

[image: Gaia Sky logo]

[image: Build status] [https://circleci.com/gh/langurmonkey/gaiasky/tree/master] [image: License] [https://opensource.org/licenses/MPL-2.0]

Note

02/08/2017 – Version 1.5.0 is out!

What is Gaia Sky

Gaia Sky is a real-time, 3D, astronomy visualisation software that
runs on Windows, Linux and MacOS. It lives in the framework of
ESA [http://www.esa.int/ESA]’s Gaia
mission [http://sci.esa.int/gaia] to chart about 1 billion stars of
our Milky Way Galaxy. It is developed in the Gaia group of the
Astronomisches Rechen-Institut [http://ari.uni-heidelberg.de]
(ZAH [http://zah.uni-heidelberg.de], Universität
Heidelberg [http://uni-heidelberg.de]).

[image: _images/20170731_screenshot_00002.jpg]
[image: _images/20170731_screenshot_00004.jpg]
[image: _images/20170731_screenshot_00011.jpg]
[image: _images/20170801_screenshot_00002.jpg]

	Visit our home page [http://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky/]

	Read the documentation [http://gaia-sky.rtfd.io]

	Submit a bug or a feature request [https://github.com/langurmonkey/gaiasky/issues]

Main features

	Free and open source – The application is free and open source and will stay this way. You can even contribute to the development or the translations.

	From Gaia to the cosmos – Move freely through the cosmos and descend to the surface of any Planet or do a close-up inspection of Gaia. All movement and transitions are seamless!

	Gaia - Observe Gaia in its orbit and discover its movement in the sky and its attitude.

	3D ready – With 5 stereoscopic profiles: Anaglyphic (red-cyan), VR headset, 3DTV, cross-eye and parallel view.

	VR ready – Still work in progress but already functional, Gaia Sky VR works with any VR HMD compatible with OpenVR. See the Gaia Sky VR section.

	Planetarium projection mode – Ready to produce videos for full dome systems.

	360 mode – Ready to produce 360 videos.

	Use your own data – Comes with TGAS, NBG and SDSS. Supports VOTable, FITS, CSV and all formats accepted by STIL.

	Navigate the galaxy – Support for controllers and gamepads makes navigating the Galaxy a piece of cake.

	Spacecraft mode – Jump aboard a spacecraft to navigate the skies!

	Record and play your camera paths – Ready to record and play camera paths off-the-shelf.

	Scriptable and extensible – Use Python to script and extend the capabilities of Gaia Sky.

	Internationalised – Translated so far to English, German, Spanish, French, Catalan and Slovenian.

Contents

	Download

	Requirements and Installation
	System requirements

	Installation and uninstallation
	Windows

	Linux

	macOS X

	Compressed (TGZ) package

	Running from source

	Running Gaia Sky
	Running from source
	Requirements

	Getting the catalog data

	Compiling and running

	Packaging Gaia Sky

	Running from downloaded package
	Linux

	Windows

	macOS X

	Documentation
	Settings and configuration
	Graphics settings

	User interface

	Performance

	Controls

	Screenshot configuration

	Frame output

	Camera recording

	360 mode

	Data

	Gaia

	The configuration file
	Graphics properties

	Data properties

	Scene properties

	Program wide properties

	Graphics settings
	Resolution and mode

	Graphics quality

	Antialiasing

	Line style

	Vertical synchronization (V-sync)

	Graphics performance
	Graphics quality setting

	Antialiasing

	Star brightness

	Model detail

	Bloom, lens flare and light glow

	Labels

	User Interface
	GUI window

	Running scripts

	Preferences window

	Controls
	Keyboard controls

	Mouse controls

	Gamepad controls

	Touch controls

	Camera modes
	Focus mode

	Free mode

	Gaia scene mode

	Spacecraft mode

	Field of View mode

	Cinematic camera
	Cinematic behaviour

	Non-cinematic behaviour

	Stereoscopic (3D) mode
	Stereoscopic profiles

	Planetarium mode

	Panorama mode
	Configuration

	Creating panorama images

	Creating spherical (360) videos

	Recording and playing camera paths
	Camera path file format

	Recording camera paths

	Playing camera paths

	Performance
	Graphics performance

	CPU performance

	Internal reference system

	Data: catalogues and formats
	General information on the data loading mechanisms

	Particle data

	Non-particle data: Planets, Moons, Asteroids, etc.

	Creating your own catalogue loaders

	Loading data using scripts

	Data streaming: Levels of detail

	Scripting
	The scripting API

	Capturing videos
	Frame output system + ffmpeg

	OpenGL/Screen recorders

	Taking screenshots
	Screenshot modes

	SAMP integration
	STIL data provider

	Implemented features

	Unimplemented features

	Gaia Sky VR

	Javadoc

	Changelog

	About
	Contact

	Author

	Acknowledgements
	Main acknowledgements

	Data

	Libraries and code

	Textures, models, music and other assets

	Translations

	Open source licenses

Download

Gaia Sky is available for Linux, OS X and Windows.

	Download the latest version [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads] for your OS.

	Download old versions [http://wwwstaff.ari.uni-heidelberg.de/gaiasandbox/].

Requirements and Installation

In the sections below is the information on the minimum hardware
requirements and on how to install the software.

System requirements

Here are the minimum requirements to run this software:

	Operating system

	Linux / Windows 7+ / macOS

	CPU

	Intel Core i5 3rd Generation or similar

	GPU

	OpenGL 3.0 support / Intel HD 4000 / Nvidia GeForce 8400 GS, 1 GB VRAM

	Memory

	4+ GB RAM

	Hard drive

	1 GB of free disk space

Installation and uninstallation

Depending on your system and your personal preferences the installation
procedure may vary. Below is a description of the various installation
methods available.

	Download Gaia Sky [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/]

Windows

Two windows installers are available for 32 and 64-bit systems.

	gaiasky_windows_<version>.exe – 32 bit installer.

	gaiasky_windows-x64_<version>.exe – 64 bit installer.

To install the Gaia Sky, just double click on the installer and then
follow the on-screen instructions. You will need to choose the directory
where the application is to be installed.

In order to uninstall the application you can use the Windows
Control Panel or you can use the provided uninstaller in the Gaia Sky
folder.

Linux

We provide 3 packages for linux systems (deb for Debian, Ubuntu
and derivatives, rpm for RedHat, Fedora and derivatives and a
linux installer which works on all distros) plus an AUR
package [https://aur.archlinux.org/packages/gaiasky/] for Arch and
derivatives.

deb

This is the package for Debian-based distros (Debian, Ubuntu,
Mint, SteamOS, etc.).
Download [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/]
the gaiasky_<version>.deb file and run the following command. You
will need root privileges to install a deb package in your system.

$ dpkg -i gaiasky_<version>.deb

This will install the application in the /opt/gaiasky/ folder and it
will create the necessary shortcuts and .desktop files. The package
depends on the default-jre package, which will be installed if it is
not yet there.

In order to uninstall, just type:

$ apt-get remove gaiasky

rpm

This is the package for RPM-based distributions (Red Hat, Fedora,
Mandriva, SUSE, CentOS, etc.)
Download [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/]
the gaiasky_linux_<version>.rpm file and run the following command.
You will need root privileges to install a rpm package in your
system.

$ yum install gaiasky_linux_<version>.rpm

This will install the application in the /opt/gaiasky/ folder and it
will create the necessary shortcuts.

In order to uninstall, just type:

$ yum remove gaiasky-x86

Install from AUR

If you have Arch, Manjaro, Antergos or any other Arch Linux
derivative, you can install the package from
AUR [https://aur.archlinux.org/packages/gaiasky/] using any tool able
to install AUR software. For example:

$ yauort -S gaiasky

This will download the package and install it in the /opt/gaiasky/ folder. It also
creates the necessary shortcuts.

Unix/Linux installer

We also provide a Unix/Linux
installer [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/]
that will trigger a graphical interface where you can choose the
installation location and some other settings. Download the file
gaiasky_unix_<version>.sh to your disk. Then run the following to
start the installation.

$./gaiasky_unix_[version].sh

Follow the on-screen instructions to proceed with the installation.

In order to uninstall, just execute the uninstall file in the
installation folder.

macOS X

For macOS we provide a gaiasky_macos_<version>.dmg file
here [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/],
which is installed by unpacking into the Applications folder. Once
unpacked, it is ready to run by simply clicking on it.

Compressed (TGZ) package

A gaiasky-[version].tgz package file is also provided
here [https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/].
It will work in all systems but you need to unpack it yourself and
create the desired shortcuts. In Windows, use an archiver software
(7zip, iZArc, etc.) to unpack it.

In Linux and OS X, you can use:

$ tar zxvf gaiasky-<version>.tgz

Running from source

Please see the Running from source section.

Running Gaia Sky

If you installed the software using an installer or a package manager
system (rpm, deb), you just need to use the standard running
procedures of your Operating System to run the application.

Windows

In windows, this means clicking on Start and then browsing the start
menu folder Gaia Sky. You can run the executable from there.

Linux

Just type gaiasky in a terminal or use your favourite desktop
environment search engine to run the Gaia Sky launcher.

macOS X

Locate the launcher in your install directory (usually /Applications) and double click on it.

Code and pakcage

However, if you are a maverick and do not like installers, you can also
run the Gaia Sky directly from the source code in GitHub or
using the tgz package.

Running from source

Requirements

If you want to compile the source code, you will need the following:

	JDK8 or
above [http://www.oracle.com/technetwork/java/javase/downloads/index.html]

Please, be aware that only tags are guaranteed to work
(here [https://github.com/langurmonkey/gaiasky/tags]). The master
branch holds the development version and the configuration files are
possibly messed up and not ready to work out-of-the-box. So remember to
use a tag version if you want to run it right away from source.

Also, this guide is for Unix-like systems only. If you are working
on Windows, you will need git for
windows [http://git-scm.com/download/win], which contains a version of
MinGW (bash) packed with git, vim and some other utils. All other
parts of the process should work the same under Windows systems.

First, clone the repository:

$ git clone https://github.com/langurmonkey/gaiasky.git
$ cd gaiasky

Getting the catalog data

The TGAS catalog files (Gaia data) are not in the repository, so if
you want to use TGAS when running from source you need to download the
tar file corresponding to your version — see table below.

As of version 1.5.0, there are new GPU-bound catalogs which perform
much better and can also be combined with the levels-of-detail structure
to produce a good combo in terms of performance and load times. Choose
which catalog you want to use. Usually, the single file GPU version
should work fine (tgas GPU), and has no culling, so all particles are
visible at all times.

For versions 1.0.x just extract the package in the specified
location. For versions 1.5.0+ you can choose whether you want to use
the Levels of detail catalog (LoD, multiple files, uses an octree structure
which culls particles outside the view frustum and hides particles which
are far away according to the view distance setting) or the regular
catalog (single file, loaded once at startup, contains the full catalog,
which is sent to GPU memory). Then, you need to point the key
data.json.catalog in your $HOME/.gaiasky/global.properties file
to the file specified in the last column in the table.

Albeit not recommended for performance reasons, the legacy
particle-based (CPU-bound) version of the catalog (version 1.0.4)
can still be used with newer versions. To do so, extract the package in
gaiasky/assets/data/octree/tgas so that the metadata.bin
file and the particles folder are directly within that folder and
edit the configuration file so that data.json.catalog points to
data/catalog-tgas-hyg-lod-old.json.

Compiling and running

To compile the code and run Gaia Sky run the following.

$ gradlew core:run

In order to pull the latest changes from the GitHub repository:

$ git pull

Remember that the master branch is the development branch and therefore intrinsically unstable. It is not guaranteed to always work.

Packaging Gaia Sky

Gaia Sky can be exported to a folder to be run as a standalone app with the following.

$ gradlew core:dist

That will create a new folder called releases/gaiasky-[version].[revison] with the exported application. Run scripts
are provided with the name gaiasky (Linux, macOS) and gaiasky.cmd (Windows).

Also, to export Gaia Sky into a tar.gz archive file, run the following.

