_static/down-pressed.png





_static/up-pressed.png





xml/locations.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
locations element


Games can keep their saves anywhere, so here we try to provide as many ways as possible of finding them. These locations are not the exact locations of the saves, but are instead roots used as the first step to find the saves. Why do we do it like this? Here’s why:


These are some possible save locations for Deus Ex:     See how they’re all different, but all end with the same Save folder?
We can be certain that the Save folder is always used, no matter the location,
and just specify the part of the path that we can’t predict:
C:DeusExSaveC:DeusExC:Program FilesGOG.comDeus ExSave C:Program FilesGOG.comDeus ExC:Program FilesSteamsteamappscommondeus exSave  C:Program FilesSteamsteamappscommondeus ex


The main point here is to not store the same information (the Save folder) more than once. This has space saving advantages, but it also allows us to re-use the same location to specify Settings, Replays, Screenshots, or anything else that might happen to be there. We must be mindful to include enough of the root path that we can’t mistake one game’s paths for another. We have a few ways of finding these locations:













          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/linkable.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
linkable element


<linkable path=”Save”/>
Some games can handle having their save folders symlinked to another folder, like inside of a Dropbox or Google Drive folder. Do this on two computers, and you’ve got their saves automatically synced! The “linkable” element allows you to explain how to link a particular game. This process only works reliably with folders, so that’s the only thing you can specify. If you specify a path, it will append that path to any detected locations. If no path, then the detected location itself will be used.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/title_element.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
title element


<title>Deus Ex</title>


Between the two title tags you just type up the name of the game. This should be the name that was first attached to a game when it was release, other names would be delegated to version titles, which we will talk about later. Try to include the entire name, no reason to skimp on length. It might be tempting to shorten Penny Arcade Adventures: On The Rain Slick Precipice Of Darkness Chapter One to Penny Arcade Adventures 1, but resist it.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

_static/comment-bright.png





xml/playstation.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
		<game name=”BrutalLegend”>


		<title>BrÃ¼tal Legend</title>
<version os=”PS3” region=”USA”>



<ps_code prefix=”BLUS” suffix=”30330”/>
<contributor>GameSave.Info</contributor>



</version>








</game>
PlayStation Games are considered just another version of the base game, and are marked with an OS matching the PlayStation platform (PS1, PS2, PS3, PSP). Instead of “locations”, “files” (and the optional “identifier”), you only specify the game’s PlayStation code, which can usually be found on the game disc and case. Each disc (even within the same game) usually has a unique code, 4 letters then 5 numbers. This code is used in the name of a game’s saves. Like file tags, you can sepcify a type on a PlayStation Code


For console games you should include the region code, as almost all console saves are guaranteed to be incompatible with those from other countries.


Some more modern PS3 games keep multiple save files for different types of data, sometimes seperating out Profile or setting data. Usually these saves wil have extra letters appended to the name. You can specify these with the append tag, as shown in this example from Tomb Raider: Anniversary:


<ps_code prefix=”BLUS” suffix=”30718” append=”-TALIST”/>
<ps_code prefix=”BLUS” suffix=”30718” append=”-TAPROFILE” type=”Profile”/>
Usually you would want to accompany an append with an appropriate type. Having a code with an append will NOT indicate that it should be excluded from other types, so make sure each code entry will indicate a unique entry.




          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

_static/comment-close.png





xml/version_element.html


    
      Navigation


      
        		
          index


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
version element


<version os=”Windows”>


The version tag is used to specify the versions of the game the contained saves are compatible with. In this example, it’s compatible with Windows. This does NOT mean this save will only work on Windows, only that it’s only for the Windows version of the game. This save would also be compatible with Linux if you have Deus Ex installed under WINE. The reason it is organized like this is because GameSave.Info also doubles as the data source for the game save backup program MASGAU.


There are 5 attributes that allow us to describe a unique game save version:



		os


		The operating system the save is compatible with. Possible values:
#. Android
#. DOS
#. Linux
#. OSX
#. PS1
#. PS2
#. PS3
#. PSP
#. Windows
#. WindowsVista
#. WindowsXP


		platform


		The technology platform the save is compatible with. Possible values:
#. Flash
#. RenPy
#. ScummVM
#. SteamCloud
#. UbisoftSaveStorage


		region


		The region of the world the save is for. Possible values include any 3-letter ISO 3166-1 country code, or any of these two-letter continent codes:
#. AF - Africa
#. AS - Asia
#. EU - Europe
#. NA - North America
#. SA - South America
#. OC - Oceania
(Antarctica has its own country code, so I won’t support its continent code)


		media


		The delivery medium of the game version that the save is compatible with. Possible values:
#. CD
#. Download
#. Floppy
#. GoG
#. Steam


		release


		The release of the game the save is compatible with. This is freeform, can be anything at all. Some examples:
#. CollectorsEdition
#. TitaniumEdition
#. Gold
#. HD
#. Remastered
#. GOTY





If a save is compatible with more than one thing in any of these categories, just don’t specify the attribute. Try to keep the version specification as general as possible, while simultaneously making sure that a save would not accidentally get labelled as belonging to the wrong version of the game.


<version os=”Windows” media=”CD” release=”TitaniumEdition” region=”USA”>
This example states that the contained saves are only compatible with the Windows version of the Titanium Edition of the game that was released on CD in the USA. This example is fake, I have yet to encounter saves that had such specific requirements.


<version media=”Steam”>
An important distinction should be made between a version for Steam and a version specifically for Steam Cloud data. The above is for the former, and the below for the latter.


<version platform=”SteamCloud”>
You could also specify media=”Steam” on this, and it would be accurate but since SteamCloud automatically imples Steam, it’s not necessary.


My policy right now on DOS games is to label it as DOS if the save produced is only compatible with the DOS version of the game. If there exists a Windows version of a DOS game, and the saves are compatible with both, then both of the games’ information would be combined into one Windows profile, such as with Master Of Orion 2 or Descent II.


If you omit these attributes, then it is saying that the saves described are compatible with all versions of the game. This is pretty rare, but these games do exist. One example is fs2_open:




		<game name=”fs2_open”>


		<title>fs2_open</title>
<version>




		<locations>


		<path ev=”installlocation” path=”fs2_open”/>
<parent name=”FreeSpace2” os=”Windows”/>





</locations>
<files>



<include path=”dataplayers”/>



</files>
<identifier filename=”fs2_open*”/>
<comment>Doesn’t have a default install folder, so might require an Alt. Install Path.</comment>
<contributor>GameSave.Info</contributor>






</version>








</game>






If a game’s saves were to work across just Linux and Windows, I would also not add a platform attribute, even if there was a Mac version with incompatible saves. By adding an additional Mac-specific version we would be declaring such an incompatibility.


You can specify more than one version of a game within the same game tag:




		<game name=”MechWarrior2”>


		
<title>MechWarrior 2: 31st Century Combat</title>
<version os=”Windows”>




		<locations>


		<path ev=”installlocation” path=”ActivisionBattlePackMW2”/>
<shortcut ev=”startmenu” path=”ProgramsBattlePackMechWarrior 2MechWarrior 2 Uninstall.lnk”/>





</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>
<version os=”Windows” release=”TitaniumEdition”>



<title>MechWarrior 2: 31st Century Combat: Titanium Edition</title>
<locations>



<path ev=”installlocation” path=”ActivisionTitaniumMechwarrior2”/>
<path ev=”altsavepaths” path=”MechVMgamesmw2-31stcc-tt”/>
<registry root=”local_machine” key=”SOFTWAREActivisionActivenetApplications1020.2.1” value=”Cwd”/>
<shortcut ev=”startmenu” path=”ProgramsTitaniumMechwarrior2Play MechWarrior2.lnk” detract=”splash”/>



</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>






</game>












As you can see we only specify a version title when that version has a title different than the main one specified under the game tag.


<version os=”Windows” virtualstore=”ignore” detect=”required”>
There are two additional attributes demonstrated here:


virtualstore - Specified if the game ignores VirtualStore in Windows Vista and later. Can be set to “ignore” or “use”. Default is use.
detect - Specifies wether the game’s save location cannot be predicted without an existing save location. Can be either “required” or “optional”. Default is “optional”.
<version deprecated=”true”>
If a version is marked as deprecated, it means that the information provided is no longer considered correct. It’s kept only for posterity and backwards-compatability.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/identifier.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
identifier element


<identifier path=”Save” />
Some games aren’t consistent about where their saves are. For example Peggle will store its setting in its install folder under XP, but under ProgramData under Vista and 7. This means that both must be specified in the XML file, leading to confusion if both are detected. The identifier tag is a way of telling for sure that we’ve got the right location. It can use the exact same attributes as a “save” element (described above).


In Peggle’s case we’d specify


<identifier path=”userdata” />
because only the right location will have a userdata folder in it. It would probably be best for every game to have one of these, but the only ones that absolutely need it are ones that can have multiple locations, or if you need to distinguish between two versions of a game (such as with The Longest Journey’s 2-disc and 4-disc variants).






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/game_element.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
game element


The main purpose of this tag is to provide a unique internal name for the game. This unique name must follow these rules:



		No spaces, and no symbols.


		Use CamelCase [http://en.wikipedia.org/wiki/CamelCase] for legibility.


		Always use numbers instead of roman numerals [http://en.wikipedia.org/wiki/Roman_numerals] (or other representations of numbers), for sorting purposes.


		All versions of a game go under the same game tag. For example, the Deus Ex game tag contains a version for both Windows and PlayStation 2.





There are actually several variations on this tag, and you should try to use the one appropriate for your entry:


<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>
Use this if the entry is for an expansion pack, add-on or DLC for another game. In this example, Mechwarrior 4: Black Knight is an expansion for MechWarrior 4: Vengeance. The “for” attribute is required for an expansion, and MUST reference another game in the XML file. “Stand-alone expansions” do NOT get to be marked as an expansion. The term is an oxymoron, and makes no sense.


<mod name=”NamelessMod” for=”DeusEx”>
Use this if the entry is for an MOD for another game. In this example, The Nameless Mod is a MOD for Deus Ex. The “for” attribute is required for a MOD, and MUST reference another game in the XML file.


<system name=”GamesForWindows”>
Use this when describing system data.


There is a completely optional “follows” attribute that can be added to any of these variations:


<game name=”DeusExInvisibleWar” follows=”DeusEx”>
It basically just indicates that the entry is somehow a follow-up (or sequel) to the indicated other entry. It’s not parsed or used anywhere yet, but one day maybe.


<game name=”DeprecatedGame” deprecated=”true”>
If a game is marked as deprecated, it means that the information provided is no longer considered correct. It’s kept only for posterity and backwards-compatability.


Obviously your closing tag should match your opening tag. Other than this, the contained tags are all the same.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/restore_comment.html


    
      Navigation


      
        		
          index


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
restore comment element


<restore_comment>Restoring saves for this game also requires restoring Game for Windows Account Data, which MASGAU automatically backs up in G4WAccountData.</restore_comment>
Used to specify a comment pertaining to restoring a game’s saves. Can only be inside of a version element.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/title.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
title element


<title>Deus Ex</title>


Between the two title tags you just type up the name of the game. This should be the name that was first attached to a game when it was release, other names would be delegated to version titles, which we will talk about later. Try to include the entire name, no reason to skimp on length. It might be tempting to shorten Penny Arcade Adventures: On The Rain Slick Precipice Of Darkness Chapter One to Penny Arcade Adventures 1, but resist it.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/version.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
version element


<version os=”Windows”>


The version tag is used to specify the versions of the game the contained saves are compatible with. In this example, it’s compatible with Windows. This does NOT mean this save will only work on Windows, only that it’s only for the Windows version of the game. This save would also be compatible with Linux if you have Deus Ex installed under WINE. The reason it is organized like this is because GameSave.Info also doubles as the data source for the game save backup program MASGAU.


