

Green Tree Snakes - the missing Python AST docs

Abstract Syntax Trees, ASTs, are a powerful feature of Python. You can write
programs that inspect and modify Python code, after the syntax has been parsed,
but before it gets compiled to byte code. That opens up a world of possibilities
for introspection, testing, and mischief.

The official documentation for the ast module [http://docs.python.org/3/library/ast]
is good, but somewhat brief. Green Tree Snakes is more like a field guide
(or should that be forest guide?) for working with ASTs. To contribute to the
guide, see the source repository [https://bitbucket.org/takluyver/greentreesnakes].

Contents:

	Getting to and from ASTs
	Modes

	Fixing locations

	Going backwards

	Meet the Nodes
	Literals

	Variables

	Expressions

	Statements

	Control flow

	Function and class definitions

	Async and await

	Top level nodes

	Working on the Tree
	Inspecting nodes

	Modifying the tree

	Examples of working with ASTs
	Wrapping integers

	Simple test framework

	Real projects

See also

	Python AST explorer [https://python-ast-explorer.com/]

	Web-based AST viewer: paste some code in and see the AST

	Thonny [http://thonny.org]

	A Python IDE with AST explorer built in (Main menu => View => AST)

	showast [https://github.com/hchasestevens/show_ast]

	An IPython extension to show ASTs in Jupyter notebooks

	Instrumenting the AST [http://www.dalkescientific.com/writings/diary/archive/2010/02/22/instrumenting_the_ast.html]

	Using AST tools to assess code coverage

Indices and tables

	Index

	Search Page

Getting to and from ASTs

To build an ast from code stored as a string, use ast.parse() [https://docs.python.org/3/library/ast.html#ast.parse]. To turn the
ast into executable code, pass it to compile() [https://docs.python.org/3/library/functions.html#compile] (which can also compile a
string directly).

>>> tree = ast.parse("print('hello world')")
>>> tree
<_ast.Module object at 0x9e3df6c>
>>> exec(compile(tree, filename="<ast>", mode="exec"))
hello world

Modes

Python code can be compiled in three modes. The root of the AST depends on the
mode parameter you pass to ast.parse() [https://docs.python.org/3/library/ast.html#ast.parse], and it must correspond to the
mode parameter when you call compile() [https://docs.python.org/3/library/functions.html#compile].

	exec - Normal Python code is run with mode='exec'. The root of the AST
is a ast.Module, whose body attribute is a list of nodes.

	eval - Single expressions are compiled with mode='eval', and passing
them to eval() [https://docs.python.org/3/library/functions.html#eval] will return their result. The root of the AST is an
ast.Expression, and its body attribute is a single node, such as
ast.Call [https://docs.python.org/3/library/ast.html#ast.Call] or ast.BinOp [https://docs.python.org/3/library/ast.html#ast.BinOp]. This is different from
ast.Expr [https://docs.python.org/3/library/ast.html#ast.Expr], which holds an expression within an AST.

	single - Single statements or expressions can be compiled with
mode='single'. If it’s an expression, sys.displayhook() [https://docs.python.org/3/library/sys.html#sys.displayhook] will be called
with the result, like when code is run in the interactive shell. The root of
the AST is an ast.Interactive, and its body attribute is a list
of nodes.

Note

The type_comment and ignore_types fields introduced in Python 3.8
are only populated if ast.parse() [https://docs.python.org/3/library/ast.html#ast.parse] is called with type_comment=True.

Fixing locations

To compile an AST, every node must have lineno and col_offset attributes.
Nodes produced by parsing regular code already have these, but nodes you create
programmatically don’t. There are a few helper functions for this:

	ast.fix_missing_locations() [https://docs.python.org/3/library/ast.html#ast.fix_missing_locations] recursively fills in any missing locations
by copying from the parent node. The rough and ready answer.

	ast.copy_location() [https://docs.python.org/3/library/ast.html#ast.copy_location] copies lineno and col_offset from one node to
another. Useful when you’re replacing a node.

	ast.increment_lineno() [https://docs.python.org/3/library/ast.html#ast.increment_lineno] increases lineno for a node and its
children, pushing them further down a file.

Going backwards

Python itself doesn’t provide a way to turn a compiled code object into an AST,
or an AST into a string of code. Some third party tools can do these things:

	astor [http://astor.readthedocs.io/en/latest/] can convert an AST back to
readable Python code.

	Meta [http://pypi.python.org/pypi/meta] also tries to decompile Python
bytecode to an AST, but it appears to be unmaintained.

	uncompyle6 [https://pypi.python.org/pypi/uncompyle6] is an actively
maintained Python decompiler at the time of writing. Its documented interface
is a command line program producing Python source code.

Meet the Nodes

An AST represents each element in your code as an object. These are instances of
the various subclasses of AST described below. For instance, the code
a + 1 is a BinOp, with a Name on the left, a Num
on the right, and an Add operator.

Literals

	
class Constant(value, kind)

	
New in version 3.6.

A constant. The value attribute holds the Python object it represents.
This can be simple types such as a number, string or None, but also
immutable container types (tuples and frozensets) if all of their elements
are constant.

kind is 'u' for strings with a u prefix, and None otherwise,
allowing tools to distinguish u"a" from "a".

This class is available in the ast [https://docs.python.org/3/library/ast.html#module-ast] module from Python 3.6,
but it isn’t produced by parsing code until Python 3.8.