$ gradlew core:createTar

In order to produce the desktop installers for the various systems you
need a licensed version of Install4j. Then, you need to run:

$ gradlew core:pack

These command will produce the different OS packages (.exe, .dmg, .deb, .rpm, etc.)
of Gaia Sky into releases/packages-[version].[revision] folder.

Running from downloaded package

If you prefer to run the application from the tar.gz package, follow the instructions below.

Linux

In order to run the application on Linux, open the terminal, uncompress
the archive, give execution permissions to the gaiasky script and then
run it.

$ tar zxvf gaiasky-[version].tar.gz
$ cd gaiasky-[version]/
$ gaiasky

Windows

In order to run the application on Windows, open a terminal window (type
cmd in the start menu search box) and run the gaiasky.cmd file.

$ cd path_to_gaiasky_folder
$ gaiasky.cmd

macOS X

To run the application on macOS, follow the instructions in the
Linux section.

Documentation

	Settings and configuration
	Graphics settings

	User interface

	Performance
	Draw distance

	Controls

	Screenshot configuration

	Frame output

	Camera recording

	360 mode

	Data

	Gaia

	The configuration file
	Graphics properties

	Data properties

	Scene properties

	Program wide properties

	Graphics settings
	Resolution and mode

	Graphics quality

	Antialiasing

	Line style

	Vertical synchronization (V-sync)

	Graphics performance
	Graphics quality setting

	Antialiasing

	Star brightness

	Model detail

	Bloom, lens flare and light glow

	Labels

	User Interface
	GUI window
	Time

	Camera

	Objects

	Type visibility

	Lighting

	Music

	Running scripts

	Preferences window

	Controls
	Keyboard controls
	Focus and free camera modes

	Spacecraft mode

	Mouse controls
	Focus mode

	Free mode

	Gamepad controls
	Creating mappings files for new controllers

	Focus mode

	Free camera mode

	Spacecraft mode

	Touch controls

	Camera modes
	Focus mode

	Free mode

	Gaia scene mode

	Spacecraft mode

	Field of View mode

	Cinematic camera
	Cinematic behaviour

	Non-cinematic behaviour

	Stereoscopic (3D) mode
	Stereoscopic profiles

	Planetarium mode

	Panorama mode
	Configuration

	Creating panorama images
	Injecting panorama metadata to 360 images

	Creating spherical (360) videos

	Recording and playing camera paths
	Camera path file format

	Recording camera paths

	Playing camera paths

	Performance
	Graphics performance

	CPU performance
	Multithreading

	Limiting magnitude

	Draw distance (levels of detail)

	Smooth transitions

	Internal reference system

	Data: catalogues and formats
	General information on the data loading mechanisms
	catalog-*.json example files

	data-main.json example file

	Particle data
	Particle groups

	Non-particle data: Planets, Moons, Asteroids, etc.
	Top-level objects

	Planets, moons, asteroids and all rigid bodies

	Orbits

	Grids and other special objects

	Creating your own catalogue loaders

	Loading data using scripts

	Data streaming: Levels of detail

	Scripting
	The scripting API
	API documentation

	Using the scripting API

	More examples

	How to run scripts

	Capturing videos
	Frame output system + ffmpeg

	OpenGL/Screen recorders
	Linux

	Windows

	Taking screenshots
	Screenshot modes

	SAMP integration
	STIL data provider
	Positions

	Proper motions

	Magnitudes

	Colors

	Others

	Implemented features

	Unimplemented features

Settings and configuration

Gaia Sky can be configured using the provided GUI (Graphical User Interface).
However, some functions are not represented in the GUI, so you may need
to dive deep into the properties file.

Hint

As of version 1.0.5 the old swing-based preferences dialog has been deprecated in favour of an OpenGL-based one, so it does not pop up at startup anymore.

Graphics settings

Please refer to the Graphics settings chapter.

User interface

The User Interface section allows the user to set the language and the
theme of the user interface.

One can select between a choice of languages using the language
drop-down. There are currently three visual themes available:

	dark-green, black and green theme.

	dark-green-x2, scaled version of dark-green (for HiDPI screens).

	dark-blue, black and blue theme.

	dark-blue-x2, scaled version of dark-blue (for HiDPI screens).

	dark-orange, orange and blue theme.

	dark-orange-x2, scaled version of dark-orange (for HiDPI screens).

	bright-green, a bright theme with greenish tones.

	bright-green-x2, scaled version of birght-green (for HiDPI screens).

Performance

In the Performance tab you can enable and disable multithreading.
In our tests, multithreading provides a significant boost when more
than 4 threads are available in the CPU. Otherwise its overhead
makes it slower than the single-threaded version, so use it at your
own risk. This allows the program to use more than one CPUs for the
processing. More detailed info can be found in the performance section.

Draw distance

Certain big datasets use levels of detail to prevent data clutter.
Refer to the Draw distance (levels of detail) section for more info.

Controls

You can see the key associations in the Controls tab. Controls are
not editable. Check out the Controls documentation
to know more.

Screenshot configuration

You can take screenshots anytime when the application is running by
pressing F5. There are two screenshot modes available: *
Simple, the classic screenshot of what is currently on screen, with
the same resolution. * Advanced, where you can define the
resolution of the screenshots.
Additionally, the output format (either JPG or PNG) and the quality (in
case of JPG format) can also be set in the configuration file, usually
located in $HOME/.gaiasky/global.properties. The keys to modify are:

	screenshot.format

	screenshot.quality

Frame output

There is a feature in Gaia Sky that enables the output of every
frame as a JPG or PNG image. This is useful to produce videos. In order to
configure the frame output system, use the Frame output tab. There
you can select the output folder, the image prefix name, the output
image resolution (in case of Advanced mode) and the target frame rate.
Additionally, the output format (either JPG or PNG) and the quality (in
case of JPG format) can also be set in the configuration file, usually
located in $HOME/.gaiasky/global.properties. The keys to modify are:

	graphics.render.format

	graphics.render.quality

Note

Use F6 to activate the frame output mode and start saving each frame as an image. Use F6 again to deactivate it.

When the program is in frame output mode, it does not run in
real time but it adjusts the internal clock to produce as many frames
per second as specified here. You have to take it into account when you
later use your favourite video encoder
(ffmpeg [https://www.ffmpeg.org/]) to convert the frame images into
a video.

Camera recording

Here you can set the desired frames per second to capture the camera
paths. If your device is not fast enough in producing the specified
frame rate, the application will slow down while recording so that
enough frames are captured. Same behaviour will be uploading during
camera playback.

You can also enable automatic frame recording during playback. This will
automatically activate the frame output system (see Frame output)
during a camera file playback.

360 mode

Here you can define the cube map side resolution for the 360 mode.
With this mode a cube map will be rendered (the whole scene in all
direction +X, -X, +Y, -Y, +Z, -Z) and then
it will be transformed into a flat image using an equirectangular
projection. This allows for the creation of 360 (VR) videos.

[image: 360 mode in Gaia Sky]
360 mode in Gaia Sky

Data

As of version 1.0.0 you can use the Data tab to select the
catalogue to load. Gaia Sky ships with two catalogues by default:

	TGAS This is based on the Tycho-Gaia Astrometric Solution (source [http://gaia.ari.uni-heidelberg.de] and contains a little over 600.000 stars. This catalogue uses levels of detail which can be configured in the Performance tab.

	HYG This is the Hipparcos, Gliese and Yale Bright Stars (home page [http://www.astronexus.com/hyg], GitHub repository [https://github.com/astronexus/HYG-Database]) and contains roughly some 100.000 stars.

Gaia

Here you can choose the attitude of the satellite. You can either use
the real attitude (takes a while to load but will ensure that Gaia
points to where it should) and the NSL, which is an analytical
implementation of the nominal attitude of the satellite. It behaves the
same as the real thing, but the observation direction is not ensured.

The configuration file

There is a configuration file which stores most of the configration settings
of Gaia Sky. This section is devoted
to these seetings that are not represented in the GUI but are still
configurable. The configuration file is located in
$HOME/.gaiasky/global.properties. The file is annotated with
comments specifying the function of most properties. However, here is an
explanation of some of the properties
found in this file that are not represented in the GUI.

Graphics properties

	graphics.render.time - This property gets a boolean
(true|false) and indicates whether a timestamp is to be
added to screenshots and frames.

	graphics.screen.resizable - Whether the window (if in windowed mode) is resiable or not. Defaults to true.

Data properties

	data.json.catalog - This property points to the json file
where the catalog(s) to load are defined. Unless you want to load your
own catalogs, this should either be data/catalog-tgas-hyg.json for the
GPU-bound non-LOD version, or data/catalog-tgas-hyg-lod.json, for the
LOD version of TGAS.

	data.json.objects - Contains the json file where the
definition of all the rest of the data is specified.

	data.limit.mag - This contains the limiting magnitude above which
stars shall not be loaded. Not all data loaders implement this. It is
now deprecated.

Scene properties

	scene.labelfactor - A real number in [0..n] that controls the
number of star labels to display. The larger the number, the more
stars will have a label.

	scene.star.threshold.quad - This property contains the view
angle (in degrees) boundary above which the stars are rendered as
quads [https://www.opengl.org/wiki/Primitive#Quads].
Quads are basically 4-vertex quadrilaterals, and they can be
rendered as textures (images) or using shaders. They display more
detail but are costlier in terms of GPU processing. Do not touch unless
you know what you are doing.

	scene.star.threshold.point - This property contains the view
angle (in degrees) boundary above which the stars are rendered as
points [https://www.opengl.org/wiki/Primitive#Point_primitives].
Points are single pixels, so they are not very resource demanding. Do not touch unless
you know what you are doing.

	scene.star.threshold.none - This property contains the view
angle (in degrees) below which the stars are not rendered at all.
Usually this is 0 unless you want to cull very distant stars. Do not touch unless
you know what you are doing.

	scene.point.alpha.min - Contains the minimum alpha value
(opacity) in [0..1] for the stars rendered as points. This
should in any case be lower than scene.point.alpha.max.

	scene.point.alpha.max - Contains the maximum alpha value
(opacity) in [0..1] for the stars rendered as points. This
should in any case be greater than scene.point.alpha.min.

	scene.galaxy.3d - Contains a boolean. If set to true, the Milky
Way will be rendered using a blending of a 2D image with a 3D
distribution of stars and nebulae. Otherwise, only the 2D image is
used.

Program wide properties

	program.tutorial - This gets a boolean (true|false)
indicating whether the tutorial script should be automatically run at
start up.

	program.tutorial.script - This points to the tutorial script
file.

	program.debuginfo - If this property is set to true, some debug
information will be shown at the top right of the window. This
contains information such as the number of stars rendered as a quad,
the number of stars rendered as a point or the frames per second.
This can be activated in real time by pressing CTRL + D.

Graphics settings

Most of the graphics settings can be adjusted using the Preferences dialog.

Resolution and mode

You can find the Resolution and mode configuration under the
Graphics tab. There you can switch between full screen mode and
windowed mode. In the case of full screen, you can choose the resolution
from a list of supported resolutions in a drop down menu. If you choose
windowed mode, you can enter the resolution you want. You can also
choose whether the window should be resizable or not. In order to switch
from full screen mode to windowed mode during the execution, use the key
F11.

Graphics quality

This setting governs the size of the textures, the complexity of the
models and also the quality of the graphical effects (light glow,
lens flare, etc.). Here are the differences:

	High Contains some high-resolution textures (4K) and specular and normal maps for most celestial bodies. Planets and moons have a high vertex count. Graphical effects use a large number of samples to get the best visuals.

	Normal contains lower resolution textures (2K when available) and some specular and normal maps are deactivated. The graphical effects use a reasonable amount of quality for nice visuals without compromising the performance too much.

	Low Offers a noticeable performance gain on less powerful systems. Same textures and model quality as in the Normal setting. The volumetric light effect is turned off completely and the lens flare effect uses a low number of ghosts.

Antialiasing

In the Graphics tab you can also find the antialiasing
configuration. Applying antialiasing removes the jagged edges of the
scene and makes it look better. However, it does not come free of cost,
and usually has a penalty on the frames per second (FPS). There are four
main options, described below.

