

 Navigation

 	
 index

 	
 next |

 	Hovercraft! 1.0 documentation

Hovercraft! - Merging convenience and cool!

Contents:

	Introduction
	GUI tools are limiting

	Pan, rotate and zoom

	Hovercraft!

	Using Hovercraft!
	Parameters

	Built in templates

	Making presentations
	A note on terminology

	Hovercraft! syntax

	External files

	Styling your Presentation

	impress.js fields

	Hovercraft! specialities

	Relative positioning

	Automatic positioning

	SVG Paths

	Examples

	Designing your presentations
	Take it easy

	Custom fonts

	Test with different browsers

	Templates
	The template configuration file

	The template file

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hovercraft! 1.0 documentation

Introduction

GUI tools are limiting

I used to do presentations with typical slideshow software, such as
OpenOffice/LibreOffice Impress, but these tools felt restricted and limiting.
I need to do a lot of reorganizing and moving around, and that might mean
changing things from bullet lists to headings to text to pictures and back to
bullet lists over again. This happens through the whole process. I might
realize something that was just a bullet point needs to be a slide, or that a
set of slides for time reasons need to be shortened down to bullet points.
Much of the reorganization comes from seeing what fits on one slide and what
does not, and how I need to pace the presentation, and to some extent even
what kinda of pictures I can find to illustrate what I try to say, and if the
pictures are funny or not.

Presentation software should give you complete freedom to reorganize your
presentation on every level, not only by reorganizing slides.

The solution for me and many others, is to use a text-markup language, like
reStructuredText, Markdown or similar, and then use a tool that generates an
HTML slide show from that.

Text-markup gives you the convenience and freedom to quickly move parts
around as you like.

I chose reStructuredText [http://docutils.sourceforge.net/docs/index.html], because I know it and because it has a massive
feature set. When I read the documentations of other text-markup langages it
was not obvious if they has the features I needed or not.

Pan, rotate and zoom

The tools that exist to make presentations from text-markup will make
slideshows that has a sequence of slides from left to right. But the fashion
now is to have presentations that rotate and zoon in and out. One open source
solution for that is impress.js [http://github.com/bartaz/impress.js].

With impress.js you can make modern cool presentations.

But impress.js requires you to write your presentation as HTML, which is
annoying, and the markup isn’t flexible enough to let you quickly reorganize
things from bullet points to headings etc.

You also have to position each slide separately, and if you insert a new
slide in the middle, you have to reposition all the slides that follow.

Hovercraft!

So what I want is a tool that takes the power, flexibility and convenience of
reStructuredText and allows me to generate Pan, rotate and zoom presentations
with impress.js, without having to manually reposition each slide if I
reorganize a little bit of the presentation. I couldn’t find one, so I made
Hovercraft.

Hovercrafts power comes from the combination of reStructured texts
convenience with the cool of impress.js, together with a felxible and
powerful solution to position the slides.

There are four ways to position slides:

	Absolute positioning: You simply add X and Y coordinates to a slide,
in pixels. Doing only this will not be fun, but someone might need it.

	Relative positioning: By specifying x and/or y with with a starting r,
you specify the distance from the previous slide. By using this form of
positioning you can insert a slide, and the other slides will just move
to make space for the new slide.

	Automatically: If you don’t specify any position the slide will end
up the same distance from the previous slide as the previous slide was
from it’s previous slide. This defaults to moving 1600px to the right,
which means that if you supply no positions at all anywhere in the
presentation, you get the standard boring slide-to-the-left presentation.

	With an SVG path: In this last way of positioning, you can take an
SVG path from an SVG document and stick it into the presentation, and that
slide + all slides following that has no explicit positioning will be
positioned on that path. This can be a bit fiddly to use, but can create
awesome results, such as positioning the slides as snaking Python or
similar.

Hovercraft! also includes impress-console [https://github.com/regebro/impress-console], a presenter console that will
show you your notes, slide previews and the time, essential tools for any
presentation.

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hovercraft! 1.0 documentation

Using Hovercraft!

Parameters

hovercraft [-h] [-t TEMPLATE] [-c CSS] [-a] <presentation> <targetdir>

Required arguments:

	<presentation>

	The path to the reStructuredText presentation file.

	<targetdir>

	The directory where the presentation is written. Will
be created if it does not exist.

Optional arguments:

	-h, --help

	Show this help.

	-t TEMPLATE, --template

	TEMPLATE Specify a template. Must be a .cfg file, or a directory with
a template.cfg file. If not given it will use a default template.

	-c CSS, --css CSS

	An additional CSS file for the presentation to use.
See also the :css: settings of the presentation.

	-a, --auto-console

	Pop up the console automatically. This is useful when you are
rehearsing and making sure the presenter notes are correct.
You can also set this by having :auto-console: true first in the
presentation.

	-s, --skip-help

	Pop up the console automatically. This is useful when you are
rehearsing and making sure the presenter notes are correct.
You can also set this by having :skip-help: true first in the
presentation.

