

gpiozero

[image: Latest Version]
 [https://badge.fury.io/py/gpiozero][image: Build Tests]
 [https://travis-ci.org/RPi-Distro/python-gpiozero]A simple interface to everyday GPIO components used with Raspberry Pi.

Created by Ben Nuttall [https://github.com/bennuttall] of the Raspberry Pi Foundation [https://www.raspberrypi.org/], Dave Jones [https://github.com/waveform80], and
other contributors.

About

Component interfaces are provided to allow a frictionless way to get started
with physical computing:

from gpiozero import LED
from time import sleep

led = LED(17)

while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

With very little code, you can quickly get going connecting your components
together:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(3)

button.when_pressed = led.on
button.when_released = led.off

pause()

The library includes interfaces to many simple everyday components, as well as
some more complex things like sensors, analogue-to-digital converters, full
colour LEDs, robotics kits and more.

Install

First, update your repositories list:

sudo apt-get update

Then install the package of your choice. Both Python 3 and Python 2 are
supported. Python 3 is recommended:

sudo apt-get install python3-gpiozero

or:

sudo apt-get install python-gpiozero

Documentation

Comprehensive documentation is available at https://gpiozero.readthedocs.org/.

Development

This project is being developed on GitHub [https://github.com/RPi-Distro/python-gpiozero]. Join in:

	Provide suggestions, report bugs and ask questions as issues [https://github.com/RPi-Distro/python-gpiozero/issues]

	Provide examples we can use as recipes [http://gpiozero.readthedocs.org/en/latest/recipes.html]

	Contribute to the code

Alternatively, email suggestions and feedback to mailto:ben@raspberrypi.org

Contributors

	Ben Nuttall [https://github.com/bennuttall] (project maintainer)

	Dave Jones [https://github.com/waveform80]

	Martin O’Hanlon [https://github.com/martinohanlon]

	Andrew Scheller [https://github.com/lurch]

	Schelto vanDoorn [https://github.com/pcopa]

Table of Contents

	Recipes
	Pin Numbering

	LED

	Button

	Button controlled LED

	Traffic Lights

	Push button stop motion

	Reaction Game

	GPIO Music Box

	All on when pressed

	RGB LED

	Motion sensor

	Light sensor

	Distance sensor

	Motors

	Robot

	Button controlled robot

	Keyboard controlled robot

	Motion sensor robot

	Potentiometer

	Measure temperature with an ADC

	Full color LED controlled by 3 potentiometers

	Controlling the Pi’s own LEDs

	Notes
	Keep your script running

	Importing from GPIO Zero

	Input Devices
	Button

	Line Sensor (TRCT5000)

	Motion Sensor (D-SUN PIR)

	Light Sensor (LDR)

	Distance Sensor (HC-SR04)

	Base Classes

	DigitalInputDevice

	SmoothedInputDevice

	InputDevice

	GPIODevice

	Output Devices
	LED

	PWMLED

	RGBLED

	Buzzer

	Motor

	Base Classes

	DigitalOutputDevice

	PWMOutputDevice

	OutputDevice

	GPIODevice

	SPI Devices
	SPI keyword args

	Analog to Digital Converters (ADC)

	Base Classes

	AnalogInputDevice

	SPIDevice

	Boards and Accessories
	LEDBoard

	LEDBarGraph

	TrafficLights

	PiLITEr

	PiLITEr Bar Graph

	PI-TRAFFIC

	TrafficLightsBuzzer

	Fish Dish

	Traffic HAT

	Robot

	Ryanteck MCB Robot

	CamJam #3 Kit Robot

	Energenie

	Base Classes

	LEDCollection

	CompositeOutputDevice

	CompositeDevice

	Internal Devices
	TimeOfDay

	PingServer

	Base Classes

	InternalDevice

	Generic Classes
	Device

	ValuesMixin

	SourceMixin

	SharedMixin

	EventsMixin

	HoldMixin

	Source Tools
	Single source conversions

	Combining sources

	Artifical sources

	Pins
	RPiGPIOPin

	RPIOPin

	PiGPIOPin

	NativePin

	Abstract Pin

	Utilities

	Exceptions
	Errors

	Warnings

	Changelog
	Release 1.2.0 (2016-04-10)

	Release 1.1.0 (2016-02-08)

	Release 1.0.0 (2015-11-16)

	Release 0.9.0 (2015-10-25)

	Release 0.8.0 (2015-10-16)

	Release 0.7.0 (2015-10-09)

	Release 0.6.0 (2015-09-28)

	Release 0.5.0 (2015-09-24)

	Release 0.4.0 (2015-09-23)

	Release 0.3.0 (2015-09-22)

	Release 0.2.0 (2015-09-21)

	License

Recipes

The following recipes demonstrate some of the capabilities of the gpiozero
library. Please note that all recipes are written assuming Python 3. Recipes
may work under Python 2, but no guarantees!

Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed
to physical (BOARD) numbering. Unlike in the RPi.GPIO [https://pypi.python.org/pypi/RPi.GPIO] library, this is not
configurable.

Any pin marked GPIO in the diagram below can be used for generic
components:

[image: _images/pin_layout.svg]

LED

[image: _images/led.png]
Turn an LED on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
 red.on()
 sleep(1)
 red.off()
 sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

Note

Reaching the end of a Python script will terminate the process and GPIOs
may be reset. Keep your script alive with signal.pause() [https://docs.python.org/3.4/library/signal.html#signal.pause]. See
Keep your script running for more information.

Button

[image: _images/button.png]
Check if a Button is pressed:

from gpiozero import Button

button = Button(2)

while True:
 if button.is_pressed:
 print("Button is pressed")
 else:
 print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
 print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

Button controlled LED

[image: _images/led_button_bb.svg]Turn on an LED when a Button is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

Traffic Lights

[image: _images/traffic_lights_bb.svg]A full traffic lights system.

Using a TrafficLights kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
 sleep(10)
 lights.green.off()
 lights.amber.on()
 sleep(1)
 lights.amber.off()
 lights.red.on()
 sleep(10)
 lights.amber.on()
 sleep(1)
 lights.green.on()
 lights.amber.off()
 lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights(2, 3, 4)

def traffic_light_sequence():
 while True:
 yield (0, 0, 1) # green
 sleep(10)
 yield (0, 1, 0) # amber
 sleep(1)
 yield (1, 0, 0) # red
 sleep(10)
 yield (1, 1, 0) # red+amber
 sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
 sleep(10)
 green.off()
 amber.on()
 sleep(1)
 amber.off()
 red.on()
 sleep(10)
 amber.on()
 sleep(1)
 green.on()
 amber.off()
 red.off()

Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)

with PiCamera() as camera:
 camera.start_preview()
 frame = 1
 while True:
 button.wait_for_press()
 camera.capture('/home/pi/frame%03d.jpg' % frame)
 frame += 1

See Push Button Stop Motion [https://www.raspberrypi.org/learning/quick-reaction-game/] for a full resource.

Reaction Game

[image: _images/reaction_game_bb.svg]When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
 if player_1.is_pressed:
 print("Player 1 wins!")
 break
 if player_2.is_pressed:
 print("Player 2 wins!")
 break

led.off()

See Quick Reaction Game [https://www.raspberrypi.org/learning/quick-reaction-game/] for a full resource.

GPIO Music Box

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

sound_pins = {
 2: Sound("samples/drum_tom_mid_hard.wav"),
 3: Sound("samples/drum_cymbal_open.wav"),
}

buttons = [Button(pin) for pin in sound_pins]
for button in buttons:
 sound = sound_pins[button.pin.number]
 button.when_pressed = sound.play

pause()

See GPIO Music Box [https://www.raspberrypi.org/learning/gpio-music-box/] for a full resource.

All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish:

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat:

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED, Buzzer, and Button components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
 for thing in things:
 thing.on()

def things_off():
 for thing in things:
 thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

RGB LED

[image: _images/rgb_led_bb.svg]Making colours with an RGBLED:

from gpiozero import RGBLED
from time import sleep

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):
 led.blue = n/100
 sleep(0.1)

Motion sensor

[image: _images/motion_sensor_bb.svg]Light an LED when a MotionSensor detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

Light sensor

[image: _images/light_sensor_bb.svg]Have a LightSensor detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
 sensor.wait_for_light()
 print("It's light! :)")
 sensor.wait_for_dark()
 print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause()

Or make a PWMLED change brightness according to the detected light
level:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor.values

pause()

Distance sensor

Have a DistanceSensor detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(23, 24)

while True:
 print('Distance to nearest object is', sensor.distance, 'm')
 sleep(1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off

pause()

Motors

[image: _images/motor_bb.svg]Spin a Motor around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, back=14)

while True:
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

Robot

Make a Robot drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
 robot.forward()
 sleep(10)
 robot.right()
 sleep(1)

Make a robot with a distance sensor that runs away when things get within
20cm of it:

from gpiozero import Robot, DistanceSensor
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot(left=(4, 14), right=(17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause()

Button controlled robot

Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import RyanteckRobot, Button
from signal import pause

robot = RyanteckRobot()

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

Keyboard controlled robot

Use up/down/left/right keys to control a robot:

import curses
from gpiozero import RyanteckRobot

robot = RyanteckRobot()

actions = {
 curses.KEY_UP: robot.forward,
 curses.KEY_DOWN: robot.backward,
 curses.KEY_LEFT: robot.left,
 curses.KEY_RIGHT: robot.right,
 }

def main(window):
 next_key = None
 while True:
 curses.halfdelay(1)
 if next_key is None:
 key = window.getch()
 else:
 key = next_key
 next_key = None
 if key != -1:
 # KEY DOWN
 curses.halfdelay(3)
 action = actions.get(key)
 if action is not None:
 action()
 next_key = key
 while next_key == key:
 next_key = window.getch()
 # KEY UP
 robot.stop()

curses.wrapper(main)

Note

This recipe uses the curses module. This module requires that Python is
running in a terminal in order to work correctly, hence this recipe will
not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should
suffice, but will require that you install the evdev library with sudo pip
install evdev first:

from gpiozero import RyanteckRobot
from evdev import InputDevice, list_devices, ecodes

robot = RyanteckRobot()

devices = [InputDevice(device) for device in list_devices()]
keyboard = devices[0] # this may vary

keypress_actions = {
 ecodes.KEY_UP: robot.forward,
 ecodes.KEY_DOWN: robot.backward,
 ecodes.KEY_LEFT: robot.left,
 ecodes.KEY_RIGHT: robot.right,
}

for event in keyboard.read_loop():
 if event.type == ecodes.EV_KEY:
 if event.value == 1: # key down
 keypress_actions[event.code]()
 if event.value == 0: # key up
 robot.stop()

Motion sensor robot

Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip(pir.values, pir.values)

pause()

Potentiometer

[image: _images/potentiometer_bb.svg]Continually print the value of a potentiometer (values between 0 and 1)
connected to a MCP3008 analog to digital converter:

from gpiozero import MCP3008

while True:
 with MCP3008(channel=0) as pot:
 print(pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent
states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008
analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
 for value in gen:
 yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
 print('The temperature is', temp, 'C')
 sleep(1)

Full color LED controlled by 3 potentiometers

Wire up three potentiometers (for red, green and blue) and use each of their
values to make up the colour of the LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
 led.red = red_pot.value
 led.green = green_pot.value
 led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the
source property rather than a while [https://docs.python.org/3.4/reference/compound_stmts.html#while] loop:

from gpiozero import RGBLED, MCP3008
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

led.source = zip(red_pot.values, green_pot.values, blue_pot.values)

pause()

Please note the example above requires Python 3. In Python 2, zip() [https://docs.python.org/3.4/library/functions.html#zip]
doesn’t support lazy evaluation so the script will simply hang.

Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible
to control the power and activity LEDs. This can be useful for testing GPIO
functionality without the need to wire up your own LEDs (also useful because
the power and activity LEDs are “known good”).

Firstly you need to disable the usual triggers for the built-in LEDs. This can
be done from the terminal with the following commands:

$ echo none | sudo tee /sys/class/leds/led0/trigger
$ echo gpio | sudo tee /sys/class/leds/led1/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

power = LED(35)
activity = LED(47)

activity.blink()
power.blink()
pause()

To revert the LEDs to their usual purpose you can either reboot your Pi or
run the following commands:

$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
$ echo input | sudo tee /sys/class/leds/led1/trigger

Note

On the Pi Zero you can control the activity LED with this recipe, but
there’s no separate power LED to control (it’s also worth noting the
activity LED is active low, so set active_high=False when constructing
your LED component.

On the original Pi 1 (model A or B), the activity LED can be controlled
with GPIO16 (after disabling its trigger as above) but the power LED is
hard-wired on.