Find more information on antialiasing in the Antialiasing section.

No Antialiasing

If you choose this no antialiasing will be applied, and therefore you
will probably see jagged edges around models. This has no penalty on
either the CPU or the GPU. If want you enable antialiasing with
override application settings in your graphics card driver
configuration program, you can leave the application antialiasing
setting to off.

FXAA - Fast Approximate Antialiasing

This is a post-processing antialiasing which is very fast and produces
reasonably good results. It has some impact on the FPS depending on how
fast your graphics card is. As it is a post-processing effect, this will
work also when you take screenshots or output the frames. Here is more info on FXAA [http://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing].

NFAA - Normal Field Antialiasing

This is yet another post-processing antialiasing technique. It is based
on generating a normal map to detect the edges for later smoothing. It
may look better on some devices and the penalty in FPS is small. It will
also work for the screenshots and frame outputs.

MSAA - Multi-Sample Antialiasing

As of version 1.0.1 MSAA is not offered anymore. This is implemented
by the graphics card and may not always be available. You can choose the
number of samples (from 2 to 16, from worse to better) and it has a
bigger cost on FPS than the post-processing options. It also looks
better. However, this being reliant on a special multisample frame
buffer in the graphics card makes it not available for screenshots and
frame outputs.

Line style

Whether to render lines with an advanced quad system or using simple
GL_LINES. The former will look better at the expense of requiring
more processing power in the GPU.

Vertical synchronization (V-sync)

This option limits the frames per second to match your monitor’s refresh
rate and prevent screen tearing. It is recommended to leave it enabled
unless you want to test how many FPS you can get or you want to fry your
card.

Graphics performance

The Gaia Sky uses OpenGL [https://www.opengl.org/] to render
advanced graphics and thus its performance may be affected
significatively by your graphics card. Below you can find some tips to
improve the performance of the application by tewaking or deactivating
some graphical effects.

Graphics quality setting

Please see the Graphics quality section.

Antialiasing

Antialiasing is a term to refer to a number of techniques for reducing
jagged edges, stairstep-like lines that should be smooth. It reduces
the jagged appearance of lines and edges, but it also makes the image
smoother. The result are generally better looking images, even though
this depends on the resolution display device.

There are several groups of antialiasing techniques, some of them
implemented in the Gaia Sky and available for you to choose from the
[[preferences dialog|Configuration-interface]]. They all come at a
cost, which may vary depending on your system.

	Name

	Type

	Description

	No Antialiasing

	No antialiasing

	This has no cost since it does not apply any antialiasing technique.

	FXAA

	Post-processing

	This has a mild performance cost and produces reasonably good results. If you have a good graphics card, this is super-fast.

	NFAA

	Post-processing

	Based on the creation of a normal map to identify edges, this is slightly costlier than FXAA but it may produce better results in some devices.

	MSAAx2

	MSAA

	MSAA is implemented in the graphics card itself and comes at a greater cost than post-processing techniques since it multi-samples the scene and uses its geometry to antialias it. This version uses two samples per pixel.

	MSAAx4

	MSAA

	Version of MSAA that uses four samples per pixel, therefore it is costlier than MSAAx2.

	MSAAx8

	MSAA

	Version of MSAA that uses eight samples per pixel, therefore it is costlier than MSAAx4.

	MSAAx16

	MSAA

	Version of MSAA that uses sixteen samples per pixel, therefore it is costlier than MSAAx8.

Note

Since version 1.0.1 the MSAA has been removed due to the lack of support for multisampling frame buffers in libgdx.

Here are some sample images.

	Name

	Image

	No Antialiasing

	[image: NOAA]

	FXAA

	[image: FXAA]

	NFAA

	[image: NFAA]

	MSAAx2

	[image: MSAAx2]

	MSAAx4

	[image: MSAAx4]

	MSAAx8

	[image: MSAAx8]

	MSAAx16

	[image: MSAAx16]

Some graphics drivers allow you to override the anti-aliasing settings
of applications with some default configuration (usually MSAA or FXAA).
You can also use this feature with the Gaia Sky.

Find more information on antialiasing in the Antialiasing section.

Star brightness

The star brightness setting has an effect on the graphics
performance because it will cause more or less stars to be rendered as
quads instead of points, which means multiplying the number of vertices
to send to the GPU. Quads are basically flat polygons to which a texture
is applied (in this case their appearance is controlled by a shader).

The star brightness can be increased or decreased from the
Star brightness slider in the Lighting section.

Hint

CTRL + D - activate the debug mode to get some information on how many stars are currently being rendered as points and quads as well as the frames per second.

Model detail

Some models (mainly spherical planets, planetoids, moons and asteroids)
are automatically generated when the Gaia Sky is initialising and
accept parameters which tell the loader how many vertices the model
should have. These parameters are set in the json data files and can
have an impact on devices with low-end graphics processors. Let’s see an
example:

"model" : {
 "args" : [true],
 "type" : "sphere",
 "params" : {
 "quality" : 150,
 "diameter" : 1.0,
 "flip" : false
 },
 "texture" : {
 "base" : "data/tex/neptune.jpg",
 }
 }

The quality parameter specifies here the number of both vertical and
horizontal divisions that the sphere will have.

Additionally, some other models, such as that of the Gaia spacecraft,
come from a binary model file .g3db. These models are created using
a 3D modelling software and then exported to either .g3db (bin)
or .g3dj (JSON) using
fbx-conv [https://github.com/libgdx/fbx-conv]. You can create
your own low-resolution models and export them to the right format. Then
you just need to point the json data file to the right low-res model
file. The attribute’s name is model.

"model" : {
 "args" : [true],
 "model" : "data/models/gaia/gaia.g3db"
 }

Bloom, lens flare and light glow

All post-processing algorithms (those algorithms that are applied to the
image after it has been rendered) take a toll on the graphics card and
can be disabled.

Hint

Disable the light glow effect for a significant performance boost in low-end graphics cards

	The bloom is not very taxing on the GPU.

	The lens flare effect is a bit harder on the GPU, but most modern
cards should be able to handle it with no problems.

	The light glow effect is far more demanding, and disabling it can
result in a significant performance gain in some GPUs. It samples the
image around the principal light sources using a spiral pattern and
applies a light glow texture which is rather large.

To disable these post-processing effects, find the controls in the UI
window, as described in the [[lighting|User-interface#lighting]]
section of the [[User interface]] chapter.

Labels

Object labels or names in the Gaia Sky are rendered using a special
shader which implements distance field
fonts. This means that
labels look great at all distances but it is costlier than the regular
method.

The label factor basically determines the stars for which a label will
be rendered if labels are active. It is a real number between 1 and 5,
and it will be used to scale the threshold point angle (which
determines the boundary between rendering as points or as quads)
to select whether a label should be rendered or not.

The label is rendered if the formula below yields true.

viewAngle > threshold_angle_point / label_factor

Currently there is no GUI option for modifying the label factor, so you
must directly edit the configuration file in the [[Scene
properties|Configuration-files#scene-properties]] section of the
[[Configuration files]] chapter.

User Interface

GUI window

The Gaia Sky GUI is divided into six panes, Time,
Camera, Type visibility, Lighting, Objects, and Music.

	[image: User interface with all panes collapsed]

	Controls window with all panes, except the
Time pane, collapsed.

	[image: User interface with camera pane expanded]

	Controls window with the Time pane and the
Camera pane expanded.

The six panes, except for the Time pane, are collapsed at startup. To expand them and reveal its controls just click on the little plus
icon [image: plus-icon] at the right of the pane title. Use the minus icon [image: minus-icon] to collapse it again. Panes can also be detached
to their own window. To do so, use the detach icon [image: detach-icon].

Time

You can play and pause the simulation using the [image: play-icon]/[image: pause-icon] Play/Pause buttons in
the Controls window to the left. You can also use SPACE to play
and pause the time. You can also change time warp, which is expressed as
a factor. Use , and . to divide by 2 and double the value of the
time warp.

Camera

In the camera options pane on the left you can select the type of
camera. This can also be done by using the NUMPAD 0-4 keys.

There are five camera modes:

	Free mode – The camera is not linked to any object and its velocity is exponential with respect to the distance to the origin (Sun).

	Focus mode – The camera is linked to a focus object and it rotates and rolls with respect to it.

	Gaia scene – Provides an outside view of the Gaia satellite. The camera can not be rotated or translated in this mode.

	Spacecraft– Take control of a spacecraft and navigate around at will.

	Gaia FOV – The camera simulates either of the fields of view of Gaia, or both.

For more information on the camera modes, see the Camera modes section.

Additionally, there are a number of sliders for you to control different
parameters of the camera:

	Field of view: Controls the field of view angle of the camera.
The bigger it is, the larger the portion of the scene represented.

	Camera speed: Controls the longitudinal speed of the camera.

	Rotation speed: Controls the transversal speed of the camera, how
fast it rotates around an object.

	Turn speed: Controls the turning speed of the camera.

You can lock the camera to the focus when in focus mode. Doing so
links the reference system of the camera to that of the object and thus
it moves with it.

Hint

Lock the camera so that it stays at the same relative position to the focus object.

Finally, we can also lock the orientation of the camera to that of
the focus so that the same transformation matrix is applied to both.

Hint

Lock the orientation so that the camera also rotates with the focus.

Additionally, we can also enable the crosshair, which will mark the
currently focused object.

Objects

There is a list of focus objects that can be selected from the
interface. When an object is selected the camera automatically centers
it in the view and you can rotate around it or zoom in and out. Objects
can also be selected by double-clicking on them directly in the view or
by using the search box provided above the list. You can also invoke a
search dialogue by pressing CTRL+F.

Type visibility

Most graphical elements can be turned off and on using these toggles.
For example you can remove the stars from the display by clicking on the
stars toggle. The object types available are the following:

	Stars

	Planets

	Moons

	Satellites, the spacecrafts

	Asteroids

	Labels, all the text labels

	Equatorial grid

	Ecliptic grid

	Galactic grid

	Orbits, the orbit lines

	Atmospheres, the atmospheres of planets

	Constellations, the constellation lines

	Boundaries, the constellation boundaries

	Milky way

	Others

By checking the proper motion vectors checkbox we can enable the
representation of star proper motions if the currently loaded catalog
provides them. Once proper motions are activated, we can control the
number of displayed proper motions and their length by using the two
sliders that appear.

Lighting

Here are a few options to control the lighting of the scene:

	Star brightness: Controls the brightness of stars.

	Star size: Controls the size of point-like stars.

	Min. star opacity: Sets a minimum opacity for the faintest stars.

	Ambient light: Controls the amount of ambient light. This only
affects the models such as the planets or satellites.

	Bloom effect: Controls the bloom effect.

	Brightness: Controls the brightness of the image.

	Contrast: Controls the contrast of the image.

	Motion blur: Enable or disable the motion blur effect.

	Lens flare: Enable or disable the lens flare.

	Star glow: Enable or disable star glows. If enabled, the stars
are rendered using a glow texture in a post-processing step. This can
have a performance hit on some older graphics cards.

Music

Since version 0.800b, Gaia Sky also offers a music player in its
interface. By default it ships with only a few spacey melody, but you
can add your own by dropping them in the folder $HOME/.gaiasky/music.

Hint

Drop your mp3, ogg or wav files in the folder $HOME/.gaiasky/music and these will be available during your Gaia Sky sessions to play.

In order to start playing, click on the [image: audio-play] Play button. To pause the track, click on the [image: audio-pause] Pause icon. To skip to the next track,
click on the [image: audio-fwd] Forward icon. To go to the previous track, click on the [image: audio-bwd] Backward icon.
The volume can be controlled using the slider at the bottom of the pane.

Running scripts

In order to run Python scripts, click on the [image: scriptrun] Run script button at
the bottom of the GUI window. A new window will pop up allowing you to
select the script you want to run. Once you have selected it, the script
will be checked for errors. If no errors were found, you will be
notified in the box below and you’ll be able to run the script right
away by clicking on the Run button. If the script contains errors,
you will be notified in the box below and you will not be able to run
the script until these errors are dealt with.

