

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	FEC Web

FEC Website Documentation

	Introduction

	Getting Started
	Grab the Source

	Install Prerequisites

	Configuration

	Create the Database

	Running

	Testing

	Contribution Guidelines
	Code Conventions

	Version Control

	Version Numbers

	Documentation

	Appendix: Debian 7 (Wheezy) Deployment
	Install & Configure PostgreSQL

	Install Memcached

	Enable Wheezy Backports & Install the LESS Compiler

	Install & Create Python Virtual Environment

	Download & Setup Application

	Install & Configure Python Server

	Configure Virtual Host

	Setup Cronjobs

	API Documentation
	core package

	communities package

	documents package

	functional_tests package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

Introduction

This is the documentation for the FEC’s website. It runs on the Mezzanine [http://mezzanine.jupo.org]
CMS, the Django [http://djangoproject.com] Framework and the Python [http://python.org] Programming Language.

This documentation is useful for the website’s contributors and maintainers, it
will teach you Getting Started, Contribution Guidelines,
Deployment and the API.

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

Getting Started

This section covers setting up a dev machine to work on the website’s source
code.

Grab the Source

Use git to clone the current source code repository:

$ git clone http://bugs.sleepanarchy.com/fec.git

Switch over to the develop branch, where new development occurs. Only
completed versions should be merged directly into the master branch.

Install Prerequisites

You should install python 2 [http://www.python.org/] and pip [http://www.pip-installer.org/en/latest/] via your package manager.

On Arch Linux:

$ sudo pacman -S python2 python2-pip

On Slackware:

$ sudo /usr/sbin/slackpkg install python
$ wget https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ sudo python get-pip.py

On Debian/Ubuntu:

$ sudo apt-get install python-pip

Optionally you may want to install virtualenv [https://github.com/pypa/virtualenv] and virtualenvwrapper [https://github.com/bernardofire/virtualenvwrapper] to
manage and isolate the python dependencies.

$ sudo pip install virtualenv virtualenvwrapper

Make sure to do the initial setup for virtualenv [https://github.com/pypa/virtualenv]:

$ export WORKON_HOME=~/.virtualenv/
$ mkdir -p $WORKON_HOME
$ source virtualenvwrapper.sh

Then you may create an environment for the FEC dependenies:

$ mkvirtualenv FEC

You may then install dependencies into this virtual environment. There are
multiple tiers of dependencies:

	base - minimum requirements needed to run the application

	test - requirements necessary for running the test suite

	local - development prerequisites such as the debug toolbar and
documentation builders

	production - all packages required for real world usage

A set of dependencies may be installed via pip [http://www.pip-installer.org/en/latest/]:

$ workon FEC
$ pip install -r requirements/local.txt

Configuration

Some settings are set through environmental variables instead of files. These
include settings with sensitive information, and allows us to keep the
information out of version control.

You may set these variables directly in the terminal or add them to your
virtualenv’s activate script:

$ DB_USER='prikhi' DB_NAME='FEC' ./manage.py <command>
$ export DB_NAME='FEC'
$./manage.py <command>

The required environmental variables are DJANGO_SECRET_KEY, DB_NAME and
DB_USER.

Create the Database

Create the initial database by running createdb:

$ export DJANGO_SETTINGS_MODULE=core.settings.local
$ cd fec
$./manage.py createdb

Running

You should now be able to run the server:

$./manage.py runserver

You can visit http://localhost:8000/ in a web browser to check the site
out.

Testing

After making changes, run the test suite with py.test:

$ cd fec
$ py.test

Every test should pass before you commit your changes.

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

Contribution Guidelines

This section describes development standards and best practices within the
project.

Code Conventions

The PEP 8 [https://www.python.org/dev/peps/pep-0008] is our baseline for coding style.

In short we use:

	4 spaces per indentation

	79 characters per line

	One import per line, grouped in the following order: standard library, 3rd
party imports, local application imports

	One statement per line

	Docstrings for all public modules, functions, classes and methods.

