

    
      Navigation

      
        	
          index

        	goless 0.6.0 documentation 
 
      

    


    
      
          
            
  
goless: Go-style Python


	Intro

	Goroutines

	Channels

	The select function

	Exception Handling

	Examples

	Benchmarks

	Backends

	Compatibility Details

	goless and the GIL

	References

	Contributing

	Miscellany

	Indices and tables






Intro

The goless library [https://github.com/rgalanakis/goless] provides Go programming language
semantics built on top of gevent [http://www.gevent.org/], PyPy [http://pypy.org/], or Stackless Python [http://www.stackless.com/].

For an example of what goless can do,
here is the Go program at https://gobyexample.com/select
reimplemented with goless:

c1 = goless.chan()
c2 = goless.chan()

def func1():
    time.sleep(1)
    c1.send('one')
goless.go(func1)

def func2():
    time.sleep(2)
    c2.send('two')
goless.go(func2)

for i in range(2):
    case, val = goless.select([goless.rcase(c1), goless.rcase(c2)])
    print(val)





It is surely a testament to Go’s style that it isn’t much less Python code than Go code,
but I quite like this. Don’t you?




Goroutines

The goless.go() function mimics Go’s goroutines by, unsurprisingly,
running the routine in a tasklet/greenlet.
If an unhandled exception occurs in a goroutine, goless.on_panic() is called.


	
goless.go(func, *args, **kwargs)

	Run a function in a new tasklet, like a goroutine.
If the goroutine raises an unhandled exception (panics),
the goless.on_panic() will be called,
which by default logs the error and exits the process.





	Parameters:	
	args – Positional arguments to func.

	kwargs – Keyword arguments to func.














	
goless.on_panic(etype, value, tb)

	Called when there is an unhandled error in a goroutine.
By default, logs and exits the process.








Channels

There are three types of channels available in goless.
Use the goless.chan() function to create a channel.
The channel implementations contain more thorough documentation
about how they actually work.


	
goless.chan(size=0)

	Returns a bidirectional channel.

A 0 or None size indicates a blocking channel
(the send method will block until a receiver is available,
and the recv method will block until a sender is available).

A positive integer value will return a channel with a buffer.
Once the buffer is filled, the send method will block.
When the buffer is empty, the recv method will block.

A negative integer will return a channel that will
never block when the send method is called.
The recv method will block if the buffer is empty.





	Return type:	goless.channels.GoChannel










	
class goless.channels.GoChannel

	A Go-like channel that can be sent to, received from,
and closed.
Callers should never create this directly.
Always use goless.chan() to create channels.


	
close()

	Closes the channel, not allowing further communication.
Any blocking senders or receivers will be woken up and
raise goless.ChannelClosed.
Receiving or sending to a closed channel
will raise goless.ChannelClosed.






	
recv()

	Receive a value from the channel.
Receiving will always block if no value is available.
If the channel is already closed,
goless.ChannelClosed will be raised.
If the channel closes during a blocking recv,
goless.ChannelClosed will be raised. (#TODO)






	
send(value=None)

	Sends the value. Blocking behavior depends on the channel type.
Unbufferred channels block if no receiver is waiting.
Buffered channels block if the buffer is full.
Asynchronous channels never block on send.

If the channel is already closed,
goless.ChannelClosed will be raised.
If the channel closes during a blocking send,
goless.ChannelClosed will be raised. (#TODO)










	
class goless.ChannelClosed

	Exception raised to indicate a channel is closing or has closed.








The select function

Go’s select statement is implemented through the goless.select() function.
Because Python lacks anonymous blocks (multiline lambdas),
goless.select() works like Go’s reflect.Select [http://golang.org/pkg/reflect/#Select] function.
Callers should create any number of goless.case classes
that are passed into goless.select().
The function returns the chosen case, which the caller will usually switch off of.
For example:

chan = goless.chan()
cases = [goless.rcase(chan), goless.scase(chan, 1), goless.dcase()]
chosen, value = goless.select(cases)
if chosen is cases[0]:
    print('Received %s' % value)
elif chosen is cases[1]:
    assert value is None
    print('Sent.')
else:
    assert chosen is cases[2]
    print('Default...')





