

 Navigation

 	
 index

 	
 next |

 	Elgg master documentation

Elgg master Documentation

Elgg [http://elgg.org] (pronunciation) is a rapid development framework with built-in social features.
It is a great fit for building any app where users log in and share information.

It has been used to build all kinds of social apps [http://community.elgg.org/showcase]:

	open networks (similar to Facebook)

	topical (like the Elgg Community)

	private intranets

	dating

	educational

	company blog

There is also a demo site [http://demo.elgg.org] running a standard installation of Elgg.

This is the canonical documentation for the Elgg [http://elgg.org] project.

	Getting Started
	Features

	Bundled plugins

	License

	Installation

	Developer Overview

	Administrator Guides
	Getting Started

	Upgrading Elgg

	Plugins

	Performance

	Cron

	Backup and Restore

	Duplicate Installation

	Getting Help

	Developer Guides
	Don’t Modify Core

	Plugins

	Plugin coding guidelines

	Accessibility

	Ajax

	Authentication

	Context

	Cron

	Database

	File System

	Forms + Actions

	Helper functions

	Internationalization

	JavaScript

	Menus

	Notifications

	Page handler

	Routing

	Services

	Page ownership

	Permissions Check

	Plugin settings

	River

	Routing

	Themes

	Views

	Widgets

	Walled Garden

	Web services

	Upgrading Plugins

	List of events in core

	List of plugin hooks in core

	Tutorials
	Hello world

	Customizing the Home Page

	Building a Blog Plugin

	Integrating a Rich Text Editor

	Basic Widget

	Design Docs
	Actions

	Database

	Events and Plugin Hooks

	Internationalization

	AMD

	Security

	Loggable

	Contributor Guides
	Translations

	Reporting Issues

	Writing Code

	Adding a Service to Elgg

	Writing Documentation

	Internationalizing documentation

	Becoming a Financial Supporter

	Release Process Workflow

	Appendix
	FAQs and Other Troubleshooting

	Roadmap

	Release Policy

	Support policy

	History

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Getting Started

Discover if Elgg is right for your community.

	Features

	Bundled plugins

	License

	Installation

	Developer Overview

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

Features

Demo: http://demo.elgg.org/

Showcases: https://community.elgg.org/showcase

For developers

	Permissive license

	Theme framework

	Internationalization

	Templating engine

	Widgets framework

	Plugin APIs

	Social graph

	Web services API

	jQuery-based JS framework

	Session management

	Custom URL routing

For admins

	User profiles and avatars

	Fine-grained access control lists

	Friends and friends lists (ala G+ circles)

	Responsive, mobile-friendly design

	RSS support

	Activity stream

	Plugins for common content types like blogs, bookmarks, files, microblogging, private messages, documents, message boards, discussion

	User authentication and administration

If you need more functionality than what Elgg offers out-of-the-box there are a couple of options:

	Add more by installing plugins - for example, blogs, forums, social bookmarks

	Develop your own features via plugins

	Hire someone to do the above for you

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

Bundled plugins

Elgg comes with a set of plugins. These provide the basic functionality for your social network.

	Blog

	Dashboard

	Diagnostics

	File repository

	Groups

	Messageboard

	Messages

	Pages

	Profile

	The Wire

The following plugins are also bundled with Elgg, but are not (yet) documented

	aalborg_theme

	bookmarks

	ckeditor

	custom_index

	developers

	embed

	externalpages

	garbagecollector

	htmlawed

	invitefriends

	legacy_urls

	likes

	logbrowser

	logrotate

	members

	notifications

	reportedcontent

	search

	site_notifications

	tagcloud

	twitter_api

	uservalidationbyemail

	web_services

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Blog

A weblog, or blog, is arguably one of the fundamental DNA pieces of most types of social networking site. The simplest form of personal publishing, it allows for text-based notes to be published in reverse-chronological order. Commenting is also an important part of blogging, turning an individual act of publishing into a conversation.

Elgg’s blog expands this model by providing per-entry access controls and cross-blog tagging. You can control exactly who can see each individual entry, as well as find other entries that people have written on similar topics. You can also see entries written by your friends (that you have access to).

See also

Blogging on Wikipedia [http://en.wikipedia.org/wiki/Blog]

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Dashboard

[image: An typical Elgg dashboard]
An typical Elgg dashboard

The dashboard is bundled with both the full and core-only Elgg packages. This is a users portal to activity that is important to them both from within the site and from external sources. Using Elgg’s powerful widget API, it is possible to build widgets that pull out relevant content from within an Elgg powered site as well as grab information from third party sources such as Twitter or Flickr (providing those widgets exist).
A users dashboard is not the same as their profile, whereas the profile is for consumption by others, the dashboard is a space for users to use for their own needs.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Diagnostics

For the technically savvy user, system diagnostics enables you to quickly evaluate the server environment, Elgg code, and plugins of an Elgg install. System diagnostics is a core plugin that comes turned on by default with Elgg. To download the diagnostics file, follow the steps below. The file is a dump of all sorts of useful information.

To use:

	Log in as Administrator

	Go to Administration -> Administer -> Utilities ->System diagnostics

	Click ‘Download’

System diagnostics dump file contents:

	List of all Elgg files along with a hash for each file

	List of all the plugins

	PHP superglobals

	PHP settings

	Apache settings

	
	Elgg CONFIG values

	
	language strings

	site settings

	database settings

	plugin hooks

	actions

	views

	page handlers

	much more

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

File repository

[image: A file in an Elgg file repository]
A file in an Elgg file repository

The file repository allows users to upload any kind of file. As with everything in an Elgg system, you can filter uploaded files by tag and restrict access so that they’re only visible by the people you want them to be. Each file may also have comments attached to it.

There are a number of different uses for this functionality

Photo gallery

When a user uploads photographs or other pictures, they are automatically collated into an Elgg photo gallery that can be browsed through. Users can also see pictures that their friends have uploaded, or see pictures attached to a group. Clicking into an individual file shows a larger version of the photo.

Podcasting

An Elgg file repository RSS feed automatically doubles as an RSS feed, so you can subscribe to new audio content using programs like iTunes.

Special content

It is possible for other plugins to add to the players available for different content types. It’s possible for a plugin author to embed a viewer for Word documents, for example.

Note for developers

To add a special content type player, create a plugin with views of the form file/specialcontent/mime/type. For example, to create a special viewer for Word documents, you would create a view called file/specialcontent/application/msword, because application/msword is the MIME-type for Word documents.
Within this view, the ElggEntity version of the file will be referenced as $vars['entity']. Therefore, the URL of the downloadable file is:

<?php echo $vars['url']; ?>action/file/download?file_guid=<?php echo $vars['entity']->getGUID(); ?>

Using this, it should be possible to develop most types of embeddable viewers.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Groups

[image: A typical group profile]
A typical group profile

Once you have found others with similar interests - or perhaps you are part of a research groups or a course/class - you may want to have a more structured setting to share content and discuss ideas. This is where Elgg’s powerful group building can be used.
You can create and moderate as many groups as you like

	You can keep all group activity private to the group or you can use the ‘make public’ option to disseminate work to the wider public.

	Each group produces granular RSS feeds, so it is easy to follow group developments

	Each group has its own URL and profile

	Each group comes with a File repository, forum, pages and messageboard

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Messageboard

[image: A sample messageboard placed on the profile]
A sample messageboard placed on the profile

The messageboard - similar to ‘The Wall’ in Facebook or a comment wall in other networks is a plugin that lets users put a messageboard widget on their profile. Other users can then post messages that will appear on the messageboard.
You can then reply directly to any message and view the history between yourself and the person posting the message.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Messages

[image: Message notification]
Message notification

Private messaging can be sent to users by clicking on their avatar or profile link, providing you have permission. Then, using the built in WYSIWYG editor, it is possible to format the message. Each user has their own inbox and sentbox. It is possible to be notified via email of new messages.

When users first login, they will be notified about any new message by the messages notification mechanism in their top toolbar.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Pages

[image: An Elgg Page]
An Elgg Page

The pages plugin allows you to save and store hierarchically-organized pages of text, and restrict both reading and writing privileges to them. This means that you can collaboratively create a set of documents with a loose collection of people, participate in a writing process with a formal group, or simply use the functionality to write a document that only you can see, and only choose to share it once it’s done.
The easy navigation menu allows you to see the whole document structure from any page. You can create as many of these structures as you like; each individual page has its own access controls, so you can reveal portions of the structure while keeping others hidden. In keeping with all other elements in Elgg, you can add comments on a page, or search for pages by tag.

Usage

Pages really come into their own in two areas, firstly as a way for users to build up things such as a resume, reflective documentation and so on. The second thing is in the area of collaboration, especially when in the context of groups. With the powerful access controls on both read and write, this plugin is ideal for collaborative document creation.

Note

Developers should note that there are actually 2 types of pages:

	Top-level pages (with subtype page_top)

	Normal pages (with subtype page)

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

Profile

[image: An Elgg profile]
An Elgg profile

The profile plugin is bundled with both the full and core-only Elgg packages. The intention is that it can be disabled and replaced with another profile plugin if you wish.
It provides a number of pieces of functionality which many consider fundamental to the concept of a social networking site, and is unique within the plugins because the profile icon it defines is referenced as standard from all over the system.

User details

This provides information about a user, which is configurable from within the plugin’s start.php file. You can change the available profile fields form the admin panel.
Each profile field has its own access restriction, so users can choose exactly who can see each individual element. Some of the fields contain tags (for example skills) limiting access to a field will also limit who can find you by that tag.

User avatar

[image: The Elgg context menu]
The Elgg context menu

The user avatar represents a user (or a group) throughout the site. By default, this includes a context-sensitive menu that allows you to perform actions on the user it belongs to wherever you see their avatar. For example, you can add them as a friend, send an internal message, and more. Each plugin can add to this context menu, so its full contents will vary depending on the functionality active in the current Elgg site.

Notes for developers

	Using a different profile icon

	To replace the profile icon, or provide more content, extend the icon/user/default view.

	Adding to the context menu

	The context menu can be expanded by registering a plugin hook for ‘register’ ‘menu:user_hover’, the following sections have special meaning:

	default for non-active links (eg to read a blog)

	admin for links accessible by administrators only

In each case, the user in question will be passed as $params['entity'].

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

 	Bundled plugins

The Wire

Elgg wire plugin “The Wire” is Twitter-style microblogging plugin that allows users to post notes to the wire.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

License

MIT or GPLv2

A full Elgg package that includes the framework and a core set of plugins
is available under version 2 of the GNU General Public License [http://www.gnu.org/licenses/gpl-2.0.html] (GPLv2).
We also make the framework (without the plugins) available under the MIT license.

FAQ

The following answers are provided as a convenience to you; they are not legal counsel.
Consult with a lawyer to be sure about the answers to these questions.
The Elgg Foundation cannot be held responsible for decisions you make based on what you read on this page.

For questions not answered here, please refer to the official FAQ for the GPLv2 [http://www.gnu.org/licenses/gpl-faq.html].

How much does Elgg cost?

Elgg is free to download, install, and use.
If you’d like to donate, we do appreciate our financial supporters [http://elgg.org/supporter.php]!

Can I remove the Elgg branding/links?

Yes.

Can I modify the source code?

Yes, but in general we recommend you make your modifications as plugins
so that when a new version of Elgg is released, the upgrade process is as painless as possible.

Can I charge my users membership fees?

Yes.

If I modify Elgg, do I have to make the changes available?

No, if you are using Elgg to provide a service, you do not have to make the source available.
If you distribute a modified version of Elgg, then you must include the source code for the changes.

If I use Elgg to host a network, does The Elgg Foundation have any rights over my network?

No.

What’s the difference between the MIT and GPL versions?

Plugins are not included with the MIT version.

You can distribute a commercial product based on Elgg using the MIT version without making your modifications available.

With the GPL licensed version, you have to include make your modifications of the framework public if you redistribute the framework.

Why are plugins missing from the MIT version?

The plugins were developed under the GPL license, so they cannot be released under an MIT license.
Also, some plugins include external dependencies that are not compatible with the MIT license.

May I distribute a plugin for Elgg under a commercial license?

We believe you can, since plugins typically depend only the core framework and the framework is available under the MIT license.
That said, we really recommend you consult with a lawyer on this particular issue to be absolutely sure.

Note that plugins released via the community site repository must be licensed under a GPLv2-compatible license.
They do not necessarily have to be GPLv2, just compatible (like MIT).

Can we build our own tool that uses Elgg and sell that tool to our clients?

Yes, but then your clients will be free to redistribute that tool under the terms of the GPLv2.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

Installation

Get your own instance of Elgg running in no time.

Contents

	Requirements

	Overview

	Other Configurations

	Troubleshooting

Requirements

	MySQL 5+

	PHP 5.5+ with the following extensions:
	GD (for graphics processing)

	Multibyte String support [http://www.php.net/mbstring] (for i18n)

	Proper configuration and ability to send email through an MTA

	Web server with support for URL rewriting

Official support is provided for the following configurations:

	
	Apache server

	
	Apache with the rewrite module [http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html] enabled

	PHP running as an Apache module

	
	Nginx server

	
	Nginx with PHP-FPM using FastCGI

By “official support”, we mean that:

	Most development and testing is performed with these configurations

	Much of the installation documentation is written assuming Apache or Nginx is used

	Priority on bug reports is given to Apache and Nginx users if the bug is web server specific
(but those are rare).

Browser support policy

Feature branches support the latest 2 versions of all major browsers
as were available at the time of the first stable release on that branch.

Bugfix release will not alter browser support,
even if a new version of the browser has since been released.

Major browsers here means all of the following, plus their mobile counterparts:

	Android Browser

	Chrome

	Firefox

	IE

	Safari

“Support” may mean that we take advantage of newer, unimplemented technologies
but provide a JavaScript polyfill for the browsers that need it.

You may find that Elgg happens to work on unsupported browsers,
but compatibility may break at any time, even during a bugfix release.

Overview

Upload Elgg

With Composer (recommended if comfortable with CLI):

cd /path/to/wwwroot/
composer self-update
composer global require "fxp/composer-asset-plugin:~1.1.4"
composer create-project elgg/starter-project:dev-master .
composer install
composer install # 2nd call is currently required

From pre-packaged zip (recommended if not comfortable with CLI):

	Download the latest version of Elgg [https://elgg.org/download.php]

	Upload the ZIP file with an FTP client to your server

	Unzip the files in your domain’s document root.

Create a data folder

Elgg needs a special folder to store uploaded files including profile
icons and photos. You will need to create this directory.

Warning

For security reasons, this folder MUST be stored outside of your
document root. If you created it under /www/ or /public_html/, you’re
doing it wrong.

Once this folder has been created, you’ll need to make sure the web
server Elgg is running on has permission to write to and create
directories in it. This shouldn’t be a problem on Windows-based servers,
but if your server runs Linux, Mac OS X or a UNIX variant, you’ll need
to set the permissions on the directory [http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions].

If you are using a graphical FTP client to upload files, you can
usually set permissions by right clicking on the folder and
selecting ‘properties’ or ‘Get Info’.

Note

Directories must be executable to be read and written to. The
suggested permissions depend upon the exact server and user
configuration. If the data directory is owned by the web server
user, the recommended permissions are 770.

Setting your data directory to 777 will work, but it is insecure
and is not recommended. If you are unsure how to correctly set
permissions, contact your host for more information.

Create a MySQL database

Using your database administration tool of choice (if you’re unsure
about this, ask your system administrator), create a new MySQL database
for Elgg. You can create a MySQL database with any of the following
tools:

Make sure you add a user to the database with all privileges and record
the database name, username and password. You will need this information
when installing Elgg.

Visit your Elgg site

Once you’ve performed these steps, visit your Elgg site in your web
browser. Elgg will take you through the rest of the installation process
from there. The first account that you create at the end of the
installation process will be an administrator account.

A note on settings.php and .htaccess

The Elgg installer will try to create two files for you:

	elgg-config/settings.php, which contains local environment configuration for your installation

	.htaccess, which allows Elgg to generate dynamic URLs

If these files can’t be automatically generated, for example because the
web server doesn’t have write permissions in the directories, Elgg will
tell you how to create them. You could also temporarily change the
permissions on the root directory and the engine directory. Set the
permissions on those two directories so that the web server can write
those two files, complete the install process, and them change the
permissions back to their original settings. If, for some reason, this
won’t work, you will need to:

	In elgg-config/, copy settings.example.php to settings.php, open it up
in a text editor and fill in your database details

	On Apache server, copy install/config/htaccess.dist to .htaccess

	On Nginx server copy install/config/nginx.dist to /etc/nginx/sites-enabled and adjust it’s contents

Other Configurations

	Cloud9

	EasyPHP

	IIS

	MAMP

	MariaDB

	Nginx

	Ubuntu

	Virtual hosts

	XAMPP

Troubleshooting

Help! I’m having trouble installing Elgg

First:

	Recheck that your server meets the technical requirements for Elgg.