	--n, --skip-notes

	Do not include presenter notes in the output.

Built in templates

There are two templates that come with Hovercraft! One is called default
and will be used unless you specify a template. This is the template you will
use most of the time.

The second is called simple and it doesn’t have a presenter console. This
template is especially useful if you combine it with the --skip-notes
parameter to prepare a version of your presentation to be put online.

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hovercraft! 1.0 documentation

Making presentations

A note on terminology

Traditionally a presentation is made up of slides. Calling them “slides” is
not really relevant in an impress.js context, as they can overlap and doesn’t
necessarily slide. The name “steps” is better, but it’s also more ambigiouos.
Hence impress.js uses the terms “slide” and “step” as meaning the same thing,
and so does Hovercraft!

Hovercraft! syntax

Presentations are reStructuredText files. If you are reading this
documentation from the source code, then you are looking at a
reStructuredText document already.

It’s fairly simple, you underline headings to mark them as headings:

This becomes a h1
=================

And this a h2

The different ways of underlining them doesn’t mean anything, instead the
order of them is relevant, so the first type of underline encountered in the
file will make a level 1 heading, the second type a level 2 heading and so
on. In this file = is used for level 1, and - for level 2.

You can also mark text as italic or bold, with *single asterixes*
or **double asterixes** respectively.

You can also have bullet lists:

* Bullet 1

 * Bullet 1.1

* Bullet 2

* Bullet 3

And numbered lists:

1. Item 1

 1.1. Item 1.1

2. Item 2

3. Item 3

You can include images:

.. image:: path/to/image.png
 :height: 600px
 :width: 800px

As you see you can also specify height and width and loads of other parameters [http://docutils.sourceforge.net/docs/ref/rst/directives.html#images], but they
are all optional.

And you can mark text as being preformatted. You do that by ending the
previous row with double colons, or have a row of double colons by itself:

::

 This code here will be preformatted
 and shown with a monospaced font
 and all spaces preserved.

If you want to add source code, you can use the code directive, and get
syntax highlighting:

.. code:: python

 def some_example_code(foo):
 return foo * foo

The syntax highlighting is done by Pygments [http://pygments.org/] and supports lots and lots of
languages [http://pygments.org/docs/lexers/].

You are also likely to want to put a title on the presentation. You do that
by having a .. title:: statement before the first slide:

.. title:: This is the presentation title

That is the most important things you’ll need to know about reStructuredText for
making presentations. There is a lot more to know, and a lot of advanced features
like links, footnotes, and more. It is in fact advanced enough so you can write a
whole book [http://python3porting.com/] in it, but for all that you need to read the documentation [http://docutils.sourceforge.net/docs/index.html].

External files

Any image file referenced in the presentation by a relative path will be
copied to the target directory, keeping it’s relative path to the
presentation. The same goes for images or fonts referenced in any
CSS files used by the presentation or the template.

Images or fonts referenced by absolute paths or URI’s will not be copied.

Styling your Presentation

The css that is included by the default template are three files.

	impressConsole.css contains the CSS needed for the presenter console to work,

	highlight.css contains a default style for code syntax highlighting, as
that otherwise would be a lot of work. If you don’t like the default colors
or styles in the highlighting, this is the file you should copy and modify.

	hovercraft.css, which only includes the bare minimum: It hides the
impress.js fallback message, the presenter notes, and sets up a useful
default of having a step width be 1000 pixels wide.

For this reason you want to include your own CSS to style your slides. To
include a CSS file you add a :css:-field at the top of the presentation:

:css: css/presentation.css

You can also optionally specify that the css should be only valid for certain
CSS media:

:css-screen,projection: css/presentation.css
:css-print: css/print.css

You can specify any number of css files in this way.

You can also add one extra CSS-file via a command-line parameter:

hovercraft –extra-css=my_extra.css presentationfile.rst outdir/

Styling a specific slide

If you want to have specific styling for a specific slide, it is a good
idea to give that slide a unique ID:

:id: the-slide-id

You can then style that slide specifically with:

div#the-slide-id {
 /* Custom CSS here */
}

If you don’t give it a specific ID, it will get an ID based on it’s sequence
number. And that means the slide’s ID will change if you insert or remove
slides that can before it, and in that case your custom stylings of that
slide will stop working.

Portable presentations

Since Hovercraft! generates HTML5 presentations, you can use any computer
that has a modern browser installed to view or show the presentation. This
allows you both to put up the presentation online and to use a borrowed
computer for your conference or customer presentation.

When you travel you don’t know what equipment you have to use when you show
your presentaton, and it’s surprsingly common to encounter a projector that
refuses to talk to your computer. It is also very easy to forget your dongle
if you have a MacBook, and there has even been cases of computers going
completely black and dead when you connect them to a projector, even though
all other computers seem to work fine.