There are 5 attributes that allow us to describe a unique game save version:



		os


		The operating system the save is compatible with. Possible values:
#. Android
#. DOS
#. Linux
#. OSX
#. PS1
#. PS2
#. PS3
#. PSP
#. Windows
#. WindowsVista
#. WindowsXP


		platform


		The technology platform the save is compatible with. Possible values:
#. Flash
#. RenPy
#. ScummVM
#. SteamCloud
#. UbisoftSaveStorage


		region


		The region of the world the save is for. Possible values include any 3-letter ISO 3166-1 country code, or any of these two-letter continent codes:
#. AF - Africa
#. AS - Asia
#. EU - Europe
#. NA - North America
#. SA - South America
#. OC - Oceania
(Antarctica has its own country code, so I won’t support its continent code)


		media


		The delivery medium of the game version that the save is compatible with. Possible values:
#. CD
#. Download
#. Floppy
#. GoG
#. Steam


		release


		The release of the game the save is compatible with. This is freeform, can be anything at all. Some examples:
#. CollectorsEdition
#. TitaniumEdition
#. Gold
#. HD
#. Remastered
#. GOTY





If a save is compatible with more than one thing in any of these categories, just don’t specify the attribute. Try to keep the version specification as general as possible, while simultaneously making sure that a save would not accidentally get labelled as belonging to the wrong version of the game.


<version os=”Windows” media=”CD” release=”TitaniumEdition” region=”USA”>
This example states that the contained saves are only compatible with the Windows version of the Titanium Edition of the game that was released on CD in the USA. This example is fake, I have yet to encounter saves that had such specific requirements.


<version media=”Steam”>
An important distinction should be made between a version for Steam and a version specifically for Steam Cloud data. The above is for the former, and the below for the latter.


<version platform=”SteamCloud”>
You could also specify media=”Steam” on this, and it would be accurate but since SteamCloud automatically imples Steam, it’s not necessary.


My policy right now on DOS games is to label it as DOS if the save produced is only compatible with the DOS version of the game. If there exists a Windows version of a DOS game, and the saves are compatible with both, then both of the games’ information would be combined into one Windows profile, such as with Master Of Orion 2 or Descent II.


If you omit these attributes, then it is saying that the saves described are compatible with all versions of the game. This is pretty rare, but these games do exist. One example is fs2_open:




		<game name=”fs2_open”>


		<title>fs2_open</title>
<version>




		<locations>


		<path ev=”installlocation” path=”fs2_open”/>
<parent name=”FreeSpace2” os=”Windows”/>





</locations>
<files>



<include path=”dataplayers”/>



</files>
<identifier filename=”fs2_open*”/>
<comment>Doesn’t have a default install folder, so might require an Alt. Install Path.</comment>
<contributor>GameSave.Info</contributor>






</version>








</game>






If a game’s saves were to work across just Linux and Windows, I would also not add a platform attribute, even if there was a Mac version with incompatible saves. By adding an additional Mac-specific version we would be declaring such an incompatibility.


You can specify more than one version of a game within the same game tag:




		<game name=”MechWarrior2”>


		
<title>MechWarrior 2: 31st Century Combat</title>
<version os=”Windows”>




		<locations>


		<path ev=”installlocation” path=”ActivisionBattlePackMW2”/>
<shortcut ev=”startmenu” path=”ProgramsBattlePackMechWarrior 2MechWarrior 2 Uninstall.lnk”/>





</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>
<version os=”Windows” release=”TitaniumEdition”>



<title>MechWarrior 2: 31st Century Combat: Titanium Edition</title>
<locations>



<path ev=”installlocation” path=”ActivisionTitaniumMechwarrior2”/>
<path ev=”altsavepaths” path=”MechVMgamesmw2-31stcc-tt”/>
<registry root=”local_machine” key=”SOFTWAREActivisionActivenetApplications1020.2.1” value=”Cwd”/>
<shortcut ev=”startmenu” path=”ProgramsTitaniumMechwarrior2Play MechWarrior2.lnk” detract=”splash”/>



</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>






</game>












As you can see we only specify a version title when that version has a title different than the main one specified under the game tag.


<version os=”Windows” virtualstore=”ignore” detect=”required”>
There are two additional attributes demonstrated here:


virtualstore - Specified if the game ignores VirtualStore in Windows Vista and later. Can be set to “ignore” or “use”. Default is use.
detect - Specifies wether the game’s save location cannot be predicted without an existing save location. Can be either “required” or “optional”. Default is “optional”.
<version deprecated=”true”>
If a version is marked as deprecated, it means that the information provided is no longer considered correct. It’s kept only for posterity and backwards-compatability.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

_static/down.png





_static/file.png





_static/ajax-loader.gif





_static/comment.png





xml/locations/registry.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
registry element


Location Using A Registry Key


<registry root=”local_machine” key=”SOFTWAREUnreal TechnologyInstalled AppsDeus Ex” value=”Folder”/>
The registry element lets you specify a registry key that contains the path to a game’s saves. For thsoe not in the know, Windows keeps what is called a registry, and it’s basically a fancy collection of names and value. If you click Start, Run then type in regedit, you’ll be able to browse it. Windows keeps all of its settings, and the install locations of a lot of programs here, which means we can take advantage of it to find a game, but it’s pretty much only useful for games that keep their saves in the isntall folder. The root of a key indicates which registry root will be used. Windows has several, here are what’s available:


classes_root - I don’t know
current_user - The registry for the currently logged in user
current_config - The registry for Windows’ settings
dyn_data - I don’t know
local_machine - The registry for the computer as a whole
performance_data - I don’t know
users - The registry for all the users
The key is like a folder path, pointing to the location of the key in the registry root (browse around regedit, it’ll make sense). A key can have several values, one default and zero or more named values. If you ommit the value attribute, the default one will be used, otherwise only a value matching the name you provide will be used.


There is one caveat on 64-bit systems. On these systems, Windows places the registry keys for 32-bit programs (which most games are) inside of a special folder, seperate from the 64-bit programs. For instance Deus Ex’s registry entry on a 32-bit system would be:


SOFTWAREUnreal TechnologyInstalled AppsDeus Ex
But on a 64-bit system it would be placed in:


SOFTWAREWow6432NodeUnreal TechnologyInstalled AppsDeus Ex
The policy right now is to write entries WITHOUT the Wow6432Node. Adding the node is trivial, so this way is more compatible.


Registry keys frequently can make use of the append and detract attributes available to all location elements. See the section below for more details.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/locations/path.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  ===
path element
===


Location Using A Path


<path ev=”installlocation” path=”DeusEx”/>
The path tag lets us specify an actual folder name, but sitll allows us to do so in a format that can adjust automatically for any system. This is attained via environment variables. The environment variable will be replaced with whatever the appropriate path from the system is, and prepended onto the provided path.


The environment variables available for use:
allusersprofile A Windows folder that contains data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll Users
altsavepaths    This is catch-all folder, it could be literally anywhere.
I know it’s not much to go on :(
appdata Contains the application data for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoaming
Windows XP
C:Documents and Settings%USERNAME%Application Data
commonapplicationdata   Contains application data that is common to all users
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll UsersApplication Data
desktop A per-user folder that contains the files store on a user’s desktop.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Desktop
Windows XP
C:Documents and Settings%USERNAME%Desktop
drive   Refers to the root of a drive. Any drive.
Here are some common examples:
Linux
/mnt/sda1
Windows
C:D:G:T:flashshared     Stores cached Adobe Flash data.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoamingMacromediaFlash Player#SharedObjects
Windows XP
C:Documents and Settings%USERNAME%Application DataMacromediaFlash Player#SharedObjects
installlocation This means that the game keeps its saves in its install folder.
Here are some common examples:
Linux
/usr/bin
/var/shared
Windows
C:Program Files
C:Program Files (x86) (Common for games on 64-bit Windows)
C:Games
localappdata    Contains the local settings for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocal
Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication Data
public  A special folder only on certain versions of Windows for storing user data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:UsersPublic
savedgames      A folder only on certain versions of Windows specifically for storing saved games.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Saved Games
startmenu       The folder that contains the files for Windows’ start menu.
There is one for each user, and a global one that all users share.
Here are some common examples:
Windows Vista, 7 & 8
User: C:Users%USER%AppDataRoamingMicrosoftWindowsStart
MenuGlobal: C:ProgramDataMicrosoftWindowsStart Menu
Windows XP
User: C:Documents and Settings%USER%Start Menu
Global: C:Documents and SettingsAll UsersStart Menu
steamcommon     This is the location where Steam keeps games that don’t use its integrated GCF system (which is most games).
Here are some common examples:
Windows
C:Program FilesSteamsteamappscommon
steamsourcemods This folder contains the files for mods for Valve’s Source game engine.
Here are some common examples:
Windows
C:Program FilesSteamsteamappsSourceMods
steamuser       This location stores per-user settings, saves and cache files for Valve’s game distributed through Steam.
Here are some common examples:
Windows
C:Program FilesSteamsteamapps%STEAMUSERNAME%
steamuserdata   This folder stores Steam Cloud data.
This data is automatically backed up onto Steam’s servers.
Here are some common examples:
Windows
C:Program FilesSteamuserdata%STEAMID%
ubisoftsavestorage      The save location used by the Ubisoft Game Launcher
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocalUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication DataUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%userdocuments   The user’s document folder.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Documents
Windows XP
C:Documents and Settings%USERNAME%My Documents
userprofile     This folder contains all the files related to a particular user.
Here are some common examples:
Linux
/home/%USERNAME%/
Windows Vista, 7 & 8
C:Users%USERNAME%
Windows XP
C:Documents and Settings%USERNAME%
Different versions of a game can install to all kinds of locations, so if a game keeps its saves in the install folder we have to specify as many different install paths as we can discover. For Deus Ex, the CD, Steam and GoG.com versions all install to different locations, so we add a path element for each one:


<path ev=”installlocation” path=”DeusEx”/>
<path ev=”installlocation” path=”GOG.comDeus Ex”/>
<path ev=”steamcommon” path=”deus ex”/>
If we’re lucky, the game keeps its saves somewhere other than the install folder, which usually means that all versions of the gam use the exact same path. A good example, and one that most games follow these days, is using the “My Documents” folder. Deus Ex’s sequel, Invisible War, was wise enough to do this:


<path ev=”userdocuments” path=”Deus Ex - Invisible War”/>
This will check each user’s My Documents folder for a path called “Deus Ex - Invisible War”, and should work for the disc, Steam, Impulse, Gog.com or any other versions of the game. This is not universal unfortuantely, as some games (like Alan Wake) use different folder names for different versions, despite all using folders like My Documents.




          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/locations/shortcut.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
shortcut element


<shortcut ev=”startmenu” path=”ProgramsDeus ExPlay Deus Ex.lnk” detract=”System”/>
Quite frequently there is a shortcut in the Start menu, or on the desktop, or somewhere else, that points to the install folder of a game. If the game keeps its saves in the install folder, then this is yet another way we can use to find them! The ev attribute here supports the same values as the path element described above, but you’ll pretty much always be using startmenu. From there you provide the path to the shortcut, easy peasy!


As shown in the example, this tag can also take advantage of the append and detract attributes, which are explained in a later section.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/game.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<game>



Example


<game name="DeusEx">
  ...
</game>









Description


Each game is defined within a program element. There are four types of program elements:



		<game>


		<expansion>


		<mod>


		<system>





The main purpose of this tag is to provide a unique internal name for the game. This unique name must follow these rules:



		No spaces, and no symbols.


		Use CamelCase [http://en.wikipedia.org/wiki/CamelCase] for legibility.


		Always use numbers instead of roman numerals [http://en.wikipedia.org/wiki/Roman_numerals] (or other representations of numbers), for sorting purposes.


		All versions of a game go under the same game tag. For example, the Deus Ex game tag contains a version for both Windows and PlayStation 2.





There are actually several variations on this tag, and you should try to use the one appropriate for your entry:


<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>
Use this if the entry is for an expansion pack, add-on or DLC for another game. In this example, Mechwarrior 4: Black Knight is an expansion for MechWarrior 4: Vengeance. The “for” attribute is required for an expansion, and MUST reference another game in the XML file. “Stand-alone expansions” do NOT get to be marked as an expansion. The term is an oxymoron, and makes no sense.


<mod name=”NamelessMod” for=”DeusEx”>
Use this if the entry is for an MOD for another game. In this example, The Nameless Mod is a MOD for Deus Ex. The “for” attribute is required for a MOD, and MUST reference another game in the XML file.


<system name=”GamesForWindows”>
Use this when describing system data.


There is a completely optional “follows” attribute that can be added to any of these variations:


<game name=”DeusExInvisibleWar” follows=”DeusEx”>
It basically just indicates that the entry is somehow a follow-up (or sequel) to the indicated other entry. It’s not parsed or used anywhere yet, but one day maybe.


If a game is marked as deprecated, it means that the i.


Obviously your closing tag should match your opening tag. Other than this, the contained tags are all the same.





