partial content follows.'),

 300: ('Multiple Choices',
 'Object has several resources -- see URI list'),
 301: ('Moved Permanently', 'Object moved permanently -- see URI list'),
 302: ('Found', 'Object moved temporarily -- see URI list'),
 303: ('See Other', 'Object moved -- see Method and URL list'),
 304: ('Not Modified',
 'Document has not changed since given time'),
 305: ('Use Proxy',
 'You must use proxy specified in Location to access this '
 'resource.'),
 307: ('Temporary Redirect',
 'Object moved temporarily -- see URI list'),

 400: ('Bad Request',
 'Bad request syntax or unsupported method'),
 401: ('Unauthorized',
 'No permission -- see authorization schemes'),
 402: ('Payment Required',
 'No payment -- see charging schemes'),
 403: ('Forbidden',
 'Request forbidden -- authorization will not help'),
 404: ('Not Found', 'Nothing matches the given URI'),
 405: ('Method Not Allowed',
 'Specified method is invalid for this server.'),
 406: ('Not Acceptable', 'URI not available in preferred format.'),
 407: ('Proxy Authentication Required', 'You must authenticate with '
 'this proxy before proceeding.'),
 408: ('Request Timeout', 'Request timed out; try again later.'),
 409: ('Conflict', 'Request conflict.'),
 410: ('Gone',
 'URI no longer exists and has been permanently removed.'),
 411: ('Length Required', 'Client must specify Content-Length.'),
 412: ('Precondition Failed', 'Precondition in headers is false.'),
 413: ('Request Entity Too Large', 'Entity is too large.'),
 414: ('Request-URI Too Long', 'URI is too long.'),
 415: ('Unsupported Media Type', 'Entity body in unsupported format.'),
 416: ('Requested Range Not Satisfiable',
 'Cannot satisfy request range.'),
 417: ('Expectation Failed',
 'Expect condition could not be satisfied.'),

 500: ('Internal Server Error', 'Server got itself in trouble'),
 501: ('Not Implemented',
 'Server does not support this operation'),
 502: ('Bad Gateway', 'Invalid responses from another server/proxy.'),
 503: ('Service Unavailable',
 'The server cannot process the request due to a high load'),
 504: ('Gateway Timeout',
 'The gateway server did not receive a timely response'),
 505: ('HTTP Version Not Supported', 'Cannot fulfill request.'),
 }

When an error is raised the server responds by returning an HTTP error code
and an error page. You can use the HTTPError instance as a response on the
page returned. This means that as well as the code attribute, it also has read,
geturl, and info, methods.

>>> req = urllib2.Request('http://www.python.org/fish.html')
>>> try:
>>> urllib2.urlopen(req)
>>> except HTTPError, e:
>>> print e.code
>>> print e.read()
>>>
404
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<?xml-stylesheet href="./css/ht2html.css"
 type="text/css"?>
<html><head><title>Error 404: File Not Found</title>
...... etc...

Wrapping it Up

So if you want to be prepared for HTTPError or URLError there are two
basic approaches. I prefer the second approach.

Number 1

from urllib2 import Request, urlopen, URLError, HTTPError
req = Request(someurl)
try:
 response = urlopen(req)
except HTTPError, e:
 print 'The server couldn\'t fulfill the request.'
 print 'Error code: ', e.code
except URLError, e:
 print 'We failed to reach a server.'
 print 'Reason: ', e.reason
else:
 # everything is fine

Note

The except HTTPError must come first, otherwise except URLError
will also catch an HTTPError.

Number 2

from urllib2 import Request, urlopen, URLError
req = Request(someurl)
try:
 response = urlopen(req)
except URLError, e:
 if hasattr(e, 'reason'):
 print 'We failed to reach a server.'
 print 'Reason: ', e.reason
 elif hasattr(e, 'code'):
 print 'The server couldn\'t fulfill the request.'
 print 'Error code: ', e.code
else:
 # everything is fine

info and geturl

The response returned by urlopen (or the HTTPError instance) has two useful
methods info() and geturl().

geturl - this returns the real URL of the page fetched. This is useful
because urlopen (or the opener object used) may have followed a
redirect. The URL of the page fetched may not be the same as the URL requested.

info - this returns a dictionary-like object that describes the page
fetched, particularly the headers sent by the server. It is currently an
httplib.HTTPMessage instance.

Typical headers include ‘Content-length’, ‘Content-type’, and so on. See the
Quick Reference to HTTP Headers [http://www.cs.tut.fi/~jkorpela/http.html]
for a useful listing of HTTP headers with brief explanations of their meaning
and use.

Openers and Handlers

When you fetch a URL you use an opener (an instance of the perhaps
confusingly-named urllib2.OpenerDirector). Normally we have been using
the default opener - via urlopen - but you can create custom
openers. Openers use handlers. All the “heavy lifting” is done by the
handlers. Each handler knows how to open URLs for a particular URL scheme (http,
ftp, etc.), or how to handle an aspect of URL opening, for example HTTP
redirections or HTTP cookies.

You will want to create openers if you want to fetch URLs with specific handlers
installed, for example to get an opener that handles cookies, or to get an
opener that does not handle redirections.

To create an opener, instantiate an OpenerDirector, and then call
.add_handler(some_handler_instance) repeatedly.

Alternatively, you can use build_opener, which is a convenience function for
creating opener objects with a single function call. build_opener adds
several handlers by default, but provides a quick way to add more and/or
override the default handlers.

Other sorts of handlers you might want to can handle proxies, authentication,
and other common but slightly specialised situations.

install_opener can be used to make an opener object the (global) default
opener. This means that calls to urlopen will use the opener you have
installed.

Opener objects have an open method, which can be called directly to fetch
urls in the same way as the urlopen function: there’s no need to call
install_opener, except as a convenience.

Basic Authentication

To illustrate creating and installing a handler we will use the
HTTPBasicAuthHandler. For a more detailed discussion of this subject –
including an explanation of how Basic Authentication works - see the Basic
Authentication Tutorial [http://www.voidspace.org.uk/python/articles/authentication.shtml].

When authentication is required, the server sends a header (as well as the 401
error code) requesting authentication. This specifies the authentication scheme
and a ‘realm’. The header looks like : Www-authenticate: SCHEME
realm="REALM".

e.g.

Www-authenticate: Basic realm="cPanel Users"

The client should then retry the request with the appropriate name and password
for the realm included as a header in the request. This is ‘basic
authentication’. In order to simplify this process we can create an instance of
HTTPBasicAuthHandler and an opener to use this handler.

The HTTPBasicAuthHandler uses an object called a password manager to handle
the mapping of URLs and realms to passwords and usernames. If you know what the
realm is (from the authentication header sent by the server), then you can use a
HTTPPasswordMgr. Frequently one doesn’t care what the realm is. In that
case, it is convenient to use HTTPPasswordMgrWithDefaultRealm. This allows
you to specify a default username and password for a URL. This will be supplied
in the absence of you providing an alternative combination for a specific
realm. We indicate this by providing None as the realm argument to the
add_password method.

The top-level URL is the first URL that requires authentication. URLs “deeper”
than the URL you pass to .add_password() will also match.

create a password manager
password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()

Add the username and password.
If we knew the realm, we could use it instead of None.
top_level_url = "http://example.com/foo/"
password_mgr.add_password(None, top_level_url, username, password)

handler = urllib2.HTTPBasicAuthHandler(password_mgr)

create "opener" (OpenerDirector instance)
opener = urllib2.build_opener(handler)

use the opener to fetch a URL
opener.open(a_url)

Install the opener.
Now all calls to urllib2.urlopen use our opener.
urllib2.install_opener(opener)

Note

In the above example we only supplied our HTTPBasicAuthHandler to
build_opener. By default openers have the handlers for normal situations
– ProxyHandler, UnknownHandler, HTTPHandler,
HTTPDefaultErrorHandler, HTTPRedirectHandler, FTPHandler,
FileHandler, HTTPErrorProcessor.

top_level_url is in fact either a full URL (including the ‘http:’ scheme
component and the hostname and optionally the port number)
e.g. “http://example.com/” or an “authority” (i.e. the hostname,
optionally including the port number) e.g. “example.com” or “example.com:8080”
(the latter example includes a port number). The authority, if present, must
NOT contain the “userinfo” component - for example “joe@password:example.com” is
not correct.

Proxies

urllib2 will auto-detect your proxy settings and use those. This is through
the ProxyHandler which is part of the normal handler chain. Normally that’s
a good thing, but there are occasions when it may not be helpful [6]. One way
to do this is to setup our own ProxyHandler, with no proxies defined. This
is done using similar steps to setting up a Basic Authentication [http://www.voidspace.org.uk/python/articles/authentication.shtml] handler :

>>> proxy_support = urllib2.ProxyHandler({})
>>> opener = urllib2.build_opener(proxy_support)
>>> urllib2.install_opener(opener)

Note

Currently urllib2 does not support fetching of https locations
through a proxy. However, this can be enabled by extending urllib2 as
shown in the recipe [7].

Sockets and Layers

The Python support for fetching resources from the web is layered. urllib2 uses
the httplib library, which in turn uses the socket library.

As of Python 2.3 you can specify how long a socket should wait for a response
before timing out. This can be useful in applications which have to fetch web
pages. By default the socket module has no timeout and can hang. Currently,
the socket timeout is not exposed at the httplib or urllib2 levels. However,
you can set the default timeout globally for all sockets using

import socket
import urllib2

timeout in seconds
timeout = 10
socket.setdefaulttimeout(timeout)

this call to urllib2.urlopen now uses the default timeout
we have set in the socket module
req = urllib2.Request('http://www.voidspace.org.uk')
response = urllib2.urlopen(req)

Footnotes

This document was reviewed and revised by John Lee.

	[1]	For an introduction to the CGI protocol see
Writing Web Applications in Python [http://www.pyzine.com/Issue008/Section_Articles/article_CGIOne.html].

	[2]	Like Google for example. The proper way to use google from a program
is to use PyGoogle [http://pygoogle.sourceforge.net] of course. See
Voidspace Google [http://www.voidspace.org.uk/python/recipebook.shtml#google]
for some examples of using the Google API.

	[3]	Browser sniffing is a very bad practise for website design - building
sites using web standards is much more sensible. Unfortunately a lot of
sites still send different versions to different browsers.

	[4]	The user agent for MSIE 6 is
‘Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)’

	[5]	For details of more HTTP request headers, see
Quick Reference to HTTP Headers [http://www.cs.tut.fi/~jkorpela/http.html].

	[6]	In my case I have to use a proxy to access the internet at work. If you
attempt to fetch localhost URLs through this proxy it blocks them. IE
is set to use the proxy, which urllib2 picks up on. In order to test
scripts with a localhost server, I have to prevent urllib2 from using
the proxy.

	[7]	urllib2 opener for SSL proxy (CONNECT method): ASPN Cookbook Recipe [http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/456195].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python HOWTOs

HOWTO Use Python in the web

	Author:	Marek Kubica

Abstract

This document shows how Python fits into the web. It presents some ways
to integrate Python with a web server, and general practices useful for
developing web sites.

Programming for the Web has become a hot topic since the rise of “Web 2.0”,
which focuses on user-generated content on web sites. It has always been
possible to use Python for creating web sites, but it was a rather tedious task.
Therefore, many frameworks and helper tools have been created to assist
developers in creating faster and more robust sites. This HOWTO describes
some of the methods used to combine Python with a web server to create
dynamic content. It is not meant as a complete introduction, as this topic is
far too broad to be covered in one single document. However, a short overview
of the most popular libraries is provided.

See also

While this HOWTO tries to give an overview of Python in the web, it cannot
always be as up to date as desired. Web development in Python is rapidly
moving forward, so the wiki page on Web Programming [http://wiki.python.org/moin/WebProgramming] may be more in sync with
recent development.

The Low-Level View

When a user enters a web site, their browser makes a connection to the site’s
web server (this is called the request). The server looks up the file in the
file system and sends it back to the user’s browser, which displays it (this is
the response). This is roughly how the underlying protocol, HTTP, works.

Dynamic web sites are not based on files in the file system, but rather on
programs which are run by the web server when a request comes in, and which
generate the content that is returned to the user. They can do all sorts of
useful things, like display the postings of a bulletin board, show your email,
configure software, or just display the current time. These programs can be
written in any programming language the server supports. Since most servers
support Python, it is easy to use Python to create dynamic web sites.

Most HTTP servers are written in C or C++, so they cannot execute Python code
directly – a bridge is needed between the server and the program. These
bridges, or rather interfaces, define how programs interact with the server.
There have been numerous attempts to create the best possible interface, but
there are only a few worth mentioning.

Not every web server supports every interface. Many web servers only support
old, now-obsolete interfaces; however, they can often be extended using
third-party modules to support newer ones.

Common Gateway Interface

This interface, most commonly referred to as “CGI”, is the oldest, and is
supported by nearly every web server out of the box. Programs using CGI to
communicate with their web server need to be started by the server for every
request. So, every request starts a new Python interpreter – which takes some
time to start up – thus making the whole interface only usable for low load
situations.

The upside of CGI is that it is simple – writing a Python program which uses
CGI is a matter of about three lines of code. This simplicity comes at a
price: it does very few things to help the developer.

Writing CGI programs, while still possible, is no longer recommended. With
WSGI, a topic covered later in this document, it is possible to write
programs that emulate CGI, so they can be run as CGI if no better option is
available.

See also

The Python standard library includes some modules that are helpful for
creating plain CGI programs:

	cgi – Handling of user input in CGI scripts

	cgitb – Displays nice tracebacks when errors happen in CGI
applications, instead of presenting a “500 Internal Server Error” message

The Python wiki features a page on CGI scripts [http://wiki.python.org/moin/CgiScripts] with some additional information
about CGI in Python.

Simple script for testing CGI

To test whether your web server works with CGI, you can use this short and
simple CGI program:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

enable debugging
import cgitb
cgitb.enable()

print "Content-Type: text/plain;charset=utf-8"
print

print "Hello World!"

Depending on your web server configuration, you may need to save this code with
a .py or .cgi extension. Additionally, this file may also need to be
in a cgi-bin folder, for security reasons.

You might wonder what the cgitb line is about. This line makes it possible
to display a nice traceback instead of just crashing and displaying an “Internal
Server Error” in the user’s browser. This is useful for debugging, but it might
risk exposing some confidential data to the user. You should not use cgitb
in production code for this reason. You should always catch exceptions, and
display proper error pages – end-users don’t like to see nondescript “Internal
Server Errors” in their browsers.

Setting up CGI on your own server

If you don’t have your own web server, this does not apply to you. You can
check whether it works as-is, and if not you will need to talk to the
administrator of your web server. If it is a big host, you can try filing a
ticket asking for Python support.

If you are your own administrator or want to set up CGI for testing purposes on
your own computers, you have to configure it by yourself. There is no single
way to configure CGI, as there are many web servers with different
configuration options. Currently the most widely used free web server is
Apache HTTPd [http://httpd.apache.org/], or Apache for short. Apache can be
easily installed on nearly every system using the system’s package management
tool. lighttpd [http://www.lighttpd.net] is another alternative and is
said to have better performance. On many systems this server can also be
installed using the package management tool, so manually compiling the web
server may not be needed.

	On Apache you can take a look at the Dynamic Content with CGI [http://httpd.apache.org/docs/2.2/howto/cgi.html] tutorial, where everything
is described. Most of the time it is enough just to set +ExecCGI. The
tutorial also describes the most common gotchas that might arise.

	On lighttpd you need to use the CGI module [http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModCGI], which can be configured
in a straightforward way. It boils down to setting cgi.assign properly.

Common problems with CGI scripts

Using CGI sometimes leads to small annoyances while trying to get these
scripts to run. Sometimes a seemingly correct script does not work as
expected, the cause being some small hidden problem that’s difficult to spot.

Some of these potential problems are:

	The Python script is not marked as executable. When CGI scripts are not
executable most web servers will let the user download it, instead of
running it and sending the output to the user. For CGI scripts to run
properly on Unix-like operating systems, the +x bit needs to be set.
Using chmod a+x your_script.py may solve this problem.

	On a Unix-like system, The line endings in the program file must be Unix
style line endings. This is important because the web server checks the
first line of the script (called shebang) and tries to run the program
specified there. It gets easily confused by Windows line endings (Carriage
Return & Line Feed, also called CRLF), so you have to convert the file to
Unix line endings (only Line Feed, LF). This can be done automatically by
uploading the file via FTP in text mode instead of binary mode, but the
preferred way is just telling your editor to save the files with Unix line
endings. Most editors support this.

	Your web server must be able to read the file, and you need to make sure the
permissions are correct. On unix-like systems, the server often runs as user
and group www-data, so it might be worth a try to change the file
ownership, or making the file world readable by using chmod a+r
your_script.py.

	The web server must know that the file you’re trying to access is a CGI script.
Check the configuration of your web server, as it may be configured
to expect a specific file extension for CGI scripts.

	On Unix-like systems, the path to the interpreter in the shebang
(#!/usr/bin/env python) must be correct. This line calls
/usr/bin/env to find Python, but it will fail if there is no
/usr/bin/env, or if Python is not in the web server’s path. If you know
where your Python is installed, you can also use that full path. The
commands whereis python and type -p python could help you find
where it is installed. Once you know the path, you can change the shebang
accordingly: #!/usr/bin/python.

	The file must not contain a BOM (Byte Order Mark). The BOM is meant for
determining the byte order of UTF-16 and UTF-32 encodings, but some editors
write this also into UTF-8 files. The BOM interferes with the shebang line,
so be sure to tell your editor not to write the BOM.

	If the web server is using mod_python, mod_python may be having
problems. mod_python is able to handle CGI scripts by itself, but it can
also be a source of issues.

mod_python

People coming from PHP often find it hard to grasp how to use Python in the web.
Their first thought is mostly mod_python [http://www.modpython.org/],
because they think that this is the equivalent to mod_php. Actually, there
are many differences. What mod_python does is embed the interpreter into
the Apache process, thus speeding up requests by not having to start a Python
interpreter for each request. On the other hand, it is not “Python intermixed
with HTML” in the way that PHP is often intermixed with HTML. The Python
equivalent of that is a template engine. mod_python itself is much more
powerful and provides more access to Apache internals. It can emulate CGI,
work in a “Python Server Pages” mode (similar to JSP) which is “HTML
intermingled with Python”, and it has a “Publisher” which designates one file
to accept all requests and decide what to do with them.

mod_python does have some problems. Unlike the PHP interpreter, the Python
interpreter uses caching when executing files, so changes to a file will
require the web server to be restarted. Another problem is the basic concept
– Apache starts child processes to handle the requests, and unfortunately
every child process needs to load the whole Python interpreter even if it does
not use it. This makes the whole web server slower. Another problem is that,
because mod_python is linked against a specific version of libpython,
it is not possible to switch from an older version to a newer (e.g. 2.4 to 2.5)
without recompiling mod_python. mod_python is also bound to the Apache
web server, so programs written for mod_python cannot easily run on other
web servers.

These are the reasons why mod_python should be avoided when writing new
programs. In some circumstances it still might be a good idea to use
mod_python for deployment, but WSGI makes it possible to run WSGI programs
under mod_python as well.

FastCGI and SCGI

FastCGI and SCGI try to solve the performance problem of CGI in another way.
Instead of embedding the interpreter into the web server, they create
long-running background processes. There is still a module in the web server
which makes it possible for the web server to “speak” with the background
process. As the background process is independent of the server, it can be
written in any language, including Python. The language just needs to have a
library which handles the communication with the webserver.

The difference between FastCGI and SCGI is very small, as SCGI is essentially
just a “simpler FastCGI”. As the web server support for SCGI is limited,
most people use FastCGI instead, which works the same way. Almost everything
that applies to SCGI also applies to FastCGI as well, so we’ll only cover
the latter.

These days, FastCGI is never used directly. Just like mod_python, it is only
used for the deployment of WSGI applications.

See also

	FastCGI, SCGI, and Apache: Background and Future [http://www.vmunix.com/mark/blog/archives/2006/01/02/fastcgi-scgi-and-apache-background-and-future/]
is a discussion on why the concept of FastCGI and SCGI is better that that
of mod_python.

Setting up FastCGI

Each web server requires a specific module.

	Apache has both mod_fastcgi [http://www.fastcgi.com/drupal/] and mod_fcgid [http://fastcgi.coremail.cn/]. mod_fastcgi is the original one, but it
has some licensing issues, which is why it is sometimes considered non-free.
mod_fcgid is a smaller, compatible alternative. One of these modules needs
to be loaded by Apache.

	lighttpd ships its own FastCGI module [http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModFastCGI] as well as an
SCGI module [http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModSCGI].

	nginx [http://nginx.org/] also supports FastCGI [http://wiki.nginx.org/NginxSimplePythonFCGI].

Once you have installed and configured the module, you can test it with the
following WSGI-application:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

from cgi import escape
import sys, os
from flup.server.fcgi import WSGIServer

def app(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/html')])

 yield '<h1>FastCGI Environment</h1>'
 yield '<table>'
 for k, v in sorted(environ.items()):
 yield '<tr><th>%s</th><td>%s</td></tr>' % (escape(k), escape(v))
 yield '</table>'

WSGIServer(app).run()

This is a simple WSGI application, but you need to install flup [http://pypi.python.org/pypi/flup/1.0] first, as flup handles the low level
FastCGI access.

See also

There is some documentation on setting up Django with FastCGI [http://docs.djangoproject.com/en/dev/howto/deployment/fastcgi/], most of
which can be reused for other WSGI-compliant frameworks and libraries.
Only the manage.py part has to be changed, the example used here can be
used instead. Django does more or less the exact same thing.

mod_wsgi

mod_wsgi [http://code.google.com/p/modwsgi/] is an attempt to get rid of the
low level gateways. Given that FastCGI, SCGI, and mod_python are mostly used to
deploy WSGI applications, mod_wsgi was started to directly embed WSGI applications
into the Apache web server. mod_wsgi is specifically designed to host WSGI
applications. It makes the deployment of WSGI applications much easier than
deployment using other low level methods, which need glue code. The downside
is that mod_wsgi is limited to the Apache web server; other servers would need
their own implementations of mod_wsgi.

mod_wsgi supports two modes: embedded mode, in which it integrates with the
Apache process, and daemon mode, which is more FastCGI-like. Unlike FastCGI,
mod_wsgi handles the worker-processes by itself, which makes administration
easier.

Step back: WSGI

WSGI has already been mentioned several times, so it has to be something
important. In fact it really is, and now it is time to explain it.

The Web Server Gateway Interface, or WSGI for short, is defined in
PEP 333 [http://www.python.org/dev/peps/pep-0333] and is currently the best way to do Python web programming. While
it is great for programmers writing frameworks, a normal web developer does not
need to get in direct contact with it. When choosing a framework for web
development it is a good idea to choose one which supports WSGI.

The big benefit of WSGI is the unification of the application programming
interface. When your program is compatible with WSGI – which at the outer
level means that the framework you are using has support for WSGI – your
program can be deployed via any web server interface for which there are WSGI
wrappers. You do not need to care about whether the application user uses
mod_python or FastCGI or mod_wsgi – with WSGI your application will work on
any gateway interface. The Python standard library contains its own WSGI
server, wsgiref, which is a small web server that can be used for
testing.

A really great WSGI feature is middleware. Middleware is a layer around your
program which can add various functionality to it. There is quite a bit of
middleware [http://wsgi.org/wsgi/Middleware_and_Utilities] already
available. For example, instead of writing your own session management (HTTP
is a stateless protocol, so to associate multiple HTTP requests with a single
user your application must create and manage such state via a session), you can
just download middleware which does that, plug it in, and get on with coding
the unique parts of your application. The same thing with compression – there
is existing middleware which handles compressing your HTML using gzip to save
on your server’s bandwidth. Authentication is another a problem easily solved
using existing middleware.

Although WSGI may seem complex, the initial phase of learning can be very
rewarding because WSGI and the associated middleware already have solutions to
many problems that might arise while developing web sites.

WSGI Servers

The code that is used to connect to various low level gateways like CGI or
mod_python is called a WSGI server. One of these servers is flup, which
supports FastCGI and SCGI, as well as AJP [http://en.wikipedia.org/wiki/Apache_JServ_Protocol]. Some of these servers
are written in Python, as flup is, but there also exist others which are
written in C and can be used as drop-in replacements.

There are many servers already available, so a Python web application
can be deployed nearly anywhere. This is one big advantage that Python has
compared with other web technologies.

See also

A good overview of WSGI-related code can be found in the WSGI wiki [http://wsgi.org/wsgi], which contains an extensive list of WSGI servers [http://wsgi.org/wsgi/Servers] which can be used by any application
supporting WSGI.

You might be interested in some WSGI-supporting modules already contained in
the standard library, namely:

	wsgiref – some tiny utilities and servers for WSGI

Case study: MoinMoin

What does WSGI give the web application developer? Let’s take a look at
an application that’s been around for a while, which was written in
Python without using WSGI.

One of the most widely used wiki software packages is MoinMoin [http://moinmo.in/]. It was created in 2000, so it predates WSGI by about
three years. Older versions needed separate code to run on CGI, mod_python,
FastCGI and standalone.

It now includes support for WSGI. Using WSGI, it is possible to deploy
MoinMoin on any WSGI compliant server, with no additional glue code.
Unlike the pre-WSGI versions, this could include WSGI servers that the
authors of MoinMoin know nothing about.

Model-View-Controller

The term MVC is often encountered in statements such as “framework foo
supports MVC”. MVC is more about the overall organization of code, rather than
any particular API. Many web frameworks use this model to help the developer
bring structure to their program. Bigger web applications can have lots of
code, so it is a good idea to have an effective structure right from the beginning.
That way, even users of other frameworks (or even other languages, since MVC is
not Python-specific) can easily understand the code, given that they are
already familiar with the MVC structure.

MVC stands for three components:

	The model. This is the data that will be displayed and modified. In
Python frameworks, this component is often represented by the classes used by
an object-relational mapper.

	The view. This component’s job is to display the data of the model to the
user. Typically this component is implemented via templates.

	The controller. This is the layer between the user and the model. The
controller reacts to user actions (like opening some specific URL), tells
the model to modify the data if necessary, and tells the view code what to
display,

While one might think that MVC is a complex design pattern, in fact it is not.
It is used in Python because it has turned out to be useful for creating clean,
maintainable web sites.

Note

While not all Python frameworks explicitly support MVC, it is often trivial
to create a web site which uses the MVC pattern by separating the data logic
(the model) from the user interaction logic (the controller) and the
templates (the view). That’s why it is important not to write unnecessary
Python code in the templates – it works against the MVC model and creates
chaos in the code base, making it harder to understand and modify.

See also

The English Wikipedia has an article about the Model-View-Controller pattern [http://en.wikipedia.org/wiki/Model-view-controller]. It includes a long
list of web frameworks for various programming languages.

Ingredients for Websites

Websites are complex constructs, so tools have been created to help web
developers make their code easier to write and more maintainable. Tools like
these exist for all web frameworks in all languages. Developers are not forced
to use these tools, and often there is no “best” tool. It is worth learning
about the available tools because they can greatly simplify the process of
developing a web site.

See also

There are far more components than can be presented here. The Python wiki
has a page about these components, called
Web Components [http://wiki.python.org/moin/WebComponents].

Templates

Mixing of HTML and Python code is made possible by a few libraries. While
convenient at first, it leads to horribly unmaintainable code. That’s why
templates exist. Templates are, in the simplest case, just HTML files with
placeholders. The HTML is sent to the user’s browser after filling in the
placeholders.

Python already includes two ways to build simple templates:

>>> template = "<html><body><h1>Hello %s!</h1></body></html>"
>>> print template % "Reader"
<html><body><h1>Hello Reader!</h1></body></html>

>>> from string import Template
>>> template = Template("<html><body><h1>Hello ${name}</h1></body></html>")
>>> print template.substitute(dict(name='Dinsdale'))
<html><body><h1>Hello Dinsdale!</h1></body></html>

To generate complex HTML based on non-trivial model data, conditional
and looping constructs like Python’s for and if are generally needed.
Template engines support templates of this complexity.

There are a lot of template engines available for Python which can be used with
or without a framework. Some of these define a plain-text programming
language which is easy to learn, partly because it is limited in scope.
Others use XML, and the template output is guaranteed to be always be valid
XML. There are many other variations.

Some frameworks ship their own template engine or recommend one in
particular. In the absence of a reason to use a different template engine,
using the one provided by or recommended by the framework is a good idea.

Popular template engines include:

	Mako [http://www.makotemplates.org/]

	Genshi [http://genshi.edgewall.org/]

	Jinja [http://jinja.pocoo.org/2/]

See also

There are many template engines competing for attention, because it is
pretty easy to create them in Python. The page Templating [http://wiki.python.org/moin/Templating] in the wiki lists a big,
ever-growing number of these. The three listed above are considered “second
generation” template engines and are a good place to start.

Data persistence

Data persistence, while sounding very complicated, is just about storing data.
This data might be the text of blog entries, the postings on a bulletin board or
the text of a wiki page. There are, of course, a number of different ways to store
information on a web server.

Often, relational database engines like MySQL [http://www.mysql.com/] or
PostgreSQL [http://www.postgresql.org/] are used because of their good
performance when handling very large databases consisting of millions of
entries. There is also a small database engine called SQLite [http://www.sqlite.org/], which is bundled with Python in the sqlite3
module, and which uses only one file. It has no other dependencies. For
smaller sites SQLite is just enough.

Relational databases are queried using a language called SQL [http://en.wikipedia.org/wiki/SQL]. Python programmers in general do not
like SQL too much, as they prefer to work with objects. It is possible to save
Python objects into a database using a technology called ORM [http://en.wikipedia.org/wiki/Object-relational_mapping] (Object Relational
Mapping). ORM translates all object-oriented access into SQL code under the
hood, so the developer does not need to think about it. Most frameworks use
ORMs, and it works quite well.

A second possibility is storing data in normal, plain text files (some
times called “flat files”). This is very easy for simple sites,
but can be difficult to get right if the web site is performing many
updates to the stored data.

A third possibility are object oriented databases (also called “object
databases”). These databases store the object data in a form that closely
parallels the way the objects are structured in memory during program
execution. (By contrast, ORMs store the object data as rows of data in tables
and relations between those rows.) Storing the objects directly has the
advantage that nearly all objects can be saved in a straightforward way, unlike
in relational databases where some objects are very hard to represent.

Frameworks often give hints on which data storage method to choose. It is
usually a good idea to stick to the data store recommended by the framework
unless the application has special requirements better satisfied by an
alternate storage mechanism.

See also

	Persistence Tools [http://wiki.python.org/moin/PersistenceTools] lists
possibilities on how to save data in the file system. Some of these
modules are part of the standard library

	Database Programming [http://wiki.python.org/moin/DatabaseProgramming]
helps with choosing a method for saving data

	SQLAlchemy [http://www.sqlalchemy.org/], the most powerful OR-Mapper
for Python, and Elixir [http://elixir.ematia.de/], which makes
SQLAlchemy easier to use

	SQLObject [http://www.sqlobject.org/], another popular OR-Mapper

	ZODB [https://launchpad.net/zodb] and Durus [http://www.mems-exchange.org/software/durus/], two object oriented
databases

Frameworks

The process of creating code to run web sites involves writing code to provide
various services. The code to provide a particular service often works the
same way regardless of the complexity or purpose of the web site in question.
Abstracting these common solutions into reusable code produces what are called
“frameworks” for web development. Perhaps the most well-known framework for
web development is Ruby on Rails, but Python has its own frameworks. Some of
these were partly inspired by Rails, or borrowed ideas from Rails, but many
existed a long time before Rails.

Originally Python web frameworks tended to incorporate all of the services
needed to develop web sites as a giant, integrated set of tools. No two web
frameworks were interoperable: a program developed for one could not be
deployed on a different one without considerable re-engineering work. This led
to the development of “minimalist” web frameworks that provided just the tools
to communicate between the Python code and the http protocol, with all other
services to be added on top via separate components. Some ad hoc standards
were developed that allowed for limited interoperability between frameworks,
such as a standard that allowed different template engines to be used
interchangeably.

Since the advent of WSGI, the Python web framework world has been evolving
toward interoperability based on the WSGI standard. Now many web frameworks,
whether “full stack” (providing all the tools one needs to deploy the most
complex web sites) or minimalist, or anything in between, are built from
collections of reusable components that can be used with more than one
framework.

The majority of users will probably want to select a “full stack” framework
that has an active community. These frameworks tend to be well documented,
and provide the easiest path to producing a fully functional web site in
minimal time.

Some notable frameworks

There are an incredible number of frameworks, so they cannot all be covered
here. Instead we will briefly touch on some of the most popular.

Django

Django [http://www.djangoproject.com/] is a framework consisting of several
tightly coupled elements which were written from scratch and work together very
well. It includes an ORM which is quite powerful while being simple to use,
and has a great online administration interface which makes it possible to edit
the data in the database with a browser. The template engine is text-based and
is designed to be usable for page designers who cannot write Python. It
supports template inheritance and filters (which work like Unix pipes). Django
has many handy features bundled, such as creation of RSS feeds or generic views,
which make it possible to create web sites almost without writing any Python code.

It has a big, international community, the members of which have created many
web sites. There are also a lot of add-on projects which extend Django’s normal
functionality. This is partly due to Django’s well written online
documentation [http://docs.djangoproject.com/] and the Django book [http://www.djangobook.com/].

Note

Although Django is an MVC-style framework, it names the elements
differently, which is described in the Django FAQ [http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names].

TurboGears

Another popular web framework for Python is TurboGears [http://www.turbogears.org/]. TurboGears takes the approach of using already
existing components and combining them with glue code to create a seamless
experience. TurboGears gives the user flexibility in choosing components. For
example the ORM and template engine can be changed to use packages different
from those used by default.

The documentation can be found in the TurboGears wiki [http://docs.turbogears.org/], where links to screencasts can be found.
TurboGears has also an active user community which can respond to most related
questions. There is also a TurboGears book [http://turbogearsbook.com/]
published, which is a good starting point.

The newest version of TurboGears, version 2.0, moves even further in direction
of WSGI support and a component-based architecture. TurboGears 2 is based on
the WSGI stack of another popular component-based web framework, Pylons [http://pylonshq.com/].

Zope

The Zope framework is one of the “old original” frameworks. Its current
incarnation in Zope2 is a tightly integrated full-stack framework. One of its
most interesting feature is its tight integration with a powerful object
database called the ZODB [https://launchpad.net/zodb] (Zope Object Database).
Because of its highly integrated nature, Zope wound up in a somewhat isolated
ecosystem: code written for Zope wasn’t very usable outside of Zope, and
vice-versa. To solve this problem the Zope 3 effort was started. Zope 3
re-engineers Zope as a set of more cleanly isolated components. This effort
was started before the advent of the WSGI standard, but there is WSGI support
for Zope 3 from the Repoze [http://repoze.org/] project. Zope components
have many years of production use behind them, and the Zope 3 project gives
access to these components to the wider Python community. There is even a
separate framework based on the Zope components: Grok [http://grok.zope.org/].

Zope is also the infrastructure used by the Plone [http://plone.org/] content
management system, one of the most powerful and popular content management
systems available.

Other notable frameworks

Of course these are not the only frameworks that are available. There are
many other frameworks worth mentioning.

Another framework that’s already been mentioned is Pylons [http://pylonshq.com/]. Pylons is much
like TurboGears, but with an even stronger emphasis on flexibility, which comes
at the cost of being more difficult to use. Nearly every component can be
exchanged, which makes it necessary to use the documentation of every single
component, of which there are many. Pylons builds upon Paste [http://pythonpaste.org/], an extensive set of tools which are handy for WSGI.

And that’s still not everything. The most up-to-date information can always be
found in the Python wiki.

See also

The Python wiki contains an extensive list of web frameworks [http://wiki.python.org/moin/WebFrameworks].

Most frameworks also have their own mailing lists and IRC channels, look out
for these on the projects’ web sites. There is also a general “Python in the
Web” IRC channel on freenode called #python.web [http://wiki.python.org/moin/PoundPythonWeb].

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Python Frequently Asked Questions

	Release:	2.7

	Date:	November 07, 2013

	General Python FAQ

	Programming FAQ

	Design and History FAQ

	Library and Extension FAQ

	Extending/Embedding FAQ

	Python on Windows FAQ

	Graphic User Interface FAQ

	“Why is Python Installed on my Computer?” FAQ

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

General Python FAQ

Contents

	General Python FAQ
	General Information
	What is Python?

	What is the Python Software Foundation?

	Are there copyright restrictions on the use of Python?

	Why was Python created in the first place?

	What is Python good for?

	How does the Python version numbering scheme work?

	How do I obtain a copy of the Python source?

	How do I get documentation on Python?

	I’ve never programmed before. Is there a Python tutorial?

	Is there a newsgroup or mailing list devoted to Python?

	How do I get a beta test version of Python?

	How do I submit bug reports and patches for Python?

	Are there any published articles about Python that I can reference?

	Are there any books on Python?

	Where in the world is www.python.org located?

	Why is it called Python?

	Do I have to like “Monty Python’s Flying Circus”?

	Python in the real world
	How stable is Python?

	How many people are using Python?

	Have any significant projects been done in Python?

	What new developments are expected for Python in the future?

	Is it reasonable to propose incompatible changes to Python?

	Is Python Y2K (Year 2000) Compliant?

	Is Python a good language for beginning programmers?

	Upgrading Python
	What is this bsddb185 module my application keeps complaining about?

General Information

What is Python?

Python is an interpreted, interactive, object-oriented programming language. It
incorporates modules, exceptions, dynamic typing, very high level dynamic data
types, and classes. Python combines remarkable power with very clear syntax.
It has interfaces to many system calls and libraries, as well as to various
window systems, and is extensible in C or C++. It is also usable as an
extension language for applications that need a programmable interface.
Finally, Python is portable: it runs on many Unix variants, on the Mac, and on
PCs under MS-DOS, Windows, Windows NT, and OS/2.

To find out more, start with The Python Tutorial. The Beginner’s Guide to
Python [http://wiki.python.org/moin/BeginnersGuide] links to other
introductory tutorials and resources for learning Python.

What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that
holds the copyright on Python versions 2.1 and newer. The PSF’s mission is to
advance open source technology related to the Python programming language and to
publicize the use of Python. The PSF’s home page is at
http://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it
helpful, please contribute via the PSF donation page [http://www.python.org/psf/donations/].

Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the
copyrights in and display those copyrights in any documentation about Python
that you produce. If you honor the copyright rules, it’s OK to use Python for
commercial use, to sell copies of Python in source or binary form (modified or
unmodified), or to sell products that incorporate Python in some form. We would
still like to know about all commercial use of Python, of course.

See the PSF license page [http://python.org/psf/license/] to find further
explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to
use it. Consult the Trademark Usage Policy [http://www.python.org/psf/trademarks/] for more information.

Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van
Rossum:

I had extensive experience with implementing an interpreted language in the
ABC group at CWI, and from working with this group I had learned a lot about
language design. This is the origin of many Python features, including the
use of indentation for statement grouping and the inclusion of
very-high-level data types (although the details are all different in
Python).

I had a number of gripes about the ABC language, but also liked many of its
features. It was impossible to extend the ABC language (or its
implementation) to remedy my complaints – in fact its lack of extensibility
was one of its biggest problems. I had some experience with using Modula-2+
and talked with the designers of Modula-3 and read the Modula-3 report.
Modula-3 is the origin of the syntax and semantics used for exceptions, and
some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We
needed a better way to do system administration than by writing either C
programs or Bourne shell scripts, since Amoeba had its own system call
interface which wasn’t easily accessible from the Bourne shell. My
experience with error handling in Amoeba made me acutely aware of the
importance of exceptions as a programming language feature.

It occurred to me that a scripting language with a syntax like ABC but with
access to the Amoeba system calls would fill the need. I realized that it
would be foolish to write an Amoeba-specific language, so I decided that I
needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I
decided to give it a try. During the next year, while still mostly working
on it in my own time, Python was used in the Amoeba project with increasing
success, and the feedback from colleagues made me add many early
improvements.

In February 1991, after just over a year of development, I decided to post to
USENET. The rest is in the Misc/HISTORY file.

What is Python good for?

Python is a high-level general-purpose programming language that can be applied
to many different classes of problems.

The language comes with a large standard library that covers areas such as
string processing (regular expressions, Unicode, calculating differences between
files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP, CGI
programming), software engineering (unit testing, logging, profiling, parsing
Python code), and operating system interfaces (system calls, filesystems, TCP/IP
sockets). Look at the table of contents for The Python Standard Library to get an idea
of what’s available. A wide variety of third-party extensions are also
available. Consult the Python Package Index [http://pypi.python.org/pypi] to
find packages of interest to you.

How does the Python version numbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number – it
is only incremented for really major changes in the language. B is the minor
version number, incremented for less earth-shattering changes. C is the
micro-level – it is incremented for each bugfix release. See PEP 6 [http://www.python.org/dev/peps/pep-0006] for more
information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a
series of development releases are made, denoted as alpha, beta, or release
candidate. Alphas are early releases in which interfaces aren’t yet finalized;
it’s not unexpected to see an interface change between two alpha releases.
Betas are more stable, preserving existing interfaces but possibly adding new
modules, and release candidates are frozen, making no changes except as needed
to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix. The
suffix for an alpha version is “aN” for some small number N, the suffix for a
beta version is “bN” for some small number N, and the suffix for a release
candidate version is “cN” for some small number N. In other words, all versions
labeled 2.0aN precede the versions labeled 2.0bN, which precede versions labeled
2.0cN, and those precede 2.0.

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are
unreleased versions, built directly from the Subversion trunk. In practice,
after a final minor release is made, the Subversion trunk is incremented to the
next minor version, which becomes the “a0” version,
e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion, and
sys.version_info.

How do I obtain a copy of the Python source?

The latest Python source distribution is always available from python.org, at
http://www.python.org/download/. The latest development sources can be obtained
via anonymous Subversion at http://svn.python.org/projects/python/trunk.

The source distribution is a gzipped tar file containing the complete C source,
Sphinx-formatted documentation, Python library modules, example programs, and
several useful pieces of freely distributable software. The source will compile
and run out of the box on most UNIX platforms.

Consult the Developer FAQ [http://www.python.org/dev/faq/] for more
information on getting the source code and compiling it.

How do I get documentation on Python?

The standard documentation for the current stable version of Python is available
at http://docs.python.org/. PDF, plain text, and downloadable HTML versions are
also available at http://docs.python.org/download.html.

The documentation is written in reStructuredText and processed by the Sphinx
documentation tool [http://sphinx.pocoo.org/]. The reStructuredText source
for the documentation is part of the Python source distribution.

I’ve never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation
includes The Python Tutorial.

Consult the Beginner’s Guide [http://wiki.python.org/moin/BeginnersGuide] to
find information for beginning Python programmers, including lists of tutorials.

Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp.lang.python, and a mailing list,
python-list [http://mail.python.org/mailman/listinfo/python-list]. The
newsgroup and mailing list are gatewayed into each other – if you can read news
it’s unnecessary to subscribe to the mailing list.
comp.lang.python is high-traffic, receiving hundreds of postings
every day, and Usenet readers are often more able to cope with this volume.

Announcements of new software releases and events can be found in
comp.lang.python.announce, a low-traffic moderated list that receives about five
postings per day. It’s available as the python-announce mailing list [http://mail.python.org/mailman/listinfo/python-announce-list].

More info about other mailing lists and newsgroups
can be found at http://www.python.org/community/lists/.

How do I get a beta test version of Python?

Alpha and beta releases are available from http://www.python.org/download/. All
releases are announced on the comp.lang.python and comp.lang.python.announce
newsgroups and on the Python home page at http://www.python.org/; an RSS feed of
news is available.

You can also access the development version of Python through Subversion. See
http://www.python.org/dev/faq/ for details.

How do I submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at
http://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to
contact you if we have follow-up questions. It will also enable Roundup to send
you updates as we act on your bug. If you had previously used SourceForge to
report bugs to Python, you can obtain your Roundup password through Roundup’s
password reset procedure [http://bugs.python.org/user?@template=forgotten].

For more information on how Python is developed, consult the Python Developer’s
Guide [http://python.org/dev/].

Are there any published articles about Python that I can reference?

It’s probably best to cite your favorite book about Python.

The very first article about Python was written in 1991 and is now quite
outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers
Using the Python Programming Language”, CWI Quarterly, Volume 4, Issue 4
(December 1991), Amsterdam, pp 283-303.

Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at
http://wiki.python.org/moin/PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty
Python references; or perhaps search for “Python” and “language”.

Where in the world is www.python.org located?

It’s currently in Amsterdam, graciously hosted by XS4ALL [http://www.xs4all.nl]. Thanks to Thomas Wouters for his work in arranging
python.org’s hosting.

Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the
published scripts from “Monty Python’s Flying Circus” [http://pythonline.com/], a BBC comedy series from the 1970s. Van Rossum
thought he needed a name that was short, unique, and slightly mysterious, so he
decided to call the language Python.

Do I have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

Python in the real world

How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18
months since 1991, and this seems likely to continue. Currently there are
usually around 18 months between major releases.

The developers issue “bugfix” releases of older versions, so the stability of
existing releases gradually improves. Bugfix releases, indicated by a third
component of the version number (e.g. 2.5.3, 2.6.2), are managed for stability;
only fixes for known problems are included in a bugfix release, and it’s
guaranteed that interfaces will remain the same throughout a series of bugfix
releases.

The latest stable releases can always be found on the Python download page [http://python.org/download/]. There are two recommended production-ready
versions at this point in time, because at the moment there are two branches of
stable releases: 2.x and 3.x. Python 3.x may be less useful than 2.x, since
currently there is more third party software available for Python 2 than for
Python 3. Python 2 code will generally not run unchanged in Python 3.

How many people are using Python?

There are probably tens of thousands of users, though it’s difficult to obtain
an exact count.

Python is available for free download, so there are no sales figures, and it’s
available from many different sites and packaged with many Linux distributions,
so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to
the group or even read it.

Have any significant projects been done in Python?

See http://python.org/about/success for a list of projects that use Python.
Consulting the proceedings for past Python conferences [http://python.org/community/workshops/] will reveal contributions from many
different companies and organizations.

High-profile Python projects include the Mailman mailing list manager [http://www.list.org] and the Zope application server [http://www.zope.org]. Several Linux distributions, most notably Red Hat [http://www.redhat.com], have written part or all of their installer and
system administration software in Python. Companies that use Python internally
include Google, Yahoo, and Lucasfilm Ltd.

What new developments are expected for Python in the future?

See http://www.python.org/dev/peps/ for the Python Enhancement Proposals
(PEPs). PEPs are design documents describing a suggested new feature for Python,
providing a concise technical specification and a rationale. Look for a PEP
titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been
publicly released yet.

New development is discussed on the python-dev mailing list [http://mail.python.org/mailman/listinfo/python-dev/].

Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the
world, so any change in the language that invalidates more than a very small
fraction of existing programs has to be frowned upon. Even if you can provide a
conversion program, there’s still the problem of updating all documentation;
many books have been written about Python, and we don’t want to invalidate them
all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed.
PEP 5 [http://www.python.org/dev/peps/pep-0005] describes the procedure followed for introducing backward-incompatible
changes while minimizing disruption for users.

Is Python Y2K (Year 2000) Compliant?

As of August, 2003 no major problems have been reported and Y2K compliance seems
to be a non-issue.

Python does very few date calculations and for those it does perform relies on
the C library functions. Python generally represents times either as seconds
since 1970 or as a (year, month, day, ...) tuple where the year is expressed
with four digits, which makes Y2K bugs unlikely. So as long as your C library
is okay, Python should be okay. Of course, it’s possible that a particular
application written in Python makes assumptions about 2-digit years.

Because Python is available free of charge, there are no absolute guarantees.
If there are unforeseen problems, liability is the user’s problem rather than
the developers’, and there is nobody you can sue for damages. The Python
copyright notice contains the following disclaimer:

4. PSF is making Python 2.3 available to Licensee on an “AS IS”
basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY
WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF PYTHON 2.3 WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
2.3 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

The good news is that if you encounter a problem, you have full source
available to track it down and fix it. This is one advantage of an open source
programming environment.

Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed
language such as Pascal, C, or a subset of C++ or Java. Students may be better
served by learning Python as their first language. Python has a very simple and
consistent syntax and a large standard library and, most importantly, using
Python in a beginning programming course lets students concentrate on important
programming skills such as problem decomposition and data type design. With
Python, students can be quickly introduced to basic concepts such as loops and
procedures. They can probably even work with user-defined objects in their very
first course.

For a student who has never programmed before, using a statically typed language
seems unnatural. It presents additional complexity that the student must master
and slows the pace of the course. The students are trying to learn to think
like a computer, decompose problems, design consistent interfaces, and
encapsulate data. While learning to use a statically typed language is
important in the long term, it is not necessarily the best topic to address in
the students’ first programming course.

Many other aspects of Python make it a good first language. Like Java, Python
has a large standard library so that students can be assigned programming
projects very early in the course that do something. Assignments aren’t
restricted to the standard four-function calculator and check balancing
programs. By using the standard library, students can gain the satisfaction of
working on realistic applications as they learn the fundamentals of programming.
Using the standard library also teaches students about code reuse. Third-party
modules such as PyGame are also helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features
while they’re programming. They can keep a window with the interpreter running
while they enter their program’s source in another window. If they can’t
remember the methods for a list, they can do something like this:

>>> L = []
>>> dir(L)
['append', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']
>>> help(L.append)
Help on built-in function append:

append(...)
 L.append(object) -- append object to end
>>> L.append(1)
>>> L
[1]

With the interpreter, documentation is never far from the student as he’s
programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python
that is written in Python using Tkinter. PythonWin is a Windows-specific IDE.
Emacs users will be happy to know that there is a very good Python mode for
Emacs. All of these programming environments provide syntax highlighting,
auto-indenting, and access to the interactive interpreter while coding. Consult
http://www.python.org/editors/ for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in
joining the edu-sig mailing list [http://python.org/community/sigs/current/edu-sig].

Upgrading Python

What is this bsddb185 module my application keeps complaining about?

Starting with Python2.3, the distribution includes the PyBSDDB package
<http://pybsddb.sf.net/> as a replacement for the old bsddb module. It
includes functions which provide backward compatibility at the API level, but
requires a newer version of the underlying Berkeley DB [http://www.sleepycat.com] library. Files created with the older bsddb module
can’t be opened directly using the new module.

Using your old version of Python and a pair of scripts which are part of Python
2.3 (db2pickle.py and pickle2db.py, in the Tools/scripts directory) you can
convert your old database files to the new format. Using your old Python
version, run the db2pickle.py script to convert it to a pickle, e.g.:

python2.2 <pathto>/db2pickley.py database.db database.pck

Rename your database file:

mv database.db olddatabase.db

Now convert the pickle file to a new format database:

python <pathto>/pickle2db.py database.db database.pck

The precise commands you use will vary depending on the particulars of your
installation. For full details about operation of these two scripts check the
doc string at the start of each one.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

Programming FAQ

Contents

	Programming FAQ
	General Questions
	Is there a source code level debugger with breakpoints, single-stepping, etc.?

	Is there a tool to help find bugs or perform static analysis?

	How can I create a stand-alone binary from a Python script?

	Are there coding standards or a style guide for Python programs?

	My program is too slow. How do I speed it up?

	Core Language
	Why am I getting an UnboundLocalError when the variable has a value?

	What are the rules for local and global variables in Python?

	How do I share global variables across modules?

	What are the “best practices” for using import in a module?

	How can I pass optional or keyword parameters from one function to another?

	How do I write a function with output parameters (call by reference)?

	How do you make a higher order function in Python?

	How do I copy an object in Python?

	How can I find the methods or attributes of an object?

	How can my code discover the name of an object?

	What’s up with the comma operator’s precedence?

	Is there an equivalent of C’s ”?:” ternary operator?

	Is it possible to write obfuscated one-liners in Python?

	Numbers and strings
	How do I specify hexadecimal and octal integers?

	Why does -22 // 10 return -3?

	How do I convert a string to a number?

	How do I convert a number to a string?

	How do I modify a string in place?

	How do I use strings to call functions/methods?

	Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?

	Is there a scanf() or sscanf() equivalent?

	What does ‘UnicodeError: ASCII [decoding,encoding] error: ordinal not in range(128)’ mean?

	Sequences (Tuples/Lists)
	How do I convert between tuples and lists?

	What’s a negative index?

	How do I iterate over a sequence in reverse order?

	How do you remove duplicates from a list?

	How do you make an array in Python?

	How do I create a multidimensional list?

	How do I apply a method to a sequence of objects?

	Dictionaries
	How can I get a dictionary to display its keys in a consistent order?

	I want to do a complicated sort: can you do a Schwartzian Transform in Python?

	How can I sort one list by values from another list?

	Objects
	What is a class?

	What is a method?

	What is self?

	How do I check if an object is an instance of a given class or of a subclass of it?

	What is delegation?

	How do I call a method defined in a base class from a derived class that overrides it?

	How can I organize my code to make it easier to change the base class?

	How do I create static class data and static class methods?

	How can I overload constructors (or methods) in Python?

	I try to use __spam and I get an error about _SomeClassName__spam.

	My class defines __del__ but it is not called when I delete the object.

	How do I get a list of all instances of a given class?

	Modules
	How do I create a .pyc file?

	How do I find the current module name?

	How can I have modules that mutually import each other?

	__import__(‘x.y.z’) returns <module ‘x’>; how do I get z?

	When I edit an imported module and reimport it, the changes don’t show up. Why does this happen?

General Questions

Is there a source code level debugger with breakpoints, single-stepping, etc.?

Yes.

The pdb module is a simple but adequate console-mode debugger for Python. It is
part of the standard Python library, and is documented in the Library
Reference Manual. You can also write your own debugger by using the code
for pdb as an example.

The IDLE interactive development environment, which is part of the standard
Python distribution (normally available as Tools/scripts/idle), includes a
graphical debugger. There is documentation for the IDLE debugger at
http://www.python.org/idle/doc/idle2.html#Debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The
Pythonwin debugger colors breakpoints and has quite a few cool features such as
debugging non-Pythonwin programs. Pythonwin is available as part of the Python
for Windows Extensions [http://sourceforge.net/projects/pywin32/] project and
as a part of the ActivePython distribution (see
http://www.activestate.com/Products/ActivePython/index.html).

Boa Constructor [http://boa-constructor.sourceforge.net/] is an IDE and GUI
builder that uses wxWidgets. It offers visual frame creation and manipulation,
an object inspector, many views on the source like object browsers, inheritance
hierarchies, doc string generated html documentation, an advanced debugger,
integrated help, and Zope support.

Eric [http://www.die-offenbachs.de/eric/index.html] is an IDE built on PyQt
and the Scintilla editing component.

Pydb is a version of the standard Python debugger pdb, modified for use with DDD
(Data Display Debugger), a popular graphical debugger front end. Pydb can be
found at http://bashdb.sourceforge.net/pydb/ and DDD can be found at
http://www.gnu.org/software/ddd.

There are a number of commercial Python IDEs that include graphical debuggers.
They include:

	Wing IDE (http://wingware.com/)

	Komodo IDE (http://www.activestate.com/Products/Komodo)

Is there a tool to help find bugs or perform static analysis?

Yes.

PyChecker is a static analysis tool that finds bugs in Python source code and
warns about code complexity and style. You can get PyChecker from
http://pychecker.sf.net.

Pylint [http://www.logilab.org/projects/pylint] is another tool that checks
if a module satisfies a coding standard, and also makes it possible to write
plug-ins to add a custom feature. In addition to the bug checking that
PyChecker performs, Pylint offers some additional features such as checking line
length, whether variable names are well-formed according to your coding
standard, whether declared interfaces are fully implemented, and more.
http://www.logilab.org/card/pylint_manual provides a full list of Pylint’s
features.

How can I create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a
stand-alone program that users can download and run without having to install
the Python distribution first. There are a number of tools that determine the
set of modules required by a program and bind these modules together with a
Python binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as
Tools/freeze. It converts Python byte code to C arrays; a C compiler you can
embed all your modules into a new program, which is then linked with the
standard Python modules.

It works by scanning your source recursively for import statements (in both
forms) and looking for the modules in the standard Python path as well as in the
source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code
objects using the marshal module) and creates a custom-made config file that
only contains those built-in modules which are actually used in the program. It
then compiles the generated C code and links it with the rest of the Python
interpreter to form a self-contained binary which acts exactly like your script.

Obviously, freeze requires a C compiler. There are several other utilities
which don’t. One is Thomas Heller’s py2exe (Windows only) at

http://www.py2exe.org/

Another is Christian Tismer’s SQFREEZE [http://starship.python.net/crew/pirx]
which appends the byte code to a specially-prepared Python interpreter that can
find the byte code in the executable.

Other tools include Fredrik Lundh’s Squeeze [http://www.pythonware.com/products/python/squeeze] and Anthony Tuininga’s
cx_Freeze [http://starship.python.net/crew/atuining/cx_Freeze/index.html].

Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as
PEP 8 [http://www.python.org/dev/peps/pep-0008].

My program is too slow. How do I speed it up?

That’s a tough one, in general. There are many tricks to speed up Python code;
consider rewriting parts in C as a last resort.

In some cases it’s possible to automatically translate Python to C or x86
assembly language, meaning that you don’t have to modify your code to gain
increased speed.

Pyrex [http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/] can compile a
slightly modified version of Python code into a C extension, and can be used on
many different platforms.

Psyco [http://psyco.sourceforge.net] is a just-in-time compiler that
translates Python code into x86 assembly language. If you can use it, Psyco can
provide dramatic speedups for critical functions.

The rest of this answer will discuss various tricks for squeezing a bit more
speed out of Python code. Never apply any optimization tricks unless you know
you need them, after profiling has indicated that a particular function is the
heavily executed hot spot in the code. Optimizations almost always make the
code less clear, and you shouldn’t pay the costs of reduced clarity (increased
development time, greater likelihood of bugs) unless the resulting performance
benefit is worth it.

There is a page on the wiki devoted to performance tips [http://wiki.python.org/moin/PythonSpeed/PerformanceTips].

Guido van Rossum has written up an anecdote related to optimization at
http://www.python.org/doc/essays/list2str.html.

One thing to notice is that function and (especially) method calls are rather
expensive; if you have designed a purely OO interface with lots of tiny
functions that don’t do much more than get or set an instance variable or call
another method, you might consider using a more direct way such as directly
accessing instance variables. Also see the standard module profile which
makes it possible to find out where your program is spending most of its time
(if you have some patience – the profiling itself can slow your program down by
an order of magnitude).

Remember that many standard optimization heuristics you may know from other
programming experience may well apply to Python. For example it may be faster
to send output to output devices using larger writes rather than smaller ones in
order to reduce the overhead of kernel system calls. Thus CGI scripts that
write all output in “one shot” may be faster than those that write lots of small
pieces of output.

Also, be sure to use Python’s core features where appropriate. For example,
slicing allows programs to chop up lists and other sequence objects in a single
tick of the interpreter’s mainloop using highly optimized C implementations.
Thus to get the same effect as:

L2 = []
for i in range[3]:
 L2.append(L1[i])

it is much shorter and far faster to use

L2 = list(L1[:3]) # "list" is redundant if L1 is a list.

Note that the functionally-oriented built-in functions such as map(),
zip(), and friends can be a convenient accelerator for loops that
perform a single task. For example to pair the elements of two lists
together:

>>> zip([1, 2, 3], [4, 5, 6])
[(1, 4), (2, 5), (3, 6)]

or to compute a number of sines:

>>> map(math.sin, (1, 2, 3, 4))
[0.841470984808, 0.909297426826, 0.14112000806, -0.756802495308]

The operation completes very quickly in such cases.

Other examples include the join() and split() methods
of string objects.
For example if s1..s7 are large (10K+) strings then
"".join([s1,s2,s3,s4,s5,s6,s7]) may be far faster than the more obvious
s1+s2+s3+s4+s5+s6+s7, since the “summation” will compute many
subexpressions, whereas join() does all the copying in one pass. For
manipulating strings, use the replace() and the format() methods
on string objects. Use regular expressions only when you’re
not dealing with constant string patterns. You may still use the old %
operations string % tuple and string % dictionary.

Be sure to use the list.sort() built-in method to do sorting, and see the
sorting mini-HOWTO [http://wiki.python.org/moin/HowTo/Sorting] for examples
of moderately advanced usage. list.sort() beats other techniques for
sorting in all but the most extreme circumstances.

Another common trick is to “push loops into functions or methods.” For example
suppose you have a program that runs slowly and you use the profiler to
determine that a Python function ff() is being called lots of times. If you
notice that ff():

def ff(x):
 ... # do something with x computing result...
 return result

tends to be called in loops like:

list = map(ff, oldlist)

or:

for x in sequence:
 value = ff(x)
 ... # do something with value...

then you can often eliminate function call overhead by rewriting ff() to:

def ffseq(seq):
 resultseq = []
 for x in seq:
 ... # do something with x computing result...
 resultseq.append(result)
 return resultseq

and rewrite the two examples to list = ffseq(oldlist) and to:

for value in ffseq(sequence):
 ... # do something with value...

Single calls to ff(x) translate to ffseq([x])[0] with little penalty.
Of course this technique is not always appropriate and there are other variants
which you can figure out.

You can gain some performance by explicitly storing the results of a function or
method lookup into a local variable. A loop like:

for key in token:
 dict[key] = dict.get(key, 0) + 1

resolves dict.get every iteration. If the method isn’t going to change, a
slightly faster implementation is:

dict_get = dict.get # look up the method once
for key in token:
 dict[key] = dict_get(key, 0) + 1

Default arguments can be used to determine values once, at compile time instead
of at run time. This can only be done for functions or objects which will not
be changed during program execution, such as replacing

def degree_sin(deg):
 return math.sin(deg * math.pi / 180.0)

with

def degree_sin(deg, factor=math.pi/180.0, sin=math.sin):
 return sin(deg * factor)

Because this trick uses default arguments for terms which should not be changed,
it should only be used when you are not concerned with presenting a possibly
confusing API to your users.

Core Language

Why am I getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working
code when it is modified by adding an assignment statement somewhere in
the body of a function.

This code:

>>> x = 10
>>> def bar():
... print x
>>> bar()
10

works, but this code:

>>> x = 10
>>> def foo():
... print x
... x += 1

results in an UnboundLocalError:

>>> foo()
Traceback (most recent call last):
 ...
UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that
variable becomes local to that scope and shadows any similarly named variable
in the outer scope. Since the last statement in foo assigns a new value to
x, the compiler recognizes it as a local variable. Consequently when the
earlier print x attempts to print the uninitialized local variable and
an error results.

In the example above you can access the outer scope variable by declaring it
global:

>>> x = 10
>>> def foobar():
... global x
... print x
... x += 1
>>> foobar()
10

This explicit declaration is required in order to remind you that (unlike the
superficially analogous situation with class and instance variables) you are
actually modifying the value of the variable in the outer scope:

>>> print x
11

What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly
global. If a variable is assigned a new value anywhere within the function’s
body, it’s assumed to be a local. If a variable is ever assigned a new value
inside the function, the variable is implicitly local, and you need to
explicitly declare it as ‘global’.

Though a bit surprising at first, a moment’s consideration explains this. On
one hand, requiring global for assigned variables provides a bar
against unintended side-effects. On the other hand, if global was required
for all global references, you’d be using global all the time. You’d have
to declare as global every reference to a built-in function or to a component of
an imported module. This clutter would defeat the usefulness of the global
declaration for identifying side-effects.

How do I share global variables across modules?

The canonical way to share information across modules within a single program is
to create a special module (often called config or cfg). Just import the config
module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes
made to the module object get reflected everywhere. For example:

config.py:

x = 0 # Default value of the 'x' configuration setting

mod.py:

import config
config.x = 1

main.py:

import config
import mod
print config.x

Note that using a module is also the basis for implementing the Singleton design
pattern, for the same reason.

What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the
importer’s namespace. Some people avoid this idiom even with the few modules
that were designed to be imported in this manner. Modules designed in this
manner include Tkinter, and threading.

Import modules at the top of a file. Doing so makes it clear what other modules
your code requires and avoids questions of whether the module name is in scope.
Using one import per line makes it easy to add and delete module imports, but
using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:

	standard library modules – e.g. sys, os, getopt, re

	third-party library modules (anything installed in Python’s site-packages
directory) – e.g. mx.DateTime, ZODB, PIL.Image, etc.

	locally-developed modules

Never use relative package imports. If you’re writing code that’s in the
package.sub.m1 module and want to import package.sub.m2, do not just
write import m2, even though it’s legal. Write from package.sub import
m2 instead. Relative imports can lead to a module being initialized twice,
leading to confusing bugs. See PEP 328 [http://www.python.org/dev/peps/pep-0328] for details.

It is sometimes necessary to move imports to a function or class to avoid
problems with circular imports. Gordon McMillan says:

Circular imports are fine where both modules use the “import <module>” form
of import. They fail when the 2nd module wants to grab a name out of the
first (“from module import name”) and the import is at the top level. That’s
because names in the 1st are not yet available, because the first module is
busy importing the 2nd.

In this case, if the second module is only used in one function, then the import
can easily be moved into that function. By the time the import is called, the
first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of
the modules are platform-specific. In that case, it may not even be possible to
import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if
it’s necessary to solve a problem such as avoiding a circular import or are
trying to reduce the initialization time of a module. This technique is
especially helpful if many of the imports are unnecessary depending on how the
program executes. You may also want to move imports into a function if the
modules are only ever used in that function. Note that loading a module the
first time may be expensive because of the one time initialization of the
module, but loading a module multiple times is virtually free, costing only a
couple of dictionary lookups. Even if the module name has gone out of scope,
the module is probably available in sys.modules.

If only instances of a specific class use a module, then it is reasonable to
import the module in the class’s __init__ method and then assign the module
to an instance variable so that the module is always available (via that
instance variable) during the life of the object. Note that to delay an import
until the class is instantiated, the import must be inside a method. Putting
the import inside the class but outside of any method still causes the import to
occur when the module is initialized.

How can I pass optional or keyword parameters from one function to another?

Collect the arguments using the * and ** specifiers in the function’s
parameter list; this gives you the positional arguments as a tuple and the
keyword arguments as a dictionary. You can then pass these arguments when
calling another function by using * and **:

def f(x, *args, **kwargs):
 ...
 kwargs['width'] = '14.3c'
 ...
 g(x, *args, **kwargs)

In the unlikely case that you care about Python versions older than 2.0, use
apply():

def f(x, *args, **kwargs):
 ...
 kwargs['width'] = '14.3c'
 ...
 apply(g, (x,)+args, kwargs)

How do I write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment
just creates references to objects, there’s no alias between an argument name in
the caller and callee, and so no call-by-reference per se. You can achieve the
desired effect in a number of ways.

	By returning a tuple of the results:

def func2(a, b):
 a = 'new-value' # a and b are local names
 b = b + 1 # assigned to new objects
 return a, b # return new values

x, y = 'old-value', 99
x, y = func2(x, y)
print x, y # output: new-value 100

This is almost always the clearest solution.

	By using global variables. This isn’t thread-safe, and is not recommended.

	By passing a mutable (changeable in-place) object:

def func1(a):
 a[0] = 'new-value' # 'a' references a mutable list
 a[1] = a[1] + 1 # changes a shared object

args = ['old-value', 99]
func1(args)
print args[0], args[1] # output: new-value 100

	By passing in a dictionary that gets mutated:

def func3(args):
 args['a'] = 'new-value' # args is a mutable dictionary
 args['b'] = args['b'] + 1 # change it in-place

args = {'a':' old-value', 'b': 99}
func3(args)
print args['a'], args['b']

	Or bundle up values in a class instance:

class callByRef:
 def __init__(self, **args):
 for (key, value) in args.items():
 setattr(self, key, value)

def func4(args):
 args.a = 'new-value' # args is a mutable callByRef
 args.b = args.b + 1 # change object in-place

args = callByRef(a='old-value', b=99)
func4(args)
print args.a, args.b

There’s almost never a good reason to get this complicated.

Your best choice is to return a tuple containing the multiple results.

How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects.
For example, suppose you wanted to define linear(a,b) which returns a
function f(x) that computes the value a*x+b. Using nested scopes:

def linear(a, b):
 def result(x):
 return a * x + b
 return result

Or using a callable object:

class linear:

 def __init__(self, a, b):
 self.a, self.b = a, b

 def __call__(self, x):
 return self.a * x + self.b

In both cases,

taxes = linear(0.3, 2)

gives a callable object where taxes(10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and
results in slightly longer code. However, note that a collection of callables
can share their signature via inheritance:

class exponential(linear):
 # __init__ inherited
 def __call__(self, x):
 return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

 value = 0

 def set(self, x):
 self.value = x

 def up(self):
 self.value = self.value + 1

 def down(self):
 self.value = self.value - 1

count = counter()
inc, dec, reset = count.up, count.down, count.set

Here inc(), dec() and reset() act like functions which share the
same counting variable.

How do I copy an object in Python?

In general, try copy.copy() or copy.deepcopy() for the general case.
Not all objects can be copied, but most can.

Some objects can be copied more easily. Dictionaries have a copy()
method:

newdict = olddict.copy()

Sequences can be copied by slicing:

new_l = l[:]

How can I find the methods or attributes of an object?

For an instance x of a user-defined class, dir(x) returns an alphabetized
list of the names containing the instance attributes and methods and attributes
defined by its class.

How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names.
Essentially, assignment always binds a name to a value; The same is true of
def and class statements, but in that case the value is a
callable. Consider the following code:

class A:
 pass

B = A

a = B()
b = a
print b
<__main__.A instance at 0x16D07CC>
print a
<__main__.A instance at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked
through the name B the created instance is still reported as an instance of
class A. However, it is impossible to say whether the instance’s name is a or
b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names”
of particular values. Unless you are deliberately writing introspective
programs, this is usually an indication that a change of approach might be
beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to
this question:

The same way as you get the name of that cat you found on your porch: the cat
(object) itself cannot tell you its name, and it doesn’t really care – so
the only way to find out what it’s called is to ask all your neighbours
(namespaces) if it’s their cat (object)...

....and don’t be surprised if you’ll find that it’s known by many names, or
no name at all!

What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in "b", "a"
(False, 'a')

Since the comma is not an operator, but a separator between expressions the
above is evaluated as if you had entered:

>>> ("a" in "b"), "a"

not:

>>> "a" in ("b", "a")

The same is true of the various assignment operators (=, += etc). They
are not truly operators but syntactic delimiters in assignment statements.

Is there an equivalent of C’s ”?:” ternary operator?

Yes, this feature was added in Python 2.5. The syntax would be as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25

small = x if x < y else y

For versions previous to 2.5 the answer would be ‘No’.

In many cases you can mimic a ? b : c with a and b or c, but there’s a
flaw: if b is zero (or empty, or None – anything that tests false) then
c will be selected instead. In many cases you can prove by looking at the
code that this can’t happen (e.g. because b is a constant or has a type that
can never be false), but in general this can be a problem.

Tim Peters (who wishes it was Steve Majewski) suggested the following solution:
(a and [b] or [c])[0]. Because [b] is a singleton list it is never
false, so the wrong path is never taken; then applying [0] to the whole
thing gets the b or c that you really wanted. Ugly, but it gets you there
in the rare cases where it is really inconvenient to rewrite your code using
‘if’.

The best course is usually to write a simple if...else statement. Another
solution is to implement the ?: operator as a function:

def q(cond, on_true, on_false):
 if cond:
 if not isfunction(on_true):
 return on_true
 else:
 return on_true()
 else:
 if not isfunction(on_false):
 return on_false
 else:
 return on_false()

In most cases you’ll pass b and c directly: q(a, b, c). To avoid evaluating
b or c when they shouldn’t be, encapsulate them within a lambda function, e.g.:
q(a, lambda: b, lambda: c).

It has been asked why Python has no if-then-else expression. There are
several answers: many languages do just fine without one; it can easily lead to
less readable code; no sufficiently “Pythonic” syntax has been discovered; a
search of the standard library found remarkably few places where using an
if-then-else expression would make the code more understandable.

In 2002, PEP 308 [http://www.python.org/dev/peps/pep-0308] was written proposing several possible syntaxes and the
community was asked to vote on the issue. The vote was inconclusive. Most
people liked one of the syntaxes, but also hated other syntaxes; many votes
implied that people preferred no ternary operator rather than having a syntax
they hated.

Is it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting lambda within
lambda. See the following three examples, due to Ulf Bartelt:

Primes < 1000
print filter(None,map(lambda y:y*reduce(lambda x,y:x*y!=0,
map(lambda x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),range(2,1000)))

First 10 Fibonacci numbers
print map(lambda x,f=lambda x,f:(f(x-1,f)+f(x-2,f)) if x>1 else 1: f(x,f),
range(10))

Mandelbrot set
print (lambda Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda x,y:x+y,map(lambda y,
Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc,Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx,Sy=Sy:reduce(lambda x,y:x+y,map(lambda x,xc=Ru,yc=yc,Ru=Ru,Ro=Ro,
i=i,Sx=Sx,F=lambda xc,yc,x,y,k,f=lambda xc,yc,x,y,k,f:(k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F(Ru+x*(Ro-Ru)/Sx,yc,0,0,i)),range(Sx))):L(Iu+y*(Io-Iu)/Sy),range(Sy
))))(-2.1, 0.7, -1.2, 1.2, 30, 80, 24)
___ ___/ ___ ___/ | | |__ lines on screen
V V | |______ columns on screen
| | |__________ maximum of "iterations"
| |_________________ range on y axis
|____________________________ range on x axis

Don’t try this at home, kids!

Numbers and strings

How do I specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower
or uppercase “o”. For example, to set the variable “a” to the octal value “10”
(8 in decimal), type:

>>> a = 0o10
>>> a
8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero,
and then a lower or uppercase “x”. Hexadecimal digits can be specified in lower
or uppercase. For example, in the Python interpreter:

>>> a = 0xa5
>>> a
165
>>> b = 0XB2
>>> b
178

Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % j have the same sign as j.
If you want that, and also want:

i == (i // j) * j + (i % j)

then integer division has to return the floor. C also requires that identity to
hold, and then compilers that truncate i // j need to make i % j have
the same sign as i.

There are few real use cases for i % j when j is negative. When j
is positive, there are many, and in virtually all of them it’s more useful for
i % j to be >= 0. If the clock says 10 now, what did it say 200 hours
ago? -190 % 12 == 2 is useful; -190 % 12 == -10 is a bug waiting to
bite.

Note

On Python 2, a / b returns the same as a // b if
__future__.division is not in effect. This is also known as “classic”
division.

How do I convert a string to a number?

For integers, use the built-in int() type constructor, e.g. int('144')
== 144. Similarly, float() converts to floating-point,
e.g. float('144') == 144.0.

By default, these interpret the number as decimal, so that int('0144') ==
144 and int('0x144') raises ValueError. int(string, base) takes
the base to convert from as a second optional argument, so int('0x144', 16) ==
324. If the base is specified as 0, the number is interpreted using Python’s
rules: a leading ‘0’ indicates octal, and ‘0x’ indicates a hex number.

Do not use the built-in function eval() if all you need is to convert
strings to numbers. eval() will be significantly slower and it presents a
security risk: someone could pass you a Python expression that might have
unwanted side effects. For example, someone could pass
__import__('os').system("rm -rf $HOME") which would erase your home
directory.

eval() also has the effect of interpreting numbers as Python expressions,
so that e.g. eval('09') gives a syntax error because Python regards numbers
starting with ‘0’ as octal (base 8).

How do I convert a number to a string?

To convert, e.g., the number 144 to the string ‘144’, use the built-in type
constructor str(). If you want a hexadecimal or octal representation, use
the built-in functions hex() or oct(). For fancy formatting, see
the Format String Syntax section, e.g. "{:04d}".format(144) yields
'0144' and "{:.3f}".format(1/3) yields '0.333'. You may also use
the % operator on strings. See the library reference
manual for details.

How do I modify a string in place?

You can’t, because strings are immutable. If you need an object with this
ability, try converting the string to a list or use the array module:

>>> s = "Hello, world"
>>> a = list(s)
>>> print a
['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd']
>>> a[7:] = list("there!")
>>> ''.join(a)
'Hello, there!'

>>> import array
>>> a = array.array('c', s)
>>> print a
array('c', 'Hello, world')
>>> a[0] = 'y' ; print a
array('c', 'yello world')
>>> a.tostring()
'yello, world'

How do I use strings to call functions/methods?

There are various techniques.

	The best is to use a dictionary that maps strings to functions. The primary
advantage of this technique is that the strings do not need to match the names
of the functions. This is also the primary technique used to emulate a case
construct:

def a():
 pass

def b():
 pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input()]() # Note trailing parens to call function

	Use the built-in function getattr():

import foo
getattr(foo, 'bar')()

Note that getattr() works on any object, including classes, class
instances, modules, and so on.

This is used in several places in the standard library, like this:

class Foo:
 def do_foo(self):
 ...

 def do_bar(self):
 ...

f = getattr(foo_instance, 'do_' + opname)
f()

	Use locals() or eval() to resolve the function name:

def myFunc():
 print "hello"

fname = "myFunc"

f = locals()[fname]
f()

f = eval(fname)
f()

Note: Using eval() is slow and dangerous. If you don’t have absolute
control over the contents of the string, someone could pass a string that
resulted in an arbitrary function being executed.

Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?

Starting with Python 2.2, you can use S.rstrip("\r\n") to remove all
occurrences of any line terminator from the end of the string S without
removing other trailing whitespace. If the string S represents more than
one line, with several empty lines at the end, the line terminators for all the
blank lines will be removed:

>>> lines = ("line 1 \r\n"
... "\r\n"
... "\r\n")
>>> lines.rstrip("\n\r")
'line 1 '

Since this is typically only desired when reading text one line at a time, using
S.rstrip() this way works well.

For older versions of Python, there are two partial substitutes:

	If you want to remove all trailing whitespace, use the rstrip() method of
string objects. This removes all trailing whitespace, not just a single
newline.

	Otherwise, if there is only one line in the string S, use
S.splitlines()[0].

Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into
whitespace-delimited words using the split() method of string objects
and then convert decimal strings to numeric values using int() or
float(). split() supports an optional “sep” parameter which is useful
if the line uses something other than whitespace as a separator.

For more complicated input parsing, regular expressions are more powerful
than C’s sscanf() and better suited for the task.

What does ‘UnicodeError: ASCII [decoding,encoding] error: ordinal not in range(128)’ mean?

This error indicates that your Python installation can handle only 7-bit ASCII
strings. There are a couple ways to fix or work around the problem.

If your programs must handle data in arbitrary character set encodings, the
environment the application runs in will generally identify the encoding of the
data it is handing you. You need to convert the input to Unicode data using
that encoding. For example, a program that handles email or web input will
typically find character set encoding information in Content-Type headers. This
can then be used to properly convert input data to Unicode. Assuming the string
referred to by value is encoded as UTF-8:

value = unicode(value, "utf-8")

will return a Unicode object. If the data is not correctly encoded as UTF-8,
the above call will raise a UnicodeError exception.

If you only want strings converted to Unicode which have non-ASCII data, you can
try converting them first assuming an ASCII encoding, and then generate Unicode
objects if that fails:

try:
 x = unicode(value, "ascii")
except UnicodeError:
 value = unicode(value, "utf-8")
else:
 # value was valid ASCII data
 pass

It’s possible to set a default encoding in a file called sitecustomize.py
that’s part of the Python library. However, this isn’t recommended because
changing the Python-wide default encoding may cause third-party extension
modules to fail.

Note that on Windows, there is an encoding known as “mbcs”, which uses an
encoding specific to your current locale. In many cases, and particularly when
working with COM, this may be an appropriate default encoding to use.

Sequences (Tuples/Lists)

How do I convert between tuples and lists?

The type constructor tuple(seq) converts any sequence (actually, any
iterable) into a tuple with the same items in the same order.

For example, tuple([1, 2, 3]) yields (1, 2, 3) and tuple('abc')
yields ('a', 'b', 'c'). If the argument is a tuple, it does not make a copy
but returns the same object, so it is cheap to call tuple() when you
aren’t sure that an object is already a tuple.

The type constructor list(seq) converts any sequence or iterable into a list
with the same items in the same order. For example, list((1, 2, 3)) yields
[1, 2, 3] and list('abc') yields ['a', 'b', 'c']. If the argument
is a list, it makes a copy just like seq[:] would.

What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For
positive numbers 0 is the first index 1 is the second index and so forth. For
negative indices -1 is the last index and -2 is the penultimate (next to last)
index and so forth. Think of seq[-n] as the same as seq[len(seq)-n].

Using negative indices can be very convenient. For example S[:-1] is all of
the string except for its last character, which is useful for removing the
trailing newline from a string.

How do I iterate over a sequence in reverse order?

Use the reversed() built-in function, which is new in Python 2.4:

for x in reversed(sequence):
 ... # do something with x...

This won’t touch your original sequence, but build a new copy with reversed
order to iterate over.

With Python 2.3, you can use an extended slice syntax:

for x in sequence[::-1]:
 ... # do something with x...

How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560

If you don’t mind reordering the list, sort it and then scan from the end of the
list, deleting duplicates as you go:

if mylist:
 mylist.sort()
 last = mylist[-1]
 for i in range(len(mylist)-2, -1, -1):
 if last == mylist[i]:
 del mylist[i]
 else:
 last = mylist[i]

If all elements of the list may be used as dictionary keys (i.e. they are all
hashable) this is often faster

d = {}
for x in mylist:
 d[x] = 1
mylist = list(d.keys())

In Python 2.5 and later, the following is possible instead:

mylist = list(set(mylist))

This converts the list into a set, thereby removing duplicates, and then back
into a list.

How do you make an array in Python?

Use a list:

["this", 1, "is", "an", "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary
difference is that a Python list can contain objects of many different types.

The array module also provides methods for creating arrays of fixed types
with compact representations, but they are slower to index than lists. Also
note that the Numeric extensions and others define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the
analogue of lisp car is lisp_list[0] and the analogue of cdr is
lisp_list[1]. Only do this if you’re sure you really need to, because it’s
usually a lot slower than using Python lists.

How do I create a multidimensional list?

You probably tried to make a multidimensional array like this:

A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only
creates references to the existing objects. The *3 creates a list
containing 3 references to the same list of length two. Changes to one row will
show in all rows, which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then
fill in each element with a newly created list:

A = [None] * 3
for i in range(3):
 A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also
use a list comprehension:

w, h = 2, 3
A = [[None] * w for i in range(h)]

Or, you can use an extension that provides a matrix datatype; Numeric Python [http://numpy.scipy.org/] is the best known.

How do I apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

More generically, you can try the following function:

def method_map(objects, method, arguments):
 """method_map([a,b], "meth", (1,2)) gives [a.meth(1,2), b.meth(1,2)]"""
 nobjects = len(objects)
 methods = map(getattr, objects, [method]*nobjects)
 return map(apply, methods, [arguments]*nobjects)

Dictionaries

How can I get a dictionary to display its keys in a consistent order?

You can’t. Dictionaries store their keys in an unpredictable order, so the
display order of a dictionary’s elements will be similarly unpredictable.

This can be frustrating if you want to save a printable version to a file, make
some changes and then compare it with some other printed dictionary. In this
case, use the pprint module to pretty-print the dictionary; the items will
be presented in order sorted by the key.

A more complicated solution is to subclass dict to create a
SortedDict class that prints itself in a predictable order. Here’s one
simpleminded implementation of such a class:

class SortedDict(dict):
 def __repr__(self):
 keys = sorted(self.keys())
 result = ("{!r}: {!r}".format(k, self[k]) for k in keys)
 return "{{{}}}".format(", ".join(result))

 __str__ = __repr__

This will work for many common situations you might encounter, though it’s far
from a perfect solution. The largest flaw is that if some values in the
dictionary are also dictionaries, their values won’t be presented in any
particular order.

I want to do a complicated sort: can you do a Schwartzian Transform in Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the
elements of a list by a metric which maps each element to its “sort value”. In
Python, just use the key argument for the sort() method:

Isorted = L[:]
Isorted.sort(key=lambda s: int(s[10:15]))

The key argument is new in Python 2.4, for older versions this kind of
sorting is quite simple to do with list comprehensions. To sort a list of
strings by their uppercase values:

tmp1 = [(x.upper(), x) for x in L] # Schwartzian transform
tmp1.sort()
Usorted = [x[1] for x in tmp1]

To sort by the integer value of a subfield extending from positions 10-15 in
each string:

tmp2 = [(int(s[10:15]), s) for s in L] # Schwartzian transform
tmp2.sort()
Isorted = [x[1] for x in tmp2]

Note that Isorted may also be computed by

def intfield(s):
 return int(s[10:15])

def Icmp(s1, s2):
 return cmp(intfield(s1), intfield(s2))

Isorted = L[:]
Isorted.sort(Icmp)

but since this method calls intfield() many times for each element of L, it
is slower than the Schwartzian Transform.

How can I sort one list by values from another list?

Merge them into a single list of tuples, sort the resulting list, and then pick
out the element you want.

>>> list1 = ["what", "I'm", "sorting", "by"]
>>> list2 = ["something", "else", "to", "sort"]
>>> pairs = zip(list1, list2)
>>> pairs
[('what', 'something'), ("I'm", 'else'), ('sorting', 'to'), ('by', 'sort')]
>>> pairs.sort()
>>> result = [x[1] for x in pairs]
>>> result
['else', 'sort', 'to', 'something']

An alternative for the last step is:

>>> result = []
>>> for p in pairs: result.append(p[1])

If you find this more legible, you might prefer to use this instead of the final
list comprehension. However, it is almost twice as slow for long lists. Why?
First, the append() operation has to reallocate memory, and while it uses
some tricks to avoid doing that each time, it still has to do it occasionally,
and that costs quite a bit. Second, the expression “result.append” requires an
extra attribute lookup, and third, there’s a speed reduction from having to make
all those function calls.

Objects

What is a class?

A class is the particular object type created by executing a class statement.
Class objects are used as templates to create instance objects, which embody
both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It
then inherits the attributes and methods of its base classes. This allows an
object model to be successively refined by inheritance. You might have a
generic Mailbox class that provides basic accessor methods for a mailbox,
and subclasses such as MboxMailbox, MaildirMailbox, OutlookMailbox
that handle various specific mailbox formats.

What is a method?

A method is a function on some object x that you normally call as
x.name(arguments...). Methods are defined as functions inside the class
definition:

class C:
 def meth (self, arg):
 return arg * 2 + self.attribute

What is self?

Self is merely a conventional name for the first argument of a method. A method
defined as meth(self, a, b, c) should be called as x.meth(a, b, c) for
some instance x of the class in which the definition occurs; the called
method will think it is called as meth(x, a, b, c).

See also Why must ‘self’ be used explicitly in method definitions and calls?.

How do I check if an object is an instance of a given class or of a subclass of it?

Use the built-in function isinstance(obj, cls). You can check if an object
is an instance of any of a number of classes by providing a tuple instead of a
single class, e.g. isinstance(obj, (class1, class2, ...)), and can also
check whether an object is one of Python’s built-in types, e.g.
isinstance(obj, str) or isinstance(obj, (int, long, float, complex)).

Note that most programs do not use isinstance() on user-defined classes
very often. If you are developing the classes yourself, a more proper
object-oriented style is to define methods on the classes that encapsulate a
particular behaviour, instead of checking the object’s class and doing a
different thing based on what class it is. For example, if you have a function
that does something:

def search(obj):
 if isinstance(obj, Mailbox):
 # ... code to search a mailbox
 elif isinstance(obj, Document):
 # ... code to search a document
 elif ...

A better approach is to define a search() method on all the classes and just
call it:

class Mailbox:
 def search(self):
 # ... code to search a mailbox

class Document:
 def search(self):
 # ... code to search a document

obj.search()

What is delegation?

Delegation is an object oriented technique (also called a design pattern).
Let’s say you have an object x and want to change the behaviour of just one
of its methods. You can create a new class that provides a new implementation
of the method you’re interested in changing and delegates all other methods to
the corresponding method of x.

Python programmers can easily implement delegation. For example, the following
class implements a class that behaves like a file but converts all written data
to uppercase:

class UpperOut:

 def __init__(self, outfile):
 self._outfile = outfile

 def write(self, s):
 self._outfile.write(s.upper())

 def __getattr__(self, name):
 return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the
argument string to uppercase before calling the underlying
self.__outfile.write() method. All other methods are delegated to the
underlying self.__outfile object. The delegation is accomplished via the
__getattr__ method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes
must be set as well as retrieved, the class must define a __setattr__()
method too, and it must do so carefully. The basic implementation of
__setattr__() is roughly equivalent to the following:

class X:
 ...
 def __setattr__(self, name, value):
 self.__dict__[name] = value
 ...

Most __setattr__() implementations must modify self.__dict__ to store
local state for self without causing an infinite recursion.

How do I call a method defined in a base class from a derived class that overrides it?

If you’re using new-style classes, use the built-in super() function:

class Derived(Base):
 def meth (self):
 super(Derived, self).meth()

If you’re using classic classes: For a class definition such as class
Derived(Base): ... you can call method meth() defined in Base (or one
of Base‘s base classes) as Base.meth(self, arguments...). Here,
Base.meth is an unbound method, so you need to provide the self
argument.

How can I organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it
before your class definition, and use the alias throughout your class. Then all
you have to change is the value assigned to the alias. Incidentally, this trick
is also handy if you want to decide dynamically (e.g. depending on availability
of resources) which base class to use. Example:

BaseAlias = <real base class>

class Derived(BaseAlias):
 def meth(self):
 BaseAlias.meth(self)
 ...

How do I create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported
in Python.

For static data, simply define a class attribute. To assign a new value to the
attribute, you have to explicitly use the class name in the assignment:

class C:
 count = 0 # number of times C.__init__ called

 def __init__(self):
 C.count = C.count + 1

 def getcount(self):
 return C.count # or return self.count

c.count also refers to C.count for any c such that isinstance(c,
C) holds, unless overridden by c itself or by some class on the base-class
search path from c.__class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a
new and unrelated instance named “count” in self‘s own dict. Rebinding of a
class-static data name must always specify the class whether inside a method or
not:

C.count = 314

Static methods are possible since Python 2.2:

class C:
 def static(arg1, arg2, arg3):
 # No 'self' parameter!
 ...
 static = staticmethod(static)

With Python 2.4’s decorators, this can also be written as

class C:
 @staticmethod
 def static(arg1, arg2, arg3):
 # No 'self' parameter!
 ...

However, a far more straightforward way to get the effect of a static method is
via a simple module-level function:

def getcount():
 return C.count

If your code is structured so as to define one class (or tightly related class
hierarchy) per module, this supplies the desired encapsulation.

How can I overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up
first in the context of constructors.

In C++ you’d write

class C {
 C() { cout << "No arguments\n"; }
 C(int i) { cout << "Argument is " << i << "\n"; }
}

In Python you have to write a single constructor that catches all cases using
default arguments. For example:

class C:
 def __init__(self, i=None):
 if i is None:
 print "No arguments"
 else:
 print "Argument is", i

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def __init__(self, *args):
 ...

The same approach works for all method definitions.

I try to use __spam and I get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple
but effective way to define class private variables. Any identifier of the form
__spam (at least two leading underscores, at most one trailing underscore)
is textually replaced with _classname__spam, where classname is the
current class name with any leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access
the “_classname__spam” attribute, and private values are visible in the object’s
__dict__. Many Python programmers never bother to use private variable
names at all.

My class defines __del__ but it is not called when I delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__() – it simply
decrements the object’s reference count, and if this reaches zero
__del__() is called.

If your data structures contain circular links (e.g. a tree where each child has
a parent reference and each parent has a list of children) the reference counts
will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last
reference to your data structure vanishes, so your __del__() method may be
called at an inconvenient and random time. This is inconvenient if you’re trying
to reproduce a problem. Worse, the order in which object’s __del__()
methods are executed is arbitrary. You can run gc.collect() to force a
collection, but there are pathological cases where objects will never be
collected.

Despite the cycle collector, it’s still a good idea to define an explicit
close() method on objects to be called whenever you’re done with them. The
close() method can then remove attributes that refer to subobjecs. Don’t
call __del__() directly – __del__() should call close() and
close() should make sure that it can be called more than once for the same
object.

Another way to avoid cyclical references is to use the weakref module,
which allows you to point to objects without incrementing their reference count.
Tree data structures, for instance, should use weak references for their parent
and sibling references (if they need them!).

If the object has ever been a local variable in a function that caught an
expression in an except clause, chances are that a reference to the object still
exists in that function’s stack frame as contained in the stack trace.
Normally, calling sys.exc_clear() will take care of this by clearing the
last recorded exception.

Finally, if your __del__() method raises an exception, a warning message
is printed to sys.stderr.

How do I get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type).
You can program the class’s constructor to keep track of all instances by
keeping a list of weak references to each instance.

Modules

How do I create a .pyc file?

When a module is imported for the first time (or when the source is more recent
than the current compiled file) a .pyc file containing the compiled code
should be created in the same directory as the .py file.

One reason that a .pyc file may not be created is permissions problems with
the directory. This can happen, for example, if you develop as one user but run
as another, such as if you are testing with a web server. Creation of a .pyc
file is automatic if you’re importing a module and Python has the ability
(permissions, free space, etc...) to write the compiled module back to the
directory.

Running Python on a top level script is not considered an import and no .pyc
will be created. For example, if you have a top-level module abc.py that
imports another module xyz.py, when you run abc, xyz.pyc will be created
since xyz is imported, but no abc.pyc file will be created since abc.py
isn’t being imported.

If you need to create abc.pyc – that is, to create a .pyc file for a module
that is not imported – you can, using the py_compile and
compileall modules.

The py_compile module can manually compile any module. One way is to use
the compile() function in that module interactively:

>>> import py_compile
>>> py_compile.compile('abc.py')

This will write the .pyc to the same location as abc.py (or you can
override that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using
the compileall module. You can do it from the shell prompt by running
compileall.py and providing the path of a directory containing Python files
to compile:

python -m compileall .

How do I find the current module name?

A module can find out its own module name by looking at the predefined global
variable __name__. If this has the value '__main__', the program is
running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code
after checking __name__:

def main():
 print 'Running test...'
 ...

if __name__ == '__main__':
 main()

How can I have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:

	main imports foo

	Empty globals for foo are created

	foo is compiled and starts executing

	foo imports bar

	Empty globals for bar are created

	bar is compiled and starts executing

	bar imports foo (which is a no-op since there already is a module named foo)

	bar.foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and
the global symbol dictionary for foo is still empty.

The same thing happens when you use import foo, and then try to access
foo.foo_var in global code.

There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ...,
and placing all code inside functions. Initializations of global variables and
class variables should use constants or built-in functions only. This means
everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

	exports (globals, functions, and classes that don’t need imported base
classes)

	import statements

	active code (including globals that are initialized from imported values).

van Rossum doesn’t like this approach much because the imports appear in a
strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import
is not necessary in the first place.

These solutions are not mutually exclusive.

__import__(‘x.y.z’) returns <module ‘x’>; how do I get z?

Try:

__import__('x.y.z').y.z

For more realistic situations, you may have to do something like

m = __import__(s)
for i in s.split(".")[1:]:
 m = getattr(m, i)

See importlib for a convenience function called
import_module().

When I edit an imported module and reimport it, the changes don’t show up. Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module
file on the first time a module is imported. If it didn’t, in a program
consisting of many modules where each one imports the same basic module, the
basic module would be parsed and re-parsed many times. To force rereading of a
changed module, do this:

import modname
reload(modname)

Warning: this technique is not 100% fool-proof. In particular, modules
containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the
module contains class definitions, existing class instances will not be
updated to use the new class definition. This can result in the following
paradoxical behaviour:

>>> import cls
>>> c = cls.C() # Create an instance of C
>>> reload(cls)
<module 'cls' from 'cls.pyc'>
>>> isinstance(c, cls.C) # isinstance is false?!?
False

The nature of the problem is made clear if you print out the class objects:

>>> c.__class__
<class cls.C at 0x7352a0>
>>> cls.C
<class cls.C at 0x4198d0>

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

Design and History FAQ

Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely
elegant and contributes a lot to the clarity of the average Python program.
Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between
grouping perceived by the parser and the human reader. Occasionally C
programmers will encounter a fragment of code like this:

if (x <= y)
 x++;
 y--;
z++;

Only the x++ statement is executed if the condition is true, but the
indentation leads you to believe otherwise. Even experienced C programmers will
sometimes stare at it a long time wondering why y is being decremented even
for x > y.

Because there are no begin/end brackets, Python is much less prone to
coding-style conflicts. In C there are many different ways to place the braces.
If you’re used to reading and writing code that uses one style, you will feel at
least slightly uneasy when reading (or being required to write) another style.

Many coding styles place begin/end brackets on a line by themselves. This makes
programs considerably longer and wastes valuable screen space, making it harder
to get a good overview of a program. Ideally, a function should fit on one
screen (say, 20-30 lines). 20 lines of Python can do a lot more work than 20
lines of C. This is not solely due to the lack of begin/end brackets – the
lack of declarations and the high-level data types are also responsible – but
the indentation-based syntax certainly helps.

Why am I getting strange results with simple arithmetic operations?

See the next question.

Why are floating point calculations so inaccurate?

People are often very surprised by results like this:

>>> 1.2 - 1.0
0.199999999999999996

and think it is a bug in Python. It’s not. This has nothing to do with Python,
but with how the underlying C platform handles floating point numbers, and
ultimately with the inaccuracies introduced when writing down numbers as a
string of a fixed number of digits.

The internal representation of floating point numbers uses a fixed number of
binary digits to represent a decimal number. Some decimal numbers can’t be
represented exactly in binary, resulting in small roundoff errors.

In decimal math, there are many numbers that can’t be represented with a fixed
number of decimal digits, e.g. 1/3 = 0.3333333333.......

In base 2, 1/2 = 0.1, 1/4 = 0.01, 1/8 = 0.001, etc. .2 equals 2/10 equals 1/5,
resulting in the binary fractional number 0.001100110011001...

Floating point numbers only have 32 or 64 bits of precision, so the digits are
cut off at some point, and the resulting number is 0.199999999999999996 in
decimal, not 0.2.

A floating point number’s repr() function prints as many digits are
necessary to make eval(repr(f)) == f true for any float f. The str()
function prints fewer digits and this often results in the more sensible number
that was probably intended:

>>> 1.1 - 0.9
0.20000000000000007
>>> print 1.1 - 0.9
0.2

One of the consequences of this is that it is error-prone to compare the result
of some computation to a float with ==. Tiny inaccuracies may mean that
== fails. Instead, you have to check that the difference between the two
numbers is less than a certain threshold:

epsilon = 0.0000000000001 # Tiny allowed error
expected_result = 0.4

if expected_result-epsilon <= computation() <= expected_result+epsilon:
 ...

Please see the chapter on floating point arithmetic in
the Python tutorial for more information.

Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate
space for it at creation time, and the storage requirements are fixed and
unchanging. This is also one of the reasons for the distinction between tuples
and lists.

Another advantage is that strings in Python are considered as “elemental” as
numbers. No amount of activity will change the value 8 to anything else, and in
Python, no amount of activity will change the string “eight” to anything else.

Why must ‘self’ be used explicitly in method definitions and calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a
variety of reasons.

First, it’s more obvious that you are using a method or instance attribute
instead of a local variable. Reading self.x or self.meth() makes it
absolutely clear that an instance variable or method is used even if you don’t
know the class definition by heart. In C++, you can sort of tell by the lack of
a local variable declaration (assuming globals are rare or easily recognizable)
– but in Python, there are no local variable declarations, so you’d have to
look up the class definition to be sure. Some C++ and Java coding standards
call for instance attributes to have an m_ prefix, so this explicitness is
still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly
reference or call the method from a particular class. In C++, if you want to
use a method from a base class which is overridden in a derived class, you have
to use the :: operator – in Python you can write
baseclass.methodname(self, <argument list>). This is particularly useful
for __init__() methods, and in general in cases where a derived class
method wants to extend the base class method of the same name and thus has to
call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment:
since local variables in Python are (by definition!) those variables to which a
value is assigned in a function body (and that aren’t explicitly declared
global), there has to be some way to tell the interpreter that an assignment was
meant to assign to an instance variable instead of to a local variable, and it
should preferably be syntactic (for efficiency reasons). C++ does this through
declarations, but Python doesn’t have declarations and it would be a pity having
to introduce them just for this purpose. Using the explicit self.var solves
this nicely. Similarly, for using instance variables, having to write
self.var means that references to unqualified names inside a method don’t
have to search the instance’s directories. To put it another way, local
variables and instance variables live in two different namespaces, and you need
to tell Python which namespace to use.

Why can’t I use an assignment in an expression?

Many people used to C or Perl complain that they want to use this C idiom:

while (line = readline(f)) {
 // do something with line
}

where in Python you’re forced to write this:

while True:
 line = f.readline()
 if not line:
 break
 ... # do something with line

The reason for not allowing assignment in Python expressions is a common,
hard-to-find bug in those other languages, caused by this construct:

if (x = 0) {
 // error handling
}
else {
 // code that only works for nonzero x
}

The error is a simple typo: x = 0, which assigns 0 to the variable x,
was written while the comparison x == 0 is certainly what was intended.

Many alternatives have been proposed. Most are hacks that save some typing but
use arbitrary or cryptic syntax or keywords, and fail the simple criterion for
language change proposals: it should intuitively suggest the proper meaning to a
human reader who has not yet been introduced to the construct.

An interesting phenomenon is that most experienced Python programmers recognize
the while True idiom and don’t seem to be missing the assignment in
expression construct much; it’s only newcomers who express a strong desire to
add this to the language.

There’s an alternative way of spelling this that seems attractive but is
generally less robust than the “while True” solution:

line = f.readline()
while line:
 ... # do something with line...
 line = f.readline()

The problem with this is that if you change your mind about exactly how you get
the next line (e.g. you want to change it into sys.stdin.readline()) you
have to remember to change two places in your program – the second occurrence
is hidden at the bottom of the loop.

The best approach is to use iterators, making it possible to loop through
objects using the for statement. For example, in the current version of
Python file objects support the iterator protocol, so you can now write simply:

for line in f:
 ... # do something with line...

Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?

The major reason is history. Functions were used for those operations that were
generic for a group of types and which were intended to work even for objects
that didn’t have methods at all (e.g. tuples). It is also convenient to have a
function that can readily be applied to an amorphous collection of objects when
you use the functional features of Python (map(), apply() et al).

In fact, implementing len(), max(), min() as a built-in function is
actually less code than implementing them as methods for each type. One can
quibble about individual cases but it’s a part of Python, and it’s too late to
make such fundamental changes now. The functions have to remain to avoid massive
code breakage.

Note

For string operations, Python has moved from external functions (the
string module) to methods. However, len() is still a function.

Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when
methods were added which give the same functionality that has always been
available using the functions of the string module. Most of these new methods
have been widely accepted, but the one which appears to make some programmers
feel uncomfortable is:

", ".join(['1', '2', '4', '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a
string literal (string constant)”, to which the answer is that it might, but a
string literal is just a fixed value. If the methods are to be allowed on names
bound to strings there is no logical reason to make them unavailable on
literals.

The second objection is typically cast as: “I am really telling a sequence to
join its members together with a string constant”. Sadly, you aren’t. For some
reason there seems to be much less difficulty with having split() as
a string method, since in that case it is easy to see that

"1, 2, 4, 8, 16".split(", ")

is an instruction to a string literal to return the substrings delimited by the
given separator (or, by default, arbitrary runs of white space). In this case a
Unicode string returns a list of Unicode strings, an ASCII string returns a list
of ASCII strings, and everyone is happy.

join() is a string method because in using it you are telling the
separator string to iterate over a sequence of strings and insert itself between
adjacent elements. This method can be used with any argument which obeys the
rules for sequence objects, including any new classes you might define yourself.

Because this is a string method it can work for Unicode strings as well as plain
ASCII strings. If join() were a method of the sequence types then the
sequence types would have to decide which type of string to return depending on
the type of the separator.

If none of these arguments persuade you, then for the moment you can continue to
use the join() function from the string module, which allows you to write

string.join(['1', '2', '4', '8', '16'], ", ")

How fast are exceptions?

A try/except block is extremely efficient. Actually catching an exception is
expensive. In versions of Python prior to 2.0 it was common to use this idiom:

try:
 value = mydict[key]
except KeyError:
 mydict[key] = getvalue(key)
 value = mydict[key]

This only made sense when you expected the dict to have the key almost all the
time. If that wasn’t the case, you coded it like this:

if mydict.has_key(key):
 value = mydict[key]
else:
 mydict[key] = getvalue(key)
 value = mydict[key]

Note

In Python 2.0 and higher, you can code this as value =
mydict.setdefault(key, getvalue(key)).

Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of if... elif... elif... else.
There have been some proposals for switch statement syntax, but there is no
consensus (yet) on whether and how to do range tests. See PEP 275 [http://www.python.org/dev/peps/pep-0275] for
complete details and the current status.

For cases where you need to choose from a very large number of possibilities,
you can create a dictionary mapping case values to functions to call. For
example:

def function_1(...):
 ...

functions = {'a': function_1,
 'b': function_2,
 'c': self.method_1, ...}

func = functions[value]
func()

For calling methods on objects, you can simplify yet further by using the
getattr() built-in to retrieve methods with a particular name:

def visit_a(self, ...):
 ...
...

def dispatch(self, value):
 method_name = 'visit_' + str(value)
 method = getattr(self, method_name)
 method()

It’s suggested that you use a prefix for the method names, such as visit_ in
this example. Without such a prefix, if values are coming from an untrusted
source, an attacker would be able to call any method on your object.

Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for
each Python stack frame. Also, extensions can call back into Python at almost
random moments. Therefore, a complete threads implementation requires thread
support for C.

Answer 2: Fortunately, there is Stackless Python [http://www.stackless.com],
which has a completely redesigned interpreter loop that avoids the C stack.
It’s still experimental but looks very promising. Although it is binary
compatible with standard Python, it’s still unclear whether Stackless will make
it into the core – maybe it’s just too revolutionary.

Why can’t lambda forms contain statements?

Python lambda forms cannot contain statements because Python’s syntactic
framework can’t handle statements nested inside expressions. However, in
Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if
you’re too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a
local scope. Therefore the only advantage of using a lambda form instead of a
locally-defined function is that you don’t need to invent a name for the
function – but that’s just a local variable to which the function object (which
is exactly the same type of object that a lambda form yields) is assigned!

Can Python be compiled to machine code, C or some other language?

Not easily. Python’s high level data types, dynamic typing of objects and
run-time invocation of the interpreter (using eval() or exec)
together mean that a “compiled” Python program would probably consist mostly of
calls into the Python run-time system, even for seemingly simple operations like
x+1.

Several projects described in the Python newsgroup or at past Python
conferences [http://python.org/community/workshops/] have shown that this
approach is feasible, although the speedups reached so far are only modest
(e.g. 2x). Jython uses the same strategy for compiling to Java bytecode. (Jim
Hugunin has demonstrated that in combination with whole-program analysis,
speedups of 1000x are feasible for small demo programs. See the proceedings
from the 1997 Python conference [http://python.org/workshops/1997-10/proceedings/] for more information.)

Internally, Python source code is always translated into a bytecode
representation, and this bytecode is then executed by the Python virtual
machine. In order to avoid the overhead of repeatedly parsing and translating
modules that rarely change, this byte code is written into a file whose name
ends in ”.pyc” whenever a module is parsed. When the corresponding .py file is
changed, it is parsed and translated again and the .pyc file is rewritten.

There is no performance difference once the .pyc file has been loaded, as the
bytecode read from the .pyc file is exactly the same as the bytecode created by
direct translation. The only difference is that loading code from a .pyc file
is faster than parsing and translating a .py file, so the presence of
precompiled .pyc files improves the start-up time of Python scripts. If
desired, the Lib/compileall.py module can be used to create valid .pyc files for
a given set of modules.

Note that the main script executed by Python, even if its filename ends in .py,
is not compiled to a .pyc file. It is compiled to bytecode, but the bytecode is
not saved to a file. Usually main scripts are quite short, so this doesn’t cost
much speed.

There are also several programs which make it easier to intermingle Python and C
code in various ways to increase performance. See, for example, Psyco [http://psyco.sourceforge.net/], Pyrex [http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/], PyInline [http://pyinline.sourceforge.net/], Py2Cmod [http://sourceforge.net/projects/py2cmod/], and Weave [http://www.scipy.org/Weave].

How does Python manage memory?