The main way of making sure your presentation is portable is to try it on
different browsers and different computers. But the latter can be unfeasible,
not everyone has both Windows, Linux and OS X computers at home. To help make
your presentations portable it is a good idea to define your own @font-face’s
and use them, so you are sure that the target browser will use the same fonts
as you do. Hovercraft! will automatically find @font-face definitions and
copy the font files to the target directory.

impress.js fields

The documentation on impress.js is contained as comments in the demo html
file [https://github.com/bartaz/impress.js/blob/master/index.html]. It is
not always very clear, so here comes a short summary for convenience.

The different data fields that impress.js will use in 0.5.3, which is the
current version, are the following:

	data-transition-duration: The time it will take to move from one slide to
another. Defaults to 1000 (1 second). This is only valid on the presentation
as a whole.

	data-perspective: Controls the “perspective” in the 3d effects. It
defaults to 500. Setting it to 0 disables 3D effects.

	data-x: The horizontal position of a slide in pixels. Can be negative.

	data-y: The vertical position of a slide in pixels. Can be negative.

	data-scale: Sets the scale of a slide, which is what creates the zoom.
Defaults to 1. A value of 4 means the slide is four times larger. In short:
Lower means zooming in, higher means zooming out.

	data-rotate-z: The rotation of a slide in the x-axis, in degrees. This
will cause the slide to be rotated clockwise or counter-clockwise.

	data-rotate: The same as data-rotate-z.

	data-rotate-x: The rotation of a slide in the x-axis, in degrees. This
means you are moving the slide in a third dimension compared with other
slides. This is generally cooll effect, if used right.

	data-rotate-y: The rotation of a slide in the x-axis, in degrees.

	data-z: This controls the position of the slide on the z-axis. Setting
this value to -3000 means it’s positioned -3000 pixels away. This is only
useful when you use data-rotate-x or data-rotate-y, otherwise it will
only give the impression that the slide is made smaller, which isn’t really
useful.

Hovercraft! specialities

Hovercraft! has some specific ways it uses reStructuredText. First of all, the
reStructuredText “transition” is used to mark the separation between
different slides or steps. A transition is simply a line with four or more
dashes:

All reStructuredText fields are converted into attributes on the current tag.
Most of these will typically be ignored by the rendering to HTML, but there
is two places where the tags will make a difference, and that is by putting
them first in the document, or first on a slide.

Any fields you put first in a document will be rendered into attributes on
the main impress.js <div>. This is currently only used to set the
transition-duration with data-transition-duration.

Any fields you put first in a slide will be rendered into attributes on the
slide <div>. This is used primarily to set the position/zoom/rotation of
the slide, either with the data-x, data-y and other impress.js
settings, or the hovercraft-path setting, more on that later.

Hovercraft! will start making the first slide when it first encounters either
a transition or a header. Everything that comes before that will belong to the
presentation as a whole.

A presentation can therefore look something like this:

:data-transition-duration: 2000
:skip-help: true

.. title: Presentation Title

This is the first slide
=======================

Here comes some text.

:data-x: 300
:data-y: 2000

This is the second slide
========================

#. Here we have

#. A numbered list

#. It will get correct

#. Numbers automatically

Relative positioning

Hovercraft! gives you the ability to position slides relative to each other.
You do this by starting the coordinates with “r”. This will position the
slide 500 pixels to the right and a thousant pixels above the previous slide:

:data-x: r500
:data-y: r-1000

Relative paths allow you to insert and remove slides and have other slides
adjust automatically. It’s probably the most useful way of positioning.

Automatic positioning

If you don’t specify either :data-x: or :data-y: the slide position
will be automatic. That simply means it will move in the same direction
and distance as the previous slide. This gives a linear movement, and your
slides will end up in a straight line.

By default the movement is 1600 pixels to the right, which means that if you
don’t position any slides at all, you get a standard presentation where the
slides will simply slide from right to left.

SVG Paths

Hovercraft! supports positioning slides along and SVG path. This is handy, as
you can create a drawing in a software that supports SVG, and then copy-paste
that drawings path into your presentation.

You specify the SVG path with the :hovercraft-path: field. For example:

:hovercraft-path: m275,175 v-150 a150,150 0 0,0 -150,150 z

Every following slide that does not have any explicit positioning will be
placed on this path.

There are some things you need to be careful about when using SVG paths.

Relative and absolute coordinates

In SVG coordinates can either be absolute, with a reference to the page
origin; or relative, which is in reference to the last point. Hovercraft! can
handle both, but what it can not handle very well is a mixture of them.

Specifically, if you take an SVG path that starts with a relative movement
and extract that from the SVG document, you will lose the context. All
coordinates later must then also be relative. If you have an absolute
coordinate you then suddenly regain the context, and everything after the
first absolute corrdinate will be misplaced compared to the points that come
before.

Most notable, the open source software “Inkscape” will mix absolute and
relative coordinates, if you allow it to use relative coordinates. You
therefore need to go into it’s settings and uncheck the checkbox that allows
you to use relative coordinates. This forces Inkscape to save all coordinates
as absolute, which woll work fine.

Start position

By default the start position of the path, and hence the start position of
the first slide, will be whatever the start position would have been if the
slide had no positioning at all. If you want to change this position then
just include :data-x: or :data-y: fields. Both relative and absolute
positioning will work here.