Attributes



		deprecated (boolean) (optional)


		Marks a game as deprecated, meaning that the information provided is no longer considered correct. This allows the data to be kept for posterity and backwards-compatability.





<game name="DeprecatedGame" deprecated="true">









Child elements



		<title> (required)


		Defines the title for the game. This title will be used for all versions of the game, except for those that have an explicitily defined title.








Parent element



		<programs>


		Root element that contains all program-type elements.











          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/files.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<files>


Now we get to the nitty-gritty of specifying which files are saves, settings, etc. After the locations element’s closing tag, we can specify one or more “files” elements, specifying and sorting these files by type.


Types


<files>
<files type=”Settings”>
Each “files” element has an optional “type” attribute. This tells us what type of files are going to be specified within the files tag. It could also be “Settings”, “Profiles”, or anything else. The attribute isn’t constrained, so you can be as accurate as necessary. When possible, try to conform to existing type names, so there can be some semblence of consistency, but if it absolutely needs to be a new type name, go for it.


Files To Save



		<files>


		<include path=”Save”/>





</files>
Within each files element, we specify one or more “save” elements that describe the files. There are three attributes used to specify files:


path - This specifies the folder path (starting at the end of the locations found from the above sections’ specifications). This can use wildcards (like SAVE*)
filename - This specifies the name of the files. This can also use wildcards, like *.sav
modified_after - This specifies a time and date that the file must be modified after in order to qualify
Different combinations of path and filename have different meanings:


If no path or filename are specified, then that means ALL the files in ALL the folders in the location.
<include />
If only a path is specified, then that means all the files in that folder, but NOT the subfolders.
<include path=”Save” />
If only a filename is specified, then that means all the files matching that name in the location, but NOT the subfolders.
<include filename=”.sav” />
If a path and a filename are specified, then that means all the files matching the name in that specific folder, but NOT the subfolders.
<include path=”System” filename=”.ini”/>
The modified_after date is formatted as follows:


<include path=”DataCampaigns” modified_after=”2001-10-09T00:00:00”/>
Except For...



		<include path=”userdata”>


		<exclude path=”userdatamp3”/>





</include>
To make things easier, you can specify a very broad save definition, and refine it using one or more “except” elements under that save element. This element can use all the same tags as the “save” element, and they all work exactly the same, except the deselect files instead of selecting them.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/locations/attributes.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
location attributes


Append And Detract Attributes



		<game name=”AloneInTheDark”>


		<title>Alone in the Dark</title>
<version os=”DOS”>




		<locations>


		<path ev=”installlocation” path=”GOG.comAlone in the DarkINDARK”/>
<registry root=”local_machine” key=”SOFTWAREGOG.comGOGALONE1” value=”PATH” append=”INDARK”/>
<shortcut ev=”startmenu” path=”ProgramsGOG.comAlone in the DarkAlone in the Dark.lnk” detract=”DOSBOX” append=”INDARK” />





</locations>
<files>



<include filename=”SAVE?.ITD”/>



</files>
<contributor>GameSave.Info</contributor>






</version>








</game>
All of the location elements can use the append and detract attributes. In the above example, the shortcut provided actually points to:


C:Program FilesGOG.comAlone in the DarkDOSBOX
But the saves are actually in:


C:Program FilesGOG.comAlone in the DarkINDARK
These attributes tell us to detract (or take away) DOSBOX, then append (or add to the end) INDARK from the location the shortcut points to. This is frequently needed for expansions, registry keys and shortcuts, which will usually point close to the desired location, but not to exactly the right spot.


You can use both of the attributes, only one or the other, or none at all, there are no requirements format-wise.


only_for Attribute


<path ev=”allusersprofile” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsXP”/>
<path ev=”public” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsVista”/>
Some locations are only applicable to certain operating systems. For these you can use the only_for attribute to specify an OS that the path is for. All the OSs that can be used for the os attribute for the version element can be used here. See the above version element section for a list of them.


Deprecated Locations



		<game name=”OddworldStrangersWrath” follows=”OddworldMunchsOddysee”>


		<title>Oddworld: Stranger’s Wrath</title>
<version os=”Windows”>




		<locations>


		<path ev=”steamcommon” path=”stranger’s wrath” deprecated=”true”/>
<path ev=”userdocuments” path=”OddworldStranger’s Wrath”/>





</locations>
<files>



<include path=”Save”/>



</files>
<files type=”Settings”>



<include filename=”config.txt”/>



</files>
<contributor>Arc Angel</contributor>
<contributor>slake_jones</contributor>






</version>








</game>
Sometimes a game changes where it keeps its saves. In this example, Oddworld: Stranger’s Wrath USED TO keep its saves in its install folder. A patch changed this. By adding the deprecated attribute, we’re saying that this WAS a save location, but it isn’t used anymore. We keep these locations because there may still be saves there, and mark it as deprecated so we know we should never place saves there.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/locations/parent.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
parent element


Location Using Another Game



		<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>


		<title>MechWarrior 4: Black Knight</title>
<version os=”Windows”>




		<locations>


		<registry root=”local_machine” key=”SOFTWAREMicrosoftMicrosoft GamesMechWarrior Black Knight” value=”EXE Path”/>
<parent name=”MechWarrior4Vengeance” os=”Windows”/>





</locations>
<files type=”Mechs”>



<include path=”resourceVariantsx”/>



</files>
<files>



<include path=”resourcePilotsx”/>



</files>
<files type=”Settings”>



<include filename=”optionsx.ini”/>



</files>
<identifier filename=”optionsx.ini”/>
<contributor>GameSave.Info</contributor>






</version>








</expansion>
If the game shares its save location in any way with another game, we can specify that game as a location source. More specifically, we specify a specific version of the game to take locations from. We specify the name of the game, along with all the version attributes of the version we want. These version elements MUST match a game version that is in the XML file.


This also allows you to create entries whose detection is dependent on the detection of another game.


Quite often this will need to make use of the append and detract attributes, as well as the identifier element, all of which are explained later.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<programs>






Example


<programs majorVersion="2" minorVersion="0" revision="2" updated="2013-06-15T13:45:04" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="GameSaveInfo202.xsd">
  ...
</programs>









Description


The root element for the GameSave.Info XML format is the “programs” element.
There can only be one “programs” element per XML file.
The name “programs” was chosen because an individual file can contain data on not just games, but also mods and system tools.





Attributes



		majorVersion (integer) (required)


		This defines the major version for the XML file format. GameSave.Info and MASGAU both make use of this to determine whether they are compatible with a particular format of an XML file, and whether it is possible for it to automatically update the file to a newer format. Major version changes are defined as changes that drastically alter the entire format of the file.


		minorVersion (integer) (required)


		This is used in the same manner as majorVersion. Minor version changes are defined as changes that do not affect the file as a whole, but still can impact compatability with older versions of GameSave.Info or MASGAU.


		revision (integer) (required)


		This is used in the same manner as minorVersion. Revisions are defined as changes that fo not affect the file or compatability, but still require a change to the schema file that defines the format.


		updated (timestamp) (required)


		This is used by MASGAU’s auto-update system to keep track of when a file was last updated.


		xmlns:xsi (string) (required)


		This lets the XML parser know that the file uses an XML Schema.


		xsi:noNamespaceSchemaLocation (string) (required)


		This tells the XML parser what the filename of the XML Schema is.








Child Elements



		<game> (optional)


		Defines a game.


		<mod> (optional)


		Defines a mod.


		<expansion> (optional)


		Defines an expansion.


		<system> (optional)


		Defines a system application.





NOTE: THE PROGRAMS ELEMENT REQUIRES AT LEAST ONE CHILD. CHILDREN CAN BE OF ANY TYPE LISTED HERE, AND IN ANY ORDER.








          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/contributor.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<contributor>


<contributor>GameSave.Info</contributor>
This is used by the site to credit contributors.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/comment.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<comment>


<comment>The best game EVER!</comment>
Used to specify a comment that will be visible on the game info page. You can have a comment element instide the version and/or inside the game.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/linkable.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<linkable />


<linkable path=”Save”/>
Some games can handle having their save folders symlinked to another folder, like inside of a Dropbox or Google Drive folder. Do this on two computers, and you’ve got their saves automatically synced! The “linkable” element allows you to explain how to link a particular game. This process only works reliably with folders, so that’s the only thing you can specify. If you specify a path, it will append that path to any detected locations. If no path, then the detected location itself will be used.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/restore_comment.html


    
      Navigation


      
        		
          index


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<restore_comment>


<restore_comment>Restoring saves for this game also requires restoring Game for Windows Account Data, which MASGAU automatically backs up in G4WAccountData.</restore_comment>
Used to specify a comment pertaining to restoring a game’s saves. Can only be inside of a version element.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/ps_code.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<ps_code />



		<game name=”BrutalLegend”>


		<title>BrÃ¼tal Legend</title>
<version os=”PS3” region=”USA”>



<ps_code prefix=”BLUS” suffix=”30330”/>
<contributor>GameSave.Info</contributor>



</version>








</game>
PlayStation Games are considered just another version of the base game, and are marked with an OS matching the PlayStation platform (PS1, PS2, PS3, PSP). Instead of “locations”, “files” (and the optional “identifier”), you only specify the game’s PlayStation code, which can usually be found on the game disc and case. Each disc (even within the same game) usually has a unique code, 4 letters then 5 numbers. This code is used in the name of a game’s saves. Like file tags, you can sepcify a type on a PlayStation Code


For console games you should include the region code, as almost all console saves are guaranteed to be incompatible with those from other countries.


Some more modern PS3 games keep multiple save files for different types of data, sometimes seperating out Profile or setting data. Usually these saves wil have extra letters appended to the name. You can specify these with the append tag, as shown in this example from Tomb Raider: Anniversary:


<ps_code prefix=”BLUS” suffix=”30718” append=”-TALIST”/>
<ps_code prefix=”BLUS” suffix=”30718” append=”-TAPROFILE” type=”Profile”/>
Usually you would want to accompany an append with an appropriate type. Having a code with an append will NOT indicate that it should be excluded from other types, so make sure each code entry will indicate a unique entry.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<locations>


Games can keep their saves anywhere, so here we try to provide as many ways as possible of finding them. These locations are not the exact locations of the saves, but are instead roots used as the first step to find the saves. Why do we do it like this? Here’s why:


These are some possible save locations for Deus Ex:     See how they’re all different, but all end with the same Save folder?
We can be certain that the Save folder is always used, no matter the location,
and just specify the part of the path that we can’t predict:
C:DeusExSaveC:DeusExC:Program FilesGOG.comDeus ExSave C:Program FilesGOG.comDeus ExC:Program FilesSteamsteamappscommondeus exSave  C:Program FilesSteamsteamappscommondeus ex


The main point here is to not store the same information (the Save folder) more than once. This has space saving advantages, but it also allows us to re-use the same location to specify Settings, Replays, Screenshots, or anything else that might happen to be there. We must be mindful to include enough of the root path that we can’t mistake one game’s paths for another. We have a few ways of finding these locations:













          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/version.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<version>


<version os=”Windows”>


The version tag is used to specify the versions of the game the contained saves are compatible with. In this example, it’s compatible with Windows. This does NOT mean this save will only work on Windows, only that it’s only for the Windows version of the game. This save would also be compatible with Linux if you have Deus Ex installed under WINE. The reason it is organized like this is because GameSave.Info also doubles as the data source for the game save backup program MASGAU.


There are 5 attributes that allow us to describe a unique game save version:



		os


		The operating system the save is compatible with. Possible values:
#. Android
#. DOS
#. Linux
#. OSX
#. PS1
#. PS2
#. PS3
#. PSP
#. Windows
#. WindowsVista
#. WindowsXP


		platform


		The technology platform the save is compatible with. Possible values:
#. Flash
#. RenPy
#. ScummVM
#. SteamCloud
#. UbisoftSaveStorage


		region


		The region of the world the save is for. Possible values include any 3-letter ISO 3166-1 country code, or any of these two-letter continent codes:
#. AF - Africa
#. AS - Asia
#. EU - Europe
#. NA - North America
#. SA - South America
#. OC - Oceania
(Antarctica has its own country code, so I won’t support its continent code)


		media


		The delivery medium of the game version that the save is compatible with. Possible values:
#. CD
#. Download
#. Floppy
#. GoG
#. Steam


		release


		The release of the game the save is compatible with. This is freeform, can be anything at all. Some examples:
#. CollectorsEdition
#. TitaniumEdition
#. Gold
#. HD
#. Remastered
#. GOTY





If a save is compatible with more than one thing in any of these categories, just don’t specify the attribute. Try to keep the version specification as general as possible, while simultaneously making sure that a save would not accidentally get labelled as belonging to the wrong version of the game.