The details of Python memory management depend on the implementation. The
standard C implementation of Python uses reference counting to detect
inaccessible objects, and another mechanism to collect reference cycles,
periodically executing a cycle detection algorithm which looks for inaccessible
cycles and deletes the objects involved. The gc module provides functions
to perform a garbage collection, obtain debugging statistics, and tune the
collector’s parameters.

Jython relies on the Java runtime so the JVM’s garbage collector is used. This
difference can cause some subtle porting problems if your Python code depends on
the behavior of the reference counting implementation.

Sometimes objects get stuck in tracebacks temporarily and hence are not
deallocated when you might expect. Clear the tracebacks with:

import sys
sys.exc_clear()
sys.exc_traceback = sys.last_traceback = None

Tracebacks are used for reporting errors, implementing debuggers and related
things. They contain a portion of the program state extracted during the
handling of an exception (usually the most recent exception).

In the absence of circularities and tracebacks, Python programs do not need to
manage memory explicitly.

Why doesn’t Python use a more traditional garbage collection scheme? For one
thing, this is not a C standard feature and hence it’s not portable. (Yes, we
know about the Boehm GC library. It has bits of assembler code for most
common platforms, not for all of them, and although it is mostly transparent, it
isn’t completely transparent; patches are required to get Python to work with
it.)

Traditional GC also becomes a problem when Python is embedded into other
applications. While in a standalone Python it’s fine to replace the standard
malloc() and free() with versions provided by the GC library, an application
embedding Python may want to have its own substitute for malloc() and free(),
and may not want Python’s. Right now, Python works with anything that
implements malloc() and free() properly.

In Jython, the following code (which is fine in CPython) will probably run out
of file descriptors long before it runs out of memory:

for file in very_long_list_of_files:
 f = open(file)
 c = f.read(1)

Using the current reference counting and destructor scheme, each new assignment
to f closes the previous file. Using GC, this is not guaranteed. If you want
to write code that will work with any Python implementation, you should
explicitly close the file or use the with statement; this will work
regardless of GC:

for file in very_long_list_of_files:
 with open(file) as f:
 c = f.read(1)

Why isn’t all memory freed when Python exits?

Objects referenced from the global namespaces of Python modules are not always
deallocated when Python exits. This may happen if there are circular
references. There are also certain bits of memory that are allocated by the C
library that are impossible to free (e.g. a tool like Purify will complain about
these). Python is, however, aggressive about cleaning up memory on exit and
does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the
atexit module to run a function that will force those deletions.

Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in
fundamentally different ways. Tuples can be thought of as being similar to
Pascal records or C structs; they’re small collections of related data which may
be of different types which are operated on as a group. For example, a
Cartesian coordinate is appropriately represented as a tuple of two or three
numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to
hold a varying number of objects all of which have the same type and which are
operated on one-by-one. For example, os.listdir('.') returns a list of
strings representing the files in the current directory. Functions which
operate on this output would generally not break if you added another file or
two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t
replace any of its elements with a new value. Lists are mutable, meaning that
you can always change a list’s elements. Only immutable elements can be used as
dictionary keys, and hence only tuples and not lists can be used as keys.

How are lists implemented?

Python’s lists are really variable-length arrays, not Lisp-style linked lists.
The implementation uses a contiguous array of references to other objects, and
keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a[i] an operation whose cost is independent of
the size of the list or the value of the index.

When items are appended or inserted, the array of references is resized. Some
cleverness is applied to improve the performance of appending items repeatedly;
when the array must be grown, some extra space is allocated so the next few
times don’t require an actual resize.

How are dictionaries implemented?

Python’s dictionaries are implemented as resizable hash tables. Compared to
B-trees, this gives better performance for lookup (the most common operation by
far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary
using the hash() built-in function. The hash code varies widely depending
on the key; for example, “Python” hashes to -539294296 while “python”, a string
that differs by a single bit, hashes to 1142331976. The hash code is then used
to calculate a location in an internal array where the value will be stored.
Assuming that you’re storing keys that all have different hash values, this
means that dictionaries take constant time – O(1), in computer science notation
– to retrieve a key. It also means that no sorted order of the keys is
maintained, and traversing the array as the .keys() and .items() do will
output the dictionary’s content in some arbitrary jumbled order.

Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from
the key value to find the key. If the key were a mutable object, its value
could change, and thus its hash could also change. But since whoever changes
the key object can’t tell that it was being used as a dictionary key, it can’t
move the entry around in the dictionary. Then, when you try to look up the same
object in the dictionary it won’t be found because its hash value is different.
If you tried to look up the old value it wouldn’t be found either, because the
value of the object found in that hash bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple
first; the function tuple(L) creates a tuple with the same entries as the
list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

	Hash lists by their address (object ID). This doesn’t work because if you
construct a new list with the same value it won’t be found; e.g.:

mydict = {[1, 2]: '12'}
print mydict[[1, 2]]

would raise a KeyError exception because the id of the [1, 2] used in the
second line differs from that in the first line. In other words, dictionary
keys should be compared using ==, not using is.

	Make a copy when using a list as a key. This doesn’t work because the list,
being a mutable object, could contain a reference to itself, and then the
copying code would run into an infinite loop.

	Allow lists as keys but tell the user not to modify them. This would allow a
class of hard-to-track bugs in programs when you forgot or modified a list by
accident. It also invalidates an important invariant of dictionaries: every
value in d.keys() is usable as a key of the dictionary.

	Mark lists as read-only once they are used as a dictionary key. The problem
is that it’s not just the top-level object that could change its value; you
could use a tuple containing a list as a key. Entering anything as a key into
a dictionary would require marking all objects reachable from there as
read-only – and again, self-referential objects could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk:
You can wrap a mutable structure inside a class instance which has both a
__eq__() and a __hash__() method. You must then make sure that the
hash value for all such wrapper objects that reside in a dictionary (or other
hash based structure), remain fixed while the object is in the dictionary (or
other structure).

class ListWrapper:
 def __init__(self, the_list):
 self.the_list = the_list
 def __eq__(self, other):
 return self.the_list == other.the_list
 def __hash__(self):
 l = self.the_list
 result = 98767 - len(l)*555
 for i, el in enumerate(l):
 try:
 result = result + (hash(el) % 9999999) * 1001 + i
 except Exception:
 result = (result % 7777777) + i * 333
 return result

Note that the hash computation is complicated by the possibility that some
members of the list may be unhashable and also by the possibility of arithmetic
overflow.

Furthermore it must always be the case that if o1 == o2 (ie o1.__eq__(o2)
is True) then hash(o1) == hash(o2) (ie, o1.__hash__() == o2.__hash__()),
regardless of whether the object is in a dictionary or not. If you fail to meet
these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the
wrapped list must not change to avoid anomalies. Don’t do this unless you are
prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort
it would be wasteful. Therefore, list.sort() sorts the list in place. In
order to remind you of that fact, it does not return the sorted list. This way,
you won’t be fooled into accidentally overwriting a list when you need a sorted
copy but also need to keep the unsorted version around.

In Python 2.4 a new built-in function – sorted() – has been added.
This function creates a new list from a provided iterable, sorts it and returns
it. For example, here’s how to iterate over the keys of a dictionary in sorted
order:

for key in sorted(mydict):
 ... # do whatever with mydict[key]...

How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and
Java describes the prototypes for the methods and functions of the module. Many
feel that compile-time enforcement of interface specifications helps in the
construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes
(ABCs). You can then use isinstance() and issubclass() to check
whether an instance or a class implements a particular ABC. The
collections modules defines a set of useful ABCs such as
Iterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained
by an appropriate test discipline for components. There is also a tool,
PyChecker, which can be used to find problems due to subclassing.

A good test suite for a module can both provide a regression test and serve as a
module interface specification and a set of examples. Many Python modules can
be run as a script to provide a simple “self test.” Even modules which use
complex external interfaces can often be tested in isolation using trivial
“stub” emulations of the external interface. The doctest and
unittest modules or third-party test frameworks can be used to construct
exhaustive test suites that exercise every line of code in a module.

An appropriate testing discipline can help build large complex applications in
Python as well as having interface specifications would. In fact, it can be
better because an interface specification cannot test certain properties of a
program. For example, the append() method is expected to add new elements
to the end of some internal list; an interface specification cannot test that
your append() implementation will actually do this correctly, but it’s
trivial to check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code with
an eye to making it easily tested. One increasingly popular technique,
test-directed development, calls for writing parts of the test suite first,
before you write any of the actual code. Of course Python allows you to be
sloppy and not write test cases at all.

Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo(mydict={}): # Danger: shared reference to one dict for all calls
 ... compute something ...
 mydict[key] = value
 return mydict

The first time you call this function, mydict contains a single item. The
second time, mydict contains two items because when foo() begins
executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default
values. This is not what happens. Default values are created exactly once, when
the function is defined. If that object is changed, like the dictionary in this
example, subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None,
are safe from change. Changes to mutable objects such as dictionaries, lists,
and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable
objects as default values. Instead, use None as the default value and
inside the function, check if the parameter is None and create a new
list/dictionary/whatever if it is. For example, don’t write:

def foo(mydict={}):
 ...

but:

def foo(mydict=None):
 if mydict is None:
 mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to
compute, a common technique is to cache the parameters and the resulting value
of each call to the function, and return the cached value if the same value is
requested again. This is called “memoizing”, and can be implemented like this:

Callers will never provide a third parameter for this function.
def expensive (arg1, arg2, _cache={}):
 if (arg1, arg2) in _cache:
 return _cache[(arg1, arg2)]

 # Calculate the value
 result = ... expensive computation ...
 _cache[(arg1, arg2)] = result # Store result in the cache
 return result

You could use a global variable containing a dictionary instead of the default
value; it’s a matter of taste.

Why is there no goto?

You can use exceptions to provide a “structured goto” that even works across
function calls. Many feel that exceptions can conveniently emulate all
reasonable uses of the “go” or “goto” constructs of C, Fortran, and other
languages. For example:

class label: pass # declare a label

try:
 ...
 if (condition): raise label() # goto label
 ...
except label: # where to goto
 pass
...

This doesn’t allow you to jump into the middle of a loop, but that’s usually
considered an abuse of goto anyway. Use sparingly.

Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired
backslash at the end escapes the closing quote character, leaving an
unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular
expression engines) that want to do their own backslash escape processing. Such
processors consider an unmatched trailing backslash to be an error anyway, so
raw strings disallow that. In return, they allow you to pass on the string
quote character by escaping it with a backslash. These rules work well when
r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls
accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

Why doesn’t Python have a “with” statement for attribute assignments?

Python has a ‘with’ statement that wraps the execution of a block, calling code
on the entrance and exit from the block. Some language have a construct that
looks like this:

with obj:
 a = 1 # equivalent to obj.a = 1
 total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so
it’s possible to know, in an unambiguous way, what member is being assigned
to. This is the main point of static typing – the compiler always knows the
scope of every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute
will be referenced at runtime. Member attributes may be added or removed from
objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member
attribute?

For instance, take the following incomplete snippet:

def foo(a):
 with a:
 print x

The snippet assumes that “a” must have a member attribute called “x”. However,
there is nothing in Python that tells the interpreter this. What should happen
if “a” is, let us say, an integer? If there is a global variable named “x”,
will it be used inside the with block? As you see, the dynamic nature of Python
makes such choices much harder.

The primary benefit of “with” and similar language features (reduction of code
volume) can, however, easily be achieved in Python by assignment. Instead of:

function(args).mydict[index][index].a = 21
function(args).mydict[index][index].b = 42
function(args).mydict[index][index].c = 63

write this:

ref = function(args).mydict[index][index]
ref.a = 21
ref.b = 42
ref.c = 63

This also has the side-effect of increasing execution speed because name
bindings are resolved at run-time in Python, and the second version only needs
to perform the resolution once.

Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of
the experimental ABC language). Consider this:

if a == b
 print a

versus

if a == b:
 print a

Notice how the second one is slightly easier to read. Notice further how a
colon sets off the example in this FAQ answer; it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax
highlighting; they can look for colons to decide when indentation needs to be
increased instead of having to do a more elaborate parsing of the program text.

Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and
dictionaries:

[1, 2, 3,]
('a', 'b', 'c',)
d = {
 "A": [1, 5],
 "B": [6, 7], # last trailing comma is optional but good style
}

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across
multiple lines, it’s easier to add more elements because you don’t have to
remember to add a comma to the previous line. The lines can also be sorted in
your editor without creating a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose.
For example:

x = [
 "fee",
 "fie"
 "foo",
 "fum"
]

This list looks like it has four elements, but it actually contains three:
“fee”, “fiefoo” and “fum”. Always adding the comma avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

Library and Extension FAQ

Contents

	Library and Extension FAQ
	General Library Questions
	How do I find a module or application to perform task X?

	Where is the math.py (socket.py, regex.py, etc.) source file?

	How do I make a Python script executable on Unix?

	Is there a curses/termcap package for Python?

	Is there an equivalent to C’s onexit() in Python?

	Why don’t my signal handlers work?

	Common tasks
	How do I test a Python program or component?

	How do I create documentation from doc strings?

	How do I get a single keypress at a time?

	Threads
	How do I program using threads?

	None of my threads seem to run: why?

	How do I parcel out work among a bunch of worker threads?

	What kinds of global value mutation are thread-safe?

	Can’t we get rid of the Global Interpreter Lock?

	Input and Output
	How do I delete a file? (And other file questions...)

	How do I copy a file?

	How do I read (or write) binary data?

	I can’t seem to use os.read() on a pipe created with os.popen(); why?

	How do I run a subprocess with pipes connected to both input and output?

	How do I access the serial (RS232) port?

	Why doesn’t closing sys.stdout (stdin, stderr) really close it?

	Network/Internet Programming
	What WWW tools are there for Python?

	How can I mimic CGI form submission (METHOD=POST)?

	What module should I use to help with generating HTML?

	How do I send mail from a Python script?

	How do I avoid blocking in the connect() method of a socket?

	Databases
	Are there any interfaces to database packages in Python?

	How do you implement persistent objects in Python?

	Why is cPickle so slow?

	If my program crashes with a bsddb (or anydbm) database open, it gets corrupted. How come?

	I tried to open Berkeley DB file, but bsddb produces bsddb.error: (22, ‘Invalid argument’). Help! How can I restore my data?

	Mathematics and Numerics
	How do I generate random numbers in Python?

General Library Questions

How do I find a module or application to perform task X?

Check the Library Reference to see if there’s a relevant
standard library module. (Eventually you’ll learn what’s in the standard
library and will able to skip this step.)

For third-party packages, search the Python Package Index [http://pypi.python.org/pypi] or try Google [http://www.google.com] or
another Web search engine. Searching for “Python” plus a keyword or two for
your topic of interest will usually find something helpful.

Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or
dynamically loaded module implemented in C, C++ or other compiled language.
In this case you may not have the source file or it may be something like
mathmodule.c, somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:

	modules written in Python (.py);

	modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

	modules written in C and linked with the interpreter; to get a list of these,
type:

import sys
print sys.builtin_module_names

How do I make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the
first line must begin with #! followed by the path of the Python
interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755
scriptfile.

The second can be done in a number of ways. The most straightforward way is to
write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python
interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter
lives, you can use the “env” program. Almost all Unix variants support the
following, assuming the Python interpreter is in a directory on the user’s
$PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The $PATH variable for CGI scripts is often
very minimal, so you need to use the actual absolute pathname of the
interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program
fails; or there’s no env program at all. In that case, you can try the
following hack (due to Alex Rezinsky):

#! /bin/sh
""":"
exec python $0 ${1+"$@"}
"""

The minor disadvantage is that this defines the script’s __doc__ string.
However, you can fix that by adding

__doc__ = """...Whatever..."""

Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses
module in the Modules/ subdirectory, though it’s not compiled by default
(note that this is not available in the Windows distribution – there is no
curses module for Windows).

The curses module supports basic curses features as well as many additional
functions from ncurses and SYSV curses such as colour, alternative character set
support, pads, and mouse support. This means the module isn’t compatible with
operating systems that only have BSD curses, but there don’t seem to be any
currently maintained OSes that fall into this category.

For Windows: use the consolelib module [http://effbot.org/zone/console-index.htm].

Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s
onexit.

Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong
argument list. It is called as

handler(signum, frame)

so it should be declared with two arguments:

def handler(signum, frame):
 ...

Common tasks

How do I test a Python program or component?

Python comes with two testing frameworks. The doctest module finds
examples in the docstrings for a module and runs them, comparing the output with
the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and
Smalltalk testing frameworks.

For testing, it helps to write the program so that it may be easily tested by
using good modular design. Your program should have almost all functionality
encapsulated in either functions or class methods – and this sometimes has the
surprising and delightful effect of making the program run faster (because local
variable accesses are faster than global accesses). Furthermore the program
should avoid depending on mutating global variables, since this makes testing
much more difficult to do.

The “global main logic” of your program may be as simple as

if __name__ == "__main__":
 main_logic()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of functions and class
behaviours you should write test functions that exercise the behaviours. A test
suite can be associated with each module which automates a sequence of tests.
This sounds like a lot of work, but since Python is so terse and flexible it’s
surprisingly easy. You can make coding much more pleasant and fun by writing
your test functions in parallel with the “production code”, since this makes it
easy to find bugs and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may
include a self-test of the module.

if __name__ == "__main__":
 self_test()

Even programs that interact with complex external interfaces may be tested when
the external interfaces are unavailable by using “fake” interfaces implemented
in Python.

How do I create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python
source code. An alternative for creating API documentation purely from
docstrings is epydoc [http://epydoc.sf.net/]. Sphinx [http://sphinx.pocoo.org] can also include docstring content.

How do I get a single keypress at a time?

For Unix variants: There are several solutions. It’s straightforward to do this
using curses, but curses is a fairly large module to learn. Here’s a solution
without curses:

import termios, fcntl, sys, os
fd = sys.stdin.fileno()

oldterm = termios.tcgetattr(fd)
newattr = termios.tcgetattr(fd)
newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
termios.tcsetattr(fd, termios.TCSANOW, newattr)

oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)

try:
 while 1:
 try:
 c = sys.stdin.read(1)
 print "Got character", repr(c)
 except IOError: pass
finally:
 termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)
 fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)

You need the termios and the fcntl module for any of this to work,
and I’ve only tried it on Linux, though it should work elsewhere. In this code,
characters are read and printed one at a time.

termios.tcsetattr() turns off stdin’s echoing and disables canonical mode.
fcntl.fnctl() is used to obtain stdin’s file descriptor flags and modify
them for non-blocking mode. Since reading stdin when it is empty results in an
IOError, this error is caught and ignored.

Threads

How do I program using threads?

Be sure to use the threading module and not the thread module.
The threading module builds convenient abstractions on top of the
low-level primitives provided by the thread module.

Aahz has a set of slides from his threading tutorial that are helpful; see
http://www.pythoncraft.com/OSCON2001/.

None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is
running too quickly, giving the threads no time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for
all the threads to finish:

import threading, time

def thread_task(name, n):
 for i in range(n): print name, i

for i in range(10):
 T = threading.Thread(target=thread_task, args=(str(i), i))
 T.start()

time.sleep(10) # <----------------------------!

But now (on many platforms) the threads don’t run in parallel, but appear to run
sequentially, one at a time! The reason is that the OS thread scheduler doesn’t
start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task(name, n):
 time.sleep(0.001) # <---------------------!
 for i in range(n): print name, i

for i in range(10):
 T = threading.Thread(target=thread_task, args=(str(i), i))
 T.start()

time.sleep(10)

Instead of trying to guess how long a time.sleep() delay will be enough,
it’s better to use some kind of semaphore mechanism. One idea is to use the
Queue module to create a queue object, let each thread append a token to
the queue when it finishes, and let the main thread read as many tokens from the
queue as there are threads.

How do I parcel out work among a bunch of worker threads?

Use the Queue module to create a queue containing a list of jobs. The
Queue class maintains a list of objects with .put(obj) to
add an item to the queue and .get() to return an item. The class will take
care of the locking necessary to ensure that each job is handed out exactly
once.

Here’s a trivial example:

import threading, Queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker ():
 print 'Running worker'
 time.sleep(0.1)
 while True:
 try:
 arg = q.get(block=False)
 except Queue.Empty:
 print 'Worker', threading.currentThread(),
 print 'queue empty'
 break
 else:
 print 'Worker', threading.currentThread(),
 print 'running with argument', arg
 time.sleep(0.5)

Create queue
q = Queue.Queue()

Start a pool of 5 workers
for i in range(5):
 t = threading.Thread(target=worker, name='worker %i' % (i+1))
 t.start()

Begin adding work to the queue
for i in range(50):
 q.put(i)

Give threads time to run
print 'Main thread sleeping'
time.sleep(5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping
Worker <Thread(worker 1, started)> running with argument 0
Worker <Thread(worker 2, started)> running with argument 1
Worker <Thread(worker 3, started)> running with argument 2
Worker <Thread(worker 4, started)> running with argument 3
Worker <Thread(worker 5, started)> running with argument 4
Worker <Thread(worker 1, started)> running with argument 5
...

Consult the module’s documentation for more details; the Queue class
provides a featureful interface.

What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one
thread runs in the Python VM at a time. In general, Python offers to switch
among threads only between bytecode instructions; how frequently it switches can
be set via sys.setcheckinterval(). Each bytecode instruction and
therefore all the C implementation code reached from each instruction is
therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the
PVM bytecode implementation. In practice, it means that operations on shared
variables of built-in data types (ints, lists, dicts, etc) that “look atomic”
really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D,
D1, D2 are dicts, x, y are objects, i, j are ints):

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()

These aren’t:

i = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’
__del__() method when their reference count reaches zero, and that can
affect things. This is especially true for the mass updates to dictionaries and
lists. When in doubt, use a mutex!

Can’t we get rid of the Global Interpreter Lock?

The Global Interpreter Lock (GIL) is often seen as a hindrance to Python’s
deployment on high-end multiprocessor server machines, because a multi-threaded
Python program effectively only uses one CPU, due to the insistence that
(almost) all Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive
patch set (the “free threading” patches) that removed the GIL and replaced it
with fine-grained locking. Unfortunately, even on Windows (where locks are very
efficient) this ran ordinary Python code about twice as slow as the interpreter
using the GIL. On Linux the performance loss was even worse because pthread
locks aren’t as efficient.

Since then, the idea of getting rid of the GIL has occasionally come up but
nobody has found a way to deal with the expected slowdown, and users who don’t
use threads would not be happy if their code ran at half at the speed. Greg’s
free threading patch set has not been kept up-to-date for later Python versions.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines!
You just have to be creative with dividing the work up between multiple
processes rather than multiple threads. Judicious use of C extensions will
also help; if you use a C extension to perform a time-consuming task, the
extension can release the GIL while the thread of execution is in the C code and
allow other threads to get some work done.

It has been suggested that the GIL should be a per-interpreter-state lock rather
than truly global; interpreters then wouldn’t be able to share objects.
Unfortunately, this isn’t likely to happen either. It would be a tremendous
amount of work, because many object implementations currently have global state.
For example, small integers and short strings are cached; these caches would
have to be moved to the interpreter state. Other object types have their own
free list; these free lists would have to be moved to the interpreter state.
And so on.

And I doubt that it can even be done in finite time, because the same problem
exists for 3rd party extensions. It is likely that 3rd party extensions are
being written at a faster rate than you can convert them to store all their
global state in the interpreter state.

And finally, once you have multiple interpreters not sharing any state, what
have you gained over running each interpreter in a separate process?

Input and Output

How do I delete a file? (And other file questions...)

Use os.remove(filename) or os.unlink(filename); for documentation, see
the os module. The two functions are identical; unlink() is simply
the name of the Unix system call for this function.

To remove a directory, use os.rmdir(); use os.mkdir() to create one.
os.makedirs(path) will create any intermediate directories in path that
don’t exist. os.removedirs(path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its
contents, use shutil.rmtree().

To rename a file, use os.rename(old_path, new_path).

To truncate a file, open it using f = open(filename, "r+"), and use
f.truncate(offset); offset defaults to the current seek position. There’s
also os.ftruncate(fd, offset) for files opened with os.open(), where
fd is the file descriptor (a small integer).

The shutil module also contains a number of functions to work on files
including copyfile(), copytree(), and
rmtree().

How do I copy a file?

The shutil module contains a copyfile() function. Note
that on MacOS 9 it doesn’t copy the resource fork and Finder info.

How do I read (or write) binary data?

To read or write complex binary data formats, it’s best to use the struct
module. It allows you to take a string containing binary data (usually numbers)
and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer
in big-endian format from a file:

import struct

f = open(filename, "rb") # Open in binary mode for portability
s = f.read(8)
x, y, z = struct.unpack(">hhl", s)

The ‘>’ in the format string forces big-endian data; the letter ‘h’ reads one
“short integer” (2 bytes), and ‘l’ reads one “long integer” (4 bytes) from the
string.

For data that is more regular (e.g. a homogeneous list of ints or thefloats),
you can also use the array module.

I can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read() is a low-level function which takes a file descriptor, a small
integer representing the opened file. os.popen() creates a high-level
file object, the same type returned by the built-in open() function.
Thus, to read n bytes from a pipe p created with os.popen(), you need to
use p.read(n).

How do I run a subprocess with pipes connected to both input and output?

Use the popen2 module. For example:

import popen2
fromchild, tochild = popen2.popen2("command")
tochild.write("input\n")
tochild.flush()
output = fromchild.readline()

Warning: in general it is unwise to do this because you can easily cause a
deadlock where your process is blocked waiting for output from the child while
the child is blocked waiting for input from you. This can be caused because the
parent expects the child to output more text than it does, or it can be caused
by data being stuck in stdio buffers due to lack of flushing. The Python parent
can of course explicitly flush the data it sends to the child before it reads
any output, but if the child is a naive C program it may have been written to
never explicitly flush its output, even if it is interactive, since flushing is
normally automatic.

Note that a deadlock is also possible if you use popen3() to read stdout
and stderr. If one of the two is too large for the internal buffer (increasing
the buffer size does not help) and you read() the other one first, there is
a deadlock, too.

Note on a bug in popen2: unless your program calls wait() or waitpid(),
finished child processes are never removed, and eventually calls to popen2 will
fail because of a limit on the number of child processes. Calling
os.waitpid() with the os.WNOHANG option can prevent this; a good
place to insert such a call would be before calling popen2 again.

In many cases, all you really need is to run some data through a command and get
the result back. Unless the amount of data is very large, the easiest way to do
this is to write it to a temporary file and run the command with that temporary
file as input. The standard module tempfile exports a mktemp()
function to generate unique temporary file names.

import tempfile
import os

class Popen3:
 """
 This is a deadlock-safe version of popen that returns
 an object with errorlevel, out (a string) and err (a string).
 (capturestderr may not work under windows.)
 Example: print Popen3('grep spam','\n\nhere spam\n\n').out
 """
 def __init__(self,command,input=None,capturestderr=None):
 outfile=tempfile.mktemp()
 command="(%s) > %s" % (command,outfile)
 if input:
 infile=tempfile.mktemp()
 open(infile,"w").write(input)
 command=command+" <"+infile
 if capturestderr:
 errfile=tempfile.mktemp()
 command=command+" 2>"+errfile
 self.errorlevel=os.system(command) >> 8
 self.out=open(outfile,"r").read()
 os.remove(outfile)
 if input:
 os.remove(infile)
 if capturestderr:
 self.err=open(errfile,"r").read()
 os.remove(errfile)

Note that many interactive programs (e.g. vi) don’t work well with pipes
substituted for standard input and output. You will have to use pseudo ttys
(“ptys”) instead of pipes. Or you can use a Python interface to Don Libes’
“expect” library. A Python extension that interfaces to expect is called “expy”
and available from http://expectpy.sourceforge.net. A pure Python solution that
works like expect is pexpect [http://pypi.python.org/pypi/pexpect/].

How do I access the serial (RS232) port?

For Win32, POSIX (Linux, BSD, etc.), Jython:

http://pyserial.sourceforge.net

For Unix, see a Usenet post by Mitch Chapman:

http://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on top of C streams,
which in turn are a medium-level layer of abstraction on top of (among other
things) low-level C file descriptors.

For most file objects you create in Python via the built-in file
constructor, f.close() marks the Python file object as being closed from
Python’s point of view, and also arranges to close the underlying C stream.
This also happens automatically in f‘s destructor, when f becomes
garbage.

But stdin, stdout and stderr are treated specially by Python, because of the
special status also given to them by C. Running sys.stdout.close() marks
the Python-level file object as being closed, but does not close the
associated C stream.

To close the underlying C stream for one of these three, you should first be
sure that’s what you really want to do (e.g., you may confuse extension modules
trying to do I/O). If it is, use os.close:

os.close(0) # close C's stdin stream
os.close(1) # close C's stdout stream
os.close(2) # close C's stderr stream

Network/Internet Programming

What WWW tools are there for Python?

See the chapters titled Internet Protocols and Support and Internet Data Handling in the Library
Reference Manual. Python has many modules that will help you build server-side
and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at
http://wiki.python.org/moin/WebProgramming .

Cameron Laird maintains a useful set of pages about Python web technologies at
http://phaseit.net/claird/comp.lang.python/web_python.

How can I mimic CGI form submission (METHOD=POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is
there existing code that would let me do this easily?

Yes. Here’s a simple example that uses httplib:

#!/usr/local/bin/python

import httplib, sys, time

build the query string
qs = "First=Josephine&MI=Q&Last=Public"

connect and send the server a path
httpobj = httplib.HTTP('www.some-server.out-there', 80)
httpobj.putrequest('POST', '/cgi-bin/some-cgi-script')
now generate the rest of the HTTP headers...
httpobj.putheader('Accept', '*/*')
httpobj.putheader('Connection', 'Keep-Alive')
httpobj.putheader('Content-type', 'application/x-www-form-urlencoded')
httpobj.putheader('Content-length', '%d' % len(qs))
httpobj.endheaders()
httpobj.send(qs)
find out what the server said in response...
reply, msg, hdrs = httpobj.getreply()
if reply != 200:
 sys.stdout.write(httpobj.getfile().read())

Note that in general for percent-encoded POST operations, query strings must be
quoted using urllib.quote(). For example to send name=”Guy Steele, Jr.”:

>>> from urllib import quote
>>> x = quote("Guy Steele, Jr.")
>>> x
'Guy%20Steele,%20Jr.'
>>> query_string = "name="+x
>>> query_string
'name=Guy%20Steele,%20Jr.'

What module should I use to help with generating HTML?

There are many different modules available:

	HTMLgen is a class library of objects corresponding to all the HTML 3.2 markup
tags. It’s used when you are writing in Python and wish to synthesize HTML
pages for generating a web or for CGI forms, etc.

	DocumentTemplate and Zope Page Templates are two different systems that are
part of Zope.

	Quixote’s PTL uses Python syntax to assemble strings of text.

Consult the Web Programming wiki pages [http://wiki.python.org/moin/WebProgramming] for more links.

How do I send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will
work on any host that supports an SMTP listener.

import sys, smtplib

fromaddr = raw_input("From: ")
toaddrs = raw_input("To: ").split(',')
print "Enter message, end with ^D:"
msg = ''
while True:
 line = sys.stdin.readline()
 if not line:
 break
 msg += line

The actual mail send
server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

A Unix-only alternative uses sendmail. The location of the sendmail program
varies between systems; sometimes it is /usr/lib/sendmail, sometime
/usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

SENDMAIL = "/usr/sbin/sendmail" # sendmail location
import os
p = os.popen("%s -t -i" % SENDMAIL, "w")
p.write("To: receiver@example.com\n")
p.write("Subject: test\n")
p.write("\n") # blank line separating headers from body
p.write("Some text\n")
p.write("some more text\n")
sts = p.close()
if sts != 0:
 print "Sendmail exit status", sts

How do I avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking
mode. Then when you do the connect(), you will either connect immediately
(unlikely) or get an exception that contains the error number as .errno.
errno.EINPROGRESS indicates that the connection is in progress, but hasn’t
finished yet. Different OSes will return different values, so you’re going to
have to check what’s returned on your system.

You can use the connect_ex() method to avoid creating an exception. It will
just return the errno value. To poll, you can call connect_ex() again later
– 0 or errno.EISCONN indicate that you’re connected – or you can pass this
socket to select to check if it’s writable.

Databases

Are there any interfaces to database packages in Python?

Yes.

Python 2.3 includes the bsddb package which provides an interface to the
BerkeleyDB library. Interfaces to disk-based hashes such as DBM
and GDBM are also included with standard Python.

Support for most relational databases is available. See the
DatabaseProgramming wiki page [http://wiki.python.org/moin/DatabaseProgramming] for details.

How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you
still can’t store things like open files, sockets or windows), and the
shelve library module uses pickle and (g)dbm to create persistent
mappings containing arbitrary Python objects. For better performance, you can
use the cPickle module.

A more awkward way of doing things is to use pickle’s little sister, marshal.
The marshal module provides very fast ways to store noncircular basic
Python types to files and strings, and back again. Although marshal does not do
fancy things like store instances or handle shared references properly, it does
run extremely fast. For example loading a half megabyte of data may take less
than a third of a second. This often beats doing something more complex and
general such as using gdbm with pickle/shelve.

Why is cPickle so slow?

The default format used by the pickle module is a slow one that results in
readable pickles. Making it the default, but it would break backward
compatibility:

largeString = 'z' * (100 * 1024)
myPickle = cPickle.dumps(largeString, protocol=1)

If my program crashes with a bsddb (or anydbm) database open, it gets corrupted. How come?

Databases opened for write access with the bsddb module (and often by the anydbm
module, since it will preferentially use bsddb) must explicitly be closed using
the .close() method of the database. The underlying library caches database
contents which need to be converted to on-disk form and written.

If you have initialized a new bsddb database but not written anything to it
before the program crashes, you will often wind up with a zero-length file and
encounter an exception the next time the file is opened.

I tried to open Berkeley DB file, but bsddb produces bsddb.error: (22, ‘Invalid argument’). Help! How can I restore my data?

Don’t panic! Your data is probably intact. The most frequent cause for the error
is that you tried to open an earlier Berkeley DB file with a later version of
the Berkeley DB library.

Many Linux systems now have all three versions of Berkeley DB available. If you
are migrating from version 1 to a newer version use db_dump185 to dump a plain
text version of the database. If you are migrating from version 2 to version 3
use db2_dump to create a plain text version of the database. In either case,
use db_load to create a new native database for the latest version installed on
your computer. If you have version 3 of Berkeley DB installed, you should be
able to use db2_load to create a native version 2 database.

You should move away from Berkeley DB version 1 files because the hash file code
contains known bugs that can corrupt your data.

Mathematics and Numerics

How do I generate random numbers in Python?

The standard module random implements a random number generator. Usage
is simple:

import random
random.random()

This returns a random floating point number in the range [0, 1).

There are also many other specialized generators in this module, such as:

	randrange(a, b) chooses an integer in the range [a, b).

	uniform(a, b) chooses a floating point number in the range [a, b).

	normalvariate(mean, sdev) samples the normal (Gaussian) distribution.

Some higher-level functions operate on sequences directly, such as:

	choice(S) chooses random element from a given sequence

	shuffle(L) shuffles a list in-place, i.e. permutes it randomly

There’s also a Random class you can instantiate to create independent
multiple random number generators.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

Extending/Embedding FAQ

Contents

	Extending/Embedding FAQ
	Can I create my own functions in C?

	Can I create my own functions in C++?

	Writing C is hard; are there any alternatives?

	How can I execute arbitrary Python statements from C?

	How can I evaluate an arbitrary Python expression from C?

	How do I extract C values from a Python object?

	How do I use Py_BuildValue() to create a tuple of arbitrary length?

	How do I call an object’s method from C?

	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

	How do I access a module written in Python from C?

	How do I interface to C++ objects from Python?

	I added a module using the Setup file and the make fails; why?

	How do I debug an extension?

	I want to compile a Python module on my Linux system, but some files are missing. Why?

	What does “SystemError: _PyImport_FixupExtension: module yourmodule not loaded” mean?

	How do I tell “incomplete input” from “invalid input”?

	How do I find undefined g++ symbols __builtin_new or __pure_virtual?

	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	When importing module X, why do I get “undefined symbol: PyUnicodeUCS2*”?

Can I create my own functions in C?

Yes, you can create built-in modules containing functions, variables, exceptions
and even new types in C. This is explained in the document
IronPython .NET API Reference Manual.

Most intermediate or advanced Python books will also cover this topic.

Can I create my own functions in C++?

Yes, using the C compatibility features found in C++. Place extern "C" {
... } around the Python include files and put extern "C" before each
function that is going to be called by the Python interpreter. Global or static
C++ objects with constructors are probably not a good idea.

Writing C is hard; are there any alternatives?

There are a number of alternatives to writing your own C extensions, depending
on what you’re trying to do.

If you need more speed, Psyco [http://psyco.sourceforge.net/] generates x86
assembly code from Python bytecode. You can use Psyco to compile the most
time-critical functions in your code, and gain a significant improvement with
very little effort, as long as you’re running on a machine with an
x86-compatible processor.

Pyrex [http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/] is a compiler
that accepts a slightly modified form of Python and generates the corresponding
C code. Pyrex makes it possible to write an extension without having to learn
Python’s C API.

If you need to interface to some C or C++ library for which no Python extension
currently exists, you can try wrapping the library’s data types and functions
with a tool such as SWIG [http://www.swig.org]. SIP [http://www.riverbankcomputing.co.uk/software/sip/], CXX [http://cxx.sourceforge.net/] Boost [http://www.boost.org/libs/python/doc/index.html], or Weave [http://www.scipy.org/Weave] are also alternatives for wrapping
C++ libraries.

How can I execute arbitrary Python statements from C?

The highest-level function to do this is PyRun_SimpleString() which takes
a single string argument to be executed in the context of the module
__main__ and returns 0 for success and -1 when an exception occurred
(including SyntaxError). If you want more control, use
PyRun_String(); see the source for PyRun_SimpleString() in
Python/pythonrun.c.

How can I evaluate an arbitrary Python expression from C?

Call the function PyRun_String() from the previous question with the
start symbol Py_eval_input; it parses an expression, evaluates it and
returns its value.

How do I extract C values from a Python object?

That depends on the object’s type. If it’s a tuple, PyTuple_Size()
returns its length and PyTuple_GetItem() returns the item at a specified
index. Lists have similar functions, PyListSize() and
PyList_GetItem().

For strings, PyString_Size() returns its length and
PyString_AsString() a pointer to its value. Note that Python strings may
contain null bytes so C’s strlen() should not be used.

To test the type of an object, first make sure it isn’t NULL, and then use
PyString_Check(), PyTuple_Check(), PyList_Check(), etc.

There is also a high-level API to Python objects which is provided by the
so-called ‘abstract’ interface – read Include/abstract.h for further
details. It allows interfacing with any kind of Python sequence using calls
like PySequence_Length(), PySequence_GetItem(), etc.) as well as
many other useful protocols.

How do I use Py_BuildValue() to create a tuple of arbitrary length?

You can’t. Use t = PyTuple_New(n) instead, and fill it with objects using
PyTuple_SetItem(t, i, o) – note that this “eats” a reference count of
o, so you have to Py_INCREF() it. Lists have similar functions
PyList_New(n) and PyList_SetItem(l, i, o). Note that you must set all
the tuple items to some value before you pass the tuple to Python code –
PyTuple_New(n) initializes them to NULL, which isn’t a valid Python value.

How do I call an object’s method from C?

The PyObject_CallMethod() function can be used to call an arbitrary
method of an object. The parameters are the object, the name of the method to
call, a format string like that used with Py_BuildValue(), and the
argument values:

PyObject *
PyObject_CallMethod(PyObject *object, char *method_name,
 char *arg_format, ...);

This works for any object that has methods – whether built-in or user-defined.
You are responsible for eventually Py_DECREF()‘ing the return value.

To call, e.g., a file object’s “seek” method with arguments 10, 0 (assuming the
file object pointer is “f”):

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {
 ... an exception occurred ...
}
else {
 Py_DECREF(res);
}

Note that since PyObject_CallObject() always wants a tuple for the
argument list, to call a function without arguments, pass “()” for the format,
and to call a function with one argument, surround the argument in parentheses,
e.g. “(i)”.

How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

In Python code, define an object that supports the write() method. Assign
this object to sys.stdout and sys.stderr. Call print_error, or
just allow the standard traceback mechanism to work. Then, the output will go
wherever your write() method sends it.

The easiest way to do this is to use the StringIO class in the standard library.

Sample code and use for catching stdout:

>>> class StdoutCatcher:
... def __init__(self):
... self.data = ''
... def write(self, stuff):
... self.data = self.data + stuff
...
>>> import sys
>>> sys.stdout = StdoutCatcher()
>>> print 'foo'
>>> print 'hello world!'
>>> sys.stderr.write(sys.stdout.data)
foo
hello world!

How do I access a module written in Python from C?

You can get a pointer to the module object as follows:

module = PyImport_ImportModule("<modulename>");

If the module hasn’t been imported yet (i.e. it is not yet present in
sys.modules), this initializes the module; otherwise it simply returns
the value of sys.modules["<modulename>"]. Note that it doesn’t enter the
module into any namespace – it only ensures it has been initialized and is
stored in sys.modules.

You can then access the module’s attributes (i.e. any name defined in the
module) as follows:

attr = PyObject_GetAttrString(module, "<attrname>");

Calling PyObject_SetAttrString() to assign to variables in the module
also works.

How do I interface to C++ objects from Python?

Depending on your requirements, there are many approaches. To do this manually,
begin by reading the “Extending and Embedding” document. Realize that for the Python run-time system, there isn’t a
whole lot of difference between C and C++ – so the strategy of building a new
Python type around a C structure (pointer) type will also work for C++ objects.

For C++ libraries, see Writing C is hard; are there any alternatives?.

I added a module using the Setup file and the make fails; why?

Setup must end in a newline, if there is no newline there, the build process
fails. (Fixing this requires some ugly shell script hackery, and this bug is so
minor that it doesn’t seem worth the effort.)

How do I debug an extension?

When using GDB with dynamically loaded extensions, you can’t set a breakpoint in
your extension until your extension is loaded.

In your .gdbinit file (or interactively), add the command:

br _PyImport_LoadDynamicModule

Then, when you run GDB:

$ gdb /local/bin/python
gdb) run myscript.py
gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded
gdb) br myfunction.c:50
gdb) continue

I want to compile a Python module on my Linux system, but some files are missing. Why?

Most packaged versions of Python don’t include the
/usr/lib/python2.x/config/ directory, which contains various files
required for compiling Python extensions.

For Red Hat, install the python-devel RPM to get the necessary files.

For Debian, run apt-get install python-dev.

What does “SystemError: _PyImport_FixupExtension: module yourmodule not loaded” mean?

This means that you have created an extension module named “yourmodule”, but
your module init function does not initialize with that name.

Every module init function will have a line similar to:

module = Py_InitModule("yourmodule", yourmodule_functions);

If the string passed to this function is not the same name as your extension
module, the SystemError exception will be raised.

How do I tell “incomplete input” from “invalid input”?

Sometimes you want to emulate the Python interactive interpreter’s behavior,
where it gives you a continuation prompt when the input is incomplete (e.g. you
typed the start of an “if” statement or you didn’t close your parentheses or
triple string quotes), but it gives you a syntax error message immediately when
the input is invalid.

In Python you can use the codeop module, which approximates the parser’s
behavior sufficiently. IDLE uses this, for example.

The easiest way to do it in C is to call PyRun_InteractiveLoop() (perhaps
in a separate thread) and let the Python interpreter handle the input for
you. You can also set the PyOS_ReadlineFunctionPointer() to point at your
custom input function. See Modules/readline.c and Parser/myreadline.c
for more hints.

However sometimes you have to run the embedded Python interpreter in the same
thread as your rest application and you can’t allow the
PyRun_InteractiveLoop() to stop while waiting for user input. The one
solution then is to call PyParser_ParseString() and test for e.error
equal to E_EOF, which means the input is incomplete). Here’s a sample code
fragment, untested, inspired by code from Alex Farber:

#include <Python.h>
#include <node.h>
#include <errcode.h>
#include <grammar.h>
#include <parsetok.h>
#include <compile.h>

int testcomplete(char *code)
 /* code should end in \n */
 /* return -1 for error, 0 for incomplete, 1 for complete */
{
 node *n;
 perrdetail e;

 n = PyParser_ParseString(code, &_PyParser_Grammar,
 Py_file_input, &e);
 if (n == NULL) {
 if (e.error == E_EOF)
 return 0;
 return -1;
 }

 PyNode_Free(n);
 return 1;
}

Another solution is trying to compile the received string with
Py_CompileString(). If it compiles without errors, try to execute the
returned code object by calling PyEval_EvalCode(). Otherwise save the
input for later. If the compilation fails, find out if it’s an error or just
more input is required - by extracting the message string from the exception
tuple and comparing it to the string “unexpected EOF while parsing”. Here is a
complete example using the GNU readline library (you may want to ignore
SIGINT while calling readline()):

#include <stdio.h>
#include <readline.h>

#include <Python.h>
#include <object.h>
#include <compile.h>
#include <eval.h>

int main (int argc, char* argv[])
{
 int i, j, done = 0; /* lengths of line, code */
 char ps1[] = ">>> ";
 char ps2[] = "... ";
 char *prompt = ps1;
 char *msg, *line, *code = NULL;
 PyObject *src, *glb, *loc;
 PyObject *exc, *val, *trb, *obj, *dum;

 Py_Initialize ();
 loc = PyDict_New ();
 glb = PyDict_New ();
 PyDict_SetItemString (glb, "__builtins__", PyEval_GetBuiltins ());

 while (!done)
 {
 line = readline (prompt);

 if (NULL == line) /* CTRL-D pressed */
 {
 done = 1;
 }
 else
 {
 i = strlen (line);

 if (i > 0)
 add_history (line); /* save non-empty lines */

 if (NULL == code) /* nothing in code yet */
 j = 0;
 else
 j = strlen (code);

 code = realloc (code, i + j + 2);
 if (NULL == code) /* out of memory */
 exit (1);

 if (0 == j) /* code was empty, so */
 code[0] = '\0'; /* keep strncat happy */

 strncat (code, line, i); /* append line to code */
 code[i + j] = '\n'; /* append '\n' to code */
 code[i + j + 1] = '\0';

 src = Py_CompileString (code, "<stdin>", Py_single_input);

 if (NULL != src) /* compiled just fine - */
 {
 if (ps1 == prompt || /* ">>> " or */
 '\n' == code[i + j - 1]) /* "... " and double '\n' */
 { /* so execute it */
 dum = PyEval_EvalCode ((PyCodeObject *)src, glb, loc);
 Py_XDECREF (dum);
 Py_XDECREF (src);
 free (code);
 code = NULL;
 if (PyErr_Occurred ())
 PyErr_Print ();
 prompt = ps1;
 }
 } /* syntax error or E_EOF? */
 else if (PyErr_ExceptionMatches (PyExc_SyntaxError))
 {
 PyErr_Fetch (&exc, &val, &trb); /* clears exception! */

 if (PyArg_ParseTuple (val, "sO", &msg, &obj) &&
 !strcmp (msg, "unexpected EOF while parsing")) /* E_EOF */
 {
 Py_XDECREF (exc);
 Py_XDECREF (val);
 Py_XDECREF (trb);
 prompt = ps2;
 }
 else /* some other syntax error */
 {
 PyErr_Restore (exc, val, trb);
 PyErr_Print ();
 free (code);
 code = NULL;
 prompt = ps1;
 }
 }
 else /* some non-syntax error */
 {
 PyErr_Print ();
 free (code);
 code = NULL;
 prompt = ps1;
 }

 free (line);
 }
 }

 Py_XDECREF(glb);
 Py_XDECREF(loc);
 Py_Finalize();
 exit(0);
}

How do I find undefined g++ symbols __builtin_new or __pure_virtual?

To dynamically load g++ extension modules, you must recompile Python, relink it
using g++ (change LINKCC in the Python Modules Makefile), and link your
extension module using g++ (e.g., g++ -shared -o mymodule.so mymodule.o).

Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

In Python 2.2, you can inherit from built-in classes such as int,
list, dict, etc.

The Boost Python Library (BPL, http://www.boost.org/libs/python/doc/index.html)
provides a way of doing this from C++ (i.e. you can inherit from an extension
class written in C++ using the BPL).

When importing module X, why do I get “undefined symbol: PyUnicodeUCS2*”?

You are using a version of Python that uses a 4-byte representation for Unicode
characters, but some C extension module you are importing was compiled using a
Python that uses a 2-byte representation for Unicode characters (the default).

If instead the name of the undefined symbol starts with PyUnicodeUCS4, the
problem is the reverse: Python was built using 2-byte Unicode characters, and
the extension module was compiled using a Python with 4-byte Unicode characters.

This can easily occur when using pre-built extension packages. RedHat Linux
7.x, in particular, provided a “python2” binary that is compiled with 4-byte
Unicode. This only causes the link failure if the extension uses any of the
PyUnicode_*() functions. It is also a problem if an extension uses any of
the Unicode-related format specifiers for Py_BuildValue() (or similar) or
parameter specifications for PyArg_ParseTuple().

You can check the size of the Unicode character a Python interpreter is using by
checking the value of sys.maxunicode:

>>> import sys
>>> if sys.maxunicode > 65535:
... print 'UCS4 build'
... else:
... print 'UCS2 build'

The only way to solve this problem is to use extension modules compiled with a
Python binary built using the same size for Unicode characters.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

Python on Windows FAQ

Contents

	Python on Windows FAQ
	How do I run a Python program under Windows?

	How do I make Python scripts executable?

	Why does Python sometimes take so long to start?

	Where is Freeze for Windows?

	Is a *.pyd file the same as a DLL?

	How can I embed Python into a Windows application?

	How do I use Python for CGI?

	How do I keep editors from inserting tabs into my Python source?

	How do I check for a keypress without blocking?

	How do I emulate os.kill() in Windows?

	Why does os.path.isdir() fail on NT shared directories?

	cgi.py (or other CGI programming) doesn’t work sometimes on NT or win95!

	Why doesn’t os.popen() work in PythonWin on NT?

	Why doesn’t os.popen()/win32pipe.popen() work on Win9x?

	PyRun_SimpleFile() crashes on Windows but not on Unix; why?

	Importing _tkinter fails on Windows 95/98: why?

	How do I extract the downloaded documentation on Windows?

	Missing cw3215mt.dll (or missing cw3215.dll)

	Warning about CTL3D32 version from installer

How do I run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar
with running programs from the Windows command line then everything will seem
obvious; otherwise, you might need a little more guidance. There are also
differences between Windows 95, 98, NT, ME, 2000 and XP which can add to the
confusion.

[image: Python Development on XP] [http://www.showmedo.com/videos/series?name=pythonOzsvaldPyNewbieSeries]

Python Development on XP [http://www.showmedo.com/videos/series?name=pythonOzsvaldPyNewbieSeries]

This series of screencasts aims to get you up and running with Python on
Windows XP. The knowledge is distilled into 1.5 hours and will get you up
and running with the right Python distribution, coding in your choice of IDE,
and debugging and writing solid code with unit-tests.

Unless you use some sort of integrated development environment, you will end up
typing Windows commands into what is variously referred to as a “DOS window”
or “Command prompt window”. Usually you can create such a window from your
Start menu; under Windows 2000 the menu selection is Start ‣
Programs ‣ Accessories ‣ Command Prompt. You should be able to recognize
when you have started such a window because you will see a Windows “command
prompt”, which usually looks like this:

C:\>

The letter may be different, and there might be other things after it, so you
might just as easily see something like:

D:\Steve\Projects\Python>

depending on how your computer has been set up and what else you have recently
done with it. Once you have started such a window, you are well on the way to
running Python programs.

You need to realize that your Python scripts have to be processed by another
program called the Python interpreter. The interpreter reads your script,
compiles it into bytecodes, and then executes the bytecodes to run your
program. So, how do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word
“python” as an instruction to start the interpreter. If you have opened a
command window, you should try entering the command python and hitting
return. You should then see something like:

Python 2.2 (#28, Dec 21 2001, 12:21:22) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

You have started the interpreter in “interactive mode”. That means you can enter
Python statements or expressions interactively and have them executed or
evaluated while you wait. This is one of Python’s strongest features. Check it
by entering a few expressions of your choice and seeing the results:

>>> print "Hello"
Hello
>>> "Hello" * 3
HelloHelloHello

Many people use the interactive mode as a convenient yet highly programmable
calculator. When you want to end your interactive Python session, hold the Ctrl
key down while you enter a Z, then hit the “Enter” key to get back to your
Windows command prompt.

You may also find that you have a Start-menu entry such as Start
‣ Programs ‣ Python 2.2 ‣ Python (command line) that results in you
seeing the >>> prompt in a new window. If so, the window will disappear
after you enter the Ctrl-Z character; Windows is running a single “python”
command in the window, and closes it when you terminate the interpreter.

If the python command, instead of displaying the interpreter prompt >>>,
gives you a message like:

'python' is not recognized as an internal or external command,
operable program or batch file.

[image: Adding Python to DOS Path] [http://showmedo.com/videos/video?name=960000&fromSeriesID=96]

Adding Python to DOS Path [http://showmedo.com/videos/video?name=960000&fromSeriesID=96]

Python is not added to the DOS path by default. This screencast will walk
you through the steps to add the correct entry to the System Path, allowing
Python to be executed from the command-line by all users.

or:

Bad command or filename

then you need to make sure that your computer knows where to find the Python
interpreter. To do this you will have to modify a setting called PATH, which is
a list of directories where Windows will look for programs.

You should arrange for Python’s installation directory to be added to the PATH
of every command window as it starts. If you installed Python fairly recently
then the command

dir C:\py*

will probably tell you where it is installed; the usual location is something
like C:\Python23. Otherwise you will be reduced to a search of your whole
disk ... use Tools ‣ Find or hit the Search
button and look for “python.exe”. Supposing you discover that Python is
installed in the C:\Python23 directory (the default at the time of writing),
you should make sure that entering the command

c:\Python23\python

starts up the interpreter as above (and don’t forget you’ll need a “CTRL-Z” and
an “Enter” to get out of it). Once you have verified the directory, you need to
add it to the start-up routines your computer goes through. For older versions
of Windows the easiest way to do this is to edit the C:\AUTOEXEC.BAT
file. You would want to add a line like the following to AUTOEXEC.BAT:

PATH C:\Python23;%PATH%

For Windows NT, 2000 and (I assume) XP, you will need to add a string such as

;C:\Python23

to the current setting for the PATH environment variable, which you will find in
the properties window of “My Computer” under the “Advanced” tab. Note that if
you have sufficient privilege you might get a choice of installing the settings
either for the Current User or for System. The latter is preferred if you want
everybody to be able to run Python on the machine.

If you aren’t confident doing any of these manipulations yourself, ask for help!
At this stage you may want to reboot your system to make absolutely sure the new
setting has taken effect. You probably won’t need to reboot for Windows NT, XP
or 2000. You can also avoid it in earlier versions by editing the file
C:\WINDOWS\COMMAND\CMDINIT.BAT instead of AUTOEXEC.BAT.

You should now be able to start a new command window, enter python at the
C:\> (or whatever) prompt, and see the >>> prompt that indicates the
Python interpreter is reading interactive commands.

Let’s suppose you have a program called pytest.py in directory
C:\Steve\Projects\Python. A session to run that program might look like
this:

C:\> cd \Steve\Projects\Python
C:\Steve\Projects\Python> python pytest.py

Because you added a file name to the command to start the interpreter, when it
starts up it reads the Python script in the named file, compiles it, executes
it, and terminates, so you see another C:\> prompt. You might also have
entered

C:\> python \Steve\Projects\Python\pytest.py

if you hadn’t wanted to change your current directory.

Under NT, 2000 and XP you may well find that the installation process has also
arranged that the command pytest.py (or, if the file isn’t in the current
directory, C:\Steve\Projects\Python\pytest.py) will automatically recognize
the ”.py” extension and run the Python interpreter on the named file. Using this
feature is fine, but some versions of Windows have bugs which mean that this
form isn’t exactly equivalent to using the interpreter explicitly, so be
careful.

The important things to remember are:

	Start Python from the Start Menu, or make sure the PATH is set correctly so
Windows can find the Python interpreter.

python

should give you a ‘>>>’ prompt from the Python interpreter. Don’t forget the
CTRL-Z and ENTER to terminate the interpreter (and, if you started the window
from the Start Menu, make the window disappear).

	Once this works, you run programs with commands:

python {program-file}

	When you know the commands to use you can build Windows shortcuts to run the
Python interpreter on any of your scripts, naming particular working
directories, and adding them to your menus. Take a look at

python --help

if your needs are complex.

	Interactive mode (where you see the >>> prompt) is best used for checking
that individual statements and expressions do what you think they will, and
for developing code by experiment.

How do I make Python scripts executable?

On Windows 2000, the standard Python installer already associates the .py
extension with a file type (Python.File) and gives that file type an open
command that runs the interpreter (D:\Program Files\Python\python.exe "%1"
%*). This is enough to make scripts executable from the command prompt as
‘foo.py’. If you’d rather be able to execute the script by simple typing ‘foo’
with no extension you need to add .py to the PATHEXT environment variable.

On Windows NT, the steps taken by the installer as described above allow you to
run a script with ‘foo.py’, but a longtime bug in the NT command processor
prevents you from redirecting the input or output of any script executed in this
way. This is often important.

The incantation for making a Python script executable under WinNT is to give the
file an extension of .cmd and add the following as the first line:

@setlocal enableextensions & python -x %~f0 %* & goto :EOF

Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug
reports that Python suddenly begins to take a long time to start up. This is
made even more puzzling because Python will work fine on other Windows systems
which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on
the problem machine. Some virus scanners have been known to introduce startup
overhead of two orders of magnitude when the scanner is configured to monitor
all reads from the filesystem. Try checking the configuration of virus scanning
software on your systems to ensure that they are indeed configured identically.
McAfee, when configured to scan all file system read activity, is a particular
offender.

Where is Freeze for Windows?

“Freeze” is a program that allows you to ship a Python program as a single
stand-alone executable file. It is not a compiler; your programs don’t run
any faster, but they are more easily distributable, at least to platforms with
the same OS and CPU. Read the README file of the freeze program for more
disclaimers.

You can use freeze on Windows, but you must download the source tree (see
http://www.python.org/download/source). The freeze program is in the
Tools\freeze subdirectory of the source tree.

You need the Microsoft VC++ compiler, and you probably need to build Python.
The required project files are in the PCbuild directory.

Is a *.pyd file the same as a DLL?

Yes, .pyd files are dll’s, but there are a few differences. If you have a DLL
named foo.pyd, then it must have a function initfoo(). You can then
write Python “import foo”, and Python will search for foo.pyd (as well as
foo.py, foo.pyc) and if it finds it, will attempt to call initfoo() to
initialize it. You do not link your .exe with foo.lib, as that would cause
Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path
that Windows uses to search for foo.dll. Also, foo.pyd need not be present to
run your program, whereas if you linked your program with a dll, the dll is
required. Of course, foo.pyd is required if you want to say import foo. In
a DLL, linkage is declared in the source code with __declspec(dllexport).
In a .pyd, linkage is defined in a list of available functions.

How can I embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

	Do _not_ build Python into your .exe file directly. On Windows, Python must
be a DLL to handle importing modules that are themselves DLL’s. (This is the
first key undocumented fact.) Instead, link to pythonNN.dll; it is
typically installed in C:\Windows\System. NN is the Python version, a
number such as “23” for Python 2.3.

You can link to Python in two different ways. Load-time linking means
linking against pythonNN.lib, while run-time linking means linking
against pythonNN.dll. (General note: pythonNN.lib is the
so-called “import lib” corresponding to pythonNN.dll. It merely
defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run
time. Your code must load pythonNN.dll using the Windows
LoadLibraryEx() routine. The code must also use access routines and data
in pythonNN.dll (that is, Python’s C API’s) using pointers obtained
by the Windows GetProcAddress() routine. Macros can make using these
pointers transparent to any C code that calls routines in Python’s C API.

Borland note: convert pythonNN.lib to OMF format using Coff2Omf.exe
first.

	If you use SWIG, it is easy to create a Python “extension module” that will
make the app’s data and methods available to Python. SWIG will handle just
about all the grungy details for you. The result is C code that you link
into your .exe file (!) You do _not_ have to create a DLL file, and this
also simplifies linking.

	SWIG will create an init function (a C function) whose name depends on the
name of the extension module. For example, if the name of the module is leo,
the init function will be called initleo(). If you use SWIG shadow classes,
as you should, the init function will be called initleoc(). This initializes
a mostly hidden helper class used by the shadow class.

The reason you can link the C code in step 2 into your .exe file is that
calling the initialization function is equivalent to importing the module
into Python! (This is the second key undocumented fact.)

	In short, you can use the following code to initialize the Python interpreter
with your extension module.

#include "python.h"
...
Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString("import myApp") ; // Import the shadow class.

	There are two problems with Python’s C API which will become apparent if you
use a compiler other than MSVC, the compiler used to build pythonNN.dll.

Problem 1: The so-called “Very High Level” functions that take FILE *
arguments will not work in a multi-compiler environment because each
compiler’s notion of a struct FILE will be different. From an implementation
standpoint these are very _low_ level functions.

Problem 2: SWIG generates the following code when generating wrappers to void
functions:

Py_INCREF(Py_None);
_resultobj = Py_None;
return _resultobj;

Alas, Py_None is a macro that expands to a reference to a complex data
structure called _Py_NoneStruct inside pythonNN.dll. Again, this code will
fail in a mult-compiler environment. Replace such code by:

return Py_BuildValue("");

It may be possible to use SWIG’s %typemap command to make the change
automatically, though I have not been able to get this to work (I’m a
complete SWIG newbie).

	Using a Python shell script to put up a Python interpreter window from inside
your Windows app is not a good idea; the resulting window will be independent
of your app’s windowing system. Rather, you (or the wxPythonWindow class)
should create a “native” interpreter window. It is easy to connect that
window to the Python interpreter. You can redirect Python’s i/o to _any_
object that supports read and write, so all you need is a Python object
(defined in your extension module) that contains read() and write() methods.

How do I use Python for CGI?

On the Microsoft IIS server or on the Win95 MS Personal Web Server you set up
Python in the same way that you would set up any other scripting engine.

Run regedt32 and go to:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\ScriptMap

and enter the following line (making any specific changes that your system may
need):

.py :REG_SZ: c:\<path to python>\python.exe -u %s %s

This line will allow you to call your script with a simple reference like:
http://yourserver/scripts/yourscript.py provided “scripts” is an
“executable” directory for your server (which it usually is by default). The
-u flag specifies unbuffered and binary mode for stdin - needed when
working with binary data.

In addition, it is recommended that using ”.py” may not be a good idea for the
file extensions when used in this context (you might want to reserve *.py
for support modules and use *.cgi or *.cgp for “main program” scripts).

In order to set up Internet Information Services 5 to use Python for CGI
processing, please see the following links:

http://www.e-coli.net/pyiis_server.html (for Win2k Server)
http://www.e-coli.net/pyiis.html (for Win2k pro)

Configuring Apache is much simpler. In the Apache configuration file
httpd.conf, add the following line at the end of the file:

ScriptInterpreterSource Registry

Then, give your Python CGI-scripts the extension .py and put them in the cgi-bin
directory.

How do I keep editors from inserting tabs into my Python source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8 [http://www.python.org/dev/peps/pep-0008],
recommends 4 spaces for distributed Python code; this is also the Emacs
python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in
this respect, and is easily configured to use spaces: Take Tools
‣ Options ‣ Tabs, and for file type “Default” set “Tab size” and “Indent
size” to 4, and select the “Insert spaces” radio button.

If you suspect mixed tabs and spaces are causing problems in leading whitespace,
run Python with the -t switch or run Tools/Scripts/tabnanny.py to
check a directory tree in batch mode.

How do I check for a keypress without blocking?

Use the msvcrt module. This is a standard Windows-specific extension module.
It defines a function kbhit() which checks whether a keyboard hit is
present, and getch() which gets one character without echoing it.

How do I emulate os.kill() in Windows?

Prior to Python 2.7 and 3.2, to terminate a process, you can use ctypes:

import ctypes

def kill(pid):
 """kill function for Win32"""
 kernel32 = ctypes.windll.kernel32
 handle = kernel32.OpenProcess(1, 0, pid)
 return (0 != kernel32.TerminateProcess(handle, 0))

In 2.7 and 3.2, os.kill() is implemented similar to the above function,
with the additional feature of being able to send CTRL+C and CTRL+BREAK
to console subprocesses which are designed to handle those signals. See
os.kill() for further details.

Why does os.path.isdir() fail on NT shared directories?

The solution appears to be always append the “\” on the end of shared
drives.

>>> import os
>>> os.path.isdir('\\\\rorschach\\public')
0
>>> os.path.isdir('\\\\rorschach\\public\\')
1

It helps to think of share points as being like drive letters. Example:

k: is not a directory
k:\ is a directory
k:\media is a directory
k:\media\ is not a directory

The same rules apply if you substitute “k:” with “\conkyfoo”:

\\conky\foo is not a directory
\\conky\foo\ is a directory
\\conky\foo\media is a directory
\\conky\foo\media\ is not a directory

cgi.py (or other CGI programming) doesn’t work sometimes on NT or win95!

Be sure you have the latest python.exe, that you are using python.exe rather
than a GUI version of Python and that you have configured the server to execute

"...\python.exe -u ..."

for the CGI execution. The -u (unbuffered) option on NT and Win95
prevents the interpreter from altering newlines in the standard input and
output. Without it post/multipart requests will seem to have the wrong length
and binary (e.g. GIF) responses may get garbled (resulting in broken images, PDF
files, and other binary downloads failing).

Why doesn’t os.popen() work in PythonWin on NT?

The reason that os.popen() doesn’t work from within PythonWin is due to a bug in
Microsoft’s C Runtime Library (CRT). The CRT assumes you have a Win32 console
attached to the process.

You should use the win32pipe module’s popen() instead which doesn’t depend on
having an attached Win32 console.

Example:

import win32pipe
f = win32pipe.popen('dir /c c:\\')
print f.readlines()
f.close()

Why doesn’t os.popen()/win32pipe.popen() work on Win9x?

There is a bug in Win9x that prevents os.popen/win32pipe.popen* from
working. The good news is there is a way to work around this problem. The
Microsoft Knowledge Base article that you need to lookup is: Q150956. You will
find links to the knowledge base at: http://support.microsoft.com/.

PyRun_SimpleFile() crashes on Windows but not on Unix; why?

This is very sensitive to the compiler vendor, version and (perhaps) even
options. If the FILE* structure in your embedding program isn’t the same as is
assumed by the Python interpreter it won’t work.

The Python 1.5.* DLLs (python15.dll) are all compiled with MS VC++ 5.0 and
with multithreading-DLL options (/MD).

If you can’t change compilers or flags, try using Py_RunSimpleString().
A trick to get it to run an arbitrary file is to construct a call to
execfile() with the name of your file as argument.

Also note that you can not mix-and-match Debug and Release versions. If you
wish to use the Debug Multithreaded DLL, then your module must have an “_d”
appended to the base name.

Importing _tkinter fails on Windows 95/98: why?

Sometimes, the import of _tkinter fails on Windows 95 or 98, complaining with a
message like the following:

ImportError: DLL load failed: One of the library files needed
to run this application cannot be found.

It could be that you haven’t installed Tcl/Tk, but if you did install Tcl/Tk,
and the Wish application works correctly, the problem may be that its installer
didn’t manage to edit the autoexec.bat file correctly. It tries to add a
statement that changes the PATH environment variable to include the Tcl/Tk ‘bin’
subdirectory, but sometimes this edit doesn’t quite work. Opening it with
notepad usually reveals what the problem is.

(One additional hint, noted by David Szafranski: you can’t use long filenames
here; e.g. use C:\PROGRA~1\Tcl\bin instead of C:\Program Files\Tcl\bin.)

How do I extract the downloaded documentation on Windows?

Sometimes, when you download the documentation package to a Windows machine
using a web browser, the file extension of the saved file ends up being .EXE.
This is a mistake; the extension should be .TGZ.

Simply rename the downloaded file to have the .TGZ extension, and WinZip will be
able to handle it. (If your copy of WinZip doesn’t, get a newer one from
http://www.winzip.com.)

Missing cw3215mt.dll (or missing cw3215.dll)

Sometimes, when using Tkinter on Windows, you get an error that cw3215mt.dll or
cw3215.dll is missing.

Cause: you have an old Tcl/Tk DLL built with cygwin in your path (probably
C:\Windows). You must use the Tcl/Tk DLLs from the standard Tcl/Tk
installation (Python 1.5.2 comes with one).

Warning about CTL3D32 version from installer

The Python installer issues a warning like this:

This version uses CTL3D32.DLL which is not the correct version.
This version is used for windows NT applications only.

Tim Peters:

This is a Microsoft DLL, and a notorious source of problems. The message
means what it says: you have the wrong version of this DLL for your operating
system. The Python installation did not cause this – something else you
installed previous to this overwrote the DLL that came with your OS (probably
older shareware of some sort, but there’s no way to tell now). If you search
for “CTL3D32” using any search engine (AltaVista, for example), you’ll find
hundreds and hundreds of web pages complaining about the same problem with
all sorts of installation programs. They’ll point you to ways to get the
correct version reinstalled on your system (since Python doesn’t cause this,
we can’t fix it).

David A Burton has written a little program to fix this. Go to
http://www.burtonsys.com/downloads.html and click on “ctl3dfix.zip”.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

Graphic User Interface FAQ

Contents

	Graphic User Interface FAQ
	What platform-independent GUI toolkits exist for Python?
	Tkinter

	wxWidgets

	Qt

	Gtk+

	FLTK

	FOX

	OpenGL

	What platform-specific GUI toolkits exist for Python?

	Tkinter questions
	How do I freeze Tkinter applications?

	Can I have Tk events handled while waiting for I/O?

	I can’t get key bindings to work in Tkinter: why?

What platform-independent GUI toolkits exist for Python?

Depending on what platform(s) you are aiming at, there are several.

Tkinter

Standard builds of Python include an object-oriented interface to the Tcl/Tk
widget set, called Tkinter. This is probably the easiest to install and use.
For more info about Tk, including pointers to the source, see the Tcl/Tk home
page at http://www.tcl.tk. Tcl/Tk is fully portable to the MacOS, Windows, and
Unix platforms.

wxWidgets

wxWidgets (http://www.wxwidgets.org) is a free, portable GUI class
library written in C++ that provides a native look and feel on a
number of platforms, with Windows, MacOS X, GTK, X11, all listed as
current stable targets. Language bindings are available for a number
of languages including Python, Perl, Ruby, etc.

wxPython (http://www.wxpython.org) is the Python binding for
wxwidgets. While it often lags slightly behind the official wxWidgets
releases, it also offers a number of features via pure Python
extensions that are not available in other language bindings. There
is an active wxPython user and developer community.

Both wxWidgets and wxPython are free, open source, software with
permissive licences that allow their use in commercial products as
well as in freeware or shareware.

Qt

There are bindings available for the Qt toolkit (PyQt [http://www.riverbankcomputing.co.uk/software/pyqt/]) and for KDE (PyKDE [http://www.riverbankcomputing.co.uk/software/pykde/intro]). If
you’re writing open source software, you don’t need to pay for PyQt, but if you
want to write proprietary applications, you must buy a PyQt license from
Riverbank Computing [http://www.riverbankcomputing.co.uk] and (up to Qt 4.4;
Qt 4.5 upwards is licensed under the LGPL license) a Qt license from Trolltech [http://www.trolltech.com].

Gtk+

PyGtk bindings for the Gtk+ toolkit [http://www.gtk.org] have been
implemented by James Henstridge; see <http://www.pygtk.org>.

FLTK

Python bindings for the FLTK toolkit [http://www.fltk.org], a simple yet
powerful and mature cross-platform windowing system, are available from the
PyFLTK project [http://pyfltk.sourceforge.net].

FOX

A wrapper for the FOX toolkit [http://www.fox-toolkit.org/] called FXpy [http://fxpy.sourceforge.net/] is available. FOX supports both Unix variants
and Windows.

OpenGL

For OpenGL bindings, see PyOpenGL [http://pyopengl.sourceforge.net].

What platform-specific GUI toolkits exist for Python?

The Mac port [http://python.org/download/mac] by Jack Jansen has a rich and
ever-growing set of modules that support the native Mac toolbox calls. The port
supports MacOS X’s Carbon libraries.

By installing the PyObjc Objective-C bridge [http://pyobjc.sourceforge.net], Python programs can use MacOS X’s
Cocoa libraries. See the documentation that comes with the Mac port.

Pythonwin by Mark Hammond includes an interface to the
Microsoft Foundation Classes and a Python programming environment
that’s written mostly in Python using the MFC classes.

Tkinter questions

How do I freeze Tkinter applications?

Freeze is a tool to create stand-alone applications. When freezing Tkinter
applications, the applications will not be truly stand-alone, as the application
will still need the Tcl and Tk libraries.

One solution is to ship the application with the Tcl and Tk libraries, and point
to them at run-time using the TCL_LIBRARY and TK_LIBRARY
environment variables.

To get truly stand-alone applications, the Tcl scripts that form the library
have to be integrated into the application as well. One tool supporting that is
SAM (stand-alone modules), which is part of the Tix distribution
(http://tix.sourceforge.net/).

Build Tix with SAM enabled, perform the appropriate call to
Tclsam_init(), etc. inside Python’s
Modules/tkappinit.c, and link with libtclsam and libtksam (you
might include the Tix libraries as well).

Can I have Tk events handled while waiting for I/O?

Yes, and you don’t even need threads! But you’ll have to restructure your I/O
code a bit. Tk has the equivalent of Xt’s XtAddInput() call, which allows you
to register a callback function which will be called from the Tk mainloop when
I/O is possible on a file descriptor. Here’s what you need:

from Tkinter import tkinter
tkinter.createfilehandler(file, mask, callback)

The file may be a Python file or socket object (actually, anything with a
fileno() method), or an integer file descriptor. The mask is one of the
constants tkinter.READABLE or tkinter.WRITABLE. The callback is called as
follows:

callback(file, mask)

You must unregister the callback when you’re done, using

tkinter.deletefilehandler(file)

Note: since you don’t know how many bytes are available for reading, you can’t
use the Python file object’s read or readline methods, since these will insist
on reading a predefined number of bytes. For sockets, the recv() or
recvfrom() methods will work fine; for other files, use
os.read(file.fileno(), maxbytecount).

I can’t get key bindings to work in Tkinter: why?

An often-heard complaint is that event handlers bound to events with the
bind() method don’t get handled even when the appropriate key is pressed.

The most common cause is that the widget to which the binding applies doesn’t
have “keyboard focus”. Check out the Tk documentation for the focus command.
Usually a widget is given the keyboard focus by clicking in it (but not for
labels; see the takefocus option).

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

 	Python Frequently Asked Questions

“Why is Python Installed on my Computer?” FAQ

What is Python?

Python is a programming language. It’s used for many different applications.
It’s used in some high schools and colleges as an introductory programming
language because Python is easy to learn, but it’s also used by professional
software developers at places such as Google, NASA, and Lucasfilm Ltd.

If you wish to learn more about Python, start with the Beginner’s Guide to
Python [http://wiki.python.org/moin/BeginnersGuide].

Why is Python installed on my machine?

If you find Python installed on your system but don’t remember installing it,
there are several possible ways it could have gotten there.

	Perhaps another user on the computer wanted to learn programming and installed
it; you’ll have to figure out who’s been using the machine and might have
installed it.

	A third-party application installed on the machine might have been written in
Python and included a Python installation. For a home computer, the most
common such application is PySol [http://pysolfc.sourceforge.net/], a
solitaire game that includes over 1000 different games and variations.

	Some Windows machines also have Python installed. At this writing we’re aware
of computers from Hewlett-Packard and Compaq that include Python. Apparently
some of HP/Compaq’s administrative tools are written in Python.

	All Apple computers running Mac OS X have Python installed; it’s included in
the base installation.

Can I delete Python?

That depends on where Python came from.

If someone installed it deliberately, you can remove it without hurting
anything. On Windows, use the Add/Remove Programs icon in the Control Panel.

If Python was installed by a third-party application, you can also remove it,
but that application will no longer work. You should use that application’s
uninstaller rather than removing Python directly.

If Python came with your operating system, removing it is not recommended. If
you remove it, whatever tools were written in Python will no longer run, and
some of them might be important to you. Reinstalling the whole system would
then be required to fix things again.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Glossary

	>>>

	The default Python prompt of the interactive shell. Often seen for code
examples which can be executed interactively in the interpreter.

	...

	The default Python prompt of the interactive shell when entering code for
an indented code block or within a pair of matching left and right
delimiters (parentheses, square brackets or curly braces).

	2to3

	A tool that tries to convert Python 2.x code to Python 3.x code by
handling most of the incompatibilities which can be detected by parsing the
source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone
entry point is provided as Tools/scripts/2to3. See
2to3 - Automated Python 2 to 3 code translation.

	abstract base class

	ABCs - abstract base classes complement duck-typing by
providing a way to define interfaces when other techniques like
hasattr() would be clumsy. Python comes with many built-in ABCs for
data structures (in the collections module), numbers (in the
numbers module), and streams (in the io module). You can
create your own ABC with the abc module.

	argument

	A value passed to a function or method, assigned to a named local
variable in the function body. A function or method may have both
positional arguments and keyword arguments in its definition.
Positional and keyword arguments may be variable-length: * accepts
or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments
in a dictionary.

Any expression may be used within the argument list, and the evaluated
value is passed to the local variable.

	attribute

	A value associated with an object which is referenced by name using
dotted expressions. For example, if an object o has an attribute
a it would be referenced as o.a.

	BDFL

	Benevolent Dictator For Life, a.k.a. Guido van Rossum [http://www.python.org/~guido/], Python’s creator.

	bytecode

	Python source code is compiled into bytecode, the internal representation
of a Python program in the interpreter. The bytecode is also cached in
.pyc and .pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This
“intermediate language” is said to run on a virtual machine
that executes the machine code corresponding to each bytecode.

A list of bytecode instructions can be found in the documentation for
the dis module.

	class

	A template for creating user-defined objects. Class definitions
normally contain method definitions which operate on instances of the
class.

	classic class

	Any class which does not inherit from object. See
new-style class. Classic classes will be removed in Python 3.0.

	coercion

	The implicit conversion of an instance of one type to another during an
operation which involves two arguments of the same type. For example,
int(3.15) converts the floating point number to the integer 3, but
in 3+4.5, each argument is of a different type (one int, one float),
and both must be converted to the same type before they can be added or it
will raise a TypeError. Coercion between two operands can be
performed with the coerce built-in function; thus, 3+4.5 is
equivalent to calling operator.add(*coerce(3, 4.5)) and results in
operator.add(3.0, 4.5). Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the
programmer, e.g., float(3)+4.5 rather than just 3+4.5.

	complex number

	An extension of the familiar real number system in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary
numbers are real multiples of the imaginary unit (the square root of
-1), often written i in mathematics or j in
engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a
j suffix, e.g., 3+1j. To get access to complex equivalents of the
math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them,
it’s almost certain you can safely ignore them.

	context manager

	An object which controls the environment seen in a with
statement by defining __enter__() and __exit__() methods.
See PEP 343 [http://www.python.org/dev/peps/pep-0343].

	CPython

	The canonical implementation of the Python programming language, as
distributed on python.org [http://python.org]. The term “CPython”
is used when necessary to distinguish this implementation from others
such as Jython or IronPython.

	decorator

	A function returning another function, usually applied as a function
transformation using the @wrapper syntax. Common examples for
decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two
function definitions are semantically equivalent:

def f(...):
 ...
f = staticmethod(f)

@staticmethod
def f(...):
 ...

See the documentation for function definition for more
about decorators.

	descriptor

	Any new-style object which defines the methods __get__(),
__set__(), or __delete__(). When a class attribute is a
descriptor, its special binding behavior is triggered upon attribute
lookup. Normally, using a.b to get, set or delete an attribute looks up
the object named b in the class dictionary for a, but if b is a
descriptor, the respective descriptor method gets called. Understanding
descriptors is a key to a deep understanding of Python because they are
the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors.

	dictionary

	An associative array, where arbitrary keys are mapped to values. The keys
can be any object with __hash__() function and __eq__()
methods. Called a hash in Perl.

	docstring

	A string literal which appears as the first expression in a class,
function or module. While ignored when the suite is executed, it is
recognized by the compiler and put into the __doc__ attribute
of the enclosing class, function or module. Since it is available via
introspection, it is the canonical place for documentation of the
object.

	duck-typing

	A programming style which does not look at an object’s type to determine
if it has the right interface; instead, the method or attribute is simply
called or used (“If it looks like a duck and quacks like a duck, it
must be a duck.”) By emphasizing interfaces rather than specific types,
well-designed code improves its flexibility by allowing polymorphic
substitution. Duck-typing avoids tests using type() or
isinstance(). (Note, however, that duck-typing can be complemented
with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

	EAFP

	Easier to ask for forgiveness than permission. This common Python coding
style assumes the existence of valid keys or attributes and catches
exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except
statements. The technique contrasts with the LBYL style
common to many other languages such as C.

	expression

	A piece of syntax which can be evaluated to some value. In other words,
an expression is an accumulation of expression elements like literals, names,
attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions.
There are also statements which cannot be used as expressions,
such as print or if. Assignments are also statements,
not expressions.

	extension module

	A module written in C# (or any other .NET language), using IronPython’s
.NET API to interact with the core and with user code.

	finder

	An object that tries to find the loader for a module. It must
implement a method named find_module(). See PEP 302 [http://www.python.org/dev/peps/pep-0302] for
details.

	floor division

	Mathematical division that rounds down to nearest integer. The floor
division operator is //. For example, the expression 11 // 4
evaluates to 2 in contrast to the 2.75 returned by float true
division. Note that (-11) // 4 is -3 because that is -2.75
rounded downward. See PEP 238 [http://www.python.org/dev/peps/pep-0238].

	function

	A series of statements which returns some value to a caller. It can also
be passed zero or more arguments which may be used in the execution of
the body. See also argument and method.

	__future__

	A pseudo-module which programmers can use to enable new language features
which are not compatible with the current interpreter. For example, the
expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the
__future__ module and evaluating its variables, you can see when a
new feature was first added to the language and when it will become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

	garbage collection

	The process of freeing memory when it is not used anymore. Python
performs garbage collection via reference counting and a cyclic garbage
collector that is able to detect and break reference cycles.

	generator

	A function which returns an iterator. It looks like a normal function
except that it contains yield statements for producing a series
a values usable in a for-loop or that can be retrieved one at a time with
the next() function. Each yield temporarily suspends
processing, remembering the location execution state (including local
variables and pending try-statements). When the generator resumes, it
picks-up where it left-off (in contrast to functions which start fresh on
every invocation).

	generator expression

	An expression that returns an iterator. It looks like a normal expression
followed by a for expression defining a loop variable, range,
and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

	GIL

	See global interpreter lock.

	global interpreter lock

	The mechanism used by the CPython interpreter to assure that
only one thread executes Python bytecode at a time.
This simplifies the CPython implementation by making the object model
(including critical built-in types such as dict) implicitly
safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the
expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party,
are designed so as to release the GIL when doing computationally-intensive
tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks
shared data at a much finer granularity) have not been successful
because performance suffered in the common single-processor case. It
is believed that overcoming this performance issue would make the
implementation much more complicated and therefore costlier to maintain.

	hashable

	An object is hashable if it has a hash value which never changes during
its lifetime (it needs a __hash__() method), and can be compared to
other objects (it needs an __eq__() or __cmp__() method).
Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member,
because these data structures use the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable
containers (such as lists or dictionaries) are. Objects which are
instances of user-defined classes are hashable by default; they all
compare unequal, and their hash value is their id().

	IDLE

	An Integrated Development Environment for Python. IDLE is a basic editor
and interpreter environment which ships with the standard distribution of
Python.

	immutable

	An object with a fixed value. Immutable objects include numbers, strings and
tuples. Such an object cannot be altered. A new object has to
be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key
in a dictionary.

	integer division

	Mathematical division discarding any remainder. For example, the
expression 11/4 currently evaluates to 2 in contrast to the
2.75 returned by float division. Also called floor division.
When dividing two integers the outcome will always be another integer
(having the floor function applied to it). However, if one of the operands
is another numeric type (such as a float), the result will be
coerced (see coercion) to a common type. For example, an integer
divided by a float will result in a float value, possibly with a decimal
fraction. Integer division can be forced by using the // operator
instead of the / operator. See also __future__.

	importer

	An object that both finds and loads a module; both a
finder and loader object.

	interactive

	Python has an interactive interpreter which means you can enter
statements and expressions at the interpreter prompt, immediately
execute them and see their results. Just launch python with no
arguments (possibly by selecting it from your computer’s main
menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)).

	interpreted

	Python is an interpreted language, as opposed to a compiled one,
though the distinction can be blurry because of the presence of the
bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run.
Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more
slowly. See also interactive.

	iterable

	A container object capable of returning its members one at a
time. Examples of iterables include all sequence types (such as
list, str, and tuple) and some non-sequence
types like dict and file and objects of any classes you
define with an __iter__() or __getitem__() method. Iterables
can be used in a for loop and in many other places where a
sequence is needed (zip(), map(), ...). When an iterable
object is passed as an argument to the built-in function iter(), it
returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary
to call iter() or deal with iterator objects yourself. The for
statement does that automatically for you, creating a temporary unnamed
variable to hold the iterator for the duration of the loop. See also
iterator, sequence, and generator.

	iterator

	An object representing a stream of data. Repeated calls to the iterator’s
next() method return successive items in the stream. When no more
data are available a StopIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its
next() method just raise StopIteration again. Iterators are
required to have an __iter__() method that returns the iterator
object itself so every iterator is also iterable and may be used in most
places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a
list) produces a fresh new iterator each time you pass it to the
iter() function or use it in a for loop. Attempting this
with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types.

	key function

	A key function or collation function is a callable that returns a value
used for sorting or ordering. For example, locale.strxfrm() is
used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements
are ordered or grouped. They include min(), max(),
sorted(), list.sort(), heapq.nsmallest(),
heapq.nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the
str.lower() method can serve as a key function for case insensitive
sorts. Alternatively, an ad-hoc key function can be built from a
lambda expression such as lambda r: (r[0], r[2]). Also,
the operator module provides three key function constuctors:
attrgetter(), itemgetter(), and
methodcaller(). See the Sorting HOW TO for examples of how to create and use key functions.

	keyword argument

	Arguments which are preceded with a variable_name= in the call.
The variable name designates the local name in the function to which the
value is assigned. ** is used to accept or pass a dictionary of
keyword arguments. See argument.

	lambda

	An anonymous inline function consisting of a single expression
which is evaluated when the function is called. The syntax to create
a lambda function is lambda [arguments]: expression

	LBYL

	Look before you leap. This coding style explicitly tests for
pre-conditions before making calls or lookups. This style contrasts with
the EAFP approach and is characterized by the presence of many
if statements.

	list

	A built-in Python sequence. Despite its name it is more akin
to an array in other languages than to a linked list since access to
elements are O(1).

	list comprehension

	A compact way to process all or part of the elements in a sequence and
return a list with the results. result = ["0x%02x" % x for x in
range(256) if x % 2 == 0] generates a list of strings containing
even hex numbers (0x..) in the range from 0 to 255. The if
clause is optional. If omitted, all elements in range(256) are
processed.

	loader

	An object that loads a module. It must define a method named
load_module(). A loader is typically returned by a
finder. See PEP 302 [http://www.python.org/dev/peps/pep-0302] for details.

	mapping

	A container object that supports arbitrary key lookups and implements the
methods specified in the Mapping or MutableMapping
abstract base classes. Examples include
dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

	metaclass

	The class of a class. Class definitions create a class name, a class
dictionary, and a list of base classes. The metaclass is responsible for
taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python
special is that it is possible to create custom metaclasses. Most users
never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute
access, adding thread-safety, tracking object creation, implementing
singletons, and many other tasks.

More information can be found in Customizing class creation.

	method

	A function which is defined inside a class body. If called as an attribute
of an instance of that class, the method will get the instance object as
its first argument (which is usually called self).
See function and nested scope.

	mutable

	Mutable objects can change their value but keep their id(). See
also immutable.

	named tuple

	Any tuple-like class whose indexable elements are also accessible using
named attributes (for example, time.localtime() returns a
tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time,
or it can be created with a regular class definition. A full featured
named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically
provides extra features such as a self-documenting representation like
Employee(name='jones', title='programmer').

	namespace

	The place where a variable is stored. Namespaces are implemented as
dictionaries. There are the local, global and built-in namespaces as well
as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions
__builtin__.open() and os.open() are distinguished by their
namespaces. Namespaces also aid readability and maintainability by making
it clear which module implements a function. For instance, writing
random.seed() or itertools.izip() makes it clear that those
functions are implemented by the random and itertools
modules, respectively.

	nested scope

	The ability to refer to a variable in an enclosing definition. For
instance, a function defined inside another function can refer to
variables in the outer function. Note that nested scopes work only for
reference and not for assignment which will always write to the innermost
scope. In contrast, local variables both read and write in the innermost
scope. Likewise, global variables read and write to the global namespace.

	new-style class

	Any class which inherits from object. This includes all built-in
types like list and dict. Only new-style classes can
use Python’s newer, versatile features like __slots__,
descriptors, properties, and __getattribute__().

More information can be found in New-style and classic classes.

	object

	Any data with state (attributes or value) and defined behavior
(methods). Also the ultimate base class of any new-style
class.

	positional argument

	The arguments assigned to local names inside a function or method,
determined by the order in which they were given in the call. * is
used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See
argument.

	Python 3000

	Nickname for the next major Python version, 3.0 (coined long ago
when the release of version 3 was something in the distant future.) This
is also abbreviated “Py3k”.

	Pythonic

	An idea or piece of code which closely follows the most common idioms
of the Python language, rather than implementing code using concepts
common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for
statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
 print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
 print piece

	reference count

	The number of references to an object. When the reference count of an
object drops to zero, it is deallocated. Reference counting is
generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a
getrefcount() function that programmers can call to return the
reference count for a particular object.

	__slots__

	A declaration inside a new-style class that saves memory by
pre-declaring space for instance attributes and eliminating instance
dictionaries. Though popular, the technique is somewhat tricky to get
right and is best reserved for rare cases where there are large numbers of
instances in a memory-critical application.

	sequence

	An iterable which supports efficient element access using integer
indices via the __getitem__() special method and defines a
len() method that returns the length of the sequence.
Some built-in sequence types are list, str,
tuple, and unicode. Note that dict also
supports __getitem__() and __len__(), but is considered a
mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

	slice

	An object usually containing a portion of a sequence. A slice is
created using the subscript notation, [] with colons between numbers
when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally (or in older
versions, __getslice__() and __setslice__()).

	special method

	A method that is called implicitly by Python to execute a certain
operation on a type, such as addition. Such methods have names starting
and ending with double underscores. Special methods are documented in
Special method names.

	statement

	A statement is part of a suite (a “block” of code). A statement is either
an expression or a one of several constructs with a keyword, such
as if, while or print.

	triple-quoted string

	A string which is bound by three instances of either a quotation mark
(”) or an apostrophe (‘). While they don’t provide any functionality
not available with single-quoted strings, they are useful for a number
of reasons. They allow you to include unescaped single and double
quotes within a string and they can span multiple lines without the
use of the continuation character, making them especially useful when
writing docstrings.

	type

	The type of a Python object determines what kind of object it is; every
object has a type. An object’s type is accessible as its
__class__ attribute or can be retrieved with type(obj).

	view

	The objects returned from dict.viewkeys(), dict.viewvalues(),
and dict.viewitems() are called dictionary views. They are lazy
sequences that will see changes in the underlying dictionary. To force
the dictionary view to become a full list use list(dictview). See
Dictionary view objects.

	virtual machine

	A computer defined entirely in software. Python’s virtual machine
executes the bytecode emitted by the bytecode compiler.

	Zen of Python

	Listing of Python design principles and philosophies that are helpful in
understanding and using the language. The listing can be found by typing
“import this” at the interactive prompt.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

About these documents

These documents are generated from reStructuredText [http://docutils.sf.net/rst.html] sources by Sphinx [http://sphinx.pocoo.org/], a
document processor specifically written for the Python documentation.

Development of the documentation and its toolchain takes place on the
docs@python.org mailing list. We’re always looking for volunteers wanting
to help with the docs, so feel free to send a mail there!

Many thanks go to:

	Fred L. Drake, Jr., the creator of the original Python documentation toolset
and writer of much of the content;

	the Docutils [http://docutils.sf.net/] project for creating
reStructuredText and the Docutils suite;

	Fredrik Lundh for his Alternative Python Reference [http://effbot.org/zone/pyref.htm] project from which Sphinx got many good
ideas.

See Reporting Bugs for information how to report bugs in this
documentation, or Python itself.

Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python
documentation. It is probably not complete – if you feel that you or
anyone else should be on this list, please let us know (send email to
docs@python.org), and we’ll be glad to correct the problem.

	Aahz

	Michael Abbott

	Steve Alexander

	Jim Ahlstrom

	Fred Allen

	A. Amoroso

	Pehr Anderson

	Oliver Andrich

	Heidi Annexstad

	Jesús Cea Avión

	Manuel Balsera

	Daniel Barclay

	Chris Barker

	Don Bashford

	Anthony Baxter

	Alexander Belopolsky

	Bennett Benson

	Jonathan Black

	Robin Boerdijk

	Michal Bozon

	Aaron Brancotti

	Georg Brandl

	Keith Briggs

	Ian Bruntlett

	Lee Busby

	Lorenzo M. Catucci

	Carl Cerecke

	Mauro Cicognini

	Gilles Civario

	Mike Clarkson

	Steve Clift

	Dave Cole

	Matthew Cowles

	Jeremy Craven

	Andrew Dalke

	Ben Darnell

	L. Peter Deutsch

	Robert Donohue

	Fred L. Drake, Jr.

	Josip Dzolonga

	Jeff Epler

	Michael Ernst

	Blame Andy Eskilsson

	Carey Evans

	Martijn Faassen

	Carl Feynman

	Dan Finnie

	Hernán Martínez Foffani

	Stefan Franke

	Jim Fulton

	Peter Funk

	Lele Gaifax

	Matthew Gallagher

	Gabriel Genellina

	Ben Gertzfield

	Nadim Ghaznavi

	Jonathan Giddy

	Shelley Gooch

	Nathaniel Gray

	Grant Griffin

	Thomas Guettler

	Anders Hammarquist

	Mark Hammond

	Harald Hanche-Olsen

	Manus Hand

	Gerhard Häring

	Travis B. Hartwell

	Tim Hatch

	Janko Hauser

	Thomas Heller

	Bernhard Herzog

	Magnus L. Hetland

	Konrad Hinsen

	Stefan Hoffmeister

	Albert Hofkamp

	Gregor Hoffleit

	Steve Holden

	Thomas Holenstein

	Gerrit Holl

	Rob Hooft

	Brian Hooper

	Randall Hopper

	Michael Hudson

	Eric Huss

	Jeremy Hylton

	Roger Irwin

	Jack Jansen

	Philip H. Jensen

	Pedro Diaz Jimenez

	Kent Johnson

	Lucas de Jonge

	Andreas Jung

	Robert Kern

	Jim Kerr

	Jan Kim

	Greg Kochanski

	Guido Kollerie

	Peter A. Koren

	Daniel Kozan

	Andrew M. Kuchling

	Dave Kuhlman

	Erno Kuusela

	Ross Lagerwall

	Thomas Lamb

	Detlef Lannert

	Piers Lauder

	Glyph Lefkowitz

	Robert Lehmann

	Marc-André Lemburg

	Ross Light

	Ulf A. Lindgren

	Everett Lipman

	Mirko Liss

	Martin von Löwis

	Fredrik Lundh

	Jeff MacDonald

	John Machin

	Andrew MacIntyre

	Vladimir Marangozov

	Vincent Marchetti

	Westley Martínez

	Laura Matson

	Daniel May

	Rebecca McCreary

	Doug Mennella

	Paolo Milani

	Skip Montanaro

	Paul Moore

	Ross Moore

	Sjoerd Mullender

	Dale Nagata

	Michal Nowikowski

	Ng Pheng Siong

	Koray Oner

	Tomas Oppelstrup

	Denis S. Otkidach

	Zooko O’Whielacronx

	Shriphani Palakodety

	William Park

	Joonas Paalasmaa

	Harri Pasanen

	Bo Peng

	Tim Peters

	Benjamin Peterson

	Christopher Petrilli

	Justin D. Pettit

	Chris Phoenix

	François Pinard

	Paul Prescod

	Eric S. Raymond

	Edward K. Ream

	Terry J. Reedy

	Sean Reifschneider

	Bernhard Reiter

	Armin Rigo

	Wes Rishel

	Armin Ronacher

	Jim Roskind

	Guido van Rossum

	Donald Wallace Rouse II

	Mark Russell

	Nick Russo

	Chris Ryland

	Constantina S.

	Hugh Sasse

	Bob Savage

	Scott Schram

	Neil Schemenauer

	Barry Scott

	Joakim Sernbrant

	Justin Sheehy

	Charlie Shepherd

	Michael Simcich

	Ionel Simionescu

	Michael Sloan

	Gregory P. Smith

	Roy Smith

	Clay Spence

	Nicholas Spies

	Tage Stabell-Kulo

	Frank Stajano

	Anthony Starks

	Greg Stein

	Peter Stoehr

	Mark Summerfield

	Reuben Sumner

	Kalle Svensson

	Jim Tittsler

	David Turner

	Ville Vainio

	Martijn Vries

	Charles G. Waldman

	Greg Ward

	Barry Warsaw

	Corran Webster

	Glyn Webster

	Bob Weiner

	Eddy Welbourne

	Jeff Wheeler

	Mats Wichmann

	Gerry Wiener

	Timothy Wild

	Paul Winkler

	Collin Winter

	Blake Winton

	Dan Wolfe

	Steven Work

	Thomas Wouters

	Ka-Ping Yee

	Rory Yorke

	Moshe Zadka

	Milan Zamazal

	Cheng Zhang

It is only with the input and contributions of the Python community
that Python has such wonderful documentation – Thank You!

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Reporting Bugs

Python is a mature programming language which has established a reputation for
stability. In order to maintain this reputation, the developers would like to
know of any deficiencies you find in Python.

Documentation bugs

If you find a bug in this documentation or would like to propose an improvement,
please send an e-mail to docs@python.org describing the bug and where you found
it. If you have a suggestion how to fix it, include that as well.

docs@python.org is a mailing list run by volunteers; your request will be
noticed, even if it takes a while to be processed.

Of course, if you want a more persistent record of your issue, you can use the
issue tracker for documentation bugs as well.

Using the Python issue tracker

Bug reports for Python itself should be submitted via the Python Bug Tracker
(http://bugs.python.org/). The bug tracker offers a Web form which allows
pertinent information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has
already been reported. The advantage in doing so, aside from saving the
developers time, is that you learn what has been done to fix it; it may be that
the problem has already been fixed for the next release, or additional
information is needed (in which case you are welcome to provide it if you can!).
To do this, search the bug database using the search box on the top of the page.

If the problem you’re reporting is not already in the bug tracker, go back to
the Python Bug Tracker and log in. If you don’t already have a tracker account,
select the “Register” link or, if you use OpenID, one of the OpenID provider
logos in the sidebar. It is not possible to submit a bug report anonymously.

Being now logged in, you can submit a bug. Select the “Create New” link in the
sidebar to open the bug reporting form.

The submission form has a number of fields. For the “Title” field, enter a
very short description of the problem; less than ten words is good. In the
“Type” field, select the type of your problem; also select the “Component” and
“Versions” to which the bug relates.

In the “Comment” field, describe the problem in detail, including what you
expected to happen and what did happen. Be sure to include whether any
extension modules were involved, and what hardware and software platform you
were using (including version information as appropriate).

Each bug report will be assigned to a developer who will determine what needs to
be done to correct the problem. You will receive an update each time action is
taken on the bug. See http://www.python.org/dev/workflow/ for a detailed
description of the issue workflow.

See also

	How to Report Bugs Effectively [http://www.chiark.greenend.org.uk/~sgtatham/bugs.html]

	Article which goes into some detail about how to create a useful bug report.
This describes what kind of information is useful and why it is useful.

	Bug Writing Guidelines [http://developer.mozilla.org/en/docs/Bug_writing_guidelines]

	Information about writing a good bug report. Some of this is specific to the
Mozilla project, but describes general good practices.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	IronPython 2.7.2b1 documentation

Copyright

IronPython and parts of this documentation is:

Copyright © 2006-2010 Microsoft. All rights reserved.

Copyright © 2010-2012 IronPython Contributors.

Python and this documentation is:

Copyright © 2001-2010 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights
reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	IronPython 2.7.2b1 documentation

History and License

History of IronPython

IronPython was created in 2005 by Jim Hugunin to prove that the .NET Framework
was a poor platform for dynamic languages. He failed to do so, and IronPython
was born.

In 2006 Jim was hired by Microsoft to make .NET a better platform for dynamic
languages. Microsoft took over development of IronPython and used it as a test
bed for developing the Dynamic Language Runtime, which is a set of libraries to
make dynamic interop on .NET possible.

In October of 2010 Microsoft ceased development on IronPython, handing it over
to community developers led by Jeff Hardy.

IronPython includes both the IronPython runtime licensed under the Apache License,
Version 2.0; and the Python standard library, licensed as described below.

Terms and conditions for accessing or otherwise using IronPython

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and

You must cause any modified files to carry prominent notices stating that You changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements
for third-party software incorporated in the IronPython distribution.

zlib.net

Copyright (c) 2006-2007, ComponentAce
http://www.componentace.com
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of ComponentAce nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

History of Python

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl/) in the Netherlands as a
successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National
Research Initiatives (CNRI, see http://www.cnri.reston.va.us/) in Reston,
Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to
form the BeOpen PythonLabs team. In October of the same year, the PythonLabs
team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see
http://www.python.org/psf/) was formed, a non-profit organization created
specifically to own Python-related Intellectual Property. Zope Corporation is a
sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open
Source Definition). Historically, most, but not all, Python releases have also
been GPL-compatible; the table below summarizes the various releases.

	Release
	Derived from
	Year
	Owner
	GPL compatible?

	0.9.0 thru 1.2
	n/a
	1991-1995
	CWI
	yes

	1.3 thru 1.5.2
	1.2
	1995-1999
	CNRI
	yes

	1.6
	1.5.2
	2000
	CNRI
	no

	2.0
	1.6
	2000
	BeOpen.com
	no

	1.6.1
	1.6
	2001
	CNRI
	no

	2.1
	2.0+1.6.1
	2001
	PSF
	no

	2.0.1
	2.0+1.6.1
	2001
	PSF
	yes

	2.1.1
	2.1+2.0.1
	2001
	PSF
	yes

	2.2
	2.1.1
	2001
	PSF
	yes

	2.1.2
	2.1.1
	2002
	PSF
	yes

	2.1.3
	2.1.2
	2002
	PSF
	yes

	2.2.1
	2.2
	2002
	PSF
	yes

	2.2.2
	2.2.1
	2002
	PSF
	yes

	2.2.3
	2.2.2
	2002-2003
	PSF
	yes

	2.3
	2.2.2
	2002-2003
	PSF
	yes

	2.3.1
	2.3
	2002-2003
	PSF
	yes

	2.3.2
	2.3.1
	2003
	PSF
	yes

	2.3.3
	2.3.2
	2003
	PSF
	yes

	2.3.4
	2.3.3
	2004
	PSF
	yes

	2.3.5
	2.3.4
	2005
	PSF
	yes

	2.4
	2.3
	2004
	PSF
	yes

	2.4.1
	2.4
	2005
	PSF
	yes

	2.4.2
	2.4.1
	2005
	PSF
	yes

	2.4.3
	2.4.2
	2006
	PSF
	yes

	2.4.4
	2.4.3
	2006
	PSF
	yes

	2.5
	2.4
	2006
	PSF
	yes

	2.5.1
	2.5
	2007
	PSF
	yes

	2.5.2
	2.5.1
	2008
	PSF
	yes

	2.5.3
	2.5.2
	2008
	PSF
	yes

	2.6
	2.5
	2008
	PSF
	yes

	2.6.1
	2.6
	2008
	PSF
	yes

	2.6.2
	2.6.1
	2009
	PSF
	yes

	2.6.3
	2.6.2
	2009
	PSF
	yes

	2.6.4
	2.6.3
	2010
	PSF
	yes

	2.7
	2.6
	2010
	PSF
	yes

Note

GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All
Python licenses, unlike the GPL, let you distribute a modified version without
making your changes open source. The GPL-compatible licenses make it possible to
combine Python with other software that is released under the GPL; the others
don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to
make these releases possible.

Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.7.2b1

	This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and
the Individual or Organization (“Licensee”) accessing and otherwise using Python
2.7.2b1 software in source or binary form and its associated documentation.

	Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.2b1 alone or in any derivative
version, provided, however, that PSF’s License Agreement and PSF’s notice of
copyright, i.e., “Copyright © 2001-2010 Python Software Foundation; All Rights
Reserved” are retained in Python 2.7.2b1 alone or in any derivative version
prepared by Licensee.

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.2b1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python
2.7.2b1.

	PSF is making Python 2.7.2b1 available to Licensee on an “AS IS” basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON 2.7.2b1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.2b1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.2b1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

	Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

	By copying, installing or otherwise using Python 2.7.2b1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

	This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
(“Licensee”) accessing and otherwise using this software in source or binary
form and its associated documentation (“the Software”).

	Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

	BeOpen is making the Software available to Licensee on an “AS IS” basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

	This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

	By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

	This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
(“CNRI”), and the Individual or Organization (“Licensee”) accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

	Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI’s License Agreement and CNRI’s notice of copyright,
i.e., “Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved” are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1
is made available subject to the terms and conditions in CNRI’s License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

	In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

	CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

	CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

	This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

	This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia’s conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

	By clicking on the “ACCEPT” button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements
for third-party software incorporated in the Python distribution.

Mersenne Twister

The _random module includes code based on a download from
http://www.math.keio.ac.jp/ matumoto/MT2002/emt19937ar.html. The following are
the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 3. The names of its contributors may not be used to endorse or promote
 products derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

Sockets

The socket module uses the functions, getaddrinfo(), and
getnameinfo(), which are coded in separate source files from the WIDE
Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. Neither the name of the project nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Floating point exception control

The source for the fpectl module includes the following notice:

 / Copyright (c) 1996. \
| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
 \ endorsement purposes. /

MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at
 http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
 references to Ghostscript; clarified derivation from RFC 1321;
 now handles byte order either statically or dynamically.
1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);
 added conditionalization for C++ compilation from Martin
 Purschke <purschke@bnl.gov>.
1999-05-03 lpd Original version.

Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

 All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

 All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
 All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion
 between ascii and binary. This results in a 1000-fold speedup. The C
 version is still 5 times faster, though.
- Arguments more compliant with Python standard

XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

 The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and
strtod for conversion of C doubles to and from strings, is derived
from the file of the same name by David M. Gay, currently available
from http://www.netlib.org/fp/. The original file, as retrieved on
March 16, 2009, contains the following copyright and licensing
notice:

/**
 *
 * The author of this software is David M. Gay.
 *
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose without fee is hereby granted, provided that this entire notice
 * is included in all copies of any software which is or includes a copy
 * or modification of this software and in all copies of the supporting
 * documentation for such software.
 *
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 *
 ***/

OpenSSL

The modules hashlib, posix, ssl, crypt use
the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows installers for Python
include a copy of the OpenSSL libraries, so we include a copy of the
OpenSSL license here:

 LICENSE ISSUES
 ==============

 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

 /* ==
 * Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

Original SSLeay License

 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

expat

The pyexpat extension is built using an included copy of the expat
sources unless the build is configured --with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
 and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

libffi

The _ctypes extension is built using an included copy of the libffi
sources unless the build is configured --with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

zlib

The zlib extension is built using an included copy of the zlib
sources unless the zlib version found on the system is too old to be
used for the build:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	IronPython 2.7.2b1 documentation

 Python Module Index

 _ |
 a |
 b |
 c |
 d |
 e |
 f |
 g |
 h |
 i |
 j |
 k |
 l |
 m |
 n |
 o |
 p |
 q |
 r |
 s |
 t |
 u |
 v |
 w |
 x |
 z

 			

 		
 _	

 	
 	
 __builtin__	
 The module that provides the built-in namespace.

 	
 	
 __future__	
 Future statement definitions

 	
 	
 __main__	
 The environment where the top-level script is run.

 	
 	
 _winreg (Windows)	
 Routines and objects for manipulating the Windows registry.