	Follow the environment-specific instructions if need be

	Have you verified that mod_rewrite is being loaded?

	Is the mysql apache being loaded?

Keep notes on steps that you take to fix the install. Sometimes changing
some setting or file to try to fix a problem may cause some other
problem later on. If you need to start over, just delete all the files,
drop your database, and begin again.

I can’t save my settings on installation (I get a 404 error when saving settings)

Elgg relies on the mod_rewrite Apache extension in order to simulate
certain URLs. For example, whenever you perform an action in Elgg, or
when you visit a user’s profile, the URL is translated by the server
into something Elgg understands internally. This is done using rules
defined in an .htaccess file, which is Apache’s standard way of
defining extra configuration for a site.

This error suggests that the mod_rewrite rules aren’t being picked
up correctly. This may be for several reasons. If you’re not comfortable
implementing the solutions provided below, we strongly recommend that
you contact your system administrator or technical support and forward
this page to them.

The .htaccess, if not generated automatically (that happens when you
have problem with mod_rewrite), you can create it by renaming
install/config/htaccess.dist file you find with elgg package to .htaccess. Also
if you find a .htaccess file inside the installation path, but you
are still getting 404 error, make sure the contents of .htaccess are
same as that of install/config/htaccess.dist.

``mod_rewrite`` isn’t installed.

Check your httpd.conf to make sure that this module is being loaded
by Apache. You may have to restart Apache to get it to pick up any
changes in configuration. You can also use PHP info [http://uk.php.net/manual/en/function.phpinfo.php] to check to see
if the module is being loaded.

The rules in ``.htaccess`` aren’t being obeyed.

In your virtual host configuration settings (which may be contained
within httpd.conf), change the AllowOverride setting so that it
reads:

AllowOverride all

This will tell Apache to pick up the mod_rewrite rules from
.htaccess.

Elgg is not installed in the root of your web directory (ex:
http://example.org/elgg/ instead of http://example.org/)

The install script redirects me to “action” when it should be “actions”

This is a problem with your mod_rewrite setup.
DO NOT, REPEAT, DO NOT change any directory names!

I installed in a subdirectory and my install action isn’t working!

If you installed Elgg so that it is reached with an address like
http://example.org/mysite/ rather than http://example.org/, there is a
small chance that the rewrite rules in .htaccess will not be processed
correctly. This is usually due to using an alias with Apache. You may
need to give mod_rewrite a pointer to where your Elgg installation is.

	Open up .htaccess in a text editor

	Where prompted, add a line like
RewriteBase /path/to/your/elgg/installation/ (Don’t forget the
trailing slash)

	Save the file and refresh your browser.

Please note that the path you are using is the web path, minus the
host.

For example, if you reach your elgg install at http://example.org/elgg/,
you would set the base like this:

RewriteBase /elgg/

Please note that installing in a subdirectory does not require using
RewriteBase. There are only some rare circumstances when it is needed
due to the set up of the server.

I did everything! mod_rewrite is working fine, but still the 404 error

Maybe there is a problem with the file .htaccess. Sometimes the elgg
install routine is unable to create one and unable to tell you that. If
you are on this point and tried everything that is written above:

	check if it is really the elgg-created .htaccess (not only a dummy
provided from the server provider)

	if it is not the elgg provided htaccess file, use the htaccess_dist
(rename it to .htaccess)

I get an error message that the rewrite test failed after the requirements check page

I get the following messages after the requirements check step (step 2) of the install:

We think your server is running the Apache web server.

The rewrite test failed and the most likely cause is that AllowOverride is not set to All for Elgg’s directory. This prevents
Apache from processing the .htaccess file which contains the rewrite rules.

A less likely cause is Apache is configured with an alias for your Elgg directory and you need to set the RewriteBase in
your .htaccess. There are further instructions in the .htaccess file in your Elgg directory.

After this error, everinteraction with the web interface results in a error 500 (Internal Server Error)

This is likely caused by not loading the “filter module by un-commenting the

#LoadModule filter_module modules/mod_filter.so

line in the “httpd.conf” file.

the Apache “error.log” file will contain an entry similar to:

... .htaccess: Invalid command ‘AddOutputFilterByType’, perhaps misspelled or defined by a module not included in the server configuration

There is a white page after I submit my database settings

Check that the Apache mysql module is installed and is being loaded.

I’m getting a 404 error with a really long url

If you see a 404 error during the install or on the creation of the
first user with a url like:
http://example.com/homepages/26/d147515119/htdocs/elgg/action/register
that means your site url is incorrect in your sites_entity table in
your database. This was set by you on the second page of the install.
Elgg tries to guess the correct value but has difficulty with shared
hosting sites. Use phpMyAdmin to edit this value to the correct base
url.

I am having trouble setting my data path

This is highly server specific so it is difficult to give specific
advice. If you have created a directory for uploading data, make sure
your http server can access it. The easiest (but least secure) way to do
this is give it permissions 777. It is better to give the web server
ownership of the directory and limit the permissions.

The top cause of this issue is PHP configured to prevent access to most
directories using open_basedir [http://www.php.net/manual/en/ini.core.php#ini.open-basedir]. You may want to check with your
hosting provider on this.

Make sure the path is correct and ends with a /. You can check the path
in your database in the datalists table.

If you only have ftp access to your server and created a directory but
do not know the path of it, you might be able to figure it out from the
www file path set in your datalists database table. Asking for help from
your hosting help team is recommended at this stage.

I can’t validate my admin account because I don’t have an email server!

While it’s true that normal accounts (aside from those created from the
admin panel) require their email address to be authenticated before they
can log in, the admin account does not.

Once you have registered your first account you will be able to log in
using the credentials you have provided!

I have tried all of these suggestions and I still cannot install Elgg

It is possible that during the process of debugging your install you
have broken something else. Try doing a clean install:

	drop your elgg database

	delete your data directory

	delete the Elgg source files

	start over

If that fails, seek the help of the Elgg community [http://community.elgg.org/].
Be sure to mention what version of Elgg you are installing, details of
your server platform, and any error messages that you may have received
including ones in the error log of your server.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Getting Started

Developer Overview

This is a quick developer introduction to Elgg. It covers the basic approach to working with
Elgg as a framework, and mentions some of the terms and technologies used.

See the Developer Guides for tutorials or the Design Docs for in-depth discussion on design.

Database and Persistence

Elgg uses MySQL 5.5 or higher for data persistence, and maps database values into Entities (a
representation of an atomic unit of information) and Extenders (additional information and
descriptions about Entities). Elgg supports additional information such as relationships between
Entities, activity streams, and various types of settings.

Plugins

Plugins change the behavior or appearance of Elgg by overriding views, or by handling events and plugin hooks.
All changes to an Elgg site should be implemented through plugins to ensure upgrading core is easy.

Actions

Actions are the primary way users interact with an Elgg site. Actions are registered by plugins.

Events and Plugin Hooks

Events and Plugin Hooks are used in Elgg Plugins to interact with the Elgg engine under certain
circumstances. Events and hooks are triggered at strategic times throughout Elgg’s boot and execution
process, and allows plugins to modify or cancel the default behavior.

Views

Views are the primary presentation layer for Elgg. Views can be overridden or extended by Plugins.
Views are categories into a Viewtype, which hints at what sort of output should be expected by the
view.

JavaScript

Elgg uses an AMD-compatible JavaScript system provided by require.js. Bundled with Elgg are jQuery
1.11.0, jQuery UI 1.10.4, jQuery Form v20140304, jQuery jeditable, and jQuery UI Autocomplete.

Plugins can load their own JS libs.

Internationalization

Elgg’s interface supports multiple languages, and uses Transifex [https://www.transifex.com/projects/p/elgg-core/] for translation.

Caching

Elgg uses two caches to improve performance: a system cache and SimpleCache.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Administrator Guides

Best practices for effectively managing an Elgg-based site.

	Getting Started

	Upgrading Elgg

	Plugins

	Performance

	Cron

	Backup and Restore

	Duplicate Installation

	Getting Help

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Getting Started

You have installed Elgg and worked through any potential initial issues. What now? Here are some
suggestions on how to to familiarize yourself with Elgg.

Focus first on core functionality

When you’re new to Elgg, it’s best to explore the stock features in core and its bundled plugins before installing any third party plugins. It’s tempting install every interesting plugin from the community site, but exploring the core features builds a familiarity with Elgg’s expected behavior, and prevents introducing any confusing bugs from third party plugin into your new Elgg network.

Elgg installs with a basic set of social network plugins activated: blogs, social bookmarking, files, groups, likes, message boards, wiki-like pages, user profiles, and microblogging. To change the plugins that are activated, log in as an admin user, then use the topbar to browse to Administration, then to Plugins on the right sidebar.

Note

The user you create during installation is an admin user.

Create test users

Users can be created two ways in stock Elgg:

	Complete the signup process using a different email address and username. (Logout first or use a different browser!)

	Add a user through the Admin section by browsing to Administration -> Users -> Add New User.

Note

Users that self-register must validate their account through email before they can log in. Users that an admin creates are already validated.

Explore user functionality

Use your test users to create blogs, add widgets to your profile or dashboard, post to the Wire (microblogging), and create pages (wiki-like page creation). Investigate the Settings on the topbar. This is where a user sets notification settings and configures tools (which will be blank because none of the default plugins add controls here).

Explore admin functionality

All of the admin controls are found by clicking Administration in the topbar. The has a dashboard with a widget that explains the various sections. Change options in the Configure menu to change how Elgg looks and acts.

Extending Elgg

After exploring what Elgg can do out of the box, install some themes and plugins. You can find many plugins and themes at the community site that have been developed by third parties. These plugins do everything from changing language strings, to adding chat, to completely redesigning Elgg’s interface. Because these plugins are not official, be certain to check the comments to make sure you only install well-written plugins by high quality developers.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Upgrading Elgg

Switch a live site to a new version of Elgg.

If you’ve written custom plugins, you should also read the developer guides for
information on upgrading plugin code for the latest version of Elgg.

Advice

	Back up your database and code

	Mind any version-specific comments below

	Upgrade only one minor version at a time (1.6 => 1.7, then 1.7 => 1.8)

	Try out the new version on a test site before doing an upgrade

	Report any problems in plugins to the plugin authors

	If you are a plugin author you can report any backwards-compatibility issues to GitHub [https://github.com/Elgg/Elgg/issues]

Basic instructions

	Back up your database, data directory, and code

	Download the new version of Elgg from http://elgg.org

	
	Update the files

	
	If doing a patch upgrade (1.9.x), overwrite your existing files with the new version of Elgg

	If doing a minor upgrade (1.x), replace the existing core files completely

	
	Merge any new changes to the rewrite rules

	
	For Apache from install/config/htaccess.dist into .htaccess

	For Nginx from install/config/nginx.dist into your server configuration (usually inside /etc/nginx/sites-enabled)

	Merge any new changes from settings.example.php into settings.php

	Visit http://your-elgg-site.com/upgrade.php

Note

Any modifications should have been written within plugins, so that they are not lost on overwriting.
If this is not the case, take care to maintain your modifications.

Deprecations in 2.x

2.2

User avatars are now served via serve-file handler. Plugins should start using elgg_get_inline_url() and note that:

	/avatar/view page handler and resource view have been deprecated

	/mod/profile/icondirect.php file has been deprecated

	profile_set_icon_url() is no longer registered as a callback for "entity:icon:url","user" plugin hook

Group avatars are now served via serve-file handler. Plugins should start using elgg_get_inline_url() and note that:

	groupicon page handler (groups_icon_handler()) has been deprecated

	/mod/groups/icon.php file has been deprecated

File entity thumbs and downloads are now served via serve-file handler. Plugins should start using elgg_get_inline_url() and elgg_get_download_url() and note that:

	file/download page handler and resource view have been deprecated

	mod/file/thumbnail.php file has been deprecated

	Several views have been updated to use new download URLs, including:
	mod/file/views/default/file/specialcontent/audio/default.php

	mod/file/views/default/file/specialcontent/image/default.php

	mod/file/views/default/resources/file/view.php

	mod/file/views/rss/file/enclosure.php

From 1.x to 2.0

Removed plugins

The following plugins are no longer bundled with Elgg core:

	categories (https://github.com/elgg/categories)

	zaudio (https://github.com/elgg/zaudio)

IE-specific workarounds have been dropped

Several views (css/ie, css/ie7, css/ie8, etc.) as well as conditional
comments have been discarded now that IE10+ browsers are more standards-compliant.
If you need browser support farther back than that, you will need to find or build
a plugin that introduces its own compatibility layer or polyfills.

Update your webserver config

URL paths like cache/* and rewrite.php now use the main front controller
script. You must remove these rewrite rules from your webserver config (e.g. .htaccess).

Also remove the rules for paths like export/*; these endpoints have been removed.

Settings location

After upgrading, move your settings.php file from engine/ to elgg-config/.

From 1.10 to 1.11

Breaking changes

In versions 1.9 and 1.10, names and values for metadata and annotations were not correctly trimmed
for whitespace. Elgg 1.11 correctly trims these strings and updates the database to correct
existing strings. If your plugin uses metadata or annotations with leading or trailing whitespace,
you will need to update the plugin to trim the names and values. This is especially important if
you are using custom SQL clauses or have hard-coded metastring IDs, since the update might change
metastring IDs.

From 1.8 to 1.9

Elgg 1.9 is a much lighter upgrade than 1.8 was.

Breaking changes

Plugins and themes written for 1.8 are expected to be compatible with 1.9
except as it pertains to comments, discussion replies, and notifications.
Please report any backwards compatibility issues [https://github.com/Elgg/Elgg/issues] besides those just listed.

Upgrade steps

There are several data migrations involved, so it is especially important that you
back up your database and data directory before performing the upgrade.

Download the new version and copy these files from the existing 1.8 site:

	.htaccess

	engine/settings.php

	any 3rd-party plugin folders in the mod directory

Then replace the old installation directory with the new one. This way you are
guaranteed to get rid of obsolete files which might cause problems if left behind.

Follow the basic instructions listed above.

After you’ve visited upgrade.php, go to the admin area of your site.
You should see a notification that you have pending upgrades.
Click the link in the notification bar to view and run the upgrades.

The new notifications system delivers messages via a minutely cron handler.
If you haven’t done so yet, you will need to install and configure crontab
on your server. If cron jobs are already configured, note that the scope of
available cron periods may have changed and you may need to update your current crontab
to reflect these changes.

Time commitment

Running all of the listed upgrades took about 1 hour and 15 minutes [https://community.elgg.org/discussion/view/1819798/community-site-upgraded]
on the Elgg community site which at the time had to migrate:

	~75,000 discussion replies

	~75,000 comments

	~75,000 data directories

You should take this only as a ballpark estimate for your own upgrade.
How long it takes will depend on how large your site is and how powerful your servers are.

From 1.7 to 1.8

Elgg 1.8 is the biggest leap forward in the development of Elgg since version 1.0.
As such, there is more work to update core and plugins than with previous upgrades.

Updating core

Delete the following core directories (same level as _graphics and engine):

	_css

	account

	admin

	dashboard

	entities

	friends

	search

	settings

	simplecache

	views

Warning

If you do not delete these directories before an upgrade, you will have problems!

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Plugins

Plugins can modify the behavior of and add new features to Elgg.

Contents

	Where to get plugins

	The Elgg Community
	Finding Plugins

	Evaluating Plugins

	Types of plugins
	Themes

	Language Packs

	Installation

	Plugin order

	Pre-1.8 notes

Where to get plugins

Plugins can be obtained from:

	The Elgg Community [http://community.elgg.org/plugins]

	Github [https://github.com/Elgg]

	Third-party sites (typically for a price)

If no existing plugins meet your needs, you can hire a developer [http://community.elgg.org/groups/profile/75603/professional-services] or create your own.

The Elgg Community

Finding Plugins

Sort based on most popular

On the community plugin page, you can sort by date uploaded (Filter: Newest) or number of downloads (Filter: Most downloads). Sorting by the number of downloads is a good idea if you are new to Elgg and want to see which plugins are frequently used by other administrators. These will often (but not always) be higher quality plugins that provide significant capabilities.

Use the plugin tag search

Next to the filtering control on the plugin page is a search box. It enables you to search by tags. Plugins authors choose the tags.

Look for particular plugin authors

The quality of plugins varies substantially. If you find a plugin that works well on your site, you can check what else that plugin author has developed by clicking on their name when viewing a plugin.

Evaluating Plugins

Look at the comments and ratings

Before downloading and using a plugin, it is always a good idea to read through the comments that others have left. If you see people complaining that the plugin does not work or makes their site unstable, you probably want to stay away from that plugin. The caveat to that is that sometimes users ignore installation instructions or incorrectly install a plugin and then leave negative feedback. Further, some plugin authors have chosen to not allow comments.

