

 Navigation

 	
 index

 	
 next |

 	github-collective 1.0 documentation

Welcome to github-collective’s documentation!

GitHub organizations [https://github.com/blog/674-introducing-organizations] are great way for collaborations, companies, and any
groups to manage their Git repositories. This tool will let you automate the
tedious tasks of creating teams, granting permissions, and creating
repositories or modifying their settings. This tool works by utilising the
GitHub JSON API to syncronise a local text-based (ini-style) configuration and
translate this into configuration for GitHub. This means you can use version
control (such as Git) to keep revisions of your configuration and in general,
reduce administrative overhead managing your repositories and teams.

Contents:

	Introduction

	Documentation

	Features

	How to install
	Installation

	Deploy with Buildout

	Usage
	Locally-stored configuration

	Remotely-stored configuration (GitHub)

	Cached configuration

	Configuration
	Local Identifiers

	Variable Substitution

	Repositories

	Teams

	Service hooks

	Gotchas

	Testing

	Issues and Contributing

	Todo

	Credits

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	github-collective 1.0 documentation

Introduction

GitHub organizations [https://github.com/blog/674-introducing-organizations] are great way for organizations to manage their Git
repositories. This tool will let you automate the tedious tasks of creating
teams, granting permissions, and creating repositories or modifying their
settings.

The approach that the github-collective tool takes is that you edit a
central configuration (currently an ini-like file) from where options are
read and synchronized to GitHub respectively.

Initially, the purpose of this script was to manage Plone’s collective
organization on GitHub: http://collective.github.com. It is currently in use
in several other locations.

Documentation

Read the full documentation at http://github-collective.rtfd.org.

Features

	Create one central configuration that you can sync to GitHub to configure
your organisation’s settings, repositories, teams, and more.
	Combine this with GitHub’s fork-and-pull request model to easily
allow non-administrative users to create and manage repositories
with minimal overhead.

	Repositories: create and modify repositories within an organization
	Configure all repository properties as per the GitHub Repos API [http://developer.github.com/v3/repos/#create],
including privacy (public/private), description, and other metadata.

	After the initial repository creation happens, updated values in your
configuration will replace those on GitHub.

	Service hooks: add and modify service hooks for repositories.
	GitHub repositories have support for sending information upon
certain events taking place (for instance, pushes being made to a
repository or a fork being taken).

	After the initial repo creation process takes place, updated values in your
hook configuration will replace those on GitHub.

	Hooks not present in your configuration (such as those manually added
on GitHub or those removed from local configuration) will not be
deleted.

	Teams: automatically create teams and modify members
	Control permissions for teams (for example: push, pull or admin)

	Automatically syncs all of the above with GitHub when the tool is run.

	Buildout-style variable substitution in the form ${section:option}.

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	github-collective 1.0 documentation

How to install

This package can be installed in a traditional sense or otherwise deployed
using Buildout.

Installation

	Tested with:	Python2.6 [http://www.python.org/download/releases/2.6/]

	Dependencies:	argparse [http://pypi.python.org/pypi/argparse], requests [http://python-requests.org]

% pip install github-collective
(or)
% easy_install github-collective

Deploy with Buildout

An example configuration for deployment with buildout could look like this:

[buildout]
parts = github-collective

[settings]
config = github.cfg
organization = my-organization
admin-user = my-admin-user
password = SECRET
cache = my-organization.cache

[github-collective]
recipe = zc.recipe.egg
initialization = sys.argv.extend('--verbose -C ${settings:cache} -c ${settings:config} -o ${settings:organization} -u ${settings:admin-user} -P ${settings:password}'.split(' '))
eggs =
 github-collective

Deploying in this manner will result in bin/github-collective being
generated with the relevant options already provided. This means that
something calling this script need not provide provide arguments, making its
usage easier to manage.

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	github-collective 1.0 documentation

Usage

When github-collective is installed it should create an executable with
same name in your bin directory.

% bin/github-collective --help
usage: github-collective [-h] -c CONFIG [-M MAILER] [-C CACHE] -o GITHUB_ORG
 -u GITHUB_USERNAME -P GITHUB_PASSWORD [-v] [-p]

This tool will let you automate tedious tasks of creating teams granting
permission and creating repositories.