On the Pi 3B the LEDs are controlled by a GPIO expander which is not
accessible from gpiozero (yet).

Notes

Keep your script running

The following script looks like it should turn an LED on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python (or IPython or IDLE) shell. However,
if you saved this script as a Python file and ran it, it would flash on
briefly, then the script would end and it would turn off.

The following file includes an intentional pause() [https://docs.python.org/3.4/library/signal.html#signal.pause] to keep the
script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()
pause()

Now the script will stay running, leaving the LED on, until it is terminated
manually (e.g. by pressing Ctrl+C). Similarly, when setting up callbacks on
button presses or other input devices, the script needs to be running for the
events to be detected:

from gpiozero import Button
from signal import pause

def hello():
 print("Hello")

button = Button(2)
button.when_pressed = hello
pause()

Importing from GPIO Zero

In Python, libraries and functions used in a script must be imported by name
at the top of the file, with the exception of the functions built into Python
by default.

For example, to use the Button interface from GPIO Zero, it
should be explicitly imported:

from gpiozero import Button

Now Button is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

Input Devices

These input device component interfaces have been provided for simple use of
everyday components. Components must be wired up correctly before use in code.

Note

All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes
page for more information.

Button

	
class gpiozero.Button(pin, pull_up=True, bounce_time=None)

	Extends DigitalInputDevice and represents a simple push button
or switch.

Connect one side of the button to a ground pin, and the other to any GPIO
pin. Alternatively, connect one side of the button to the 3V3 pin, and the
other to any GPIO pin, then set pull_up to False in the
Button constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	pull_up (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the GPIO pin will be pulled high by default.
In this case, connect the other side of the button to ground. If
False, the GPIO pin will be pulled low by default. In this case,
connect the other side of the button to 3V3.

	bounce_time (float [https://docs.python.org/3.4/library/functions.html#float]) – If None (the default), no software bounce compensation will be
performed. Otherwise, this is the length in time (in seconds) that the
component will ignore changes in state after an initial change.

	hold_time (float [https://docs.python.org/3.4/library/functions.html#float]) – The length of time (in seconds) to wait after the button is pushed,
until executing the when_held handler.

	hold_repeat (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, the when_held handler will be repeatedly executed
as long as the device remains active, every hold_time seconds.

	
wait_for_press(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
wait_for_release(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
is_pressed

	Returns True if the device is currently active and False
otherwise. This property is usually derived from value. Unlike
value, this is always a boolean.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
pull_up

	If True, the device uses a pull-up resistor to set the GPIO pin
“high” by default. Defaults to False.

	
when_pressed

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_released

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

Line Sensor (TRCT5000)

	
class gpiozero.LineSensor(pin)

	Extends DigitalInputDevice and represents a single pin line sensor
like the TCRT5000 infra-red proximity sensor found in the CamJam #3
EduKit [http://camjam.me/?page_id=1035].

A typical line sensor has a small circuit board with three pins: VCC, GND,
and OUT. VCC should be connected to a 3V3 pin, GND to one of the ground
pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text indicating when the sensor
detects a line, or stops detecting a line:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)
sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	queue_len (int [https://docs.python.org/3.4/library/functions.html#int]) – The length of the queue used to store values read from the sensor. This
defaults to 5.

	sample_rate (float [https://docs.python.org/3.4/library/functions.html#float]) – The number of values to read from the device (and append to the
internal queue) per second. Defaults to 100.

	threshold (float [https://docs.python.org/3.4/library/functions.html#float]) – Defaults to 0.5. When the mean of all values in the internal queue
rises above this value, the sensor will be considered “active” by the
is_active property, and all appropriate
events will be fired.

	partial (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When False (the default), the object will not return a value for
is_active until the internal queue has
filled with values. Only set this to True if you require values
immediately after object construction.

	
wait_for_line(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
wait_for_no_line(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
when_line

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_no_line

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

Motion Sensor (D-SUN PIR)

	
class gpiozero.MotionSensor(pin, queue_len=1, sample_rate=10, threshold=0.5, partial=False)

	Extends SmoothedInputDevice and represents a passive infra-red
(PIR) motion sensor like the sort found in the CamJam #2 EduKit [http://camjam.me/?page_id=623].

A typical PIR device has a small circuit board with three pins: VCC, OUT,
and GND. VCC should be connected to a 5V pin, GND to one of the ground
pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	queue_len (int [https://docs.python.org/3.4/library/functions.html#int]) – The length of the queue used to store values read from the sensor. This
defaults to 1 which effectively disables the queue. If your motion
sensor is particularly “twitchy” you may wish to increase this value.

	sample_rate (float [https://docs.python.org/3.4/library/functions.html#float]) – The number of values to read from the device (and append to the
internal queue) per second. Defaults to 100.

	threshold (float [https://docs.python.org/3.4/library/functions.html#float]) – Defaults to 0.5. When the mean of all values in the internal queue
rises above this value, the sensor will be considered “active” by the
is_active property, and all appropriate
events will be fired.

	partial (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When False (the default), the object will not return a value for
is_active until the internal queue has
filled with values. Only set this to True if you require values
immediately after object construction.

	
wait_for_motion(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
wait_for_no_motion(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
motion_detected

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
when_motion

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_no_motion

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

Light Sensor (LDR)

	
class gpiozero.LightSensor(pin, queue_len=5, charge_time_limit=0.01, threshold=0.1, partial=False)

	Extends SmoothedInputDevice and represents a light dependent
resistor (LDR).

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µf
capacitor to a ground pin; connect the other leg of the LDR and the other
leg of the capacitor to the same GPIO pin. This class repeatedly discharges
the capacitor, then times the duration it takes to charge (which will vary
according to the light falling on the LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	queue_len (int [https://docs.python.org/3.4/library/functions.html#int]) – The length of the queue used to store values read from the circuit.
This defaults to 5.

	charge_time_limit (float [https://docs.python.org/3.4/library/functions.html#float]) – If the capacitor in the circuit takes longer than this length of time
to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 0.01µf capacitor coupled with the LDR from the
CamJam #2 EduKit [http://camjam.me/?page_id=623]. You may need to adjust this value for different
valued capacitors or LDRs.

	threshold (float [https://docs.python.org/3.4/library/functions.html#float]) – Defaults to 0.1. When the mean of all values in the internal queue
rises above this value, the area will be considered “light”, and all
appropriate events will be fired.

	partial (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When False (the default), the object will not return a value for
is_active until the internal queue has
filled with values. Only set this to True if you require values
immediately after object construction.

	
wait_for_dark(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
wait_for_light(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
light_detected

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
when_dark

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_light

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

Distance Sensor (HC-SR04)

	
class gpiozero.DistanceSensor(echo, trigger, queue_len=30, max_distance=1, threshold_distance=0.3, partial=False)

	Extends SmoothedInputDevice and represents an HC-SR04 ultrasonic
distance sensor, as found in the CamJam #3 EduKit [http://camjam.me/?page_id=1035].

The distance sensor requires two GPIO pins: one for the trigger (marked
TRIG on the sensor) and another for the echo (marked ECHO on the sensor).
However, a voltage divider is required to ensure the 5V from the ECHO pin
doesn’t damage the Pi. Wire your sensor according to the following
instructions:

	Connect the GND pin of the sensor to a ground pin on the Pi.

	Connect the TRIG pin of the sensor a GPIO pin.

	Connect a 330Ω resistor from the ECHO pin of the sensor to a different
GPIO pin.

	Connect a 470Ω resistor from ground to the ECHO GPIO pin. This forms
the required voltage divider.

	Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

The following code will periodically report the distance measured by the
sensor in cm assuming the TRIG pin is connected to GPIO17, and the ECHO
pin to GPIO18:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(18, 17)
while True:
 print('Distance: ', sensor.distance * 100)
 sleep(1)

	Parameters:	
	echo (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the ECHO pin is attached to. See Notes for
valid pin numbers.

	trigger (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the TRIG pin is attached to. See Notes for
valid pin numbers.

	queue_len (int [https://docs.python.org/3.4/library/functions.html#int]) – The length of the queue used to store values read from the sensor.
This defaults to 30.

	max_distance (float [https://docs.python.org/3.4/library/functions.html#float]) – The value attribute reports a normalized value between 0 (too
close to measure) and 1 (maximum distance). This parameter specifies
the maximum distance expected in meters. This defaults to 1.

	threshold_distance (float [https://docs.python.org/3.4/library/functions.html#float]) – Defaults to 0.3. This is the distance (in meters) that will trigger the
in_range and out_of_range events when crossed.

	partial (bool [https://docs.python.org/3.4/library/functions.html#bool]) – When False (the default), the object will not return a value for
is_active until the internal queue has
filled with values. Only set this to True if you require values
immediately after object construction.

	
wait_for_in_range(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
wait_for_out_of_range(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
distance

	Returns the current distance measured by the sensor in meters. Note
that this property will have a value between 0 and
max_distance.

	
echo

	Returns the Pin that the sensor’s echo is connected to. This
is simply an alias for the usual pin attribute.

	
max_distance

	The maximum distance that the sensor will measure in meters. This value
is specified in the constructor and is used to provide the scaling
for the value attribute. When distance is equal to
max_distance, value will be 1.

	
threshold_distance

	The distance, measured in meters, that will trigger the
when_in_range and when_out_of_range events when
crossed. This is simply a meter-scaled variant of the usual
threshold attribute.

	
trigger

	Returns the Pin that the sensor’s trigger is connected to.

	
when_in_range

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_out_of_range

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below:

[image: _images/input_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

DigitalInputDevice

	
class gpiozero.DigitalInputDevice(pin, pull_up=False, bounce_time=None)

	Represents a generic input device with typical on/off behaviour.

This class extends InputDevice with machinery to fire the active
and inactive events for devices that operate in a typical digital manner:
straight forward on / off states with (reasonably) clean transitions
between the two.

	Parameters:	bouncetime (float [https://docs.python.org/3.4/library/functions.html#float]) – Specifies the length of time (in seconds) that the component will
ignore changes in state after an initial change. This defaults to
None which indicates that no bounce compensation will be performed.

SmoothedInputDevice

	
class gpiozero.SmoothedInputDevice(pin=None, pull_up=False, threshold=0.5, queue_len=5, sample_wait=0.0, partial=False)

	Represents a generic input device which takes its value from the mean of a
queue of historical values.

This class extends InputDevice with a queue which is filled by a
background thread which continually polls the state of the underlying
device. The mean of the values in the queue is compared to a threshold
which is used to determine the state of the is_active property.

Note

The background queue is not automatically started upon construction.
This is to allow descendents to set up additional components before the
queue starts reading values. Effectively this is an abstract base
class.

This class is intended for use with devices which either exhibit analog
behaviour (such as the charging time of a capacitor with an LDR), or those
which exhibit “twitchy” behaviour (such as certain motion sensors).

	Parameters:	
	threshold (float [https://docs.python.org/3.4/library/functions.html#float]) – The value above which the device will be considered “on”.

	queue_len (int [https://docs.python.org/3.4/library/functions.html#int]) – The length of the internal queue which is filled by the background
thread.

	sample_wait (float [https://docs.python.org/3.4/library/functions.html#float]) – The length of time to wait between retrieving the state of the
underlying device. Defaults to 0.0 indicating that values are retrieved
as fast as possible.

	partial (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), attempts to read the state of the device
(from the is_active property) will block until the queue has
filled. If True, a value will be returned immediately, but be
aware that this value is likely to fluctuate excessively.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
is_active

	Returns True if the device is currently active and False
otherwise.

	
partial

	If False (the default), attempts to read the value or
is_active properties will block until the queue has filled.

	
queue_len

	The length of the internal queue of values which is averaged to
determine the overall state of the device. This defaults to 5.

	
threshold

	If value exceeds this amount, then is_active will
return True.

	
value

	Returns the mean of the values in the internal queue. This is compared
to threshold to determine whether is_active is
True.

InputDevice

	
class gpiozero.InputDevice(pin, pull_up=False)

	Represents a generic GPIO input device.

This class extends GPIODevice to add facilities common to GPIO
input devices. The constructor adds the optional pull_up parameter to
specify how the pin should be pulled by the internal resistors. The
is_active property is adjusted accordingly so that
True still means active regardless of the pull_up setting.

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in Broadcom numbering) that the device is connected to.
If this is None a GPIODeviceError will be raised.

	pull_up (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, the pin will be pulled high with an internal resistor. If
False (the default), the pin will be pulled low.

	
pull_up

	If True, the device uses a pull-up resistor to set the GPIO pin
“high” by default. Defaults to False.

GPIODevice

	
class gpiozero.GPIODevice(pin)

	Extends Device. Represents a generic GPIO device and provides
the services common to all single-pin GPIO devices (like ensuring two
GPIO devices do no share a pin).