Install on a test site

If you are trying out a plugin for the first time, it is a bad idea to install it on your production site. You should maintain a separate test site for evaluating plugins. It is a good idea to slowly roll out new plugins to your production site even after they pass your evaluation on your test site. This enables you to isolate problems introduced by a new plugin.

Types of plugins

Themes

Themes are plugins that modify the look-and-feel of your site. They generally
include stylesheets, client-side scripts and views that alter the default
presentation and behavior of Elgg.

Language Packs

Language packs are plugins that provide support for other languages.

Language packs can extend and include translations for language strings
found in the core, core plugins and/or third-party plugins.

Some of the language packs are already included in the core, and can be found in
languages directory off Elgg’s root directory. Individual plugins tend to
include their translations under the languages directory within the plugin’s
root.

This structure makes it easy to create new language packs that supercede existing
language strings or add support for new languages.

Installation

All plugins reside in the mod directory of your Elgg installation.

	To install a new plugin:

	
	extract (unzip) contents of the plugin distribution package

	copy/FTP the extracted folder into the mod directory of your Elgg
installation, making sure that manifest.xml and start.php are
directly under the plugin directory (e.g. if you were to install a plugin called
my_elgg_plugin, plugin’s manifest would need to be found at
mod/my_elgg_plugin/manifest.xml)

	activate the plugin from your admin panel

	To activate a plugin:

	
	Log in to your Elgg site with your administrator account

	Go to Administration -> Configure -> Plugins

	Find your plugin in the list of installed plugins and click on the
‘enable’ button.

Plugin order

Plugins are loaded according to the order they are listed on the Plugins page. The initial ordering after an install is more or less random. As more plugins are added by an administrator, they are placed at the bottom of the list.

Some general rules for ordering plugins:

	A theme plugin should be last or at least near the bottom

	A plugin that modifies the behavior of another plugin should be lower in the plugin list

Pre-1.8 notes

In Elgg 1.7 and below, the interface for managing installed plugins is located at
Administration -> Tool Administration.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Performance

Make your site run as smoothly and responsively as possible.

Contents

	Can Elgg scale to X million users?

	Measure first

	Tune MySQL

	Enable caching
	Simplecache

	System cache

	Boot cache (experimental)

	Database query cache

	Etags and Expires headers

	Memcache

	Squid

	Bytecode caching

	Direct file serving

	Hosting
	Memory, CPU and bandwidth

	Configuration

	Check for poorly-behaved plugins

	Use client-rendered HTML

Can Elgg scale to X million users?

People often ask whether Elgg can scale to large installations.

First, we might stop and ask, “where are you planning to get all those users?”
Seriously, though, this is a really interesting problem.
Making Elgg scale is, if anything, an issue of technical engineering.
It’s interesting but more or less a solved problem.
Computer science doesn’t work differently for Elgg than for Google, for example.
Getting millions of users? That’s like the Holy Grail of the entire tech industry.

Second, as with most things in life, the answer is “it depends”:

	How active are your users?

	What hardware is Elgg running on?

	Are your plugins behaving well?

Improving the efficiency of the Elgg engine [https://github.com/elgg/elgg/issues?labels=performance&state=open] is an ongoing project,
although there are limits to the amount that any script can do.

If you are serious about scalability you will probably want to look at a number of things yourself.

Measure first

There is no point in throwing resources at a problem if you don’t know:

	what the problem is

	what resources the problem needs

	where those resources are needed

Invest in some kind of profiling to tell you where your bottleneck is,
especially if you’re considering throwing significant money at a problem.

Tune MySQL

Elgg makes extensive use of the back end database, making many trips on each pageload.
This is perfectly normal and a well configured database server will be able to cope with thousands of requests per second.

Here are some configuration tips that might help:

	Make sure that MySQL is configured to use an appropriate my.cnf for the size of your website.

	Increase the amount of memory available to PHP and MySQL
(you will have to increase the amount of memory available to the php process in any case)

Enable caching

Generally, if a program is slow, that is because it is repeatedly performing an expensive computation or operation.
Caching allows the system to avoid doing that work over and over again
by using memory to store the results so that you can skip all the work on subsequent requests.
Below we discuss several generally-available caching solutions relevant to Elgg.

Simplecache

By default, views are cached in the Elgg data directory for a given period of time.
This removes the need for a view to be regenerated on every page load.

This can be disabled by setting $CONFIG->simplecache_enabled = false;
For best performance, make sure this value is set to true.

This does lead to artifacts during development if you are editing themes in your plugin
as the cached version will be used in preference to the one provided by your plugin.

The simple cache can be disabled via the administration menu.
It is recommended that you do this on your development platform if you are writing Elgg plugins.

This cache is automatically flushed when a plugin is enabled, disabled or reordered,
or when upgrade.php is executed.

For best performance, you can also create a symlink from /cache/ in your www
root dir to the /views_simplecache/ directory in the data directory you
configured when you installed Elgg:

cd /path/to/wwwroot/
ln -s /path/to/dataroot/views_simplecache/ cache

If your webserver supports following symlinks, this will serve files straight off
disk without booting up PHP each time.

System cache

The location of views are cached so that they do not have to be
discovered (profiling indicated that page load took a non-linear amount
of time the more plugins were enabled due to view discovery).
Elgg also caches information like the language mapping and class map.

This can be disabled by setting $CONFIG->system_cache_enabled = false;
For best performance, make sure this value is set to true.

This is currently stored in files in your dataroot (although later
versions of Elgg may use memcache). As with the simple cache it is
flushed when a plugin is enabled, disabled or reordered, or when
upgrade.php is executed.

The system cache can be disabled via the administration menu, and it is
recommended that you do this on your development platform if you are
writing Elgg plugins.

Boot cache (experimental)

Elgg has the ability to cache numerous resources created and fetched during
the boot process. To enable this cache you must set a TTL in your settings.php
file: $CONFIG->boot_cache_ttl = 10;

A small TTL is recommended because it brings all the benefits of caching under load
while reducing the harm if Elgg’s cache invalidation strategy should miss something.

Database query cache

For the lifetime of a given page’s execution, a cache of all SELECT queries is kept.
This means that for a given page load a given select query will only ever go out to the database once,
even if it is executed multiple times. Any write to the database will flush this cache,
so it is advised that on complicated pages you postpone database writes until
the end of the page or use the execute_delayed_* functionality.
This cache will be automatically cleared at the end of a page load.

You may experience memory problems if you use the Elgg framework as a library in a PHP CLI script.
This can be disabled by setting $CONFIG->db_disable_query_cache = true;

Etags and Expires headers

These technologies tell your users’ browsers to cache static assets (CSS, JS, images) locally.
Having these enabled greatly reduces server load and improves user-perceived performance.

Use the Firefox yslow plugin [https://addons.mozilla.org/en-us/firefox/addon/yslow/] or Chrome DevTools Audits
to confirm which technologies are currently running on your site.

	If the static assets aren’t being cached:

	
	Verify that you have these extensions installed and enabled on your host

	Update your .htaccess file, if you are upgrading from a previous version of Elgg

	Enable Simplecache, which turns select views into browser-cacheable assets

Memcache

Memcache is a generic caching technology developed by Brad Fitzpatrick for LiveJournal.

Warning

SUPPORT FOR MEMCACHE IS EXPERIMENTAL AND MAY BE CHANGED.

Installation requirements:

	php5-memcache

	memcached

Configuration:

Uncomment and populate the following sections in settings.php

$CONFIG->memcache = true;

$CONFIG->memcache_servers = array (
 array('server1', 11211),
 array('server2', 11211)
);

Optionaly if you run multiple Elgg installations but use ony one Memcache server, you may want
to add a namespace prefix. In order to do this, uncomment the following line

$CONFIG->memcache_namespace_prefix = '';

Squid

We have had good results by using Squid [http://en.wikipedia.org/wiki/Squid_cache] to cache images for us.

Bytecode caching

There are numerous PHP code caches available on the market.
These speed up your site by caching the compiled byte code from your
script meaning that your server doesn’t have to compile the PHP code
each time it is executed.

Direct file serving

If your server can be configured to support the X-Sendfile or X-Accel headers,
you can configure it to be used in settings.php. This allows your web server to
directly stream files to the client instead of using PHP’s readfile().

Hosting

Don’t expect to run a site catering for millions of users on a cheap shared host.
You will need to have your own host hardware and access over the configuration,
as well as lots of bandwidth and memory available.

Memory, CPU and bandwidth

Due to the nature of caching, all caching solutions will require memory.
It is a fairly cheap return to throw memory and CPU at the problem.

On advanced hardware it is likely that bandwidth is going to be your bottleneck before the server itself.
Ensure that your host can support the load you are suggesting.

Configuration

Lastly, take a look at your configuration as there are a few gotchas that can catch people.

For example, out of the box, Apache can handle quite a high load.
However, most distros of Linux come with mysql configured for small sites.
This can result in Apache processes getting stalled waiting to talk to one very overloaded MySQL process.

Check for poorly-behaved plugins

Plugins can be programmed in a very naive way and this can cause your whole site to feel slow.

Try disabling some plugins to see if that noticeably improves performance.
Once you’ve found a likely offender, go to the original plugin author and report your findings.

Use client-rendered HTML

We’ve found that at a certain point, much of the time spent on the server
is simply building the HTML of the page with Elgg’s views system.

It’s very difficult to cache the output of templates since they can generally take arbitrary inputs.
Instead of trying to cache the HTML output of certain pages or views,
the suggestion is to switch to an HTML-based templating system so that the user’s browser can cache the templates themselves.
Then have the user’s computer do the work of generating the output by applying JSON data to those templates.

This can be very effective, but has the downside of being significant extra development cost.
The Elgg team is looking to integrate this strategy into Elgg directly,
since it is so effective especially on pages with repeated or hidden content.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Cron

Cron [http://en.wikipedia.org/wiki/Cron] is a program available on Unix-based operating systems that enables
users to run commands and scripts at set intervals or at specific times.

Elgg’s cron handler allows administrators and plugin developers to setup jobs
that need to be executed at set intervals.

Most common examples of cron jobs in Elgg include:

	sending out queued notifications

	rotating the system log in the database

	collecting garbage in the database (compacting the database by removing
entries that are no longer required)

Currently, Elgg supports the following hooks:

	minute - Run every minute

	fiveminute - Run every 5 minutes

	fifteenmin - Run every 15 minutes

	halfhour - Run every 30 minutes

	hourly - Run every hour

	daily - Run every day

	weekly - Run every week

	monthly - Run every month

	yearly - Run every year

Note

reboot cron hook has been deprecated and should not be used

How does it work?

Elgg activates its cron handler when particular cron pages are loaded.
As an example, loading http://example.com/cron/hourly/ in a web browser
activates the hourly hook. To automate this, cron jobs are setup to hit those
pages at certain times. This is done by setting up a crontab which is a
configuration file that determines what cron jobs do and at what interval.

Installation

The crontab needs to specify a script or command that will hit the Elgg cron pages.
Two commonly available programs for this are GET and wget. You will need
to determine the location of one of these on your server. Your crontab also needs
to specify the location of your website.

Crontab example.
#
This file is an example of triggering Elgg cron events. It hits a URL to
trigger the events. For testing, you can simulate the cronjob by loading the
URL in a browser.
#
See http://learn.elgg.org/en/stable/admin/cron.html for more information
#

Location of your site (don't forget the trailing slash!)
ELGG='http://www.example.com/'

Location of lwp-request
LWPR='/usr/bin/lwp-request'

Make GET request and discard content
GET="$LWPR -m GET -d"

The crontab
Don't edit below this line unless you know what you are doing
* * * * * $GET ${ELGG}cron/minute/
*/5 * * * * $GET ${ELGG}cron/fiveminute/
15,30,45,59 * * * * $GET ${ELGG}cron/fifteenmin/
30,59 * * * * $GET ${ELGG}cron/halfhour/
@hourly $GET ${ELGG}cron/hourly/
@daily $GET ${ELGG}cron/daily/
@weekly $GET ${ELGG}cron/weekly/
@monthly $GET ${ELGG}cron/monthly/
@yearly $GET ${ELGG}cron/yearly/
reboot is deprecated and probably doesn't work
@reboot $GET ${ELGG}cron/reboot/

In the above example, change the ELGG and GET variables to match you server setup.
If you have SSH access to your Linux servers, type crontab -e and add
your crontab configuration. If you already have a crontab configured, you will have to
merge Elgg information into it. If you don’t have SSH access, you will have to use
a web-based configuration tool. This will vary depending on hosting provider.

If you choose the wget utility, you might want to consider these flags:

	--output-document or -O to specify the location of the concatenated output file.
For example, under Debian: /usr/bin/wget --output-document=/dev/null. If you don’t do
that, a new file will be created for each cron page load in the home directory of the cron user.

	--spider to prevent the cron page from being downloaded.

On Windows servers, there is a number of cron emulators available.

For information on setting up cron jobs using cPanel see cPanel Docs [http://docs.cpanel.net/twiki/bin/view/AllDocumentation/CpanelDocs/CronJobs].

In the command field, enter the appropriate link of the cron page.
For example, for a weekly cron job, enter the command as http://www.example.com/cron/weekly/.

To see if your cron jobs are running, visit Statistics > Cron in your Elgg admin
panel.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Backup and Restore

Contents

	Introduction
	Why

	What

	Assumptions

	Creating a usable backup - automatically
	Customize the backup script

	Configure the backup Cron job

	Configure the cleanup Cron job

	Restoring from backup
	Prepare your backup files

	Restore the files

	Restore the MySQL Database

	Edit the MySQL backup

	Create the new database

	Restore the production database

	Bringing it all together

	Finalizing the new installation

	Congratulations!

	Related

Introduction

Why

Shared hosting providers typically don’t provide an automated way to backup your Elgg installation. This article will address a method of accomplishing this task.

In IT there are often many ways to accomplish the same thing. Keep that in mind. This article will explain one method to backup and restore your Elgg installation on a shared hosting provider that uses the CPanel application. However, the ideas presented here can be tailored to other applications as well. The following are typical situations that might require a procedure such as this:

	Disaster Recovery

	Moving your Elgg site to a new host

	Duplicating an installation

What

Topics covered:

	Full backups of the Elgg directories and MySQL databases are performed daily (automated)

	The backups are sent to an off-site location via FTP (automated)

	The local backups are deleted after successful transfer to the off-site location (automatic)

	Five days of backups will be maintained (automated)

	Restoration of data to the new host (manual)

This process was composed with assistance from previous articles in the Elgg documentation wiki.

Assumptions

The following assumptions have been made:

	The Elgg program directory is /home/userx/public_html

	The Elgg data directory is /home/userx/elggdata

	You’ve created a local directory for your backups at /home/userx/sitebackups

	You have an off-site FTP server to send the backup files to

	The directory that you will be saving the off-site backups to is /home/usery/sitebackups/

	You will be restoring the site to a second shared hosting provider in the /home/usery/public_html directory

Important

Be sure to replace userx, usery, http://mynewdomain.com and all passwords with values that reflect your actual installation!

Creating a usable backup - automatically

Customize the backup script

The script that you will use can be found here .

Just copy the script to a text file and name the file with a .pl extension. You can use any text editor to update the file.

Change the following to reflect your directory structure:

ENTER THE PATH TO THE DIRECTORY YOU WANT TO BACKUP, NO TRAILING SLASH
$directory_to_backup = '/home/userx/public_html';
$directory_to_backup2 = '/home/userx/elggdata';
ENTER THE PATH TO THE DIRECTORY YOU WISH TO SAVE THE BACKUP FILE TO, NO TRAILING SLASH
$backup_dest_dir = '/home/userx/sitebackups';

Change the following to reflect your database parameters:

MYSQL BACKUP PARAMETERS
$dbhost = 'localhost';
$dbuser = 'userx_elgg';
$dbpwd = 'dbpassword';
ENTER DATABASE NAME
$database_names_elgg = 'userx_elgg';

Change the following to reflect your off-site FTP server parameters:

FTP PARAMETERS
$ftp_host = "FTP HOSTNAME/IP";
$ftp_user = "ftpuser";
$ftp_pwd = "ftppassword";
$ftp_dir = "/";

Save the file with the .pl extension (for the purposes of this article we will name the file: elgg-ftp-backup-script.pl) and upload it to the following directory /home/userx/sitebackups

Be aware that you can turn off FTP and flip a bit in the script so that it does not delete the local backup file in the event that you don’t want to use off-site storage for your backups.

Configure the backup Cron job

Login to your CPanel application and click on the “Cron Jobs” link. In the Common Settings dropdown choose “Once a day” and type the following in the command field /usr/bin/perl /home/userx/sitebackups/elgg-ftp-backup-script.pl

Click on the “Add New Cron Job” button. Daily full backups are now scheduled and will be transferred off-site.

