

Freeseer: Conference Recording Made Easy

Welcome to the official documentation for Freeseer [http://freeseer.readthedocs.org],
screencasting software for recording and streaming presentations.

	About Freeseer

	Quick-Start Guide

	User Guide

	Contributor Guide

	Release Engineering

About Freeseer

Software with a Purpose.

Development of Freeseer is led by the Free and Open Source Software Learning Centre (FOSSLC) [http://fosslc.org],
a non-profit whose vision is to improve lives with open source.
FOSSLC also specializes in technology and know-how to record conferences with excellent quality.

From large conferences with hundreds of talks to presentations in classrooms,
anyone can use Freeseer to capture talks.

Freeseer [http://freeseer.readthedocs.org] (pronounced free-see-ar) is a free, open source, cross-platform application that
captures or streams your desktop. It’s designed for capturing presentations, and has been succesfully used at many
open source conferences to record hundreds of talks (which can be seen at fosslc.org [http://fosslc.org]).
Though designed for capturing presentations, it can also be used to capture demos, training materials, lectures, and other videos.

Freeseer is written in Python, uses Qt4 for its GUI, and Gstreamer for video/audio processing.
Freeseer is based on open standards and supports royalty free audio and video codecs.

Freeseer’s source code is licensed under the GNU General Public License [http://www.gnu.org/licenses/gpl.html] and
is available on GitHub [http://github.com/Freeseer/freeseer].

Who We Are

We’re an open source community of developers, writers, designers, bloggers, students, and open source enthusiasts
whose goal is to make meaningful software with world-class documentation (inspired by ThinkUp and GitHub).

You’re reading the very beginning of that effort. This documentation is an incomplete, work-in-progress. Please
join us and help fill in the gaps.

Why We Exist

FOSSLC has been recording conferences since 2008, but they weren’t quite happy with their recording solutions.
There were issues such as costs, ownership, portability, and simplicity. There had to be a better way.

Freeseer began in 2009 as an in-house solution for FOSSLC to record conference talks.
Many people have contributed since then and development is still on-going.

See also

Freeseer’s history [http://fosslc.org/drupal/node/596]

Expectations Around Sharing Freeseer

The Freeseer project includes code, documentation, and more, written by many different people.
All Freeseer contributors retain copyright on their contributions, but agree to release it under the same license as Freeseer.
If you are unable or unwilling to contribute a patch under the GPL version 3 or later, do not submit a patch.

Freeseer is copyrighted by FOSSLC [http://fosslc.org] and various contributors (listed above).

Freeseer is licensed under the GNU General Public License, version 3 (GPLv3); you may not use this work except in compliance with the GPLv3.

You may obtain a copy of the GPLv3 at:

http://www.fsf.org/licensing/licenses/gpl.html

Who Freeseer Is For

Freeseer can be used by everyone but is aimed at organizations and personalities who are actively involved in
conferences or events and have to record many presentations and talks in a short period of time.

Freeseer will be most useful for:

Presenters who want to record their own talks using a simple application that has virtually no learning curve,
and covers all their basic needs.

Conference Staff who want easier ways to manage the recording of talks, and record talks with top audio and video quality.

Instructors like professors, bloggers, or consultants who want an easy way to record their lectures, tutorials, or training material
to later share with others.

What Freeseer Can Do

Introduction to Freeseer v2.5 (outdated video, but still demonstrates the essence of Freeseer)

 Recording Events

Recording Events

Freeseer’s primary use case is recording large events such as conferences.
You can run Freeseer locally and have the presenter record their desktop,
but a much more useful configuration is when Freeseer is used from a dedicated
laptop to record VGA output from the presenter’s laptop.

Equipment Needed

	A working installation of Freeseer on a dedicated computer for recording

	VGA Capture Device

	We recommend an Epiphan frame grabber [http://www.epiphan.com/products/frame-grabbers/]

	We use the VGA2USB device [http://www.epiphan.com/products/frame-grabbers/vga2usb/] (the red one)
as it’s the cheapest and does a decent job

	Wireless Microphones

	We use Sennheiser EW100 G2

	USB extension cable (optional)

Setup

 Quick-Start Guide

Quick-Start Guide

Freeseer is a free and open source screencasting application, primarily
developed for capturing and streaming computer-aided presentations at conferences.

It’s been successfully used to capture presentations, demos, training material,
and other videos. It’s capable of handling large conferences with many talks
in various rooms.

With Freeseer, you can record video from external sources such as FireWire and
USB (e.g. webcam or another computer’s screen via VGA output 1).

Freeseer is written in Python, uses Qt4 for its GUI, and Gstreamer for video/audio processing.
And it’s based on open standards so it supports royalty free audio and video codecs.

Read our history [http://fosslc.org/drupal/node/596] to find out why Freeseer
was created.

Installing Freeseer from a package

Warning

You should only install Freeseer from a package if you plan to use it as an
end-user. If you want to contribute to the project, do not
install Freeseer from a package
(if you already have, you’ll need to uninstall it). Instead, follow the
instructions for installing Freeseer for development.

Arch Linux

Freeseer is available in AUR: https://aur.archlinux.org/packages/freeseer-git/

Or install with yaourt:

yaourt -S freeseer-git

Gentoo Linux

Freeseer is available in PaddyMac’s portage overlay: https://github.com/PaddyMac/overlay

After adding this overlay:

emerge -av freeseer

OpenSUSE

Freeseer is available in the OpenSUSE repository:

zypper install freeseer

Python Package Index

Freeseer can also be installed with pip:

pip install freeseer

Installing Freeseer for Development

If you plan on contributing to Freeseer’s development, you’ll have to run
Freeseer from source.

	Uninstall any previously installed instances of Freeseer

	Obtain the source code by forking and cloning the project

	Install the required dependencies

	Follow the below instructions for your operating system and
use pip to install additional dependencies

Now you’re ready to run Freeseer from the command line.
There are two ways to do this.

	Run the Freeseer module as a script:

cd freeseer/src/
python -m freeseer

You’ll have to repeat these steps whenever you want to run Freeseer.

	Install Freeseer in editable mode:

cd freeseer/src/
pip install -e .

After this one-time install, you can now run freeseer from anywhere.

Dependencies

	Git

	Python 2.7+

	sqlite3

	gstreamer0.10-python (pygst)

	PyQT development tools

Debian and Ubuntu Linux

sudo apt-get update
sudo apt-get install -y build-essential git wget python2.7-dev python-gst0.10 python-gst0.10-dev \
 qt4-qmake python-qt4 python-qt4-dev python-qt4-sql pyqt4-dev-tools libqt4-dev libqt4-sql libqt4-sql-sqlite \
 gstreamer0.10-plugins-good gstreamer0.10-plugins-base gstreamer0.10-pulseaudio gstreamer0.10-alsa

Fedora Linux

sudo yum install git PyQt4-devel gstreamer-python sphinx python-sphinx

Warning

This list may be incomplete. Please let us know if you notice any missing packages.

Windows

Note

x86 version recommended whenever there is a choice.

	python 2.7.* x86 [http://www.python.org/getit/]

	setuptools-0.6c11.win32-py2.7 [https://pypi.python.org/pypi/setuptools#windows]

	GStreamer-WinBuilds-GPL-x86-Beta04-0.10.7 [https://code.google.com/p/ossbuild/downloads/list]

	
	GStreamer-WinBuilds-SDK-GPL-x86-Beta04-0.10.7 [https://code.google.com/p/ossbuild/downloads/list]

	
	If you encounter the error "ImportError: DLL load failed" when
attempting to run freeseer, copy the contents of
<GStreamer_dir>\<version>\sdk\bindings\python\v2.7\lib to
<GStreamer_dir>\<version>\lib, and delete
<GStreamer_dir>\<version>\lib\gstreamer-0.10\libgstpython-v2.6.dll

	PyQt-Py2.7-x86-gpl-4.8.5-1 [http://www.riverbankcomputing.com/software/pyqt/download]

	
	PyGTK py2.7 all-in-one [http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/]

	
	Windows 32-bit packages are recommended because pygtk-all-in-one package does not have a 64-bit installer.

	Add the following paths to your PATH variable : `C:\Python27;C:\Python27\Lib\site-packages\PyQt4\bin`

PyPI Packages

You’ll need to get some packages from the Python Package Index [https://pypi.python.org/pypi] (PyPI).

You can install pip [http://www.pip-installer.org/en/latest/installing.html]
by securely downloading get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py]
and executing it with administrator access:

wget -q https://raw.github.com/pypa/pip/master/contrib/get-pip.py -O- | sudo python

If you already have pip, first upgrade it to the latest version:

pip install --upgrade pip

Install the remaining packages. You may need administrator access.