Callers should never have to do anything with cases,
other than create and switch off of them.


	
goless.select(*cases)

	Select the first case that becomes ready.
If a default case (goless.dcase) is present,
return that if no other cases are ready.
If there is no default case and no case is ready,
block until one becomes ready.

See Go’s reflect.Select method for an analog
(http://golang.org/pkg/reflect/#Select).





	Parameters:	cases – List of case instances, such as
goless.rcase, goless.scase, or goless.dcase.


	Returns:	(chosen case, received value).
If the chosen case is not an goless.rcase, it will be None.










	
class goless.dcase

	The default case.






	
class goless.rcase(chan)

	A case that will chan.recv() when the channel is able to receive.






	
class goless.scase(chan, value)

	A case that will chan.send(value)
when the channel is able to send.








Exception Handling

Exception handling is a tricky topic and may change in the future.
The default behavior right now is that an unhandled exception in a goroutine will
log the exception and take down the entire process.
This in theory emulates Go’s panic behavior:
if a goroutine panics, the process will exit.

If you are not happy with this behavior,
you should patch goless.on_panic to provide custom behavior.

If you find a better pattern, create an issue on GitHub.




Examples

The examples/ folder contains a number of examples.

In addtion,
there are many examples from http://gobyexample.com implemented
via goless in the tests/test_examples.py file.

If there is an example you’d like to see,
or an idiomatic Go example you’d like converted,
please see Contributing below.




Benchmarks

You can run benchmarks using the current Python interpreter and configured
backend by running the following from the goless project directory:

$ python -m benchmark





Developers may run benchmarks locally and report them into the following table.
The Go versions of the benchmarks are also run.
The numbers are useful for relative comparisons only:


Current goless Benchmarks







	Platform
	Backend
	Benchmark
	Time




	go
	gc
	chan_async
	0.00236


	PyPy2
	stackless
	chan_async
	0.03200


	CPython2
	stackless
	chan_async
	0.09000


	PyPy2
	gevent
	chan_async
	0.39600


	CPython3
	gevent
	chan_async
	0.91000


	CPython2
	gevent
	chan_async
	1.05000


	
	
	
	


	go
	gc
	chan_buff
	0.00235


	PyPy2
	stackless
	chan_buff
	0.03200


	CPython2
	stackless
	chan_buff
	0.10000


	PyPy2
	gevent
	chan_buff
	0.39600


	CPython3
	gevent
	chan_buff
	0.97000


	CPython2
	gevent
	chan_buff
	1.11000


	
	
	
	


	go
	gc
	chan_sync
	0.00507


	PyPy2
	stackless
	chan_sync
	0.05200


	CPython2
	stackless
	chan_sync
	0.10000


	PyPy2
	gevent
	chan_sync
	0.80000


	CPython3
	gevent
	chan_sync
	0.89000


	CPython2
	gevent
	chan_sync
	1.07000


	
	
	
	


	go
	gc
	select
	0.03031


	PyPy2
	stackless
	select
	0.06400


	CPython2
	stackless
	select
	0.28000


	PyPy2
	gevent
	select
	0.49200


	CPython3
	gevent
	select
	1.38000


	CPython2
	gevent
	select
	1.49000


	
	
	
	


	PyPy2
	gevent
	select_default
	0.00800


	PyPy2
	stackless
	select_default
	0.00800


	go
	gc
	select_default
	0.02645


	CPython2
	stackless
	select_default
	0.14000


	CPython3
	gevent
	select_default
	0.15000


	CPython2
	gevent
	select_default
	0.20000





To regenerate this table, run:

$ python write_benchmarks.py





To print the table to stdout, run (notice the trailing - char):

$ python write_benchresults.py -





Assuming you have Go installed, you can run the benchmarks with:

$ go run benchmark.go








Backends

There are two backends for concurrently available in
goless.backends.
Backends should only be used by goless,
and not by any client code.
You can choose between backends by setting the environment variable
GOLESS_BACKEND to "gevent" or "stackless".
Otherwise, an appropriate backend will be chosen.
If neither gevent or stackless are available,
goless will raise an error when used (but will still be importable).