<version os=”Windows” media=”CD” release=”TitaniumEdition” region=”USA”>
This example states that the contained saves are only compatible with the Windows version of the Titanium Edition of the game that was released on CD in the USA. This example is fake, I have yet to encounter saves that had such specific requirements.


<version media=”Steam”>
An important distinction should be made between a version for Steam and a version specifically for Steam Cloud data. The above is for the former, and the below for the latter.


<version platform=”SteamCloud”>
You could also specify media=”Steam” on this, and it would be accurate but since SteamCloud automatically imples Steam, it’s not necessary.


My policy right now on DOS games is to label it as DOS if the save produced is only compatible with the DOS version of the game. If there exists a Windows version of a DOS game, and the saves are compatible with both, then both of the games’ information would be combined into one Windows profile, such as with Master Of Orion 2 or Descent II.


If you omit these attributes, then it is saying that the saves described are compatible with all versions of the game. This is pretty rare, but these games do exist. One example is fs2_open:




		<game name=”fs2_open”>


		<title>fs2_open</title>
<version>




		<locations>


		<path ev=”installlocation” path=”fs2_open”/>
<parent name=”FreeSpace2” os=”Windows”/>





</locations>
<files>



<include path=”dataplayers”/>



</files>
<identifier filename=”fs2_open*”/>
<comment>Doesn’t have a default install folder, so might require an Alt. Install Path.</comment>
<contributor>GameSave.Info</contributor>






</version>








</game>






If a game’s saves were to work across just Linux and Windows, I would also not add a platform attribute, even if there was a Mac version with incompatible saves. By adding an additional Mac-specific version we would be declaring such an incompatibility.


You can specify more than one version of a game within the same game tag:




		<game name=”MechWarrior2”>


		
<title>MechWarrior 2: 31st Century Combat</title>
<version os=”Windows”>




		<locations>


		<path ev=”installlocation” path=”ActivisionBattlePackMW2”/>
<shortcut ev=”startmenu” path=”ProgramsBattlePackMechWarrior 2MechWarrior 2 Uninstall.lnk”/>





</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>
<version os=”Windows” release=”TitaniumEdition”>



<title>MechWarrior 2: 31st Century Combat: Titanium Edition</title>
<locations>



<path ev=”installlocation” path=”ActivisionTitaniumMechwarrior2”/>
<path ev=”altsavepaths” path=”MechVMgamesmw2-31stcc-tt”/>
<registry root=”local_machine” key=”SOFTWAREActivisionActivenetApplications1020.2.1” value=”Cwd”/>
<shortcut ev=”startmenu” path=”ProgramsTitaniumMechwarrior2Play MechWarrior2.lnk” detract=”splash”/>



</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>






</game>












As you can see we only specify a version title when that version has a title different than the main one specified under the game tag.


<version os=”Windows” virtualstore=”ignore” detect=”required”>
There are two additional attributes demonstrated here:


virtualstore - Specified if the game ignores VirtualStore in Windows Vista and later. Can be set to “ignore” or “use”. Default is use.
detect - Specifies wether the game’s save location cannot be predicted without an existing save location. Can be either “required” or “optional”. Default is “optional”.
<version deprecated=”true”>
If a version is marked as deprecated, it means that the information provided is no longer considered correct. It’s kept only for posterity and backwards-compatability.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations/shortcut.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<shortcut />


<shortcut ev=”startmenu” path=”ProgramsDeus ExPlay Deus Ex.lnk” detract=”System”/>
Quite frequently there is a shortcut in the Start menu, or on the desktop, or somewhere else, that points to the install folder of a game. If the game keeps its saves in the install folder, then this is yet another way we can use to find them! The ev attribute here supports the same values as the path element described above, but you’ll pretty much always be using startmenu. From there you provide the path to the shortcut, easy peasy!


As shown in the example, this tag can also take advantage of the append and detract attributes, which are explained in a later section.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/identifier.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<identifier />


<identifier path=”Save” />
Some games aren’t consistent about where their saves are. For example Peggle will store its setting in its install folder under XP, but under ProgramData under Vista and 7. This means that both must be specified in the XML file, leading to confusion if both are detected. The identifier tag is a way of telling for sure that we’ve got the right location. It can use the exact same attributes as a “save” element (described above).


In Peggle’s case we’d specify


<identifier path=”userdata” />
because only the right location will have a userdata folder in it. It would probably be best for every game to have one of these, but the only ones that absolutely need it are ones that can have multiple locations, or if you need to distinguish between two versions of a game (such as with The Longest Journey’s 2-disc and 4-disc variants).






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/title.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<title>


<title>Deus Ex</title>


Between the two title tags you just type up the name of the game. This should be the name that was first attached to a game when it was release, other names would be delegated to version titles, which we will talk about later. Try to include the entire name, no reason to skimp on length. It might be tempting to shorten Penny Arcade Adventures: On The Rain Slick Precipice Of Darkness Chapter One to Penny Arcade Adventures 1, but resist it.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations/path.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  ===
<path />
===


Location Using A Path


<path ev=”installlocation” path=”DeusEx”/>
The path tag lets us specify an actual folder name, but sitll allows us to do so in a format that can adjust automatically for any system. This is attained via environment variables. The environment variable will be replaced with whatever the appropriate path from the system is, and prepended onto the provided path.


The environment variables available for use:
allusersprofile A Windows folder that contains data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll Users
altsavepaths    This is catch-all folder, it could be literally anywhere.
I know it’s not much to go on :(
appdata Contains the application data for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoaming
Windows XP
C:Documents and Settings%USERNAME%Application Data
commonapplicationdata   Contains application data that is common to all users
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll UsersApplication Data
desktop A per-user folder that contains the files store on a user’s desktop.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Desktop
Windows XP
C:Documents and Settings%USERNAME%Desktop
drive   Refers to the root of a drive. Any drive.
Here are some common examples:
Linux
/mnt/sda1
Windows
C:D:G:T:flashshared     Stores cached Adobe Flash data.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoamingMacromediaFlash Player#SharedObjects
Windows XP
C:Documents and Settings%USERNAME%Application DataMacromediaFlash Player#SharedObjects
installlocation This means that the game keeps its saves in its install folder.
Here are some common examples:
Linux
/usr/bin
/var/shared
Windows
C:Program Files
C:Program Files (x86) (Common for games on 64-bit Windows)
C:Games
localappdata    Contains the local settings for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocal
Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication Data
public  A special folder only on certain versions of Windows for storing user data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:UsersPublic
savedgames      A folder only on certain versions of Windows specifically for storing saved games.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Saved Games
startmenu       The folder that contains the files for Windows’ start menu.
There is one for each user, and a global one that all users share.
Here are some common examples:
Windows Vista, 7 & 8
User: C:Users%USER%AppDataRoamingMicrosoftWindowsStart
MenuGlobal: C:ProgramDataMicrosoftWindowsStart Menu
Windows XP
User: C:Documents and Settings%USER%Start Menu
Global: C:Documents and SettingsAll UsersStart Menu
steamcommon     This is the location where Steam keeps games that don’t use its integrated GCF system (which is most games).
Here are some common examples:
Windows
C:Program FilesSteamsteamappscommon
steamsourcemods This folder contains the files for mods for Valve’s Source game engine.
Here are some common examples:
Windows
C:Program FilesSteamsteamappsSourceMods
steamuser       This location stores per-user settings, saves and cache files for Valve’s game distributed through Steam.
Here are some common examples:
Windows
C:Program FilesSteamsteamapps%STEAMUSERNAME%
steamuserdata   This folder stores Steam Cloud data.
This data is automatically backed up onto Steam’s servers.
Here are some common examples:
Windows
C:Program FilesSteamuserdata%STEAMID%
ubisoftsavestorage      The save location used by the Ubisoft Game Launcher
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocalUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication DataUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%userdocuments   The user’s document folder.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Documents
Windows XP
C:Documents and Settings%USERNAME%My Documents
userprofile     This folder contains all the files related to a particular user.
Here are some common examples:
Linux
/home/%USERNAME%/
Windows Vista, 7 & 8
C:Users%USERNAME%
Windows XP
C:Documents and Settings%USERNAME%
Different versions of a game can install to all kinds of locations, so if a game keeps its saves in the install folder we have to specify as many different install paths as we can discover. For Deus Ex, the CD, Steam and GoG.com versions all install to different locations, so we add a path element for each one:


<path ev=”installlocation” path=”DeusEx”/>
<path ev=”installlocation” path=”GOG.comDeus Ex”/>
<path ev=”steamcommon” path=”deus ex”/>
If we’re lucky, the game keeps its saves somewhere other than the install folder, which usually means that all versions of the gam use the exact same path. A good example, and one that most games follow these days, is using the “My Documents” folder. Deus Ex’s sequel, Invisible War, was wise enough to do this:


<path ev=”userdocuments” path=”Deus Ex - Invisible War”/>
This will check each user’s My Documents folder for a path called “Deus Ex - Invisible War”, and should work for the disc, Steam, Impulse, Gog.com or any other versions of the game. This is not universal unfortuantely, as some games (like Alan Wake) use different folder names for different versions, despite all using folders like My Documents.




          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations/attributes.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
location attributes


Append And Detract Attributes



		<game name=”AloneInTheDark”>


		<title>Alone in the Dark</title>
<version os=”DOS”>




		<locations>


		<path ev=”installlocation” path=”GOG.comAlone in the DarkINDARK”/>
<registry root=”local_machine” key=”SOFTWAREGOG.comGOGALONE1” value=”PATH” append=”INDARK”/>
<shortcut ev=”startmenu” path=”ProgramsGOG.comAlone in the DarkAlone in the Dark.lnk” detract=”DOSBOX” append=”INDARK” />





</locations>
<files>



<include filename=”SAVE?.ITD”/>



</files>
<contributor>GameSave.Info</contributor>






</version>








</game>
All of the location elements can use the append and detract attributes. In the above example, the shortcut provided actually points to:


C:Program FilesGOG.comAlone in the DarkDOSBOX
But the saves are actually in:


C:Program FilesGOG.comAlone in the DarkINDARK
These attributes tell us to detract (or take away) DOSBOX, then append (or add to the end) INDARK from the location the shortcut points to. This is frequently needed for expansions, registry keys and shortcuts, which will usually point close to the desired location, but not to exactly the right spot.


You can use both of the attributes, only one or the other, or none at all, there are no requirements format-wise.


only_for Attribute


<path ev=”allusersprofile” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsXP”/>
<path ev=”public” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsVista”/>
Some locations are only applicable to certain operating systems. For these you can use the only_for attribute to specify an OS that the path is for. All the OSs that can be used for the os attribute for the version element can be used here. See the above version element section for a list of them.


Deprecated Locations



		<game name=”OddworldStrangersWrath” follows=”OddworldMunchsOddysee”>


		<title>Oddworld: Stranger’s Wrath</title>
<version os=”Windows”>




		<locations>


		<path ev=”steamcommon” path=”stranger’s wrath” deprecated=”true”/>
<path ev=”userdocuments” path=”OddworldStranger’s Wrath”/>





</locations>
<files>



<include path=”Save”/>



</files>
<files type=”Settings”>



<include filename=”config.txt”/>



</files>
<contributor>Arc Angel</contributor>
<contributor>slake_jones</contributor>






</version>








</game>
Sometimes a game changes where it keeps its saves. In this example, Oddworld: Stranger’s Wrath USED TO keep its saves in its install folder. A patch changed this. By adding the deprecated attribute, we’re saying that this WAS a save location, but it isn’t used anymore. We keep these locations because there may still be saves there, and mark it as deprecated so we know we should never place saves there.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations/registry.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<registry />


Location Using A Registry Key


<registry root=”local_machine” key=”SOFTWAREUnreal TechnologyInstalled AppsDeus Ex” value=”Folder”/>
The registry element lets you specify a registry key that contains the path to a game’s saves. For thsoe not in the know, Windows keeps what is called a registry, and it’s basically a fancy collection of names and value. If you click Start, Run then type in regedit, you’ll be able to browse it. Windows keeps all of its settings, and the install locations of a lot of programs here, which means we can take advantage of it to find a game, but it’s pretty much only useful for games that keep their saves in the isntall folder. The root of a key indicates which registry root will be used. Windows has several, here are what’s available:


classes_root - I don’t know
current_user - The registry for the currently logged in user
current_config - The registry for Windows’ settings
dyn_data - I don’t know
local_machine - The registry for the computer as a whole
performance_data - I don’t know
users - The registry for all the users
The key is like a folder path, pointing to the location of the key in the registry root (browse around regedit, it’ll make sense). A key can have several values, one default and zero or more named values. If you ommit the value attribute, the default one will be used, otherwise only a value matching the name you provide will be used.