Configure the cleanup Cron job

If you are sending your backups, via FTP, to another shared hosting provider that uses the CPanel application or you’ve turned off FTP altogether you can configure your data retention as follows.

Login to your CPanel application for your FTP site, or locally if you’re not using FTP, and click on the “Cron Jobs” link. In the Common Settings dropdown choose “Once a day” and type the following in the command field find /home/usery/sitebackups/full_* -mtime +4 -exec rm {} \;

The -mtime X parameter will set the number of days to retain backups. All files older than x number of days will be deleted. Click on the “Add New Cron Job” button. You have now configured your backup retention time.

Restoring from backup

Prepare your backup files

The assumption is that you’re restoring your site to another shared hosting provider with CPanel.

When the script backed the files up the original directory structure was maintained in the zip file. We need to do a little cleanup. Perform the following:

	Download the backup file that you wish to restore from

	Extract the contents of the backup file

	
	Drill down and you will find your site backup and SQL backup. Extract both of these. You will then have:

	
	a MySQL dump file with a .sql extension

	
	another directory structure with the contents of:

	
	/home/userx/public_html

	/home/userx/elggdata

	
	Repackage the contents of the /home/userx/public_html directory as a zip file so that the files are in the root of the zip file

	
	The reason for doing this is simple. It’s much more efficient to upload one zip file than it is to ftp the contents of the /home/userx/public_html directory to your new host.

	Repackage the contents of the /home/userx/elggdata directory as a zip file so that the files are in the root of the zip file

You should now have the following files:

	the .sql file

	the zip file with the contents of /home/userx/public_html in the root

	the zip file with the contents of /home/userx/elggdata in the root

Restore the files

This is written with the assumption that you’re restoring to a different host but maintaining the original directory structure. Perform the following:

	Login to the CPanel application on the host that you wish to restore the site to and open the File Manager.

	
	Navigate to /home/usery/public_html

	
	Upload the zip file that contains the /home/userx/public_html files

	
	Extract the zip file

	You should now see all of the files in /home/usery/public_html

	Delete the zip file

	
	Navigate to /home/usery/elggdata

	
	Upload the zip file that contains the /home/userx/elggdata files

	
	Extract the zip file

	You should now see all of the files in /home/usery/elggdata

	Delete the zip file

Program and data file restoration is complete

Restore the MySQL Database

Note

Again, the assumption here is that you’re restoring your Elgg installation to a second shared hosting provider. Each shared hosting provider prepends the account holder’s name to the databases associated with that account. For example, the username for our primary host is userx so the host will prepend userx_ to give us a database name of userx_elgg. When we restore to our second shared hosting provider we’re doing so with a username of usery so our database name will be usery_elgg. The hosting providers don’t allow you to modify this behavior. So the process here isn’t as simple as just restoring the database from backup to the usery account. However, having said that, it’s not terribly difficult either.

Edit the MySQL backup

Open the .sql file that you extracted from your backup in your favorite text editor. Comment out the following lines with a hash mark:

#CREATE DATABASE /*!32312 IF NOT EXISTS*/ `userx_elgg` /*!40100 DEFAULT CHARACTER SET latin1 */;
#USE `userx_elgg`;

Save the file.

Create the new database

Perform the following:

	
	Login to the CPanel application on the new host and click on the “MySQL Databases” icon

	
	Fill in the database name and click the “create” button. For our example we are going to stick with elgg which will give us a database name of usery_elgg

	
	You can associate an existing user with the new database, but to create a new user you will need to:

	
	Go to the “Add New User” section of the “MySQL Databases” page

	Enter the username and password. For our example we’re going to keep it simple and use elgg once again. This will give us a username of usery_elgg

	
	Associate the new user with the new database

	
	Go to the “Add User To Database” section of the “MySQL Databases” page. Add the usery_elgg user to the usery_elgg database

	Select “All Privileges” and click the “Make Changes” button

Restore the production database

Now it’s time to restore the MySQL backup file by importing it into our new database named “usery_elgg”.

	
	Login to the CPanel application on the new host and click on the “phpMyAdmin icon

	
	Choose the usery_elgg database in the left hand column

	Click on the “import” tab at the top of the page

	Browse to the .sql backup on your local computer and select it

	Click the “Go” button on the bottom right side of the page

You should now see a message stating that the operation was successful

Bringing it all together

The restored elgg installation knows nothing about the new database name, database username, directory structure, etc. That’s what we’re going to address here.

Edit /public_html/elgg-config/settings.php on the new hosting provider to reflect the database information for the database that you just created.

// Database username
$CONFIG->dbuser = 'usery_elgg';

// Database password
$CONFIG->dbpass = 'dbpassword';

// Database name
$CONFIG->dbname = 'usery_elgg';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';

Upload the settings.php file back to the new host - overwriting the existing file.

Open the phpMyAdmin tool on the new host from the CPanel. Select the usery_elgg database on the left and click the SQL tab on the top of the page. Run the following SQL queries against the usery_elgg database:

Change the installation path

UPDATE `elgg_datalists` SET `value` = "/home/usery/public_html/grid/" WHERE `name` = "path";

Change the data directory

UPDATE `elgg_datalists` SET `value` = "/home/usery/elggdata/" WHERE `name` = "dataroot";

Change the site URL (if this has changed)

UPDATE `elgg_sites_entity` SET `url` = "http://mynewdomain.com";

Change the filestore data directory

UPDATE elgg_metastrings set string = '/home/usery/elggdata/' WHERE id = (SELECT value_id from elgg_metadata where name_id = (SELECT * FROM (SELECT id FROM elgg_metastrings WHERE string = 'filestore::dir_root') as ms2) LIMIT 1);

Finalizing the new installation

Run the upgrade script by visiting the following URL: http://mynewdomain.com/upgrade.php . Do this step twice - back to back.

Update your DNS records so that your host name resolves to the new host’s IP address if this is a permanent move.

Congratulations!

If you followed the steps outlined here you should now have a fully functional copy of your primary Elgg installation.

Related

	FTP backup script

	Duplicate Installation
	Introduction
	Why Duplicate an Elgg Installation?

	What Is Not Covered in This Tutorial

	Before You Start

	Copy Elgg Code to the Test Server

	Copy Data to the Test Server

	Edit settings.php

	Copy Elgg Database

	Database Entries
	Change the installation path

	Change the data directory

	Change the site URL

	Change the filestore data directory

	Check .htaccess

	Update Webserver Config

	Run upgrade.php

	Tips

	Related

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

 	Backup and Restore

FTP backup script

Here is an automated script for backing up an Elgg installation.

#!/usr/bin/perl -w

FTP Backup

use Net::FTP;

DELETE BACKUP AFTER FTP UPLOAD (0 = no, 1 = yes)
$delete_backup = 1;

ENTER THE PATH TO THE DIRECTORY YOU WANT TO BACKUP, NO TRAILING SLASH
$directory_to_backup = '/home/userx/public_html';
$directory_to_backup2 = '/home/userx/elggdata';

ENTER THE PATH TO THE DIRECTORY YOU WISH TO SAVE THE BACKUP FILE TO, NO TRAILING SLASH
$backup_dest_dir = '/home/userx/sitebackups';

BACKUP FILE NAME OPTIONS
($a,$d,$d,$day,$month,$yearoffset,$r,$u,$o) = localtime();
$year = 1900 + $yearoffset;
$site_backup_file = "$backup_dest_dir/site_backup-$day-$month-$year.tar.gz";
$full_backup_file = "$backup_dest_dir/full_site_backup-$day-$month-$year.tar.gz";

MYSQL BACKUP PARAMETERS
$dbhost = 'localhost';
$dbuser = 'userx_elgg';
$dbpwd = 'dbpassword';
$mysql_backup_file_elgg = "$backup_dest_dir/mysql_elgg-$day-$month-$year.sql.gz";

ENTER DATABASE NAME
$database_names_elgg = 'userx_elgg';

FTP PARAMETERS
$ftp_backup = 1;
$ftp_host = "FTP HOSTNAME/IP";
$ftp_user = "ftpuser";
$ftp_pwd = "ftppassword";
$ftp_dir = "/";

SYSTEM COMMANDS
$cmd_mysqldump = '/usr/bin/mysqldump';
$cmd_gzip = '/usr/bin/gzip';

CURRENT DATE / TIME
($a,$d,$d,$day,$month,$yearoffset,$r,$u,$o) = localtime();
$year = 1900 + $yearoffset;

BACKUP FILES
$syscmd = "tar --exclude $backup_dest_dir" . "/* -czf $site_backup_file $directory_to_backup $directory_to_backup2";

elgg DATABASE BACKUP
system($syscmd);
$syscmd = "$cmd_mysqldump --host=$dbhost --user=$dbuser --password=$dbpwd --add-drop-table --databases $database_names_elgg -c -l | $cmd_gzip > $mysql_backup_file_elgg";

system($syscmd);

CREATING FULL SITE BACKUP FILE
$syscmd = "tar -czf $full_backup_file $mysql_backup_file_elgg $site_backup_file";
system($syscmd);

DELETING SITE AND MYSQL BACKUP FILES
unlink($mysql_backup_file_elgg);
unlink($site_backup_file);

UPLOADING FULL SITE BACKUP TO REMOTE FTP SERVER
if($ftp_backup == 1)
{
 my $ftp = Net::FTP->new($ftp_host, Debug => 0)
 or die "Cannot connect to server: $@";

 $ftp->login($ftp_user, $ftp_pwd)
 or die "Cannot login ", $ftp->message;

 $ftp->cwd($ftp_dir)
 or die "Can't CWD to remote FTP directory ", $ftp->message;

 $ftp->binary();

 $ftp->put($full_backup_file)
 or warn "Upload failed ", $ftp->message;

 $ftp->quit();
}

DELETING FULL SITE BACKUP
if($delete_backup = 1)
{
 unlink($full_backup_file);
}

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

 	Backup and Restore

Duplicate Installation

Contents

	Introduction
	Why Duplicate an Elgg Installation?

	What Is Not Covered in This Tutorial

	Before You Start

	Copy Elgg Code to the Test Server

	Copy Data to the Test Server

	Edit settings.php

	Copy Elgg Database

	Database Entries
	Change the installation path

	Change the data directory

	Change the site URL

	Change the filestore data directory

	Check .htaccess

	Update Webserver Config

	Run upgrade.php

	Tips

	Related

Introduction

Why Duplicate an Elgg Installation?

There are many reasons you may want to duplicate an Elgg installation: moving the site to another server, creating a test or development server, and creating functional backups are the most common. To create a successful duplicate of an Elgg site, 3 things need to be copied:

	Database

	Data from the data directory

	Code

Also at least 5 pieces of information must be changed from the copied installation:

	elgg-config/settings.php file which could also be in the pre 2.0 location engine/settings.php

	.htaccess file (Apache) or Nginx configuration depending on server used

	database entry for your site entity

	database entry for the installation path

	database entry for the data path

What Is Not Covered in This Tutorial

This tutorial expects a basic knowledge of Apache, MySQL, and Linux commands. As such, a few things will not be covered in this tutorial. These include:

	How to backup and restore MySQL databases

	How to configure Apache to work with Elgg

	How to transfer files to and from your production server

Before You Start

Before you start, make sure the Elgg installation you want to duplicate is fully functional. You will also need the following items:

	A backup of the live Elgg database

	A place to copy the live database

	
	A server suitable for installing duplicate Elgg site

	(This can be the same server as your production Elgg installation.)

Backups of the database can be obtained various ways, including phpMyAdmin, the MySQL official GUI, and the command line. Talk to your host for information on how to backup and restore databases or use Google to find information on this.

During this tutorial, we will make these assumptions about the production Elgg site:

	The URL is http://www.myelgg.org/

	The installation path is /var/www/elgg/

	The data directory is /var/data/elgg/

	The database host is localhost

	The database name is production_elgg

	The database user is db_user

	The database password is db_password

	The database prefix is elgg

At the end of the tutorial, our test Elgg installation details will be:

	The URL is http://test.myelgg.org/

	The installation path is /var/www/elgg_test/

	The data directory is /var/data/elgg_test/

	The database host is localhost

	The database name is test_elgg

	The database user is db_user

	The database password is db_password

	The database prefix is elgg

Copy Elgg Code to the Test Server

The very first step is to duplicate the production Elgg code. In our example, this is as simple as copying /var/www/elgg/ to /var/www/elgg_test/.

cp -a /var/www/elgg/ /var/www/elgg_test/

Copy Data to the Test Server

In this example, this is as simple as copying /var/data/elgg/ to /var/data/elgg_test/.

cp -a /var/data/elgg/ /var/data/elgg_test/

If you don’t have shell access to your server and have to ftp the data, you may need to change ownership and permissions on the files.

Note

You also need to delete the views cache on the test server after the copy process. This is a directory called views_simplecache in your data directory and the directory called system_cache .

Edit settings.php

The elgg-config/settings.php file contains the database configuration details. These need to be adjusted for your new test Elgg installation. In our example, we’ll look in /var/www/elgg_test/elgg-config/settings.php and find the lines that look like this:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_production';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

We need to change these lines to match our new installation:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_test';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

Note

Notice the $CONFIG->dbname has changed to reflect our new database.

Copy Elgg Database

Now the database must be copied from elgg_production to elgg_test. See your favorite MySQL manager’s documentation for how to make a duplicate database. You will generally export the current database tables to a file, create the new database, and then import the tables that you previously exported.

You have two options on updating the values in the database. You could change the values in the export file or you could import the file and change the values with database queries. One advantage of modifying the dump file is that you can also change links that people have created to content within your site. For example, if people have bookmarked pages using the bookmark plugin, the bookmarks will point to the old site unless your update their URLs.

Database Entries

We must now change 4 entries in the database. This is easily accomplished with 4 simple SQL commands:

Change the installation path

UPDATE `elgg_datalists` SET `value` = "/var/www/elgg_test/" WHERE `name` = "path";

Change the data directory

UPDATE `elgg_datalists` SET `value` = "/var/data/elgg_test/" WHERE `name` = "dataroot";

Change the site URL

UPDATE `elgg_sites_entity` SET `url` = "http://test.myelgg.org/";

Change the filestore data directory

UPDATE elgg_metastrings SET string = '/var/data/elgg_test/'
WHERE id = (
 SELECT value_id
 FROM elgg_metadata
 WHERE name_id = (
 SELECT *
 FROM (
 SELECT id
 FROM elgg_metastrings
 WHERE string = 'filestore::dir_root'
) as ms2
)
 LIMIT 1
);

Warning

Only change the first path above!!

Warning

If you have a plugin that uses custom filestores (contains an ElggFile::setFilestore method call or sets metadata with names like filestore::*), then query above may not be safe (it overwrites all filesystem dir_root locations). Please seek guidance via the Elgg community.

Check .htaccess

If you have made changes to .htaccess that modify any paths, make sure you update them in the test installation.

Update Webserver Config

For this example, you must edit the Apache config to enable a subdomain with a document root of /var/www/elgg_test/. If you plan to install into a subdirectory of your document root, this step is unnecessary.

If you’re using Nginx, you need to update server config to match new paths based on install/config/nginx.dist.

Run upgrade.php

To regenerate cached data, make sure to run http://test.myelgg.org/upgrade.php

Tips

It is a good idea to keep a test server around to experiment with installing new mods and doing development work. If you automate restorations to the elgg_test database, changing the $CONFIG values and adding the follow lines to the end of the elgg_test/elgg-config/settings.php file will allow seamless re-writing of the MySQL database entries.

$con = mysql_connect($CONFIG->dbhost, $CONFIG->dbuser, $CONFIG->dbpass);
mysql_select_db($CONFIG->dbname, $con);

$sql = "UPDATE {$CONFIG->dbprefix}datalists
 SET value = '/var/www/test_elgg/'
 WHERE name = 'path'";
mysql_query($sql);
print mysql_error();

$sql = "UPDATE {$CONFIG->dbprefix}datalists
 SET value = '/var/data/test_elgg/'
 WHERE name = 'dataroot'";
mysql_query($sql);
print mysql_error();

$sql = "UPDATE {$CONFIG->dbprefix}sites_entity
 SET url = 'http://test.myelgg.org/'";
mysql_query($sql);

$sql = "UPDATE {$CONFIG->dbprefix}metastrings
 SET string = '/var/data/elgg_test/'
 WHERE id = (
 SELECT value_id
 FROM {$CONFIG->dbprefix}metadata
 WHERE name_id = (
 SELECT *
 FROM (
 SELECT id
 FROM {$CONFIG->dbprefix}metastrings
 WHERE string = 'filestore::dir_root'
) as ms2
)
 LIMIT 1
)";
mysql_query($sql);

print mysql_error();

Related

See also

Backup and Restore

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

 	Backup and Restore

Duplicate Installation

Contents

	Introduction
	Why Duplicate an Elgg Installation?

