

 Navigation

 	
 index

 	
 next |

 	Ginkgo 0.6.0 documentation

Ginkgo Service Framework

Release: v0.6.0 (Installation)

License: MIT

Ginkgo is a lightweight framework for writing network service daemons in
Python. It currently focuses on gevent as its core networking and concurrency
layer.

The core idea behind Ginkgo is the “service model”, where your primary building
block or component of applications are composable services. A service is a
mostly self-contained module of your application that can start/stop/reload,
contain other services, manage async operations, and expose configuration.

class ExampleService(Service):
 setting = Setting("example.setting", default="Foobar")

 def __init__(self):
 logging.info("Service is initializing.")

 self.child_service = AnotherService()
 self.add_service(self.child_service)

 def do_start(self):
 logging.info("Service is starting.")

 self.spawn(self.something_async)

 def do_stop(self):
 logging.info("Service is stopping.")

 def do_reload(self):
 logging.info("Service is reloading.")

 # ...

Around this little bit of structure and convention, Ginkgo provides just a few
baseline features to make building both complex and simple network daemons much
easier:

	Service class primitive for composing daemon apps from simple components

	Dynamic configuration loaded from regular Python source files

	Runner and service manager tool for easy, consistent usage and deployment

	Integrated support for standard Python logging

User Guide

	Introduction
	Origin

	Vision

	Inspiration

	Installation
	Get the Code

	Quickstart
	Hello World Service

	Writing a Server

	Writing a Client

	Service Composition

	Using a Web Framework

	Using Configuration

	Ginkgo Manual
	Service Model

	Using Configuration

	Service Manager

	Service Model and Reloading

	Using Logging

	Advanced Usage and Patterns
	Service State Machine

	Service Factory in Config

	Using Configuration Groups

	Using ZeroMQ

	Async Backends

API Reference

Developer Guide

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ginkgo 0.6.0 documentation

Introduction

Origin

Ginkgo evolved from a project called “gevent_tools” that started as a
collection of common features needed when building gevent applications. The
author had previously made a habit of building lots of interesting little
servers as a hobby, and then at work found himself writing and dealing with
lots more given the company’s service oriented architecture. Accustomed to using
the application framework in Twisted, when he finally saw the light and
discovered gevent, there was no such framework for that paradigm.

Dealing with so many projects, it was not practical to reinvent the same basic
features and architecture over and over again. The same way web frameworks made
it easy to “throw together” a web application, there needed to be a way to
quickly “throw together” network daemons. Not just simple one-off servers, but
large-scale, complex applications – often part of a larger distributed system.

Through the experience of building large systems, a pattern emerged that was
like a looser, more object-oriented version of the actor model based around the
idea of services. This became the main feature of gevent_tools and it was later
renamed gservice. However, with the hope of supporting other async mechanisms
other than gevent’s green threads (such as actual threads or processes, or
other similar network libraries), the project was renamed Ginkgo.

Vision

The Ginkgo microframework is a minimalist foundation for building very large
systems, beyond individual daemons. There were originally plans for
gevent_tools to include higher-level modules to aid in developing distributed
applications, such as service discovery and messaging primitives.

While Ginkgo will remain focused on “baseline” features common to pretty much
all network daemons, a supplementary project to act as a “standard library” for
Ginkgo applications is planned. Together with Ginkgo, the vision would be to
quickly “throw together” distributed systems from simple primitives.

Inspiration

Most of Ginkgo was envisioned by taking good ideas from other projects,
simplifying to their essential properties, and integrating them together. A lot
of thanks goes out to these projects.

Twisted is the first great Python evented daemon framework. The two big ideas
borrowed from Twisted are their application framework and twistd. They directly
inspired the service model and the Ginkgo runner.

Trac is known for the problem it solves, and not so much for its great
architecture. However, its component model and configuration API were a big
influence on Ginkgo. Trac components are how we think of Ginkgo services, and
the way Ginkgo defines configuration settings is directly inspired by the Trac
configuration API.