In all cases, the first m or M command of the SVG path is effectively
ignored, but you have to include it anyway.

SVG transforms

SVG allows you to draw up path and then transform it. Hovercraft! has no
support for these transforms, so before you extract the path you should make
sure the SVG software doesn’t use transforms. In Inkscape you can do this by
the “Simplify” command.

Other SVG shapes

Hovercraft! doesn’t support other SVG shapes, just the path. This is because
organising slides in squares, etc, is quite simple anyway, and the shapes can
be made into paths. Usually in the software you will have to select the shape
and tell your software to make it into a path. In Inkscape, transforming an
object into a path will generally mean that the whole path is made of
CubicBezier curves, which are unecessarily complex. Using the “Simplify”
command in Inkscape is usually enough to make the shapes into paths.

Shape-scaling

Hovercraft! will scale the path so that all the slides that need to fit into
the path will fit into the path. If you therefore have several paths in your
presentation, they will not keep their relative sizes, but will be
resized so the slides fit. If you need to have the shapes keep their relative
sizes, you need to combine them into one path.

Examples

To see how to use Hovercraft! in practice, there are three example presentations
included with Hovercraft!

	hovercraft.rst

	The demo presentation you can see at http://regebro.github.com/hovercraft

	tutorial.rst

	A step by step guide to the features of Hovercraft!

	positions.rst

	An explanation of how to use the positioning features.

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hovercraft! 1.0 documentation

Designing your presentations

There are several tricks to making presentations. I certainly do not claim to
be an expert, but here are some beginners hints.

Take it easy

Don’t go too heavy on the zoom. Having a difference between two slides in
scale of more than 5 is rarely going to look good. It would make for a nice
cool zooming effect if it did, but this is not what browsers are designed
for, so it won’t.

And the 3D effects can be really cool of used well. But not all the time,
it gets tiring for the audience.

Try, if you can, to use the zoom and 3D effects when they make sense in the
presentation. You can for example mention the main topics on one slide, and
then zoom in on each topic when you discuss it in more detail. That way the
effects help clarify the presentation, rather than distract from it.

Custom fonts

Browsers tend to render things subtly differently.

They also have different default fonts, and different operating systems have
different implementations of the same fonts. So to make sure you have as much
control over the design as possible, you should always include fonts with the
presentation. A good source for free fonts are Google Webfonts [http://www.google.com/webfonts]. Those fonts
are free and open source, so you can use them with no cost and no risk of
being sued. They can also be downloaded or included online.

Online vs Downloaded

If you are making a presentation that is going to run on your computer at a
conference or customer meeting, always download the fonts and have them
as a part of the presentation. Put them in a folder called fonts
under the folder where your presentation is.

You also need to define the font-family in your CSS. Font Squirrel [http://www.fontsquirrel.com/]‘s
webfont generator will provide you with a platform-independent toolkit for
generating both the varius font formats and the CSS.

If the presentation is online only, you can put an @include-statement in
your CSS to include Googles webfonts directly:

@import url(http://fonts.googleapis.com/css?family=Libre+Baskerville|Racing+Sans+One|Satisfy);

But don’t use this for things you need to show on your computer, as it
requires you to have internet access.

Test with different browsers

If you are putting the presentation online, test it with a couple of major
browsers, to make sure nothing breaks and that everything still looks good.
Not only are there subtle differences in how things may get positioned,
different browsers are also good at different things.

I’ve tested some browsers, all on Ubuntu, and it is likely that they behave
differently on other operating systems, so you have to try for yourself.

Firefox

Firefox 18 is quite slow to use with impress.js, especially for 3D stuff, so
it can have very jerky movements from slide to slide. It does keep text
looking good no matter how much you zoom. On the other hand, it refuses to
scale text infinitely, so if you scale too much characters will not grow
larger, they will instead start moving around.

Firefox 19 is better, but for 3D stuff it’s still a bit slow.

Chrome

Chrome 24 is fast, but will not redraw text in different sizes, but will
instead create an image of them and rescale them, resulting in the previous
slide having a fuzzy pixelated effect.

Epiphany

Epiphany 3.4.1 is comparable to Firefox 19, possibly a bit smoother, and the
text looks good. But it has bugs in how it handles 3D data, and the location
bar is visible in fullscreen mode, making it less suitable for any sort of
presentation.

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Hovercraft! 1.0 documentation

Templates

Luckily, for most cases you don’t need to create your own template, as the
default template is very simple and most things you need to do is doable with
css. However, I don’t want Hovercraft! to set up a wall where it isn’t
flexible enough for your needs, so I added support to make your own templates.

You need to create your own template if you are unsatisfied with the HTML
that Hovercraft! generates, for example if you need to use another version of
HTML or if the reStructuredText you are using isn’t being rendered in a way
that is useful for you. Although if you aren’t happy with the HTML generated
from the reStructuredText that could very well be a bug, so open an issue on
Github for discussion.