Compatibility Details

The good news is that you probably don’t need to worry about any of this,
and goless works almost everywhere.

The bad news is, almost all abstractions are leaky,
and there can be some nuances to compatibility.
If you run into an issue where goless cannot create a backend,
you may need to read the following sections.


PyPy

goless works under PyPy out of the box with the stackless
backend, because PyPy includes a stackless.py file in its standard library.
This appears to work properly, but fails the goless test suite.
We are not sure why yet, as stackless.py does not have a real maintainer
and the bug is difficult to track down.
However, the examples and common usages seem to all work fine.

Using PyPy 2.2+ and the tip of gevent’s GitHub repo
( https://github.com/surfly/gevent ),
the gevent backend works and is fully tested.




Python 2 (CPython)

Using Python 2 and the CPython interpreter,
you can use the gevent backend for goless
with no problems.
Under Python 2, you can just do:

$ pip install gevent
$ pip install goless








Python 3 (CPython)

Newer versions of gevent include Python 3 compatibility.
To install gevent on Python3, you also must install Cython.
So you can use thew following commands to install goless
under Python3 with its gevent backend:

$ pip install cython
$ pip install git+https://github.com/surfly/gevent.git#gevent-egg
$ pip install goless





This works and is tested.




Stackless Python

All versions of Stackless Python (2 and 3) should work with goless.
However, we cannot test with Stackless Python on Travis,
so we only test with it locally.
If you find any problems, please report an issue.






goless and the GIL

goless does not address CPython’s Global Interpreter Lock (GIL) at all.
goless does not magically provide any parallelization.
It provides Go-like semantics, but not its performance.
Perhaps this will change in the future if the GIL is removed.
Another option is PyPy’s STM branch,
which goless will (probably) benefit heartily.




References


	goless on GitHub: https://github.com/rgalanakis/goless

	goless on Read the Docs: http://goless.readthedocs.org/

	goless on Travis-CI: https://travis-ci.org/rgalanakis/goless

	goless on Coveralls: https://coveralls.io/r/rgalanakis/goless

	The Go Programming Language: http://www.golang.org

	Stackless Python: http://www.stackless.com

	gevent: http://gevent.org/

	PyPy: http://pypy.org/

	Idiomatic Go Examples: http://gobyexample.com






Contributing

I am definitely not a Go expert,
so improvements to make things more idiomatic are very welcome.
Please create an issue or pull request on GitHub: https://github.com/rgalanakis/goless

goless was created by a number of people  at the PyCon 2014 sprints.
Even a small library like goless is the product of lots of collaboration.

Maintainers:


	Rob Galanakis <rob.galanakis@gmail.com>

	Simon König <simjoko@gmail.com>

	Carlos Knippschild <carlos.chuim@gmail.com>



Special thanks:


	Kristján Valur Jónsson <sweskman@gmail.com>

	Andrew Francis <af.stackless@gmail.com>






Miscellany

Coverage is wrong. It should be higher.
The coverage module does not work properly with gevent and stackless.




Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, Rob Galanakis.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	goless 0.6.0 documentation 
 
      

    


    
      
          
            

Index



 C
 | D
 | G
 | O
 | R
 | S
 


C


  	
      
  	chan() (in module goless)
  


      
  	ChannelClosed (class in goless)
  


  

  	
      
  	close() (goless.channels.GoChannel method)
  


  





D


  	
      
  	dcase (class in goless)
  


  





G


  	
      
  	go() (in module goless)
  


  

  	
      
  	GoChannel (class in goless.channels)
  


  





O


  	
      
  	on_panic() (in module goless)
  


  





R


  	
      
  	rcase (class in goless)
  


  

  	
      
  	recv() (goless.channels.GoChannel method)
  


  





S


  	
      
  	scase (class in goless)
  


      
  	select() (in module goless)
  


  

  	
      
  	send() (goless.channels.GoChannel method)
  


  







          

      

      

    


    
         Copyright 2014, Rob Galanakis.
      Created using Sphinx 1.2.2.
    

  body.html


    
      Navigation


      
        		
          index


        		
          previous |


        		goless 0.0.1 documentation »

 
      


    


    
      
          
            
  
Intro


The goless library [https://github.com/rgalanakis/goless] provides Go programming language
semantics built on top of Stackless Python [http://www.stackless.com/] or gevent [http://www.gevent.org/].