Hint

Add your own scripts to the folder $HOME/.gaiasky/scripts so that Gaia Sky can find them.

Preferences window

You can launch the preferences window any time during the execution of
the program. To do so, click on the [image: prefsicon] Preferences button at the bottom
of the GUI window. For a detailed description of the configuration
options refer to the Configuration
Instructions.

Controls

This section describes the controls of Gaia Sky.

Keyboard controls

To check the most up-to-date controls go to the Controls tab in the
preferences window. Here are the default keyboard controls depending on the
current camera mode. Learn more about camera modes in the Camera modes section.

Focus and free camera modes

These keyboard controls apply to the focus mode and also to the free mode.

	Key(s)

	Action

	NUMPAD_0

	Free camera

	NUMPAD_1

	Focus camera

	NUMPAD_2

	Gaia scene camera

	NUMPAD_3

	Spacecraft mode

	NUMPAD_4

	Gaia FoV 1 camera

	NUMPAD_5

	Gaia FoV 2 camera

	NUMPAD_6

	Gaia FoV 1 and 2 camera

	L-CTRL + 3

	360 mode

	L-CTRL + L-SHIFT + UP

	Increase star point size

	L-CTRL + L-SHIFT + DOWN

	Decrease star point size

	SPACE

	Toggle simulation play/pause

	F1

	Help dialog

	F5

	Take screenshot

	F6

	Start/stop frame output mode

	F11

	Toggle fullscreen/windowed mode

	L-CTRL + F

	Search dialog

	ESCAPE

	Quit application

	-

	Decrease limiting magnitude

	+

	Increase limiting magnitude

	,

	Divide time warp by two

	.

	Double time warp

	*

	Reset limiting magnitude

	L-SHIFT + B

	Toggle constellation boundaries

	L-SHIFT + C

	Toggle constellation lines

	L-SHIFT + E

	Toggle ecliptic grid

	L-SHIFT + G

	Toggle galactic grid

	L-SHIFT + L

	Toggle labels

	L-SHIFT + M

	Toggle moons

	L-SHIFT + O

	Toggle orbits

	L-SHIFT + P

	Toggle planets

	L-SHIFT + Q

	Toggle equatorial grid

	L-SHIFT + S

	Toggle stars

	L-SHIFT + T

	Toggle satellites

	L-SHIFT + U

	Expand/collapse controls window

	L-CTRL + U

	Toggle UI completely (hide/show user interface)

	L-CTRL + D

	Toggle debug info

	L-CTRL + S

	Toggle stereoscopic mode

	L-CTRL + L-SHIFT + S

	Switch between stereoscopic profiles

	L-CTRL + L-SHIFT + G

	Toggle galaxy renderer

Spacecraft mode

These controls apply only to the spacecraft mode.

	Key(s)

	Action

	W

	Apply forward thrust

	S

	Apply backward thrust

	A

	Roll to the left

	D

	Roll to the right

	ARROW_UP

	Decrease pitch angle

	ARROW_DOWN

	Increase pitch angle

	ARROW_LEFT

	Increase yaw angle

	ARROW_RIGHT

	Decrease yaw angle

	PAGE_UP

	Increase engine power by a factor of 10

	PAGE_DOWN

	Decrease engine power by a factor of 10

Mouse controls

Here are the default mouse controls for the focus and free Camera modes. The other modes do not have mouse controls.

Focus mode

	Mouse + keys

	Action

	L-MOUSE DOUBLE CLICK

	Select focus object

	L-MOUSE SINGLE CLICK

	Stop all rotation and translation movement

	L-MOUSE + DRAG

	Apply rotation around focus

	L-MOUSE + L-SHIFT + DRAG

	Camera roll

	R-MOUSE + DRAG

	Pan view freely from focus

	M-MOUSE + DRAG or WHEEL

	Move towards/away from focus

Free mode

	Mouse + keys

	Action

	L-MOUSE DOUBLE CLICK

	Select object as focus (changes to focus mode)

	L-MOUSE SINGLE CLICK

	Stop all rotation and translation movement

	L-MOUSE + DRAG

	Pan view

	L-MOUSE + L-SHIFT + DRAG

	Camera roll

	M-MOUSE + DRAG or WHEEL

	Forward/backward movement

Gamepad controls

Gaia Sky supports (as of version 1.5.0) mappings for different controller types.
However, so far only the mappings files for the Xbox 360 controller and the PS3 controller are provided.

Sometimes there are differences between the axes and buttons codes for the same controller device between operating systems. To solve
this issue, we offer a way to describe operating system specific mappings. To do so, create a new mappings file with the format
[controller_name].[os_family].controller, where os_family is linux, win, macos, unix or solaris. If the
mappings for the given file name and OS family are found, they will be used. Otherwise, the file defined in the configuration file is used.
For example, if we have the file xbox360.controller is defined in the configuration file, the system will look up xbox360.win.controller if on Windows,
xbox360.linux.controller if on Linux, and so on. If found, the file is used. Otherwise, the default xbox360.controller file is used. Gaia Sky
provides the default xbox360.controller file, which defines the Linux mappings, and also the Windows mappings xbox360.win.controller.

The mappings files (see here [https://github.com/langurmonkey/gaiasky/blob/master/assets/mappings/xbox360.controller])
must be in the $GS_INSTALL_LOCATION/mappings or in the $HOME/.gaiasky/mappings folder, and basically assign the button and axis codes for the particular
controller to the actions.

AXES

axis.roll=3
axis.pitch=1
axis.yaw=0
axis.move=4
axis.velocityup=5
axis.velocitydown=2

BUTTONS

button.velocityup=2
button.velocitydown=0
button.velocitytenth=5
button.velocityhalf=4

The actions depend on the current camera
mode (focus, free, spacecraft), and are described below.

Creating mappings files for new controllers

As of version 1.5.1 a new controller debug mode has been added to help create new mappings files. This mode prints to the log all key press and release events with their respective key codes, as well as trigger events, values and codes. It also prints controller connection and disconnection events.

In order to enable the controller debug mode, set the property controls.debugmode=true in the $HOME/.gaiasky/global.properties file.

Put your new files in $GS_INSTALL_LOCATION/mappings/ or $HOME/.gaiasky/mappings/. The name of the file should be [controller brand and model].mappings. For example, xboxone.mappings or logitech_f310.mappings.

Please, if you create mappings files for new game controllers, create a pull request in the gaiasky github [https://github.com/langurmonkey/gaiasky/pulls] so that the community can benefit.

Focus mode

[image: Xbox 360 controller focus mode]
Xbox 360 controller in focus mode

	Property

	Action

	button.velocityhalf

	Hold to apply 0.5 factor to speed

	button.velocitytenth

	Hold to apply 0.1 factor to speed

	axis.velocitydown

	Move away from focus

	axis.velocityup

	Move towards focus

	axis.yaw

	Horizontal rotation around focus

	axis.pitch

	Vertical rotation around focus

	axis.roll

	Roll right and left

	axis.move

	Move towards or away from focus

	button.velocityup

	Move towards focus

	button.velocitydown

	Move away from focus

Free camera mode

	Axis/button

	Action

	button.velocityhalf

	Hold to apply 0.5 factor to speed

	button.velocitytenth

	Hold to apply 0.1 factor to speed

	axis.velocitydown

	Move away from focus

	axis.velocityup

	Move towards focus

	axis.yaw

	Yaw right and left

	axis.pitch

	Pitch up and down

	axis.roll

	Move sideways

	axis.move

	Move forward and backward

	button.velocityup

	Move towards focus

	button.velocitydown

	Move away from focus

Spacecraft mode

	Axis/button

	Action

	button.velocityhalf

	Stabilise spacecraft rotations

	button.velocitytenth

	Stop spacecraft

	axis.velocitydown

	Apply backward thrust

	axis.velocityup

	Apply forward thrust

	axis.yaw

	Yaw right and left

	axis.pitch

	Pitch up and down

	axis.roll

	Roll right and left

	axis.move

	None

	button.velocityup

	Increase engine power

	button.velocitydown

	Decrease engine power

Touch controls

No mobile version yet.

Camera modes

Gaia Sky offers five basic camera modes.

Focus mode

This is the default mode. In this mode the camera movement is locked to a focus object, which can be selected by double clicking or by using the find dialog (Ctrl+F).
There are two extra options available. These can be activated using the checkboxes at the bottom of the Camera panel in the GUI Controls window:

	Lock camera to object – If this is activated, the relative position of the camera with respect to the focus object is maintained. Otherwise, the camera position does not change.

	Lock orientation – If this is activated, the camera will rotate with the object to keep the same perspective of it at all times.

The description of the controls in focus mode can be found here:

	Keyboard controls in focus mode

	Mouse controls in focus mode

	Gamepad controls in focus mode

Hint

NUMPAD_1 – Enter the Focus mode

Free mode

This mode does not lock the camera to a focus object but it lets it roam free in space.

	Keyboard controls in free mode

	Mouse controls in free mode

	Gamepad controls in free mode

Hint

NUMPAD_0 – Enter the Free mode

Gaia scene mode

In this mode the camera can not be controlled. It provides a view of the Gaia satellite from the outside.

Hint

NUMPAD_2 – Enter the Gaia scene mode

Spacecraft mode

In this mode you take control of a spacecraft. In the spacecraft mode, the GUI changes completely. The Options window disappears and
a new user interface is shown in its place at the bottm left of the screen.

	Attitude indicator – It is shown as a ball with the horizon and other marks. It represents the current orientation of the spacecraft with respect to the equatorial system.

	[image: pointer] – Indicates the direction the spacecraft is currently headed to.

	[image: greencross] – Indicates direction of the current velocity vector, if any.

	[image: redcross] – Indicates inverse direction of the current velocity vector, if any.

	Engine Power – Current power of the engine. It is a multiplier in steps of powers of ten. Low engine power levels allow for Solar System or planetary travel, whereas high engine power levels are suitable for galactic and intergalactic exploration.

	[image: stabilise] – Stabilises the yaw, pitch and roll angles. If rotation is applied during the stabilisation, the stabilisation is cancelled.

	[image: stop] – Stops the spacecraft until its velocity with respect to the Sun is 0. If thrust is applied during the stopping, the stopping is cancelled.

	[image: exit] – Return to the focus mode.

	Keyboard controls in spacecraft mode

	Gamepad controls in spacecraft mode

Hint

NUMPAD_3 – Enter the Spacecraft mode

[image: Spacecraft mode, with the various controls at the bottom left.]
Spacecraft mode, with the various controls at the bottom left.

Field of View mode

This mode simulates the Gaia fields of view. You can select FoV1, FoV2 or both.

Hint

NUMPAD_4 – Enter Field of View 1 mode

NUMPAD_5 – Enter Field of View 2 mode

NUMPAD_6 – Enter Field of View 1 and 2 mode

Cinematic camera

Since version 1.5.0 a new option is available in the user interface to control the behaviour of the camera, the cinematic mode toggle. The cinematic mode is in fact the same exact behaviour
the camera has had in Gaia Sky since the first release. If cinematic mode is not enabled, however, the camera adopts a new behaviour which is much more responsive.

Cinematic behaviour

This behaviour makes the camera use acceleration and momentum, leading to very smooth transitions and movements. This is the ideal camera to
use when recording camera paths or when showcasing to an audience.

Non-cinematic behaviour

In this behaviour the camera becomes much more responsive to the user’s commands and inputs. There is no longer an acceleration factor, and momentum is very minimal. This is the
default behaviour as of version 1.5.0 and probably better meets the expectations of new users.

Stereoscopic (3D) mode

Gaia Sky includes a stereoscopic
mode [http://en.wikipedia.org/wiki/Stereoscopy] or 3D mode which
outputs two images each intended for each eye, creating the illusion of
depth.

Hint

[image: 3d-icon] or LEFT_CTRL + S – Activate the stereoscopic mode

LEFT_CTRL + LEFT_SHIFT + S – Switch between 3D profiles

Stereoscopic profiles

Usually, as the images are placed side by side (even though most 3DTVs
also support up and down), the right image is intended for the right eye
and the left image is intended for the left eye. This works with 3DTVs
and VR head sets (such as the Oculus Rift [https://www.oculus.com/],
Google cardboard [https://www.google.com/get/cardboard/], etc.). In
3DTVs, however, the image is distorted because each half of the TV will
be stretched back to the whole TV area when the 3D mode is on.