These projects also had some influence on Ginkgo’s design and philosophy:
Gunicorn, Mongrel, Apache, Django, Flask, python-daemon, Diesel, Tornado,
Erlang/OTP, Typeface, Akka, Configgy, Ostrich, and others.

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ginkgo 0.6.0 documentation

Installation

Ginkgo is currently only available via GitHub, as it won’t be released on PyPI
until it reaches a stable 1.0 release.

Get the Code

You can either clone the public repository:

$ git clone git://github.com/progrium/ginkgo.git

Download the tarball:

$ curl -OL https://github.com/progrium/ginkgo/tarball/master

Or, download the zipball:

$ curl -OL https://github.com/progrium/ginkgo/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages easily:

$ python setup.py install

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ginkgo 0.6.0 documentation

Quickstart

Before you get started, be sure you have Ginkgo installed.

Hello World Service

The simplest service you could write looks something like this:

from ginkgo import Service

class HelloWorld(Service):
 def do_start(self):
 self.spawn(self.hello_forever)

 def hello_forever(self):
 while True:
 print "Hello World"
 self.async.sleep(1)

If you save this as hello.py you can run it with the Ginkgo runner:

$ ginkgo hello.HelloWorld

This should run your service, giving you a stream of “Hello World” lines.

To stop your service, hit Ctrl+C.

Writing a Server

A service is not a server until you make it one. Using gevent, this is
easy using the StreamServer service to do the work of running a TCP
server:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer

class HelloWorldServer(Service):
 def __init__(self):
 self.add_service(StreamServer(('0.0.0.0', 7000), self.handle))

 def handle(self, socket, address):
 while True:
 socket.send("Hello World\n")
 self.async.sleep(1)

Save this as quickstart.py and run with:

$ ginkgo quickstart.HelloWorldServer

It will start listening on port 7000. We can connect with netcat:

$ nc localhost 7000

Again we see a stream of “Hello World” lines, but this time being sent over
TCP. You can open more netcat connections to see it running concurrently
just fine.

Notice our HelloWorldServer implementation is composed of a generic
StreamServer and doesn’t need to implement anything else other than a
handler for that StreamServer.

Writing a Client

A client that maintains a persistent connection (or maybe pool of
connections) to a server also makes sense to be modeled as a Service.
Let’s add a client to our HelloWorldServer in our quickstart module. Now
it looks like this:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer
from ginkgo.async.gevent import StreamClient

class HelloWorldServer(Service):
 def __init__(self):
 self.add_service(StreamServer(('0.0.0.0', 7000), self.handle))

 def handle(self, socket, address):
 while True:
 socket.send("Hello World\n")
 self.async.sleep(1)

class HelloWorldClient(Service):
 def __init__(self):
 self.add_service(StreamClient(('0.0.0.0', 7000), self.handle))

 def handle(self, socket):
 fileobj = socket.makefile()
 while True:
 print fileobj.readline().strip()

Save and run the server first with:

$ ginkgo quickstart.HelloWorldServer

Let that run, switch to a new terminal and run the client with:

$ ginkgo quickstart.HelloWorldClient

As you’d expect, the client connects to the server and prints all the
“Hello World” lines it receives.

Service Composition

We’ve already been doing service composition by using generic TCP server
and client services to build our HelloWorld services. These primitives
are services themselves, just like the ones you’ve been making. So you
can compose and aggregate your own services the same way.

Let’s combine our client and server by add a HelloWorld service in
our quickstart module. It now looks like this:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer
from ginkgo.async.gevent import StreamClient

class HelloWorldServer(Service):
 def __init__(self):
 self.add_service(StreamServer(('0.0.0.0', 7000), self.handle))

 def handle(self, socket, address):
 while True:
 socket.send("Hello World\n")
 self.async.sleep(1)

class HelloWorldClient(Service):
 def __init__(self):
 self.add_service(StreamClient(('0.0.0.0', 7000), self.handle))

 def handle(self, socket):
 fileobj = socket.makefile()
 while True:
 print fileobj.readline().strip()

class HelloWorld(Service):
 def __init__(self):
 self.add_service(HelloWorldServer())
 self.add_service(HelloWorldClient())

Save and we can run our new aggregate service:

$ ginkgo quickstart.HelloWorld

Now the client and server are both running, giving us effectively what
we came in with.