 			

 		
 a	

 	
 	
 abc	
 Abstract base classes according to PEP 3119.

 	
 	
 aepack (Mac)	Deprecated:
 Conversion between Python variables and AppleEvent data containers.

 	
 	
 aetools (Mac)	Deprecated:
 Basic support for sending Apple Events

 	
 	
 aetypes (Mac)	Deprecated:
 Python representation of the Apple Event Object Model.

 	
 	
 aifc	
 Read and write audio files in AIFF or AIFC format.

 	
 	
 AL (IRIX)	Deprecated:
 Constants used with the al module.

 	
 	
 al (IRIX)	Deprecated:
 Audio functions on the SGI.

 	
 	
 anydbm	
 Generic interface to DBM-style database modules.

 	
 	
 applesingle (Mac)	Deprecated:
 Rudimentary decoder for AppleSingle format files.

 	
 	
 argparse	
 Command-line option and argument-parsing library.

 	
 	
 array	
 Space efficient arrays of uniformly typed numeric values.

 	
 	
 ast	
 Abstract Syntax Tree classes and manipulation.

 	
 	
 asynchat	
 Support for asynchronous command/response protocols.

 	
 	
 asyncore	
 A base class for developing asynchronous socket handling
services.

 	
 	
 atexit	
 Register and execute cleanup functions.

 	
 	
 audioop	
 Manipulate raw audio data.

 	
 	
 autoGIL (Mac)	Deprecated:
 Global Interpreter Lock handling in event loops.

 			

 		
 b	

 	
 	
 base64	
 RFC 3548: Base16, Base32, Base64 Data Encodings

 	
 	
 BaseHTTPServer	
 Basic HTTP server (base class for SimpleHTTPServer and CGIHTTPServer).

 	
 	
 Bastion	Deprecated:
 Providing restricted access to objects.

 	
 	
 bdb	
 Debugger framework.

 	
 	
 binascii	
 Tools for converting between binary and various ASCII-encoded binary
representations.

 	
 	
 binhex	
 Encode and decode files in binhex4 format.

 	
 	
 bisect	
 Array bisection algorithms for binary searching.

 	
 	
 bsddb	
 Interface to Berkeley DB database library

 	
 	
 buildtools (Mac)	Deprecated:
 Helper module for BuildApplet, BuildApplication and macfreeze.

 	
 	
 bz2	
 Interface to compression and decompression routines compatible with bzip2.

 			

 		
 c	

 	
 	
 calendar	
 Functions for working with calendars, including some emulation of the Unix cal
program.

 	[image: -]
 	
 Carbon	

 	
 	
 Carbon.AE (Mac)	Deprecated:
 Interface to the Apple Events toolbox.

 	
 	
 Carbon.AH (Mac)	Deprecated:
 Interface to the Apple Help manager.

 	
 	
 Carbon.App (Mac)	Deprecated:
 Interface to the Appearance Manager.

 	
 	
 Carbon.Appearance (Mac)	Deprecated:
 Constant definitions for the interface to the Appearance Manager.

 	
 	
 Carbon.CarbonEvents (Mac)	Deprecated:
 Constants for the interface to the Carbon Event Manager.

 	
 	
 Carbon.CarbonEvt (Mac)	Deprecated:
 Interface to the Carbon Event Manager.

 	
 	
 Carbon.CF (Mac)	Deprecated:
 Interface to the Core Foundation.

 	
 	
 Carbon.CG (Mac)	Deprecated:
 Interface to Core Graphics.

 	
 	
 Carbon.Cm (Mac)	Deprecated:
 Interface to the Component Manager.

 	
 	
 Carbon.Components (Mac)	Deprecated:
 Constants for the interface to the Component Manager.

 	
 	
 Carbon.ControlAccessor (Mac)	Deprecated:
 Accessor functions for the interface to the Control Manager.

 	
 	
 Carbon.Controls (Mac)	Deprecated:
 Constants for the interface to the Control Manager.

 	
 	
 Carbon.CoreFounation (Mac)	Deprecated:
 Constants for the interface to CoreFoundation.

 	
 	
 Carbon.CoreGraphics (Mac)	Deprecated:
 Constants for the interface to CoreGraphics.

 	
 	
 Carbon.Ctl (Mac)	Deprecated:
 Interface to the Control Manager.

 	
 	
 Carbon.Dialogs (Mac)	Deprecated:
 Constants for the interface to the Dialog Manager.

 	
 	
 Carbon.Dlg (Mac)	Deprecated:
 Interface to the Dialog Manager.

 	
 	
 Carbon.Drag (Mac)	Deprecated:
 Interface to the Drag and Drop Manager.

 	
 	
 Carbon.Dragconst (Mac)	Deprecated:
 Constants for the interface to the Drag and Drop Manager.

 	
 	
 Carbon.Events (Mac)	Deprecated:
 Constants for the interface to the classic Event Manager.

 	
 	
 Carbon.Evt (Mac)	Deprecated:
 Interface to the classic Event Manager.

 	
 	
 Carbon.File (Mac)	Deprecated:
 Interface to the File Manager.

 	
 	
 Carbon.Files (Mac)	Deprecated:
 Constants for the interface to the File Manager.

 	
 	
 Carbon.Fm (Mac)	Deprecated:
 Interface to the Font Manager.

 	
 	
 Carbon.Folder (Mac)	Deprecated:
 Interface to the Folder Manager.

 	
 	
 Carbon.Folders (Mac)	Deprecated:
 Constants for the interface to the Folder Manager.

 	
 	
 Carbon.Fonts (Mac)	Deprecated:
 Constants for the interface to the Font Manager.

 	
 	
 Carbon.Help (Mac)	Deprecated:
 Interface to the Carbon Help Manager.

 	
 	
 Carbon.IBCarbon (Mac)	Deprecated:
 Interface to the Carbon InterfaceBuilder support libraries.

 	
 	
 Carbon.IBCarbonRuntime (Mac)	Deprecated:
 Constants for the interface to the Carbon InterfaceBuilder support libraries.

 	
 	
 Carbon.Icns (Mac)	Deprecated:
 Interface to the Carbon Icon Manager

 	
 	
 Carbon.Icons (Mac)	Deprecated:
 Constants for the interface to the Carbon Icon Manager

 	
 	
 Carbon.Launch (Mac)	Deprecated:
 Interface to the Carbon Launch Services.

 	
 	
 Carbon.LaunchServices (Mac)	Deprecated:
 Constants for the interface to the Carbon Launch Services.

 	
 	
 Carbon.List (Mac)	Deprecated:
 Interface to the List Manager.

 	
 	
 Carbon.Lists (Mac)	Deprecated:
 Constants for the interface to the List Manager.

 	
 	
 Carbon.MacHelp (Mac)	Deprecated:
 Constants for the interface to the Carbon Help Manager.

 	
 	
 Carbon.MediaDescr (Mac)	Deprecated:
 Parsers and generators for Quicktime Media descriptors

 	
 	
 Carbon.Menu (Mac)	Deprecated:
 Interface to the Menu Manager.

 	
 	
 Carbon.Menus (Mac)	Deprecated:
 Constants for the interface to the Menu Manager.

 	
 	
 Carbon.Mlte (Mac)	Deprecated:
 Interface to the MultiLingual Text Editor.

 	
 	
 Carbon.OSA (Mac)	Deprecated:
 Interface to the Carbon OSA Library.

 	
 	
 Carbon.OSAconst (Mac)	Deprecated:
 Constants for the interface to the Carbon OSA Library.

 	
 	
 Carbon.Qd (Mac)	Deprecated:
 Interface to the QuickDraw toolbox.

 	
 	
 Carbon.Qdoffs (Mac)	Deprecated:
 Interface to the QuickDraw Offscreen APIs.

 	
 	
 Carbon.QDOffscreen (Mac)	Deprecated:
 Constants for the interface to the QuickDraw Offscreen APIs.

 	
 	
 Carbon.Qt (Mac)	Deprecated:
 Interface to the QuickTime toolbox.

 	
 	
 Carbon.QuickDraw (Mac)	Deprecated:
 Constants for the interface to the QuickDraw toolbox.

 	
 	
 Carbon.QuickTime (Mac)	Deprecated:
 Constants for the interface to the QuickTime toolbox.

 	
 	
 Carbon.Res (Mac)	Deprecated:
 Interface to the Resource Manager and Handles.

 	
 	
 Carbon.Resources (Mac)	Deprecated:
 Constants for the interface to the Resource Manager and Handles.

 	
 	
 Carbon.Scrap (Mac)	Deprecated:
 The Scrap Manager provides basic services for implementing cut & paste and
clipboard operations.

 	
 	
 Carbon.Snd (Mac)	Deprecated:
 Interface to the Sound Manager.

 	
 	
 Carbon.Sound (Mac)	Deprecated:
 Constants for the interface to the Sound Manager.

 	
 	
 Carbon.TE (Mac)	Deprecated:
 Interface to TextEdit.

 	
 	
 Carbon.TextEdit (Mac)	Deprecated:
 Constants for the interface to TextEdit.

 	
 	
 Carbon.Win (Mac)	Deprecated:
 Interface to the Window Manager.

 	
 	
 Carbon.Windows (Mac)	Deprecated:
 Constants for the interface to the Window Manager.

 	
 	
 cd (IRIX)	Deprecated:
 Interface to the CD-ROM on Silicon Graphics systems.

 	
 	
 cfmfile (Mac)	Deprecated:
 Code Fragment Resource module.

 	
 	
 cgi	
 Helpers for running Python scripts via the Common Gateway Interface.

 	
 	
 CGIHTTPServer	
 This module provides a request handler for HTTP servers which can run CGI
scripts.

 	
 	
 cgitb	
 Configurable traceback handler for CGI scripts.

 	
 	
 chunk	
 Module to read IFF chunks.

 	
 	
 cmath	
 Mathematical functions for complex numbers.

 	
 	
 cmd	
 Build line-oriented command interpreters.

 	
 	
 code	
 Facilities to implement read-eval-print loops.

 	
 	
 codecs	
 Encode and decode data and streams.

 	
 	
 codeop	
 Compile (possibly incomplete) Python code.

 	
 	
 collections	
 High-performance datatypes

 	
 	
 ColorPicker (Mac)	Deprecated:
 Interface to the standard color selection dialog.

 	
 	
 colorsys	
 Conversion functions between RGB and other color systems.

 	
 	
 commands (Unix)	Deprecated:
 Utility functions for running external commands.

 	
 	
 compileall	
 Tools for byte-compiling all Python source files in a directory tree.

 	[image: -]
 	
 compiler	Deprecated:
 Python code compiler written in Python.

 	
 	
 compiler.ast	

 	
 	
 compiler.visitor	

 	
 	
 ConfigParser	
 Configuration file parser.

 	
 	
 contextlib	
 Utilities for with-statement contexts.

 	
 	
 Cookie	
 Support for HTTP state management (cookies).

 	
 	
 cookielib	
 Classes for automatic handling of HTTP cookies.

 	
 	
 copy	
 Shallow and deep copy operations.

 	
 	
 copy_reg	
 Register pickle support functions.

 	
 	
 cPickle	
 Faster version of pickle, but not subclassable.

 	
 	
 cProfile	
 Python profiler

 	
 	
 crypt (Unix)	
 The crypt() function used to check Unix passwords.

 	
 	
 cStringIO	
 Faster version of StringIO, but not subclassable.

 	
 	
 csv	
 Write and read tabular data to and from delimited files.

 	
 	
 ctypes	
 A foreign function library for Python.

 	[image: -]
 	
 curses (Unix)	
 An interface to the curses library, providing portable terminal
handling.

 	
 	
 curses.ascii	
 Constants and set-membership functions for ASCII characters.

 	
 	
 curses.panel	
 A panel stack extension that adds depth to curses windows.

 	
 	
 curses.textpad	
 Emacs-like input editing in a curses window.

 	
 	
 curses.wrapper	
 Terminal configuration wrapper for curses programs.

 			

 		
 d	

 	
 	
 datetime	
 Basic date and time types.

 	
 	
 dbhash	
 DBM-style interface to the BSD database library.

 	
 	
 dbm (Unix)	
 The standard "database" interface, based on ndbm.

 	
 	
 decimal	
 Implementation of the General Decimal Arithmetic Specification.

 	
 	
 DEVICE (IRIX)	Deprecated:
 Constants used with the gl module.

 	
 	
 difflib	
 Helpers for computing differences between objects.

 	
 	
 dircache	Deprecated:
 Return directory listing, with cache mechanism.

 	
 	
 dis	
 Disassembler for Python bytecode.

 	[image: -]
 	
 distutils	
 Support for building and installing Python modules into an existing Python
installation.

 	
 	
 distutils.archive_util	
 Utility functions for creating archive files (tarballs, zip files, ...)

 	
 	
 distutils.bcppcompiler	

 	
 	
 distutils.ccompiler	
 Abstract CCompiler class

 	
 	
 distutils.cmd	
 This module provides the abstract base class Command. This class
is subclassed by the modules in the distutils.command subpackage.

 	
 	
 distutils.command	
 This subpackage contains one module for each standard Distutils command.

 	
 	
 distutils.command.bdist	
 Build a binary installer for a package

 	
 	
 distutils.command.bdist_dumb	
 Build a "dumb" installer - a simple archive of files

 	
 	
 distutils.command.bdist_msi	
 Build a binary distribution as a Windows MSI file

 	
 	
 distutils.command.bdist_packager	
 Abstract base class for packagers

 	
 	
 distutils.command.bdist_rpm	
 Build a binary distribution as a Redhat RPM and SRPM

 	
 	
 distutils.command.bdist_wininst	
 Build a Windows installer

 	
 	
 distutils.command.build	
 Build all files of a package

 	
 	
 distutils.command.build_clib	
 Build any C libraries in a package

 	
 	
 distutils.command.build_ext	
 Build any extensions in a package

 	
 	
 distutils.command.build_py	
 Build the .py/.pyc files of a package

 	
 	
 distutils.command.build_scripts	
 Build the scripts of a package

 	
 	
 distutils.command.check	
 Check the metadata of a package

 	
 	
 distutils.command.clean	
 Clean a package build area

 	
 	
 distutils.command.config	
 Perform package configuration

 	
 	
 distutils.command.install	
 Install a package

 	
 	
 distutils.command.install_data	
 Install data files from a package

 	
 	
 distutils.command.install_headers	
 Install C/C++ header files from a package

 	
 	
 distutils.command.install_lib	
 Install library files from a package

 	
 	
 distutils.command.install_scripts	
 Install script files from a package

 	
 	
 distutils.command.register	
 Register a module with the Python Package Index

 	
 	
 distutils.command.sdist	
 Build a source distribution

 	
 	
 distutils.core	
 The core Distutils functionality

 	
 	
 distutils.cygwinccompiler	

 	
 	
 distutils.debug	
 Provides the debug flag for distutils

 	
 	
 distutils.dep_util	
 Utility functions for simple dependency checking

 	
 	
 distutils.dir_util	
 Utility functions for operating on directories and directory trees

 	
 	
 distutils.dist	
 Provides the Distribution class, which represents the module distribution being
built/installed/distributed

 	
 	
 distutils.emxccompiler	
 OS/2 EMX Compiler support

 	
 	
 distutils.errors	
 Provides standard distutils exceptions

 	
 	
 distutils.extension	
 Provides the Extension class, used to describe C/C++ extension modules in setup
scripts

 	
 	
 distutils.fancy_getopt	
 Additional getopt functionality

 	
 	
 distutils.file_util	
 Utility functions for operating on single files

 	
 	
 distutils.filelist	
 The FileList class, used for poking about the file system and
building lists of files.

 	
 	
 distutils.log	
 A simple logging mechanism, 282-style

 	
 	
 distutils.msvccompiler	
 Microsoft Compiler

 	
 	
 distutils.spawn	
 Provides the spawn() function

 	
 	
 distutils.sysconfig	
 Low-level access to configuration information of the Python interpreter.

 	
 	
 distutils.text_file	
 provides the TextFile class, a simple interface to text files

 	
 	
 distutils.unixccompiler	
 UNIX C Compiler

 	
 	
 distutils.util	
 Miscellaneous other utility functions

 	
 	
 distutils.version	
 implements classes that represent module version numbers.

 	
 	
 dl (Unix)	Deprecated:
 Call C functions in shared objects.

 	
 	
 doctest	
 Test pieces of code within docstrings.

 	
 	
 DocXMLRPCServer	
 Self-documenting XML-RPC server implementation.

 	
 	
 dumbdbm	
 Portable implementation of the simple DBM interface.

 	
 	
 dummy_thread	
 Drop-in replacement for the thread module.

 	
 	
 dummy_threading	
 Drop-in replacement for the threading module.

 			

 		
 e	

 	
 	
 EasyDialogs (Mac)	Deprecated:
 Basic Macintosh dialogs.

 	[image: -]
 	
 email	
 Package supporting the parsing, manipulating, and generating email messages,
including MIME documents.

 	
 	
 email.charset	
 Character Sets

 	
 	
 email.encoders	
 Encoders for email message payloads.

 	
 	
 email.errors	
 The exception classes used by the email package.

 	
 	
 email.generator	
 Generate flat text email messages from a message structure.

 	
 	
 email.header	
 Representing non-ASCII headers

 	
 	
 email.iterators	
 Iterate over a message object tree.

 	
 	
 email.message	
 The base class representing email messages.

 	
 	
 email.mime	
 Build MIME messages.

 	
 	
 email.parser	
 Parse flat text email messages to produce a message object structure.

 	
 	
 email.utils	
 Miscellaneous email package utilities.

 	[image: -]
 	
 encodings	

 	
 	
 encodings.idna	
 Internationalized Domain Names implementation

 	
 	
 encodings.utf_8_sig	
 UTF-8 codec with BOM signature

 	
 	
 errno	
 Standard errno system symbols.

 	
 	
 exceptions	
 Standard exception classes.

 			

 		
 f	

 	
 	
 fcntl (Unix)	
 The fcntl() and ioctl() system calls.

 	
 	
 filecmp	
 Compare files efficiently.

 	
 	
 fileinput	
 Loop over standard input or a list of files.

 	
 	
 findertools (Mac)	
 Wrappers around the finder's Apple Events interface.

 	
 	
 FL (IRIX)	Deprecated:
 Constants used with the fl module.

 	
 	
 fl (IRIX)	Deprecated:
 FORMS library for applications with graphical user interfaces.

 	
 	
 flp (IRIX)	Deprecated:
 Functions for loading stored FORMS designs.

 	
 	
 fm (IRIX)	Deprecated:
 Font Manager interface for SGI workstations.

 	
 	
 fnmatch	
 Unix shell style filename pattern matching.

 	
 	
 formatter	
 Generic output formatter and device interface.

 	
 	
 fpectl (Unix)	
 Provide control for floating point exception handling.

 	
 	
 fpformat	Deprecated:
 General floating point formatting functions.

 	
 	
 fractions	
 Rational numbers.

 	
 	
 FrameWork (Mac)	Deprecated:
 Interactive application framework.

 	
 	
 ftplib	
 FTP protocol client (requires sockets).

 	
 	
 functools	
 Higher order functions and operations on callable objects.

 	
 	
 future_builtins	

 			

 		
 g	

 	
 	
 gc	
 Interface to the cycle-detecting garbage collector.

 	
 	
 gdbm (Unix)	
 GNU's reinterpretation of dbm.

 	
 	
 gensuitemodule (Mac)	
 Create a stub package from an OSA dictionary

 	
 	
 getopt	
 Portable parser for command line options; support both short and long option
names.

 	
 	
 getpass	
 Portable reading of passwords and retrieval of the userid.

 	
 	
 gettext	
 Multilingual internationalization services.

 	
 	
 gl (IRIX)	Deprecated:
 Functions from the Silicon Graphics Graphics Library.

 	
 	
 GL (IRIX)	Deprecated:
 Constants used with the gl module.

 	
 	
 glob	
 Unix shell style pathname pattern expansion.

 	
 	
 grp (Unix)	
 The group database (getgrnam() and friends).

 	
 	
 gzip	
 Interfaces for gzip compression and decompression using file objects.

 			

 		
 h	

 	
 	
 hashlib	
 Secure hash and message digest algorithms.

 	
 	
 heapq	
 Heap queue algorithm (a.k.a. priority queue).

 	
 	
 hmac	
 Keyed-Hashing for Message Authentication (HMAC) implementation for Python.

 	[image: -]
 	
 hotshot	
 High performance logging profiler, mostly written in C.

 	
 	
 hotshot.stats	
 Statistical analysis for Hotshot

 	
 	
 htmlentitydefs	
 Definitions of HTML general entities.

 	
 	
 htmllib	Deprecated:
 A parser for HTML documents.

 	
 	
 HTMLParser	
 A simple parser that can handle HTML and XHTML.

 	
 	
 httplib	
 HTTP and HTTPS protocol client (requires sockets).

 			

 		
 i	

 	
 	
 ic (Mac)	Deprecated:
 Access to the Mac OS X Internet Config.

 	
 	
 icopen (Mac)	Deprecated:
 Internet Config replacement for open().

 	
 	
 imageop	Deprecated:
 Manipulate raw image data.

 	
 	
 imaplib	
 IMAP4 protocol client (requires sockets).

 	
 	
 imgfile (IRIX)	Deprecated:
 Support for SGI imglib files.

 	
 	
 imghdr	
 Determine the type of image contained in a file or byte stream.

 	
 	
 imp	
 Access the implementation of the import statement.

 	
 	
 importlib	
 Convenience wrappers for __import__

 	
 	
 imputil	Deprecated:
 Manage and augment the import process.

 	
 	
 inspect	
 Extract information and source code from live objects.

 	
 	
 io	
 Core tools for working with streams.

 	
 	
 itertools	
 Functions creating iterators for efficient looping.

 			

 		
 j	

 	
 	
 jpeg (IRIX)	Deprecated:
 Read and write image files in compressed JPEG format.

 	
 	
 json	
 Encode and decode the JSON format.

 			

 		
 k	

 	
 	
 keyword	
 Test whether a string is a keyword in Python.

 			

 		
 l	

 	
 	
 lib2to3	
 the 2to3 library

 	
 	
 linecache	
 This module provides random access to individual lines from text files.

 	
 	
 locale	
 Internationalization services.

 	[image: -]
 	
 logging	
 Flexible event logging system for applications.

 	
 	
 logging.config	
 Configuration of the logging module.

 	
 	
 logging.handlers	
 Handlers for the logging module.

 			

 		
 m	

 	
 	
 macerrors (Mac)	Deprecated:
 Constant definitions for many Mac OS error codes.

 	
 	
 MacOS (Mac)	Deprecated:
 Access to Mac OS-specific interpreter features.

 	
 	
 macostools (Mac)	Deprecated:
 Convenience routines for file manipulation.

 	
 	
 macpath	
 Mac OS 9 path manipulation functions.

 	
 	
 macresource (Mac)	Deprecated:
 Locate script resources.

 	
 	
 mailbox	
 Manipulate mailboxes in various formats

 	
 	
 mailcap	
 Mailcap file handling.

 	
 	
 marshal	
 Convert Python objects to streams of bytes and back (with different
constraints).

 	
 	
 math	
 Mathematical functions (sin() etc.).

 	
 	
 md5	Deprecated:
 RSA's MD5 message digest algorithm.

 	
 	
 mhlib	Deprecated:
 Manipulate MH mailboxes from Python.

 	
 	
 mimetools	Deprecated:
 Tools for parsing MIME-style message bodies.

 	
 	
 mimetypes	
 Mapping of filename extensions to MIME types.

 	
 	
 MimeWriter	Deprecated:
 Write MIME format files.

 	
 	
 mimify	Deprecated:
 Mimification and unmimification of mail messages.

 	
 	
 MiniAEFrame (Mac)	
 Support to act as an Open Scripting Architecture (OSA) server ("Apple Events").

 	
 	
 mmap	
 Interface to memory-mapped files for Unix and Windows.

 	
 	
 modulefinder	
 Find modules used by a script.

 	
 	
 msilib (Windows)	
 Creation of Microsoft Installer files, and CAB files.

 	
 	
 msvcrt (Windows)	
 Miscellaneous useful routines from the MS VC++ runtime.

 	
 	
 multifile	Deprecated:
 Support for reading files which contain distinct parts, such as some MIME data.

 	[image: -]
 	
 multiprocessing	
 Process-based "threading" interface.

 	
 	
 multiprocessing.connection	
 API for dealing with sockets.

 	
 	
 multiprocessing.dummy	
 Dumb wrapper around threading.

 	
 	
 multiprocessing.managers	
 Share data between process with shared objects.

 	
 	
 multiprocessing.pool	
 Create pools of processes.

 	
 	
 multiprocessing.sharedctypes	
 Allocate ctypes objects from shared memory.

 	
 	
 mutex	Deprecated:
 Lock and queue for mutual exclusion.

 			

 		
 n	

 	
 	
 Nav (Mac)	Deprecated:
 Interface to Navigation Services.

 	
 	
 netrc	
 Loading of .netrc files.

 	
 	
 new	Deprecated:
 Interface to the creation of runtime implementation objects.

 	
 	
 nis (Unix)	
 Interface to Sun's NIS (Yellow Pages) library.

 	
 	
 nntplib	
 NNTP protocol client (requires sockets).

 	
 	
 numbers	
 Numeric abstract base classes (Complex, Real, Integral, etc.).

 			

 		
 o	

 	
 	
 operator	
 Functions corresponding to the standard operators.

 	
 	
 optparse	Deprecated:
 Command-line option parsing library.

 	[image: -]
 	
 os	
 Miscellaneous operating system interfaces.

 	
 	
 os.path	
 Operations on pathnames.

 	
 	
 ossaudiodev (Linux, FreeBSD)	
 Access to OSS-compatible audio devices.

 			

 		
 p	

 	
 	
 parser	
 Access parse trees for Python source code.

 	
 	
 pdb	
 The Python debugger for interactive interpreters.

 	
 	
 pickle	
 Convert Python objects to streams of bytes and back.

 	
 	
 pickletools	
 Contains extensive comments about the pickle protocols and pickle-machine
opcodes, as well as some useful functions.

 	
 	
 pipes (Unix)	
 A Python interface to Unix shell pipelines.

 	
 	
 PixMapWrapper (Mac)	Deprecated:
 Wrapper for PixMap objects.

 	
 	
 pkgutil	
 Utilities for the import system.

 	
 	
 platform	
 Retrieves as much platform identifying data as possible.

 	
 	
 plistlib	
 Generate and parse Mac OS X plist files.

 	
 	
 popen2	Deprecated:
 Subprocesses with accessible standard I/O streams.

 	
 	
 poplib	
 POP3 protocol client (requires sockets).

 	
 	
 posix (Unix)	
 The most common POSIX system calls (normally used via module os).

 	
 	
 posixfile (Unix)	Deprecated:
 A file-like object with support for locking.

 	
 	
 pprint	
 Data pretty printer.

 	
 	
 profile	
 Python source profiler.

 	
 	
 pstats	
 Statistics object for use with the profiler.

 	
 	
 pty (Linux)	
 Pseudo-Terminal Handling for Linux.

 	
 	
 pwd (Unix)	
 The password database (getpwnam() and friends).

 	
 	
 py_compile	
 Generate byte-code files from Python source files.

 	
 	
 pyclbr	
 Supports information extraction for a Python class browser.

 	
 	
 pydoc	
 Documentation generator and online help system.

 			

 		
 q	

 	
 	
 Queue	
 A synchronized queue class.

 	
 	
 quopri	
 Encode and decode files using the MIME quoted-printable encoding.

 			

 		
 r	

 	
 	
 random	
 Generate pseudo-random numbers with various common distributions.

 	
 	
 re	
 Regular expression operations.

 	
 	
 readline (Unix)	
 GNU readline support for Python.

 	
 	
 repr	
 Alternate repr() implementation with size limits.

 	
 	
 resource (Unix)	
 An interface to provide resource usage information on the current process.

 	
 	
 rexec	Deprecated:
 Basic restricted execution framework.

 	
 	
 rfc822	Deprecated:
 Parse 2822 style mail messages.

 	
 	
 rlcompleter	
 Python identifier completion, suitable for the GNU readline library.

 	
 	
 robotparser	
 Loads a robots.txt file and answers questions about
fetchability of other URLs.

 	
 	
 runpy	
 Locate and run Python modules without importing them first.

 			

 		
 s	

 	
 	
 sched	
 General purpose event scheduler.

 	
 	
 ScrolledText (Tk)	
 Text widget with a vertical scroll bar.

 	
 	
 select	
 Wait for I/O completion on multiple streams.

 	
 	
 sets	Deprecated:
 Implementation of sets of unique elements.

 	
 	
 sgmllib	Deprecated:
 Only as much of an SGML parser as needed to parse HTML.

 	
 	
 sha	Deprecated:
 NIST's secure hash algorithm, SHA.

 	
 	
 shelve	
 Python object persistence.

 	
 	
 shlex	
 Simple lexical analysis for Unix shell-like languages.

 	
 	
 shutil	
 High-level file operations, including copying.

 	
 	
 signal	
 Set handlers for asynchronous events.

 	
 	
 SimpleHTTPServer	
 This module provides a basic request handler for HTTP servers.

 	
 	
 SimpleXMLRPCServer	
 Basic XML-RPC server implementation.

 	
 	
 site	
 A standard way to reference site-specific modules.

 	
 	
 smtpd	
 A SMTP server implementation in Python.

 	
 	
 smtplib	
 SMTP protocol client (requires sockets).

 	
 	
 sndhdr	
 Determine type of a sound file.

 	
 	
 socket	
 Low-level networking interface.

 	
 	
 SocketServer	
 A framework for network servers.

 	
 	
 spwd (Unix)	
 The shadow password database (getspnam() and friends).

 	
 	
 sqlite3	
 A DB-API 2.0 implementation using SQLite 3.x.

 	
 	
 ssl	
 TLS/SSL wrapper for socket objects

 	
 	
 stat	
 Utilities for interpreting the results of os.stat(), os.lstat() and os.fstat().

 	
 	
 statvfs	Deprecated:
 Constants for interpreting the result of os.statvfs().

 	
 	
 string	
 Common string operations.

 	
 	
 StringIO	
 Read and write strings as if they were files.

 	
 	
 stringprep	Deprecated:
 String preparation, as per RFC 3453

 	
 	
 struct	
 Interpret strings as packed binary data.

 	
 	
 subprocess	
 Subprocess management.

 	
 	
 sunau	
 Provide an interface to the Sun AU sound format.

 	
 	
 sunaudiodev (SunOS)	Deprecated:
 Access to Sun audio hardware.

 	
 	
 SUNAUDIODEV (SunOS)	Deprecated:
 Constants for use with sunaudiodev.

 	
 	
 symbol	
 Constants representing internal nodes of the parse tree.

 	
 	
 symtable	
 Interface to the compiler's internal symbol tables.

 	
 	
 sys	
 Access system-specific parameters and functions.

 	
 	
 sysconfig	
 Python's configuration information

 	
 	
 syslog (Unix)	
 An interface to the Unix syslog library routines.

 			

 		
 t	

 	
 	
 tabnanny	
 Tool for detecting white space related problems in Python source files in a
directory tree.

 	
 	
 tarfile	
 Read and write tar-format archive files.

 	
 	
 telnetlib	
 Telnet client class.

 	
 	
 tempfile	
 Generate temporary files and directories.

 	
 	
 termios (Unix)	
 POSIX style tty control.

 	[image: -]
 	
 test	
 Regression tests package containing the testing suite for Python.

 	
 	
 test.test_support	
 Support for Python regression tests.

 	
 	
 textwrap	
 Text wrapping and filling

 	
 	
 thread	
 Create multiple threads of control within one interpreter.

 	
 	
 threading	
 Higher-level threading interface.

 	
 	
 time	
 Time access and conversions.

 	
 	
 timeit	
 Measure the execution time of small code snippets.

 	
 	
 Tix	
 Tk Extension Widgets for Tkinter

 	
 	
 Tkinter	
 Interface to Tcl/Tk for graphical user interfaces

 	
 	
 token	
 Constants representing terminal nodes of the parse tree.

 	
 	
 tokenize	
 Lexical scanner for Python source code.

 	
 	
 trace	
 Trace or track Python statement execution.

 	
 	
 traceback	
 Print or retrieve a stack traceback.

 	
 	
 ttk	
 Tk themed widget set

 	
 	
 tty (Unix)	
 Utility functions that perform common terminal control operations.

 	
 	
 turtle	
 Turtle graphics for Tk

 	
 	
 types	
 Names for built-in types.

 			

 		
 u	

 	
 	
 unicodedata	
 Access the Unicode Database.

 	
 	
 unittest	
 Unit testing framework for Python.

 	
 	
 urllib	
 Open an arbitrary network resource by URL (requires sockets).

 	
 	
 urllib2	
 Next generation URL opening library.

 	
 	
 urlparse	
 Parse URLs into or assemble them from components.

 	
 	
 user	Deprecated:
 A standard way to reference user-specific modules.

 	
 	
 UserDict	
 Class wrapper for dictionary objects.

 	
 	
 UserList	
 Class wrapper for list objects.

 	
 	
 UserString	
 Class wrapper for string objects.

 	
 	
 uu	
 Encode and decode files in uuencode format.

 	
 	
 uuid	
 UUID objects (universally unique identifiers) according to RFC 4122

 			

 		
 v	

 	
 	
 videoreader (Mac)	Deprecated:
 Read QuickTime movies frame by frame for further processing.

 			

 		
 w	

 	
 	
 W (Mac)	Deprecated:
 Widgets for the Mac, built on top of FrameWork.

 	
 	
 warnings	
 Issue warning messages and control their disposition.

 	
 	
 wave	
 Provide an interface to the WAV sound format.

 	
 	
 weakref	
 Support for weak references and weak dictionaries.

 	
 	
 webbrowser	
 Easy-to-use controller for Web browsers.

 	
 	
 whichdb	
 Guess which DBM-style module created a given database.

 	
 	
 winsound (Windows)	
 Access to the sound-playing machinery for Windows.

 	[image: -]
 	
 wsgiref	
 WSGI Utilities and Reference Implementation.

 	
 	
 wsgiref.handlers	
 WSGI server/gateway base classes.

 	
 	
 wsgiref.headers	
 WSGI response header tools.

 	
 	
 wsgiref.simple_server	
 A simple WSGI HTTP server.

 	
 	
 wsgiref.util	
 WSGI environment utilities.

 	
 	
 wsgiref.validate	
 WSGI conformance checker.

 			

 		
 x	

 	
 	
 xdrlib	
 Encoders and decoders for the External Data Representation (XDR).

 	[image: -]
 	
 xml	

 	
 	
 xml.dom	
 Document Object Model API for Python.

 	
 	
 xml.dom.minidom	
 Lightweight Document Object Model (DOM) implementation.

 	
 	
 xml.dom.pulldom	
 Support for building partial DOM trees from SAX events.

 	
 	
 xml.etree.ElementTree	
 Implementation of the ElementTree API.

 	
 	
 xml.parsers.expat	
 An interface to the Expat non-validating XML parser.

 	
 	
 xml.sax	
 Package containing SAX2 base classes and convenience functions.

 	
 	
 xml.sax.handler	
 Base classes for SAX event handlers.

 	
 	
 xml.sax.saxutils	
 Convenience functions and classes for use with SAX.

 	
 	
 xml.sax.xmlreader	
 Interface which SAX-compliant XML parsers must implement.

 	
 	
 xmlrpclib	
 XML-RPC client access.

 			

 		
 z	

 	
 	
 zipfile	
 Read and write ZIP-format archive files.

 	
 	
 zipimport	
 support for importing Python modules from ZIP archives.

 	
 	
 zlib	
 Low-level interface to compression and decompression routines compatible with
gzip.

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	IronPython 2.7.2b1 documentation

 Index

 Index pages by letter:

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

 Full index on one page
 (can be huge)

 Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

 genindex-P.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – P

 		

 		P_DETACH (in module os)

 		P_NOWAIT (in module os)

 		P_NOWAITO (in module os)

 		P_OVERLAY (in module os)

 		P_WAIT (in module os)

 		pack() (in module aepack)

 		

 		(in module struct)

 		(mailbox.MH method)

 		(struct.Struct method)

 		pack_array() (xdrlib.Packer method)

 		pack_bytes() (xdrlib.Packer method)

 		pack_double() (xdrlib.Packer method)

 		pack_farray() (xdrlib.Packer method)

 		pack_float() (xdrlib.Packer method)

 		pack_fopaque() (xdrlib.Packer method)

 		pack_fstring() (xdrlib.Packer method)

 		pack_into() (in module struct)

 		

 		(struct.Struct method)

 		pack_list() (xdrlib.Packer method)

 		pack_opaque() (xdrlib.Packer method)

 		pack_string() (xdrlib.Packer method)

 		package, [1]

 		Packer (class in xdrlib)

 		packevent() (in module aetools)

 		
 packing

 		

 		binary data

 		packing (widgets)

 		PAGER

 		pair_content() (in module curses)

 		pair_number() (in module curses)

 		PanedWindow (class in Tix)

 		
 parameter

 		

 		value, default

 		pardir (in module os)

 		paren (2to3 fixer)

 		parent (urllib2.BaseHandler attribute)

 		parent() (ttk.Treeview method)

 		parenthesized form

 		parentNode (xml.dom.Node attribute)

 		paretovariate() (in module random)

 		parse() (doctest.DocTestParser method)

 		

 		(email.parser.Parser method)

 		(in module ast)

 		(in module cgi)

 		(in module compiler)

 		(in module xml.dom.minidom)

 		(in module xml.dom.pulldom)

 		(in module xml.etree.ElementTree)

 		(in module xml.sax)

 		(robotparser.RobotFileParser method)

 		(string.Formatter method)

 		(xml.etree.ElementTree.ElementTree method)

 		Parse() (xml.parsers.expat.xmlparser method)

 		parse() (xml.sax.xmlreader.XMLReader method)

 		parse_and_bind() (in module readline)

 		parse_args() (argparse.ArgumentParser method)

 		PARSE_COLNAMES (in module sqlite3)

 		parse_config_h() (in module sysconfig)

 		PARSE_DECLTYPES (in module sqlite3)

 		parse_header() (in module cgi)

 		parse_known_args() (argparse.ArgumentParser method)

 		parse_multipart() (in module cgi)

 		parse_qs() (in module cgi)

 		

 		(in module urlparse)

 		parse_qsl() (in module cgi)

 		

 		(in module urlparse)

 		parseaddr() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate_tz() (in module email.utils)

 		

 		(in module rfc822)

 		ParseFile (C function), [1]

 		parseFile() (in module compiler)

 		ParseFile() (xml.parsers.expat.xmlparser method)

 		ParseFlags() (in module imaplib)

 		ParseInteractiveCode (C function)

 		parser

 		Parser (class in email.parser)

 		parser (module)

 		ParserCreate() (in module xml.parsers.expat)

 		ParserError

 		ParseResult (class in urlparse)

 		parsesequence() (mhlib.Folder method)

 		ParseSingleStatement (C function)

 		parsestr() (email.parser.Parser method)

 		parseString() (in module xml.dom.minidom)

 		

 		(in module xml.dom.pulldom)

 		(in module xml.sax)

 		ParseTopExpression (C function)

 		parseurl() (ic.IC method)

 		

 		(in module ic)

 		
 parsing

 		

 		Python source code

 		URL

 		ParsingError

 		partial() (imaplib.IMAP4 method)

 		

 		(in module functools)

 		partition() (str method)

 		
 Pascal

 		

 		language

 		
 pass

 		

 		statement

 		pass_() (poplib.POP3 method)

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		
 path

 		

 		configuration file

 		module search, [1], [2], [3]

 		operations

 		path (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(cookielib.Cookie attribute)

 		(in module sys)

 		Path browser

 		path_hooks (in module sys)

 		path_importer_cache (in module sys)

 		path_return_ok() (cookielib.CookiePolicy method)

 		pathconf() (in module os)

 		pathconf_names (in module os)

 		pathname2url() (in module urllib)

 		pathsep (in module os)

 		pattern (re.RegexObject attribute)

 		pause() (in module signal)

 		PAUSED (in module cd)

 		PAX_FORMAT (in module tarfile)

 		pax_headers (tarfile.TarFile attribute)

 		

 		(tarfile.TarInfo attribute)

 		pd() (in module turtle)

 		Pdb (class in pdb), [1]

 		pdb (module)

 		peek() (io.BufferedReader method)

 		PEM_cert_to_DER_cert() (in module ssl)

 		pen() (in module turtle)

 		pencolor() (in module turtle)

 		PendingDeprecationWarning

 		pendown() (in module turtle)

 		pensize() (in module turtle)

 		penup() (in module turtle)

 		PERCENT (in module token)

 		PERCENTEQUAL (in module token)

 		Performance

 		permutations() (in module itertools)

 		Persist() (msilib.SummaryInformation method)

 		persistence

 		
 persistent

 		

 		objects

 		persistent_id (pickle protocol)

 		persistent_load (pickle protocol)

 		pformat() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		phase() (in module cmath)

 		Philbrick, Geoff

 		physical line, [1], [2]

 		pi (in module cmath)

 		

 		(in module math)

 		pick() (in module gl)

 		
 pickle

 		

 		module, [1], [2], [3], [4], [5]

 		pickle (module)

 		pickle() (in module copy_reg)

 		PickleError

 		Pickler (class in pickle)

 		pickletools (module)

 		
 pickling

 		

 		objects

 		PicklingError

 		pid (multiprocessing.Process attribute)

 		

 		(popen2.Popen3 attribute)

 		(subprocess.Popen attribute)

 		PIL (the Python Imaging Library)

 		PIPE (in module subprocess)

 		Pipe() (in module multiprocessing)

 		pipe() (in module os)

 		PIPE_BUF (select.select attribute)

 		pipes (module)

 		PixMapWrapper (module)

 		PKG_DIRECTORY (in module imp)

 		pkgutil (module)

 		
 plain integer

 		

 		object

 		plain integer literal

 		PLAT

 		platform (in module sys)

 		

 		(module)

 		platform() (in module platform)

 		PLAYING (in module cd)

 		PlaySound() (in module winsound)

 		
 plist

 		

 		file

 		plistlib (module)

 		plock() (in module os)

 		plus

 		PLUS (in module token)

 		plus() (decimal.Context method)

 		PLUSEQUAL (in module token)

 		pm() (in module pdb)

 		pnum (in module cd)

 		pointer() (in module ctypes)

 		POINTER() (in module ctypes)

 		polar() (in module cmath)

 		poll() (in module select)

 		

 		(multiprocessing.Connection method)

 		(popen2.Popen3 method)

 		(select.epoll method)

 		(select.poll method)

 		(subprocess.Popen method)

 		pop() (array.array method)

 		

 		(asynchat.fifo method)

 		(collections.deque method)

 		(dict method)

 		(list method)

 		(mailbox.Mailbox method)

 		(multifile.MultiFile method)

 		(set method)

 		
 POP3

 		

 		protocol

 		POP3 (class in poplib)

 		POP3_SSL (class in poplib)

 		pop_alignment() (formatter.formatter method)

 		POP_BLOCK (opcode)

 		pop_font() (formatter.formatter method)

 		POP_JUMP_IF_FALSE (opcode)

 		POP_JUMP_IF_TRUE (opcode)

 		pop_margin() (formatter.formatter method)

 		pop_source() (shlex.shlex method)

 		pop_style() (formatter.formatter method)

 		POP_TOP (opcode)

 		Popen (class in subprocess)

 		popen() (in module os), [1], [2]

 		

 		(in module platform)

 		popen2 (module)

 		popen2() (in module os)

 		

 		(in module popen2)

 		Popen3 (class in popen2)

 		popen3() (in module os)

 		

 		(in module popen2)

 		Popen4 (class in popen2)

 		popen4() (in module os)

 		

 		(in module popen2)

 		popitem() (collections.OrderedDict method)

 		

 		(dict method)

 		(mailbox.Mailbox method)

 		popleft() (collections.deque method)

 		poplib (module)

 		PopupMenu (class in Tix)

 		port (cookielib.Cookie attribute)

 		port_specified (cookielib.Cookie attribute)

 		PortableUnixMailbox (class in mailbox)

 		pos (re.MatchObject attribute)

 		pos() (in module operator)

 		

 		(in module turtle)

 		position() (in module turtle)

 		positional argument

 		
 POSIX

 		

 		I/O control

 		file object

 		threads

 		posix (module)

 		

 		(tarfile.TarFile attribute)

 		posixfile (module)

 		POSIXLY_CORRECT

 		post() (nntplib.NNTP method)

 		

 		(ossaudiodev.oss_audio_device method)

 		post_mortem() (in module pdb)

 		postcmd() (cmd.Cmd method)

 		

 		postloop() (cmd.Cmd method)

 		
 pow

 		

 		built-in function, [1], [2], [3]

 		pow() (built-in function)

 		

 		(in module math)

 		(in module operator)

 		power() (decimal.Context method)

 		pprint (module)

 		pprint() (bdb.Breakpoint method)

 		

 		(in module pprint)

 		(pprint.PrettyPrinter method)

 		prcal() (in module calendar)

 		preamble (email.message.Message attribute)

 		
 precedence

 		

 		operator

 		precmd() (cmd.Cmd method)

 		prefix

 		PREFIX (in module distutils.sysconfig)

 		prefix (in module sys)

 		

 		(xml.dom.Attr attribute)

 		(xml.dom.Node attribute)

 		(zipimport.zipimporter attribute)

 		PREFIXES (in module site)

 		preloop() (cmd.Cmd method)

 		preorder() (compiler.visitor.ASTVisitor method)

 		prepare_input_source() (in module xml.sax.saxutils)

 		prepend() (pipes.Template method)

 		preprocess() (distutils.ccompiler.CCompiler method)

 		PrettyPrinter (class in pprint)

 		prev() (ttk.Treeview method)

 		previous() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		previousSibling (xml.dom.Node attribute)

 		primary

 		
 print

 		

 		statement, [1], [2]

 		print (2to3 fixer)

 		print() (built-in function)

 		Print() (in module findertools)

 		print_callees() (pstats.Stats method)

 		print_callers() (pstats.Stats method)

 		print_directory() (in module cgi)

 		print_environ() (in module cgi)

 		print_environ_usage() (in module cgi)

 		print_exc() (in module traceback)

 		

 		(timeit.Timer method)

 		print_exception() (in module traceback)

 		PRINT_EXPR (opcode)

 		print_form() (in module cgi)

 		print_help() (argparse.ArgumentParser method)

 		PRINT_ITEM (opcode)

 		PRINT_ITEM_TO (opcode)

 		print_last() (in module traceback)

 		PRINT_NEWLINE (opcode)

 		PRINT_NEWLINE_TO (opcode)

 		print_stack() (in module traceback)

 		print_stats() (pstats.Stats method)

 		print_tb() (in module traceback)

 		print_usage() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		print_version() (optparse.OptionParser method)

 		printable (in module string)

 		printdir() (zipfile.ZipFile method)

 		printf-style formatting

 		PriorityQueue (class in Queue)

 		
 private

 		

 		names

 		prmonth() (calendar.TextCalendar method)

 		

 		(in module calendar)

 		
 procedure

 		

 		call

 		
 process

 		

 		group, [1]

 		id

 		id of parent

 		killing, [1]

 		signalling, [1]

 		Process (class in multiprocessing)

 		process() (logging.LoggerAdapter method)

 		process_message() (smtpd.SMTPServer method)

 		process_request() (SocketServer.BaseServer method)

 		processes, light-weight

 		processfile() (in module gensuitemodule)

 		processfile_fromresource() (in module gensuitemodule)

 		ProcessingInstruction() (in module xml.etree.ElementTree)

 		processingInstruction() (xml.sax.handler.ContentHandler method)

 		ProcessingInstructionHandler() (xml.parsers.expat.xmlparser method)

 		processor time

 		processor() (in module platform)

 		product() (in module itertools)

 		Profile (class in hotshot)

 		profile (module)

 		profile function, [1], [2]

 		profiler, [1]

 		profiling, deterministic

 		program

 		Progressbar (class in ttk)

 		ProgressBar() (in module EasyDialogs)

 		prompt (cmd.Cmd attribute)

 		prompt_user_passwd() (urllib.FancyURLopener method)

 		prompts, interpreter

 		propagate (logging.Logger attribute)

 		property list

 		property() (built-in function)

 		property_declaration_handler (in module xml.sax.handler)

 		property_dom_node (in module xml.sax.handler)

 		property_lexical_handler (in module xml.sax.handler)

 		property_xml_string (in module xml.sax.handler)

 		prot_c() (ftplib.FTP_TLS method)

 		prot_p() (ftplib.FTP_TLS method)

 		proto (socket.socket attribute)

 		
 protocol

 		

 		CGI

 		FTP, [1]

 		HTTP, [1], [2], [3], [4]

 		IMAP4

 		IMAP4_SSL

 		IMAP4_stream

 		NNTP

 		POP3

 		SMTP

 		Telnet

 		context management

 		iterator

 		PROTOCOL_SSLv2 (in module ssl)

 		PROTOCOL_SSLv23 (in module ssl)

 		PROTOCOL_SSLv3 (in module ssl)

 		PROTOCOL_TLSv1 (in module ssl)

 		protocol_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		PROTOCOL_VERSION (imaplib.IMAP4 attribute)

 		proxy() (in module weakref)

 		proxyauth() (imaplib.IMAP4 method)

 		ProxyBasicAuthHandler (class in urllib2)

 		ProxyDigestAuthHandler (class in urllib2)

 		ProxyHandler (class in urllib2)

 		ProxyType (in module weakref)

 		ProxyTypes (in module weakref)

 		prstr() (in module fm)

 		pryear() (calendar.TextCalendar method)

 		ps1 (in module sys)

 		ps2 (in module sys)

 		pstats (module)

 		pthreads

 		ptime (in module cd)

 		
 pty

 		

 		module

 		pty (module)

 		pu() (in module turtle)

 		publicId (xml.dom.DocumentType attribute)

 		PullDOM (class in xml.dom.pulldom)

 		punctuation (in module string)

 		PureProxy (class in smtpd)

 		purge() (in module re)

 		push() (asynchat.async_chat method)

 		

 		(asynchat.fifo method)

 		(code.InteractiveConsole method)

 		(multifile.MultiFile method)

 		push_alignment() (formatter.formatter method)

 		push_font() (formatter.formatter method)

 		push_margin() (formatter.formatter method)

 		push_source() (shlex.shlex method)

 		push_style() (formatter.formatter method)

 		push_token() (shlex.shlex method)

 		push_with_producer() (asynchat.async_chat method)

 		pushbutton() (msilib.Dialog method)

 		put() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		put_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		putch() (in module msvcrt)

 		putenv() (in module os)

 		putheader() (httplib.HTTPConnection method)

 		putp() (in module curses)

 		putrequest() (httplib.HTTPConnection method)

 		putsequences() (mhlib.Folder method)

 		putwch() (in module msvcrt)

 		putwin() (curses.window method)

 		
 pwd

 		

 		module

 		pwd (module)

 		pwd() (ftplib.FTP method)

 		pwlcurve() (in module gl)

 		py3kwarning (in module sys)

 		py_compile (module)

 		PY_COMPILED (in module imp)

 		PY_FROZEN (in module imp)

 		py_object (class in ctypes)

 		PY_SOURCE (in module imp)

 		py_suffix_importer() (in module imputil)

 		PyArg_ParseTuple()

 		PyArg_ParseTupleAndKeywords()

 		pyclbr (module)

 		PyCompileError

 		PyDLL (class in ctypes)

 		pydoc (module)

 		PyErr_Fetch()

 		PyErr_Restore()

 		
 pyexpat

 		

 		module

 		PYFUNCTYPE() (in module ctypes)

 		PyObject_CallObject()

 		PyOpenGL

 		Python 3000

 		Python Editor

 		
 Python Enhancement Proposals

 		

 		PEP 0205

 		PEP 0255

 		PEP 0342, [1]

 		PEP 0343, [1], [2]

 		PEP 100

 		PEP 11

 		PEP 205

 		PEP 207

 		PEP 208

 		PEP 217

 		PEP 218, [1], [2]

 		PEP 227, [1], [2]

 		PEP 229

 		PEP 230, [1]

 		PEP 232

 		PEP 234

 		PEP 236, [1], [2]

 		PEP 237, [1], [2], [3]

 		PEP 238, [1], [2], [3], [4], [5]

 		PEP 241

 		PEP 243

 		PEP 246

 		PEP 249, [1], [2], [3]

 		PEP 252, [1]

 		PEP 253, [1], [2], [3], [4]

 		PEP 255, [1], [2], [3], [4]

 		PEP 261, [1]

 		PEP 263, [1]

 		PEP 264

 		PEP 273, [1], [2]

 		PEP 275

 		PEP 277

 		PEP 278

 		PEP 279

 		PEP 282, [1], [2]

 		PEP 285, [1]

 		PEP 288

 		PEP 289, [1], [2]

 		PEP 292, [1]

 		PEP 293

 		PEP 3000

 		PEP 301, [1]

 		PEP 302, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]

 		PEP 305, [1]

 		PEP 307, [1], [2], [3]

 		PEP 308, [1], [2], [3]

 		PEP 309

 		PEP 3100

 		PEP 3101, [1], [2]

 		PEP 3105, [1]

 		PEP 3106

 		PEP 3110

 		PEP 3112, [1]

 		PEP 3116

 		PEP 3118

 		PEP 3119, [1], [2], [3]

 		PEP 3121

 		PEP 3127

 		PEP 3129

 		PEP 3137

 		PEP 314, [1]

 		PEP 3141, [1], [2]

 		PEP 318, [1], [2]

 		PEP 322, [1]

 		PEP 324, [1]

 		PEP 325

 		PEP 327

 		PEP 328, [1], [2], [3], [4], [5]

 		PEP 331

 		PEP 333, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PEP 338, [1], [2]

 		PEP 339

 		PEP 341

 		PEP 342, [1], [2], [3]

 		PEP 343, [1], [2], [3]

 		PEP 347

 		PEP 352, [1]

 		PEP 353, [1], [2]

 		PEP 356

 		PEP 357

 		PEP 361

 		PEP 366

 		PEP 370, [1], [2], [3]

 		PEP 371

 		PEP 372

 		PEP 378, [1]

 		PEP 389

 		PEP 391

 		PEP 5, [1]

 		PEP 6

 		PEP 8, [1], [2], [3], [4]

 		Python Imaging Library

 		PYTHON*

 		python_branch() (in module platform)

 		python_build() (in module platform)

 		python_compiler() (in module platform)

 		PYTHON_DOM

 		python_implementation() (in module platform)

 		python_revision() (in module platform)

 		python_version() (in module platform)

 		python_version_tuple() (in module platform)

 		PYTHONCASEOK

 		PYTHONDEBUG

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2]

 		PYTHONHOME, [1], [2], [3], [4], [5], [6]

 		Pythonic

 		PYTHONINSPECT, [1]

 		PYTHONIOENCODING

 		PYTHONNOUSERSITE

 		PYTHONOPTIMIZE

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6]

 		PYTHONUNBUFFERED

 		PYTHONUSERBASE

 		PYTHONVERBOSE

 		PYTHONWARNINGS, [1], [2]

 		PYTHONY2K, [1], [2]

 		PyZipFile (class in zipfile)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/file.png

genindex-E.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – E

 		

 		e (in module cmath)

 		

 		(in module math)

 		E2BIG (in module errno)

 		EACCES (in module errno)

 		EADDRINUSE (in module errno)

 		EADDRNOTAVAIL (in module errno)

 		EADV (in module errno)

 		EAFNOSUPPORT (in module errno)

 		EAFP

 		EAGAIN (in module errno)

 		EALREADY (in module errno)

 		east_asian_width() (in module unicodedata)

 		EasyDialogs (module)

 		EBADE (in module errno)

 		EBADF (in module errno)

 		EBADFD (in module errno)

 		EBADMSG (in module errno)

 		EBADR (in module errno)

 		EBADRQC (in module errno)

 		EBADSLT (in module errno)

 		EBCDIC

 		EBFONT (in module errno)

 		EBUSY (in module errno)

 		ECHILD (in module errno)

 		echo() (in module curses)

 		echochar() (curses.window method)

 		ECHRNG (in module errno)

 		ECOMM (in module errno)

 		ECONNABORTED (in module errno)

 		ECONNREFUSED (in module errno)

 		ECONNRESET (in module errno)

 		EDEADLK (in module errno)

 		EDEADLOCK (in module errno)

 		EDESTADDRREQ (in module errno)

 		edit() (curses.textpad.Textbox method)

 		EDOM (in module errno)

 		EDOTDOT (in module errno)

 		EDQUOT (in module errno)

 		EEXIST (in module errno)

 		EFAULT (in module errno)

 		EFBIG (in module errno)

 		effective() (in module bdb)

 		ehlo() (smtplib.SMTP method)

 		ehlo_or_helo_if_needed() (smtplib.SMTP method)

 		EHOSTDOWN (in module errno)

 		EHOSTUNREACH (in module errno)

 		EIDRM (in module errno)

 		EILSEQ (in module errno)

 		EINPROGRESS (in module errno)

 		EINTR (in module errno)

 		EINVAL (in module errno)

 		EIO (in module errno)

 		EISCONN (in module errno)

 		EISDIR (in module errno)

 		EISNAM (in module errno)

 		EL2HLT (in module errno)

 		EL2NSYNC (in module errno)

 		EL3HLT (in module errno)

 		EL3RST (in module errno)

 		Element (class in xml.etree.ElementTree)

 		element_create() (ttk.Style method)

 		element_names() (ttk.Style method)

 		element_options() (ttk.Style method)

 		ElementDeclHandler() (xml.parsers.expat.xmlparser method)

 		elements() (collections.Counter method)

 		ElementTree (class in xml.etree.ElementTree)

 		ELIBACC (in module errno)

 		ELIBBAD (in module errno)

 		ELIBEXEC (in module errno)

 		ELIBMAX (in module errno)

 		ELIBSCN (in module errno)

 		
 elif

 		

 		keyword

 		Ellinghouse, Lance

 		
 Ellipsis

 		

 		object

 		Ellipsis (built-in variable)

 		ELLIPSIS (in module doctest)

 		EllipsisType (in module types)

 		ELNRNG (in module errno)

 		ELOOP (in module errno)

 		
 else

 		

 		dangling

 		keyword, [1], [2], [3], [4]

 		email (module)

 		email.charset (module)

 		email.encoders (module)

 		email.errors (module)

 		email.generator (module)

 		email.header (module)

 		email.iterators (module)

 		email.message (module)

 		email.mime (module)

 		email.parser (module)

 		email.utils (module)

 		EMFILE (in module errno)

 		emit() (logging.FileHandler method)

 		

 		(logging.Handler method)

 		(logging.NullHandler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.HTTPHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.RotatingFileHandler method)

 		(logging.handlers.SMTPHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(logging.handlers.TimedRotatingFileHandler method)

 		(logging.handlers.WatchedFileHandler method)

 		EMLINK (in module errno)

 		
 empty

 		

 		list

 		tuple, [1]

 		Empty

 		empty() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		(sched.scheduler method)

 		EMPTY_NAMESPACE (in module xml.dom)

 		emptyline() (cmd.Cmd method)

 		EMSGSIZE (in module errno)

 		EMULTIHOP (in module errno)

 		enable() (bdb.Breakpoint method)

 		

 		(in module cgitb)

 		(in module gc)

 		enable_callback_tracebacks() (in module sqlite3)

 		enable_interspersed_args() (optparse.OptionParser method)

 		enable_load_extension() (sqlite3.Connection method)

 		enable_traversal() (ttk.Notebook method)

 		ENABLE_USER_SITE (in module site)

 		EnableReflectionKey() (in module _winreg)

 		ENAMETOOLONG (in module errno)

 		ENAVAIL (in module errno)

 		enclose() (curses.window method)

 		
 encode

 		

 		Codecs

 		encode() (codecs.Codec method)

 		

 		(codecs.IncrementalEncoder method)

 		(email.header.Header method)

 		(in module base64)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONEncoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.Boolean method)

 		(xmlrpclib.DateTime method)

 		encode_7or8bit() (in module email.encoders)

 		encode_base64() (in module email.encoders)

 		encode_noop() (in module email.encoders)

 		encode_quopri() (in module email.encoders)

 		encode_rfc2231() (in module email.utils)

 		encode_threshold (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		encoded_header_len() (email.charset.Charset method)

 		EncodedFile() (in module codecs)

 		encodePriority() (logging.handlers.SysLogHandler method)

 		encodestring() (in module base64)

 		

 		(in module quopri)

 		
 encoding

 		

 		base64

 		quoted-printable

 		encoding (file attribute)

 		ENCODING (in module tarfile)

 		encoding (io.TextIOBase attribute)

 		encodings

 		encodings.idna (module)

 		encodings.utf_8_sig (module)

 		encodings_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		end() (re.MatchObject method)

 		

 		(xml.etree.ElementTree.TreeBuilder method)

 		end_fill() (in module turtle)

 		END_FINALLY (opcode)

 		end_group() (fl.form method)

 		end_headers() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		end_marker() (multifile.MultiFile method)

 		end_paragraph() (formatter.formatter method)

 		end_poly() (in module turtle)

 		EndCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		EndDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		endDocument() (xml.sax.handler.ContentHandler method)

 		endElement() (xml.sax.handler.ContentHandler method)

 		EndElementHandler() (xml.parsers.expat.xmlparser method)

 		endElementNS() (xml.sax.handler.ContentHandler method)

 		endheaders() (httplib.HTTPConnection method)

 		ENDMARKER (in module token)

 		EndNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		endpick() (in module gl)

 		endpos (re.MatchObject attribute)

 		endPrefixMapping() (xml.sax.handler.ContentHandler method)

 		endselect() (in module gl)

 		endswith() (str method)

 		endwin() (in module curses)

 		ENETDOWN (in module errno)

 		ENETRESET (in module errno)

 		ENETUNREACH (in module errno)

 		ENFILE (in module errno)

 		ENOANO (in module errno)

 		ENOBUFS (in module errno)

 		ENOCSI (in module errno)

 		ENODATA (in module errno)

 		ENODEV (in module errno)

 		ENOENT (in module errno)

 		ENOEXEC (in module errno)

 		ENOLCK (in module errno)

 		ENOLINK (in module errno)

 		ENOMEM (in module errno)

 		ENOMSG (in module errno)

 		ENONET (in module errno)

 		ENOPKG (in module errno)

 		ENOPROTOOPT (in module errno)

 		ENOSPC (in module errno)

 		ENOSR (in module errno)

 		ENOSTR (in module errno)

 		ENOSYS (in module errno)

 		ENOTBLK (in module errno)

 		ENOTCONN (in module errno)

 		ENOTDIR (in module errno)

 		ENOTEMPTY (in module errno)

 		ENOTNAM (in module errno)

 		ENOTSOCK (in module errno)

 		ENOTTY (in module errno)

 		ENOTUNIQ (in module errno)

 		enter() (sched.scheduler method)

 		enterabs() (sched.scheduler method)

 		entities (xml.dom.DocumentType attribute)

 		EntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		entitydefs (in module htmlentitydefs)

 		EntityResolver (class in xml.sax.handler)

 		Enum (class in aetypes)

 		enumerate() (built-in function)

 		

 		(in module fm)

 		(in module threading)

 		EnumKey() (in module _winreg)

 		enumsubst() (in module aetools)

 		EnumValue() (in module _winreg)

 		environ (in module os)

 		

 		(in module posix)

 		environment

 		
 environment variable

 		

 		%PATH%

 		<protocol>_proxy

 		APPDATA

 		AUDIODEV

 		BROWSER, [1]

 		CC

 		CFLAGS, [1], [2]

 		COLUMNS, [1]

 		COMSPEC, [1]

 		CPP

 		CPPFLAGS

 		HOME, [1], [2], [3], [4], [5]

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		IDLESTARTUP

 		KDEDIR

 		LANG, [1], [2], [3], [4]

 		LANGUAGE, [1]

 		LC_ALL, [1]

 		LC_MESSAGES, [1]

 		LDCXXSHARED

 		LDFLAGS

 		LINES, [1]

 		LNAME

 		LOGNAME, [1]

 		MIXERDEV

 		PAGER

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		PLAT

 		POSIXLY_CORRECT

 		PYTHON*

 		PYTHONCASEOK, [1]

 		PYTHONDEBUG, [1]

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2], [3]

 		PYTHONDUMPREFS

 		PYTHONEXECUTABLE

 		PYTHONHOME, [1], [2], [3], [4], [5], [6], [7]

 		PYTHONINSPECT, [1], [2]

 		PYTHONIOENCODING, [1]

 		PYTHONMALLOCSTATS

 		PYTHONNOUSERSITE, [1], [2]

 		PYTHONOPTIMIZE, [1]

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6], [7]

 		PYTHONTHREADDEBUG

 		PYTHONUNBUFFERED, [1]

 		PYTHONUSERBASE, [1], [2]

 		PYTHONVERBOSE, [1]

 		PYTHONWARNINGS, [1], [2], [3]

 		PYTHONY2K, [1], [2], [3]

 		PYTHON_DOM

 		SystemRoot

 		TCL_LIBRARY

 		TEMP

 		TIX_LIBRARY

 		TK_LIBRARY

 		TMP, [1]

 		TMPDIR, [1]

 		TZ, [1], [2], [3], [4]

 		USER

 		USERNAME

 		USERPROFILE, [1]

 		USER_BASE

 		Wimp$ScrapDir

 		exec_prefix

 		ftp_proxy

 		http_proxy, [1]

 		no_proxy, [1]

 		prefix

 		
 environment variables

 		

 		deleting

 		setting

 		EnvironmentError

 		EnvironmentVarGuard (class in test.test_support)

 		ENXIO (in module errno)

 		eof (shlex.shlex attribute)

 		EOFError

 		EOPNOTSUPP (in module errno)

 		EOVERFLOW (in module errno)

 		EPERM (in module errno)

 		EPFNOSUPPORT (in module errno)

 		

 		epilogue (email.message.Message attribute)

 		EPIPE (in module errno)

 		epoch

 		epoll() (in module select)

 		EPROTO (in module errno)

 		EPROTONOSUPPORT (in module errno)

 		EPROTOTYPE (in module errno)

 		eq() (in module operator)

 		EQEQUAL (in module token)

 		EQUAL (in module token)

 		ERA (in module locale)

 		ERA_D_FMT (in module locale)

 		ERA_D_T_FMT (in module locale)

 		ERA_T_FMT (in module locale)

 		ERANGE (in module errno)

 		erase() (curses.window method)

 		erasechar() (in module curses)

 		EREMCHG (in module errno)

 		EREMOTE (in module errno)

 		EREMOTEIO (in module errno)

 		ERESTART (in module errno)

 		erf() (in module math)

 		erfc() (in module math)

 		EROFS (in module errno)

 		ERR (in module curses)

 		errcheck (ctypes._FuncPtr attribute)

 		errcode (xmlrpclib.ProtocolError attribute)

 		errmsg (xmlrpclib.ProtocolError attribute)

 		
 errno

 		

 		module, [1]

 		errno (module)

 		error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]

 		Error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

 		ERROR (in module cd)

 		error handling

 		error() (argparse.ArgumentParser method)

 		

 		(in module logging)

 		(logging.Logger method)

 		(mhlib.Folder method)

 		(mhlib.MH method)

 		(urllib2.OpenerDirector method)

 		(xml.sax.handler.ErrorHandler method)

 		error_body (wsgiref.handlers.BaseHandler attribute)

 		error_content_type (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_headers (wsgiref.handlers.BaseHandler attribute)

 		error_leader() (shlex.shlex method)

 		error_message_format (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_output() (wsgiref.handlers.BaseHandler method)

 		error_perm

 		error_proto, [1]

 		error_reply

 		error_status (wsgiref.handlers.BaseHandler attribute)

 		error_temp

 		ErrorByteIndex (xml.parsers.expat.xmlparser attribute)

 		errorcode (in module errno)

 		ErrorCode (xml.parsers.expat.xmlparser attribute)

 		ErrorColumnNumber (xml.parsers.expat.xmlparser attribute)

 		ErrorHandler (class in xml.sax.handler)

 		ErrorLineNumber (xml.parsers.expat.xmlparser attribute)

 		errors

 		
 Errors

 		

 		(file attribute)

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		logging

 		ErrorString() (in module xml.parsers.expat)

 		ERRORTOKEN (in module token)

 		escape (shlex.shlex attribute)

 		escape sequence

 		escape() (in module cgi)

 		

 		(in module re)

 		(in module xml.sax.saxutils)

 		escapechar (csv.Dialect attribute)

 		escapedquotes (shlex.shlex attribute)

 		ESHUTDOWN (in module errno)

 		ESOCKTNOSUPPORT (in module errno)

 		ESPIPE (in module errno)

 		ESRCH (in module errno)

 		ESRMNT (in module errno)

 		ESTALE (in module errno)

 		ESTRPIPE (in module errno)

 		ETIME (in module errno)

 		ETIMEDOUT (in module errno)

 		Etiny() (decimal.Context method)

 		ETOOMANYREFS (in module errno)

 		Etop() (decimal.Context method)

 		ETXTBSY (in module errno)

 		EUCLEAN (in module errno)

 		EUNATCH (in module errno)

 		EUSERS (in module errno)

 		
 eval

 		

 		built-in function, [1], [2], [3], [4], [5], [6], [7]

 		eval() (built-in function)

 		
 evaluation

 		

 		order

 		Event (class in multiprocessing)

 		

 		(class in threading)

 		event scheduling

 		event() (msilib.Control method)

 		Event() (multiprocessing.managers.SyncManager method)

 		events (widgets)

 		EWOULDBLOCK (in module errno)

 		EX_CANTCREAT (in module os)

 		EX_CONFIG (in module os)

 		EX_DATAERR (in module os)

 		EX_IOERR (in module os)

 		EX_NOHOST (in module os)

 		EX_NOINPUT (in module os)

 		EX_NOPERM (in module os)

 		EX_NOTFOUND (in module os)

 		EX_NOUSER (in module os)

 		EX_OK (in module os)

 		EX_OSERR (in module os)

 		EX_OSFILE (in module os)

 		EX_PROTOCOL (in module os)

 		EX_SOFTWARE (in module os)

 		EX_TEMPFAIL (in module os)

 		EX_UNAVAILABLE (in module os)

 		EX_USAGE (in module os)

 		Example (class in doctest)

 		example (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		examples (doctest.DocTest attribute)

 		exc_clear() (in module sys)

 		exc_info (doctest.UnexpectedException attribute)

 		

 		(in module sys)

 		exc_info() (in module sys)

 		exc_msg (doctest.Example attribute)

 		exc_traceback (in module sys), [1], [2]

 		exc_type (in module sys), [1]

 		exc_value (in module sys), [1]

 		excel (class in csv)

 		excel_tab (class in csv)

 		
 except

 		

 		bare

 		keyword

 		statement

 		except (2to3 fixer)

 		excepthook() (in module sys), [1]

 		exception, [1]

 		

 		AssertionError

 		AttributeError

 		GeneratorExit

 		ImportError, [1], [2]

 		NameError

 		RuntimeError

 		StopIteration, [1]

 		TypeError

 		ValueError

 		ZeroDivisionError

 		handler

 		raising

 		Exception

 		exception handler

 		exception() (in module logging)

 		

 		(logging.Logger method)

 		
 exceptions

 		

 		in CGI scripts

 		exceptions (module)

 		
 exclusive

 		

 		or

 		EXDEV (in module errno)

 		
 exec

 		

 		statement, [1], [2]

 		exec (2to3 fixer)

 		exec_prefix

 		EXEC_PREFIX (in module distutils.sysconfig)

 		exec_prefix (in module sys)

 		EXEC_STMT (opcode)

 		
 execfile

 		

 		built-in function, [1]

 		execfile (2to3 fixer)

 		execfile() (built-in function)

 		execl() (in module os)

 		execle() (in module os)

 		execlp() (in module os)

 		execlpe() (in module os)

 		executable (in module sys)

 		executable_filename() (distutils.ccompiler.CCompiler method)

 		execute() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.util)

 		Execute() (msilib.View method)

 		execute() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executemany() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executescript() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		
 execution

 		

 		frame, [1]

 		restricted

 		stack

 		execution model

 		execv() (in module os)

 		execve() (in module os)

 		execvp() (in module os)

 		execvpe() (in module os)

 		ExFileSelectBox (class in Tix)

 		EXFULL (in module errno)

 		exists() (in module os.path)

 		

 		(ttk.Treeview method)

 		exit (built-in variable)

 		exit() (argparse.ArgumentParser method)

 		

 		(in module sys)

 		(in module thread)

 		exitcode (multiprocessing.Process attribute)

 		exitfunc (2to3 fixer)

 		

 		(in module sys)

 		(in sys)

 		exitonclick() (in module turtle)

 		exp() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		expand() (re.MatchObject method)

 		expand_tabs (textwrap.TextWrapper attribute)

 		ExpandEnvironmentStrings() (in module _winreg)

 		expandNode() (xml.dom.pulldom.DOMEventStream method)

 		expandtabs() (in module string)

 		

 		(str method)

 		expanduser() (in module os.path)

 		expandvars() (in module os.path)

 		Expat

 		ExpatError

 		expect() (telnetlib.Telnet method)

 		expectedFailure() (in module unittest)

 		expectedFailures (unittest.TestResult attribute)

 		expires (cookielib.Cookie attribute)

 		expm1() (in module math)

 		expovariate() (in module random)

 		expr() (in module parser)

 		expression, [1]

 		

 		Conditional

 		conditional

 		generator

 		lambda

 		list, [1], [2]

 		statement

 		yield

 		expunge() (imaplib.IMAP4 method)

 		extend() (array.array method)

 		

 		(collections.deque method)

 		(list method)

 		(xml.etree.ElementTree.Element method)

 		extend_path() (in module pkgutil)

 		
 extended

 		

 		slicing

 		extended print statement

 		
 extended slice

 		

 		assignment

 		operation

 		extended slicing

 		EXTENDED_ARG (opcode)

 		ExtendedContext (class in decimal)

 		extendleft() (collections.deque method)

 		
 extension

 		

 		module

 		Extension (class in distutils.core)

 		extension module

 		extensions_map (SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		External Data Representation, [1]

 		external_attr (zipfile.ZipInfo attribute)

 		ExternalClashError

 		ExternalEntityParserCreate() (xml.parsers.expat.xmlparser method)

 		ExternalEntityRefHandler() (xml.parsers.expat.xmlparser method)

 		extra (zipfile.ZipInfo attribute)

 		extract() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		extract_cookies() (cookielib.CookieJar method)

 		extract_stack() (in module traceback)

 		extract_tb() (in module traceback)

 		extract_version (zipfile.ZipInfo attribute)

 		extractall() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		ExtractError

 		extractfile() (tarfile.TarFile method)

 		extsep (in module os)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-all.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

Symbols

 		

 		
 !=

 		

 		operator

 		
 %

 		

 		operator

 		% formatting

 		% interpolation

 		%PATH%

 		
 &

 		

 		operator

 		
 *

 		

 		operator

 		statement, [1]

 		
 **

 		

 		operator

 		statement, [1]

 		
 +

 		

 		operator

 		
 -

 		

 		operator

 		
 --help

 		

 		command line option

 		trace command line option

 		
 --ignore-dir=<dir>

 		

 		trace command line option

 		
 --ignore-module=<mod>

 		

 		trace command line option

 		
 --version

 		

 		command line option

 		trace command line option

 		
 -3

 		

 		command line option

 		
 -B

 		

 		command line option

 		
 -b, --buffer

 		

 		unittest command line option

 		
 -c <command>

 		

 		command line option

 		
 -c, --catch

 		

 		unittest command line option

 		
 -c, --clock

 		

 		timeit command line option

 		
 -c, --count

 		

 		trace command line option

 		
 -C, --coverdir=<dir>

 		

 		trace command line option

 		
 -d

 		

 		command line option

 		
 -d destdir

 		

 		compileall command line option

 		
 -E

 		

 		command line option

 		
 -f

 		

 		compileall command line option

 		
 -f, --failfast

 		

 		unittest command line option

 		
 -f, --file=<file>

 		

 		trace command line option

 		
 -g, --timing

 		

 		trace command line option

 		
 -h

 		

 		command line option

 		
 -h, --help

 		

 		timeit command line option

 		
 -i

 		

 		command line option

 		
 -i list

 		

 		compileall command line option

 		
 -J

 		

 		command line option

 		
 -l

 		

 		compileall command line option

 		
 -l, --listfuncs

 		

 		trace command line option

 		
 -m <module-name>

 		

 		command line option

 		
 -m, --missing

 		

 		trace command line option

 		
 -n N, --number=N

 		

 		timeit command line option

 		
 -O

 		

 		command line option

 		
 -OO

 		

 		command line option

 		
 -p pattern

 		

 		unittest-discover command line option

 		

 		
 -q

 		

 		compileall command line option

 		
 -Q <arg>

 		

 		command line option

 		
 -r N, --repeat=N

 		

 		timeit command line option

 		
 -R, --no-report

 		

 		trace command line option

 		
 -r, --report

 		

 		trace command line option

 		
 -S

 		

 		command line option

 		
 -s

 		

 		command line option

 		
 -s directory

 		

 		unittest-discover command line option

 		
 -s S, --setup=S

 		

 		timeit command line option

 		
 -s, --summary

 		

 		trace command line option

 		
 -t

 		

 		command line option

 		
 -t directory

 		

 		unittest-discover command line option

 		
 -t, --time

 		

 		timeit command line option

 		
 -t, --trace

 		

 		trace command line option

 		
 -T, --trackcalls

 		

 		trace command line option

 		
 -U

 		

 		command line option

 		
 -u

 		

 		command line option

 		
 -V

 		

 		command line option

 		
 -v

 		

 		command line option

 		
 -v, --verbose

 		

 		timeit command line option

 		unittest-discover command line option

 		
 -W arg

 		

 		command line option

 		
 -X

 		

 		command line option

 		
 -x

 		

 		command line option

 		
 -x regex

 		

 		compileall command line option

 		...

 		
 .ini

 		

 		file

 		
 .pdbrc

 		

 		file

 		
 .pythonrc.py

 		

 		file

 		
 /

 		

 		operator

 		
 //

 		

 		operator

 		2to3

 		
 <

 		

 		operator

 		
 <<

 		

 		operator

 		
 <=

 		

 		operator

 		<protocol>_proxy

 		
 ==

 		

 		operator

 		
 >

 		

 		operator

 		
 >=

 		

 		operator

 		
 >>

 		

 		operator

 		>>>

 		
 @

 		

 		statement

 		
 ^

 		

 		operator

_

 		

 		__abs__() (in module operator)

 		

 		(object method)

 		__add__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__all__

 		

 		(optional module attribute)

 		__and__() (in module operator)

 		

 		(object method)

 		__bases__ (class attribute), [1]

 		
 __builtin__

 		

 		module, [1], [2]

 		__builtin__ (module)

 		__builtins__

 		__call__() (object method), [1]

 		__class__ (instance attribute), [1]

 		__cmp__() (instance method)

 		

 		(object method)

 		__coerce__() (object method)

 		__complex__() (object method)

 		__concat__() (in module operator)

 		__contains__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(object method)

 		__copy__() (copy protocol)

 		__debug__

 		

 		(built-in variable)

 		__deepcopy__() (copy protocol)

 		__del__() (object method)

 		__delattr__() (object method)

 		__delete__() (object method)

 		__delitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(object method)

 		__delslice__() (in module operator)

 		

 		(object method)

 		__dict__ (class attribute)

 		

 		(function attribute)

 		(instance attribute), [1]

 		(module attribute)

 		(object attribute)

 		__displayhook__ (in module sys)

 		__div__() (in module operator)

 		

 		(object method)

 		__divmod__() (object method)

 		__doc__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		(module attribute)

 		__enter__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__eq__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(object method)

 		__excepthook__ (in module sys)

 		__exit__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__file__

 		

 		(module attribute)

 		__float__() (object method)

 		__floordiv__() (in module operator)

 		

 		(object method)

 		__format__

 		__future__

 		

 		(module)

 		__ge__() (in module operator)

 		

 		(object method)

 		__get__() (object method)

 		__getattr__() (object method)

 		__getattribute__() (object method)

 		__getinitargs__() (object method)

 		__getitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		__getnewargs__() (object method)

 		__getslice__() (in module operator)

 		

 		(object method)

 		__getstate__() (object method)

 		__gt__() (in module operator)

 		

 		(object method)

 		__hash__() (object method)

 		__hex__() (object method)

 		__iadd__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iand__() (in module operator)

 		

 		(object method)

 		__iconcat__() (in module operator)

 		__idiv__() (in module operator)

 		

 		(object method)

 		__ifloordiv__() (in module operator)

 		

 		(object method)

 		__ilshift__() (in module operator)

 		

 		(object method)

 		__imod__() (in module operator)

 		

 		(object method)

 		__import__() (built-in function)

 		__imul__() (in module operator)

 		

 		(object method)

 		__index__() (in module operator)

 		

 		(object method)

 		__init__() (logging.Handler method)

 		

 		(logging.logging.Formatter method)

 		(object method), [1]

 		__instancecheck__() (class method)

 		__int__() (object method)

 		__inv__() (in module operator)

 		__invert__() (in module operator)

 		

 		(object method)

 		__ior__() (in module operator)

 		

 		(object method)

 		__ipow__() (in module operator)

 		

 		(object method)

 		__irepeat__() (in module operator)

 		__irshift__() (in module operator)

 		

 		(object method)

 		__isub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iter__() (container method)

 		

 		(iterator method)

 		(mailbox.Mailbox method)

 		(object method)

 		(unittest.TestSuite method)

 		__itruediv__() (in module operator)

 		

 		(object method)

 		__ixor__() (in module operator)

 		

 		(object method)

 		__le__() (in module operator)

 		

 		(object method)

 		__len__() (email.message.Message method)

 		

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		(rfc822.AddressList method)

 		__loader__

 		__long__() (object method)

 		__lshift__() (in module operator)

 		

 		(object method)

 		__lt__() (in module operator)

 		

 		(object method)

 		
 __main__

 		

 		module, [1], [2]

 		__main__ (module)

 		__members__ (object attribute)

 		__metaclass__ (built-in variable)

 		__methods__ (object attribute)

 		__missing__() (collections.defaultdict method)

 		__mod__() (in module operator)

 		

 		(object method)

 		

 		__module__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		__mro__ (class attribute)

 		__mul__() (in module operator)

 		

 		(object method)

 		__name__

 		

 		(class attribute), [1]

 		(function attribute)

 		(method attribute)

 		(module attribute)

 		__ne__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(object method)

 		__neg__() (in module operator)

 		

 		(object method)

 		__new__() (object method)

 		__nonzero__() (object method), [1]

 		__not__() (in module operator)

 		__oct__() (object method)

 		__or__() (in module operator)

 		

 		(object method)

 		__package__

 		__path__, [1]

 		__pos__() (in module operator)

 		

 		(object method)

 		__pow__() (in module operator)

 		

 		(object method)

 		__radd__() (object method)

 		__rand__() (object method)

 		__rcmp__() (object method)

 		__rdiv__() (object method)

 		__rdivmod__() (object method)

 		__reduce__() (object method)

 		__reduce_ex__() (object method)

 		__repeat__() (in module operator)

 		__repr__() (multiprocessing.managers.BaseProxy method)

 		

 		(netrc.netrc method)

 		(object method)

 		__reversed__() (object method)

 		__rfloordiv__() (object method)

 		__rlshift__() (object method)

 		__rmod__() (object method)

 		__rmul__() (object method)

 		__ror__() (object method)

 		__rpow__() (object method)

 		__rrshift__() (object method)

 		__rshift__() (in module operator)

 		

 		(object method)

 		__rsub__() (object method)

 		__rtruediv__() (object method)

 		__rxor__() (object method)

 		__set__() (object method)

 		__setattr__() (object method), [1]

 		__setitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(object method)

 		__setslice__() (in module operator)

 		

 		(object method)

 		__setstate__() (object method)

 		__slots__

 		

 		(built-in variable)

 		__stderr__ (in module sys)

 		__stdin__ (in module sys)

 		__stdout__ (in module sys)

 		__str__() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(email.charset.Charset method)

 		(email.header.Header method)

 		(email.message.Message method)

 		(multiprocessing.managers.BaseProxy method)

 		(object method)

 		(rfc822.AddressList method)

 		__sub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__subclasscheck__() (class method)

 		__subclasses__() (class method)

 		__subclasshook__() (abc.ABCMeta method)

 		__truediv__() (in module operator)

 		

 		(object method)

 		__unicode__() (email.header.Header method)

 		

 		(object method)

 		__xor__() (in module operator)

 		

 		(object method)

 		anonymous (ctypes.Structure attribute)

 		_asdict() (collections.somenamedtuple method)

 		_b_base_ (ctypes._CData attribute)

 		_b_needsfree_ (ctypes._CData attribute)

 		_callmethod() (multiprocessing.managers.BaseProxy method)

 		_CData (class in ctypes)

 		_clear_type_cache() (in module sys)

 		_current_frames() (in module sys)

 		_exit() (in module os)

 		_fields (ast.AST attribute)

 		

 		(collections.somenamedtuple attribute)

 		fields (ctypes.Structure attribute)

 		_flush() (wsgiref.handlers.BaseHandler method)

 		_FuncPtr (class in ctypes)

 		_getframe() (in module sys)

 		_getvalue() (multiprocessing.managers.BaseProxy method)

 		_handle (ctypes.PyDLL attribute)

 		
 _locale

 		

 		module

 		_make() (collections.somenamedtuple class method)

 		_makeResult() (unittest.TextTestRunner method)

 		_name (ctypes.PyDLL attribute)

 		_objects (ctypes._CData attribute)

 		pack (ctypes.Structure attribute)

 		_parse() (gettext.NullTranslations method)

 		_quit() (FrameWork.Application method)

 		_replace() (collections.somenamedtuple method)

 		_setroot() (xml.etree.ElementTree.ElementTree method)

 		_SimpleCData (class in ctypes)

 		_start() (aetools.TalkTo method)

 		_structure() (in module email.iterators)

 		_urlopener (in module urllib)

 		_winreg (module)

 		_write() (wsgiref.handlers.BaseHandler method)

A

 		

 		a-LAW

 		A-LAW, [1]

 		a2b_base64() (in module binascii)

 		a2b_hex() (in module binascii)

 		a2b_hqx() (in module binascii)

 		a2b_qp() (in module binascii)

 		a2b_uu() (in module binascii)

 		abc (module)

 		ABCMeta (class in abc)

 		abort() (ftplib.FTP method)

 		

 		(in module os)

 		above() (curses.panel.Panel method)

 		
 abs

 		

 		built-in function

 		abs() (built-in function)

 		

 		(decimal.Context method)

 		(in module operator)

 		abspath() (in module os.path)

 		abstract base class

 		AbstractBasicAuthHandler (class in urllib2)

 		AbstractDigestAuthHandler (class in urllib2)

 		AbstractFormatter (class in formatter)

 		abstractmethod() (in module abc)

 		abstractproperty() (in module abc)

 		AbstractWriter (class in formatter)

 		accept() (asyncore.dispatcher method)

 		

 		(multiprocessing.connection.Listener method)

 		(socket.socket method)

 		accept2dyear (in module time)

 		access() (in module os)

 		acos() (in module cmath)

 		

 		(in module math)

 		acosh() (in module cmath)

 		

 		(in module math)

 		acquire() (logging.Handler method)

 		

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		acquire_lock() (in module imp)

 		action (optparse.Option attribute)

 		ACTIONS (optparse.Option attribute)

 		activate_form() (fl.form method)

 		active_children() (in module multiprocessing)

 		active_count() (in module threading)

 		activeCount() (in module threading)

 		add() (decimal.Context method)

 		

 		(in module audioop)

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(msilib.RadioButtonGroup method)

 		(pstats.Stats method)

 		(set method)

 		(tarfile.TarFile method)

 		(ttk.Notebook method)

 		add_alias() (in module email.charset)

 		add_argument() (argparse.ArgumentParser method)

 		add_argument_group() (argparse.ArgumentParser method)

 		add_box() (fl.form method)

 		add_browser() (fl.form method)

 		add_button() (fl.form method)

 		add_cgi_vars() (wsgiref.handlers.BaseHandler method)

 		add_charset() (in module email.charset)

 		add_choice() (fl.form method)

 		add_clock() (fl.form method)

 		add_codec() (in module email.charset)

 		add_cookie_header() (cookielib.CookieJar method)

 		add_counter() (fl.form method)

 		add_data() (in module msilib)

 		

 		(urllib2.Request method)

 		add_dial() (fl.form method)

 		add_fallback() (gettext.NullTranslations method)

 		add_file() (msilib.Directory method)

 		add_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		add_flowing_data() (formatter.formatter method)

 		add_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		add_handler() (urllib2.OpenerDirector method)

 		add_header() (email.message.Message method)

 		

 		(urllib2.Request method)

 		(wsgiref.headers.Headers method)

 		add_history() (in module readline)

 		add_hor_rule() (formatter.formatter method)

 		add_include_dir() (distutils.ccompiler.CCompiler method)

 		add_input() (fl.form method)

 		add_label() (mailbox.BabylMessage method)

 		add_label_data() (formatter.formatter method)

 		add_library() (distutils.ccompiler.CCompiler method)

 		add_library_dir() (distutils.ccompiler.CCompiler method)

 		add_lightbutton() (fl.form method)

 		add_line_break() (formatter.formatter method)

 		add_link_object() (distutils.ccompiler.CCompiler method)

 		add_literal_data() (formatter.formatter method)

 		add_menu() (fl.form method)

 		add_mutually_exclusive_group() (in module argparse)

 		add_option() (optparse.OptionParser method)

 		add_parent() (urllib2.BaseHandler method)

 		add_password() (urllib2.HTTPPasswordMgr method)

 		add_positioner() (fl.form method)

 		add_roundbutton() (fl.form method)

 		add_runtime_library_dir() (distutils.ccompiler.CCompiler method)

 		add_section() (ConfigParser.RawConfigParser method)

 		add_sequence() (mailbox.MHMessage method)

 		add_slider() (fl.form method)

 		add_stream() (in module msilib)

 		add_subparsers() (argparse.ArgumentParser method)

 		add_suffix() (imputil.ImportManager method)

 		add_tables() (in module msilib)

 		add_text() (fl.form method)

 		add_timer() (fl.form method)

 		add_type() (in module mimetypes)

 		add_unredirected_header() (urllib2.Request method)

 		add_valslider() (fl.form method)

 		addch() (curses.window method)

 		addCleanup() (unittest.TestCase method)

 		addcomponent() (turtle.Shape method)

 		addError() (unittest.TestResult method)

 		addExpectedFailure() (unittest.TestResult method)

 		addFailure() (unittest.TestResult method)

 		addfile() (tarfile.TarFile method)

 		addFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		addHandler() (logging.Logger method)

 		addheader() (MimeWriter.MimeWriter method)

 		addinfo() (hotshot.Profile method)

 		addition

 		addLevelName() (in module logging)

 		addnstr() (curses.window method)

 		AddPackagePath() (in module modulefinder)

 		address (multiprocessing.connection.Listener attribute)

 		

 		(multiprocessing.managers.BaseManager attribute)

 		address_family (SocketServer.BaseServer attribute)

 		address_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		AddressList (class in rfc822)

 		addresslist (rfc822.AddressList attribute)

 		addressof() (in module ctypes)

 		addshape() (in module turtle)

 		addsitedir() (in module site)

 		addSkip() (unittest.TestResult method)

 		addstr() (curses.window method)

 		addSuccess() (unittest.TestResult method)

 		addTest() (unittest.TestSuite method)

 		addTests() (unittest.TestSuite method)

 		addTypeEqualityFunc() (unittest.TestCase method)

 		addUnexpectedSuccess() (unittest.TestResult method)

 		adjusted() (decimal.Decimal method)

 		adler32() (in module zlib)

 		ADPCM, Intel/DVI

 		adpcm2lin() (in module audioop)

 		aepack (module)

 		
 AES

 		

 		algorithm

 		AEServer (class in MiniAEFrame)

 		AEText (class in aetypes)

 		aetools (module)

 		aetypes (module)

 		AF_INET (in module socket)

 		AF_INET6 (in module socket)

 		AF_UNIX (in module socket)

 		aifc (module)

 		aifc() (aifc.aifc method)

 		AIFF, [1]

 		aiff() (aifc.aifc method)

 		AIFF-C, [1]

 		
 AL

 		

 		module

 		AL (module)

 		al (module)

 		alarm() (in module signal)

 		alaw2lin() (in module audioop)

 		
 algorithm

 		

 		AES

 		alignment() (in module ctypes)

 		all() (built-in function)

 		all_errors (in module ftplib)

 		all_features (in module xml.sax.handler)

 		all_properties (in module xml.sax.handler)

 		allocate_lock() (in module thread)

 		allow_reuse_address (SocketServer.BaseServer attribute)

 		allowed_domains() (cookielib.DefaultCookiePolicy method)

 		alt() (in module curses.ascii)

 		ALT_DIGITS (in module locale)

 		altsep (in module os)

 		altzone (in module time)

 		ALWAYS_TYPED_ACTIONS (optparse.Option attribute)

 		AMPER (in module token)

 		

 		AMPEREQUAL (in module token)

 		anchor_bgn() (htmllib.HTMLParser method)

 		anchor_end() (htmllib.HTMLParser method)

 		
 and

 		

 		bitwise

 		operator, [1], [2]

 		and_() (in module operator)

 		annotate() (in module dircache)

 		announce() (distutils.ccompiler.CCompiler method)

 		
 anonymous

 		

 		function

 		answerChallenge() (in module multiprocessing.connection)

 		any() (built-in function)

 		anydbm (module)

 		api_version (in module sys)

 		apop() (poplib.POP3 method)

 		APPDATA

 		append() (array.array method)

 		

 		(collections.deque method)

 		(email.header.Header method)

 		(imaplib.IMAP4 method)

 		(list method)

 		(msilib.CAB method)

 		(pipes.Template method)

 		(xml.etree.ElementTree.Element method)

 		appendChild() (xml.dom.Node method)

 		appendleft() (collections.deque method)

 		AppleEvents, [1]

 		applesingle (module)

 		Application() (in module FrameWork)

 		application_uri() (in module wsgiref.util)

 		apply (2to3 fixer)

 		apply() (built-in function)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		apply_async() (multiprocessing.pool.multiprocessing.Pool method)

 		architecture() (in module platform)

 		archive (zipimport.zipimporter attribute)

 		aRepr (in module repr)

 		argparse (module)

 		args (exceptions.BaseException attribute)

 		

 		(functools.partial attribute)

 		argtypes (ctypes._FuncPtr attribute)

 		argument

 		

 		function

 		ArgumentDefaultsHelpFormatter (class in argparse)

 		ArgumentError

 		ArgumentParser (class in argparse)

 		argv (in module sys)

 		arithmetic

 		

 		conversion

 		operation, binary

 		operation, unary

 		ArithmeticError

 		
 array

 		

 		module

 		array (class in array)

 		

 		(module)

 		Array() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		arrays

 		ArrayType (in module array)

 		article() (nntplib.NNTP method)

 		as_integer_ratio() (float method)

 		AS_IS (in module formatter)

 		as_string() (email.message.Message method)

 		as_tuple() (decimal.Decimal method)

 		ascii() (in module curses.ascii)

 		

 		(in module future_builtins)

 		ASCII@ASCII, [1], [2], [3], [4], [5]

 		ascii_letters (in module string)

 		ascii_lowercase (in module string)

 		ascii_uppercase (in module string)

 		asctime() (in module time)

 		asin() (in module cmath)

 		

 		(in module math)

 		asinh() (in module cmath)

 		

 		(in module math)

 		AskFileForOpen() (in module EasyDialogs)

 		AskFileForSave() (in module EasyDialogs)

 		AskFolder() (in module EasyDialogs)

 		AskPassword() (in module EasyDialogs)

 		AskString() (in module EasyDialogs)

 		AskYesNoCancel() (in module EasyDialogs)

 		
 assert

 		

 		statement, [1]

 		assert_line_data() (formatter.formatter method)

 		assertAlmostEqual() (unittest.TestCase method)

 		assertDictContainsSubset() (unittest.TestCase method)

 		assertDictEqual() (unittest.TestCase method)

 		assertEqual() (unittest.TestCase method)

 		assertFalse() (unittest.TestCase method)

 		assertGreater() (unittest.TestCase method)

 		assertGreaterEqual() (unittest.TestCase method)

 		assertIn() (unittest.TestCase method)

 		AssertionError

 		

 		exception

 		
 assertions

 		

 		debugging

 		assertIs() (unittest.TestCase method)

 		assertIsInstance() (unittest.TestCase method)

 		assertIsNone() (unittest.TestCase method)

 		assertIsNot() (unittest.TestCase method)

 		assertIsNotNone() (unittest.TestCase method)

 		assertItemsEqual() (unittest.TestCase method)

 		assertLess() (unittest.TestCase method)

 		assertLessEqual() (unittest.TestCase method)

 		assertListEqual() (unittest.TestCase method)

 		assertMultiLineEqual() (unittest.TestCase method)

 		assertNotAlmostEqual() (unittest.TestCase method)

 		assertNotEqual() (unittest.TestCase method)

 		assertNotIn() (unittest.TestCase method)

 		assertNotIsInstance() (unittest.TestCase method)

 		assertNotRegexpMatches() (unittest.TestCase method)

 		assertRaises() (unittest.TestCase method)

 		assertRaisesRegexp() (unittest.TestCase method)

 		assertRegexpMatches() (unittest.TestCase method)

 		assertSequenceEqual() (unittest.TestCase method)

 		assertSetEqual() (unittest.TestCase method)

 		assertTrue() (unittest.TestCase method)

 		assertTupleEqual() (unittest.TestCase method)

 		
 assignment

 		

 		attribute, [1]

 		augmented

 		class attribute

 		class instance attribute

 		extended slice

 		slice

 		slicing

 		statement, [1]

 		subscript

 		subscription

 		target list

 		AST (class in ast)

 		ast (module)

 		astimezone() (datetime.datetime method)

 		ASTVisitor (class in compiler.visitor)

 		async_chat (class in asynchat)

 		async_chat.ac_in_buffer_size (in module asynchat)

 		async_chat.ac_out_buffer_size (in module asynchat)

 		asyncevents() (FrameWork.Application method)

 		asynchat (module)

 		asyncore (module)

 		AsyncResult (class in multiprocessing.pool)

 		AT (in module token)

 		atan() (in module cmath)

 		

 		(in module math)

 		atan2() (in module math)

 		atanh() (in module cmath)

 		

 		(in module math)

 		atexit (module)

 		atime (in module cd)

 		atof() (in module locale)

 		

 		(in module string)

 		atoi() (in module locale)

 		

 		(in module string)

 		atol() (in module string)

 		atom

 		attach() (email.message.Message method)

 		AttlistDeclHandler() (xml.parsers.expat.xmlparser method)

 		attrgetter() (in module operator)

 		attrib (xml.etree.ElementTree.Element attribute)

 		attribute, [1]

 		

 		assignment, [1]

 		assignment, class

 		assignment, class instance

 		class

 		class instance

 		deletion

 		generic special

 		reference

 		special

 		AttributeError

 		

 		exception

 		attributes (xml.dom.Node attribute)

 		AttributesImpl (class in xml.sax.xmlreader)

 		AttributesNSImpl (class in xml.sax.xmlreader)

 		attroff() (curses.window method)

 		attron() (curses.window method)

 		attrset() (curses.window method)

 		audio (in module cd)

 		Audio Interchange File Format, [1]

 		AUDIO_FILE_ENCODING_ADPCM_G721 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G722 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_3 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_5 (in module sunau)

 		AUDIO_FILE_ENCODING_ALAW_8 (in module sunau)

 		AUDIO_FILE_ENCODING_DOUBLE (in module sunau)

 		AUDIO_FILE_ENCODING_FLOAT (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_16 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_24 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_32 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_8 (in module sunau)

 		AUDIO_FILE_ENCODING_MULAW_8 (in module sunau)

 		AUDIO_FILE_MAGIC (in module sunau)

 		AUDIODEV

 		audioop (module)

 		
 augmented

 		

 		assignment

 		auth() (ftplib.FTP_TLS method)

 		authenticate() (imaplib.IMAP4 method)

 		AuthenticationError

 		authenticators() (netrc.netrc method)

 		authkey (multiprocessing.Process attribute)

 		autoGIL (module)

 		AutoGILError

 		avg() (in module audioop)

 		avgpp() (in module audioop)

B

 		

 		b16decode() (in module base64)

 		b16encode() (in module base64)

 		b2a_base64() (in module binascii)

 		b2a_hex() (in module binascii)

 		b2a_hqx() (in module binascii)

 		b2a_qp() (in module binascii)

 		b2a_uu() (in module binascii)

 		b32decode() (in module base64)

 		b32encode() (in module base64)

 		b64decode() (in module base64)

 		b64encode() (in module base64)

 		Babyl (class in mailbox)

 		BabylMailbox (class in mailbox)

 		BabylMessage (class in mailbox)

 		back() (in module turtle)

 		back-quotes, [1]

 		BACKQUOTE (in module token)

 		backslash character

 		backslashreplace_errors() (in module codecs)

 		
 backward

 		

 		quotes, [1]

 		backward() (in module turtle)

 		backward_compatible (in module imageop)

 		BadStatusLine

 		BadZipfile

 		Balloon (class in Tix)

 		bare except

 		
 base64

 		

 		encoding

 		module

 		base64 (module)

 		BaseCGIHandler (class in wsgiref.handlers)

 		BaseCookie (class in Cookie)

 		BaseException

 		BaseHandler (class in urllib2)

 		

 		(class in wsgiref.handlers)

 		BaseHTTPRequestHandler (class in BaseHTTPServer)

 		BaseHTTPServer (module)

 		BaseManager (class in multiprocessing.managers)

 		basename() (in module os.path)

 		BaseProxy (class in multiprocessing.managers)

 		BaseResult (class in urlparse)

 		BaseServer (class in SocketServer)

 		basestring (2to3 fixer)

 		basestring() (built-in function)

 		basicConfig() (in module logging)

 		BasicContext (class in decimal)

 		Bastion (module)

 		Bastion() (in module Bastion)

 		BastionClass (class in Bastion)

 		baudrate() (in module curses)

 		bbox() (ttk.Treeview method)

 		
 bdb

 		

 		module

 		Bdb (class in bdb)

 		bdb (module)

 		BdbQuit

 		BDFL

 		bdist_msi (class in distutils.command.bdist_msi)

 		beep() (in module curses)

 		Beep() (in module winsound)

 		begin_fill() (in module turtle)

 		begin_poly() (in module turtle)

 		below() (curses.panel.Panel method)

 		benchmarking

 		Benchmarking

 		betavariate() (in module random)

 		bgcolor() (in module turtle)

 		bgn_group() (fl.form method)

 		bgpic() (in module turtle)

 		bias() (in module audioop)

 		bidirectional() (in module unicodedata)

 		BigEndianStructure (class in ctypes)

 		bin() (built-in function)

 		
 binary

 		

 		arithmetic operation

 		bitwise operation

 		data, packing

 		Binary (class in msilib)

 		binary literal

 		binary semaphores

 		BINARY_ADD (opcode)

 		BINARY_AND (opcode)

 		BINARY_DIVIDE (opcode)

 		BINARY_FLOOR_DIVIDE (opcode)

 		BINARY_LSHIFT (opcode)

 		BINARY_MODULO (opcode)

 		BINARY_MULTIPLY (opcode)

 		BINARY_OR (opcode)

 		BINARY_POWER (opcode)

 		BINARY_RSHIFT (opcode)

 		BINARY_SUBSCR (opcode)

 		BINARY_SUBTRACT (opcode)

 		BINARY_TRUE_DIVIDE (opcode)

 		BINARY_XOR (opcode)

 		binascii (module)

 		bind (widgets)

 		bind() (asyncore.dispatcher method)

 		

 		(socket.socket method)

 		bind_textdomain_codeset() (in module gettext)

 		
 binding

 		

 		global name

 		name, [1], [2], [3], [4], [5]

 		bindtextdomain() (in module gettext)

 		
 binhex

 		

 		module

 		binhex (module)

 		binhex() (in module binhex)

 		bisect (module)

 		bisect() (in module bisect)

 		bisect_left() (in module bisect)

 		bisect_right() (in module bisect)

 		
 bit-string

 		

 		operations

 		bit_length() (int method)

 		

 		(long method)

 		

 		bitmap() (msilib.Dialog method)

 		
 bitwise

 		

 		and

 		operation, binary

 		operation, unary

 		or

 		xor

 		bk() (in module turtle)

 		bkgd() (curses.window method)

 		bkgdset() (curses.window method)

 		blank line

 		block

 		

 		code

 		blocked_domains() (cookielib.DefaultCookiePolicy method)

 		BlockingIOError

 		BLOCKSIZE (in module cd)

 		blocksize (in module sha)

 		BNF, [1]

 		body() (nntplib.NNTP method)

 		body_encode() (email.charset.Charset method)

 		body_encoding (email.charset.Charset attribute)

 		body_line_iterator() (in module email.iterators)

 		BOM (in module codecs)

 		BOM_BE (in module codecs)

 		BOM_LE (in module codecs)

 		BOM_UTF16 (in module codecs)

 		BOM_UTF16_BE (in module codecs)

 		BOM_UTF16_LE (in module codecs)

 		BOM_UTF32 (in module codecs)

 		BOM_UTF32_BE (in module codecs)

 		BOM_UTF32_LE (in module codecs)

 		BOM_UTF8 (in module codecs)

 		bool() (built-in function)

 		
 Boolean

 		

 		object, [1]

 		operation

 		operations, [1]

 		type

 		values

 		Boolean (class in aetypes)

 		boolean() (in module xmlrpclib)

 		BooleanType (in module types)

 		border() (curses.window method)

 		bottom() (curses.panel.Panel method)

 		bottom_panel() (in module curses.panel)

 		BoundaryError

 		BoundedSemaphore (class in multiprocessing)

 		BoundedSemaphore() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		box() (curses.window method)

 		
 break

 		

 		statement, [1], [2], [3], [4]

 		break_anywhere() (bdb.Bdb method)

 		break_here() (bdb.Bdb method)

 		break_long_words (textwrap.TextWrapper attribute)

 		BREAK_LOOP (opcode)

 		break_on_hyphens (textwrap.TextWrapper attribute)

 		Breakpoint (class in bdb)

 		BROWSER, [1]

 		
 bsddb

 		

 		module, [1], [2], [3]

 		bsddb (module)

 		BsdDbShelf (class in shelve)

 		btopen() (in module bsddb)

 		
 buffer

 		

 		built-in function

 		object

 		buffer (2to3 fixer)

 		

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		buffer size, I/O

 		buffer() (built-in function)

 		buffer_info() (array.array method)

 		buffer_size (xml.parsers.expat.xmlparser attribute)

 		buffer_text (xml.parsers.expat.xmlparser attribute)

 		buffer_used (xml.parsers.expat.xmlparser attribute)

 		BufferedIOBase (class in io)

 		BufferedRandom (class in io)

 		BufferedReader (class in io)

 		BufferedRWPair (class in io)

 		BufferedWriter (class in io)

 		BufferError

 		BufferingHandler (class in logging.handlers)

 		BufferTooShort

 		BufferType (in module types)

 		BUFSIZ (in module macostools)

 		bufsize() (ossaudiodev.oss_audio_device method)

 		BUILD_CLASS (opcode)

 		BUILD_LIST (opcode)

 		BUILD_MAP (opcode)

 		build_opener() (in module urllib2)

 		BUILD_SLICE (opcode)

 		BUILD_TUPLE (opcode)

 		buildtools (module)

 		
 built-in

 		

 		method

 		types

 		
 built-in function

 		

 		abs

 		buffer

 		call

 		chr, [1]

 		cmp, [1]

 		compile, [1], [2], [3]

 		complex, [1]

 		divmod, [1]

 		eval, [1], [2], [3], [4], [5], [6], [7]

 		execfile, [1]

 		file

 		float, [1], [2]

 		globals

 		hash

 		help

 		hex

 		id

 		input, [1]

 		int, [1]

 		len, [1], [2], [3], [4], [5]

 		locals

 		long, [1], [2]

 		max

 		min

 		object, [1]

 		oct

 		open, [1]

 		ord, [1], [2]

 		pow, [1], [2], [3]

 		range

 		raw_input, [1]

 		reload, [1], [2]

 		repr, [1], [2], [3]

 		slice, [1], [2]

 		str, [1], [2]

 		type, [1], [2]

 		unichr

 		unicode, [1], [2]

 		xrange

 		
 built-in method

 		

 		call

 		object, [1]

 		builtin_module_names (in module sys)