Hovercraft! generates presentations by converting the reStructuredText into
XML and then using XSLT to translate the XML into HTML.

Templates are directories with a configuration file, a template XSL file,
and any number of CSS, JS and other resource files.

The template configuration file

The configuration file is normally called template.cfg, but if you have
several configuration files in one template directory, you can specify which
one by specifying the full path to the configuration file. However, if you
just specify the template directory, template.cfg will be used.

Template files are in configparser format, which is an extended ini-style
format. They are very simple, and have only one section, [hovercraft]. Any
other sections will be ignored. Many of the parameters are lists that often
do not fit on one line. In that case you can split the line up over several
lines, but indenting the lines. The amount of indentation doesn’t make any
difference, except aestethically.

The parameters in the [hovercraft] section are:

template The name of the xsl template.

	css A list of CSS filenames separated by whitespace. These files

	will get included in the final file with “all” as the media
specification.

	css-<media> A list of CSS filenames separated by whitespace. These files

	will get included in the final file with the media given in
the parameter. So the files listed for the parameter
“css-print” will get “print” as their media specification
and a key like “css-screen,print” will return media
“screen,print”.

	js-header A list of filenames separated by whitespace. These files

	will get included in the target file as header script links.

	js-body A list of filenames separated by whitespace. These files

	will get included in the target file as script links at the
end of the file. The files impress.js, impressConsole.js and
hovercraft.js typically need to be included here.

	resource A list of filenames separated by whitespace that will be

	copied to the target directory, but nothing else is done
with them. Images and fonts used by CSS will be copied
anyway, but other resources may be added here.

An example:

[hovercraft]
template = template.xsl

css = css/screen.css
 css/impressConsole.css

css-print = css/print.css

js-header = js/dateinput.js

js-body = js/impress.js
 js/impressConsole.js
 js/hovercraft.js

resource = images/back.png
 images/forward.png
 images/up.png
 images/down.png

The template file

The file specified with the template parameters is the actual XSLT
template that will perform the translation from XML to HTML.

Most of the time you can just copy the default template file in
hovercraft/templates/default/template.xsl and modify it. XSLT is very
complex, but modifying the templates HTML is quite straightforward as long as
you don’t have to touch any of the <xsl:...> tags.

Also, the HTML that is generated is XHTML compatible and quite
straightforward, so for the most case all you would need to generate another
version of HTML, for example strict XHTML, would be to change the doctype.

But if you need to add or change the main generated HTML you can add and
change HTML statements in this main file as you like. See for example how the
little help-popup is added to the bottom of the HTML.

If you want to change the way the reStructuredText is rendered things get
slightly more complex. The XSLT rules that convert the reStructuredText XML
into HTML are contained in a separate file, reST.xsl. For the most part
you can just include it in the template file with the following code:

<xsl:import href="resource:templates/reST.xsl" />

The resource: part here is not a part of XSLT, but a part of Hovercraft!
It tells the XSLT translation that the file specified should not be looked
up on the file system, but as a Python package resource. Currently the
templates/reST.xsl file is the only XSLT resource import available.

If you need to change the way reStructuredText is rendered you need to make a
copy of that file and modify it. You then need to make a copy of the main
template and change the reference in it to your modified XSLT file.

None of the XSLT files need to be copied to the target, and should not be
listed as a resource in the template configuration file.

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Hovercraft! 1.0 documentation

Index

 Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/file.png

examples/hovercraft.html

 Navigation

 		
 index

 		Hovercraft! 1.0 documentation »

 This is a demo for Hovercraft! You can view it as a finished presentation
at http://regebro.github.com/hovercraft/

It’s also useful as an example, in which case it’s supposed to be read as
source code.

You can render this presentation to HTML with the command:

hovercraft hovercraft.rst outdir

And then view the outdir/index.html file to see how it turned out.

If you are seeing this text, and not reading this as source code, you are
doing it wrong! It’s going to be confusing and not very useful.

Use The Source, Luke! But first you probably want to read through the
official documentation at https://hovercraft.readthedocs.org/

The problem:

Making presentations is no fun!

Note

Welcome to the presenter console!

GUI tools are inflexible

		It’s hard to reorganize or import text

		Sluggy and memory hungry

		You get caught up in design early in the process.

Note

Here you have a view of the current slide, a preview of the next slide
and your notes.

Use reStructuredText!

		You can use your favorite text-editor!

		Many tools available: Landslide, S5

		Convenient (and powerful!)

Note

You also have a clock and a timer, so you know how much time you have
left.

But then there was Prezi

Sliding from left to right is no longer enough.

You need to be able to...

Note

If you click on the timer it restarts from zero. This is handy when you
are rehearsing the presentation and need to make sure it fits in the time
allocated.

		data-y:		r1000

...pan...

Note

If you have more notes than fits in the console, you can scroll down, but
more handily, you can scroll the text up by pressing space bar.

		data-rotate:		90

...rotate...

