

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/eventlog/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/eventlog/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Usage

Using pinax-eventlog is pretty simple. Throughout your site, you just call
a single function, log() to record whatever information you want to
log. If you are wanting to log things from third party apps, your best
bet is to use signals. Hopefully the app in question provides some useful
signals, but if not, perhaps some of the built in model signals will be
enough (e.g. pre_save, post_delete, etc.)

Example:

from pinax.eventlog.models import log

def some_view(request):
 # stuff is done in body of view
 # then at the end before returning the response:
 log(
 user=request.user,
 action="CREATED_FOO_WIDGET",
 obj=foo,
 extra={
 "title": foo.title
 }
)
 return HttpResponse()

The action parameter can be any string you choose. By convention, we
always use all caps. Take note, however, whatever you choose, will be the
label that appears in the admin’s list filter, so give it some thought on
naming conventions in your site so that the admin interface makes sense
when you have 50,000 log records you want to filter down and analyze.

The extra parameter can be anything that will serialize to JSON. Results
become easier to manage if you keep it at a single level. Also, keep in
mind that this is displayed in the admin’s list view so if you put too much
it can take up a lot of space. A good rule of thumb here is put enough
identifying data to get a sense for what is going on and a key or keys
that enable you to dig deeper if you want or need to.

Mixin

You can also easily make your class based views auto-logged by using the
pinax.eventlog.mixins.EventLogMixin. The only requirement is defining an
action_kind property on the view. But you can also override a number of
properties to customize what is logged.

ChangeLog

1.1.2

	Fix spelling error in documentation

	Added wheel release

	Dropped 3.2 support

1.1.1

	Added missing migration from the switch to jsonfield

1.1.0

	Started testing against Django master

	Switched to jsonfield from django-jsonfield

	Added ability to link a log to any object via a GFK

	Added ability to override timestamp

	Fixed template fragment path

1.0.0

	Eldarion donated to Pinax, renaming from eventlog to pinax-eventlog

0.11.0

	added the ability to link content objects you are logging about

0.10.0

	added property to provide template fragment name

0.9.0

	Add mixin for making it easy to audit CBV

0.8.0

	removed non-working templatetag

	update setup to work with Python 3.3+

0.7.0

	remove pusher integration

	support for custom user model

0.6.7

	added the event_logged signal

	corrected typo in usage documentation

0.6.6

	attempts at fixing admin performance

0.6.5

	attempts at fixing admin performance

0.6.4

	attempts at fixing admin performance with an index on action

0.6.3

	attempts at fixing admin performance with an index on timestamp

0.6.2

	update setup.py to use install_requires instead of setup_requires

0.6.1

	made the extra argument optional

0.6.0

	improve the admin

0.5.5

	use django.utils.timezone.now instead of datetime.datetime.now for timestamp

0.5.4

	when a user is deleted set FK to null instead of losing data

0.5.3

	bumped version on django-jsonfield

0.5.2

	added docs

0.5.1

	initial release

Signals

There is a signal that you are setup a receiver for to enable you to trigger
other actions when an event has been logged:

event_logged provides an event object as an argument that is the event that
was just logged.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