Note

As of version 1.5.0, the head tracking is not yet implemented, so you won’t be able to use Gaia Sky interactively with a VR headset. The integration with OpenVR will come soon enough.

Additionally, there are a couple of techniques called cross-eye 3D (you can find
some examples
here [http://digital-photography-school.com/9-crazy-cross-eye-3d-photography-images-and-how-to-make-them/],
and here [https://www.youtube.com/watch?v=zBa-bCxsZDk] is a very
nice video teaching the concept and how to achieve it) and parallel view. These work
without any extra equipment and consist on trying to focus your eyes
some distance before or after the actual image so that each eye receives the
correct image. In cross-eye this case the right images goes to the left eye and
the left image goes to the right eye. The opposite is true for parallel view images.

In order to manage all these parameters, we have created 5 stereoscopic
profiles which can be selected by the user and are described below.

	VR_HEADSET – The left image goes to the left eye. Lens distortion is applied to be viewed with VR glasses.

	Crosseye – The left image goes to the right eye. No distortion is applied.

	Parallel view – The left image goes to the left eye. No distortion is applied.

	3DTV – The left image goes to the left eye. The left and right images are strecthed to fit in a half of the screen.

	Anaglyph 3D – To use with red-cyan glasses. Displays both the left and right images at full resolution. Left image contains the red channel, right image contains the green and blue channels.

Hint

L-CTRL + L-SHIFT + S – Switch between 3D profiles

	Profile

	Image

	VR_HEADSET

	[image: VR]

	Crosseye

	[image: XEYE]

	Parallel view

	[image: PARA]

	3DTV

	[image: 3DTV]

	Anaglyph

	[image: ANAG]

Planetarium mode

Gaia Sky includes a planetarium mode which is specially useful to capture videos to be displayed in a full dome.
To get the best results, the screen resolution (or the screenshots resolution) should have an aspect ratio of 1:1.
In the planetarium mode a few things happen:

	Fisheye transform – A fisheye transform is applied to the source image.

	Field of view – The field of view is increased to about 180 degrees.

	View skew – In focus mode, the view is skewed about 50 degrees downwards.

Hint

To activate the planetarium mode, click on the [image: dome-icon] icon in the camera section of the controls window. Exit by clicking [image: dome-icon] again.

[image: _images/planetarium-mode.jpg]
Planetarium mode

Panorama mode

Gaia Sky includes a panorama mode where the scene is rendered in all directions to a cube map [https://en.wikipedia.org/wiki/Cube_mapping].
This cube map is then projected onto a flat image. The projection to use can be an equirectangular (spherical) projection [http://alexcpeterson.com/2015/08/25/converting-a-cube-map-to-a-sphericalequirectangular-map/],
a cylindrical projection [https://en.wikipedia.org/wiki/Map_projection#Cylindrical] or a Hammer [https://en.wikipedia.org/wiki/Hammer_projection] projection. The final image can be used
to create 360 videos with head tracking (see here [https://www.youtube.com/watch?v=Bvsb8LZwkgc&t=33s])

Hint

To activate the panorama mode, click on the [image: cubemap-icon] icon in the camera section of the controls window. Exit by clicking [image: cubemap-icon] again.

Hint

L-CTRL + K – Toggle the panorama mode.

Hint

L-CTRL + L-SHIFT + K – Cycle between the projections (spherical, cylindrical and Hammer).

Configuration

Please, see the 360 mode section.

Creating panorama images

In order to create panorama images that can be viewed with a VR device or simply a 360 viewer, we need to take into consideration a few points.

	You should probably use the equirectangular (spherical) projection, as it is the simplest and the one most programs use.

	Panoramas work best if their aspect ratio is 2:1, so a resolution of 5300x2650 or similar should work. (Refer to the Screenshot configuration section to learn how to take screenshots with an arbitrary resolution).

	Some services (like Google) have strong constraints on image properties. For instance, they must be at least 14 megapixels and in jpeg format. Learn more here [https://support.google.com/maps/answer/7012050?hl=en&ref_topic=6275604].

	Some metadata needs to be injected into the image file.

Injecting panorama metadata to 360 images

To do so, we can use ExifTool [http://owl.phy.queensu.ca/~phil/exiftool/] in Linux, MacOS and Windows. To inject the metadata which describes a 360 degrees 4K image (3840x2160) we need to run the following command:

$ exiftool -UsePanoramaViewer=True -ProjectionType=equirectangular -PoseHeadingDegrees=360.0 -CroppedAreaLeftPixels=0 -FullPanoWidthPixels=3840 -CroppedAreaImageHeightPixels=2160 -FullPanoHeightPixels=2160 -CroppedAreaImageWidthPixels=3840 -CroppedAreaTopPixels=0 -LargestValidInteriorRectLeft=0 -LargestValidInteriorRectTop=0 -LargestValidInteriorRectWidth=3840 -LargestValidInteriorRectHeight=2160 image_name.jpg

Now we can enjoy our image in any 360 panorama viewer like Google Street View app or the Cardboard Camera!
Find some examples in this album [https://goo.gl/photos/kn2MvugZHYcr5Fty8].

[image: _images/20161111_screenshot_00003.jpg]
Panorama image captured with Gaia Sky

Creating spherical (360) videos

First, you need to capture the 360 video. To do so, capture the images and use ffmpeg to encode them or capture the video directly using a screen recorder. See the Capturing videos section for more information.
Once you have the .mp4 video file, you must use the spatial media [https://github.com/google/spatial-media] project to inject the spherical metadata so that video players that support it can play it correctly.

First, clone the project.

$ git clone https://github.com/google/spatial-media.git
$ cd spatial-media/

Then, inject the spherical metadata with the following command. Python 2.7 must be used to run the tool, so make sure to use that version.

$ python spatialmedia -i <inupt_file> <output_file>

You are done, your video can now be viewed using any 360 video player or even uploaded to YouTube [https://youtube.com].

To check whether the metadata has been injected correctly, just do:

$ python spatialmedia <file>

Recording and playing camera paths

Gaia Sky offers the possibility to record camera paths out of the
box in real time and later play them. These camera paths go to a
text file in the temp folder of your system.

Camera path file format

The format of the file is pretty straightforward. It consists of a
csv file with white spaces as delimiters, each row containing the
state of the camera and the time. The state of the camera
consists of 9 double-precision floating point numbers, 3 for the
position and 3 for the direction vector and 3 for the up
vector.

The reference system used is explained in the Internal reference system section. The units are [image: 1*10^{-9} m].

The format of each row is as follows:

	long - Time as defined by the getTime() function of
java.util.Date (here [https://docs.oracle.com/javase/8/docs/api/java/util/Date.html#getTime--]).

	double x3 - Position of the camera.

	double x3 - Direction vector of the camera.

	double x3 - Up vector of the camera.

Recording camera paths

In order to start recording the camera path, click on the [image: rec-icon-gray] REC
button next to the Camera section title in the GUI Controls window. The
REC button will turn red [image: rec-icon-red], which indicates the camera is being
recorded.

In order to stop the recording and write the file, click again on
the red REC button. The button will turn grey and a notification
will pop up indicating the location of the camera file. Camera files are
by default saved in the $HOME/.gaiasky/camera directory.

Playing camera paths

In order to play a camera file, click on the [image: play-icon] PLAY icon next to the
REC icon. This will prompt a list of available camera files in the
$HOME/.gaiasky/camera folder.

You can also combine the camera file playback with the frame output system to
save each frame to a JPEG image during playback. To do so, enable the Activate frame output automatically
checkbox in the preferences dialog as described in the Camera recording section.

Performance

The performance of the application may vary significantly depending on
the characteristics of your system. This chapter describes what are the
factors that have an impact in a greater or lesser degree in the
performance of the Gaia Sky and explains how to tweak them. It is
organised in two parts, namely GPU performance (graphics performance)
and CPU performance.

Graphics performance

Refer to the Graphics performance chapter.

CPU performance

The CPU also plays an obvious role in updating the scene state
(positions, orientations, etc.), managing the input and events,
executing the scripts and calling and running the rendering subsystem,
which streams all the texturing and geometric information to the GPU
for rendering. This section describes what are the elements that can
cause a major impact in CPU performance and explains how to tune them.

Multithreading

When multithreading is enabled the work of the update loop will be distributed
to a number of threads (usually this number is defined by the number of cores/threads
of the main CPU). In our tests, multithreading starts having a positive impact
when more than 4 threads are available. Using a CPU which supports 8 threads
and enabling multithreading in Gaia Sky results in a significant performance boost.
However, in the case of 4 threads or less, our tests yield that the multithreading
overhead penalty is larger than the gain, resulting in lower FPS. Usually, with
newer CPUs it is a good practice to enable multithreading.

Limiting magnitude

You can modify the magnitude limit by setting the property data.limit.mag
in the configuration file. This will prevent the loading of stars whose magnitude
is higher (they are fainter) than the specified magnitude, thus relieving the
CPU of some processing. Also, take a look at the
Data properties section.

Draw distance (levels of detail)

These settings apply only when using a catalog with levels of detail
like TGAS. We can configure whether we want Smooth transitions between
the levels (fade-outs and fade-ins) and also the draw distance, which is
represented by a range slider. The left knob represents the view angle
above which octants are rendered.

[image: Levels of Detail slider]
Draw distance slider in preferences dialog

Basically, the slider sets the view angle above which a particular octree node (axis aligned cubic volume)
is marked as observed and thus its stars are processed and drawn.

	Set the knob to the right to lower the draw distance and increase performance.

	Set the knob to the left to higher the draw distance at the expense of performance.

[image: Octree and levels of detail]
Octree and levels of detail. Image: Wikipedia [https://en.wikipedia.org/wiki/Octree].

Smooth transitions

This setting controls whether particles fade in and out depending on the octree view angle. This will prevent
pop-ins when using a catalog backed by an octree but it will have a hit on peformance due to the opacity information
being sent to the GPU continuously. If smooth transitions are enabled, there
is a fade-in between the draw distance angle angle and the draw distance angle + 0.4 rad.

Internal reference system

The internal cartesian reference system is described as follows: [image: XZ] is the equatorial plane. [image: Z] points towards the vernal
equinox point, Aries (♈). [image: Y] points towards the north celestial
pole. [image: X] is perpendicular to both [image: Z] and [image: Y].

[image: Gaia Sky reference system]
Gaia Sky reference system

All the positions and orientations of the entities in the scene are at
some point converted to this reference system for representation. The
same happens with the orientation sensor data in mobile devices.

Data: catalogues and formats

Gaia Sky needs to first load data in order to display it. The internal
structure of these data is a scenegraph, which is basically a tree
with nodes. The objects that are displayed in a scene are all nodes in
this scene graph and are organized in a hierarchical manner depending on
their geometrical and spatial relations.

Hint

The data nodes in the scene graph are of multiple natures and are loaded differently depending on their type. Here we can make the first big distinction in the data nodes depending on where they come from.

The different types of data are:

	Catalogue data – usually stars which come from a star catalogue. In this group we have two different approaches: single particles and particle groups. The TLDR version says that the single particles method is fundamentally slower and CPU-bound, while the particle groups method is faster and GPU-based. Therefore, single particles are deprecated.

	Rest of data – planets, orbits, constellations, grids and everything else qualifies for this category.

Data belonging to either group will be loaded differently into the Gaia
Sky. The sections below describe the data format in detail:

General information on the data loading mechanisms

Gaia Sky implements a very flexible an open data mechanism. The data to be loaded is defined
in a couple of keys in the global.properties configuration file, which is usually located
in the $HOME/.gaiasky/ folder. The keys are:

	data.json.catalog – contains a comma-separated list of data files which point to the catalogs to load. These files have usually the data/catalog-*.json format.

	data.json.objects – contains a comma-separated list of data files which point to the files with the rest of the data. By default, only the data/data-main.json file is there.