On Linux:

pip install -Ur dev_requirements.txt

On Windows:

pip install -Ur windows_requirements.txt

Running Freeseer

Once you’ve installed Freeseer, you can run the various tools:

freeseer # Recording UI (default when no arguments supplied)
freeseer record # Recording UI
freeseer talk # Talk Editor UI
freeseer config # Configuration UI

You can view usage with the -h or --help option:

freeseer -h # General usage
freeseer record -h # Recording usage
freeseer talk -h # Talk Editor usage
freeseer config -h # Config usage

Note

If you’re going to hack on Freeseer, you’ll need to run it from source.
Go into the src/ directory and run it like:

python -m freeseer
python -m freeseer record
python -m freeseer talk
python -m freeseer config

Issue tracker

Found an issue? Open an issue on GitHub!

https://github.com/Freeseer/freeseer/issues

IRC channel

Drop by our #freeseer channel [http://webchat.freenode.net/?channels=#freeseer]
on irc.freenode.net to chat with us.

Mailing list

We have a mailing list that’s also a discussion group.

http://groups.google.com/group/freeseer

Once you’ve joined the group, you can email subscribers at freeseer@googlegroups.com.

Authors

	Andrew Ross [https://github.com/fosslc]

	Thanh Ha [https://github.com/zxiiro]

And many student contributors from Google Summer of Code [http://code.google.com/soc], Fedora Summer Coding,
and Undergraduate Capstone Open Source Projects [http://ucosp.ca].

Copyright and license

© 2011-2013 FOSSLC

Licensed under the GNU General Public License, version 3 (GPLv3);
you may not use this work except in compliance with the GPLv3.

You may obtain a copy of the GPLv3 in the LICENSE file [https://raw.github.com/Freeseer/freeseer/a0497fabdc5a548d0dea4f6fb4925aa41a6d62e8/src/LICENSE], or at
http://www.fsf.org/licensing/licenses/gpl.html.

Footnotes

	1

	Requires a VGA capture device, also known as a
frame grabber.

 User Guide

User Guide

Freeseer is an extensible platform with core features, and features added by
plugins. This user guide aims to cover all Freeseer’s features offered by the
core applications and the default plugins which are distributed with it.

Our goal is for Freeseer to become so straightforward to use that this user
guide should be seldom referenced, but we’re not there yet.

If you ever have to refer to this guide, then please let us know how we can improve Freeseer!

	Record

	Talk Editor

	Configuration (Settings)

	Plugins

	Report Editor

	Server

	YouTube Uploader

 Record

Record

Record Interface

The Freeseer recording interface provides the main window for recording a
video. This interface is designed with features that enable you to record
talks at a conference very easily.

[image: Freeseer's recording interface]
Freeseer’s Recording interface with a sample talk loaded

[image: Freeseer's recording interface with annotations]
Freeseer’s Recording interface with notes

Select a Talk

Typically the first task is to find the talk you want to record out of all
the possible talks that are stored in the Freeseer database.
You can filter the list of talks by selecting an Event, Room, and
then a Date from the dropdown lists.

Note

When you record a talk, the output file will contain some of the associated
talk data as metadata.

Tip

You can enter new talks or modify existing talks using the Talk Editor tool.

Conferences typically release information about their talks prior
to the event. It’s good practice to enter such data (e.g. title, speaker,
event, etc.) for every talk you plan to record, prior to attending the
conference rather than last minute.

Audio Feedback

At the bottom right of the interface there is a checkbox with a headphones icon.
Checking this will enable audio feedback, which will play any sounds being
recorded back to your speakers. This is useful if you need to check the audio
levels. We recommend using headphones when using this feature.

Important

	You cannot enable or disable audio feedback while recording; the checkbox
will be locked

	Audio feedback is only audible while recording

Status Area

At the bottom of the interface where it says “Idle”, is the status area.
It shows information such as what state the program is in and how much free
space is remaining once you start recording.

Recording Controls

Pressing “Prepare to Record” will initialize the Freeseer recording backend.
Freeseer has to be “prepared” to record because of a technical limitation.

[image: ../_images/record-prepare.png]
Freeseer is ready to record

Once “Prepare to Record” is clicked, new buttons “Record” and “Pause” will
replace the “Prepare to Record” button.

Click “Record” to begin recording.

During a recording you can click “Pause” to pause the recording and resume it at
a later time. This is useful if presentation contains a break period.

[image: ../_images/record-recording.png]
Freeseer shows a Stop button during recording

When a recording is in progress the “Record” button will change into a “Stop”
button. Clicking this will stop recording and Freeseer’s interface will return
to its initial state.

Report Tool

Issues can occasionally occur during a recording, such as the audio or video
not working, or perhaps the presenter does not wish to be recorded. After a
conference, it’s difficult and time consuming for one person to know which
recordings have issues, especially if 100s of talks were recorded at the event.

To solve this issue, Freeseer comes with a basic reporting tool that allows the
person recording to report issues with their recordings inside the application.
This will allow whomever is uploading the recordings to quickly scan through
and find those which have issues.

Using the Report Tool

To access the report tool:

	Open freeseer-record

	Click Help > Report

[image: ../_images/reporttool.png]
A basic form will open for the currently selected talk.

The form has 3 fields which need to be assessed by the reporter.

	A textfield for a short comment describing the issue

	A dropdown list containing options for the type of issue

	Current options are “No Issues”, “No Audio”, “No Video”, and
“No Audio/Video”

	A checkbox indicating if a Release Form was received 1

After an event is complete the organizer can use the Report Editor to
view the submitted reports.

Record Over a Network

Via Command Line Interface (CLI)

Todo

Document using SSH and Freeseer’s CLI to record over a network.

Via Graphical User Interface (GUI)

The client tool is used for controlling Freeseer over a network.
The client connects to a running Freeseer Server.
The server can be used to start, pause, and stop recording on multiple remote
instances of Freeseer.

To set up your client:

	Open freeseer-record

	Click File > Connect to server

[image: ../_images/client.png]
The client window

Simply enter the host name or IP address of the server tool, enter the
passphrase, then hit Connect.

If you’ve connected to a server in the past, you can also use the Recent
Connections tab to select a server.

Footnotes

	1

	The “Release Received” checkbox was added since many events require
presenters to sign a legal release form indicating they are giving permission
to record their talk.

 Talk Editor

Talk Editor

Talk management is what sets Freeseer apart from other screencast
software and why fosslc.org is able to record numerous events and
talks very quickly.

Using the Talk Editor you can pre-populate a database containing
all the information necessary for an event. Which rooms, time,
Speaker, Title, Description, etc… can be prepopulated in the
database. This database is then used later by the
Record to filter metadata to a room and also datafill
the produced video files with this metadata.

[image: ../_images/talkeditor.png]
Talk Editor

Importing talk data from a RSS or CSV file is possible by entering
the URL to the files in the URL bar and clicking Load.

You can “Add” and “Remove” a talk by clicking the appropriate buttons.
Clicking “Clear” will clear the database.

[image: ../_images/talkeditor-addtalk.png]
Add Talk

To add a talk at minimum you should at least enter a Title. A speaker
is recommended. All other Fields are optional.

 Configuration (Settings)

Configuration (Settings)

Todo

This page is still in progress.

General

Command line

There’s currently two main configuration options:

	freeseer config reset

	Wipes various contents of the ~/.freeseer directory.
A fresh configuration is useful when encountering weird issues.

	freeseer config youtube

	For configuring Freeseer’s YouTube Uploader.
The --client-secrets and --token options are used in the authentication process.

The -h/--help option can be used for more info.

$ freeseer config --help
usage: freeseer config [-h] {reset,youtube} ...

positional arguments:
 {reset,youtube}
 reset Reset Freeseer configuration and database
 youtube Obtain OAuth2 token for Youtube access

optional arguments:
 -h, --help show this help message and exit

$ freeseer config reset --help
usage: freeseer config reset [-h] [-p PROFILE] {all,configuration,database}

positional arguments:
 {all,configuration,database}
 Resets Freeseer (default: all)

 Options:
 all - Resets Freeseer (removes the Freeseer configuration directory, thus clearing logs, settings, and talks)
 configuration - Resets Freeseer configuration (removes freeseer.conf and plugins.conf)
 database - Resets Freeseer database (removes presentations.db)

optional arguments:
 -h, --help show this help message and exit
 -p PROFILE, --profile PROFILE
 Profile to reset (Default: default)

$ freeseer config youtube --help
usage: freeseer config youtube [-h] [--auth_host_name AUTH_HOST_NAME]
 [--noauth_local_webserver]
 [--auth_host_port [AUTH_HOST_PORT [AUTH_HOST_PORT ...]]]
 [--logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
 [-c CLIENT_SECRETS] [-t TOKEN]

optional arguments:
 -h, --help show this help message and exit
 --auth_host_name AUTH_HOST_NAME
 Hostname when running a local web server.
 --noauth_local_webserver
 Do not run a local web server.
 --auth_host_port [AUTH_HOST_PORT [AUTH_HOST_PORT ...]]
 Port web server should listen on.
 --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
 Set the logging level of detail.
 -c CLIENT_SECRETS, --client-secrets CLIENT_SECRETS
 Path to client secrets file
 -t TOKEN, --token TOKEN
 Location to save token file

Plugins

See Plugins.

 Plugins

Plugins

	Audio Input Plugins

	Audio Mixer Plugins

	Video Input Plugins

	Video Mixer Plugins

	Output Plugins

 Audio Input Plugins

Audio Input Plugins

 Audio Mixer Plugins

Audio Mixer Plugins

 Video Input Plugins

Video Input Plugins

 Video Mixer Plugins

Video Mixer Plugins

 Output Plugins

Output Plugins

 Report Editor

Report Editor

After an event, the organizer can use the Report Editor in Freeseer
to quickly browse issue reports from recordings to find problematic files.