	Parameters:	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in BCM numbering) that the device is connected to. If
this is None, GPIOPinMissing will be raised. If the pin is
already in use by another device, GPIOPinInUse will be raised.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

Output Devices

These output device component interfaces have been provided for simple use of
everyday components. Components must be wired up correctly before use in code.

Note

All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes
page for more information.

LED

	
class gpiozero.LED(pin, active_high=True, initial_value=False)

	Extends DigitalOutputDevice and represents a light emitting diode
(LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin;
connect the anode (longer leg) to a limiting resistor; connect the other
side of the limiting resistor to a GPIO pin (the limiting resistor can be
placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the LED is attached to. See Notes for valid
pin numbers.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the LED will operate normally with the
circuit described above. If False you should wire the cathode to
the GPIO pin, and the anode to a 3V3 pin (via a limiting resistor).

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), the LED will be off initially. If
None, the LED will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True, the
LED will be switched on initially.

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
is_lit

	Returns True if the device is currently active and False
otherwise. This property is usually derived from value. Unlike
value, this is always a boolean.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

PWMLED

	
class gpiozero.PWMLED(pin, active_high=True, initial_value=0, frequency=100)

	Extends PWMOutputDevice and represents a light emitting diode
(LED) with variable brightness.

A typical configuration of such a device is to connect a GPIO pin to the
anode (long leg) of the LED, and the cathode (short leg) to ground, with
an optional resistor to prevent the LED from burning out.

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the LED is attached to. See Notes for
valid pin numbers.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set the GPIO to
HIGH. If False, the on() method will set the GPIO to LOW (the
off() method always does the opposite).

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If 0 (the default), the LED will be off initially. Other values
between 0 and 1 can be specified as an initial brightness for the LED.
Note that None cannot be specified (unlike the parent class) as
there is no way to tell PWM not to alter the state of the pin.

	frequency (int [https://docs.python.org/3.4/library/functions.html#int]) – The frequency (in Hz) of pulses emitted to drive the LED. Defaults
to 100Hz.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is 0.0), this changes it to “fully” on (value is
1.0). If the device has a duty cycle (value) of 0.1, this will
toggle it to 0.9, and so on.

	
is_lit

	Returns True if the device is currently active (value is
non-zero) and False otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
value

	The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.

RGBLED

	
class gpiozero.RGBLED(red, green, blue, active_high=True, initial_value=(0, 0, 0))

	Extends Device and represents a full color LED component (composed
of red, green, and blue LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of
the other legs (representing the red, green, and blue anodes) to any GPIO
pins. You can either use three limiting resistors (one per anode) or a
single limiting resistor on the cathode.

The following code will make the LED purple:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 0, 1)

	Parameters:	
	red (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that controls the red component of the RGB LED.

	green (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that controls the green component of the RGB LED.

	blue (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that controls the blue component of the RGB LED.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Set to True (the default) for common cathode RGB LEDs. If you are
using a common anode RGB LED, set this to False.

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – The initial color for the LED. Defaults to black (0, 0, 0).

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0.

	on_color (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The color to use when the LED is “on”. Defaults to white.

	off_color (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The color to use when the LED is “off”. Defaults to black.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turn the LED off. This is equivalent to setting the LED color to black
(0, 0, 0).

	
on()

	Turn the LED on. This equivalent to setting the LED color to white
(1, 1, 1).

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is (0, 0, 0)), this changes it to “fully” on
(value is (1, 1, 1)). If the device has a specific color,
this method inverts the color.

	
color

	Represents the color of the LED as an RGB 3-tuple of (red, green,
blue) where each value is between 0 and 1.

For example, purple would be (1, 0, 1) and yellow would be (1, 1,
0), while orange would be (1, 0.5, 0).

	
is_lit

	Returns True if the LED is currently active (not black) and
False otherwise.

Buzzer

	
class gpiozero.Buzzer(pin, active_high=True, initial_value=False)

	Extends DigitalOutputDevice and represents a digital buzzer
component.

Connect the cathode (negative pin) of the buzzer to a ground pin; connect
the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the buzzer is attached to. See Notes for
valid pin numbers.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the buzzer will operate normally with the
circuit described above. If False you should wire the cathode to
the GPIO pin, and the anode to a 3V3 pin.

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), the buzzer will be silent initially. If
None, the buzzer will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True, the
buzzer will be switched on initially.

	
beep(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
is_active

	Returns True if the device is currently active and False
otherwise. This property is usually derived from value. Unlike
value, this is always a boolean.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

Motor

	
class gpiozero.Motor(forward, backward)

	Extends CompositeDevice and represents a generic motor
connected to a bi-directional motor driver circuit (i.e. an H-bridge [https://en.wikipedia.org/wiki/H_bridge]).

Attach an H-bridge [https://en.wikipedia.org/wiki/H_bridge] motor controller to your Pi; connect a power source
(e.g. a battery pack or the 5V pin) to the controller; connect the outputs
of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

	Parameters:	
	forward (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the forward input of the motor driver chip is
connected to.

	backward (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the backward input of the motor driver chip is
connected to.

	
backward(speed=1)

	Drive the motor backwards.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

	
forward(speed=1)

	Drive the motor forwards.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

	
stop()

	Stop the motor.

Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below:

[image: _images/output_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

DigitalOutputDevice

	
class gpiozero.DigitalOutputDevice(pin, active_high=True, initial_value=False)

	Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice with a blink() method which
uses an optional background thread to handle toggling the device state
without further interaction.

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off()

	Turns the device off.

	
on()

	Turns the device on.

PWMOutputDevice

	
class gpiozero.PWMOutputDevice(pin, active_high=True, initial_value=0, frequency=100)

	Generic output device configured for pulse-width modulation (PWM).

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the device is attached to. See Notes for
valid pin numbers.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set the GPIO to
HIGH. If False, the on() method will set the GPIO to LOW (the
off() method always does the opposite).

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If 0 (the default), the device’s duty cycle will be 0 initially.
Other values between 0 and 1 can be specified as an initial duty cycle.
Note that None cannot be specified (unlike the parent class) as
there is no way to tell PWM not to alter the state of the pin.

	frequency (int [https://docs.python.org/3.4/library/functions.html#int]) – The frequency (in Hz) of pulses emitted to drive the device. Defaults
to 100Hz.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters:	
	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 1.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is 0.0), this changes it to “fully” on (value is
1.0). If the device has a duty cycle (value) of 0.1, this will
toggle it to 0.9, and so on.

	
frequency

	The frequency of the pulses used with the PWM device, in Hz. The
default is 100Hz.

	
is_active

	Returns True if the device is currently active (value is
non-zero) and False otherwise.

	
value

	The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.

OutputDevice

	
class gpiozero.OutputDevice(pin, active_high=True, initial_value=False)

	Represents a generic GPIO output device.

This class extends GPIODevice to add facilities common to GPIO
output devices: an on() method to switch the device on, a
corresponding off() method, and a toggle() method.

	Parameters:	
	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in BCM numbering) that the device is connected to. If
this is None a GPIOPinMissing will be raised.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set the GPIO to
HIGH. If False, the on() method will set the GPIO to LOW (the
off() method always does the opposite).

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), the device will be off initially. If
None, the device will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True, the
device will be switched on initially.

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
active_high

	When True, the value property is True when the device’s
pin is high. When False the value property is
True when the device’s pin is low (i.e. the value is inverted).

This property can be set after construction; be warned that changing it
will invert value (i.e. changing this property doesn’t change
the device’s pin state - it just changes how that state is
interpreted).

	
value

	Returns True if the device is currently active and False
otherwise. Setting this property changes the state of the device.

GPIODevice

	
class gpiozero.GPIODevice(pin)

	Extends Device. Represents a generic GPIO device and provides
the services common to all single-pin GPIO devices (like ensuring two
GPIO devices do no share a pin).

	Parameters:	pin (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in BCM numbering) that the device is connected to. If
this is None, GPIOPinMissing will be raised. If the pin is
already in use by another device, GPIOPinInUse will be raised.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

SPI Devices

SPI stands for Serial Peripheral Interface [https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus] and is a mechanism allowing
compatible devices to communicate with the Pi. SPI is a four-wire protocol
meaning it usually requires four pins to operate:

	A “clock” pin which provides timing information.

	A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information
to the device.

	A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information
from the device.

	A “select” pin which the Pi uses to indicate which device it’s talking to.
This last pin is necessary because multiple devices can share the clock,
MOSI, and MISO pins, but only one device can be connected to each select
pin.

The gpiozero library provides two SPI implementations:

	A software based implementation. This is always available, can use any four
GPIO pins for SPI communication, but is rather slow and won’t work with all
devices.

	A hardware based implementation. This is only available when the SPI kernel
module is loaded, and the Python spidev library is available. It can only use
specific pins for SPI communication (GPIO11=clock, GPIO10=MOSI, GPIO9=MISO,
while GPIO8 is select for device 0 and GPIO7 is select for device 1).
However, it is extremely fast and works with all devices.

SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins
it is connected to:

	You can specify port and device keyword arguments. The port parameter
must be 0 (there is only one user-accessible hardware SPI interface on the Pi
using GPIO11 as the clock pin, GPIO10 as the MOSI pin, and GPIO9 as the MISO
pin), while the device parameter must be 0 or 1. If device is 0, the
select pin will be GPIO8. If device is 1, the select pin will be GPIO7.

	Alternatively you can specify clock_pin, mosi_pin, miso_pin, and
select_pin keyword arguments. In this case the pins can be any 4 GPIO pins
(remember that SPI devices can share clock, MOSI, and MISO pins, but not
select pins - the gpiozero library will enforce this restriction).

You cannot mix these two schemes, i.e. attempting to specify port and
clock_pin will result in SPIBadArgs being raised. However, you can
omit any arguments from either scheme. The defaults are:

	port and device both default to 0.

	clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults
to 9, and select_pin defaults to 8.

Hence the following constructors are all equiavlent:

from gpiozero import MCP3008

MCP3008(channel=0)
MCP3008(channel=0, device=0)
MCP3008(channel=0, port=0, device=0)
MCP3008(channel=0, select_pin=8)
MCP3008(channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)

Note that the defaults describe equivalent sets of pins and that these pins are
compatible with the hardware implementation. Regardless of which scheme you
use, gpiozero will attempt to use the hardware implementation if it is
available and if the selected pins are compatible, falling back to the software
implementation if not.

Analog to Digital Converters (ADC)

	
class gpiozero.MCP3001(**spi_args)

	The MCP3001 [http://www.farnell.com/datasheets/630400.pdf] is a 10-bit analog to digital converter with 1 channel

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3002(channel=0, differential=False, **spi_args)

	The MCP3002 [http://www.farnell.com/datasheets/1599363.pdf] is a 10-bit analog to digital converter with 2 channels
(0-1).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3004(channel=0, differential=False, **spi_args)

	The MCP3004 [http://www.farnell.com/datasheets/808965.pdf] is a 10-bit analog to digital converter with 4 channels
(0-3).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3008(channel=0, differential=False, **spi_args)

	The MCP3008 [http://www.farnell.com/datasheets/808965.pdf] is a 10-bit analog to digital converter with 8 channels
(0-7).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3201(**spi_args)

	The MCP3201 [http://www.farnell.com/datasheets/1669366.pdf] is a 12-bit analog to digital converter with 1 channel

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3202(channel=0, differential=False, **spi_args)

	The MCP3202 [http://www.farnell.com/datasheets/1669376.pdf] is a 12-bit analog to digital converter with 2 channels
(0-1).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3204(channel=0, differential=False, **spi_args)

	The MCP3204 [http://www.farnell.com/datasheets/808967.pdf] is a 12-bit analog to digital converter with 4 channels
(0-3).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3208(channel=0, differential=False, **spi_args)

	The MCP3208 [http://www.farnell.com/datasheets/808967.pdf] is a 12-bit analog to digital converter with 8 channels
(0-7).

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3301(**spi_args)

	The MCP3301 [http://www.farnell.com/datasheets/1669397.pdf] is a signed 13-bit analog to digital converter. Please note
that the MCP3301 always operates in differential mode between its two
channels and the output value is scaled from -1 to +1.

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3302(channel=0, differential=False, **spi_args)

	The MCP3302 [http://www.farnell.com/datasheets/1486116.pdf] is a 12/13-bit analog to digital converter with 4 channels
(0-3). When operated in differential mode, the device outputs a signed
13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from
0 to 1.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

	
class gpiozero.MCP3304(channel=0, differential=False, **spi_args)

	The MCP3304 [http://www.farnell.com/datasheets/1486116.pdf] is a 12/13-bit analog to digital converter with 8 channels
(0-7). When operated in differential mode, the device outputs a signed
13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from
0 to 1.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below:

[image: _images/spi_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

AnalogInputDevice

	
class gpiozero.AnalogInputDevice(bits=None, **spi_args)

	Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters [https://en.wikipedia.org/wiki/Analog-to-digital_converter] (ADCs).
Several classes are provided for specific ADC chips, including
MCP3004, MCP3008, MCP3204, and MCP3208.