For an example of what goless can do,
here is the Go program at https://gobyexample.com/select
reimplemented with goless:


c1 = goless.chan()
c2 = goless.chan()

def func1():
    time.sleep(1)
    c1.send('one')
goless.go(func1)

def func2():
    time.sleep(2)
    c2.send('two')
goless.go(func2)

for i in range(2):
    case, val = goless.select([goless.rcase(c1), goless.rcase(c2)])
    print(val)






It is surely a testament to Go’s style that it isn’t much less Python code than Go code,
but I quite like this. Don’t you?





Goroutines


The goless.go() function mimics Go’s goroutines by, unsurprisingly,
running the routine in a tasklet/greenlet.
If an unhandled exception occurs in a goroutine, goless.on_panic() is called.



		
goless.go(func, *args, **kwargs)


		Run a function in a new tasklet, like a goroutine.
If the goroutine raises an unhandled exception (panics),
the goless.on_panic() will be called,
which by default logs the error and exits the process.






		Parameters:		
		args – Positional arguments to func.


		kwargs – Keyword arguments to func.




















		
goless.on_panic(etype, value, tb)


		Called when there is an unhandled error in a goroutine.
By default, logs and exits the process.











Channels


There are three types of channels available in goless.
Use the goless.chan() function to create a channel.
The channel implementations contain more thorough documentation
about how they actually work.



		
goless.chan(size=0)


		Returns a bidirectional channel.


A 0 or None size indicates a blocking channel
(the send method will block until a receiver is available,
and the recv method will block until a sender is available).


A positive integer value will return a channel with a buffer.
Once the buffer is filled, the send method will block.
When the buffer is empty, the recv method will block.


A negative integer will return a channel that will
never block when the send method is called.
The recv method will block if the buffer is empty.






		Return type:		goless.channels.GoChannel














		
class goless.channels.GoChannel


		A Go-like channel that can be sent to, received from,
and closed.
Callers should never create this directly.
Always use goless.chan() to create channels.



		
close()


		Closes the channel, not allowing further communication.
Any blocking senders or receivers will be woken up and raise goless.ChannelClosed.
Receiving or sending to a closed channel will raise goless.ChannelClosed.









		
recv()


		Receive a value from the channel.
Receiving will always block if no value is available.
If the channel is already closed, goless.ChannelClosed will be raised.
If the channel closes during a blocking recv,
goless.ChannelClosed will be raised. (#TODO)









		
send(value=None)


		Sends the value. Blocking behavior depends on the channel type.
Unbufferred channels block if no receiver is waiting.
Buffered channels block if the buffer is full.
Asynchronous channels never block on send.


If the channel is already closed,
goless.ChannelClosed will be raised.
If the channel closes during a blocking send,
goless.ChannelClosed will be raised. (#TODO)















		
class goless.ChannelClosed


		Exception raised to indicate a channel is closing or has closed.











The select function


Go’s select statement is implemented through the goless.select() function.
Because Python lacks anonymous blocks (multiline lambdas),
goless.select() works like Go’s reflect.Select [http://golang.org/pkg/reflect/#Select] function.
Callers should create any number of goless.case classes
that are passed into goless.select().
The function returns the chosen case, which the caller will usually switch off of.
For example:


chan = goless.chan()
cases = [goless.rcase(chan), goless.scase(chan, 1), goless.dcase()]
chosen, value = goless.select(cases)
if chosen is cases[0]:
    print('Received %s' % value)
elif chosen is cases[1]:
    assert value is None
    print('Sent.')
else:
    assert chosen is cases[2]
    print('Default...')






Callers should never have to do anything with cases,
other than create and switch off of them.



		
goless.select(cases)


		Select the first case that becomes ready.
If a default case (goless.dcase) is present,
return that if no other cases are ready.
If there is no default case and no case is ready,
block until one becomes ready.