[image: ../_images/reporteditor.png]
The editor provides a simple interface which displays all submitted reports
found in the database.

Using the Report Editor

Selecting a report will show all the given details belonging to the
talk, on the right pane of the window.

There are a few operations which can be performed from this interface:

	Modify the data of a cell (by double clicking it)

	Remove the currently selected row from the database

	Clear the entire report database (a confirmation dialog box will appear)

	Close the Report Editor

 Server

Server

The Freeseer Server tool communicates with the Freeseer Record tool over a network.
The server can be used to start, stop, pause, and resume recording.

Usage

	Open freeseer-server

[image: ../_images/server_s1.png]
Main server interface

Before clicking “Start Server” button, you need to select the IP and port
you wish to listen for connections on. 0.0.0.0 will listen on all
available IP Addresses. Additionally selecting a passphrase for the server
this password is needed by Freeseer clients and must match what is configured
on the server in order to successfully connect to the server. This passphrase
is not secure and is simply a simple check to ensure the client is connecting
to the right server.

[image: ../_images/server_s2.png]
Server interface while running

Once the server is running the server connection details will appear in the
text box at the top. This is a convenience feature which you can use to copy
and paste the settings in the client dialog.

Pressing “Stop Server” will stop the server.

Clicking the “Control Clients” tab will switch to a view that will allow you
to see all clients currently connected to the server.

[image: ../_images/server_s3.png]
A client is connected

From here we can tell the client to start, pause, or stop recording.
Client’s status is shown next to the IP address of the client. Right
now the client is idle so we can start recording. When the
“Start Recording” button is pressed the client’s status will change.
According to the client’s status, the buttons will updated with the
appropriate labels.

Clients can also be disconnected if “Disconnect” button is triggered.
The Client can also be disconnect from client side.

[image: ../_images/server_s4.png]
Client in recording state

When client is recording we could pause or stop recording. Triggering
the appropriate button will send the action to the client.

[image: ../_images/server_s5.png]
Client in paused state

When recording is paused it can be resumed or it can be stopped.

 YouTube Uploader

YouTube Uploader

This is a CLI tool that can upload OGG and WEBM videos to YouTube.
It can upload a single videos and/or entire directories
If the video is in the Freeseer OGG format, the metadata for the title and
descripion will be used to populate the YouTube title and description fields.
Otherwise, the title will default to the filename and the description will be a generic message.
The category is set to Education by default.

Dependencies

	Google Data APIs Python Client Library [https://code.google.com/p/google-api-python-client/downloads/list] (≥ v1.2)

	Mutagen [http://code.google.com/p/mutagen/downloads/list] (≥ v1.20)

How to Use

The Youtube Uploader has been built entirely from scratch, and uses the lastest Google Data API v3.
The latest API has fundamentally different security and authentication procedures than previous versions, for more
information on the backing technology, please see <http://oauth.net/2/>.
As such, the upload process can seem a little daunting at first glance, but in the end its actually quite easy to use,
and future features like livestreaming, could build upon this.

Email (user@example.com): <user enters their youtube account email>
Password: <user enters password>
Video or Directory: path/to/videos <user enters file or directory to be uploaded>

If the login credentials are valid, the video(s) will be uploaded sequentially
and their URLs will be displayed.

Note

The video directory configured with Freeseer is used to find videos.

 Contributor Guide

Contributor Guide

We value developers, but a project doesn’t just run on code contributions.
Writers, designers, power users, and others all play a role in our success.

How you can contribute depends on your skillset and interests. If you need help
deciding, tell us what your skills are and what you’re most
excited about in Freeseer, and how you’d like to help. The community can point
you in the right direction.

I am a…

	Student

	Developer

	Translator

	Designer

	Power User

Basics

No matter which role you take on, these are some of the basics you’ll most likely have to deal with.

	Basics
	Git & GitHub

	Forking and Cloning Freeseer

	Basic Workflow

	Workflow Diagram

	Reference Issues in your Commit Messages

	Dealing with Conflicts

	Renaming your Branch

	Reporting Bugs & Requesting Features

Best Practices

Some tips and suggestions to get the most out of your contributions!

	Best Practices
	Don’t Develop on Master Branch

	Name Your Branch After an Issue or Task

	Start a New Task on a New Branch

	Properly Style Your Commit Messages

 Student

Student

We love working with students and having them solve fun and challenging problems.
For many, it’s their first time contributing to an open source project.
We’ve had students from Google Summer of Code (GSoC), Undergraduate Capstone
Open Source Projects (UCOSP), and Fedora Summer Coding.

Getting Started

Step 7: Alter sharing settings for your proposal

[image: ../_images/sharing-settings.png]

	Create a GitHub account [https://github.com/signup/free]

	Introduce yourself on our mailing list

	Include your GitHub username so we can add you to the Freeseer organization [https://github.com/Freeseer?tab=members]

	Get familiar with IRC and start hanging out in #freeseer on Freenode

	Fork & clone Freeseer

	Get Freeseer up and running, play around with it, look at the source code

	Read over the assessment document [https://docs.google.com/document/d/1p9DtTujpSMj_i5mXVfUGtzvJS02rwpf9RvSK65ayklo/edit]

	Copy the project proposal document [https://docs.google.com/document/d/1vc98PZqwG0XuKjV5Eswh_9C8m6ca223KYtRown9TRio]
to your Google Drive

	File → Make a copy

	Change the sharing settings so anyone with the link can view and
comment, then share the link with us

	Replace the highlighted sections with your own content

	Bookmark the style guides that we use:
PEP 8 [http://www.python.org/dev/peps/pep-0008/] and
Google’s Python Style Guide [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html]

	Reference them when writing code

	Sign up for a blogging platform (or use your own website)

	Share the URL on the mailing list

	Start thinking of ways how you can improve Freeseer!

Tip

As a student, you can apply for a free micro account at
github.com/edu [http://github.com/edu] and get 5 private repositories!

What Happens at the Sprint

Depending on which program you’re participating in, you may have to attend
a sprint [http://en.wikipedia.org/wiki/Sprint_(software_development)] with
your new teammates. Use the sprint to ask questions, help your teammates,
brainstorm what to work on, get started on your project proposal, open a pull
request, make new friends, and generally have a good time.

We’ll also decide on a time for our weekly G+ hangouts, which are done scrum
style [http://en.wikipedia.org/wiki/Scrum_(software_development)#Meetings].
Each team member will briefly update the others with what they’ve accomplished
since the last meeting, what they will be working on next, and any stumbling
blocks they ran into. Any detailed discussion should happen outside the meeting.

Deciding What To Work On

We let students choose their projects. We’ll suggest a couple of project ideas.
You can also look through our open issues [https://github.com/Freeseer/freeseer/issues?labels=&page=1&state=open] or
come up with your own idea and open an issue for it.

You should have a copy of the project proposal document [https://docs.google.com/document/d/1vc98PZqwG0XuKjV5Eswh_9C8m6ca223KYtRown9TRio]
on your Google Drive. Feel free to add or remove sections that you think are
relevant or irrelevant to your project. It also includes a timeline to help
schedule your work. There are no set work hours – meet your deadlines and
you’ll be fine. Decide with your professor and/or project mentor when your
exact end date will be.

Done is better than perfect when it comes to your proposal. Don’t spend too much
(or too little) time on it. Iterate on it quickly and often, you don’t need
a highly polished document on your first try.

When you finish your first draft of the proposal, notify everyone on the
mailing list and include a link so they can view it on Google Drive.
We’ll give you feedback so you can make any changes if necessary.

Note

You can add or update translations in addition
to your main project.

Tip

Start working on your project while your proposal is still in progress.

Communicate

One of the biggest indicators of success is staying in touch with us.
If we don’t know what’s happening on your side, we can’t help you.
If we don’t hear from you, we usually won’t go looking after you.

Make an effort to hang out in the IRC channel daily (lurking is fine).
Participate in the mandatory weekly status update meetings. Be responsive on
GitHub and the mailing list.

You’ll also be required to write weekly blog posts about your progress. These
will cover the updates you’ll discuss in the weekly meetings, but you can go
into more detail on your blog. You may write your blog posts at fosslc.org [http://www.fosslc.org] if you don’t want to use a personal blog. Remember to
tell us on the mailing list where we can read your latest blog post.

Your updates in the weekly meetings and blog posts shouldn’t come as a big
surprise to us. If that’s the case, you should probably be communicating more
often.

See also

How to succeed or fail at Google Summer of Code [http://fosslc.org/drupal/node/374]

Expectations

	Be available for others to contact you

	Keep up to the date with the mailing list

	Communicate often, at the very least lurk on IRC

	Be a team player, not just a teammate

	Don’t be afraid to ask for help

	Treat your project as a scientific experiment; a failed outcome is not
a failed project if well documented

	8-10 hours of work per week, as much as any other course

 Developer

Developer

Freeseer hopes to be one of the most fun open source projects you could
spend your time hacking on. Our codebase is still fairly small, so you should be
able to get involved quickly.