The following code demonstrates reading the first channel of an MCP3008
chip attached to the Pi’s SPI pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

The value attribute is normalized such that its value is always
between 0.0 and 1.0 (or in special cases, such as differential sampling,
-1 to +1). Hence, you can use an analog input to control the brightness of
a PWMLED like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot.values

	
bits

	The bit-resolution of the device/channel.

	
raw_value

	The raw value as read from the device.

	
value

	The current value read from the device, scaled to a value between 0 and
1 (or -1 to +1 for devices operating in differential mode).

SPIDevice

	
class gpiozero.SPIDevice(**spi_args)

	Extends Device. Represents a device that communicates via the SPI
protocol.

See SPI keyword args for information on the keyword arguments that can be
specified with the constructor.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

Boards and Accessories

These additional interfaces are provided to group collections of components
together for ease of use, and as examples. They are composites made up of
components from the various Input Devices and Output Devices provided by
GPIO Zero. See those pages for more information on using components
individually.

Note

All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes
page for more information.

LEDBoard

	
class gpiozero.LEDBoard(*pins, pwm=False, active_high=True, initial_value=False, **named_pins)

	Extends LEDCollection and represents a generic LED board or
collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs
attached to GPIO pins 2 through 6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

	Parameters:	
	*pins (int [https://docs.python.org/3.4/library/functions.html#int]) – Specify the GPIO pins that the LEDs of the board are attached to. You
can designate as many pins as necessary. You can also specify
LEDBoard instances to create trees of LEDs.

	pwm (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances. This
parameter can only be specified as a keyword parameter.

	active_high (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set all the
associates pins to HIGH. If False, the on() method will set
all pins to LOW (the off() method always does the opposite).

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is found
in when configured for output (warning: this can be on). If True,
the device will be switched on initially.

	**named_pins – Sepcify GPIO pins that LEDs of the board are attached to, associated
each LED with a property name. You can designate as many pins as
necessary and any name provided it’s not already in use by something
else. You can also specify LEDBoard instances to create
trees of LEDs.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off(*args)

	Turn all the output devices off.

	
on(*args)

	Turn all the output devices on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters:	
	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 1.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
toggle(*args)

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

LEDBarGraph

	
class gpiozero.LEDBarGraph(*pins, initial_value=0)

	Extends LEDCollection to control a line of LEDs representing a
bar graph. Positive values (0 to 1) light the LEDs from first to last.
Negative values (-1 to 0) light the LEDs from last to first.

The following example demonstrates turning on the first two and last two
LEDs in a board containing five LEDs attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

As with other output devices, source and values are
supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6, pwm=True)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

	Parameters:	
	*pins (int [https://docs.python.org/3.4/library/functions.html#int]) – Specify the GPIO pins that the LEDs of the bar graph are attached to.
You can designate as many pins as necessary.

	initial_value (float [https://docs.python.org/3.4/library/functions.html#float]) – The initial value of the graph given as a float between -1 and
+1. Defaults to 0.0. This parameter can only be specified as a keyword
parameter.

	pwm (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances. This
parameter can only be specified as a keyword parameter.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	The value of the LED bar graph. When no LEDs are lit, the value is 0.
When all LEDs are lit, the value is 1. Values between 0 and 1
light LEDs linearly from first to last. Values between 0 and -1
light LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by
the number of LEDs. For example, if your graph contains 3 LEDs, the
following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note

Setting value to -1 will light all LEDs. However, querying it
subsequently will return 1 as both representations are the same in
hardware. The readable range of value is effectively
-1 < value <= 1.

	
values

	An infinite iterator of values read from value.

TrafficLights

	
class gpiozero.TrafficLights(red=None, amber=None, green=None, pwm=False)

	Extends LEDBoard for devices containing red, amber, and green
LEDs.

The following example initializes a device connected to GPIO pins 2, 3,
and 4, then lights the amber LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

	Parameters:	
	red (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the red LED is attached to.

	amber (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the amber LED is attached to.

	green (int [https://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the green LED is attached to.

	pwm (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off(*args)

	Turn all the output devices off.

	
on(*args)

	Turn all the output devices on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters:	
	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 1.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
toggle(*args)

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

PiLITEr

	
class gpiozero.PiLiter(pwm=False)

	Extends LEDBoard for the Ciseco Pi-LITEr [http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/]: a strip of 8 very bright
LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example turns on all the LEDs
of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

	Parameters:	pwm (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances. This
parameter can only be specified as a keyword parameter.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off(*args)

	Turn all the output devices off.

	
on(*args)

	Turn all the output devices on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters:	
	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 1.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
toggle(*args)

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

PiLITEr Bar Graph

	
class gpiozero.PiLiterBarGraph(initial_value=0)

	Extends LEDBarGraph to treat the Ciseco Pi-LITEr [http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/] as an
8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example sets the graph value
to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

	Parameters:	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – The initial value of the graph given as a float between -1 and +1.
Defaults to 0.0.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	The value of the LED bar graph. When no LEDs are lit, the value is 0.
When all LEDs are lit, the value is 1. Values between 0 and 1
light LEDs linearly from first to last. Values between 0 and -1
light LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by
the number of LEDs. For example, if your graph contains 3 LEDs, the
following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note

Setting value to -1 will light all LEDs. However, querying it
subsequently will return 1 as both representations are the same in
hardware. The readable range of value is effectively
-1 < value <= 1.

	
values

	An infinite iterator of values read from value.

PI-TRAFFIC

	
class gpiozero.PiTraffic

	Extends TrafficLights for the Low Voltage Labs PI-TRAFFIC [http://lowvoltagelabs.com/products/pi-traffic/]:
vertical traffic lights board when attached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the
default pins (9, 10, 11). The following example turns on the amber LED on
the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins,
simply use the parent class, TrafficLights.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off(*args)

	Turn all the output devices off.

	
on(*args)

	Turn all the output devices on.

	
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

	Make the device fade in and out repeatedly.

	Parameters:	
	fade_in_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 1.

	fade_out_time (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 1.

	n (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
toggle(*args)

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

TrafficLightsBuzzer

	
class gpiozero.TrafficLightsBuzzer(lights, buzzer, button)

	Extends CompositeDevice and is a generic class for HATs with
traffic lights, a button and a buzzer.

	Parameters:	
	lights (TrafficLights) – An instance of TrafficLights representing the traffic lights
of the HAT.

	buzzer (Buzzer) – An instance of Buzzer representing the buzzer on the HAT.

	button (Button) – An instance of Button representing the button on the HAT.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

Fish Dish

	
class gpiozero.FishDish(pwm=False)

	Extends TrafficLightsBuzzer for the Pi Supply FishDish: traffic
light LEDs, a button and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example waits for the button
to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

	Parameters:	pwm (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

Traffic HAT

	
class gpiozero.TrafficHat(pwm=False)

	Extends TrafficLightsBuzzer for the Ryanteck Traffic HAT: traffic
light LEDs, a button and a buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example waits for the
button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

	Parameters:	pwm (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

	
values

	An infinite iterator of values read from value.

Robot

	
class gpiozero.Robot(left=None, right=None)

	Extends CompositeDevice to represent a generic dual-motor robot.

This class is constructed with two tuples representing the forward and
backward pins of the left and right controllers respectively. For example,
if the left motor’s controller is connected to GPIOs 4 and 14, while the
right motor’s controller is connected to GPIOs 17 and 18 then the following
example will turn the robot left:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.left()

	Parameters:	
	left (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A tuple of two GPIO pins representing the forward and backward inputs
of the left motor’s controller.

	right (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – A tuple of two GPIO pins representing the forward and backward inputs
of the right motor’s controller.

	
backward(speed=1)

	Drive the robot backward by running both motors backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
forward(speed=1)

	Drive the robot forward by running both motors forward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
values

	An infinite iterator of values read from value.

Ryanteck MCB Robot

	
class gpiozero.RyanteckRobot

	Extends Robot for the Ryanteck MCB robot.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example turns the robot
left:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.left()

	
backward(speed=1)

	Drive the robot backward by running both motors backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
forward(speed=1)

	Drive the robot forward by running both motors forward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
values

	An infinite iterator of values read from value.

CamJam #3 Kit Robot

	
class gpiozero.CamJamKitRobot

	Extends Robot for the CamJam #3 EduKit [http://camjam.me/?page_id=1035] robot controller.

The CamJam robot controller pins are fixed and therefore there’s no need
to specify them when constructing this class. The following example turns
the robot left:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.left()

	
backward(speed=1)

	Drive the robot backward by running both motors backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
forward(speed=1)

	Drive the robot forward by running both motors forward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters:	speed (float [https://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
values

	An infinite iterator of values read from value.

Energenie

	
class gpiozero.Energenie(socket=None, initial_value=False)

	Extends Device to represent an Energenie socket [https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI] controller.

This class is constructed with a socket number and an optional initial
state (defaults to False, meaning off). Instances of this class can
be used to switch peripherals on and off. For example:

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

	Parameters:	
	socket (int [https://docs.python.org/3.4/library/functions.html#int]) – Which socket this instance should control. This is an integer number
between 1 and 4.

	initial_value (bool [https://docs.python.org/3.4/library/functions.html#bool]) – The initial state of the socket. As Energenie sockets provide no
means of reading their state, you must provide an initial state for
the socket, which will be set upon construction. This defaults to
False which will switch the socket off.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
is_active

	Returns True if the device is currently active and False
otherwise. This property is usually derived from value. Unlike
value, this is always a boolean.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

	
values

	An infinite iterator of values read from value.

Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below:

[image: _images/composite_device_hierarchy.svg]For composite devices, the following chart shows which devices are composed of
which other devices:

[image: _images/composed_devices.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

LEDCollection

	
class gpiozero.LEDCollection(*args, **kwargs)

	Extends CompositeOutputDevice. Abstract base class for
LEDBoard and LEDBarGraph.

	
leds

	A flat iterator over all LEDs contained in this collection (and all
sub-collections).

CompositeOutputDevice

	
class gpiozero.CompositeOutputDevice(*args, _order=None, **kwargs)

	Extends CompositeDevice with on(), off(), and
toggle() methods for controlling subordinate output devices. Also
extends value to be writeable.

	Parameters:	_order (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – If specified, this is the order of named items specified by keyword
arguments (to ensure that the value tuple is constructed with a
specific order). All keyword arguments must be included in the
collection. If omitted, an alphabetically sorted order will be selected
for keyword arguments.

	
off()

	Turn all the output devices off.

	
on()

	Turn all the output devices on.

	
toggle()

	Toggle all the output devices. For each device, if it’s on, turn it
off; if it’s off, turn it on.

	
value

	A tuple containing a value for each subordinate device. This property
can also be set to update the state of all subordinate output devices.

CompositeDevice

	
class gpiozero.CompositeDevice(*args, _order=None, **kwargs)

	Extends Device. Represents a device composed of multiple devices
like simple HATs, H-bridge motor controllers, robots composed of multiple
motors, etc.

The constructor accepts subordinate devices as positional or keyword
arguments. Positional arguments form unnamed devices accessed via the
all attribute, while keyword arguments are added to the device
as named (read-only) attributes.

	Parameters:	_order (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – If specified, this is the order of named items specified by keyword
arguments (to ensure that the value tuple is constructed with a
specific order). All keyword arguments must be included in the
collection. If omitted, an alphabetically sorted order will be selected
for keyword arguments.

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

Internal Devices

GPIO Zero also provides several “internal” devices which represent facilities
provided by the operating system itself. These can be used to react to things
like the time of day, or whether a server is available on the network.

Warning

These devices are experimental and their API is not yet considered stable.
We welcome any comments from testers, especially regarding new “internal
devices” that you’d find useful!

TimeOfDay

	
class gpiozero.TimeOfDay(start_time, end_time, utc=True)

	Extends InternalDevice to provide a device which is active when
the computer’s clock indicates that the current time is between
start_time and end_time (inclusive) which are time [https://docs.python.org/3.4/library/datetime.html#datetime.time]
instances.