There is one caveat on 64-bit systems. On these systems, Windows places the registry keys for 32-bit programs (which most games are) inside of a special folder, seperate from the 64-bit programs. For instance Deus Ex’s registry entry on a 32-bit system would be:


SOFTWAREUnreal TechnologyInstalled AppsDeus Ex
But on a 64-bit system it would be placed in:


SOFTWAREWow6432NodeUnreal TechnologyInstalled AppsDeus Ex
The policy right now is to write entries WITHOUT the Wow6432Node. Adding the node is trivial, so this way is more compatible.


Registry keys frequently can make use of the append and detract attributes available to all location elements. See the section below for more details.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/game.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<game>



Example


<game name="DeusEx">
  ...
</game>









Description


Each game is defined within a program element. There are four types of program elements:



		<game>


		<expansion>


		<mod>


		<system>





The main purpose of this tag is to provide a unique internal name for the game. This unique name must follow these rules:



		No spaces, and no symbols.


		Use CamelCase [http://en.wikipedia.org/wiki/CamelCase] for legibility.


		Always use numbers instead of roman numerals [http://en.wikipedia.org/wiki/Roman_numerals] (or other representations of numbers), for sorting purposes.


		All versions of a game go under the same game tag. For example, the Deus Ex game tag contains a version for both Windows and PlayStation 2.





There are actually several variations on this tag, and you should try to use the one appropriate for your entry:


<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>
Use this if the entry is for an expansion pack, add-on or DLC for another game. In this example, Mechwarrior 4: Black Knight is an expansion for MechWarrior 4: Vengeance. The “for” attribute is required for an expansion, and MUST reference another game in the XML file. “Stand-alone expansions” do NOT get to be marked as an expansion. The term is an oxymoron, and makes no sense.


<mod name=”NamelessMod” for=”DeusEx”>
Use this if the entry is for an MOD for another game. In this example, The Nameless Mod is a MOD for Deus Ex. The “for” attribute is required for a MOD, and MUST reference another game in the XML file.


<system name=”GamesForWindows”>
Use this when describing system data.


There is a completely optional “follows” attribute that can be added to any of these variations:


<game name=”DeusExInvisibleWar” follows=”DeusEx”>
It basically just indicates that the entry is somehow a follow-up (or sequel) to the indicated other entry. It’s not parsed or used anywhere yet, but one day maybe.


If a game is marked as deprecated, it means that the i.


Obviously your closing tag should match your opening tag. Other than this, the contained tags are all the same.





Attributes



		deprecated (boolean) (optional)


		Marks a game as deprecated, meaning that the information provided is no longer considered correct. This allows the data to be kept for posterity and backwards-compatability.





<game name="DeprecatedGame" deprecated="true">









Child elements



		<title> (required)


		Defines the title for the game. This title will be used for all versions of the game, except for those that have an explicitily defined title.








Parent element



		programs


		Root element that contains all program-type elements.











          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/mod.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<mod>






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations/playstation.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
		<game name=”BrutalLegend”>


		<title>BrÃ¼tal Legend</title>
<version os=”PS3” region=”USA”>



<ps_code prefix=”BLUS” suffix=”30330”/>
<contributor>GameSave.Info</contributor>



</version>








</game>
PlayStation Games are considered just another version of the base game, and are marked with an OS matching the PlayStation platform (PS1, PS2, PS3, PSP). Instead of “locations”, “files” (and the optional “identifier”), you only specify the game’s PlayStation code, which can usually be found on the game disc and case. Each disc (even within the same game) usually has a unique code, 4 letters then 5 numbers. This code is used in the name of a game’s saves. Like file tags, you can sepcify a type on a PlayStation Code


For console games you should include the region code, as almost all console saves are guaranteed to be incompatible with those from other countries.


Some more modern PS3 games keep multiple save files for different types of data, sometimes seperating out Profile or setting data. Usually these saves wil have extra letters appended to the name. You can specify these with the append tag, as shown in this example from Tomb Raider: Anniversary:


<ps_code prefix=”BLUS” suffix=”30718” append=”-TALIST”/>
<ps_code prefix=”BLUS” suffix=”30718” append=”-TAPROFILE” type=”Profile”/>
Usually you would want to accompany an append with an appropriate type. Having a code with an append will NOT indicate that it should be excluded from other types, so make sure each code entry will indicate a unique entry.




          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/locations/parent.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<parent />


Location Using Another Game



		<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>


		<title>MechWarrior 4: Black Knight</title>
<version os=”Windows”>




		<locations>


		<registry root=”local_machine” key=”SOFTWAREMicrosoftMicrosoft GamesMechWarrior Black Knight” value=”EXE Path”/>
<parent name=”MechWarrior4Vengeance” os=”Windows”/>





</locations>
<files type=”Mechs”>



<include path=”resourceVariantsx”/>



</files>
<files>



<include path=”resourcePilotsx”/>



</files>
<files type=”Settings”>



<include filename=”optionsx.ini”/>



</files>
<identifier filename=”optionsx.ini”/>
<contributor>GameSave.Info</contributor>






</version>








</expansion>
If the game shares its save location in any way with another game, we can specify that game as a location source. More specifically, we specify a specific version of the game to take locations from. We specify the name of the game, along with all the version attributes of the version we want. These version elements MUST match a game version that is in the XML file.


This also allows you to create entries whose detection is dependent on the detection of another game.


Quite often this will need to make use of the append and detract attributes, as well as the identifier element, all of which are explained later.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/title.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<title>


<title>Deus Ex</title>


Between the two title tags you just type up the name of the game. This should be the name that was first attached to a game when it was release, other names would be delegated to version titles, which we will talk about later. Try to include the entire name, no reason to skimp on length. It might be tempting to shorten Penny Arcade Adventures: On The Rain Slick Precipice Of Darkness Chapter One to Penny Arcade Adventures 1, but resist it.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/expansion.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<expansion>






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/system.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<system>






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/files.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<files>


Now we get to the nitty-gritty of specifying which files are saves, settings, etc. After the locations element’s closing tag, we can specify one or more “files” elements, specifying and sorting these files by type.


Types


<files>
<files type=”Settings”>
Each “files” element has an optional “type” attribute. This tells us what type of files are going to be specified within the files tag. It could also be “Settings”, “Profiles”, or anything else. The attribute isn’t constrained, so you can be as accurate as necessary. When possible, try to conform to existing type names, so there can be some semblence of consistency, but if it absolutely needs to be a new type name, go for it.


Files To Save



		<files>


		<include path=”Save”/>





</files>
Within each files element, we specify one or more “save” elements that describe the files. There are three attributes used to specify files:


path - This specifies the folder path (starting at the end of the locations found from the above sections’ specifications). This can use wildcards (like SAVE*)
filename - This specifies the name of the files. This can also use wildcards, like *.sav
modified_after - This specifies a time and date that the file must be modified after in order to qualify
Different combinations of path and filename have different meanings:


If no path or filename are specified, then that means ALL the files in ALL the folders in the location.
<include />
If only a path is specified, then that means all the files in that folder, but NOT the subfolders.
<include path=”Save” />
If only a filename is specified, then that means all the files matching that name in the location, but NOT the subfolders.
<include filename=”.sav” />
If a path and a filename are specified, then that means all the files matching the name in that specific folder, but NOT the subfolders.
<include path=”System” filename=”.ini”/>
The modified_after date is formatted as follows:


<include path=”DataCampaigns” modified_after=”2001-10-09T00:00:00”/>
Except For...



		<include path=”userdata”>


		<exclude path=”userdatamp3”/>





</include>
To make things easier, you can specify a very broad save definition, and refine it using one or more “except” elements under that save element. This element can use all the same tags as the “save” element, and they all work exactly the same, except the deselect files instead of selecting them.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/contributor.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<contributor>


<contributor>GameSave.Info</contributor>
This is used by the site to credit contributors.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<version>


<version os=”Windows”>


The version tag is used to specify the versions of the game the contained saves are compatible with. In this example, it’s compatible with Windows. This does NOT mean this save will only work on Windows, only that it’s only for the Windows version of the game. This save would also be compatible with Linux if you have Deus Ex installed under WINE. The reason it is organized like this is because GameSave.Info also doubles as the data source for the game save backup program MASGAU.


There are 5 attributes that allow us to describe a unique game save version:



		os


		The operating system the save is compatible with. Possible values:
#. Android
#. DOS
#. Linux
#. OSX
#. PS1
#. PS2
#. PS3
#. PSP
#. Windows
#. WindowsVista
#. WindowsXP


		platform


		The technology platform the save is compatible with. Possible values:
#. Flash
#. RenPy
#. ScummVM
#. SteamCloud
#. UbisoftSaveStorage


		region


		The region of the world the save is for. Possible values include any 3-letter ISO 3166-1 country code, or any of these two-letter continent codes:
#. AF - Africa
#. AS - Asia
#. EU - Europe
#. NA - North America
#. SA - South America
#. OC - Oceania
(Antarctica has its own country code, so I won’t support its continent code)


		media


		The delivery medium of the game version that the save is compatible with. Possible values:
#. CD
#. Download
#. Floppy
#. GoG
#. Steam


		release


		The release of the game the save is compatible with. This is freeform, can be anything at all. Some examples:
#. CollectorsEdition
#. TitaniumEdition
#. Gold
#. HD
#. Remastered
#. GOTY





If a save is compatible with more than one thing in any of these categories, just don’t specify the attribute. Try to keep the version specification as general as possible, while simultaneously making sure that a save would not accidentally get labelled as belonging to the wrong version of the game.


<version os=”Windows” media=”CD” release=”TitaniumEdition” region=”USA”>
This example states that the contained saves are only compatible with the Windows version of the Titanium Edition of the game that was released on CD in the USA. This example is fake, I have yet to encounter saves that had such specific requirements.


<version media=”Steam”>
An important distinction should be made between a version for Steam and a version specifically for Steam Cloud data. The above is for the former, and the below for the latter.


<version platform=”SteamCloud”>
You could also specify media=”Steam” on this, and it would be accurate but since SteamCloud automatically imples Steam, it’s not necessary.


My policy right now on DOS games is to label it as DOS if the save produced is only compatible with the DOS version of the game. If there exists a Windows version of a DOS game, and the saves are compatible with both, then both of the games’ information would be combined into one Windows profile, such as with Master Of Orion 2 or Descent II.


If you omit these attributes, then it is saying that the saves described are compatible with all versions of the game. This is pretty rare, but these games do exist. One example is fs2_open:




		<game name=”fs2_open”>


		<title>fs2_open</title>
<version>




		<locations>


		<path ev=”installlocation” path=”fs2_open”/>
<parent name=”FreeSpace2” os=”Windows”/>





</locations>
<files>



<include path=”dataplayers”/>



</files>
<identifier filename=”fs2_open*”/>
<comment>Doesn’t have a default install folder, so might require an Alt. Install Path.</comment>
<contributor>GameSave.Info</contributor>






</version>








</game>






If a game’s saves were to work across just Linux and Windows, I would also not add a platform attribute, even if there was a Mac version with incompatible saves. By adding an additional Mac-specific version we would be declaring such an incompatibility.