Using a Web Framework

Adding a web server our HelloWorld service is quite trivial. Here we use
gevent’s WSGI server implementation:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer
from ginkgo.async.gevent import StreamClient
from ginkgo.async.gevent import WSGIServer

class HelloWorldServer(Service):
 def __init__(self):
 self.add_service(StreamServer(('0.0.0.0', 7000), self.handle))

 def handle(self, socket, address):
 while True:
 socket.send("Hello World\n")
 self.async.sleep(1)

class HelloWorldClient(Service):
 def __init__(self):
 self.add_service(StreamClient(('0.0.0.0', 7000), self.handle))

 def handle(self, socket):
 fileobj = socket.makefile()
 while True:
 print fileobj.readline().strip()

class HelloWorldWebServer(Service):
 def __init__(self):
 self.add_service(WSGIServer(('0.0.0.0', 8000), self.handle))

 def handle(self, environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/html')])
 return ["Hello World"]

class HelloWorld(Service):
 def __init__(self):
 self.add_service(HelloWorldServer())
 self.add_service(HelloWorldClient())
 self.add_service(HelloWorldWebServer())

Running quickstart.HelloWorld with Ginkgo will run a server, a client,
and a web server. The client will be printing our stream of “Hello
World” lines. Our server is also available to be connected to via
netcat. And we can also connect to our web server with curl:

$ curl http://localhost:8000

And we see a strong declaration of “Hello World”.

In that example our web server implements a small WSGI application, but
you can also use any WSGI compatible web framework. Here is an example
of the Flask Hello World runnable with Ginkgo using AppServer:

from flask import Flask
from ginkgo.async.gevent import WSGIServer

app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

def AppServer():
 return WSGIServer(('0.0.0.0', 8000), app)

Notice AppServer a callable that returns a service, in this case a
pre-configured WSGIServer.

Using Configuration

TODO

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ginkgo 0.6.0 documentation

Ginkgo Manual

Service Model

A service is an application component that starts and stops. It manages
its own concurrency primitives and sub-service components. Creating a
service just involves inheriting from the Service class and
implementing any of the hooks needed of the service protocol:

	
Service.do_start()

	The do_start hook is where you implement what happens when the
service is starting. Often this is where you bind to ports, open
connectins, or spawn async loops. It should not be where actual
service work is done, only the start up tasks.

Before do_start is run, all child services are started, so you can
assume they have been started. If you wish to make do_start run
before child services, you can set the start_before class variable
to True.

	
Service.do_stop()

	The do_stop hook is where you implement what happens when the
service is stopping. This is often manipulating state in order to
shutdown and clean up. It does not need to kill async operations or
stop child services since that is taken care of by Ginkgo.

	
Service.do_reload()

	The do_reload hook is called when a parent service receives a reload
call. In most cases, this is ultimately attached to SIGHUP signals.
It is not meant to be a restart, which is a full stop and stop.
Instead, you can use reload to reload state while running, such as
configuration.

Otherwise, a class that inherits from Service is like any other class
and should be thought of as the primary interface to the component it
represents. If the code for a component is too much to live in one
service class, it’s good practice to split it into sub-component services.
In these cases, the parent service often doesn’t do any work itself, but
is just a container and API facade for the child component services.