The following example turns on a lamp attached to an Energenie
plug between 7 and 8 AM:

from datetime import time
from gpiozero import TimeOfDay, Energenie
from signal import pause

lamp = Energenie(0)
morning = TimeOfDay(time(7), time(8))
morning.when_activated = lamp.on
morning.when_deactivated = lamp.off
pause()

	Parameters:	
	start_time (time [https://docs.python.org/3.4/library/datetime.html#datetime.time]) – The time from which the device will be considered active.

	end_time (time [https://docs.python.org/3.4/library/datetime.html#datetime.time]) – The time after which the device will be considered inactive.

	utc (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), a naive UTC time will be used for the
comparison rather than a local time-zone reading.

PingServer

	
class gpiozero.PingServer(host)

	Extends InternalDevice to provide a device which is active when a
host on the network can be pinged.

The following example lights an LED while a server is reachable (note the
use of source_delay to ensure the server is not
flooded with pings):

from gpiozero import PingServer, LED
from signal import pause

server = PingServer('my-server')
led = LED(4)
led.source_delay = 1
led.source = server.values
pause()

	Parameters:	host (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The hostname or IP address to attempt to ping.

Base Classes

The classes in the sections above are derived from a series of base classes,
some of which are effectively abstract. The classes form the (partial)
hierarchy displayed in the graph below:

[image: _images/other_device_hierarchy.svg]The following sections document these base classes for advanced users that wish
to construct classes for their own devices.

InternalDevice

	
class gpiozero.InternalDevice

	Extends Device to provide a basis for devices which have no
specific hardware representation. These are effectively pseudo-devices and
usually represent operating system services like the internal clock, file
systems or network facilities.

Generic Classes

The GPIO Zero class hierarchy is quite extensive. It contains several base
classes (most of which are documented in their corresponding chapters):

	Device is the root of the hierarchy, implementing base functionality
like close() and context manager handlers.

	GPIODevice represents individual devices that attach to a single
GPIO pin

	SPIDevice represents devices that communicate over an SPI interface
(implemented as four GPIO pins)

	InternalDevice represents devices that are entirely internal to
the Pi (usually operating system related services)

	CompositeDevice represents devices composed of multiple other
devices like HATs

There are also several mixin classes [https://en.wikipedia.org/wiki/Mixin] for adding important functionality
at numerous points in the hierarchy, which is illustrated below:

[image: _images/device_hierarchy.svg]
Device

	
class gpiozero.Device

	Represents a single device of any type; GPIO-based, SPI-based, I2C-based,
etc. This is the base class of the device hierarchy. It defines the
basic services applicable to all devices (specifically thhe is_active
property, the value property, and the close() method).

	
close()

	Shut down the device and release all associated resources. This method
can be called on an already closed device without raising an exception.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin(s) for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using
the with [https://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
is_active

	Returns True if the device is currently active and False
otherwise. This property is usually derived from value. Unlike
value, this is always a boolean.

	
value

	Returns a value representing the device’s state. Frequently, this is a
boolean value, or a number between 0 and 1 but some devices use larger
ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

ValuesMixin

	
class gpiozero.ValuesMixin(...)

	Adds a values property to the class which returns an infinite
generator of readings from the value property. There is rarely a
need to use this mixin directly as all base classes in GPIO Zero include
it.

Note

Use this mixin first in the parent class list.

	
values

	An infinite iterator of values read from value.

SourceMixin

	
class gpiozero.SourceMixin(...)

	Adds a source property to the class which, given an iterable, sets
value to each member of that iterable until it is exhausted. This
mixin is generally included in novel output devices to allow their state to
be driven from another device.

Note

Use this mixin first in the parent class list.

	
source

	The iterable to use as a source of values for value.

	
source_delay

	The delay (measured in seconds) in the loop used to read values from
source. Defaults to 0.01 seconds which is generally sufficient
to keep CPU usage to a minimum while providing adequate responsiveness.

SharedMixin

	
class gpiozero.SharedMixin(...)

	This mixin marks a class as “shared”. In this case, the meta-class
(GPIOMeta) will use _shared_key() to convert the constructor
arguments to an immutable key, and will check whether any existing
instances match that key. If they do, they will be returned by the
constructor instead of a new instance. An internal reference counter is
used to determine how many times an instance has been “constructed” in this
way.

When close() is called, an internal reference counter will be
decremented and the instance will only close when it reaches zero.

	
classmethod _shared_key(*args, **kwargs)

	Given the constructor arguments, returns an immutable key representing
the instance. The default simply assumes all positional arguments are
immutable.

EventsMixin

	
class gpiozero.EventsMixin(...)

	Adds edge-detected when_activated() and when_deactivated()
events to a device based on changes to the is_active
property common to all devices. Also adds wait_for_active() and
wait_for_inactive() methods for level-waiting.

Note

Note that this mixin provides no means of actually firing its events;
call _fire_events() in sub-classes when device state changes to
trigger the events. This should also be called once at the end of
initialization to set initial states.

	
wait_for_active(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
wait_for_inactive(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [https://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
active_time

	The length of time (in seconds) that the device has been active for.
When the device is inactive, this is None.

	
inactive_time

	The length of time (in seconds) that the device has been inactive for.
When the device is active, this is None.

	
when_activated

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_deactivated

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

HoldMixin

	
class gpiozero.HoldMixin(...)

	Extends EventsMixin to add the when_held event and the
machinery to fire that event repeatedly (when hold_repeat is
True) at internals defined by hold_time.

	
held_time

	The length of time (in seconds) that the device has been held for.
This is counted from the first execution of the when_held event
rather than when the device activated, in contrast to
active_time. If the device is not currently held,
this is None.

	
hold_repeat

	If True, when_held will be executed repeatedly with
hold_time seconds between each invocation.

	
hold_time

	The length of time (in seconds) to wait after the device is activated,
until executing the when_held handler. If hold_repeat
is True, this is also the length of time between invocations of
when_held.

	
is_held

	When True, the device has been active for at least
hold_time seconds.

	
when_held

	The function to run when the device has remained active for
hold_time seconds.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

Source Tools

GPIO Zero includes several utility routines which are intended to be used with
the source and
values attributes common to most devices in the
library. These utility routines are in the tools module of GPIO Zero and
are typically imported as follows:

from gpiozero.tools import scaled, negated, conjunction

Given that source and
values deal with infinite iterators, another
excellent source of utilities is the itertools [https://docs.python.org/3.4/library/itertools.html#module-itertools] module in the standard
library.

Warning

While the devices API is now considered stable and won’t change in
backwards incompatible ways, the tools API is not yet considered stable.
It is potentially subject to change in future versions. We welcome any
comments from testers!

Single source conversions

	
gpiozero.tools.absoluted(values)

	Returns values with all negative elements negated (so that they’re
positive). For example:

from gpiozero import PWMLED, Motor, MCP3008
from gpiozero.tools import absoluted, scaled
from signal import pause

led = PWMLED(4)
motor = Motor(22, 27)
pot = MCP3008(channel=0)
motor.source = scaled(pot.values, -1, 1)
led.source = absoluted(motor.values)
pause()

	
gpiozero.tools.clamped(values, output_min=0, output_max=1)

	Returns values clamped from output_min to output_max, i.e. any items
less than output_min will be returned as output_min and any items
larger than output_max will be returned as output_max (these default to
0 and 1 respectively). For example:

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import clamped
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = clamped(pot.values, 0.5, 1.0)
pause()

	
gpiozero.tools.inverted(values)

	Returns the inversion of the supplied values (1 becomes 0, 0 becomes 1,
0.1 becomes 0.9, etc.). For example:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import inverted
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = inverted(pot.values)
pause()

	
gpiozero.tools.negated(values)

	Returns the negation of the supplied values (True becomes False,
and False becomes True). For example:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)
led.source = negated(btn.values)
pause()

	
gpiozero.tools.post_delayed(values, delay)

	Waits for delay seconds after returning each item from values.

	
gpiozero.tools.pre_delayed(values, delay)

	Waits for delay seconds before returning each item from values.

	
gpiozero.tools.quantized(values, steps, output_min=0, output_max=1)

	Returns values quantized to steps increments. All items in values are
assumed to be between output_min and output_max (use scaled() to
ensure this if necessary).

For example, to quantize values between 0 and 1 to 5 “steps” (0.0, 0.25,
0.5, 0.75, 1.0):

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import quantized
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = quantized(pot.values, 4)
pause()

	
gpiozero.tools.queued(values, qsize)

	Queues up readings from values (the number of readings queued is
determined by qsize) and begins yielding values only when the queue is
full. For example, to “cascade” values along a sequence of LEDs:

from gpiozero import LEDBoard, Button
from gpiozero.tools import queued
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
btn = Button(17)
for i in range(4):
 leds[i].source = queued(leds[i + 1].values, 5)
 leds[i].source_delay = 0.01
leds[4].source = btn.values
pause()

	
gpiozero.tools.scaled(values, output_min, output_max, input_min=0, input_max=1)

	Returns values scaled from output_min to output_max, assuming that
all items in values lie between input_min and input_max (which
default to 0 and 1 respectively). For example, to control the direction of
a motor (which is represented as a value between -1 and 1) using a
potentiometer (which typically provides values between 0 and 1):

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008(channel=0)
motor.source = scaled(pot.values, -1, 1)
pause()

Warning

If values contains elements that lie outside input_min to
input_max (inclusive) then the function will not produce values that
lie within output_min to output_max (inclusive).

Combining sources

	
gpiozero.tools.all_values(*values)

	Returns the logical conjunction [https://en.wikipedia.org/wiki/Logical_conjunction] of all supplied values (the result is
only True if and only if all input values are simultaneously True).
One or more values can be specified. For example, to light an
LED only when both buttons are pressed:

from gpiozero import LED, Button
from gpiozero.tools import all_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)
led.source = all_values(btn1.values, btn2.values)
pause()

	
gpiozero.tools.any_values(*values)

	Returns the logical disjunction [https://en.wikipedia.org/wiki/Logical_disjunction] of all supplied values (the result is
True if any of the input values are currently True). One or more
values can be specified. For example, to light an LED when
any button is pressed:

from gpiozero import LED, Button
from gpiozero.tools import any_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)
led.source = any_values(btn1.values, btn2.values)
pause()

	
gpiozero.tools.averaged(*values)

	Returns the mean of all supplied values. One or more values can be
specified. For example, to light a PWMLED as the average of
several potentiometers connected to an MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import averaged
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)
led.source = averaged(pot1.values, pot2.values, pot3.values)
pause()

Artifical sources

	
gpiozero.tools.cos_values(period=360)

	Provides an infinite source of values representing a cosine wave (from -1
to +1) which repeats every period values. For example, to produce a
“siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import cos_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)
red.source_delay = 0.01
blue.source_delay = 0.01
red.source = scaled(cos_values(100), 0, 1, -1, 1)
blue.source = inverted(red.values)
pause()

If you require a different range than -1 to +1, see scaled().

	
gpiozero.tools.random_values()

	Provides an infinite source of random values between 0 and 1. For example,
to produce a “flickering candle” effect with an LED:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)
led.source = random_values()
pause()

If you require a wider range than 0 to 1, see scaled().

	
gpiozero.tools.sin_values(period=360)

	Provides an infinite source of values representing a sine wave (from -1 to
+1) which repeats every period values. For example, to produce a “siren”
effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import sin_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)
red.source_delay = 0.01
blue.source_delay = 0.01
red.source = scaled(sin_values(100), 0, 1, -1, 1)
blue.source = inverted(red.values)
pause()

If you require a different range than -1 to +1, see scaled().

Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two
things: pins and the devices that are connected to them. The majority of the
documentation focuses on devices as pins are below the level that most users
are concerned with. However, some users may wish to take advantage of the
capabilities of alternative GPIO implementations or (in future) use GPIO
extender chips. This is the purpose of the pins portion of the library.

When you construct a device, you pass in a GPIO pin number. However, what the
library actually expects is a Pin implementation. If it finds a simple
integer number instead, it uses one of the following classes to provide the
Pin implementation (classes are listed in favoured order):

	gpiozero.pins.rpigpio.RPiGPIOPin

	gpiozero.pins.rpio.RPIOPin

	gpiozero.pins.pigpiod.PiGPIOPin

	gpiozero.pins.native.NativePin

You can change the default pin implementation by over-writing the
DefaultPin global in the devices module like so:

from gpiozero.pins.native import NativePin
import gpiozero.devices
Force the default pin implementation to be NativePin
gpiozero.devices.DefaultPin = NativePin

from gpiozero import LED

This will now use NativePin instead of RPiGPIOPin
led = LED(16)

Alternatively, instead of passing an integer to the device constructor, you
can pass a Pin object itself:

from gpiozero.pins.native import NativePin
from gpiozero import LED

led = LED(NativePin(16))

This is particularly useful with implementations that can take extra parameters
such as PiGPIOPin which can address pins on
remote machines:

from gpiozero.pins.pigpiod import PiGPIOPin
from gpiozero import LED

led = LED(PiGPIOPin(16, host='my_other_pi'))

In future, this separation of pins and devices should also permit the library
to utilize pins that are part of IO extender chips. For example:

from gpiozero import IOExtender, LED

ext = IOExtender()
led = LED(ext.pins[0])
led.on()

Warning

While the devices API is now considered stable and won’t change in
backwards incompatible ways, the pins API is not yet considered stable.
It is potentially subject to change in future versions. We welcome any
comments from testers!