You can specify more than one version of a game within the same game tag:




		<game name=”MechWarrior2”>


		
<title>MechWarrior 2: 31st Century Combat</title>
<version os=”Windows”>




		<locations>


		<path ev=”installlocation” path=”ActivisionBattlePackMW2”/>
<shortcut ev=”startmenu” path=”ProgramsBattlePackMechWarrior 2MechWarrior 2 Uninstall.lnk”/>





</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>
<version os=”Windows” release=”TitaniumEdition”>



<title>MechWarrior 2: 31st Century Combat: Titanium Edition</title>
<locations>



<path ev=”installlocation” path=”ActivisionTitaniumMechwarrior2”/>
<path ev=”altsavepaths” path=”MechVMgamesmw2-31stcc-tt”/>
<registry root=”local_machine” key=”SOFTWAREActivisionActivenetApplications1020.2.1” value=”Cwd”/>
<shortcut ev=”startmenu” path=”ProgramsTitaniumMechwarrior2Play MechWarrior2.lnk” detract=”splash”/>



</locations>
<files type=”Mechs”>



<include path=”mek”/>



</files>
<files>



<include filename=”userstar.bwd”/>



</files>
<files type=”Settings”>



<include filename=”MW2PRM.CFG”/>
<include filename=”MW2REG.CFG”/>



</files>
<contributor>GameSave.Info</contributor>






</version>






</game>












As you can see we only specify a version title when that version has a title different than the main one specified under the game tag.


<version os=”Windows” virtualstore=”ignore” detect=”required”>
There are two additional attributes demonstrated here:


virtualstore - Specified if the game ignores VirtualStore in Windows Vista and later. Can be set to “ignore” or “use”. Default is use.
detect - Specifies wether the game’s save location cannot be predicted without an existing save location. Can be either “required” or “optional”. Default is “optional”.
<version deprecated=”true”>
If a version is marked as deprecated, it means that the information provided is no longer considered correct. It’s kept only for posterity and backwards-compatability.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/index.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<programs>



Example


<programs majorVersion="2" minorVersion="0" revision="2" updated="2013-06-15T13:45:04" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="GameSaveInfo202.xsd">
  ...
</programs>









Description


The root element for the GameSave.Info XML format is the “programs” element.
There can only be one “programs” element per XML file.
The name “programs” was chosen because an individual file can contain data on not just games, but also mods and system tools.





Attributes



		majorVersion (integer) (required)


		This defines the major version for the XML file format. GameSave.Info and MASGAU both make use of this to determine whether they are compatible with a particular format of an XML file, and whether it is possible for it to automatically update the file to a newer format. Major version changes are defined as changes that drastically alter the entire format of the file.


		minorVersion (integer) (required)


		This is used in the same manner as majorVersion. Minor version changes are defined as changes that do not affect the file as a whole, but still can impact compatability with older versions of GameSave.Info or MASGAU.


		revision (integer) (required)


		This is used in the same manner as minorVersion. Revisions are defined as changes that fo not affect the file or compatability, but still require a change to the schema file that defines the format.


		updated (timestamp) (required)


		This is used by MASGAU’s auto-update system to keep track of when a file was last updated.


		xmlns:xsi (string) (required)


		This lets the XML parser know that the file uses an XML Schema.


		xsi:noNamespaceSchemaLocation (string) (required)


		This tells the XML parser what the filename of the XML Schema is.








Child Elements



		<game> (optional)


		Defines a game.


		<mod> (optional)


		Defines a mod.


		<expansion> (optional)


		Defines an expansion.


		<system> (optional)


		Defines a system application.





NOTE: THE PROGRAMS ELEMENT REQUIRES AT LEAST ONE CHILD. CHILDREN CAN BE OF ANY TYPE LISTED HERE, AND IN ANY ORDER.








          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/locations.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<locations>


Games can keep their saves anywhere, so here we try to provide as many ways as possible of finding them. These locations are not the exact locations of the saves, but are instead roots used as the first step to find the saves. Why do we do it like this? Here’s why:


These are some possible save locations for Deus Ex:     See how they’re all different, but all end with the same Save folder?
We can be certain that the Save folder is always used, no matter the location,
and just specify the part of the path that we can’t predict:
C:DeusExSaveC:DeusExC:Program FilesGOG.comDeus ExSave C:Program FilesGOG.comDeus ExC:Program FilesSteamsteamappscommondeus exSave  C:Program FilesSteamsteamappscommondeus ex


The main point here is to not store the same information (the Save folder) more than once. This has space saving advantages, but it also allows us to re-use the same location to specify Settings, Replays, Screenshots, or anything else that might happen to be there. We must be mindful to include enough of the root path that we can’t mistake one game’s paths for another. We have a few ways of finding these locations:













          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/linkable.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<linkable />


<linkable path=”Save”/>
Some games can handle having their save folders symlinked to another folder, like inside of a Dropbox or Google Drive folder. Do this on two computers, and you’ve got their saves automatically synced! The “linkable” element allows you to explain how to link a particular game. This process only works reliably with folders, so that’s the only thing you can specify. If you specify a path, it will append that path to any detected locations. If no path, then the detected location itself will be used.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/comment.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<comment>


<comment>The best game EVER!</comment>
Used to specify a comment that will be visible on the game info page. You can have a comment element instide the version and/or inside the game.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/ps_code.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<ps_code />



		<game name=”BrutalLegend”>


		<title>BrÃ¼tal Legend</title>
<version os=”PS3” region=”USA”>



<ps_code prefix=”BLUS” suffix=”30330”/>
<contributor>GameSave.Info</contributor>



</version>








</game>
PlayStation Games are considered just another version of the base game, and are marked with an OS matching the PlayStation platform (PS1, PS2, PS3, PSP). Instead of “locations”, “files” (and the optional “identifier”), you only specify the game’s PlayStation code, which can usually be found on the game disc and case. Each disc (even within the same game) usually has a unique code, 4 letters then 5 numbers. This code is used in the name of a game’s saves. Like file tags, you can sepcify a type on a PlayStation Code


For console games you should include the region code, as almost all console saves are guaranteed to be incompatible with those from other countries.


Some more modern PS3 games keep multiple save files for different types of data, sometimes seperating out Profile or setting data. Usually these saves wil have extra letters appended to the name. You can specify these with the append tag, as shown in this example from Tomb Raider: Anniversary:


<ps_code prefix=”BLUS” suffix=”30718” append=”-TALIST”/>
<ps_code prefix=”BLUS” suffix=”30718” append=”-TAPROFILE” type=”Profile”/>
Usually you would want to accompany an append with an appropriate type. Having a code with an append will NOT indicate that it should be excluded from other types, so make sure each code entry will indicate a unique entry.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/restore_comment.html


    
      Navigation


      
        		
          index


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<restore_comment>


<restore_comment>Restoring saves for this game also requires restoring Game for Windows Account Data, which MASGAU automatically backs up in G4WAccountData.</restore_comment>
Used to specify a comment pertaining to restoring a game’s saves. Can only be inside of a version element.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/identifier.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format Reference »

 
      


    


    
      
          
            
  
<identifier />


<identifier path=”Save” />
Some games aren’t consistent about where their saves are. For example Peggle will store its setting in its install folder under XP, but under ProgramData under Vista and 7. This means that both must be specified in the XML file, leading to confusion if both are detected. The identifier tag is a way of telling for sure that we’ve got the right location. It can use the exact same attributes as a “save” element (described above).


In Peggle’s case we’d specify


<identifier path=”userdata” />
because only the right location will have a userdata folder in it. It would probably be best for every game to have one of these, but the only ones that absolutely need it are ones that can have multiple locations, or if you need to distinguish between two versions of a game (such as with The Longest Journey’s 2-disc and 4-disc variants).






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/contributor.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
contributor element


<contributor>GameSave.Info</contributor>
This is used by the site to credit contributors.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/files.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
files element


Now we get to the nitty-gritty of specifying which files are saves, settings, etc. After the locations element’s closing tag, we can specify one or more “files” elements, specifying and sorting these files by type.


Types


<files>
<files type=”Settings”>
Each “files” element has an optional “type” attribute. This tells us what type of files are going to be specified within the files tag. It could also be “Settings”, “Profiles”, or anything else. The attribute isn’t constrained, so you can be as accurate as necessary. When possible, try to conform to existing type names, so there can be some semblence of consistency, but if it absolutely needs to be a new type name, go for it.


Files To Save



		<files>


		<include path=”Save”/>





</files>
Within each files element, we specify one or more “save” elements that describe the files. There are three attributes used to specify files:


path - This specifies the folder path (starting at the end of the locations found from the above sections’ specifications). This can use wildcards (like SAVE*)
filename - This specifies the name of the files. This can also use wildcards, like *.sav
modified_after - This specifies a time and date that the file must be modified after in order to qualify
Different combinations of path and filename have different meanings:


If no path or filename are specified, then that means ALL the files in ALL the folders in the location.
<include />
If only a path is specified, then that means all the files in that folder, but NOT the subfolders.
<include path=”Save” />
If only a filename is specified, then that means all the files matching that name in the location, but NOT the subfolders.
<include filename=”.sav” />
If a path and a filename are specified, then that means all the files matching the name in that specific folder, but NOT the subfolders.
<include path=”System” filename=”.ini”/>
The modified_after date is formatted as follows:


<include path=”DataCampaigns” modified_after=”2001-10-09T00:00:00”/>
Except For...



		<include path=”userdata”>


		<exclude path=”userdatamp3”/>





</include>
To make things easier, you can specify a very broad save definition, and refine it using one or more “except” elements under that save element. This element can use all the same tags as the “save” element, and they all work exactly the same, except the deselect files instead of selecting them.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/comment.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
comment element


<comment>The best game EVER!</comment>
Used to specify a comment that will be visible on the game info page. You can have a comment element instide the version and/or inside the game.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/locations/attributes.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
location attributes


Append And Detract Attributes



		<game name=”AloneInTheDark”>


		<title>Alone in the Dark</title>
<version os=”DOS”>




		<locations>


		<path ev=”installlocation” path=”GOG.comAlone in the DarkINDARK”/>
<registry root=”local_machine” key=”SOFTWAREGOG.comGOGALONE1” value=”PATH” append=”INDARK”/>
<shortcut ev=”startmenu” path=”ProgramsGOG.comAlone in the DarkAlone in the Dark.lnk” detract=”DOSBOX” append=”INDARK” />





</locations>
<files>



<include filename=”SAVE?.ITD”/>



</files>
<contributor>GameSave.Info</contributor>






</version>








</game>
All of the location elements can use the append and detract attributes. In the above example, the shortcut provided actually points to:


C:Program FilesGOG.comAlone in the DarkDOSBOX
But the saves are actually in:


C:Program FilesGOG.comAlone in the DarkINDARK
These attributes tell us to detract (or take away) DOSBOX, then append (or add to the end) INDARK from the location the shortcut points to. This is frequently needed for expansions, registry keys and shortcuts, which will usually point close to the desired location, but not to exactly the right spot.


You can use both of the attributes, only one or the other, or none at all, there are no requirements format-wise.


only_for Attribute


<path ev=”allusersprofile” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsXP”/>
<path ev=”public” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsVista”/>
Some locations are only applicable to certain operating systems. For these you can use the only_for attribute to specify an OS that the path is for. All the OSs that can be used for the os attribute for the version element can be used here. See the above version element section for a list of them.


Deprecated Locations



		<game name=”OddworldStrangersWrath” follows=”OddworldMunchsOddysee”>


		<title>Oddworld: Stranger’s Wrath</title>
<version os=”Windows”>




		<locations>


		<path ev=”steamcommon” path=”stranger’s wrath” deprecated=”true”/>
<path ev=”userdocuments” path=”OddworldStranger’s Wrath”/>





</locations>
<files>



<include path=”Save”/>



</files>
<files type=”Settings”>



<include filename=”config.txt”/>



</files>
<contributor>Arc Angel</contributor>
<contributor>slake_jones</contributor>






</version>








</game>
Sometimes a game changes where it keeps its saves. In this example, Oddworld: Stranger’s Wrath USED TO keep its saves in its install folder. A patch changed this. By adding the deprecated attribute, we’re saying that this WAS a save location, but it isn’t used anymore. We keep these locations because there may still be saves there, and mark it as deprecated so we know we should never place saves there.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

search.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/locations/parent.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<parent />


Location Using Another Game



		<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>


		<title>MechWarrior 4: Black Knight</title>
<version os=”Windows”>




		<locations>


		<registry root=”local_machine” key=”SOFTWAREMicrosoftMicrosoft GamesMechWarrior Black Knight” value=”EXE Path”/>
<parent name=”MechWarrior4Vengeance” os=”Windows”/>





</locations>
<files type=”Mechs”>



<include path=”resourceVariantsx”/>



</files>
<files>



<include path=”resourcePilotsx”/>



</files>
<files type=”Settings”>



<include filename=”optionsx.ini”/>



</files>
<identifier filename=”optionsx.ini”/>
<contributor>GameSave.Info</contributor>






</version>








</expansion>
If the game shares its save location in any way with another game, we can specify that game as a location source. More specifically, we specify a specific version of the game to take locations from. We specify the name of the game, along with all the version attributes of the version we want. These version elements MUST match a game version that is in the XML file.