Here is a typical service implementation:

from ginkgo import Service

class MyService(Service):
 def __init__(self):
 self.subcomponent = SubcomponentService()
 self.add_service(self.subcomponent)

 def do_start(self):

TODO

Using Configuration

Add the -h argument flag to our runner call:

$ ginkgo service.HelloWorld -h

You’ll see that the ginkgo runner command itself is very simple, but what’s
interesting is the last section:

config settings:
 daemon True or False whether to daemonize [False]
 group Change to a different group before running [None]
 logconfig Configuration of standard Python logger. Can be dict for basicConfig,
 dict with version key for dictConfig, or ini filepath for fileConfig. [None]
 logfile Path to primary log file. Ignored if logconfig is set. [/tmp/HelloWorld.log]
 loglevel Log level to use. Valid options: debug, info, warning, critical
 Ignored if logconfig is set. [debug]
 pidfile Path to pidfile to use when daemonizing [None]
 rundir Change to a directory before running [None]
 umask Change file mode creation mask before running [None]
 user Change to a different user before running [None]

These are builtin settings and their default values. If you want to set any of
these, you have to create a configuration file. But you can also create your
own settings, so let’s first change our Hello World service to be configurable:

from ginkgo import Service, Setting

class HelloWorld(Service):
 message = Setting("message", default="Hello World",
 help="Message to print out while running")

 def do_start(self):
 self.spawn(self.message_forever)

 def message_forever(self):
 while True:
 print self.message
 self.async.sleep(1)

Running ginkgo service.HelloWorld -h again should now include your new
setting. Let’s create a configuration file now called service.conf.py:

import os
daemon = bool(os.environ.get("DAEMONIZE", False))
message = "Services all the way down."
service = "service.HelloWorld"

A configuration file is simply a valid Python source file. In it, you define
variables of any type using the setting name to set them.

There’s a special setting calling service that must be set, which is the
class path target telling it what service to run. To run with this
configuration, you just point ginkgo to the configuration file:

$ ginkgo service.conf.py

And it should start and you should see “Services all the way down” repeating.

You don’t have direct access to set config settings from the ginkgo tool,
but you can set values in your config to pull from the environment. For
example, our configuration above lets us force our service to daemonize by
setting the DAEMONIZE environment variable:

$ DAEMONIZE=yes ginkgo service.conf.py

To stop the daemonized process, you can manually kill it or use the service
management tool ginkgoctl:

$ ginkgoctl service.conf.py stop

Service Manager

Running and stopping your service is easy with ginkgo, but once you
daemonize, it gets harder to interface with it. The ginkgoctl utility is
for managing a daemonized service process.

$ ginkgoctl -h
usage: ginkgoctl [-h] [-v] [-p PID]
 [target] {start,stop,restart,reload,status,log,logtail}

positional arguments:
 target service class path to use (modulename.ServiceClass) or
 configuration file path to use (/path/to/config.py)
 {start,stop,restart,reload,status,log,logtail}

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 -p PID, --pid PID pid or pidfile to use instead of target

Like ginkgo it takes a target class path or configuration file. For
stop, reload, and status it can also just take a pid or pidfile
with the pid argument.

Using ginkgoctl will always force your service to daemonize
when you use the start action.

Service Model and Reloading

Our service model lets you implement three main hooks on services:
do_start(), do_stop(), and do_reload(). We’ve used do_start(),
which is run when a service is starting up. Not surprisingly, do_stop() is
run when a service is shutting down. When is do_reload() run? Well,
whenever reload() is called. :)

Services are designed to contain other services like object composition. Though
after adding services to a service, when you call any of the service interface
methods, they will propogate down to child services. This is done in the actual
start(), stop(), and reload() methods. The do_ methods are for
you to implement specifically what happens for that service to
start/stop/reload.

So when is reload() called? Okay, I’ll skip ahead and just say it gets
called when the process receives a SIGHUP signal. As you may have guessed, for
convenience, this is exposed in ginkgoctl with the reload action.

The semantics of reload are up to you and your application or service.
Though one thing happens automatically when a process gets a reload signal:
configuration is reloaded.

One use of do_reload() is to take new configuration and perform any
operations to apply that configuration to your running service. However, as
long as you access a configuration setting by reference via the Setting
descriptor, you may not need to do anything – the value will just update in
real-time.