Changed in version 3.8: The kind field was added.

	
class Num(n)

	
Deprecated since version 3.8: Replaced by Constant

A number - integer, float, or complex. The n attribute stores the value,
already converted to the relevant type.

	
class Str(s)

	
Deprecated since version 3.8: Replaced by Constant

A string. The s attribute hold the value. In Python 2, the same type
holds unicode strings too.

	
class FormattedValue(value, conversion, format_spec)

	
New in version 3.6.

Node representing a single formatting field in an f-string. If the string
contains a single formatting field and nothing else the node can be
isolated otherwise it appears in JoinedStr.

	value is any expression node (such as a literal, a variable, or a
function call).

	conversion is an integer:

	-1: no formatting

	115: !s string formatting

	114: !r repr formatting

	97: !a ascii formatting

	format_spec is a JoinedStr node representing the formatting
of the value, or None if no format was specified. Both
conversion and format_spec can be set at the same time.

	
class JoinedStr(values)

	
New in version 3.6.

An f-string, comprising a series of FormattedValue and Str
nodes.

>>> parseprint('f"sin({a}) is {sin(a):.3}"')
Module(body=[
 Expr(value=JoinedStr(values=[
 Str(s='sin('),
 FormattedValue(value=Name(id='a', ctx=Load()), conversion=-1, format_spec=None),
 Str(s=') is '),
 FormattedValue(value=Call(func=Name(id='sin', ctx=Load()), args=[
 Name(id='a', ctx=Load()),
], keywords=[]), conversion=-1, format_spec=JoinedStr(values=[
 Str(s='.3'),
])),
])),
])

Note

The pretty-printer used in these examples is available in the source repository [https://bitbucket.org/takluyver/greentreesnakes/src/master/astpp.py] for
Green Tree Snakes.

	
class Bytes(s)

	
Deprecated since version 3.8: Replaced by Constant

A bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object. The s attribute holds the value. Python 3 only.

	
class List(elts, ctx)

	
class Tuple(elts, ctx)

	A list or tuple. elts holds a list of nodes representing the elements.
ctx is Store if the container is an assignment target (i.e.
(x,y)=pt), and Load otherwise.

	
class Set(elts)

	A set. elts holds a list of nodes representing the elements.

	
class Dict(keys, values)

	A dictionary. keys and values hold lists of nodes with matching order
(i.e. they could be paired with zip() [https://docs.python.org/3/library/functions.html#zip]).

Changed in version 3.5: It is now possible to expand one dictionary into another, as in
{'a': 1, **d}. In the AST, the expression to be expanded (a
Name node in this example) goes in the values list, with a
None at the corresponding position in keys.

	
class Ellipsis

	
Deprecated since version 3.8: Replaced by Constant

Represents the ... syntax for the Ellipsis singleton.

	
class NameConstant(value)

	
New in version 3.4: Previously, these constants were instances of Name.

Deprecated since version 3.8: Replaced by Constant

True [https://docs.python.org/3/library/constants.html#True], False [https://docs.python.org/3/library/constants.html#False] or None [https://docs.python.org/3/library/constants.html#None]. value holds one of those constants.

Variables

	
class Name(id, ctx)

	A variable name. id holds the name as a string, and ctx is one of
the following types.

	
class Load

	
class Store

	
class Del

	Variable references can be used to load the value of a variable, to assign
a new value to it, or to delete it. Variable references are given a context
to distinguish these cases.

>>> parseprint("a") # Loading a
Module(body=[
 Expr(value=Name(id='a', ctx=Load())),
])

>>> parseprint("a = 1") # Storing a
Module(body=[
 Assign(targets=[
 Name(id='a', ctx=Store()),
], value=Num(n=1)),
])

>>> parseprint("del a") # Deleting a
Module(body=[
 Delete(targets=[
 Name(id='a', ctx=Del()),
]),
])

	
class Starred(value, ctx)

	A *var variable reference. value holds the variable, typically a
Name node.

Note that this isn’t used to define a function with *args -
FunctionDef nodes have special fields for that.
In Python 3.5 and above, though, Starred is needed when building a
Call node with *args.

>>> parseprint("a, *b = it")
Module(body=[
 Assign(targets=[
 Tuple(elts=[
 Name(id='a', ctx=Store()),
 Starred(value=Name(id='b', ctx=Store()), ctx=Store()),
], ctx=Store()),
], value=Name(id='it', ctx=Load())),
])

Expressions

	
class Expr(value)

	When an expression, such as a function call, appears as a statement by itself
(an expression statement [https://docs.python.org/3/reference/simple_stmts.html#exprstmts]),
with its return value not used or stored, it is wrapped in this container.
value holds one of the other nodes in this section, or a literal, a
Name, a Lambda, or a Yield or YieldFrom
node.

>>> parseprint('-a')
Module(body=[
 Expr(value=UnaryOp(op=USub(), operand=Name(id='a', ctx=Load()))),
])

	
class NamedExpr(target, value)

	
New in version 3.8.

Used to bind an expression to a name using the walrus operator :=. target
holds a Name which is the name the expression is bound to. Note that
the ctx of the Name should be set to Store. value is
any node valid as the value of Expr.

>>> parseprint("b = (a := 1)")
Module(body=[
 Assign(targets=[
 Name(id='b', ctx=Store()),
], value=NamedExpr(target=Name(id='a', ctx=Store()), value=Constant(value=1, kind=None)), type_comment=None),
], type_ignores=[])

	
class UnaryOp(op, operand)

	A unary operation. op is the operator, and operand any expression
node.

	
class UAdd

	
class USub

	
class Not

	
class Invert

	Unary operator tokens. Not is the not keyword, Invert
is the ~ operator.

	
class BinOp(left, op, right)

	A binary operation (like addition or division). op is the operator, and
left and right are any expression nodes.

	
class Add

	
class Sub

	
class Mult

	
class Div

	
class FloorDiv

	
class Mod

	
class Pow

	
class LShift

	
class RShift

	
class BitOr

	
class BitXor

	
class BitAnd

	
class MatMult

	Binary operator tokens.