Now, all the files in either properties have a very similar format, and nothing prevents you from putting catalogues into the objects file. However,
the distinction is a semantic one, since the data defined in each file are fundamentally different. Also, Gaia Sky includes an option to choose the
catalog(s) to load at startup using a GUI window (set property program.dataset.dialog to true to enable), and in this manner only the catalogue files
can be modified.

catalog-*.json example files

{
 "name" : "TGAS+HYG (GPU)",
 "description" : "Gaia DR1 TGAS catalog, GPU version. About 1.5 million stars.",
 "data" : [
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.JsonLoader",
 "files": ["data/particles-tgas.json"]
 }
]}

{
 "name" : "TGAS - 12.5%",
 "description" : "Gaia DR1 TGAS catalog (12.5% error). About 700K stars.",
 "data" : [
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.group.OctreeGroupLoader",
 "files": ["data/octree/tgas/group-bin/particles/", "data/octree/tgas/group-bin/metadata.bin"]
 }
]}

data-main.json example file

{ "data" : [
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.JsonLoader",
 "files": ["data/planets-normal.json",
 "data/moons-normal.json",
 "data/satellites.json",
 "data/asteroids.json",
 "data/orbits_planet.json",
 "data/orbits_moon.json",
 "data/orbits_asteroid.json",
 "data/orbits_satellite.json",
 "data/extra-low.json",
 "data/locations.json",
 "data/locations_earth.json",
 "data/locations_moon.json"]
 },
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.stars.SunLoader",
 "files": [""]
 },
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.constel.ConstellationsLoader",
 "files": ["data/constel_hip.csv"]
 },
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.constel.ConstelBoundariesLoader",
 "files": ["data/boundaries.csv"]
 }
]}

The format in all files is the same. There is a "data" property, which is a list of pairs
containing [loader: files] correspondences.
Each "loader" contains the classes that will load the list of files under the
corresponding "files" property. Obviously, each loader needs to know how to load the provided files.

[image: Gaia Sky data loading diagram]Gaia Sky data loading diagram

The files are sent to the Scene Graph JSON Loader, which iterates on each loader-files pair
in each file, instantiates the loader and uses it to load the files. All loaders need to adhere
to a contract, defined in the interface ISceneGraphLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/ISceneGraphLoader.java]–.
The loadData() method of each loader must return a list of Scene Graph objects, which is then
added to a global list containing all the previously loaded files. At the end, we have a list
with all the objects in the scene. This list is passed on to the Scene Graph instance, which
constructs the screne graph tree structure which will contains the object model.

As we said, each loader will load a different kind of data; the
JSONLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/JsonLoader.java]–
loads non-catalog data (planets, satellites, orbits, etc.), the
STILDataProvider –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/group/STILDataProvider.java]–
loads VOTables, FITS, CSV and other files through the STIL [http://www.star.bristol.ac.uk/~mbt/stil/] library,
ConstellationsLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/constel/ConstellationsLoader.java]–
and
ConstellationsBoundariesLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/constel/ConstelBoundariesLoader.java]–
load constellation data and constellation boundary data respectively
and so on.

Particle data

Particle data refers to the loading of particles (stars, galaxies, etc.) where each gets an object
in the internal scene graph model. This allows for selection, labeling, levels of detail, etc.

There are several off-the-shelf options to get local data in various formats
into Gaia Sky.

In order to load local data there are a series of default options
which can be combined. As described in the general data loading section,
multiple catalogue loaders can be used at once. Each catalog loader will
get a list of files to load. A description of the main local catalog
loaders follows.

Particle groups

As of version 1.5.0, Gaia Sky offers a new data type, the particle group. Particle groups can be either point particles or stars (defined by star groups).
Particle data are read from a file using a certain particle/star group provider implementation, and these data
are sent to GPU memory where they reside. This approach allows for these objects to be composed of hundreds of
thousands of particles and still have a minimal impact on performance.

Let’s see an example of the definition of one of such particle groups in the Oort cloud:

{
 "name" : "Oort cloud",
 "position" : [0.0, 0.0, 0.0],
 // Color of particles
 "color" : [0.9, 0.9, 0.9, 0.8],
 // Size of particles
 "size" : 2.0,
 "labelcolor" : [0.3, 0.6, 1.0, 1.0],
 // Position in parsecs
 "labelposition" : [0.0484814, 0.0, 0.0484814]
 "ct" : Others,

 // Fade distances, in parsecs
 "fadein" : [0.0004, 0.004],
 "fadeout" : [0.1, 15.0],

 "profiledecay" : 1.0,

 "parent" : "Universe",
 "impl" : "gaia.cu9.ari.gaiaorbit.scenegraph.ParticleGroup",

 // Extends IParticleGroupDataProvider
 "provider" : "gaia.cu9.ari.gaiaorbit.data.group.PointDataProvider",
 "factor" : 149.597871,
 "datafile" : "data/oort/oort_10000particles.dat"
}

Let’s go over the attributes:

	name – The name of the particle group.

	position – The mean cartesian position (see internal reference system) in parsecs, used for sorting purposes and also for positioning the label. If this is not provided, the mean position of all the particles is used.

	color – The color of the particles as an rgba array.

	size – The size of the particles. In a non HiDPI screen, this is in pixel units. In HiDPI screens, the size will be scaled up to maintain the proportions.

	labelcolor – The color of the label as an rgba array.

	labelposition – The cartesian position (see internal reference system) of the label, in parsecs.

	ct – The ComponentType –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/render/SceneGraphRenderer.java#L59]–. This is basically a string that will be matched to the entity type in ComponentType enum. Valid component types are Stars, Planets, Moons, Satellites, Atmospheres, Constellations, etc.

	fadein – The fade in inetrpolation distances, in parsecs. If this property is defined, there will be a fade-in effect applied to the particle group between the distance fadein[0] and the distance fadein[1].

	fadeout – The fade out inetrpolation distances, in parsecs. If this property is defined, there will be a fade-in effect applied to the particle group between the distance fadein[0] and the distance fadein[1].

	profiledecay – This attribute controls how particles are rendered. This is basically the opacity profile decay of each particle, as in (1.0 - dist)^profiledecay, where dist is the distance from the center (center dist is 0, edge dist is 1).

	parent – The name of the parent object in the scenegraph.

	impl – The full name of the model class. This should always be gaia.cu9.ari.gaiaorbit.scenegraph.ParticleGroup.

	provider – The full name of the data provider class. This must extend gaia.cu9.ari.gaiaorbit.data.group.IParticleGroupDataProvider (see here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/group/IParticleGroupDataProvider.java]).

	factor – A factor to be applied to each coordinate of each data point. If not specified, defaults to 1.

	datafile – The actual file with the data. It must be in a format that the data provider specified in provider knows how to load.

Star groups

As of version 1.5.0, entire star catalogs can also be provided as a special type of particle groups: star groups. The stars in a star
group will function very much like their single particles counterparts. They are rendered using the magnitude and color information, they are
selectable and focusable, they can render labels and proper motions, and they get close-up detail quads. Since most of the rendering is GPU-based using VBOs,
and there’s only one object in the scene graph for the whole star group, this method is much more performant than the single particles method. Also,
to update some model information a background thread is spawned for every star group which sorts the particles in the background according to their current
view angle.

To define a catalog containing a star group, we need to create a pointer and load it using the regular JsonLoader:

{
 "name" : "TGAS+HYG (GPU)",
 "description" : "Gaia DR1 TGAS catalog, GPU version. About 1.5 million stars.",
 "data" : [
 {
 "loader": "gaia.cu9.ari.gaiaorbit.data.JsonLoader",
 "files": ["data/tgas-pg.json"]
 }
]}

The file tgas-pg.json contains a single object with the actual star group definition:

{ "objects" : [
 {
 "name" : "TGAS",
 "position" : [0.0, 0.0, 0.0],
 // Color of particles
 "color" : [1.0, 1.0, 1.0, 0.25],
 // Size of particles
 "size" : 6.0,
 "labelcolor" : [1.0, 1.0, 1.0, 1.0],
 // Position in parsecs
 "labelposition" : [0.0, -5.0e7, -4e8]
 "ct" : Stars,

 "fadeout" : [21e2, .5e5],

 "profiledecay" : 1.0,

 "parent" : "Universe",
 "impl" : "gaia.cu9.ari.gaiaorbit.scenegraph.StarGroup",

 // Extends IParticleGroupDataProvider
 "provider" : "gaia.cu9.ari.gaiaorbit.data.group.SerializedDataProvider",
 "datafile" : "data/catalog/tgashyg.bin"
 }
]}

In this case, the data file, tgashyg.bin, is a binary file which contains java objects serialized. These can be loaded using the SerializedDataProvider. However,
anyone can implement a new provider to load any other kind of catalog file by implementing the IStarGroupDataProvider –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/group/IStarGroupDataProvider.java]
interface.

Star groups can also be combined with octrees (levels of detail method) to allow for huge catalogs like DR2 (hundreds of millions of points). This option is still not implemented.

Octree catalog loader

As of version 1.5.0, a new on-demand catalog loader exists, called Octree multifile loader.
This is a version of the octree catalog loader specially designed for very large datasets. This version
does not load everything at startup. It needs the catalog to be organised into several files, each one corresponding to
a particluar octree node. This is an option in the OctreeGeneratorTest [https://github.com/langurmonkey/gaiasky/blob/master/src/gaia/cu9/ari/gaiaorbit/data/OctreeGeneratorTest.java].
Back to the loader, it can pre-load files down to a certain depth level; the rest of the
files will be loaded when needed and unloaded if necessary. This offers a convenient way in which the data is streamed from disk
to the main memory as the user explores the dataset. It also results in a very fast program startup.
This loader is called OctreeMultiFileLoader and is implemented here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/stars/OctreeMultiFileLoader.java].

Some discussion on memory issues and the streaming loader can be found here.

STIL data provider

As of version v0.704 the Gaia Sky supports all formats supported
by the STIL library [http://www.star.bristol.ac.uk/~mbt/stil/].
Since the data held by the formats supported by STIL is not of a
unique nature, this catalog loader makes a series of assumptions.
More information can be found in STIL data provider.

Non-particle data: Planets, Moons, Asteroids, etc.

Most of the entities and celestial bodies that are not stars in the Gaia
Sky scene are defined in a series of json files and are loaded
using the
JsonLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/JsonLoader.java]–.
The format is very flexible and loosely matches the underneath data
model, which is a scene graph tree.

Top-level objects

All objects in the json files must have at least the following 5
properties:

	name: The name of the object.

	color: The colour of the object. This will translate to the line colour in orbits, to the colour of the point for planets when they are far away and to the colour of the grid in grids.

	ct – The ComponentType –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/render/SceneGraphRenderer.java#L59]–. This is basically a string that will be matched to the entity type in ComponentType enum. Valid component types are Stars, Planets, Moons, Satellites, Atmospheres, Constellations, etc.

	impl – The package and class name of the implementing class.

	parent: The name of the parent entity.

Additionally, different types of entities accept different additional parameters which are matched to the model using reflection. Here are some examples of these parameters:

	size – The size of the entity, usually the radius in km.

	appmag – The apparent magnitude.

	absmag – The absolute magnitude.

Below is an example of a simple entity, the equatorial grid:

{
 "name" : "Equatorial grid",
 "color" : [1.0, 0.0, 0.0, 0.5],
 "size" : 1.2e12,
 "ct" : "Equatorial",

 "parent" : "Universe",
 "impl" : "gaia.cu9.ari.gaiaorbit.scenegraph.Grid"
}

Planets, moons, asteroids and all rigid bodies

Planets, moons and asteroids all use the model object
Planet -here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/scenegraph/Planet.java]-.
This provides a series of utilities that make their json
specifications look similar.