The following naming conventions should be followed:

	Class names use CapitalWords

	Function names are lowercase, with words separated by underscores

	Use self and cls for first argument to instance and class methods,
respectively.

	Non-public methods and variables should be prefixed with an underscore

	Constants in all uppercase.

Code should attempt to be idiomatic/pythonic, for example:

	Use list, dict and set comprehensions.

	Test existence in a sequence with in.

	Use enumerate instead of loop counters.

	Use with ... as ... for context managers.

	Use is to compare against None instead of ==.

	Use parenthesis instead of backslashes for line continuations.

For more information and full coverage of conventions, please read PEP 8 [https://www.python.org/dev/peps/pep-0008],
PEP 257 [https://www.python.org/dev/peps/pep-0257], PEP 20 [https://www.python.org/dev/peps/pep-0020] and the Django Coding Style Documentation [http://docs.djangoproject.com/en/1.4/internals/contributing/writing-code/coding-style/].

You can use prospector to check your code style:

pip install -r requirements/local.txt
prospector

Version Control

We use Git as our Version Control System.

Branches

We have 2 long-term public branches:

	master - The latest stable release. This branch should be tagged with a
new version number every time a branch is merged into it.

	develop - The release currently in development. New features and releases
originate from this branch.

There are also multiple short-term supporting branches:

	hotfix - Used for immediate changes that need to be pushed out into
production. These branches should originate from master and be merged
into master and either the develop or current release if one
exists.

	feature - Used for individual features and bug fixes, these branches are
usually kept on local development machines. These should originate from and
be merged back into develop.

	release - Used for preparing the develop branch for merging into
master, creating a new release. These branches should originate from
develop and be merged back into develop and master. Releases
should be created when all new features for a version are finished. Any new
commits should only contain code refactoring and bug fixes.

This model is adapted from A Successful Git Branching Model [http://nvie.com/posts/a-successful-git-branching-model/], however we use
a linear history instead of a branching history, so the --no-ff option
should be omitted during merges.

Commit Messages

Commit messages should follow the format described in A Note About Git Commit
Messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]. They should generally follow the following format:

[TaskID#] Short 50 Char or Less Title

Explanatory text or summary describing the feature or bugfix, capped
at 72 characters per line, written in the imperative.

Bullet points are also allowed:

* Add method `foo` to `Bar` class
* Modify `Base` class to be abstract
* Remove `foobaz` method from `Bar` class
* Refactor `bazfoo` function

Refs/Closes/Fixes #TaskID: Task Name in Bug Tracker

For example:

[#367] Customize General Layout & Home Page

* Add the core app and a SeleniumTestCase class to the core.utils module
 to automatically start a live server and create a remote selenium
 driver.
* Add the functional_tests.general_page_tests module to test elements
 that should be on every page.
* Add the functional_tests.home_page_tests module to test elements that
 should appear on the home page.
* Add basic site customizations, like modifying the title, tagline and
 homepage content.
* Add requirements files for test and local environments.

* Modify manage.py to use the thefec module's settings files
* Move the functional tests into their own module.

* Remove the right sidebar.
* Remove the lettuce applications.
* Remove extraneous files from the thefec module.

Closes #367: Create Initial project

Workflow

The general workflow we follow is based on A Git Workflow for Agile Teams [http://reinh.com/blog/2009/03/02/a-git-workflow-for-agile-teams.html].

Work on a new task begins by branching from develop. Feature branch names
should be in the format of tasknumber-short-title-or-name:

$ git checkout -b 142-add-account-history develop

Commits on this branch should be early and often. These commit messages are not
permanent and do not have to use the format specified above.

You should fetch and rebase against the upstream repository often in order to
prevent merging conflicts:

$ git fetch origin develop
$ git rebase origin/develop

When work is done on the task, you should rebase and squash your many commits
into a single commit:

$ git rebase -i origin/develop

You may then choose which commits to reorder, squash or reword.