	What Is Not Covered in This Tutorial

	Before You Start

	Copy Elgg Code to the Test Server

	Copy Data to the Test Server

	Edit settings.php

	Copy Elgg Database

	Database Entries
	Change the installation path

	Change the data directory

	Change the site URL

	Change the filestore data directory

	Check .htaccess

	Update Webserver Config

	Run upgrade.php

	Tips

	Related

Introduction

Why Duplicate an Elgg Installation?

There are many reasons you may want to duplicate an Elgg installation: moving the site to another server, creating a test or development server, and creating functional backups are the most common. To create a successful duplicate of an Elgg site, 3 things need to be copied:

	Database

	Data from the data directory

	Code

Also at least 5 pieces of information must be changed from the copied installation:

	elgg-config/settings.php file which could also be in the pre 2.0 location engine/settings.php

	.htaccess file (Apache) or Nginx configuration depending on server used

	database entry for your site entity

	database entry for the installation path

	database entry for the data path

What Is Not Covered in This Tutorial

This tutorial expects a basic knowledge of Apache, MySQL, and Linux commands. As such, a few things will not be covered in this tutorial. These include:

	How to backup and restore MySQL databases

	How to configure Apache to work with Elgg

	How to transfer files to and from your production server

Before You Start

Before you start, make sure the Elgg installation you want to duplicate is fully functional. You will also need the following items:

	A backup of the live Elgg database

	A place to copy the live database

	
	A server suitable for installing duplicate Elgg site

	(This can be the same server as your production Elgg installation.)

Backups of the database can be obtained various ways, including phpMyAdmin, the MySQL official GUI, and the command line. Talk to your host for information on how to backup and restore databases or use Google to find information on this.

During this tutorial, we will make these assumptions about the production Elgg site:

	The URL is http://www.myelgg.org/

	The installation path is /var/www/elgg/

	The data directory is /var/data/elgg/

	The database host is localhost

	The database name is production_elgg

	The database user is db_user

	The database password is db_password

	The database prefix is elgg

At the end of the tutorial, our test Elgg installation details will be:

	The URL is http://test.myelgg.org/

	The installation path is /var/www/elgg_test/

	The data directory is /var/data/elgg_test/

	The database host is localhost

	The database name is test_elgg

	The database user is db_user

	The database password is db_password

	The database prefix is elgg

Copy Elgg Code to the Test Server

The very first step is to duplicate the production Elgg code. In our example, this is as simple as copying /var/www/elgg/ to /var/www/elgg_test/.

cp -a /var/www/elgg/ /var/www/elgg_test/

Copy Data to the Test Server

In this example, this is as simple as copying /var/data/elgg/ to /var/data/elgg_test/.

cp -a /var/data/elgg/ /var/data/elgg_test/

If you don’t have shell access to your server and have to ftp the data, you may need to change ownership and permissions on the files.

Note

You also need to delete the views cache on the test server after the copy process. This is a directory called views_simplecache in your data directory and the directory called system_cache .

Edit settings.php

The elgg-config/settings.php file contains the database configuration details. These need to be adjusted for your new test Elgg installation. In our example, we’ll look in /var/www/elgg_test/elgg-config/settings.php and find the lines that look like this:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_production';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

We need to change these lines to match our new installation:

// Database username
$CONFIG->dbuser = 'db_user';

// Database password
$CONFIG->dbpass = 'db_password';

// Database name
$CONFIG->dbname = 'elgg_test';

// Database server
// (For most configurations, you can leave this as 'localhost')
$CONFIG->dbhost = 'localhost';

// Database table prefix
// If you're sharing a database with other applications, you will want to use this
// to differentiate Elgg's tables.
$CONFIG->dbprefix = 'elgg';

Note

Notice the $CONFIG->dbname has changed to reflect our new database.

Copy Elgg Database

Now the database must be copied from elgg_production to elgg_test. See your favorite MySQL manager’s documentation for how to make a duplicate database. You will generally export the current database tables to a file, create the new database, and then import the tables that you previously exported.

You have two options on updating the values in the database. You could change the values in the export file or you could import the file and change the values with database queries. One advantage of modifying the dump file is that you can also change links that people have created to content within your site. For example, if people have bookmarked pages using the bookmark plugin, the bookmarks will point to the old site unless your update their URLs.

Database Entries

We must now change 4 entries in the database. This is easily accomplished with 4 simple SQL commands:

Change the installation path

UPDATE `elgg_datalists` SET `value` = "/var/www/elgg_test/" WHERE `name` = "path";

Change the data directory

UPDATE `elgg_datalists` SET `value` = "/var/data/elgg_test/" WHERE `name` = "dataroot";

Change the site URL

UPDATE `elgg_sites_entity` SET `url` = "http://test.myelgg.org/";

Change the filestore data directory

UPDATE elgg_metastrings SET string = '/var/data/elgg_test/'
WHERE id = (
 SELECT value_id
 FROM elgg_metadata
 WHERE name_id = (
 SELECT *
 FROM (
 SELECT id
 FROM elgg_metastrings
 WHERE string = 'filestore::dir_root'
) as ms2
)
 LIMIT 1
);

Warning

Only change the first path above!!

Warning

If you have a plugin that uses custom filestores (contains an ElggFile::setFilestore method call or sets metadata with names like filestore::*), then query above may not be safe (it overwrites all filesystem dir_root locations). Please seek guidance via the Elgg community.

Check .htaccess

If you have made changes to .htaccess that modify any paths, make sure you update them in the test installation.

Update Webserver Config

For this example, you must edit the Apache config to enable a subdomain with a document root of /var/www/elgg_test/. If you plan to install into a subdirectory of your document root, this step is unnecessary.

If you’re using Nginx, you need to update server config to match new paths based on install/config/nginx.dist.

Run upgrade.php

To regenerate cached data, make sure to run http://test.myelgg.org/upgrade.php

Tips

It is a good idea to keep a test server around to experiment with installing new mods and doing development work. If you automate restorations to the elgg_test database, changing the $CONFIG values and adding the follow lines to the end of the elgg_test/elgg-config/settings.php file will allow seamless re-writing of the MySQL database entries.

$con = mysql_connect($CONFIG->dbhost, $CONFIG->dbuser, $CONFIG->dbpass);
mysql_select_db($CONFIG->dbname, $con);

$sql = "UPDATE {$CONFIG->dbprefix}datalists
 SET value = '/var/www/test_elgg/'
 WHERE name = 'path'";
mysql_query($sql);
print mysql_error();

$sql = "UPDATE {$CONFIG->dbprefix}datalists
 SET value = '/var/data/test_elgg/'
 WHERE name = 'dataroot'";
mysql_query($sql);
print mysql_error();

$sql = "UPDATE {$CONFIG->dbprefix}sites_entity
 SET url = 'http://test.myelgg.org/'";
mysql_query($sql);

$sql = "UPDATE {$CONFIG->dbprefix}metastrings
 SET string = '/var/data/elgg_test/'
 WHERE id = (
 SELECT value_id
 FROM {$CONFIG->dbprefix}metadata
 WHERE name_id = (
 SELECT *
 FROM (
 SELECT id
 FROM {$CONFIG->dbprefix}metastrings
 WHERE string = 'filestore::dir_root'
) as ms2
)
 LIMIT 1
)";
mysql_query($sql);

print mysql_error();

Related

See also

Backup and Restore

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Administrator Guides

Getting Help

Having a problem with Elgg? The best way to get help is to ask at the Community Site [https://community.elgg.org/]. This site is community supported by a large group of volunteers. Here are a few tips to help you get the help you need.

Contents

	Getting help

	Guidelines

	Good Ideas

Getting help

Don’t be a Help Vampire [http://slash7.com/2006/12/22/vampires/]

We were all newbies at one time, but we can all learn. Not showing that you are making attempts to learn on your own or do your own research is off putting for those helping. Also, very generic questions like “How do I build a forum?” are almost impossible to answer.

Search first

Be sure to search the documentation (this site), the Community Site [https://community.elgg.org/], and Google before asking a question. New users to Elgg frequently have the same questions, so please search. People are less inclined to reply to a post that has been answered many other times or that can be answered easily by Googling.

Ask once

Posting the same questions in multiple places makes it hard to answer you. Ask your question in one place only. Duplicate questions may be moderated.

Include Elgg Version

Different versions of Elgg have different features (and different bugs). Including the version of Elgg that you are using will help those helping you.

Have a reasonable profile

Profiles that look like spam or have silly names will often be ignored. Joviality is fine, but people are more likely to help Michael than 1337elggHax0r.

Post in the appropriate forum

Check to make sure you’re posting in the right forum. If you have a question about creating a plugin, don’t post to the Elgg Feedback forum. If you need help installing Elgg, post to Technical Support instead of the Theming group.

Use a descriptive topic title

Good topic titles concisely describe your problem or question. Bad topic titles are vague, contain all capital letters, and excessive punctuation.

Good title: “White screen after upgrading to 1.7.4.”

Bad title: “URGENT!!!!! site broke ;-(losing money help!!!!!!!!!!!”

Be detailed

Include as many details about your problem as possible. If you have a live site, include a link. Be forthcoming if community members might ask for more information. We can’t help you if you won’t give any details!

Keep it public

This is a public forum for the good of the Elgg project. Keep posts public. There’s no reason for anyone to ask you to send a private message or email. Likewise, there’s no reason to ask anyone to send a private email to you. Post in the public.

Guidelines

In addition to the site-wide Terms and Policies [http://community.elgg.org/terms/], following these guidelines keeps our community site useful and safe for everyone.

Content

All content must be safe for work: PG in the US and UK. If your Elgg site has adult content and you have been asked to post a link, please mark it NSFW (Not Safe For Work) so people know.

Excessive swearing in any language will not be tolerated.

Mood

Working with technical problems can be frustrating. Please keep the community site free of frustration. If you’re feeling anxious, take a step away and do something else. Threatening or attacking community members, core developers, or plugin developers will not help solve your problem and will likely get you banned.

Advertising

Advertising is not allowed. Posts with any sort of advertising will be moderated.

Asking for money / Offering to pay

Don’t ask for money on the community site. Likewise, don’t offer to pay for answers. If you are looking for custom development, post to the Professional Services group. Posts asking for money or recommending a commercial plugin may be moderated.

Links

If you’re having a problem with a live site, please provide a link to it.

That said, the community site is not a back linking service or SEO tool. Excessive linking will be moderated and your account may be banned.

Signatures

There’s a reason Elgg doesn’t have an option for signatures: they cause clutter and distract from the conversation. Users are discouraged from using signatures on the community site, and signatures with links or advertising will be removed.

Bumping, +1, me too

Don’t do it. If your question hasn’t been answered, see the top of this document for tips. These types of post add nothing to the conversation and may be moderated.

Posting Code

Long bits of code are confusing to read through in a forums context. Please use http://elgg.pastebin.com to post long bits of code and provide the Paste Bin link instead of directly posting the code.

Good Ideas

Not policies, but good ideas.

Say thanks

Did someone help you? Be sure to thank them! The community site is run by volunteers. No one has to help you with your problem. Be sure to show your appreciation!

Give back

Have a tip for Elgg? See someone with a similar problem you had? You’ve been there and can help them out, so give them a hand!

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Developer Guides

Customize Elgg’s behavior with plugins.

	Don’t Modify Core

	Plugins

	Plugin coding guidelines

	Accessibility

	Ajax

	Authentication

	Context

	Cron

	Database

	File System

	Forms + Actions

	Helper functions

	Internationalization

	JavaScript

	Menus

	Notifications

	Page handler

	Routing

	Services

	Page ownership

	Permissions Check

	Plugin settings

	River

	Routing

	Themes

	Views

	Widgets

	Walled Garden

	Web services

	Upgrading Plugins

	List of events in core

	List of plugin hooks in core

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Don’t Modify Core

Warning

In general, you shouldn’t modify non-config files that come with third-party software like Elgg.

The best way to customize the behavior of Elgg is to install Elgg as a composer dependency
and use the root directory to store modifications specific to your application,
and alter behavior through the rich Elgg plugin API.

If you’d like to share customizations between sites or even publish your changes
as a reusable package for the community, create a plugin
using the same plugin APIs and file structure.

It makes it hard to get help

When you don’t share the same codebase as everyone else,
it’s impossible for others to know what is going on in your system
and whether your changes are to blame. This can frustrate those who offer help
because it can add considerable noise to the support process.

It makes upgrading tricky and potentially disastrous

You will certainly want or need to upgrade Elgg to take advantage of

	security patches

	new features

	new plugin APIs

	new stability improvements

	performance improvements

If you’ve modified core files, then you must be very careful when upgrading that
your changes are not overwritten and that they are compatible with the new Elgg code.
If your changes are lost or incompatible, then the upgrade may remove features
you’ve added and even completely break your site.

This can also be a slippery slope. Lots of modifications can lead you to an
upgrade process so complex that it’s practically impossible.
There are lots of sites stuck running old versions software due to taking this path.

It may break plugins

You may not realize until much later that your “quick fix” broke
seemingly unrelated functionality that plugins depended on.

Summary

	
	Resist the temptation

	Editing existing files is quick and easy, but doing so heavily risks the
maintainability, security, and stability of your site.

	When receiving advice, consider if the person telling you to modify core will
be around to rescue you if you run into trouble later!

	
	Apply these principle to software in general.

	If you can avoid it, don’t modify third party plugins either, for the same reasons:
Plugin authors release new versions, too, and you will want those updates.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Plugins

Plugins must provide a start.php and manifest.xml file in the plugin root
in order to be recognized by Elgg.

start.php

The start.php file bootstraps plugin by registering event listeners and plugin
hooks.

activate.php, deactivate.php

The activate.php and deactivate.php files contain procedural code that will run
upon plugin activation and deactivation. Use these files to perform one-time
events such as registering a persistent admin notice, registering subtypes, or performing
garbage collection when deactivated.

manifest.xml

Elgg plugins are required to have a manifest.xml file in the root of a plugin.

The manifest.xml file includes information about the plugin itself, requirements to run the plugin, and optional information including where to display the plugin in the admin area and what APIs the plugin provides.

Syntax

The manifest file is a standard XML file in UTF-8. Everything is a child of the <plugin_manifest> element.

<?xml version="1.0" encoding="UTF-8" ?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">

The manifest syntax is as follows:

<name>value</name>

Many elements can contain children attributes:

<parent_name>
 <child_name>value</child_name>
 <child_name_2>value_2</child_name_2>
</parent_name>

Required Elements

All plugins are required to define the following elements in their manifest files:

	id - This has the name as the directory that the plugin uses.

	name - The display name of the plugin.

	author - The name of the author who wrote the plugin.

	version - The version of the plugin.

	description - A description of the what the plugin provides, its features, and other relevant information

	requires - Each plugin must specify the release of Elgg it was developed for. See the plugin Dependencies page for more information.

Available Elements

In addition to the require elements above, the follow elements are available to use:

	blurb - A short description of the plugin.

	category - The category of the plugin. It is recommended to follow the [[Plugin_Guidelines|plugin guidelines]] and use one of the defined categories. There can be multiple entries.

	conflicts - Specifies that the plugin conflicts with a certain system configuration.

	copyright - The plugin’s copyright information.

	license - The plugin’s license information.

	provides - Specifies that this plugin provides the same functionality as another Elgg plugin or a PHP extension.

	screenshot - Screenshots of the plugin. There can be multiple entries. See the advanced example for syntax.

	suggests - Parallels the requires system, but doesn’t affect if the plugin can be enabled. Used to suggest other plugins that interact or build on the plugin.

	website - A link to the website for the plugin.

See also

Plugin Dependencies

Simple Example

This manifest file is the bare minimum a plugin must have.

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">
 <name>Example Manifest</name>
 <author>Elgg</author>
 <version>1.0</version>
 <description>This is a simple example of a manifest file. In this example, there are not screenshots, dependencies, or additional information about the plugin.</description>

 <requires>
 <type>elgg_release</type>
 <version>1.9</version>
 </requires>
</plugin_manifest>

Advanced example

This example uses all of the available elements:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">
 <name>Example Manifest</name>
 <author>Brett Profitt</author>
 <version>1.0</version>
 <blurb>This is an example manifest file.</blurb>
 <description>This is a simple example of a manifest file. In this example, there are many options used, including screenshots, dependencies, and additional information about the plugin.</description>
 <website>http://www.elgg.org/</website>
 <copyright>(C) Brett Profitt 2014</copyright>
 <license>GNU Public License version 2</license>

 <category>3rd_party_integration</category>

 <requires>
 <type>elgg_release</type>
 <version>1.9.1</version>
 </requires>

 <!-- The path is relative to the plugin's root. -->
 <screenshot>
 <description>Elgg profile.</description>
 <path>screenshots/profile.png</path>
 </screenshot>

 <provides>
 <type>plugin</type>
 <name>example_plugin</name>
 <version>1.5</version>
 </provides>

 <suggests>
 <type>plugin</type>
 <name>twitter</name>
 <version>1.0</version>
 </suggests>
</plugin_manifest>

Related

	Plugin skeleton

	Plugin Dependencies

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

 	Plugins

Plugin skeleton

The following is the standard for plugin structure in Elgg as of Elgg 2.0.