Freeseer is written in Python [http://python.org] and uses the Qt framework [http://qt.nokia.com/products] for the interface and GStreamer [http://www.gstreamer.net] as the multimedia framework.

Note that some of the existing code may not be well documented or may not follow
our coding guidelines and styleguides that we use. If you come across this,
please notify us by opening an issue, or open a Pull Request if you’d like to
fix it.

	Style Guide

	Testing

	Plugin Framework

	Code Review

 Style Guide

Style Guide

Every major project has its own style guide: a set of conventions (sometimes
arbitrary) about how to write code for that project. It’s much easier to
understand a large codebase when all the code is in a consistent style.

Freeseer follows
PEP 8 (Style Guide for Python Code) [http://www.python.org/dev/peps/pep-0008/] and the
Google Python Style Guide [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html].
The two style guides mostly overlap but the Google one is more detailed and
easier to navigate. Freeseer also contains tests that will loosely check the code for PEP
8 compatibility.

Not all existing code follows these guidelines, but all new code is expected to.

Custom Guidelines

There are a few exceptions or additions to the above style guides.

Line Length

We use 120 characters at most, instead of the common 80-column limit.

Python 3 Compatibility

Write code that’s compatible with Python 3 whenever possible. This will make our
transition easier.

Printing vs Logging

Do not print for debugging purposes, log instead. Make sure to use the
appropriate logging level [http://docs.python.org/2/howto/logging.html#when-to-use-logging].
The logging calls may come in handy in the future, so consider leaving them in.

Use print when working on a CLI tool and the output must be shown to the end user.

Log on a Per-Module Basis

Create an instance of a logger inside your module and name it after the module
that contains it by using __name__.

Good:

import logging
log = logging.getLogger(__name__)
log.info("All your base are belong to us")

Bad:

import logging
logging.info("For great justice")

String Formatting

For logging, use printf style formatting.
For everything else, use str.format().

Good:

log.info('%s : %d', key, value)
greeting = 'Hello {} {}'.format(first_name, last_name)
print('{0} - {1} - {0}'.format(foo, bar))

Bad:

log.info(key + ' : ' + value)
greeting = 'Hello %s %s' % (first_name, last_name)
print foo, '-', bar, '-', foo

Write Short Methods

Methods and functions should be kept small and focused.

Long methods are sometimes appropriate, so no hard limit is placed on method
length. However, if a method exceeds 40 lines or so, think about whether it can
be broken up without harming the structure of the program.

Write Descriptive Docstrings

Comments should be descriptive (“Opens the file”) rather than imperative (“Open
the file”). The comment describes the method, function, or class, it does not
tell it what to do.

 Testing

Testing

Configure your Test Environment

Freeseer should not need additional configuration after installing the
development requirements. This is because Python’s pytest and PyQt’s QtTest
module are used for Freeseer’s test suite. The pytest module is a feature
rich testing framework that makes writing tests simple. The QtTest module is
included with the PyQt4 package, which you should have installed as it’s
a dependency for Freeseer.

If you want to make sure you have the packages, you can start the Python
interpreter and
import pytest and QtTest:

>>> import pytest
>>> from PyQt4 import QtTest

If there are any errors, you won’t be able to proceed with testing.

Extending the Test Suite

Structure of Test Directory

All of Freeseer’s tests exist in src/freeseer/tests/.
Since Freeseer is well organized into modules, we’d like to mirror this setup
in the test folder. This means that if your code is located in
src/freeseer/framework/core.py then your test code should be found in
src/freeseer/tests/framework/test_core.py (more about file naming
conventions later). We do this for logical ordering: it tells us that test
modules in src/freeseer/tests/folder_name are for testing modules in
src/freeseer/folder_name.

If you are creating a new folder in src/freeseer/tests/, ensure that your
folder contains a __init__.py such that your test module can be imported.

Adding/Editing a test module

An example

We show a set of test methods for the database class found in
src/freeseer/framework/database.py.
This class contains a database connector that lets the framework fetch stored
data efficiently.
The purpose of this unit test is to demonstrate some of the functionality
that is provided by pytest.

To create a test module make an empty file with the name
test_database.py.
The convention used by Freeseer is test_module_name.py where the module
counterpart is name module_name.py.
Thus, your module name should start with test_ and finish with .py at
the very least.

Let’s add fake functionality to the test module test_database.py!

import os

from PyQt4 import QtSql
import pytest

from freeseer.framework.config.profile import Profile
from freeseer.framework.plugin import PluginManager
from freeseer.framework.presentation import Presentation

@pytest.fixture
def db(tmpdir):
 """Construct a database connector fixture"""
 profile_path = str(tmpdir)
 profile = Profile(profile_path, 'testing')
 return profile.get_database()

def test_query_result_type_is_query(db):
 assert isinstance(db.get_talks(), QtSql.QSqlQuery)
 assert isinstance(db.get_events(), QtSql.QSqlQuery)
 assert isinstance(db.get_talk_ids(), QtSql.QSqlQuery)
 assert isinstance(db.get_talks_by_event('SC2011'), QtSql.QSqlQuery)
 assert isinstance(db.get_talks_by_room('T105'), QtSql.QSqlQuery)

def test_query_result_type_is_presentation(db):
 assert isinstance(db.get_presentation(1), Presentation)

def test_query_result_type_is_model(db):
 assert isinstance(db.get_presentations_model(), QtSql.QSqlTableModel)
 assert isinstance(db.get_events_model(), QtSql.QSqlQueryModel)
 assert isinstance(db.get_rooms_model('SC2011'), QtSql.QSqlQueryModel)
 assert isinstance(db.get_talks_model('SC2011', 'T105'), QtSql.QSqlQueryModel)

def test_add_talks_from_csv(db):
 """Test that talks are retrieved from the CSV file"""

 dirname = os.path.dirname(__file__)
 fname = os.path.join(dirname, 'sample_talks.csv')

 presentation = Presentation('Building NetBSD', 'David Maxwell')

 db.add_talks_from_csv(fname)
 assert(db.presentation_exists(presentation))

Break down of the unit test:

import pytest

This lets us use all of the testing features provided by pytest like
fixtures and function tests. It should be noted, unit tests written using the
old framework will import the unittest module instead.

@pytest.fixture

pytest provides fixture objects which allows a developer to put frequently
created function call results into an object.
Fixtures can be used in
place of conventional setup functions as in unittest. In the
example, the fixture contains a QtDBConnector object which all of the test
methods can access. unittest teardown functions can be written with
yield fixtures. Documentation on
fixtures [http://pytest.org/latest/fixture.html] is available from pytest.

pytest test_* functions

pytest will recurse into directories (that are not marked as
norecursedirs), will look for test_*.py or *_test.py files, Test
prefixed test classes, and test_ prefixed functions.
pytest will also discover traditional unittest.TestCase tests.
Further documentation
can be found on the pytest [http://pytest.org/latest/goodpractises.html#conventions-for-python-test-discovery] site.

It should be noted that testing the return type of function calls in unit
tests is not very useful, as in the example test_query_result_type_*().

The assert methods

Each assert has the power to FAIL a test_* method.
A test could contain several assert methods and will continue to run until an assertion fails.
If no assertion fails, then the test will be marked as OK.
It is important not to write too many assert statements in a test method. If
this occurs than the test is probably trying to cover too many test scenarios
and therefore the test should be broken up into smaller parts.

If an assertion fails pytest will give very generous failure information. For example, with the use of a fake test file:

import pytest

def test_crustacean():
 assert 'lobster' == 'crab'

The fake script will fail because the two strings are not equivalent, it will
output the following when $ py.test test_crustacean.py is run from the
command line:

============================= test session starts ==============================
platform linux2 -- Python 2.7.6 -- py-1.4.23 -- pytest-2.5.2
plugins: cov
collected 1 items

test_crustacean.py F

=================================== FAILURES ===================================
_______________________________ test_crustacean ________________________________

 def test_crustacean():
> assert 'lobster' == 'crab'
E assert 'lobster' == 'crab'
E - lobster
E + crab

test_crustacean.py:6: AssertionError
=========================== 1 failed in 0.01 seconds ===========================

Running the Test Suite

Introduction

We’ve written our test case(s) and now we want to see the results. First, let’s go over the expected results:

@pytest.fixture
def db(tmpdir):
 """Construct a database connector fixture"""
 profile_path = str(tmpdir)
 profile = Profile(profile_path, 'testing')
 return profile.get_database()

The pytest fixture creates an instance of the QtDBConnector object and
allows each method matching the test_* pattern to have access to it.
The fixture is created each time a test_* function receives it as an
argument. The argument tmpdir is a pytest built in test function
argument that provides a unique temporary directory to each test function
that calls it.
The example recreates the QtDBConnector each time a
test function uses the db fixture. If you need to finer control over
how the fixture is created then refer to the pytest documentation.

def test_query_result_type_is_query(db):
 assert isinstance(db.get_talks(), QtSql.QSqlQuery)
 assert isinstance(db.get_events(), QtSql.QSqlQuery)
 assert isinstance(db.get_talk_ids(), QtSql.QSqlQuery)
 assert isinstance(db.get_talks_by_event('SC2011'), QtSql.QSqlQuery)
 assert isinstance(db.get_talks_by_room('T105'), QtSql.QSqlQuery)

def test_query_result_type_is_presentation(db):
 assert isinstance(db.get_presentation(1), Presentation)

def test_query_result_type_is_model(db):
 assert isinstance(db.get_presentations_model(), QtSql.QSqlTableModel)
 assert isinstance(db.get_events_model(), QtSql.QSqlQueryModel)
 assert isinstance(db.get_rooms_model('SC2011'), QtSql.QSqlQueryModel)
 assert isinstance(db.get_talks_model('SC2011', 'T105'), QtSql.QSqlQueryModel)

In the test_query_result_type_is_*() test functions, we are checking that
the database queries return expected types.

def test_add_talks_from_csv(db):
 """Test that talks are retrieved from the CSV file"""

 dirname = os.path.dirname(__file__)
 fname = os.path.join(dirname, 'sample_talks.csv')

 presentation = Presentation('Building NetBSD', 'David Maxwell')

 db.add_talks_from_csv(fname)
 assert(db.presentation_exists(presentation))

Finally, in test_add_talks_from_csv(), we are checking that we can also
add talks from comma separated value format files.