Coordinates

Within the coordinates object one specifies how to get the
positional data of the entity given a time. This object contains a
reference to the implementation class (which must implement
IBodyCoordinates -here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/util/coord/IBodyCoordinates.java]-)
and the necessary parameters to initialize it. There are currently a
bunch of implementations that can be of use:

	OrbitLintCoordinates – The coordinates of the object are linearly
interpolated using the data of its orbit, which is defined in a
separated entity. See the
[[Orbits|Non-particle-data-loading#orbits]] section for more info.
The name of the orbit entity must be given. For instance, the
Hygieia moon uses orbit coordinates.

json "coordinates" : {
 "impl" : "gaia.cu9.ari.gaiaorbit.util.coord.OrbitLintCoordinates",
 "orbitname" : "Hygieia orbit"
}

	StaticCoordinates – For entities that never move. A position is required. For instance, the Milky Way object uses static coordinates:

json "coordinates" : {
 "impl" : "gaia.cu9.ari.gaiaorbit.util.coord.StaticCoordinates",
 "position" : [-2.1696166830918058e+17, -1.2574136144478805e+17, -1.8981686396725044e+16]
}

	AbstractVSOP87 – Used for the major planets, these coordinates

implement the VSOP87 algorithms. Only the implementation is needed.
For instance, the Earth uses these coordinates.

json "coordinates" : {
 "impl" : "gaia.cu9.ari.gaiaorbit.util.coord.vsop87.EarthVSOP87"
}

	GaiaCoordinates – Special coordinates for Gaia.

	MoonAACoordinates – Special coordinates for the moon using the algorithm described in the book Astronomical Algorithms by Jean Meeus.

Rotation

The rotation object describes, as you may imagine, the rigid
rotation of the body in question. A rotation is described by the
following parameters:

	period – The rotation period in hours.

	axialtilt – The axial tilt is the angle between the equatorial plane of the body and its orbital plane. In degrees.

	inclination – The inclination is the angle between the orbital plane and the ecliptic. In degrees.

	ascendingnode – The ascending node in degrees.

	meridianangle – The meridian angle in degrees.

For instance, the rotation of Mars:

"rotation": {
 // In hours
 "period" : 24.622962156,
 // Angle between equatorial plane and orbital plane
 "axialtilt" : 25.19,
 // Inclination of orbit plane with respect to ecliptic
 "inclination" : 1.850,
 "ascendingnode" : 47.68143,
 "meridianangle" : 176.630
}

Model

This object describes the model which must be used to represent the
entity. Models can have two origins: - They may come from a 3D model
file. In this case, you just need to specify the file.

json "model": {
 "args" : [true],
 "model" : "data/models/gaia/gaia.g3db"
}

	They may be generated on the fly. In this case, you need to
specify the type of model, a series of parameters and the texture or
textures.

json "model": {
 "args" : [true],
 "type" : "sphere",
 "params" : {
 "quality" : 180,
 "diameter" : 1.0,
 "flip" : false
 },
 "texture" : {
 "base" : "data/tex/earth.jpg",
 "specular" : "data/tex/earth-specular.jpg",
 "normal" : "data/tex/earth-normal-4k.jpg",
 "night" : "data/tex/earth-night-2k.jpg"
 }
}

	type – The type of model. Possible values are sphere, disc, cylinder and ring.

	params – Parameters of the model. This depends on the type. The quality is the number of both horizontal and vertical divisions. The diameter is the diameter of the model and flip indicates whether the normals should be flipped to face outwards. The ring type also accepts innerradius and outerradius.

	texture – Indicates the texture or textures to apply. The base texture is the one applied in normal conditions. The specular is the specular map to produce specular reflections. The normal is a normal map to produce extra detail in the lighting. The night is the texture applied to the part of the model in the shade.

Atmosphere

Planet atmospheres can also be defined using this object. The
atmosphere object gets a number of physical quantities that are fed
in the atmospheric scattering algorithm (Sean O’Neil, GPU
Gems [http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html]).

"atmosphere" : {
 "size" : 6600.0,
 "wavelengths" : [0.650, 0.570, 0.475],
 "m_Kr" : 0.0025,
 "m_Km" : 0.001,

 "params" : {
 "quality" : 180,
 // Atmosphere diameters are always 2
 "diameter" : 2.0,
 "flip" : true
 }
}

Orbits

When we talk about orbits in this context we talk about orbit lines. In
the Gaia Sky orbit lines may be created from two different sources.
The sources are used by a class implementing the
IOrbitDataProvider –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/orbit/IOrbitDataProvider.java]–
interface, which is also specified in ther orbit object.

	An orbit data file. In this case, the orbit data provider is OrbitFileDataProvider.

	The orbital elements, where the orbit data provider is OrbitalParametersProvider.

If the orbit is pre-sampled it comes from an orbit data file. In the
Gaia Sky the orbits of all major planets are pre-sampled, as well as
the orbit of Gaia. For instance, the orbit of Venus.

{
 "name" : "Venus orbit",
 "color" : [1.0, 1.0, 1.0, 0.55],
 "ct" : "Orbits",

 "parent" : "Sol",
 "impl" : "gaia.cu9.ari.gaiaorbit.scenegraph.Orbit",
 "provider" : "gaia.cu9.ari.gaiaorbit.data.orbit.OrbitFileDataProvider",

 "orbit" : {
 "source" : "data/orb.VENUS.dat",
 }
}

If you prefer to define the orbit using the orbital
elements [http://en.wikipedia.org/wiki/Orbital_elements], you need to
specify these parameters in the orbit object. For example, the orbit
of Phobos.

{
 "name" : "Phobos orbit",
 "color" : [0.7, 0.7, 1.0, 0.4],
 "ct" : "Orbits",

 "parent" : "Mars",
 "impl" : "gaia.cu9.ari.gaiaorbit.scenegraph.Orbit",
 "provider" : "gaia.cu9.ari.gaiaorbit.data.orbit.OrbitalParametersProvider",

 "orbit" : {
 // In days
 "period" : 0.31891023,
 // 2010 Jan 1 12:00
 "epoch" : 2455198,
 "semimajoraxis" : 9377.2,
 "eccentricity" : 0.0151,
 // Inclination of orbit with respect to the planet's Equator
 "inclination" : 1.082,
 "ascendingnode" : 16.946,
 "argofpericenter" : 157.116,
 "meananomaly" : 241.138
 }
}

Grids and other special objects

There are a last family of objects which do not fall in any of the
previous categories. These are grids and other objects such as the Milky
Way (inner and outer parts). These objects usually have a special
implementation and specific parameters, so they are a good example of
how to implement new objects.

{
 "name" : "Galactic grid",
 "color" : [0.3, 0.5, 1.0, 0.5],
 "size" : 1.4e12,
 "ct" : Galactic,
 "transformName" : equatorialToGalactic,

 "parent" : "Universe",
 "impl" : "gaia.cu9.ari.gaiaorbit.scenegraph.Grid"
}

For example, the grids accept a parameter transformName, which
specifies the geometric transform to use. In the case of the galactic
grid, we need to use the equatorialToGalactic transform to have the
grid correctly positioned in the celestial sphere.

Creating your own catalogue loaders

If you want to load data into Gaia Sky, changes are that the STIL data provider can already do it. It
supports VOTable, FITS, ASCII, CSV, etc. and it loads the data making educated guesses on the
UCDs (if present) or on the column names.

If you still need to create your own loader, keep reading.

In order to create a loader for your catalogue, one only needs to
provide an implementation to the
ISceneGraphLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/ISceneGraphLoader.java]–
interface.

public interface ISceneGraphLoader {
 public List<? extends SceneGraphNode> loadData() throws FileNotFoundException;
 public void initialize(String[] files) throws RuntimeException;
}

The main method to implement is
List<? extends SceneGraphNode> loadData() –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/ISceneGraphLoader.java#L10]–,
which must return a list of elements that extend SceneGraphNode.

But how do we know which file to load? You need to create a
catalog-*.json file, add your loader there and create the properties
you desire. Usually, there is a property called files which contains
a list of files to load. Once you’ve done that, implement the
initialize(String[]) –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/ISceneGraphLoader.java#L12]–
method knowing that all the properties defined in the catalog-*.json
file with your catalogue loader as a prefix will be passed in the
Properties p object without prefix.

Also, you will need to connect this new catalog file with the Gaia Sky
configuration so that it is loaded at startup. To do so, locate your
global.properties file (usually under $HOME/.gaiasky/) and
add your new file to the property data.json.catalog.

Add your implementing jar file to the classpath (usually putting it in the lib/ folder should do the trick) and you are good
to go.

Take a look at already implemented catalogue loaders such as the
OctreeCatalogLoader –here [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/data/stars/OctreeCatalogLoader.java]–
to see how it works.

Loading data using scripts

Data can also be loaded at any time from a Python script.

TODO

Data streaming: Levels of detail

This section discusses the Levels of detail (LOD) datasets (from Gaia DR2 on) where not all data
fits into the CPU memory (RAM) and especially the GPU memory (VRAM).
In order to solve the issue, Gaia Sky implements a LOD structure based on the spatial distribution
of stars into an octree. The culling of the octree is determined using a draw distance setting, called
alpha. Alpha is actualy the minimum solid angle from the camera that an octant must have for it to
be observed and its stars to be rendered. Larger *alpha*s lead to less octants being observed, and smaller
*nu*s lead to more octants being observed.

Balancing the loading of data depends on several parameters:

	The maximum java heap memory (set to 4 Gb by default), let’s call it maxheap.

	The available graphics memory (VRAM, video ram). It depends on your graphics card. Let’s call it VRAM.

	The draw distance setting , alpha.

	The maximum number of loaded stars, ‘nu’. This is in the configuration file (~/.gaiasky/global.properties) under

the key scene.octree.maxstars. The default value is balancing the 4 Gb of maxheap and the default data set.

So basically, a low alpha (below 50-60 degrees) means lots of observed octants and lots of stars. Setting alpha very
low causes Gaia Sky to try to load lots of data, eventually overflowing the heap space and creating an OutOfMemoryError.
To mitigate that, one can also increase the maxheap setting (gaiasky script in the download package, core/build.gradle, run task
if running from source. The JVM argument is called -Xmx. More info).

Finally, there is the maximum number of loaded stars, nu. This is a number is set according to the maxheap setting.
When the number of loaded stars is larger than nu, the loaded octants that have been
unobserved for the longest time will be unloaded and their memory structures will be freed (both in GPU and CPU). This poses a
problem if the draw distance setting is set so that the observed octants at a single moment contain more stars than than nu. That
is why high values for alpha are recommended. Usually, values between 60 and 80 are fine, depending on the dataset and the machine.

Scripting

Gaia Sky offers the possibility to run Python scripts in the same
JVM using Jython [http://www.jython.org/].

You can find some example scripts in the
scripts [http://github.com/langurmonkey/gaiasky/tree/master/assets/scripts]
folder of the project.

Hint

Add your own scripts to the folder $HOME/.gaiasky/scripts so that Gaia Sky can run them.

An interface is provided in order to encapsulate some complex-behaviour
functions and to make scripting easier. This scripting interface is
described in the following section.

The scripting API

The scripting API is a set of methods which can be called to interact with Gaia Sky. The available methods differ depending on the version of Gaia Sky.

API documentation

The only up-to-date API documentation for each version is in the interface header files themselves. Below is a list of links to the different APIs.

	API Gaia Sky master (development branch) [https://github.com/langurmonkey/gaiasky/blob/master/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

	API Gaia Sky 1.5.0 [https://github.com/langurmonkey/gaiasky/blob/1.5.0/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

	API Gaia Sky 1.0.4 [https://github.com/langurmonkey/gaiasky/blob/1.0.4/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

	API Gaia Sky 1.0.3 [https://github.com/langurmonkey/gaiasky/blob/1.0.3/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

	API Gaia Sky 1.0.2 [https://github.com/langurmonkey/gaiasky/blob/1.0.2/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

	API Gaia Sky 1.0.1 [https://github.com/langurmonkey/gaiasky/blob/1.0.1/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

	API Gaia Sky 1.0.0 [https://github.com/langurmonkey/gaiasky/blob/1.0.0/core/src/gaia/cu9/ari/gaiaorbit/script/IScriptingInterface.java]

Using the scripting API

In order to import the scripting interface package in your script, you
just need to import the default implementation
EventScriptingInterface from the package gaia.cu9.ari.gaiaorbit.script:

Import scripting interface
from gaia.cu9.ari.gaiaorbit.script import EventScriptingInterface

Then, we need to get the scripting interface instance before start using it.

gs = EventScriptingInterface.instance()

Now, we can start executing functions.