New in version 3.5: MatMult - the @ operator for matrix multiplication.

	
class BoolOp(op, values)

	A boolean operation, ‘or’ or ‘and’. op is Or or
And. values are the values involved. Consecutive operations
with the same operator, such as a or b or c, are collapsed into one node
with several values.

This doesn’t include not, which is a UnaryOp.

	
class And

	
class Or

	Boolean operator tokens.

	
class Compare(left, ops, comparators)

	A comparison of two or more values. left is the first value in the
comparison, ops the list of operators, and comparators the list of
values after the first. If that sounds awkward, that’s because it is:

>>> parseprint("1 < a < 10")
Module(body=[
 Expr(value=Compare(left=Num(n=1), ops=[
 Lt(),
 Lt(),
], comparators=[
 Name(id='a', ctx=Load()),
 Num(n=10),
])),
])

	
class Eq

	
class NotEq

	
class Lt

	
class LtE

	
class Gt

	
class GtE

	
class Is

	
class IsNot

	
class In

	
class NotIn

	Comparison operator tokens.

	
class Call(func, args, keywords, starargs, kwargs)

	A function call. func is the function, which will often be a
Name or Attribute object. Of the arguments:

	args holds a list of the arguments passed by position.

	keywords holds a list of keyword objects representing
arguments passed by keyword.

	starargs and kwargs each hold a single node, for arguments passed
as *args and **kwargs. These are removed in Python 3.5 - see below
for details.

When compiling a Call node, args and keywords are required, but they
can be empty lists. starargs and kwargs are optional.

>>> parseprint("func(a, b=c, *d, **e)") # Python 3.4
Module(body=[
 Expr(value=Call(func=Name(id='func', ctx=Load()),
 args=[Name(id='a', ctx=Load())],
 keywords=[keyword(arg='b', value=Name(id='c', ctx=Load()))],
 starargs=Name(id='d', ctx=Load()), # gone in 3.5
 kwargs=Name(id='e', ctx=Load()))), # gone in 3.5
])

>>> parseprint("func(a, b=c, *d, **e)") # Python 3.5
Module(body=[
 Expr(value=Call(func=Name(id='func', ctx=Load()),
 args=[
 Name(id='a', ctx=Load()),
 Starred(value=Name(id='d', ctx=Load()), ctx=Load()) # new in 3.5
],
 keywords=[
 keyword(arg='b', value=Name(id='c', ctx=Load())),
 keyword(arg=None, value=Name(id='e', ctx=Load())) # new in 3.5
]))
])

You can see here that the signature of Call has changed in Python 3.5.
Instead of starargs, Starred nodes can now appear in args,
and kwargs is replaced by
keyword nodes in keywords for which arg is None.

	
class keyword(arg, value)

	A keyword argument to a function call or class definition. arg is a raw
string of the parameter name, value is a node to pass in.

	
class IfExp(test, body, orelse)

	An expression such as a if b else c. Each field holds a single node, so
in that example, all three are Name nodes.

	
class Attribute(value, attr, ctx)

	Attribute access, e.g. d.keys. value is a node, typically a
Name. attr is a bare string giving the name of the attribute,
and ctx is Load, Store or Del according to
how the attribute is acted on.

>>> parseprint('snake.colour')
Module(body=[
 Expr(value=Attribute(value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load())),
])

Subscripting

	
class Subscript(value, slice, ctx)

	A subscript, such as l[1]. value is the object, often a
Name. slice is one of Index, Slice
or ExtSlice. ctx is Load, Store or Del
according to what it does with the subscript.

	
class Index(value)

	Simple subscripting with a single value:

>>> parseprint("l[1]")
Module(body=[
 Expr(value=Subscript(value=Name(id='l', ctx=Load()),
 slice=Index(value=Num(n=1)), ctx=Load())),
])

	
class Slice(lower, upper, step)

	Regular slicing:

>>> parseprint("l[1:2]")
Module(body=[
 Expr(value=Subscript(value=Name(id='l', ctx=Load()),
 slice=Slice(lower=Num(n=1), upper=Num(n=2), step=None),
 ctx=Load())),
])

	
class ExtSlice(dims)

	Advanced slicing. dims holds a list of Slice and
Index nodes:

>>> parseprint("l[1:2, 3]")
Module(body=[
 Expr(value=Subscript(value=Name(id='l', ctx=Load()), slice=ExtSlice(dims=[
 Slice(lower=Num(n=1), upper=Num(n=2), step=None),
 Index(value=Num(n=3)),
]), ctx=Load())),
])

Comprehensions

	
class ListComp(elt, generators)

	
class SetComp(elt, generators)

	
class GeneratorExp(elt, generators)

	
class DictComp(key, value, generators)

	List and set comprehensions, generator expressions, and dictionary
comprehensions. elt (or key and value) is a single node
representing the part that will be evaluated for each item.

generators is a list of comprehension nodes. Comprehensions with
more than one for part are legal, if tricky to get right - see the
example below.

	
class comprehension(target, iter, ifs, is_async)

	One for clause in a comprehension. target is the reference to use for
each element - typically a Name or Tuple node. iter
is the object to iterate over. ifs is a list of test expressions: each
for clause can have multiple ifs.