See Go’s reflect.Select method for an analog
(http://golang.org/pkg/reflect/#Select).






		Parameters:		cases – List of case instances, such as
goless.rcase, goless.scase, or goless.dcase.



		Returns:		(chosen case, received value).
If the chosen case is not an goless.rcase, it will be None.














		
class goless.dcase


		The default case.









		
class goless.rcase(chan)


		A case that will chan.recv() when the channel is able to receive.









		
class goless.scase(chan, value)


		A case that will chan.send(value) when the channel is able to send.











Exception Handling


Exception handling is a tricky topic and may change in the future.
The default behavior right now is that an unhandled exception in a goroutine will
log the exception and take down the entire process.
This in theory emulates Go’s panic behavior:
if a goroutine panics, the process will exit.


If you are not happy with this behavior,
you should patch goless.on_panic to provide custom behavior.


If you find a better pattern, create an issue on GitHub.





Examples


The examples/ folder contains a number of examples.


In addtion,
there are many examples from http://gobyexample.com implemented
via goless in the tests/test_examples.py file.


If there is an example you’d like to see,
or an idiomatic Go example you’d like converted,
please see Contributing below.





Backends


There are two backends for concurrently available in
goless.backends.
These backends should only be used by goless,
and not by any client code.
You can choose between backends by setting the environment variable
GOLESS_BACKEND to "gevent" or "stackless".
Otherwise, an appropriate backend will be chosen,
preferring stackless first.
If neither gevent or stackless are available,
a RuntimeError is raised on goless import.





goless and PyPy


goless should work under PyPy with
both stackless and gevent backends.


PyPy includes a stackless.py module in its standard library,
which can be used to power goless.
This appears to work properly, but fails the goless test suite.
We are not sure why yet, as stackless.py does not have a real maintainer
and the bug is difficult to track down.
However, the examples and common usages seem to all work fine.


New versions of gevent
(not yet on PyPI, but in the surfly/gevent GitHub repository)
work great with newer versions of PyPy.





Benchmarks


You can run benchmarks using the current Python interpreter and configured
backend by running the following from the goless project directory:


$ python -m benchmark






Developers may run benchmarks locally and report them into the following table.
The Go versions of the benchmarks are also run.
The numbers are useful for relative comparisons only:



Current goless Benchmarks







		Platform
		Backend
		Benchmark
		Time





		go
		gc
		chan_async
		0.00253



		PyPy
		stackless
		chan_async
		0.06400



		CPython
		stackless
		chan_async
		0.10000



		PyPy
		gevent
		chan_async
		0.35600



		CPython
		gevent
		chan_async
		1.09000



		 
		 
		 
		 



		go
		gc
		chan_buff
		0.00228



		PyPy
		stackless
		chan_buff
		0.06400



		CPython
		stackless
		chan_buff
		0.09000



		PyPy
		gevent
		chan_buff
		0.35200



		CPython
		gevent
		chan_buff
		1.11000



		 
		 
		 
		 



		go
		gc
		chan_sync
		0.00507



		PyPy
		stackless
		chan_sync
		0.06000



		CPython
		stackless
		chan_sync
		0.10000



		PyPy
		gevent
		chan_sync
		0.35200



		CPython
		gevent
		chan_sync
		1.09000



		 
		 
		 
		 



		go
		gc
		select
		0.03119



		PyPy
		stackless
		select
		0.04800



		CPython
		stackless
		select
		0.29000



		PyPy
		gevent
		select
		0.94800



		CPython
		gevent
		select
		1.47000



		 
		 
		 
		 



		PyPy
		stackless
		select_default
		0.00400



		PyPy
		gevent
		select_default
		0.00800



		go
		gc
		select_default
		0.02667



		CPython
		stackless
		select_default
		0.15000



		CPython
		gevent
		select_default
		0.22000







To regenerate this table, run:


$ python write_benchmarks.py






To print the table to stdout, run:


$ python write_benchresults.py -






Assuming you have Go installed, you can run the benchmarks with:


$ go run benchmark.go









goless and the GIL


goless does not address CPython’s Global Interpreter Lock (GIL) at all.
goless does not magically provide any parallelization.
It provides Go-like semantics, but not its performance.
Perhaps this will change in the future if the GIL is removed.
Another option is PyPy’s STM branch,
which goless will (probably) benefit heartily.