 		BuiltinFunctionType (in module types)

 		BuiltinImporter (class in imputil)

 		BuiltinMethodType (in module types)

 		ButtonBox (class in Tix)

 		bye() (in module turtle)

 		byref() (in module ctypes)

 		byte

 		
 byte-code

 		

 		file, [1], [2]

 		byte_compile() (in module distutils.util)

 		bytearray

 		

 		object

 		bytearray() (built-in function)

 		bytecode, [1]

 		byteorder (in module sys)

 		bytes (uuid.UUID attribute)

 		bytes_le (uuid.UUID attribute)

 		BytesIO (class in io)

 		byteswap() (array.array method)

 		bz2 (module)

 		BZ2Compressor (class in bz2)

 		BZ2Decompressor (class in bz2)

 		BZ2File (class in bz2)

C

 		

 		C

 		

 		language, [1], [2], [3], [4]

 		structures

 		c_bool (class in ctypes)

 		C_BUILTIN (in module imp)

 		c_byte (class in ctypes)

 		c_char (class in ctypes)

 		c_char_p (class in ctypes)

 		c_double (class in ctypes)

 		C_EXTENSION (in module imp)

 		c_float (class in ctypes)

 		c_int (class in ctypes)

 		c_int16 (class in ctypes)

 		c_int32 (class in ctypes)

 		c_int64 (class in ctypes)

 		c_int8 (class in ctypes)

 		c_long (class in ctypes)

 		c_longdouble (class in ctypes)

 		c_longlong (class in ctypes)

 		c_short (class in ctypes)

 		c_size_t (class in ctypes)

 		c_ssize_t (class in ctypes)

 		c_ubyte (class in ctypes)

 		c_uint (class in ctypes)

 		c_uint16 (class in ctypes)

 		c_uint32 (class in ctypes)

 		c_uint64 (class in ctypes)

 		c_uint8 (class in ctypes)

 		c_ulong (class in ctypes)

 		c_ulonglong (class in ctypes)

 		c_ushort (class in ctypes)

 		c_void_p (class in ctypes)

 		c_wchar (class in ctypes)

 		c_wchar_p (class in ctypes)

 		CAB (class in msilib)

 		CacheFTPHandler (class in urllib2)

 		calcsize() (in module struct)

 		Calendar (class in calendar)

 		calendar (module)

 		calendar() (in module calendar)

 		call

 		

 		built-in function

 		built-in method

 		class instance

 		class object, [1], [2], [3]

 		function, [1], [2]

 		instance, [1]

 		method

 		procedure

 		user-defined function

 		call() (dl.dl method)

 		

 		(in module subprocess)

 		CALL_FUNCTION (opcode)

 		CALL_FUNCTION_KW (opcode)

 		CALL_FUNCTION_VAR (opcode)

 		CALL_FUNCTION_VAR_KW (opcode)

 		call_tracing() (in module sys)

 		
 callable

 		

 		object, [1]

 		callable (2to3 fixer)

 		Callable (class in collections)

 		callable() (built-in function)

 		CallableProxyType (in module weakref)

 		callback (optparse.Option attribute)

 		callback() (MiniAEFrame.AEServer method)

 		callback_args (optparse.Option attribute)

 		callback_kwargs (optparse.Option attribute)

 		can_change_color() (in module curses)

 		can_fetch() (robotparser.RobotFileParser method)

 		cancel() (sched.scheduler method)

 		

 		(threading.Timer method)

 		cancel_join_thread() (multiprocessing.Queue method)

 		CannotSendHeader

 		CannotSendRequest

 		canonic() (bdb.Bdb method)

 		canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		capitalize() (in module string)

 		

 		(str method)

 		captured_stdout() (in module test.test_support)

 		captureWarnings() (in module logging)

 		capwords() (in module string)

 		Carbon.AE (module)

 		Carbon.AH (module)

 		Carbon.App (module)

 		Carbon.Appearance (module)

 		Carbon.CarbonEvents (module)

 		Carbon.CarbonEvt (module)

 		Carbon.CF (module)

 		Carbon.CG (module)

 		Carbon.Cm (module)

 		Carbon.Components (module)

 		Carbon.ControlAccessor (module)

 		Carbon.Controls (module)

 		Carbon.CoreFounation (module)

 		Carbon.CoreGraphics (module)

 		Carbon.Ctl (module)

 		Carbon.Dialogs (module)

 		Carbon.Dlg (module)

 		Carbon.Drag (module)

 		Carbon.Dragconst (module)

 		Carbon.Events (module)

 		Carbon.Evt (module)

 		Carbon.File (module)

 		Carbon.Files (module)

 		Carbon.Fm (module)

 		Carbon.Folder (module)

 		Carbon.Folders (module)

 		Carbon.Fonts (module)

 		Carbon.Help (module)

 		Carbon.IBCarbon (module)

 		Carbon.IBCarbonRuntime (module)

 		Carbon.Icns (module)

 		Carbon.Icons (module)

 		Carbon.Launch (module)

 		Carbon.LaunchServices (module)

 		Carbon.List (module)

 		Carbon.Lists (module)

 		Carbon.MacHelp (module)

 		Carbon.MediaDescr (module)

 		Carbon.Menu (module)

 		Carbon.Menus (module)

 		Carbon.Mlte (module)

 		Carbon.OSA (module)

 		Carbon.OSAconst (module)

 		Carbon.Qd (module)

 		Carbon.Qdoffs (module)

 		Carbon.QDOffscreen (module)

 		Carbon.Qt (module)

 		Carbon.QuickDraw (module)

 		Carbon.QuickTime (module)

 		Carbon.Res (module)

 		Carbon.Resources (module)

 		Carbon.Scrap (module)

 		Carbon.Snd (module)

 		Carbon.Sound (module)

 		Carbon.TE (module)

 		Carbon.TextEdit (module)

 		Carbon.Win (module)

 		Carbon.Windows (module)

 		cast() (in module ctypes)

 		cat() (in module nis)

 		catalog (in module cd)

 		catch_warnings (class in warnings)

 		category() (in module unicodedata)

 		cbreak() (in module curses)

 		CC

 		CCompiler (class in distutils.ccompiler)

 		cd (module)

 		CDLL (class in ctypes)

 		CDROM (in module cd)

 		ceil() (in module math), [1]

 		center() (in module string)

 		

 		(str method)

 		CERT_NONE (in module ssl)

 		CERT_OPTIONAL (in module ssl)

 		CERT_REQUIRED (in module ssl)

 		cert_time_to_seconds() (in module ssl)

 		certificates

 		CFLAGS, [1], [2]

 		cfmfile (module)

 		CFUNCTYPE() (in module ctypes)

 		
 CGI

 		

 		debugging

 		exceptions

 		protocol

 		security

 		tracebacks

 		cgi (module)

 		cgi_directories (CGIHTTPServer.CGIHTTPRequestHandler attribute)

 		CGIHandler (class in wsgiref.handlers)

 		CGIHTTPRequestHandler (class in CGIHTTPServer)

 		
 CGIHTTPServer

 		

 		module

 		CGIHTTPServer (module)

 		cgitb (module)

 		CGIXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		chain() (in module itertools)

 		
 chaining

 		

 		comparisons, [1]

 		change_root() (in module distutils.util)

 		channels() (ossaudiodev.oss_audio_device method)

 		CHAR_MAX (in module locale)

 		character, [1], [2], [3]

 		character set

 		CharacterDataHandler() (xml.parsers.expat.xmlparser method)

 		characters() (xml.sax.handler.ContentHandler method)

 		characters_written (io.BlockingIOError attribute)

 		Charset (class in email.charset)

 		CHARSET (in module mimify)

 		charset() (gettext.NullTranslations method)

 		chdir() (in module os)

 		check() (imaplib.IMAP4 method)

 		

 		(in module tabnanny)

 		check_call() (in module subprocess)

 		check_environ() (in module distutils.util)

 		check_forms() (in module fl)

 		check_output() (doctest.OutputChecker method)

 		

 		(in module subprocess)

 		check_py3k_warnings() (in module test.test_support)

 		check_unused_args() (string.Formatter method)

 		check_warnings() (in module test.test_support)

 		checkbox() (msilib.Dialog method)

 		checkcache() (in module linecache)

 		checkfuncname() (in module bdb)

 		CheckList (class in Tix)

 		
 checksum

 		

 		Cyclic Redundancy Check

 		MD5

 		SHA

 		chflags() (in module os)

 		chgat() (curses.window method)

 		childerr (popen2.Popen3 attribute)

 		childNodes (xml.dom.Node attribute)

 		chmod() (in module os)

 		choice() (in module random)

 		choices (optparse.Option attribute)

 		choose_boundary() (in module mimetools)

 		chown() (in module os)

 		
 chr

 		

 		built-in function, [1]

 		chr() (built-in function)

 		chroot() (in module os)

 		Chunk (class in chunk)

 		chunk (module)

 		
 cipher

 		

 		DES

 		cipher() (ssl.SSLSocket method)

 		circle() (in module turtle)

 		CIRCUMFLEX (in module token)

 		CIRCUMFLEXEQUAL (in module token)

 		Clamped (class in decimal)

 		class

 		

 		attribute

 		attribute assignment

 		classic

 		constructor

 		definition, [1]

 		instance

 		name

 		new-style

 		object, [1], [2], [3]

 		old-style

 		statement

 		Class (class in symtable)

 		Class browser

 		
 class instance

 		

 		attribute

 		attribute assignment

 		call

 		object, [1], [2], [3]

 		
 class object

 		

 		call, [1], [2], [3]

 		classic class

 		classmethod() (built-in function)

 		classobj() (in module new)

 		ClassType (in module types)

 		clause

 		clean() (mailbox.Maildir method)

 		cleandoc() (in module inspect)

 		clear() (collections.deque method)

 		

 		(cookielib.CookieJar method)

 		(curses.window method)

 		(dict method)

 		(in module turtle), [1]

 		(mailbox.Mailbox method)

 		(set method)

 		(threading.Event method)

 		(xml.etree.ElementTree.Element method)

 		clear_all_breaks() (bdb.Bdb method)

 		clear_all_file_breaks() (bdb.Bdb method)

 		clear_bpbynumber() (bdb.Bdb method)

 		clear_break() (bdb.Bdb method)

 		clear_flags() (decimal.Context method)

 		clear_history() (in module readline)

 		clear_memo() (pickle.Pickler method)

 		clear_session_cookies() (cookielib.CookieJar method)

 		clearcache() (in module linecache)

 		ClearData() (msilib.Record method)

 		clearok() (curses.window method)

 		clearscreen() (in module turtle)

 		clearstamp() (in module turtle)

 		clearstamps() (in module turtle)

 		Client() (in module multiprocessing.connection)

 		client_address (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		clock() (in module time)

 		clone() (email.generator.Generator method)

 		

 		(in module turtle)

 		(pipes.Template method)

 		cloneNode() (xml.dom.minidom.Node method)

 		

 		(xml.dom.Node method)

 		Close() (_winreg.PyHKEY method)

 		close() (aifc.aifc method), [1]

 		

 		(FrameWork.Window method)

 		(HTMLParser.HTMLParser method)

 		(asyncore.dispatcher method)

 		(bsddb.bsddbobject method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(distutils.text_file.TextFile method)

 		(dl.dl method)

 		(email.parser.FeedParser method)

 		(file method)

 		(ftplib.FTP method)

 		(generator method)

 		(hotshot.Profile method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(in module fileinput)

 		(in module mmap)

 		(in module os)

 		(io.IOBase method)

 		(logging.FileHandler method)

 		(logging.Handler method)

 		(logging.handlers.MemoryHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		Close() (msilib.View method)

 		close() (multiprocessing.Connection method)

 		

 		(StringIO.StringIO method)

 		(multiprocessing.Queue method)

 		(multiprocessing.connection.Listener method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(sgmllib.SGMLParser method)

 		(shelve.Shelf method)

 		(socket.socket method)

 		(sqlite3.Connection method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(tarfile.TarFile method)

 		(telnetlib.Telnet method)

 		(urllib2.BaseHandler method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		(zipfile.ZipFile method)

 		close_when_done() (asynchat.async_chat method)

 		closed (file attribute)

 		

 		(io.IOBase attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		CloseKey() (in module _winreg)

 		closelog() (in module syslog)

 		closerange() (in module os)

 		closing() (in module contextlib)

 		clrtobot() (curses.window method)

 		clrtoeol() (curses.window method)

 		cmath (module)

 		
 cmd

 		

 		module

 		Cmd (class in cmd)

 		cmd (module)

 		cmdloop() (cmd.Cmd method)

 		
 cmp

 		

 		built-in function, [1]

 		cmp() (built-in function)

 		

 		(in module filecmp)

 		cmp_op (in module dis)

 		cmp_to_key() (in module functools)

 		cmpfiles() (in module filecmp)

 		co_argcount (code object attribute)

 		co_cellvars (code object attribute)

 		co_code (code object attribute)

 		co_consts (code object attribute)

 		co_filename (code object attribute)

 		co_firstlineno (code object attribute)

 		co_flags (code object attribute)

 		co_freevars (code object attribute)

 		co_lnotab (code object attribute)

 		co_name (code object attribute)

 		co_names (code object attribute)

 		co_nlocals (code object attribute)

 		co_stacksize (code object attribute)

 		co_varnames (code object attribute)

 		
 code

 		

 		block

 		object, [1], [2]

 		code (module)

 		

 		(urllib2.HTTPError attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		code() (in module new)

 		Codecs

 		

 		decode

 		encode

 		

 		codecs (module)

 		coded_value (Cookie.Morsel attribute)

 		codeop (module)

 		codepoint2name (in module htmlentitydefs)

 		CODESET (in module locale)

 		CodeType (in module types)

 		
 coding

 		

 		style

 		coerce() (built-in function)

 		coercion

 		col_offset (ast.AST attribute)

 		collapse_rfc2231_value() (in module email.utils)

 		collect() (in module gc)

 		collect_incoming_data() (asynchat.async_chat method)

 		collections (module)

 		COLON (in module token)

 		color() (in module fl)

 		

 		(in module turtle)

 		color_content() (in module curses)

 		color_pair() (in module curses)

 		colormode() (in module turtle)

 		ColorPicker (module)

 		colorsys (module)

 		column() (ttk.Treeview method)

 		COLUMNS, [1]

 		combinations() (in module itertools)

 		combinations_with_replacement() (in module itertools)

 		combine() (datetime.datetime class method)

 		combining() (in module unicodedata)

 		ComboBox (class in Tix)

 		Combobox (class in ttk)

 		comma

 		

 		trailing, [1]

 		COMMA (in module token)

 		command (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Command (class in distutils.cmd)

 		

 		(class in distutils.core)

 		command line

 		
 command line option

 		

 		--help

 		--version

 		-3

 		-B

 		-E

 		-J

 		-O

 		-OO

 		-Q <arg>

 		-S

 		-U

 		-V

 		-W arg

 		-X

 		-c <command>

 		-d

 		-h

 		-i

 		-m <module-name>

 		-s

 		-t

 		-u

 		-v

 		-x

 		CommandCompiler (class in codeop)

 		commands (module)

 		comment

 		

 		(cookielib.Cookie attribute)

 		COMMENT (in module tokenize)

 		comment (zipfile.ZipFile attribute)

 		

 		(zipfile.ZipInfo attribute)

 		Comment() (in module xml.etree.ElementTree)

 		comment_url (cookielib.Cookie attribute)

 		commenters (shlex.shlex attribute)

 		CommentHandler() (xml.parsers.expat.xmlparser method)

 		commit() (msilib.CAB method)

 		Commit() (msilib.Database method)

 		commit() (sqlite3.Connection method)

 		common (filecmp.dircmp attribute)

 		Common Gateway Interface

 		common_dirs (filecmp.dircmp attribute)

 		common_files (filecmp.dircmp attribute)

 		common_funny (filecmp.dircmp attribute)

 		common_types (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		commonprefix() (in module os.path)

 		communicate() (subprocess.Popen method)

 		compare() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(difflib.Differ method)

 		COMPARE_OP (opcode)

 		compare_signal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		
 comparing

 		

 		objects

 		comparison

 		

 		operator

 		string

 		Comparison (class in aetypes)

 		COMPARISON_FLAGS (in module doctest)

 		comparisons, [1]

 		

 		chaining, [1]

 		
 compile

 		

 		built-in function, [1], [2], [3]

 		Compile (class in codeop)

 		compile() (built-in function)

 		

 		(distutils.ccompiler.CCompiler method)

 		(in module compiler)

 		(in module py_compile)

 		(in module re)

 		(parser.ST method)

 		compile_command() (in module code)

 		

 		(in module codeop)

 		compile_dir() (in module compileall)

 		compile_file() (in module compileall)

 		compile_path() (in module compileall)

 		
 compileall

 		

 		module

 		compileall (module)

 		
 compileall command line option

 		

 		-d destdir

 		-f

 		-i list

 		-l

 		-q

 		-x regex

 		compileFile() (in module compiler)

 		compiler (module)

 		compiler.ast (module)

 		compiler.visitor (module)

 		compilest() (in module parser)

 		complete() (rlcompleter.Completer method)

 		complete_statement() (in module sqlite3)

 		completedefault() (cmd.Cmd method)

 		
 complex

 		

 		built-in function, [1]

 		literal

 		number

 		object

 		Complex (class in numbers)

 		complex number

 		

 		literals

 		object

 		complex() (built-in function)

 		ComplexType (in module types)

 		ComponentItem (class in aetypes)

 		
 compound

 		

 		statement

 		
 comprehensions

 		

 		list, [1]

 		compress() (bz2.BZ2Compressor method)

 		

 		(in module bz2)

 		(in module itertools)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Compress method)

 		compress_size (zipfile.ZipInfo attribute)

 		compress_type (zipfile.ZipInfo attribute)

 		CompressionError

 		compressobj() (in module zlib)

 		COMSPEC, [1]

 		concat() (in module operator)

 		
 concatenation

 		

 		operation

 		Condition (class in multiprocessing)

 		

 		(class in threading)

 		condition() (msilib.Control method)

 		Condition() (multiprocessing.managers.SyncManager method)

 		
 conditional

 		

 		expression

 		
 Conditional

 		

 		expression

 		ConfigParser (class in ConfigParser)

 		

 		(module)

 		
 configuration

 		

 		file

 		file, debugger

 		file, path

 		file, user

 		configuration information

 		configure() (ttk.Style method)

 		confstr() (in module os)

 		confstr_names (in module os)

 		conjugate() (complex number method)

 		

 		(decimal.Decimal method)

 		(numbers.Complex method)

 		connect() (asyncore.dispatcher method)

 		

 		(ftplib.FTP method)

 		(httplib.HTTPConnection method)

 		(in module sqlite3)

 		(multiprocessing.managers.BaseManager method)

 		(smtplib.SMTP method)

 		(socket.socket method)

 		connect_ex() (socket.socket method)

 		Connection (class in multiprocessing)

 		

 		(class in sqlite3)

 		ConnectRegistry() (in module _winreg)

 		const (optparse.Option attribute)

 		constant

 		
 constructor

 		

 		class

 		constructor() (in module copy_reg)

 		container, [1]

 		

 		iteration over

 		Container (class in collections)

 		contains() (in module operator)

 		
 content type

 		

 		MIME

 		ContentHandler (class in xml.sax.handler)

 		ContentTooShortError

 		Context (class in decimal)

 		context management protocol

 		context manager, [1], [2]

 		context_diff() (in module difflib)

 		contextlib (module)

 		contextmanager() (in module contextlib)

 		
 continue

 		

 		statement, [1], [2], [3], [4]

 		CONTINUE_LOOP (opcode)

 		Control (class in msilib)

 		

 		(class in Tix)

 		control (in module cd)

 		control() (msilib.Dialog method)

 		

 		(select.kqueue method)

 		controlnames (in module curses.ascii)

 		controls() (ossaudiodev.oss_mixer_device method)

 		
 conversion

 		

 		arithmetic

 		string, [1], [2]

 		ConversionError

 		
 conversions

 		

 		numeric

 		convert() (email.charset.Charset method)

 		convert_arg_line_to_args() (argparse.ArgumentParser method)

 		convert_charref() (sgmllib.SGMLParser method)

 		convert_codepoint() (sgmllib.SGMLParser method)

 		convert_entityref() (sgmllib.SGMLParser method)

 		convert_field() (string.Formatter method)

 		convert_path() (in module distutils.util)

 		Cookie (class in cookielib)

 		

 		(module)

 		CookieError

 		CookieJar (class in cookielib)

 		cookiejar (urllib2.HTTPCookieProcessor attribute)

 		cookielib (module)

 		CookiePolicy (class in cookielib)

 		Coordinated Universal Time

 		
 copy

 		

 		module

 		copy (module)

 		copy() (decimal.Context method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.hmac method)

 		(imaplib.IMAP4 method)

 		(in module copy)

 		(in module findertools)

 		(in module macostools)

 		(in module multiprocessing.sharedctypes)

 		(in module shutil)

 		(md5.md5 method)

 		(pipes.Template method)

 		(set method)

 		(sha.sha method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		copy2() (in module shutil)

 		copy_abs() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_decimal() (decimal.Context method)

 		copy_file() (in module distutils.file_util)

 		copy_location() (in module ast)

 		copy_negate() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_reg (module)

 		copy_sign() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_tree() (in module distutils.dir_util)

 		copybinary() (in module mimetools)

 		copyfile() (in module shutil)

 		copyfileobj() (in module shutil)

 		copying files

 		copyliteral() (in module mimetools)

 		copymessage() (mhlib.Folder method)

 		copymode() (in module shutil)

 		copyright (built-in variable)

 		

 		(in module sys)

 		copysign() (in module math)

 		copystat() (in module shutil)

 		copytree() (in module macostools)

 		

 		(in module shutil)

 		coroutine

 		cos() (in module cmath)

 		

 		(in module math)

 		cosh() (in module cmath)

 		

 		(in module math)

 		count() (array.array method)

 		

 		(collections.deque method)

 		(in module itertools)

 		(in module string)

 		(list method)

 		(str method)

 		Counter (class in collections)

 		countOf() (in module operator)

 		countTestCases() (unittest.TestCase method)

 		

 		(unittest.TestSuite method)

 		CoverageResults (class in trace)

 		
 cPickle

 		

 		module

 		cPickle (module)

 		CPP

 		CPPFLAGS

 		cProfile (module)

 		CPU time

 		cpu_count() (in module multiprocessing)

 		CPython

 		CRC (zipfile.ZipInfo attribute)

 		crc32() (in module binascii)

 		

 		(in module zlib)

 		crc_hqx() (in module binascii)

 		create() (imaplib.IMAP4 method)

 		create_aggregate() (sqlite3.Connection method)

 		create_collation() (sqlite3.Connection method)

 		create_connection() (in module socket)

 		create_decimal() (decimal.Context method)

 		create_decimal_from_float() (decimal.Context method)

 		create_function() (sqlite3.Connection method)

 		CREATE_NEW_CONSOLE (in module subprocess)

 		CREATE_NEW_PROCESS_GROUP (in module subprocess)

 		create_shortcut() (built-in function)

 		create_socket() (asyncore.dispatcher method)

 		create_static_lib() (distutils.ccompiler.CCompiler method)

 		create_string_buffer() (in module ctypes)

 		create_system (zipfile.ZipInfo attribute)

 		create_tree() (in module distutils.dir_util)

 		create_unicode_buffer() (in module ctypes)

 		create_version (zipfile.ZipInfo attribute)

 		createAttribute() (xml.dom.Document method)

 		createAttributeNS() (xml.dom.Document method)

 		createComment() (xml.dom.Document method)

 		createDocument() (xml.dom.DOMImplementation method)

 		createDocumentType() (xml.dom.DOMImplementation method)

 		createElement() (xml.dom.Document method)

 		createElementNS() (xml.dom.Document method)

 		CreateKey() (in module _winreg)

 		CreateKeyEx() (in module _winreg)

 		createLock() (logging.Handler method)

 		

 		(logging.NullHandler method)

 		CreateParser (C function)

 		createparser() (in module cd)

 		createProcessingInstruction() (xml.dom.Document method)

 		CreateRecord() (in module msilib)

 		createSocket() (logging.handlers.SocketHandler method)

 		createTextNode() (xml.dom.Document method)

 		credits (built-in variable)

 		critical() (in module logging)

 		

 		(logging.Logger method)

 		CRNCYSTR (in module locale)

 		crop() (in module imageop)

 		cross() (in module audioop)

 		
 crypt

 		

 		module

 		crypt (module)

 		crypt() (in module crypt)

 		crypt(3), [1], [2]

 		cryptography, [1]

 		cStringIO (module)

 		csv

 		

 		(module)

 		ctermid() (in module os)

 		ctime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module time)

 		ctrl() (in module curses.ascii)

 		CTRL_BREAK_EVENT (in module signal)

 		CTRL_C_EVENT (in module signal)

 		ctypes (module)

 		curdir (in module os)

 		currency() (in module locale)

 		current() (ttk.Combobox method)

 		current_process() (in module multiprocessing)

 		current_thread() (in module threading)

 		CurrentByteIndex (xml.parsers.expat.xmlparser attribute)

 		CurrentColumnNumber (xml.parsers.expat.xmlparser attribute)

 		currentframe() (in module inspect)

 		CurrentLineNumber (xml.parsers.expat.xmlparser attribute)

 		currentThread() (in module threading)

 		curs_set() (in module curses)

 		curses (module)

 		curses.ascii (module)

 		curses.panel (module)

 		curses.textpad (module)

 		curses.wrapper (module)

 		Cursor (class in sqlite3)

 		cursor() (sqlite3.Connection method)

 		cursyncup() (curses.window method)

 		curval (EasyDialogs.ProgressBar attribute)

 		customize_compiler() (in module distutils.sysconfig)

 		cwd() (ftplib.FTP method)

 		cycle() (in module itertools)

 		Cyclic Redundancy Check

D

 		

 		D_FMT (in module locale)

 		D_T_FMT (in module locale)

 		daemon (multiprocessing.Process attribute)

 		

 		(threading.Thread attribute)

 		
 dangling

 		

 		else

 		data

 		

 		packing binary

 		tabular

 		type

 		type, immutable

 		Data (class in plistlib)

 		data (select.kevent attribute)

 		

 		(UserDict.IterableUserDict attribute)

 		(UserList.UserList attribute)

 		(UserString.MutableString attribute)

 		(xml.dom.Comment attribute)

 		(xml.dom.ProcessingInstruction attribute)

 		(xml.dom.Text attribute)

 		(xmlrpclib.Binary attribute)

 		data() (xml.etree.ElementTree.TreeBuilder method)

 		
 database

 		

 		Unicode

 		databases

 		DatagramHandler (class in logging.handlers)

 		DATASIZE (in module cd)

 		date (class in datetime)

 		date() (datetime.datetime method)

 		

 		(nntplib.NNTP method)

 		date_time (zipfile.ZipInfo attribute)

 		date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		datetime (class in datetime)

 		

 		(module)

 		datum

 		day (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		day_abbr (in module calendar)

 		day_name (in module calendar)

 		daylight (in module time)

 		Daylight Saving Time

 		DbfilenameShelf (class in shelve)

 		
 dbhash

 		

 		module

 		dbhash (module)

 		
 dbm

 		

 		module, [1], [2], [3]

 		dbm (module)

 		deactivate_form() (fl.form method)

 		deallocation, object

 		debug (imaplib.IMAP4 attribute)

 		

 		(shlex.shlex attribute)

 		(zipfile.ZipFile attribute)

 		debug() (in module doctest)

 		

 		(in module logging)

 		(logging.Logger method)

 		(pipes.Template method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		DEBUG_COLLECTABLE (in module gc)

 		DEBUG_INSTANCES (in module gc)

 		DEBUG_LEAK (in module gc)

 		DEBUG_OBJECTS (in module gc)

 		debug_print() (distutils.ccompiler.CCompiler method)

 		DEBUG_SAVEALL (in module gc)

 		debug_src() (in module doctest)

 		DEBUG_STATS (in module gc)

 		DEBUG_UNCOLLECTABLE (in module gc)

 		debugger, [1], [2]

 		

 		configuration file

 		debugging

 		

 		CGI

 		assertions

 		DebuggingServer (class in smtpd)

 		DebugRunner (class in doctest)

 		DebugStr() (in module MacOS)

 		Decimal (class in decimal)

 		decimal (module)

 		decimal literal

 		decimal() (in module unicodedata)

 		DecimalException (class in decimal)

 		
 decode

 		

 		Codecs

 		decode() (codecs.Codec method)

 		

 		(codecs.IncrementalDecoder method)

 		(in module base64)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONDecoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.DateTime method)

 		decode_header() (in module email.header)

 		decode_params() (in module email.utils)

 		decode_rfc2231() (in module email.utils)

 		DecodedGenerator (class in email.generator)

 		decodestring() (in module base64)

 		

 		(in module quopri)

 		decomposition() (in module unicodedata)

 		decompress() (bz2.BZ2Decompressor method)

 		

 		(in module bz2)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Decompress method)

 		decompressobj() (in module zlib)

 		decorator

 		DEDENT (in module token)

 		DEDENT token, [1]

 		dedent() (in module textwrap)

 		deepcopy() (in module copy)

 		
 def

 		

 		statement

 		def_prog_mode() (in module curses)

 		def_shell_mode() (in module curses)

 		
 default

 		

 		parameter value

 		default (optparse.Option attribute)

 		default() (cmd.Cmd method)

 		

 		(compiler.visitor.ASTVisitor method)

 		(json.JSONEncoder method)

 		DEFAULT_BUFFER_SIZE (in module io)

 		default_bufsize (in module xml.dom.pulldom)

 		default_factory (collections.defaultdict attribute)

 		DEFAULT_FORMAT (in module tarfile)

 		default_open() (urllib2.BaseHandler method)

 		DefaultContext (class in decimal)

 		DefaultCookiePolicy (class in cookielib)

 		defaultdict (class in collections)

 		DefaultHandler() (xml.parsers.expat.xmlparser method)

 		DefaultHandlerExpand() (xml.parsers.expat.xmlparser method)

 		defaults() (ConfigParser.RawConfigParser method)

 		defaultTestLoader (in module unittest)

 		defaultTestResult() (unittest.TestCase method)

 		defects (email.message.Message attribute)

 		define_macro() (distutils.ccompiler.CCompiler method)

 		
 definition

 		

 		class, [1]

 		function, [1]

 		defpath (in module os)

 		degrees() (in module math)

 		

 		(in module turtle)

 		
 del

 		

 		statement, [1], [2], [3], [4]

 		del_param() (email.message.Message method)

 		delattr() (built-in function)

 		delay() (in module turtle)

 		delay_output() (in module curses)

 		delayload (cookielib.FileCookieJar attribute)

 		delch() (curses.window method)

 		dele() (poplib.POP3 method)

 		delete

 		delete() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(ttk.Treeview method)

 		DELETE_ATTR (opcode)

 		DELETE_FAST (opcode)

 		DELETE_GLOBAL (opcode)

 		DELETE_NAME (opcode)

 		DELETE_SLICE+0 (opcode)

 		DELETE_SLICE+1 (opcode)

 		DELETE_SLICE+2 (opcode)

 		DELETE_SLICE+3 (opcode)

 		DELETE_SUBSCR (opcode)

 		deleteacl() (imaplib.IMAP4 method)

 		deletefolder() (mhlib.MH method)

 		DeleteKey() (in module _winreg)

 		DeleteKeyEx() (in module _winreg)

 		deleteln() (curses.window method)

 		deleteMe() (bdb.Breakpoint method)

 		DeleteValue() (in module _winreg)

 		
 deletion

 		

 		attribute

 		target

 		target list

 		delimiter (csv.Dialect attribute)

 		delimiters

 		delitem() (in module operator)

 		deliver_challenge() (in module multiprocessing.connection)

 		delslice() (in module operator)

 		demo_app() (in module wsgiref.simple_server)

 		denominator (numbers.Rational attribute)

 		DeprecationWarning

 		deque (class in collections)

 		DER_cert_to_PEM_cert() (in module ssl)

 		derwin() (curses.window method)

 		
 DES

 		

 		cipher

 		description (sqlite3.Cursor attribute)

 		description() (nntplib.NNTP method)

 		descriptions() (nntplib.NNTP method)

 		descriptor

 		

 		file

 		dest (optparse.Option attribute)

 		destructor, [1]

 		Detach() (_winreg.PyHKEY method)

 		detach() (io.BufferedIOBase method)

 		

 		(io.TextIOBase method)

 		(ttk.Treeview method)

 		detect_language() (distutils.ccompiler.CCompiler method)

 		deterministic profiling

 		DEVICE (module)

 		devnull (in module os)

 		dgettext() (in module gettext)

 		Dialect (class in csv)

 		dialect (csv.csvreader attribute)

 		

 		(csv.csvwriter attribute)

 		Dialog (class in msilib)

 		DialogWindow() (in module FrameWork)

 		dict (2to3 fixer)

 		

 		(built-in class)

 		dict() (multiprocessing.managers.SyncManager method)

 		dictConfig() (in module logging.config)

 		dictionary

 		

 		display

 		object, [1], [2], [3], [4], [5], [6]

 		type, operations on

 		DictionaryType (in module types)

 		DictMixin (class in UserDict)

 		DictProxyType (in module types)

 		DictReader (class in csv)

 		DictType (in module types)

 		DictWriter (class in csv)

 		diff_files (filecmp.dircmp attribute)

 		Differ (class in difflib), [1]

 		difference() (set method)

 		difference_update() (set method)

 		difflib (module)

 		digest() (hashlib.hash method)

 		

 		(hmac.hmac method)

 		(md5.md5 method)

 		(sha.sha method)

 		digest_size (in module md5)

 		

 		(in module sha)

 		digit() (in module unicodedata)

 		digits (in module string)

 		dir() (built-in function)

 		

 		(ftplib.FTP method)

 		dircache (module)

 		dircmp (class in filecmp)

 		
 directory

 		

 		changing

 		creating

 		deleting, [1]

 		site-packages

 		site-python

 		traversal

 		walking

 		Directory (class in msilib)

 		directory_created() (built-in function)

 		DirList (class in Tix)

 		dirname() (in module os.path)

 		

 		DirSelectBox (class in Tix)

 		DirSelectDialog (class in Tix)

 		DirTree (class in Tix)

 		dis (module)

 		dis() (in module dis)

 		

 		(in module pickletools)

 		disable() (bdb.Breakpoint method)

 		

 		(in module gc)

 		(in module logging)

 		disable_interspersed_args() (optparse.OptionParser method)

 		DisableReflectionKey() (in module _winreg)

 		disassemble() (in module dis)

 		discard (cookielib.Cookie attribute)

 		discard() (mailbox.Mailbox method)

 		

 		(mailbox.MH method)

 		(set method)

 		discard_buffers() (asynchat.async_chat method)

 		disco() (in module dis)

 		discover() (unittest.TestLoader method)

 		dispatch() (compiler.visitor.ASTVisitor method)

 		dispatch_call() (bdb.Bdb method)

 		dispatch_exception() (bdb.Bdb method)

 		dispatch_line() (bdb.Bdb method)

 		dispatch_return() (bdb.Bdb method)

 		dispatcher (class in asyncore)

 		dispatcher_with_send (class in asyncore)

 		
 display

 		

 		dictionary

 		list

 		set

 		tuple

 		displayhook() (in module sys)

 		Dispose (C function)

 		dist() (in module platform)

 		distance() (in module turtle)

 		distb() (in module dis)

 		Distribution (class in distutils.core)

 		distutils (module)

 		distutils.archive_util (module)

 		distutils.bcppcompiler (module)

 		distutils.ccompiler (module)

 		distutils.cmd (module)

 		distutils.command (module)

 		distutils.command.bdist (module)

 		distutils.command.bdist_dumb (module)

 		distutils.command.bdist_msi (module)

 		distutils.command.bdist_packager (module)

 		distutils.command.bdist_rpm (module)

 		distutils.command.bdist_wininst (module)

 		distutils.command.build (module)

 		distutils.command.build_clib (module)

 		distutils.command.build_ext (module)

 		distutils.command.build_py (module)

 		distutils.command.build_scripts (module)

 		distutils.command.check (module)

 		distutils.command.clean (module)

 		distutils.command.config (module)

 		distutils.command.install (module)

 		distutils.command.install_data (module)

 		distutils.command.install_headers (module)

 		distutils.command.install_lib (module)

 		distutils.command.install_scripts (module)

 		distutils.command.register (module)

 		distutils.command.sdist (module)

 		distutils.core (module)

 		distutils.cygwinccompiler (module)

 		distutils.debug (module)

 		distutils.dep_util (module)

 		distutils.dir_util (module)

 		distutils.dist (module)

 		distutils.emxccompiler (module)

 		distutils.errors (module)

 		distutils.extension (module)

 		distutils.fancy_getopt (module)

 		distutils.file_util (module)

 		distutils.filelist (module)

 		distutils.log (module)

 		distutils.msvccompiler (module)

 		distutils.spawn (module)

 		
 distutils.sysconfig

 		

 		module

 		distutils.sysconfig (module)

 		distutils.text_file (module)

 		distutils.unixccompiler (module)

 		distutils.util (module)

 		distutils.version (module)

 		dither2grey2() (in module imageop)

 		dither2mono() (in module imageop)

 		div() (in module operator)

 		divide() (decimal.Context method)

 		divide_int() (decimal.Context method)

 		division

 		

 		integer

 		long integer

 		DivisionByZero (class in decimal)

 		
 divmod

 		

 		built-in function, [1]

 		divmod() (built-in function)

 		

 		(decimal.Context method)

 		dl (module)

 		DllCanUnloadNow() (in module ctypes)

 		DllGetClassObject() (in module ctypes)

 		dllhandle (in module sys)

 		dngettext() (in module gettext)

 		do_activate() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_char() (FrameWork.Application method)

 		do_clear() (bdb.Bdb method)

 		do_command() (curses.textpad.Textbox method)

 		do_contentclick() (FrameWork.Window method)

 		do_controlhit() (FrameWork.ControlsWindow method)

 		

 		(FrameWork.ScrolledWindow method)

 		do_dialogevent() (FrameWork.Application method)

 		do_forms() (in module fl)

 		do_GET() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_handshake() (ssl.SSLSocket method)

 		do_HEAD() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_itemhit() (FrameWork.DialogWindow method)

 		do_POST() (CGIHTTPServer.CGIHTTPRequestHandler method)

 		do_postresize() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_update() (FrameWork.Window method)

 		doc_header (cmd.Cmd attribute)

 		DocCGIXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocFileSuite() (in module doctest)

 		doCleanups() (unittest.TestCase method)

 		docmd() (smtplib.SMTP method)

 		docstring, [1]

 		

 		(doctest.DocTest attribute)

 		docstrings, [1]

 		DocTest (class in doctest)

 		doctest (module)

 		DocTestFailure

 		DocTestFinder (class in doctest)

 		DocTestParser (class in doctest)

 		DocTestRunner (class in doctest)

 		DocTestSuite() (in module doctest)

 		doctype() (xml.etree.ElementTree.TreeBuilder method)

 		

 		(xml.etree.ElementTree.XMLParser method)

 		
 documentation

 		

 		generation

 		online

 		documentation string

 		documentation strings, [1]

 		documentElement (xml.dom.Document attribute)

 		DocXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocXMLRPCServer (class in DocXMLRPCServer)

 		

 		(module)

 		domain_initial_dot (cookielib.Cookie attribute)

 		domain_return_ok() (cookielib.CookiePolicy method)

 		domain_specified (cookielib.Cookie attribute)

 		DomainLiberal (cookielib.DefaultCookiePolicy attribute)

 		DomainRFC2965Match (cookielib.DefaultCookiePolicy attribute)

 		DomainStrict (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNoDots (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNonDomain (cookielib.DefaultCookiePolicy attribute)

 		DOMEventStream (class in xml.dom.pulldom)

 		DOMException

 		DomstringSizeErr

 		done() (xdrlib.Unpacker method)

 		DONT_ACCEPT_BLANKLINE (in module doctest)

 		DONT_ACCEPT_TRUE_FOR_1 (in module doctest)

 		dont_write_bytecode (in module sys)

 		doRollover() (logging.handlers.RotatingFileHandler method)

 		

 		(logging.handlers.TimedRotatingFileHandler method)

 		DOT (in module token)

 		dot() (in module turtle)

 		DOTALL (in module re)

 		doublequote (csv.Dialect attribute)

 		DOUBLESLASH (in module token)

 		DOUBLESLASHEQUAL (in module token)

 		DOUBLESTAR (in module token)

 		DOUBLESTAREQUAL (in module token)

 		doupdate() (in module curses)

 		down() (in module turtle)

 		drop_whitespace (textwrap.TextWrapper attribute)

 		dropwhile() (in module itertools)

 		dst() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		DTDHandler (class in xml.sax.handler)

 		duck-typing

 		
 dumbdbm

 		

 		module

 		dumbdbm (module)

 		DumbWriter (class in formatter)

 		dummy_thread (module)

 		dummy_threading (module)

 		dump() (in module ast)

 		

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(in module xml.etree.ElementTree)

 		(pickle.Pickler method)

 		dump_address_pair() (in module rfc822)

 		dump_stats() (pstats.Stats method)

 		dumps() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		dup() (in module os)

 		

 		(posixfile.posixfile method)

 		dup2() (in module os)

 		

 		(posixfile.posixfile method)

 		DUP_TOP (opcode)

 		DUP_TOPX (opcode)

 		DuplicateSectionError

 		dwFlags (subprocess.STARTUPINFO attribute)

 		DynLoadSuffixImporter (class in imputil)

E

 		

 		e (in module cmath)

 		

 		(in module math)

 		E2BIG (in module errno)

 		EACCES (in module errno)

 		EADDRINUSE (in module errno)

 		EADDRNOTAVAIL (in module errno)

 		EADV (in module errno)

 		EAFNOSUPPORT (in module errno)

 		EAFP

 		EAGAIN (in module errno)

 		EALREADY (in module errno)

 		east_asian_width() (in module unicodedata)

 		EasyDialogs (module)

 		EBADE (in module errno)

 		EBADF (in module errno)

 		EBADFD (in module errno)

 		EBADMSG (in module errno)

 		EBADR (in module errno)

 		EBADRQC (in module errno)

 		EBADSLT (in module errno)

 		EBCDIC

 		EBFONT (in module errno)

 		EBUSY (in module errno)

 		ECHILD (in module errno)

 		echo() (in module curses)

 		echochar() (curses.window method)

 		ECHRNG (in module errno)

 		ECOMM (in module errno)

 		ECONNABORTED (in module errno)

 		ECONNREFUSED (in module errno)

 		ECONNRESET (in module errno)

 		EDEADLK (in module errno)

 		EDEADLOCK (in module errno)

 		EDESTADDRREQ (in module errno)

 		edit() (curses.textpad.Textbox method)

 		EDOM (in module errno)

 		EDOTDOT (in module errno)

 		EDQUOT (in module errno)

 		EEXIST (in module errno)

 		EFAULT (in module errno)

 		EFBIG (in module errno)

 		effective() (in module bdb)

 		ehlo() (smtplib.SMTP method)

 		ehlo_or_helo_if_needed() (smtplib.SMTP method)

 		EHOSTDOWN (in module errno)

 		EHOSTUNREACH (in module errno)

 		EIDRM (in module errno)

 		EILSEQ (in module errno)

 		EINPROGRESS (in module errno)

 		EINTR (in module errno)

 		EINVAL (in module errno)

 		EIO (in module errno)

 		EISCONN (in module errno)

 		EISDIR (in module errno)

 		EISNAM (in module errno)

 		EL2HLT (in module errno)

 		EL2NSYNC (in module errno)

 		EL3HLT (in module errno)

 		EL3RST (in module errno)

 		Element (class in xml.etree.ElementTree)

 		element_create() (ttk.Style method)

 		element_names() (ttk.Style method)

 		element_options() (ttk.Style method)

 		ElementDeclHandler() (xml.parsers.expat.xmlparser method)

 		elements() (collections.Counter method)

 		ElementTree (class in xml.etree.ElementTree)

 		ELIBACC (in module errno)

 		ELIBBAD (in module errno)

 		ELIBEXEC (in module errno)

 		ELIBMAX (in module errno)

 		ELIBSCN (in module errno)

 		
 elif

 		

 		keyword

 		Ellinghouse, Lance

 		
 Ellipsis

 		

 		object

 		Ellipsis (built-in variable)

 		ELLIPSIS (in module doctest)

 		EllipsisType (in module types)

 		ELNRNG (in module errno)

 		ELOOP (in module errno)

 		
 else

 		

 		dangling

 		keyword, [1], [2], [3], [4]

 		email (module)

 		email.charset (module)

 		email.encoders (module)

 		email.errors (module)

 		email.generator (module)

 		email.header (module)

 		email.iterators (module)

 		email.message (module)

 		email.mime (module)

 		email.parser (module)

 		email.utils (module)

 		EMFILE (in module errno)

 		emit() (logging.FileHandler method)

 		

 		(logging.Handler method)

 		(logging.NullHandler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.HTTPHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.RotatingFileHandler method)

 		(logging.handlers.SMTPHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(logging.handlers.TimedRotatingFileHandler method)

 		(logging.handlers.WatchedFileHandler method)

 		EMLINK (in module errno)

 		
 empty

 		

 		list

 		tuple, [1]

 		Empty

 		empty() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		(sched.scheduler method)

 		EMPTY_NAMESPACE (in module xml.dom)

 		emptyline() (cmd.Cmd method)

 		EMSGSIZE (in module errno)

 		EMULTIHOP (in module errno)

 		enable() (bdb.Breakpoint method)

 		

 		(in module cgitb)

 		(in module gc)

 		enable_callback_tracebacks() (in module sqlite3)

 		enable_interspersed_args() (optparse.OptionParser method)

 		enable_load_extension() (sqlite3.Connection method)

 		enable_traversal() (ttk.Notebook method)

 		ENABLE_USER_SITE (in module site)

 		EnableReflectionKey() (in module _winreg)

 		ENAMETOOLONG (in module errno)

 		ENAVAIL (in module errno)

 		enclose() (curses.window method)

 		
 encode

 		

 		Codecs

 		encode() (codecs.Codec method)

 		

 		(codecs.IncrementalEncoder method)

 		(email.header.Header method)

 		(in module base64)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONEncoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.Boolean method)

 		(xmlrpclib.DateTime method)

 		encode_7or8bit() (in module email.encoders)

 		encode_base64() (in module email.encoders)

 		encode_noop() (in module email.encoders)

 		encode_quopri() (in module email.encoders)

 		encode_rfc2231() (in module email.utils)

 		encode_threshold (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		encoded_header_len() (email.charset.Charset method)

 		EncodedFile() (in module codecs)

 		encodePriority() (logging.handlers.SysLogHandler method)

 		encodestring() (in module base64)

 		

 		(in module quopri)

 		
 encoding

 		

 		base64

 		quoted-printable

 		encoding (file attribute)

 		ENCODING (in module tarfile)

 		encoding (io.TextIOBase attribute)

 		encodings

 		encodings.idna (module)

 		encodings.utf_8_sig (module)

 		encodings_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		end() (re.MatchObject method)

 		

 		(xml.etree.ElementTree.TreeBuilder method)

 		end_fill() (in module turtle)

 		END_FINALLY (opcode)

 		end_group() (fl.form method)

 		end_headers() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		end_marker() (multifile.MultiFile method)

 		end_paragraph() (formatter.formatter method)

 		end_poly() (in module turtle)

 		EndCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		EndDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		endDocument() (xml.sax.handler.ContentHandler method)

 		endElement() (xml.sax.handler.ContentHandler method)

 		EndElementHandler() (xml.parsers.expat.xmlparser method)

 		endElementNS() (xml.sax.handler.ContentHandler method)

 		endheaders() (httplib.HTTPConnection method)

 		ENDMARKER (in module token)

 		EndNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		endpick() (in module gl)

 		endpos (re.MatchObject attribute)

 		endPrefixMapping() (xml.sax.handler.ContentHandler method)

 		endselect() (in module gl)

 		endswith() (str method)

 		endwin() (in module curses)

 		ENETDOWN (in module errno)

 		ENETRESET (in module errno)

 		ENETUNREACH (in module errno)

 		ENFILE (in module errno)

 		ENOANO (in module errno)

 		ENOBUFS (in module errno)

 		ENOCSI (in module errno)

 		ENODATA (in module errno)

 		ENODEV (in module errno)

 		ENOENT (in module errno)

 		ENOEXEC (in module errno)

 		ENOLCK (in module errno)

 		ENOLINK (in module errno)

 		ENOMEM (in module errno)

 		ENOMSG (in module errno)

 		ENONET (in module errno)

 		ENOPKG (in module errno)

 		ENOPROTOOPT (in module errno)

 		ENOSPC (in module errno)

 		ENOSR (in module errno)

 		ENOSTR (in module errno)

 		ENOSYS (in module errno)

 		ENOTBLK (in module errno)

 		ENOTCONN (in module errno)

 		ENOTDIR (in module errno)

 		ENOTEMPTY (in module errno)

 		ENOTNAM (in module errno)

 		ENOTSOCK (in module errno)

 		ENOTTY (in module errno)

 		ENOTUNIQ (in module errno)

 		enter() (sched.scheduler method)

 		enterabs() (sched.scheduler method)

 		entities (xml.dom.DocumentType attribute)

 		EntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		entitydefs (in module htmlentitydefs)

 		EntityResolver (class in xml.sax.handler)

 		Enum (class in aetypes)

 		enumerate() (built-in function)

 		

 		(in module fm)

 		(in module threading)

 		EnumKey() (in module _winreg)

 		enumsubst() (in module aetools)

 		EnumValue() (in module _winreg)

 		environ (in module os)

 		

 		(in module posix)

 		environment

 		
 environment variable

 		

 		%PATH%

 		<protocol>_proxy

 		APPDATA

 		AUDIODEV

 		BROWSER, [1]

 		CC

 		CFLAGS, [1], [2]

 		COLUMNS, [1]

 		COMSPEC, [1]

 		CPP

 		CPPFLAGS

 		HOME, [1], [2], [3], [4], [5]

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		IDLESTARTUP

 		KDEDIR

 		LANG, [1], [2], [3], [4]

 		LANGUAGE, [1]

 		LC_ALL, [1]

 		LC_MESSAGES, [1]

 		LDCXXSHARED

 		LDFLAGS

 		LINES, [1]

 		LNAME

 		LOGNAME, [1]

 		MIXERDEV

 		PAGER

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		PLAT

 		POSIXLY_CORRECT

 		PYTHON*

 		PYTHONCASEOK, [1]

 		PYTHONDEBUG, [1]

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2], [3]

 		PYTHONDUMPREFS

 		PYTHONEXECUTABLE

 		PYTHONHOME, [1], [2], [3], [4], [5], [6], [7]

 		PYTHONINSPECT, [1], [2]

 		PYTHONIOENCODING, [1]

 		PYTHONMALLOCSTATS

 		PYTHONNOUSERSITE, [1], [2]

 		PYTHONOPTIMIZE, [1]

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6], [7]

 		PYTHONTHREADDEBUG

 		PYTHONUNBUFFERED, [1]

 		PYTHONUSERBASE, [1], [2]

 		PYTHONVERBOSE, [1]

 		PYTHONWARNINGS, [1], [2], [3]

 		PYTHONY2K, [1], [2], [3]

 		PYTHON_DOM

 		SystemRoot

 		TCL_LIBRARY

 		TEMP

 		TIX_LIBRARY

 		TK_LIBRARY

 		TMP, [1]

 		TMPDIR, [1]

 		TZ, [1], [2], [3], [4]

 		USER

 		USERNAME

 		USERPROFILE, [1]

 		USER_BASE

 		Wimp$ScrapDir

 		exec_prefix

 		ftp_proxy

 		http_proxy, [1]

 		no_proxy, [1]

 		prefix

 		
 environment variables

 		

 		deleting

 		setting

 		EnvironmentError

 		EnvironmentVarGuard (class in test.test_support)

 		ENXIO (in module errno)

 		eof (shlex.shlex attribute)

 		EOFError

 		EOPNOTSUPP (in module errno)

 		EOVERFLOW (in module errno)

 		EPERM (in module errno)

 		EPFNOSUPPORT (in module errno)

 		

 		epilogue (email.message.Message attribute)

 		EPIPE (in module errno)

 		epoch

 		epoll() (in module select)

 		EPROTO (in module errno)

 		EPROTONOSUPPORT (in module errno)

 		EPROTOTYPE (in module errno)

 		eq() (in module operator)

 		EQEQUAL (in module token)

 		EQUAL (in module token)

 		ERA (in module locale)

 		ERA_D_FMT (in module locale)

 		ERA_D_T_FMT (in module locale)

 		ERA_T_FMT (in module locale)

 		ERANGE (in module errno)

 		erase() (curses.window method)

 		erasechar() (in module curses)

 		EREMCHG (in module errno)

 		EREMOTE (in module errno)

 		EREMOTEIO (in module errno)

 		ERESTART (in module errno)

 		erf() (in module math)

 		erfc() (in module math)

 		EROFS (in module errno)

 		ERR (in module curses)

 		errcheck (ctypes._FuncPtr attribute)

 		errcode (xmlrpclib.ProtocolError attribute)

 		errmsg (xmlrpclib.ProtocolError attribute)

 		
 errno

 		

 		module, [1]

 		errno (module)

 		error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]

 		Error, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

 		ERROR (in module cd)

 		error handling

 		error() (argparse.ArgumentParser method)

 		

 		(in module logging)

 		(logging.Logger method)

 		(mhlib.Folder method)

 		(mhlib.MH method)

 		(urllib2.OpenerDirector method)

 		(xml.sax.handler.ErrorHandler method)

 		error_body (wsgiref.handlers.BaseHandler attribute)

 		error_content_type (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_headers (wsgiref.handlers.BaseHandler attribute)

 		error_leader() (shlex.shlex method)

 		error_message_format (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		error_output() (wsgiref.handlers.BaseHandler method)

 		error_perm

 		error_proto, [1]

 		error_reply

 		error_status (wsgiref.handlers.BaseHandler attribute)

 		error_temp

 		ErrorByteIndex (xml.parsers.expat.xmlparser attribute)

 		errorcode (in module errno)

 		ErrorCode (xml.parsers.expat.xmlparser attribute)

 		ErrorColumnNumber (xml.parsers.expat.xmlparser attribute)

 		ErrorHandler (class in xml.sax.handler)

 		ErrorLineNumber (xml.parsers.expat.xmlparser attribute)

 		errors

 		
 Errors

 		

 		(file attribute)

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		logging

 		ErrorString() (in module xml.parsers.expat)

 		ERRORTOKEN (in module token)

 		escape (shlex.shlex attribute)

 		escape sequence

 		escape() (in module cgi)

 		

 		(in module re)

 		(in module xml.sax.saxutils)

 		escapechar (csv.Dialect attribute)

 		escapedquotes (shlex.shlex attribute)

 		ESHUTDOWN (in module errno)

 		ESOCKTNOSUPPORT (in module errno)

 		ESPIPE (in module errno)

 		ESRCH (in module errno)

 		ESRMNT (in module errno)

 		ESTALE (in module errno)

 		ESTRPIPE (in module errno)

 		ETIME (in module errno)

 		ETIMEDOUT (in module errno)

 		Etiny() (decimal.Context method)

 		ETOOMANYREFS (in module errno)

 		Etop() (decimal.Context method)

 		ETXTBSY (in module errno)

 		EUCLEAN (in module errno)

 		EUNATCH (in module errno)

 		EUSERS (in module errno)

 		
 eval

 		

 		built-in function, [1], [2], [3], [4], [5], [6], [7]

 		eval() (built-in function)

 		
 evaluation

 		

 		order

 		Event (class in multiprocessing)

 		

 		(class in threading)

 		event scheduling

 		event() (msilib.Control method)

 		Event() (multiprocessing.managers.SyncManager method)

 		events (widgets)

 		EWOULDBLOCK (in module errno)

 		EX_CANTCREAT (in module os)

 		EX_CONFIG (in module os)

 		EX_DATAERR (in module os)

 		EX_IOERR (in module os)

 		EX_NOHOST (in module os)

 		EX_NOINPUT (in module os)

 		EX_NOPERM (in module os)

 		EX_NOTFOUND (in module os)

 		EX_NOUSER (in module os)

 		EX_OK (in module os)

 		EX_OSERR (in module os)

 		EX_OSFILE (in module os)

 		EX_PROTOCOL (in module os)

 		EX_SOFTWARE (in module os)

 		EX_TEMPFAIL (in module os)

 		EX_UNAVAILABLE (in module os)

 		EX_USAGE (in module os)

 		Example (class in doctest)

 		example (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		examples (doctest.DocTest attribute)

 		exc_clear() (in module sys)

 		exc_info (doctest.UnexpectedException attribute)

 		

 		(in module sys)

 		exc_info() (in module sys)

 		exc_msg (doctest.Example attribute)

 		exc_traceback (in module sys), [1], [2]

 		exc_type (in module sys), [1]

 		exc_value (in module sys), [1]

 		excel (class in csv)

 		excel_tab (class in csv)

 		
 except

 		

 		bare

 		keyword

 		statement

 		except (2to3 fixer)

 		excepthook() (in module sys), [1]

 		exception, [1]

 		

 		AssertionError

 		AttributeError

 		GeneratorExit

 		ImportError, [1], [2]

 		NameError

 		RuntimeError

 		StopIteration, [1]

 		TypeError

 		ValueError

 		ZeroDivisionError

 		handler

 		raising

 		Exception

 		exception handler

 		exception() (in module logging)

 		

 		(logging.Logger method)

 		
 exceptions

 		

 		in CGI scripts

 		exceptions (module)

 		
 exclusive

 		

 		or

 		EXDEV (in module errno)

 		
 exec

 		

 		statement, [1], [2]

 		exec (2to3 fixer)

 		exec_prefix

 		EXEC_PREFIX (in module distutils.sysconfig)

 		exec_prefix (in module sys)

 		EXEC_STMT (opcode)

 		
 execfile

 		

 		built-in function, [1]

 		execfile (2to3 fixer)

 		execfile() (built-in function)

 		execl() (in module os)

 		execle() (in module os)

 		execlp() (in module os)

 		execlpe() (in module os)

 		executable (in module sys)

 		executable_filename() (distutils.ccompiler.CCompiler method)

 		execute() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.util)

 		Execute() (msilib.View method)

 		execute() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executemany() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		executescript() (sqlite3.Connection method)

 		

 		(sqlite3.Cursor method)

 		
 execution

 		

 		frame, [1]

 		restricted

 		stack

 		execution model

 		execv() (in module os)

 		execve() (in module os)

 		execvp() (in module os)

 		execvpe() (in module os)

 		ExFileSelectBox (class in Tix)

 		EXFULL (in module errno)

 		exists() (in module os.path)

 		

 		(ttk.Treeview method)

 		exit (built-in variable)

 		exit() (argparse.ArgumentParser method)

 		

 		(in module sys)

 		(in module thread)

 		exitcode (multiprocessing.Process attribute)

 		exitfunc (2to3 fixer)

 		

 		(in module sys)

 		(in sys)

 		exitonclick() (in module turtle)

 		exp() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		expand() (re.MatchObject method)

 		expand_tabs (textwrap.TextWrapper attribute)

 		ExpandEnvironmentStrings() (in module _winreg)

 		expandNode() (xml.dom.pulldom.DOMEventStream method)

 		expandtabs() (in module string)

 		

 		(str method)

 		expanduser() (in module os.path)

 		expandvars() (in module os.path)

 		Expat

 		ExpatError

 		expect() (telnetlib.Telnet method)

 		expectedFailure() (in module unittest)

 		expectedFailures (unittest.TestResult attribute)

 		expires (cookielib.Cookie attribute)

 		expm1() (in module math)

 		expovariate() (in module random)

 		expr() (in module parser)

 		expression, [1]

 		

 		Conditional

 		conditional

 		generator

 		lambda

 		list, [1], [2]

 		statement

 		yield

 		expunge() (imaplib.IMAP4 method)

 		extend() (array.array method)

 		

 		(collections.deque method)

 		(list method)

 		(xml.etree.ElementTree.Element method)

 		extend_path() (in module pkgutil)

 		
 extended

 		

 		slicing

 		extended print statement

 		
 extended slice

 		

 		assignment

 		operation

 		extended slicing

 		EXTENDED_ARG (opcode)

 		ExtendedContext (class in decimal)

 		extendleft() (collections.deque method)

 		
 extension

 		

 		module

 		Extension (class in distutils.core)

 		extension module

 		extensions_map (SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		External Data Representation, [1]

 		external_attr (zipfile.ZipInfo attribute)

 		ExternalClashError

 		ExternalEntityParserCreate() (xml.parsers.expat.xmlparser method)

 		ExternalEntityRefHandler() (xml.parsers.expat.xmlparser method)

 		extra (zipfile.ZipInfo attribute)

 		extract() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		extract_cookies() (cookielib.CookieJar method)

 		extract_stack() (in module traceback)

 		extract_tb() (in module traceback)

 		extract_version (zipfile.ZipInfo attribute)

 		extractall() (tarfile.TarFile method)

 		

 		(zipfile.ZipFile method)

 		ExtractError

 		extractfile() (tarfile.TarFile method)

 		extsep (in module os)

F

 		

 		f_back (frame attribute)

 		F_BAVAIL (in module statvfs)

 		F_BFREE (in module statvfs)

 		F_BLOCKS (in module statvfs)

 		F_BSIZE (in module statvfs)

 		f_builtins (frame attribute)

 		f_code (frame attribute)

 		f_exc_traceback (frame attribute)

 		f_exc_type (frame attribute)

 		f_exc_value (frame attribute)

 		F_FAVAIL (in module statvfs)

 		F_FFREE (in module statvfs)

 		F_FILES (in module statvfs)

 		F_FLAG (in module statvfs)

 		F_FRSIZE (in module statvfs)

 		f_globals (frame attribute)

 		f_lasti (frame attribute)

 		f_lineno (frame attribute)

 		f_locals (frame attribute)

 		F_NAMEMAX (in module statvfs)

 		F_OK (in module os)

 		f_restricted (frame attribute)

 		f_trace (frame attribute)

 		fabs() (in module math)

 		factorial() (in module math)

 		fail() (unittest.TestCase method)

 		failfast (unittest.TestResult attribute)

 		failureException (unittest.TestCase attribute)

 		failures (unittest.TestResult attribute)

 		false

 		False, [1], [2]

 		

 		(Built-in object)

 		(built-in variable)

 		family (socket.socket attribute)

 		fancy_getopt() (in module distutils.fancy_getopt)

 		FancyGetopt (class in distutils.fancy_getopt)

 		FancyURLopener (class in urllib)

 		fatalError() (xml.sax.handler.ErrorHandler method)

 		faultCode (xmlrpclib.Fault attribute)

 		faultString (xmlrpclib.Fault attribute)

 		fchdir() (in module os)

 		fchmod() (in module os)

 		fchown() (in module os)

 		FCICreate() (in module msilib)

 		
 fcntl

 		

 		module

 		fcntl (module)

 		fcntl() (in module fcntl), [1]

 		fd() (in module turtle)

 		fdatasync() (in module os)

 		fdopen() (in module os)

 		Feature (class in msilib)

 		feature_external_ges (in module xml.sax.handler)

 		feature_external_pes (in module xml.sax.handler)

 		feature_namespace_prefixes (in module xml.sax.handler)

 		feature_namespaces (in module xml.sax.handler)

 		feature_string_interning (in module xml.sax.handler)

 		feature_validation (in module xml.sax.handler)

 		feed() (email.parser.FeedParser method)

 		

 		(HTMLParser.HTMLParser method)

 		(sgmllib.SGMLParser method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		FeedParser (class in email.parser)

 		fetch() (imaplib.IMAP4 method)

 		Fetch() (msilib.View method)

 		fetchall() (sqlite3.Cursor method)

 		fetchmany() (sqlite3.Cursor method)

 		fetchone() (sqlite3.Cursor method)

 		fflags (select.kevent attribute)

 		field_size_limit() (in module csv)

 		fieldnames (csv.csvreader attribute)

 		fields (uuid.UUID attribute)

 		fifo (class in asynchat)

 		
 file

 		

 		.ini

 		.pdbrc

 		.pythonrc.py

 		built-in function

 		byte-code, [1], [2]

 		configuration

 		copying

 		debugger configuration

 		descriptor

 		large files

 		mime.types

 		object, [1], [2], [3]

 		path configuration

 		plist

 		temporary

 		user configuration

 		file (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		
 file control

 		

 		UNIX

 		
 file name

 		

 		temporary

 		
 file object

 		

 		POSIX

 		file() (built-in function)

 		

 		(posixfile.posixfile method)

 		file_created() (built-in function)

 		file_dispatcher (class in asyncore)

 		file_open() (urllib2.FileHandler method)

 		file_size (zipfile.ZipInfo attribute)

 		file_wrapper (class in asyncore)

 		filecmp (module)

 		fileConfig() (in module logging.config)

 		FileCookieJar (class in cookielib)

 		FileEntry (class in Tix)

 		FileHandler (class in logging)

 		

 		(class in urllib2)

 		FileInput (class in fileinput)

 		fileinput (module)

 		FileIO (class in io)

 		filelineno() (in module fileinput)

 		filename (cookielib.FileCookieJar attribute)

 		

 		(doctest.DocTest attribute)

 		(zipfile.ZipInfo attribute)

 		filename() (in module fileinput)

 		filename_only (in module tabnanny)

 		
 filenames

 		

 		pathname expansion

 		wildcard expansion

 		fileno() (file method)

 		

 		(SocketServer.BaseServer method)

 		(hotshot.Profile method)

 		(httplib.HTTPResponse method)

 		(in module fileinput)

 		(io.IOBase method)

 		(multiprocessing.Connection method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(socket.socket method)

 		(telnetlib.Telnet method)

 		fileopen() (in module posixfile)

 		FileSelectBox (class in Tix)

 		FileType (class in argparse)

 		

 		(in module types)

 		FileWrapper (class in wsgiref.util)

 		fill() (in module textwrap)

 		

 		(in module turtle)

 		(textwrap.TextWrapper method)

 		fillcolor() (in module turtle)

 		filter (2to3 fixer)

 		Filter (class in logging)

 		filter (select.kevent attribute)

 		filter() (built-in function)

 		

 		(in module curses)

 		(in module fnmatch)

 		(in module future_builtins)

 		(logging.Filter method)

 		(logging.Handler method)

 		(logging.Logger method)

 		filterwarnings() (in module warnings)

 		finalization, of objects

 		finalize_options() (distutils.cmd.Command method)

 		
 finally

 		

 		keyword, [1], [2], [3], [4]

 		find() (doctest.DocTestFinder method)

 		

 		(in module gettext)

 		(in module mmap)

 		(in module string)

 		(str method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		find_first() (fl.form method)

 		find_global() (pickle protocol)

 		find_last() (fl.form method)

 		find_library() (in module ctypes.util)

 		find_library_file() (distutils.ccompiler.CCompiler method)

 		find_loader() (in module pkgutil)

 		find_longest_match() (difflib.SequenceMatcher method)

 		
 find_module

 		

 		finder

 		find_module() (imp.NullImporter method)

 		

 		(in module imp)

 		(zipimport.zipimporter method)

 		find_msvcrt() (in module ctypes.util)

 		find_user_password() (urllib2.HTTPPasswordMgr method)

 		findall() (in module re)

 		

 		(re.RegexObject method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		findCaller() (logging.Logger method)

 		finder, [1]

 		

 		find_module

 		findertools (module)

 		findfactor() (in module audioop)

 		findfile() (in module test.test_support)

 		findfit() (in module audioop)

 		findfont() (in module fm)

 		finditer() (in module re)

 		

 		(re.RegexObject method)

 		findlabels() (in module dis)

 		findlinestarts() (in module dis)

 		findmatch() (in module mailcap)

 		findmax() (in module audioop)

 		findtext() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		finish() (SocketServer.RequestHandler method)

 		finish_request() (SocketServer.BaseServer method)

 		first() (asynchat.fifo method)

 		

 		(bsddb.bsddbobject method)

 		(dbhash.dbhash method)

 		firstChild (xml.dom.Node attribute)

 		firstkey() (in module gdbm)

 		firstweekday() (in module calendar)

 		fix() (in module fpformat)

 		fix_missing_locations() (in module ast)

 		fix_sentence_endings (textwrap.TextWrapper attribute)

 		FL (module)

 		fl (module)

 		flag_bits (zipfile.ZipInfo attribute)

 		flags (in module sys)

 		

 		(re.RegexObject attribute)

 		(select.kevent attribute)

 		flags() (posixfile.posixfile method)

 		

 		flash() (in module curses)

 		flatten() (email.generator.Generator method)

 		
 flattening

 		

 		objects

 		
 float

 		

 		built-in function, [1], [2]

 		float() (built-in function)

 		float_info (in module sys)

 		float_repr_style (in module sys)

 		
 floating point

 		

 		literals

 		number

 		object, [1]

 		floating point literal

 		FloatingPointError, [1]

 		FloatType (in module types)

 		flock() (in module fcntl)

 		floor division

 		floor() (in module math), [1]

 		floordiv() (in module operator)

 		flp (module)

 		flush() (bz2.BZ2Compressor method)

 		

 		(file method)

 		(formatter.writer method)

 		(in module mmap)

 		(io.BufferedWriter method)

 		(io.IOBase method)

 		(logging.Handler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.MemoryHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		flush_softspace() (formatter.formatter method)

 		flushheaders() (MimeWriter.MimeWriter method)

 		flushinp() (in module curses)

 		FlushKey() (in module _winreg)

 		fm (module)

 		fma() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		fmod() (in module math)

 		fnmatch (module)

 		fnmatch() (in module fnmatch)

 		fnmatchcase() (in module fnmatch)

 		focus() (ttk.Treeview method)

 		Folder (class in mhlib)

 		Font Manager, IRIS

 		fontpath() (in module fm)

 		
 for

 		

 		statement, [1], [2], [3], [4]

 		FOR_ITER (opcode)

 		forget() (in module test.test_support)

 		

 		(ttk.Notebook method)

 		fork() (in module os)

 		

 		(in module pty)

 		forkpty() (in module os)

 		
 form

 		

 		lambda, [1]

 		Form (class in Tix)

 		
 format

 		

 		str

 		format (memoryview attribute)

 		

 		(struct.Struct attribute)

 		format() (built-in function)

 		

 		(in module locale)

 		(logging.Formatter method)

 		(logging.Handler method)

 		(pprint.PrettyPrinter method)

 		(str method)

 		(string.Formatter method)

 		format_exc() (in module traceback)

 		format_exception() (in module traceback)

 		format_exception_only() (in module traceback)

 		format_field() (string.Formatter method)

 		format_help() (argparse.ArgumentParser method)

 		format_list() (in module traceback)

 		format_stack() (in module traceback)

 		format_stack_entry() (bdb.Bdb method)

 		format_string() (in module locale)

 		format_tb() (in module traceback)

 		format_usage() (argparse.ArgumentParser method)

 		formataddr() (in module email.utils)

 		formatargspec() (in module inspect)

 		formatargvalues() (in module inspect)

 		formatdate() (in module email.utils)

 		FormatError

 		FormatError() (in module ctypes)

 		formatException() (logging.Formatter method)

 		formatmonth() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		
 formatter

 		

 		module

 		Formatter (class in logging)

 		

 		(class in string)

 		formatter (htmllib.HTMLParser attribute)

 		

 		(module)

 		formatTime() (logging.Formatter method)

 		formatting, string (%)

 		formatwarning() (in module warnings)

 		formatyear() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		formatyearpage() (calendar.HTMLCalendar method)

 		FORMS Library

 		forward() (in module turtle)

 		found_terminator() (asynchat.async_chat method)

 		fp (rfc822.Message attribute)

 		fpathconf() (in module os)

 		fpectl (module)

 		fpformat (module)

 		Fraction (class in fractions)

 		fractions (module)

 		
 frame

 		

 		execution, [1]

 		object

 		frame (ScrolledText.ScrolledText attribute)

 		FrameType (in module types)

 		
 FrameWork

 		

 		module

 		FrameWork (module)

 		
 free

 		

 		variable, [1]

 		freeze_form() (fl.form method)

 		freeze_support() (in module multiprocessing)

 		frexp() (in module math)

 		
 from

 		

 		keyword

 		statement

 		from_address() (ctypes._CData method)

 		from_buffer() (ctypes._CData method)

 		from_buffer_copy() (ctypes._CData method)

 		from_decimal() (fractions.Fraction method)

 		from_float() (decimal.Decimal method)

 		

 		(fractions.Fraction method)

 		from_iterable() (itertools.chain class method)

 		from_param() (ctypes._CData method)

 		from_splittable() (email.charset.Charset method)

 		frombuf() (tarfile.TarInfo method)

 		fromchild (popen2.Popen3 attribute)

 		fromfd() (in module socket)

 		

 		(select.epoll method)

 		(select.kqueue method)

 		fromfile() (array.array method)

 		fromhex() (float method)

 		fromkeys() (collections.Counter method)

 		

 		(dict method)

 		fromlist() (array.array method)

 		fromordinal() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromstring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		fromstringlist() (in module xml.etree.ElementTree)

 		fromtarfile() (tarfile.TarInfo method)

 		fromtimestamp() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromunicode() (array.array method)

 		fromutc() (datetime.tzinfo method)

 		
 frozenset

 		

 		object

 		frozenset (built-in class)

 		fstat() (in module os)

 		fstatvfs() (in module os)

 		fsum() (in module math)

 		fsync() (in module os)

 		FTP

 		

 		ftplib (standard module)

 		protocol, [1]

 		FTP (class in ftplib)

 		ftp_open() (urllib2.FTPHandler method)

 		ftp_proxy

 		FTP_TLS (class in ftplib)

 		FTPHandler (class in urllib2)

 		ftplib (module)

 		ftpmirror.py

 		ftruncate() (in module os)

 		Full

 		full() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		func (functools.partial attribute)

 		func_closure (function attribute)

 		func_code (function attribute)

 		

 		(function object attribute)

 		func_defaults (function attribute)

 		func_dict (function attribute)

 		func_doc (function attribute)

 		func_globals (function attribute)

 		funcattrs (2to3 fixer)

 		function

 		

 		anonymous

 		argument

 		call, [1], [2]

 		call, user-defined

 		definition, [1]

 		generator, [1]

 		name

 		object, [1], [2], [3], [4]

 		user-defined

 		Function (class in symtable)

 		function() (in module new)

 		FunctionTestCase (class in unittest)

 		FunctionType (in module types)

 		functools (module)

 		funny_files (filecmp.dircmp attribute)

 		
 future

 		

 		statement

 		future (2to3 fixer)

 		future_builtins (module)

 		FutureWarning

G

 		

 		G.722

 		gaierror

 		gamma() (in module math)

 		gammavariate() (in module random)

 		garbage (in module gc)

 		garbage collection, [1]

 		gather() (curses.textpad.Textbox method)

 		gauss() (in module random)

 		gc (module)

 		gcd() (in module fractions)

 		
 gdbm

 		

 		module, [1], [2]

 		gdbm (module)

 		ge() (in module operator)

 		gen_lib_options() (in module distutils.ccompiler)

 		gen_preprocess_options() (in module distutils.ccompiler)

 		gen_uuid() (in module msilib)

 		generate_help() (distutils.fancy_getopt.FancyGetopt method)

 		generate_tokens() (in module tokenize)

 		generator, [1]

 		

 		expression

 		function, [1], [2]

 		iterator, [1]

 		object, [1], [2]

 		Generator (class in email.generator)

 		generator expression, [1]

 		GeneratorExit

 		

 		exception

 		GeneratorType (in module types)

 		
 generic

 		

 		special attribute

 		generic_visit() (ast.NodeVisitor method)

 		genops() (in module pickletools)

 		gensuitemodule (module)

 		get() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(Queue.Queue method)

 		(dict method)

 		(email.message.Message method)

 		(in module webbrowser)

 		(mailbox.Mailbox method)

 		(multiprocessing.Queue method)

 		(multiprocessing.pool.AsyncResult method)

 		(ossaudiodev.oss_mixer_device method)

 		(rfc822.Message method)

 		(ttk.Combobox method)

 		(xml.etree.ElementTree.Element method)

 		get_all() (email.message.Message method)

 		

 		(wsgiref.headers.Headers method)

 		get_all_breaks() (bdb.Bdb method)

 		get_app() (wsgiref.simple_server.WSGIServer method)

 		get_archive_formats() (in module shutil)

 		get_begidx() (in module readline)

 		get_body_encoding() (email.charset.Charset method)

 		get_boundary() (email.message.Message method)

 		get_break() (bdb.Bdb method)

 		get_breaks() (bdb.Bdb method)

 		get_buffer() (xdrlib.Packer method)

 		

 		(xdrlib.Unpacker method)

 		get_charset() (email.message.Message method)

 		get_charsets() (email.message.Message method)

 		get_children() (symtable.SymbolTable method)

 		

 		(ttk.Treeview method)

 		get_close_matches() (in module difflib)

 		get_code() (imputil.BuiltinImporter method)

 		

 		(imputil.Importer method)

 		(zipimport.zipimporter method)

 		get_completer() (in module readline)

 		get_completer_delims() (in module readline)

 		get_completion_type() (in module readline)

 		get_config_h_filename() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_var() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_vars() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_content_charset() (email.message.Message method)

 		get_content_maintype() (email.message.Message method)

 		get_content_subtype() (email.message.Message method)

 		get_content_type() (email.message.Message method)

 		get_count() (in module gc)

 		get_current_history_length() (in module readline)

 		get_data() (in module pkgutil)

 		

 		(urllib2.Request method)

 		(zipimport.zipimporter method)

 		get_date() (mailbox.MaildirMessage method)

 		get_debug() (in module gc)

 		get_default() (argparse.ArgumentParser method)

 		get_default_compiler() (in module distutils.ccompiler)

 		get_default_domain() (in module nis)

 		get_default_type() (email.message.Message method)

 		get_dialect() (in module csv)

 		get_directory() (in module fl)

 		get_docstring() (in module ast)

 		get_doctest() (doctest.DocTestParser method)

 		get_endidx() (in module readline)

 		get_environ() (wsgiref.simple_server.WSGIRequestHandler method)

 		get_errno() (in module ctypes)

 		get_examples() (doctest.DocTestParser method)

 		get_field() (string.Formatter method)

 		get_file() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		get_file_breaks() (bdb.Bdb method)

 		get_filename() (email.message.Message method)

 		

 		(in module fl)

 		(zipimport.zipimporter method)

 		get_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		get_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		get_frees() (symtable.Function method)

 		get_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		get_full_url() (urllib2.Request method)

 		get_globals() (symtable.Function method)

 		get_grouped_opcodes() (difflib.SequenceMatcher method)

 		get_history_item() (in module readline)

 		get_history_length() (in module readline)

 		get_host() (urllib2.Request method)

 		get_id() (symtable.SymbolTable method)

 		get_ident() (in module thread)

 		get_identifiers() (symtable.SymbolTable method)

 		get_importer() (in module pkgutil)

 		get_info() (mailbox.MaildirMessage method)

 		GET_ITER (opcode)

 		get_labels() (mailbox.Babyl method)

 		

 		(mailbox.BabylMessage method)

 		get_last_error() (in module ctypes)

 		get_line_buffer() (in module readline)

 		get_lineno() (symtable.SymbolTable method)

 		get_loader() (in module pkgutil)

 		get_locals() (symtable.Function method)

 		get_logger() (in module multiprocessing)

 		get_magic() (in module imp)

 		get_makefile_filename() (in module distutils.sysconfig)

 		get_matching_blocks() (difflib.SequenceMatcher method)

 		get_message() (mailbox.Mailbox method)

 		get_method() (urllib2.Request method)

 		get_methods() (symtable.Class method)

 		get_mouse() (in module fl)

 		get_name() (symtable.Symbol method)

 		

 		(symtable.SymbolTable method)

 		get_namespace() (symtable.Symbol method)

 		get_namespaces() (symtable.Symbol method)

 		get_no_wait() (multiprocessing.Queue method)

 		get_nonstandard_attr() (cookielib.Cookie method)

 		get_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		get_objects() (in module gc)

 		get_opcodes() (difflib.SequenceMatcher method)

 		get_option() (optparse.OptionParser method)

 		get_option_group() (optparse.OptionParser method)

 		get_option_order() (distutils.fancy_getopt.FancyGetopt method)

 		get_origin_req_host() (urllib2.Request method)

 		get_osfhandle() (in module msvcrt)

 		get_output_charset() (email.charset.Charset method)

 		get_param() (email.message.Message method)

 		get_parameters() (symtable.Function method)

 		get_params() (email.message.Message method)

 		get_path() (in module sysconfig)

 		get_path_names() (in module sysconfig)

 		get_paths() (in module sysconfig)

 		get_pattern() (in module fl)

 		get_payload() (email.message.Message method)

 		get_platform() (in module distutils.util)

 		

 		(in module sysconfig)

 		get_poly() (in module turtle)

 		get_position() (xdrlib.Unpacker method)

 		get_python_inc() (in module distutils.sysconfig)

 		get_python_lib() (in module distutils.sysconfig)

 		get_python_version() (in module sysconfig)

 		get_recsrc() (ossaudiodev.oss_mixer_device method)

 		get_referents() (in module gc)

 		get_referrers() (in module gc)

 		get_request() (SocketServer.BaseServer method)

 		get_rgbmode() (in module fl)

 		get_scheme() (wsgiref.handlers.BaseHandler method)

 		get_scheme_names() (in module sysconfig)

 		get_selector() (urllib2.Request method)

 		get_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		get_server() (multiprocessing.managers.BaseManager method)

 		get_server_certificate() (in module ssl)

 		get_socket() (telnetlib.Telnet method)

 		get_source() (zipimport.zipimporter method)

 		get_special_folder_path() (built-in function)

 		get_stack() (bdb.Bdb method)

 		get_starttag_text() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		get_stderr() (wsgiref.handlers.BaseHandler method)

 		

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		get_stdin() (wsgiref.handlers.BaseHandler method)

 		get_string() (mailbox.Mailbox method)

 		get_subdir() (mailbox.MaildirMessage method)

 		get_suffixes() (in module imp)

 		get_symbols() (symtable.SymbolTable method)

 		get_terminator() (asynchat.async_chat method)

 		get_threshold() (in module gc)

 		get_token() (shlex.shlex method)

 		get_type() (symtable.SymbolTable method)

 		

 		(urllib2.Request method)

 		get_unixfrom() (email.message.Message method)

 		get_usage() (optparse.OptionParser method)

 		get_value() (string.Formatter method)

 		get_version() (optparse.OptionParser method)

 		get_visible() (mailbox.BabylMessage method)

 		getabouttext() (FrameWork.Application method)

 		getacl() (imaplib.IMAP4 method)

 		getaddr() (rfc822.Message method)

 		getaddresses() (in module email.utils)

 		getaddrinfo() (in module socket)

 		getaddrlist() (rfc822.Message method)

 		getallmatchingheaders() (rfc822.Message method)

 		getannotation() (imaplib.IMAP4 method)

 		getargspec() (in module inspect)

 		GetArgv() (in module EasyDialogs)

 		getargvalues() (in module inspect)

 		getatime() (in module os.path)

 		getattr() (built-in function)

 		getAttribute() (xml.dom.Element method)

 		getAttributeNode() (xml.dom.Element method)

 		getAttributeNodeNS() (xml.dom.Element method)

 		getAttributeNS() (xml.dom.Element method)

 		GetBase() (xml.parsers.expat.xmlparser method)

 		getbegyx() (curses.window method)

 		getboolean() (ConfigParser.RawConfigParser method)

 		getByteStream() (xml.sax.xmlreader.InputSource method)

 		getcallargs() (in module inspect)

 		getcanvas() (in module turtle)

 		getcaps() (in module mailcap)

 		getch() (curses.window method)

 		

 		(in module msvcrt)

 		getCharacterStream() (xml.sax.xmlreader.InputSource method)

 		getche() (in module msvcrt)

 		getcheckinterval() (in module sys)

 		getChild() (logging.Logger method)

 		getChildNodes() (compiler.ast.Node method)

 		getChildren() (compiler.ast.Node method)

 		getchildren() (xml.etree.ElementTree.Element method)

 		getclasstree() (in module inspect)

 		GetColor() (in module ColorPicker)

 		GetColumnInfo() (msilib.View method)

 		getColumnNumber() (xml.sax.xmlreader.Locator method)

 		getcomments() (in module inspect)

 		getcompname() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getcomptype() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getContentHandler() (xml.sax.xmlreader.XMLReader method)

 		getcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		GetCreatorAndType() (in module MacOS)

 		getctime() (in module os.path)

 		getcurrent() (mhlib.Folder method)

 		getcwd() (in module os)

 		getcwdu (2to3 fixer)

 		getcwdu() (in module os)

 		getdate() (rfc822.Message method)

 		getdate_tz() (rfc822.Message method)

 		getdecoder() (in module codecs)

 		getdefaultencoding() (in module sys)

 		getdefaultlocale() (in module locale)

 		getdefaulttimeout() (in module socket)

 		getdlopenflags() (in module sys)

 		getdoc() (in module inspect)

 		getDOMImplementation() (in module xml.dom)

 		getDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		getEffectiveLevel() (logging.Logger method)

 		getegid() (in module os)

 		getElementsByTagName() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getElementsByTagNameNS() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getencoder() (in module codecs)

 		getencoding() (mimetools.Message method)

 		getEncoding() (xml.sax.xmlreader.InputSource method)

 		getEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		getenv() (in module os)

 		getErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		GetErrorString() (in module MacOS)

 		geteuid() (in module os)

 		getEvent() (xml.dom.pulldom.DOMEventStream method)

 		

 		getEventCategory() (logging.handlers.NTEventLogHandler method)

 		getEventType() (logging.handlers.NTEventLogHandler method)

 		getException() (xml.sax.SAXException method)

 		getFeature() (xml.sax.xmlreader.XMLReader method)

 		GetFieldCount() (msilib.Record method)

 		getfile() (in module inspect)

 		getfilesystemencoding() (in module sys)

 		getfirst() (cgi.FieldStorage method)

 		getfirstmatchingheader() (rfc822.Message method)

 		getfloat() (ConfigParser.RawConfigParser method)

 		getfmts() (ossaudiodev.oss_audio_device method)

 		getfqdn() (in module socket)

 		getframeinfo() (in module inspect)

 		getframerate() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getfullname() (mhlib.Folder method)

 		getgid() (in module os)

 		getgrall() (in module grp)

 		getgrgid() (in module grp)

 		getgrnam() (in module grp)

 		getgroups() (in module os)

 		getheader() (httplib.HTTPResponse method)

 		

 		(rfc822.Message method)

 		getheaders() (httplib.HTTPResponse method)

 		gethostbyaddr() (in module socket), [1]

 		gethostbyname() (in module socket)

 		gethostbyname_ex() (in module socket)

 		gethostname() (in module socket), [1]

 		getincrementaldecoder() (in module codecs)

 		getincrementalencoder() (in module codecs)

 		getinfo() (zipfile.ZipFile method)

 		getinnerframes() (in module inspect)

 		GetInputContext() (xml.parsers.expat.xmlparser method)

 		getint() (ConfigParser.RawConfigParser method)

 		GetInteger() (msilib.Record method)

 		getitem() (in module operator)

 		getiterator() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		getitimer() (in module signal)

 		getkey() (curses.window method)

 		getlast() (mhlib.Folder method)

 		GetLastError() (in module ctypes)

 		getLength() (xml.sax.xmlreader.Attributes method)

 		getLevelName() (in module logging)

 		getline() (in module linecache)

 		getLineNumber() (xml.sax.xmlreader.Locator method)

 		getlist() (cgi.FieldStorage method)

 		getloadavg() (in module os)

 		getlocale() (in module locale)

 		getLogger() (in module logging)

 		getLoggerClass() (in module logging)

 		getlogin() (in module os)

 		getmaintype() (mimetools.Message method)

 		getmark() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmarkers() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmaxyx() (curses.window method)

 		getmcolor() (in module fl)

 		getmember() (tarfile.TarFile method)

 		getmembers() (in module inspect)

 		

 		(tarfile.TarFile method)

 		getMessage() (logging.LogRecord method)

 		

 		(xml.sax.SAXException method)

 		getmessagefilename() (mhlib.Folder method)

 		getMessageID() (logging.handlers.NTEventLogHandler method)

 		getmodule() (in module inspect)

 		getmoduleinfo() (in module inspect)

 		getmodulename() (in module inspect)

 		getmouse() (in module curses)

 		getmro() (in module inspect)

 		getmtime() (in module os.path)

 		getname() (chunk.Chunk method)

 		getName() (threading.Thread method)

 		getNameByQName() (xml.sax.xmlreader.AttributesNS method)

 		getnameinfo() (in module socket)

 		getnames() (tarfile.TarFile method)

 		getNames() (xml.sax.xmlreader.Attributes method)

 		getnchannels() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		GetNextAutoIndentSize (C function)

 		getnframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getnode

 		getnode() (in module uuid)

 		getopt (module)

 		getopt() (distutils.fancy_getopt.FancyGetopt method)

 		

 		(in module getopt)

 		GetoptError

 		getouterframes() (in module inspect)

 		getoutput() (in module commands)

 		getpagesize() (in module resource)

 		getparam() (mimetools.Message method)

 		getparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getparyx() (curses.window method)

 		getpass (module)

 		getpass() (in module getpass)

 		GetPassWarning

 		getpath() (mhlib.MH method)

 		getpeercert() (ssl.SSLSocket method)

 		getpeername() (socket.socket method)

 		getpen() (in module turtle)

 		getpgid() (in module os)

 		getpgrp() (in module os)

 		getpid() (in module os)

 		getplist() (mimetools.Message method)

 		getpos() (HTMLParser.HTMLParser method)

 		getppid() (in module os)

 		getpreferredencoding() (in module locale)

 		getprofile() (in module sys)

 		

 		(mhlib.MH method)

 		GetProperty() (msilib.SummaryInformation method)

 		getProperty() (xml.sax.xmlreader.XMLReader method)

 		GetPropertyCount() (msilib.SummaryInformation method)

 		getprotobyname() (in module socket)

 		getproxies() (in module urllib)

 		getPublicId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getpwall() (in module pwd)

 		getpwnam() (in module pwd)

 		getpwuid() (in module pwd)

 		getQNameByName() (xml.sax.xmlreader.AttributesNS method)

 		getQNames() (xml.sax.xmlreader.AttributesNS method)

 		getquota() (imaplib.IMAP4 method)

 		getquotaroot() (imaplib.IMAP4 method)

 		getrandbits() (in module random)

 		getrawheader() (rfc822.Message method)

 		getreader() (in module codecs)

 		getrecursionlimit() (in module sys)

 		getrefcount() (in module sys)

 		getresgid() (in module os)

 		getresponse() (httplib.HTTPConnection method)

 		getresuid() (in module os)

 		getrlimit() (in module resource)

 		getroot() (xml.etree.ElementTree.ElementTree method)

 		getrusage() (in module resource)

 		getsample() (in module audioop)

 		getsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getscreen() (in module turtle)

 		getscrollbarvalues() (FrameWork.ScrolledWindow method)

 		getsequences() (mhlib.Folder method)

 		getsequencesfilename() (mhlib.Folder method)

 		getservbyname() (in module socket)

 		getservbyport() (in module socket)

 		GetSetDescriptorType (in module types)

 		getshapes() (in module turtle)

 		getsid() (in module os)

 		getsignal() (in module signal)

 		getsitepackages() (in module site)

 		getsize() (chunk.Chunk method)

 		

 		(in module os.path)

 		getsizeof() (in module sys)

 		getsizes() (in module imgfile)

 		getslice() (in module operator)

 		getsockname() (socket.socket method)

 		getsockopt() (socket.socket method)

 		getsource() (in module inspect)

 		getsourcefile() (in module inspect)

 		getsourcelines() (in module inspect)

 		getspall() (in module spwd)

 		getspnam() (in module spwd)

 		getstate() (in module random)

 		getstatus() (in module commands)

 		getstatusoutput() (in module commands)

 		getstr() (curses.window method)

 		GetString() (msilib.Record method)

 		getSubject() (logging.handlers.SMTPHandler method)

 		getsubtype() (mimetools.Message method)

 		GetSummaryInformation() (msilib.Database method)

 		getSystemId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getsyx() (in module curses)

 		gettarinfo() (tarfile.TarFile method)

 		gettempdir() (in module tempfile)

 		gettempprefix() (in module tempfile)

 		getTestCaseNames() (unittest.TestLoader method)

 		gettext (module)

 		gettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		GetTicks() (in module MacOS)

 		gettimeout() (socket.socket method)

 		gettrace() (in module sys)

 		getturtle() (in module turtle)

 		gettype() (mimetools.Message method)

 		getType() (xml.sax.xmlreader.Attributes method)

 		getuid() (in module os)

 		geturl() (urlparse.ParseResult method)

 		getuser() (in module getpass)

 		getuserbase() (in module site)

 		getusersitepackages() (in module site)

 		getvalue() (io.BytesIO method)

 		

 		(StringIO.StringIO method)

 		(io.StringIO method)

 		getValue() (xml.sax.xmlreader.Attributes method)

 		getValueByQName() (xml.sax.xmlreader.AttributesNS method)

 		getwch() (in module msvcrt)

 		getwche() (in module msvcrt)

 		getweakrefcount() (in module weakref)

 		getweakrefs() (in module weakref)

 		getwelcome() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		getwin() (in module curses)

 		getwindowsversion() (in module sys)

 		getwriter() (in module codecs)

 		getyx() (curses.window method)

 		gid (tarfile.TarInfo attribute)

 		GIL

 		GL (module)

 		gl (module)

 		
 glob

 		

 		module

 		glob (module)

 		glob() (in module glob)

 		

 		(msilib.Directory method)

 		
 global

 		

 		name binding

 		namespace

 		statement, [1], [2]

 		global interpreter lock

 		
 globals

 		

 		built-in function

 		globals() (built-in function)

 		globs (doctest.DocTest attribute)

 		gmtime() (in module time)

 		gname (tarfile.TarInfo attribute)

 		GNOME

 		GNU_FORMAT (in module tarfile)

 		gnu_getopt() (in module getopt)

 		got (doctest.DocTestFailure attribute)

 		goto() (in module turtle)

 		grammar

 		Graphical User Interface

 		GREATER (in module token)

 		GREATEREQUAL (in module token)

 		Greenwich Mean Time

 		grey22grey() (in module imageop)

 		grey2grey2() (in module imageop)

 		grey2grey4() (in module imageop)

 		grey2mono() (in module imageop)

 		grey42grey() (in module imageop)

 		grok_environment_error() (in module distutils.util)

 		group() (nntplib.NNTP method)

 		

 		(re.MatchObject method)

 		groupby() (in module itertools)

 		groupdict() (re.MatchObject method)

 		groupindex (re.RegexObject attribute)

 		grouping

 		groups (re.RegexObject attribute)

 		groups() (re.MatchObject method)

 		grp (module)

 		gt() (in module operator)

 		guess_all_extensions() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_extension() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_scheme() (in module wsgiref.util)

 		guess_type() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		GUI

 		gzip (module)

 		GzipFile (class in gzip)

H

 		

 		halfdelay() (in module curses)

 		handle an exception

 		handle() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		

 		(SocketServer.RequestHandler method)

 		(logging.Handler method)

 		(logging.Logger method)

 		(logging.NullHandler method)

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		handle_accept() (asyncore.dispatcher method)

 		handle_charref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_close() (asyncore.dispatcher method)

 		handle_comment() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_connect() (asyncore.dispatcher method)

 		handle_data() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_decl() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_endtag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_entityref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_error() (asyncore.dispatcher method)

 		

 		(SocketServer.BaseServer method)

 		handle_expt() (asyncore.dispatcher method)

 		handle_image() (htmllib.HTMLParser method)

 		handle_one_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		handle_pi() (HTMLParser.HTMLParser method)

 		handle_read() (asyncore.dispatcher method)

 		handle_request() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SocketServer.BaseServer method)

 		handle_startendtag() (HTMLParser.HTMLParser method)

 		handle_starttag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_timeout() (SocketServer.BaseServer method)

 		handle_write() (asyncore.dispatcher method)

 		handleError() (logging.Handler method)

 		

 		(logging.handlers.SocketHandler method)

 		
 handler

 		

 		exception

 		handler() (in module cgitb)

 		has_children() (symtable.SymbolTable method)

 		has_colors() (in module curses)

 		has_data() (urllib2.Request method)

 		has_exec() (symtable.SymbolTable method)

 		has_extn() (smtplib.SMTP method)

 		has_function() (distutils.ccompiler.CCompiler method)

 		has_header() (csv.Sniffer method)

 		

 		(urllib2.Request method)

 		has_ic() (in module curses)

 		has_il() (in module curses)

 		has_import_star() (symtable.SymbolTable method)

 		has_ipv6 (in module socket)

 		has_key (2to3 fixer)

 		has_key() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(in module curses)

 		(mailbox.Mailbox method)

 		has_nonstandard_attr() (cookielib.Cookie method)

 		has_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		has_section() (ConfigParser.RawConfigParser method)

 		hasattr() (built-in function)

 		hasAttribute() (xml.dom.Element method)

 		hasAttributeNS() (xml.dom.Element method)

 		hasAttributes() (xml.dom.Node method)

 		hasChildNodes() (xml.dom.Node method)

 		hascompare (in module dis)

 		hasconst (in module dis)

 		hasFeature() (xml.dom.DOMImplementation method)

 		hasfree (in module dis)

 		
 hash

 		

 		built-in function

 		hash character

 		hash() (built-in function)

 		hash.block_size (in module hashlib)

 		hash.digest_size (in module hashlib)

 		hashable, [1]

 		Hashable (class in collections)

 		hashlib (module)

 		hashlib.algorithms (in module hashlib)

 		hashopen() (in module bsddb)

 		hasjabs (in module dis)

 		hasjrel (in module dis)

 		haslocal (in module dis)

 		hasname (in module dis)

 		HAVE_ARGUMENT (opcode)

 		have_unicode (in module test.test_support)

 		head() (nntplib.NNTP method)

 		Header (class in email.header)

 		header_encode() (email.charset.Charset method)

 		header_encoding (email.charset.Charset attribute)

 		header_offset (zipfile.ZipInfo attribute)

 		HeaderError

 		HeaderParseError

 		
 headers

 		

 		MIME, [1]

 		headers (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Headers (class in wsgiref.headers)

 		headers (rfc822.Message attribute)

 		

 		(xmlrpclib.ProtocolError attribute)

 		heading() (in module turtle)

 		

 		(ttk.Treeview method)

 		heapify() (in module heapq)

 		heapmin() (in module msvcrt)

 		heappop() (in module heapq)

 		heappush() (in module heapq)

 		heappushpop() (in module heapq)

 		heapq (module)

 		heapreplace() (in module heapq)

 		helo() (smtplib.SMTP method)

 		
 help

 		

 		built-in function

 		online

 		help (optparse.Option attribute)

 		help() (built-in function)

 		

 		(nntplib.NNTP method)

 		herror

 		
 hex

 		

 		built-in function

 		hex (uuid.UUID attribute)

 		

 		hex() (built-in function)

 		

 		(float method)

 		(in module future_builtins)

 		
 hexadecimal

 		

 		literals

 		hexadecimal literal

 		hexbin() (in module binhex)

 		hexdigest() (hashlib.hash method)

 		

 		(hmac.hmac method)

 		(md5.md5 method)

 		(sha.sha method)

 		hexdigits (in module string)

 		hexlify() (in module binascii)

 		hexversion (in module sys)

 		hidden() (curses.panel.Panel method)

 		hide() (curses.panel.Panel method)

 		

 		(ttk.Notebook method)

 		hide_cookie2 (cookielib.CookiePolicy attribute)

 		hide_form() (fl.form method)

 		hideturtle() (in module turtle)

 		
 hierarchy

 		

 		type

 		HierarchyRequestErr

 		HIGHEST_PROTOCOL (in module pickle)

 		HKEY_CLASSES_ROOT (in module _winreg)

 		HKEY_CURRENT_CONFIG (in module _winreg)

 		HKEY_CURRENT_USER (in module _winreg)

 		HKEY_DYN_DATA (in module _winreg)

 		HKEY_LOCAL_MACHINE (in module _winreg)

 		HKEY_PERFORMANCE_DATA (in module _winreg)

 		HKEY_USERS (in module _winreg)

 		hline() (curses.window method)

 		HList (class in Tix)

 		hls_to_rgb() (in module colorsys)

 		hmac (module)

 		HOME, [1], [2], [3], [4], [5]

 		home() (in module turtle)

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		hook_compressed() (in module fileinput)

 		hook_encoded() (in module fileinput)

 		hosts (netrc.netrc attribute)

 		hotshot (module)

 		hotshot.stats (module)

 		hour (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		HRESULT (class in ctypes)

 		hStdError (subprocess.STARTUPINFO attribute)

 		hStdInput (subprocess.STARTUPINFO attribute)

 		hStdOutput (subprocess.STARTUPINFO attribute)

 		hsv_to_rgb() (in module colorsys)

 		ht() (in module turtle)

 		HTML, [1], [2]

 		HTMLCalendar (class in calendar)

 		HtmlDiff (class in difflib)

 		HtmlDiff.__init__() (in module difflib)

 		HtmlDiff.make_file() (in module difflib)

 		HtmlDiff.make_table() (in module difflib)

 		htmlentitydefs (module)

 		
 htmllib

 		

 		module

 		htmllib (module)

 		HTMLParseError, [1]

 		HTMLParser (class in htmllib), [1]

 		

 		(class in HTMLParser)

 		(module)

 		htonl() (in module socket)

 		htons() (in module socket)

 		
 HTTP

 		

 		httplib (standard module)

 		protocol, [1], [2], [3], [4]

 		http_error_301() (urllib2.HTTPRedirectHandler method)

 		http_error_302() (urllib2.HTTPRedirectHandler method)

 		http_error_303() (urllib2.HTTPRedirectHandler method)

 		http_error_307() (urllib2.HTTPRedirectHandler method)

 		http_error_401() (urllib2.HTTPBasicAuthHandler method)

 		

 		(urllib2.HTTPDigestAuthHandler method)

 		http_error_407() (urllib2.ProxyBasicAuthHandler method)

 		

 		(urllib2.ProxyDigestAuthHandler method)

 		http_error_auth_reqed() (urllib2.AbstractBasicAuthHandler method)

 		

 		(urllib2.AbstractDigestAuthHandler method)

 		http_error_default() (urllib2.BaseHandler method)

 		http_error_nnn() (urllib2.BaseHandler method)

 		http_open() (urllib2.HTTPHandler method)

 		HTTP_PORT (in module httplib)

 		http_proxy, [1]

 		http_version (wsgiref.handlers.BaseHandler attribute)

 		HTTPBasicAuthHandler (class in urllib2)

 		HTTPConnection (class in httplib)

 		HTTPCookieProcessor (class in urllib2)

 		httpd

 		HTTPDefaultErrorHandler (class in urllib2)

 		HTTPDigestAuthHandler (class in urllib2)

 		HTTPError

 		HTTPException

 		HTTPHandler (class in logging.handlers)

 		

 		(class in urllib2)

 		httplib (module)

 		HTTPMessage (class in httplib)

 		HTTPPasswordMgr (class in urllib2)

 		HTTPPasswordMgrWithDefaultRealm (class in urllib2)

 		HTTPRedirectHandler (class in urllib2)

 		HTTPResponse (class in httplib)

 		https_open() (urllib2.HTTPSHandler method)

 		HTTPS_PORT (in module httplib)

 		HTTPSConnection (class in httplib)

 		HTTPServer (class in BaseHTTPServer)

 		HTTPSHandler (class in urllib2)

 		hypertext

 		hypot() (in module math)

I

 		

 		I (in module re)

 		
 I/O control

 		

 		POSIX

 		UNIX

 		buffering, [1], [2]

 		tty

 		iadd() (in module operator)

 		iand() (in module operator)

 		IC (class in ic)

 		ic (module)

 		
 icglue

 		

 		module

 		iconcat() (in module operator)

 		icopen (module)

 		
 id

 		

 		built-in function

 		id() (built-in function)

 		

 		(unittest.TestCase method)

 		idcok() (curses.window method)

 		ident (in module cd)

 		

 		(select.kevent attribute)

 		(threading.Thread attribute)

 		identchars (cmd.Cmd attribute)

 		identifier, [1]

 		identify() (ttk.Notebook method)

 		

 		(ttk.Treeview method)

 		(ttk.Widget method)

 		identify_column() (ttk.Treeview method)

 		identify_element() (ttk.Treeview method)

 		identify_region() (ttk.Treeview method)

 		identify_row() (ttk.Treeview method)

 		
 identity

 		

 		test

 		identity of an object

 		idioms (2to3 fixer)

 		idiv() (in module operator)

 		IDLE, [1]

 		idle() (FrameWork.Application method)

 		IDLESTARTUP

 		idlok() (curses.window method)

 		IEEE-754

 		
 if

 		

 		statement, [1]

 		ifilter() (in module itertools)

 		ifilterfalse() (in module itertools)

 		ifloordiv() (in module operator)

 		iglob() (in module glob)

 		ignorableWhitespace() (xml.sax.handler.ContentHandler method)

 		ignore_errors() (in module codecs)

 		IGNORE_EXCEPTION_DETAIL (in module doctest)

 		ignore_patterns() (in module shutil)

 		IGNORECASE (in module re)

 		ihave() (nntplib.NNTP method)

 		ilshift() (in module operator)

 		im_class (method attribute), [1]

 		im_func (method attribute), [1], [2], [3]

 		im_self (method attribute), [1], [2]

 		imag (numbers.Complex attribute)

 		imageop (module)

 		imaginary literal

 		imap() (in module itertools)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		
 IMAP4

 		

 		protocol

 		IMAP4 (class in imaplib)

 		IMAP4.abort

 		IMAP4.error

 		IMAP4.readonly

 		
 IMAP4_SSL

 		

 		protocol

 		IMAP4_SSL (class in imaplib)

 		
 IMAP4_stream

 		

 		protocol

 		IMAP4_stream (class in imaplib)

 		imap_unordered() (multiprocessing.pool.multiprocessing.Pool method)

 		imaplib (module)

 		imgfile (module)

 		imghdr (module)

 		immedok() (curses.window method)

 		immutable

 		

 		data type

 		object, [1], [2]

 		immutable object

 		
 immutable sequence

 		

 		object

 		
 immutable types

 		

 		subclassing

 		ImmutableSet (class in sets)

 		imod() (in module operator)

 		
 imp

 		

 		module

 		imp (module)

 		ImpImporter (class in pkgutil)

 		ImpLoader (class in pkgutil)

 		
 import

 		

 		statement, [1], [2], [3], [4]

 		import (2to3 fixer)

 		Import module

 		import_file() (imputil.DynLoadSuffixImporter method)

 		import_fresh_module() (in module test.test_support)

 		IMPORT_FROM (opcode)

 		import_module() (in module importlib)

 		

 		(in module test.test_support)

 		IMPORT_NAME (opcode)

 		IMPORT_STAR (opcode)

 		import_top() (imputil.Importer method)

 		importer

 		Importer (class in imputil)

 		ImportError

 		

 		exception, [1], [2]

 		importlib (module)

 		ImportManager (class in imputil)

 		imports (2to3 fixer)

 		imports2 (2to3 fixer)

 		ImportWarning

 		ImproperConnectionState

 		imputil (module)

 		imul() (in module operator)

 		
 in

 		

 		keyword

 		operator, [1], [2]

 		in_dll() (ctypes._CData method)

 		in_table_a1() (in module stringprep)

 		in_table_b1() (in module stringprep)

 		in_table_c11() (in module stringprep)

 		in_table_c11_c12() (in module stringprep)

 		in_table_c12() (in module stringprep)

 		in_table_c21() (in module stringprep)

 		in_table_c21_c22() (in module stringprep)

 		in_table_c22() (in module stringprep)

 		in_table_c3() (in module stringprep)

 		in_table_c4() (in module stringprep)

 		in_table_c5() (in module stringprep)

 		in_table_c6() (in module stringprep)

 		in_table_c7() (in module stringprep)

 		in_table_c8() (in module stringprep)

 		in_table_c9() (in module stringprep)

 		in_table_d1() (in module stringprep)

 		in_table_d2() (in module stringprep)

 		inc() (EasyDialogs.ProgressBar method)

 		inch() (curses.window method)

 		
 inclusive

 		

 		or

 		Incomplete

 		IncompleteRead

 		increment_lineno() (in module ast)