Warning

The astute and mischievous reader may note that it is possible to mix pin
implementations, e.g. using RPiGPIOPin for one pin, and NativePin
for another. This is unsupported, and if it results in your script
crashing, your components failing, or your Raspberry Pi turning into an
actual raspberry pie, you have only yourself to blame.

RPiGPIOPin

	
class gpiozero.pins.rpigpio.RPiGPIOPin

	Uses the RPi.GPIO [https://pypi.python.org/pypi/RPi.GPIO] library to interface to the Pi’s GPIO pins. This is
the default pin implementation if the RPi.GPIO library is installed.
Supports all features including PWM (via software).

Because this is the default pin implementation you can use it simply by
specifying an integer number for the pin in most operations, e.g.:

from gpiozero import LED

led = LED(12)

However, you can also construct RPi.GPIO pins manually if you wish:

from gpiozero.pins.rpigpio import RPiGPIOPin
from gpiozero import LED

led = LED(RPiGPIOPin(12))

RPIOPin

	
class gpiozero.pins.rpio.RPIOPin

	Uses the RPIO [https://pythonhosted.org/RPIO/] library to interface to the Pi’s GPIO pins. This is
the default pin implementation if the RPi.GPIO library is not installed,
but RPIO is. Supports all features including PWM (hardware via DMA).

Note

Please note that at the time of writing, RPIO is only compatible with
Pi 1’s; the Raspberry Pi 2 Model B is not supported. Also note that
root access is required so scripts must typically be run with sudo.

You can construct RPIO pins manually like so:

from gpiozero.pins.rpio import RPIOPin
from gpiozero import LED

led = LED(RPIOPin(12))

PiGPIOPin

	
class gpiozero.pins.pigpiod.PiGPIOPin

	Uses the pigpio [http://abyz.co.uk/rpi/pigpio/] library to interface to the Pi’s GPIO pins. The pigpio
library relies on a daemon (pigpiod) to be running as root to provide
access to the GPIO pins, and communicates with this daemon over a network
socket.

While this does mean only the daemon itself should control the pins, the
architecture does have several advantages:

	Pins can be remote controlled from another machine (the other
machine doesn’t even have to be a Raspberry Pi; it simply needs the
pigpio [http://abyz.co.uk/rpi/pigpio/] client library installed on it)

	The daemon supports hardware PWM via the DMA controller

	Your script itself doesn’t require root privileges; it just needs to
be able to communicate with the daemon

You can construct pigpiod pins manually like so:

from gpiozero.pins.pigpiod import PiGPIOPin
from gpiozero import LED

led = LED(PiGPIOPin(12))

This is particularly useful for controlling pins on a remote machine. To
accomplish this simply specify the host (and optionally port) when
constructing the pin:

from gpiozero.pins.pigpiod import PiGPIOPin
from gpiozero import LED
from signal import pause

led = LED(PiGPIOPin(12, host='192.168.0.2'))

Note

In some circumstances, especially when playing with PWM, it does appear
to be possible to get the daemon into “unusual” states. We would be
most interested to hear any bug reports relating to this (it may be a
bug in our pin implementation). A workaround for now is simply to
restart the pigpiod daemon.

NativePin

	
class gpiozero.pins.native.NativePin

	Uses a built-in pure Python implementation to interface to the Pi’s GPIO
pins. This is the default pin implementation if no third-party libraries
are discovered.

Warning

This implementation does not currently support PWM. Attempting to
use any class which requests PWM will raise an exception. This
implementation is also experimental; we make no guarantees it will
not eat your Pi for breakfast!

You can construct native pin instances manually like so:

from gpiozero.pins.native import NativePin
from gpiozero import LED

led = LED(NativePin(12))

Abstract Pin

	
class gpiozero.Pin

	Abstract base class representing a GPIO pin or a pin from an IO extender.

Descendents should override property getters and setters to accurately
represent the capabilities of pins. The following functions must be
overridden:

	_get_function()

	_set_function()

	_get_state()

The following functions may be overridden if applicable:

	close()

	_set_state()

	_get_frequency()

	_set_frequency()

	_get_pull()

	_set_pull()

	_get_bounce()

	_set_bounce()

	_get_edges()

	_set_edges()

	_get_when_changed()

	_set_when_changed()

	output_with_state()

	input_with_pull()

Warning

Descendents must ensure that pin instances representing the same
physical hardware are identical, right down to object identity. The
framework relies on this to correctly clean up resources at interpreter
shutdown.

	
close()

	Cleans up the resources allocated to the pin. After this method is
called, this Pin instance may no longer be used to query or
control the pin’s state.

	
input_with_pull(pull)

	Sets the pin’s function to “input” and specifies an initial pull-up
for the pin. By default this is equivalent to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest
possible delay between configuring the pin for input and pulling the
pin up/down (which can be important for avoiding “blips” in some
configurations).

	
output_with_state(state)

	Sets the pin’s function to “output” and specifies an initial state
for the pin. By default this is equivalent to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest
possible delay between configuring the pin for output and specifying an
initial value (which can be important for avoiding “blips” in
active-low configurations).

	
bounce

	The amount of bounce detection (elimination) currently in use by edge
detection, measured in seconds. If bounce detection is not currently in
use, this is None.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported. If the pin
supports edge detection, the class must implement bounce detection,
even if only in software.

	
edges

	The edge that will trigger execution of the function or bound method
assigned to when_changed. This can be one of the strings
“both” (the default), “rising”, “falling”, or “none”.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported.

	
frequency

	The frequency (in Hz) for the pin’s PWM implementation, or None if
PWM is not currently in use. This value always defaults to None and
may be changed with certain pin types to activate or deactivate PWM.

If the pin does not support PWM, PinPWMUnsupported will be
raised when attempting to set this to a value other than None.

	
function

	The function of the pin. This property is a string indicating the
current function or purpose of the pin. Typically this is the string
“input” or “output”. However, in some circumstances it can be other
strings indicating non-GPIO related functionality.

With certain pin types (e.g. GPIO pins), this attribute can be changed
to configure the function of a pin. If an invalid function is
specified, for this attribute, PinInvalidFunction will be
raised.

	
pull

	The pull-up state of the pin represented as a string. This is typically
one of the strings “up”, “down”, or “floating” but additional values
may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because
of a fixed pull-up resistor), attempts to set this property will raise
PinFixedPull. If the specified value is not supported by the
underlying hardware, PinInvalidPull is raised.

	
state

	The state of the pin. This is 0 for low, and 1 for high. As a low level
view of the pin, no swapping is performed in the case of pull ups (see
pull for more information).

If PWM is currently active (when frequency is not None),
this represents the PWM duty cycle as a value between 0.0 and 1.0.

If a pin is currently configured for input, and an attempt is made to
set this attribute, PinSetInput will be raised. If an invalid
value is specified for this attribute, PinInvalidState will be
raised.

	
when_changed

	A function or bound method to be called when the pin’s state changes
(more specifically when the edge specified by edges is detected
on the pin). The function or bound method must take no parameters.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported.

Utilities

The pins module also contains a database of information about the various
revisions of Raspberry Pi. This is used internally to raise warnings when
non-physical pins are used, or to raise exceptions when pull-downs are
requested on pins with physical pull-up resistors attached. The following
functions and classes can be used to query this database:

	
gpiozero.pi_info(revision=None)

	Returns a PiBoardInfo instance containing information about a
revision of the Raspberry Pi.

	Parameters:	revision (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The revision of the Pi to return information about. If this is omitted
or None (the default), then the library will attempt to determine
the model of Pi it is running on and return information about that.

	
class gpiozero.PiBoardInfo

	This class is a namedtuple() [https://docs.python.org/3.4/library/collections.html#collections.namedtuple] derivative used to
represent information about a particular model of Raspberry Pi. While it is
a tuple, it is strongly recommended that you use the following named
attributes to access the data contained within.

	
revision

	A string indicating the revision of the Pi. This is unique to each
revision and can be considered the “key” from which all other
attributes are derived. However, in itself the string is fairly
meaningless.

	
model

	A string containing the model of the Pi (for example, “B”, “B+”, “A+”,
“2B”, “CM” (for the Compute Module), or “Zero”).

	
pcb_revision

	A string containing the PCB revision number which is silk-screened onto
the Pi (on some models).

Note

This is primarily useful to distinguish between the model B
revision 1.0 and 2.0 (not to be confused with the model 2B) which
had slightly different pinouts on their 26-pin GPIO headers.

	
released

	A string containing an approximate release date for this revision of
the Pi (formatted as yyyyQq, e.g. 2012Q1 means the first quarter of
2012).

	
soc

	A string indicating the SoC (system on a chip [https://en.wikipedia.org/wiki/System_on_a_chip]) that this revision
of the Pi is based upon.

	
manufacturer

	A string indicating the name of the manufacturer (usually “Sony” but a
few others exist).

	
memory

	An integer indicating the amount of memory (in Mb) connected to the
SoC.

Note

This can differ substantially from the amount of RAM available
to the operating system as the GPU’s memory is shared with the
CPU. When the camera module is activated, at least 128Mb of RAM
is typically reserved for the GPU.

	
storage

	A string indicating the type of bootable storage used with this
revision of Pi, e.g. “SD”, “MicroSD”, or “eMMC” (for the Compute
Module).

	
usb

	An integer indicating how many USB ports are physically present on
this revision of the Pi.

Note

This does not include the micro-USB port used to power the Pi.
On the Compute Module this is listed as 0 as the compute module
itself doesn’t have any physical USB headers, despite providing one
on the I/O development board and having the pins for one on the
module itself.

	
ethernet

	An integer indicating how many Ethernet ports are physically present
on this revision of the Pi.

	
wifi

	A bool indicating whether this revision of the Pi has wifi built-in.

	
bluetooth

	A bool indicating whether this revision of the Pi has bluetooth
built-in.

	
csi

	An integer indicating the number of CSI (camera) ports available on
this revision of the Pi.

	
dsi

	An integer indicating the number of DSI (display) ports available on
this revision of the Pi.

	
headers

	A dictionary which maps header labels to dictionaries which map
physical pin numbers to PinInfo tuples. For example, to obtain
information about pin 12 on header P1 you would query
headers['P1'][12].

	
class gpiozero.PinInfo

	This class is a namedtuple() [https://docs.python.org/3.4/library/collections.html#collections.namedtuple] derivative used to
represent information about a pin present on a GPIO header. The following
attributes are defined:

	
number

	An integer containing the physical pin number on the header (starting
from 1 in accordance with convention).

	
function

	A string describing the function of the pin. Some common examples
include “GND” (for pins connecting to ground), “3V3” (for pins which
output 3.3 volts), “GPIO9” (for GPIO9 in the Broadcom numbering
scheme), etc.

	
pull_up

	A bool indicating whether the pin has a physical pull-up resistor
permanently attached (this is usually False but GPIO2 and GPIO3
are usually True). This is used internally by gpiozero to raise
errors when pull-down is requested on a pin with a physical pull-up
resistor.