Example Structure

The following is an example of a plugin with standard structure. For further explanation of this structure, see the details in the following sections. Your plugin may not need all the files listed

The following files for plugin example would go in /mod/example/

actions/
 example/
 action.php
 other_action.php
classes/
 VendorNamespace/
 ExampleClass.php
languages/
 en.php
vendors/
 example_3rd_party_lib/
views/
 default/
 example/
 component.css
 component.js
 component.png
 forms/
 example/
 action.php
 other_action.php
 object/
 example.php
 example/
 context1.php
 context2.php
 plugins/
 example/
 settings.php
 usersettings.php
 resources/
 example/
 all.css
 all.js
 all.php
 owner.css
 owner.js
 owner.php
 widgets/
 example_widget/
 content.php
 edit.php
activate.php
deactivate.php
CHANGES.txt
COPYRIGHT.txt
INSTALL.txt
LICENSE.txt
manifest.xml
README.txt
start.php

Required Files

Plugins must provide a start.php and manifest.xml file in the plugin root in order to be recognized by Elgg.

Therefore the following is the minimally compliant structure:

mod/example/
 start.php
 manifest.xml

Actions

Plugins should place scripts for actions an actions/ directory, and furthermore should use the name of the action to determine the location within that directory.

For example, the action my/example/action would go in my_plugin/actions/my/example/action.php. This makes it very obvious which script is associated with which action.

Similarly, the body of the form that submits to this action should be located in forms/my/example/action.php. Not only does this make the connection b/w action handler, form code, and action name obvious, but it allows you to use the new (as of Elgg 1.8) elgg_view_form() function easily.

Text Files

Plugins may provide various *.txt as additional documentation for the plugin. These files must be in Markdown syntax and will generate links on the plugin management sections.

	README.txt

	should provide additional information about the plugin of an unspecified nature

	COPYRIGHT.txt

	If included, must provide an explanation of the plugin’s copyright, besides what is included in manifest.xml

	LICENSE.txt

	If included, must provide the text of the license that the plugin is released under.

	INSTALL.txt

	If included, must provide additional instructions for installing the plugin if the process is sufficiently complicated (e.g. if it requires installing third party libraries on the host machine, or requires acquiring an API key from a third party).

	CHANGES.txt

	If included, must provide a list of changes for their plugin, grouped by version number, with the most recent version at the top.

Plugins may include additional *.txt files besides these, but no interface is given for reading them.

Pages

To render full pages, plugins should use resource views (which have names beginning with resources/). This allows other plugins
to easily replace functionality via the view system.

Note

The reason we encourage this structure is

	To form a logical relationship between urls and scripts, so that people examining the code can have an idea of what it does just by examining the structure.

	To clean up the root plugin directory, which historically has quickly gotten cluttered with the page handling scripts.

Classes

Elgg provides PSR-0 [http://www.php-fig.org/psr/psr-0/] autoloading out of every active plugin’s classes/ directory.

You’re encouraged to follow the PHP-FIG [http://www.php-fig.org/] standards when writing your classes.

Note

Files with a ”.class.php” extension will not be recognized by Elgg.

Vendors

Included third-party libraries of any kind should be included in the vendors/ folder in the plugin root. Though this folder has no special significance to the Elgg engine, this has historically been the location where Elgg core stores its third-party libraries, so we encourage the same format for the sake of consistency and familiarity.

Views

In order to override core views, a plugin’s views must be placed in a views/. This directory has special meaning to Elgg as views defined here automatically override Elgg core’s version of those views. For more info, see Views.

Javascript and CSS will live in the views system. See JavaScript.

activate.php and deactivate.php

The activate.php and deactivate.php files contain procedural code that will run respectively upon plugin activation or deactivation. Use these files to perform one-time events such as registering a persistent admin notice, registering subtypes, or performing garbage collection when deactivated.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

 	Plugins

Plugin Dependencies

In Elgg 1.8 a plugin dependencies system was introduced to prevent plugins from being used on incompatible systems.

Contents

	Overview

	Verbs
	Requires

	Mandatory requires: elgg_release

	Suggests

	Conflicts

	Provides

	Types
	elgg_release

	plugin

	priority

	php_extension

	php_ini

	php_version

	Comparison Operators

	Quick Examples
	Requires Elgg 1.8.2 or higher

	Requires the Groups plugin is active

	Requires to be after the Profile plugin if Profile is active

	Conflicts with The Wire plugin

	Requires at least 256 MB memory in PHP

	Requires at least PHP version 5.3

	Suggest the TidyPics plugin is loaded

Overview

The dependencies system is controlled through a plugin’s manifest.xml file. Plugin authors can specify that a plugin:

	Requires certain Elgg versions, Elgg plugins, PHP extensions, and PHP settings.

	Suggests certain Elgg versions, Elgg plugins, PHP extensions, and PHP settings.

	Conflicts with certain Elgg versions or Elgg plugins.

	Provides the equivalent of another Elgg plugin or PHP extension.

The dependency system uses the four verbs above (requires, suggests, conflicts, and provides) as parent elements to indicate what type of dependency is described by its children. All dependencies have a similar format with similar options:

<verb>
 <type>type</type>
 <noun>value</noun>
 <noun2>value2</noun2>
</verb>

Note

type is always required

Verbs

With the exception of provides, all verbs use the same six types with differing effects, and the type options are the same among the verbs. provides only supports plugin and php_extension.

Requires

Using a requires dependency means that the plugin cannot be enabled unless the dependency is exactly met.

Mandatory requires: elgg_release

Every plugin must have at least one requires: the version of Elgg the plugin is developed for. This is specified by the Elgg API release (1.8). The default comparison >=, but you can specify your own by passing the <comparison> element.

Using elgg_release:

<requires>
 <type>elgg_release</type>
 <version>1.8</version>
</requires>

Suggests

suggests dependencies signify that the plugin author suggests a specific system configuration, but it is not required to use the plugin. The suggestions can also be another plugin itself which could interact, extend, or be extended by this plugin, but is not required for it to function.

Suggest another plugin:

<suggests>
 <type>plugin</type>
 <name>twitter_api</name>
 <version>1.0</version>
</suggests>

Suggest a certain PHP setting:

<suggests>
 <type>php_ini</type>
 <name>memory_limit</name>
 <value>64M</value>
 <comparison>ge</comparison>
</suggests>

Conflicts

conflicts dependencies mean the plugin cannot be used under a specific system configuration.

Conflict with any version of the profile plugin:

<conflicts>
 <type>plugin</type>
 <name>profile</name>
</conflicts>

Conflict with a specific release of Elgg:

<conflicts>
 <type>elgg_release</type>
 <version>1.8</version>
 <comparison>==</comparison>
</conflicts>

Provides

provides dependencies tell Elgg that this plugin is providing the functionality of another plugin or PHP extension. Unlike the other verbs, it only supports two types: plugin and php_extension.

The purpose of this is to provide interchangeable APIs implemented by different plugins. For example, the twitter_services plugin provides an API for other plugins to Tweet on behalf of the user via curl and Oauth. A plugin author could write a compatible plugin for servers without curl support that uses sockets streams and specify that it provides twitter_services. Any plugins that suggest or require twitter_services would then know they can work.

<provides>
 <type>plugin</type>
 <name>twitter_services</name>
 <version>1.8</version>
</provides>

Note

All plugins provide themselves as their plugin id (directory name) at the version defined in the their manifest.

Types

Every dependency verb has a mandatory <type> element that must be one of the following six values:

	elgg_release - The release version of Elgg (1.8)

	plugin - An Elgg plugin

	priority - A plugin load priority

	php_extension - A PHP extension

	php_ini - A PHP setting

	php_version - A PHP version

Note

provides only supports plugin and php_extension types.

Every type is defined with a dependency verb as the parent element. Additional option elements are at the same level as the type element:

<verb>
 <type>type</type>
 <option_1>value_1</option_1>
 <option_2>value_2</option_2>
</verb>

elgg_release

These concern the API and release versions of Elgg and requires the following option element:

	version - The API or release version

The following option element is supported, but not required:

	comparison - The comparison operator to use. Defaults to >= if not passed

plugin

Specifies an Elgg plugin by its ID (directory name). This requires the following option element:

	name - The ID of the plugin

The following option elements are supported, but not required:

	version - The version of the plugin

	comparison - The comparison operator to use. Defaults to >= if not passed

priority

This requires the plugin to be loaded before or after another plugin, if that plugin exists. requires should be used to require that a plugin exists. The following option elements are required:

	plugin - The plugin ID to base the load order on

	priority - The load order: ‘before’ or ‘after’

php_extension

This checks PHP extensions. The follow option element is required:

	name - The name of the PHP extension

The following option elements are supported, but not required:

	version - The version of the extension

	comparison - The comparison operator to use. Defaults to ==

Note

The format of extension versions varies greatly among PHP extensions and is sometimes not even set. This is generally worthless to check.

php_ini

This checks PHP settings. The following option elements are required:

	name - The name of the setting to check

	value - The value of the setting to compare against

The following options are supported, but not required:

	comparison - The comparison operator to use. Defaults to ==

php_version

This checks the PHP version. The following option elements are required:

	version - The PHP version

The following option element is supported, but not required:

	comparison - The comparison operator to use. Defaults to >= if not passed

Comparison Operators

Dependencies that check versions support passing a custom operator via the <comparison> element.

The follow are valid comparison operators:

	< or lt

	<= or le

	=, ==, or eq

	!=, <>, or ne

	> or gt

	>= or ge

If <comparison> is not passed, the follow are used as defaults, depending upon the dependency type:

	requires->elgg_release: >=

	requires->plugin: >=

	requires->php_extension: =

	requires->php_ini: =

	all conflicts: =

Note

You must escape < and > to > and <. For comparisons that use these values, it is recommended you use the string equivalents instead!

Quick Examples

Requires Elgg 1.8.2 or higher

<requires>
 <type>elgg_release</type>
 <version>1.8.2</version>
</requires>

Requires the Groups plugin is active

<requires>
 <type>plugin</type>
 <name>groups</name>
</requires>

Requires to be after the Profile plugin if Profile is active

<requires>
 <type>priority</type>
 <priority>after</priority>
 <plugin>profile</plugin>
</requires>

Conflicts with The Wire plugin

<conflicts>
 <type>plugin</type>
 <name>thewire</name>
</conflicts>

Requires at least 256 MB memory in PHP

<requires>
 <type>php_ini</type>
 <name>memory_limit</name>
 <value>256M</value>
 <comparison>ge</comparison>
</requires>

Requires at least PHP version 5.3

<requires>
 <type>php_version</type>
 <version>5.3</version>
</requires>

Suggest the TidyPics plugin is loaded

<suggests>
 <type>plugin</type>
 <name>tidypics</name>
</suggests>

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Plugin coding guidelines

In addition to the Elgg Coding Standards, these are guidelines for creating plugins.
Core plugins are being updated to this format and all plugin authors should follow
these guidelines in their own plugins.

See also

Be sure to follow the Plugin skeleton for your plugin’s layout.

Warning

Don’t Modify Core

Contents

	Use standardized routing with page handlers

	Use standardized page handlers and scripts

	The object/<subtype> view

	Actions

	Directly calling a file

	Recommended

Use standardized routing with page handlers

	Example: Bookmarks plugin

	
	Page handlers should accept the following standard URLs:

	

	Purpose
	URL

	All
	page_handler/all

	User
	page_handler/owner/<username>

	User friends’
	page_handler/friends/<username>

	Single entity
	page_handler/view/<guid>/<title>

	Add
	page_handler/add/<container_guid>

	Edit
	page_handler/edit/<guid>

	Group list
	page_handler/group/<guid>/owner

	Include page handler scripts from the page handler. Almost every page handler should have a page handler script. (Example: bookmarks/all => mod/bookmarks/views/default/resources/bookmarks/all.php)

	Pass arguments like entity guids to the resource view via $vars in elgg_view_resource().

	Call elgg_gatekeeper() and elgg_admin_gatekeeper() in the page handler function if required.

	The group URL should use views like resources/groups/*.php to render pages.

	Page handlers should not contain HTML.

	If upgrading a 1.7 plugin, update the URLs throughout the plugin. (Don’t forget to remove /pg/!)

Use standardized page handlers and scripts

	Example: Bookmarks plugin

	Store page functionality in mod/<plugin>/views/default/resources/<page_handler>/<page_name>.php

	Use elgg_view_resource('<page_handler>/<page_name>') to render that.

	Use the content page layout in page handler scripts: $content = elgg_view_layout('content', $options);

	Page handler scripts should not contain HTML

	Call elgg_push_breadcrumb() in the page handler scripts.

	No need to worry about setting the page owner if the URLs are in the standardized format

	For group content, check the container_guid by using elgg_get_page_owner_entity()

The object/<subtype> view

	Example: Bookmarks plugin

	Make sure there are views for $vars['full_view'] == true and $vars['full_view'] == false

	Check for the object in $vars['entity'] . Use elgg_instance_of() to make sure it’s the type entity you want. Return true to short circuit the view if the entity is missing or wrong.

	Use the new list body and list metadata views to help format. You should use almost no markup in these views.

	Update action structure - Example: Bookmarks plugin.

	Namespace action files and action names (example: mod/blog/actions/blog/save.php => action/blog/save)

	
	Use the following action URLs:

	

	Purpose
	URL

	Add
	action/plugin/save

	Edit
	action/plugin/save

	Delete
	action/plugin/delete

	Make the delete action accept action/<handler>/delete?guid=<guid> so the metadata entity menu has the correct URL by default

	If updating a 1.7 plugin, replace calls to functions deprecated in 1.7 because these will produce visible errors on every load in 1.8

Actions

Actions are transient states to perform an action such as updating the database or sending a notification to a user. Used correctly, actions provide a level of access control and prevent against CSRF attacks.

Actions require action (CSRF) tokens to be submitted via GET/POST, but these are added automatically by elgg_view_form() and by using the is_action argument of the output/url view.

Action best practices

Action files are included within Elgg’s action system; like views, they are not regular scripts executable by users. Do not boot the Elgg core in your file and direct users to load it directly.

Because actions are time-sensitive they are not suitable for links in emails or other delayed notifications. An example of this would be invitations to join a group. The clean way to create an invitation link is to create a page handler for invitations and email that link to the user. It is then the page handler’s responsibility to create the action links for a user to join or ignore the invitation request.

Consider that actions may be submitted via XHR requests, not just links or form submissions.

Directly calling a file

This is an easy one: Don’t do it. With the exception of 3rd party application integration, there is not a reason to directly call a file in mods directory.

Recommended

These points are good ideas, but are not yet in the official guidelines. Following these suggestions will help to keep your plugin consistent with Elgg core.

	Update the widget views (see the blog or file widgets)

	Update the group profile “widget” using blog or file plugins as example

	
	Update the forms

	
	Move form bodies to /forms/<handler>/<action> to use Evan’s new elgg_view_form()

	Use input views in form bodies rather than html

	Add a function that prepares the form (see mod/file/lib/file.php for example)

	Integrate sticky forms (see the file plugin’s upload action and form prepare function)

	
	Clean up CSS/HTML

	
	Should be able to remove almost all CSS (look for patterns that can be moved into core if you need CSS)

	Use hyphens rather than underscores in classes/ids

	Update the manifest.xml file to the 1.8 format. Use http://el.gg/manifest17to18 to automate this

	Do not use the bundled category with your plugins. That is for plugins distributed with Elgg

	
	Update functions deprecated in 1.8.

	
	Many registration functions simply added an elgg_ prefix for consistency

	See /engine/lib/deprecated-1.8.php for the full list. You can also set the debug level to warning to get visual reminders of deprecated functions

	Don’t use register_shutdown_function as you may not have access to certain Elgg parts anymore (eg database). Instead use the shutdown system event

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Accessibility

This page aims to list and document accessibility rules and best practices, to help core and plugins developpers to make Elgg the most accessible social engine framework that everyone dreams of.

Note

This is an ongoing work, please contribute on Github [https://github.com/Elgg/Elgg] if you have some skills in this field!