 		IncrementalDecoder (class in codecs)

 		IncrementalEncoder (class in codecs)

 		IncrementalNewlineDecoder (class in io)

 		IncrementalParser (class in xml.sax.xmlreader)

 		indent (doctest.Example attribute)

 		INDENT (in module token)

 		INDENT token

 		indentation, [1]

 		IndentationError

 		Independent JPEG Group

 		index (in module cd)

 		index operation

 		index() (array.array method)

 		

 		(in module operator)

 		(in module string)

 		(list method)

 		(str method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		IndexError

 		indexOf() (in module operator)

 		IndexSizeErr

 		indices() (slice method)

 		inet_aton() (in module socket)

 		inet_ntoa() (in module socket)

 		inet_ntop() (in module socket)

 		inet_pton() (in module socket)

 		Inexact (class in decimal)

 		infile (shlex.shlex attribute)

 		Infinity, [1]

 		info() (gettext.NullTranslations method)

 		

 		(in module logging)

 		(logging.Logger method)

 		infolist() (zipfile.ZipFile method)

 		InfoScrap() (in module Carbon.Scrap)

 		InfoSeek Corporation

 		inheritance

 		ini file

 		init() (in module fm)

 		

 		(in module mimetypes)

 		init_builtin() (in module imp)

 		init_color() (in module curses)

 		init_database() (in module msilib)

 		init_frozen() (in module imp)

 		init_pair() (in module curses)

 		inited (in module mimetypes)

 		initgroups() (in module os)

 		initial_indent (textwrap.TextWrapper attribute)

 		initialize_options() (distutils.cmd.Command method)

 		initscr() (in module curses)

 		INPLACE_ADD (opcode)

 		INPLACE_AND (opcode)

 		INPLACE_DIVIDE (opcode)

 		INPLACE_FLOOR_DIVIDE (opcode)

 		INPLACE_LSHIFT (opcode)

 		INPLACE_MODULO (opcode)

 		INPLACE_MULTIPLY (opcode)

 		INPLACE_OR (opcode)

 		INPLACE_POWER (opcode)

 		INPLACE_RSHIFT (opcode)

 		INPLACE_SUBTRACT (opcode)

 		INPLACE_TRUE_DIVIDE (opcode)

 		INPLACE_XOR (opcode)

 		input

 		

 		built-in function, [1]

 		raw

 		input (2to3 fixer)

 		input() (built-in function)

 		

 		(in module fileinput)

 		input_charset (email.charset.Charset attribute)

 		input_codec (email.charset.Charset attribute)

 		InputOnly (class in Tix)

 		InputSource (class in xml.sax.xmlreader)

 		InputType (in module cStringIO)

 		insch() (curses.window method)

 		insdelln() (curses.window method)

 		insert() (array.array method)

 		

 		(list method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		insert_text() (in module readline)

 		insertBefore() (xml.dom.Node method)

 		InsertionLoc (class in aetypes)

 		insertln() (curses.window method)

 		insnstr() (curses.window method)

 		insort() (in module bisect)

 		insort_left() (in module bisect)

 		insort_right() (in module bisect)

 		inspect (module)

 		insstr() (curses.window method)

 		install() (gettext.NullTranslations method)

 		

 		(imputil.ImportManager method)

 		(in module gettext)

 		install_opener() (in module urllib2)

 		installaehandler() (MiniAEFrame.AEServer method)

 		installAutoGIL() (in module autoGIL)

 		installHandler() (in module unittest)

 		
 instance

 		

 		call, [1]

 		class

 		object, [1], [2], [3]

 		instance() (in module new)

 		instancemethod() (in module new)

 		InstanceType (in module types)

 		instate() (ttk.Widget method)

 		instr() (curses.window method)

 		instream (shlex.shlex attribute)

 		
 int

 		

 		built-in function, [1]

 		int (uuid.UUID attribute)

 		int() (built-in function)

 		Int2AP() (in module imaplib)

 		integer

 		

 		division

 		division, long

 		literals

 		literals, long

 		object, [1]

 		representation

 		types, operations on

 		integer division

 		integer literal

 		Integral (class in numbers)

 		Integrated Development Environment

 		Intel/DVI ADPCM

 		interact() (code.InteractiveConsole method)

 		

 		(in module code)

 		(telnetlib.Telnet method)

 		interactive

 		interactive mode

 		InteractiveConsole (class in code)

 		InteractiveInterpreter (class in code)

 		intern (2to3 fixer)

 		intern() (built-in function)

 		internal type

 		internal_attr (zipfile.ZipInfo attribute)

 		Internaldate2tuple() (in module imaplib)

 		

 		internalSubset (xml.dom.DocumentType attribute)

 		Internet

 		Internet Config

 		interpolation, string (%)

 		InterpolationDepthError

 		InterpolationError

 		InterpolationMissingOptionError

 		InterpolationSyntaxError

 		interpreted

 		interpreter

 		interpreter prompts

 		interrupt() (sqlite3.Connection method)

 		interrupt_main() (in module thread)

 		intersection() (set method)

 		intersection_update() (set method)

 		IntlText (class in aetypes)

 		IntlWritingCode (class in aetypes)

 		intro (cmd.Cmd attribute)

 		IntType (in module types)

 		InuseAttributeErr

 		inv() (in module operator)

 		InvalidAccessErr

 		InvalidCharacterErr

 		InvalidModificationErr

 		InvalidOperation (class in decimal)

 		InvalidStateErr

 		InvalidURL

 		inversion

 		invert() (in module operator)

 		invocation

 		io (module)

 		IOBase (class in io)

 		ioctl() (in module fcntl)

 		

 		(socket.socket method)

 		IOError

 		ior() (in module operator)

 		ipow() (in module operator)

 		irepeat() (in module operator)

 		IRIS Font Manager

 		
 IRIX

 		

 		threads

 		irshift() (in module operator)

 		
 is

 		

 		operator, [1]

 		
 is not

 		

 		operator, [1]

 		is_() (in module operator)

 		is_alive() (multiprocessing.Process method)

 		

 		(threading.Thread method)

 		is_assigned() (symtable.Symbol method)

 		is_blocked() (cookielib.DefaultCookiePolicy method)

 		is_builtin() (in module imp)

 		is_canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		IS_CHARACTER_JUNK() (in module difflib)

 		is_data() (multifile.MultiFile method)

 		is_declared_global() (symtable.Symbol method)

 		is_empty() (asynchat.fifo method)

 		is_expired() (cookielib.Cookie method)

 		is_finite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_free() (symtable.Symbol method)

 		is_frozen() (in module imp)

 		is_global() (symtable.Symbol method)

 		is_hop_by_hop() (in module wsgiref.util)

 		is_imported() (symtable.Symbol method)

 		is_infinite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_integer() (float method)

 		is_jython (in module test.test_support)

 		IS_LINE_JUNK() (in module difflib)

 		is_linetouched() (curses.window method)

 		is_local() (symtable.Symbol method)

 		is_multipart() (email.message.Message method)

 		is_namespace() (symtable.Symbol method)

 		is_nan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_nested() (symtable.SymbolTable method)

 		is_normal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_not() (in module operator)

 		is_not_allowed() (cookielib.DefaultCookiePolicy method)

 		is_optimized() (symtable.SymbolTable method)

 		is_package() (zipimport.zipimporter method)

 		is_parameter() (symtable.Symbol method)

 		is_python_build() (in module sysconfig)

 		is_qnan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_referenced() (symtable.Symbol method)

 		is_resource_enabled() (in module test.test_support)

 		is_scriptable() (in module gensuitemodule)

 		is_set() (threading.Event method)

 		is_signed() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_snan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_subnormal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_tarfile() (in module tarfile)

 		is_tracked() (in module gc)

 		is_unverifiable() (urllib2.Request method)

 		is_wintouched() (curses.window method)

 		is_zero() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_zipfile() (in module zipfile)

 		isabs() (in module os.path)

 		isabstract() (in module inspect)

 		isAlive() (threading.Thread method)

 		isalnum() (in module curses.ascii)

 		

 		(str method)

 		isalpha() (in module curses.ascii)

 		

 		(str method)

 		isascii() (in module curses.ascii)

 		isatty() (chunk.Chunk method)

 		

 		(file method)

 		(in module os)

 		(io.IOBase method)

 		isblank() (in module curses.ascii)

 		isblk() (tarfile.TarInfo method)

 		isbuiltin() (in module inspect)

 		isCallable() (in module operator)

 		ischr() (tarfile.TarInfo method)

 		isclass() (in module inspect)

 		iscntrl() (in module curses.ascii)

 		iscode() (in module inspect)

 		iscomment() (rfc822.Message method)

 		isctrl() (in module curses.ascii)

 		isDaemon() (threading.Thread method)

 		isdatadescriptor() (in module inspect)

 		isdecimal() (unicode method)

 		isdev() (tarfile.TarInfo method)

 		isdigit() (in module curses.ascii)

 		

 		(str method)

 		isdir() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isdisjoint() (set method)

 		isdown() (in module turtle)

 		iselement() (in module xml.etree.ElementTree)

 		isenabled() (in module gc)

 		isEnabledFor() (logging.Logger method)

 		isendwin() (in module curses)

 		ISEOF() (in module token)

 		isexpr() (in module parser)

 		

 		(parser.ST method)

 		isfifo() (tarfile.TarInfo method)

 		isfile() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isfirstline() (in module fileinput)

 		isframe() (in module inspect)

 		isfunction() (in module inspect)

 		isgenerator() (in module inspect)

 		isgeneratorfunction() (in module inspect)

 		isgetsetdescriptor() (in module inspect)

 		isgraph() (in module curses.ascii)

 		isheader() (rfc822.Message method)

 		isinf() (in module cmath)

 		

 		(in module math)

 		isinstance (2to3 fixer)

 		isinstance() (built-in function)

 		iskeyword() (in module keyword)

 		islast() (rfc822.Message method)

 		isleap() (in module calendar)

 		islice() (in module itertools)

 		islink() (in module os.path)

 		islnk() (tarfile.TarInfo method)

 		islower() (in module curses.ascii)

 		

 		(str method)

 		isMappingType() (in module operator)

 		ismemberdescriptor() (in module inspect)

 		ismeta() (in module curses.ascii)

 		ismethod() (in module inspect)

 		ismethoddescriptor() (in module inspect)

 		ismodule() (in module inspect)

 		ismount() (in module os.path)

 		isnan() (in module cmath)

 		

 		(in module math)

 		ISNONTERMINAL() (in module token)

 		isNumberType() (in module operator)

 		isnumeric() (unicode method)

 		isocalendar() (datetime.date method)

 		

 		(datetime.datetime method)

 		isoformat() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		isolation_level (sqlite3.Connection attribute)

 		isoweekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		isprint() (in module curses.ascii)

 		ispunct() (in module curses.ascii)

 		isqueued() (in module fl)

 		isreadable() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isrecursive() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isreg() (tarfile.TarInfo method)

 		isReservedKey() (Cookie.Morsel method)

 		isroutine() (in module inspect)

 		isSameNode() (xml.dom.Node method)

 		isSequenceType() (in module operator)

 		isSet() (threading.Event method)

 		isspace() (in module curses.ascii)

 		

 		(str method)

 		isstdin() (in module fileinput)

 		issubclass() (built-in function)

 		issubset() (set method)

 		issuite() (in module parser)

 		

 		(parser.ST method)

 		issuperset() (set method)

 		issym() (tarfile.TarInfo method)

 		ISTERMINAL() (in module token)

 		istitle() (str method)

 		istraceback() (in module inspect)

 		isub() (in module operator)

 		isupper() (in module curses.ascii)

 		

 		(str method)

 		isvisible() (in module turtle)

 		isxdigit() (in module curses.ascii)

 		
 item

 		

 		sequence

 		string

 		item selection

 		item() (ttk.Treeview method)

 		

 		(xml.dom.NamedNodeMap method)

 		(xml.dom.NodeList method)

 		itemgetter() (in module operator)

 		items() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(xml.etree.ElementTree.Element method)

 		itemsize (array.array attribute)

 		

 		(memoryview attribute)

 		ItemsView (class in collections)

 		iter() (built-in function)

 		

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		iter_child_nodes() (in module ast)

 		iter_fields() (in module ast)

 		iter_importers() (in module pkgutil)

 		iter_modules() (in module pkgutil)

 		iterable

 		Iterable (class in collections)

 		IterableUserDict (class in UserDict)

 		iterator

 		Iterator (class in collections)

 		iterator protocol

 		iterdecode() (in module codecs)

 		iterdump (sqlite3.Connection attribute)

 		iterencode() (in module codecs)

 		

 		(json.JSONEncoder method)

 		iterfind() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		iteritems() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterkeyrefs() (weakref.WeakKeyDictionary method)

 		iterkeys() (dict method)

 		

 		(mailbox.Mailbox method)

 		itermonthdates() (calendar.Calendar method)

 		itermonthdays() (calendar.Calendar method)

 		itermonthdays2() (calendar.Calendar method)

 		iterparse() (in module xml.etree.ElementTree)

 		itertext() (xml.etree.ElementTree.Element method)

 		itertools (2to3 fixer)

 		

 		(module)

 		itertools_imports (2to3 fixer)

 		itervaluerefs() (weakref.WeakValueDictionary method)

 		itervalues() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterweekdays() (calendar.Calendar method)

 		ITIMER_PROF (in module signal)

 		ITIMER_REAL (in module signal)

 		ITIMER_VIRTUAL (in module signal)

 		ItimerError

 		itruediv() (in module operator)

 		ixor() (in module operator)

 		izip() (in module itertools)

 		izip_longest() (in module itertools)

J

 		

 		Jansen, Jack

 		
 Java

 		

 		language

 		java_ver() (in module platform)

 		JFIF, [1]

 		join() (in module os.path)

 		

 		(Queue.Queue method)

 		(in module string)

 		(multiprocessing.JoinableQueue method)

 		(multiprocessing.Process method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(str method)

 		(threading.Thread method)

 		join_thread() (multiprocessing.Queue method)

 		JoinableQueue (class in multiprocessing)

 		joinfields() (in module string)

 		jpeg (module)

 		

 		js_output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		json (module)

 		JSONDecoder (class in json)

 		JSONEncoder (class in json)

 		JUMP_ABSOLUTE (opcode)

 		JUMP_FORWARD (opcode)

 		JUMP_IF_FALSE_OR_POP (opcode)

 		JUMP_IF_TRUE_OR_POP (opcode)

 		jumpahead() (in module random)

K

 		

 		kbhit() (in module msvcrt)

 		KDEDIR

 		kevent() (in module select)

 		key

 		

 		(Cookie.Morsel attribute)

 		key function

 		key/datum pair

 		KEY_ALL_ACCESS (in module _winreg)

 		KEY_CREATE_LINK (in module _winreg)

 		KEY_CREATE_SUB_KEY (in module _winreg)

 		KEY_ENUMERATE_SUB_KEYS (in module _winreg)

 		KEY_EXECUTE (in module _winreg)

 		KEY_NOTIFY (in module _winreg)

 		KEY_QUERY_VALUE (in module _winreg)

 		KEY_READ (in module _winreg)

 		KEY_SET_VALUE (in module _winreg)

 		KEY_WOW64_32KEY (in module _winreg)

 		KEY_WOW64_64KEY (in module _winreg)

 		KEY_WRITE (in module _winreg)

 		KeyboardInterrupt

 		KeyError

 		

 		keyname() (in module curses)

 		keypad() (curses.window method)

 		keyrefs() (weakref.WeakKeyDictionary method)

 		keys() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(sqlite3.Row method)

 		(xml.etree.ElementTree.Element method)

 		keysubst() (in module aetools)

 		KeysView (class in collections)

 		keyword

 		

 		elif

 		else, [1], [2], [3], [4]

 		except

 		finally, [1], [2], [3], [4]

 		from

 		in

 		yield

 		Keyword (class in aetypes)

 		keyword (module)

 		keyword argument

 		keywords (functools.partial attribute)

 		kill() (in module os)

 		

 		(subprocess.Popen method)

 		killchar() (in module curses)

 		killpg() (in module os)

 		
 knee

 		

 		module, [1]

 		knownfiles (in module mimetypes)

 		kqueue() (in module select)

 		Kuchling, Andrew

 		kwlist (in module keyword)

L

 		

 		L (in module re)

 		label() (EasyDialogs.ProgressBar method)

 		LabelEntry (class in Tix)

 		LabelFrame (class in Tix)

 		lambda

 		

 		expression

 		form, [1]

 		LambdaType (in module types)

 		LANG, [1], [2], [3], [4]

 		
 language

 		

 		C, [1], [2], [3], [4]

 		Java

 		Pascal

 		LANGUAGE, [1]

 		large files

 		LargeZipFile

 		last (multifile.MultiFile attribute)

 		last() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(nntplib.NNTP method)

 		last_accepted (multiprocessing.connection.Listener attribute)

 		last_traceback (in module sys), [1]

 		last_type (in module sys)

 		last_value (in module sys)

 		lastChild (xml.dom.Node attribute)

 		lastcmd (cmd.Cmd attribute)

 		lastgroup (re.MatchObject attribute)

 		lastindex (re.MatchObject attribute)

 		lastpart() (MimeWriter.MimeWriter method)

 		lastrowid (sqlite3.Cursor attribute)

 		launch() (in module findertools)

 		launchurl() (ic.IC method)

 		

 		(in module ic)

 		layout() (ttk.Style method)

 		LBRACE (in module token)

 		LBYL

 		LC_ALL, [1]

 		

 		(in module locale)

 		LC_COLLATE (in module locale)

 		LC_CTYPE (in module locale)

 		LC_MESSAGES, [1]

 		

 		(in module locale)

 		LC_MONETARY (in module locale)

 		LC_NUMERIC (in module locale)

 		LC_TIME (in module locale)

 		lchflags() (in module os)

 		lchmod() (in module os)

 		lchown() (in module os)

 		LDCXXSHARED

 		ldexp() (in module math)

 		LDFLAGS

 		ldgettext() (in module gettext)

 		ldngettext() (in module gettext)

 		le() (in module operator)

 		leading whitespace

 		leapdays() (in module calendar)

 		leaveok() (curses.window method)

 		left() (in module turtle)

 		left_list (filecmp.dircmp attribute)

 		left_only (filecmp.dircmp attribute)

 		LEFTSHIFT (in module token)

 		LEFTSHIFTEQUAL (in module token)

 		
 len

 		

 		built-in function, [1], [2], [3], [4], [5]

 		len() (built-in function)

 		length (xml.dom.NamedNodeMap attribute)

 		

 		(xml.dom.NodeList attribute)

 		LESS (in module token)

 		LESSEQUAL (in module token)

 		letters (in module string)

 		level (multifile.MultiFile attribute)

 		lexical analysis

 		lexical definitions

 		lexists() (in module os.path)

 		lgamma() (in module math)

 		lgettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		lib2to3 (module)

 		libc_ver() (in module platform)

 		library (in module dbm)

 		library_dir_option() (distutils.ccompiler.CCompiler method)

 		library_filename() (distutils.ccompiler.CCompiler method)

 		library_option() (distutils.ccompiler.CCompiler method)

 		LibraryLoader (class in ctypes)

 		license (built-in variable)

 		LifoQueue (class in Queue)

 		light-weight processes

 		limit_denominator() (fractions.Fraction method)

 		lin2adpcm() (in module audioop)

 		lin2alaw() (in module audioop)

 		lin2lin() (in module audioop)

 		lin2ulaw() (in module audioop)

 		line continuation

 		line joining, [1]

 		line structure

 		line() (msilib.Dialog method)

 		line-buffered I/O

 		line_buffering (io.TextIOWrapper attribute)

 		line_num (csv.csvreader attribute)

 		linecache (module)

 		lineno (ast.AST attribute)

 		

 		(doctest.DocTest attribute)

 		(doctest.Example attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(shlex.shlex attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		lineno() (in module fileinput)

 		LINES, [1]

 		linesep (in module os)

 		lineterminator (csv.Dialect attribute)

 		link() (distutils.ccompiler.CCompiler method)

 		

 		(in module os)

 		link_executable() (distutils.ccompiler.CCompiler method)

 		link_shared_lib() (distutils.ccompiler.CCompiler method)

 		link_shared_object() (distutils.ccompiler.CCompiler method)

 		linkmodel (in module MacOS)

 		linkname (tarfile.TarInfo attribute)

 		linux_distribution() (in module platform)

 		list

 		

 		assignment, target

 		comprehensions, [1]

 		deletion target

 		display

 		empty

 		expression, [1], [2]

 		object, [1], [2], [3], [4], [5], [6], [7]

 		target, [1]

 		type, operations on

 		list comprehension

 		list() (built-in function)

 		

 		(imaplib.IMAP4 method)

 		(multiprocessing.managers.SyncManager method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(tarfile.TarFile method)

 		LIST_APPEND (opcode)

 		list_dialects() (in module csv)

 		list_folders() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		listallfolders() (mhlib.MH method)

 		listallsubfolders() (mhlib.MH method)

 		listdir() (in module dircache)

 		

 		(in module os)

 		listen() (asyncore.dispatcher method)

 		

 		(in module logging.config)

 		(in module turtle)

 		(socket.socket method)

 		Listener (class in multiprocessing.connection)

 		listfolders() (mhlib.MH method)

 		listmessages() (mhlib.Folder method)

 		listMethods() (xmlrpclib.ServerProxy.system method)

 		ListNoteBook (class in Tix)

 		listsubfolders() (mhlib.MH method)

 		ListType (in module types)

 		

 		literal, [1]

 		literal_eval() (in module ast)

 		
 literals

 		

 		complex number

 		floating point

 		hexadecimal

 		integer

 		long integer

 		numeric

 		octal

 		LittleEndianStructure (class in ctypes)

 		ljust() (in module string)

 		

 		(str method)

 		LK_LOCK (in module msvcrt)

 		LK_NBLCK (in module msvcrt)

 		LK_NBRLCK (in module msvcrt)

 		LK_RLCK (in module msvcrt)

 		LK_UNLCK (in module msvcrt)

 		LMTP (class in smtplib)

 		ln() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		LNAME

 		lngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		load() (Cookie.BaseCookie method)

 		

 		(cookielib.FileCookieJar method)

 		(in module hotshot.stats)

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(pickle.Unpickler method)

 		LOAD_ATTR (opcode)

 		LOAD_CLOSURE (opcode)

 		load_compiled() (in module imp)

 		LOAD_CONST (opcode)

 		LOAD_DEREF (opcode)

 		load_dynamic() (in module imp)

 		load_extension() (sqlite3.Connection method)

 		LOAD_FAST (opcode)

 		LOAD_GLOBAL (opcode)

 		load_global() (pickle protocol)

 		LOAD_LOCALS (opcode)

 		
 load_module

 		

 		loader

 		load_module() (in module imp)

 		

 		(zipimport.zipimporter method)

 		LOAD_NAME (opcode)

 		load_source() (in module imp)

 		loader, [1]

 		

 		load_module

 		LoadError

 		LoadKey() (in module _winreg)

 		LoadLibrary() (ctypes.LibraryLoader method)

 		loads() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		loadTestsFromModule() (unittest.TestLoader method)

 		loadTestsFromName() (unittest.TestLoader method)

 		loadTestsFromNames() (unittest.TestLoader method)

 		loadTestsFromTestCase() (unittest.TestLoader method)

 		local (class in threading)

 		localcontext() (in module decimal)

 		LOCALE (in module re)

 		locale (module)

 		localeconv() (in module locale)

 		LocaleHTMLCalendar (class in calendar)

 		LocaleTextCalendar (class in calendar)

 		localName (xml.dom.Attr attribute)

 		

 		(xml.dom.Node attribute)

 		
 locals

 		

 		built-in function

 		locals() (built-in function)

 		localtime() (in module time)

 		Locator (class in xml.sax.xmlreader)

 		Lock (class in multiprocessing)

 		Lock() (in module threading)

 		lock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		Lock() (multiprocessing.managers.SyncManager method)

 		lock() (mutex.mutex method)

 		

 		(posixfile.posixfile method)

 		lock_held() (in module imp)

 		locked() (thread.lock method)

 		lockf() (in module fcntl)

 		locking() (in module msvcrt)

 		LockType (in module thread)

 		log() (in module cmath)

 		

 		(in module logging)

 		(in module math)

 		(logging.Logger method)

 		log10() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		log1p() (in module math)

 		log_date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_exception() (wsgiref.handlers.BaseHandler method)

 		log_message() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_to_stderr() (in module multiprocessing)

 		logb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		Logger (class in logging)

 		LoggerAdapter (class in logging)

 		
 logging

 		

 		Errors

 		logging (module)

 		logging.config (module)

 		logging.handlers (module)

 		Logical (class in aetypes)

 		logical line

 		logical_and() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_invert() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_or() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_xor() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		login() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(smtplib.SMTP method)

 		login_cram_md5() (imaplib.IMAP4 method)

 		LOGNAME, [1]

 		lognormvariate() (in module random)

 		logout() (imaplib.IMAP4 method)

 		LogRecord (class in logging)

 		
 long

 		

 		built-in function, [1], [2]

 		integer division

 		integer literals

 		long (2to3 fixer)

 		
 long integer

 		

 		object, [1]

 		long integer literal

 		long() (built-in function)

 		long_info (in module sys)

 		longMessage (unittest.TestCase attribute)

 		longname() (in module curses)

 		LongType (in module types)

 		lookup() (in module codecs)

 		

 		(in module unicodedata)

 		(symtable.SymbolTable method)

 		(ttk.Style method)

 		lookup_error() (in module codecs)

 		LookupError

 		
 loop

 		

 		over mutable sequence

 		statement, [1], [2], [3]

 		
 loop control

 		

 		target

 		loop() (in module asyncore)

 		lower() (in module string)

 		

 		(str method)

 		lowercase (in module string)

 		LPAR (in module token)

 		lseek() (in module os)

 		lshift() (in module operator)

 		LSQB (in module token)

 		lstat() (in module os)

 		lstrip() (in module string)

 		

 		(str method)

 		lsub() (imaplib.IMAP4 method)

 		lt() (in module operator)

 		

 		(in module turtle)

 		Lundh, Fredrik

 		LWPCookieJar (class in cookielib)

M

 		

 		M (in module re)

 		mac_ver() (in module platform)

 		
 macerrors

 		

 		module

 		macerrors (module)

 		machine() (in module platform)

 		MacOS (module)

 		macostools (module)

 		macpath (module)

 		macresource (module)

 		macros (netrc.netrc attribute)

 		
 mailbox

 		

 		module

 		Mailbox (class in mailbox)

 		mailbox (module)

 		mailcap (module)

 		Maildir (class in mailbox)

 		MaildirMessage (class in mailbox)

 		MailmanProxy (class in smtpd)

 		main() (in module py_compile)

 		

 		(in module unittest)

 		mainloop() (FrameWork.Application method)

 		major() (in module os)

 		make_archive() (in module distutils.archive_util)

 		

 		(in module shutil)

 		MAKE_CLOSURE (opcode)

 		make_cookies() (cookielib.CookieJar method)

 		make_form() (in module fl)

 		MAKE_FUNCTION (opcode)

 		make_header() (in module email.header)

 		make_msgid() (in module email.utils)

 		make_parser() (in module xml.sax)

 		make_server() (in module wsgiref.simple_server)

 		make_tarball() (in module distutils.archive_util)

 		make_zipfile() (in module distutils.archive_util)

 		makedev() (in module os)

 		makedirs() (in module os)

 		makeelement() (xml.etree.ElementTree.Element method)

 		makefile() (socket method)

 		

 		(socket.socket method)

 		makefolder() (mhlib.MH method)

 		makeLogRecord() (in module logging)

 		makePickle() (logging.handlers.SocketHandler method)

 		makeRecord() (logging.Logger method)

 		makeSocket() (logging.handlers.DatagramHandler method)

 		

 		(logging.handlers.SocketHandler method)

 		maketrans() (in module string)

 		makeusermenus() (FrameWork.Application method)

 		
 mangling

 		

 		name

 		map (2to3 fixer)

 		map() (built-in function)

 		

 		(in module future_builtins)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ttk.Style method)

 		map_async() (multiprocessing.pool.multiprocessing.Pool method)

 		map_table_b2() (in module stringprep)

 		map_table_b3() (in module stringprep)

 		mapcolor() (in module fl)

 		mapfile() (ic.IC method)

 		

 		(in module ic)

 		mapping

 		

 		object, [1], [2], [3], [4]

 		types, operations on

 		Mapping (class in collections)

 		mapping() (msilib.Control method)

 		MappingView (class in collections)

 		mapPriority() (logging.handlers.SysLogHandler method)

 		maps() (in module nis)

 		maptypecreator() (ic.IC method)

 		

 		(in module ic)

 		marshal (module)

 		
 marshalling

 		

 		objects

 		
 masking

 		

 		operations

 		match() (in module nis)

 		

 		(in module re)

 		(re.RegexObject method)

 		MatchObject (class in re)

 		
 math

 		

 		module, [1]

 		math (module)

 		
 max

 		

 		built-in function

 		max (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		max() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		(in module audioop)

 		MAX_INTERPOLATION_DEPTH (in module ConfigParser)

 		max_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		maxarray (repr.Repr attribute)

 		maxdeque (repr.Repr attribute)

 		maxdict (repr.Repr attribute)

 		maxDiff (unittest.TestCase attribute)

 		maxfrozenset (repr.Repr attribute)

 		maxint (in module sys)

 		maxlen (collections.deque attribute)

 		MAXLEN (in module mimify)

 		maxlevel (repr.Repr attribute)

 		maxlist (repr.Repr attribute)

 		maxlong (repr.Repr attribute)

 		maxother (repr.Repr attribute)

 		maxpp() (in module audioop)

 		maxset (repr.Repr attribute)

 		maxsize (in module sys)

 		maxstring (repr.Repr attribute)

 		maxtuple (repr.Repr attribute)

 		maxunicode (in module sys)

 		maxval (EasyDialogs.ProgressBar attribute)

 		MAXYEAR (in module datetime)

 		MB_ICONASTERISK (in module winsound)

 		MB_ICONEXCLAMATION (in module winsound)

 		MB_ICONHAND (in module winsound)

 		MB_ICONQUESTION (in module winsound)

 		MB_OK (in module winsound)

 		mbox (class in mailbox)

 		mboxMessage (class in mailbox)

 		md5 (module)

 		md5() (in module md5)

 		MemberDescriptorType (in module types)

 		
 membership

 		

 		test

 		memmove() (in module ctypes)

 		MemoryError

 		MemoryHandler (class in logging.handlers)

 		memoryview (built-in class)

 		memset() (in module ctypes)

 		Menu() (in module FrameWork)

 		MenuBar() (in module FrameWork)

 		MenuItem() (in module FrameWork)

 		merge() (in module heapq)

 		Message (class in email.message)

 		

 		(class in mailbox)

 		(class in mhlib)

 		(class in mimetools)

 		(class in rfc822)

 		(in module mimetools)

 		message digest, MD5, [1]

 		Message() (in module EasyDialogs)

 		message_from_file() (in module email)

 		message_from_string() (in module email)

 		MessageBeep() (in module winsound)

 		MessageClass (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		MessageError

 		MessageParseError

 		meta() (in module curses)

 		meta_path (in module sys)

 		metaclass

 		

 		(2to3 fixer)

 		metavar (optparse.Option attribute)

 		Meter (class in Tix)

 		method

 		

 		built-in

 		call

 		object, [1], [2], [3], [4]

 		user-defined

 		methodattrs (2to3 fixer)

 		methodcaller() (in module operator)

 		methodHelp() (xmlrpclib.ServerProxy.system method)

 		
 methods

 		

 		string

 		methods (pyclbr.Class attribute)

 		

 		methodSignature() (xmlrpclib.ServerProxy.system method)

 		MethodType (in module types)

 		MH (class in mailbox)

 		

 		(class in mhlib)

 		mhlib (module)

 		MHMailbox (class in mailbox)

 		MHMessage (class in mailbox)

 		microsecond (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		
 MIME

 		

 		base64 encoding

 		content type

 		headers, [1]

 		quoted-printable encoding

 		mime_decode_header() (in module mimify)

 		mime_encode_header() (in module mimify)

 		MIMEApplication (class in email.mime.application)

 		MIMEAudio (class in email.mime.audio)

 		MIMEBase (class in email.mime.base)

 		MIMEImage (class in email.mime.image)

 		MIMEMessage (class in email.mime.message)

 		MIMEMultipart (class in email.mime.multipart)

 		MIMENonMultipart (class in email.mime.nonmultipart)

 		MIMEText (class in email.mime.text)

 		
 mimetools

 		

 		module

 		mimetools (module)

 		MimeTypes (class in mimetypes)

 		mimetypes (module)

 		MimeWriter (class in MimeWriter)

 		

 		(module)

 		mimify (module)

 		mimify() (in module mimify)

 		
 min

 		

 		built-in function

 		min (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		min() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		min_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		MINEQUAL (in module token)

 		MiniAEFrame (module)

 		MiniApplication (class in MiniAEFrame)

 		minmax() (in module audioop)

 		minor() (in module os)

 		minus

 		MINUS (in module token)

 		minus() (decimal.Context method)

 		minute (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		MINYEAR (in module datetime)

 		mirrored() (in module unicodedata)

 		misc_header (cmd.Cmd attribute)

 		MissingSectionHeaderError

 		MIXERDEV

 		mkalias() (in module macostools)

 		mkd() (ftplib.FTP method)

 		mkdir() (in module os)

 		mkdtemp() (in module tempfile)

 		mkfifo() (in module os)

 		mknod() (in module os)

 		mkpath() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.dir_util)

 		mkstemp() (in module tempfile)

 		mktemp() (in module tempfile)

 		mktime() (in module time)

 		mktime_tz() (in module email.utils)

 		

 		(in module rfc822)

 		mmap (class in mmap)

 		

 		(module)

 		MMDF (class in mailbox)

 		MmdfMailbox (class in mailbox)

 		MMDFMessage (class in mailbox)

 		mod() (in module operator)

 		mode (file attribute)

 		

 		(io.FileIO attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(tarfile.TarInfo attribute)

 		mode() (in module turtle)

 		modf() (in module math)

 		modified() (robotparser.RobotFileParser method)

 		Modify() (msilib.View method)

 		modify() (select.epoll method)

 		

 		(select.poll method)

 		
 module

 		

 		AL

 		CGIHTTPServer

 		FrameWork

 		SUNAUDIODEV

 		SimpleHTTPServer

 		__builtin__, [1], [2]

 		__main__, [1], [2]

 		_locale

 		array

 		base64

 		bdb

 		binhex

 		bsddb, [1], [2], [3]

 		cPickle

 		cmd

 		compileall

 		copy

 		crypt

 		dbhash

 		dbm, [1], [2], [3]

 		distutils.sysconfig

 		dumbdbm

 		errno, [1]

 		extension

 		fcntl

 		formatter

 		gdbm, [1], [2]

 		glob

 		htmllib

 		icglue

 		imp

 		importing

 		knee, [1]

 		macerrors

 		mailbox

 		math, [1]

 		mimetools

 		namespace

 		object, [1]

 		os, [1]

 		pickle, [1], [2], [3], [4], [5]

 		pty

 		pwd

 		pyexpat

 		re, [1], [2]

 		readline

 		rfc822

 		rlcompleter

 		search path, [1], [2], [3]

 		sgmllib

 		shelve

 		signal

 		sitecustomize, [1]

 		socket, [1]

 		stat

 		statvfs

 		string, [1], [2]

 		struct

 		sunaudiodev

 		sys, [1], [2], [3]

 		types

 		urllib

 		urlparse

 		uu

 		module (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		module() (in module new)

 		ModuleFinder (class in modulefinder)

 		modulefinder (module)

 		modules (in module sys)

 		

 		(modulefinder.ModuleFinder attribute)

 		ModuleType (in module types)

 		modulo

 		mono2grey() (in module imageop)

 		month (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		month() (in module calendar)

 		month_abbr (in module calendar)

 		month_name (in module calendar)

 		monthcalendar() (in module calendar)

 		monthdatescalendar() (calendar.Calendar method)

 		monthdays2calendar() (calendar.Calendar method)

 		monthdayscalendar() (calendar.Calendar method)

 		monthrange() (in module calendar)

 		Morsel (class in Cookie)

 		most_common() (collections.Counter method)

 		mouseinterval() (in module curses)

 		mousemask() (in module curses)

 		move() (curses.panel.Panel method)

 		

 		(curses.window method)

 		(in module findertools)

 		(in module mmap)

 		(in module shutil)

 		(ttk.Treeview method)

 		move_file() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.file_util)

 		movemessage() (mhlib.Folder method)

 		MozillaCookieJar (class in cookielib)

 		mro() (class method)

 		msftoframe() (in module cd)

 		msg (httplib.HTTPResponse attribute)

 		msg() (telnetlib.Telnet method)

 		msi

 		msilib (module)

 		msvcrt (module)

 		mt_interact() (telnetlib.Telnet method)

 		mtime (tarfile.TarInfo attribute)

 		mtime() (robotparser.RobotFileParser method)

 		mul() (in module audioop)

 		

 		(in module operator)

 		MultiCall (class in xmlrpclib)

 		MultiFile (class in multifile)

 		multifile (module)

 		MULTILINE (in module re)

 		MultipartConversionError

 		multiplication

 		multiply() (decimal.Context method)

 		multiprocessing (module)

 		multiprocessing.connection (module)

 		multiprocessing.dummy (module)

 		multiprocessing.Manager() (in module multiprocessing.sharedctypes)

 		multiprocessing.managers (module)

 		multiprocessing.Pool (class in multiprocessing.pool)

 		multiprocessing.pool (module)

 		multiprocessing.sharedctypes (module)

 		mutable

 		

 		object, [1], [2]

 		sequence types

 		mutable object

 		
 mutable sequence

 		

 		loop over

 		object

 		MutableMapping (class in collections)

 		MutableSequence (class in collections)

 		MutableSet (class in collections)

 		MutableString (class in UserString)

 		mutex (class in mutex)

 		

 		(module)

 		mvderwin() (curses.window method)

 		mvwin() (curses.window method)

 		myrights() (imaplib.IMAP4 method)

N

 		

 		N_TOKENS (in module token)

 		name, [1], [2]

 		

 		binding, [1], [2], [3], [4], [5]

 		binding, global

 		class

 		function

 		mangling

 		rebinding

 		unbinding

 		name (cookielib.Cookie attribute)

 		

 		(doctest.DocTest attribute)

 		(file attribute)

 		(in module os)

 		NAME (in module token)

 		name (io.FileIO attribute)

 		

 		(multiprocessing.Process attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(tarfile.TarInfo attribute)

 		(threading.Thread attribute)

 		(xml.dom.Attr attribute)

 		(xml.dom.DocumentType attribute)

 		name() (in module unicodedata)

 		name2codepoint (in module htmlentitydefs)

 		named tuple

 		NamedTemporaryFile() (in module tempfile)

 		namedtuple() (in module collections)

 		NameError

 		

 		exception

 		NameError (built-in exception)

 		namelist() (zipfile.ZipFile method)

 		nameprep() (in module encodings.idna)

 		
 names

 		

 		private

 		namespace, [1]

 		

 		global

 		module

 		namespace() (imaplib.IMAP4 method)

 		Namespace() (multiprocessing.managers.SyncManager method)

 		NAMESPACE_DNS (in module uuid)

 		NAMESPACE_OID (in module uuid)

 		NAMESPACE_URL (in module uuid)

 		NAMESPACE_X500 (in module uuid)

 		NamespaceErr

 		namespaceURI (xml.dom.Node attribute)

 		NaN, [1]

 		NannyNag

 		napms() (in module curses)

 		nargs (optparse.Option attribute)

 		Nav (module)

 		Navigation Services

 		ndiff() (in module difflib)

 		ndim (memoryview attribute)

 		ne (2to3 fixer)

 		ne() (in module operator)

 		neg() (in module operator)

 		negation

 		nested scope

 		nested() (in module contextlib)

 		netrc (class in netrc)

 		

 		(module)

 		NetrcParseError

 		netscape (cookielib.CookiePolicy attribute)

 		Network News Transfer Protocol

 		new (module)

 		new() (in module hmac)

 		

 		(in module md5)

 		(in module sha)

 		new-style class

 		new_alignment() (formatter.writer method)

 		new_compiler() (in module distutils.ccompiler)

 		new_font() (formatter.writer method)

 		new_margin() (formatter.writer method)

 		new_module() (in module imp)

 		new_panel() (in module curses.panel)

 		new_spacing() (formatter.writer method)

 		new_styles() (formatter.writer method)

 		newconfig() (in module al)

 		newer() (in module distutils.dep_util)

 		newer_group() (in module distutils.dep_util)

 		newer_pairwise() (in module distutils.dep_util)

 		newgroups() (nntplib.NNTP method)

 		
 newline

 		

 		suppression

 		NEWLINE (in module token)

 		NEWLINE token, [1]

 		newlines (file attribute)

 		

 		(io.TextIOBase attribute)

 		newnews() (nntplib.NNTP method)

 		newpad() (in module curses)

 		newwin() (in module curses)

 		next (2to3 fixer)

 		next() (bsddb.bsddbobject method)

 		

 		(built-in function)

 		(csv.csvreader method)

 		(dbhash.dbhash method)

 		(file method)

 		(generator method)

 		(iterator method)

 		(mailbox.oldmailbox method)

 		(multifile.MultiFile method)

 		(nntplib.NNTP method)

 		(tarfile.TarFile method)

 		(ttk.Treeview method)

 		next_minus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_plus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_toward() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		nextfile() (in module fileinput)

 		nextkey() (in module gdbm)

 		nextpart() (MimeWriter.MimeWriter method)

 		nextSibling (xml.dom.Node attribute)

 		ngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		nice() (in module os)

 		nis (module)

 		NIST

 		NL (in module tokenize)

 		nl() (in module curses)

 		nl_langinfo() (in module locale)

 		nlargest() (in module heapq)

 		nlst() (ftplib.FTP method)

 		
 NNTP

 		

 		protocol

 		NNTP (class in nntplib)

 		NNTPDataError

 		NNTPError

 		nntplib (module)

 		NNTPPermanentError

 		NNTPProtocolError

 		NNTPReplyError

 		

 		NNTPTemporaryError

 		no_proxy, [1]

 		nocbreak() (in module curses)

 		NoDataAllowedErr

 		Node (class in compiler.ast)

 		node() (in module platform)

 		nodelay() (curses.window method)

 		nodeName (xml.dom.Node attribute)

 		NodeTransformer (class in ast)

 		nodeType (xml.dom.Node attribute)

 		nodeValue (xml.dom.Node attribute)

 		NodeVisitor (class in ast)

 		NODISC (in module cd)

 		noecho() (in module curses)

 		NOEXPR (in module locale)

 		nofill (htmllib.HTMLParser attribute)

 		nok_builtin_names (rexec.RExec attribute)

 		noload() (pickle.Unpickler method)

 		NoModificationAllowedErr

 		nonblock() (ossaudiodev.oss_audio_device method)

 		
 None

 		

 		object, [1]

 		None (Built-in object)

 		

 		(built-in variable)

 		NoneType (in module types)

 		nonl() (in module curses)

 		nonzero (2to3 fixer)

 		noop() (imaplib.IMAP4 method)

 		

 		(poplib.POP3 method)

 		NoOptionError

 		NOP (opcode)

 		noqiflush() (in module curses)

 		noraw() (in module curses)

 		normalize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module locale)

 		(in module unicodedata)

 		(xml.dom.Node method)

 		NORMALIZE_WHITESPACE (in module doctest)

 		normalvariate() (in module random)

 		normcase() (in module os.path)

 		normpath() (in module os.path)

 		NoSectionError

 		NoSuchMailboxError

 		
 not

 		

 		operator, [1]

 		
 not in

 		

 		operator, [1], [2]

 		not_() (in module operator)

 		NotANumber

 		notation

 		notationDecl() (xml.sax.handler.DTDHandler method)

 		NotationDeclHandler() (xml.parsers.expat.xmlparser method)

 		notations (xml.dom.DocumentType attribute)

 		NotConnected

 		NoteBook (class in Tix)

 		Notebook (class in ttk)

 		NotEmptyError

 		NOTEQUAL (in module token)

 		NotFoundErr

 		notify() (threading.Condition method)

 		notify_all() (threading.Condition method)

 		notifyAll() (threading.Condition method)

 		notimeout() (curses.window method)

 		
 NotImplemented

 		

 		object

 		NotImplemented (built-in variable)

 		NotImplementedError

 		NotImplementedType (in module types)

 		NotStandaloneHandler() (xml.parsers.expat.xmlparser method)

 		NotSupportedErr

 		noutrefresh() (curses.window method)

 		now() (datetime.datetime class method)

 		NProperty (class in aetypes)

 		NSIG (in module signal)

 		nsmallest() (in module heapq)

 		NT_OFFSET (in module token)

 		NTEventLogHandler (class in logging.handlers)

 		ntohl() (in module socket)

 		ntohs() (in module socket)

 		ntransfercmd() (ftplib.FTP method)

 		
 null

 		

 		operation

 		NullFormatter (class in formatter)

 		NullHandler (class in logging)

 		NullImporter (class in imp)

 		NullTranslations (class in gettext)

 		NullWriter (class in formatter)

 		number

 		

 		complex

 		floating point

 		Number (class in numbers)

 		NUMBER (in module token)

 		number_class() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		numbers (module)

 		numerator (numbers.Rational attribute)

 		
 numeric

 		

 		conversions

 		literals

 		object, [1], [2], [3]

 		types, operations on

 		numeric literal

 		numeric() (in module unicodedata)

 		Numerical Python

 		numliterals (2to3 fixer)

 		nurbscurve() (in module gl)

 		nurbssurface() (in module gl)

 		nvarray() (in module gl)

O

 		

 		O_APPEND (in module os)

 		O_ASYNC (in module os)

 		O_BINARY (in module os)

 		O_CREAT (in module os)

 		O_DIRECT (in module os)

 		O_DIRECTORY (in module os)

 		O_DSYNC (in module os)

 		O_EXCL (in module os)

 		O_EXLOCK (in module os)

 		O_NDELAY (in module os)

 		O_NOATIME (in module os)

 		O_NOCTTY (in module os)

 		O_NOFOLLOW (in module os)

 		O_NOINHERIT (in module os)

 		O_NONBLOCK (in module os)

 		O_RANDOM (in module os)

 		O_RDONLY (in module os)

 		O_RDWR (in module os)

 		O_RSYNC (in module os)

 		O_SEQUENTIAL (in module os)

 		O_SHLOCK (in module os)

 		O_SHORT_LIVED (in module os)

 		O_SYNC (in module os)

 		O_TEMPORARY (in module os)

 		O_TEXT (in module os)

 		O_TRUNC (in module os)

 		O_WRONLY (in module os)

 		object, [1]

 		

 		Boolean, [1]

 		Ellipsis

 		None, [1]

 		NotImplemented

 		Unicode

 		buffer

 		built-in function, [1]

 		built-in method, [1]

 		bytearray

 		callable, [1]

 		class, [1], [2], [3]

 		class instance, [1], [2], [3]

 		code, [1], [2]

 		complex

 		complex number

 		deallocation

 		dictionary, [1], [2], [3], [4], [5], [6]

 		file, [1], [2], [3]

 		finalization

 		floating point, [1]

 		frame

 		frozenset

 		function, [1], [2], [3], [4]

 		generator, [1], [2]

 		immutable, [1], [2]

 		immutable sequence

 		instance, [1], [2], [3]

 		integer, [1]

 		list, [1], [2], [3], [4], [5], [6], [7]

 		long integer, [1]

 		mapping, [1], [2], [3], [4]

 		method, [1], [2], [3], [4]

 		module, [1]

 		mutable, [1], [2]

 		mutable sequence

 		numeric, [1], [2], [3]

 		plain integer

 		recursive

 		sequence, [1], [2], [3], [4], [5], [6], [7]

 		set, [1], [2]

 		set type

 		slice

 		socket

 		string, [1], [2], [3]

 		traceback, [1], [2], [3], [4]

 		tuple, [1], [2], [3], [4]

 		type

 		unicode

 		user-defined function, [1], [2]

 		user-defined method

 		xrange, [1]

 		object() (built-in function)

 		object_filenames() (distutils.ccompiler.CCompiler method)

 		
 objects

 		

 		comparing

 		flattening

 		marshalling

 		persistent

 		pickling

 		serializing

 		ObjectSpecifier (class in aetypes)

 		obufcount() (ossaudiodev.oss_audio_device method)

 		obuffree() (ossaudiodev.oss_audio_device method)

 		
 oct

 		

 		built-in function

 		oct() (built-in function)

 		

 		(in module future_builtins)

 		
 octal

 		

 		literals

 		octal literal

 		octdigits (in module string)

 		offset (xml.parsers.expat.ExpatError attribute)

 		OK (in module curses)

 		ok_builtin_modules (rexec.RExec attribute)

 		ok_file_types (rexec.RExec attribute)

 		ok_path (rexec.RExec attribute)

 		ok_posix_names (rexec.RExec attribute)

 		ok_sys_names (rexec.RExec attribute)

 		OleDLL (class in ctypes)

 		onclick() (in module turtle), [1]

 		ondrag() (in module turtle)

 		onecmd() (cmd.Cmd method)

 		onkey() (in module turtle)

 		onrelease() (in module turtle)

 		onscreenclick() (in module turtle)

 		ontimer() (in module turtle)

 		OP (in module token)

 		
 open

 		

 		built-in function, [1]

 		Open Scripting Architecture

 		open() (built-in function)

 		

 		(FrameWork.DialogWindow method)

 		(FrameWork.Window method)

 		(distutils.text_file.TextFile method)

 		(imaplib.IMAP4 method)

 		(in module aifc)

 		(in module anydbm)

 		(in module cd)

 		(in module codecs)

 		(in module dbhash)

 		(in module dbm)

 		(in module dl)

 		(in module dumbdbm)

 		(in module gdbm)

 		(in module gzip)

 		(in module io)

 		(in module os)

 		(in module ossaudiodev)

 		(in module posixfile)

 		(in module shelve)

 		(in module sunau)

 		(in module sunaudiodev)

 		(in module tarfile)

 		(in module wave)

 		(in module webbrowser)

 		(pipes.Template method)

 		(tarfile.TarFile method)

 		(telnetlib.Telnet method)

 		(urllib.URLopener method)

 		(urllib2.OpenerDirector method)

 		(webbrowser.controller method)

 		(zipfile.ZipFile method)

 		open_new() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		open_new_tab() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		open_osfhandle() (in module msvcrt)

 		open_unknown() (urllib.URLopener method)

 		OpenDatabase() (in module msilib)

 		opendir() (in module dircache)

 		

 		OpenerDirector (class in urllib2)

 		openfolder() (mhlib.MH method)

 		openfp() (in module sunau)

 		

 		(in module wave)

 		OpenGL

 		OpenKey() (in module _winreg)

 		OpenKeyEx() (in module _winreg)

 		openlog() (in module syslog)

 		openmessage() (mhlib.Message method)

 		openmixer() (in module ossaudiodev)

 		openport() (in module al)

 		openpty() (in module os)

 		

 		(in module pty)

 		openrf() (in module MacOS)

 		
 OpenSSL

 		

 		(use in module hashlib)

 		(use in module ssl)

 		OPENSSL_VERSION (in module ssl)

 		OPENSSL_VERSION_INFO (in module ssl)

 		OPENSSL_VERSION_NUMBER (in module ssl)

 		OpenView() (msilib.Database method)

 		
 operation

 		

 		Boolean

 		binary arithmetic

 		binary bitwise

 		concatenation

 		extended slice

 		null

 		repetition

 		shifting

 		slice

 		subscript

 		unary arithmetic

 		unary bitwise

 		
 operations

 		

 		Boolean, [1]

 		bit-string

 		masking

 		shifting

 		
 operations on

 		

 		dictionary type

 		integer types

 		list type

 		mapping types

 		numeric types

 		sequence types, [1]

 		
 operator

 		

 		!=

 		%

 		&

 		*

 		**

 		+

 		-

 		/

 		//

 		<

 		<<

 		<=

 		==

 		>

 		>=

 		>>

 		^

 		and, [1], [2]

 		comparison

 		in, [1], [2]

 		is, [1]

 		is not, [1]

 		not, [1]

 		not in, [1], [2]

 		or, [1], [2]

 		overloading

 		precedence

 		ternary

 		operator (module)

 		operators

 		opmap (in module dis)

 		opname (in module dis)

 		optimize() (in module pickletools)

 		OptionGroup (class in optparse)

 		OptionMenu (class in Tix)

 		OptionParser (class in optparse)

 		options (doctest.Example attribute)

 		options() (ConfigParser.RawConfigParser method)

 		optionxform() (ConfigParser.RawConfigParser method)

 		optparse (module)

 		
 or

 		

 		bitwise

 		exclusive

 		inclusive

 		operator, [1], [2]

 		or_() (in module operator)

 		
 ord

 		

 		built-in function, [1], [2]

 		ord() (built-in function)

 		
 order

 		

 		evaluation

 		ordered_attributes (xml.parsers.expat.xmlparser attribute)

 		OrderedDict (class in collections)

 		Ordinal (class in aetypes)

 		origin_server (wsgiref.handlers.BaseHandler attribute)

 		
 os

 		

 		module, [1]

 		os (module)

 		os.path (module)

 		os_environ (wsgiref.handlers.BaseHandler attribute)

 		OSError

 		ossaudiodev (module)

 		OSSAudioError

 		output, [1]

 		

 		standard, [1]

 		output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		output_charset (email.charset.Charset attribute)

 		output_charset() (gettext.NullTranslations method)

 		output_codec (email.charset.Charset attribute)

 		output_difference() (doctest.OutputChecker method)

 		OutputChecker (class in doctest)

 		OutputString() (Cookie.Morsel method)

 		OutputType (in module cStringIO)

 		Overflow (class in decimal)

 		OverflowError

 		

 		(built-in exception)

 		overlay() (curses.window method)

 		
 overloading

 		

 		operator

 		Overmars, Mark

 		overwrite() (curses.window method)

P

 		

 		P_DETACH (in module os)

 		P_NOWAIT (in module os)

 		P_NOWAITO (in module os)

 		P_OVERLAY (in module os)

 		P_WAIT (in module os)

 		pack() (in module aepack)

 		

 		(in module struct)

 		(mailbox.MH method)

 		(struct.Struct method)

 		pack_array() (xdrlib.Packer method)

 		pack_bytes() (xdrlib.Packer method)

 		pack_double() (xdrlib.Packer method)

 		pack_farray() (xdrlib.Packer method)

 		pack_float() (xdrlib.Packer method)

 		pack_fopaque() (xdrlib.Packer method)

 		pack_fstring() (xdrlib.Packer method)

 		pack_into() (in module struct)

 		

 		(struct.Struct method)

 		pack_list() (xdrlib.Packer method)

 		pack_opaque() (xdrlib.Packer method)

 		pack_string() (xdrlib.Packer method)

 		package, [1]

 		Packer (class in xdrlib)

 		packevent() (in module aetools)

 		
 packing

 		

 		binary data

 		packing (widgets)

 		PAGER

 		pair_content() (in module curses)

 		pair_number() (in module curses)

 		PanedWindow (class in Tix)

 		
 parameter

 		

 		value, default

 		pardir (in module os)

 		paren (2to3 fixer)

 		parent (urllib2.BaseHandler attribute)

 		parent() (ttk.Treeview method)

 		parenthesized form

 		parentNode (xml.dom.Node attribute)

 		paretovariate() (in module random)

 		parse() (doctest.DocTestParser method)

 		

 		(email.parser.Parser method)

 		(in module ast)

 		(in module cgi)

 		(in module compiler)

 		(in module xml.dom.minidom)

 		(in module xml.dom.pulldom)

 		(in module xml.etree.ElementTree)

 		(in module xml.sax)

 		(robotparser.RobotFileParser method)

 		(string.Formatter method)

 		(xml.etree.ElementTree.ElementTree method)

 		Parse() (xml.parsers.expat.xmlparser method)

 		parse() (xml.sax.xmlreader.XMLReader method)

 		parse_and_bind() (in module readline)

 		parse_args() (argparse.ArgumentParser method)

 		PARSE_COLNAMES (in module sqlite3)

 		parse_config_h() (in module sysconfig)

 		PARSE_DECLTYPES (in module sqlite3)

 		parse_header() (in module cgi)

 		parse_known_args() (argparse.ArgumentParser method)

 		parse_multipart() (in module cgi)

 		parse_qs() (in module cgi)

 		

 		(in module urlparse)

 		parse_qsl() (in module cgi)

 		

 		(in module urlparse)

 		parseaddr() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate() (in module email.utils)

 		

 		(in module rfc822)

 		parsedate_tz() (in module email.utils)

 		

 		(in module rfc822)

 		ParseFile (C function), [1]

 		parseFile() (in module compiler)

 		ParseFile() (xml.parsers.expat.xmlparser method)

 		ParseFlags() (in module imaplib)

 		ParseInteractiveCode (C function)

 		parser

 		Parser (class in email.parser)

 		parser (module)

 		ParserCreate() (in module xml.parsers.expat)

 		ParserError

 		ParseResult (class in urlparse)

 		parsesequence() (mhlib.Folder method)

 		ParseSingleStatement (C function)

 		parsestr() (email.parser.Parser method)

 		parseString() (in module xml.dom.minidom)

 		

 		(in module xml.dom.pulldom)

 		(in module xml.sax)

 		ParseTopExpression (C function)

 		parseurl() (ic.IC method)

 		

 		(in module ic)

 		
 parsing

 		

 		Python source code

 		URL

 		ParsingError

 		partial() (imaplib.IMAP4 method)

 		

 		(in module functools)

 		partition() (str method)

 		
 Pascal

 		

 		language

 		
 pass

 		

 		statement

 		pass_() (poplib.POP3 method)

 		PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		
 path

 		

 		configuration file

 		module search, [1], [2], [3]

 		operations

 		path (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(cookielib.Cookie attribute)

 		(in module sys)

 		Path browser

 		path_hooks (in module sys)

 		path_importer_cache (in module sys)

 		path_return_ok() (cookielib.CookiePolicy method)

 		pathconf() (in module os)

 		pathconf_names (in module os)

 		pathname2url() (in module urllib)

 		pathsep (in module os)

 		pattern (re.RegexObject attribute)

 		pause() (in module signal)

 		PAUSED (in module cd)

 		PAX_FORMAT (in module tarfile)

 		pax_headers (tarfile.TarFile attribute)

 		

 		(tarfile.TarInfo attribute)

 		pd() (in module turtle)

 		Pdb (class in pdb), [1]

 		pdb (module)

 		peek() (io.BufferedReader method)

 		PEM_cert_to_DER_cert() (in module ssl)

 		pen() (in module turtle)

 		pencolor() (in module turtle)

 		PendingDeprecationWarning

 		pendown() (in module turtle)

 		pensize() (in module turtle)

 		penup() (in module turtle)

 		PERCENT (in module token)

 		PERCENTEQUAL (in module token)

 		Performance

 		permutations() (in module itertools)

 		Persist() (msilib.SummaryInformation method)

 		persistence

 		
 persistent

 		

 		objects

 		persistent_id (pickle protocol)

 		persistent_load (pickle protocol)

 		pformat() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		phase() (in module cmath)

 		Philbrick, Geoff

 		physical line, [1], [2]

 		pi (in module cmath)

 		

 		(in module math)

 		pick() (in module gl)

 		
 pickle

 		

 		module, [1], [2], [3], [4], [5]

 		pickle (module)

 		pickle() (in module copy_reg)

 		PickleError

 		Pickler (class in pickle)

 		pickletools (module)

 		
 pickling

 		

 		objects

 		PicklingError

 		pid (multiprocessing.Process attribute)

 		

 		(popen2.Popen3 attribute)

 		(subprocess.Popen attribute)

 		PIL (the Python Imaging Library)

 		PIPE (in module subprocess)

 		Pipe() (in module multiprocessing)

 		pipe() (in module os)

 		PIPE_BUF (select.select attribute)

 		pipes (module)

 		PixMapWrapper (module)

 		PKG_DIRECTORY (in module imp)

 		pkgutil (module)

 		
 plain integer

 		

 		object

 		plain integer literal

 		PLAT

 		platform (in module sys)

 		

 		(module)

 		platform() (in module platform)

 		PLAYING (in module cd)

 		PlaySound() (in module winsound)

 		
 plist

 		

 		file

 		plistlib (module)

 		plock() (in module os)

 		plus

 		PLUS (in module token)

 		plus() (decimal.Context method)

 		PLUSEQUAL (in module token)

 		pm() (in module pdb)

 		pnum (in module cd)

 		pointer() (in module ctypes)

 		POINTER() (in module ctypes)

 		polar() (in module cmath)

 		poll() (in module select)

 		

 		(multiprocessing.Connection method)

 		(popen2.Popen3 method)

 		(select.epoll method)

 		(select.poll method)

 		(subprocess.Popen method)

 		pop() (array.array method)

 		

 		(asynchat.fifo method)

 		(collections.deque method)

 		(dict method)

 		(list method)

 		(mailbox.Mailbox method)

 		(multifile.MultiFile method)

 		(set method)

 		
 POP3

 		

 		protocol

 		POP3 (class in poplib)

 		POP3_SSL (class in poplib)

 		pop_alignment() (formatter.formatter method)

 		POP_BLOCK (opcode)

 		pop_font() (formatter.formatter method)

 		POP_JUMP_IF_FALSE (opcode)

 		POP_JUMP_IF_TRUE (opcode)

 		pop_margin() (formatter.formatter method)

 		pop_source() (shlex.shlex method)

 		pop_style() (formatter.formatter method)

 		POP_TOP (opcode)

 		Popen (class in subprocess)

 		popen() (in module os), [1], [2]

 		

 		(in module platform)

 		popen2 (module)

 		popen2() (in module os)

 		

 		(in module popen2)

 		Popen3 (class in popen2)

 		popen3() (in module os)

 		

 		(in module popen2)

 		Popen4 (class in popen2)

 		popen4() (in module os)

 		

 		(in module popen2)

 		popitem() (collections.OrderedDict method)

 		

 		(dict method)

 		(mailbox.Mailbox method)

 		popleft() (collections.deque method)

 		poplib (module)

 		PopupMenu (class in Tix)

 		port (cookielib.Cookie attribute)

 		port_specified (cookielib.Cookie attribute)

 		PortableUnixMailbox (class in mailbox)

 		pos (re.MatchObject attribute)

 		pos() (in module operator)

 		

 		(in module turtle)

 		position() (in module turtle)

 		positional argument

 		
 POSIX

 		

 		I/O control

 		file object

 		threads

 		posix (module)

 		

 		(tarfile.TarFile attribute)

 		posixfile (module)

 		POSIXLY_CORRECT

 		post() (nntplib.NNTP method)

 		

 		(ossaudiodev.oss_audio_device method)

 		post_mortem() (in module pdb)

 		postcmd() (cmd.Cmd method)

 		

 		postloop() (cmd.Cmd method)

 		
 pow

 		

 		built-in function, [1], [2], [3]

 		pow() (built-in function)

 		

 		(in module math)

 		(in module operator)

 		power() (decimal.Context method)

 		pprint (module)

 		pprint() (bdb.Breakpoint method)

 		

 		(in module pprint)

 		(pprint.PrettyPrinter method)

 		prcal() (in module calendar)

 		preamble (email.message.Message attribute)

 		
 precedence

 		

 		operator

 		precmd() (cmd.Cmd method)

 		prefix

 		PREFIX (in module distutils.sysconfig)

 		prefix (in module sys)

 		

 		(xml.dom.Attr attribute)

 		(xml.dom.Node attribute)

 		(zipimport.zipimporter attribute)

 		PREFIXES (in module site)

 		preloop() (cmd.Cmd method)

 		preorder() (compiler.visitor.ASTVisitor method)

 		prepare_input_source() (in module xml.sax.saxutils)

 		prepend() (pipes.Template method)

 		preprocess() (distutils.ccompiler.CCompiler method)

 		PrettyPrinter (class in pprint)

 		prev() (ttk.Treeview method)

 		previous() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		previousSibling (xml.dom.Node attribute)

 		primary

 		
 print

 		

 		statement, [1], [2]

 		print (2to3 fixer)

 		print() (built-in function)

 		Print() (in module findertools)

 		print_callees() (pstats.Stats method)

 		print_callers() (pstats.Stats method)

 		print_directory() (in module cgi)

 		print_environ() (in module cgi)

 		print_environ_usage() (in module cgi)

 		print_exc() (in module traceback)

 		

 		(timeit.Timer method)

 		print_exception() (in module traceback)

 		PRINT_EXPR (opcode)

 		print_form() (in module cgi)

 		print_help() (argparse.ArgumentParser method)

 		PRINT_ITEM (opcode)

 		PRINT_ITEM_TO (opcode)

 		print_last() (in module traceback)

 		PRINT_NEWLINE (opcode)

 		PRINT_NEWLINE_TO (opcode)

 		print_stack() (in module traceback)

 		print_stats() (pstats.Stats method)

 		print_tb() (in module traceback)

 		print_usage() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		print_version() (optparse.OptionParser method)

 		printable (in module string)

 		printdir() (zipfile.ZipFile method)

 		printf-style formatting

 		PriorityQueue (class in Queue)

 		
 private

 		

 		names

 		prmonth() (calendar.TextCalendar method)

 		

 		(in module calendar)

 		
 procedure

 		

 		call

 		
 process

 		

 		group, [1]

 		id

 		id of parent

 		killing, [1]

 		signalling, [1]

 		Process (class in multiprocessing)

 		process() (logging.LoggerAdapter method)

 		process_message() (smtpd.SMTPServer method)

 		process_request() (SocketServer.BaseServer method)

 		processes, light-weight

 		processfile() (in module gensuitemodule)

 		processfile_fromresource() (in module gensuitemodule)

 		ProcessingInstruction() (in module xml.etree.ElementTree)

 		processingInstruction() (xml.sax.handler.ContentHandler method)

 		ProcessingInstructionHandler() (xml.parsers.expat.xmlparser method)

 		processor time

 		processor() (in module platform)

 		product() (in module itertools)

 		Profile (class in hotshot)

 		profile (module)

 		profile function, [1], [2]

 		profiler, [1]

 		profiling, deterministic

 		program

 		Progressbar (class in ttk)

 		ProgressBar() (in module EasyDialogs)

 		prompt (cmd.Cmd attribute)

 		prompt_user_passwd() (urllib.FancyURLopener method)

 		prompts, interpreter

 		propagate (logging.Logger attribute)

 		property list

 		property() (built-in function)

 		property_declaration_handler (in module xml.sax.handler)

 		property_dom_node (in module xml.sax.handler)

 		property_lexical_handler (in module xml.sax.handler)

 		property_xml_string (in module xml.sax.handler)

 		prot_c() (ftplib.FTP_TLS method)

 		prot_p() (ftplib.FTP_TLS method)

 		proto (socket.socket attribute)

 		
 protocol

 		

 		CGI

 		FTP, [1]

 		HTTP, [1], [2], [3], [4]

 		IMAP4

 		IMAP4_SSL

 		IMAP4_stream

 		NNTP

 		POP3

 		SMTP

 		Telnet

 		context management

 		iterator

 		PROTOCOL_SSLv2 (in module ssl)

 		PROTOCOL_SSLv23 (in module ssl)

 		PROTOCOL_SSLv3 (in module ssl)

 		PROTOCOL_TLSv1 (in module ssl)

 		protocol_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		PROTOCOL_VERSION (imaplib.IMAP4 attribute)

 		proxy() (in module weakref)

 		proxyauth() (imaplib.IMAP4 method)

 		ProxyBasicAuthHandler (class in urllib2)

 		ProxyDigestAuthHandler (class in urllib2)

 		ProxyHandler (class in urllib2)

 		ProxyType (in module weakref)

 		ProxyTypes (in module weakref)

 		prstr() (in module fm)

 		pryear() (calendar.TextCalendar method)

 		ps1 (in module sys)

 		ps2 (in module sys)

 		pstats (module)

 		pthreads

 		ptime (in module cd)

 		
 pty

 		

 		module

 		pty (module)

 		pu() (in module turtle)

 		publicId (xml.dom.DocumentType attribute)

 		PullDOM (class in xml.dom.pulldom)

 		punctuation (in module string)

 		PureProxy (class in smtpd)

 		purge() (in module re)

 		push() (asynchat.async_chat method)

 		

 		(asynchat.fifo method)

 		(code.InteractiveConsole method)

 		(multifile.MultiFile method)

 		push_alignment() (formatter.formatter method)

 		push_font() (formatter.formatter method)

 		push_margin() (formatter.formatter method)

 		push_source() (shlex.shlex method)

 		push_style() (formatter.formatter method)

 		push_token() (shlex.shlex method)

 		push_with_producer() (asynchat.async_chat method)

 		pushbutton() (msilib.Dialog method)

 		put() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		put_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		putch() (in module msvcrt)

 		putenv() (in module os)

 		putheader() (httplib.HTTPConnection method)

 		putp() (in module curses)

 		putrequest() (httplib.HTTPConnection method)

 		putsequences() (mhlib.Folder method)

 		putwch() (in module msvcrt)

 		putwin() (curses.window method)

 		
 pwd

 		

 		module

 		pwd (module)

 		pwd() (ftplib.FTP method)

 		pwlcurve() (in module gl)

 		py3kwarning (in module sys)

 		py_compile (module)

 		PY_COMPILED (in module imp)

 		PY_FROZEN (in module imp)

 		py_object (class in ctypes)

 		PY_SOURCE (in module imp)

 		py_suffix_importer() (in module imputil)

 		PyArg_ParseTuple()

 		PyArg_ParseTupleAndKeywords()

 		pyclbr (module)

 		PyCompileError

 		PyDLL (class in ctypes)

 		pydoc (module)

 		PyErr_Fetch()

 		PyErr_Restore()

 		
 pyexpat

 		

 		module

 		PYFUNCTYPE() (in module ctypes)

 		PyObject_CallObject()

 		PyOpenGL

 		Python 3000

 		Python Editor

 		
 Python Enhancement Proposals

 		

 		PEP 0205

 		PEP 0255

 		PEP 0342, [1]

 		PEP 0343, [1], [2]

 		PEP 100

 		PEP 11

 		PEP 205

 		PEP 207

 		PEP 208

 		PEP 217

 		PEP 218, [1], [2]

 		PEP 227, [1], [2]

 		PEP 229

 		PEP 230, [1]

 		PEP 232

 		PEP 234

 		PEP 236, [1], [2]

 		PEP 237, [1], [2], [3]

 		PEP 238, [1], [2], [3], [4], [5]

 		PEP 241

 		PEP 243

 		PEP 246

 		PEP 249, [1], [2], [3]

 		PEP 252, [1]

 		PEP 253, [1], [2], [3], [4]

 		PEP 255, [1], [2], [3], [4]

 		PEP 261, [1]

 		PEP 263, [1]

 		PEP 264

 		PEP 273, [1], [2]

 		PEP 275

 		PEP 277

 		PEP 278

 		PEP 279

 		PEP 282, [1], [2]

 		PEP 285, [1]

 		PEP 288

 		PEP 289, [1], [2]

 		PEP 292, [1]

 		PEP 293

 		PEP 3000

 		PEP 301, [1]

 		PEP 302, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]

 		PEP 305, [1]

 		PEP 307, [1], [2], [3]

 		PEP 308, [1], [2], [3]

 		PEP 309

 		PEP 3100

 		PEP 3101, [1], [2]

 		PEP 3105, [1]

 		PEP 3106

 		PEP 3110

 		PEP 3112, [1]

 		PEP 3116

 		PEP 3118

 		PEP 3119, [1], [2], [3]

 		PEP 3121

 		PEP 3127

 		PEP 3129

 		PEP 3137

 		PEP 314, [1]

 		PEP 3141, [1], [2]

 		PEP 318, [1], [2]

 		PEP 322, [1]

 		PEP 324, [1]

 		PEP 325

 		PEP 327

 		PEP 328, [1], [2], [3], [4], [5]

 		PEP 331

 		PEP 333, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PEP 338, [1], [2]

 		PEP 339

 		PEP 341

 		PEP 342, [1], [2], [3]

 		PEP 343, [1], [2], [3]

 		PEP 347

 		PEP 352, [1]

 		PEP 353, [1], [2]

 		PEP 356

 		PEP 357

 		PEP 361

 		PEP 366

 		PEP 370, [1], [2], [3]

 		PEP 371

 		PEP 372

 		PEP 378, [1]

 		PEP 389

 		PEP 391

 		PEP 5, [1]

 		PEP 6

 		PEP 8, [1], [2], [3], [4]

 		Python Imaging Library

 		PYTHON*

 		python_branch() (in module platform)

 		python_build() (in module platform)

 		python_compiler() (in module platform)

 		PYTHON_DOM

 		python_implementation() (in module platform)

 		python_revision() (in module platform)

 		python_version() (in module platform)

 		python_version_tuple() (in module platform)

 		PYTHONCASEOK

 		PYTHONDEBUG

 		PYTHONDOCS

 		PYTHONDONTWRITEBYTECODE, [1], [2]

 		PYTHONHOME, [1], [2], [3], [4], [5], [6]

 		Pythonic

 		PYTHONINSPECT, [1]

 		PYTHONIOENCODING

 		PYTHONNOUSERSITE

 		PYTHONOPTIMIZE

 		PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

 		PYTHONSTARTUP, [1], [2], [3], [4], [5], [6]

 		PYTHONUNBUFFERED

 		PYTHONUSERBASE

 		PYTHONVERBOSE

 		PYTHONWARNINGS, [1], [2]

 		PYTHONY2K, [1], [2]

 		PyZipFile (class in zipfile)

Q

 		

 		qdevice() (in module fl)

 		QDPoint (class in aetypes)

 		QDRectangle (class in aetypes)

 		qenter() (in module fl)

 		qiflush() (in module curses)

 		QName (class in xml.etree.ElementTree)

 		qread() (in module fl)

 		qreset() (in module fl)

 		qsize() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		qtest() (in module fl)

 		quantize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		QueryInfoKey() (in module _winreg)

 		queryparams() (in module al)

 		QueryReflectionKey() (in module _winreg)

 		QueryValue() (in module _winreg)

 		QueryValueEx() (in module _winreg)

 		Queue (class in multiprocessing)

 		

 		(class in Queue)

 		(module)

 		queue (sched.scheduler attribute)

 		

 		Queue() (multiprocessing.managers.SyncManager method)

 		quick_ratio() (difflib.SequenceMatcher method)

 		quit (built-in variable)

 		quit() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		quopri (module)

 		quote() (in module email.utils)

 		

 		(in module rfc822)

 		(in module urllib)

 		QUOTE_ALL (in module csv)

 		QUOTE_MINIMAL (in module csv)

 		QUOTE_NONE (in module csv)

 		QUOTE_NONNUMERIC (in module csv)

 		quote_plus() (in module urllib)

 		quoteattr() (in module xml.sax.saxutils)

 		quotechar (csv.Dialect attribute)

 		
 quoted-printable

 		

 		encoding

 		
 quotes

 		

 		backward, [1]

 		reverse, [1]

 		quotes (shlex.shlex attribute)

 		quoting (csv.Dialect attribute)

R

 		

 		r_eval() (rexec.RExec method)

 		r_exec() (rexec.RExec method)

 		r_execfile() (rexec.RExec method)

 		r_import() (rexec.RExec method)

 		R_OK (in module os)

 		r_open() (rexec.RExec method)

 		r_reload() (rexec.RExec method)

 		r_unload() (rexec.RExec method)

 		radians() (in module math)

 		

 		(in module turtle)

 		RadioButtonGroup (class in msilib)

 		radiogroup() (msilib.Dialog method)

 		radix() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		RADIXCHAR (in module locale)

 		
 raise

 		

 		statement, [1]

 		raise (2to3 fixer)

 		raise an exception

 		RAISE_VARARGS (opcode)

 		
 raising

 		

 		exception

 		RAND_add() (in module ssl)

 		RAND_egd() (in module ssl)

 		RAND_status() (in module ssl)

 		randint() (in module random)

 		random (module)

 		random() (in module random)

 		randrange() (in module random)

 		
 range

 		

 		built-in function

 		Range (class in aetypes)

 		range() (built-in function)

 		ratecv() (in module audioop)

 		ratio() (difflib.SequenceMatcher method)

 		Rational (class in numbers)

 		raw (io.BufferedIOBase attribute)

 		raw input

 		raw string

 		raw() (in module curses)

 		raw_decode() (json.JSONDecoder method)

 		
 raw_input

 		

 		built-in function, [1]

 		raw_input (2to3 fixer)

 		raw_input() (built-in function)

 		

 		(code.InteractiveConsole method)

 		RawArray() (in module multiprocessing.sharedctypes)

 		RawConfigParser (class in ConfigParser)

 		RawDescriptionHelpFormatter (class in argparse)

 		RawIOBase (class in io)

 		RawPen (class in turtle)

 		RawTextHelpFormatter (class in argparse)

 		RawTurtle (class in turtle)

 		RawValue() (in module multiprocessing.sharedctypes)

 		RBRACE (in module token)

 		
 re

 		

 		module, [1], [2]

 		re (module)

 		

 		(re.MatchObject attribute)

 		read() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(codecs.StreamReader method)

 		(file method)

 		(httplib.HTTPResponse method)

 		(imaplib.IMAP4 method)

 		(in module imgfile)

 		(in module mmap)

 		(in module os)

 		(io.BufferedIOBase method)

 		(io.BufferedReader method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(mimetypes.MimeTypes method)

 		(multifile.MultiFile method)

 		(ossaudiodev.oss_audio_device method)

 		(robotparser.RobotFileParser method)

 		(ssl.SSLSocket method)

 		(zipfile.ZipFile method)

 		read1() (io.BufferedIOBase method)

 		

 		(io.BufferedReader method)

 		(io.BytesIO method)

 		read_all() (telnetlib.Telnet method)

 		read_byte() (in module mmap)

 		read_eager() (telnetlib.Telnet method)

 		read_history_file() (in module readline)

 		read_init_file() (in module readline)

 		read_lazy() (telnetlib.Telnet method)

 		read_mime_types() (in module mimetypes)

 		READ_RESTRICTED

 		read_sb_data() (telnetlib.Telnet method)

 		read_some() (telnetlib.Telnet method)

 		read_token() (shlex.shlex method)

 		read_until() (telnetlib.Telnet method)

 		read_very_eager() (telnetlib.Telnet method)

 		read_very_lazy() (telnetlib.Telnet method)

 		read_windows_registry() (mimetypes.MimeTypes method)

 		readable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		readall() (io.RawIOBase method)

 		reader() (in module csv)

 		ReadError

 		readfp() (ConfigParser.RawConfigParser method)

 		

 		(mimetypes.MimeTypes method)

 		readframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		readinto() (io.BufferedIOBase method)

 		

 		(io.RawIOBase method)

 		
 readline

 		

 		module

 		readline (module)

 		readline() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method), [1]

 		(imaplib.IMAP4 method)

 		(in module mmap)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(multifile.MultiFile method)

 		readlines() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		readlink() (in module os)

 		readmodule() (in module pyclbr)

 		readmodule_ex() (in module pyclbr)

 		READONLY

 		readonly (memoryview attribute)

 		readPlist() (in module plistlib)

 		readPlistFromResource() (in module plistlib)

 		readPlistFromString() (in module plistlib)

 		readscaled() (in module imgfile)

 		READY (in module cd)

 		ready() (multiprocessing.pool.AsyncResult method)

 		Real (class in numbers)

 		real (numbers.Complex attribute)

 		Real Media File Format

 		real_quick_ratio() (difflib.SequenceMatcher method)

 		realpath() (in module os.path)

 		reason (httplib.HTTPResponse attribute)

 		

 		(urllib2.URLError attribute)

 		reattach() (ttk.Treeview method)

 		
 rebinding

 		

 		name

 		reccontrols() (ossaudiodev.oss_mixer_device method)

 		recent() (imaplib.IMAP4 method)

 		rect() (in module cmath)

 		rectangle() (in module curses.textpad)

 		
 recursive

 		

 		object

 		recv() (asyncore.dispatcher method)

 		

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		recv_bytes() (multiprocessing.Connection method)

 		recv_bytes_into() (multiprocessing.Connection method)

 		recv_into() (socket.socket method)

 		recvfrom() (socket.socket method)

 		recvfrom_into() (socket.socket method)

 		redirect_request() (urllib2.HTTPRedirectHandler method)

 		redisplay() (in module readline)

 		redraw_form() (fl.form method)

 		redrawln() (curses.window method)

 		redrawwin() (curses.window method)

 		reduce (2to3 fixer)

 		reduce() (built-in function)

 		

 		(in module functools)

 		ref (class in weakref)

 		
 reference

 		

 		attribute

 		reference count

 		reference counting

 		ReferenceError, [1]

 		ReferenceType (in module weakref)

 		refilemessages() (mhlib.Folder method)

 		refresh() (curses.window method)

 		REG_BINARY (in module _winreg)

 		REG_DWORD (in module _winreg)

 		REG_DWORD_BIG_ENDIAN (in module _winreg)

 		REG_DWORD_LITTLE_ENDIAN (in module _winreg)

 		REG_EXPAND_SZ (in module _winreg)

 		REG_FULL_RESOURCE_DESCRIPTOR (in module _winreg)

 		REG_LINK (in module _winreg)

 		REG_MULTI_SZ (in module _winreg)

 		REG_NONE (in module _winreg)

 		REG_RESOURCE_LIST (in module _winreg)

 		REG_RESOURCE_REQUIREMENTS_LIST (in module _winreg)

 		REG_SZ (in module _winreg)

 		RegexObject (class in re)

 		register() (abc.ABCMeta method)

 		

 		(in module atexit)

 		(in module codecs)

 		(in module webbrowser)

 		(multiprocessing.managers.BaseManager method)

 		(select.epoll method)

 		(select.poll method)

 		register_adapter() (in module sqlite3)

 		register_archive_format() (in module shutil)

 		register_converter() (in module sqlite3)

 		register_dialect() (in module csv)

 		register_error() (in module codecs)

 		register_function() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_instance() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_introspection_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_multicall_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_namespace() (in module xml.etree.ElementTree)

 		register_optionflag() (in module doctest)

 		register_shape() (in module turtle)

 		registerDOMImplementation() (in module xml.dom)

 		registerResult() (in module unittest)

 		
 relative

 		

 		URL

 		import

 		release() (in module platform)

 		

 		(logging.Handler method)

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		release_lock() (in module imp)

 		
 reload

 		

 		built-in function, [1], [2]

 		reload() (built-in function)

 		relpath() (in module os.path)

 		remainder() (decimal.Context method)

 		remainder_near() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		remove() (array.array method)

 		

 		(collections.deque method)

 		(in module os)

 		(list method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(set method)

 		(xml.etree.ElementTree.Element method)

 		remove_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		remove_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		remove_history_item() (in module readline)

 		remove_label() (mailbox.BabylMessage method)

 		remove_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		remove_pyc() (msilib.Directory method)

 		remove_section() (ConfigParser.RawConfigParser method)

 		remove_sequence() (mailbox.MHMessage method)

 		remove_tree() (in module distutils.dir_util)

 		removeAttribute() (xml.dom.Element method)

 		removeAttributeNode() (xml.dom.Element method)

 		removeAttributeNS() (xml.dom.Element method)

 		removeChild() (xml.dom.Node method)

 		removedirs() (in module os)

 		removeFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		removeHandler() (in module unittest)

 		

 		(logging.Logger method)

 		removemessages() (mhlib.Folder method)

 		removeResult() (in module unittest)

 		rename() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(in module os)

 		renames (2to3 fixer)

 		

 		renames() (in module os)

 		reorganize() (in module gdbm)

 		repeat() (in module itertools)

 		

 		(in module operator)

 		(in module timeit)

 		(timeit.Timer method)

 		
 repetition

 		

 		operation

 		replace() (curses.panel.Panel method)

 		

 		(datetime.date method)

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module string)

 		(str method)

 		replace_errors() (in module codecs)

 		replace_header() (email.message.Message method)

 		replace_history_item() (in module readline)

 		replace_whitespace (textwrap.TextWrapper attribute)

 		replaceChild() (xml.dom.Node method)

 		ReplacePackage() (in module modulefinder)

 		report() (filecmp.dircmp method)

 		

 		(modulefinder.ModuleFinder method)

 		REPORT_CDIFF (in module doctest)

 		report_failure() (doctest.DocTestRunner method)

 		report_full_closure() (filecmp.dircmp method)

 		REPORT_NDIFF (in module doctest)

 		REPORT_ONLY_FIRST_FAILURE (in module doctest)

 		report_partial_closure() (filecmp.dircmp method)

 		report_start() (doctest.DocTestRunner method)

 		report_success() (doctest.DocTestRunner method)

 		REPORT_UDIFF (in module doctest)

 		report_unbalanced() (sgmllib.SGMLParser method)

 		report_unexpected_exception() (doctest.DocTestRunner method)

 		REPORTING_FLAGS (in module doctest)

 		
 repr

 		

 		built-in function, [1], [2], [3]

 		repr (2to3 fixer)

 		Repr (class in repr)

 		repr (module)

 		repr() (built-in function)

 		

 		(in module repr)

 		(repr.Repr method)

 		repr1() (repr.Repr method)

 		
 representation

 		

 		integer

 		Request (class in urllib2)

 		request() (httplib.HTTPConnection method)

 		request_queue_size (SocketServer.BaseServer attribute)

 		request_uri() (in module wsgiref.util)

 		request_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		RequestHandlerClass (SocketServer.BaseServer attribute)

 		requires() (in module test.test_support)

 		reserved (zipfile.ZipInfo attribute)

 		reserved word

 		RESERVED_FUTURE (in module uuid)

 		RESERVED_MICROSOFT (in module uuid)

 		RESERVED_NCS (in module uuid)

 		Reset (C function), [1]

 		reset() (bdb.Bdb method)

 		

 		(HTMLParser.HTMLParser method)

 		(codecs.IncrementalDecoder method)

 		(codecs.IncrementalEncoder method)

 		(codecs.StreamReader method)

 		(codecs.StreamWriter method)

 		(in module dircache)

 		(in module turtle), [1]

 		(ossaudiodev.oss_audio_device method)

 		(pipes.Template method)

 		(sgmllib.SGMLParser method)

 		(xdrlib.Packer method)

 		(xdrlib.Unpacker method)

 		(xml.dom.pulldom.DOMEventStream method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		reset_prog_mode() (in module curses)

 		reset_shell_mode() (in module curses)

 		resetbuffer() (code.InteractiveConsole method)

 		resetlocale() (in module locale)

 		resetscreen() (in module turtle)

 		resetwarnings() (in module warnings)

 		resize() (in module ctypes)

 		

 		(in module mmap)

 		resizemode() (in module turtle)

 		resolution (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		resolveEntity() (xml.sax.handler.EntityResolver method)

 		resource (module)

 		ResourceDenied

 		response() (imaplib.IMAP4 method)

 		ResponseNotReady

 		responses (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(in module httplib)

 		restart() (in module findertools)

 		restore() (in module difflib)

 		RESTRICTED

 		
 restricted

 		

 		execution

 		restype (ctypes._FuncPtr attribute)

 		results() (trace.Trace method)

 		retr() (poplib.POP3 method)

 		retrbinary() (ftplib.FTP method)

 		retrieve() (urllib.URLopener method)

 		retrlines() (ftplib.FTP method)

 		
 return

 		

 		statement, [1], [2]

 		return_ok() (cookielib.CookiePolicy method)

 		RETURN_VALUE (opcode)

 		returncode (subprocess.Popen attribute)

 		returns_unicode (xml.parsers.expat.xmlparser attribute)

 		
 reverse

 		

 		quotes, [1]

 		reverse() (array.array method)

 		

 		(collections.deque method)

 		(in module audioop)

 		(list method)

 		reverse_order() (pstats.Stats method)

 		reversed() (built-in function)

 		revert() (cookielib.FileCookieJar method)

 		rewind() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		rewindbody() (rfc822.Message method)

 		RExec (class in rexec)

 		rexec (module)

 		
 RFC

 		

 		RFC 1014, [1]

 		RFC 1321, [1]

 		RFC 1422

 		RFC 1521, [1], [2]

 		RFC 1522

 		RFC 1524, [1]

 		RFC 1725

 		RFC 1730

 		RFC 1738

 		RFC 1750

 		RFC 1766, [1]

 		RFC 1808, [1]

 		RFC 1832, [1]

 		RFC 1866

 		RFC 1869, [1]

 		RFC 1894

 		RFC 2033

 		RFC 2045, [1], [2], [3], [4], [5], [6]

 		RFC 2046, [1]

 		RFC 2047, [1], [2], [3], [4]

 		RFC 2060, [1]

 		RFC 2068

 		RFC 2104, [1]

 		RFC 2109, [1], [2], [3], [4], [5], [6]

 		RFC 2231, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		RFC 2342

 		RFC 2368

 		RFC 2396, [1]

 		RFC 2487

 		RFC 2616, [1], [2], [3], [4]

 		RFC 2732, [1]

 		RFC 2774

 		RFC 2817

 		RFC 2821

 		RFC 2822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]

 		RFC 2964

 		RFC 2965, [1], [2], [3]

 		RFC 3207

 		RFC 3229

 		RFC 3280

 		RFC 3454

 		RFC 3490, [1], [2], [3], [4]

 		RFC 3492, [1]

 		RFC 3493

 		RFC 3548, [1]

 		RFC 3986, [1], [2]

 		RFC 4122, [1], [2], [3], [4]

 		RFC 4158

 		RFC 4217

 		RFC 821, [1]

 		RFC 822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		RFC 854, [1]

 		RFC 959

 		RFC 977

 		rfc2109 (cookielib.Cookie attribute)

 		rfc2109_as_netscape (cookielib.DefaultCookiePolicy attribute)

 		rfc2965 (cookielib.CookiePolicy attribute)

 		
 rfc822

 		

 		module

 		rfc822 (module)

 		rfc822_escape() (in module distutils.util)

 		RFC_4122 (in module uuid)

 		rfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		rfind() (in module mmap)

 		

 		(in module string)

 		(str method)

 		rgb_to_hls() (in module colorsys)

 		rgb_to_hsv() (in module colorsys)

 		rgb_to_yiq() (in module colorsys)

 		RGBColor (class in aetypes)

 		right() (in module turtle)

 		right_list (filecmp.dircmp attribute)

 		right_only (filecmp.dircmp attribute)

 		RIGHTSHIFT (in module token)

 		RIGHTSHIFTEQUAL (in module token)

 		rindex() (in module string)

 		

 		(str method)

 		rjust() (in module string)

 		

 		(str method)

 		
 rlcompleter

 		

 		module

 		rlcompleter (module)

 		rlecode_hqx() (in module binascii)

 		rledecode_hqx() (in module binascii)

 		RLIMIT_AS (in module resource)

 		RLIMIT_CORE (in module resource)

 		RLIMIT_CPU (in module resource)

 		RLIMIT_DATA (in module resource)

 		RLIMIT_FSIZE (in module resource)

 		RLIMIT_MEMLOCK (in module resource)

 		RLIMIT_NOFILE (in module resource)

 		RLIMIT_NPROC (in module resource)

 		RLIMIT_OFILE (in module resource)

 		RLIMIT_RSS (in module resource)

 		RLIMIT_STACK (in module resource)

 		RLIMIT_VMEM (in module resource)

 		RLock (class in multiprocessing)

 		RLock() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		rmd() (ftplib.FTP method)

 		rmdir() (in module os)

 		RMFF

 		rms() (in module audioop)

 		rmtree() (in module shutil)

 		rnopen() (in module bsddb)

 		RO

 		RobotFileParser (class in robotparser)

 		robotparser (module)

 		robots.txt

 		rollback() (sqlite3.Connection method)

 		ROT_FOUR (opcode)

 		ROT_THREE (opcode)

 		ROT_TWO (opcode)

 		rotate() (collections.deque method)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		RotatingFileHandler (class in logging.handlers)

 		round() (built-in function)

 		Rounded (class in decimal)

 		Row (class in sqlite3)

 		row_factory (sqlite3.Connection attribute)

 		rowcount (sqlite3.Cursor attribute)

 		RPAR (in module token)

 		rpartition() (str method)

 		rpc_paths (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		rpop() (poplib.POP3 method)

 		rset() (poplib.POP3 method)

 		rshift() (in module operator)

 		rsplit() (in module string)

 		

 		(str method)

 		RSQB (in module token)

 		rstrip() (in module string)

 		

 		(str method)

 		rt() (in module turtle)

 		RTLD_LAZY (in module dl)

 		RTLD_NOW (in module dl)

 		ruler (cmd.Cmd attribute)

 		Run script

 		run() (bdb.Bdb method)

 		

 		(distutils.cmd.Command method)

 		(doctest.DocTestRunner method)

 		(hotshot.Profile method)

 		(in module cProfile)

 		(in module pdb)

 		(multiprocessing.Process method)

 		(pdb.Pdb method)

 		(sched.scheduler method)

 		(threading.Thread method)

 		(trace.Trace method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		(wsgiref.handlers.BaseHandler method)

 		run_docstring_examples() (in module doctest)

 		run_module() (in module runpy)

 		run_path() (in module runpy)

 		run_script() (modulefinder.ModuleFinder method)

 		run_setup() (in module distutils.core)

 		run_unittest() (in module test.test_support)

 		runcall() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module pdb)

 		(pdb.Pdb method)

 		runcode() (code.InteractiveInterpreter method)

 		runctx() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module cProfile)

 		(trace.Trace method)

 		runeval() (bdb.Bdb method)

 		

 		(in module pdb)

 		(pdb.Pdb method)

 		runfunc() (trace.Trace method)

 		runpy (module)

 		runsource() (code.InteractiveInterpreter method)

 		runtime_library_dir_option() (distutils.ccompiler.CCompiler method)

 		RuntimeError

 		

 		exception

 		runtimemodel (in module MacOS)

 		RuntimeWarning

 		RUSAGE_BOTH (in module resource)

 		RUSAGE_CHILDREN (in module resource)

 		RUSAGE_SELF (in module resource)

S

 		

 		S (in module re)

 		S_ENFMT (in module stat)

 		s_eval() (rexec.RExec method)

 		s_exec() (rexec.RExec method)

 		s_execfile() (rexec.RExec method)

 		S_IEXEC (in module stat)

 		S_IFBLK (in module stat)

 		S_IFCHR (in module stat)

 		S_IFDIR (in module stat)

 		S_IFIFO (in module stat)

 		S_IFLNK (in module stat)

 		S_IFMT (in module stat)

 		S_IFMT() (in module stat)

 		S_IFREG (in module stat)

 		S_IFSOCK (in module stat)

 		S_IMODE() (in module stat)

 		s_import() (rexec.RExec method)

 		S_IREAD (in module stat)

 		S_IRGRP (in module stat)

 		S_IROTH (in module stat)

 		S_IRUSR (in module stat)

 		S_IRWXG (in module stat)

 		S_IRWXO (in module stat)

 		S_IRWXU (in module stat)

 		S_ISBLK() (in module stat)

 		S_ISCHR() (in module stat)

 		S_ISDIR() (in module stat)

 		S_ISFIFO() (in module stat)

 		S_ISGID (in module stat)

 		S_ISLNK() (in module stat)

 		S_ISREG() (in module stat)

 		S_ISSOCK() (in module stat)

 		S_ISUID (in module stat)

 		S_ISVTX (in module stat)

 		S_IWGRP (in module stat)

 		S_IWOTH (in module stat)

 		S_IWRITE (in module stat)

 		S_IWUSR (in module stat)

 		S_IXGRP (in module stat)

 		S_IXOTH (in module stat)

 		S_IXUSR (in module stat)

 		s_reload() (rexec.RExec method)

 		s_unload() (rexec.RExec method)

 		safe_substitute() (string.Template method)

 		SafeConfigParser (class in ConfigParser)

 		saferepr() (in module pprint)

 		same_files (filecmp.dircmp attribute)

 		same_quantum() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		samefile() (in module os.path)

 		sameopenfile() (in module os.path)

 		samestat() (in module os.path)

 		sample() (in module random)

 		save() (cookielib.FileCookieJar method)

 		save_bgn() (htmllib.HTMLParser method)

 		save_end() (htmllib.HTMLParser method)

 		SaveKey() (in module _winreg)

 		SAX2DOM (class in xml.dom.pulldom)

 		SAXException

 		SAXNotRecognizedException

 		SAXNotSupportedException

 		SAXParseException

 		scale() (in module imageop)

 		scaleb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		scalebarvalues() (FrameWork.ScrolledWindow method)

 		scanf()

 		sched (module)

 		scheduler (class in sched)

 		schema (in module msilib)

 		sci() (in module fpformat)

 		scope, [1]

 		Scrap Manager

 		Screen (class in turtle)

 		screensize() (in module turtle)

 		script_from_examples() (in module doctest)

 		scroll() (curses.window method)

 		scrollbar_callback() (FrameWork.ScrolledWindow method)

 		scrollbars() (FrameWork.ScrolledWindow method)

 		ScrolledCanvas (class in turtle)

 		ScrolledText (module)

 		scrollok() (curses.window method)

 		
 search

 		

 		path, module, [1], [2], [3]

 		search() (imaplib.IMAP4 method)

 		

 		(in module re)

 		(re.RegexObject method)

 		SEARCH_ERROR (in module imp)

 		second (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		section_divider() (multifile.MultiFile method)

 		sections() (ConfigParser.RawConfigParser method)

 		secure (cookielib.Cookie attribute)

 		Secure Hash Algorithm

 		secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512

 		Secure Sockets Layer

 		
 security

 		

 		CGI

 		see() (ttk.Treeview method)

 		seed() (in module random)

 		seek() (bz2.BZ2File method)

 		

 		(chunk.Chunk method)

 		(file method)

 		(in module mmap)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		SEEK_CUR (in module os)

 		

 		(in module posixfile)

 		SEEK_END (in module os)

 		

 		(in module posixfile)

 		SEEK_SET (in module os)

 		

 		(in module posixfile)

 		seekable() (io.IOBase method)

 		Select (class in Tix)

 		select (module)

 		select() (imaplib.IMAP4 method)

 		

 		(in module gl)

 		(in module select)

 		(ttk.Notebook method)

 		selection() (ttk.Treeview method)

 		selection_add() (ttk.Treeview method)

 		selection_remove() (ttk.Treeview method)

 		selection_set() (ttk.Treeview method)

 		selection_toggle() (ttk.Treeview method)

 		Semaphore (class in multiprocessing)

 		

 		(class in threading)

 		Semaphore() (multiprocessing.managers.SyncManager method)

 		semaphores, binary

 		SEMI (in module token)

 		send() (aetools.TalkTo method)

 		

 		(asyncore.dispatcher method)

 		(generator method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.SocketHandler method)

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		send_bytes() (multiprocessing.Connection method)

 		send_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_flowing_data() (formatter.writer method)

 		send_header() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_hor_rule() (formatter.writer method)

 		send_label_data() (formatter.writer method)

 		send_line_break() (formatter.writer method)

 		send_literal_data() (formatter.writer method)

 		send_paragraph() (formatter.writer method)

 		send_response() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_signal() (subprocess.Popen method)

 		sendall() (socket.socket method)

 		sendcmd() (ftplib.FTP method)

 		sendfile() (wsgiref.handlers.BaseHandler method)

 		sendmail() (smtplib.SMTP method)

 		sendto() (socket.socket method)

 		sep (in module os)

 		Separator() (in module FrameWork)

 		sequence

 		

 		item

 		iteration

 		object, [1], [2], [3], [4], [5], [6], [7]

 		types, mutable

 		types, operations on, [1]

 		Sequence (class in collections)

 		sequence (in module msilib)

 		sequence2st() (in module parser)

 		sequenceIncludes() (in module operator)

 		SequenceMatcher (class in difflib), [1]

 		SerialCookie (class in Cookie)

 		
 serializing

 		

 		objects

 		serve_forever() (SocketServer.BaseServer method)

 		
 server

 		

 		WWW, [1]

 		server (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		server_activate() (SocketServer.BaseServer method)

 		server_address (SocketServer.BaseServer attribute)

 		server_bind() (SocketServer.BaseServer method)

 		server_software (wsgiref.handlers.BaseHandler attribute)

 		server_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		ServerProxy (class in xmlrpclib)

 		
 set

 		

 		display

 		object, [1], [2]

 		set (built-in class)

 		Set (class in collections)

 		

 		(class in sets)

 		
 set type

 		

 		object

 		set() (ConfigParser.RawConfigParser method)

 		

 		(ConfigParser.SafeConfigParser method)

 		(Cookie.Morsel method)

 		(EasyDialogs.ProgressBar method)

 		(ossaudiodev.oss_mixer_device method)

 		(test.test_support.EnvironmentVarGuard method)

 		(threading.Event method)

 		(ttk.Combobox method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		set_allowed_domains() (cookielib.DefaultCookiePolicy method)

 		set_app() (wsgiref.simple_server.WSGIServer method)

 		set_authorizer() (sqlite3.Connection method)

 		set_blocked_domains() (cookielib.DefaultCookiePolicy method)

 		set_boundary() (email.message.Message method)

 		set_break() (bdb.Bdb method)

 		set_charset() (email.message.Message method)

 		set_children() (ttk.Treeview method)

 		set_completer() (in module readline)

 		set_completer_delims() (in module readline)

 		set_completion_display_matches_hook() (in module readline)

 		set_continue() (bdb.Bdb method)

 		set_conversion_mode() (in module ctypes)

 		set_cookie() (cookielib.CookieJar method)

 		set_cookie_if_ok() (cookielib.CookieJar method)

 		set_current() (msilib.Feature method)

 		set_date() (mailbox.MaildirMessage method)

 		set_debug() (in module gc)

 		set_debuglevel() (ftplib.FTP method)

 		

 		(httplib.HTTPConnection method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		(telnetlib.Telnet method)

 		set_default_type() (email.message.Message method)

 		set_defaults() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		set_errno() (in module ctypes)

 		set_event_call_back() (in module fl)

 		set_executable() (in module multiprocessing)

 		set_executables() (distutils.ccompiler.CCompiler method)

 		set_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		set_form_position() (fl.form method)

 		set_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		set_graphics_mode() (in module fl)

 		set_history_length() (in module readline)

 		set_include_dirs() (distutils.ccompiler.CCompiler method)

 		set_info() (mailbox.MaildirMessage method)

 		set_labels() (mailbox.BabylMessage method)

 		set_last_error() (in module ctypes)

 		set_libraries() (distutils.ccompiler.CCompiler method)

 		set_library_dirs() (distutils.ccompiler.CCompiler method)

 		SET_LINENO (opcode)

 		set_link_objects() (distutils.ccompiler.CCompiler method)

 		set_literal (2to3 fixer)

 		set_location() (bsddb.bsddbobject method)

 		set_next() (bdb.Bdb method)

 		set_nonstandard_attr() (cookielib.Cookie method)

 		set_ok() (cookielib.CookiePolicy method)

 		set_option_negotiation_callback() (telnetlib.Telnet method)

 		set_output_charset() (gettext.NullTranslations method)

 		set_param() (email.message.Message method)

 		set_pasv() (ftplib.FTP method)

 		set_payload() (email.message.Message method)

 		set_policy() (cookielib.CookieJar method)

 		set_position() (xdrlib.Unpacker method)

 		set_pre_input_hook() (in module readline)

 		set_progress_handler() (sqlite3.Connection method)

 		set_proxy() (urllib2.Request method)

 		set_python_build() (in module distutils.sysconfig)

 		set_quit() (bdb.Bdb method)

 		set_recsrc() (ossaudiodev.oss_mixer_device method)

 		set_return() (bdb.Bdb method)

 		set_runtime_library_dirs() (distutils.ccompiler.CCompiler method)

 		set_seq1() (difflib.SequenceMatcher method)

 		set_seq2() (difflib.SequenceMatcher method)

 		set_seqs() (difflib.SequenceMatcher method)

 		set_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		set_server_documentation() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_name() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_title() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_spacing() (formatter.formatter method)

 		set_startup_hook() (in module readline)

 		set_step() (bdb.Bdb method)

 		set_subdir() (mailbox.MaildirMessage method)

 		set_terminator() (asynchat.async_chat method)

 		set_threshold() (in module gc)

 		set_trace() (bdb.Bdb method)

 		

 		(in module bdb)

 		(in module pdb)

 		(pdb.Pdb method)

 		set_tunnel() (httplib.HTTPConnection method)

 		set_type() (email.message.Message method)

 		set_unittest_reportflags() (in module doctest)

 		set_unixfrom() (email.message.Message method)

 		set_until() (bdb.Bdb method)

 		set_url() (robotparser.RobotFileParser method)

 		set_usage() (optparse.OptionParser method)

 		set_userptr() (curses.panel.Panel method)

 		set_visible() (mailbox.BabylMessage method)

 		set_wakeup_fd() (in module signal)

 		setacl() (imaplib.IMAP4 method)

 		setannotation() (imaplib.IMAP4 method)

 		setarrowcursor() (in module FrameWork)

 		setattr() (built-in function)

 		setAttribute() (xml.dom.Element method)

 		setAttributeNode() (xml.dom.Element method)

 		setAttributeNodeNS() (xml.dom.Element method)

 		setAttributeNS() (xml.dom.Element method)

 		SetBase() (xml.parsers.expat.xmlparser method)

 		setblocking() (socket.socket method)

 		setByteStream() (xml.sax.xmlreader.InputSource method)

 		setcbreak() (in module tty)

 		setCharacterStream() (xml.sax.xmlreader.InputSource method)

 		setcheckinterval() (in module sys)

 		setcomptype() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setContentHandler() (xml.sax.xmlreader.XMLReader method)

 		setcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		SetCreatorAndType() (in module MacOS)

 		setcurrent() (mhlib.Folder method)

 		setDaemon() (threading.Thread method)

 		setdefault() (dict method)

 		setdefaultencoding() (in module sys)

 		setdefaulttimeout() (in module socket)

 		setdlopenflags() (in module sys)

 		setDocumentLocator() (xml.sax.handler.ContentHandler method)

 		setDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		setegid() (in module os)

 		setEncoding() (xml.sax.xmlreader.InputSource method)

 		setEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		setErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		seteuid() (in module os)

 		setFeature() (xml.sax.xmlreader.XMLReader method)

 		setfirstweekday() (in module calendar)

 		setfmt() (ossaudiodev.oss_audio_device method)

 		setFormatter() (logging.Handler method)

 		setframerate() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setgid() (in module os)

 		setgroups() (in module os)

 		seth() (in module turtle)

 		setheading() (in module turtle)

 		SetInteger() (msilib.Record method)

 		setitem() (in module operator)

 		setitimer() (in module signal)

 		setlast() (mhlib.Folder method)

 		setLevel() (logging.Handler method)

 		

 		(logging.Logger method)

 		setliteral() (sgmllib.SGMLParser method)

 		setlocale() (in module locale)

 		setLocale() (xml.sax.xmlreader.XMLReader method)

 		setLoggerClass() (in module logging)

 		setlogmask() (in module syslog)

 		setmark() (aifc.aifc method)

 		setMaxConns() (urllib2.CacheFTPHandler method)

 		setmode() (in module msvcrt)

 		setName() (threading.Thread method)

 		setnchannels() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnomoretags() (sgmllib.SGMLParser method)

 		setoption() (in module jpeg)

 		SetParamEntityParsing() (xml.parsers.expat.xmlparser method)

 		setparameters() (ossaudiodev.oss_audio_device method)

 		setparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setpassword() (zipfile.ZipFile method)

 		setpath() (in module fm)

 		setpgid() (in module os)

 		setpgrp() (in module os)

 		setpos() (aifc.aifc method)

 		

 		(in module turtle)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		setposition() (in module turtle)

 		setprofile() (in module sys)

 		

 		(in module threading)

 		SetProperty() (msilib.SummaryInformation method)

 		setProperty() (xml.sax.xmlreader.XMLReader method)

 		setPublicId() (xml.sax.xmlreader.InputSource method)

 		setquota() (imaplib.IMAP4 method)

 		setraw() (in module tty)

 		setrecursionlimit() (in module sys)

 		setregid() (in module os)

 		setresgid() (in module os)

 		setresuid() (in module os)

 		setreuid() (in module os)

 		setrlimit() (in module resource)

 		sets (module)

 		setsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setscrreg() (curses.window method)

 		setsid() (in module os)

 		setslice() (in module operator)

 		setsockopt() (socket.socket method)

 		setstate() (in module random)

 		SetStream() (msilib.Record method)