This also allows you to create entries whose detection is dependent on the detection of another game.


Quite often this will need to make use of the append and detract attributes, as well as the identifier element, all of which are explained later.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/locations/registry.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<registry />


Location Using A Registry Key


<registry root=”local_machine” key=”SOFTWAREUnreal TechnologyInstalled AppsDeus Ex” value=”Folder”/>
The registry element lets you specify a registry key that contains the path to a game’s saves. For thsoe not in the know, Windows keeps what is called a registry, and it’s basically a fancy collection of names and value. If you click Start, Run then type in regedit, you’ll be able to browse it. Windows keeps all of its settings, and the install locations of a lot of programs here, which means we can take advantage of it to find a game, but it’s pretty much only useful for games that keep their saves in the isntall folder. The root of a key indicates which registry root will be used. Windows has several, here are what’s available:


classes_root - I don’t know
current_user - The registry for the currently logged in user
current_config - The registry for Windows’ settings
dyn_data - I don’t know
local_machine - The registry for the computer as a whole
performance_data - I don’t know
users - The registry for all the users
The key is like a folder path, pointing to the location of the key in the registry root (browse around regedit, it’ll make sense). A key can have several values, one default and zero or more named values. If you ommit the value attribute, the default one will be used, otherwise only a value matching the name you provide will be used.


There is one caveat on 64-bit systems. On these systems, Windows places the registry keys for 32-bit programs (which most games are) inside of a special folder, seperate from the 64-bit programs. For instance Deus Ex’s registry entry on a 32-bit system would be:


SOFTWAREUnreal TechnologyInstalled AppsDeus Ex
But on a 64-bit system it would be placed in:


SOFTWAREWow6432NodeUnreal TechnologyInstalled AppsDeus Ex
The policy right now is to write entries WITHOUT the Wow6432Node. Adding the node is trivial, so this way is more compatible.


Registry keys frequently can make use of the append and detract attributes available to all location elements. See the section below for more details.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/reference/programs/version/locations/path.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  ===
<path />
===


Location Using A Path


<path ev=”installlocation” path=”DeusEx”/>
The path tag lets us specify an actual folder name, but sitll allows us to do so in a format that can adjust automatically for any system. This is attained via environment variables. The environment variable will be replaced with whatever the appropriate path from the system is, and prepended onto the provided path.


The environment variables available for use:
allusersprofile A Windows folder that contains data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll Users
altsavepaths    This is catch-all folder, it could be literally anywhere.
I know it’s not much to go on :(
appdata Contains the application data for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoaming
Windows XP
C:Documents and Settings%USERNAME%Application Data
commonapplicationdata   Contains application data that is common to all users
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll UsersApplication Data
desktop A per-user folder that contains the files store on a user’s desktop.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Desktop
Windows XP
C:Documents and Settings%USERNAME%Desktop
drive   Refers to the root of a drive. Any drive.
Here are some common examples:
Linux
/mnt/sda1
Windows
C:D:G:T:flashshared     Stores cached Adobe Flash data.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoamingMacromediaFlash Player#SharedObjects
Windows XP
C:Documents and Settings%USERNAME%Application DataMacromediaFlash Player#SharedObjects
installlocation This means that the game keeps its saves in its install folder.
Here are some common examples:
Linux
/usr/bin
/var/shared
Windows
C:Program Files
C:Program Files (x86) (Common for games on 64-bit Windows)
C:Games
localappdata    Contains the local settings for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocal
Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication Data
public  A special folder only on certain versions of Windows for storing user data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:UsersPublic
savedgames      A folder only on certain versions of Windows specifically for storing saved games.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Saved Games
startmenu       The folder that contains the files for Windows’ start menu.
There is one for each user, and a global one that all users share.
Here are some common examples:
Windows Vista, 7 & 8
User: C:Users%USER%AppDataRoamingMicrosoftWindowsStart
MenuGlobal: C:ProgramDataMicrosoftWindowsStart Menu
Windows XP
User: C:Documents and Settings%USER%Start Menu
Global: C:Documents and SettingsAll UsersStart Menu
steamcommon     This is the location where Steam keeps games that don’t use its integrated GCF system (which is most games).
Here are some common examples:
Windows
C:Program FilesSteamsteamappscommon
steamsourcemods This folder contains the files for mods for Valve’s Source game engine.
Here are some common examples:
Windows
C:Program FilesSteamsteamappsSourceMods
steamuser       This location stores per-user settings, saves and cache files for Valve’s game distributed through Steam.
Here are some common examples:
Windows
C:Program FilesSteamsteamapps%STEAMUSERNAME%
steamuserdata   This folder stores Steam Cloud data.
This data is automatically backed up onto Steam’s servers.
Here are some common examples:
Windows
C:Program FilesSteamuserdata%STEAMID%
ubisoftsavestorage      The save location used by the Ubisoft Game Launcher
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocalUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication DataUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%userdocuments   The user’s document folder.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Documents
Windows XP
C:Documents and Settings%USERNAME%My Documents
userprofile     This folder contains all the files related to a particular user.
Here are some common examples:
Linux
/home/%USERNAME%/
Windows Vista, 7 & 8
C:Users%USERNAME%
Windows XP
C:Documents and Settings%USERNAME%
Different versions of a game can install to all kinds of locations, so if a game keeps its saves in the install folder we have to specify as many different install paths as we can discover. For Deus Ex, the CD, Steam and GoG.com versions all install to different locations, so we add a path element for each one:


<path ev=”installlocation” path=”DeusEx”/>
<path ev=”installlocation” path=”GOG.comDeus Ex”/>
<path ev=”steamcommon” path=”deus ex”/>
If we’re lucky, the game keeps its saves somewhere other than the install folder, which usually means that all versions of the gam use the exact same path. A good example, and one that most games follow these days, is using the “My Documents” folder. Deus Ex’s sequel, Invisible War, was wise enough to do this:


<path ev=”userdocuments” path=”Deus Ex - Invisible War”/>
This will check each user’s My Documents folder for a path called “Deus Ex - Invisible War”, and should work for the disc, Steam, Impulse, Gog.com or any other versions of the game. This is not universal unfortuantely, as some games (like Alan Wake) use different folder names for different versions, despite all using folders like My Documents.




          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/game.html


    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		GameSave.Info 2.0.2 documentation »


          		XML Format »

 
      


    


    
      
          
            
  
game element


The main purpose of this tag is to provide a unique internal name for the game. This unique name must follow these rules:



		No spaces, and no symbols.


		Use CamelCase [http://en.wikipedia.org/wiki/CamelCase] for legibility.


		Always use numbers instead of roman numerals [http://en.wikipedia.org/wiki/Roman_numerals] (or other representations of numbers), for sorting purposes.


		All versions of a game go under the same game tag. For example, the Deus Ex game tag contains a version for both Windows and PlayStation 2.





There are actually several variations on this tag, and you should try to use the one appropriate for your entry:


<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>
Use this if the entry is for an expansion pack, add-on or DLC for another game. In this example, Mechwarrior 4: Black Knight is an expansion for MechWarrior 4: Vengeance. The “for” attribute is required for an expansion, and MUST reference another game in the XML file. “Stand-alone expansions” do NOT get to be marked as an expansion. The term is an oxymoron, and makes no sense.


<mod name=”NamelessMod” for=”DeusEx”>
Use this if the entry is for an MOD for another game. In this example, The Nameless Mod is a MOD for Deus Ex. The “for” attribute is required for a MOD, and MUST reference another game in the XML file.


<system name=”GamesForWindows”>
Use this when describing system data.


There is a completely optional “follows” attribute that can be added to any of these variations:


<game name=”DeusExInvisibleWar” follows=”DeusEx”>
It basically just indicates that the entry is somehow a follow-up (or sequel) to the indicated other entry. It’s not parsed or used anywhere yet, but one day maybe.


<game name=”DeprecatedGame” deprecated=”true”>
If a game is marked as deprecated, it means that the information provided is no longer considered correct. It’s kept only for posterity and backwards-compatability.


Obviously your closing tag should match your opening tag. Other than this, the contained tags are all the same.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/common_children.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
		<title> (required)


		Defines the human-readable title for the entry. This title will be used for all versions of the entry, except for those that have an explicitily defined title.







          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

_static/minus.png





xml/reference/programs/version/locations/shortcut.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<shortcut />


<shortcut ev=”startmenu” path=”ProgramsDeus ExPlay Deus Ex.lnk” detract=”System”/>
Quite frequently there is a shortcut in the Start menu, or on the desktop, or somewhere else, that points to the install folder of a game. If the game keeps its saves in the install folder, then this is yet another way we can use to find them! The ev attribute here supports the same values as the path element described above, but you’ll pretty much always be using startmenu. From there you provide the path to the shortcut, easy peasy!


As shown in the example, this tag can also take advantage of the append and detract attributes, which are explained in a later section.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/contributor.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<contributor>


<contributor>GameSave.Info</contributor>
This is used by the site to credit contributors.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/comment.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<comment>


<comment>The best game EVER!</comment>
Used to specify a comment that will be visible on the game info page. You can have a comment element instide the version and/or inside the game.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/common_attributes.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
		deprecated (boolean) (optional)


		Marks a game as deprecated, meaning that the information provided is no longer considered correct. This allows the data to be kept for posterity and backwards-compatability.





<game name="DeprecatedGame" deprecated="true">








          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/files.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<files>


Now we get to the nitty-gritty of specifying which files are saves, settings, etc. After the locations element’s closing tag, we can specify one or more “files” elements, specifying and sorting these files by type.


Types


<files>
<files type=”Settings”>
Each “files” element has an optional “type” attribute. This tells us what type of files are going to be specified within the files tag. It could also be “Settings”, “Profiles”, or anything else. The attribute isn’t constrained, so you can be as accurate as necessary. When possible, try to conform to existing type names, so there can be some semblence of consistency, but if it absolutely needs to be a new type name, go for it.


Files To Save



		<files>


		<include path=”Save”/>





</files>
Within each files element, we specify one or more “save” elements that describe the files. There are three attributes used to specify files:


path - This specifies the folder path (starting at the end of the locations found from the above sections’ specifications). This can use wildcards (like SAVE*)
filename - This specifies the name of the files. This can also use wildcards, like *.sav
modified_after - This specifies a time and date that the file must be modified after in order to qualify
Different combinations of path and filename have different meanings:


If no path or filename are specified, then that means ALL the files in ALL the folders in the location.
<include />
If only a path is specified, then that means all the files in that folder, but NOT the subfolders.
<include path=”Save” />
If only a filename is specified, then that means all the files matching that name in the location, but NOT the subfolders.
<include filename=”.sav” />
If a path and a filename are specified, then that means all the files matching the name in that specific folder, but NOT the subfolders.
<include path=”System” filename=”.ini”/>
The modified_after date is formatted as follows:


<include path=”DataCampaigns” modified_after=”2001-10-09T00:00:00”/>
Except For...



		<include path=”userdata”>


		<exclude path=”userdatamp3”/>





</include>
To make things easier, you can specify a very broad save definition, and refine it using one or more “except” elements under that save element. This element can use all the same tags as the “save” element, and they all work exactly the same, except the deselect files instead of selecting them.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/linkable.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<linkable />


<linkable path=”Save”/>
Some games can handle having their save folders symlinked to another folder, like inside of a Dropbox or Google Drive folder. Do this on two computers, and you’ve got their saves automatically synced! The “linkable” element allows you to explain how to link a particular game. This process only works reliably with folders, so that’s the only thing you can specify. If you specify a path, it will append that path to any detected locations. If no path, then the detected location itself will be used.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/restore_comment.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<restore_comment>


<restore_comment>Restoring saves for this game also requires restoring Game for Windows Account Data, which MASGAU automatically backs up in G4WAccountData.</restore_comment>
Used to specify a comment pertaining to restoring a game’s saves. Can only be inside of a version element.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/ps_code.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<ps_code />



		<game name=”BrutalLegend”>


		<title>BrÃ¼tal Legend</title>
<version os=”PS3” region=”USA”>



<ps_code prefix=”BLUS” suffix=”30330”/>
<contributor>GameSave.Info</contributor>



</version>








</game>
PlayStation Games are considered just another version of the base game, and are marked with an OS matching the PlayStation platform (PS1, PS2, PS3, PSP). Instead of “locations”, “files” (and the optional “identifier”), you only specify the game’s PlayStation code, which can usually be found on the game disc and case. Each disc (even within the same game) usually has a unique code, 4 letters then 5 numbers. This code is used in the name of a game’s saves. Like file tags, you can sepcify a type on a PlayStation Code


For console games you should include the region code, as almost all console saves are guaranteed to be incompatible with those from other countries.