Command line options

Note: to avoid package import errors, we need to run the following commands from the src folder.

Example: Run all tests with pytest

To run all of the tests in src/freeseer/tests/, issue the following command from
the src/ directory:

$ python setup.py test

The output will contain information about the test session. If there are any
failures during the session then failure messages will be logged and testing
will continue.
If there is a failure, the developer may read through the output to see
what went wrong. Information related to which line the failure occurred is
printed in the output’s FAILURES section, as well as DEBUG or INFO
output that was printed to stderr in the erroneous code.
At the bottom of the output from the script statistics on code coverage are
displayed.

Gotchas! a.k.a Q&A

Q: I set a variable in one of my unit tests, but my other unit tests cannot
see the values I set!

A: There is no guarantee for the order in which unit tests run. It is also not
a good practice to have dependencies between unit tests. Each of the unit tests
should be stand alone and should not alter the test environment for tests
running after said unit test. If you want to test that a unit test produces
a given value, then the result of the unit test could be compared to a fixture
to assert the condition has been met. The same fixture could then be used in
the following unit test that you were using the result of the prior unit test
in. This would separate the two unit tests from depending on the order in which
they are ran by the test suite.

Q: Can pytest run UnitTest files?

A: Yes, pytest can run unittest.TestCase based unit tests if they follow the
test discovery naming conventions.

What should testers focus on?

Ultimately, testers should protect users and the organization from bad design,
confusing UX, functional bugs, security and privacy issues, and so forth.

Some things testers should consider:

· Where are the weak points in the software?

· What are the security, privacy, performance and reliability concerns?

· Do all the primary user scenarios work as expected? For all international audiences?

· Does the product interoperate with other products (hardware and software)?

· In the event of a problem, how good are the diagnostics?

 Plugin Framework

Plugin Framework

Freeseer uses plugins so developers can easily extend the capabilities of
Freeseer in a modular fashion.

Freeseer’s plugin framework is built on Yapsy [http://yapsy.sourceforge.net],
a minimal plugin system that only depends on Python’s standard library.

Plugin System Setup

Yapsy’s PluginManager class provides the core logic needed to find, load,
and activate plugins. Freeseer has a PluginManager class that builds
on top of that, and can be found in src/freeseer/framework/plugin.py.

Yapsy provides a PluginFileLocator class which locates plugins when they are
accessible via the filesystem. 1 Plugins are described by a text file
called the plugin info file which have a “.yapsy-plugin” extension by default.
But Freeseer plugins use a customized extension, “.freeseer-plugin”.

Todo

introduce the code snippet so it’s not shown as a surprise

from yapsy.PluginManager import PluginManagerSingleton
from yapsy.ConfigurablePluginManager import ConfigurablePluginManager
...

class PluginManager(QtCore.QObject):
 """Freeseer's Plugin Manager provides plugin support."""

 def __init__(...):
 ...
 PluginManagerSingleton.setBehaviour([ConfigurablePluginManager])
 self.plugmanc = PluginManagerSingleton.get()
 ...
 locator = self.plugmanc.getPluginLocator()
 locator.setPluginInfoExtension("freeseer-plugin")
 ...

Freeseer searches three different directory paths for plugins:

	User’s HOME directory (~/.freeseer/plugins/)

	Relative to the src directory (src/freeseer/plugins/)

	If you installed Freeseer, the Python installation packages (site-packages/freeseer/plugins/)

Yapsy’s IPlugin class defines the minimal interface needed for Yapsy
plugins. We want Freeseer’s plugin classes to have a richer interface than what
IPlugin provides, so we created the IBackendPlugin class in
freeseer/framework/plugin.py which inherits from IPlugin and defines the
minimal interface for all Freeseer plugin classes. All Freeseer plugins should
descend from the IBackendPlugin class.

from yapsy.IPlugin import IPlugin
...

class IBackendPlugin(IPlugin):
 """Defines the interface for all Freeseer plugins."""
 CATEGORY = "Undefined"
 ...

class IAudioInput(IBackendPlugin):
 """A Freeseer plugin for Audio Input."""
 CATEGORY = "AudioInput"
 ...

Each class that is a descendant of the IPlugin class needs a CATEGORY
attribute defined. When you are writing your own Freeseer plugin, you often
don’t need to define a new category. You can extend one of the existing plugin
classes and will not need to override the CATEGORY attribute.

If you are creating a new category, you will need to override the CATEGORY
attribute and add the new category name and class name to the PluginManager’s
category filter in the form of a key-value pair, where the key is the
plugin’s category and the value is the plugin’s classname.

class PluginManager(QtCore.QObject):
 ...
 self.plugmanc.setCategoriesFilter({
 IAudioInput.CATEGORY: IAudioInput,
 IAudioMixer.CATEGORY: IAudioMixer,
 IVideoInput.CATEGORY: IVideoInput,
 IVideoMixer.CATEGORY: IVideoMixer,
 IImporter.CATEGORY: IImporter,
 IOutput.CATEGORY: IOutput})
 self.plugmanc.collectPlugins()
 ...

Yapsy provides a number of useful decorators for its PluginManager which modify
behaviour. Freeseer’s plugin system uses the ConfigurablePluginManager which
allows Freeseer to save and load the active plugins and their settings to
a configuration file.

from yapsy.ConfigurablePluginManager import ConfigurablePluginManager
...

class PluginManager(QtCore.QObject):
 ...
 PluginManagerSingleton.setBehaviour([ConfigurablePluginManager])
 ...

Many of the Freeseer plugins, such as the video and audio plugins, use the
ConfigurablePluginManager to save the active plugins.

Creating a Plugin

The basic steps for creating a new plugin are:

	Write a plugin info file, plugin_name.freeseer-plugin, inside the
appropriate directory within src/freeseer/plugins/. This file will
hold metadata for the plugin and has the following format:

[Core]
Name = Plugin Name
Module = plugin_module_or_directory

[Documentation]
Author = Your Name
Version = Latest version of Freeseer that your plugin is compatible with
Website = http://fosslc.org
Description = Simple one-sentence plugin description

	Create the plugin Python file(s)

	If you are creating a single-file plugin, create a Python module with the
same name as your plugin info file:

plugin_name.freeseer-plugin
plugin_name.py

	If you are creating a multi-file plugin, your Python modules should be
separated from your plugin info file:

	Create a plugin directory with the same name as your plugin info file
(minus the extension).

	In the new plugin directory, create the file __init__.py and write
your plugin class inside it. Your class should extend one of the
IBackendPlugin subclasses (e.g. IAudioInput). Don’t forget to
override the class atribute name with your plugin’s name.

	Add other useful plugin code in other modules if necessary. For example,
if your plugin requires a GUI, create a module called widget.py inside
your plugin’s directory and import it inside your plugin’s __init__.py
module.

Accessing a Plugin

Any modules that need to access the plugins will need to import Freeseer’s
PluginManager:

from freeseer.framework.plugin import PluginManager

There are a number of ways to access the plugins via the PluginManager. You
can iterate over all of the plugins (or all of the plugins in a given category)
or you can access a specific plugin by its name.

While Yapsy provides methods for accessing plugins (e.g. getAllPlugin(),
getPluginsOfCategory(), and getPluginByName()), the recommended way to
access the plugins is to use the accessor methods provided by Freeseer’s
PluginManager:

get_plugin_by_name(name, category)
get_all_plugins()
get_plugins_of_category(category)
get_audioinput_plugins()
get_audiomixer_plugins()
get_videoinput_plugins()
get_videomixer_plugins()
get_importer_plugins()
get_output_plugins()

When you call any of the above accessor methods, you receive a PluginInfo
object or a list of PluginInfo objects. Such an object contains meta
information about the plugin. Each PluginInfo object has an attribute
plugin_object which returns an instance of the plugin which you can then
use.