Exceptions

The following exceptions are defined by GPIO Zero. Please note that multiple
inheritance is heavily used in the exception hierarchy to make testing for
exceptions easier. For example, to capture any exception generated by GPIO
Zero’s code:

from gpiozero import *

led = PWMLED(17)
try:
 led.value = 2
except GPIOZeroError:
 print('A GPIO Zero error occurred')

Since all GPIO Zero’s exceptions descend from GPIOZeroError, this will
work. However, certain specific errors have multiple parents. For example, in
the case that an out of range value is passed to OutputDevice.value you
would expect a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] to be raised. In fact, a
OutputDeviceBadValue error will be raised. However, note that this
descends from both GPIOZeroError (indirectly) and from ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError]
so you can still do:

from gpiozero import *

led = PWMLED(17)
try:
 led.value = 2
except ValueError:
 print('Bad value specified')

Errors

	
exception gpiozero.GPIOZeroError

	Base class for all exceptions in GPIO Zero

	
exception gpiozero.DeviceClosed

	Error raised when an operation is attempted on a closed device

	
exception gpiozero.BadEventHandler

	Error raised when an event handler with an incompatible prototype is specified

	
exception gpiozero.BadQueueLen

	Error raised when non-positive queue length is specified

	
exception gpiozero.BadWaitTime

	Error raised when an invalid wait time is specified

	
exception gpiozero.CompositeDeviceError

	Base class for errors specific to the CompositeDevice hierarchy

	
exception gpiozero.CompositeDeviceBadName

	Error raised when a composite device is constructed with a reserved name

	
exception gpiozero.EnergenieSocketMissing

	Error raised when socket number is not specified

	
exception gpiozero.EnergenieBadSocket

	Error raised when an invalid socket number is passed to Energenie

	
exception gpiozero.SPIError

	Base class for errors related to the SPI implementation

	
exception gpiozero.SPIBadArgs

	Error raised when invalid arguments are given while constructing SPIDevice

	
exception gpiozero.GPIODeviceError

	Base class for errors specific to the GPIODevice hierarchy

	
exception gpiozero.GPIODeviceClosed

	Deprecated descendent of DeviceClosed

	
exception gpiozero.GPIOPinInUse

	Error raised when attempting to use a pin already in use by another device

	
exception gpiozero.GPIOPinMissing

	Error raised when a pin number is not specified

	
exception gpiozero.InputDeviceError

	Base class for errors specific to the InputDevice hierarchy

	
exception gpiozero.OutputDeviceError

	Base class for errors specified to the OutputDevice hierarchy

	
exception gpiozero.OutputDeviceBadValue

	Error raised when value is set to an invalid value

	
exception gpiozero.PinError

	Base class for errors related to pin implementations

	
exception gpiozero.PinInvalidFunction

	Error raised when attempting to change the function of a pin to an invalid value

	
exception gpiozero.PinInvalidState

	Error raised when attempting to assign an invalid state to a pin

	
exception gpiozero.PinInvalidPull

	Error raised when attempting to assign an invalid pull-up to a pin

	
exception gpiozero.PinInvalidEdges

	Error raised when attempting to assign an invalid edge detection to a pin

	
exception gpiozero.PinSetInput

	Error raised when attempting to set a read-only pin

	
exception gpiozero.PinFixedPull

	Error raised when attempting to set the pull of a pin with fixed pull-up

	
exception gpiozero.PinEdgeDetectUnsupported

	Error raised when attempting to use edge detection on unsupported pins

	
exception gpiozero.PinPWMError

	Base class for errors related to PWM implementations

	
exception gpiozero.PinPWMUnsupported

	Error raised when attempting to activate PWM on unsupported pins

	
exception gpiozero.PinPWMFixedValue

	Error raised when attempting to initialize PWM on an input pin

	
exception gpiozero.PinMultiplePins

	Error raised when multiple pins support the requested function

	
exception gpiozero.PinNoPins

	Error raised when no pins support the requested function

	
exception gpiozero.PinUnknownPi

	Error raised when gpiozero doesn’t recognize a revision of the Pi

Warnings

	
exception gpiozero.GPIOZeroWarning

	Base class for all warnings in GPIO Zero

	
exception gpiozero.SPIWarning

	Base class for warnings related to the SPI implementation

	
exception gpiozero.SPISoftwareFallback

	Warning raised when falling back to the software implementation

Changelog

Release 1.2.0 (2016-04-10)

	Added Energenie class for controlling Energenie plugs (#69 [https://github.com/RPi-Distro/python-gpiozero/issues/69])

	Added LineSensor class for single line-sensors (#109 [https://github.com/RPi-Distro/python-gpiozero/issues/109])

	Added DistanceSensor class for HC-SR04 ultra-sonic sensors (#114 [https://github.com/RPi-Distro/python-gpiozero/issues/114])

	Added SnowPi class for the Ryanteck Snow-pi board (#130 [https://github.com/RPi-Distro/python-gpiozero/issues/130])

	Added when_held (and related properties) to Button
(#115 [https://github.com/RPi-Distro/python-gpiozero/issues/115])

	Fixed issues with installing GPIO Zero for python 3 on Raspbian Wheezy
releases (#140 [https://github.com/RPi-Distro/python-gpiozero/issues/140])

	Added support for lots of ADC chips (MCP3xxx family) (#162 [https://github.com/RPi-Distro/python-gpiozero/issues/162]) - many thanks
to pcopa and lurch!

	Added support for pigpiod as a pin implementation with
PiGPIOPin (#180 [https://github.com/RPi-Distro/python-gpiozero/issues/180])

	Many refinements to the base classes mean more consistency in composite
devices and several bugs squashed (#164 [https://github.com/RPi-Distro/python-gpiozero/issues/164], #175 [https://github.com/RPi-Distro/python-gpiozero/issues/175], #182 [https://github.com/RPi-Distro/python-gpiozero/issues/182], #189 [https://github.com/RPi-Distro/python-gpiozero/issues/189],
#193 [https://github.com/RPi-Distro/python-gpiozero/issues/193], #229 [https://github.com/RPi-Distro/python-gpiozero/issues/229])

	GPIO Zero is now aware of what sort of Pi it’s running on via pi_info()
and has a fairly extensive database of Pi information which it uses to
determine when users request impossible things (like pull-down on a pin with
a physical pull-up resistor) (#222 [https://github.com/RPi-Distro/python-gpiozero/issues/222])

	The source/values system was enhanced to ensure normal usage doesn’t stress
the CPU and lots of utilities were added (#181 [https://github.com/RPi-Distro/python-gpiozero/issues/181], #251 [https://github.com/RPi-Distro/python-gpiozero/issues/251])

And I’ll just add a note of thanks to the many people in the community who
contributed to this release: we’ve had some great PRs, suggestions, and bug
reports in this version. Of particular note:

	Schelto van Doorn was instrumental in adding support for numerous ADC chips

	Alex Eames generously donated a RasPiO Analog board which was extremely
useful in developing the software SPI interface (and testing the ADC support)

	Andrew Scheller squashed several dozen bugs (usually a day or so after Dave
had introduced them ;)

As always, many thanks to the whole community - we look forward to hearing from
you more in 1.3!

Release 1.1.0 (2016-02-08)

	Documentation converted to reST and expanded to include generic classes
and several more recipes (#80 [https://github.com/RPi-Distro/python-gpiozero/issues/80], #82 [https://github.com/RPi-Distro/python-gpiozero/issues/82], #101 [https://github.com/RPi-Distro/python-gpiozero/issues/101], #119 [https://github.com/RPi-Distro/python-gpiozero/issues/119], #135 [https://github.com/RPi-Distro/python-gpiozero/issues/135], #168 [https://github.com/RPi-Distro/python-gpiozero/issues/168])

	New CamJamKitRobot class with the pre-defined motor pins for the new
CamJam EduKit

	New LEDBarGraph class (many thanks to Martin O’Hanlon!) (#126 [https://github.com/RPi-Distro/python-gpiozero/issues/126],
#176 [https://github.com/RPi-Distro/python-gpiozero/issues/176])

	New Pin implementation abstracts out the concept of a GPIO pin
paving the way for alternate library support and IO extenders in future
(#141 [https://github.com/RPi-Distro/python-gpiozero/issues/141])

	New LEDBoard.blink() method which works properly even when background
is set to False (#94 [https://github.com/RPi-Distro/python-gpiozero/issues/94], #161 [https://github.com/RPi-Distro/python-gpiozero/issues/161])

	New RGBLED.blink() method which implements (rudimentary) color fading
too! (#135 [https://github.com/RPi-Distro/python-gpiozero/issues/135], #174 [https://github.com/RPi-Distro/python-gpiozero/issues/174])

	New initial_value attribute on OutputDevice ensures consistent
behaviour on construction (#118 [https://github.com/RPi-Distro/python-gpiozero/issues/118])

	New active_high attribute on PWMOutputDevice and RGBLED
allows use of common anode devices (#143 [https://github.com/RPi-Distro/python-gpiozero/issues/143], #154 [https://github.com/RPi-Distro/python-gpiozero/issues/154])

	Loads of new ADC chips supported (many thanks to GitHub user pcopa!)
(#150 [https://github.com/RPi-Distro/python-gpiozero/issues/150])

Release 1.0.0 (2015-11-16)

	Debian packaging added (#44 [https://github.com/RPi-Distro/python-gpiozero/issues/44])

	PWMLED class added (#58 [https://github.com/RPi-Distro/python-gpiozero/issues/58])

	TemperatureSensor removed pending further work (#93 [https://github.com/RPi-Distro/python-gpiozero/issues/93])

	Buzzer.beep() alias method added (#75 [https://github.com/RPi-Distro/python-gpiozero/issues/75])

	Motor PWM devices exposed, and Robot motor devices exposed
(#107 [https://github.com/RPi-Distro/python-gpiozero/issues/107])

Release 0.9.0 (2015-10-25)

Fourth public beta

	Added source and values properties to all relevant classes (#76 [https://github.com/RPi-Distro/python-gpiozero/issues/76])

	Fix names of parameters in Motor constructor (#79 [https://github.com/RPi-Distro/python-gpiozero/issues/79])

	Added wrappers for LED groups on add-on boards (#81 [https://github.com/RPi-Distro/python-gpiozero/issues/81])

Release 0.8.0 (2015-10-16)

Third public beta

	Added generic AnalogInputDevice class along with specific classes
for the MCP3008 and MCP3004 (#41 [https://github.com/RPi-Distro/python-gpiozero/issues/41])

	Fixed DigitalOutputDevice.blink() (#57 [https://github.com/RPi-Distro/python-gpiozero/issues/57])

Release 0.7.0 (2015-10-09)

Second public beta

Release 0.6.0 (2015-09-28)

First public beta

Release 0.5.0 (2015-09-24)

Release 0.4.0 (2015-09-23)

Release 0.3.0 (2015-09-22)

Release 0.2.0 (2015-09-21)

Initial release

License

Copyright 2015 Raspberry Pi Foundation [http://raspberrypi.org/].

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_shared_key() (gpiozero.SharedMixin class method)

A

 	
 	absoluted() (in module gpiozero.tools)

 	active_high (gpiozero.OutputDevice attribute)

 	active_time (gpiozero.EventsMixin attribute)

 	
 	all_values() (in module gpiozero.tools)

 	AnalogInputDevice (class in gpiozero)

 	any_values() (in module gpiozero.tools)

 	averaged() (in module gpiozero.tools)

B

 	
 	backward() (gpiozero.CamJamKitRobot method)

 	(gpiozero.Motor method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	BadEventHandler

 	BadQueueLen

 	BadWaitTime

 	beep() (gpiozero.Buzzer method)

 	bits (gpiozero.AnalogInputDevice attribute)

 	blink() (gpiozero.DigitalOutputDevice method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficLights method)

 	
 	bluetooth (gpiozero.PiBoardInfo attribute)

 	bounce (gpiozero.Pin attribute)

 	Button (class in gpiozero)

 	Buzzer (class in gpiozero)

C

 	
 	CamJamKitRobot (class in gpiozero)

 	channel (gpiozero.MCP3002 attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3202 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	clamped() (in module gpiozero.tools)

 	close() (gpiozero.CompositeDevice method)

 	(gpiozero.Device method)

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.Energenie method)

 	(gpiozero.GPIODevice method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.Pin method)

 	(gpiozero.SPIDevice method)

 	(gpiozero.SmoothedInputDevice method)

 	(gpiozero.TrafficLights method)

 	
 	closed (gpiozero.Device attribute)

 	color (gpiozero.RGBLED attribute)

 	CompositeDevice (class in gpiozero)

 	CompositeDeviceBadName

 	CompositeDeviceError

 	CompositeOutputDevice (class in gpiozero)

 	cos_values() (in module gpiozero.tools)

 	csi (gpiozero.PiBoardInfo attribute)

D

 	
 	Device (class in gpiozero)

 	DeviceClosed

 	differential (gpiozero.MCP3002 attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3202 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	
 	DigitalInputDevice (class in gpiozero)

 	DigitalOutputDevice (class in gpiozero)

 	distance (gpiozero.DistanceSensor attribute)

 	DistanceSensor (class in gpiozero)

 	dsi (gpiozero.PiBoardInfo attribute)

E

 	
 	echo (gpiozero.DistanceSensor attribute)

 	edges (gpiozero.Pin attribute)

 	Energenie (class in gpiozero)

 	
 	EnergenieBadSocket

 	EnergenieSocketMissing

 	ethernet (gpiozero.PiBoardInfo attribute)

 	EventsMixin (class in gpiozero)

F

 	
 	FishDish (class in gpiozero)

 	forward() (gpiozero.CamJamKitRobot method)

 	(gpiozero.Motor method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	
 	frequency (gpiozero.Pin attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	function (gpiozero.Pin attribute)

 	(gpiozero.PinInfo attribute)

G

 	
 	GPIODevice (class in gpiozero)