 		SetString() (msilib.Record method)

 		setSystemId() (xml.sax.xmlreader.InputSource method)

 		setsyx() (in module curses)

 		setTarget() (logging.handlers.MemoryHandler method)

 		settiltangle() (in module turtle)

 		settimeout() (socket.socket method)

 		setTimeout() (urllib2.CacheFTPHandler method)

 		settrace() (in module sys)

 		

 		(in module threading)

 		settscdump() (in module sys)

 		settypecreator() (ic.IC method)

 		

 		(in module ic)

 		setuid() (in module os)

 		setundobuffer() (in module turtle)

 		setup() (in module distutils.core)

 		

 		(SocketServer.RequestHandler method)

 		(in module turtle)

 		setUp() (unittest.TestCase method)

 		setup_environ() (wsgiref.handlers.BaseHandler method)

 		SETUP_EXCEPT (opcode)

 		SETUP_FINALLY (opcode)

 		SETUP_LOOP (opcode)

 		setup_testing_defaults() (in module wsgiref.util)

 		SETUP_WITH (opcode)

 		setUpClass() (unittest.TestCase method)

 		setupterm() (in module curses)

 		SetValue() (in module _winreg)

 		SetValueEx() (in module _winreg)

 		setwatchcursor() (in module FrameWork)

 		setworldcoordinates() (in module turtle)

 		setx() (in module turtle)

 		sety() (in module turtle)

 		SF_APPEND (in module stat)

 		SF_ARCHIVED (in module stat)

 		SF_IMMUTABLE (in module stat)

 		SF_NOUNLINK (in module stat)

 		SF_SNAPSHOT (in module stat)

 		SGML

 		
 sgmllib

 		

 		module

 		sgmllib (module)

 		SGMLParseError

 		SGMLParser (class in sgmllib)

 		

 		(in module sgmllib)

 		sha (module)

 		Shape (class in turtle)

 		shape (memoryview attribute)

 		shape() (in module turtle)

 		shapesize() (in module turtle)

 		shared_object_filename() (distutils.ccompiler.CCompiler method)

 		Shelf (class in shelve)

 		
 shelve

 		

 		module

 		shelve (module)

 		shift() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		shift_path_info() (in module wsgiref.util)

 		
 shifting

 		

 		operation

 		operations

 		shlex (class in shlex)

 		

 		(module)

 		shortDescription() (unittest.TestCase method)

 		shouldFlush() (logging.handlers.BufferingHandler method)

 		

 		(logging.handlers.MemoryHandler method)

 		shouldStop (unittest.TestResult attribute)

 		show() (curses.panel.Panel method)

 		show_choice() (in module fl)

 		show_compilers() (in module distutils.ccompiler)

 		show_file_selector() (in module fl)

 		show_form() (fl.form method)

 		show_input() (in module fl)

 		

 		show_message() (in module fl)

 		show_question() (in module fl)

 		showsyntaxerror() (code.InteractiveInterpreter method)

 		showtraceback() (code.InteractiveInterpreter method)

 		showturtle() (in module turtle)

 		showwarning() (in module warnings)

 		shuffle() (in module random)

 		shutdown() (imaplib.IMAP4 method)

 		

 		(SocketServer.BaseServer method)

 		(in module findertools)

 		(in module logging)

 		(multiprocessing.managers.BaseManager method)

 		(socket.socket method)

 		shutil (module)

 		SIG_DFL (in module signal)

 		SIG_IGN (in module signal)

 		siginterrupt() (in module signal)

 		
 signal

 		

 		module

 		signal (module)

 		signal() (in module signal)

 		
 simple

 		

 		statement

 		Simple Mail Transfer Protocol

 		SimpleCookie (class in Cookie)

 		simplefilter() (in module warnings)

 		SimpleHandler (class in wsgiref.handlers)

 		SimpleHTTPRequestHandler (class in SimpleHTTPServer)

 		
 SimpleHTTPServer

 		

 		module

 		SimpleHTTPServer (module)

 		SimpleXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		SimpleXMLRPCServer (class in SimpleXMLRPCServer)

 		

 		(module)

 		sin() (in module cmath)

 		

 		(in module math)

 		
 singleton

 		

 		tuple

 		sinh() (in module cmath)

 		

 		(in module math)

 		site (module)

 		
 site-packages

 		

 		directory

 		
 site-python

 		

 		directory

 		
 sitecustomize

 		

 		module, [1]

 		size (struct.Struct attribute)

 		

 		(tarfile.TarInfo attribute)

 		size() (ftplib.FTP method)

 		

 		(in module mmap)

 		Sized (class in collections)

 		sizeof() (in module ctypes)

 		SKIP (in module doctest)

 		skip() (chunk.Chunk method)

 		

 		(in module unittest)

 		skipIf() (in module unittest)

 		skipinitialspace (csv.Dialect attribute)

 		skipped (unittest.TestResult attribute)

 		skippedEntity() (xml.sax.handler.ContentHandler method)

 		skipTest() (unittest.TestCase method)

 		skipUnless() (in module unittest)

 		SLASH (in module token)

 		SLASHEQUAL (in module token)

 		slave() (nntplib.NNTP method)

 		sleep() (in module findertools)

 		

 		(in module time)

 		slice, [1]

 		

 		assignment

 		built-in function, [1], [2]

 		object

 		operation

 		slice() (built-in function)

 		SLICE+0 (opcode)

 		SLICE+1 (opcode)

 		SLICE+2 (opcode)

 		SLICE+3 (opcode)

 		SliceType (in module types)

 		slicing, [1], [2]

 		

 		assignment

 		extended

 		SmartCookie (class in Cookie)

 		
 SMTP

 		

 		protocol

 		SMTP (class in smtplib)

 		SMTP_SSL (class in smtplib)

 		SMTPAuthenticationError

 		SMTPConnectError

 		smtpd (module)

 		SMTPDataError

 		SMTPException

 		SMTPHandler (class in logging.handlers)

 		SMTPHeloError

 		smtplib (module)

 		SMTPRecipientsRefused

 		SMTPResponseException

 		SMTPSenderRefused

 		SMTPServer (class in smtpd)

 		SMTPServerDisconnected

 		SND_ALIAS (in module winsound)

 		SND_ASYNC (in module winsound)

 		SND_FILENAME (in module winsound)

 		SND_LOOP (in module winsound)

 		SND_MEMORY (in module winsound)

 		SND_NODEFAULT (in module winsound)

 		SND_NOSTOP (in module winsound)

 		SND_NOWAIT (in module winsound)

 		SND_PURGE (in module winsound)

 		sndhdr (module)

 		sniff() (csv.Sniffer method)

 		Sniffer (class in csv)

 		SOCK_DGRAM (in module socket)

 		SOCK_RAW (in module socket)

 		SOCK_RDM (in module socket)

 		SOCK_SEQPACKET (in module socket)

 		SOCK_STREAM (in module socket)

 		
 socket

 		

 		module, [1]

 		object

 		socket (module)

 		

 		(SocketServer.BaseServer attribute)

 		socket() (imaplib.IMAP4 method)

 		

 		(in module socket), [1]

 		socket_type (SocketServer.BaseServer attribute)

 		SocketHandler (class in logging.handlers)

 		socketpair() (in module socket)

 		SocketServer (module)

 		SocketType (in module socket)

 		softspace (file attribute)

 		SOMAXCONN (in module socket)

 		sort() (imaplib.IMAP4 method)

 		

 		(list method)

 		sort_stats() (pstats.Stats method)

 		sorted() (built-in function)

 		sortTestMethodsUsing (unittest.TestLoader attribute)

 		source (doctest.Example attribute)

 		

 		(shlex.shlex attribute)

 		source character set

 		sourcehook() (shlex.shlex method)

 		space

 		span() (re.MatchObject method)

 		spawn() (distutils.ccompiler.CCompiler method)

 		

 		(in module pty)

 		spawnl() (in module os)

 		spawnle() (in module os)

 		spawnlp() (in module os)

 		spawnlpe() (in module os)

 		spawnv() (in module os)

 		spawnve() (in module os)

 		spawnvp() (in module os)

 		spawnvpe() (in module os)

 		
 special

 		

 		attribute

 		attribute, generic

 		special method

 		specified_attributes (xml.parsers.expat.xmlparser attribute)

 		speed() (in module turtle)

 		

 		(ossaudiodev.oss_audio_device method)

 		splash() (in module MacOS)

 		split() (in module os.path)

 		

 		(in module re)

 		(in module shlex)

 		(in module string)

 		(re.RegexObject method)

 		(str method)

 		split_quoted() (in module distutils.util)

 		splitdrive() (in module os.path)

 		splitext() (in module os.path)

 		splitfields() (in module string)

 		splitlines() (str method)

 		SplitResult (class in urlparse)

 		splitunc() (in module os.path)

 		SpooledTemporaryFile() (in module tempfile)

 		sprintf-style formatting

 		spwd (module)

 		sqlite3 (module)

 		sqrt() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		SSL

 		ssl (module)

 		ssl() (imaplib.IMAP4_SSL method)

 		ssl_version (ftplib.FTP_TLS attribute)

 		SSLError

 		st() (in module turtle)

 		st2list() (in module parser)

 		st2tuple() (in module parser)

 		ST_ATIME (in module stat)

 		ST_CTIME (in module stat)

 		ST_DEV (in module stat)

 		ST_GID (in module stat)

 		ST_INO (in module stat)

 		ST_MODE (in module stat)

 		ST_MTIME (in module stat)

 		ST_NLINK (in module stat)

 		ST_SIZE (in module stat)

 		ST_UID (in module stat)

 		
 stack

 		

 		execution

 		trace

 		stack viewer

 		stack() (in module inspect)

 		stack_size() (in module thread)

 		

 		(in module threading)

 		
 stackable

 		

 		streams

 		stamp() (in module turtle)

 		
 standard

 		

 		output, [1]

 		Standard C

 		standard input

 		standard_b64decode() (in module base64)

 		standard_b64encode() (in module base64)

 		standard_error (2to3 fixer)

 		StandardError

 		standend() (curses.window method)

 		standout() (curses.window method)

 		STAR (in module token)

 		STAREQUAL (in module token)

 		starmap() (in module itertools)

 		start (slice object attribute), [1]

 		start() (hotshot.Profile method)

 		

 		(multiprocessing.Process method)

 		(multiprocessing.managers.BaseManager method)

 		(re.MatchObject method)

 		(threading.Thread method)

 		(ttk.Progressbar method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		start_color() (in module curses)

 		start_component() (msilib.Directory method)

 		start_new_thread() (in module thread)

 		startbody() (MimeWriter.MimeWriter method)

 		StartCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		StartDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		startDocument() (xml.sax.handler.ContentHandler method)

 		startElement() (xml.sax.handler.ContentHandler method)

 		StartElementHandler() (xml.parsers.expat.xmlparser method)

 		startElementNS() (xml.sax.handler.ContentHandler method)

 		STARTF_USESHOWWINDOW (in module subprocess)

 		STARTF_USESTDHANDLES (in module subprocess)

 		startfile() (in module os)

 		startmultipartbody() (MimeWriter.MimeWriter method)

 		StartNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		startPrefixMapping() (xml.sax.handler.ContentHandler method)

 		startswith() (str method)

 		startTest() (unittest.TestResult method)

 		startTestRun() (unittest.TestResult method)

 		starttls() (smtplib.SMTP method)

 		STARTUPINFO (class in subprocess)

 		
 stat

 		

 		module

 		stat (module)

 		stat() (in module os)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		stat_float_times() (in module os)

 		state() (ttk.Widget method)

 		statement

 		

 		*, [1]

 		**, [1]

 		@

 		assert, [1]

 		assignment, [1]

 		assignment, augmented

 		break, [1], [2], [3], [4]

 		class

 		compound

 		continue, [1], [2], [3], [4]

 		def

 		del, [1], [2], [3], [4]

 		except

 		exec, [1], [2]

 		expression

 		for, [1], [2], [3], [4]

 		from

 		future

 		global, [1], [2]

 		if, [1]

 		import, [1], [2], [3], [4]

 		loop, [1], [2], [3]

 		pass

 		print, [1], [2]

 		raise, [1]

 		return, [1], [2]

 		simple

 		try, [1], [2]

 		while, [1], [2], [3]

 		with, [1]

 		yield

 		statement grouping

 		staticmethod() (built-in function)

 		Stats (class in pstats)

 		status (httplib.HTTPResponse attribute)

 		status() (imaplib.IMAP4 method)

 		
 statvfs

 		

 		module

 		statvfs (module)

 		statvfs() (in module os)

 		STD_ERROR_HANDLE (in module subprocess)

 		STD_INPUT_HANDLE (in module subprocess)

 		STD_OUTPUT_HANDLE (in module subprocess)

 		StdButtonBox (class in Tix)

 		stderr (in module sys), [1]

 		

 		(subprocess.Popen attribute)

 		stdin (in module sys), [1]

 		

 		(subprocess.Popen attribute)

 		stdio

 		STDOUT (in module subprocess)

 		stdout (in module sys), [1], [2]

 		

 		(subprocess.Popen attribute)

 		Stein, Greg

 		step (slice object attribute), [1]

 		step() (ttk.Progressbar method)

 		stereocontrols() (ossaudiodev.oss_mixer_device method)

 		STILL (in module cd)

 		stop (slice object attribute), [1]

 		stop() (hotshot.Profile method)

 		

 		(ttk.Progressbar method)

 		(unittest.TestResult method)

 		STOP_CODE (opcode)

 		stop_here() (bdb.Bdb method)

 		StopIteration

 		

 		exception, [1]

 		stopListening() (in module logging.config)

 		stopTest() (unittest.TestResult method)

 		stopTestRun() (unittest.TestResult method)

 		storbinary() (ftplib.FTP method)

 		store() (imaplib.IMAP4 method)

 		STORE_ACTIONS (optparse.Option attribute)

 		STORE_ATTR (opcode)

 		STORE_DEREF (opcode)

 		STORE_FAST (opcode)

 		STORE_GLOBAL (opcode)

 		STORE_MAP (opcode)

 		STORE_NAME (opcode)

 		STORE_SLICE+0 (opcode)

 		STORE_SLICE+1 (opcode)

 		STORE_SLICE+2 (opcode)

 		STORE_SLICE+3 (opcode)

 		STORE_SUBSCR (opcode)

 		storlines() (ftplib.FTP method)

 		
 str

 		

 		built-in function, [1], [2]

 		format

 		str() (built-in function)

 		

 		(in module locale)

 		strcoll() (in module locale)

 		StreamError

 		StreamHandler (class in logging)

 		StreamReader (class in codecs)

 		StreamReaderWriter (class in codecs)

 		StreamRecoder (class in codecs)

 		streams

 		

 		stackable

 		StreamWriter (class in codecs)

 		strerror() (in module os)

 		strftime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module time)

 		strict_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_errors() (in module codecs)

 		strict_ns_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_initial_dollar (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_path (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strict_rfc2965_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strides (memoryview attribute)

 		
 string

 		

 		Unicode

 		comparison

 		conversion, [1], [2]

 		formatting

 		interpolation

 		item

 		methods

 		module, [1], [2]

 		object, [1], [2], [3]

 		STRING (in module token)

 		string (module)

 		

 		(re.MatchObject attribute)

 		string literal

 		string_at() (in module ctypes)

 		StringIO (class in io)

 		

 		(class in StringIO)

 		(module)

 		StringIO() (in module cStringIO)

 		stringprep (module)

 		strings, documentation, [1]

 		StringType (in module types)

 		StringTypes (in module types)

 		strip() (in module string)

 		

 		(str method)

 		strip_dirs() (pstats.Stats method)

 		stripspaces (curses.textpad.Textbox attribute)

 		strptime() (datetime.datetime class method)

 		

 		(in module time)

 		strtobool() (in module distutils.util)

 		
 struct

 		

 		module

 		Struct (class in struct)

 		struct (module)

 		struct_time (class in time)

 		Structure (class in ctypes)

 		
 structures

 		

 		C

 		strxfrm() (in module locale)

 		STType (in module parser)

 		
 style

 		

 		coding

 		Style (class in ttk)

 		StyledText (class in aetypes)

 		sub() (in module operator)

 		

 		(in module re)

 		(re.RegexObject method)

 		sub_commands (distutils.cmd.Command attribute)

 		
 subclassing

 		

 		immutable types

 		subdirs (filecmp.dircmp attribute)

 		SubElement() (in module xml.etree.ElementTree)

 		SubMenu() (in module FrameWork)

 		subn() (in module re)

 		

 		(re.RegexObject method)

 		Subnormal (class in decimal)

 		subpad() (curses.window method)

 		subprocess (module)

 		subscribe() (imaplib.IMAP4 method)

 		
 subscript

 		

 		assignment

 		operation

 		subscription, [1], [2], [3]

 		

 		assignment

 		subsequent_indent (textwrap.TextWrapper attribute)

 		subst_vars() (in module distutils.util)

 		substitute() (string.Template method)

 		subtract() (collections.Counter method)

 		

 		(decimal.Context method)

 		subtraction

 		subversion (in module sys)

 		subwin() (curses.window method)

 		successful() (multiprocessing.pool.AsyncResult method)

 		suffix_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		suite

 		suite() (in module parser)

 		suiteClass (unittest.TestLoader attribute)

 		sum() (built-in function)

 		summarize() (doctest.DocTestRunner method)

 		sunau (module)

 		
 SUNAUDIODEV

 		

 		module

 		
 sunaudiodev

 		

 		module

 		sunaudiodev (module)

 		SUNAUDIODEV (module)

 		super (pyclbr.Class attribute)

 		super() (built-in function)

 		supports_unicode_filenames (in module os.path)

 		
 suppression

 		

 		newline

 		SW_HIDE (in module subprocess)

 		swapcase() (in module string)

 		

 		(str method)

 		sym() (dl.dl method)

 		sym_name (in module symbol)

 		Symbol (class in symtable)

 		symbol (module)

 		SymbolTable (class in symtable)

 		symlink() (in module os)

 		symmetric_difference() (set method)

 		symmetric_difference_update() (set method)

 		symtable (module)

 		symtable() (in module symtable)

 		sync() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(dumbdbm.dumbdbm method)

 		(in module gdbm)

 		(ossaudiodev.oss_audio_device method)

 		(shelve.Shelf method)

 		syncdown() (curses.window method)

 		synchronized() (in module multiprocessing.sharedctypes)

 		SyncManager (class in multiprocessing.managers)

 		syncok() (curses.window method)

 		syncup() (curses.window method)

 		syntax, [1]

 		SyntaxErr

 		SyntaxError

 		SyntaxWarning

 		
 sys

 		

 		module, [1], [2], [3]

 		sys (module)

 		sys.exc_info

 		sys.exc_traceback

 		sys.last_traceback

 		sys.meta_path

 		sys.modules

 		sys.path

 		sys.path_hooks

 		sys.path_importer_cache

 		sys.stderr

 		sys.stdin

 		sys.stdout

 		sys_exc (2to3 fixer)

 		sys_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		SysBeep() (in module MacOS)

 		sysconf() (in module os)

 		sysconf_names (in module os)

 		sysconfig (module)

 		syslog (module)

 		syslog() (in module syslog)

 		SysLogHandler (class in logging.handlers)

 		system() (in module os)

 		

 		(in module platform)

 		system_alias() (in module platform)

 		SystemError

 		SystemExit

 		

 		(built-in exception)

 		systemId (xml.dom.DocumentType attribute)

 		SystemRandom (class in random)

 		SystemRoot

T

 		

 		T_FMT (in module locale)

 		T_FMT_AMPM (in module locale)

 		tab

 		tab() (ttk.Notebook method)

 		TabError

 		tabnanny (module)

 		tabs() (ttk.Notebook method)

 		
 tabular

 		

 		data

 		tag (xml.etree.ElementTree.Element attribute)

 		tag_bind() (ttk.Treeview method)

 		tag_configure() (ttk.Treeview method)

 		tag_has() (ttk.Treeview method)

 		tagName (xml.dom.Element attribute)

 		tail (xml.etree.ElementTree.Element attribute)

 		takewhile() (in module itertools)

 		TalkTo (class in aetools)

 		tan() (in module cmath)

 		

 		(in module math)

 		tanh() (in module cmath)

 		

 		(in module math)

 		TarError

 		TarFile (class in tarfile), [1]

 		tarfile (module)

 		TarFileCompat (class in tarfile)

 		TarFileCompat.TAR_GZIPPED (in module tarfile)

 		TarFileCompat.TAR_PLAIN (in module tarfile)

 		target

 		

 		deletion

 		list, [1]

 		list assignment

 		list, deletion

 		loop control

 		target (xml.dom.ProcessingInstruction attribute)

 		TarInfo (class in tarfile)

 		task_done() (multiprocessing.JoinableQueue method)

 		

 		(Queue.Queue method)

 		tb_frame (traceback attribute)

 		tb_lasti (traceback attribute)

 		tb_lineno (traceback attribute)

 		tb_lineno() (in module traceback)

 		tb_next (traceback attribute)

 		tcdrain() (in module termios)

 		tcflow() (in module termios)

 		tcflush() (in module termios)

 		tcgetattr() (in module termios)

 		tcgetpgrp() (in module os)

 		Tcl() (in module Tkinter)

 		TCL_LIBRARY

 		tcsendbreak() (in module termios)

 		tcsetattr() (in module termios)

 		tcsetpgrp() (in module os)

 		tearDown() (unittest.TestCase method)

 		tearDownClass() (unittest.TestCase method)

 		tee() (in module itertools)

 		tell() (aifc.aifc method), [1]

 		

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(file method)

 		(in module mmap)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		Telnet (class in telnetlib)

 		telnetlib (module)

 		TEMP

 		tempdir (in module tempfile)

 		tempfile (module)

 		Template (class in pipes)

 		

 		(class in string)

 		template (in module tempfile)

 		

 		(string.Template attribute)

 		tempnam() (in module os)

 		
 temporary

 		

 		file

 		file name

 		TemporaryFile() (in module tempfile)

 		termattrs() (in module curses)

 		terminate() (multiprocessing.pool.multiprocessing.Pool method)

 		

 		(multiprocessing.Process method)

 		(subprocess.Popen method)

 		termination model

 		termios (module)

 		termname() (in module curses)

 		
 ternary

 		

 		operator

 		
 test

 		

 		identity

 		membership

 		test (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		(module)

 		test() (in module cgi)

 		

 		(mutex.mutex method)

 		test.test_support (module)

 		testandset() (mutex.mutex method)

 		TestCase (class in unittest)

 		TestFailed

 		testfile() (in module doctest)

 		TESTFN (in module test.test_support)

 		TestLoader (class in unittest)

 		testMethodPrefix (unittest.TestLoader attribute)

 		testmod() (in module doctest)

 		TestResult (class in unittest)

 		tests (in module imghdr)

 		testsource() (in module doctest)

 		testsRun (unittest.TestResult attribute)

 		TestSuite (class in unittest)

 		testzip() (zipfile.ZipFile method)

 		text (in module msilib)

 		

 		(xml.etree.ElementTree.Element attribute)

 		text() (msilib.Dialog method)

 		text_factory (sqlite3.Connection attribute)

 		Textbox (class in curses.textpad)

 		TextCalendar (class in calendar)

 		textdomain() (in module gettext)

 		TextFile (class in distutils.text_file)

 		TextIOBase (class in io)

 		TextIOWrapper (class in io)

 		TextTestResult (class in unittest)

 		TextTestRunner (class in unittest)

 		textwrap (module)

 		TextWrapper (class in textwrap)

 		theme_create() (ttk.Style method)

 		theme_names() (ttk.Style method)

 		theme_settings() (ttk.Style method)

 		theme_use() (ttk.Style method)

 		THOUSEP (in module locale)

 		Thread (class in threading)

 		thread (module)

 		thread() (imaplib.IMAP4 method)

 		threading (module)

 		
 threads

 		

 		IRIX

 		POSIX

 		throw (2to3 fixer)

 		throw() (generator method)

 		tie() (in module fl)

 		tigetflag() (in module curses)

 		tigetnum() (in module curses)

 		tigetstr() (in module curses)

 		TILDE (in module token)

 		tilt() (in module turtle)

 		tiltangle() (in module turtle)

 		time (class in datetime)

 		

 		(module)

 		time() (datetime.datetime method)

 		

 		(in module time)

 		Time2Internaldate() (in module imaplib)

 		timedelta (class in datetime)

 		TimedRotatingFileHandler (class in logging.handlers)

 		timegm() (in module calendar)

 		timeit (module)

 		
 timeit command line option

 		

 		-c, --clock

 		-h, --help

 		-n N, --number=N

 		-r N, --repeat=N

 		-s S, --setup=S

 		-t, --time

 		-v, --verbose

 		timeit() (in module timeit)

 		

 		(timeit.Timer method)

 		timeout

 		

 		(SocketServer.BaseServer attribute)

 		timeout() (curses.window method)

 		Timer (class in threading)

 		

 		(class in timeit)

 		times() (in module os)

 		timetuple() (datetime.date method)

 		

 		(datetime.datetime method)

 		timetz() (datetime.datetime method)

 		timezone (in module time)

 		title() (EasyDialogs.ProgressBar method)

 		

 		(in module turtle)

 		(str method)

 		Tix

 		

 		(class in Tix)

 		(module)

 		tix_addbitmapdir() (Tix.tixCommand method)

 		tix_cget() (Tix.tixCommand method)

 		

 		tix_configure() (Tix.tixCommand method)

 		tix_filedialog() (Tix.tixCommand method)

 		tix_getbitmap() (Tix.tixCommand method)

 		tix_getimage() (Tix.tixCommand method)

 		TIX_LIBRARY

 		tix_option_get() (Tix.tixCommand method)

 		tix_resetoptions() (Tix.tixCommand method)

 		tixCommand (class in Tix)

 		Tk

 		

 		(class in Tkinter)

 		Tk Option Data Types

 		TK_LIBRARY

 		Tkinter

 		

 		(module)

 		TList (class in Tix)

 		TLS

 		TMP, [1]

 		TMP_MAX (in module os)

 		TMPDIR, [1]

 		tmpfile() (in module os)

 		tmpnam() (in module os)

 		to_eng_string() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral() (decimal.Decimal method)

 		to_integral_exact() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral_value() (decimal.Decimal method)

 		to_sci_string() (decimal.Context method)

 		to_splittable() (email.charset.Charset method)

 		ToASCII() (in module encodings.idna)

 		tobuf() (tarfile.TarInfo method)

 		tobytes() (memoryview method)

 		tochild (popen2.Popen3 attribute)

 		today() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		tofile() (array.array method)

 		tok_name (in module token)

 		token

 		

 		(module)

 		(shlex.shlex attribute)

 		tokeneater() (in module tabnanny)

 		tokenize (module)

 		tokenize() (in module tokenize)

 		tolist() (array.array method)

 		

 		(memoryview method)

 		(parser.ST method)

 		tomono() (in module audioop)

 		toordinal() (datetime.date method)

 		

 		(datetime.datetime method)

 		top() (curses.panel.Panel method)

 		

 		(poplib.POP3 method)

 		top_panel() (in module curses.panel)

 		toprettyxml() (xml.dom.minidom.Node method)

 		tostereo() (in module audioop)

 		tostring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		tostringlist() (in module xml.etree.ElementTree)

 		total_changes (sqlite3.Connection attribute)

 		total_ordering() (in module functools)

 		total_seconds() (datetime.timedelta method)

 		totuple() (parser.ST method)

 		touched() (in module macostools)

 		touchline() (curses.window method)

 		touchwin() (curses.window method)

 		tounicode() (array.array method)

 		ToUnicode() (in module encodings.idna)

 		tovideo() (in module imageop)

 		towards() (in module turtle)

 		toxml() (xml.dom.minidom.Node method)

 		tparm() (in module curses)

 		
 trace

 		

 		stack

 		Trace (class in trace)

 		trace (module)

 		
 trace command line option

 		

 		--help

 		--ignore-dir=<dir>

 		--ignore-module=<mod>

 		--version

 		-C, --coverdir=<dir>

 		-R, --no-report

 		-T, --trackcalls

 		-c, --count

 		-f, --file=<file>

 		-g, --timing

 		-l, --listfuncs

 		-m, --missing

 		-r, --report

 		-s, --summary

 		-t, --trace

 		trace function, [1], [2]

 		trace() (in module inspect)

 		trace_dispatch() (bdb.Bdb method)

 		
 traceback

 		

 		object, [1], [2], [3], [4]

 		traceback (module)

 		traceback_limit (wsgiref.handlers.BaseHandler attribute)

 		tracebacklimit (in module sys)

 		
 tracebacks

 		

 		in CGI scripts

 		TracebackType (in module types)

 		tracer() (in module turtle), [1]

 		
 trailing

 		

 		comma, [1]

 		transfercmd() (ftplib.FTP method)

 		TransientResource (class in test.test_support)

 		translate() (in module fnmatch)

 		

 		(in module string)

 		(str method)

 		translation() (in module gettext)

 		Transport Layer Security

 		Tree (class in Tix)

 		TreeBuilder (class in xml.etree.ElementTree)

 		Treeview (class in ttk)

 		triangular() (in module random)

 		triple-quoted string, [1]

 		True, [1], [2]

 		true

 		True (built-in variable)

 		truediv() (in module operator)

 		trunc() (in module math), [1]

 		truncate() (file method)

 		

 		(io.IOBase method)

 		
 truth

 		

 		value

 		truth() (in module operator)

 		
 try

 		

 		statement, [1], [2]

 		ttk

 		

 		(module)

 		ttob() (in module imgfile)

 		
 tty

 		

 		I/O control

 		tty (module)

 		ttyname() (in module os)

 		
 tuple

 		

 		display

 		empty, [1]

 		object, [1], [2], [3], [4]

 		singleton

 		tuple() (built-in function)

 		tuple2st() (in module parser)

 		tuple_params (2to3 fixer)

 		TupleType (in module types)

 		turnoff_sigfpe() (in module fpectl)

 		turnon_sigfpe() (in module fpectl)

 		Turtle (class in turtle)

 		turtle (module)

 		turtles() (in module turtle)

 		TurtleScreen (class in turtle)

 		turtlesize() (in module turtle)

 		Tutt, Bill

 		type, [1]

 		

 		Boolean

 		built-in function, [1], [2]

 		data

 		hierarchy

 		immutable data

 		object

 		operations on dictionary

 		operations on list

 		Type (class in aetypes)

 		type (optparse.Option attribute)

 		

 		(socket.socket attribute)

 		(tarfile.TarInfo attribute)

 		type of an object

 		type() (built-in function)

 		TYPE_CHECKER (optparse.Option attribute)

 		typeahead() (in module curses)

 		typecode (array.array attribute)

 		TYPED_ACTIONS (optparse.Option attribute)

 		typed_subpart_iterator() (in module email.iterators)

 		TypeError

 		

 		exception

 		
 types

 		

 		built-in

 		module

 		mutable sequence

 		operations on integer

 		operations on mapping

 		operations on numeric

 		operations on sequence, [1]

 		types (2to3 fixer)

 		

 		(module)

 		TYPES (optparse.Option attribute)

 		types, internal

 		types_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		TypeType (in module types)

 		TZ, [1], [2], [3], [4]

 		tzinfo (class in datetime)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		tzname (in module time)

 		tzname() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		tzset() (in module time)

U

 		

 		U (in module re)

 		u-LAW, [1], [2], [3]

 		ucd_3_2_0 (in module unicodedata)

 		udata (select.kevent attribute)

 		UF_APPEND (in module stat)

 		UF_IMMUTABLE (in module stat)

 		UF_NODUMP (in module stat)

 		UF_NOUNLINK (in module stat)

 		UF_OPAQUE (in module stat)

 		ugettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		uid (tarfile.TarInfo attribute)

 		uid() (imaplib.IMAP4 method)

 		uidl() (poplib.POP3 method)

 		ulaw2lin() (in module audioop)

 		umask() (in module os)

 		uname (tarfile.TarInfo attribute)

 		uname() (in module os)

 		

 		(in module platform)

 		
 unary

 		

 		arithmetic operation

 		bitwise operation

 		UNARY_CONVERT (opcode)

 		UNARY_INVERT (opcode)

 		UNARY_NEGATIVE (opcode)

 		UNARY_NOT (opcode)

 		UNARY_POSITIVE (opcode)

 		
 unbinding

 		

 		name

 		UnboundLocalError, [1]

 		UnboundMethodType (in module types)

 		unbuffered I/O

 		
 UNC paths

 		

 		and os.makedirs()

 		unconsumed_tail (zlib.Decompress attribute)

 		unctrl() (in module curses)

 		

 		(in module curses.ascii)

 		undefine_macro() (distutils.ccompiler.CCompiler method)

 		Underflow (class in decimal)

 		undo() (in module turtle)

 		undobufferentries() (in module turtle)

 		undoc_header (cmd.Cmd attribute)

 		unescape() (in module xml.sax.saxutils)

 		UnexpectedException

 		unexpectedSuccesses (unittest.TestResult attribute)

 		unfreeze_form() (fl.form method)

 		ungetch() (in module curses)

 		

 		(in module msvcrt)

 		ungetmouse() (in module curses)

 		ungettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		ungetwch() (in module msvcrt)

 		unhexlify() (in module binascii)

 		
 unichr

 		

 		built-in function

 		unichr() (built-in function)

 		Unicode, [1], [2]

 		

 		database

 		object

 		
 unicode

 		

 		built-in function, [1], [2]

 		object

 		unicode (2to3 fixer)

 		UNICODE (in module re)

 		Unicode Consortium

 		unicode() (built-in function)

 		unicodedata (module)

 		UnicodeDecodeError

 		UnicodeEncodeError

 		UnicodeError

 		UnicodeTranslateError

 		UnicodeType (in module types)

 		UnicodeWarning

 		unidata_version (in module unicodedata)

 		unified_diff() (in module difflib)

 		uniform() (in module random)

 		UnimplementedFileMode

 		uninstall() (imputil.ImportManager method)

 		Union (class in ctypes)

 		union() (set method)

 		unittest (module)

 		
 unittest command line option

 		

 		-b, --buffer

 		-c, --catch

 		-f, --failfast

 		
 unittest-discover command line option

 		

 		-p pattern

 		-s directory

 		-t directory

 		-v, --verbose

 		UNIX

 		

 		I/O control

 		file control

 		unixfrom (rfc822.Message attribute)

 		UnixMailbox (class in mailbox)

 		Unknown (class in aetypes)

 		unknown_charref() (sgmllib.SGMLParser method)

 		unknown_decl() (HTMLParser.HTMLParser method)

 		unknown_endtag() (sgmllib.SGMLParser method)

 		unknown_entityref() (sgmllib.SGMLParser method)

 		unknown_open() (urllib2.BaseHandler method)

 		

 		(urllib2.HTTPErrorProcessor method)

 		(urllib2.UnknownHandler method)

 		unknown_starttag() (sgmllib.SGMLParser method)

 		UnknownHandler (class in urllib2)

 		UnknownProtocol

 		UnknownTransferEncoding

 		unlink() (in module os)

 		

 		(xml.dom.minidom.Node method)

 		unlock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		(mutex.mutex method)

 		unmimify() (in module mimify)

 		unpack() (in module aepack)

 		

 		(in module struct)

 		(struct.Struct method)

 		unpack_array() (xdrlib.Unpacker method)

 		unpack_bytes() (xdrlib.Unpacker method)

 		unpack_double() (xdrlib.Unpacker method)

 		unpack_farray() (xdrlib.Unpacker method)

 		unpack_float() (xdrlib.Unpacker method)

 		unpack_fopaque() (xdrlib.Unpacker method)

 		unpack_from() (in module struct)

 		

 		(struct.Struct method)

 		unpack_fstring() (xdrlib.Unpacker method)

 		unpack_list() (xdrlib.Unpacker method)

 		unpack_opaque() (xdrlib.Unpacker method)

 		UNPACK_SEQUENCE (opcode)

 		unpack_string() (xdrlib.Unpacker method)

 		Unpacker (class in xdrlib)

 		

 		unpackevent() (in module aetools)

 		unparsedEntityDecl() (xml.sax.handler.DTDHandler method)

 		UnparsedEntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		Unpickler (class in pickle)

 		UnpicklingError

 		unqdevice() (in module fl)

 		unquote() (in module email.utils)

 		

 		(in module rfc822)

 		(in module urllib)

 		unquote_plus() (in module urllib)

 		unreachable object

 		unreadline() (distutils.text_file.TextFile method)

 		unrecognized escape sequence

 		unregister() (select.epoll method)

 		

 		(select.poll method)

 		unregister_archive_format() (in module shutil)

 		unregister_dialect() (in module csv)

 		unset() (test.test_support.EnvironmentVarGuard method)

 		unsetenv() (in module os)

 		unsubscribe() (imaplib.IMAP4 method)

 		UnsupportedOperation

 		untokenize() (in module tokenize)

 		untouchwin() (curses.window method)

 		unused_data (zlib.Decompress attribute)

 		unwrap() (ssl.SSLSocket method)

 		up() (in module turtle)

 		update() (collections.Counter method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.hmac method)

 		(in module turtle)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(md5.md5 method)

 		(set method)

 		(sha.sha method)

 		(trace.CoverageResults method)

 		update_panels() (in module curses.panel)

 		update_visible() (mailbox.BabylMessage method)

 		update_wrapper() (in module functools)

 		updatescrollbars() (FrameWork.ScrolledWindow method)

 		upper() (in module string)

 		

 		(str method)

 		uppercase (in module string)

 		urandom() (in module os)

 		URL, [1], [2], [3], [4]

 		

 		parsing

 		relative

 		url (xmlrpclib.ProtocolError attribute)

 		url2pathname() (in module urllib)

 		urlcleanup() (in module urllib)

 		urldefrag() (in module urlparse)

 		urlencode() (in module urllib)

 		URLError

 		urljoin() (in module urlparse)

 		
 urllib

 		

 		module

 		urllib (2to3 fixer)

 		

 		(module)

 		urllib2 (module)

 		urlopen() (in module urllib)

 		

 		(in module urllib2)

 		URLopener (class in urllib)

 		
 urlparse

 		

 		module

 		urlparse (module)

 		urlparse() (in module urlparse)

 		urlretrieve() (in module urllib)

 		urlsafe_b64decode() (in module base64)

 		urlsafe_b64encode() (in module base64)

 		urlsplit() (in module urlparse)

 		urlunparse() (in module urlparse)

 		urlunsplit() (in module urlparse)

 		urn (uuid.UUID attribute)

 		use_default_colors() (in module curses)

 		use_env() (in module curses)

 		use_rawinput (cmd.Cmd attribute)

 		UseForeignDTD() (xml.parsers.expat.xmlparser method)

 		USER

 		
 user

 		

 		configuration file

 		effective id

 		id

 		id, setting

 		user (module)

 		user() (poplib.POP3 method)

 		
 user-defined

 		

 		function

 		function call

 		method

 		
 user-defined function

 		

 		object, [1], [2]

 		
 user-defined method

 		

 		object

 		USER_BASE

 		

 		(in module site)

 		user_call() (bdb.Bdb method)

 		user_exception() (bdb.Bdb method)

 		user_line() (bdb.Bdb method)

 		user_return() (bdb.Bdb method)

 		USER_SITE (in module site)

 		UserDict (class in UserDict)

 		

 		(module)

 		UserList (class in UserList)

 		

 		(module)

 		USERNAME

 		USERPROFILE, [1]

 		userptr() (curses.panel.Panel method)

 		UserString (class in UserString)

 		

 		(module)

 		UserWarning

 		USTAR_FORMAT (in module tarfile)

 		UTC

 		utcfromtimestamp() (datetime.datetime class method)

 		utcnow() (datetime.datetime class method)

 		utcoffset() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		utctimetuple() (datetime.datetime method)

 		utime() (in module os)

 		
 uu

 		

 		module

 		uu (module)

 		UUID (class in uuid)

 		uuid (module)

 		uuid1

 		uuid1() (in module uuid)

 		uuid3

 		uuid3() (in module uuid)

 		uuid4

 		uuid4() (in module uuid)

 		uuid5

 		uuid5() (in module uuid)

 		UuidCreate() (in module msilib)

V

 		

 		validator() (in module wsgiref.validate)

 		
 value

 		

 		default parameter

 		truth

 		value (Cookie.Morsel attribute)

 		

 		(cookielib.Cookie attribute)

 		(ctypes._SimpleCData attribute)

 		(xml.dom.Attr attribute)

 		value of an object

 		Value() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		value_decode() (Cookie.BaseCookie method)

 		value_encode() (Cookie.BaseCookie method)

 		ValueError

 		

 		exception

 		valuerefs() (weakref.WeakValueDictionary method)

 		
 values

 		

 		Boolean

 		writing, [1]

 		values() (dict method)

 		

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		ValuesView (class in collections)

 		
 variable

 		

 		free, [1]

 		variant (uuid.UUID attribute)

 		varray() (in module gl)

 		vars() (built-in function)

 		VBAR (in module token)

 		vbar (ScrolledText.ScrolledText attribute)

 		VBAREQUAL (in module token)

 		Vec2D (class in turtle)

 		VERBOSE (in module re)

 		

 		verbose (in module tabnanny)

 		

 		(in module test.test_support)

 		verify() (smtplib.SMTP method)

 		verify_request() (SocketServer.BaseServer method)

 		version (cookielib.Cookie attribute)

 		

 		(httplib.HTTPResponse attribute)

 		(in module curses)

 		(in module marshal)

 		(in module sys)

 		(urllib.URLopener attribute)

 		(uuid.UUID attribute)

 		version() (in module platform)

 		version_info (in module sys)

 		version_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		vformat() (string.Formatter method)

 		videoreader (module)

 		view

 		viewitems() (dict method)

 		viewkeys() (dict method)

 		viewvalues() (dict method)

 		virtual machine

 		visit() (ast.NodeVisitor method)

 		vline() (curses.window method)

 		VMSError

 		vnarray() (in module gl)

 		voidcmd() (ftplib.FTP method)

 		volume (zipfile.ZipInfo attribute)

 		vonmisesvariate() (in module random)

W

 		

 		W (module)

 		W_OK (in module os)

 		wait() (in module os)

 		

 		(multiprocessing.pool.AsyncResult method)

 		(popen2.Popen3 method)

 		(subprocess.Popen method)

 		(threading.Condition method)

 		(threading.Event method)

 		wait3() (in module os)

 		wait4() (in module os)

 		waitpid() (in module os)

 		walk() (email.message.Message method)

 		

 		(in module ast)

 		(in module compiler)

 		(in module compiler.visitor)

 		(in module os)

 		(in module os.path)

 		walk_packages() (in module pkgutil)

 		want (doctest.Example attribute)

 		warn() (distutils.ccompiler.CCompiler method)

 		

 		(distutils.text_file.TextFile method)

 		(in module warnings)

 		warn_explicit() (in module warnings)

 		Warning

 		warning() (in module logging)

 		

 		(logging.Logger method)

 		(xml.sax.handler.ErrorHandler method)

 		warnings

 		

 		(module)

 		WarningsRecorder (class in test.test_support)

 		warnoptions (in module sys)

 		warnpy3k() (in module warnings)

 		wasSuccessful() (unittest.TestResult method)

 		WatchedFileHandler (class in logging.handlers)

 		wave (module)

 		WCONTINUED (in module os)

 		WCOREDUMP() (in module os)

 		WeakKeyDictionary (class in weakref)

 		weakref (module)

 		WeakSet (class in weakref)

 		WeakValueDictionary (class in weakref)

 		webbrowser (module)

 		weekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module calendar)

 		weekheader() (in module calendar)

 		weibullvariate() (in module random)

 		WEXITSTATUS() (in module os)

 		wfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		what() (in module imghdr)

 		

 		(in module sndhdr)

 		whathdr() (in module sndhdr)

 		whichdb (module)

 		whichdb() (in module whichdb)

 		
 while

 		

 		statement, [1], [2], [3]

 		whitespace

 		

 		(in module string)

 		(shlex.shlex attribute)

 		whitespace_split (shlex.shlex attribute)

 		whseed() (in module random)

 		WichmannHill (class in random)

 		Widget (class in ttk)

 		width (textwrap.TextWrapper attribute)

 		width() (in module turtle)

 		WIFCONTINUED() (in module os)

 		WIFEXITED() (in module os)

 		WIFSIGNALED() (in module os)

 		WIFSTOPPED() (in module os)

 		Wimp$ScrapDir

 		win32_ver() (in module platform)

 		WinDLL (class in ctypes)

 		window manager (widgets)

 		window() (curses.panel.Panel method)

 		Window() (in module FrameWork)

 		window_height() (in module turtle), [1]

 		window_width() (in module turtle), [1]

 		windowbounds() (in module FrameWork)

 		Windows ini file

 		WindowsError

 		WinError() (in module ctypes)

 		

 		WINFUNCTYPE() (in module ctypes)

 		WinSock

 		winsound (module)

 		winver (in module sys)

 		
 with

 		

 		statement, [1]

 		WITH_CLEANUP (opcode)

 		WMAvailable() (in module MacOS)

 		WNOHANG (in module os)

 		wordchars (shlex.shlex attribute)

 		World Wide Web, [1], [2], [3]

 		wrap() (in module textwrap)

 		

 		(textwrap.TextWrapper method)

 		wrap_socket() (in module ssl)

 		wrap_text() (in module distutils.fancy_getopt)

 		wrapper() (in module curses.wrapper)

 		wraps() (in module functools)

 		writable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		write() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(code.InteractiveInterpreter method)

 		(codecs.StreamWriter method)

 		(email.generator.Generator method)

 		(file method)

 		(in module imgfile)

 		(in module mmap)

 		(in module os)

 		(in module turtle)

 		(io.BufferedIOBase method)

 		(io.BufferedWriter method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(ossaudiodev.oss_audio_device method)

 		(ssl.SSLSocket method)

 		(telnetlib.Telnet method)

 		(xml.etree.ElementTree.ElementTree method)

 		(zipfile.ZipFile method)

 		write_byte() (in module mmap)

 		write_docstringdict() (in module turtle)

 		write_file() (in module distutils.file_util)

 		write_history_file() (in module readline)

 		WRITE_RESTRICTED

 		write_results() (trace.CoverageResults method)

 		writeall() (ossaudiodev.oss_audio_device method)

 		writeframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeframesraw() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeheader() (csv.DictWriter method)

 		writelines() (bz2.BZ2File method)

 		

 		(codecs.StreamWriter method)

 		(file method)

 		(io.IOBase method)

 		writePlist() (in module plistlib)

 		writePlistToResource() (in module plistlib)

 		writePlistToString() (in module plistlib)

 		writepy() (zipfile.PyZipFile method)

 		writer (formatter.formatter attribute)

 		writer() (in module csv)

 		writerow() (csv.csvwriter method)

 		writerows() (csv.csvwriter method)

 		writestr() (zipfile.ZipFile method)

 		writexml() (xml.dom.minidom.Node method)

 		
 writing

 		

 		values, [1]

 		WrongDocumentErr

 		ws_comma (2to3 fixer)

 		wsgi_file_wrapper (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multiprocess (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multithread (wsgiref.handlers.BaseHandler attribute)

 		wsgi_run_once (wsgiref.handlers.BaseHandler attribute)

 		wsgiref (module)

 		wsgiref.handlers (module)

 		wsgiref.headers (module)

 		wsgiref.simple_server (module)

 		wsgiref.util (module)

 		wsgiref.validate (module)

 		WSGIRequestHandler (class in wsgiref.simple_server)

 		WSGIServer (class in wsgiref.simple_server)

 		wShowWindow (subprocess.STARTUPINFO attribute)

 		WSTOPSIG() (in module os)

 		wstring_at() (in module ctypes)

 		WTERMSIG() (in module os)

 		WUNTRACED (in module os)

 		WWW, [1], [2], [3]

 		

 		server, [1]

X

 		

 		X (in module re)

 		X509 certificate

 		X_OK (in module os)

 		xatom() (imaplib.IMAP4 method)

 		xcor() (in module turtle)

 		XDR, [1]

 		xdrlib (module)

 		xgtitle() (nntplib.NNTP method)

 		xhdr() (nntplib.NNTP method)

 		XHTML

 		XHTML_NAMESPACE (in module xml.dom)

 		XML() (in module xml.etree.ElementTree)

 		xml.dom (module)

 		xml.dom.minidom (module)

 		xml.dom.pulldom (module)

 		xml.etree.ElementTree (module)

 		xml.parsers.expat (module)

 		xml.sax (module)

 		xml.sax.handler (module)

 		xml.sax.saxutils (module)

 		xml.sax.xmlreader (module)

 		XML_NAMESPACE (in module xml.dom)

 		

 		xmlcharrefreplace_errors() (in module codecs)

 		XmlDeclHandler() (xml.parsers.expat.xmlparser method)

 		XMLFilterBase (class in xml.sax.saxutils)

 		XMLGenerator (class in xml.sax.saxutils)

 		XMLID() (in module xml.etree.ElementTree)

 		XMLNS_NAMESPACE (in module xml.dom)

 		XMLParser (class in xml.etree.ElementTree)

 		XMLParserType (in module xml.parsers.expat)

 		XMLReader (class in xml.sax.xmlreader)

 		xmlrpclib (module)

 		
 xor

 		

 		bitwise

 		xor() (in module operator)

 		xover() (nntplib.NNTP method)

 		xpath() (nntplib.NNTP method)

 		
 xrange

 		

 		built-in function

 		object, [1]

 		xrange (2to3 fixer)

 		xrange() (built-in function)

 		XRangeType (in module types)

 		xreadlines (2to3 fixer)

 		xreadlines() (bz2.BZ2File method)

 		

 		(file method)

 		xview() (ttk.Treeview method)

Y

 		

 		Y2K

 		ycor() (in module turtle)

 		year (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		Year 2000

 		Year 2038

 		yeardatescalendar() (calendar.Calendar method)

 		yeardays2calendar() (calendar.Calendar method)

 		

 		yeardayscalendar() (calendar.Calendar method)

 		YESEXPR (in module locale)

 		
 yield

 		

 		expression

 		keyword

 		statement

 		YIELD_VALUE (opcode)

 		yiq_to_rgb() (in module colorsys)

 		yview() (ttk.Treeview method)

Z

 		

 		Zen of Python

 		ZeroDivisionError

 		

 		exception

 		zfill() (in module string)

 		

 		(str method)

 		zip (2to3 fixer)

 		zip() (built-in function)

 		

 		(in module future_builtins)

 		ZIP_DEFLATED (in module zipfile)

 		ZIP_STORED (in module zipfile)

 		

 		ZipFile (class in zipfile)

 		zipfile (module)

 		zipimport (module)

 		zipimporter (class in zipimport)

 		ZipImportError

 		ZipInfo (class in zipfile)

 		zlib (module)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-_.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – _

 		

 		__abs__() (in module operator)

 		

 		(object method)

 		__add__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__all__

 		

 		(optional module attribute)

 		__and__() (in module operator)

 		

 		(object method)

 		__bases__ (class attribute), [1]

 		
 __builtin__

 		

 		module, [1], [2]

 		__builtin__ (module)

 		__builtins__

 		__call__() (object method), [1]

 		__class__ (instance attribute), [1]

 		__cmp__() (instance method)

 		

 		(object method)

 		__coerce__() (object method)

 		__complex__() (object method)

 		__concat__() (in module operator)

 		__contains__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(object method)

 		__copy__() (copy protocol)

 		__debug__

 		

 		(built-in variable)

 		__deepcopy__() (copy protocol)

 		__del__() (object method)

 		__delattr__() (object method)

 		__delete__() (object method)

 		__delitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(object method)

 		__delslice__() (in module operator)

 		

 		(object method)

 		__dict__ (class attribute)

 		

 		(function attribute)

 		(instance attribute), [1]

 		(module attribute)

 		(object attribute)

 		__displayhook__ (in module sys)

 		__div__() (in module operator)

 		

 		(object method)

 		__divmod__() (object method)

 		__doc__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		(module attribute)

 		__enter__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__eq__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(object method)

 		__excepthook__ (in module sys)

 		__exit__() (_winreg.PyHKEY method)

 		

 		(contextmanager method)

 		(object method)

 		__file__

 		

 		(module attribute)

 		__float__() (object method)

 		__floordiv__() (in module operator)

 		

 		(object method)

 		__format__

 		__future__

 		

 		(module)

 		__ge__() (in module operator)

 		

 		(object method)

 		__get__() (object method)

 		__getattr__() (object method)

 		__getattribute__() (object method)

 		__getinitargs__() (object method)

 		__getitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		__getnewargs__() (object method)

 		__getslice__() (in module operator)

 		

 		(object method)

 		__getstate__() (object method)

 		__gt__() (in module operator)

 		

 		(object method)

 		__hash__() (object method)

 		__hex__() (object method)

 		__iadd__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iand__() (in module operator)

 		

 		(object method)

 		__iconcat__() (in module operator)

 		__idiv__() (in module operator)

 		

 		(object method)

 		__ifloordiv__() (in module operator)

 		

 		(object method)

 		__ilshift__() (in module operator)

 		

 		(object method)

 		__imod__() (in module operator)

 		

 		(object method)

 		__import__() (built-in function)

 		__imul__() (in module operator)

 		

 		(object method)

 		__index__() (in module operator)

 		

 		(object method)

 		__init__() (logging.Handler method)

 		

 		(logging.logging.Formatter method)

 		(object method), [1]

 		__instancecheck__() (class method)

 		__int__() (object method)

 		__inv__() (in module operator)

 		__invert__() (in module operator)

 		

 		(object method)

 		__ior__() (in module operator)

 		

 		(object method)

 		__ipow__() (in module operator)

 		

 		(object method)

 		__irepeat__() (in module operator)

 		__irshift__() (in module operator)

 		

 		(object method)

 		__isub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__iter__() (container method)

 		

 		(iterator method)

 		(mailbox.Mailbox method)

 		(object method)

 		(unittest.TestSuite method)

 		__itruediv__() (in module operator)

 		

 		(object method)

 		__ixor__() (in module operator)

 		

 		(object method)

 		__le__() (in module operator)

 		

 		(object method)

 		__len__() (email.message.Message method)

 		

 		(mailbox.Mailbox method)

 		(mapping object method)

 		(object method)

 		(rfc822.AddressList method)

 		__loader__

 		__long__() (object method)

 		__lshift__() (in module operator)

 		

 		(object method)

 		__lt__() (in module operator)

 		

 		(object method)

 		
 __main__

 		

 		module, [1], [2]

 		__main__ (module)

 		__members__ (object attribute)

 		__metaclass__ (built-in variable)

 		__methods__ (object attribute)

 		__missing__() (collections.defaultdict method)

 		__mod__() (in module operator)

 		

 		(object method)

 		

 		__module__ (class attribute)

 		

 		(function attribute)

 		(method attribute)

 		__mro__ (class attribute)

 		__mul__() (in module operator)

 		

 		(object method)

 		__name__

 		

 		(class attribute), [1]

 		(function attribute)

 		(method attribute)

 		(module attribute)

 		__ne__() (email.charset.Charset method)

 		

 		(email.header.Header method)

 		(in module operator)

 		(object method)

 		__neg__() (in module operator)

 		

 		(object method)

 		__new__() (object method)

 		__nonzero__() (object method), [1]

 		__not__() (in module operator)

 		__oct__() (object method)

 		__or__() (in module operator)

 		

 		(object method)

 		__package__

 		__path__, [1]

 		__pos__() (in module operator)

 		

 		(object method)

 		__pow__() (in module operator)

 		

 		(object method)

 		__radd__() (object method)

 		__rand__() (object method)

 		__rcmp__() (object method)

 		__rdiv__() (object method)

 		__rdivmod__() (object method)

 		__reduce__() (object method)

 		__reduce_ex__() (object method)

 		__repeat__() (in module operator)

 		__repr__() (multiprocessing.managers.BaseProxy method)

 		

 		(netrc.netrc method)

 		(object method)

 		__reversed__() (object method)

 		__rfloordiv__() (object method)

 		__rlshift__() (object method)

 		__rmod__() (object method)

 		__rmul__() (object method)

 		__ror__() (object method)

 		__rpow__() (object method)

 		__rrshift__() (object method)

 		__rshift__() (in module operator)

 		

 		(object method)

 		__rsub__() (object method)

 		__rtruediv__() (object method)

 		__rxor__() (object method)

 		__set__() (object method)

 		__setattr__() (object method), [1]

 		__setitem__() (email.message.Message method)

 		

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(object method)

 		__setslice__() (in module operator)

 		

 		(object method)

 		__setstate__() (object method)

 		__slots__

 		

 		(built-in variable)

 		__stderr__ (in module sys)

 		__stdin__ (in module sys)

 		__stdout__ (in module sys)

 		__str__() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(email.charset.Charset method)

 		(email.header.Header method)

 		(email.message.Message method)

 		(multiprocessing.managers.BaseProxy method)

 		(object method)

 		(rfc822.AddressList method)

 		__sub__() (in module operator)

 		

 		(object method)

 		(rfc822.AddressList method)

 		__subclasscheck__() (class method)

 		__subclasses__() (class method)

 		__subclasshook__() (abc.ABCMeta method)

 		__truediv__() (in module operator)

 		

 		(object method)

 		__unicode__() (email.header.Header method)

 		

 		(object method)

 		__xor__() (in module operator)

 		

 		(object method)

 		anonymous (ctypes.Structure attribute)

 		_asdict() (collections.somenamedtuple method)

 		_b_base_ (ctypes._CData attribute)

 		_b_needsfree_ (ctypes._CData attribute)

 		_callmethod() (multiprocessing.managers.BaseProxy method)

 		_CData (class in ctypes)

 		_clear_type_cache() (in module sys)

 		_current_frames() (in module sys)

 		_exit() (in module os)

 		_fields (ast.AST attribute)

 		

 		(collections.somenamedtuple attribute)

 		fields (ctypes.Structure attribute)

 		_flush() (wsgiref.handlers.BaseHandler method)

 		_FuncPtr (class in ctypes)

 		_getframe() (in module sys)

 		_getvalue() (multiprocessing.managers.BaseProxy method)

 		_handle (ctypes.PyDLL attribute)

 		
 _locale

 		

 		module

 		_make() (collections.somenamedtuple class method)

 		_makeResult() (unittest.TextTestRunner method)

 		_name (ctypes.PyDLL attribute)

 		_objects (ctypes._CData attribute)

 		pack (ctypes.Structure attribute)

 		_parse() (gettext.NullTranslations method)

 		_quit() (FrameWork.Application method)

 		_replace() (collections.somenamedtuple method)

 		_setroot() (xml.etree.ElementTree.ElementTree method)

 		_SimpleCData (class in ctypes)

 		_start() (aetools.TalkTo method)

 		_structure() (in module email.iterators)

 		_urlopener (in module urllib)

 		_winreg (module)

 		_write() (wsgiref.handlers.BaseHandler method)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-T.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – T

 		

 		T_FMT (in module locale)

 		T_FMT_AMPM (in module locale)

 		tab

 		tab() (ttk.Notebook method)

 		TabError

 		tabnanny (module)

 		tabs() (ttk.Notebook method)

 		
 tabular

 		

 		data

 		tag (xml.etree.ElementTree.Element attribute)

 		tag_bind() (ttk.Treeview method)

 		tag_configure() (ttk.Treeview method)

 		tag_has() (ttk.Treeview method)

 		tagName (xml.dom.Element attribute)

 		tail (xml.etree.ElementTree.Element attribute)

 		takewhile() (in module itertools)

 		TalkTo (class in aetools)

 		tan() (in module cmath)

 		

 		(in module math)

 		tanh() (in module cmath)

 		

 		(in module math)

 		TarError

 		TarFile (class in tarfile), [1]

 		tarfile (module)

 		TarFileCompat (class in tarfile)

 		TarFileCompat.TAR_GZIPPED (in module tarfile)

 		TarFileCompat.TAR_PLAIN (in module tarfile)

 		target

 		

 		deletion

 		list, [1]

 		list assignment

 		list, deletion

 		loop control

 		target (xml.dom.ProcessingInstruction attribute)

 		TarInfo (class in tarfile)

 		task_done() (multiprocessing.JoinableQueue method)

 		

 		(Queue.Queue method)

 		tb_frame (traceback attribute)

 		tb_lasti (traceback attribute)

 		tb_lineno (traceback attribute)

 		tb_lineno() (in module traceback)

 		tb_next (traceback attribute)

 		tcdrain() (in module termios)

 		tcflow() (in module termios)

 		tcflush() (in module termios)

 		tcgetattr() (in module termios)

 		tcgetpgrp() (in module os)

 		Tcl() (in module Tkinter)

 		TCL_LIBRARY

 		tcsendbreak() (in module termios)

 		tcsetattr() (in module termios)

 		tcsetpgrp() (in module os)

 		tearDown() (unittest.TestCase method)

 		tearDownClass() (unittest.TestCase method)

 		tee() (in module itertools)

 		tell() (aifc.aifc method), [1]

 		

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(file method)

 		(in module mmap)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		Telnet (class in telnetlib)

 		telnetlib (module)

 		TEMP

 		tempdir (in module tempfile)

 		tempfile (module)

 		Template (class in pipes)

 		

 		(class in string)

 		template (in module tempfile)

 		

 		(string.Template attribute)

 		tempnam() (in module os)

 		
 temporary

 		

 		file

 		file name

 		TemporaryFile() (in module tempfile)

 		termattrs() (in module curses)

 		terminate() (multiprocessing.pool.multiprocessing.Pool method)

 		

 		(multiprocessing.Process method)

 		(subprocess.Popen method)

 		termination model

 		termios (module)

 		termname() (in module curses)

 		
 ternary

 		

 		operator

 		
 test

 		

 		identity

 		membership

 		test (doctest.DocTestFailure attribute)

 		

 		(doctest.UnexpectedException attribute)

 		(module)

 		test() (in module cgi)

 		

 		(mutex.mutex method)

 		test.test_support (module)

 		testandset() (mutex.mutex method)

 		TestCase (class in unittest)

 		TestFailed

 		testfile() (in module doctest)

 		TESTFN (in module test.test_support)

 		TestLoader (class in unittest)

 		testMethodPrefix (unittest.TestLoader attribute)

 		testmod() (in module doctest)

 		TestResult (class in unittest)

 		tests (in module imghdr)

 		testsource() (in module doctest)

 		testsRun (unittest.TestResult attribute)

 		TestSuite (class in unittest)

 		testzip() (zipfile.ZipFile method)

 		text (in module msilib)

 		

 		(xml.etree.ElementTree.Element attribute)

 		text() (msilib.Dialog method)

 		text_factory (sqlite3.Connection attribute)

 		Textbox (class in curses.textpad)

 		TextCalendar (class in calendar)

 		textdomain() (in module gettext)

 		TextFile (class in distutils.text_file)

 		TextIOBase (class in io)

 		TextIOWrapper (class in io)

 		TextTestResult (class in unittest)

 		TextTestRunner (class in unittest)

 		textwrap (module)

 		TextWrapper (class in textwrap)

 		theme_create() (ttk.Style method)

 		theme_names() (ttk.Style method)

 		theme_settings() (ttk.Style method)

 		theme_use() (ttk.Style method)

 		THOUSEP (in module locale)

 		Thread (class in threading)

 		thread (module)

 		thread() (imaplib.IMAP4 method)

 		threading (module)

 		
 threads

 		

 		IRIX

 		POSIX

 		throw (2to3 fixer)

 		throw() (generator method)

 		tie() (in module fl)

 		tigetflag() (in module curses)

 		tigetnum() (in module curses)

 		tigetstr() (in module curses)

 		TILDE (in module token)

 		tilt() (in module turtle)

 		tiltangle() (in module turtle)

 		time (class in datetime)

 		

 		(module)

 		time() (datetime.datetime method)

 		

 		(in module time)

 		Time2Internaldate() (in module imaplib)

 		timedelta (class in datetime)

 		TimedRotatingFileHandler (class in logging.handlers)

 		timegm() (in module calendar)

 		timeit (module)

 		
 timeit command line option

 		

 		-c, --clock

 		-h, --help

 		-n N, --number=N

 		-r N, --repeat=N

 		-s S, --setup=S

 		-t, --time

 		-v, --verbose

 		timeit() (in module timeit)

 		

 		(timeit.Timer method)

 		timeout

 		

 		(SocketServer.BaseServer attribute)

 		timeout() (curses.window method)

 		Timer (class in threading)

 		

 		(class in timeit)

 		times() (in module os)

 		timetuple() (datetime.date method)

 		

 		(datetime.datetime method)

 		timetz() (datetime.datetime method)

 		timezone (in module time)

 		title() (EasyDialogs.ProgressBar method)

 		

 		(in module turtle)

 		(str method)

 		Tix

 		

 		(class in Tix)

 		(module)

 		tix_addbitmapdir() (Tix.tixCommand method)

 		tix_cget() (Tix.tixCommand method)

 		

 		tix_configure() (Tix.tixCommand method)

 		tix_filedialog() (Tix.tixCommand method)

 		tix_getbitmap() (Tix.tixCommand method)

 		tix_getimage() (Tix.tixCommand method)

 		TIX_LIBRARY

 		tix_option_get() (Tix.tixCommand method)

 		tix_resetoptions() (Tix.tixCommand method)

 		tixCommand (class in Tix)

 		Tk

 		

 		(class in Tkinter)

 		Tk Option Data Types

 		TK_LIBRARY

 		Tkinter

 		

 		(module)

 		TList (class in Tix)

 		TLS

 		TMP, [1]

 		TMP_MAX (in module os)

 		TMPDIR, [1]

 		tmpfile() (in module os)

 		tmpnam() (in module os)

 		to_eng_string() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral() (decimal.Decimal method)

 		to_integral_exact() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		to_integral_value() (decimal.Decimal method)

 		to_sci_string() (decimal.Context method)

 		to_splittable() (email.charset.Charset method)

 		ToASCII() (in module encodings.idna)

 		tobuf() (tarfile.TarInfo method)

 		tobytes() (memoryview method)

 		tochild (popen2.Popen3 attribute)

 		today() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		tofile() (array.array method)

 		tok_name (in module token)

 		token

 		

 		(module)

 		(shlex.shlex attribute)

 		tokeneater() (in module tabnanny)

 		tokenize (module)

 		tokenize() (in module tokenize)

 		tolist() (array.array method)

 		

 		(memoryview method)

 		(parser.ST method)

 		tomono() (in module audioop)

 		toordinal() (datetime.date method)

 		

 		(datetime.datetime method)

 		top() (curses.panel.Panel method)

 		

 		(poplib.POP3 method)

 		top_panel() (in module curses.panel)

 		toprettyxml() (xml.dom.minidom.Node method)

 		tostereo() (in module audioop)

 		tostring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		tostringlist() (in module xml.etree.ElementTree)

 		total_changes (sqlite3.Connection attribute)

 		total_ordering() (in module functools)

 		total_seconds() (datetime.timedelta method)

 		totuple() (parser.ST method)

 		touched() (in module macostools)

 		touchline() (curses.window method)

 		touchwin() (curses.window method)

 		tounicode() (array.array method)

 		ToUnicode() (in module encodings.idna)

 		tovideo() (in module imageop)

 		towards() (in module turtle)

 		toxml() (xml.dom.minidom.Node method)

 		tparm() (in module curses)

 		
 trace

 		

 		stack

 		Trace (class in trace)

 		trace (module)

 		
 trace command line option

 		

 		--help

 		--ignore-dir=<dir>

 		--ignore-module=<mod>

 		--version

 		-C, --coverdir=<dir>

 		-R, --no-report

 		-T, --trackcalls

 		-c, --count

 		-f, --file=<file>

 		-g, --timing

 		-l, --listfuncs

 		-m, --missing

 		-r, --report

 		-s, --summary

 		-t, --trace

 		trace function, [1], [2]

 		trace() (in module inspect)

 		trace_dispatch() (bdb.Bdb method)

 		
 traceback

 		

 		object, [1], [2], [3], [4]

 		traceback (module)

 		traceback_limit (wsgiref.handlers.BaseHandler attribute)

 		tracebacklimit (in module sys)

 		
 tracebacks

 		

 		in CGI scripts

 		TracebackType (in module types)

 		tracer() (in module turtle), [1]

 		
 trailing

 		

 		comma, [1]

 		transfercmd() (ftplib.FTP method)

 		TransientResource (class in test.test_support)

 		translate() (in module fnmatch)

 		

 		(in module string)

 		(str method)

 		translation() (in module gettext)

 		Transport Layer Security

 		Tree (class in Tix)

 		TreeBuilder (class in xml.etree.ElementTree)

 		Treeview (class in ttk)

 		triangular() (in module random)

 		triple-quoted string, [1]

 		True, [1], [2]

 		true

 		True (built-in variable)

 		truediv() (in module operator)

 		trunc() (in module math), [1]

 		truncate() (file method)

 		

 		(io.IOBase method)

 		
 truth

 		

 		value

 		truth() (in module operator)

 		
 try

 		

 		statement, [1], [2]

 		ttk

 		

 		(module)

 		ttob() (in module imgfile)

 		
 tty

 		

 		I/O control

 		tty (module)

 		ttyname() (in module os)

 		
 tuple

 		

 		display

 		empty, [1]

 		object, [1], [2], [3], [4]

 		singleton

 		tuple() (built-in function)

 		tuple2st() (in module parser)

 		tuple_params (2to3 fixer)

 		TupleType (in module types)

 		turnoff_sigfpe() (in module fpectl)

 		turnon_sigfpe() (in module fpectl)

 		Turtle (class in turtle)

 		turtle (module)

 		turtles() (in module turtle)

 		TurtleScreen (class in turtle)

 		turtlesize() (in module turtle)

 		Tutt, Bill

 		type, [1]

 		

 		Boolean

 		built-in function, [1], [2]

 		data

 		hierarchy

 		immutable data

 		object

 		operations on dictionary

 		operations on list

 		Type (class in aetypes)

 		type (optparse.Option attribute)

 		

 		(socket.socket attribute)

 		(tarfile.TarInfo attribute)

 		type of an object

 		type() (built-in function)

 		TYPE_CHECKER (optparse.Option attribute)

 		typeahead() (in module curses)

 		typecode (array.array attribute)

 		TYPED_ACTIONS (optparse.Option attribute)

 		typed_subpart_iterator() (in module email.iterators)

 		TypeError

 		

 		exception

 		
 types

 		

 		built-in

 		module

 		mutable sequence

 		operations on integer

 		operations on mapping

 		operations on numeric

 		operations on sequence, [1]

 		types (2to3 fixer)

 		

 		(module)

 		TYPES (optparse.Option attribute)

 		types, internal

 		types_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		TypeType (in module types)

 		TZ, [1], [2], [3], [4]

 		tzinfo (class in datetime)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		tzname (in module time)

 		tzname() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		tzset() (in module time)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-A.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – A

 		

 		a-LAW

 		A-LAW, [1]

 		a2b_base64() (in module binascii)

 		a2b_hex() (in module binascii)

 		a2b_hqx() (in module binascii)

 		a2b_qp() (in module binascii)

 		a2b_uu() (in module binascii)

 		abc (module)

 		ABCMeta (class in abc)

 		abort() (ftplib.FTP method)

 		

 		(in module os)

 		above() (curses.panel.Panel method)

 		
 abs

 		

 		built-in function

 		abs() (built-in function)

 		

 		(decimal.Context method)

 		(in module operator)

 		abspath() (in module os.path)

 		abstract base class

 		AbstractBasicAuthHandler (class in urllib2)

 		AbstractDigestAuthHandler (class in urllib2)

 		AbstractFormatter (class in formatter)

 		abstractmethod() (in module abc)

 		abstractproperty() (in module abc)

 		AbstractWriter (class in formatter)

 		accept() (asyncore.dispatcher method)

 		

 		(multiprocessing.connection.Listener method)

 		(socket.socket method)

 		accept2dyear (in module time)

 		access() (in module os)

 		acos() (in module cmath)

 		

 		(in module math)

 		acosh() (in module cmath)

 		

 		(in module math)

 		acquire() (logging.Handler method)

 		

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		acquire_lock() (in module imp)

 		action (optparse.Option attribute)

 		ACTIONS (optparse.Option attribute)

 		activate_form() (fl.form method)

 		active_children() (in module multiprocessing)

 		active_count() (in module threading)

 		activeCount() (in module threading)

 		add() (decimal.Context method)

 		

 		(in module audioop)

 		(in module operator)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(msilib.RadioButtonGroup method)

 		(pstats.Stats method)

 		(set method)

 		(tarfile.TarFile method)

 		(ttk.Notebook method)

 		add_alias() (in module email.charset)

 		add_argument() (argparse.ArgumentParser method)

 		add_argument_group() (argparse.ArgumentParser method)

 		add_box() (fl.form method)

 		add_browser() (fl.form method)

 		add_button() (fl.form method)

 		add_cgi_vars() (wsgiref.handlers.BaseHandler method)

 		add_charset() (in module email.charset)

 		add_choice() (fl.form method)

 		add_clock() (fl.form method)

 		add_codec() (in module email.charset)

 		add_cookie_header() (cookielib.CookieJar method)

 		add_counter() (fl.form method)

 		add_data() (in module msilib)

 		

 		(urllib2.Request method)

 		add_dial() (fl.form method)

 		add_fallback() (gettext.NullTranslations method)

 		add_file() (msilib.Directory method)

 		add_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		add_flowing_data() (formatter.formatter method)

 		add_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		add_handler() (urllib2.OpenerDirector method)

 		add_header() (email.message.Message method)

 		

 		(urllib2.Request method)

 		(wsgiref.headers.Headers method)

 		add_history() (in module readline)

 		add_hor_rule() (formatter.formatter method)

 		add_include_dir() (distutils.ccompiler.CCompiler method)

 		add_input() (fl.form method)

 		add_label() (mailbox.BabylMessage method)

 		add_label_data() (formatter.formatter method)

 		add_library() (distutils.ccompiler.CCompiler method)

 		add_library_dir() (distutils.ccompiler.CCompiler method)

 		add_lightbutton() (fl.form method)

 		add_line_break() (formatter.formatter method)

 		add_link_object() (distutils.ccompiler.CCompiler method)

 		add_literal_data() (formatter.formatter method)

 		add_menu() (fl.form method)

 		add_mutually_exclusive_group() (in module argparse)

 		add_option() (optparse.OptionParser method)

 		add_parent() (urllib2.BaseHandler method)

 		add_password() (urllib2.HTTPPasswordMgr method)

 		add_positioner() (fl.form method)

 		add_roundbutton() (fl.form method)

 		add_runtime_library_dir() (distutils.ccompiler.CCompiler method)

 		add_section() (ConfigParser.RawConfigParser method)

 		add_sequence() (mailbox.MHMessage method)

 		add_slider() (fl.form method)

 		add_stream() (in module msilib)

 		add_subparsers() (argparse.ArgumentParser method)

 		add_suffix() (imputil.ImportManager method)

 		add_tables() (in module msilib)

 		add_text() (fl.form method)

 		add_timer() (fl.form method)

 		add_type() (in module mimetypes)

 		add_unredirected_header() (urllib2.Request method)

 		add_valslider() (fl.form method)

 		addch() (curses.window method)

 		addCleanup() (unittest.TestCase method)

 		addcomponent() (turtle.Shape method)

 		addError() (unittest.TestResult method)

 		addExpectedFailure() (unittest.TestResult method)

 		addFailure() (unittest.TestResult method)

 		addfile() (tarfile.TarFile method)

 		addFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		addHandler() (logging.Logger method)

 		addheader() (MimeWriter.MimeWriter method)

 		addinfo() (hotshot.Profile method)

 		addition

 		addLevelName() (in module logging)

 		addnstr() (curses.window method)

 		AddPackagePath() (in module modulefinder)

 		address (multiprocessing.connection.Listener attribute)

 		

 		(multiprocessing.managers.BaseManager attribute)

 		address_family (SocketServer.BaseServer attribute)

 		address_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		AddressList (class in rfc822)

 		addresslist (rfc822.AddressList attribute)

 		addressof() (in module ctypes)

 		addshape() (in module turtle)

 		addsitedir() (in module site)

 		addSkip() (unittest.TestResult method)

 		addstr() (curses.window method)

 		addSuccess() (unittest.TestResult method)

 		addTest() (unittest.TestSuite method)

 		addTests() (unittest.TestSuite method)

 		addTypeEqualityFunc() (unittest.TestCase method)

 		addUnexpectedSuccess() (unittest.TestResult method)

 		adjusted() (decimal.Decimal method)

 		adler32() (in module zlib)

 		ADPCM, Intel/DVI

 		adpcm2lin() (in module audioop)

 		aepack (module)

 		
 AES

 		

 		algorithm

 		AEServer (class in MiniAEFrame)

 		AEText (class in aetypes)

 		aetools (module)

 		aetypes (module)

 		AF_INET (in module socket)

 		AF_INET6 (in module socket)

 		AF_UNIX (in module socket)

 		aifc (module)

 		aifc() (aifc.aifc method)

 		AIFF, [1]

 		aiff() (aifc.aifc method)

 		AIFF-C, [1]

 		
 AL

 		

 		module

 		AL (module)

 		al (module)

 		alarm() (in module signal)

 		alaw2lin() (in module audioop)

 		
 algorithm

 		

 		AES

 		alignment() (in module ctypes)

 		all() (built-in function)

 		all_errors (in module ftplib)

 		all_features (in module xml.sax.handler)

 		all_properties (in module xml.sax.handler)

 		allocate_lock() (in module thread)

 		allow_reuse_address (SocketServer.BaseServer attribute)

 		allowed_domains() (cookielib.DefaultCookiePolicy method)

 		alt() (in module curses.ascii)

 		ALT_DIGITS (in module locale)

 		altsep (in module os)

 		altzone (in module time)

 		ALWAYS_TYPED_ACTIONS (optparse.Option attribute)

 		AMPER (in module token)

 		

 		AMPEREQUAL (in module token)

 		anchor_bgn() (htmllib.HTMLParser method)

 		anchor_end() (htmllib.HTMLParser method)

 		
 and

 		

 		bitwise

 		operator, [1], [2]

 		and_() (in module operator)

 		annotate() (in module dircache)

 		announce() (distutils.ccompiler.CCompiler method)

 		
 anonymous

 		

 		function

 		answerChallenge() (in module multiprocessing.connection)

 		any() (built-in function)

 		anydbm (module)

 		api_version (in module sys)

 		apop() (poplib.POP3 method)

 		APPDATA

 		append() (array.array method)

 		

 		(collections.deque method)

 		(email.header.Header method)

 		(imaplib.IMAP4 method)

 		(list method)

 		(msilib.CAB method)

 		(pipes.Template method)

 		(xml.etree.ElementTree.Element method)

 		appendChild() (xml.dom.Node method)

 		appendleft() (collections.deque method)

 		AppleEvents, [1]

 		applesingle (module)

 		Application() (in module FrameWork)

 		application_uri() (in module wsgiref.util)

 		apply (2to3 fixer)

 		apply() (built-in function)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		apply_async() (multiprocessing.pool.multiprocessing.Pool method)

 		architecture() (in module platform)

 		archive (zipimport.zipimporter attribute)

 		aRepr (in module repr)

 		argparse (module)

 		args (exceptions.BaseException attribute)

 		

 		(functools.partial attribute)

 		argtypes (ctypes._FuncPtr attribute)

 		argument

 		

 		function

 		ArgumentDefaultsHelpFormatter (class in argparse)

 		ArgumentError

 		ArgumentParser (class in argparse)

 		argv (in module sys)

 		arithmetic

 		

 		conversion

 		operation, binary

 		operation, unary

 		ArithmeticError

 		
 array

 		

 		module

 		array (class in array)

 		

 		(module)

 		Array() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		arrays

 		ArrayType (in module array)

 		article() (nntplib.NNTP method)

 		as_integer_ratio() (float method)

 		AS_IS (in module formatter)

 		as_string() (email.message.Message method)

 		as_tuple() (decimal.Decimal method)

 		ascii() (in module curses.ascii)

 		

 		(in module future_builtins)

 		ASCII@ASCII, [1], [2], [3], [4], [5]

 		ascii_letters (in module string)

 		ascii_lowercase (in module string)

 		ascii_uppercase (in module string)

 		asctime() (in module time)

 		asin() (in module cmath)

 		

 		(in module math)

 		asinh() (in module cmath)

 		

 		(in module math)

 		AskFileForOpen() (in module EasyDialogs)

 		AskFileForSave() (in module EasyDialogs)

 		AskFolder() (in module EasyDialogs)

 		AskPassword() (in module EasyDialogs)

 		AskString() (in module EasyDialogs)

 		AskYesNoCancel() (in module EasyDialogs)

 		
 assert

 		

 		statement, [1]

 		assert_line_data() (formatter.formatter method)

 		assertAlmostEqual() (unittest.TestCase method)

 		assertDictContainsSubset() (unittest.TestCase method)

 		assertDictEqual() (unittest.TestCase method)

 		assertEqual() (unittest.TestCase method)

 		assertFalse() (unittest.TestCase method)

 		assertGreater() (unittest.TestCase method)

 		assertGreaterEqual() (unittest.TestCase method)

 		assertIn() (unittest.TestCase method)

 		AssertionError

 		

 		exception

 		
 assertions

 		

 		debugging

 		assertIs() (unittest.TestCase method)

 		assertIsInstance() (unittest.TestCase method)

 		assertIsNone() (unittest.TestCase method)

 		assertIsNot() (unittest.TestCase method)

 		assertIsNotNone() (unittest.TestCase method)

 		assertItemsEqual() (unittest.TestCase method)

 		assertLess() (unittest.TestCase method)

 		assertLessEqual() (unittest.TestCase method)

 		assertListEqual() (unittest.TestCase method)

 		assertMultiLineEqual() (unittest.TestCase method)

 		assertNotAlmostEqual() (unittest.TestCase method)

 		assertNotEqual() (unittest.TestCase method)

 		assertNotIn() (unittest.TestCase method)

 		assertNotIsInstance() (unittest.TestCase method)

 		assertNotRegexpMatches() (unittest.TestCase method)

 		assertRaises() (unittest.TestCase method)

 		assertRaisesRegexp() (unittest.TestCase method)

 		assertRegexpMatches() (unittest.TestCase method)

 		assertSequenceEqual() (unittest.TestCase method)

 		assertSetEqual() (unittest.TestCase method)

 		assertTrue() (unittest.TestCase method)

 		assertTupleEqual() (unittest.TestCase method)

 		
 assignment

 		

 		attribute, [1]

 		augmented

 		class attribute

 		class instance attribute

 		extended slice

 		slice

 		slicing

 		statement, [1]

 		subscript

 		subscription

 		target list

 		AST (class in ast)

 		ast (module)

 		astimezone() (datetime.datetime method)

 		ASTVisitor (class in compiler.visitor)

 		async_chat (class in asynchat)

 		async_chat.ac_in_buffer_size (in module asynchat)

 		async_chat.ac_out_buffer_size (in module asynchat)

 		asyncevents() (FrameWork.Application method)

 		asynchat (module)

 		asyncore (module)

 		AsyncResult (class in multiprocessing.pool)

 		AT (in module token)

 		atan() (in module cmath)

 		

 		(in module math)

 		atan2() (in module math)

 		atanh() (in module cmath)

 		

 		(in module math)

 		atexit (module)

 		atime (in module cd)

 		atof() (in module locale)

 		

 		(in module string)

 		atoi() (in module locale)

 		

 		(in module string)

 		atol() (in module string)

 		atom

 		attach() (email.message.Message method)

 		AttlistDeclHandler() (xml.parsers.expat.xmlparser method)

 		attrgetter() (in module operator)

 		attrib (xml.etree.ElementTree.Element attribute)

 		attribute, [1]

 		

 		assignment, [1]

 		assignment, class

 		assignment, class instance

 		class

 		class instance

 		deletion

 		generic special

 		reference

 		special

 		AttributeError

 		

 		exception

 		attributes (xml.dom.Node attribute)

 		AttributesImpl (class in xml.sax.xmlreader)

 		AttributesNSImpl (class in xml.sax.xmlreader)

 		attroff() (curses.window method)

 		attron() (curses.window method)

 		attrset() (curses.window method)

 		audio (in module cd)

 		Audio Interchange File Format, [1]

 		AUDIO_FILE_ENCODING_ADPCM_G721 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G722 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_3 (in module sunau)

 		AUDIO_FILE_ENCODING_ADPCM_G723_5 (in module sunau)

 		AUDIO_FILE_ENCODING_ALAW_8 (in module sunau)

 		AUDIO_FILE_ENCODING_DOUBLE (in module sunau)

 		AUDIO_FILE_ENCODING_FLOAT (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_16 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_24 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_32 (in module sunau)

 		AUDIO_FILE_ENCODING_LINEAR_8 (in module sunau)

 		AUDIO_FILE_ENCODING_MULAW_8 (in module sunau)

 		AUDIO_FILE_MAGIC (in module sunau)

 		AUDIODEV

 		audioop (module)

 		
 augmented

 		

 		assignment

 		auth() (ftplib.FTP_TLS method)

 		authenticate() (imaplib.IMAP4 method)

 		AuthenticationError

 		authenticators() (netrc.netrc method)

 		authkey (multiprocessing.Process attribute)

 		autoGIL (module)

 		AutoGILError

 		avg() (in module audioop)

 		avgpp() (in module audioop)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-W.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – W

 		

 		W (module)

 		W_OK (in module os)

 		wait() (in module os)

 		

 		(multiprocessing.pool.AsyncResult method)

 		(popen2.Popen3 method)

 		(subprocess.Popen method)

 		(threading.Condition method)

 		(threading.Event method)

 		wait3() (in module os)

 		wait4() (in module os)

 		waitpid() (in module os)

 		walk() (email.message.Message method)

 		

 		(in module ast)

 		(in module compiler)

 		(in module compiler.visitor)

 		(in module os)

 		(in module os.path)

 		walk_packages() (in module pkgutil)

 		want (doctest.Example attribute)

 		warn() (distutils.ccompiler.CCompiler method)

 		

 		(distutils.text_file.TextFile method)

 		(in module warnings)

 		warn_explicit() (in module warnings)

 		Warning

 		warning() (in module logging)

 		

 		(logging.Logger method)

 		(xml.sax.handler.ErrorHandler method)

 		warnings

 		

 		(module)

 		WarningsRecorder (class in test.test_support)

 		warnoptions (in module sys)

 		warnpy3k() (in module warnings)

 		wasSuccessful() (unittest.TestResult method)

 		WatchedFileHandler (class in logging.handlers)

 		wave (module)

 		WCONTINUED (in module os)

 		WCOREDUMP() (in module os)

 		WeakKeyDictionary (class in weakref)

 		weakref (module)

 		WeakSet (class in weakref)

 		WeakValueDictionary (class in weakref)

 		webbrowser (module)

 		weekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module calendar)

 		weekheader() (in module calendar)

 		weibullvariate() (in module random)

 		WEXITSTATUS() (in module os)

 		wfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		what() (in module imghdr)

 		

 		(in module sndhdr)

 		whathdr() (in module sndhdr)

 		whichdb (module)

 		whichdb() (in module whichdb)

 		
 while

 		

 		statement, [1], [2], [3]

 		whitespace

 		

 		(in module string)

 		(shlex.shlex attribute)

 		whitespace_split (shlex.shlex attribute)

 		whseed() (in module random)

 		WichmannHill (class in random)

 		Widget (class in ttk)

 		width (textwrap.TextWrapper attribute)

 		width() (in module turtle)

 		WIFCONTINUED() (in module os)

 		WIFEXITED() (in module os)

 		WIFSIGNALED() (in module os)

 		WIFSTOPPED() (in module os)

 		Wimp$ScrapDir

 		win32_ver() (in module platform)

 		WinDLL (class in ctypes)

 		window manager (widgets)

 		window() (curses.panel.Panel method)

 		Window() (in module FrameWork)

 		window_height() (in module turtle), [1]

 		window_width() (in module turtle), [1]

 		windowbounds() (in module FrameWork)

 		Windows ini file

 		WindowsError

 		WinError() (in module ctypes)

 		

 		WINFUNCTYPE() (in module ctypes)

 		WinSock

 		winsound (module)

 		winver (in module sys)

 		
 with

 		

 		statement, [1]

 		WITH_CLEANUP (opcode)

 		WMAvailable() (in module MacOS)

 		WNOHANG (in module os)

 		wordchars (shlex.shlex attribute)

 		World Wide Web, [1], [2], [3]

 		wrap() (in module textwrap)

 		

 		(textwrap.TextWrapper method)

 		wrap_socket() (in module ssl)

 		wrap_text() (in module distutils.fancy_getopt)

 		wrapper() (in module curses.wrapper)

 		wraps() (in module functools)

 		writable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		write() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(code.InteractiveInterpreter method)

 		(codecs.StreamWriter method)

 		(email.generator.Generator method)

 		(file method)

 		(in module imgfile)

 		(in module mmap)

 		(in module os)

 		(in module turtle)

 		(io.BufferedIOBase method)

 		(io.BufferedWriter method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(ossaudiodev.oss_audio_device method)

 		(ssl.SSLSocket method)

 		(telnetlib.Telnet method)

 		(xml.etree.ElementTree.ElementTree method)

 		(zipfile.ZipFile method)

 		write_byte() (in module mmap)

 		write_docstringdict() (in module turtle)

 		write_file() (in module distutils.file_util)

 		write_history_file() (in module readline)

 		WRITE_RESTRICTED

 		write_results() (trace.CoverageResults method)

 		writeall() (ossaudiodev.oss_audio_device method)

 		writeframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeframesraw() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		writeheader() (csv.DictWriter method)

 		writelines() (bz2.BZ2File method)

 		

 		(codecs.StreamWriter method)

 		(file method)

 		(io.IOBase method)

 		writePlist() (in module plistlib)

 		writePlistToResource() (in module plistlib)

 		writePlistToString() (in module plistlib)

 		writepy() (zipfile.PyZipFile method)

 		writer (formatter.formatter attribute)

 		writer() (in module csv)

 		writerow() (csv.csvwriter method)

 		writerows() (csv.csvwriter method)

 		writestr() (zipfile.ZipFile method)

 		writexml() (xml.dom.minidom.Node method)

 		
 writing

 		

 		values, [1]

 		WrongDocumentErr

 		ws_comma (2to3 fixer)

 		wsgi_file_wrapper (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multiprocess (wsgiref.handlers.BaseHandler attribute)

 		wsgi_multithread (wsgiref.handlers.BaseHandler attribute)

 		wsgi_run_once (wsgiref.handlers.BaseHandler attribute)

 		wsgiref (module)

 		wsgiref.handlers (module)

 		wsgiref.headers (module)

 		wsgiref.simple_server (module)

 		wsgiref.util (module)

 		wsgiref.validate (module)

 		WSGIRequestHandler (class in wsgiref.simple_server)

 		WSGIServer (class in wsgiref.simple_server)

 		wShowWindow (subprocess.STARTUPINFO attribute)

 		WSTOPSIG() (in module os)

 		wstring_at() (in module ctypes)

 		WTERMSIG() (in module os)

 		WUNTRACED (in module os)

 		WWW, [1], [2], [3]

 		

 		server, [1]

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/down.png

genindex-Symbols.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – Symbols

 		

 		
 !=

 		

 		operator

 		
 %

 		

 		operator

 		% formatting

 		% interpolation

 		%PATH%

 		
 &

 		

 		operator

 		
 *

 		

 		operator

 		statement, [1]

 		
 **

 		

 		operator

 		statement, [1]

 		
 +

 		

 		operator

 		
 -

 		

 		operator

 		
 --help

 		

 		command line option

 		trace command line option

 		
 --ignore-dir=<dir>

 		

 		trace command line option

 		
 --ignore-module=<mod>

 		

 		trace command line option

 		
 --version

 		

 		command line option

 		trace command line option

 		
 -3

 		

 		command line option

 		
 -B

 		

 		command line option

 		
 -b, --buffer

 		

 		unittest command line option

 		
 -c <command>

 		

 		command line option

 		
 -c, --catch

 		

 		unittest command line option

 		
 -c, --clock

 		

 		timeit command line option

 		
 -c, --count

 		

 		trace command line option

 		
 -C, --coverdir=<dir>

 		

 		trace command line option

 		
 -d

 		

 		command line option

 		
 -d destdir

 		

 		compileall command line option

 		
 -E

 		

 		command line option

 		
 -f

 		

 		compileall command line option

 		
 -f, --failfast

 		

 		unittest command line option

 		
 -f, --file=<file>

 		

 		trace command line option

 		
 -g, --timing

 		

 		trace command line option

 		
 -h

 		

 		command line option

 		
 -h, --help

 		

 		timeit command line option

 		
 -i

 		

 		command line option

 		
 -i list

 		

 		compileall command line option

 		
 -J

 		

 		command line option

 		
 -l

 		

 		compileall command line option

 		
 -l, --listfuncs

 		

 		trace command line option

 		
 -m <module-name>

 		

 		command line option

 		
 -m, --missing

 		

 		trace command line option

 		
 -n N, --number=N

 		

 		timeit command line option

 		
 -O

 		

 		command line option

 		
 -OO

 		

 		command line option

 		
 -p pattern

 		

 		unittest-discover command line option

 		

 		
 -q

 		

 		compileall command line option

 		
 -Q <arg>

 		

 		command line option

 		
 -r N, --repeat=N

 		

 		timeit command line option

 		
 -R, --no-report

 		

 		trace command line option

 		
 -r, --report

 		

 		trace command line option

 		
 -S

 		

 		command line option

 		
 -s

 		

 		command line option

 		
 -s directory

 		

 		unittest-discover command line option

 		
 -s S, --setup=S

 		

 		timeit command line option

 		
 -s, --summary

 		

 		trace command line option

 		
 -t

 		

 		command line option

 		
 -t directory

 		

 		unittest-discover command line option

 		
 -t, --time

 		

 		timeit command line option

 		
 -t, --trace

 		

 		trace command line option

 		
 -T, --trackcalls

 		

 		trace command line option

 		
 -U

 		

 		command line option

 		
 -u

 		

 		command line option

 		
 -V

 		

 		command line option

 		
 -v

 		

 		command line option

 		
 -v, --verbose

 		

 		timeit command line option

 		unittest-discover command line option

 		
 -W arg

 		

 		command line option

 		
 -X

 		

 		command line option

 		
 -x

 		

 		command line option

 		
 -x regex

 		

 		compileall command line option

 		...