For example:

plugman = PluginManager(config_dir)
plugin_info = plugman.get_plugin_by_name(name, category)
plugin = plugin_info.plugin_object
plugin.do_something()

As another example, here’s a snippet of the Freeseer codebase where a class uses
a plugin. It does so by creating an instance of the PluginManager and then calls the
plugin by name, using the plugin_object attribute to access the plugin object:

from freeseer.framework.plugin import PluginManager
...

class QtDBConnector(object):

 def __init__(self, config_dir, ...):
 ...
 self.plugman = PluginManager(config_dir)
 ...

 ...

 def add_talks_from_rss(self, feed_url):
 """Adds talks from an RSS feed."""
 plugin = self.plugman.get_plugin_by_name("Rss FeedParser", "Importer")
 feedparser = plugin.plugin_object
 presentations = feedparser.get_presentations(feed_url)
 if presentations:
 for presentation in presentations:
 talk = Presentation(presentation["Title"],
 presentation["Speaker"],
 presentation["Abstract"], # Description
 presentation["Level"],
 presentation["Event"],
 presentation["Room"],
 presentation["Time"])
 self.insert_presentation(talk)
 else:
 log.info("RSS: No data found")

Footnotes

	1

	The plugins are detected through Python, so all directories leading
to plugins should have an __init__.py file in them.

 Code Review

Code Review

We use Pull Requests [https://help.github.com/articles/using-pull-requests]
on GitHub for code reviews and merging proposed changes.

Pull requests let you tell others about changes you’ve pushed to a GitHub
repository. Once a pull request is sent, we can review the set of changes,
discuss potential modifications, and you can even push follow-up commits if
necessary (without having to close and re-open the pull request).

See also

	Creating a pull request [https://help.github.com/articles/creating-a-pull-request]

	Merging a pull request [https://help.github.com/articles/merging-a-pull-request]
(for anyone with push access to the destination repository)

	Closing a pull request [https://help.github.com/articles/closing-a-pull-request]

What we look for

in a pull request

	Descriptive title

	Summary describing the changes

	Points to and from the correct branches

	From your development branch to Freeseer’s master branch

	Reference any related issues or resources

in the code

	Code should follow our Style Guide

	Code is well documented

	Documentation should also exist in our online documentation for any new features

	Logic of the code makes sense

	Code is efficient and readable

	Code is modular

	Similar code should be put in functions

	Functions should be small and focus on one thing

	Your code is thoroughly documented and uses
docstrings [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html?showone=Comments#Comments] where appropriate

	Your branch can be merged cleanly into master

	No merge conflicts

	Your branch includes the latest commits from master (rebase to avoid merge commits)

	Includes unit tests for the new code

	All unit tests pass

in the commits

	Each commit should represent one type of change

	Commit messages are as descriptive as possible

	Commit messages follow our formatting guidelines

	Squash related commits into a single commit [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html]

Tips

	Open a Pull Request as early as possible

Pull requests are a great way to start a conversation of a feature or a work
in progress, so send one as soon as possible—even before you are finished with
the code. Your team can comment on the feature as it evolves, instead of
providing all their feedback at the very end.

	Pull Requests work branch to branch

If you have push access to Freeseer/freeseer, you don’t need to fork it to work on a new feature.
Create your topic branch on Freeseer/freeseer instead, then make a pull request in the same repository.

	A Pull Request doesn’t have to be merged

Pull requests are easy to make and a great way to get feedback and track progress on a branch.
But some ideas don’t make it. It’s okay to close a pull request without merging.

	Anyone can review code

Reviewing code isn’t exclusive to active contributors. Anyone is welcome and
encouraged to review code—the more the better!

 Translator

Translator

We want to adapt Freeseer for as many non-native environments as possible. There
should be no language barrier between Freeseer and our users. Help us in our
localization efforts.

Add a Translation

	Open the Qt Linguist tool –
it should come with your installation of PyQt

	Translation files are located in
freeseer/src/freeseer/frontend/qtcommon/languages/

	If a file for your language exists, continue to step 3

	Otherwise, you’ll need to update translation resources first

	Using Qt Linguist, open translation (.ts) files for languages you wish to add

	Once the translation is complete, send a pull request [https://help.github.com/articles/creating-a-pull-request]

See also

Qt Linguist manual for translators [http://qt-project.org/doc/qt-4.8/linguist-translators.html]

Update Translation Resources

For new translations to appear in Freeseer, you need to update the translation
resources. This task is typically left to a developer, not a translator. If you
feel uncomfortable doing these steps, please ask a developer to update the
translation resources.

1. Update Translation Files

This step only needs to be completed if a developer wrote code that contains
new translation strings in the user-interface. To update translation files:

$ cd freeseer/src/freeseer/frontend/qtcommon/languages
$ pylupdate4 freeseer.pro

The freeseer.pro file specifies which source files contain translation
strings, as well as which translation files need to be updated and/or created.
If you want to translate to a new language, add a new locale for that language.

2. Add Qt Translation Files to Freeseer-monitored List

Next, you need to update the list of monitored translations by editing
freeseer/src/freeseer/frontend/qtcommon/resource.qrc.

Add the following line:

<file alias="languages/tr_LANGUAGE_LOCALE.qm">languages/tr_LANGUAGE_LOCALE.qm</file>

where LANGUAGE and LOCALE are specific to your translation.
For example, for an American English translation:

<file alias="languages/tr_en_US.qm">languages/tr_en_US.qm</file>

3. Update Qt Resource Files

When translations are ready to be used, they need to be imported into Qt’s
resource files. We included a script to automate the process. Simply run:

$ cd freeseer/src/freeseer/frontend/qtcommon
$ make

You should now see your translations the next time you run Freeseer.

 Designer

Designer

Whether you’re a graphical designer, user interface designer, or user experience
designer, we can use your help. Design is becoming increasingly important in
open source projects, yet finding designers to contribute remains challenging.

Good design is hard, so we need your help. Critique our design, show us where we
can improve, and help us make the improvements. Create wireframes, mock-ups,
sketches, and prototypes.

Our goal is to make Freeseer a highly usable app that’s simple enough for
a first time user and advanced enough for power users.

Power User

Power users have installed and upgraded Freeseer, know its ins and outs, and
have used it to record several talks. They can help with mailing list and IRC
support, issue tracker management, documentation, and suggestions.

 Basics

Basics

	Git & GitHub

	Forking and Cloning Freeseer

	Basic Workflow

	Workflow Diagram

	Reference Issues in your Commit Messages

	Dealing with Conflicts

	Renaming your Branch

	Reporting Bugs & Requesting Features

	Bug Report Template

	Feature Request Template

Git & GitHub

Freeseer is hosted on GitHub [http://github.com], which uses Git [http://git-scm.com/]. You’ll generally encounter both while contributing.

Git allows many people to work on the same documents (e.g. source code) at the
same time, without stepping on each other’s toes. It’s a distributed version
control system. Git can be complicated for beginners or for people who have
previously used a version control system that’s different by design (e.g. Subversion).

No worries, there are tons of online resources. If you can’t find what you’re
looking for, please ask us!

Before we begin, keep in mind that there is no correct way of using git. With
git, you can often achieve the same results via different ways. How you use git
is often determined by the guidelines of the project you’re contributing to.
The examples on this page are how we recommend you use git when contributing to
Freeseer.

See also

	Set up Git and your GitHub account
→ help.github.com [http://help.github.com]

	Learn by doing
→ Try Git [http://try.github.com/]

	Learn by watching
→ Git Videos [http://git-scm.com/videos]

	Learn by reading
→ Pro Git book [http://book.git-scm.com] (free)

	Forgetful?
→ Git Cheat Sheet [https://na1.salesforce.com/help/doc/en/salesforce_git_developer_cheatsheet.pdf]

	Eclipse is your preferred IDE?
→ Eclipse Git Plugin [https://github.com/blog/1181-eclipse-git-plugin-2-0-released]

	Prefer GUIs over CLIs?
→ GitHub for Windows [http://windows.github.com/] or
GitHub for Mac [http://mac.github.com/]

Forking and Cloning Freeseer

	Go to the Freeseer repository [https://github.com/Freeseer/freeseer] on
GitHub and click the fork button. This creates your own public copy of the
project under your GitHub profile (github.com/username/freeseer). A fork
allows you to easily use someone’s project as a starting point for your own.

[image: Click the fork button on the page *github.com/Freeseer/freeseer*.]

	So far your fork only exists on GitHub. You’ll need to clone it to your local
machine to be able to work on the project.

$ git clone https://github.com/your_username/freeseer.git

	Your cloned repository has a default remote named origin that points to
your fork on GitHub, which can be used for pushing and pulling updates.
But there is no remote that points to the original repository that you forked
from. Add a remote named upstream to keep track of the original Freeseer
repository.

$ cd freeseer
$ git remote add upstream https://github.com/Freeseer/freeseer.git
$ git remote -v # Lists your remotes, you should see origin and upstream

Tip

The name upstream is by convention. You can use whatever name
you prefer (e.g. mainstream or mothership).

Basic Workflow

Whenever you’re going to make a set of edits to the project, you should create a
topic branch (also called a feature branch) for your changes. Your topic branch
will usually be branched off of master.

Never make changes directly in the master branch. Your master branch should
mirror upstream’s master branch, try to keep them in sync. You’ll use
your local master branch to pull in changes from upstream.