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG, --config CONFIG
 path to configuration file (could also be remote
 location). eg.
 http://collective.github.com/permissions.cfg (default:
 None)
 -M MAILER, --mailer MAILER
 TODO (default: None)
 -C CACHE, --cache CACHE
 path to file where to cache results from github.
 (default: None)
 -o GITHUB_ORG, --github-org GITHUB_ORG
 github organisation. (default: None)
 -u GITHUB_USERNAME, --github-username GITHUB_USERNAME
 github account username. (default: None)
 -P GITHUB_PASSWORD, --github-password GITHUB_PASSWORD
 github account password. (default: None)
 -v, --verbose
 -p, --pretend

Locally-stored configuration

% bin/github-collective \
 -c example.cfg \ # path to configuration file
 -o vim-addons \ # organization that we are
 -u garbas \ # account that has management right for organization
 -P PASSWORD # account password

Remotely-stored configuration (GitHub)

% bin/github-collective \
 -c https://raw.github.com/collective/github-collective/master/example.cfg \
 # url to configuration file
 -o collective \ # organization that we are
 -u garbas \ # account that has management right for organization
 -P PASSWORD # account password

Cached configuration

% bin/github-collective \
 -c https://raw.github.com/collective/github-collective/master/example.cfg \
 # url to configuration file
 -C .cache # file where store and read cached results from github
 -o collective \ # organization that we are
 -u garbas \ # account that has management right for organization
 -P PASSWORD # account password

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	github-collective 1.0 documentation

Configuration

github-collective uses a text-based ini-style configuration in typical
Python-based style. Essentially, you define a number of sections, each
with various options, and the script will parse your configuration and
create or update what’s on GitHub.

You can consult one of these examples:

	https://raw.github.com/collective/github-collective/master/example.cfg

	http://collective.github.com/permissions.cfg

to get an idea on how to construct your configuration. Read on for specifics
regarding the idividual sections and the available options.

Warning

For existing GitHub organizations, your configuration should mirror
what’s on GitHub exactly. If your configuration does not match, this
could be destructive. For example, if you have additional repositories on
GitHub that aren’t in your configuration, they will be removed upon sync as
we cannot distinguish whether they are an omission or are missing such
that you want them deleted. Run github-collective in pretend
mode first if you’re unsure what will happen!

Local Identifiers

If the documentation refers to a local identifier, such as that
within the [repo:] teams option, then the given option should contain
just the identifier after the colon in the section name being referred to. For
example, a section of [team:my-awesome-team] would be referenced in the
teams option as just my-awesome-team. If the option in question
calls for a list, then each value in the list should follow this.

Variable Substitution

github-collective implements Buildout [http://pypi.python.org/pypi/zc.buildout/1.5.2#configuration-file-syntax]-style variable substitution in
the form ${my-section:option}, which will automatically resolve to the value
of option within the [my-section] section of your configuration.

Here is our example configuration:

>>> configuration = """
... [config]
... my-domain = example.org
... my-url = http://${:my-domain}/
...
... [repo:my-repo]
... owners = ${:main-user}
... homepage = ${config:my-url}
... hooks = travis-ci
... main-user = my-user
... travis-user = ${:owners}
... travis-ci-token = b8cd21c6317a51eeaa752802a0c04454
...
... [hook:travis-ci]
... name = travis
... config =
... {
... "user": "${repo:travis-user}",
... "token": "${repo:travis-ci-token}"
... }
... events = push
... active = true
... """

We can load this configuration to see the result:

>>> from githubcollective.config import load_config
>>> from githubcollective.config import substitute, global_substitute

>>> config = load_config(configuration)
>>> global_substitute(config)

Which, after global substitution is applied, will look like the following.
Note that there are still some substitutions present - these are Local
subsitutions and will be resolved in a context (in this case a repository
context for the given hook options) when the revelant context is being
interpreted.

>>> from githubcollective.config import output_config
>>> print output_config(config)
[config]
my-domain = example.org
my-url = http://example.org/

[repo:my-repo]
owners = my-user
homepage = http://example.org/
hooks = travis-ci
main-user = my-user
travis-user = my-user
travis-ci-token = b8cd21c6317a51eeaa752802a0c04454

[hook:travis-ci]
name = travis
config =
 {
 "user": "${repo:travis-user}",
 "token": "${repo:travis-ci-token}"
 }
events = push
active = true

We can now test our substitution functionality using this configuration
as follows. We’ll test this by re-initialising the original configuration
before it had global subsitution applied.