Disable input
gs.disableInput()
gs.cameraStop()
gs.minimizeInterfaceWindow()

Welcome
gs.setHeadlineMessage("Welcome to the Gaia Sky")
gs.setSubheadMessage("Explore Gaia, the Solar System and the whole Galaxy!")
[...]

More examples

You can find more examples by looking at the scripts
folder [http://github.com/langurmonkey/gaiasky/tree/master/assets/scripts] in the
Gaia Sky package.

How to run scripts

Each script is executed in its own thread in the virtual machine, and
runs alongside Gaia Sky. In order to run a script, follow the
procedure described in the Running scripts section.

Capturing videos

In order to capture videos there are at least two options which differ
significantly.

Frame output system + ffmpeg

The frame output system enables automatic saving of every frame
to an image file to disk with an arbitrary resolution and a user-defined
frame rate. The image files can later be encoded into a video using
video encoder software such as ffmpeg [https://ffmpeg.org/].

Note

Use F6 to activate the frame output mode and start saving each frame as an image. Use F6 again to deactivate it. When the frame output mode is active, the icon [image: frameoutput] is displayed at the top-right corner of the screen.

When the frame output system is active, each frame is saved as a JPG or PNG image to disk. Refer to the
Frame output section to learn how to configure the frame output system.

Once you have the image frames you can encode a video using a ffmpeg preset (slow, veryslow, fast, etc.) with the following command:

$ ffmpeg -framerate 60 -start_number [start_img_num] -i [prefix]%05d.jpg -vframes [num_images] -s 1280x720 -c:v libx264 -preset [slower|veryslow|placebo] -r 60 [out_video_filename].mp4

Please note that if you don’t want scaling, the --framerate input framerate, -r output framerate and -s resolution settings must match the settings defined in the frame output system preferences in Gaia Sky.
You can also use a constant rate factor -crf setting:

$ ffmpeg -framerate 60 -start_number [start_img_num] -i [prefix]%05d.jpg -vframes [num_images] -s 1280x720 -c:v libx264 -pix_fmt yuv420p -crf 23 -r 60 [out_video_filename].mp4

You need to obviously change the prefix and start number, if any, choose the
right resolution, frame rate and preset and modify the output format if
you need to.

ffmpeg is quite a complex command which provides a lot of options, so for more information please refer
to the official ffmpeg documentation [http://ffmpeg.org/documentation.html].
Also, here [https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide/image_sequence] is a good resource on
encoding videos from image sequences with ffmpeg.

OpenGL/Screen recorders

There are several available options to record the screen or OpenGL
context, in all systems. Below are some of these listed. These methods,
however, will only record the scene as it is displayed in the
screen and are limited to its window resolution.

Linux

	OBS Studio [https://obsproject.com/] - Amazing open source streaming solution.

	glc [https://github.com/nullkey/glc]/glcs [https://github.com/lano1106/glcs]
- Command-line interface applications. The documentation and user
guides can be found in this wiki [https://github.com/nullkey/glc/wiki].

	Simple Screen Recorder [http://www.maartenbaert.be/simplescreenrecorder/] - The name says it all.

	Gamecaster [https://launchpad.net/gamecaster] - Front end to
glc.

	Soul Capture [https://piga.orain.org/wiki/Soul_Capture] - Front
end to glc.

Windows

	OBS Studio [https://obsproject.com/] - Amazing open source streaming solution.

	FRAPS [http://www.fraps.com/] - 3rd party Direct3D and OpenGL
recording software.

	NVIDIA
Shadowplay [http://www.geforce.com/geforce-experience/shadowplay]
- Only for Geforce cards.

Taking screenshots

Gaia Sky has an in-built screenshot capturing feature. To take a
screenshot press F5 any time during the execution of the program. By
default, screenshots are saved in the $HOME/.gaiasky/screenshots
folder. The screenshots are in PNG format with high quality
settings, so they can grow quite big if the resolution is large.

Screenshot modes

	Simple mode - This mode saves the current screen buffer to a
file. It captures also the GUI and it does so at the current display
resolution.

	Advanced mode - This mode renders the current scene to an
off-screen buffer with an arbitrary resolution. The resolution can be
configured in the config dialog, Screenshots tab. The advanced
mode will NOT capture the GUI or any additional elements that are
not part of the scene.

SAMP integration

As of commit 4d0d133 [https://github.com/langurmonkey/gaiasky/commit/4d0d13304d1e2b6991ad2cc84429a37083ae0954], or
version 2.0.0, Gaia Sky supports interoperability via SAMP [http://www.ivoa.net/documents/SAMP/].
However, due to the nature of Gaia Sky, not all functions are yet implemented and not all types of data tables
are supported.

Since Gaia Sky only displays 3D positional information there are a few restrictions as to how the integration with SAMP is implemneted.

The current implementation only allows using Gaia Sky as a SAMP client. This means that
when Gaia Sky is started, it automatically looks for a preexisting SAMP hub. If it is found, then
a connection is attempted. If it is not found, then Gaia Sky will attempt further
connections at regular intervals of 10 seconds. Gaia Sky will
never run its own SAMP hub, so the user always needs a SAMP-hub application (Topcat,
Aladin, etc.) to use the interoperability that SAMP offers.

Also, the only supported format in SAMP is VOTable through the STIL data provider described below.

STIL data provider

Gaia Sky supports the loading of data in VOTable, CSV, ASCII, etc. using the STIL library [http://www.star.bristol.ac.uk/~mbt/stil/].
It tries to make educated guesses using UCDs and column names to attribute semantics to columns.
Here is what this provider can work with:

Positions

For the positional data, Gaia Sky will look for spherical and cartesian coordinates. In the case of spherical coordinates, the following are supported:

	Equatorial (pos.eq.ra, pos.eq.dec)

	Galactic (pos.galactic.lon, pos.galactic.lat)

	Ecliptic (pos.ecliptic.lon, pos.ecliptic.lat)

To work out the distance, it looks for pos.parallax and pos.distance. If either of those are found, they are used. Otherwise, a default parallax of 0.04 mas is used.
With respect to cartesian coordinates, it recognizes pos.cartesian.x|y|z, and they are interpreted in the equatorial system by default.
If no UCDs are available, only equatorial coordinates (ra, dec) are supported, and they are looked up using the column names.

Proper motions

Proper motions are not yet supported via SAMP.

Magnitudes

Magnitudes are supported using the phot.mag or phot.mag;stat.mean UCDs. Otherwise, they are
discovered using the column names mag, bmag, gmag, phot_g_mean_mag. If no magnitudes are found,
the default value of 15 is used.

Colors

Colors are discovered using the phot.color UCD. If not present, the column names b_v, v_i,
bp_rp, bp_g and g_rp are used, if present. If no color is discovered at all, the default value of 0.656 is used.

Others

Other physical quantities (mass, flux, T_eff, radius, etc.) are not yet supported via SAMP.

Implemented features

The following SAMP features are implemented:

	Load VOTable (table.load.votable) - The VOTable will be loaded into Gaia Sky if it adheres to the format above.

	Highlight row (table.highlight.row) - The row (object) is set as the new focus if the table it comes frome is already loaded. Otherwise, Gaia Sky will not load the table lazily.

	Broadcast selection (table.highlight.row) - When a star of a table loaded via SAMP is selected, Gaia Sky broadcasts it as a row highlight, so that other clients may act on it.

	Point at sky (coord.pointAt.sky) - Puts camera in free mode and points it to the specific direction.

	Multi selection (table.select.rowList) - Gaia Sky does not have multiple selections so far, so only the first one is used right now.

Unimplemented features

The following SAMP functions are not yet implemented:

	table.load.* - Only VOTable supported.

	image.load.fits

	spectrum.load.ssa-generic

	client.env.get

	bibcode.load

	voresource.loadlist

	coverage.load.moc.fits

Gaia Sky VR

There is currently a development version of Gaia Sky which uses OpenVR to output to VR headsets that support that API. For more information on how to get it up and running, visit the README.md file here [https://github.com/langurmonkey/gaiasky/blob/vr/README.md] in the vr branch.

Javadoc

You can browse the Gaia Sky javadoc here:

	Gaia Sky javadoc [http://langurmonkey.github.io/gaiasky/javadoc/].

Changelog

	Version history [https://github.com/langurmonkey/gaiasky/releases]

	Detailed changelog [https://github.com/langurmonkey/gaiasky/blob/master/CHANGELOG.md]

	Full commit history [https://github.com/langurmonkey/gaiasky/commits/master]

About

Contact

If you have doubts or issues you can contact us using one of the
following methods.

	Submit an issue to our bug tracking system [http://github.com/langurmonkey/gaiasky/issues].

	Drop us a line in tsagrista@ari.uni-heidelberg.de.

Do not forget to visit our Homepage@ARI [http://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky/].

Author

Toni Sagristà Sellés – tonisagrista.com [http://tonisagrista.com]

Acknowledgements

The most up to date list of acknowledgements is always in the
ACKNOWLEDGEMENTS.md [https://github.com/langurmonkey/gaiasky/blob/master/ACKNOWLEDGEMENTS.md] file.
The author would like to acknowledge the following people, or the
people behind the following technologies/resources:

Main acknowledgements

	ZAH [http://www.zah.uni-heidelberg.de/ari/]

	DLR [http://www.dlr.de/]

	BMWi [http://www.bmwi.de]

Data

	Dr. Martin Altmann for providing the Gaia orbit data

	HYG catalog [https://github.com/astronexus/HYG-Database]

	DPAC and the Gaia Collaboration

Libraries and code

	Libgdx

	libgdx-contribs-postprocessing [https://github.com/manuelbua/libgdx-contribs/tree/master/postprocessing]

	VisUI [https://github.com/kotcrab/vis-editor/wiki/VisUI] for some widgets (licensed under the Apache license)

	PgsLookAndFeel [http://www.pagosoft.com/projects/pgslookandfeel/]

	Mark Taylor’s STIL [http://www.star.bristol.ac.uk/~mbt/stil/] library

	The Jython Project [http://www.jython.org/]

	ernieyu [https://github.com/ernieyu/] for the Java Swing range slider [https://github.com/ernieyu/Swing-range-slider]

Textures, models, music and other assets

	Nick Risinger for the artist’s conception of the Milky Way

	Andreas Ressl and Georg Hammershmid for the star glow texture

	Tom Patterson (www.shadedrelief.com) for some textures

	Solar System Scope [http://www.solarsystemscope.com/] for some textures (Mercury, Venus, Earth, Moon)

	Phil Stooke and Grant Hutchison
(http://www.classe.cornell.edu/~seb/celestia/hutchison/index-125.html)
for some of the textures

	David Navas for the simple spaceship [http://www.blendswap.com/user/DeNapes] model

	Machuca+Arias+Caballero for the music track “Gaia-DR1”

	Peppy & The Firing Squad [http://sampleswap.org/artist/xnoybis#contact] for the ‘Y=MX+B’ track

	DJ Masque [http://sampleswap.org/artist/djmasque] for the ‘Oceanic Dawn’ track

Translations

	Stefan Jordan for the German translation

	Klemen Čotar for the Slovene translation

	Catherine Turon, Nicolas Leclerc and Guillaume Plum for the French translation

Open source licenses

	Install4j (multi-platform installer builder) [http://www.ej-technologies.com/products/install4j/overview.html], for providing an
open source license

	JProfiler (Java profiler) [http://www.ej-technologies.com/products/jprofiler/overview.html], for providing an open source license

	Bitrock’s InstallBuilder [http://installbuilder.bitrock.com/] for providing a free open source license

If you think I missed someone, please let me know.

Index

 _images/20161111_screenshot_00000.jpg
W

- - - -
§ 2 '
W ¢ ¢
' ’
p ¥ 3 5 3)
: - - s 3 &
e o~ - 4 i . - = 7 =
. 2 = . -—
= . -—— ~

_images/20161111_screenshot_00003.jpg