	Switch to the master branch and pull in the latest changes from upstream.

$ git checkout master
$ git pull upstream master

	Create and checkout a new branch.
Please follow our naming guidelines.

$ git checkout -b my-topic-branch

	Start making your changes. Commit early and often.

$ git add modified_file
$ git commit -m "Add foo" # Omit the -m flag to write a more detailed commit message.

	After your first few commits, push your topic branch to GitHub.

$ git push -u origin my-topic-branch # The next time you need to push, simply use git push

	Go to GitHub and open a pull request [https://help.github.com/articles/creating-a-pull-request]
from your topic branch to upstream’s master branch.

This allows members of the Freeseer organization [https://github.com/Freeseer?tab=members]
to easily see updates made to your branch and perform code reviews as you
make changes. So please open a pull request as soon as possible!

	Rebase frequently to incorporate changes from upstream.

$ git checkout master
$ git pull upstream master
$ git checkout my-topic-branch
$ git rebase master

	Push your commits to GitHub frequently. At a minimum, push your changes when
you’re done working for the day.

	When you consider your work complete and ready to be merged, rebase any
changes from upstream into your branch once more (see step 6).

	Squash [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html]
any dirty commits via an interactive rebase, so the remaining commits are
meaningful and comprehensible. For example, squash commits that
only fix a typo or whitespace, and rewrite poor commit messages.

$ git rebase -i master

	Let others know you consider your work ready to be merged by leaving a
comment in your pull request. You may be asked to make some changes.

	When your pull request has been merged, celebrate, then clean up by deleting
your local and remote topic branch.

$ git checkout master
$ git pull
$ git branch --delete my-topic-branch # Deletes the topic branch on your machine (can also use -d)
$ git push --delete my-topic-branch # Deletes the topic branch on your fork

Warning

Performing an interactive rebase (as in step 9) will rewrite
history [http://git-scm.com/book/en/Git-Tools-Rewriting-History],
and should therefore only be used on personal branches.
Never rewrite history on branches that others are also working on.

Tip

If you rewrite history that’s already been pushed, you’ll need to
force push the next time (git push -f). Try to avoid forced pushes
by only editing commits that haven’t been pushed yet.
Use git rebase -i HEAD~N to edit the last N commits.

Workflow Diagram

A visual representation of what a contributor’s workflow should look like.

[image: Contributor's workflow diagram]

Reference Issues in your Commit Messages

Note

We use a single issue tracker for all of our repositories:
github.com/Freeseer/freeseer/issues [https://github.com/Freeseer/freeseer/issues]

Similar to how GitHub allows you to reference issues and commits from a comment
on GitHub.com [https://github.com/blog/957-introducing-issue-mentions], you
can also reference issues from a commit message.

Tip

Referencing issues from your commit messages makes it easy to view more context
and see which commits are related.

There are two ways to reference issues.

	Short form: #123 or GH-123

	Long form: user/repo#123

You can reference issues that belong to different repositories on GitHub using
the long form. This is called a cross-repo reference.

If you forked a repository, you can use the short form to reference issues
belonging to the original repository.

To close an issue from a commit message 1, place a supported
keyword directly in front of the reference.
For example, “Close #123” or “Fix gh-123”.

Supported keywords

	
	close

	closes

	closed

	
	fix

	fixes

	fixed

	
	resolve

	resolves

	resolved

You can also close multiple issues in a single commit message, and close issues
cross-repo if you use the long form. 2

Tip

GitHub is case-insensitive to commit messages.

See also

Closing issues via commit messages [https://help.github.com/articles/closing-issues-via-commit-messages]

Dealing with Conflicts

You’ll run into a merge conflict eventually.
It’s when something doesn’t match up between the local and remote copy of a file.
To be more precise, a merge conflict usually occurs when your current branch and the branch you want to merge into the current branch
have diverged. That is, you have commits in your current branch which are not in the other branch, and vice versa.

The secret is to use git mergetool. Here’s one way how you can resolve conflicts:

$ git fetch upstream
$ git rebase upstream/experimental current-local-branch
... CONFLICT: Merge conflict in <filenames>

Now you have 3 options:

	Selectively choose which parts of a file to use (using an external visual diff & merge tool):

$ sudo apt-get install meld # Install Meld (or at http://meld.sourceforge.net)
$ git mergetool -t meld # Some alternatives are kdiff3, opendiff, diffmerge, etc.
... The visual merge tool is launched.
... It shows three versions of the file (local, failed merge, remote).
... You can easily choose code from any and all of them to resolve conflicts.
... Don't forget to save the file when you're done.

	Ignore their changes, use your file:

$ git checkout --ours <filename>

	Ignore your changes, use their file:

$ git checkout --theirs <filename>

Once you’ve resolved all conflicts:

$ git add <filename> # Or 'git add .' to mark all files as resolved
$ git rebase --continue

To abort the conflict merging process at any time:

$ git rebase --abort

Renaming your Branch

Want to use a better name for your branch?

Renaming a local branch:

$ git branch --move old-name new-name # Short option is -m

Renaming a remote branch is more difficult because git doesn’t support it.
A workaround is to delete the branch and re-add it with the new name:

$ git push origin new-name
$ git push origin --delete old-name

Reporting Bugs & Requesting Features

	1. Search

	We troubleshoot and discuss features in public. If you’ve found a bug or have
an idea, take a few minutes to see if it’s already been documented.

Search our documentation, mailing list,
issue tracker [https://github.com/Freeseer/freeseer/issues], and
IRC log [https://botbot.me/freenode/freeseer/].

	2. Ask

	Contact us before opening a new issue, otherwise you risk it being closed for
reasons such as it being a known issue or previously rejected idea.

Hop in our IRC channel or send an email to the
mailing list and describe your problem or idea.

	3. Open a new issue

	After searching and contacting us, open an issue [https://github.com/Freeseer/freeseer/issues/new] if none exist and
reference any existing related issues that you know of.

If you’re a new contributor, please use one of the templates below.

Bug Report Template

For bug reports, describe step by step exactly what you did and what went wrong.

Steps to reproduce the problem:
1.
2.
3.

What is the expected behavior?

What went wrong? (Place any screenshots here)

Did this work before?
- Not applicable / I don't know
- Yes, this is a regression
- No, I think it never worked

Any other comments? (E.g. Freeseer version, Python version, operating system, error messages, etc.)

Or use this conciser template:

Steps:
1.
2.
3.

Expected:

Observed:

Notes:

Feature Request Template

Purpose of feature (pros, cons, use cases):

Describe the feature and its functionality:

Mockups / Screenshots / Examples:

Of course you can also argue feature removal.

Footnotes

	1

	You can only close an issue from a commit message if you have push access
to that repository. In other words, if you can close the issue from
GitHub.com, you can also close it from a commit message.

	2

	This is useful when closing an issue in Freeseer/freeseer from a commit
that belongs to another repository under the Freeseer organization.

 Best Practices

Best Practices

Don’t Develop on Master Branch

The master branch contains stable code that’s ready to ship. The master branch
build should always be passing.

The maintenance branch (if it exists) contains patches for the latest release,
and doesn’t get any new features.

Use topic branches instead of working directly on master.

Name Your Branch After an Issue or Task

If an issue exists [http://github.com/Freeseer/freeseer/issues] for the task
you’re going to work on, name your new branch after the issue # and description.
For example, if you’re working on Issue #100, a new logo, your branch name would
be “100-new-logo”.

If you’ll be working on a task which no issue exists for, consider creating an
issue for it. If you decide to go issue-less, at least give your branch a
descriptive name that matches the task you’ll be working on.

See also

Could your branch name be improved?
Rename your branch!

Start a New Task on a New Branch

Using git requires a certain mindset:

	Branches are tasks

	Commits are subtasks

Tasks are major changes to the codebase, such as a new feature.
Tasks are usually projects of their own and require a large amount of work.
A task can be broken down into subtasks. These are the smaller problems that
need to be solved to make progress towards your larger task.

Each new task should have its own branch. Why?

	Your work is more organized (separate branches for separate tasks)

	Easier for everyone to see what task you’re working on

	Reduces the risk of introducing new bugs

	Easier to isolate and fix new bugs

	Good for experimenting as nothing outside that branch is harmed

Properly Style Your Commit Messages

To help keep the style of our commit messages consistent and for easier viewing
on GitHub, please write your commit messages in accordance with this style:

Capitalized and concise (50 chars or less) summary of your commit

More detailed explanatory text if necessary. Wrap at 72 characters.
Notice that the above summary message does not end with a period,
and there's a blank line between the summary and body text.

If the commit fixes an issue, start the summary line with "Fix",
followed by the issue number. E.g. "Fix #123 Add foo to bar".

- Bullet points (hyphens or asterisks) are allowed

- No ending period needed and wrap at 72 chars

- Put a space after bullet points and blank lines between them

- Use imperative, present tense: "fix", not "fixed" or "fixes"

- Add any references to related issues on GitHub if possible

Last paragraph should reference related issues and pull requests.
Fix #123
Close #321
Related to #404

If you can describe your commit with just a summary line, you may use
git commit’s message argument:

git commit -m "Summary of your commit (50 chars or less)"

 Release Engineering

Release Engineering

When releasing a new Freeseer version use the following checklist.