Warning

Only rebase commits that have not been published to public
branches. Otherwise problems will arise in every other user’s local
repository. NEVER rewrite public branches and NEVER force a push unless
you know EXACTLY what you are doing, and have preferably backed up the
upstream repository.

Afterwards, merge your changes into develop and push your changes to the
upstream repository:

$ git checkout develop
$ git merge 142-add-account-history
$ git push origin develop

Preparing a Release

A Release should be forked off of develop into its own branch once all
associated features are completed. A release branch should contain only
bugfixes and version bumps.

	Fork the release branch off of the develop branch:

$ git checkout -b release-1.2.0 develop

	Branch, Fix and Merge any existing bugs.

	Bump the version number and year in setup.py and
docs/source/conf.py.

	Commit the version changes:

$ git commit -a -m "Prepare v1.2.0 Release"

	Create a new annotated and signed Tag for the commit:

 $ git tag -s -a v1.2.0

The annotation should contain the release's name and number, and optionally
a short description::

 Version 1.2.0 Release - Trip Entry Form

 This release adds a Trip Entry form for Communards and a Trip Approving
 form for Accountants.

	Merge the branch into the master branch and push it upstream:

$ git checkout master
$ git merge release-1.2.0
$ git push origin master
$ git push --tags origin master

	Make sure to merge back into the develop branch as well:

$ git checkout develop
$ git merge release-1.2.0
$ git push origin develop

	You can then remove the release branch from your local repository:

$ git branch -d release-1.2.0

Version Numbers

Each release will be tagged with a version number, using the MAJOR.MINOR.PATCH
Semantic Versioning [http://semver.org/] format and specifications.

These version numbers indicate the changes to the public API.

The PATCH number will be incremented if a new version contains only
backwards-compatible bug fixes.

The MINOR number is incremented for new, backwards-compatible functionality and
marking any new deprecations. Increasing the MINOR number should reset the
PATCH number to 0.

The MAJOR number is incremented if ANY backwards incompatible changes are
introduced to the public API. Increasing the MAJOR number should reset
the MINOR and PATCH numbers to 0.

Pre-release versions may have additional data appended to the version, e.g.
1.0.1-alpha or 2.1.0-rc.

The first stable release will begin at version 1.0.0, any versions before this
are for initial development and should be not be considered stable.

For more information, please review the Semantic Versioning Specification [http://semver.org/].

Documentation

This documentation is written in reStructuredText [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] and created using the
Sphinx [http://sphinx-doc.org/] Documentation Generator. Sphinx’s autodoc module is used to
create the API specifications of the application by scraping
docstrings(PEP 257 [https://www.python.org/dev/peps/pep-0257]).

Each class, function, method and global should have an accurate docstring for
Sphinx to use.

Each feature or bug fix should include all applicable documentation changes.

To build the Documentation, install the prerequisites then run the make command
to generate either html or pdf output:

$ pip install -r requirements/local.txt
$ cd docs/
$ make html; make latexpdf

The output files will be located in the docs/_build directory.

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

Debian 7 (Wheezy) Deployment Guide

This section covers deploying the website on Debian 7(Wheezy). It assumes you
have a working apache configuration and are logged in as thefec.

Install & Configure PostgreSQL

Start by installing the postgreSQL server & client. Development libraries are
required for the python postgreSQL library:

$ sudo apt-get install postgresql postgresql-server postgresql-server-dev-9.1

Next, become the postgres user and create a new database and user:

$ sudo su - postgres
$ createuser -DERPS thefec # No DB/user creation privleges, not a superuser, encrypt the password
$ createdb fec_website -O thefec
$ logout

Install Memcached

Memcached is used for caching. All you need to do is install it to get it
working, it will automatically start a server at 127.0.0.1:11211:

$ sudo apt-get install memcached

Enable Wheezy Backports & Install the LESS Compiler

lessc takes LESS source files and converts them to CSS. To get the package
in Debian 7, we need to enable the wheezy-backports repository. To do this,
add the following line to the end of /etc/apt/sources.list:

deb http://http.debian.net/debian wheezy-backports main

Then you can update your package list & install lessc:

$ sudo apt-get update
$ sudo apt-get -t wheezy-backports install node-less

Install & Create Python Virtual Environment

A virtual environment will let us separate our dependencies from the system’s
python libraries:

$ sudo apt-get install python-virtualenv
$ virtualenv ~/WebsiteEnv

We’ll create a bash script at ~/load_website_env.sh to set environmental
variables that configure the website(database name, password, secret key, etc.):

~/load_website_env.sh
source ~/WebsiteEnv/bin/activate

export DB_NAME='fec_website'
export DB_USER='thefec'
export DB_PASS=YOUR_PASSWORD

export ALLOWED_HOST='www.thefec.org'
export DJANGO_SECRET_KEY=YOUR_SECRET_KEY
export DJANGO_SETTINGS_MODULE='fec.settings.production'
export CACHE_PREFIX='FECprod'

Since this contains our database user’s password, we’ll make sure only we can
run/read/write it:

$ chmod 700 ~/load_website_env.sh

Download & Setup Application

First we’ll need git to pull the source code and some image libraries:

$ sudo apt-get install git libjpeg-dev libfreetype6-dev

Activate our virtual environment, grab the source & install the python
dependencies:

$ source ~/load_website_env.sh
$ cd ~
$ git clone http://bugs.sleepanarchy.com/fec.git ~/website
$ cd ~/website
$ pip install -r requirements/base.txt

Create the database schema and load the initial data if you have any:

$ cd ~/website/fec
$./manage.py migrate
$./manage.py loaddata ~/full_dump.json

Collect the static files & link it to our public HTML directory:

$./manage.py collectstatic
$ ln -s ~/website/fec/static ~/htdocs/static

Install & Configure Python Server

Dynamic requests will be served by the uWSGI server and proxied by apache.
Static files like images, CSS and JavaScript will be served by apache.

Start by installing uWSGI:

$ sudo apt-get install uwsgi uwsgi-plugin-python

Note

You may want a newer version of uWSGI for page caching & gzipping support.
There is no uWSGI package in wheezy-backports so you’ll have to build the
packages yourself. That’s out of the scope of this guide, you should refer to
the SimpleBackportCreation Page on the Debian Wiki. Once
you’ve built the packages and have them on your server, install them using
dpkg along with some dependencies for gzipping & uWSGI:

$ sudo apt-get install libpcre3-dev libz-dev
$ sudo apt-get -t wheezy-backports install libzmq3-dev
$ sudo dpkg -i libapache2-mod-uwsgi_2*.deb
$ sudo dpkg -i uwsgi-core_2*.deb
$ sudo dpkg -i uwsgi-plugin-python_2*.deb
$ sudo apt-get -f install

Add the following configuration to
/etc/uwsgi/apps-available/fec-website.ini:

[uwsgi]
uid = thefec
gid = www-data
chdir = /home/thefec/website/fec

plugin = python2,transformation_gzip
pythonpath = /home/thefec/WebsiteEnv/lib/python2.7/site-packages/
pythonpath = /usr/lib/python2.7
virtualenv = /home/thefec/WebsiteEnv
no-site=True

socket = 127.0.0.1:3032
master = true
workers = 4
max-requests = 5000
vacuum = True

pidfile = /tmp/fec-website.pid
touch-reload = /tmp/fec-website.touch

env = DJANGO_SETTINGS_MODULE=fec.settings.production
env = DJANGO_SECRET_KEY=YOUR_SECRET_KEY
env = DB_NAME=fec_website
env = DB_USER=thefec
env = DB_PASS=YOUR_PASSWORD
env = ALLOWED_HOST=www.thefec.org
env = CACHE_PREFIX=FECprod
wsgi-file = /home/thefec/website/fec/fec/wsgi.py

uWSGI v1.9+ only
route to gzip if supported
route-if = contains:${HTTP_ACCEPT_ENCODING};gzip goto:mygzipper
route-run = last:

route-label = mygzipper
route = ^/$ gzip:

Link the file to apps-enabled to enable it, restart uwsgi, then touch
the touch-file to restart the python server:

$ sudo ln -s /etc/uwsgi/apps-available/fec-website.ini /etc/uwsgi/apps-enabled/
$ sudo service uwsgi restart
$ touch /tmp/fec-website.touch

Configure Virtual Host

First we need to install the apache module for uWSGI:

$ sudo apt-get install libapache2-mod-uwsgi

Then add the following configuration to
/etc/apache2/sites-available/thefec.org.conf:

<VirtualHost 72.249.12.147:80>
 ServerName www.thefec.org

 DocumentRoot /home/thefec/website/fec

 ErrorLog /home/thefec/logs/error_log
 CustomLog /home/thefec/logs/access_log common

 Alias /static /home/thefec/htdocs/static
 <Directory /home/thefec/htdocs/static>
 Options Indexes FollowSymLinks MultiViews
 allow from all
 AllowOverride All
 </Directory>

 # Redirect requests to the python server
 <Location "/">
 Options FollowSymLinks Indexes
 SetHandler uwsgi-handler
 uWSGISocket 127.0.0.1:3032
 </Location>
 # Except for requests to /static/
 <Location /static>
 SetHandler none
 allow from all
 </Location>

 # Cache all the things
 ExpiresActive On
 ExpiresByType text/html "access plus 5 minutes"
 ExpiresByType text/css "access plus 10 years"
 ExpiresByType text/javascript "access plus 10 years"
 ExpiresByType application/x-javascript "access plus 10 years"
 ExpiresByType text/javascript "access plus 10 years"
 ExpiresByType application/javascript "access plus 10 years"
 ExpiresByType image/jpg "access plus 10 years"
 ExpiresByType image/gif "access plus 10 years"
 ExpiresByType image/jpeg "access plus 10 years"
 ExpiresByType image/png "access plus 10 years"
 ExpiresByType image/x-icon "access plus 10 years"
 ExpiresByType image/icon "access plus 10 years"
 ExpiresByType application/x-ico "access plus 10 years"
 ExpiresByType application/ico "access plus 10 years"

 # Gzip all the things
 <IfModule mod_deflate.c>
 AddOutputFilterByType DEFLATE text/text text/html text/plain text/xml text/css
 AddOutputFilterByType DEFLATE application/x-javascript application/javascript image/x-icon
 </IfModule>

 # Seperate browser caching for gzip-encoded things
 <FilesMatch ".(js|css|xml|gz|html)$">
 Header append Vary: Accept-Encoding
 </FilesMatch>
</VirtualHost>

Redirect other domains to www.thefec.org, preserving the URL path
<VirtualHost 72.249.12.147:80>
 ServerName thefec.org
 ServerAlias *.thefec.org
 ServerAlias thefec.skyhouseconsulting.com
 Redirect permanent / http://www.thefec.org/
</VirtualHost>

Then enable the site and restart apache:

$ sudo a2ensite thefec.org
$ sudo apache2ctl -k restart

The site should now be visible at http://www.thefec.org

Setup Cronjobs

We’ll setup cron to run two scripts on a regular basis. One script will
backup the database and uploads while the other will compress & optimize
uploaded images.

First install the optimizing tools:

$ sudo apt-get install optipng jpegoptim

Now make directories for the scripts & backups to live in:

$ mkdir ~/bin ~/backups

Create a script called backup_website.sh in ~/bin containing the
following:

#!/usr/bin/env bash
~/bin/backup_website.sh
mv ~/backups/database.gz ~/backups/database.gz.2
pg_dump fec_website | gzip > ~/backups/database.gz

mv ~/backups/uploads.tar.gz ~/backups/uploads.tar.gz.2
tar -cpzf ~/backups/uploads.tar.gz ~/website/fec/static/media/

This will keep 2 days worth of backups in ~/backups.