Resources + references

	Official WCAG Accessibility Guidelines Overview [http://www.w3.org/WAI/WCAG20/glance/]

	Official WCAG Accessibility Guidelines [http://www.w3.org/TR/WCAG/]

	Resources for planning and implementing for accessibility [http://www.w3.org/WAI/managing]

	Practical tips from the W3C for improving accessibility [http://www.w3.org/WAI/impl/improving]

	Preliminary review of websites for accessibility [http://www.w3.org/WAI/eval/preliminary.html]

	Tools for checking the accessibility of websites [http://www.w3.org/WAI/ER/tools/]

	List of practical techniques for implementing accessibility [http://www.w3.org/TR/WCAG20-TECHS/Overview.html#contents] (It would be great if someone could go through this and filter out all the ones that are relevant to Elgg)

Tips for implementing accessibility

	All accessibility-related tickets reported to trac should be tagged with “a11y”, short for “accessibility”

	Use core views such as output/*, and input/* to generate markup, since we can bake a11y concerns into these views

	All images should have a descriptive alt attribute. Spacer or purely decorative graphics should have blank alt attributes

	All <a> tags should have text or an accessible image inside. Otherwise screen readers will have to read the URL, which is a poor experience <a> tags should contain descriptive text, if possible, as opposed to generic text like “Click here”

	Markup should be valid

	Themes should not reset “outline” to nothing. :focus deserves a special visual treatment so that handicapped users can know where they are

Tips for testing accessibility

	Use the tools linked to from the resources section. Example report for community.elgg.org on June 16, 2012 [http://try.powermapper.com/Reports/a6276098-0883-4d04-849e-8c05999812f2/report/map.htm]

	Try different font-size/zoom settings in your browser and make sure the theme remains usable

	Turn off css to make sure the sequential order of the page makes sense

Documentation objectives and principles

	Main accessibility rules

	collect and document best practices

	Provide code examples

	Keep the document simple and usable

	Make it usable for both beginner developpers and experts (from most common and easiest changes to elaborate techniques)

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Ajax

The elgg/Ajax AMD module (introduced in Elgg 2.1) provides a set of methods for communicating with the server in a concise and uniform way, which allows plugins to collaborate on the request data, the server response, and the returned client-side data.

Client and server code written for the legacy API should not need modification.

Contents

	Overview
	Performing actions

	Fetching data

	Fetching views

	Fetching forms

	Piggybacking on an Ajax request

	Piggybacking on an Ajax response

	Handling errors

	Requiring AMD modules

	Legacy elgg.ajax APIs
	Legacy elgg.action

	Legacy view fetching

	Legacy form fetching

	Legacy helper functions

Overview

All the ajax methods perform the following:

	Client-side, the data option (if given as an object) is filtered by the hook ajax_request_data.

	The request is made to the server, either rendering a view or a form, calling an action, or loading a path.

	The method returns a jqXHR object, which can be used as a Promise.

	Server-echoed content is turned into a response object (Elgg\Services\AjaxResponse) containing a string (or a JSON-parsed value).

	The response object is filtered by the hook ajax_response.

	The response object is used to create the HTTP response.

	Client-side, the response data is filtered by the hook ajax_response_data.

	The jqXHR promise is resolved and any success callbacks are called.

More notes:

	All hooks have a type depending on the method and first argument. See below.

	By default the elgg/spinner module is automatically used during requests.

	User messages generated by system_message() and register_error() are collected and displayed on the client.

	Elgg gives you a default error handler that shows a generic message if output fails.

	PHP exceptions or denied resource return HTTP error codes, resulting in use of the client-side error handler.

	The default HTTP method is POST for actions, otherwise GET. You can set it via options.method.

	If a non-empty options.data is given, the default method is always POST.

	For client caching, set options.method to "GET" and options.data.elgg_response_ttl to the max-age you want in seconds.

	To save system messages for the next page load, set options.data.elgg_fetch_messages = 0. You may want to do this if you intent to redirect the user based on the response.

	To stop client-side API from requiring AMD modules required server-side with elgg_require_js(), set options.data.elgg_fetch_deps = 0.

	All methods accept a query string in the first argument. This is passed on to the fetch URL, but does not appear in the hook types.

Performing actions

Consider this action:

// in myplugin/actions/do_math.php

elgg_ajax_gatekeeper();

$arg1 = (int)get_input('arg1');
$arg2 = (int)get_input('arg2');

// will be rendered client-side
system_message('We did it!');

echo json_encode([
 'sum' => $arg1 + $arg2,
 'product' => $arg1 * $arg2,
]);

To execute it, use ajax.action('<action_name>', options):

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.action('do_math', {
 data: {
 arg1: 1,
 arg2: 2
 },
}).done(function (output, statusText, jqXHR) {
 if (jqXHR.AjaxData.status == -1) {
 return;
 }
 alert(output.sum);
 alert(output.product);
});

Notes for actions:

	
	All hooks have type action:<action_name>. So in this case, three hooks will be triggered:

	
	client-side "ajax_request_data", "action:do_math" to filter the request data (before it’s sent)

	server-side "ajax_response", "action:do_math" to filter the response (after the action runs)

	client-side "ajax_response_data", "action:do_math" to filter the response data (before the calling code receives it)

	CSRF tokens are added to the request data.

	The default method is POST.

	An absolute action URL can be given in place of the action name.

	Using forward() in an action simply sends the response. The URL given in not returned to the client.

Note

When setting data, use ajax.objectify($form) instead of $form.serialize(). Doing so allows the
ajax_request_data plugin hook to fire and other plugins to alter/piggyback on the request.

Fetching data

Consider this PHP script that runs at http://example.org/myplugin_time.

// in myplugin/start.php
elgg_register_page_handler('myplugin_time', 'myplugin_get_time');

function myplugin_get_time() {
 elgg_ajax_gatekeeper();

 echo json_encode([
 'rfc2822' => date(DATE_RFC2822),
 'day' => date('l'),
]);

 return true;
}

To fetch its output, use ajax.path('<url_path>', options).

var Ajax = require('elgg/Ajax');
 var ajax = new Ajax();

 ajax.path('myplugin_time').done(function (output, statusText, jqXHR) {
 if (jqXHR.AjaxData.status == -1) {
 return;
 }
 alert(output.rfc2822);
 alert(output.day);
 });

Notes for paths:

	The 3 hooks (see Actions above) will have type path:<url_path>. In this case, “path:myplugin_time”.

	If the page handler echoes a regular web page, output will be a string containing the HTML.

	An absolute URL can be given in place of the path name.

Fetching views

Consider this view:

// in myplugin/views/default/myplugin/get_link.php

if (empty($vars['entity']) || !$vars['entity'] instanceof ElggObject) {
 return;
}

$object = $vars['entity'];
/* @var ElggObject $object */

echo elgg_view('output/url', [
 'text' => $object->getDisplayName(),
 'href' => $object->getUrl(),
 'is_trusted' => true,
]);

Since it’s a PHP file, we must register it for Ajax first:

// in myplugin_init()
elgg_register_ajax_view('myplugin/get_link');

To fetch the view, use ajax.view('<view_name>', options):

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.view('myplugin/get_link', {
 data: {
 guid: 123 // querystring
 },
}).done(function (output, statusText, jqXHR) {
 if (jqXHR.AjaxData.status == -1) {
 return;
 }
 $('.myplugin-link').html(output);
});

Notes for views:

	The 3 hooks (see Actions above) will have type view:<view_name>. In this case, “view:myplugin/get_link”.

	output will be a string with the rendered view.

	The request data are injected into $vars in the view.

	If the request data contains guid, the system sets $vars['entity'] to the corresponding entity or false if it can’t be loaded.

Warning

In ajax views and forms, note that $vars can be populated by client input. The data is filtered like
get_input(), but may not be the type you’re expecting or may have unexpected keys.

Fetching forms

Consider we have a form view. We register it for Ajax:

// in myplugin_init()
elgg_register_ajax_view('forms/myplugin/add');

To fetch this using ajax.form('<action_name>', options).

var Ajax = require('elgg/Ajax');
var ajax = new Ajax();

ajax.form('myplugin/add').done(function (output, statusText, jqXHR) {
 if (jqXHR.AjaxData.status == -1) {
 return;
 }
 $('.myplugin-form-container').html(output);
});

Notes for forms:

	The 3 hooks (see Actions above) will have type form:<action_name>. In this case, “form:myplugin/add”.

	output will be a string with the rendered view.

	The request data are injected into $vars in your form view.

	If the request data contains guid, the system sets $vars['entity'] to the corresponding entity or false if it can’t be loaded.

Note

Only the request data are passed to the requested form view (i.e. as a third parameter accepted by
elgg_view_form()). If you need to pass attributes or parameters of the form element rendered by the
input/form view (i.e. normally passed as a second parameter to elgg_view_form()), use the server-side
hook view_vars, input/form.

Warning

In ajax views and forms, note that $vars can be populated by client input. The data is filtered like
get_input(), but may not be the type you’re expecting or may have unexpected keys.

Piggybacking on an Ajax request

The client-side ajax_request_data hook can be used to append or filter data being sent by an elgg/Ajax request.

Let’s say when the view foo is fetched, we want to also send the server some data:

// in your boot module
var Ajax = require('elgg/Ajax');
var elgg = require('elgg');

 var ajax = new Ajax();

elgg.register_hook_handler(Ajax.REQUEST_DATA_HOOK, 'view:foo', function (name, type, params, data) {
 // send some data back
 data.bar = 1;
 return data;
});

This data can be read server-side via get_input('bar');.

Note

If data was given as a string (e.g. $form.serialize()), the request hooks are not triggered.

Piggybacking on an Ajax response

The server-side ajax_response hook can be used to append or filter response data (or metadata).

Let’s say when the view foo is fetched, we want to also send the client some additional data:

use Elgg\Services\AjaxResponse;

function myplugin_append_ajax($hook, $type, AjaxResponse $response, $params) {

 // alter the value being returned
 $response->getData()->value .= " hello";

 // send some metadata back. Only client-side "ajax_response" hooks can see this!
 $response->getData()->myplugin_alert = 'Listen to me!';

 return $response;
}

 // in myplugin_init()
 elgg_register_plugin_hook_handler(AjaxResponse::RESPONSE_HOOK, 'view:foo', 'myplugin_append_ajax');

To capture the metadata send back to the client, we use the client-side ajax_response hook:

// in your boot module
var Ajax = require('elgg/Ajax');
var elgg = require('elgg');

elgg.register_hook_handler(Ajax.RESPONSE_DATA_HOOK, 'view:foo', function (name, type, params, data) {

 // the return value is data.value

 // the rest is metadata

 alert(data.myplugin_alert);

 return data;
});

Note

Only data.value is returned to the success function or available via the Deferred interface.

Note

Elgg uses these same hooks to deliver system messages over elgg/Ajax responses.

Handling errors

Responses basically fall into three categories:

	HTTP success (200) with status 0. No register_error() calls were made on the server.

	HTTP success (200) with status -1. register_error() was called.

	HTTP error (4xx/5xx). E.g. calling an action with stale tokens, or a server exception. In this case the done and success callbacks are not called.

You may need only worry about the 2nd case. We can do this by looking at jqXHR.AjaxData.status:

ajax.action('entity/delete?guid=123').done(function (value, statusText, jqXHR) {
if (jqXHR.AjaxData.status == -1) {
 // a server error was already displayed
 return;
}

 // remove element from the page
});

Requiring AMD modules

Each response from an Ajax service will contain a list of AMD modules required server side with elgg_require_js().
When response data is unwrapped, these modules will be loaded asynchronously - plugins should not expect these
modules to be loaded in their $.done() and $.then() handlers and must use require() for any modules they depend on.
Additionally AMD modules should not expect the DOM to have been altered by an Ajax request when they are loaded -
DOM events should be delegated and manipulations on DOM elements should be delayed until all Ajax requests have been
resolved.

Legacy elgg.ajax APIs

Elgg 1.8 introduced elgg.action, elgg.get, elgg.getJSON, and other methods which behave less consistently both client-side and server-side.

Legacy elgg.action

Differences:

	you must manually pull the output from the returned wrapper

	the success handler will fire even if the action is prevented

	the success handler will receive a wrapper object. You must look for wrapper.output

	no ajax hooks

elgg.action('do_math', {
 data: {
 arg1: 1,
 arg2: 2
 },
 success: function (wrapper) {
 if (wrapper.output) {
 alert(wrapper.output.sum);
 alert(wrapper.output.product);
 } else {
 // the system prevented the action from running, but we really don't
 // know why
 elgg.ajax.handleAjaxError();
 }
 }
});

elgg.action notes

	It’s best to echo a non-empty string, as this is easy to validate in the success function. If the action
was not allowed to run for some reason, wrapper.output will be an empty string.

	You may want to use the elgg/spinner module.

	Elgg does not use wrapper.status for anything, but a call to register_error() causes it to be
set to -1.

	If the action echoes a non-JSON string, wrapper.output will contain that string.

	elgg.action is based on jQuery.ajax and returns a jqXHR object (like a Promise), if you should want to use it.

	After the PHP action completes, other plugins can alter the wrapper via the plugin hook 'output', 'ajax',
which filters the wrapper as an array (not a JSON string).

	A forward() call forces the action to be processed and output immediately, with the wrapper.forward_url
value set to the normalized location given.

	To make sure Ajax actions can only be executed via XHR, use elgg_ajax_gatekeeper().

elgg.action JSON response wrapper

{
 current_url: {String} "http://example.org/action/example/math", // not very useful
 forward_url: {String} "http://example.org/foo", ...if forward('foo') was called
 output: {String|Object} from echo in action
 status: {Number} 0 = success. -1 = an error was registered.
 system_messages: {Object}
}

Warning

It’s probably best to rely only on the output key, and validate it in case the PHP action could not run
for some reason, e.g. the user was logged out or a CSRF attack did not provide tokens.

Warning

If forward() is used in response to a legacy ajax request (e.g. elgg.ajax), Elgg will always respond
with this wrapper, even if not in an action.

Legacy view fetching

A plugin can use a view script to handle XHR GET requests. Here’s a simple example of a view that returns a
link to an object given by its GUID:

// in myplugin_init()
elgg_register_ajax_view('myplugin/get_link');

// in myplugin/views/default/myplugin/get_link.php

if (empty($vars['entity']) || !$vars['entity'] instanceof ElggObject) {
 return;
}

$object = $vars['entity'];
/* @var ElggObject $object */

echo elgg_view('output/url', [
 'text' => $object->getDisplayName(),
 'href' => $object->getUrl(),
 'is_trusted' => true,
]);

elgg.get('ajax/view/myplugin/get_link', {
 data: {
 guid: 123 // querystring
 },
 success: function (output) {
 $('.myplugin-link').html(output);
 }
});

The Ajax view system works significantly differently than the action system.

	There are no access controls based on session status.

	Non-XHR requests are automatically rejected.

	GET vars are injected into $vars in the view.

	If the request contains $_GET['guid'], the system sets $vars['entity'] to the corresponding entity or
false if it can’t be loaded.

	There’s no “wrapper” object placed around the view output.

	System messages/errors shouldn’t be used, as they don’t display until the user loads another page.

	Depending on the view’s suffix (.js, .html, .css, etc.), a corresponding Content-Type header is added.

Warning

	In ajax views and forms, note that $vars can be populated by client input. The data is filtered like

	get_input(), but may not be the type you’re expecting or may have unexpected keys.

Returning JSON from a view

If the view outputs encoded JSON, you must use elgg.getJSON to fetch it (or use some other method to set jQuery’s
ajax option dataType to json). Your success function will be passed the decoded Object.

Here’s an example of fetching a view that returns a JSON-encoded array of times:

elgg.getJSON('ajax/view/myplugin/get_times', {
 success: function (data) {
 alert('The time is ' + data.friendly_time);
 }
});

Legacy form fetching

If you register a form view (name starting with forms/), you can fetch it pre-rendered with elgg_view_form().
Simply use ajax/form/<action> (instead of ajax/view/<view_name>):

// in myplugin_init()
elgg_register_ajax_view('forms/myplugin/add');

elgg.get('ajax/form/myplugin/add', {
 success: function (output) {
 $('.myplugin-form-container').html(output);
 }
});

Only the request data are passed to the requested form view (i.e. as a third parameter accepted by
elgg_view_form()). If you need to pass attributes or parameters of the form element rendered by the
input/form view (i.e. normally passed as a second parameter to elgg_view_form()), use the server-side
hook view_vars, input/form.

Warning

	In ajax views and forms, note that $vars can be populated by client input. The data is filtered like

	get_input(), but may not be the type you’re expecting or may have unexpected keys.

Legacy helper functions

These functions extend jQuery’s native Ajax features.

elgg.get() is a wrapper for jQuery’s $.ajax(), but forces GET and does URL normalization.

// normalizes the url to the current <site_url>/activity
elgg.get('/activity', {
 success: function(resultText, success, xhr) {
 console.log(resultText);
 }
});

elgg.post() is a wrapper for jQuery’s $.ajax(), but forces POST and does URL normalization.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Authentication

Elgg provides everything needed to authenticate users via username/email and password
out of the box, including:

	remember-me cookies for persistent login

	password reset logic

	secure storage of passwords

	logout

	UIs for accomplishing all of the above

All that’s left for you to do as a developer is to use
the built-in authentication functions to secure your pages and actions.