References



		goless on GitHub: https://github.com/rgalanakis/goless


		goless on Read the Docs: http://goless.readthedocs.org/


		goless on Travis-CI: https://travis-ci.org/rgalanakis/goless


		goless on Coveralls: https://coveralls.io/r/rgalanakis/goless


		The Go Programming Language: http://www.golang.org


		Stackless Python: http://www.stackless.com


		gevent: http://gevent.org/


		Idiomatic Go Examples: http://gobyexample.com















Contributing


I am definitely not a Go expert,
so improvements to make things more idiomatic are very welcome.
Please create an issue or pull request on GitHub: https://github.com/rgalanakis/goless


goless was created by a number of people  at the PyCon 2014 sprints.
Even a small library like goless is the product of lots of collaboration.


Maintainers:



		Rob Galanakis <rob.galanakis@gmail.com>


		Simon König <simjoko@gmail.com>


		Carlos Knippschild <carlos.chuim@gmail.com>





Special thanks:



		Kristján Valur Jónsson <sweskman@gmail.com>


		Andrew Francis <af.stackless@gmail.com>








Miscellany


Coverage is wrong. It should be higher.
The coverage module does not work properly with gevent and stackless.





Indices and tables



		Index


		Module Index


		Search Page









          

      

      

    


    
        © Copyright 2014, Rob Galanakis.
      Created using Sphinx 1.2.2.
    

  

_static/ajax-loader.gif





benchtable.html


    
      Navigation


      
        		
          index


        		goless 0.6.0 documentation »

 
      


    


    
      
          
            
  
Current goless Benchmarks







		Platform
		Backend
		Benchmark
		Time





		go
		gc
		chan_async
		0.00236



		PyPy2
		stackless
		chan_async
		0.03200



		CPython2
		stackless
		chan_async
		0.09000



		PyPy2
		gevent
		chan_async
		0.39600



		CPython3
		gevent
		chan_async
		0.91000



		CPython2
		gevent
		chan_async
		1.05000



		 
		 
		 
		 



		go
		gc
		chan_buff
		0.00235



		PyPy2
		stackless
		chan_buff
		0.03200



		CPython2
		stackless
		chan_buff
		0.10000



		PyPy2
		gevent
		chan_buff
		0.39600



		CPython3
		gevent
		chan_buff
		0.97000



		CPython2
		gevent
		chan_buff
		1.11000



		 
		 
		 
		 



		go
		gc
		chan_sync
		0.00507



		PyPy2
		stackless
		chan_sync
		0.05200



		CPython2
		stackless
		chan_sync
		0.10000



		PyPy2
		gevent
		chan_sync
		0.80000



		CPython3
		gevent
		chan_sync
		0.89000



		CPython2
		gevent
		chan_sync
		1.07000



		 
		 
		 
		 



		go
		gc
		select
		0.03031



		PyPy2
		stackless
		select
		0.06400



		CPython2
		stackless
		select
		0.28000



		PyPy2
		gevent
		select
		0.49200



		CPython3
		gevent
		select
		1.38000



		CPython2
		gevent
		select
		1.49000



		 
		 
		 
		 



		PyPy2
		gevent
		select_default
		0.00800



		PyPy2
		stackless
		select_default
		0.00800



		go
		gc
		select_default
		0.02645



		CPython2
		stackless
		select_default
		0.14000



		CPython3
		gevent
		select_default
		0.15000



		CPython2
		gevent
		select_default
		0.20000









          

      

      

    


    
        © Copyright 2014, Rob Galanakis.
      Created using Sphinx 1.2.2.
    

  

search.html


    
      Navigation


      
        		
          index


        		goless 0.6.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Rob Galanakis.
      Created using Sphinx 1.2.2.
    

  

_static/plus.png





_static/comment-close.png





_static/up-pressed.png





_static/up.png





_static/down.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/comment-bright.png





_static/comment.png