 		
 .ini

 		

 		file

 		
 .pdbrc

 		

 		file

 		
 .pythonrc.py

 		

 		file

 		
 /

 		

 		operator

 		
 //

 		

 		operator

 		2to3

 		
 <

 		

 		operator

 		
 <<

 		

 		operator

 		
 <=

 		

 		operator

 		<protocol>_proxy

 		
 ==

 		

 		operator

 		
 >

 		

 		operator

 		
 >=

 		

 		operator

 		
 >>

 		

 		operator

 		>>>

 		
 @

 		

 		statement

 		
 ^

 		

 		operator

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/comment-bright.png

_static/plus.png

genindex-X.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – X

 		

 		X (in module re)

 		X509 certificate

 		X_OK (in module os)

 		xatom() (imaplib.IMAP4 method)

 		xcor() (in module turtle)

 		XDR, [1]

 		xdrlib (module)

 		xgtitle() (nntplib.NNTP method)

 		xhdr() (nntplib.NNTP method)

 		XHTML

 		XHTML_NAMESPACE (in module xml.dom)

 		XML() (in module xml.etree.ElementTree)

 		xml.dom (module)

 		xml.dom.minidom (module)

 		xml.dom.pulldom (module)

 		xml.etree.ElementTree (module)

 		xml.parsers.expat (module)

 		xml.sax (module)

 		xml.sax.handler (module)

 		xml.sax.saxutils (module)

 		xml.sax.xmlreader (module)

 		XML_NAMESPACE (in module xml.dom)

 		

 		xmlcharrefreplace_errors() (in module codecs)

 		XmlDeclHandler() (xml.parsers.expat.xmlparser method)

 		XMLFilterBase (class in xml.sax.saxutils)

 		XMLGenerator (class in xml.sax.saxutils)

 		XMLID() (in module xml.etree.ElementTree)

 		XMLNS_NAMESPACE (in module xml.dom)

 		XMLParser (class in xml.etree.ElementTree)

 		XMLParserType (in module xml.parsers.expat)

 		XMLReader (class in xml.sax.xmlreader)

 		xmlrpclib (module)

 		
 xor

 		

 		bitwise

 		xor() (in module operator)

 		xover() (nntplib.NNTP method)

 		xpath() (nntplib.NNTP method)

 		
 xrange

 		

 		built-in function

 		object, [1]

 		xrange (2to3 fixer)

 		xrange() (built-in function)

 		XRangeType (in module types)

 		xreadlines (2to3 fixer)

 		xreadlines() (bz2.BZ2File method)

 		

 		(file method)

 		xview() (ttk.Treeview method)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-L.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – L

 		

 		L (in module re)

 		label() (EasyDialogs.ProgressBar method)

 		LabelEntry (class in Tix)

 		LabelFrame (class in Tix)

 		lambda

 		

 		expression

 		form, [1]

 		LambdaType (in module types)

 		LANG, [1], [2], [3], [4]

 		
 language

 		

 		C, [1], [2], [3], [4]

 		Java

 		Pascal

 		LANGUAGE, [1]

 		large files

 		LargeZipFile

 		last (multifile.MultiFile attribute)

 		last() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(nntplib.NNTP method)

 		last_accepted (multiprocessing.connection.Listener attribute)

 		last_traceback (in module sys), [1]

 		last_type (in module sys)

 		last_value (in module sys)

 		lastChild (xml.dom.Node attribute)

 		lastcmd (cmd.Cmd attribute)

 		lastgroup (re.MatchObject attribute)

 		lastindex (re.MatchObject attribute)

 		lastpart() (MimeWriter.MimeWriter method)

 		lastrowid (sqlite3.Cursor attribute)

 		launch() (in module findertools)

 		launchurl() (ic.IC method)

 		

 		(in module ic)

 		layout() (ttk.Style method)

 		LBRACE (in module token)

 		LBYL

 		LC_ALL, [1]

 		

 		(in module locale)

 		LC_COLLATE (in module locale)

 		LC_CTYPE (in module locale)

 		LC_MESSAGES, [1]

 		

 		(in module locale)

 		LC_MONETARY (in module locale)

 		LC_NUMERIC (in module locale)

 		LC_TIME (in module locale)

 		lchflags() (in module os)

 		lchmod() (in module os)

 		lchown() (in module os)

 		LDCXXSHARED

 		ldexp() (in module math)

 		LDFLAGS

 		ldgettext() (in module gettext)

 		ldngettext() (in module gettext)

 		le() (in module operator)

 		leading whitespace

 		leapdays() (in module calendar)

 		leaveok() (curses.window method)

 		left() (in module turtle)

 		left_list (filecmp.dircmp attribute)

 		left_only (filecmp.dircmp attribute)

 		LEFTSHIFT (in module token)

 		LEFTSHIFTEQUAL (in module token)

 		
 len

 		

 		built-in function, [1], [2], [3], [4], [5]

 		len() (built-in function)

 		length (xml.dom.NamedNodeMap attribute)

 		

 		(xml.dom.NodeList attribute)

 		LESS (in module token)

 		LESSEQUAL (in module token)

 		letters (in module string)

 		level (multifile.MultiFile attribute)

 		lexical analysis

 		lexical definitions

 		lexists() (in module os.path)

 		lgamma() (in module math)

 		lgettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		lib2to3 (module)

 		libc_ver() (in module platform)

 		library (in module dbm)

 		library_dir_option() (distutils.ccompiler.CCompiler method)

 		library_filename() (distutils.ccompiler.CCompiler method)

 		library_option() (distutils.ccompiler.CCompiler method)

 		LibraryLoader (class in ctypes)

 		license (built-in variable)

 		LifoQueue (class in Queue)

 		light-weight processes

 		limit_denominator() (fractions.Fraction method)

 		lin2adpcm() (in module audioop)

 		lin2alaw() (in module audioop)

 		lin2lin() (in module audioop)

 		lin2ulaw() (in module audioop)

 		line continuation

 		line joining, [1]

 		line structure

 		line() (msilib.Dialog method)

 		line-buffered I/O

 		line_buffering (io.TextIOWrapper attribute)

 		line_num (csv.csvreader attribute)

 		linecache (module)

 		lineno (ast.AST attribute)

 		

 		(doctest.DocTest attribute)

 		(doctest.Example attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(shlex.shlex attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		lineno() (in module fileinput)

 		LINES, [1]

 		linesep (in module os)

 		lineterminator (csv.Dialect attribute)

 		link() (distutils.ccompiler.CCompiler method)

 		

 		(in module os)

 		link_executable() (distutils.ccompiler.CCompiler method)

 		link_shared_lib() (distutils.ccompiler.CCompiler method)

 		link_shared_object() (distutils.ccompiler.CCompiler method)

 		linkmodel (in module MacOS)

 		linkname (tarfile.TarInfo attribute)

 		linux_distribution() (in module platform)

 		list

 		

 		assignment, target

 		comprehensions, [1]

 		deletion target

 		display

 		empty

 		expression, [1], [2]

 		object, [1], [2], [3], [4], [5], [6], [7]

 		target, [1]

 		type, operations on

 		list comprehension

 		list() (built-in function)

 		

 		(imaplib.IMAP4 method)

 		(multiprocessing.managers.SyncManager method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(tarfile.TarFile method)

 		LIST_APPEND (opcode)

 		list_dialects() (in module csv)

 		list_folders() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		listallfolders() (mhlib.MH method)

 		listallsubfolders() (mhlib.MH method)

 		listdir() (in module dircache)

 		

 		(in module os)

 		listen() (asyncore.dispatcher method)

 		

 		(in module logging.config)

 		(in module turtle)

 		(socket.socket method)

 		Listener (class in multiprocessing.connection)

 		listfolders() (mhlib.MH method)

 		listmessages() (mhlib.Folder method)

 		listMethods() (xmlrpclib.ServerProxy.system method)

 		ListNoteBook (class in Tix)

 		listsubfolders() (mhlib.MH method)

 		ListType (in module types)

 		

 		literal, [1]

 		literal_eval() (in module ast)

 		
 literals

 		

 		complex number

 		floating point

 		hexadecimal

 		integer

 		long integer

 		numeric

 		octal

 		LittleEndianStructure (class in ctypes)

 		ljust() (in module string)

 		

 		(str method)

 		LK_LOCK (in module msvcrt)

 		LK_NBLCK (in module msvcrt)

 		LK_NBRLCK (in module msvcrt)

 		LK_RLCK (in module msvcrt)

 		LK_UNLCK (in module msvcrt)

 		LMTP (class in smtplib)

 		ln() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		LNAME

 		lngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		load() (Cookie.BaseCookie method)

 		

 		(cookielib.FileCookieJar method)

 		(in module hotshot.stats)

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(pickle.Unpickler method)

 		LOAD_ATTR (opcode)

 		LOAD_CLOSURE (opcode)

 		load_compiled() (in module imp)

 		LOAD_CONST (opcode)

 		LOAD_DEREF (opcode)

 		load_dynamic() (in module imp)

 		load_extension() (sqlite3.Connection method)

 		LOAD_FAST (opcode)

 		LOAD_GLOBAL (opcode)

 		load_global() (pickle protocol)

 		LOAD_LOCALS (opcode)

 		
 load_module

 		

 		loader

 		load_module() (in module imp)

 		

 		(zipimport.zipimporter method)

 		LOAD_NAME (opcode)

 		load_source() (in module imp)

 		loader, [1]

 		

 		load_module

 		LoadError

 		LoadKey() (in module _winreg)

 		LoadLibrary() (ctypes.LibraryLoader method)

 		loads() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		loadTestsFromModule() (unittest.TestLoader method)

 		loadTestsFromName() (unittest.TestLoader method)

 		loadTestsFromNames() (unittest.TestLoader method)

 		loadTestsFromTestCase() (unittest.TestLoader method)

 		local (class in threading)

 		localcontext() (in module decimal)

 		LOCALE (in module re)

 		locale (module)

 		localeconv() (in module locale)

 		LocaleHTMLCalendar (class in calendar)

 		LocaleTextCalendar (class in calendar)

 		localName (xml.dom.Attr attribute)

 		

 		(xml.dom.Node attribute)

 		
 locals

 		

 		built-in function

 		locals() (built-in function)

 		localtime() (in module time)

 		Locator (class in xml.sax.xmlreader)

 		Lock (class in multiprocessing)

 		Lock() (in module threading)

 		lock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		Lock() (multiprocessing.managers.SyncManager method)

 		lock() (mutex.mutex method)

 		

 		(posixfile.posixfile method)

 		lock_held() (in module imp)

 		locked() (thread.lock method)

 		lockf() (in module fcntl)

 		locking() (in module msvcrt)

 		LockType (in module thread)

 		log() (in module cmath)

 		

 		(in module logging)

 		(in module math)

 		(logging.Logger method)

 		log10() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		log1p() (in module math)

 		log_date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_exception() (wsgiref.handlers.BaseHandler method)

 		log_message() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		log_to_stderr() (in module multiprocessing)

 		logb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		Logger (class in logging)

 		LoggerAdapter (class in logging)

 		
 logging

 		

 		Errors

 		logging (module)

 		logging.config (module)

 		logging.handlers (module)

 		Logical (class in aetypes)

 		logical line

 		logical_and() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_invert() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_or() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		logical_xor() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		login() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(smtplib.SMTP method)

 		login_cram_md5() (imaplib.IMAP4 method)

 		LOGNAME, [1]

 		lognormvariate() (in module random)

 		logout() (imaplib.IMAP4 method)

 		LogRecord (class in logging)

 		
 long

 		

 		built-in function, [1], [2]

 		integer division

 		integer literals

 		long (2to3 fixer)

 		
 long integer

 		

 		object, [1]

 		long integer literal

 		long() (built-in function)

 		long_info (in module sys)

 		longMessage (unittest.TestCase attribute)

 		longname() (in module curses)

 		LongType (in module types)

 		lookup() (in module codecs)

 		

 		(in module unicodedata)

 		(symtable.SymbolTable method)

 		(ttk.Style method)

 		lookup_error() (in module codecs)

 		LookupError

 		
 loop

 		

 		over mutable sequence

 		statement, [1], [2], [3]

 		
 loop control

 		

 		target

 		loop() (in module asyncore)

 		lower() (in module string)

 		

 		(str method)

 		lowercase (in module string)

 		LPAR (in module token)

 		lseek() (in module os)

 		lshift() (in module operator)

 		LSQB (in module token)

 		lstat() (in module os)

 		lstrip() (in module string)

 		

 		(str method)

 		lsub() (imaplib.IMAP4 method)

 		lt() (in module operator)

 		

 		(in module turtle)

 		Lundh, Fredrik

 		LWPCookieJar (class in cookielib)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

_static/comment.png

genindex-Z.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – Z

 		

 		Zen of Python

 		ZeroDivisionError

 		

 		exception

 		zfill() (in module string)

 		

 		(str method)

 		zip (2to3 fixer)

 		zip() (built-in function)

 		

 		(in module future_builtins)

 		ZIP_DEFLATED (in module zipfile)

 		ZIP_STORED (in module zipfile)

 		

 		ZipFile (class in zipfile)

 		zipfile (module)

 		zipimport (module)

 		zipimporter (class in zipimport)

 		ZipImportError

 		ZipInfo (class in zipfile)

 		zlib (module)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-S.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – S

 		

 		S (in module re)

 		S_ENFMT (in module stat)

 		s_eval() (rexec.RExec method)

 		s_exec() (rexec.RExec method)

 		s_execfile() (rexec.RExec method)

 		S_IEXEC (in module stat)

 		S_IFBLK (in module stat)

 		S_IFCHR (in module stat)

 		S_IFDIR (in module stat)

 		S_IFIFO (in module stat)

 		S_IFLNK (in module stat)

 		S_IFMT (in module stat)

 		S_IFMT() (in module stat)

 		S_IFREG (in module stat)

 		S_IFSOCK (in module stat)

 		S_IMODE() (in module stat)

 		s_import() (rexec.RExec method)

 		S_IREAD (in module stat)

 		S_IRGRP (in module stat)

 		S_IROTH (in module stat)

 		S_IRUSR (in module stat)

 		S_IRWXG (in module stat)

 		S_IRWXO (in module stat)

 		S_IRWXU (in module stat)

 		S_ISBLK() (in module stat)

 		S_ISCHR() (in module stat)

 		S_ISDIR() (in module stat)

 		S_ISFIFO() (in module stat)

 		S_ISGID (in module stat)

 		S_ISLNK() (in module stat)

 		S_ISREG() (in module stat)

 		S_ISSOCK() (in module stat)

 		S_ISUID (in module stat)

 		S_ISVTX (in module stat)

 		S_IWGRP (in module stat)

 		S_IWOTH (in module stat)

 		S_IWRITE (in module stat)

 		S_IWUSR (in module stat)

 		S_IXGRP (in module stat)

 		S_IXOTH (in module stat)

 		S_IXUSR (in module stat)

 		s_reload() (rexec.RExec method)

 		s_unload() (rexec.RExec method)

 		safe_substitute() (string.Template method)

 		SafeConfigParser (class in ConfigParser)

 		saferepr() (in module pprint)

 		same_files (filecmp.dircmp attribute)

 		same_quantum() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		samefile() (in module os.path)

 		sameopenfile() (in module os.path)

 		samestat() (in module os.path)

 		sample() (in module random)

 		save() (cookielib.FileCookieJar method)

 		save_bgn() (htmllib.HTMLParser method)

 		save_end() (htmllib.HTMLParser method)

 		SaveKey() (in module _winreg)

 		SAX2DOM (class in xml.dom.pulldom)

 		SAXException

 		SAXNotRecognizedException

 		SAXNotSupportedException

 		SAXParseException

 		scale() (in module imageop)

 		scaleb() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		scalebarvalues() (FrameWork.ScrolledWindow method)

 		scanf()

 		sched (module)

 		scheduler (class in sched)

 		schema (in module msilib)

 		sci() (in module fpformat)

 		scope, [1]

 		Scrap Manager

 		Screen (class in turtle)

 		screensize() (in module turtle)

 		script_from_examples() (in module doctest)

 		scroll() (curses.window method)

 		scrollbar_callback() (FrameWork.ScrolledWindow method)

 		scrollbars() (FrameWork.ScrolledWindow method)

 		ScrolledCanvas (class in turtle)

 		ScrolledText (module)

 		scrollok() (curses.window method)

 		
 search

 		

 		path, module, [1], [2], [3]

 		search() (imaplib.IMAP4 method)

 		

 		(in module re)

 		(re.RegexObject method)

 		SEARCH_ERROR (in module imp)

 		second (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		section_divider() (multifile.MultiFile method)

 		sections() (ConfigParser.RawConfigParser method)

 		secure (cookielib.Cookie attribute)

 		Secure Hash Algorithm

 		secure hash algorithm, SHA1, SHA224, SHA256, SHA384, SHA512

 		Secure Sockets Layer

 		
 security

 		

 		CGI

 		see() (ttk.Treeview method)

 		seed() (in module random)

 		seek() (bz2.BZ2File method)

 		

 		(chunk.Chunk method)

 		(file method)

 		(in module mmap)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		SEEK_CUR (in module os)

 		

 		(in module posixfile)

 		SEEK_END (in module os)

 		

 		(in module posixfile)

 		SEEK_SET (in module os)

 		

 		(in module posixfile)

 		seekable() (io.IOBase method)

 		Select (class in Tix)

 		select (module)

 		select() (imaplib.IMAP4 method)

 		

 		(in module gl)

 		(in module select)

 		(ttk.Notebook method)

 		selection() (ttk.Treeview method)

 		selection_add() (ttk.Treeview method)

 		selection_remove() (ttk.Treeview method)

 		selection_set() (ttk.Treeview method)

 		selection_toggle() (ttk.Treeview method)

 		Semaphore (class in multiprocessing)

 		

 		(class in threading)

 		Semaphore() (multiprocessing.managers.SyncManager method)

 		semaphores, binary

 		SEMI (in module token)

 		send() (aetools.TalkTo method)

 		

 		(asyncore.dispatcher method)

 		(generator method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(logging.handlers.DatagramHandler method)

 		(logging.handlers.SocketHandler method)

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		send_bytes() (multiprocessing.Connection method)

 		send_error() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_flowing_data() (formatter.writer method)

 		send_header() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_hor_rule() (formatter.writer method)

 		send_label_data() (formatter.writer method)

 		send_line_break() (formatter.writer method)

 		send_literal_data() (formatter.writer method)

 		send_paragraph() (formatter.writer method)

 		send_response() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		send_signal() (subprocess.Popen method)

 		sendall() (socket.socket method)

 		sendcmd() (ftplib.FTP method)

 		sendfile() (wsgiref.handlers.BaseHandler method)

 		sendmail() (smtplib.SMTP method)

 		sendto() (socket.socket method)

 		sep (in module os)

 		Separator() (in module FrameWork)

 		sequence

 		

 		item

 		iteration

 		object, [1], [2], [3], [4], [5], [6], [7]

 		types, mutable

 		types, operations on, [1]

 		Sequence (class in collections)

 		sequence (in module msilib)

 		sequence2st() (in module parser)

 		sequenceIncludes() (in module operator)

 		SequenceMatcher (class in difflib), [1]

 		SerialCookie (class in Cookie)

 		
 serializing

 		

 		objects

 		serve_forever() (SocketServer.BaseServer method)

 		
 server

 		

 		WWW, [1]

 		server (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		server_activate() (SocketServer.BaseServer method)

 		server_address (SocketServer.BaseServer attribute)

 		server_bind() (SocketServer.BaseServer method)

 		server_software (wsgiref.handlers.BaseHandler attribute)

 		server_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(SimpleHTTPServer.SimpleHTTPRequestHandler attribute)

 		ServerProxy (class in xmlrpclib)

 		
 set

 		

 		display

 		object, [1], [2]

 		set (built-in class)

 		Set (class in collections)

 		

 		(class in sets)

 		
 set type

 		

 		object

 		set() (ConfigParser.RawConfigParser method)

 		

 		(ConfigParser.SafeConfigParser method)

 		(Cookie.Morsel method)

 		(EasyDialogs.ProgressBar method)

 		(ossaudiodev.oss_mixer_device method)

 		(test.test_support.EnvironmentVarGuard method)

 		(threading.Event method)

 		(ttk.Combobox method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		set_allowed_domains() (cookielib.DefaultCookiePolicy method)

 		set_app() (wsgiref.simple_server.WSGIServer method)

 		set_authorizer() (sqlite3.Connection method)

 		set_blocked_domains() (cookielib.DefaultCookiePolicy method)

 		set_boundary() (email.message.Message method)

 		set_break() (bdb.Bdb method)

 		set_charset() (email.message.Message method)

 		set_children() (ttk.Treeview method)

 		set_completer() (in module readline)

 		set_completer_delims() (in module readline)

 		set_completion_display_matches_hook() (in module readline)

 		set_continue() (bdb.Bdb method)

 		set_conversion_mode() (in module ctypes)

 		set_cookie() (cookielib.CookieJar method)

 		set_cookie_if_ok() (cookielib.CookieJar method)

 		set_current() (msilib.Feature method)

 		set_date() (mailbox.MaildirMessage method)

 		set_debug() (in module gc)

 		set_debuglevel() (ftplib.FTP method)

 		

 		(httplib.HTTPConnection method)

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		(telnetlib.Telnet method)

 		set_default_type() (email.message.Message method)

 		set_defaults() (argparse.ArgumentParser method)

 		

 		(optparse.OptionParser method)

 		set_errno() (in module ctypes)

 		set_event_call_back() (in module fl)

 		set_executable() (in module multiprocessing)

 		set_executables() (distutils.ccompiler.CCompiler method)

 		set_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		set_form_position() (fl.form method)

 		set_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		set_graphics_mode() (in module fl)

 		set_history_length() (in module readline)

 		set_include_dirs() (distutils.ccompiler.CCompiler method)

 		set_info() (mailbox.MaildirMessage method)

 		set_labels() (mailbox.BabylMessage method)

 		set_last_error() (in module ctypes)

 		set_libraries() (distutils.ccompiler.CCompiler method)

 		set_library_dirs() (distutils.ccompiler.CCompiler method)

 		SET_LINENO (opcode)

 		set_link_objects() (distutils.ccompiler.CCompiler method)

 		set_literal (2to3 fixer)

 		set_location() (bsddb.bsddbobject method)

 		set_next() (bdb.Bdb method)

 		set_nonstandard_attr() (cookielib.Cookie method)

 		set_ok() (cookielib.CookiePolicy method)

 		set_option_negotiation_callback() (telnetlib.Telnet method)

 		set_output_charset() (gettext.NullTranslations method)

 		set_param() (email.message.Message method)

 		set_pasv() (ftplib.FTP method)

 		set_payload() (email.message.Message method)

 		set_policy() (cookielib.CookieJar method)

 		set_position() (xdrlib.Unpacker method)

 		set_pre_input_hook() (in module readline)

 		set_progress_handler() (sqlite3.Connection method)

 		set_proxy() (urllib2.Request method)

 		set_python_build() (in module distutils.sysconfig)

 		set_quit() (bdb.Bdb method)

 		set_recsrc() (ossaudiodev.oss_mixer_device method)

 		set_return() (bdb.Bdb method)

 		set_runtime_library_dirs() (distutils.ccompiler.CCompiler method)

 		set_seq1() (difflib.SequenceMatcher method)

 		set_seq2() (difflib.SequenceMatcher method)

 		set_seqs() (difflib.SequenceMatcher method)

 		set_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		set_server_documentation() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_name() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_server_title() (DocXMLRPCServer.DocCGIXMLRPCRequestHandler method)

 		

 		(DocXMLRPCServer.DocXMLRPCServer method)

 		set_spacing() (formatter.formatter method)

 		set_startup_hook() (in module readline)

 		set_step() (bdb.Bdb method)

 		set_subdir() (mailbox.MaildirMessage method)

 		set_terminator() (asynchat.async_chat method)

 		set_threshold() (in module gc)

 		set_trace() (bdb.Bdb method)

 		

 		(in module bdb)

 		(in module pdb)

 		(pdb.Pdb method)

 		set_tunnel() (httplib.HTTPConnection method)

 		set_type() (email.message.Message method)

 		set_unittest_reportflags() (in module doctest)

 		set_unixfrom() (email.message.Message method)

 		set_until() (bdb.Bdb method)

 		set_url() (robotparser.RobotFileParser method)

 		set_usage() (optparse.OptionParser method)

 		set_userptr() (curses.panel.Panel method)

 		set_visible() (mailbox.BabylMessage method)

 		set_wakeup_fd() (in module signal)

 		setacl() (imaplib.IMAP4 method)

 		setannotation() (imaplib.IMAP4 method)

 		setarrowcursor() (in module FrameWork)

 		setattr() (built-in function)

 		setAttribute() (xml.dom.Element method)

 		setAttributeNode() (xml.dom.Element method)

 		setAttributeNodeNS() (xml.dom.Element method)

 		setAttributeNS() (xml.dom.Element method)

 		SetBase() (xml.parsers.expat.xmlparser method)

 		setblocking() (socket.socket method)

 		setByteStream() (xml.sax.xmlreader.InputSource method)

 		setcbreak() (in module tty)

 		setCharacterStream() (xml.sax.xmlreader.InputSource method)

 		setcheckinterval() (in module sys)

 		setcomptype() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setContentHandler() (xml.sax.xmlreader.XMLReader method)

 		setcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		SetCreatorAndType() (in module MacOS)

 		setcurrent() (mhlib.Folder method)

 		setDaemon() (threading.Thread method)

 		setdefault() (dict method)

 		setdefaultencoding() (in module sys)

 		setdefaulttimeout() (in module socket)

 		setdlopenflags() (in module sys)

 		setDocumentLocator() (xml.sax.handler.ContentHandler method)

 		setDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		setegid() (in module os)

 		setEncoding() (xml.sax.xmlreader.InputSource method)

 		setEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		setErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		seteuid() (in module os)

 		setFeature() (xml.sax.xmlreader.XMLReader method)

 		setfirstweekday() (in module calendar)

 		setfmt() (ossaudiodev.oss_audio_device method)

 		setFormatter() (logging.Handler method)

 		setframerate() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setgid() (in module os)

 		setgroups() (in module os)

 		seth() (in module turtle)

 		setheading() (in module turtle)

 		SetInteger() (msilib.Record method)

 		setitem() (in module operator)

 		setitimer() (in module signal)

 		setlast() (mhlib.Folder method)

 		setLevel() (logging.Handler method)

 		

 		(logging.Logger method)

 		setliteral() (sgmllib.SGMLParser method)

 		setlocale() (in module locale)

 		setLocale() (xml.sax.xmlreader.XMLReader method)

 		setLoggerClass() (in module logging)

 		setlogmask() (in module syslog)

 		setmark() (aifc.aifc method)

 		setMaxConns() (urllib2.CacheFTPHandler method)

 		setmode() (in module msvcrt)

 		setName() (threading.Thread method)

 		setnchannels() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnframes() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setnomoretags() (sgmllib.SGMLParser method)

 		setoption() (in module jpeg)

 		SetParamEntityParsing() (xml.parsers.expat.xmlparser method)

 		setparameters() (ossaudiodev.oss_audio_device method)

 		setparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setpassword() (zipfile.ZipFile method)

 		setpath() (in module fm)

 		setpgid() (in module os)

 		setpgrp() (in module os)

 		setpos() (aifc.aifc method)

 		

 		(in module turtle)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		setposition() (in module turtle)

 		setprofile() (in module sys)

 		

 		(in module threading)

 		SetProperty() (msilib.SummaryInformation method)

 		setProperty() (xml.sax.xmlreader.XMLReader method)

 		setPublicId() (xml.sax.xmlreader.InputSource method)

 		setquota() (imaplib.IMAP4 method)

 		setraw() (in module tty)

 		setrecursionlimit() (in module sys)

 		setregid() (in module os)

 		setresgid() (in module os)

 		setresuid() (in module os)

 		setreuid() (in module os)

 		setrlimit() (in module resource)

 		sets (module)

 		setsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_write method)

 		(wave.Wave_write method)

 		setscrreg() (curses.window method)

 		setsid() (in module os)

 		setslice() (in module operator)

 		setsockopt() (socket.socket method)

 		setstate() (in module random)

 		SetStream() (msilib.Record method)

 		SetString() (msilib.Record method)

 		setSystemId() (xml.sax.xmlreader.InputSource method)

 		setsyx() (in module curses)

 		setTarget() (logging.handlers.MemoryHandler method)

 		settiltangle() (in module turtle)

 		settimeout() (socket.socket method)

 		setTimeout() (urllib2.CacheFTPHandler method)

 		settrace() (in module sys)

 		

 		(in module threading)

 		settscdump() (in module sys)

 		settypecreator() (ic.IC method)

 		

 		(in module ic)

 		setuid() (in module os)

 		setundobuffer() (in module turtle)

 		setup() (in module distutils.core)

 		

 		(SocketServer.RequestHandler method)

 		(in module turtle)

 		setUp() (unittest.TestCase method)

 		setup_environ() (wsgiref.handlers.BaseHandler method)

 		SETUP_EXCEPT (opcode)

 		SETUP_FINALLY (opcode)

 		SETUP_LOOP (opcode)

 		setup_testing_defaults() (in module wsgiref.util)

 		SETUP_WITH (opcode)

 		setUpClass() (unittest.TestCase method)

 		setupterm() (in module curses)

 		SetValue() (in module _winreg)

 		SetValueEx() (in module _winreg)

 		setwatchcursor() (in module FrameWork)

 		setworldcoordinates() (in module turtle)

 		setx() (in module turtle)

 		sety() (in module turtle)

 		SF_APPEND (in module stat)

 		SF_ARCHIVED (in module stat)

 		SF_IMMUTABLE (in module stat)

 		SF_NOUNLINK (in module stat)

 		SF_SNAPSHOT (in module stat)

 		SGML

 		
 sgmllib

 		

 		module

 		sgmllib (module)

 		SGMLParseError

 		SGMLParser (class in sgmllib)

 		

 		(in module sgmllib)

 		sha (module)

 		Shape (class in turtle)

 		shape (memoryview attribute)

 		shape() (in module turtle)

 		shapesize() (in module turtle)

 		shared_object_filename() (distutils.ccompiler.CCompiler method)

 		Shelf (class in shelve)

 		
 shelve

 		

 		module

 		shelve (module)

 		shift() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		shift_path_info() (in module wsgiref.util)

 		
 shifting

 		

 		operation

 		operations

 		shlex (class in shlex)

 		

 		(module)

 		shortDescription() (unittest.TestCase method)

 		shouldFlush() (logging.handlers.BufferingHandler method)

 		

 		(logging.handlers.MemoryHandler method)

 		shouldStop (unittest.TestResult attribute)

 		show() (curses.panel.Panel method)

 		show_choice() (in module fl)

 		show_compilers() (in module distutils.ccompiler)

 		show_file_selector() (in module fl)

 		show_form() (fl.form method)

 		show_input() (in module fl)

 		

 		show_message() (in module fl)

 		show_question() (in module fl)

 		showsyntaxerror() (code.InteractiveInterpreter method)

 		showtraceback() (code.InteractiveInterpreter method)

 		showturtle() (in module turtle)

 		showwarning() (in module warnings)

 		shuffle() (in module random)

 		shutdown() (imaplib.IMAP4 method)

 		

 		(SocketServer.BaseServer method)

 		(in module findertools)

 		(in module logging)

 		(multiprocessing.managers.BaseManager method)

 		(socket.socket method)

 		shutil (module)

 		SIG_DFL (in module signal)

 		SIG_IGN (in module signal)

 		siginterrupt() (in module signal)

 		
 signal

 		

 		module

 		signal (module)

 		signal() (in module signal)

 		
 simple

 		

 		statement

 		Simple Mail Transfer Protocol

 		SimpleCookie (class in Cookie)

 		simplefilter() (in module warnings)

 		SimpleHandler (class in wsgiref.handlers)

 		SimpleHTTPRequestHandler (class in SimpleHTTPServer)

 		
 SimpleHTTPServer

 		

 		module

 		SimpleHTTPServer (module)

 		SimpleXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		SimpleXMLRPCServer (class in SimpleXMLRPCServer)

 		

 		(module)

 		sin() (in module cmath)

 		

 		(in module math)

 		
 singleton

 		

 		tuple

 		sinh() (in module cmath)

 		

 		(in module math)

 		site (module)

 		
 site-packages

 		

 		directory

 		
 site-python

 		

 		directory

 		
 sitecustomize

 		

 		module, [1]

 		size (struct.Struct attribute)

 		

 		(tarfile.TarInfo attribute)

 		size() (ftplib.FTP method)

 		

 		(in module mmap)

 		Sized (class in collections)

 		sizeof() (in module ctypes)

 		SKIP (in module doctest)

 		skip() (chunk.Chunk method)

 		

 		(in module unittest)

 		skipIf() (in module unittest)

 		skipinitialspace (csv.Dialect attribute)

 		skipped (unittest.TestResult attribute)

 		skippedEntity() (xml.sax.handler.ContentHandler method)

 		skipTest() (unittest.TestCase method)

 		skipUnless() (in module unittest)

 		SLASH (in module token)

 		SLASHEQUAL (in module token)

 		slave() (nntplib.NNTP method)

 		sleep() (in module findertools)

 		

 		(in module time)

 		slice, [1]

 		

 		assignment

 		built-in function, [1], [2]

 		object

 		operation

 		slice() (built-in function)

 		SLICE+0 (opcode)

 		SLICE+1 (opcode)

 		SLICE+2 (opcode)

 		SLICE+3 (opcode)

 		SliceType (in module types)

 		slicing, [1], [2]

 		

 		assignment

 		extended

 		SmartCookie (class in Cookie)

 		
 SMTP

 		

 		protocol

 		SMTP (class in smtplib)

 		SMTP_SSL (class in smtplib)

 		SMTPAuthenticationError

 		SMTPConnectError

 		smtpd (module)

 		SMTPDataError

 		SMTPException

 		SMTPHandler (class in logging.handlers)

 		SMTPHeloError

 		smtplib (module)

 		SMTPRecipientsRefused

 		SMTPResponseException

 		SMTPSenderRefused

 		SMTPServer (class in smtpd)

 		SMTPServerDisconnected

 		SND_ALIAS (in module winsound)

 		SND_ASYNC (in module winsound)

 		SND_FILENAME (in module winsound)

 		SND_LOOP (in module winsound)

 		SND_MEMORY (in module winsound)

 		SND_NODEFAULT (in module winsound)

 		SND_NOSTOP (in module winsound)

 		SND_NOWAIT (in module winsound)

 		SND_PURGE (in module winsound)

 		sndhdr (module)

 		sniff() (csv.Sniffer method)

 		Sniffer (class in csv)

 		SOCK_DGRAM (in module socket)

 		SOCK_RAW (in module socket)

 		SOCK_RDM (in module socket)

 		SOCK_SEQPACKET (in module socket)

 		SOCK_STREAM (in module socket)

 		
 socket

 		

 		module, [1]

 		object

 		socket (module)

 		

 		(SocketServer.BaseServer attribute)

 		socket() (imaplib.IMAP4 method)

 		

 		(in module socket), [1]

 		socket_type (SocketServer.BaseServer attribute)

 		SocketHandler (class in logging.handlers)

 		socketpair() (in module socket)

 		SocketServer (module)

 		SocketType (in module socket)

 		softspace (file attribute)

 		SOMAXCONN (in module socket)

 		sort() (imaplib.IMAP4 method)

 		

 		(list method)

 		sort_stats() (pstats.Stats method)

 		sorted() (built-in function)

 		sortTestMethodsUsing (unittest.TestLoader attribute)

 		source (doctest.Example attribute)

 		

 		(shlex.shlex attribute)

 		source character set

 		sourcehook() (shlex.shlex method)

 		space

 		span() (re.MatchObject method)

 		spawn() (distutils.ccompiler.CCompiler method)

 		

 		(in module pty)

 		spawnl() (in module os)

 		spawnle() (in module os)

 		spawnlp() (in module os)

 		spawnlpe() (in module os)

 		spawnv() (in module os)

 		spawnve() (in module os)

 		spawnvp() (in module os)

 		spawnvpe() (in module os)

 		
 special

 		

 		attribute

 		attribute, generic

 		special method

 		specified_attributes (xml.parsers.expat.xmlparser attribute)

 		speed() (in module turtle)

 		

 		(ossaudiodev.oss_audio_device method)

 		splash() (in module MacOS)

 		split() (in module os.path)

 		

 		(in module re)

 		(in module shlex)

 		(in module string)

 		(re.RegexObject method)

 		(str method)

 		split_quoted() (in module distutils.util)

 		splitdrive() (in module os.path)

 		splitext() (in module os.path)

 		splitfields() (in module string)

 		splitlines() (str method)

 		SplitResult (class in urlparse)

 		splitunc() (in module os.path)

 		SpooledTemporaryFile() (in module tempfile)

 		sprintf-style formatting

 		spwd (module)

 		sqlite3 (module)

 		sqrt() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module cmath)

 		(in module math)

 		SSL

 		ssl (module)

 		ssl() (imaplib.IMAP4_SSL method)

 		ssl_version (ftplib.FTP_TLS attribute)

 		SSLError

 		st() (in module turtle)

 		st2list() (in module parser)

 		st2tuple() (in module parser)

 		ST_ATIME (in module stat)

 		ST_CTIME (in module stat)

 		ST_DEV (in module stat)

 		ST_GID (in module stat)

 		ST_INO (in module stat)

 		ST_MODE (in module stat)

 		ST_MTIME (in module stat)

 		ST_NLINK (in module stat)

 		ST_SIZE (in module stat)

 		ST_UID (in module stat)

 		
 stack

 		

 		execution

 		trace

 		stack viewer

 		stack() (in module inspect)

 		stack_size() (in module thread)

 		

 		(in module threading)

 		
 stackable

 		

 		streams

 		stamp() (in module turtle)

 		
 standard

 		

 		output, [1]

 		Standard C

 		standard input

 		standard_b64decode() (in module base64)

 		standard_b64encode() (in module base64)

 		standard_error (2to3 fixer)

 		StandardError

 		standend() (curses.window method)

 		standout() (curses.window method)

 		STAR (in module token)

 		STAREQUAL (in module token)

 		starmap() (in module itertools)

 		start (slice object attribute), [1]

 		start() (hotshot.Profile method)

 		

 		(multiprocessing.Process method)

 		(multiprocessing.managers.BaseManager method)

 		(re.MatchObject method)

 		(threading.Thread method)

 		(ttk.Progressbar method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		start_color() (in module curses)

 		start_component() (msilib.Directory method)

 		start_new_thread() (in module thread)

 		startbody() (MimeWriter.MimeWriter method)

 		StartCdataSectionHandler() (xml.parsers.expat.xmlparser method)

 		StartDoctypeDeclHandler() (xml.parsers.expat.xmlparser method)

 		startDocument() (xml.sax.handler.ContentHandler method)

 		startElement() (xml.sax.handler.ContentHandler method)

 		StartElementHandler() (xml.parsers.expat.xmlparser method)

 		startElementNS() (xml.sax.handler.ContentHandler method)

 		STARTF_USESHOWWINDOW (in module subprocess)

 		STARTF_USESTDHANDLES (in module subprocess)

 		startfile() (in module os)

 		startmultipartbody() (MimeWriter.MimeWriter method)

 		StartNamespaceDeclHandler() (xml.parsers.expat.xmlparser method)

 		startPrefixMapping() (xml.sax.handler.ContentHandler method)

 		startswith() (str method)

 		startTest() (unittest.TestResult method)

 		startTestRun() (unittest.TestResult method)

 		starttls() (smtplib.SMTP method)

 		STARTUPINFO (class in subprocess)

 		
 stat

 		

 		module

 		stat (module)

 		stat() (in module os)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		stat_float_times() (in module os)

 		state() (ttk.Widget method)

 		statement

 		

 		*, [1]

 		**, [1]

 		@

 		assert, [1]

 		assignment, [1]

 		assignment, augmented

 		break, [1], [2], [3], [4]

 		class

 		compound

 		continue, [1], [2], [3], [4]

 		def

 		del, [1], [2], [3], [4]

 		except

 		exec, [1], [2]

 		expression

 		for, [1], [2], [3], [4]

 		from

 		future

 		global, [1], [2]

 		if, [1]

 		import, [1], [2], [3], [4]

 		loop, [1], [2], [3]

 		pass

 		print, [1], [2]

 		raise, [1]

 		return, [1], [2]

 		simple

 		try, [1], [2]

 		while, [1], [2], [3]

 		with, [1]

 		yield

 		statement grouping

 		staticmethod() (built-in function)

 		Stats (class in pstats)

 		status (httplib.HTTPResponse attribute)

 		status() (imaplib.IMAP4 method)

 		
 statvfs

 		

 		module

 		statvfs (module)

 		statvfs() (in module os)

 		STD_ERROR_HANDLE (in module subprocess)

 		STD_INPUT_HANDLE (in module subprocess)

 		STD_OUTPUT_HANDLE (in module subprocess)

 		StdButtonBox (class in Tix)

 		stderr (in module sys), [1]

 		

 		(subprocess.Popen attribute)

 		stdin (in module sys), [1]

 		

 		(subprocess.Popen attribute)

 		stdio

 		STDOUT (in module subprocess)

 		stdout (in module sys), [1], [2]

 		

 		(subprocess.Popen attribute)

 		Stein, Greg

 		step (slice object attribute), [1]

 		step() (ttk.Progressbar method)

 		stereocontrols() (ossaudiodev.oss_mixer_device method)

 		STILL (in module cd)

 		stop (slice object attribute), [1]

 		stop() (hotshot.Profile method)

 		

 		(ttk.Progressbar method)

 		(unittest.TestResult method)

 		STOP_CODE (opcode)

 		stop_here() (bdb.Bdb method)

 		StopIteration

 		

 		exception, [1]

 		stopListening() (in module logging.config)

 		stopTest() (unittest.TestResult method)

 		stopTestRun() (unittest.TestResult method)

 		storbinary() (ftplib.FTP method)

 		store() (imaplib.IMAP4 method)

 		STORE_ACTIONS (optparse.Option attribute)

 		STORE_ATTR (opcode)

 		STORE_DEREF (opcode)

 		STORE_FAST (opcode)

 		STORE_GLOBAL (opcode)

 		STORE_MAP (opcode)

 		STORE_NAME (opcode)

 		STORE_SLICE+0 (opcode)

 		STORE_SLICE+1 (opcode)

 		STORE_SLICE+2 (opcode)

 		STORE_SLICE+3 (opcode)

 		STORE_SUBSCR (opcode)

 		storlines() (ftplib.FTP method)

 		
 str

 		

 		built-in function, [1], [2]

 		format

 		str() (built-in function)

 		

 		(in module locale)

 		strcoll() (in module locale)

 		StreamError

 		StreamHandler (class in logging)

 		StreamReader (class in codecs)

 		StreamReaderWriter (class in codecs)

 		StreamRecoder (class in codecs)

 		streams

 		

 		stackable

 		StreamWriter (class in codecs)

 		strerror() (in module os)

 		strftime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module time)

 		strict_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_errors() (in module codecs)

 		strict_ns_domain (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_initial_dollar (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_set_path (cookielib.DefaultCookiePolicy attribute)

 		strict_ns_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strict_rfc2965_unverifiable (cookielib.DefaultCookiePolicy attribute)

 		strides (memoryview attribute)

 		
 string

 		

 		Unicode

 		comparison

 		conversion, [1], [2]

 		formatting

 		interpolation

 		item

 		methods

 		module, [1], [2]

 		object, [1], [2], [3]

 		STRING (in module token)

 		string (module)

 		

 		(re.MatchObject attribute)

 		string literal

 		string_at() (in module ctypes)

 		StringIO (class in io)

 		

 		(class in StringIO)

 		(module)

 		StringIO() (in module cStringIO)

 		stringprep (module)

 		strings, documentation, [1]

 		StringType (in module types)

 		StringTypes (in module types)

 		strip() (in module string)

 		

 		(str method)

 		strip_dirs() (pstats.Stats method)

 		stripspaces (curses.textpad.Textbox attribute)

 		strptime() (datetime.datetime class method)

 		

 		(in module time)

 		strtobool() (in module distutils.util)

 		
 struct

 		

 		module

 		Struct (class in struct)

 		struct (module)

 		struct_time (class in time)

 		Structure (class in ctypes)

 		
 structures

 		

 		C

 		strxfrm() (in module locale)

 		STType (in module parser)

 		
 style

 		

 		coding

 		Style (class in ttk)

 		StyledText (class in aetypes)

 		sub() (in module operator)

 		

 		(in module re)

 		(re.RegexObject method)

 		sub_commands (distutils.cmd.Command attribute)

 		
 subclassing

 		

 		immutable types

 		subdirs (filecmp.dircmp attribute)

 		SubElement() (in module xml.etree.ElementTree)

 		SubMenu() (in module FrameWork)

 		subn() (in module re)

 		

 		(re.RegexObject method)

 		Subnormal (class in decimal)

 		subpad() (curses.window method)

 		subprocess (module)

 		subscribe() (imaplib.IMAP4 method)

 		
 subscript

 		

 		assignment

 		operation

 		subscription, [1], [2], [3]

 		

 		assignment

 		subsequent_indent (textwrap.TextWrapper attribute)

 		subst_vars() (in module distutils.util)

 		substitute() (string.Template method)

 		subtract() (collections.Counter method)

 		

 		(decimal.Context method)

 		subtraction

 		subversion (in module sys)

 		subwin() (curses.window method)

 		successful() (multiprocessing.pool.AsyncResult method)

 		suffix_map (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		suite

 		suite() (in module parser)

 		suiteClass (unittest.TestLoader attribute)

 		sum() (built-in function)

 		summarize() (doctest.DocTestRunner method)

 		sunau (module)

 		
 SUNAUDIODEV

 		

 		module

 		
 sunaudiodev

 		

 		module

 		sunaudiodev (module)

 		SUNAUDIODEV (module)

 		super (pyclbr.Class attribute)

 		super() (built-in function)

 		supports_unicode_filenames (in module os.path)

 		
 suppression

 		

 		newline

 		SW_HIDE (in module subprocess)

 		swapcase() (in module string)

 		

 		(str method)

 		sym() (dl.dl method)

 		sym_name (in module symbol)

 		Symbol (class in symtable)

 		symbol (module)

 		SymbolTable (class in symtable)

 		symlink() (in module os)

 		symmetric_difference() (set method)

 		symmetric_difference_update() (set method)

 		symtable (module)

 		symtable() (in module symtable)

 		sync() (bsddb.bsddbobject method)

 		

 		(dbhash.dbhash method)

 		(dumbdbm.dumbdbm method)

 		(in module gdbm)

 		(ossaudiodev.oss_audio_device method)

 		(shelve.Shelf method)

 		syncdown() (curses.window method)

 		synchronized() (in module multiprocessing.sharedctypes)

 		SyncManager (class in multiprocessing.managers)

 		syncok() (curses.window method)

 		syncup() (curses.window method)

 		syntax, [1]

 		SyntaxErr

 		SyntaxError

 		SyntaxWarning

 		
 sys

 		

 		module, [1], [2], [3]

 		sys (module)

 		sys.exc_info

 		sys.exc_traceback

 		sys.last_traceback

 		sys.meta_path

 		sys.modules

 		sys.path

 		sys.path_hooks

 		sys.path_importer_cache

 		sys.stderr

 		sys.stdin

 		sys.stdout

 		sys_exc (2to3 fixer)

 		sys_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		SysBeep() (in module MacOS)

 		sysconf() (in module os)

 		sysconf_names (in module os)

 		sysconfig (module)

 		syslog (module)

 		syslog() (in module syslog)

 		SysLogHandler (class in logging.handlers)

 		system() (in module os)

 		

 		(in module platform)

 		system_alias() (in module platform)

 		SystemError

 		SystemExit

 		

 		(built-in exception)

 		systemId (xml.dom.DocumentType attribute)

 		SystemRandom (class in random)

 		SystemRoot

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-D.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – D

 		

 		D_FMT (in module locale)

 		D_T_FMT (in module locale)

 		daemon (multiprocessing.Process attribute)

 		

 		(threading.Thread attribute)

 		
 dangling

 		

 		else

 		data

 		

 		packing binary

 		tabular

 		type

 		type, immutable

 		Data (class in plistlib)

 		data (select.kevent attribute)

 		

 		(UserDict.IterableUserDict attribute)

 		(UserList.UserList attribute)

 		(UserString.MutableString attribute)

 		(xml.dom.Comment attribute)

 		(xml.dom.ProcessingInstruction attribute)

 		(xml.dom.Text attribute)

 		(xmlrpclib.Binary attribute)

 		data() (xml.etree.ElementTree.TreeBuilder method)

 		
 database

 		

 		Unicode

 		databases

 		DatagramHandler (class in logging.handlers)

 		DATASIZE (in module cd)

 		date (class in datetime)

 		date() (datetime.datetime method)

 		

 		(nntplib.NNTP method)

 		date_time (zipfile.ZipInfo attribute)

 		date_time_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		datetime (class in datetime)

 		

 		(module)

 		datum

 		day (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		day_abbr (in module calendar)

 		day_name (in module calendar)

 		daylight (in module time)

 		Daylight Saving Time

 		DbfilenameShelf (class in shelve)

 		
 dbhash

 		

 		module

 		dbhash (module)

 		
 dbm

 		

 		module, [1], [2], [3]

 		dbm (module)

 		deactivate_form() (fl.form method)

 		deallocation, object

 		debug (imaplib.IMAP4 attribute)

 		

 		(shlex.shlex attribute)

 		(zipfile.ZipFile attribute)

 		debug() (in module doctest)

 		

 		(in module logging)

 		(logging.Logger method)

 		(pipes.Template method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		DEBUG_COLLECTABLE (in module gc)

 		DEBUG_INSTANCES (in module gc)

 		DEBUG_LEAK (in module gc)

 		DEBUG_OBJECTS (in module gc)

 		debug_print() (distutils.ccompiler.CCompiler method)

 		DEBUG_SAVEALL (in module gc)

 		debug_src() (in module doctest)

 		DEBUG_STATS (in module gc)

 		DEBUG_UNCOLLECTABLE (in module gc)

 		debugger, [1], [2]

 		

 		configuration file

 		debugging

 		

 		CGI

 		assertions

 		DebuggingServer (class in smtpd)

 		DebugRunner (class in doctest)

 		DebugStr() (in module MacOS)

 		Decimal (class in decimal)

 		decimal (module)

 		decimal literal

 		decimal() (in module unicodedata)

 		DecimalException (class in decimal)

 		
 decode

 		

 		Codecs

 		decode() (codecs.Codec method)

 		

 		(codecs.IncrementalDecoder method)

 		(in module base64)

 		(in module mimetools)

 		(in module quopri)

 		(in module uu)

 		(json.JSONDecoder method)

 		(str method)

 		(xmlrpclib.Binary method)

 		(xmlrpclib.DateTime method)

 		decode_header() (in module email.header)

 		decode_params() (in module email.utils)

 		decode_rfc2231() (in module email.utils)

 		DecodedGenerator (class in email.generator)

 		decodestring() (in module base64)

 		

 		(in module quopri)

 		decomposition() (in module unicodedata)

 		decompress() (bz2.BZ2Decompressor method)

 		

 		(in module bz2)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Decompress method)

 		decompressobj() (in module zlib)

 		decorator

 		DEDENT (in module token)

 		DEDENT token, [1]

 		dedent() (in module textwrap)

 		deepcopy() (in module copy)

 		
 def

 		

 		statement

 		def_prog_mode() (in module curses)

 		def_shell_mode() (in module curses)

 		
 default

 		

 		parameter value

 		default (optparse.Option attribute)

 		default() (cmd.Cmd method)

 		

 		(compiler.visitor.ASTVisitor method)

 		(json.JSONEncoder method)

 		DEFAULT_BUFFER_SIZE (in module io)

 		default_bufsize (in module xml.dom.pulldom)

 		default_factory (collections.defaultdict attribute)

 		DEFAULT_FORMAT (in module tarfile)

 		default_open() (urllib2.BaseHandler method)

 		DefaultContext (class in decimal)

 		DefaultCookiePolicy (class in cookielib)

 		defaultdict (class in collections)

 		DefaultHandler() (xml.parsers.expat.xmlparser method)

 		DefaultHandlerExpand() (xml.parsers.expat.xmlparser method)

 		defaults() (ConfigParser.RawConfigParser method)

 		defaultTestLoader (in module unittest)

 		defaultTestResult() (unittest.TestCase method)

 		defects (email.message.Message attribute)

 		define_macro() (distutils.ccompiler.CCompiler method)

 		
 definition

 		

 		class, [1]

 		function, [1]

 		defpath (in module os)

 		degrees() (in module math)

 		

 		(in module turtle)

 		
 del

 		

 		statement, [1], [2], [3], [4]

 		del_param() (email.message.Message method)

 		delattr() (built-in function)

 		delay() (in module turtle)

 		delay_output() (in module curses)

 		delayload (cookielib.FileCookieJar attribute)

 		delch() (curses.window method)

 		dele() (poplib.POP3 method)

 		delete

 		delete() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(ttk.Treeview method)

 		DELETE_ATTR (opcode)

 		DELETE_FAST (opcode)

 		DELETE_GLOBAL (opcode)

 		DELETE_NAME (opcode)

 		DELETE_SLICE+0 (opcode)

 		DELETE_SLICE+1 (opcode)

 		DELETE_SLICE+2 (opcode)

 		DELETE_SLICE+3 (opcode)

 		DELETE_SUBSCR (opcode)

 		deleteacl() (imaplib.IMAP4 method)

 		deletefolder() (mhlib.MH method)

 		DeleteKey() (in module _winreg)

 		DeleteKeyEx() (in module _winreg)

 		deleteln() (curses.window method)

 		deleteMe() (bdb.Breakpoint method)

 		DeleteValue() (in module _winreg)

 		
 deletion

 		

 		attribute

 		target

 		target list

 		delimiter (csv.Dialect attribute)

 		delimiters

 		delitem() (in module operator)

 		deliver_challenge() (in module multiprocessing.connection)

 		delslice() (in module operator)

 		demo_app() (in module wsgiref.simple_server)

 		denominator (numbers.Rational attribute)

 		DeprecationWarning

 		deque (class in collections)

 		DER_cert_to_PEM_cert() (in module ssl)

 		derwin() (curses.window method)

 		
 DES

 		

 		cipher

 		description (sqlite3.Cursor attribute)

 		description() (nntplib.NNTP method)

 		descriptions() (nntplib.NNTP method)

 		descriptor

 		

 		file

 		dest (optparse.Option attribute)

 		destructor, [1]

 		Detach() (_winreg.PyHKEY method)

 		detach() (io.BufferedIOBase method)

 		

 		(io.TextIOBase method)

 		(ttk.Treeview method)

 		detect_language() (distutils.ccompiler.CCompiler method)

 		deterministic profiling

 		DEVICE (module)

 		devnull (in module os)

 		dgettext() (in module gettext)

 		Dialect (class in csv)

 		dialect (csv.csvreader attribute)

 		

 		(csv.csvwriter attribute)

 		Dialog (class in msilib)

 		DialogWindow() (in module FrameWork)

 		dict (2to3 fixer)

 		

 		(built-in class)

 		dict() (multiprocessing.managers.SyncManager method)

 		dictConfig() (in module logging.config)

 		dictionary

 		

 		display

 		object, [1], [2], [3], [4], [5], [6]

 		type, operations on

 		DictionaryType (in module types)

 		DictMixin (class in UserDict)

 		DictProxyType (in module types)

 		DictReader (class in csv)

 		DictType (in module types)

 		DictWriter (class in csv)

 		diff_files (filecmp.dircmp attribute)

 		Differ (class in difflib), [1]

 		difference() (set method)

 		difference_update() (set method)

 		difflib (module)

 		digest() (hashlib.hash method)

 		

 		(hmac.hmac method)

 		(md5.md5 method)

 		(sha.sha method)

 		digest_size (in module md5)

 		

 		(in module sha)

 		digit() (in module unicodedata)

 		digits (in module string)

 		dir() (built-in function)

 		

 		(ftplib.FTP method)

 		dircache (module)

 		dircmp (class in filecmp)

 		
 directory

 		

 		changing

 		creating

 		deleting, [1]

 		site-packages

 		site-python

 		traversal

 		walking

 		Directory (class in msilib)

 		directory_created() (built-in function)

 		DirList (class in Tix)

 		dirname() (in module os.path)

 		

 		DirSelectBox (class in Tix)

 		DirSelectDialog (class in Tix)

 		DirTree (class in Tix)

 		dis (module)

 		dis() (in module dis)

 		

 		(in module pickletools)

 		disable() (bdb.Breakpoint method)

 		

 		(in module gc)

 		(in module logging)

 		disable_interspersed_args() (optparse.OptionParser method)

 		DisableReflectionKey() (in module _winreg)

 		disassemble() (in module dis)

 		discard (cookielib.Cookie attribute)

 		discard() (mailbox.Mailbox method)

 		

 		(mailbox.MH method)

 		(set method)

 		discard_buffers() (asynchat.async_chat method)

 		disco() (in module dis)

 		discover() (unittest.TestLoader method)

 		dispatch() (compiler.visitor.ASTVisitor method)

 		dispatch_call() (bdb.Bdb method)

 		dispatch_exception() (bdb.Bdb method)

 		dispatch_line() (bdb.Bdb method)

 		dispatch_return() (bdb.Bdb method)

 		dispatcher (class in asyncore)

 		dispatcher_with_send (class in asyncore)

 		
 display

 		

 		dictionary

 		list

 		set

 		tuple

 		displayhook() (in module sys)

 		Dispose (C function)

 		dist() (in module platform)

 		distance() (in module turtle)

 		distb() (in module dis)

 		Distribution (class in distutils.core)

 		distutils (module)

 		distutils.archive_util (module)

 		distutils.bcppcompiler (module)

 		distutils.ccompiler (module)

 		distutils.cmd (module)

 		distutils.command (module)

 		distutils.command.bdist (module)

 		distutils.command.bdist_dumb (module)

 		distutils.command.bdist_msi (module)

 		distutils.command.bdist_packager (module)

 		distutils.command.bdist_rpm (module)

 		distutils.command.bdist_wininst (module)

 		distutils.command.build (module)

 		distutils.command.build_clib (module)

 		distutils.command.build_ext (module)

 		distutils.command.build_py (module)

 		distutils.command.build_scripts (module)

 		distutils.command.check (module)

 		distutils.command.clean (module)

 		distutils.command.config (module)

 		distutils.command.install (module)

 		distutils.command.install_data (module)

 		distutils.command.install_headers (module)

 		distutils.command.install_lib (module)

 		distutils.command.install_scripts (module)

 		distutils.command.register (module)

 		distutils.command.sdist (module)

 		distutils.core (module)

 		distutils.cygwinccompiler (module)

 		distutils.debug (module)

 		distutils.dep_util (module)

 		distutils.dir_util (module)

 		distutils.dist (module)

 		distutils.emxccompiler (module)

 		distutils.errors (module)

 		distutils.extension (module)

 		distutils.fancy_getopt (module)

 		distutils.file_util (module)

 		distutils.filelist (module)

 		distutils.log (module)

 		distutils.msvccompiler (module)

 		distutils.spawn (module)

 		
 distutils.sysconfig

 		

 		module

 		distutils.sysconfig (module)

 		distutils.text_file (module)

 		distutils.unixccompiler (module)

 		distutils.util (module)

 		distutils.version (module)

 		dither2grey2() (in module imageop)

 		dither2mono() (in module imageop)

 		div() (in module operator)

 		divide() (decimal.Context method)

 		divide_int() (decimal.Context method)

 		division

 		

 		integer

 		long integer

 		DivisionByZero (class in decimal)

 		
 divmod

 		

 		built-in function, [1]

 		divmod() (built-in function)

 		

 		(decimal.Context method)

 		dl (module)

 		DllCanUnloadNow() (in module ctypes)

 		DllGetClassObject() (in module ctypes)

 		dllhandle (in module sys)

 		dngettext() (in module gettext)

 		do_activate() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_char() (FrameWork.Application method)

 		do_clear() (bdb.Bdb method)

 		do_command() (curses.textpad.Textbox method)

 		do_contentclick() (FrameWork.Window method)

 		do_controlhit() (FrameWork.ControlsWindow method)

 		

 		(FrameWork.ScrolledWindow method)

 		do_dialogevent() (FrameWork.Application method)

 		do_forms() (in module fl)

 		do_GET() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_handshake() (ssl.SSLSocket method)

 		do_HEAD() (SimpleHTTPServer.SimpleHTTPRequestHandler method)

 		do_itemhit() (FrameWork.DialogWindow method)

 		do_POST() (CGIHTTPServer.CGIHTTPRequestHandler method)

 		do_postresize() (FrameWork.ScrolledWindow method)

 		

 		(FrameWork.Window method)

 		do_update() (FrameWork.Window method)

 		doc_header (cmd.Cmd attribute)

 		DocCGIXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocFileSuite() (in module doctest)

 		doCleanups() (unittest.TestCase method)

 		docmd() (smtplib.SMTP method)

 		docstring, [1]

 		

 		(doctest.DocTest attribute)

 		docstrings, [1]

 		DocTest (class in doctest)

 		doctest (module)

 		DocTestFailure

 		DocTestFinder (class in doctest)

 		DocTestParser (class in doctest)

 		DocTestRunner (class in doctest)

 		DocTestSuite() (in module doctest)

 		doctype() (xml.etree.ElementTree.TreeBuilder method)

 		

 		(xml.etree.ElementTree.XMLParser method)

 		
 documentation

 		

 		generation

 		online

 		documentation string

 		documentation strings, [1]

 		documentElement (xml.dom.Document attribute)

 		DocXMLRPCRequestHandler (class in DocXMLRPCServer)

 		DocXMLRPCServer (class in DocXMLRPCServer)

 		

 		(module)

 		domain_initial_dot (cookielib.Cookie attribute)

 		domain_return_ok() (cookielib.CookiePolicy method)

 		domain_specified (cookielib.Cookie attribute)

 		DomainLiberal (cookielib.DefaultCookiePolicy attribute)

 		DomainRFC2965Match (cookielib.DefaultCookiePolicy attribute)

 		DomainStrict (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNoDots (cookielib.DefaultCookiePolicy attribute)

 		DomainStrictNonDomain (cookielib.DefaultCookiePolicy attribute)

 		DOMEventStream (class in xml.dom.pulldom)

 		DOMException

 		DomstringSizeErr

 		done() (xdrlib.Unpacker method)

 		DONT_ACCEPT_BLANKLINE (in module doctest)

 		DONT_ACCEPT_TRUE_FOR_1 (in module doctest)

 		dont_write_bytecode (in module sys)

 		doRollover() (logging.handlers.RotatingFileHandler method)

 		

 		(logging.handlers.TimedRotatingFileHandler method)

 		DOT (in module token)

 		dot() (in module turtle)

 		DOTALL (in module re)

 		doublequote (csv.Dialect attribute)

 		DOUBLESLASH (in module token)

 		DOUBLESLASHEQUAL (in module token)

 		DOUBLESTAR (in module token)

 		DOUBLESTAREQUAL (in module token)

 		doupdate() (in module curses)

 		down() (in module turtle)

 		drop_whitespace (textwrap.TextWrapper attribute)

 		dropwhile() (in module itertools)

 		dst() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		DTDHandler (class in xml.sax.handler)

 		duck-typing

 		
 dumbdbm

 		

 		module

 		dumbdbm (module)

 		DumbWriter (class in formatter)

 		dummy_thread (module)

 		dummy_threading (module)

 		dump() (in module ast)

 		

 		(in module json)

 		(in module marshal)

 		(in module pickle)

 		(in module xml.etree.ElementTree)

 		(pickle.Pickler method)

 		dump_address_pair() (in module rfc822)

 		dump_stats() (pstats.Stats method)

 		dumps() (in module json)

 		

 		(in module marshal)

 		(in module pickle)

 		(in module xmlrpclib)

 		dup() (in module os)

 		

 		(posixfile.posixfile method)

 		dup2() (in module os)

 		

 		(posixfile.posixfile method)

 		DUP_TOP (opcode)

 		DUP_TOPX (opcode)

 		DuplicateSectionError

 		dwFlags (subprocess.STARTUPINFO attribute)

 		DynLoadSuffixImporter (class in imputil)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-B.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – B

 		

 		b16decode() (in module base64)

 		b16encode() (in module base64)

 		b2a_base64() (in module binascii)

 		b2a_hex() (in module binascii)

 		b2a_hqx() (in module binascii)

 		b2a_qp() (in module binascii)

 		b2a_uu() (in module binascii)

 		b32decode() (in module base64)

 		b32encode() (in module base64)

 		b64decode() (in module base64)

 		b64encode() (in module base64)

 		Babyl (class in mailbox)

 		BabylMailbox (class in mailbox)

 		BabylMessage (class in mailbox)

 		back() (in module turtle)

 		back-quotes, [1]

 		BACKQUOTE (in module token)

 		backslash character

 		backslashreplace_errors() (in module codecs)

 		
 backward

 		

 		quotes, [1]

 		backward() (in module turtle)

 		backward_compatible (in module imageop)

 		BadStatusLine

 		BadZipfile

 		Balloon (class in Tix)

 		bare except

 		
 base64

 		

 		encoding

 		module

 		base64 (module)

 		BaseCGIHandler (class in wsgiref.handlers)

 		BaseCookie (class in Cookie)

 		BaseException

 		BaseHandler (class in urllib2)

 		

 		(class in wsgiref.handlers)

 		BaseHTTPRequestHandler (class in BaseHTTPServer)

 		BaseHTTPServer (module)

 		BaseManager (class in multiprocessing.managers)

 		basename() (in module os.path)

 		BaseProxy (class in multiprocessing.managers)

 		BaseResult (class in urlparse)

 		BaseServer (class in SocketServer)

 		basestring (2to3 fixer)

 		basestring() (built-in function)

 		basicConfig() (in module logging)

 		BasicContext (class in decimal)

 		Bastion (module)

 		Bastion() (in module Bastion)

 		BastionClass (class in Bastion)

 		baudrate() (in module curses)

 		bbox() (ttk.Treeview method)

 		
 bdb

 		

 		module

 		Bdb (class in bdb)

 		bdb (module)

 		BdbQuit

 		BDFL

 		bdist_msi (class in distutils.command.bdist_msi)

 		beep() (in module curses)

 		Beep() (in module winsound)

 		begin_fill() (in module turtle)

 		begin_poly() (in module turtle)

 		below() (curses.panel.Panel method)

 		benchmarking

 		Benchmarking

 		betavariate() (in module random)

 		bgcolor() (in module turtle)

 		bgn_group() (fl.form method)

 		bgpic() (in module turtle)

 		bias() (in module audioop)

 		bidirectional() (in module unicodedata)

 		BigEndianStructure (class in ctypes)

 		bin() (built-in function)

 		
 binary

 		

 		arithmetic operation

 		bitwise operation

 		data, packing

 		Binary (class in msilib)

 		binary literal

 		binary semaphores

 		BINARY_ADD (opcode)

 		BINARY_AND (opcode)

 		BINARY_DIVIDE (opcode)

 		BINARY_FLOOR_DIVIDE (opcode)

 		BINARY_LSHIFT (opcode)

 		BINARY_MODULO (opcode)

 		BINARY_MULTIPLY (opcode)

 		BINARY_OR (opcode)

 		BINARY_POWER (opcode)

 		BINARY_RSHIFT (opcode)

 		BINARY_SUBSCR (opcode)

 		BINARY_SUBTRACT (opcode)

 		BINARY_TRUE_DIVIDE (opcode)

 		BINARY_XOR (opcode)

 		binascii (module)

 		bind (widgets)

 		bind() (asyncore.dispatcher method)

 		

 		(socket.socket method)

 		bind_textdomain_codeset() (in module gettext)

 		
 binding

 		

 		global name

 		name, [1], [2], [3], [4], [5]

 		bindtextdomain() (in module gettext)

 		
 binhex

 		

 		module

 		binhex (module)

 		binhex() (in module binhex)

 		bisect (module)

 		bisect() (in module bisect)

 		bisect_left() (in module bisect)

 		bisect_right() (in module bisect)

 		
 bit-string

 		

 		operations

 		bit_length() (int method)

 		

 		(long method)

 		

 		bitmap() (msilib.Dialog method)

 		
 bitwise

 		

 		and

 		operation, binary

 		operation, unary

 		or

 		xor

 		bk() (in module turtle)

 		bkgd() (curses.window method)

 		bkgdset() (curses.window method)

 		blank line

 		block

 		

 		code

 		blocked_domains() (cookielib.DefaultCookiePolicy method)

 		BlockingIOError

 		BLOCKSIZE (in module cd)

 		blocksize (in module sha)

 		BNF, [1]

 		body() (nntplib.NNTP method)

 		body_encode() (email.charset.Charset method)

 		body_encoding (email.charset.Charset attribute)

 		body_line_iterator() (in module email.iterators)

 		BOM (in module codecs)

 		BOM_BE (in module codecs)

 		BOM_LE (in module codecs)

 		BOM_UTF16 (in module codecs)

 		BOM_UTF16_BE (in module codecs)

 		BOM_UTF16_LE (in module codecs)

 		BOM_UTF32 (in module codecs)

 		BOM_UTF32_BE (in module codecs)

 		BOM_UTF32_LE (in module codecs)

 		BOM_UTF8 (in module codecs)

 		bool() (built-in function)

 		
 Boolean

 		

 		object, [1]

 		operation

 		operations, [1]

 		type

 		values

 		Boolean (class in aetypes)

 		boolean() (in module xmlrpclib)

 		BooleanType (in module types)

 		border() (curses.window method)

 		bottom() (curses.panel.Panel method)

 		bottom_panel() (in module curses.panel)

 		BoundaryError

 		BoundedSemaphore (class in multiprocessing)

 		BoundedSemaphore() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		box() (curses.window method)

 		
 break

 		

 		statement, [1], [2], [3], [4]

 		break_anywhere() (bdb.Bdb method)

 		break_here() (bdb.Bdb method)

 		break_long_words (textwrap.TextWrapper attribute)

 		BREAK_LOOP (opcode)

 		break_on_hyphens (textwrap.TextWrapper attribute)

 		Breakpoint (class in bdb)

 		BROWSER, [1]

 		
 bsddb

 		

 		module, [1], [2], [3]

 		bsddb (module)

 		BsdDbShelf (class in shelve)

 		btopen() (in module bsddb)

 		
 buffer

 		

 		built-in function

 		object

 		buffer (2to3 fixer)

 		

 		(io.TextIOBase attribute)

 		(unittest.TestResult attribute)

 		buffer size, I/O

 		buffer() (built-in function)

 		buffer_info() (array.array method)

 		buffer_size (xml.parsers.expat.xmlparser attribute)

 		buffer_text (xml.parsers.expat.xmlparser attribute)

 		buffer_used (xml.parsers.expat.xmlparser attribute)

 		BufferedIOBase (class in io)

 		BufferedRandom (class in io)

 		BufferedReader (class in io)

 		BufferedRWPair (class in io)

 		BufferedWriter (class in io)

 		BufferError

 		BufferingHandler (class in logging.handlers)

 		BufferTooShort

 		BufferType (in module types)

 		BUFSIZ (in module macostools)

 		bufsize() (ossaudiodev.oss_audio_device method)

 		BUILD_CLASS (opcode)

 		BUILD_LIST (opcode)

 		BUILD_MAP (opcode)

 		build_opener() (in module urllib2)

 		BUILD_SLICE (opcode)

 		BUILD_TUPLE (opcode)

 		buildtools (module)

 		
 built-in

 		

 		method

 		types

 		
 built-in function

 		

 		abs

 		buffer

 		call

 		chr, [1]

 		cmp, [1]

 		compile, [1], [2], [3]

 		complex, [1]

 		divmod, [1]

 		eval, [1], [2], [3], [4], [5], [6], [7]

 		execfile, [1]

 		file

 		float, [1], [2]

 		globals

 		hash

 		help

 		hex

 		id

 		input, [1]

 		int, [1]

 		len, [1], [2], [3], [4], [5]

 		locals

 		long, [1], [2]

 		max

 		min

 		object, [1]

 		oct

 		open, [1]

 		ord, [1], [2]

 		pow, [1], [2], [3]

 		range

 		raw_input, [1]

 		reload, [1], [2]

 		repr, [1], [2], [3]

 		slice, [1], [2]

 		str, [1], [2]

 		type, [1], [2]

 		unichr

 		unicode, [1], [2]

 		xrange

 		
 built-in method

 		

 		call

 		object, [1]

 		builtin_module_names (in module sys)

 		BuiltinFunctionType (in module types)

 		BuiltinImporter (class in imputil)

 		BuiltinMethodType (in module types)

 		ButtonBox (class in Tix)

 		bye() (in module turtle)

 		byref() (in module ctypes)

 		byte

 		
 byte-code

 		

 		file, [1], [2]

 		byte_compile() (in module distutils.util)

 		bytearray

 		

 		object

 		bytearray() (built-in function)

 		bytecode, [1]

 		byteorder (in module sys)

 		bytes (uuid.UUID attribute)

 		bytes_le (uuid.UUID attribute)

 		BytesIO (class in io)

 		byteswap() (array.array method)

 		bz2 (module)

 		BZ2Compressor (class in bz2)

 		BZ2Decompressor (class in bz2)

 		BZ2File (class in bz2)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-I.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – I

 		

 		I (in module re)

 		
 I/O control

 		

 		POSIX

 		UNIX

 		buffering, [1], [2]

 		tty

 		iadd() (in module operator)

 		iand() (in module operator)

 		IC (class in ic)

 		ic (module)

 		
 icglue

 		

 		module

 		iconcat() (in module operator)

 		icopen (module)

 		
 id

 		

 		built-in function

 		id() (built-in function)

 		

 		(unittest.TestCase method)

 		idcok() (curses.window method)

 		ident (in module cd)

 		

 		(select.kevent attribute)

 		(threading.Thread attribute)

 		identchars (cmd.Cmd attribute)

 		identifier, [1]

 		identify() (ttk.Notebook method)

 		

 		(ttk.Treeview method)

 		(ttk.Widget method)

 		identify_column() (ttk.Treeview method)

 		identify_element() (ttk.Treeview method)

 		identify_region() (ttk.Treeview method)

 		identify_row() (ttk.Treeview method)

 		
 identity

 		

 		test

 		identity of an object

 		idioms (2to3 fixer)

 		idiv() (in module operator)

 		IDLE, [1]

 		idle() (FrameWork.Application method)

 		IDLESTARTUP

 		idlok() (curses.window method)

 		IEEE-754

 		
 if

 		

 		statement, [1]

 		ifilter() (in module itertools)

 		ifilterfalse() (in module itertools)

 		ifloordiv() (in module operator)

 		iglob() (in module glob)

 		ignorableWhitespace() (xml.sax.handler.ContentHandler method)

 		ignore_errors() (in module codecs)

 		IGNORE_EXCEPTION_DETAIL (in module doctest)

 		ignore_patterns() (in module shutil)

 		IGNORECASE (in module re)

 		ihave() (nntplib.NNTP method)

 		ilshift() (in module operator)

 		im_class (method attribute), [1]

 		im_func (method attribute), [1], [2], [3]

 		im_self (method attribute), [1], [2]

 		imag (numbers.Complex attribute)

 		imageop (module)

 		imaginary literal

 		imap() (in module itertools)

 		

 		(multiprocessing.pool.multiprocessing.Pool method)

 		
 IMAP4

 		

 		protocol

 		IMAP4 (class in imaplib)

 		IMAP4.abort

 		IMAP4.error

 		IMAP4.readonly

 		
 IMAP4_SSL

 		

 		protocol

 		IMAP4_SSL (class in imaplib)

 		
 IMAP4_stream

 		

 		protocol

 		IMAP4_stream (class in imaplib)

 		imap_unordered() (multiprocessing.pool.multiprocessing.Pool method)

 		imaplib (module)

 		imgfile (module)

 		imghdr (module)

 		immedok() (curses.window method)

 		immutable

 		

 		data type

 		object, [1], [2]

 		immutable object

 		
 immutable sequence

 		

 		object

 		
 immutable types

 		

 		subclassing

 		ImmutableSet (class in sets)

 		imod() (in module operator)

 		
 imp

 		

 		module

 		imp (module)

 		ImpImporter (class in pkgutil)

 		ImpLoader (class in pkgutil)

 		
 import

 		

 		statement, [1], [2], [3], [4]

 		import (2to3 fixer)

 		Import module

 		import_file() (imputil.DynLoadSuffixImporter method)

 		import_fresh_module() (in module test.test_support)

 		IMPORT_FROM (opcode)

 		import_module() (in module importlib)

 		

 		(in module test.test_support)

 		IMPORT_NAME (opcode)

 		IMPORT_STAR (opcode)

 		import_top() (imputil.Importer method)

 		importer

 		Importer (class in imputil)

 		ImportError

 		

 		exception, [1], [2]

 		importlib (module)

 		ImportManager (class in imputil)

 		imports (2to3 fixer)

 		imports2 (2to3 fixer)

 		ImportWarning

 		ImproperConnectionState

 		imputil (module)

 		imul() (in module operator)

 		
 in

 		

 		keyword

 		operator, [1], [2]

 		in_dll() (ctypes._CData method)

 		in_table_a1() (in module stringprep)

 		in_table_b1() (in module stringprep)

 		in_table_c11() (in module stringprep)

 		in_table_c11_c12() (in module stringprep)

 		in_table_c12() (in module stringprep)

 		in_table_c21() (in module stringprep)

 		in_table_c21_c22() (in module stringprep)

 		in_table_c22() (in module stringprep)

 		in_table_c3() (in module stringprep)

 		in_table_c4() (in module stringprep)

 		in_table_c5() (in module stringprep)

 		in_table_c6() (in module stringprep)

 		in_table_c7() (in module stringprep)

 		in_table_c8() (in module stringprep)

 		in_table_c9() (in module stringprep)

 		in_table_d1() (in module stringprep)

 		in_table_d2() (in module stringprep)

 		inc() (EasyDialogs.ProgressBar method)

 		inch() (curses.window method)

 		
 inclusive

 		

 		or

 		Incomplete

 		IncompleteRead

 		increment_lineno() (in module ast)

 		IncrementalDecoder (class in codecs)

 		IncrementalEncoder (class in codecs)

 		IncrementalNewlineDecoder (class in io)

 		IncrementalParser (class in xml.sax.xmlreader)

 		indent (doctest.Example attribute)

 		INDENT (in module token)

 		INDENT token

 		indentation, [1]

 		IndentationError

 		Independent JPEG Group

 		index (in module cd)

 		index operation

 		index() (array.array method)

 		

 		(in module operator)

 		(in module string)

 		(list method)

 		(str method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		IndexError

 		indexOf() (in module operator)

 		IndexSizeErr

 		indices() (slice method)

 		inet_aton() (in module socket)

 		inet_ntoa() (in module socket)

 		inet_ntop() (in module socket)

 		inet_pton() (in module socket)

 		Inexact (class in decimal)

 		infile (shlex.shlex attribute)

 		Infinity, [1]

 		info() (gettext.NullTranslations method)

 		

 		(in module logging)

 		(logging.Logger method)

 		infolist() (zipfile.ZipFile method)

 		InfoScrap() (in module Carbon.Scrap)

 		InfoSeek Corporation

 		inheritance

 		ini file

 		init() (in module fm)

 		

 		(in module mimetypes)

 		init_builtin() (in module imp)

 		init_color() (in module curses)

 		init_database() (in module msilib)

 		init_frozen() (in module imp)

 		init_pair() (in module curses)

 		inited (in module mimetypes)

 		initgroups() (in module os)

 		initial_indent (textwrap.TextWrapper attribute)

 		initialize_options() (distutils.cmd.Command method)

 		initscr() (in module curses)

 		INPLACE_ADD (opcode)

 		INPLACE_AND (opcode)

 		INPLACE_DIVIDE (opcode)

 		INPLACE_FLOOR_DIVIDE (opcode)

 		INPLACE_LSHIFT (opcode)

 		INPLACE_MODULO (opcode)

 		INPLACE_MULTIPLY (opcode)

 		INPLACE_OR (opcode)

 		INPLACE_POWER (opcode)

 		INPLACE_RSHIFT (opcode)

 		INPLACE_SUBTRACT (opcode)

 		INPLACE_TRUE_DIVIDE (opcode)

 		INPLACE_XOR (opcode)

 		input

 		

 		built-in function, [1]

 		raw

 		input (2to3 fixer)

 		input() (built-in function)

 		

 		(in module fileinput)

 		input_charset (email.charset.Charset attribute)

 		input_codec (email.charset.Charset attribute)

 		InputOnly (class in Tix)

 		InputSource (class in xml.sax.xmlreader)

 		InputType (in module cStringIO)

 		insch() (curses.window method)

 		insdelln() (curses.window method)

 		insert() (array.array method)

 		

 		(list method)

 		(ttk.Notebook method)

 		(ttk.Treeview method)

 		(xml.etree.ElementTree.Element method)

 		insert_text() (in module readline)

 		insertBefore() (xml.dom.Node method)

 		InsertionLoc (class in aetypes)

 		insertln() (curses.window method)

 		insnstr() (curses.window method)

 		insort() (in module bisect)

 		insort_left() (in module bisect)

 		insort_right() (in module bisect)

 		inspect (module)

 		insstr() (curses.window method)

 		install() (gettext.NullTranslations method)

 		

 		(imputil.ImportManager method)

 		(in module gettext)

 		install_opener() (in module urllib2)

 		installaehandler() (MiniAEFrame.AEServer method)

 		installAutoGIL() (in module autoGIL)

 		installHandler() (in module unittest)

 		
 instance

 		

 		call, [1]

 		class

 		object, [1], [2], [3]

 		instance() (in module new)

 		instancemethod() (in module new)

 		InstanceType (in module types)

 		instate() (ttk.Widget method)

 		instr() (curses.window method)

 		instream (shlex.shlex attribute)

 		
 int

 		

 		built-in function, [1]

 		int (uuid.UUID attribute)

 		int() (built-in function)

 		Int2AP() (in module imaplib)

 		integer

 		

 		division

 		division, long

 		literals

 		literals, long

 		object, [1]

 		representation

 		types, operations on

 		integer division

 		integer literal

 		Integral (class in numbers)

 		Integrated Development Environment

 		Intel/DVI ADPCM

 		interact() (code.InteractiveConsole method)

 		

 		(in module code)

 		(telnetlib.Telnet method)

 		interactive

 		interactive mode

 		InteractiveConsole (class in code)

 		InteractiveInterpreter (class in code)

 		intern (2to3 fixer)

 		intern() (built-in function)

 		internal type

 		internal_attr (zipfile.ZipInfo attribute)

 		Internaldate2tuple() (in module imaplib)

 		

 		internalSubset (xml.dom.DocumentType attribute)

 		Internet

 		Internet Config

 		interpolation, string (%)

 		InterpolationDepthError

 		InterpolationError

 		InterpolationMissingOptionError

 		InterpolationSyntaxError

 		interpreted

 		interpreter

 		interpreter prompts

 		interrupt() (sqlite3.Connection method)

 		interrupt_main() (in module thread)

 		intersection() (set method)

 		intersection_update() (set method)

 		IntlText (class in aetypes)

 		IntlWritingCode (class in aetypes)

 		intro (cmd.Cmd attribute)

 		IntType (in module types)

 		InuseAttributeErr

 		inv() (in module operator)

 		InvalidAccessErr

 		InvalidCharacterErr

 		InvalidModificationErr

 		InvalidOperation (class in decimal)

 		InvalidStateErr

 		InvalidURL

 		inversion

 		invert() (in module operator)

 		invocation

 		io (module)

 		IOBase (class in io)

 		ioctl() (in module fcntl)

 		

 		(socket.socket method)

 		IOError

 		ior() (in module operator)

 		ipow() (in module operator)

 		irepeat() (in module operator)

 		IRIS Font Manager

 		
 IRIX

 		

 		threads

 		irshift() (in module operator)

 		
 is

 		

 		operator, [1]

 		
 is not

 		

 		operator, [1]

 		is_() (in module operator)

 		is_alive() (multiprocessing.Process method)

 		

 		(threading.Thread method)

 		is_assigned() (symtable.Symbol method)

 		is_blocked() (cookielib.DefaultCookiePolicy method)

 		is_builtin() (in module imp)

 		is_canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		IS_CHARACTER_JUNK() (in module difflib)

 		is_data() (multifile.MultiFile method)

 		is_declared_global() (symtable.Symbol method)

 		is_empty() (asynchat.fifo method)

 		is_expired() (cookielib.Cookie method)

 		is_finite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_free() (symtable.Symbol method)

 		is_frozen() (in module imp)

 		is_global() (symtable.Symbol method)

 		is_hop_by_hop() (in module wsgiref.util)

 		is_imported() (symtable.Symbol method)

 		is_infinite() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_integer() (float method)

 		is_jython (in module test.test_support)

 		IS_LINE_JUNK() (in module difflib)

 		is_linetouched() (curses.window method)

 		is_local() (symtable.Symbol method)

 		is_multipart() (email.message.Message method)

 		is_namespace() (symtable.Symbol method)

 		is_nan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_nested() (symtable.SymbolTable method)

 		is_normal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_not() (in module operator)

 		is_not_allowed() (cookielib.DefaultCookiePolicy method)

 		is_optimized() (symtable.SymbolTable method)

 		is_package() (zipimport.zipimporter method)

 		is_parameter() (symtable.Symbol method)

 		is_python_build() (in module sysconfig)

 		is_qnan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_referenced() (symtable.Symbol method)

 		is_resource_enabled() (in module test.test_support)

 		is_scriptable() (in module gensuitemodule)

 		is_set() (threading.Event method)

 		is_signed() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_snan() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_subnormal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_tarfile() (in module tarfile)

 		is_tracked() (in module gc)

 		is_unverifiable() (urllib2.Request method)

 		is_wintouched() (curses.window method)

 		is_zero() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		is_zipfile() (in module zipfile)

 		isabs() (in module os.path)

 		isabstract() (in module inspect)

 		isAlive() (threading.Thread method)

 		isalnum() (in module curses.ascii)

 		

 		(str method)

 		isalpha() (in module curses.ascii)

 		

 		(str method)

 		isascii() (in module curses.ascii)

 		isatty() (chunk.Chunk method)

 		

 		(file method)

 		(in module os)

 		(io.IOBase method)

 		isblank() (in module curses.ascii)

 		isblk() (tarfile.TarInfo method)

 		isbuiltin() (in module inspect)

 		isCallable() (in module operator)

 		ischr() (tarfile.TarInfo method)

 		isclass() (in module inspect)

 		iscntrl() (in module curses.ascii)

 		iscode() (in module inspect)

 		iscomment() (rfc822.Message method)

 		isctrl() (in module curses.ascii)

 		isDaemon() (threading.Thread method)

 		isdatadescriptor() (in module inspect)

 		isdecimal() (unicode method)

 		isdev() (tarfile.TarInfo method)

 		isdigit() (in module curses.ascii)

 		

 		(str method)

 		isdir() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isdisjoint() (set method)

 		isdown() (in module turtle)

 		iselement() (in module xml.etree.ElementTree)

 		isenabled() (in module gc)

 		isEnabledFor() (logging.Logger method)

 		isendwin() (in module curses)

 		ISEOF() (in module token)

 		isexpr() (in module parser)

 		

 		(parser.ST method)

 		isfifo() (tarfile.TarInfo method)

 		isfile() (in module os.path)

 		

 		(tarfile.TarInfo method)

 		isfirstline() (in module fileinput)

 		isframe() (in module inspect)

 		isfunction() (in module inspect)

 		isgenerator() (in module inspect)

 		isgeneratorfunction() (in module inspect)

 		isgetsetdescriptor() (in module inspect)

 		isgraph() (in module curses.ascii)

 		isheader() (rfc822.Message method)

 		isinf() (in module cmath)

 		

 		(in module math)

 		isinstance (2to3 fixer)

 		isinstance() (built-in function)

 		iskeyword() (in module keyword)

 		islast() (rfc822.Message method)

 		isleap() (in module calendar)

 		islice() (in module itertools)

 		islink() (in module os.path)

 		islnk() (tarfile.TarInfo method)

 		islower() (in module curses.ascii)

 		

 		(str method)

 		isMappingType() (in module operator)

 		ismemberdescriptor() (in module inspect)

 		ismeta() (in module curses.ascii)

 		ismethod() (in module inspect)

 		ismethoddescriptor() (in module inspect)

 		ismodule() (in module inspect)

 		ismount() (in module os.path)

 		isnan() (in module cmath)

 		

 		(in module math)

 		ISNONTERMINAL() (in module token)

 		isNumberType() (in module operator)

 		isnumeric() (unicode method)

 		isocalendar() (datetime.date method)

 		

 		(datetime.datetime method)

 		isoformat() (datetime.date method)

 		

 		(datetime.datetime method)

 		(datetime.time method)

 		isolation_level (sqlite3.Connection attribute)

 		isoweekday() (datetime.date method)

 		

 		(datetime.datetime method)

 		isprint() (in module curses.ascii)

 		ispunct() (in module curses.ascii)

 		isqueued() (in module fl)

 		isreadable() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isrecursive() (in module pprint)

 		

 		(pprint.PrettyPrinter method)

 		isreg() (tarfile.TarInfo method)

 		isReservedKey() (Cookie.Morsel method)

 		isroutine() (in module inspect)

 		isSameNode() (xml.dom.Node method)

 		isSequenceType() (in module operator)

 		isSet() (threading.Event method)

 		isspace() (in module curses.ascii)

 		

 		(str method)

 		isstdin() (in module fileinput)

 		issubclass() (built-in function)

 		issubset() (set method)

 		issuite() (in module parser)

 		

 		(parser.ST method)

 		issuperset() (set method)

 		issym() (tarfile.TarInfo method)

 		ISTERMINAL() (in module token)

 		istitle() (str method)

 		istraceback() (in module inspect)

 		isub() (in module operator)

 		isupper() (in module curses.ascii)

 		

 		(str method)

 		isvisible() (in module turtle)

 		isxdigit() (in module curses.ascii)

 		
 item

 		

 		sequence

 		string

 		item selection

 		item() (ttk.Treeview method)

 		

 		(xml.dom.NamedNodeMap method)

 		(xml.dom.NodeList method)

 		itemgetter() (in module operator)

 		items() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(xml.etree.ElementTree.Element method)

 		itemsize (array.array attribute)

 		

 		(memoryview attribute)

 		ItemsView (class in collections)

 		iter() (built-in function)

 		

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		iter_child_nodes() (in module ast)

 		iter_fields() (in module ast)

 		iter_importers() (in module pkgutil)

 		iter_modules() (in module pkgutil)

 		iterable

 		Iterable (class in collections)

 		IterableUserDict (class in UserDict)

 		iterator

 		Iterator (class in collections)

 		iterator protocol

 		iterdecode() (in module codecs)

 		iterdump (sqlite3.Connection attribute)

 		iterencode() (in module codecs)

 		

 		(json.JSONEncoder method)

 		iterfind() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		iteritems() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterkeyrefs() (weakref.WeakKeyDictionary method)

 		iterkeys() (dict method)

 		

 		(mailbox.Mailbox method)

 		itermonthdates() (calendar.Calendar method)

 		itermonthdays() (calendar.Calendar method)

 		itermonthdays2() (calendar.Calendar method)

 		iterparse() (in module xml.etree.ElementTree)

 		itertext() (xml.etree.ElementTree.Element method)

 		itertools (2to3 fixer)

 		

 		(module)

 		itertools_imports (2to3 fixer)

 		itervaluerefs() (weakref.WeakValueDictionary method)

 		itervalues() (dict method)

 		

 		(mailbox.Mailbox method)

 		iterweekdays() (calendar.Calendar method)

 		ITIMER_PROF (in module signal)

 		ITIMER_REAL (in module signal)

 		ITIMER_VIRTUAL (in module signal)

 		ItimerError

 		itruediv() (in module operator)

 		ixor() (in module operator)

 		izip() (in module itertools)

 		izip_longest() (in module itertools)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-U.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – U

 		

 		U (in module re)

 		u-LAW, [1], [2], [3]

 		ucd_3_2_0 (in module unicodedata)

 		udata (select.kevent attribute)

 		UF_APPEND (in module stat)

 		UF_IMMUTABLE (in module stat)

 		UF_NODUMP (in module stat)

 		UF_NOUNLINK (in module stat)

 		UF_OPAQUE (in module stat)

 		ugettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		uid (tarfile.TarInfo attribute)

 		uid() (imaplib.IMAP4 method)

 		uidl() (poplib.POP3 method)

 		ulaw2lin() (in module audioop)

 		umask() (in module os)

 		uname (tarfile.TarInfo attribute)

 		uname() (in module os)

 		

 		(in module platform)

 		
 unary

 		

 		arithmetic operation

 		bitwise operation

 		UNARY_CONVERT (opcode)

 		UNARY_INVERT (opcode)

 		UNARY_NEGATIVE (opcode)

 		UNARY_NOT (opcode)

 		UNARY_POSITIVE (opcode)

 		
 unbinding

 		

 		name

 		UnboundLocalError, [1]

 		UnboundMethodType (in module types)

 		unbuffered I/O

 		
 UNC paths

 		

 		and os.makedirs()

 		unconsumed_tail (zlib.Decompress attribute)

 		unctrl() (in module curses)

 		

 		(in module curses.ascii)

 		undefine_macro() (distutils.ccompiler.CCompiler method)

 		Underflow (class in decimal)

 		undo() (in module turtle)

 		undobufferentries() (in module turtle)

 		undoc_header (cmd.Cmd attribute)

 		unescape() (in module xml.sax.saxutils)

 		UnexpectedException

 		unexpectedSuccesses (unittest.TestResult attribute)

 		unfreeze_form() (fl.form method)

 		ungetch() (in module curses)

 		

 		(in module msvcrt)

 		ungetmouse() (in module curses)

 		ungettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		ungetwch() (in module msvcrt)

 		unhexlify() (in module binascii)

 		
 unichr

 		

 		built-in function

 		unichr() (built-in function)

 		Unicode, [1], [2]

 		

 		database

 		object

 		
 unicode

 		

 		built-in function, [1], [2]

 		object

 		unicode (2to3 fixer)

 		UNICODE (in module re)

 		Unicode Consortium

 		unicode() (built-in function)

 		unicodedata (module)

 		UnicodeDecodeError

 		UnicodeEncodeError

 		UnicodeError

 		UnicodeTranslateError

 		UnicodeType (in module types)

 		UnicodeWarning

 		unidata_version (in module unicodedata)

 		unified_diff() (in module difflib)

 		uniform() (in module random)

 		UnimplementedFileMode

 		uninstall() (imputil.ImportManager method)

 		Union (class in ctypes)

 		union() (set method)

 		unittest (module)

 		
 unittest command line option

 		

 		-b, --buffer

 		-c, --catch

 		-f, --failfast

 		
 unittest-discover command line option

 		

 		-p pattern

 		-s directory

 		-t directory

 		-v, --verbose

 		UNIX

 		

 		I/O control

 		file control

 		unixfrom (rfc822.Message attribute)

 		UnixMailbox (class in mailbox)

 		Unknown (class in aetypes)

 		unknown_charref() (sgmllib.SGMLParser method)

 		unknown_decl() (HTMLParser.HTMLParser method)

 		unknown_endtag() (sgmllib.SGMLParser method)

 		unknown_entityref() (sgmllib.SGMLParser method)

 		unknown_open() (urllib2.BaseHandler method)

 		

 		(urllib2.HTTPErrorProcessor method)

 		(urllib2.UnknownHandler method)

 		unknown_starttag() (sgmllib.SGMLParser method)

 		UnknownHandler (class in urllib2)

 		UnknownProtocol

 		UnknownTransferEncoding

 		unlink() (in module os)

 		

 		(xml.dom.minidom.Node method)

 		unlock() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		(mutex.mutex method)

 		unmimify() (in module mimify)

 		unpack() (in module aepack)

 		

 		(in module struct)

 		(struct.Struct method)

 		unpack_array() (xdrlib.Unpacker method)

 		unpack_bytes() (xdrlib.Unpacker method)

 		unpack_double() (xdrlib.Unpacker method)

 		unpack_farray() (xdrlib.Unpacker method)

 		unpack_float() (xdrlib.Unpacker method)

 		unpack_fopaque() (xdrlib.Unpacker method)

 		unpack_from() (in module struct)

 		

 		(struct.Struct method)

 		unpack_fstring() (xdrlib.Unpacker method)

 		unpack_list() (xdrlib.Unpacker method)

 		unpack_opaque() (xdrlib.Unpacker method)

 		UNPACK_SEQUENCE (opcode)

 		unpack_string() (xdrlib.Unpacker method)

 		Unpacker (class in xdrlib)

 		

 		unpackevent() (in module aetools)

 		unparsedEntityDecl() (xml.sax.handler.DTDHandler method)

 		UnparsedEntityDeclHandler() (xml.parsers.expat.xmlparser method)

 		Unpickler (class in pickle)

 		UnpicklingError

 		unqdevice() (in module fl)

 		unquote() (in module email.utils)

 		

 		(in module rfc822)

 		(in module urllib)

 		unquote_plus() (in module urllib)

 		unreachable object

 		unreadline() (distutils.text_file.TextFile method)

 		unrecognized escape sequence

 		unregister() (select.epoll method)

 		

 		(select.poll method)

 		unregister_archive_format() (in module shutil)

 		unregister_dialect() (in module csv)

 		unset() (test.test_support.EnvironmentVarGuard method)

 		unsetenv() (in module os)

 		unsubscribe() (imaplib.IMAP4 method)

 		UnsupportedOperation

 		untokenize() (in module tokenize)

 		untouchwin() (curses.window method)

 		unused_data (zlib.Decompress attribute)

 		unwrap() (ssl.SSLSocket method)

 		up() (in module turtle)

 		update() (collections.Counter method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.hmac method)

 		(in module turtle)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(md5.md5 method)

 		(set method)

 		(sha.sha method)

 		(trace.CoverageResults method)

 		update_panels() (in module curses.panel)

 		update_visible() (mailbox.BabylMessage method)

 		update_wrapper() (in module functools)

 		updatescrollbars() (FrameWork.ScrolledWindow method)

 		upper() (in module string)

 		

 		(str method)

 		uppercase (in module string)

 		urandom() (in module os)

 		URL, [1], [2], [3], [4]

 		

 		parsing

 		relative

 		url (xmlrpclib.ProtocolError attribute)

 		url2pathname() (in module urllib)

 		urlcleanup() (in module urllib)

 		urldefrag() (in module urlparse)

 		urlencode() (in module urllib)

 		URLError

 		urljoin() (in module urlparse)

 		
 urllib

 		

 		module

 		urllib (2to3 fixer)

 		

 		(module)

 		urllib2 (module)

 		urlopen() (in module urllib)

 		

 		(in module urllib2)

 		URLopener (class in urllib)

 		
 urlparse

 		

 		module

 		urlparse (module)

 		urlparse() (in module urlparse)

 		urlretrieve() (in module urllib)

 		urlsafe_b64decode() (in module base64)

 		urlsafe_b64encode() (in module base64)

 		urlsplit() (in module urlparse)

 		urlunparse() (in module urlparse)

 		urlunsplit() (in module urlparse)

 		urn (uuid.UUID attribute)

 		use_default_colors() (in module curses)

 		use_env() (in module curses)

 		use_rawinput (cmd.Cmd attribute)

 		UseForeignDTD() (xml.parsers.expat.xmlparser method)

 		USER

 		
 user

 		

 		configuration file

 		effective id

 		id

 		id, setting

 		user (module)

 		user() (poplib.POP3 method)

 		
 user-defined

 		

 		function

 		function call

 		method

 		
 user-defined function

 		

 		object, [1], [2]

 		
 user-defined method

 		

 		object

 		USER_BASE

 		

 		(in module site)

 		user_call() (bdb.Bdb method)

 		user_exception() (bdb.Bdb method)

 		user_line() (bdb.Bdb method)

 		user_return() (bdb.Bdb method)

 		USER_SITE (in module site)

 		UserDict (class in UserDict)

 		

 		(module)

 		UserList (class in UserList)

 		

 		(module)

 		USERNAME

 		USERPROFILE, [1]

 		userptr() (curses.panel.Panel method)

 		UserString (class in UserString)

 		

 		(module)

 		UserWarning

 		USTAR_FORMAT (in module tarfile)

 		UTC

 		utcfromtimestamp() (datetime.datetime class method)

 		utcnow() (datetime.datetime class method)

 		utcoffset() (datetime.datetime method)

 		

 		(datetime.time method)

 		(datetime.tzinfo method)

 		utctimetuple() (datetime.datetime method)

 		utime() (in module os)

 		
 uu

 		

 		module

 		uu (module)

 		UUID (class in uuid)

 		uuid (module)

 		uuid1

 		uuid1() (in module uuid)

 		uuid3

 		uuid3() (in module uuid)

 		uuid4

 		uuid4() (in module uuid)

 		uuid5

 		uuid5() (in module uuid)

 		UuidCreate() (in module msilib)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

genindex-N.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – N

 		

 		N_TOKENS (in module token)

 		name, [1], [2]

 		

 		binding, [1], [2], [3], [4], [5]

 		binding, global

 		class

 		function

 		mangling

 		rebinding

 		unbinding

 		name (cookielib.Cookie attribute)

 		

 		(doctest.DocTest attribute)

 		(file attribute)

 		(in module os)

 		NAME (in module token)

 		name (io.FileIO attribute)

 		

 		(multiprocessing.Process attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(pyclbr.Class attribute)

 		(pyclbr.Function attribute)

 		(tarfile.TarInfo attribute)

 		(threading.Thread attribute)

 		(xml.dom.Attr attribute)

 		(xml.dom.DocumentType attribute)

 		name() (in module unicodedata)

 		name2codepoint (in module htmlentitydefs)

 		named tuple

 		NamedTemporaryFile() (in module tempfile)

 		namedtuple() (in module collections)

 		NameError

 		

 		exception

 		NameError (built-in exception)

 		namelist() (zipfile.ZipFile method)

 		nameprep() (in module encodings.idna)

 		
 names

 		

 		private

 		namespace, [1]

 		

 		global

 		module

 		namespace() (imaplib.IMAP4 method)

 		Namespace() (multiprocessing.managers.SyncManager method)

 		NAMESPACE_DNS (in module uuid)

 		NAMESPACE_OID (in module uuid)

 		NAMESPACE_URL (in module uuid)

 		NAMESPACE_X500 (in module uuid)

 		NamespaceErr

 		namespaceURI (xml.dom.Node attribute)

 		NaN, [1]

 		NannyNag

 		napms() (in module curses)

 		nargs (optparse.Option attribute)

 		Nav (module)

 		Navigation Services

 		ndiff() (in module difflib)

 		ndim (memoryview attribute)

 		ne (2to3 fixer)

 		ne() (in module operator)

 		neg() (in module operator)

 		negation

 		nested scope

 		nested() (in module contextlib)

 		netrc (class in netrc)

 		

 		(module)

 		NetrcParseError

 		netscape (cookielib.CookiePolicy attribute)

 		Network News Transfer Protocol

 		new (module)

 		new() (in module hmac)

 		

 		(in module md5)

 		(in module sha)

 		new-style class

 		new_alignment() (formatter.writer method)

 		new_compiler() (in module distutils.ccompiler)

 		new_font() (formatter.writer method)

 		new_margin() (formatter.writer method)

 		new_module() (in module imp)

 		new_panel() (in module curses.panel)

 		new_spacing() (formatter.writer method)

 		new_styles() (formatter.writer method)

 		newconfig() (in module al)

 		newer() (in module distutils.dep_util)

 		newer_group() (in module distutils.dep_util)

 		newer_pairwise() (in module distutils.dep_util)

 		newgroups() (nntplib.NNTP method)

 		
 newline

 		

 		suppression

 		NEWLINE (in module token)

 		NEWLINE token, [1]

 		newlines (file attribute)

 		

 		(io.TextIOBase attribute)

 		newnews() (nntplib.NNTP method)

 		newpad() (in module curses)

 		newwin() (in module curses)

 		next (2to3 fixer)

 		next() (bsddb.bsddbobject method)

 		

 		(built-in function)

 		(csv.csvreader method)

 		(dbhash.dbhash method)

 		(file method)

 		(generator method)

 		(iterator method)

 		(mailbox.oldmailbox method)

 		(multifile.MultiFile method)

 		(nntplib.NNTP method)

 		(tarfile.TarFile method)

 		(ttk.Treeview method)

 		next_minus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_plus() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		next_toward() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		nextfile() (in module fileinput)

 		nextkey() (in module gdbm)

 		nextpart() (MimeWriter.MimeWriter method)

 		nextSibling (xml.dom.Node attribute)

 		ngettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		nice() (in module os)

 		nis (module)

 		NIST

 		NL (in module tokenize)

 		nl() (in module curses)

 		nl_langinfo() (in module locale)

 		nlargest() (in module heapq)

 		nlst() (ftplib.FTP method)

 		
 NNTP

 		

 		protocol

 		NNTP (class in nntplib)

 		NNTPDataError

 		NNTPError

 		nntplib (module)

 		NNTPPermanentError

 		NNTPProtocolError

 		NNTPReplyError

 		

 		NNTPTemporaryError

 		no_proxy, [1]

 		nocbreak() (in module curses)

 		NoDataAllowedErr

 		Node (class in compiler.ast)

 		node() (in module platform)

 		nodelay() (curses.window method)

 		nodeName (xml.dom.Node attribute)

 		NodeTransformer (class in ast)

 		nodeType (xml.dom.Node attribute)

 		nodeValue (xml.dom.Node attribute)

 		NodeVisitor (class in ast)

 		NODISC (in module cd)

 		noecho() (in module curses)

 		NOEXPR (in module locale)

 		nofill (htmllib.HTMLParser attribute)

 		nok_builtin_names (rexec.RExec attribute)

 		noload() (pickle.Unpickler method)

 		NoModificationAllowedErr

 		nonblock() (ossaudiodev.oss_audio_device method)

 		
 None

 		

 		object, [1]

 		None (Built-in object)

 		

 		(built-in variable)

 		NoneType (in module types)

 		nonl() (in module curses)

 		nonzero (2to3 fixer)

 		noop() (imaplib.IMAP4 method)

 		

 		(poplib.POP3 method)

 		NoOptionError

 		NOP (opcode)

 		noqiflush() (in module curses)

 		noraw() (in module curses)

 		normalize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(in module locale)

 		(in module unicodedata)

 		(xml.dom.Node method)

 		NORMALIZE_WHITESPACE (in module doctest)

 		normalvariate() (in module random)

 		normcase() (in module os.path)

 		normpath() (in module os.path)

 		NoSectionError

 		NoSuchMailboxError

 		
 not

 		

 		operator, [1]

 		
 not in

 		

 		operator, [1], [2]

 		not_() (in module operator)

 		NotANumber

 		notation

 		notationDecl() (xml.sax.handler.DTDHandler method)

 		NotationDeclHandler() (xml.parsers.expat.xmlparser method)

 		notations (xml.dom.DocumentType attribute)

 		NotConnected

 		NoteBook (class in Tix)

 		Notebook (class in ttk)

 		NotEmptyError

 		NOTEQUAL (in module token)

 		NotFoundErr

 		notify() (threading.Condition method)

 		notify_all() (threading.Condition method)

 		notifyAll() (threading.Condition method)

 		notimeout() (curses.window method)

 		
 NotImplemented

 		

 		object

 		NotImplemented (built-in variable)

 		NotImplementedError

 		NotImplementedType (in module types)

 		NotStandaloneHandler() (xml.parsers.expat.xmlparser method)

 		NotSupportedErr

 		noutrefresh() (curses.window method)

 		now() (datetime.datetime class method)

 		NProperty (class in aetypes)

 		NSIG (in module signal)

 		nsmallest() (in module heapq)

 		NT_OFFSET (in module token)

 		NTEventLogHandler (class in logging.handlers)

 		ntohl() (in module socket)

 		ntohs() (in module socket)

 		ntransfercmd() (ftplib.FTP method)

 		
 null

 		

 		operation

 		NullFormatter (class in formatter)

 		NullHandler (class in logging)

 		NullImporter (class in imp)

 		NullTranslations (class in gettext)

 		NullWriter (class in formatter)

 		number

 		

 		complex

 		floating point

 		Number (class in numbers)

 		NUMBER (in module token)

 		number_class() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		numbers (module)

 		numerator (numbers.Rational attribute)

 		
 numeric

 		

 		conversions

 		literals

 		object, [1], [2], [3]

 		types, operations on

 		numeric literal

 		numeric() (in module unicodedata)

 		Numerical Python

 		numliterals (2to3 fixer)

 		nurbscurve() (in module gl)

 		nurbssurface() (in module gl)

 		nvarray() (in module gl)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-Y.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – Y

 		

 		Y2K

 		ycor() (in module turtle)

 		year (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		Year 2000

 		Year 2038

 		yeardatescalendar() (calendar.Calendar method)

 		yeardays2calendar() (calendar.Calendar method)

 		

 		yeardayscalendar() (calendar.Calendar method)

 		YESEXPR (in module locale)

 		
 yield

 		

 		expression

 		keyword

 		statement

 		YIELD_VALUE (opcode)

 		yiq_to_rgb() (in module colorsys)

 		yview() (ttk.Treeview method)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-G.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – G

 		

 		G.722

 		gaierror

 		gamma() (in module math)

 		gammavariate() (in module random)

 		garbage (in module gc)

 		garbage collection, [1]

 		gather() (curses.textpad.Textbox method)

 		gauss() (in module random)

 		gc (module)

 		gcd() (in module fractions)

 		
 gdbm

 		

 		module, [1], [2]

 		gdbm (module)

 		ge() (in module operator)

 		gen_lib_options() (in module distutils.ccompiler)

 		gen_preprocess_options() (in module distutils.ccompiler)

 		gen_uuid() (in module msilib)

 		generate_help() (distutils.fancy_getopt.FancyGetopt method)

 		generate_tokens() (in module tokenize)

 		generator, [1]

 		

 		expression

 		function, [1], [2]

 		iterator, [1]

 		object, [1], [2]

 		Generator (class in email.generator)

 		generator expression, [1]

 		GeneratorExit

 		

 		exception

 		GeneratorType (in module types)

 		
 generic

 		

 		special attribute

 		generic_visit() (ast.NodeVisitor method)

 		genops() (in module pickletools)

 		gensuitemodule (module)

 		get() (ConfigParser.ConfigParser method)

 		

 		(ConfigParser.RawConfigParser method)

 		(Queue.Queue method)

 		(dict method)

 		(email.message.Message method)

 		(in module webbrowser)

 		(mailbox.Mailbox method)

 		(multiprocessing.Queue method)

 		(multiprocessing.pool.AsyncResult method)

 		(ossaudiodev.oss_mixer_device method)

 		(rfc822.Message method)

 		(ttk.Combobox method)

 		(xml.etree.ElementTree.Element method)

 		get_all() (email.message.Message method)

 		

 		(wsgiref.headers.Headers method)

 		get_all_breaks() (bdb.Bdb method)

 		get_app() (wsgiref.simple_server.WSGIServer method)

 		get_archive_formats() (in module shutil)

 		get_begidx() (in module readline)

 		get_body_encoding() (email.charset.Charset method)

 		get_boundary() (email.message.Message method)

 		get_break() (bdb.Bdb method)

 		get_breaks() (bdb.Bdb method)

 		get_buffer() (xdrlib.Packer method)

 		

 		(xdrlib.Unpacker method)

 		get_charset() (email.message.Message method)

 		get_charsets() (email.message.Message method)

 		get_children() (symtable.SymbolTable method)

 		

 		(ttk.Treeview method)

 		get_close_matches() (in module difflib)

 		get_code() (imputil.BuiltinImporter method)

 		

 		(imputil.Importer method)

 		(zipimport.zipimporter method)

 		get_completer() (in module readline)

 		get_completer_delims() (in module readline)

 		get_completion_type() (in module readline)

 		get_config_h_filename() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_var() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_config_vars() (in module distutils.sysconfig)

 		

 		(in module sysconfig)

 		get_content_charset() (email.message.Message method)

 		get_content_maintype() (email.message.Message method)

 		get_content_subtype() (email.message.Message method)

 		get_content_type() (email.message.Message method)

 		get_count() (in module gc)

 		get_current_history_length() (in module readline)

 		get_data() (in module pkgutil)

 		

 		(urllib2.Request method)

 		(zipimport.zipimporter method)

 		get_date() (mailbox.MaildirMessage method)

 		get_debug() (in module gc)

 		get_default() (argparse.ArgumentParser method)

 		get_default_compiler() (in module distutils.ccompiler)

 		get_default_domain() (in module nis)

 		get_default_type() (email.message.Message method)

 		get_dialect() (in module csv)

 		get_directory() (in module fl)

 		get_docstring() (in module ast)

 		get_doctest() (doctest.DocTestParser method)

 		get_endidx() (in module readline)

 		get_environ() (wsgiref.simple_server.WSGIRequestHandler method)

 		get_errno() (in module ctypes)

 		get_examples() (doctest.DocTestParser method)

 		get_field() (string.Formatter method)

 		get_file() (mailbox.Babyl method)

 		

 		(mailbox.MH method)

 		(mailbox.MMDF method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(mailbox.mbox method)

 		get_file_breaks() (bdb.Bdb method)

 		get_filename() (email.message.Message method)

 		

 		(in module fl)

 		(zipimport.zipimporter method)

 		get_flags() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		get_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		get_frees() (symtable.Function method)

 		get_from() (mailbox.mboxMessage method)

 		

 		(mailbox.MMDFMessage method)

 		get_full_url() (urllib2.Request method)

 		get_globals() (symtable.Function method)

 		get_grouped_opcodes() (difflib.SequenceMatcher method)

 		get_history_item() (in module readline)

 		get_history_length() (in module readline)

 		get_host() (urllib2.Request method)

 		get_id() (symtable.SymbolTable method)

 		get_ident() (in module thread)

 		get_identifiers() (symtable.SymbolTable method)

 		get_importer() (in module pkgutil)

 		get_info() (mailbox.MaildirMessage method)

 		GET_ITER (opcode)

 		get_labels() (mailbox.Babyl method)

 		

 		(mailbox.BabylMessage method)

 		get_last_error() (in module ctypes)

 		get_line_buffer() (in module readline)

 		get_lineno() (symtable.SymbolTable method)

 		get_loader() (in module pkgutil)

 		get_locals() (symtable.Function method)

 		get_logger() (in module multiprocessing)

 		get_magic() (in module imp)

 		get_makefile_filename() (in module distutils.sysconfig)

 		get_matching_blocks() (difflib.SequenceMatcher method)

 		get_message() (mailbox.Mailbox method)

 		get_method() (urllib2.Request method)

 		get_methods() (symtable.Class method)

 		get_mouse() (in module fl)

 		get_name() (symtable.Symbol method)

 		

 		(symtable.SymbolTable method)

 		get_namespace() (symtable.Symbol method)

 		get_namespaces() (symtable.Symbol method)

 		get_no_wait() (multiprocessing.Queue method)

 		get_nonstandard_attr() (cookielib.Cookie method)

 		get_nowait() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		get_objects() (in module gc)

 		get_opcodes() (difflib.SequenceMatcher method)

 		get_option() (optparse.OptionParser method)

 		get_option_group() (optparse.OptionParser method)

 		get_option_order() (distutils.fancy_getopt.FancyGetopt method)

 		get_origin_req_host() (urllib2.Request method)

 		get_osfhandle() (in module msvcrt)

 		get_output_charset() (email.charset.Charset method)

 		get_param() (email.message.Message method)

 		get_parameters() (symtable.Function method)

 		get_params() (email.message.Message method)

 		get_path() (in module sysconfig)

 		get_path_names() (in module sysconfig)

 		get_paths() (in module sysconfig)

 		get_pattern() (in module fl)

 		get_payload() (email.message.Message method)

 		get_platform() (in module distutils.util)

 		

 		(in module sysconfig)

 		get_poly() (in module turtle)

 		get_position() (xdrlib.Unpacker method)

 		get_python_inc() (in module distutils.sysconfig)

 		get_python_lib() (in module distutils.sysconfig)

 		get_python_version() (in module sysconfig)

 		get_recsrc() (ossaudiodev.oss_mixer_device method)

 		get_referents() (in module gc)

 		get_referrers() (in module gc)

 		get_request() (SocketServer.BaseServer method)

 		get_rgbmode() (in module fl)

 		get_scheme() (wsgiref.handlers.BaseHandler method)

 		get_scheme_names() (in module sysconfig)

 		get_selector() (urllib2.Request method)

 		get_sequences() (mailbox.MH method)

 		

 		(mailbox.MHMessage method)

 		get_server() (multiprocessing.managers.BaseManager method)

 		get_server_certificate() (in module ssl)

 		get_socket() (telnetlib.Telnet method)

 		get_source() (zipimport.zipimporter method)

 		get_special_folder_path() (built-in function)

 		get_stack() (bdb.Bdb method)

 		get_starttag_text() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		get_stderr() (wsgiref.handlers.BaseHandler method)

 		

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		get_stdin() (wsgiref.handlers.BaseHandler method)

 		get_string() (mailbox.Mailbox method)

 		get_subdir() (mailbox.MaildirMessage method)

 		get_suffixes() (in module imp)

 		get_symbols() (symtable.SymbolTable method)

 		get_terminator() (asynchat.async_chat method)

 		get_threshold() (in module gc)

 		get_token() (shlex.shlex method)

 		get_type() (symtable.SymbolTable method)

 		

 		(urllib2.Request method)

 		get_unixfrom() (email.message.Message method)

 		get_usage() (optparse.OptionParser method)

 		get_value() (string.Formatter method)

 		get_version() (optparse.OptionParser method)

 		get_visible() (mailbox.BabylMessage method)

 		getabouttext() (FrameWork.Application method)

 		getacl() (imaplib.IMAP4 method)

 		getaddr() (rfc822.Message method)

 		getaddresses() (in module email.utils)

 		getaddrinfo() (in module socket)

 		getaddrlist() (rfc822.Message method)

 		getallmatchingheaders() (rfc822.Message method)

 		getannotation() (imaplib.IMAP4 method)

 		getargspec() (in module inspect)

 		GetArgv() (in module EasyDialogs)

 		getargvalues() (in module inspect)

 		getatime() (in module os.path)

 		getattr() (built-in function)

 		getAttribute() (xml.dom.Element method)

 		getAttributeNode() (xml.dom.Element method)

 		getAttributeNodeNS() (xml.dom.Element method)

 		getAttributeNS() (xml.dom.Element method)

 		GetBase() (xml.parsers.expat.xmlparser method)

 		getbegyx() (curses.window method)

 		getboolean() (ConfigParser.RawConfigParser method)

 		getByteStream() (xml.sax.xmlreader.InputSource method)

 		getcallargs() (in module inspect)

 		getcanvas() (in module turtle)

 		getcaps() (in module mailcap)

 		getch() (curses.window method)

 		

 		(in module msvcrt)

 		getCharacterStream() (xml.sax.xmlreader.InputSource method)

 		getche() (in module msvcrt)

 		getcheckinterval() (in module sys)

 		getChild() (logging.Logger method)

 		getChildNodes() (compiler.ast.Node method)

 		getChildren() (compiler.ast.Node method)

 		getchildren() (xml.etree.ElementTree.Element method)

 		getclasstree() (in module inspect)

 		GetColor() (in module ColorPicker)

 		GetColumnInfo() (msilib.View method)

 		getColumnNumber() (xml.sax.xmlreader.Locator method)

 		getcomments() (in module inspect)

 		getcompname() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getcomptype() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getContentHandler() (xml.sax.xmlreader.XMLReader method)

 		getcontext() (in module decimal)

 		

 		(mhlib.MH method)

 		GetCreatorAndType() (in module MacOS)

 		getctime() (in module os.path)

 		getcurrent() (mhlib.Folder method)

 		getcwd() (in module os)

 		getcwdu (2to3 fixer)

 		getcwdu() (in module os)

 		getdate() (rfc822.Message method)

 		getdate_tz() (rfc822.Message method)

 		getdecoder() (in module codecs)

 		getdefaultencoding() (in module sys)

 		getdefaultlocale() (in module locale)

 		getdefaulttimeout() (in module socket)

 		getdlopenflags() (in module sys)

 		getdoc() (in module inspect)

 		getDOMImplementation() (in module xml.dom)

 		getDTDHandler() (xml.sax.xmlreader.XMLReader method)

 		getEffectiveLevel() (logging.Logger method)

 		getegid() (in module os)

 		getElementsByTagName() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getElementsByTagNameNS() (xml.dom.Document method)

 		

 		(xml.dom.Element method)

 		getencoder() (in module codecs)

 		getencoding() (mimetools.Message method)

 		getEncoding() (xml.sax.xmlreader.InputSource method)

 		getEntityResolver() (xml.sax.xmlreader.XMLReader method)

 		getenv() (in module os)

 		getErrorHandler() (xml.sax.xmlreader.XMLReader method)

 		GetErrorString() (in module MacOS)

 		geteuid() (in module os)

 		getEvent() (xml.dom.pulldom.DOMEventStream method)

 		

 		getEventCategory() (logging.handlers.NTEventLogHandler method)

 		getEventType() (logging.handlers.NTEventLogHandler method)

 		getException() (xml.sax.SAXException method)

 		getFeature() (xml.sax.xmlreader.XMLReader method)

 		GetFieldCount() (msilib.Record method)

 		getfile() (in module inspect)

 		getfilesystemencoding() (in module sys)

 		getfirst() (cgi.FieldStorage method)

 		getfirstmatchingheader() (rfc822.Message method)

 		getfloat() (ConfigParser.RawConfigParser method)

 		getfmts() (ossaudiodev.oss_audio_device method)

 		getfqdn() (in module socket)

 		getframeinfo() (in module inspect)

 		getframerate() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getfullname() (mhlib.Folder method)

 		getgid() (in module os)

 		getgrall() (in module grp)

 		getgrgid() (in module grp)

 		getgrnam() (in module grp)

 		getgroups() (in module os)

 		getheader() (httplib.HTTPResponse method)

 		

 		(rfc822.Message method)

 		getheaders() (httplib.HTTPResponse method)

 		gethostbyaddr() (in module socket), [1]

 		gethostbyname() (in module socket)

 		gethostbyname_ex() (in module socket)

 		gethostname() (in module socket), [1]

 		getincrementaldecoder() (in module codecs)

 		getincrementalencoder() (in module codecs)

 		getinfo() (zipfile.ZipFile method)

 		getinnerframes() (in module inspect)

 		GetInputContext() (xml.parsers.expat.xmlparser method)

 		getint() (ConfigParser.RawConfigParser method)

 		GetInteger() (msilib.Record method)

 		getitem() (in module operator)

 		getiterator() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		getitimer() (in module signal)

 		getkey() (curses.window method)

 		getlast() (mhlib.Folder method)

 		GetLastError() (in module ctypes)

 		getLength() (xml.sax.xmlreader.Attributes method)

 		getLevelName() (in module logging)

 		getline() (in module linecache)

 		getLineNumber() (xml.sax.xmlreader.Locator method)

 		getlist() (cgi.FieldStorage method)

 		getloadavg() (in module os)

 		getlocale() (in module locale)

 		getLogger() (in module logging)

 		getLoggerClass() (in module logging)

 		getlogin() (in module os)

 		getmaintype() (mimetools.Message method)

 		getmark() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmarkers() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getmaxyx() (curses.window method)

 		getmcolor() (in module fl)

 		getmember() (tarfile.TarFile method)

 		getmembers() (in module inspect)

 		

 		(tarfile.TarFile method)

 		getMessage() (logging.LogRecord method)

 		

 		(xml.sax.SAXException method)

 		getmessagefilename() (mhlib.Folder method)

 		getMessageID() (logging.handlers.NTEventLogHandler method)

 		getmodule() (in module inspect)

 		getmoduleinfo() (in module inspect)

 		getmodulename() (in module inspect)

 		getmouse() (in module curses)

 		getmro() (in module inspect)

 		getmtime() (in module os.path)

 		getname() (chunk.Chunk method)

 		getName() (threading.Thread method)

 		getNameByQName() (xml.sax.xmlreader.AttributesNS method)

 		getnameinfo() (in module socket)

 		getnames() (tarfile.TarFile method)

 		getNames() (xml.sax.xmlreader.Attributes method)

 		getnchannels() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		GetNextAutoIndentSize (C function)

 		getnframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getnode

 		getnode() (in module uuid)

 		getopt (module)

 		getopt() (distutils.fancy_getopt.FancyGetopt method)

 		

 		(in module getopt)

 		GetoptError

 		getouterframes() (in module inspect)

 		getoutput() (in module commands)

 		getpagesize() (in module resource)

 		getparam() (mimetools.Message method)

 		getparams() (aifc.aifc method)

 		

 		(in module al)

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getparyx() (curses.window method)

 		getpass (module)

 		getpass() (in module getpass)

 		GetPassWarning

 		getpath() (mhlib.MH method)

 		getpeercert() (ssl.SSLSocket method)

 		getpeername() (socket.socket method)

 		getpen() (in module turtle)

 		getpgid() (in module os)

 		getpgrp() (in module os)

 		getpid() (in module os)

 		getplist() (mimetools.Message method)

 		getpos() (HTMLParser.HTMLParser method)

 		getppid() (in module os)

 		getpreferredencoding() (in module locale)

 		getprofile() (in module sys)

 		

 		(mhlib.MH method)

 		GetProperty() (msilib.SummaryInformation method)

 		getProperty() (xml.sax.xmlreader.XMLReader method)

 		GetPropertyCount() (msilib.SummaryInformation method)

 		getprotobyname() (in module socket)

 		getproxies() (in module urllib)

 		getPublicId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getpwall() (in module pwd)

 		getpwnam() (in module pwd)

 		getpwuid() (in module pwd)

 		getQNameByName() (xml.sax.xmlreader.AttributesNS method)

 		getQNames() (xml.sax.xmlreader.AttributesNS method)

 		getquota() (imaplib.IMAP4 method)

 		getquotaroot() (imaplib.IMAP4 method)

 		getrandbits() (in module random)

 		getrawheader() (rfc822.Message method)

 		getreader() (in module codecs)

 		getrecursionlimit() (in module sys)

 		getrefcount() (in module sys)

 		getresgid() (in module os)

 		getresponse() (httplib.HTTPConnection method)

 		getresuid() (in module os)

 		getrlimit() (in module resource)

 		getroot() (xml.etree.ElementTree.ElementTree method)

 		getrusage() (in module resource)

 		getsample() (in module audioop)

 		getsampwidth() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		getscreen() (in module turtle)

 		getscrollbarvalues() (FrameWork.ScrolledWindow method)

 		getsequences() (mhlib.Folder method)

 		getsequencesfilename() (mhlib.Folder method)

 		getservbyname() (in module socket)

 		getservbyport() (in module socket)

 		GetSetDescriptorType (in module types)

 		getshapes() (in module turtle)

 		getsid() (in module os)

 		getsignal() (in module signal)

 		getsitepackages() (in module site)

 		getsize() (chunk.Chunk method)

 		

 		(in module os.path)

 		getsizeof() (in module sys)

 		getsizes() (in module imgfile)

 		getslice() (in module operator)

 		getsockname() (socket.socket method)

 		getsockopt() (socket.socket method)

 		getsource() (in module inspect)

 		getsourcefile() (in module inspect)

 		getsourcelines() (in module inspect)

 		getspall() (in module spwd)

 		getspnam() (in module spwd)

 		getstate() (in module random)

 		getstatus() (in module commands)

 		getstatusoutput() (in module commands)

 		getstr() (curses.window method)

 		GetString() (msilib.Record method)

 		getSubject() (logging.handlers.SMTPHandler method)

 		getsubtype() (mimetools.Message method)

 		GetSummaryInformation() (msilib.Database method)

 		getSystemId() (xml.sax.xmlreader.InputSource method)

 		

 		(xml.sax.xmlreader.Locator method)

 		getsyx() (in module curses)

 		gettarinfo() (tarfile.TarFile method)

 		gettempdir() (in module tempfile)

 		gettempprefix() (in module tempfile)

 		getTestCaseNames() (unittest.TestLoader method)

 		gettext (module)

 		gettext() (gettext.GNUTranslations method)

 		

 		(gettext.NullTranslations method)

 		(in module gettext)

 		GetTicks() (in module MacOS)

 		gettimeout() (socket.socket method)

 		gettrace() (in module sys)

 		getturtle() (in module turtle)

 		gettype() (mimetools.Message method)

 		getType() (xml.sax.xmlreader.Attributes method)

 		getuid() (in module os)

 		geturl() (urlparse.ParseResult method)

 		getuser() (in module getpass)

 		getuserbase() (in module site)

 		getusersitepackages() (in module site)

 		getvalue() (io.BytesIO method)

 		

 		(StringIO.StringIO method)

 		(io.StringIO method)

 		getValue() (xml.sax.xmlreader.Attributes method)

 		getValueByQName() (xml.sax.xmlreader.AttributesNS method)

 		getwch() (in module msvcrt)

 		getwche() (in module msvcrt)

 		getweakrefcount() (in module weakref)

 		getweakrefs() (in module weakref)

 		getwelcome() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		getwin() (in module curses)

 		getwindowsversion() (in module sys)

 		getwriter() (in module codecs)

 		getyx() (curses.window method)

 		gid (tarfile.TarInfo attribute)

 		GIL

 		GL (module)

 		gl (module)

 		
 glob

 		

 		module

 		glob (module)

 		glob() (in module glob)

 		

 		(msilib.Directory method)

 		
 global

 		

 		name binding

 		namespace

 		statement, [1], [2]

 		global interpreter lock

 		
 globals

 		

 		built-in function

 		globals() (built-in function)

 		globs (doctest.DocTest attribute)

 		gmtime() (in module time)

 		gname (tarfile.TarInfo attribute)

 		GNOME

 		GNU_FORMAT (in module tarfile)

 		gnu_getopt() (in module getopt)

 		got (doctest.DocTestFailure attribute)

 		goto() (in module turtle)

 		grammar

 		Graphical User Interface

 		GREATER (in module token)

 		GREATEREQUAL (in module token)

 		Greenwich Mean Time

 		grey22grey() (in module imageop)

 		grey2grey2() (in module imageop)

 		grey2grey4() (in module imageop)

 		grey2mono() (in module imageop)

 		grey42grey() (in module imageop)

 		grok_environment_error() (in module distutils.util)

 		group() (nntplib.NNTP method)

 		

 		(re.MatchObject method)

 		groupby() (in module itertools)

 		groupdict() (re.MatchObject method)

 		groupindex (re.RegexObject attribute)

 		grouping

 		groups (re.RegexObject attribute)

 		groups() (re.MatchObject method)

 		grp (module)

 		gt() (in module operator)

 		guess_all_extensions() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_extension() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		guess_scheme() (in module wsgiref.util)

 		guess_type() (in module mimetypes)

 		

 		(mimetypes.MimeTypes method)

 		GUI

 		gzip (module)

 		GzipFile (class in gzip)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

download.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Download Python 2.7.2b1 Documentation

Last updated on: Nov 16, 2013.