Let’s see this in action. We’ll change our Hello World service to have a
rate_per_minute setting that will be used for our delay between messages:

from ginkgo import Service, Setting

class HelloWorld(Service):
 message = Setting("message", default="Hello World",
 help="Message to print out while running")

 rate = Setting("rate_per_minute", default=60,
 help="Rate at which to emit message")

 def do_start(self):
 self.spawn(self.message_forever)

 def message_forever(self):
 while True:
 print self.message
 self.async.sleep(60.0 / self.rate)

The default is 60 messages a minute, which results in the same behavior as
before. So let’s change our configuration to use a different rate:

import os
daemon = bool(os.environ.get("DAEMONIZE", False))
message = "Services all the way down."
rate_per_minute = 180
service = "service.HelloWorld"

Use ginkgo to start the service:

$ ginkgo service.conf.py

As you can see, it’s emitting messages a bit faster now. About 3 per second.
Now while that’s running, open the configuration file and change
rate_per_minute to some other value. Then, in another terminal, change to that
directory and reload:

$ ginkgoctl service.conf.py reload

Look back at your running service to see that it’s now using the new emit rate.

Using Logging

Logging with Ginkgo is based on standard Python logging. We make sure it works
with daemonization and provide Ginkgo-friendly ways to configure it with good
defaults. We even support reloading logging configuration.

Out of the box, you can just start logging. We encourage you to use the common
convention of module level loggers, but obviously there is a lot of freedom in
how you use Python logging. Let’s add some logging to our Hello World,
including changing our print call to a logger call as it’s better practice:

import logging
from ginkgo import Service, Setting

logger = logging.getLogger(__name__)

class HelloWorld(Service):
 message = Setting("message", default="Hello World",
 help="Message to print out while running")

 rate = Setting("rate_per_minute", default=60,
 help="Rate at which to emit message")

 def do_start(self):
 logger.info("Starting up!")
 self.spawn(self.message_forever)

 def do_stop(self):
 logger.info("Goodbye.")

 def message_forever(self):
 while True:
 logger.info(self.message)
 self.async.sleep(60.0 / self.rate)

Let’s run it with our existing configuration for a bit and then stop:

$ ginkgo service.conf.py
Starting process with service.conf.py...
2012-04-28 17:21:32,608 INFO service: Starting up!
2012-04-28 17:21:32,608 INFO service: Services all the way down.
2012-04-28 17:21:33,609 INFO service: Services all the way down.
2012-04-28 17:21:34,610 INFO service: Services all the way down.
2012-04-28 17:21:35,714 INFO service: Goodbye.
2012-04-28 17:21:35,714 INFO runner: Stopping.

Running -h will show you that the default logfile is going to be
/tmp/HelloWorld.log, which logging will create and append to if you
daemonize.

To configure logging, Ginkgo exposes two settings for simple case
configuration: logfile and loglevel. If that’s not enough, you can use
logconfig, which will override any value for logfile and loglevel.

Using logconfig you can configure logging as expressed by
logging.basicConfig. By default, if you set logconfig to a dictionary,
it will apply those keyword arguments to logging.basicConfig. You can
learn more about logging.basicConfig
here [http://docs.python.org/library/logging.html#logging.basicConfig].

For advanced configuration, we also let you use logging.config from the
logconfig setting. If logconfig is a dictionary with a version key,
we will load it into logging.config.dictConfig. If logconfig is a path
to a file, we load it into logging.config.fileConfig. Both of these are
ways to define a configuration structure that lets you create just about any
logging configuration. Read more about logging.config
here [http://docs.python.org/library/logging.config.html#module-logging.config].

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ginkgo 0.6.0 documentation

Advanced Usage and Patterns

Service State Machine

TODO

Service Factory in Config

TODO

Using Configuration Groups

TODO

Using ZeroMQ

TODO

Async Backends

TODO

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Ginkgo 0.6.0 documentation

Index

 A
 | R
 | S

A

 	

 	add_service() (ginkgo.core.Service method)

R

 	

 	ready (ginkgo.core.Service attribute)

 	

 	remove_service() (ginkgo.core.Service method)

S

 	

 	serve_forever() (ginkgo.core.Service method)

 	Service (class in ginkgo.core)

 	Service.do_reload() (built-in function)

 	Service.do_start() (built-in function)

 	Service.do_stop() (built-in function)