>>> config = load_config(configuration)

In the above example, we demonstrate all types of substitution, including
substitutions that refer to other substitutions and ensure that these all
can be resolved successfully.

Global options

These options look like ${config:my-url} and
${repo:my-repo:hooks-events}, which refers to a fully-qualified section and
option.

For example, using the configuration above, you are able to refer to options
like so:

>>> substitute('${config:my-domain}', config)
'example.org'

>>> substitute('${config:my-url}', config)
'http://example.org/'

>>> substitute('${repo:my-repo:main-user}', config)
'my-user'

>>> substitute('${hook:travis-ci:name}', config)
'travis'

If you attempt to refer to a missing option or section, you’ll be informed
of this:

>>> substitute('${config:idontexist}', config)
...
Traceback (most recent call last):
 ...
NoOptionError: No option 'idontexist' in section: 'config'

>>> substitute('${idontexist:option}', config)
...
Traceback (most recent call last):
 ...
NoSectionError: No section: 'idontexist'

Options in same section

Substitution can refer to another option within the same section by omitting
the section name like so: ${:main-user}.

Using the example configuration above, we see we can resolve options with
a given context:

>>> substitute('${:main-user}', config, context='repo:my-repo')
'my-user'

>>> substitute('${:events}', config, context='hook:travis-ci')
'push'

Local options

These are special options that look like ${repo:travis-user}, which refers
to a local option that is resolved at the time relevant section is processed,
in the appropriate context. At present, hooks are the only things that belong
to repositories, so attempting to use such a field in anything other than a
[hook:] context will not work.

For example:

>>> substitute('${repo:travis-user}', config,
... context='repo:my-repo', local=True)
'my-user'

>>> substitute('${repo:travis-ci-token}', config,
... context='repo:my-repo', local=True)
'b8cd21c6317a51eeaa752802a0c04454'

Ordering and options

Options are resolved top-to-bottom within the configuration, with the exception
of Local options that are resolved when instantiated (for instance,
when the hook for a repo is created, as hooks exist per-repsository). So, in the
example above, the parser will consider all options in [repo:my-repo] in
the order they were defined, and then when adding [hook:travis-ci] to the
repository, Local options will be resolved in the context of said repository.
Doing so means you are able to have one common hook configuration, but have
per-repository configuration options, such as those for Travis-CI tokens,
passwords, URLs, and more.

Keep in mind that there are no restrictions on arbitrary section names so
your variable storage can be unbounded. This also means you could conceivably
utilise the same configuration file for multiple purposes (such as for
github-collective and a Paster application) and share variables.

Substitution will attempt to alert you of circular dependencies and provide
some explaination why a substitution is failing in the form of a raised Python
exception with suitable details.

>>> broken_config = """
... [config]
... my-domain = ${:my-url}
... my-location = ${:my-domain}
... my-url = ${:my-location}
... """

>>> broken = load_config(broken_config)
>>> global_substitute(broken)
...
Traceback (most recent call last):
 ...
ValueError: Circular reference in substitutions ${:my-url} --> ${:my-location} --> ${:my-domain} --> ${:my-url}.

Repositories

Repositories form the basis for your code hosting on GitHub. Using a
[repo:] section within your configuration, the script will automatically
create a new repository with the relevant settings, or update a repository if
it already exists. Alternatively, you can specify to fork an existing
repository as well.

Examples

Keep in mind that all of the options given are not always required but are
set out here to demonstrate what you can do.

We can create a new repository, using various options allowable
by the GitHub Repos API [http://developer.github.com/v3/repos/#create]:

[repo:collective.demo]
owners = davidjb
teams = contributors
hooks =
 my-jenkins
 some-website
description = My awesome repo
homepage = http://example.org
has_issues = false
has_wiki = false
has_downloads = false

As the example suggests, this will create a repository with the name of
collective.demo, assign davidjb administrative rights and the
contributors team push and pull rights, and create the relevant service
hooks. The repository will the given metadata applied to it and options set.
If we later go and change the above configuration (or indeed if the repository
already exists on GitHub), then differences will be synced to GitHub. For
instance, we could change has_issues to true to enable the issue
tracker again, add or remove hooks, and more.