 	GPIODeviceClosed

 	GPIODeviceError

 	
 	GPIOPinInUse

 	GPIOPinMissing

 	GPIOZeroError

 	GPIOZeroWarning

H

 	
 	headers (gpiozero.PiBoardInfo attribute)

 	held_time (gpiozero.HoldMixin attribute)

 	
 	hold_repeat (gpiozero.HoldMixin attribute)

 	hold_time (gpiozero.HoldMixin attribute)

 	HoldMixin (class in gpiozero)

I

 	
 	inactive_time (gpiozero.EventsMixin attribute)

 	input_with_pull() (gpiozero.Pin method)

 	InputDevice (class in gpiozero)

 	InputDeviceError

 	InternalDevice (class in gpiozero)

 	inverted() (in module gpiozero.tools)

 	is_active (gpiozero.Buzzer attribute)

 	(gpiozero.Device attribute)

 	(gpiozero.Energenie attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.SmoothedInputDevice attribute)

 	
 	is_held (gpiozero.HoldMixin attribute)

 	is_lit (gpiozero.LED attribute)

 	(gpiozero.PWMLED attribute)

 	(gpiozero.RGBLED attribute)

 	is_pressed (gpiozero.Button attribute)

L

 	
 	LED (class in gpiozero)

 	LEDBarGraph (class in gpiozero)

 	LEDBoard (class in gpiozero)

 	LEDCollection (class in gpiozero)

 	leds (gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.LEDCollection attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.TrafficLights attribute)

 	
 	left() (gpiozero.CamJamKitRobot method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	light_detected (gpiozero.LightSensor attribute)

 	LightSensor (class in gpiozero)

 	LineSensor (class in gpiozero)

M

 	
 	manufacturer (gpiozero.PiBoardInfo attribute)

 	max_distance (gpiozero.DistanceSensor attribute)

 	MCP3001 (class in gpiozero)

 	MCP3002 (class in gpiozero)

 	MCP3004 (class in gpiozero)

 	MCP3008 (class in gpiozero)

 	MCP3201 (class in gpiozero)

 	MCP3202 (class in gpiozero)

 	MCP3204 (class in gpiozero)

 	
 	MCP3208 (class in gpiozero)

 	MCP3301 (class in gpiozero)

 	MCP3302 (class in gpiozero)

 	MCP3304 (class in gpiozero)

 	memory (gpiozero.PiBoardInfo attribute)

 	model (gpiozero.PiBoardInfo attribute)

 	motion_detected (gpiozero.MotionSensor attribute)

 	MotionSensor (class in gpiozero)

 	Motor (class in gpiozero)

N

 	
 	NativePin (class in gpiozero.pins.native)

 	
 	negated() (in module gpiozero.tools)

 	number (gpiozero.PinInfo attribute)

O

 	
 	off() (gpiozero.Buzzer method)

 	(gpiozero.CompositeOutputDevice method)

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	on() (gpiozero.Buzzer method)

 	(gpiozero.CompositeOutputDevice method)

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	
 	output_with_state() (gpiozero.Pin method)

 	OutputDevice (class in gpiozero)

 	OutputDeviceBadValue

 	OutputDeviceError

P

 	
 	partial (gpiozero.SmoothedInputDevice attribute)

 	pcb_revision (gpiozero.PiBoardInfo attribute)

 	pi_info() (in module gpiozero)

 	PiBoardInfo (class in gpiozero)

 	PiGPIOPin (class in gpiozero.pins.pigpiod)

 	PiLiter (class in gpiozero)

 	PiLiterBarGraph (class in gpiozero)

 	Pin (class in gpiozero)

 	pin (gpiozero.Button attribute)

 	(gpiozero.Buzzer attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.LED attribute)

 	(gpiozero.LightSensor attribute)

 	(gpiozero.LineSensor attribute)

 	(gpiozero.MotionSensor attribute)

 	(gpiozero.PWMLED attribute)

 	PinEdgeDetectUnsupported

 	PinError

 	PinFixedPull

 	PingServer (class in gpiozero)

 	PinInfo (class in gpiozero)

 	PinInvalidEdges

 	PinInvalidFunction

 	
 	PinInvalidPull

 	PinInvalidState

 	PinMultiplePins

 	PinNoPins

 	PinPWMError

 	PinPWMFixedValue

 	PinPWMUnsupported

 	PinSetInput

 	PinUnknownPi

 	PiTraffic (class in gpiozero)

 	post_delayed() (in module gpiozero.tools)

 	pre_delayed() (in module gpiozero.tools)

 	pull (gpiozero.Pin attribute)

 	pull_up (gpiozero.Button attribute)

 	(gpiozero.InputDevice attribute)

 	(gpiozero.PinInfo attribute)

 	pulse() (gpiozero.LEDBoard method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.TrafficLights method)

 	PWMLED (class in gpiozero)

 	PWMOutputDevice (class in gpiozero)

Q

 	
 	quantized() (in module gpiozero.tools)

 	
 	queue_len (gpiozero.SmoothedInputDevice attribute)

 	queued() (in module gpiozero.tools)

R

 	
 	random_values() (in module gpiozero.tools)

 	raw_value (gpiozero.AnalogInputDevice attribute)

 	released (gpiozero.PiBoardInfo attribute)

 	reverse() (gpiozero.CamJamKitRobot method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	revision (gpiozero.PiBoardInfo attribute)

 	
 	RGBLED (class in gpiozero)

 	right() (gpiozero.CamJamKitRobot method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	Robot (class in gpiozero)

 	RPiGPIOPin (class in gpiozero.pins.rpigpio)

 	RPIOPin (class in gpiozero.pins.rpio)

 	RyanteckRobot (class in gpiozero)

S

 	
 	scaled() (in module gpiozero.tools)

 	SharedMixin (class in gpiozero)

 	sin_values() (in module gpiozero.tools)

 	SmoothedInputDevice (class in gpiozero)

 	soc (gpiozero.PiBoardInfo attribute)

 	source (gpiozero.CamJamKitRobot attribute)

 	(gpiozero.Energenie attribute)

 	(gpiozero.FishDish attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	(gpiozero.SourceMixin attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	source_delay (gpiozero.CamJamKitRobot attribute)

 	(gpiozero.Energenie attribute)

 	(gpiozero.FishDish attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	(gpiozero.SourceMixin attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	
 	SourceMixin (class in gpiozero)

 	SPIBadArgs

 	SPIDevice (class in gpiozero)

 	SPIError

 	SPISoftwareFallback

 	SPIWarning

 	state (gpiozero.Pin attribute)

 	stop() (gpiozero.CamJamKitRobot method)

 	(gpiozero.Motor method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	storage (gpiozero.PiBoardInfo attribute)

T

 	
 	threshold (gpiozero.SmoothedInputDevice attribute)

 	threshold_distance (gpiozero.DistanceSensor attribute)

 	TimeOfDay (class in gpiozero)

 	toggle() (gpiozero.Buzzer method)

 	(gpiozero.CompositeOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	
 	TrafficHat (class in gpiozero)

 	TrafficLights (class in gpiozero)

 	TrafficLightsBuzzer (class in gpiozero)

 	trigger (gpiozero.DistanceSensor attribute)

U

 	
 	usb (gpiozero.PiBoardInfo attribute)

V

 	
 	value (gpiozero.AnalogInputDevice attribute)

 	(gpiozero.CompositeOutputDevice attribute)

 	(gpiozero.Device attribute)

 	(gpiozero.FishDish attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.MCP3001 attribute)

 	(gpiozero.MCP3002 attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3201 attribute)

 	(gpiozero.MCP3202 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3301 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	(gpiozero.OutputDevice attribute)

 	(gpiozero.PWMLED attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.SmoothedInputDevice attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	
 	values (gpiozero.CamJamKitRobot attribute)

 	(gpiozero.Energenie attribute)

 	(gpiozero.FishDish attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	(gpiozero.ValuesMixin attribute)

 	ValuesMixin (class in gpiozero)

W

 	
 	wait_for_active() (gpiozero.EventsMixin method)

 	wait_for_dark() (gpiozero.LightSensor method)

 	wait_for_in_range() (gpiozero.DistanceSensor method)

 	wait_for_inactive() (gpiozero.EventsMixin method)

 	wait_for_light() (gpiozero.LightSensor method)

 	wait_for_line() (gpiozero.LineSensor method)

 	wait_for_motion() (gpiozero.MotionSensor method)

 	wait_for_no_line() (gpiozero.LineSensor method)

 	wait_for_no_motion() (gpiozero.MotionSensor method)

 	wait_for_out_of_range() (gpiozero.DistanceSensor method)

 	wait_for_press() (gpiozero.Button method)

 	wait_for_release() (gpiozero.Button method)

 	when_activated (gpiozero.EventsMixin attribute)

 	
 	when_changed (gpiozero.Pin attribute)

 	when_dark (gpiozero.LightSensor attribute)

 	when_deactivated (gpiozero.EventsMixin attribute)

 	when_held (gpiozero.HoldMixin attribute)

 	when_in_range (gpiozero.DistanceSensor attribute)

 	when_light (gpiozero.LightSensor attribute)

 	when_line (gpiozero.LineSensor attribute)

 	when_motion (gpiozero.MotionSensor attribute)

 	when_no_line (gpiozero.LineSensor attribute)

 	when_no_motion (gpiozero.MotionSensor attribute)

 	when_out_of_range (gpiozero.DistanceSensor attribute)

 	when_pressed (gpiozero.Button attribute)

 	when_released (gpiozero.Button attribute)

 	wifi (gpiozero.PiBoardInfo attribute)

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		gpiozero

 		Recipes

 		Pin Numbering

 		LED

 		Button

 		Button controlled LED

 		Traffic Lights

 		Push button stop motion

 		Reaction Game

 		GPIO Music Box

 		All on when pressed

 		RGB LED

 		Motion sensor

 		Light sensor

 		Distance sensor

 		Motors

 		Robot

 		Button controlled robot

 		Keyboard controlled robot

 		Motion sensor robot

 		Potentiometer

 		Measure temperature with an ADC

 		Full color LED controlled by 3 potentiometers

 		Controlling the Pi's own LEDs

 		Notes

 		Keep your script running

 		Importing from GPIO Zero

 		Input Devices

 		Button

 		Line Sensor (TRCT5000)

 		Motion Sensor (D-SUN PIR)

 		Light Sensor (LDR)

 		Distance Sensor (HC-SR04)

 		Base Classes

 		DigitalInputDevice

 		SmoothedInputDevice

 		InputDevice

 		GPIODevice

 		Output Devices

 		LED

 		PWMLED

 		RGBLED

 		Buzzer

 		Motor

 		Base Classes

 		DigitalOutputDevice

 		PWMOutputDevice

 		OutputDevice

 		GPIODevice

 		SPI Devices

 		SPI keyword args

 		Analog to Digital Converters (ADC)

 		Base Classes

 		AnalogInputDevice

 		SPIDevice

 		Boards and Accessories

 		LEDBoard

 		LEDBarGraph

 		TrafficLights

 		PiLITEr

 		PiLITEr Bar Graph

 		PI-TRAFFIC

 		TrafficLightsBuzzer

 		Fish Dish

 		Traffic HAT

 		Robot

 		Ryanteck MCB Robot

 		CamJam #3 Kit Robot

 		Energenie

 		Base Classes

 		LEDCollection

 		CompositeOutputDevice

 		CompositeDevice

 		Internal Devices

 		TimeOfDay

 		PingServer

 		Base Classes

 		InternalDevice

 		Generic Classes

 		Device

 		ValuesMixin

 		SourceMixin

 		SharedMixin

 		EventsMixin

 		HoldMixin

 		Source Tools

 		Single source conversions

 		Combining sources

 		Artifical sources

 		Pins

 		RPiGPIOPin

 		RPIOPin

 		PiGPIOPin

 		NativePin

 		Abstract Pin

 		Utilities

 		Exceptions

 		Errors

 		Warnings

 		Changelog

 		Release 1.2.0 (2016-04-10)

 		Release 1.1.0 (2016-02-08)

 		Release 1.0.0 (2015-11-16)

 		Release 0.9.0 (2015-10-25)

 		Release 0.8.0 (2015-10-16)

 		Release 0.7.0 (2015-10-09)

 		Release 0.6.0 (2015-09-28)

 		Release 0.5.0 (2015-09-24)

 		Release 0.4.0 (2015-09-23)

 		Release 0.3.0 (2015-09-22)

 		Release 0.2.0 (2015-09-21)

 		License

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/led.png

_images/button.png
abocde
THEEEN

.
.
L

NEEEEN EEEEND2
BNEEEENR EEEEN

.

o
.
.
.
.
.
.
.
.