Now create optimize_website_images.sh in ~/bin containing the
following:

#!/usr/bin/env bash
~/bin/optimize_website_images.sh
find ~/htdocs/static/media -type f -iname "*.png" -exec optipng -o7 {} \;
find ~/htdocs/static/media -type f -iname "*.jpeg" -o -iname "*.jpg" -exec jpegoptim -t --all-progressive -s {} \;

Make sure to mark them as executable:

chmod +x ~/bin/backup_website.sh ~/bin/optimize_website_images.sh

We’ll set the backup script to run daily & the image optimizing to run weekly.
Edit the enabled cronjobs by running crontab -e (or something like
EDITOR=vim crontab -e) and add the following lines:

Backup Website Database & Uploads
@daily ~/bin/backup_website.sh > /dev/null 2>&1

Optimize Images Uploaded to the Website
@weekly ~/bin/optimize_website_images.sh > /dev/null 2>&1

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

API Documentation

The following pages describe the interface of any custom code that is
available to contributors.

	core package
	fec.utils module

	fec.templatetags.core_filters module

	communities package
	Models

	Views

	Template Tags

	Admin Forms

	documents package
	Models

	Views

	Template Tags

	functional_tests package
	functional_tests.admin_tests module

	functional_tests.general_page_tests module

	functional_tests.home_page_tests module

	functional_tests.community_page_tests module

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

 	API Documentation

core package

This package contains files used throughout the application, or those that are
too general to fit into any other package(like the template overrides).

fec.utils module

fec.templatetags.core_filters module

This module defines general template filters.

	
fec.templatetags.core_filters.get_first_by(value, stop_char)[source]

	Split the string by the stop_char and return the first item.

	Parameters:	
	value (string [http://docs.python.org/2.7/library/string.html#module-string]) – The value passed to the filter.

	stop_char (string [http://docs.python.org/2.7/library/string.html#module-string]) – The character the split the value by.

	Returns:	The resultant sub-string.

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

 	API Documentation

communities package

This package is responsible for the Community
model, including the listing and detail views.

Models

Views

Template Tags

Admin Forms

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FEC Web

 	API Documentation

documents package

This package is responsible for the Document model,
including DocumentCategories and listing views and
widgets.

Models

Views

Template Tags

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	FEC Web

 	API Documentation

functional_tests package

This package contains functional tests which test the application as a whole,
running a live test server and automating user interaction in real browsers
using Selenium.

functional_tests.admin_tests module

functional_tests.general_page_tests module

functional_tests.home_page_tests module

functional_tests.community_page_tests module

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	FEC Web

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fec	

 	
 	
 fec.templatetags.core_filters	

 Copyright 2014, Pavan Rikhi.

 Navigation

 	
 index

 	
 modules |

 	FEC Web

Index

 F
 | G
 | P

F

 	

 	fec.templatetags.core_filters (module)

G

 	

 	get_first_by() (in module fec.templatetags.core_filters)

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 20

 	PEP 257, [1]

 	PEP 8, [1]

 Copyright 2014, Pavan Rikhi.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		FEC Web »

 All modules for which code is available

		fec.templatetags.core_filters

 © Copyright 2014, Pavan Rikhi.

_modules/fec/templatetags/core_filters.html

 Navigation

 		
 index

 		
 modules |

 		FEC Web »

 		Module code »

 Source code for fec.templatetags.core_filters

"""This module defines general template filters."""
from django import template

register = template.Library()

@register.filter(name="get_first_by")
[docs]def get_first_by(value, stop_char):
 """Split the string by the ``stop_char`` and return the first item.

 :param value: The value passed to the filter.
 :type value: string
 :param stop_char: The character the split the ``value`` by.
 :type stop_char: string
 :returns: The resultant sub-string.

 """
 return unicode(value).split(stop_char)[0]

 © Copyright 2014, Pavan Rikhi.