New in version 3.6: is_async indicates a comprehension is asynchronous (using an
async for instead of for). The value is an integer (0 or 1).

 >>> parseprint("[ord(c) for line in file for c in line]", mode='eval') # Multiple comprehensions in one.
 Expression(body=ListComp(elt=Call(func=Name(id='ord', ctx=Load()), args=[
 Name(id='c', ctx=Load()),
], keywords=[], starargs=None, kwargs=None), generators=[
 comprehension(target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), ifs=[], is_async=0),
 comprehension(target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), ifs=[], is_async=0),
]))

 >>> parseprint("(n**2 for n in it if n>5 if n<10)", mode='eval') # Multiple if clauses
 Expression(body=GeneratorExp(elt=BinOp(left=Name(id='n', ctx=Load()), op=Pow(), right=Num(n=2)), generators=[
 comprehension(target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[
 Compare(left=Name(id='n', ctx=Load()), ops=[
 Gt(),
], comparators=[
 Num(n=5),
]),
 Compare(left=Name(id='n', ctx=Load()), ops=[
 Lt(),
], comparators=[
 Num(n=10),
]),
],
 is_async=0),
]))

 >>> parseprint(("async def f():"
 " return [i async for i in soc]")) # Async comprehension.
 Module(body=[
 AsyncFunctionDef(name='f', args=arguments(args=[], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]), body=[
 Return(value=ListComp(elt=Name(id='i', ctx=Load()), generators=[
 comprehension(target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), ifs=[], is_async=1),
])),
], decorator_list=[], returns=None),
])

Statements

	
class Assign(targets, value, type_comment)

	An assignment. targets is a list of nodes, and value is a single node.
type_comment is optional. It is a string containing the PEP 484 type comment
associated to the assignment.

>>> parseprint("a = 1 # type: int", type_comments=True)
Module(body=[
 Assign(targets=[
 Name(id='a', ctx=Store()),
], value=Num(n=1)), type_comment="int"
], type_ignores=[])

Multiple nodes in targets represents assigning the same value to each.
Unpacking is represented by putting a Tuple or List
within targets.

>>> parseprint("a = b = 1") # Multiple assignment
Module(body=[
 Assign(targets=[
 Name(id='a', ctx=Store()),
 Name(id='b', ctx=Store()),
], value=Num(n=1)),
])

>>> parseprint("a,b = c") # Unpacking
Module(body=[
 Assign(targets=[
 Tuple(elts=[
 Name(id='a', ctx=Store()),
 Name(id='b', ctx=Store()),
], ctx=Store()),
], value=Name(id='c', ctx=Load())),
])

	
class AnnAssign(target, annotation, value, simple)

	
New in version 3.6.

An assignment with a type annotation. target is a single node and can
be a Name, a Attribute or a Subscript.
annotation is the annotation, such as a Str or Name
node. value is a single optional node. simple is a boolean integer
set to True for a Name node in target that do not appear in
between parenthesis and are hence pure names and not expressions.

>>> parseprint("c: int")
Module(body=[
 AnnAssign(target=Name(id='c', ctx=Store()),
 annotation=Name(id='int', ctx=Load()),
 value=None,
 simple=1),
])

>>> parseprint("(a): int = 1") # Expression like name
Module(body=[
 AnnAssign(target=Name(id='a', ctx=Store()),
 annotation=Name(id='int', ctx=Load()),
 value=Num(n=1),
 simple=0),
])

>>> parseprint("a.b: int") # Attribute annotation
Module(body=[
 AnnAssign(target=Attribute(value=Name(id='a', ctx=Load()),
 attr='b', ctx=Store()),
 annotation=Name(id='int', ctx=Load()),
 value=None,
 simple=0),
])

>>> parseprint("a[1]: int") # Subscript annotation
Module(body=[
 AnnAssign(target=Subscript(value=Name(id='a', ctx=Load()),
 slice=Index(value=Num(n=1)), ctx=Store()),
 annotation=Name(id='int', ctx=Load()),
 value=None,
 simple=0),
])

Changed in version 3.8: type_comment was introduced in Python 3.8

	
class AugAssign(target, op, value)

	Augmented assignment, such as a += 1. In that example, target is a
Name node for a (with the Store context), op is
Add, and value is a Num node for 1. target can be
Name, Subscript or Attribute, but not a
Tuple or List (unlike the targets of Assign).

	
class Print(dest, values, nl)

	Print statement, Python 2 only. dest is an optional destination (for
print >>dest. values is a list of nodes. nl (newline) is True or
False depending on whether there’s a comma at the end of the statement.

	
class Raise(exc, cause)

	Raising an exception, Python 3 syntax. exc is the exception object to be
raised, normally a Call or Name, or None for
a standalone raise. cause is the optional part for y in
raise x from y.

In Python 2, the parameters are instead type, inst, tback, which
correspond to the old raise x, y, z syntax.

	
class Assert(test, msg)

	An assertion. test holds the condition, such as a Compare node.
msg holds the failure message, normally a Str node.

	
class Delete(targets)

	Represents a del statement. targets is a list of nodes, such as
Name, Attribute or Subscript nodes.

	
class Pass

	A pass statement.

Other statements which are only applicable inside functions or loops are
described in other sections.

Imports

	
class Import(names)

	An import statement. names is a list of alias nodes.

	
class ImportFrom(module, names, level)

	Represents from x import y. module is a raw string of the ‘from’ name,
without any leading dots, or None for statements such as from . import foo.
level is an integer holding the level of the relative import (0 means
absolute import).

	
class alias(name, asname)

	Both parameters are raw strings of the names. asname can be None if
the regular name is to be used.