We can also fork a repository that already exists:

[repo:github-collective]
fork = collective/github-collective
owners = garbas

Finally, in a special example, we can create a repository as Private,
if you are using github-collective against a paid-for GitHub organization
like so:

[repo:collective.demo]
owners = davidjb
private = true

This will fail if your GitHub organization lacks sufficient quota (for
instance, those that are free only).

Section configuration

When creating or updating a repository, arbitrary options provided within a
[repo:] section will be sent as part of the relevant POST request. For all
potential options, see the GitHub Repos API [http://developer.github.com/v3/repos/#create] documentation. All values are
optional (with the exception of name, which must be specified already in
our configuration) and GitHub provides defaults for many of the options as per
the documentation. Note that values that GitHub expects as Boolean (for
example private, has_issues and so forth) will be coerced accordingly
as per standard Python ini-syntax.

There are special options, however, which are not sent but rather used locally
in configuring a repository. These are:

	owners (optional)

	List of GitHub user names to set as Owners of a repository. Within
GitHub’s interface, these users are seen to possess the Push, Pull &
Administrative permission. This should not be confused with Owners of
an entire GitHub organization.

	teams (optional)

	List of local string identifiers for collaborators of a repository. Teams
specified here will be granted the appropriate permission to the given
repository (see Teams configuration). The identifiers in this option
should refer to relevant [team:] sections in the local configuration.
This option is the inverse of repos for repository configuration.

	hooks (optional)

	List of string identifiers for GitHub service hooks, referring to
relevant [hook:] sections in the local configuration. This list
should contain just the identifier after the colon in the section name.
For example, a section of [hook:my-webhook] would be referenced in
the hooks option as just my-webhook. Service hooks specified here
will be either created or updated against the repository.

Forking is a special case and settings in your configuration will not be
sent to GitHub until updating the repository takes place.

Teams

Groups of users on GitHub organizations can be set out into Teams.
Using [team:] sections, you can create as many teams as you’d like
and assign them access to repositories. You can achieve this by either
assigning repositories to teams, or teams to repositories - they are both
equivalent.

Examples

In order to create a Team of users with the ability to push and pull from
certain repositories, the configure would look like:

[team:contributors]
permission = push
members =
 MarcWeber
 honza
 garbas
repos =
 snipmate-snippets
 ...

[repo:snipmate-snippets]
 ...

Similarly, we can achieve the same with inverting the repos option
into teams on the repository configuration:

[team:contributors]
permission = push
members =
 MarcWeber
 honza
 garbas

[repo:snipmate-snippets]
teams =
 contributors

By changing the permission option, you will affect what the users of that
Team can do on the repositories they’re assigned to. See below for details.

Section configuration

Each [team:] section within your configuration can utilise the following
values.

	permission (optional)

	The permission to assign to this group. At time of writing, GitHub
has three types of permissions available for Teams:

	push: team members can pull, but not push to or administer
repositories.

	pull: team members can pull and push, but not administer
repositories.

	admin: team members can pull, push and administer repositories.

If not provided, this option defaults to pull.

	members (optional)

	List of GitHub user names to set as part of this Team. These users
will be granted the permission above to any repositories
this Team is configured against.

	repos (optional)

	List of string identifiers of repositories this Team should have
the given permission against. The identifiers in this option
should refer to relevant [repo:] sections in the local configuration.
This option is the inverse of teams for repository configuration.

Service hooks

GitHub allows repositories to be configured with service hooks, which allow
GitHub to communicate with a web server (and thus web services) when
certain actions take place within that repository. These can be
configured via GitHub’s web interface through the Admin page for
repositories, in the Service Hooks section, which provides most options,
or else via GitHub’s API, which provides some additional hidden settings.

For an introduction to this topic, consult the Post-Receive Hooks [https://help.github.com/articles/post-receive-hooks]
documentation.