	Ensure your git repo is clean

	Update resource files

	
	Navigate to src/freeseer/frontend/qtcommon and run make

	./bump_version.sh <new version>

	git commit -asm "Release 3.0.0"

	git push origin master

	Login to GitHub and navigate to a new release

	Draft the release notes include new features and bugs fixed

	Create python egg and source distribution:

	
	python setup.py sdist

	
	python setup.py bdist_egg

	Push the source distribution to PyPi

	Add the 2 binaries to the Release Draft

	After peer review and release date agreed on Publish the release

Note

The commit message summary line should say “Bump version to release
version 3.0.0” (update version as relevant).

 Index

Index

 Symbols
 | F

Symbols

 	
 	1. Search

 	
 	2. Ask

 	3. Open a new issue

F

 	
 	freeseer config reset

 	
 	freeseer config youtube

 Page not found · 404

[image: _images/sad-seer.png]
Oops, the page you’re looking for doesn’t exist.

Try searching our Sitemap.

 Contact Us

Contact Us

The Freeseer community is available to brainstorm, ask and answer questions,
and offer support online.

Mailing List

Join the Freeseer discussion group at http://groups.google.com/group/freeseer.
Once you’ve joined, you can post and receive updates through the website, or
through freeseer@googlegroups.com.

Warning

The Freeseer mailing list on bluehost [http://box674.bluehost.com/mailman/listinfo/freeseer_fosslc.org]
(freeseer@fosslc.org) is deprecated and should no longer be used.

IRC Channel

Instant message with the Freeseer community on IRC.

	Server: irc.freenode.net

	Channel: #freeseer

See also

The role of IRC in open source development and applications for using IRC [https://code.google.com/p/google-summer-of-code/wiki/Irc]

IRC Clients

You’ll need some way to join the IRC channel, that’s typically done through an IRC client.
There are way too many IRC clients to list them all. The easiest is to
use your browser [http://webchat.freenode.net/?channels=#freeseer],
but it’s not a recommended long-term solution.

Tip

	To get someone’s attention on IRC, mention their username

	Some IRC clients support username autocompletion via the tab key

	To block activity messages in a channel:
/ignore -channels #freeseer * JOINS PARTS QUITS NICKS

	You can specificy more channels by comma separating them

	Some clients (e.g. weechat) support “smart filters” to automatically hide noisy activity messages

Channel Bot

You’ve probably noticed BotBot [o__o] hanging out in #freeseer.
BotBot is our friendly channel bot from BotBot.me [https://botbot.me].

BotBot responds to certain queries. Try asking BotBot for help:

 You | [o__o]: help
[o__o] | Available plugins: logger, ping, help, github (https://botbot.me/freenode/freeseer/help/)

BotBot will gladly fetch GitHub issues (and Pull Requests) for you,
just type gh#<issue-number>:

 You | gh#401
[o__o] | Database upgrade failed when starting freeseer: https://github.com/Freeseer/freeseer/issues/401

BotBot also keeps a searchable log of our channel.
Read any discussions you missed at http://botbot.me/freenode/freeseer.

Twitter, Facebook, and Blog

You can also find Freeseer community members on various channels across the web:

	On Twitter, follow @fosslc [http://twitter.com/fosslc]

	Like FOSSLC’s Facebook Page [https://www.facebook.com/FreeAndOpenSourceSoftwareLearningCentre]

	Read and comment on FOSSLC’s blog [http://www.fosslc.org/drupal/category/community/freeseer]

Note

Part of the Freeseer community prefers to blog about Freeseer on their personal blogs.

Toll-free Phone Number

Call for free at 1-877-253-0617 x27.
If Andrew (our project leader) isn’t available to answer the call,
then you’ll be asked to leave a voicemail message.

Google+ Hangouts

We occasionally use Google+ Hangouts [http://www.google.com/+/learnmore/hangouts/] for Freeseer meetings.

Here’s some tips for joining our next video chat:

	Provide us with an email address that’s associated with a Google+ account, and we’ll send you an invitation

	A Google+ account is required for Google Hangouts

	Have a webcam ready (not recommended for slow connections)

	Have a headset ready (optional but recommended)

Using the Appropriate Communication Method

	Use the mailing list to discuss topics that affect the whole Freeseer community.

	Examples: introducing yourself, showing a draft or final version of your
project proposal, requesting help on a problem after an unsuccessful
attempt in the IRC room, progress updates

	If you’re unsure which communication method to use, use the mailing list!

	Use the IRC channel to have quick discussions that do not
require input from the whole community.

	Examples: need help with a bug, questions about the source code or
git, general questions about Freeseer

	Off-topic discussions are allowed, as long as they don’t interrupt any
on-going discussions

	Don’t contact us through Twitter, Facebook, or the blog. Those
services are mainly used to broadcast information to the public, and they are
not necessarily ran by us (i.e. Freeseer contributors).

	Use the toll-free phone number if you need to contact Andrew urgently.

	Use G+ Hangouts for Freeseer meetings where we discuss progress updates.

 Sitemap

Sitemap

	Contact Us
	Mailing List

	IRC Channel
	IRC Clients

	Channel Bot

	Twitter, Facebook, and Blog

	Toll-free Phone Number

	Google+ Hangouts

	Using the Appropriate Communication Method

	Freeseer: Conference Recording Made Easy
	About Freeseer
	Who We Are

	Why We Exist

	Expectations Around Sharing Freeseer

	Who Freeseer Is For

	What Freeseer Can Do

	Recording Events
	Recording Events
	Equipment Needed

	Setup

	Preparation (Avoiding Common Errors)

	Troubleshooting

	Hosting the Videos

	Quick-Start Guide
	Installing Freeseer from a package
	Arch Linux

	Gentoo Linux

	OpenSUSE

	Python Package Index

	Installing Freeseer for Development
	Dependencies
	Debian and Ubuntu Linux

	Fedora Linux

	Windows

	PyPI Packages

	Running Freeseer

	Issue tracker

	IRC channel

	Mailing list

	Authors

	Copyright and license

	User Guide
	Record
	Record Interface
	Select a Talk

	Audio Feedback

	Status Area

	Recording Controls

	Report Tool
	Using the Report Tool

	Record Over a Network
	Via Command Line Interface (CLI)

	Via Graphical User Interface (GUI)

	Talk Editor

	Configuration (Settings)
	General

	Command line

	Plugins

	Plugins
	Audio Input Plugins

	Audio Mixer Plugins

	Video Input Plugins

	Video Mixer Plugins

	Output Plugins

	Report Editor
	Using the Report Editor

	Server
	Usage

	YouTube Uploader
	Dependencies

	How to Use

	Contributor Guide
	I am a…
	Student
	Getting Started

	What Happens at the Sprint

	Deciding What To Work On

	Communicate

	Expectations

	Developer
	Style Guide
	Custom Guidelines

	Testing
	Configure your Test Environment

	Extending the Test Suite
	Structure of Test Directory

	Adding/Editing a test module
	An example

	import pytest

	@pytest.fixture

	pytest test_* functions

	The assert methods

	Running the Test Suite
	Introduction

	Command line options
	Example: Run all tests with pytest

	Gotchas! a.k.a Q&A
	What should testers focus on?

	Plugin Framework
	Plugin System Setup

	Creating a Plugin

	Accessing a Plugin

	Code Review
	What we look for
	in a pull request

	in the code

	in the commits

	Tips

	Translator
	Add a Translation

	Update Translation Resources

	Designer

	Power User

	Basics
	Basics
	Git & GitHub

	Forking and Cloning Freeseer

	Basic Workflow

	Workflow Diagram

	Reference Issues in your Commit Messages

	Dealing with Conflicts

	Renaming your Branch

	Reporting Bugs & Requesting Features
	Bug Report Template

	Feature Request Template

	Best Practices
	Best Practices
	Don’t Develop on Master Branch

	Name Your Branch After an Issue or Task

	Start a New Task on a New Branch

	Properly Style Your Commit Messages

	Release Engineering

 Documentation has moved!

Documentation has moved!

We’re redirecting you to the new location: http://freeseer.readthedocs.org

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Freeseer: Conference Recording Made Easy

 		
 About Freeseer

 		
 Who We Are

 		
 Why We Exist

 		
 Expectations Around Sharing Freeseer

 		
 Who Freeseer Is For

 		
 What Freeseer Can Do

 		
 Recording Events

 		
 Recording Events

 		
 Quick-Start Guide

 		
 Installing Freeseer from a package

 		
 Arch Linux

 		
 Gentoo Linux

 		
 OpenSUSE

 		
 Python Package Index

 		
 Installing Freeseer for Development

 		
 Dependencies

 		
 Running Freeseer

 		
 Issue tracker

 		
 IRC channel

 		
 Mailing list

 		
 Authors

 		
 Copyright and license

 		
 User Guide

 		
 Record

 		
 Record Interface

 		
 Report Tool

 		
 Record Over a Network

 		
 Talk Editor

 		
 Configuration (Settings)

 		
 General

 		
 Command line

 		
 Plugins

 		
 Plugins

 		
 Audio Input Plugins