>>> parseprint("from ..foo.bar import a as b, c")
Module(body=[
 ImportFrom(module='foo.bar', names=[
 alias(name='a', asname='b'),
 alias(name='c', asname=None),
], level=2),
])

Control flow

Note

Optional clauses such as else are stored as an empty list if they’re
not present.

	
class If(test, body, orelse)

	An if statement. test holds a single node, such as a Compare
node. body and orelse each hold a list of nodes.

elif clauses don’t have a special representation in the AST, but rather
appear as extra If nodes within the orelse section of the
previous one.

	
class For(target, iter, body, orelse, type_comment)

	A for loop. target holds the variable(s) the loop assigns to, as a
single Name, Tuple or List node. iter holds
the item to be looped over, again as a single node. body and orelse
contain lists of nodes to execute. Those in orelse are executed if the
loop finishes normally, rather than via a break statement.
type_comment is optional. It is a string containing the PEP 484 type
comment associated to for statement.

Changed in version 3.8: type_comment was introduced in Python 3.8

	
class While(test, body, orelse)

	A while loop. test holds the condition, such as a Compare
node.

	
class Break

	
class Continue

	The break and continue statements.

In [2]: %%dump_ast
 ...: for a in b:
 ...: if a > 5:
 ...: break
 ...: else:
 ...: continue
 ...:
Module(body=[
 For(target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[
 If(test=Compare(left=Name(id='a', ctx=Load()), ops=[
 Gt(),
], comparators=[
 Num(n=5),
]), body=[
 Break(),
], orelse=[
 Continue(),
]),
], orelse=[]),
])

	
class Try(body, handlers, orelse, finalbody)

	try blocks. All attributes are list of nodes to execute, except for
handlers, which is a list of ExceptHandler nodes.

New in version 3.3.

	
class TryFinally(body, finalbody)

	
class TryExcept(body, handlers, orelse)

	try blocks up to Python 3.2, inclusive. A try block with both
except and finally clauses is parsed as a TryFinally, with
the body containing a TryExcept.

	
class ExceptHandler(type, name, body)

	A single except clause. type is the exception type it will match,
typically a Name node (or None for a catch-all except: clause).
name is a raw string for the name to hold the exception, or None if
the clause doesn’t have as foo. body is a list of nodes.

In Python 2, name was a Name node with ctx=Store(), instead
of a raw string.

In [3]: %%dump_ast
 ...: try:
 ...: a + 1
 ...: except TypeError:
 ...: pass
 ...:
Module(body=[
 Try(body=[
 Expr(value=BinOp(left=Name(id='a', ctx=Load()), op=Add(), right=Num(n=1))),
], handlers=[
 ExceptHandler(type=Name(id='TypeError', ctx=Load()), name=None, body=[
 Pass(),
]),
], orelse=[], finalbody=[]),
])

	
class With(items, body, type_comment)

	A with block. items is a list of withitem nodes representing
the context managers, and body is the indented block inside the context.
type_comment is optional. It is a string containing the PEP 484 type comment
associated to the assignment (added in Python 3.8).

Changed in version 3.3: Previously, a With node had context_expr and optional_vars
instead of items. Multiple contexts were represented by nesting
a second With node as the only item in the body of the first.

Changed in version 3.8: type_comment was introduced in Python 3.8

	
class withitem(context_expr, optional_vars)

	A single context manager in a with block. context_expr is the context
manager, often a Call node. optional_vars is a Name,
Tuple or List for the as foo part, or None if that
isn’t used.

In [3]: %%dump_ast
 ...: with a as b, c as d:
 ...: do_things(b, d)
 ...:
Module(body=[
 With(items=[
 withitem(context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())),
 withitem(context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store())),
], body=[
 Expr(value=Call(func=Name(id='do_things', ctx=Load()), args=[
 Name(id='b', ctx=Load()),
 Name(id='d', ctx=Load()),
], keywords=[], starargs=None, kwargs=None)),
]),
])

Function and class definitions

	
class FunctionDef(name, args, body, decorator_list, returns, type_comment)

	A function definition.

	name is a raw string of the function name.

	args is a arguments node.

	body is the list of nodes inside the function.

	decorator_list is the list of decorators to be applied, stored outermost
first (i.e. the first in the list will be applied last).

	returns is the return annotation (Python 3 only).

	type_comment is optional. It is a string containing the PEP 484 type
comment of the function (added in Python 3.8)

Changed in version 3.8: type_comment was introduced in Python 3.8

	
class Lambda(args, body)

	lambda is a minimal function definition that can be used inside an
expression. Unlike FunctionDef, body holds a single node.

	
class arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)

	The arguments for a function. In Python 3:

	args, posonlyargs and kwonlyargs are lists of arg nodes.

	vararg and kwarg are single arg nodes, referring to the
*args, **kwargs parameters.

	kw_defaults is a list of default values for keyword-only arguments. If
one is None, the corresponding argument is required.

	defaults is a list of default values for arguments that can be passed
positionally. If there are fewer defaults, they correspond to the last n
arguments.

Changed in version 3.8: posonlyargs was introduced in Python 3.8

Changed in version 3.4: Up to Python 3.3, vararg and kwarg were raw strings of the
argument names, and there were separate varargannotation and
kwargannotation fields to hold their annotations.

Also, the order of the remaining parameters was different up to Python 3.3.