 	

 	spawn() (ginkgo.core.Service method)

 	spawn_later() (ginkgo.core.Service method)

 	start() (ginkgo.core.Service method)

 	started (Service attribute)

 	stop() (ginkgo.core.Service method)

 Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

 dev/todo.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Ginkgo 0.6.0 documentation »

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/down.png

_modules/ginkgo/core.html

 Navigation

 		
 index

 		Ginkgo 0.6.0 documentation »

 		Module code »

 Source code for ginkgo.core

"""Ginkgo service core

This module implements the core service model and several convenience
decorators to use with your services. The primary export of this module is
`Service`, but much of the implementation is in `BasicService`. `BasicService`
uses a simple state machine defined by `ServiceStateMachine` and implements the
core service interface.

`BasicService` assumes no async model, whereas `Service` creates an
`AsyncManager` from a driver in the `async` module. It's assumed the common
case is to create async applications, but there are cases when you need a
`Service` with no async. For example, `AsyncManager` classes inherit from
`BasicService`, otherwise there would be a circular dependency.

"""
import functools
import runpy

from .util import AbstractStateMachine
from .util import defaultproperty
from . import Setting

def require_ready(func):
 """ Decorator that blocks the call until the service is ready """
 @functools.wraps(func)
 def wrapped(self, *args, **kwargs):
 try:
 self.state.wait("ready", self.ready_timeout)
 except Exception, e:
 pass
 if not self.ready:
 raise RuntimeWarning("Service must be ready to call this method.")
 return func(self, *args, **kwargs)
 return wrapped

def autospawn(func):
 """ Decorator that will spawn the call in a local greenlet """
 @functools.wraps(func)
 def wrapped(self, *args, **kwargs):
 self.spawn(func, self, *args, **kwargs)
 return wrapped

class ServiceStateMachine(AbstractStateMachine):
 """ +------+
 | init |
 +--+---+
 |
 v
 +-------------------+
 +--->| start() |
 | |-------------------| +-------------------+
	starting +---+--->	stop()	
+-------------------+		-------------------	
			stopping
v	+-------------------+		
+-----------+			
	ready()		
	-----------		v
	ready +-------+ +-------------+		
+-----------+	stopped()		

 +------------------------------------+ stopped |
 +-------------+

 http://www.asciiflow.com/#7278337222084818599/1920677602
 """
 initial_state = "init"
 allow_wait = ["ready", "stopped"]
 event_start = \
 ["init", "stopped"], "starting", "pre_start"
 event_ready = \
 ["starting"], "ready", "post_start"
 event_stop = \
 ["ready", "starting"], "stopping", "pre_stop"
 event_stopped = \
 ["stopping"], "stopped", "post_stop"

class BasicService(object):
 _statemachine_class = ServiceStateMachine
 _children = defaultproperty(list)

 start_timeout = defaultproperty(int, 2)
 start_before = defaultproperty(bool, False)

 def pre_init(self):
 pass

 def __new__(cls, *args, **kwargs):
 s = super(BasicService, cls).__new__(cls, *args, **kwargs)
 s.pre_init()
 s.state = cls._statemachine_class(s)
 return s

 @property
 def service_name(self):
 return self.__class__.__name__

 @property
 def ready(self):
 return self.state.current == 'ready'

 def add_service(self, service):
 """Add a child service to this service

 The service added will be started when this service starts, before
 its :meth:`_start` method is called. It will also be stopped when this
 service stops, before its :meth:`_stop` method is called.

 """
 self._children.append(service)

 def remove_service(self, service):
 """Remove a child service from this service"""
 self._children.remove(service)

 def start(self, block_until_ready=True):
 """Starts children and then this service. By default it blocks until ready."""
 self.state("start")
 if self.start_before:
 self.do_start()
 for child in self._children:
 if child.state.current not in ["ready", "starting"]:
 child.start(block_until_ready)
 if not self.start_before:
 ready = not self.do_start()
 if not ready and block_until_ready is True:
 self.state.wait("ready", self.start_timeout)
 elif ready:
 self.state("ready")
 else:
 self.state("ready")

 def pre_start(self):
 pass

 def do_start(self):
 """Empty implementation of service start. Implement me!