Note

If there isn’t more text to scroll up, space bar will go to the next
slide. Therefore you, as a presenter, just press space everytime you run
out of things to say!

		data-x:		r0

		data-y:		r500

		data-scale:		0.1

...and zoom!

Note

Zooming is cool. But one day it will grow old as well. What will we do
then to make presentations interesting?

		data-x:		r-800

		data-scale:		1

But Prezi is a GUI

So we are back to square one.

(And it is closed source to boot)

Note

It’s probably back to making bad jokes again.

What about impress.js?

It’s open source!

Supports pan, tilt and zoom!

		id:		ThreeD

		data-y:		r1200

		data-rotate-x:		180

In three dimensions!

But...

Note

Wow! 3D! You didn’t see that one coming, did you?

It’s HTML...

Not an friendly format to edit

		data-x:		r800

...and manual positioning

So inserting one slide means

repositioning all the following slides!

Note

The endless repositioning of slides is what prompted me to write
Hovercraft! in the first place.

		id:		thequestion

		data-x:		r0

		data-y:		r-1200

Is there no solution?

Of course there is!

Note

What would be the point of this slide show if I didn’t have a solution?
Duh!

		data-rotate-y:		180

		data-scale:		3

		data-x:		r-2500

		data-y:		r0

Introducing Hovercraft!

Note

TADA!

		data-x:		r-3000

		data-scale:		1

reStructuredText

plus

impress.js

plus

impressConsole.js

plus

positioning!

		data-y:		r-1200

Position slides

		Automatically!

		Absolutely!

		Relative to the previous slide!

		Along an SVG path!

Note

That SVG path support was a lot of work. And all I used it for was to
position the slides in circles.

Presenter console!

		A view of the current slide

		A view of the next slide

		Your notes

		A clock

		A timer

Note

You found the presenter console already!

Hovercraft!

The merge of convenience and cool!

Note

A slogan: The ad-mans best friend!

		data-x:		0

		data-y:		2500

		data-z:		4000

		data-rotate-x:		90

Hovercraft!

On Github:

https://github.com/regebro/hovercraft

Note

Fork and contribute!

 © Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

_images/python-logo-master-v3-TM.png
& python’

_static/minus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

examples/tutorial.html

 Navigation

 		
 index

 		Hovercraft! 1.0 documentation »

 This slide show is a sort of tutorial of how to use Hovercraft! to make
presentations. It will show the most important features of Hovercraft! with
explanations.

Hopefully you ended up here by the link from the official documentation at
https://hovercraft.readthedocs.org/ . If not, you probably want to go there
and read through it first.

This totorial is meant to be read as source code, not in any HTML form, so if
you can see this text (it won’t be visible in the final presentation) and you
aren’t seeing the source code, you are doing it wrong. It’s going to be
confusing and not very useful. Again, go to the official docs. There are
links to the source code in the Examples section.

You can render this presentation to HTML with the command:

hovercraft positions.rst outdir

And then view the outdir/index.html file to see how it turned out.

Now then, on to the tutorial part!

The first thing to note is the special syntax for information about the
presentation that you see above. This is in reStrcuturedText called “fields”
and it’s used all the time in Hovercraft! to change attributes and set data
on the presentation, on slides and on images. The order of the fields is not
important, but you can only have one of each field.

The fields above are meta-data about the presentation, except for the
:css:-field. This meta data is only useful if you plan to publish the
presentation by putting the HTML online. If you are only going to show this
presentation yourself in a meeting you can skip all of it.

The title set is the title that is going to be shown in the title bar of the
browser. reStructuredText also have a separete syntax for titles that is also
supported by Hovercraft:

.. title:: Slideshow Tutorial

However that requires an empty line after it, and it looks better to use the
same syntax for all metadata.

The :css: field will add a custom CSS-file to this presentation. This is
something you almost always want to do, as you otherwise have no control over
how the presentation will look. You can also specify different media for
the CSS, for example “screen,projection”:

:css-screen,projection: hovercraft.css

This way you can have different CSS for print and for display. You can only
specify one CSS-file per field, however. If you want to include more you
need to use the @import directive in CSS.

Once you have added metadata and CSS, it’s time to start on the slides.

You separate slides with a line that consists of four or more dashes. The
first slide will start at the first such line, or at the first heading. Since
none of the text so far has been a heading, it means that the first slide has
not yet started. As a result, all this text will be ignored in the output.

So lets start the first slide by having a line with four dashes. Since the
first slide starts with a heading, that line is strictly speaking not needed,
but it’s good to be explicit.

This is a first slide

Restructured text takes any line that is underlines with punctuation and
makes it into a heading. Each type of undeline will be made into a different
level of heading, but it is not the type that is important, but rather the
order of which each type will be enountered.

So in this presentation, lines underlined with equal (=) characters will be
made into a first-level (H1) heading.

First header

You can choose other punctuation characters as your level 1 heading if you like,
but this is the most common. Any if these character works:

= - ` : ' " ~ ^ _ * + # < > .