In Python 2, the attributes for keyword-only arguments are not needed.

	
class arg(arg, annotation, type_comment)

	A single argument in a list; Python 3 only. arg is a raw string of the
argument name, annotation is its annotation, such as a Str or
Name node. type_comment is optional. It is a string containing
the PEP 484 type comment of the argument.

In Python 2, arguments are instead represented as Name nodes, with
ctx=Param().

 In [52]: %%dump_ast
 : @dec1
 : @dec2
 : def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':
 : pass
 :
 Module(body=[
 FunctionDef(name='f', args=arguments(posonlyargs=[],
 args=[
 arg(arg='a', annotation=Str(s='annotation')),
 arg(arg='b', annotation=None),
 arg(arg='c', annotation=None),
], vararg=arg(arg='d', annotation=None), kwonlyargs=[
 arg(arg='e', annotation=None),
 arg(arg='f', annotation=None),
], kw_defaults=[
 None,
 Num(n=3),
], kwarg=arg(arg='g', annotation=None), defaults=[
 Num(n=1),
 Num(n=2),
]), body=[
 Pass(),
], decorator_list=[
 Name(id='dec1', ctx=Load()),
 Name(id='dec2', ctx=Load()),
], returns=Str(s='return annotation')),
])

.. versionchanged:: 3.8

 ``type_comment`` was introduced in Python 3.8

	
class Return(value)

	A return statement.

	
class Yield(value)

	
class YieldFrom(value)

	A yield or yield from expression. Because these are expressions, they
must be wrapped in a Expr node if the value sent back is not used.

New in version 3.3: The YieldFrom node type.

	
class Global(names)

	
class Nonlocal(names)

	global and nonlocal statements. names is a list of raw strings.

	
class ClassDef(name, bases, keywords, starargs, kwargs, body, decorator_list)

	A class definition.

	name is a raw string for the class name

	bases is a list of nodes for explicitly specified base classes.

	keywords is a list of keyword nodes, principally for ‘metaclass’.
Other keywords will be passed to the metaclass, as per PEP-3115 [http://www.python.org/dev/peps/pep-3115/].

	starargs and kwargs are each a single node, as in a function call.
starargs will be expanded to join the list of base classes, and kwargs will
be passed to the metaclass. These are removed in Python 3.5 - see below
for details.

	body is a list of nodes representing the code within the class
definition.

	decorator_list is a list of nodes, as in FunctionDef.

In [59]: %%dump_ast
 : @dec1
 : @dec2
 : class foo(base1, base2, metaclass=meta):
 : pass
 :
Module(body=[
 ClassDef(name='foo', bases=[
 Name(id='base1', ctx=Load()),
 Name(id='base2', ctx=Load()),
], keyword=
 keyword(arg='metaclass', value=Name(id='meta', ctx=Load())),
], starargs=None, # gone in 3.5
 kwargs=None, # gone in 3.5
 body=[
 Pass(),
], decorator_list=[
 Name(id='dec1', ctx=Load()),
 Name(id='dec2', ctx=Load()),
]),
])

Async and await

New in version 3.5: All of these nodes were added. See the What’s New notes [https://docs.python.org/3/whatsnew/3.5.html#whatsnew-pep-492]
on the new syntax.

	
class AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment)

	An async def function definition. Has the same fields as
FunctionDef.

	
class Await(value)

	An await expression. value is what it waits for.
Only valid in the body of an AsyncFunctionDef.

In [2]: %%dump_ast
 ...: async def f():
 ...: await g()
 ...:
Module(body=[
 AsyncFunctionDef(name='f', args=arguments(args=[], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]), body=[
 Expr(value=Await(value=Call(func=Name(id='g', ctx=Load()), args=[], keywords=[]))),
], decorator_list=[], returns=None),
])

	
class AsyncFor(target, iter, body, orelse)

	
class AsyncWith(items, body)

	async for loops and async with context managers. They have the same
fields as For and With, respectively. Only valid in the
body of an AsyncFunctionDef.

Top level nodes

Those nodes are at the top-level of the AST. The manner by which you obtain
the AST determine the top-level node used.

	
class Module(stmt* body, type_ignore *type_ignores)

	The root of the AST for code parsed using the exec mode. The body
attribute is a list of nodes. type_ignores is a list of TypeIgnore
indicating the lines on which type: ignore comments are present. If type
comments are not stored in the ast it is an empty list.

Changed in version 3.8: type_ignores was introduced in Python 3.8 and is mandatory when manually
creating a Module

	
class Interactive(stmt* body)

	The root of the AST for single statements or expressions parsed using the
single mode. The body attribute is a list of nodes.

	
class Expression(expr body)

	The root of the AST for single expressions parsed using the eval mode.
The body attribute is a single node, such as ast.Call [https://docs.python.org/3/library/ast.html#ast.Call] or
ast.BinOp [https://docs.python.org/3/library/ast.html#ast.BinOp]. This is different from ast.Expr [https://docs.python.org/3/library/ast.html#ast.Expr], which holds an
expression within an AST.

Working on the Tree

ast.NodeVisitor [https://docs.python.org/3/library/ast.html#ast.NodeVisitor] is the primary tool for ‘scanning’ the tree. To use it,
subclass it and override methods visit_Foo, corresponding to the node classes
(see Meet the Nodes).

For example, this visitor will print the names of any functions defined in the
given code, including methods and functions defined within other functions:

class FuncLister(ast.NodeVisitor):
 def visit_FunctionDef(self, node):
 print(node.name)
 self.generic_visit(node)

FuncLister().visit(tree)

Note

If you want child nodes to be visited, remember to call
self.generic_visit(node) in the methods you override.