 Return `service.NOT_READY` to block until :meth:`set_ready` is
 called (or `ready_timeout` is reached).

 """
 return

 def post_start(self):
 pass

 def stop(self):
 """Stop child services in reverse order and then this service"""
 if self.state.current in ["init", "stopped"]:
 return
 ready_before_stop = self.ready
 self.state("stop")
 for child in reversed(self._children):
 child.stop()
 if ready_before_stop:
 self.do_stop()
 self.state("stopped")

 def pre_stop(self):
 pass

 def post_stop(self):
 pass

 def do_stop(self):
 """Empty implementation of service stop. Implement me!"""
 return

 def reload(self):
 def _reload_children():
 for child in self._children:
 child.reload()

 if self.start_before:
 self.do_reload()
 _reload_children()
 else:
 _reload_children()
 self.do_reload()

 def do_reload(self):
 """Empty implementation of service reload. Implement me!"""
 pass

 def serve_forever(self):
 """Start the service if it hasn't been already started and wait until it's stopped."""
 try:
 self.start()
 except RuntimeWarning, e:
 # If it can't start because it's
 # already started, just move on
 pass

 self.state.wait("stopped")

 def __enter__(self):
 self.start()
 return self

 def __exit__(self, type, value, traceback):
 self.stop()

[docs]class Service(BasicService):
 async_available = ["ginkgo.async." + m for m in ("gevent", "threading",
 "eventlet")]
 async = Setting("async", default="ginkgo.async.threading", help="""\
 The async reactor to use. Available choices:
 ginkgo.async.gevent
 ginkgo.async.threading
 ginkgo.async.eventlet
 """)

 def pre_init(self):
 try:
 mod = runpy.run_module(self.async)
 self.async = mod['AsyncManager']()
 self.add_service(self.async)
 except (NotImplementedError, ImportError) as e:
 if self.async not in self.async_available:
 helptext = ("Please select a valid async module: \n\t"
 + "\n\t".join(self.async_available))

 elif self.async.endswith("gevent"):
 helptext = ("Please make sure gevent is installed or use "
 "a different async manager.")
 else:
 helptext = ""

 raise RuntimeError(
 "Unable to load async manager from {}.\n{}".format(self.async,
 helptext))

[docs] def spawn(self, *args, **kwargs):
 return self.async.spawn(*args, **kwargs)

[docs] def spawn_later(self, *args, **kwargs):
 return self.async.spawn_later(*args, **kwargs)

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		Ginkgo 0.6.0 documentation »

 All modules for which code is available

		ginkgo.core

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

util.html

 Navigation

 		
 index

 		Ginkgo 0.6.0 documentation »

Util module

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_static/file.png

service.html

 Navigation

 		
 index

 		Ginkgo 0.6.0 documentation »

Service component

		
class ginkgo.core.Service[source]

		
		
started

		This property returns whether this service has been started

		
ready

		

		
add_service(service)

		Add a child service to this service

The service added will be started when this service starts, before
its _start() method is called. It will also be stopped when this
service stops, before its _stop() method is called.

		
remove_service(service)

		Remove a child service from this service

		
start(block_until_ready=True)

		Starts children and then this service. By default it blocks until ready.

		
stop()

		Stop child services in reverse order and then this service

		
serve_forever()

		Start the service if it hasn’t been already started and wait until it’s stopped.

		
spawn(*args, **kwargs)[source]

		

		
spawn_later(*args, **kwargs)[source]

		

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

api.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Ginkgo 0.6.0 documentation »

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Ginkgo 0.6.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_static/minus.png

dev/internals.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Ginkgo 0.6.0 documentation »

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/comment-close.png

dev/authors.html

 Navigation

 		
 index

 		
 previous |

 		Ginkgo 0.6.0 documentation »

 © Copyright 2012, Jeff Lindsay.
 Created using Sphinx 1.2.2.