Some more modern PS3 games keep multiple save files for different types of data, sometimes seperating out Profile or setting data. Usually these saves wil have extra letters appended to the name. You can specify these with the append tag, as shown in this example from Tomb Raider: Anniversary:


<ps_code prefix=”BLUS” suffix=”30718” append=”-TALIST”/>
<ps_code prefix=”BLUS” suffix=”30718” append=”-TAPROFILE” type=”Profile”/>
Usually you would want to accompany an append with an appropriate type. Having a code with an append will NOT indicate that it should be excluded from other types, so make sure each code entry will indicate a unique entry.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/locations.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<locations>


Games can keep their saves anywhere, so here we try to provide as many ways as possible of finding them. These locations are not the exact locations of the saves, but are instead roots used as the first step to find the saves. Why do we do it like this? Here’s why:


These are some possible save locations for Deus Ex:     See how they’re all different, but all end with the same Save folder?
We can be certain that the Save folder is always used, no matter the location,
and just specify the part of the path that we can’t predict:
C:DeusExSaveC:DeusExC:Program FilesGOG.comDeus ExSave C:Program FilesGOG.comDeus ExC:Program FilesSteamsteamappscommondeus exSave  C:Program FilesSteamsteamappscommondeus ex


The main point here is to not store the same information (the Save folder) more than once. This has space saving advantages, but it also allows us to re-use the same location to specify Settings, Replays, Screenshots, or anything else that might happen to be there. We must be mindful to include enough of the root path that we can’t mistake one game’s paths for another. We have a few ways of finding these locations:













          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/locations/parent.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<parent />


Location Using Another Game



		<expansion name=”MechWarrior4BlackKnight” for=”MechWarrior4Vengeance”>


		<title>MechWarrior 4: Black Knight</title>
<version os=”Windows”>




		<locations>


		<registry root=”local_machine” key=”SOFTWAREMicrosoftMicrosoft GamesMechWarrior Black Knight” value=”EXE Path”/>
<parent name=”MechWarrior4Vengeance” os=”Windows”/>





</locations>
<files type=”Mechs”>



<include path=”resourceVariantsx”/>



</files>
<files>



<include path=”resourcePilotsx”/>



</files>
<files type=”Settings”>



<include filename=”optionsx.ini”/>



</files>
<identifier filename=”optionsx.ini”/>
<contributor>GameSave.Info</contributor>






</version>








</expansion>
If the game shares its save location in any way with another game, we can specify that game as a location source. More specifically, we specify a specific version of the game to take locations from. We specify the name of the game, along with all the version attributes of the version we want. These version elements MUST match a game version that is in the XML file.


This also allows you to create entries whose detection is dependent on the detection of another game.


Quite often this will need to make use of the append and detract attributes, as well as the identifier element, all of which are explained later.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

_static/plus.png





xml/programs/version/locations/path.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  ===
<path />
===


Location Using A Path


<path ev=”installlocation” path=”DeusEx”/>
The path tag lets us specify an actual folder name, but sitll allows us to do so in a format that can adjust automatically for any system. This is attained via environment variables. The environment variable will be replaced with whatever the appropriate path from the system is, and prepended onto the provided path.


The environment variables available for use:
allusersprofile A Windows folder that contains data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll Users
altsavepaths    This is catch-all folder, it could be literally anywhere.
I know it’s not much to go on :(
appdata Contains the application data for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoaming
Windows XP
C:Documents and Settings%USERNAME%Application Data
commonapplicationdata   Contains application data that is common to all users
Here are some common examples:
Windows Vista, 7 & 8
C:ProgramData
Windows XP
C:Documents and SettingsAll UsersApplication Data
desktop A per-user folder that contains the files store on a user’s desktop.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Desktop
Windows XP
C:Documents and Settings%USERNAME%Desktop
drive   Refers to the root of a drive. Any drive.
Here are some common examples:
Linux
/mnt/sda1
Windows
C:D:G:T:flashshared     Stores cached Adobe Flash data.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataRoamingMacromediaFlash Player#SharedObjects
Windows XP
C:Documents and Settings%USERNAME%Application DataMacromediaFlash Player#SharedObjects
installlocation This means that the game keeps its saves in its install folder.
Here are some common examples:
Linux
/usr/bin
/var/shared
Windows
C:Program Files
C:Program Files (x86) (Common for games on 64-bit Windows)
C:Games
localappdata    Contains the local settings for a particular Windows user.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocal
Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication Data
public  A special folder only on certain versions of Windows for storing user data common to all the users.
Here are some common examples:
Windows Vista, 7 & 8
C:UsersPublic
savedgames      A folder only on certain versions of Windows specifically for storing saved games.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Saved Games
startmenu       The folder that contains the files for Windows’ start menu.
There is one for each user, and a global one that all users share.
Here are some common examples:
Windows Vista, 7 & 8
User: C:Users%USER%AppDataRoamingMicrosoftWindowsStart
MenuGlobal: C:ProgramDataMicrosoftWindowsStart Menu
Windows XP
User: C:Documents and Settings%USER%Start Menu
Global: C:Documents and SettingsAll UsersStart Menu
steamcommon     This is the location where Steam keeps games that don’t use its integrated GCF system (which is most games).
Here are some common examples:
Windows
C:Program FilesSteamsteamappscommon
steamsourcemods This folder contains the files for mods for Valve’s Source game engine.
Here are some common examples:
Windows
C:Program FilesSteamsteamappsSourceMods
steamuser       This location stores per-user settings, saves and cache files for Valve’s game distributed through Steam.
Here are some common examples:
Windows
C:Program FilesSteamsteamapps%STEAMUSERNAME%
steamuserdata   This folder stores Steam Cloud data.
This data is automatically backed up onto Steam’s servers.
Here are some common examples:
Windows
C:Program FilesSteamuserdata%STEAMID%
ubisoftsavestorage      The save location used by the Ubisoft Game Launcher
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%AppDataLocalUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%Windows XP
C:Documents and Settings%USERNAME%Local SettingsApplication DataUbisoft Game Launchersavegame_storage%RANDOMNUMBERS%userdocuments   The user’s document folder.
Here are some common examples:
Windows Vista, 7 & 8
C:Users%USERNAME%Documents
Windows XP
C:Documents and Settings%USERNAME%My Documents
userprofile     This folder contains all the files related to a particular user.
Here are some common examples:
Linux
/home/%USERNAME%/
Windows Vista, 7 & 8
C:Users%USERNAME%
Windows XP
C:Documents and Settings%USERNAME%
Different versions of a game can install to all kinds of locations, so if a game keeps its saves in the install folder we have to specify as many different install paths as we can discover. For Deus Ex, the CD, Steam and GoG.com versions all install to different locations, so we add a path element for each one:


<path ev=”installlocation” path=”DeusEx”/>
<path ev=”installlocation” path=”GOG.comDeus Ex”/>
<path ev=”steamcommon” path=”deus ex”/>
If we’re lucky, the game keeps its saves somewhere other than the install folder, which usually means that all versions of the gam use the exact same path. A good example, and one that most games follow these days, is using the “My Documents” folder. Deus Ex’s sequel, Invisible War, was wise enough to do this:


<path ev=”userdocuments” path=”Deus Ex - Invisible War”/>
This will check each user’s My Documents folder for a path called “Deus Ex - Invisible War”, and should work for the disc, Steam, Impulse, Gog.com or any other versions of the game. This is not universal unfortuantely, as some games (like Alan Wake) use different folder names for different versions, despite all using folders like My Documents.




          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/locations/attributes.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
location attributes


Append And Detract Attributes



		<game name=”AloneInTheDark”>


		<title>Alone in the Dark</title>
<version os=”DOS”>




		<locations>


		<path ev=”installlocation” path=”GOG.comAlone in the DarkINDARK”/>
<registry root=”local_machine” key=”SOFTWAREGOG.comGOGALONE1” value=”PATH” append=”INDARK”/>
<shortcut ev=”startmenu” path=”ProgramsGOG.comAlone in the DarkAlone in the Dark.lnk” detract=”DOSBOX” append=”INDARK” />





</locations>
<files>



<include filename=”SAVE?.ITD”/>



</files>
<contributor>GameSave.Info</contributor>






</version>








</game>
All of the location elements can use the append and detract attributes. In the above example, the shortcut provided actually points to:


C:Program FilesGOG.comAlone in the DarkDOSBOX
But the saves are actually in:


C:Program FilesGOG.comAlone in the DarkINDARK
These attributes tell us to detract (or take away) DOSBOX, then append (or add to the end) INDARK from the location the shortcut points to. This is frequently needed for expansions, registry keys and shortcuts, which will usually point close to the desired location, but not to exactly the right spot.


You can use both of the attributes, only one or the other, or none at all, there are no requirements format-wise.


only_for Attribute


<path ev=”allusersprofile” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsXP”/>
<path ev=”public” path=”DocumentsMonolith ProductionsCondemned” only_for=”WindowsVista”/>
Some locations are only applicable to certain operating systems. For these you can use the only_for attribute to specify an OS that the path is for. All the OSs that can be used for the os attribute for the version element can be used here. See the above version element section for a list of them.


Deprecated Locations



		<game name=”OddworldStrangersWrath” follows=”OddworldMunchsOddysee”>


		<title>Oddworld: Stranger’s Wrath</title>
<version os=”Windows”>




		<locations>


		<path ev=”steamcommon” path=”stranger’s wrath” deprecated=”true”/>
<path ev=”userdocuments” path=”OddworldStranger’s Wrath”/>





</locations>
<files>



<include path=”Save”/>



</files>
<files type=”Settings”>



<include filename=”config.txt”/>



</files>
<contributor>Arc Angel</contributor>
<contributor>slake_jones</contributor>






</version>








</game>
Sometimes a game changes where it keeps its saves. In this example, Oddworld: Stranger’s Wrath USED TO keep its saves in its install folder. A patch changed this. By adding the deprecated attribute, we’re saying that this WAS a save location, but it isn’t used anymore. We keep these locations because there may still be saves there, and mark it as deprecated so we know we should never place saves there.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

_static/up.png





xml/programs/version/locations/shortcut.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<shortcut />


<shortcut ev=”startmenu” path=”ProgramsDeus ExPlay Deus Ex.lnk” detract=”System”/>
Quite frequently there is a shortcut in the Start menu, or on the desktop, or somewhere else, that points to the install folder of a game. If the game keeps its saves in the install folder, then this is yet another way we can use to find them! The ev attribute here supports the same values as the path element described above, but you’ll pretty much always be using startmenu. From there you provide the path to the shortcut, easy peasy!


As shown in the example, this tag can also take advantage of the append and detract attributes, which are explained in a later section.






          

      

      

    


    
        © Copyright 2014, Matthew Barbour.
      Created using Sphinx 1.2.
    

  

xml/programs/version/locations/registry.html


    
      Navigation


      
        		
          index


        		GameSave.Info 2.0.2 documentation »

 
      


    


    
      
          
            
  
<registry />


Location Using A Registry Key


<registry root=”local_machine” key=”SOFTWAREUnreal TechnologyInstalled AppsDeus Ex” value=”Folder”/>
The registry element lets you specify a registry key that contains the path to a game’s saves. For thsoe not in the know, Windows keeps what is called a registry, and it’s basically a fancy collection of names and value. If you click Start, Run then type in regedit, you’ll be able to browse it. Windows keeps all of its settings, and the install locations of a lot of programs here, which means we can take advantage of it to find a game, but it’s pretty much only useful for games that keep their saves in the isntall folder. The root of a key indicates which registry root will be used. Windows has several, here are what’s available:


classes_root - I don’t know
current_user - The registry for the currently logged in user
current_config - The registry for Windows’ settings
dyn_data - I don’t know
local_machine - The registry for the computer as a whole
performance_data - I don’t know
users - The registry for all the users
The key is like a folder path, pointing to the location of the key in the registry root (browse around regedit, it’ll make sense). A key can have several values, one default and zero or