Alternatively, you can run through a list of all the nodes in the tree using
ast.walk() [https://docs.python.org/3/library/ast.html#ast.walk]. There are no guarantees about the order in which
nodes will appear. The following example again prints the names of any functions
defined within the given code:

for node in ast.walk(tree):
 if isinstance(node, ast.FunctionDef):
 print(node.name)

You can also get the direct children of a node, using ast.iter_child_nodes() [https://docs.python.org/3/library/ast.html#ast.iter_child_nodes].
Remember that many nodes have children in several sections: for example, an
If [https://docs.python.org/3/library/ast.html#ast.If] has a node in the test field, and list of nodes in body
and orelse. ast.iter_child_nodes() [https://docs.python.org/3/library/ast.html#ast.iter_child_nodes] will go through all of these.

Finally, you can navigate directly, using the attributes of the nodes.
For example, if you want to get the last node within a function’s body, use
node.body[-1]. Of course, all the normal Python tools for iterating and
indexing work. In particular, isinstance() [https://docs.python.org/3/library/functions.html#isinstance] is very useful for checking
what nodes are.

Inspecting nodes

The ast [https://docs.python.org/3/library/ast.html#module-ast] module has a couple of functions for inspecting nodes:

	ast.iter_fields() [https://docs.python.org/3/library/ast.html#ast.iter_fields] iterates over the fields defined for a node.

	ast.get_docstring() [https://docs.python.org/3/library/ast.html#ast.get_docstring] gets the docstring of a FunctionDef [https://docs.python.org/3/library/ast.html#ast.FunctionDef],
ClassDef [https://docs.python.org/3/library/ast.html#ast.ClassDef] or Module node.

	ast.dump() [https://docs.python.org/3/library/ast.html#ast.dump] returns a string showing the node and any children. See also
the pretty printer [https://bitbucket.org/takluyver/greentreesnakes/src/master/astpp.py]
used in this guide.

Modifying the tree

The key tool is ast.NodeTransformer [https://docs.python.org/3/library/ast.html#ast.NodeTransformer]. Like ast.NodeVisitor [https://docs.python.org/3/library/ast.html#ast.NodeVisitor], you
subclass this and override visit_Foo methods. The method should return the
original node, a replacement node, or None to remove that node from the tree.

The ast [https://docs.python.org/3/library/ast.html#module-ast] module docs have this example, which rewrites name lookups, so
foo becomes data['foo']:

class RewriteName(ast.NodeTransformer):

 def visit_Name(self, node):
 return ast.copy_location(ast.Subscript(
 value=ast.Name(id='data', ctx=ast.Load()),
 slice=ast.Index(value=ast.Str(s=node.id)),
 ctx=node.ctx
), node)

tree = RewriteName().visit(tree)

When replacing a node, the new node doesn’t automatically have the lineno
and col_offset parameters. The example above doesn’t deal with this
completely: it copies the location to the Subscript [https://docs.python.org/3/library/ast.html#ast.Subscript] node, but not
to any of the newly created children of that node. See Fixing locations.

Be careful when removing nodes. You can quite easily remove a node from a
required field, such as the test field of an If [https://docs.python.org/3/library/ast.html#ast.If] node. Python
won’t complain about the invalid AST until you try to compile() [https://docs.python.org/3/library/functions.html#compile] it, when
a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] is raised.

Examples of working with ASTs

Working versions of these examples are in the examples directory of the source
repository [https://bitbucket.org/takluyver/greentreesnakes/src/master/examples].

Wrapping integers

In Python code, 1/3 would normally be evaluated to a floating-point number,
that can never be exactly one third. Mathematical software, like SymPy [http://sympy.org/] or Sage [http://www.sagemath.org/], often wants to use
exact fractions instead. One way to make 1/3 produce an exact fraction is
to wrap the integer literals 1 and 3 in a class:

class IntegerWrapper(ast.NodeTransformer):
 """Wraps all integers in a call to Integer()"""
 def visit_Num(self, node):
 if isinstance(node.n, int):
 return ast.Call(func=ast.Name(id='Integer', ctx=ast.Load()),
 args=[node], keywords=[])
 return node

tree = ast.parse("1/3")
tree = IntegerWrapper().visit(tree)
Add lineno & col_offset to the nodes we created
ast.fix_missing_locations(tree)

The tree is now equivalent to Integer(1)/Integer(3)
We would also need to define the Integer class and its __truediv__ method.

See wrap_integers.py [https://bitbucket.org/takluyver/greentreesnakes/src/master/examples/wrap_integers.py]
for a working demonstration.

Simple test framework

These two manipulations let you write test scripts as a simple series of
assert statements. First, we need to run the statements one by one,
so execution doesn’t stop at the first test failure:

tree = ast.parse(code)
lines = [None] + code.splitlines() # None at [0] so we can index lines from 1
test_namespace = {}

for node in tree.body:
 wrapper = ast.Module(body=[node])
 try:
 co = compile(wrapper, "<ast>", 'exec')
 exec(co, test_namespace)
 except AssertionError as e:
 print("Assertion failed on line", node.lineno, ":")
 print(lines[node.lineno])
 # If the error has a message, show it.
 if e.args:
 print(e)
 print()

Next, we transform assert a == b into a function call assert_equal(a, b),
which can give more information about the failure. We could turn many other
assertions into similar function calls.

class AssertCmpTransformer(ast.NodeTransformer):
 def visit_Assert(self, node):
 if isinstance(node.test, ast.Compare) and \
 len(node.test.ops) == 1 and \
 isinstance(node.test.ops[0], ast.Eq):
 call = ast.Call(func=ast.Name(id='assert_equal', ctx=ast.Load()),
 args=[node.test.left, node.test.comparators[0]],
 keywords=[])
 # Wrap the call in an Expr node, because the return value isn't used.
 newnode = ast.Expr(value=call)
 ast.copy_location(newnode, node)
 ast.fix_missing_locations(newnode)
 return newnode

 # Remember to return the original node if we don't want to change it.
 return node

See test_framework/run.py [https://bitbucket.org/takluyver/greentreesnakes/src/master/examples/test_framework/run.py]
for a working demonstration of both parts.