Second header

Third header

The drawback with reStructuredText is that you can’t skip levels. You can’t
go directly from level 1 to level 3 without having a level 2 in between.
If you do you get an error:

Title level inconsistent

Other formatting

All the normal reStructuredText functions are supported in Hovercraft!

		Such as bulletlists, which start with a dash (-) or an asterisk (*).
You can have many lines of text in one bullet if you indent the
following lines.

		And you can have many levels of bullets.

		Like this.

		There is Emphasis and strong emphasis, rendered as and .

More formatting

		Numbered lists is of course also supported.

		They are automatically numbered.

		But only for single-level lists and single rows of text.

		inline literals, rendered as <tt> and usually shown with a monospace font, which is good for source code.

		Hyperlinks, like Python [http://www.python.org]

Images

You can insert an image with the .. image:: directive:

[image: ../_images/python-logo-master-v3-TM.png]
And you can optionally set width and height:

[image: ../_images/python-logo-master-v3-TM.png]
Some people like to have slideshows containing only illustrative images. This
works fine with Hovercraft! as well, as you can see on the next slide.

[image: ../_images/python-logo-master-v3-TM.png]

Slides can have presenter notes!

This is the killer-feature of Hovercraft! as very few other tools like this
support a presenter console. You add presenter notes in the slide like this:

Note

And then you indent the text afterwards. You can have a lot of formatting
in the presenter notes, like emphasis and strong emphasis.

		Even bullet lists!

		Which can be handy!

But you can’t have any headings.

Source code

You can also have text that is mono spaced, for source code and similar.
There are several syntaxes for that. For code that is a part of a sentence
you use the inline syntax with double backticks we saw earlier.

If you want a whole block of preformatted text you can use double colons:

And then you
need to indent the block
of text that
should be preformatted

You can even have the double colons on a line by themselves:

And this text will
now be
rendered as
preformatted text

Syntax highlighting

But the more interesting syntax for preformatted text is the .. code::
directive. This enables you to syntax highlight the code.

def day_of_year(month, day):
 return (month - 1) * 30 + day_of_month

def day_of_week(day):
 return ((day - 1) % 10) + 1

def weekno(month, day):
 return ((day_of_year(month, day) - 1) // 10) + 1

More code features

The syntax highlighting is done via docutils by a module called Pygments [http://pygments.org/]
which support all popular languages, and a lot of unpopular ones as well.

The coloring is done by CSS, if you want to change it, copy the CSS in
the highlight.css file and override it in your custom CSS.

Testing the code

If you are including Python-code, then Manuel [http://pygments.org/] 1.7.0 and later can test the
code for you. This enables you to have code in your presentation and make
sure it works.

To do this properly you sometimes want setup and teardown code, code that
should be executed as a part of the test, but not shown in the presentation.

To do that, you can simply set a class on the code block.

from datetime import datetime

Add the hidden class in your css:

pre.hidden {
 display: none;
}

And your visible code will now be runnable with Manuel:

>>> datetime(2013, 2, 19, 12)
datetime.datetime(2013, 2, 19, 12, 0)

That’s all folks!

That finishes the basic tutorial for Hovercraft! Next you probably want to
take a look at the positioning tutorial, so you can use the pan, rotate and
zoom functionality.

 © Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

examples/positions.html

 Navigation

 		
 index

 		Hovercraft! 1.0 documentation »

 This is a tutorial for Hovercraft! positioning. It’s meant to be read as
source code.

You can render this presentation to HTML with the command:

hovercraft positions.rst outdir

And then view the outdir/index.html file to see how it turned out.

If you are seeing this text, and not reading this as source code, you are
doing it wrong! It’s going to be confusing and not very useful.

Use The Source, Luke! But first you probably want to read through the
official documentation at https://hovercraft.readthedocs.org/
There are links to the source code in the Examples section.

Positions

Each step can be explicitly positioned by putting some data- fields in
the beginning of the slide. This has to be first in the slide (although you
have to have a blank line beneath the four dashes that start the slide.

To put the slide at zero pixels to the right and a thousand pixels below the
coordinate centre you add the following:

:data-x: 0
:data-y: 1000

Let’s do that for the next slide:

		data-x:		0

		data-y:		1000

X & Y

You don’t have to gove both X and Y coordinates. They will default to “no
differece to the last slide” if not given. As the first slide ends up at
X=0 and Y=0, the :data-x: 0 above is strictly speaking not necessary.

Automatic positioning

If you don’t set a position, Hovercraft! will position the slide
automatically, by simply continuing in the same direction and length as the
last slide. This slide has no positioning at all, and that means it will end
up at X=0 and Y=2000.

Positioning fields

Any field starting with data- will be converted to a data- attribute
on the impress.js step. There is no filtering done, so if new attributes are
supported by impress.js, they should just work from Hovercraft! as well.