To download an archive containing all the documents for this version of
Python in one of various formats, follow one of links in this table. The numbers
in the table are the size of the download files in megabytes.

 		Format		Packed as .zip		Packed as .tar.bz2

 		PDF (US-Letter paper size)
 		Download (ca. 8 MB)
 		Download (ca. 8 MB)

 		PDF (A4 paper size)
 		Download (ca. 8 MB)
 		Download (ca. 8 MB)

 		HTML
 		Download (ca. 6 MB)
 		Download (ca. 4 MB)

 		Plain Text
 		Download (ca. 2 MB)
 		Download (ca. 1.5 MB)

These archives contain all the content in the documentation.

Unpacking

Unix users should download the .tar.bz2 archives; these are bzipped tar
archives and can be handled in the usual way using tar and the bzip2
program. The InfoZIP unzip program can be
used to handle the ZIP archives if desired. The .tar.bz2 archives provide the
best compression and fastest download times.

Windows users can use the ZIP archives since those are customary on that
platform. These are created on Unix using the InfoZIP zip program.

Problems

If you have comments or suggestions for the Python documentation, please send
email to docs@python.org.

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

index.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

 IronPython 2.7.2b1 documentation

 Welcome! This is
 the documentation for IronPython
 2.7.2b1, last updated Nov 16, 2013.

 Parts of the documentation:

 		
 What's new in Python 2.7?

 or all "What's new" documents since 2.0

 Tutorial

 start here

 Library Reference

 keep this under your pillow

 Language Reference

 describes syntax and language elements

 Python Setup and Usage

 how to use Python on different platforms

 Python HOWTOs

 in-depth documents on specific topics

 		
 Extending and Embedding

 tutorial for .NET programmers

 Python/.NET API

 reference for .NET programmers

 Installing Python Modules

 information for installers & sys-admins

 Distributing Python Modules

 sharing modules with others

 Documenting Python

 guide for documentation authors

 FAQs

 frequently asked questions (with answers!)

 Indices and tables:

 		
 Global Module Index

 quick access to all modules

 General Index

 all functions, classes, terms

 Glossary

 the most important terms explained

 		
 Search page

 search this documentation

 Complete Table of Contents

 lists all sections and subsections

 Meta information:

 		
 Reporting bugs

 About the documentation

 		
 History and License of Python

 Copyright

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-K.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – K

 		

 		kbhit() (in module msvcrt)

 		KDEDIR

 		kevent() (in module select)

 		key

 		

 		(Cookie.Morsel attribute)

 		key function

 		key/datum pair

 		KEY_ALL_ACCESS (in module _winreg)

 		KEY_CREATE_LINK (in module _winreg)

 		KEY_CREATE_SUB_KEY (in module _winreg)

 		KEY_ENUMERATE_SUB_KEYS (in module _winreg)

 		KEY_EXECUTE (in module _winreg)

 		KEY_NOTIFY (in module _winreg)

 		KEY_QUERY_VALUE (in module _winreg)

 		KEY_READ (in module _winreg)

 		KEY_SET_VALUE (in module _winreg)

 		KEY_WOW64_32KEY (in module _winreg)

 		KEY_WOW64_64KEY (in module _winreg)

 		KEY_WRITE (in module _winreg)

 		KeyboardInterrupt

 		KeyError

 		

 		keyname() (in module curses)

 		keypad() (curses.window method)

 		keyrefs() (weakref.WeakKeyDictionary method)

 		keys() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		(sqlite3.Row method)

 		(xml.etree.ElementTree.Element method)

 		keysubst() (in module aetools)

 		KeysView (class in collections)

 		keyword

 		

 		elif

 		else, [1], [2], [3], [4]

 		except

 		finally, [1], [2], [3], [4]

 		from

 		in

 		yield

 		Keyword (class in aetypes)

 		keyword (module)

 		keyword argument

 		keywords (functools.partial attribute)

 		kill() (in module os)

 		

 		(subprocess.Popen method)

 		killchar() (in module curses)

 		killpg() (in module os)

 		
 knee

 		

 		module, [1]

 		knownfiles (in module mimetypes)

 		kqueue() (in module select)

 		Kuchling, Andrew

 		kwlist (in module keyword)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-R.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – R

 		

 		r_eval() (rexec.RExec method)

 		r_exec() (rexec.RExec method)

 		r_execfile() (rexec.RExec method)

 		r_import() (rexec.RExec method)

 		R_OK (in module os)

 		r_open() (rexec.RExec method)

 		r_reload() (rexec.RExec method)

 		r_unload() (rexec.RExec method)

 		radians() (in module math)

 		

 		(in module turtle)

 		RadioButtonGroup (class in msilib)

 		radiogroup() (msilib.Dialog method)

 		radix() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		RADIXCHAR (in module locale)

 		
 raise

 		

 		statement, [1]

 		raise (2to3 fixer)

 		raise an exception

 		RAISE_VARARGS (opcode)

 		
 raising

 		

 		exception

 		RAND_add() (in module ssl)

 		RAND_egd() (in module ssl)

 		RAND_status() (in module ssl)

 		randint() (in module random)

 		random (module)

 		random() (in module random)

 		randrange() (in module random)

 		
 range

 		

 		built-in function

 		Range (class in aetypes)

 		range() (built-in function)

 		ratecv() (in module audioop)

 		ratio() (difflib.SequenceMatcher method)

 		Rational (class in numbers)

 		raw (io.BufferedIOBase attribute)

 		raw input

 		raw string

 		raw() (in module curses)

 		raw_decode() (json.JSONDecoder method)

 		
 raw_input

 		

 		built-in function, [1]

 		raw_input (2to3 fixer)

 		raw_input() (built-in function)

 		

 		(code.InteractiveConsole method)

 		RawArray() (in module multiprocessing.sharedctypes)

 		RawConfigParser (class in ConfigParser)

 		RawDescriptionHelpFormatter (class in argparse)

 		RawIOBase (class in io)

 		RawPen (class in turtle)

 		RawTextHelpFormatter (class in argparse)

 		RawTurtle (class in turtle)

 		RawValue() (in module multiprocessing.sharedctypes)

 		RBRACE (in module token)

 		
 re

 		

 		module, [1], [2]

 		re (module)

 		

 		(re.MatchObject attribute)

 		read() (array.array method)

 		

 		(ConfigParser.RawConfigParser method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(codecs.StreamReader method)

 		(file method)

 		(httplib.HTTPResponse method)

 		(imaplib.IMAP4 method)

 		(in module imgfile)

 		(in module mmap)

 		(in module os)

 		(io.BufferedIOBase method)

 		(io.BufferedReader method)

 		(io.RawIOBase method)

 		(io.TextIOBase method)

 		(mimetypes.MimeTypes method)

 		(multifile.MultiFile method)

 		(ossaudiodev.oss_audio_device method)

 		(robotparser.RobotFileParser method)

 		(ssl.SSLSocket method)

 		(zipfile.ZipFile method)

 		read1() (io.BufferedIOBase method)

 		

 		(io.BufferedReader method)

 		(io.BytesIO method)

 		read_all() (telnetlib.Telnet method)

 		read_byte() (in module mmap)

 		read_eager() (telnetlib.Telnet method)

 		read_history_file() (in module readline)

 		read_init_file() (in module readline)

 		read_lazy() (telnetlib.Telnet method)

 		read_mime_types() (in module mimetypes)

 		READ_RESTRICTED

 		read_sb_data() (telnetlib.Telnet method)

 		read_some() (telnetlib.Telnet method)

 		read_token() (shlex.shlex method)

 		read_until() (telnetlib.Telnet method)

 		read_very_eager() (telnetlib.Telnet method)

 		read_very_lazy() (telnetlib.Telnet method)

 		read_windows_registry() (mimetypes.MimeTypes method)

 		readable() (asyncore.dispatcher method)

 		

 		(io.IOBase method)

 		readall() (io.RawIOBase method)

 		reader() (in module csv)

 		ReadError

 		readfp() (ConfigParser.RawConfigParser method)

 		

 		(mimetypes.MimeTypes method)

 		readframes() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		readinto() (io.BufferedIOBase method)

 		

 		(io.RawIOBase method)

 		
 readline

 		

 		module

 		readline (module)

 		readline() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method), [1]

 		(imaplib.IMAP4 method)

 		(in module mmap)

 		(io.IOBase method)

 		(io.TextIOBase method)

 		(multifile.MultiFile method)

 		readlines() (bz2.BZ2File method)

 		

 		(codecs.StreamReader method)

 		(distutils.text_file.TextFile method)

 		(file method)

 		(io.IOBase method)

 		(multifile.MultiFile method)

 		readlink() (in module os)

 		readmodule() (in module pyclbr)

 		readmodule_ex() (in module pyclbr)

 		READONLY

 		readonly (memoryview attribute)

 		readPlist() (in module plistlib)

 		readPlistFromResource() (in module plistlib)

 		readPlistFromString() (in module plistlib)

 		readscaled() (in module imgfile)

 		READY (in module cd)

 		ready() (multiprocessing.pool.AsyncResult method)

 		Real (class in numbers)

 		real (numbers.Complex attribute)

 		Real Media File Format

 		real_quick_ratio() (difflib.SequenceMatcher method)

 		realpath() (in module os.path)

 		reason (httplib.HTTPResponse attribute)

 		

 		(urllib2.URLError attribute)

 		reattach() (ttk.Treeview method)

 		
 rebinding

 		

 		name

 		reccontrols() (ossaudiodev.oss_mixer_device method)

 		recent() (imaplib.IMAP4 method)

 		rect() (in module cmath)

 		rectangle() (in module curses.textpad)

 		
 recursive

 		

 		object

 		recv() (asyncore.dispatcher method)

 		

 		(multiprocessing.Connection method)

 		(socket.socket method)

 		recv_bytes() (multiprocessing.Connection method)

 		recv_bytes_into() (multiprocessing.Connection method)

 		recv_into() (socket.socket method)

 		recvfrom() (socket.socket method)

 		recvfrom_into() (socket.socket method)

 		redirect_request() (urllib2.HTTPRedirectHandler method)

 		redisplay() (in module readline)

 		redraw_form() (fl.form method)

 		redrawln() (curses.window method)

 		redrawwin() (curses.window method)

 		reduce (2to3 fixer)

 		reduce() (built-in function)

 		

 		(in module functools)

 		ref (class in weakref)

 		
 reference

 		

 		attribute

 		reference count

 		reference counting

 		ReferenceError, [1]

 		ReferenceType (in module weakref)

 		refilemessages() (mhlib.Folder method)

 		refresh() (curses.window method)

 		REG_BINARY (in module _winreg)

 		REG_DWORD (in module _winreg)

 		REG_DWORD_BIG_ENDIAN (in module _winreg)

 		REG_DWORD_LITTLE_ENDIAN (in module _winreg)

 		REG_EXPAND_SZ (in module _winreg)

 		REG_FULL_RESOURCE_DESCRIPTOR (in module _winreg)

 		REG_LINK (in module _winreg)

 		REG_MULTI_SZ (in module _winreg)

 		REG_NONE (in module _winreg)

 		REG_RESOURCE_LIST (in module _winreg)

 		REG_RESOURCE_REQUIREMENTS_LIST (in module _winreg)

 		REG_SZ (in module _winreg)

 		RegexObject (class in re)

 		register() (abc.ABCMeta method)

 		

 		(in module atexit)

 		(in module codecs)

 		(in module webbrowser)

 		(multiprocessing.managers.BaseManager method)

 		(select.epoll method)

 		(select.poll method)

 		register_adapter() (in module sqlite3)

 		register_archive_format() (in module shutil)

 		register_converter() (in module sqlite3)

 		register_dialect() (in module csv)

 		register_error() (in module codecs)

 		register_function() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_instance() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_introspection_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_multicall_functions() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SimpleXMLRPCServer.SimpleXMLRPCServer method)

 		register_namespace() (in module xml.etree.ElementTree)

 		register_optionflag() (in module doctest)

 		register_shape() (in module turtle)

 		registerDOMImplementation() (in module xml.dom)

 		registerResult() (in module unittest)

 		
 relative

 		

 		URL

 		import

 		release() (in module platform)

 		

 		(logging.Handler method)

 		(thread.lock method)

 		(threading.Condition method)

 		(threading.Lock method)

 		(threading.RLock method)

 		(threading.Semaphore method)

 		release_lock() (in module imp)

 		
 reload

 		

 		built-in function, [1], [2]

 		reload() (built-in function)

 		relpath() (in module os.path)

 		remainder() (decimal.Context method)

 		remainder_near() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		remove() (array.array method)

 		

 		(collections.deque method)

 		(in module os)

 		(list method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(set method)

 		(xml.etree.ElementTree.Element method)

 		remove_flag() (mailbox.MaildirMessage method)

 		

 		(mailbox.MMDFMessage method)

 		(mailbox.mboxMessage method)

 		remove_folder() (mailbox.Maildir method)

 		

 		(mailbox.MH method)

 		remove_history_item() (in module readline)

 		remove_label() (mailbox.BabylMessage method)

 		remove_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		remove_pyc() (msilib.Directory method)

 		remove_section() (ConfigParser.RawConfigParser method)

 		remove_sequence() (mailbox.MHMessage method)

 		remove_tree() (in module distutils.dir_util)

 		removeAttribute() (xml.dom.Element method)

 		removeAttributeNode() (xml.dom.Element method)

 		removeAttributeNS() (xml.dom.Element method)

 		removeChild() (xml.dom.Node method)

 		removedirs() (in module os)

 		removeFilter() (logging.Handler method)

 		

 		(logging.Logger method)

 		removeHandler() (in module unittest)

 		

 		(logging.Logger method)

 		removemessages() (mhlib.Folder method)

 		removeResult() (in module unittest)

 		rename() (ftplib.FTP method)

 		

 		(imaplib.IMAP4 method)

 		(in module os)

 		renames (2to3 fixer)

 		

 		renames() (in module os)

 		reorganize() (in module gdbm)

 		repeat() (in module itertools)

 		

 		(in module operator)

 		(in module timeit)

 		(timeit.Timer method)

 		
 repetition

 		

 		operation

 		replace() (curses.panel.Panel method)

 		

 		(datetime.date method)

 		(datetime.datetime method)

 		(datetime.time method)

 		(in module string)

 		(str method)

 		replace_errors() (in module codecs)

 		replace_header() (email.message.Message method)

 		replace_history_item() (in module readline)

 		replace_whitespace (textwrap.TextWrapper attribute)

 		replaceChild() (xml.dom.Node method)

 		ReplacePackage() (in module modulefinder)

 		report() (filecmp.dircmp method)

 		

 		(modulefinder.ModuleFinder method)

 		REPORT_CDIFF (in module doctest)

 		report_failure() (doctest.DocTestRunner method)

 		report_full_closure() (filecmp.dircmp method)

 		REPORT_NDIFF (in module doctest)

 		REPORT_ONLY_FIRST_FAILURE (in module doctest)

 		report_partial_closure() (filecmp.dircmp method)

 		report_start() (doctest.DocTestRunner method)

 		report_success() (doctest.DocTestRunner method)

 		REPORT_UDIFF (in module doctest)

 		report_unbalanced() (sgmllib.SGMLParser method)

 		report_unexpected_exception() (doctest.DocTestRunner method)

 		REPORTING_FLAGS (in module doctest)

 		
 repr

 		

 		built-in function, [1], [2], [3]

 		repr (2to3 fixer)

 		Repr (class in repr)

 		repr (module)

 		repr() (built-in function)

 		

 		(in module repr)

 		(repr.Repr method)

 		repr1() (repr.Repr method)

 		
 representation

 		

 		integer

 		Request (class in urllib2)

 		request() (httplib.HTTPConnection method)

 		request_queue_size (SocketServer.BaseServer attribute)

 		request_uri() (in module wsgiref.util)

 		request_version (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		RequestHandlerClass (SocketServer.BaseServer attribute)

 		requires() (in module test.test_support)

 		reserved (zipfile.ZipInfo attribute)

 		reserved word

 		RESERVED_FUTURE (in module uuid)

 		RESERVED_MICROSOFT (in module uuid)

 		RESERVED_NCS (in module uuid)

 		Reset (C function), [1]

 		reset() (bdb.Bdb method)

 		

 		(HTMLParser.HTMLParser method)

 		(codecs.IncrementalDecoder method)

 		(codecs.IncrementalEncoder method)

 		(codecs.StreamReader method)

 		(codecs.StreamWriter method)

 		(in module dircache)

 		(in module turtle), [1]

 		(ossaudiodev.oss_audio_device method)

 		(pipes.Template method)

 		(sgmllib.SGMLParser method)

 		(xdrlib.Packer method)

 		(xdrlib.Unpacker method)

 		(xml.dom.pulldom.DOMEventStream method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		reset_prog_mode() (in module curses)

 		reset_shell_mode() (in module curses)

 		resetbuffer() (code.InteractiveConsole method)

 		resetlocale() (in module locale)

 		resetscreen() (in module turtle)

 		resetwarnings() (in module warnings)

 		resize() (in module ctypes)

 		

 		(in module mmap)

 		resizemode() (in module turtle)

 		resolution (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		resolveEntity() (xml.sax.handler.EntityResolver method)

 		resource (module)

 		ResourceDenied

 		response() (imaplib.IMAP4 method)

 		ResponseNotReady

 		responses (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		

 		(in module httplib)

 		restart() (in module findertools)

 		restore() (in module difflib)

 		RESTRICTED

 		
 restricted

 		

 		execution

 		restype (ctypes._FuncPtr attribute)

 		results() (trace.Trace method)

 		retr() (poplib.POP3 method)

 		retrbinary() (ftplib.FTP method)

 		retrieve() (urllib.URLopener method)

 		retrlines() (ftplib.FTP method)

 		
 return

 		

 		statement, [1], [2]

 		return_ok() (cookielib.CookiePolicy method)

 		RETURN_VALUE (opcode)

 		returncode (subprocess.Popen attribute)

 		returns_unicode (xml.parsers.expat.xmlparser attribute)

 		
 reverse

 		

 		quotes, [1]

 		reverse() (array.array method)

 		

 		(collections.deque method)

 		(in module audioop)

 		(list method)

 		reverse_order() (pstats.Stats method)

 		reversed() (built-in function)

 		revert() (cookielib.FileCookieJar method)

 		rewind() (aifc.aifc method)

 		

 		(sunau.AU_read method)

 		(wave.Wave_read method)

 		rewindbody() (rfc822.Message method)

 		RExec (class in rexec)

 		rexec (module)

 		
 RFC

 		

 		RFC 1014, [1]

 		RFC 1321, [1]

 		RFC 1422

 		RFC 1521, [1], [2]

 		RFC 1522

 		RFC 1524, [1]

 		RFC 1725

 		RFC 1730

 		RFC 1738

 		RFC 1750

 		RFC 1766, [1]

 		RFC 1808, [1]

 		RFC 1832, [1]

 		RFC 1866

 		RFC 1869, [1]

 		RFC 1894

 		RFC 2033

 		RFC 2045, [1], [2], [3], [4], [5], [6]

 		RFC 2046, [1]

 		RFC 2047, [1], [2], [3], [4]

 		RFC 2060, [1]

 		RFC 2068

 		RFC 2104, [1]

 		RFC 2109, [1], [2], [3], [4], [5], [6]

 		RFC 2231, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 		RFC 2342

 		RFC 2368

 		RFC 2396, [1]

 		RFC 2487

 		RFC 2616, [1], [2], [3], [4]

 		RFC 2732, [1]

 		RFC 2774

 		RFC 2817

 		RFC 2821

 		RFC 2822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]

 		RFC 2964

 		RFC 2965, [1], [2], [3]

 		RFC 3207

 		RFC 3229

 		RFC 3280

 		RFC 3454

 		RFC 3490, [1], [2], [3], [4]

 		RFC 3492, [1]

 		RFC 3493

 		RFC 3548, [1]

 		RFC 3986, [1], [2]

 		RFC 4122, [1], [2], [3], [4]

 		RFC 4158

 		RFC 4217

 		RFC 821, [1]

 		RFC 822, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]

 		RFC 854, [1]

 		RFC 959

 		RFC 977

 		rfc2109 (cookielib.Cookie attribute)

 		rfc2109_as_netscape (cookielib.DefaultCookiePolicy attribute)

 		rfc2965 (cookielib.CookiePolicy attribute)

 		
 rfc822

 		

 		module

 		rfc822 (module)

 		rfc822_escape() (in module distutils.util)

 		RFC_4122 (in module uuid)

 		rfile (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		rfind() (in module mmap)

 		

 		(in module string)

 		(str method)

 		rgb_to_hls() (in module colorsys)

 		rgb_to_hsv() (in module colorsys)

 		rgb_to_yiq() (in module colorsys)

 		RGBColor (class in aetypes)

 		right() (in module turtle)

 		right_list (filecmp.dircmp attribute)

 		right_only (filecmp.dircmp attribute)

 		RIGHTSHIFT (in module token)

 		RIGHTSHIFTEQUAL (in module token)

 		rindex() (in module string)

 		

 		(str method)

 		rjust() (in module string)

 		

 		(str method)

 		
 rlcompleter

 		

 		module

 		rlcompleter (module)

 		rlecode_hqx() (in module binascii)

 		rledecode_hqx() (in module binascii)

 		RLIMIT_AS (in module resource)

 		RLIMIT_CORE (in module resource)

 		RLIMIT_CPU (in module resource)

 		RLIMIT_DATA (in module resource)

 		RLIMIT_FSIZE (in module resource)

 		RLIMIT_MEMLOCK (in module resource)

 		RLIMIT_NOFILE (in module resource)

 		RLIMIT_NPROC (in module resource)

 		RLIMIT_OFILE (in module resource)

 		RLIMIT_RSS (in module resource)

 		RLIMIT_STACK (in module resource)

 		RLIMIT_VMEM (in module resource)

 		RLock (class in multiprocessing)

 		RLock() (in module threading)

 		

 		(multiprocessing.managers.SyncManager method)

 		rmd() (ftplib.FTP method)

 		rmdir() (in module os)

 		RMFF

 		rms() (in module audioop)

 		rmtree() (in module shutil)

 		rnopen() (in module bsddb)

 		RO

 		RobotFileParser (class in robotparser)

 		robotparser (module)

 		robots.txt

 		rollback() (sqlite3.Connection method)

 		ROT_FOUR (opcode)

 		ROT_THREE (opcode)

 		ROT_TWO (opcode)

 		rotate() (collections.deque method)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		RotatingFileHandler (class in logging.handlers)

 		round() (built-in function)

 		Rounded (class in decimal)

 		Row (class in sqlite3)

 		row_factory (sqlite3.Connection attribute)

 		rowcount (sqlite3.Cursor attribute)

 		RPAR (in module token)

 		rpartition() (str method)

 		rpc_paths (SimpleXMLRPCServer.SimpleXMLRPCRequestHandler attribute)

 		rpop() (poplib.POP3 method)

 		rset() (poplib.POP3 method)

 		rshift() (in module operator)

 		rsplit() (in module string)

 		

 		(str method)

 		RSQB (in module token)

 		rstrip() (in module string)

 		

 		(str method)

 		rt() (in module turtle)

 		RTLD_LAZY (in module dl)

 		RTLD_NOW (in module dl)

 		ruler (cmd.Cmd attribute)

 		Run script

 		run() (bdb.Bdb method)

 		

 		(distutils.cmd.Command method)

 		(doctest.DocTestRunner method)

 		(hotshot.Profile method)

 		(in module cProfile)

 		(in module pdb)

 		(multiprocessing.Process method)

 		(pdb.Pdb method)

 		(sched.scheduler method)

 		(threading.Thread method)

 		(trace.Trace method)

 		(unittest.TestCase method)

 		(unittest.TestSuite method)

 		(wsgiref.handlers.BaseHandler method)

 		run_docstring_examples() (in module doctest)

 		run_module() (in module runpy)

 		run_path() (in module runpy)

 		run_script() (modulefinder.ModuleFinder method)

 		run_setup() (in module distutils.core)

 		run_unittest() (in module test.test_support)

 		runcall() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module pdb)

 		(pdb.Pdb method)

 		runcode() (code.InteractiveInterpreter method)

 		runctx() (bdb.Bdb method)

 		

 		(hotshot.Profile method)

 		(in module cProfile)

 		(trace.Trace method)

 		runeval() (bdb.Bdb method)

 		

 		(in module pdb)

 		(pdb.Pdb method)

 		runfunc() (trace.Trace method)

 		runpy (module)

 		runsource() (code.InteractiveInterpreter method)

 		runtime_library_dir_option() (distutils.ccompiler.CCompiler method)

 		RuntimeError

 		

 		exception

 		runtimemodel (in module MacOS)

 		RuntimeWarning

 		RUSAGE_BOTH (in module resource)

 		RUSAGE_CHILDREN (in module resource)

 		RUSAGE_SELF (in module resource)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-F.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – F

 		

 		f_back (frame attribute)

 		F_BAVAIL (in module statvfs)

 		F_BFREE (in module statvfs)

 		F_BLOCKS (in module statvfs)

 		F_BSIZE (in module statvfs)

 		f_builtins (frame attribute)

 		f_code (frame attribute)

 		f_exc_traceback (frame attribute)

 		f_exc_type (frame attribute)

 		f_exc_value (frame attribute)

 		F_FAVAIL (in module statvfs)

 		F_FFREE (in module statvfs)

 		F_FILES (in module statvfs)

 		F_FLAG (in module statvfs)

 		F_FRSIZE (in module statvfs)

 		f_globals (frame attribute)

 		f_lasti (frame attribute)

 		f_lineno (frame attribute)

 		f_locals (frame attribute)

 		F_NAMEMAX (in module statvfs)

 		F_OK (in module os)

 		f_restricted (frame attribute)

 		f_trace (frame attribute)

 		fabs() (in module math)

 		factorial() (in module math)

 		fail() (unittest.TestCase method)

 		failfast (unittest.TestResult attribute)

 		failureException (unittest.TestCase attribute)

 		failures (unittest.TestResult attribute)

 		false

 		False, [1], [2]

 		

 		(Built-in object)

 		(built-in variable)

 		family (socket.socket attribute)

 		fancy_getopt() (in module distutils.fancy_getopt)

 		FancyGetopt (class in distutils.fancy_getopt)

 		FancyURLopener (class in urllib)

 		fatalError() (xml.sax.handler.ErrorHandler method)

 		faultCode (xmlrpclib.Fault attribute)

 		faultString (xmlrpclib.Fault attribute)

 		fchdir() (in module os)

 		fchmod() (in module os)

 		fchown() (in module os)

 		FCICreate() (in module msilib)

 		
 fcntl

 		

 		module

 		fcntl (module)

 		fcntl() (in module fcntl), [1]

 		fd() (in module turtle)

 		fdatasync() (in module os)

 		fdopen() (in module os)

 		Feature (class in msilib)

 		feature_external_ges (in module xml.sax.handler)

 		feature_external_pes (in module xml.sax.handler)

 		feature_namespace_prefixes (in module xml.sax.handler)

 		feature_namespaces (in module xml.sax.handler)

 		feature_string_interning (in module xml.sax.handler)

 		feature_validation (in module xml.sax.handler)

 		feed() (email.parser.FeedParser method)

 		

 		(HTMLParser.HTMLParser method)

 		(sgmllib.SGMLParser method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		FeedParser (class in email.parser)

 		fetch() (imaplib.IMAP4 method)

 		Fetch() (msilib.View method)

 		fetchall() (sqlite3.Cursor method)

 		fetchmany() (sqlite3.Cursor method)

 		fetchone() (sqlite3.Cursor method)

 		fflags (select.kevent attribute)

 		field_size_limit() (in module csv)

 		fieldnames (csv.csvreader attribute)

 		fields (uuid.UUID attribute)

 		fifo (class in asynchat)

 		
 file

 		

 		.ini

 		.pdbrc

 		.pythonrc.py

 		built-in function

 		byte-code, [1], [2]

 		configuration

 		copying

 		debugger configuration

 		descriptor

 		large files

 		mime.types

 		object, [1], [2], [3]

 		path configuration

 		plist

 		temporary

 		user configuration

 		file (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		
 file control

 		

 		UNIX

 		
 file name

 		

 		temporary

 		
 file object

 		

 		POSIX

 		file() (built-in function)

 		

 		(posixfile.posixfile method)

 		file_created() (built-in function)

 		file_dispatcher (class in asyncore)

 		file_open() (urllib2.FileHandler method)

 		file_size (zipfile.ZipInfo attribute)

 		file_wrapper (class in asyncore)

 		filecmp (module)

 		fileConfig() (in module logging.config)

 		FileCookieJar (class in cookielib)

 		FileEntry (class in Tix)

 		FileHandler (class in logging)

 		

 		(class in urllib2)

 		FileInput (class in fileinput)

 		fileinput (module)

 		FileIO (class in io)

 		filelineno() (in module fileinput)

 		filename (cookielib.FileCookieJar attribute)

 		

 		(doctest.DocTest attribute)

 		(zipfile.ZipInfo attribute)

 		filename() (in module fileinput)

 		filename_only (in module tabnanny)

 		
 filenames

 		

 		pathname expansion

 		wildcard expansion

 		fileno() (file method)

 		

 		(SocketServer.BaseServer method)

 		(hotshot.Profile method)

 		(httplib.HTTPResponse method)

 		(in module fileinput)

 		(io.IOBase method)

 		(multiprocessing.Connection method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(socket.socket method)

 		(telnetlib.Telnet method)

 		fileopen() (in module posixfile)

 		FileSelectBox (class in Tix)

 		FileType (class in argparse)

 		

 		(in module types)

 		FileWrapper (class in wsgiref.util)

 		fill() (in module textwrap)

 		

 		(in module turtle)

 		(textwrap.TextWrapper method)

 		fillcolor() (in module turtle)

 		filter (2to3 fixer)

 		Filter (class in logging)

 		filter (select.kevent attribute)

 		filter() (built-in function)

 		

 		(in module curses)

 		(in module fnmatch)

 		(in module future_builtins)

 		(logging.Filter method)

 		(logging.Handler method)

 		(logging.Logger method)

 		filterwarnings() (in module warnings)

 		finalization, of objects

 		finalize_options() (distutils.cmd.Command method)

 		
 finally

 		

 		keyword, [1], [2], [3], [4]

 		find() (doctest.DocTestFinder method)

 		

 		(in module gettext)

 		(in module mmap)

 		(in module string)

 		(str method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		find_first() (fl.form method)

 		find_global() (pickle protocol)

 		find_last() (fl.form method)

 		find_library() (in module ctypes.util)

 		find_library_file() (distutils.ccompiler.CCompiler method)

 		find_loader() (in module pkgutil)

 		find_longest_match() (difflib.SequenceMatcher method)

 		
 find_module

 		

 		finder

 		find_module() (imp.NullImporter method)

 		

 		(in module imp)

 		(zipimport.zipimporter method)

 		find_msvcrt() (in module ctypes.util)

 		find_user_password() (urllib2.HTTPPasswordMgr method)

 		findall() (in module re)

 		

 		(re.RegexObject method)

 		(xml.etree.ElementTree.Element method)

 		(xml.etree.ElementTree.ElementTree method)

 		findCaller() (logging.Logger method)

 		finder, [1]

 		

 		find_module

 		findertools (module)

 		findfactor() (in module audioop)

 		findfile() (in module test.test_support)

 		findfit() (in module audioop)

 		findfont() (in module fm)

 		finditer() (in module re)

 		

 		(re.RegexObject method)

 		findlabels() (in module dis)

 		findlinestarts() (in module dis)

 		findmatch() (in module mailcap)

 		findmax() (in module audioop)

 		findtext() (xml.etree.ElementTree.Element method)

 		

 		(xml.etree.ElementTree.ElementTree method)

 		finish() (SocketServer.RequestHandler method)

 		finish_request() (SocketServer.BaseServer method)

 		first() (asynchat.fifo method)

 		

 		(bsddb.bsddbobject method)

 		(dbhash.dbhash method)

 		firstChild (xml.dom.Node attribute)

 		firstkey() (in module gdbm)

 		firstweekday() (in module calendar)

 		fix() (in module fpformat)

 		fix_missing_locations() (in module ast)

 		fix_sentence_endings (textwrap.TextWrapper attribute)

 		FL (module)

 		fl (module)

 		flag_bits (zipfile.ZipInfo attribute)

 		flags (in module sys)

 		

 		(re.RegexObject attribute)

 		(select.kevent attribute)

 		flags() (posixfile.posixfile method)

 		

 		flash() (in module curses)

 		flatten() (email.generator.Generator method)

 		
 flattening

 		

 		objects

 		
 float

 		

 		built-in function, [1], [2]

 		float() (built-in function)

 		float_info (in module sys)

 		float_repr_style (in module sys)

 		
 floating point

 		

 		literals

 		number

 		object, [1]

 		floating point literal

 		FloatingPointError, [1]

 		FloatType (in module types)

 		flock() (in module fcntl)

 		floor division

 		floor() (in module math), [1]

 		floordiv() (in module operator)

 		flp (module)

 		flush() (bz2.BZ2Compressor method)

 		

 		(file method)

 		(formatter.writer method)

 		(in module mmap)

 		(io.BufferedWriter method)

 		(io.IOBase method)

 		(logging.Handler method)

 		(logging.StreamHandler method)

 		(logging.handlers.BufferingHandler method)

 		(logging.handlers.MemoryHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		flush_softspace() (formatter.formatter method)

 		flushheaders() (MimeWriter.MimeWriter method)

 		flushinp() (in module curses)

 		FlushKey() (in module _winreg)

 		fm (module)

 		fma() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		fmod() (in module math)

 		fnmatch (module)

 		fnmatch() (in module fnmatch)

 		fnmatchcase() (in module fnmatch)

 		focus() (ttk.Treeview method)

 		Folder (class in mhlib)

 		Font Manager, IRIS

 		fontpath() (in module fm)

 		
 for

 		

 		statement, [1], [2], [3], [4]

 		FOR_ITER (opcode)

 		forget() (in module test.test_support)

 		

 		(ttk.Notebook method)

 		fork() (in module os)

 		

 		(in module pty)

 		forkpty() (in module os)

 		
 form

 		

 		lambda, [1]

 		Form (class in Tix)

 		
 format

 		

 		str

 		format (memoryview attribute)

 		

 		(struct.Struct attribute)

 		format() (built-in function)

 		

 		(in module locale)

 		(logging.Formatter method)

 		(logging.Handler method)

 		(pprint.PrettyPrinter method)

 		(str method)

 		(string.Formatter method)

 		format_exc() (in module traceback)

 		format_exception() (in module traceback)

 		format_exception_only() (in module traceback)

 		format_field() (string.Formatter method)

 		format_help() (argparse.ArgumentParser method)

 		format_list() (in module traceback)

 		format_stack() (in module traceback)

 		format_stack_entry() (bdb.Bdb method)

 		format_string() (in module locale)

 		format_tb() (in module traceback)

 		format_usage() (argparse.ArgumentParser method)

 		formataddr() (in module email.utils)

 		formatargspec() (in module inspect)

 		formatargvalues() (in module inspect)

 		formatdate() (in module email.utils)

 		FormatError

 		FormatError() (in module ctypes)

 		formatException() (logging.Formatter method)

 		formatmonth() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		
 formatter

 		

 		module

 		Formatter (class in logging)

 		

 		(class in string)

 		formatter (htmllib.HTMLParser attribute)

 		

 		(module)

 		formatTime() (logging.Formatter method)

 		formatting, string (%)

 		formatwarning() (in module warnings)

 		formatyear() (calendar.HTMLCalendar method)

 		

 		(calendar.TextCalendar method)

 		formatyearpage() (calendar.HTMLCalendar method)

 		FORMS Library

 		forward() (in module turtle)

 		found_terminator() (asynchat.async_chat method)

 		fp (rfc822.Message attribute)

 		fpathconf() (in module os)

 		fpectl (module)

 		fpformat (module)

 		Fraction (class in fractions)

 		fractions (module)

 		
 frame

 		

 		execution, [1]

 		object

 		frame (ScrolledText.ScrolledText attribute)

 		FrameType (in module types)

 		
 FrameWork

 		

 		module

 		FrameWork (module)

 		
 free

 		

 		variable, [1]

 		freeze_form() (fl.form method)

 		freeze_support() (in module multiprocessing)

 		frexp() (in module math)

 		
 from

 		

 		keyword

 		statement

 		from_address() (ctypes._CData method)

 		from_buffer() (ctypes._CData method)

 		from_buffer_copy() (ctypes._CData method)

 		from_decimal() (fractions.Fraction method)

 		from_float() (decimal.Decimal method)

 		

 		(fractions.Fraction method)

 		from_iterable() (itertools.chain class method)

 		from_param() (ctypes._CData method)

 		from_splittable() (email.charset.Charset method)

 		frombuf() (tarfile.TarInfo method)

 		fromchild (popen2.Popen3 attribute)

 		fromfd() (in module socket)

 		

 		(select.epoll method)

 		(select.kqueue method)

 		fromfile() (array.array method)

 		fromhex() (float method)

 		fromkeys() (collections.Counter method)

 		

 		(dict method)

 		fromlist() (array.array method)

 		fromordinal() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromstring() (array.array method)

 		

 		(in module xml.etree.ElementTree)

 		fromstringlist() (in module xml.etree.ElementTree)

 		fromtarfile() (tarfile.TarInfo method)

 		fromtimestamp() (datetime.date class method)

 		

 		(datetime.datetime class method)

 		fromunicode() (array.array method)

 		fromutc() (datetime.tzinfo method)

 		
 frozenset

 		

 		object

 		frozenset (built-in class)

 		fstat() (in module os)

 		fstatvfs() (in module os)

 		fsum() (in module math)

 		fsync() (in module os)

 		FTP

 		

 		ftplib (standard module)

 		protocol, [1]

 		FTP (class in ftplib)

 		ftp_open() (urllib2.FTPHandler method)

 		ftp_proxy

 		FTP_TLS (class in ftplib)

 		FTPHandler (class in urllib2)

 		ftplib (module)

 		ftpmirror.py

 		ftruncate() (in module os)

 		Full

 		full() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		func (functools.partial attribute)

 		func_closure (function attribute)

 		func_code (function attribute)

 		

 		(function object attribute)

 		func_defaults (function attribute)

 		func_dict (function attribute)

 		func_doc (function attribute)

 		func_globals (function attribute)

 		funcattrs (2to3 fixer)

 		function

 		

 		anonymous

 		argument

 		call, [1], [2]

 		call, user-defined

 		definition, [1]

 		generator, [1]

 		name

 		object, [1], [2], [3], [4]

 		user-defined

 		Function (class in symtable)

 		function() (in module new)

 		FunctionTestCase (class in unittest)

 		FunctionType (in module types)

 		functools (module)

 		funny_files (filecmp.dircmp attribute)

 		
 future

 		

 		statement

 		future (2to3 fixer)

 		future_builtins (module)

 		FutureWarning

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-Q.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – Q

 		

 		qdevice() (in module fl)

 		QDPoint (class in aetypes)

 		QDRectangle (class in aetypes)

 		qenter() (in module fl)

 		qiflush() (in module curses)

 		QName (class in xml.etree.ElementTree)

 		qread() (in module fl)

 		qreset() (in module fl)

 		qsize() (multiprocessing.Queue method)

 		

 		(Queue.Queue method)

 		qtest() (in module fl)

 		quantize() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		QueryInfoKey() (in module _winreg)

 		queryparams() (in module al)

 		QueryReflectionKey() (in module _winreg)

 		QueryValue() (in module _winreg)

 		QueryValueEx() (in module _winreg)

 		Queue (class in multiprocessing)

 		

 		(class in Queue)

 		(module)

 		queue (sched.scheduler attribute)

 		

 		Queue() (multiprocessing.managers.SyncManager method)

 		quick_ratio() (difflib.SequenceMatcher method)

 		quit (built-in variable)

 		quit() (ftplib.FTP method)

 		

 		(nntplib.NNTP method)

 		(poplib.POP3 method)

 		(smtplib.SMTP method)

 		quopri (module)

 		quote() (in module email.utils)

 		

 		(in module rfc822)

 		(in module urllib)

 		QUOTE_ALL (in module csv)

 		QUOTE_MINIMAL (in module csv)

 		QUOTE_NONE (in module csv)

 		QUOTE_NONNUMERIC (in module csv)

 		quote_plus() (in module urllib)

 		quoteattr() (in module xml.sax.saxutils)

 		quotechar (csv.Dialect attribute)

 		
 quoted-printable

 		

 		encoding

 		
 quotes

 		

 		backward, [1]

 		reverse, [1]

 		quotes (shlex.shlex attribute)

 		quoting (csv.Dialect attribute)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-M.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – M

 		

 		M (in module re)

 		mac_ver() (in module platform)

 		
 macerrors

 		

 		module

 		macerrors (module)

 		machine() (in module platform)

 		MacOS (module)

 		macostools (module)

 		macpath (module)

 		macresource (module)

 		macros (netrc.netrc attribute)

 		
 mailbox

 		

 		module

 		Mailbox (class in mailbox)

 		mailbox (module)

 		mailcap (module)

 		Maildir (class in mailbox)

 		MaildirMessage (class in mailbox)

 		MailmanProxy (class in smtpd)

 		main() (in module py_compile)

 		

 		(in module unittest)

 		mainloop() (FrameWork.Application method)

 		major() (in module os)

 		make_archive() (in module distutils.archive_util)

 		

 		(in module shutil)

 		MAKE_CLOSURE (opcode)

 		make_cookies() (cookielib.CookieJar method)

 		make_form() (in module fl)

 		MAKE_FUNCTION (opcode)

 		make_header() (in module email.header)

 		make_msgid() (in module email.utils)

 		make_parser() (in module xml.sax)

 		make_server() (in module wsgiref.simple_server)

 		make_tarball() (in module distutils.archive_util)

 		make_zipfile() (in module distutils.archive_util)

 		makedev() (in module os)

 		makedirs() (in module os)

 		makeelement() (xml.etree.ElementTree.Element method)

 		makefile() (socket method)

 		

 		(socket.socket method)

 		makefolder() (mhlib.MH method)

 		makeLogRecord() (in module logging)

 		makePickle() (logging.handlers.SocketHandler method)

 		makeRecord() (logging.Logger method)

 		makeSocket() (logging.handlers.DatagramHandler method)

 		

 		(logging.handlers.SocketHandler method)

 		maketrans() (in module string)

 		makeusermenus() (FrameWork.Application method)

 		
 mangling

 		

 		name

 		map (2to3 fixer)

 		map() (built-in function)

 		

 		(in module future_builtins)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ttk.Style method)

 		map_async() (multiprocessing.pool.multiprocessing.Pool method)

 		map_table_b2() (in module stringprep)

 		map_table_b3() (in module stringprep)

 		mapcolor() (in module fl)

 		mapfile() (ic.IC method)

 		

 		(in module ic)

 		mapping

 		

 		object, [1], [2], [3], [4]

 		types, operations on

 		Mapping (class in collections)

 		mapping() (msilib.Control method)

 		MappingView (class in collections)

 		mapPriority() (logging.handlers.SysLogHandler method)

 		maps() (in module nis)

 		maptypecreator() (ic.IC method)

 		

 		(in module ic)

 		marshal (module)

 		
 marshalling

 		

 		objects

 		
 masking

 		

 		operations

 		match() (in module nis)

 		

 		(in module re)

 		(re.RegexObject method)

 		MatchObject (class in re)

 		
 math

 		

 		module, [1]

 		math (module)

 		
 max

 		

 		built-in function

 		max (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		max() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		(in module audioop)

 		MAX_INTERPOLATION_DEPTH (in module ConfigParser)

 		max_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		maxarray (repr.Repr attribute)

 		maxdeque (repr.Repr attribute)

 		maxdict (repr.Repr attribute)

 		maxDiff (unittest.TestCase attribute)

 		maxfrozenset (repr.Repr attribute)

 		maxint (in module sys)

 		maxlen (collections.deque attribute)

 		MAXLEN (in module mimify)

 		maxlevel (repr.Repr attribute)

 		maxlist (repr.Repr attribute)

 		maxlong (repr.Repr attribute)

 		maxother (repr.Repr attribute)

 		maxpp() (in module audioop)

 		maxset (repr.Repr attribute)

 		maxsize (in module sys)

 		maxstring (repr.Repr attribute)

 		maxtuple (repr.Repr attribute)

 		maxunicode (in module sys)

 		maxval (EasyDialogs.ProgressBar attribute)

 		MAXYEAR (in module datetime)

 		MB_ICONASTERISK (in module winsound)

 		MB_ICONEXCLAMATION (in module winsound)

 		MB_ICONHAND (in module winsound)

 		MB_ICONQUESTION (in module winsound)

 		MB_OK (in module winsound)

 		mbox (class in mailbox)

 		mboxMessage (class in mailbox)

 		md5 (module)

 		md5() (in module md5)

 		MemberDescriptorType (in module types)

 		
 membership

 		

 		test

 		memmove() (in module ctypes)

 		MemoryError

 		MemoryHandler (class in logging.handlers)

 		memoryview (built-in class)

 		memset() (in module ctypes)

 		Menu() (in module FrameWork)

 		MenuBar() (in module FrameWork)

 		MenuItem() (in module FrameWork)

 		merge() (in module heapq)

 		Message (class in email.message)

 		

 		(class in mailbox)

 		(class in mhlib)

 		(class in mimetools)

 		(class in rfc822)

 		(in module mimetools)

 		message digest, MD5, [1]

 		Message() (in module EasyDialogs)

 		message_from_file() (in module email)

 		message_from_string() (in module email)

 		MessageBeep() (in module winsound)

 		MessageClass (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		MessageError

 		MessageParseError

 		meta() (in module curses)

 		meta_path (in module sys)

 		metaclass

 		

 		(2to3 fixer)

 		metavar (optparse.Option attribute)

 		Meter (class in Tix)

 		method

 		

 		built-in

 		call

 		object, [1], [2], [3], [4]

 		user-defined

 		methodattrs (2to3 fixer)

 		methodcaller() (in module operator)

 		methodHelp() (xmlrpclib.ServerProxy.system method)

 		
 methods

 		

 		string

 		methods (pyclbr.Class attribute)

 		

 		methodSignature() (xmlrpclib.ServerProxy.system method)

 		MethodType (in module types)

 		MH (class in mailbox)

 		

 		(class in mhlib)

 		mhlib (module)

 		MHMailbox (class in mailbox)

 		MHMessage (class in mailbox)

 		microsecond (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		
 MIME

 		

 		base64 encoding

 		content type

 		headers, [1]

 		quoted-printable encoding

 		mime_decode_header() (in module mimify)

 		mime_encode_header() (in module mimify)

 		MIMEApplication (class in email.mime.application)

 		MIMEAudio (class in email.mime.audio)

 		MIMEBase (class in email.mime.base)

 		MIMEImage (class in email.mime.image)

 		MIMEMessage (class in email.mime.message)

 		MIMEMultipart (class in email.mime.multipart)

 		MIMENonMultipart (class in email.mime.nonmultipart)

 		MIMEText (class in email.mime.text)

 		
 mimetools

 		

 		module

 		mimetools (module)

 		MimeTypes (class in mimetypes)

 		mimetypes (module)

 		MimeWriter (class in MimeWriter)

 		

 		(module)

 		mimify (module)

 		mimify() (in module mimify)

 		
 min

 		

 		built-in function

 		min (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		(datetime.time attribute)

 		(datetime.timedelta attribute)

 		min() (built-in function)

 		

 		(decimal.Context method)

 		(decimal.Decimal method)

 		min_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		MINEQUAL (in module token)

 		MiniAEFrame (module)

 		MiniApplication (class in MiniAEFrame)

 		minmax() (in module audioop)

 		minor() (in module os)

 		minus

 		MINUS (in module token)

 		minus() (decimal.Context method)

 		minute (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		MINYEAR (in module datetime)

 		mirrored() (in module unicodedata)

 		misc_header (cmd.Cmd attribute)

 		MissingSectionHeaderError

 		MIXERDEV

 		mkalias() (in module macostools)

 		mkd() (ftplib.FTP method)

 		mkdir() (in module os)

 		mkdtemp() (in module tempfile)

 		mkfifo() (in module os)

 		mknod() (in module os)

 		mkpath() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.dir_util)

 		mkstemp() (in module tempfile)

 		mktemp() (in module tempfile)

 		mktime() (in module time)

 		mktime_tz() (in module email.utils)

 		

 		(in module rfc822)

 		mmap (class in mmap)

 		

 		(module)

 		MMDF (class in mailbox)

 		MmdfMailbox (class in mailbox)

 		MMDFMessage (class in mailbox)

 		mod() (in module operator)

 		mode (file attribute)

 		

 		(io.FileIO attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		(tarfile.TarInfo attribute)

 		mode() (in module turtle)

 		modf() (in module math)

 		modified() (robotparser.RobotFileParser method)

 		Modify() (msilib.View method)

 		modify() (select.epoll method)

 		

 		(select.poll method)

 		
 module

 		

 		AL

 		CGIHTTPServer

 		FrameWork

 		SUNAUDIODEV

 		SimpleHTTPServer

 		__builtin__, [1], [2]

 		__main__, [1], [2]

 		_locale

 		array

 		base64

 		bdb

 		binhex

 		bsddb, [1], [2], [3]

 		cPickle

 		cmd

 		compileall

 		copy

 		crypt

 		dbhash

 		dbm, [1], [2], [3]

 		distutils.sysconfig

 		dumbdbm

 		errno, [1]

 		extension

 		fcntl

 		formatter

 		gdbm, [1], [2]

 		glob

 		htmllib

 		icglue

 		imp

 		importing

 		knee, [1]

 		macerrors

 		mailbox

 		math, [1]

 		mimetools

 		namespace

 		object, [1]

 		os, [1]

 		pickle, [1], [2], [3], [4], [5]

 		pty

 		pwd

 		pyexpat

 		re, [1], [2]

 		readline

 		rfc822

 		rlcompleter

 		search path, [1], [2], [3]

 		sgmllib

 		shelve

 		signal

 		sitecustomize, [1]

 		socket, [1]

 		stat

 		statvfs

 		string, [1], [2]

 		struct

 		sunaudiodev

 		sys, [1], [2], [3]

 		types

 		urllib

 		urlparse

 		uu

 		module (pyclbr.Class attribute)

 		

 		(pyclbr.Function attribute)

 		module() (in module new)

 		ModuleFinder (class in modulefinder)

 		modulefinder (module)

 		modules (in module sys)

 		

 		(modulefinder.ModuleFinder attribute)

 		ModuleType (in module types)

 		modulo

 		mono2grey() (in module imageop)

 		month (datetime.date attribute)

 		

 		(datetime.datetime attribute)

 		month() (in module calendar)

 		month_abbr (in module calendar)

 		month_name (in module calendar)

 		monthcalendar() (in module calendar)

 		monthdatescalendar() (calendar.Calendar method)

 		monthdays2calendar() (calendar.Calendar method)

 		monthdayscalendar() (calendar.Calendar method)

 		monthrange() (in module calendar)

 		Morsel (class in Cookie)

 		most_common() (collections.Counter method)

 		mouseinterval() (in module curses)

 		mousemask() (in module curses)

 		move() (curses.panel.Panel method)

 		

 		(curses.window method)

 		(in module findertools)

 		(in module mmap)

 		(in module shutil)

 		(ttk.Treeview method)

 		move_file() (distutils.ccompiler.CCompiler method)

 		

 		(in module distutils.file_util)

 		movemessage() (mhlib.Folder method)

 		MozillaCookieJar (class in cookielib)

 		mro() (class method)

 		msftoframe() (in module cd)

 		msg (httplib.HTTPResponse attribute)

 		msg() (telnetlib.Telnet method)

 		msi

 		msilib (module)

 		msvcrt (module)

 		mt_interact() (telnetlib.Telnet method)

 		mtime (tarfile.TarInfo attribute)

 		mtime() (robotparser.RobotFileParser method)

 		mul() (in module audioop)

 		

 		(in module operator)

 		MultiCall (class in xmlrpclib)

 		MultiFile (class in multifile)

 		multifile (module)

 		MULTILINE (in module re)

 		MultipartConversionError

 		multiplication

 		multiply() (decimal.Context method)

 		multiprocessing (module)

 		multiprocessing.connection (module)

 		multiprocessing.dummy (module)

 		multiprocessing.Manager() (in module multiprocessing.sharedctypes)

 		multiprocessing.managers (module)

 		multiprocessing.Pool (class in multiprocessing.pool)

 		multiprocessing.pool (module)

 		multiprocessing.sharedctypes (module)

 		mutable

 		

 		object, [1], [2]

 		sequence types

 		mutable object

 		
 mutable sequence

 		

 		loop over

 		object

 		MutableMapping (class in collections)

 		MutableSequence (class in collections)

 		MutableSet (class in collections)

 		MutableString (class in UserString)

 		mutex (class in mutex)

 		

 		(module)

 		mvderwin() (curses.window method)

 		mvwin() (curses.window method)

 		myrights() (imaplib.IMAP4 method)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/up.png

genindex-V.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – V

 		

 		validator() (in module wsgiref.validate)

 		
 value

 		

 		default parameter

 		truth

 		value (Cookie.Morsel attribute)

 		

 		(cookielib.Cookie attribute)

 		(ctypes._SimpleCData attribute)

 		(xml.dom.Attr attribute)

 		value of an object

 		Value() (in module multiprocessing)

 		

 		(in module multiprocessing.sharedctypes)

 		(multiprocessing.managers.SyncManager method)

 		value_decode() (Cookie.BaseCookie method)

 		value_encode() (Cookie.BaseCookie method)

 		ValueError

 		

 		exception

 		valuerefs() (weakref.WeakValueDictionary method)

 		
 values

 		

 		Boolean

 		writing, [1]

 		values() (dict method)

 		

 		(email.message.Message method)

 		(mailbox.Mailbox method)

 		ValuesView (class in collections)

 		
 variable

 		

 		free, [1]

 		variant (uuid.UUID attribute)

 		varray() (in module gl)

 		vars() (built-in function)

 		VBAR (in module token)

 		vbar (ScrolledText.ScrolledText attribute)

 		VBAREQUAL (in module token)

 		Vec2D (class in turtle)

 		VERBOSE (in module re)

 		

 		verbose (in module tabnanny)

 		

 		(in module test.test_support)

 		verify() (smtplib.SMTP method)

 		verify_request() (SocketServer.BaseServer method)

 		version (cookielib.Cookie attribute)

 		

 		(httplib.HTTPResponse attribute)

 		(in module curses)

 		(in module marshal)

 		(in module sys)

 		(urllib.URLopener attribute)

 		(uuid.UUID attribute)

 		version() (in module platform)

 		version_info (in module sys)

 		version_string() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		vformat() (string.Formatter method)

 		videoreader (module)

 		view

 		viewitems() (dict method)

 		viewkeys() (dict method)

 		viewvalues() (dict method)

 		virtual machine

 		visit() (ast.NodeVisitor method)

 		vline() (curses.window method)

 		VMSError

 		vnarray() (in module gl)

 		voidcmd() (ftplib.FTP method)

 		volume (zipfile.ZipInfo attribute)

 		vonmisesvariate() (in module random)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-J.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – J

 		

 		Jansen, Jack

 		
 Java

 		

 		language

 		java_ver() (in module platform)

 		JFIF, [1]

 		join() (in module os.path)

 		

 		(Queue.Queue method)

 		(in module string)

 		(multiprocessing.JoinableQueue method)

 		(multiprocessing.Process method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(str method)

 		(threading.Thread method)

 		join_thread() (multiprocessing.Queue method)

 		JoinableQueue (class in multiprocessing)

 		joinfields() (in module string)

 		jpeg (module)

 		

 		js_output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		json (module)

 		JSONDecoder (class in json)

 		JSONEncoder (class in json)

 		JUMP_ABSOLUTE (opcode)

 		JUMP_FORWARD (opcode)

 		JUMP_IF_FALSE_OR_POP (opcode)

 		JUMP_IF_TRUE_OR_POP (opcode)

 		jumpahead() (in module random)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_static/py.png

genindex-H.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – H

 		

 		halfdelay() (in module curses)

 		handle an exception

 		handle() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		

 		(SocketServer.RequestHandler method)

 		(logging.Handler method)

 		(logging.Logger method)

 		(logging.NullHandler method)

 		(wsgiref.simple_server.WSGIRequestHandler method)

 		handle_accept() (asyncore.dispatcher method)

 		handle_charref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_close() (asyncore.dispatcher method)

 		handle_comment() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_connect() (asyncore.dispatcher method)

 		handle_data() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_decl() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_endtag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_entityref() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_error() (asyncore.dispatcher method)

 		

 		(SocketServer.BaseServer method)

 		handle_expt() (asyncore.dispatcher method)

 		handle_image() (htmllib.HTMLParser method)

 		handle_one_request() (BaseHTTPServer.BaseHTTPRequestHandler method)

 		handle_pi() (HTMLParser.HTMLParser method)

 		handle_read() (asyncore.dispatcher method)

 		handle_request() (SimpleXMLRPCServer.CGIXMLRPCRequestHandler method)

 		

 		(SocketServer.BaseServer method)

 		handle_startendtag() (HTMLParser.HTMLParser method)

 		handle_starttag() (HTMLParser.HTMLParser method)

 		

 		(sgmllib.SGMLParser method)

 		handle_timeout() (SocketServer.BaseServer method)

 		handle_write() (asyncore.dispatcher method)

 		handleError() (logging.Handler method)

 		

 		(logging.handlers.SocketHandler method)

 		
 handler

 		

 		exception

 		handler() (in module cgitb)

 		has_children() (symtable.SymbolTable method)

 		has_colors() (in module curses)

 		has_data() (urllib2.Request method)

 		has_exec() (symtable.SymbolTable method)

 		has_extn() (smtplib.SMTP method)

 		has_function() (distutils.ccompiler.CCompiler method)

 		has_header() (csv.Sniffer method)

 		

 		(urllib2.Request method)

 		has_ic() (in module curses)

 		has_il() (in module curses)

 		has_import_star() (symtable.SymbolTable method)

 		has_ipv6 (in module socket)

 		has_key (2to3 fixer)

 		has_key() (bsddb.bsddbobject method)

 		

 		(dict method)

 		(email.message.Message method)

 		(in module curses)

 		(mailbox.Mailbox method)

 		has_nonstandard_attr() (cookielib.Cookie method)

 		has_option() (ConfigParser.RawConfigParser method)

 		

 		(optparse.OptionParser method)

 		has_section() (ConfigParser.RawConfigParser method)

 		hasattr() (built-in function)

 		hasAttribute() (xml.dom.Element method)

 		hasAttributeNS() (xml.dom.Element method)

 		hasAttributes() (xml.dom.Node method)

 		hasChildNodes() (xml.dom.Node method)

 		hascompare (in module dis)

 		hasconst (in module dis)

 		hasFeature() (xml.dom.DOMImplementation method)

 		hasfree (in module dis)

 		
 hash

 		

 		built-in function

 		hash character

 		hash() (built-in function)

 		hash.block_size (in module hashlib)

 		hash.digest_size (in module hashlib)

 		hashable, [1]

 		Hashable (class in collections)

 		hashlib (module)

 		hashlib.algorithms (in module hashlib)

 		hashopen() (in module bsddb)

 		hasjabs (in module dis)

 		hasjrel (in module dis)

 		haslocal (in module dis)

 		hasname (in module dis)

 		HAVE_ARGUMENT (opcode)

 		have_unicode (in module test.test_support)

 		head() (nntplib.NNTP method)

 		Header (class in email.header)

 		header_encode() (email.charset.Charset method)

 		header_encoding (email.charset.Charset attribute)

 		header_offset (zipfile.ZipInfo attribute)

 		HeaderError

 		HeaderParseError

 		
 headers

 		

 		MIME, [1]

 		headers (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Headers (class in wsgiref.headers)

 		headers (rfc822.Message attribute)

 		

 		(xmlrpclib.ProtocolError attribute)

 		heading() (in module turtle)

 		

 		(ttk.Treeview method)

 		heapify() (in module heapq)

 		heapmin() (in module msvcrt)

 		heappop() (in module heapq)

 		heappush() (in module heapq)

 		heappushpop() (in module heapq)

 		heapq (module)

 		heapreplace() (in module heapq)

 		helo() (smtplib.SMTP method)

 		
 help

 		

 		built-in function

 		online

 		help (optparse.Option attribute)

 		help() (built-in function)

 		

 		(nntplib.NNTP method)

 		herror

 		
 hex

 		

 		built-in function

 		hex (uuid.UUID attribute)

 		

 		hex() (built-in function)

 		

 		(float method)

 		(in module future_builtins)

 		
 hexadecimal

 		

 		literals

 		hexadecimal literal

 		hexbin() (in module binhex)

 		hexdigest() (hashlib.hash method)

 		

 		(hmac.hmac method)

 		(md5.md5 method)

 		(sha.sha method)

 		hexdigits (in module string)

 		hexlify() (in module binascii)

 		hexversion (in module sys)

 		hidden() (curses.panel.Panel method)

 		hide() (curses.panel.Panel method)

 		

 		(ttk.Notebook method)

 		hide_cookie2 (cookielib.CookiePolicy attribute)

 		hide_form() (fl.form method)

 		hideturtle() (in module turtle)

 		
 hierarchy

 		

 		type

 		HierarchyRequestErr

 		HIGHEST_PROTOCOL (in module pickle)

 		HKEY_CLASSES_ROOT (in module _winreg)

 		HKEY_CURRENT_CONFIG (in module _winreg)

 		HKEY_CURRENT_USER (in module _winreg)

 		HKEY_DYN_DATA (in module _winreg)

 		HKEY_LOCAL_MACHINE (in module _winreg)

 		HKEY_PERFORMANCE_DATA (in module _winreg)

 		HKEY_USERS (in module _winreg)

 		hline() (curses.window method)

 		HList (class in Tix)

 		hls_to_rgb() (in module colorsys)

 		hmac (module)

 		HOME, [1], [2], [3], [4], [5]

 		home() (in module turtle)

 		HOMEDRIVE, [1]

 		HOMEPATH, [1]

 		hook_compressed() (in module fileinput)

 		hook_encoded() (in module fileinput)

 		hosts (netrc.netrc attribute)

 		hotshot (module)

 		hotshot.stats (module)

 		hour (datetime.datetime attribute)

 		

 		(datetime.time attribute)

 		HRESULT (class in ctypes)

 		hStdError (subprocess.STARTUPINFO attribute)

 		hStdInput (subprocess.STARTUPINFO attribute)

 		hStdOutput (subprocess.STARTUPINFO attribute)

 		hsv_to_rgb() (in module colorsys)

 		ht() (in module turtle)

 		HTML, [1], [2]

 		HTMLCalendar (class in calendar)

 		HtmlDiff (class in difflib)

 		HtmlDiff.__init__() (in module difflib)

 		HtmlDiff.make_file() (in module difflib)

 		HtmlDiff.make_table() (in module difflib)

 		htmlentitydefs (module)

 		
 htmllib

 		

 		module

 		htmllib (module)

 		HTMLParseError, [1]

 		HTMLParser (class in htmllib), [1]

 		

 		(class in HTMLParser)

 		(module)

 		htonl() (in module socket)

 		htons() (in module socket)

 		
 HTTP

 		

 		httplib (standard module)

 		protocol, [1], [2], [3], [4]

 		http_error_301() (urllib2.HTTPRedirectHandler method)

 		http_error_302() (urllib2.HTTPRedirectHandler method)

 		http_error_303() (urllib2.HTTPRedirectHandler method)

 		http_error_307() (urllib2.HTTPRedirectHandler method)

 		http_error_401() (urllib2.HTTPBasicAuthHandler method)

 		

 		(urllib2.HTTPDigestAuthHandler method)

 		http_error_407() (urllib2.ProxyBasicAuthHandler method)

 		

 		(urllib2.ProxyDigestAuthHandler method)

 		http_error_auth_reqed() (urllib2.AbstractBasicAuthHandler method)

 		

 		(urllib2.AbstractDigestAuthHandler method)

 		http_error_default() (urllib2.BaseHandler method)

 		http_error_nnn() (urllib2.BaseHandler method)

 		http_open() (urllib2.HTTPHandler method)

 		HTTP_PORT (in module httplib)

 		http_proxy, [1]

 		http_version (wsgiref.handlers.BaseHandler attribute)

 		HTTPBasicAuthHandler (class in urllib2)

 		HTTPConnection (class in httplib)

 		HTTPCookieProcessor (class in urllib2)

 		httpd

 		HTTPDefaultErrorHandler (class in urllib2)

 		HTTPDigestAuthHandler (class in urllib2)

 		HTTPError

 		HTTPException

 		HTTPHandler (class in logging.handlers)

 		

 		(class in urllib2)

 		httplib (module)

 		HTTPMessage (class in httplib)

 		HTTPPasswordMgr (class in urllib2)

 		HTTPPasswordMgrWithDefaultRealm (class in urllib2)

 		HTTPRedirectHandler (class in urllib2)

 		HTTPResponse (class in httplib)

 		https_open() (urllib2.HTTPSHandler method)

 		HTTPS_PORT (in module httplib)

 		HTTPSConnection (class in httplib)

 		HTTPServer (class in BaseHTTPServer)

 		HTTPSHandler (class in urllib2)

 		hypertext

 		hypot() (in module math)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

_images/python-video-icon.png
——
@ python
.

VIDEO

genindex-C.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – C

 		

 		C

 		

 		language, [1], [2], [3], [4]

 		structures

 		c_bool (class in ctypes)

 		C_BUILTIN (in module imp)

 		c_byte (class in ctypes)

 		c_char (class in ctypes)

 		c_char_p (class in ctypes)

 		c_double (class in ctypes)

 		C_EXTENSION (in module imp)

 		c_float (class in ctypes)

 		c_int (class in ctypes)

 		c_int16 (class in ctypes)

 		c_int32 (class in ctypes)

 		c_int64 (class in ctypes)

 		c_int8 (class in ctypes)

 		c_long (class in ctypes)

 		c_longdouble (class in ctypes)

 		c_longlong (class in ctypes)

 		c_short (class in ctypes)

 		c_size_t (class in ctypes)

 		c_ssize_t (class in ctypes)

 		c_ubyte (class in ctypes)

 		c_uint (class in ctypes)

 		c_uint16 (class in ctypes)

 		c_uint32 (class in ctypes)

 		c_uint64 (class in ctypes)

 		c_uint8 (class in ctypes)

 		c_ulong (class in ctypes)

 		c_ulonglong (class in ctypes)

 		c_ushort (class in ctypes)

 		c_void_p (class in ctypes)

 		c_wchar (class in ctypes)

 		c_wchar_p (class in ctypes)

 		CAB (class in msilib)

 		CacheFTPHandler (class in urllib2)

 		calcsize() (in module struct)

 		Calendar (class in calendar)

 		calendar (module)

 		calendar() (in module calendar)

 		call

 		

 		built-in function

 		built-in method

 		class instance

 		class object, [1], [2], [3]

 		function, [1], [2]

 		instance, [1]

 		method

 		procedure

 		user-defined function

 		call() (dl.dl method)

 		

 		(in module subprocess)

 		CALL_FUNCTION (opcode)

 		CALL_FUNCTION_KW (opcode)

 		CALL_FUNCTION_VAR (opcode)

 		CALL_FUNCTION_VAR_KW (opcode)

 		call_tracing() (in module sys)

 		
 callable

 		

 		object, [1]

 		callable (2to3 fixer)

 		Callable (class in collections)

 		callable() (built-in function)

 		CallableProxyType (in module weakref)

 		callback (optparse.Option attribute)

 		callback() (MiniAEFrame.AEServer method)

 		callback_args (optparse.Option attribute)

 		callback_kwargs (optparse.Option attribute)

 		can_change_color() (in module curses)

 		can_fetch() (robotparser.RobotFileParser method)

 		cancel() (sched.scheduler method)

 		

 		(threading.Timer method)

 		cancel_join_thread() (multiprocessing.Queue method)

 		CannotSendHeader

 		CannotSendRequest

 		canonic() (bdb.Bdb method)

 		canonical() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		capitalize() (in module string)

 		

 		(str method)

 		captured_stdout() (in module test.test_support)

 		captureWarnings() (in module logging)

 		capwords() (in module string)

 		Carbon.AE (module)

 		Carbon.AH (module)

 		Carbon.App (module)

 		Carbon.Appearance (module)

 		Carbon.CarbonEvents (module)

 		Carbon.CarbonEvt (module)

 		Carbon.CF (module)

 		Carbon.CG (module)

 		Carbon.Cm (module)

 		Carbon.Components (module)

 		Carbon.ControlAccessor (module)

 		Carbon.Controls (module)

 		Carbon.CoreFounation (module)

 		Carbon.CoreGraphics (module)

 		Carbon.Ctl (module)

 		Carbon.Dialogs (module)

 		Carbon.Dlg (module)

 		Carbon.Drag (module)

 		Carbon.Dragconst (module)

 		Carbon.Events (module)

 		Carbon.Evt (module)

 		Carbon.File (module)

 		Carbon.Files (module)

 		Carbon.Fm (module)

 		Carbon.Folder (module)

 		Carbon.Folders (module)

 		Carbon.Fonts (module)

 		Carbon.Help (module)

 		Carbon.IBCarbon (module)

 		Carbon.IBCarbonRuntime (module)

 		Carbon.Icns (module)

 		Carbon.Icons (module)

 		Carbon.Launch (module)

 		Carbon.LaunchServices (module)

 		Carbon.List (module)

 		Carbon.Lists (module)

 		Carbon.MacHelp (module)

 		Carbon.MediaDescr (module)

 		Carbon.Menu (module)

 		Carbon.Menus (module)

 		Carbon.Mlte (module)

 		Carbon.OSA (module)

 		Carbon.OSAconst (module)

 		Carbon.Qd (module)

 		Carbon.Qdoffs (module)

 		Carbon.QDOffscreen (module)

 		Carbon.Qt (module)

 		Carbon.QuickDraw (module)

 		Carbon.QuickTime (module)

 		Carbon.Res (module)

 		Carbon.Resources (module)

 		Carbon.Scrap (module)

 		Carbon.Snd (module)

 		Carbon.Sound (module)

 		Carbon.TE (module)

 		Carbon.TextEdit (module)

 		Carbon.Win (module)

 		Carbon.Windows (module)

 		cast() (in module ctypes)

 		cat() (in module nis)

 		catalog (in module cd)

 		catch_warnings (class in warnings)

 		category() (in module unicodedata)

 		cbreak() (in module curses)

 		CC

 		CCompiler (class in distutils.ccompiler)

 		cd (module)

 		CDLL (class in ctypes)

 		CDROM (in module cd)

 		ceil() (in module math), [1]

 		center() (in module string)

 		

 		(str method)

 		CERT_NONE (in module ssl)

 		CERT_OPTIONAL (in module ssl)

 		CERT_REQUIRED (in module ssl)

 		cert_time_to_seconds() (in module ssl)

 		certificates

 		CFLAGS, [1], [2]

 		cfmfile (module)

 		CFUNCTYPE() (in module ctypes)

 		
 CGI

 		

 		debugging

 		exceptions

 		protocol

 		security

 		tracebacks

 		cgi (module)

 		cgi_directories (CGIHTTPServer.CGIHTTPRequestHandler attribute)

 		CGIHandler (class in wsgiref.handlers)

 		CGIHTTPRequestHandler (class in CGIHTTPServer)

 		
 CGIHTTPServer

 		

 		module

 		CGIHTTPServer (module)

 		cgitb (module)

 		CGIXMLRPCRequestHandler (class in SimpleXMLRPCServer)

 		chain() (in module itertools)

 		
 chaining

 		

 		comparisons, [1]

 		change_root() (in module distutils.util)

 		channels() (ossaudiodev.oss_audio_device method)

 		CHAR_MAX (in module locale)

 		character, [1], [2], [3]

 		character set

 		CharacterDataHandler() (xml.parsers.expat.xmlparser method)

 		characters() (xml.sax.handler.ContentHandler method)

 		characters_written (io.BlockingIOError attribute)

 		Charset (class in email.charset)

 		CHARSET (in module mimify)

 		charset() (gettext.NullTranslations method)

 		chdir() (in module os)

 		check() (imaplib.IMAP4 method)

 		

 		(in module tabnanny)

 		check_call() (in module subprocess)

 		check_environ() (in module distutils.util)

 		check_forms() (in module fl)

 		check_output() (doctest.OutputChecker method)

 		

 		(in module subprocess)

 		check_py3k_warnings() (in module test.test_support)

 		check_unused_args() (string.Formatter method)

 		check_warnings() (in module test.test_support)

 		checkbox() (msilib.Dialog method)

 		checkcache() (in module linecache)

 		checkfuncname() (in module bdb)

 		CheckList (class in Tix)

 		
 checksum

 		

 		Cyclic Redundancy Check

 		MD5

 		SHA

 		chflags() (in module os)

 		chgat() (curses.window method)

 		childerr (popen2.Popen3 attribute)

 		childNodes (xml.dom.Node attribute)

 		chmod() (in module os)

 		choice() (in module random)

 		choices (optparse.Option attribute)

 		choose_boundary() (in module mimetools)

 		chown() (in module os)

 		
 chr

 		

 		built-in function, [1]

 		chr() (built-in function)

 		chroot() (in module os)

 		Chunk (class in chunk)

 		chunk (module)

 		
 cipher

 		

 		DES

 		cipher() (ssl.SSLSocket method)

 		circle() (in module turtle)

 		CIRCUMFLEX (in module token)

 		CIRCUMFLEXEQUAL (in module token)

 		Clamped (class in decimal)

 		class

 		

 		attribute

 		attribute assignment

 		classic

 		constructor

 		definition, [1]

 		instance

 		name

 		new-style

 		object, [1], [2], [3]

 		old-style

 		statement

 		Class (class in symtable)

 		Class browser

 		
 class instance

 		

 		attribute

 		attribute assignment

 		call

 		object, [1], [2], [3]

 		
 class object

 		

 		call, [1], [2], [3]

 		classic class

 		classmethod() (built-in function)

 		classobj() (in module new)

 		ClassType (in module types)

 		clause

 		clean() (mailbox.Maildir method)

 		cleandoc() (in module inspect)

 		clear() (collections.deque method)

 		

 		(cookielib.CookieJar method)

 		(curses.window method)

 		(dict method)

 		(in module turtle), [1]

 		(mailbox.Mailbox method)

 		(set method)

 		(threading.Event method)

 		(xml.etree.ElementTree.Element method)

 		clear_all_breaks() (bdb.Bdb method)

 		clear_all_file_breaks() (bdb.Bdb method)

 		clear_bpbynumber() (bdb.Bdb method)

 		clear_break() (bdb.Bdb method)

 		clear_flags() (decimal.Context method)

 		clear_history() (in module readline)

 		clear_memo() (pickle.Pickler method)

 		clear_session_cookies() (cookielib.CookieJar method)

 		clearcache() (in module linecache)

 		ClearData() (msilib.Record method)

 		clearok() (curses.window method)

 		clearscreen() (in module turtle)

 		clearstamp() (in module turtle)

 		clearstamps() (in module turtle)

 		Client() (in module multiprocessing.connection)

 		client_address (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		clock() (in module time)

 		clone() (email.generator.Generator method)

 		

 		(in module turtle)

 		(pipes.Template method)

 		cloneNode() (xml.dom.minidom.Node method)

 		

 		(xml.dom.Node method)

 		Close() (_winreg.PyHKEY method)

 		close() (aifc.aifc method), [1]

 		

 		(FrameWork.Window method)

 		(HTMLParser.HTMLParser method)

 		(asyncore.dispatcher method)

 		(bsddb.bsddbobject method)

 		(bz2.BZ2File method)

 		(chunk.Chunk method)

 		(distutils.text_file.TextFile method)

 		(dl.dl method)

 		(email.parser.FeedParser method)

 		(file method)

 		(ftplib.FTP method)

 		(generator method)

 		(hotshot.Profile method)

 		(httplib.HTTPConnection method)

 		(imaplib.IMAP4 method)

 		(in module fileinput)

 		(in module mmap)

 		(in module os)

 		(io.IOBase method)

 		(logging.FileHandler method)

 		(logging.Handler method)

 		(logging.handlers.MemoryHandler method)

 		(logging.handlers.NTEventLogHandler method)

 		(logging.handlers.SocketHandler method)

 		(logging.handlers.SysLogHandler method)

 		(mailbox.MH method)

 		(mailbox.Mailbox method)

 		(mailbox.Maildir method)

 		Close() (msilib.View method)

 		close() (multiprocessing.Connection method)

 		

 		(StringIO.StringIO method)

 		(multiprocessing.Queue method)

 		(multiprocessing.connection.Listener method)

 		(multiprocessing.pool.multiprocessing.Pool method)

 		(ossaudiodev.oss_audio_device method)

 		(ossaudiodev.oss_mixer_device method)

 		(select.epoll method)

 		(select.kqueue method)

 		(sgmllib.SGMLParser method)

 		(shelve.Shelf method)

 		(socket.socket method)

 		(sqlite3.Connection method)

 		(sunau.AU_read method)

 		(sunau.AU_write method)

 		(tarfile.TarFile method)

 		(telnetlib.Telnet method)

 		(urllib2.BaseHandler method)

 		(wave.Wave_read method)

 		(wave.Wave_write method)

 		(xml.etree.ElementTree.TreeBuilder method)

 		(xml.etree.ElementTree.XMLParser method)

 		(xml.sax.xmlreader.IncrementalParser method)

 		(zipfile.ZipFile method)

 		close_when_done() (asynchat.async_chat method)

 		closed (file attribute)

 		

 		(io.IOBase attribute)

 		(ossaudiodev.oss_audio_device attribute)

 		CloseKey() (in module _winreg)

 		closelog() (in module syslog)

 		closerange() (in module os)

 		closing() (in module contextlib)

 		clrtobot() (curses.window method)

 		clrtoeol() (curses.window method)

 		cmath (module)

 		
 cmd

 		

 		module

 		Cmd (class in cmd)

 		cmd (module)

 		cmdloop() (cmd.Cmd method)

 		
 cmp

 		

 		built-in function, [1]

 		cmp() (built-in function)

 		

 		(in module filecmp)

 		cmp_op (in module dis)

 		cmp_to_key() (in module functools)

 		cmpfiles() (in module filecmp)

 		co_argcount (code object attribute)

 		co_cellvars (code object attribute)

 		co_code (code object attribute)

 		co_consts (code object attribute)

 		co_filename (code object attribute)

 		co_firstlineno (code object attribute)

 		co_flags (code object attribute)

 		co_freevars (code object attribute)

 		co_lnotab (code object attribute)

 		co_name (code object attribute)

 		co_names (code object attribute)

 		co_nlocals (code object attribute)

 		co_stacksize (code object attribute)

 		co_varnames (code object attribute)

 		
 code

 		

 		block

 		object, [1], [2]

 		code (module)

 		

 		(urllib2.HTTPError attribute)

 		(xml.parsers.expat.ExpatError attribute)

 		code() (in module new)

 		Codecs

 		

 		decode

 		encode

 		

 		codecs (module)

 		coded_value (Cookie.Morsel attribute)

 		codeop (module)

 		codepoint2name (in module htmlentitydefs)

 		CODESET (in module locale)

 		CodeType (in module types)

 		
 coding

 		

 		style

 		coerce() (built-in function)

 		coercion

 		col_offset (ast.AST attribute)

 		collapse_rfc2231_value() (in module email.utils)

 		collect() (in module gc)

 		collect_incoming_data() (asynchat.async_chat method)

 		collections (module)

 		COLON (in module token)

 		color() (in module fl)

 		

 		(in module turtle)

 		color_content() (in module curses)

 		color_pair() (in module curses)

 		colormode() (in module turtle)

 		ColorPicker (module)

 		colorsys (module)

 		column() (ttk.Treeview method)

 		COLUMNS, [1]

 		combinations() (in module itertools)

 		combinations_with_replacement() (in module itertools)

 		combine() (datetime.datetime class method)

 		combining() (in module unicodedata)

 		ComboBox (class in Tix)

 		Combobox (class in ttk)

 		comma

 		

 		trailing, [1]

 		COMMA (in module token)

 		command (BaseHTTPServer.BaseHTTPRequestHandler attribute)

 		Command (class in distutils.cmd)

 		

 		(class in distutils.core)

 		command line

 		
 command line option

 		

 		--help

 		--version

 		-3

 		-B

 		-E

 		-J

 		-O

 		-OO

 		-Q <arg>

 		-S

 		-U

 		-V

 		-W arg

 		-X

 		-c <command>

 		-d

 		-h

 		-i

 		-m <module-name>

 		-s

 		-t

 		-u

 		-v

 		-x

 		CommandCompiler (class in codeop)

 		commands (module)

 		comment

 		

 		(cookielib.Cookie attribute)

 		COMMENT (in module tokenize)

 		comment (zipfile.ZipFile attribute)

 		

 		(zipfile.ZipInfo attribute)

 		Comment() (in module xml.etree.ElementTree)

 		comment_url (cookielib.Cookie attribute)

 		commenters (shlex.shlex attribute)

 		CommentHandler() (xml.parsers.expat.xmlparser method)

 		commit() (msilib.CAB method)

 		Commit() (msilib.Database method)

 		commit() (sqlite3.Connection method)

 		common (filecmp.dircmp attribute)

 		Common Gateway Interface

 		common_dirs (filecmp.dircmp attribute)

 		common_files (filecmp.dircmp attribute)

 		common_funny (filecmp.dircmp attribute)

 		common_types (in module mimetypes)

 		

 		(mimetypes.MimeTypes attribute)

 		commonprefix() (in module os.path)

 		communicate() (subprocess.Popen method)

 		compare() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		(difflib.Differ method)

 		COMPARE_OP (opcode)

 		compare_signal() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		compare_total_mag() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		
 comparing

 		

 		objects

 		comparison

 		

 		operator

 		string

 		Comparison (class in aetypes)

 		COMPARISON_FLAGS (in module doctest)

 		comparisons, [1]

 		

 		chaining, [1]

 		
 compile

 		

 		built-in function, [1], [2], [3]

 		Compile (class in codeop)

 		compile() (built-in function)

 		

 		(distutils.ccompiler.CCompiler method)

 		(in module compiler)

 		(in module py_compile)

 		(in module re)

 		(parser.ST method)

 		compile_command() (in module code)

 		

 		(in module codeop)

 		compile_dir() (in module compileall)

 		compile_file() (in module compileall)

 		compile_path() (in module compileall)

 		
 compileall

 		

 		module

 		compileall (module)

 		
 compileall command line option

 		

 		-d destdir

 		-f

 		-i list

 		-l

 		-q

 		-x regex

 		compileFile() (in module compiler)

 		compiler (module)

 		compiler.ast (module)

 		compiler.visitor (module)

 		compilest() (in module parser)

 		complete() (rlcompleter.Completer method)

 		complete_statement() (in module sqlite3)

 		completedefault() (cmd.Cmd method)

 		
 complex

 		

 		built-in function, [1]

 		literal

 		number

 		object

 		Complex (class in numbers)

 		complex number

 		

 		literals

 		object

 		complex() (built-in function)

 		ComplexType (in module types)

 		ComponentItem (class in aetypes)

 		
 compound

 		

 		statement

 		
 comprehensions

 		

 		list, [1]

 		compress() (bz2.BZ2Compressor method)

 		

 		(in module bz2)

 		(in module itertools)

 		(in module jpeg)

 		(in module zlib)

 		(zlib.Compress method)

 		compress_size (zipfile.ZipInfo attribute)

 		compress_type (zipfile.ZipInfo attribute)

 		CompressionError

 		compressobj() (in module zlib)

 		COMSPEC, [1]

 		concat() (in module operator)

 		
 concatenation

 		

 		operation

 		Condition (class in multiprocessing)

 		

 		(class in threading)

 		condition() (msilib.Control method)

 		Condition() (multiprocessing.managers.SyncManager method)

 		
 conditional

 		

 		expression

 		
 Conditional

 		

 		expression

 		ConfigParser (class in ConfigParser)

 		

 		(module)

 		
 configuration

 		

 		file

 		file, debugger

 		file, path

 		file, user

 		configuration information

 		configure() (ttk.Style method)

 		confstr() (in module os)

 		confstr_names (in module os)

 		conjugate() (complex number method)

 		

 		(decimal.Decimal method)

 		(numbers.Complex method)

 		connect() (asyncore.dispatcher method)

 		

 		(ftplib.FTP method)

 		(httplib.HTTPConnection method)

 		(in module sqlite3)

 		(multiprocessing.managers.BaseManager method)

 		(smtplib.SMTP method)

 		(socket.socket method)

 		connect_ex() (socket.socket method)

 		Connection (class in multiprocessing)

 		

 		(class in sqlite3)

 		ConnectRegistry() (in module _winreg)

 		const (optparse.Option attribute)

 		constant

 		
 constructor

 		

 		class

 		constructor() (in module copy_reg)

 		container, [1]

 		

 		iteration over

 		Container (class in collections)

 		contains() (in module operator)

 		
 content type

 		

 		MIME

 		ContentHandler (class in xml.sax.handler)

 		ContentTooShortError

 		Context (class in decimal)

 		context management protocol

 		context manager, [1], [2]

 		context_diff() (in module difflib)

 		contextlib (module)

 		contextmanager() (in module contextlib)

 		
 continue

 		

 		statement, [1], [2], [3], [4]

 		CONTINUE_LOOP (opcode)

 		Control (class in msilib)

 		

 		(class in Tix)

 		control (in module cd)

 		control() (msilib.Dialog method)

 		

 		(select.kqueue method)

 		controlnames (in module curses.ascii)

 		controls() (ossaudiodev.oss_mixer_device method)

 		
 conversion

 		

 		arithmetic

 		string, [1], [2]

 		ConversionError

 		
 conversions

 		

 		numeric

 		convert() (email.charset.Charset method)

 		convert_arg_line_to_args() (argparse.ArgumentParser method)

 		convert_charref() (sgmllib.SGMLParser method)

 		convert_codepoint() (sgmllib.SGMLParser method)

 		convert_entityref() (sgmllib.SGMLParser method)

 		convert_field() (string.Formatter method)

 		convert_path() (in module distutils.util)

 		Cookie (class in cookielib)

 		

 		(module)

 		CookieError

 		CookieJar (class in cookielib)

 		cookiejar (urllib2.HTTPCookieProcessor attribute)

 		cookielib (module)

 		CookiePolicy (class in cookielib)

 		Coordinated Universal Time

 		
 copy

 		

 		module

 		copy (module)

 		copy() (decimal.Context method)

 		

 		(dict method)

 		(hashlib.hash method)

 		(hmac.hmac method)

 		(imaplib.IMAP4 method)

 		(in module copy)

 		(in module findertools)

 		(in module macostools)

 		(in module multiprocessing.sharedctypes)

 		(in module shutil)

 		(md5.md5 method)

 		(pipes.Template method)

 		(set method)

 		(sha.sha method)

 		(zlib.Compress method)

 		(zlib.Decompress method)

 		copy2() (in module shutil)

 		copy_abs() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_decimal() (decimal.Context method)

 		copy_file() (in module distutils.file_util)

 		copy_location() (in module ast)

 		copy_negate() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_reg (module)

 		copy_sign() (decimal.Context method)

 		

 		(decimal.Decimal method)

 		copy_tree() (in module distutils.dir_util)

 		copybinary() (in module mimetools)

 		copyfile() (in module shutil)

 		copyfileobj() (in module shutil)

 		copying files

 		copyliteral() (in module mimetools)

 		copymessage() (mhlib.Folder method)

 		copymode() (in module shutil)

 		copyright (built-in variable)

 		

 		(in module sys)

 		copysign() (in module math)

 		copystat() (in module shutil)

 		copytree() (in module macostools)

 		

 		(in module shutil)

 		coroutine

 		cos() (in module cmath)

 		

 		(in module math)

 		cosh() (in module cmath)

 		

 		(in module math)

 		count() (array.array method)

 		

 		(collections.deque method)

 		(in module itertools)

 		(in module string)

 		(list method)

 		(str method)

 		Counter (class in collections)

 		countOf() (in module operator)

 		countTestCases() (unittest.TestCase method)

 		

 		(unittest.TestSuite method)

 		CoverageResults (class in trace)

 		
 cPickle

 		

 		module

 		cPickle (module)

 		CPP

 		CPPFLAGS

 		cProfile (module)

 		CPU time

 		cpu_count() (in module multiprocessing)

 		CPython

 		CRC (zipfile.ZipInfo attribute)

 		crc32() (in module binascii)

 		

 		(in module zlib)

 		crc_hqx() (in module binascii)

 		create() (imaplib.IMAP4 method)

 		create_aggregate() (sqlite3.Connection method)

 		create_collation() (sqlite3.Connection method)

 		create_connection() (in module socket)

 		create_decimal() (decimal.Context method)

 		create_decimal_from_float() (decimal.Context method)

 		create_function() (sqlite3.Connection method)

 		CREATE_NEW_CONSOLE (in module subprocess)

 		CREATE_NEW_PROCESS_GROUP (in module subprocess)

 		create_shortcut() (built-in function)

 		create_socket() (asyncore.dispatcher method)

 		create_static_lib() (distutils.ccompiler.CCompiler method)

 		create_string_buffer() (in module ctypes)

 		create_system (zipfile.ZipInfo attribute)

 		create_tree() (in module distutils.dir_util)

 		create_unicode_buffer() (in module ctypes)

 		create_version (zipfile.ZipInfo attribute)

 		createAttribute() (xml.dom.Document method)

 		createAttributeNS() (xml.dom.Document method)

 		createComment() (xml.dom.Document method)

 		createDocument() (xml.dom.DOMImplementation method)

 		createDocumentType() (xml.dom.DOMImplementation method)

 		createElement() (xml.dom.Document method)

 		createElementNS() (xml.dom.Document method)

 		CreateKey() (in module _winreg)

 		CreateKeyEx() (in module _winreg)

 		createLock() (logging.Handler method)

 		

 		(logging.NullHandler method)

 		CreateParser (C function)

 		createparser() (in module cd)

 		createProcessingInstruction() (xml.dom.Document method)

 		CreateRecord() (in module msilib)

 		createSocket() (logging.handlers.SocketHandler method)

 		createTextNode() (xml.dom.Document method)

 		credits (built-in variable)

 		critical() (in module logging)

 		

 		(logging.Logger method)

 		CRNCYSTR (in module locale)

 		crop() (in module imageop)

 		cross() (in module audioop)

 		
 crypt

 		

 		module

 		crypt (module)

 		crypt() (in module crypt)

 		crypt(3), [1], [2]

 		cryptography, [1]

 		cStringIO (module)

 		csv

 		

 		(module)

 		ctermid() (in module os)

 		ctime() (datetime.date method)

 		

 		(datetime.datetime method)

 		(in module time)

 		ctrl() (in module curses.ascii)

 		CTRL_BREAK_EVENT (in module signal)

 		CTRL_C_EVENT (in module signal)

 		ctypes (module)

 		curdir (in module os)

 		currency() (in module locale)

 		current() (ttk.Combobox method)

 		current_process() (in module multiprocessing)

 		current_thread() (in module threading)

 		CurrentByteIndex (xml.parsers.expat.xmlparser attribute)

 		CurrentColumnNumber (xml.parsers.expat.xmlparser attribute)

 		currentframe() (in module inspect)

 		CurrentLineNumber (xml.parsers.expat.xmlparser attribute)

 		currentThread() (in module threading)

 		curs_set() (in module curses)

 		curses (module)

 		curses.ascii (module)

 		curses.panel (module)

 		curses.textpad (module)

 		curses.wrapper (module)

 		Cursor (class in sqlite3)

 		cursor() (sqlite3.Connection method)

 		cursyncup() (curses.window method)

 		curval (EasyDialogs.ProgressBar attribute)

 		customize_compiler() (in module distutils.sysconfig)

 		cwd() (ftplib.FTP method)

 		cycle() (in module itertools)

 		Cyclic Redundancy Check

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

genindex-O.html

 Navigation

 		
 index

 		
 modules |

 		IronPython 2.7.2b1 documentation »

Index – O

 		

 		O_APPEND (in module os)

 		O_ASYNC (in module os)

 		O_BINARY (in module os)

 		O_CREAT (in module os)

 		O_DIRECT (in module os)

 		O_DIRECTORY (in module os)

 		O_DSYNC (in module os)

 		O_EXCL (in module os)

 		O_EXLOCK (in module os)

 		O_NDELAY (in module os)

 		O_NOATIME (in module os)

 		O_NOCTTY (in module os)

 		O_NOFOLLOW (in module os)

 		O_NOINHERIT (in module os)

 		O_NONBLOCK (in module os)

 		O_RANDOM (in module os)

 		O_RDONLY (in module os)

 		O_RDWR (in module os)

 		O_RSYNC (in module os)

 		O_SEQUENTIAL (in module os)

 		O_SHLOCK (in module os)

 		O_SHORT_LIVED (in module os)

 		O_SYNC (in module os)

 		O_TEMPORARY (in module os)

 		O_TEXT (in module os)

 		O_TRUNC (in module os)

 		O_WRONLY (in module os)

 		object, [1]

 		

 		Boolean, [1]

 		Ellipsis

 		None, [1]

 		NotImplemented

 		Unicode

 		buffer

 		built-in function, [1]

 		built-in method, [1]

 		bytearray

 		callable, [1]

 		class, [1], [2], [3]

 		class instance, [1], [2], [3]

 		code, [1], [2]

 		complex

 		complex number

 		deallocation

 		dictionary, [1], [2], [3], [4], [5], [6]

 		file, [1], [2], [3]

 		finalization

 		floating point, [1]

 		frame

 		frozenset

 		function, [1], [2], [3], [4]

 		generator, [1], [2]

 		immutable, [1], [2]

 		immutable sequence

 		instance, [1], [2], [3]

 		integer, [1]

 		list, [1], [2], [3], [4], [5], [6], [7]

 		long integer, [1]

 		mapping, [1], [2], [3], [4]

 		method, [1], [2], [3], [4]

 		module, [1]

 		mutable, [1], [2]

 		mutable sequence

 		numeric, [1], [2], [3]

 		plain integer

 		recursive

 		sequence, [1], [2], [3], [4], [5], [6], [7]

 		set, [1], [2]

 		set type

 		slice

 		socket

 		string, [1], [2], [3]

 		traceback, [1], [2], [3], [4]

 		tuple, [1], [2], [3], [4]

 		type

 		unicode

 		user-defined function, [1], [2]

 		user-defined method

 		xrange, [1]

 		object() (built-in function)

 		object_filenames() (distutils.ccompiler.CCompiler method)

 		
 objects

 		

 		comparing

 		flattening

 		marshalling

 		persistent

 		pickling

 		serializing

 		ObjectSpecifier (class in aetypes)

 		obufcount() (ossaudiodev.oss_audio_device method)

 		obuffree() (ossaudiodev.oss_audio_device method)

 		
 oct

 		

 		built-in function

 		oct() (built-in function)

 		

 		(in module future_builtins)

 		
 octal

 		

 		literals

 		octal literal

 		octdigits (in module string)

 		offset (xml.parsers.expat.ExpatError attribute)

 		OK (in module curses)

 		ok_builtin_modules (rexec.RExec attribute)

 		ok_file_types (rexec.RExec attribute)

 		ok_path (rexec.RExec attribute)

 		ok_posix_names (rexec.RExec attribute)

 		ok_sys_names (rexec.RExec attribute)

 		OleDLL (class in ctypes)

 		onclick() (in module turtle), [1]

 		ondrag() (in module turtle)

 		onecmd() (cmd.Cmd method)

 		onkey() (in module turtle)

 		onrelease() (in module turtle)

 		onscreenclick() (in module turtle)

 		ontimer() (in module turtle)

 		OP (in module token)

 		
 open

 		

 		built-in function, [1]

 		Open Scripting Architecture

 		open() (built-in function)

 		

 		(FrameWork.DialogWindow method)

 		(FrameWork.Window method)

 		(distutils.text_file.TextFile method)

 		(imaplib.IMAP4 method)

 		(in module aifc)

 		(in module anydbm)

 		(in module cd)

 		(in module codecs)

 		(in module dbhash)

 		(in module dbm)

 		(in module dl)

 		(in module dumbdbm)

 		(in module gdbm)

 		(in module gzip)

 		(in module io)

 		(in module os)

 		(in module ossaudiodev)

 		(in module posixfile)

 		(in module shelve)

 		(in module sunau)

 		(in module sunaudiodev)

 		(in module tarfile)

 		(in module wave)

 		(in module webbrowser)

 		(pipes.Template method)

 		(tarfile.TarFile method)

 		(telnetlib.Telnet method)

 		(urllib.URLopener method)

 		(urllib2.OpenerDirector method)

 		(webbrowser.controller method)

 		(zipfile.ZipFile method)

 		open_new() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		open_new_tab() (in module webbrowser)

 		

 		(webbrowser.controller method)

 		open_osfhandle() (in module msvcrt)

 		open_unknown() (urllib.URLopener method)

 		OpenDatabase() (in module msilib)

 		opendir() (in module dircache)

 		

 		OpenerDirector (class in urllib2)

 		openfolder() (mhlib.MH method)

 		openfp() (in module sunau)

 		

 		(in module wave)

 		OpenGL

 		OpenKey() (in module _winreg)

 		OpenKeyEx() (in module _winreg)

 		openlog() (in module syslog)

 		openmessage() (mhlib.Message method)

 		openmixer() (in module ossaudiodev)

 		openport() (in module al)

 		openpty() (in module os)

 		

 		(in module pty)

 		openrf() (in module MacOS)

 		
 OpenSSL

 		

 		(use in module hashlib)

 		(use in module ssl)

 		OPENSSL_VERSION (in module ssl)

 		OPENSSL_VERSION_INFO (in module ssl)

 		OPENSSL_VERSION_NUMBER (in module ssl)

 		OpenView() (msilib.Database method)

 		
 operation

 		

 		Boolean

 		binary arithmetic

 		binary bitwise

 		concatenation

 		extended slice

 		null

 		repetition

 		shifting

 		slice

 		subscript

 		unary arithmetic

 		unary bitwise

 		
 operations

 		

 		Boolean, [1]

 		bit-string

 		masking

 		shifting

 		
 operations on

 		

 		dictionary type

 		integer types

 		list type

 		mapping types

 		numeric types

 		sequence types, [1]

 		
 operator

 		

 		!=

 		%

 		&

 		*

 		**

 		+

 		-

 		/

 		//

 		<

 		<<

 		<=

 		==

 		>

 		>=

 		>>

 		^

 		and, [1], [2]

 		comparison

 		in, [1], [2]

 		is, [1]

 		is not, [1]

 		not, [1]

 		not in, [1], [2]

 		or, [1], [2]

 		overloading

 		precedence

 		ternary

 		operator (module)

 		operators

 		opmap (in module dis)

 		opname (in module dis)

 		optimize() (in module pickletools)

 		OptionGroup (class in optparse)

 		OptionMenu (class in Tix)

 		OptionParser (class in optparse)

 		options (doctest.Example attribute)

 		options() (ConfigParser.RawConfigParser method)

 		optionxform() (ConfigParser.RawConfigParser method)

 		optparse (module)

 		
 or

 		

 		bitwise

 		exclusive

 		inclusive

 		operator, [1], [2]

 		or_() (in module operator)

 		
 ord

 		

 		built-in function, [1], [2]

 		ord() (built-in function)

 		
 order

 		

 		evaluation

 		ordered_attributes (xml.parsers.expat.xmlparser attribute)

 		OrderedDict (class in collections)

 		Ordinal (class in aetypes)

 		origin_server (wsgiref.handlers.BaseHandler attribute)

 		
 os

 		

 		module, [1]

 		os (module)

 		os.path (module)

 		os_environ (wsgiref.handlers.BaseHandler attribute)

 		OSError

 		ossaudiodev (module)

 		OSSAudioError

 		output, [1]

 		

 		standard, [1]

 		output() (Cookie.BaseCookie method)

 		

 		(Cookie.Morsel method)

 		output_charset (email.charset.Charset attribute)

 		output_charset() (gettext.NullTranslations method)

 		output_codec (email.charset.Charset attribute)

 		output_difference() (doctest.OutputChecker method)

 		OutputChecker (class in doctest)

 		OutputString() (Cookie.Morsel method)

 		OutputType (in module cStringIO)

 		Overflow (class in decimal)

 		OverflowError

 		

 		(built-in exception)

 		overlay() (curses.window method)

 		
 overloading

 		

 		operator

 		Overmars, Mark

 		overwrite() (curses.window method)

 © Copyright IronPython Team; Microsoft Corporation; Python Software Foundation.
 Last updated on Nov 16, 2013.
 Created using Sphinx 1.1.3.