Effectively, GitHub will send a POST request to a given web-based endpoint with
relevant information about commits and metadata about the repository when a
certain trigger happens. The GitHub Hooks API [http://developer.github.com/v3/repos/hooks/] has complete details about
what event triggers are available, details about what services are available,
and more.

Examples

As a worked example, you can configure a repository you have to send details
about commits and changes as they happen to a Jenkins CI instance in order for
continuous testing to take place. You would enter the following in your
github-collective configuration like so:

[hook:my-jenkins-hook]
name = web
config =
 {"url": "https://jenkins.plone.org/github-webhook/",
 "insecure_ssl": "1"
 }
active = true

[repo:collective.github.com]
...
hooks =
 my-jenkins-hook

The result here is that, once run, the collective.github.com repository
will have a web hook created against it that instructs GitHub to send the
relevant POST payload to the given url in question. This hook creation
is effectively synonymous with adding a hook via the web-based interface,
with the one minor exception in that we provide an extra value
for insecure_ssl to ensure that GitHub will communicate with our non-CA
signed certificate.

Our [repo:] section has a hooks option in which you can specify
the identifiers of one or more hooks within your configuration. This option
is not required, however, should you have no service hooks.

See the next section for specifics and how to configure
these types of sections within your github-collective configuration.

Section configuration

Each [hook:] section within your configuration can utilise the following
values. Options provided here will be coerced from standard ini-style options
into suitable values for posting JSON to GitHub’s API. For specifications,
refer to https://api.github.com/hooks

	name (required)

	String identifier for a service hook. Refer to specification for
available service identifiers or to the Service Hooks administration page
for your repository. One of the most commonly used options is web for
generic web hooks (seen as Brook URLs in the Service Hooks
administration page).

	config (required)

	Valid JSON consisting of key/value pairs relating to configuration of
this service. Refer to specifications for applicable config for each
service type.

Note: if a change is made to your local configuration,
github-collective will attempt to update hook settings on GitHub. If
you have Boolean values present in this option, then in order to prevent
github-collective from attempting to update GitHub on every run,
these values should exist as strings - either "1" or``”0”`` - as this
is how GitHub stores configuration (and we compare against this to check
whether we need to sync changes).

	events (optional)

	List of events the hook should apply to. Different services can respond
to different events. If not provided, the hook will default to
push. Keep in mind that certain services only listen for certain
types of events. Refer to API specification for information.

	active (optional)

	Boolean value of whether the hook is enabled or not.

Gotchas

	URLs specified within the configuration should possess a trailing slash
where appropriate, for instance http://example.com (no trailing slash)
will, when returned by GitHub, become http://example.com/. This means
that your configuration files will appear out of sync and thus
github-collective will attempt to update every run.

	Boolean values stored within JSON Hook configuration should be either
0 or 1 and strings, as this is what GitHub stores. Read the section
on Service hooks for more information.

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	github-collective 1.0 documentation

Testing

nose is utilised for testing and configuration for nose exists
within the setup.cfg file within this project. This configuration
automatically examines files for tests within the project, including
this read-me itself. You can initialise and run tests using the Buildout
configuration provided:

git clone git://github.com/collective/github-collective.git
cd github-collective
virtualenv .
python boostrap.py
bin/buildout
bin/nosetests

tox [http://tox.testrun.org/latest/] is used to ensure this package
installs correctly under each version of Python. Currently we test
Python 2.6 and Python 2.7. Support for running tests under tox will
come shortly. To test installation:

git clone git://github.com/collective/github-collective.git
cd github-collective
virtualenv .
pip install tox
tox

Issues and Contributing

Report issues via this project’s GitHub issue tracker at
https://github.com/collective/github-collective/issues.

Contribute by submitting a pull request on GitHub or else by
adding yourself to the Collective [http://collective.github.com]
and contributing directly.

Todo

	Allow configuration of organisation settings via API

	Add facility to continue if error experienced

	Send emails to owners about removing repos

	Better logging mechanism (eg. logbook)

	Support configuration extensibility (eg extends = syntax) for
using multiple configuration files.

Credits

	Author:	Rok Garbas [http://www.garbas.si] (garbas)

	Contributor:	David Beitey [http://davidjb.com] (davidjb)

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	github-collective 1.0 documentation

Index

 Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		github-collective 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Plone Collective and contributors.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