The ones impress.js currently uses are:

data-x Position on the X-axis

data-y Position on the Y-axis

data-z Position on the Z-axis (which means 3D!)

data-rotate Rotation in degrees

data-rotate-z An alias for data-rotate

data-rotate-x Rotation on the X-axis, which agains means 3D effects

data-rotate-y Rotation on the Y-axis

data-scale The size of the slide, which means zooming effects

Let’s do some zoom and rotate!

		data-scale:		5

		data-rotate:		90

		data-y:		6000

Zoom out!

So here we rotated 90 degrees and zoomed out five times.

		data-x:		-4000

Sticky data!

All fields except data-x and data-y are “sticky!” That means that
they keep the same value as the last slide. So this slide will
keep the 90 degree rotation and scale of 5.

But I set the X position to -4000, so we now move on the X-scale instead.
Negative numbers are not a problem.

It needs to be -4000 now, since we zoomed out five times. That means that the
ordinary presentation size of 1024*800 pixels are now 5120*400 pixels
(assuming you use a 4:3 screen size).

Relative positions

One thing that is a problem is the absolute positioning. All the positions
we used so far above are in relation to the start of the coordinate system.
But if we now need to insert a slide somewhere in between the slides above,
we need to make room for it, and that means we have to reposition all the
slides that come after. That quickly becomes annoying.

Hovercraft! therefore supports relative positioning where you just give a
relative coordinate to the last slide.

		data-scale:		1

		data-y:		r3000

		data-rotate:		0

Like this

You just prefix the position with an r and it becomes relative. That
means that if the previous slide moves, this moves with it. You’ll find that
it’s generally good practice to use mostly relative positioning if you are
still flexible about what your slides are and what they should say or
in which order.

For some types of presentation, where typography is important, you need to
decide everything that the slide should say and their position from the
start. Then absolute positioning works fine. But otherwise you probably want
to use relative positioning.

		data-scale:		0.15

		data-y:		r-275

		data-x:		r150

		data-rotate:		-90

A warning!

		data-x:		r1000

		data-scale:		1

Didn’t that slide look good?

Don’t worry, when you make big zooms, different browsers will behave
differently and be good at different things. Some will be slow and jerky on
the 3D effects, and others will show fonts with jagged edges when you zoom.
Older and less common browsers can also have problems with 3D effects.

		hovercraft-path:

		 		m275,175 a150,150 0 0,1 -150,150

SVG paths

The field :hovercraft-path: tells Hovercraft! to place the slides
along a SVG path. This enables you to put slides along a graphical shape.

SVG paths

You can design the shape in a vector graphics program like Inkscape
and then lift it out of the SVG file (which are in XML) and use it
in Hovercraft!

This example is an arc.

SVG paths

Using SVG path so is not entirely without it’s difficulties and
surprises, and this is discussed more in the documentation, under
the SVG Paths heading.

SVG paths

Every following slide will be placed along the path,
and the path will be scaled to fit the slides.

		data-rotate:		-180

		data-x:		r-1200

SVG paths

And the positioning along the path will end when you get a path that has
explicit positioning, like this one.

		data-rotate-y:		-45

		data-y:		r-100

		data-x:		r-800

3D!

Now it get’s complicated!

		data-rotate-y:		0

		data-y:		r100

		data-x:		r-1000

3D Rotation

We have already seen how we can rotate the slide with :data-rotate:. This is actually rotation
in the Z-axis, so you can use :data-rotate-z: as well, it’s the same thing.
But you can also rotate in the Y-axis.

		data-x:		r0

		data-y:		r0

		data-rotate-y:		90

3D Rotation

That was a 90 degree rotation in the Y-axis.
Let’s go back.

		data-x:		r0

		data-y:		r0

		data-rotate-y:		0

		data-x:		r-1000

		data-y:		r0

		data-rotate-y:		0

3D Rotation

Notice how the text was invisible before the rotation?
The text is there, but it has no depth, so you can’t see it.
Of course, the same happens in the X-axis.

		data-x:		r0

		data-y:		r0

		data-rotate-x:		90

3D Rotation

That was a 90 degree rotation in the X-axis.
Let’s go back.

		data-x:		r0

		data-y:		r0

		data-rotate-x:		0

		data-x:		r-1000

3D Positioning

You can not only rotate in all three dimensions, but also position in all
three dimensions. So far we have only used :data-x and :data-y, but
there is a :data-z as well.

		data-z:		1000

		data-x:		r0

		data-y:		r0

Z-space

		data-x:		r0

		data-y:		r-500

Z-space

This can be used for all sorts of interesting effects. It should be noted
that the depth of the Z-axis is quite limited in some browsers.

If you set it too high, you’ll find the slide appearing low and upside down.

		data-x:		r800

		data-y:		r0

Z-space

But well used it can give an extra wow-factor,

		data-z:		0

		data-x:		r0

		data-y:		r-200

		data-scale:		2

and have text pop out at you!

		data-x:		r3000

		data-y:		r-1500

		data-scale:		15

		data-rotate-z:		0

		data-rotate-x:		0

		data-rotate-y:		0

		data-z:		0

That’s all for now

Have fun!

 © Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

_static/up.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Hovercraft! 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Lennart Regebro.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/up-pressed.png