Real projects

	pytest [https://docs.pytest.org/] uses the AST to produce useful error
messages when assertions fail.

	astsearch [https://astsearch.readthedocs.io/] lets you search through
Python code based on semantics rather than text, e.g. to find every += 1
in your code.

	astpath [https://github.com/hchasestevens/astpath] is a more powerful
search tool using XPath expressions on Python code.

	bellybutton [https://github.com/hchasestevens/bellybutton] is a linter
designed to be readily customised.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

A

 	
 	Add (built-in class)

 	alias (built-in class)

 	And (built-in class)

 	AnnAssign (built-in class)

 	arg (built-in class)

 	arguments (built-in class)

 	Assert (built-in class)

 	
 	Assign (built-in class)

 	AsyncFor (built-in class)

 	AsyncFunctionDef (built-in class)

 	AsyncWith (built-in class)

 	Attribute (built-in class)

 	AugAssign (built-in class)

 	Await (built-in class)

B

 	
 	BinOp (built-in class)

 	BitAnd (built-in class)

 	BitOr (built-in class)

 	
 	BitXor (built-in class)

 	BoolOp (built-in class)

 	Break (built-in class)

 	Bytes (built-in class)

C

 	
 	Call (built-in class)

 	ClassDef (built-in class)

 	Compare (built-in class)

 	
 	comprehension (built-in class)

 	Constant (built-in class)

 	Continue (built-in class)

D

 	
 	Del (built-in class)

 	Delete (built-in class)

 	
 	Dict (built-in class)

 	DictComp (built-in class)

 	Div (built-in class)

E

 	
 	Ellipsis (built-in class)

 	Eq (built-in class)

 	ExceptHandler (built-in class)

 	
 	Expr (built-in class)

 	Expression (built-in class)

 	ExtSlice (built-in class)

F

 	
 	FloorDiv (built-in class)

 	For (built-in class)

 	
 	FormattedValue (built-in class)

 	FunctionDef (built-in class)

G

 	
 	GeneratorExp (built-in class)

 	Global (built-in class)

 	
 	Gt (built-in class)

 	GtE (built-in class)

I

 	
 	If (built-in class)

 	IfExp (built-in class)

 	Import (built-in class)

 	ImportFrom (built-in class)

 	In (built-in class)

 	
 	Index (built-in class)

 	Interactive (built-in class)

 	Invert (built-in class)

 	Is (built-in class)

 	IsNot (built-in class)

J

 	
 	JoinedStr (built-in class)

K

 	
 	keyword (built-in class)

L

 	
 	Lambda (built-in class)

 	List (built-in class)

 	ListComp (built-in class)

 	
 	Load (built-in class)

 	LShift (built-in class)

 	Lt (built-in class)

 	LtE (built-in class)

M

 	
 	MatMult (built-in class)

 	Mod (built-in class)

 	
 	Module (built-in class)

 	Mult (built-in class)

N

 	
 	Name (built-in class)

 	NameConstant (built-in class)

 	NamedExpr (built-in class)

 	Nonlocal (built-in class)

 	
 	Not (built-in class)

 	NotEq (built-in class)

 	NotIn (built-in class)

 	Num (built-in class)

O

 	
 	Or (built-in class)

P

 	
 	Pass (built-in class)

 	
 	Pow (built-in class)

 	Print (built-in class)

R

 	
 	Raise (built-in class)

 	
 	Return (built-in class)

 	RShift (built-in class)

S

 	
 	Set (built-in class)

 	SetComp (built-in class)

 	Slice (built-in class)

 	Starred (built-in class)

 	
 	Store (built-in class)

 	Str (built-in class)

 	Sub (built-in class)

 	Subscript (built-in class)

T

 	
 	Try (built-in class)

 	TryExcept (built-in class)

 	
 	TryFinally (built-in class)

 	Tuple (built-in class)

U

 	
 	UAdd (built-in class)

 	
 	UnaryOp (built-in class)

 	USub (built-in class)

W

 	
 	While (built-in class)

 	
 	With (built-in class)

 	withitem (built-in class)

Y

 	
 	Yield (built-in class)

 	
 	YieldFrom (built-in class)

 nav.xhtml

 Table of Contents

 		
 Green Tree Snakes - the missing Python AST docs

 		
 Getting to and from ASTs

 		
 Modes

 		
 Fixing locations

 		
 Going backwards

 		
 Meet the Nodes

 		
 Literals

 		
 Variables

 		
 Expressions

 		
 Subscripting

 		
 Comprehensions

 		
 Statements

 		
 Imports

 		
 Control flow

 		
 Function and class definitions

 		
 Async and await

 		
 Top level nodes

 		
 Working on the Tree

 		
 Inspecting nodes

 		
 Modifying the tree

 		
 Examples of working with ASTs

 		
 Wrapping integers

 		
 Simple test framework

 		
 Real projects

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