Working with the logged in user

Check whether the current user is logged in with elgg_is_logged_in():

if (elgg_is_logged_in()) {
 // do something just for logged-in users
}

Check if the current user is an admin with elgg_is_admin_logged_in():

if (elgg_is_admin_logged_in()) {
 // do something just for admins
}

Get the currently logged in user with elgg_get_logged_in_user_entity():

$user = elgg_get_logged_in_user_entity();

The returned object is an ElggUser so you can use all the methods and properties
of that class to access information about the user. If the user is not logged in,
this will return null, so be sure to check for that first.

Gatekeepers

Gatekeeper functions allow you to manage how code gets executed by applying access control rules.

Forward a user to the front page if they are not logged in with elgg_gatekeeper():

elgg_gatekeeper();

echo "Information for logged-in users only";

Note

In Elgg 1.8 and below this function was called gatekeeper()

Forward a user to the front page unless they are an admin with elgg_admin_gatekeeper():

elgg_admin_gatekeeper();

echo "Information for admins only";

Note

In Elgg 1.8 and below this function was called admin_gatekeeper()

Prevent CSRF attacks with action_gatekeeper().

action_gatekeeper();

// Mutate some state in the database on behalf of the logged in user...

This function should be used in Forms + Actions prior to Elgg 1.8.

Note

As of Elgg version 1.8 this function is called for all registered actions.
There is no longer a need to call this function in your own actions.
If you wish to protect other pages with action tokens then you can call this function.

Pluggable Authentication Modules

Elgg has support for pluggable authentication modules (PAM), which enables you to write your own authentication handlers. Whenever a request needs to get authenticated the system will call elgg_authenticate() which probes the registered PAM handlers until one returns success.

The preferred approach is to create a separate Elgg plugin which will have one simple task: to process an authentication request. This involves setting up an authentication handler in the plugin’s start.php file, and to register it with the PAM module so it will get processed whenever the system needs to authenticate a request.

The authentication handler is a function and takes a single parameter. Registering the handler is being done by register_pam_handler() which takes the name of the authentication handler, the importance and the policy as parameters. It is advised to register the handler in the plugin’s init function, for example:

function your_plugin_init() {
 // Register the authentication handler
 register_pam_handler('your_plugin_auth_handler');
}

function your_plugin_auth_handler($credentials) {
 // do things ...
}

// Add the plugin's init function to the system's init event
elgg_register_elgg_event_handler('init', 'system', 'your_plugin_init');

Importance

By default an authentication module is registered with an importance of sufficient.

In a list of authentication modules; if any one marked sufficient returns true, pam_authenticate() will also return true. The exception to this is when an authentication module is registered with an importance of required. All required modules must return true for pam_authenticate() to return true, regardless of whether all sufficient modules return true.

Passed credentials

The format of the credentials passed to the handler can vary, depending on the originating request. For example, a regular login via the login form will create a named array, with the keys username and password. If a request was made for example via XML-RPC then the credentials will be set in the HTTP header, so in this case nothing will get passed to the authentication handler and the handler will need to perform steps on its own to authenticate the request.

Return value

The authentication handle should return a boolean, indicating if the request could be authenticated or not. One caveat is that in case of a regular user login where credentials are available as username and password the user will get logged in. In case of the XML-RPC example the authentication handler will need to perform this step itself since the rest of the system will not have any idea of either possible formats of credentials passed nor its contents. Logging in a user is quite simple and is being done by login(), which expects an ElggUser object.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Context

Within the Elgg framework, context can be used to by your plugin’s functions to determine if they should run or not. You will be registering callbacks to be executed when particular events are triggered. Sometimes the events are generic and you only want to run your callback when your plugin caused the event to be triggered. In that case, you can use the page’s context.

You can explicitly set the context with set_context(). The context is a string and typically you set it to the name of your plugin. You can retrieve the context with the function get_context().
It’s however better to use elgg_push_context($string) to add a context to the stack. You can check if the context you want in in the current stack by calling elgg_in_context($context). Don’t forget to pop (with elgg_pop_context()) the context after you push one and don’t need it anymore.

If you don’t set it, Elgg tries to guess the context. If the page was called through the page handler, the context is set to the name of the handler which was set in elgg_register_page_handler(). If the page wasn’t called through the page handler, it uses the name of your plugin directory. If it cannot determine that, it returns main as the default context.

Sometimes a view will return different HTML depending on the context. A plugin can take advantage of that by setting the context before calling elgg_view() on the view and then setting the context back. This is frequently done with the search context.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Cron

If you setup cron correctly as described in Cron
special hooks will be triggered so you can register for these hooks from your own code.

The example below registers a function for the daily cron.

function my_plugin_init() {
 elgg_register_plugin_hook_handler('cron', 'daily', 'my_plugin_cron_handler');
}

If timing is important in your cron hook be advised that the functions
are executed in order of registration. This could mean that your function may
start (a lot) later then you may have expected. However the parameters provided
in the hook contain the original starting time of the cron, so you can always use that
information.

function my_plugin_cron_handler($hook, $period, $return, $params) {
 $start_time = elgg_extract('time', $params);
}

See also

Events and Plugin Hooks has more information about hooks

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Database

Persist user-generated content and settings with Elgg’s generic storage API.

Contents

	Entities
	Creating an object

	Loading an object

	Displaying entities

	Adding, reading and deleting annotations

	Extending ElggEntity

	Advanced features

	Pre-1.8 Notes

	Custom database functionality
	Example: Run SQL script on plugin activation

	Systemlog
	System log storage

	Creating your own system log

Entities

Creating an object

To create an object in your code, you need to instantiate an
ElggObject. Setting data is simply a matter of adding instance
variables or properties. The built-in properties are:

	``guid`` The entity’s GUID; set automatically

	``owner_guid`` The owning user’s GUID

	``site_guid`` The owning site’s GUID. This is set automatically
when an instance of ElggObject gets created)

	``subtype`` A single-word arbitrary string that defines what kind
of object it is, for example blog

	``access_id`` An integer representing the access level of the
object

	``title`` The title of the object

	``description`` The description of the object

The object subtype is a special property. This is an arbitrary string
that describes what the object is. For example, if you were writing a
blog plugin, your subtype string might be blog. It’s a good idea to
make this unique, so that other plugins don’t accidentally try and use
the same subtype. For the purposes of this document, let’s assume we’re
building a simple forum. Therefore, the subtype will be forum:

$object = new ElggObject();
$object->subtype = "forum";
$object->access_id = 2;
$object->save();

access_id is another important property. If you don’t set this, your
object will be private, and only the creator user will be able to see
it. Elgg defines constants for the special values of access_id:

	ACCESS_PRIVATE Only the owner can see it

	ACCESS_FRIENDS Only the owner and his/her friends can see it

	ACCESS_LOGGED_IN Any logged in user can see it

	ACCESS_PUBLIC Even visitors not logged in can see it

Saving the object will automatically populate the $object->guid
property if successful. If you change any more base properties, you can
call $object->save() again, and it will update the database for you.

You can set metadata on an object just like a standard property. Let’s
say we want to set the SKU of a product:

$object->SKU = 62784;

If you assign an array, all the values will be set for that metadata.
This is how, for example, you set tags.

Metadata cannot be persisted to the database until the entity has been
saved, but for convenience, ElggEntity can cache it internally and save
it when saving the entity.

Loading an object

By GUID

$entity = get_entity($guid);
if (!$entity) {
 // The entity does not exist or you're not allowed to access it.
}

But what if you don’t know the GUID? There are several options.

By user, subtype or site

If you know the user ID you want to get objects for, or the subtype, or
the site, you have several options. The easiest is probably to call the
procedural function elgg_get_entities:

$entities = elgg_get_entities(array(
 'type' => $entity_type,
 'subtype' => $subtype,
 'owner_guid' => $owner_guid,
));

This will return an array of ElggEntity objects that you can iterate
through. elgg_get_entities paginates by default, with a limit of 10;
and offset 0.

You can leave out owner_guid to get all objects and leave out subtype
or type to get objects of all types/subtypes.

If you already have an ElggUser – e.g. elgg_get_logged_in_user_entity,
which always has the current user’s object when you’re logged in – you can
simply use:

$objects = $user->getObjects($subtype, $limit, $offset)

But what about getting objects with a particular piece of metadata?

By metadata

The function elgg_get_entities_from_metadata allows fetching entities
with metadata in a variety of ways.

By annotation

The function elgg_get_entities_from_annotations allows fetching entities
with metadata in a variety of ways.

Note

As of Elgg 1.10 the default behaviour of elgg_get_entities_from_annotations was brought inline with the rest of the elgg_get_entities* functions.

Pre Elgg 1.10 the sorting of the entities was based on the latest addition of an annotation (in $options your could add $options[‘order_by’] = ‘maxtime ASC’ or $options[‘order_by’] = ‘maxtime DESC’. As of Elgg 1.10 this was changed to the creation time of the entity, just like the rest of the elgg_get_entities* functions.
To get the old behaviour back add the following to your $options:

$options['selects'] = array('MAX(n_table.time_created) AS maxtime');
$options['group_by'] = 'n_table.entity_guid';
$options['order_by'] = 'maxtime ASC'

or

$options['order_by'] = 'maxtime DESC'

Displaying entities

In order for entities to be displayed in listing functions you need
to provide a view for the entity in the views system.

To display an entity, create a view EntityType/subtype where EntityType
is one of the following:

object: for entities derived from ElggObject
user: for entities derived from ElggUser
site: for entities derived from ElggSite
group: for entities derived from ElggGroup

A default view for all entities has already been created, this is called
EntityType/default.

Entity Icons

Entity icons can be saved from uploaded files, existing local files, or existing ElggFile
objects. These methods save all sizes of icons defined in the system.

$object = new ElggObject();
$object->title = 'Example entity';
$object->description = 'An example object with an icon.';

// from an uploaded file
$object->setIconFromUploadedFile('file_upload_input');

// from a local file
$object->setIconFromLocalFile('/var/data/generic_icon.png');

// from a saved ElggFile object
$file = get_entity(123);
if ($file instanceof ElggFile) {
 $object->setIconFromElggFile($file);
}

$object->save();

	The following sizes exist by default:

	
	master - 550px at longer edge (not upscaled)

	large - 200px at longer edge (not upscaled)

	medium - 100px square

	small - 40px square

	tiny - 25px square

	topbar - 16px square

Use elgg_get_icon_sizes() to get all possible icon sizes for a specific entity type and subtype.
The function triggers the entity:icon:sizes hook.

To check if an icon is set, use $object->hasIcon($size).

You can retrieve the URL of the generated icon with``ElggEntity::getIconURL($params)`` method.
This method accepts a $params argument as an array that specifies the size, type, and provide
additional context for the hook to determine the icon to serve.
The method triggers the entity:icon:url hook.

Use elgg_view_entity_icon($entity, $size, $vars) to render an icon. This will scan the following
locations for a view and include the first match to .

	views/$viewtype/icon/$type/$subtype.php

	views/$viewtype/icon/$type/default.php

	views/$viewtype/icon/default.php

Where

	$viewtype

	Type of view, e.g. 'default' or 'json'.

	$type

	Type of entity, e.g. 'group' or 'user'.

	$subtype

	Entity subtype, e.g. 'blog' or 'page'.

Icon methods support passing an icon type if an entity has more than one icon. For example, a user
might have an avatar and a cover photo icon. You would pass 'cover_photo' as the icon type:

$object->setIconFromUploadedFile('uploaded_photo', 'cover_photo');

$object->getIconUrl([
 'size' => 'medium',
 'type' => 'cover_photo'
]);

Note that custom icon types (e.g. cover photos) do not have preset sizes and coordinates.
Use entity:<icon_type>:url hook to configure them.

By default icons will be stored in /icons/<icon_type>/<size>.jpg relative to entity’s directory on filestore.
To provide an alternative location, use the entity:<icon_type>:file hook.

Adding, reading and deleting annotations

Annotations could be used, for example, to track ratings. To annotate an
entity you can use the object’s annotate() method. For example, to
give a blog post a rating of 5, you could use:

$blog_post->annotate('rating', 5);

To retrieve the ratings on the blog post, use
$blogpost->getAnnotations('rating') and if you want to delete an
annotation, you can operate on the ElggAnnotation class, eg
$annotation->delete().

Retrieving a single annotation can be done with get_annotation() if
you have the annotation’s ID. If you delete an ElggEntity of any kind,
all its metadata, annotations, and relationships will be automatically
deleted as well.

Extending ElggEntity

If you derive from one of the Elgg core classes, you’ll need to tell
Elgg how to properly instantiate the new type of object so that
get_entity() et al. will return the appropriate PHP class. For example,
if I customize ElggGroup in a class called “Committee”, I need to make
Elgg aware of the new mapping. Following is an example class extension:

// Class source
class Committee extends ElggGroup {

 protected function initializeAttributes() {
 parent::initializeAttributes();
 $this->attributes['subtype'] = 'committee';
 }

 // more customizations here
}

function committee_init() {

 register_entity_type('group', 'committee');

 // Tell Elgg that group subtype "committee" should be loaded using the Committee class
 // If you ever change the name of the class, use update_subtype() to change it
 add_subtype('group', 'committee', 'Committee');
}

register_elgg_event_handler('init', 'system', 'committee_init');

Now if you invoke get_entity() with the GUID of a committee object,
you’ll get back an object of type Committee.

This template was extracted from the definition of ElggFile.

Advanced features

Entity URLs

Entity urls are provided by the getURL() interface and provide the
Elgg framework with a common way of directing users to the appropriate
display handler for any given object.

For example, a profile page in the case of users.

The url is set using the elgg_register_entity_url_handler()
function. The function you register must return the appropriate url for
the given type - this itself can be an address set up by a page handler.

The default handler is to use the default export interface.

Entity loading performance

elgg_get_entities has a couple options that can sometimes be useful to improve performance.

	preload_owners: If the entities fetched will be displayed in a list with the owner information, you can set this option to true to efficiently load the owner users of the fetched entities.

	preload_containers: If the entities fetched will be displayed in a list using info from their containers, you can set this option to true to efficiently load them.

	distinct: When Elgg fetches entities using an SQL query, Elgg must be sure that each entity row appears only once in the result set. By default it includes a DISTINCT modifier on the GUID column to enforce this, but some queries naturally return unique entities. Setting the distinct option to false will remove this modifier, and rely on the query to enforce its own uniqueness.

The internals of Elgg entity queries is a complex subject and it’s recommended to seek help on the Elgg Community site before using the distinct option.

Pre-1.8 Notes

update_subtype(): This function is new in 1.8. In prior versions, you
would need to edit the database by hand if you updated the class name
associated with a given subtype.

elgg_register_entity_url_handler(): This function is new in 1.8. It
deprecates register_entity_url_handler(), which you should use if
developing for a pre-1.8 version of Elgg.

elgg_get_entities_from_metadata(): This function is new in 1.8. It
deprecates get_entities_from_metadata(), which you should use if
developing for a pre-1.8 version of Elgg.

Custom database functionality

It is strongly recommended to use entities wherever possible. However, Elgg
supports custom SQL queries using the database API.

Example: Run SQL script on plugin activation

This example shows how you can populate your database on plugin activation.

my_plugin/activate.php:

if (!elgg_get_plugin_setting('database_version', 'my_plugin') {
 run_sql_script(__DIR__ . '/sql/activate.sql');
 elgg_set_plugin_setting('database_version', 1, 'my_plugin');
}

my_plugin/sql/activate.sql:

-- Create some table
CREATE TABLE prefix_custom_table(
 id INTEGER AUTO_INCREMENT,
 name VARCHAR(32),
 description VARCHAR(32),
 PRIMARY KEY (id)
);

-- Insert initial values for table
INSERT INTO prefix_custom_table (name, description)
VALUES ('Peter', 'Some guy'), ('Lisa', 'Some girl');

Note that Elgg execute statements through PHPs built-in functions and have
limited support for comments. I.e. only single line comments are supported
and must be prefixed by “– ” or “# ”. A comment must start at the very beginning
of a line.

Systemlog

Note

This section need some attention and will contain outdated information

The default Elgg system log is a simple way of recording what happens within an Elgg system. It’s viewable and searchable directly from the administration panel.

System log storage

A system log row is stored whenever an event concerning an object whose class implements the Loggable interface is triggered. ElggEntity and ElggExtender implement Loggable, so a system log row is created whenever an event is performed on all objects, users, groups, sites, metadata and annotations.

Common events include:

	create

	update

	delete

	login

Creating your own system log

There are some reasons why you might want to create your own system log. For example, you might need to store a full copy of entities when they are updated or deleted, for auditing purposes. You might also need to notify an administrator when certain types of events occur.

To do this, you can create a function that listens to all events for all types of object:

register_elgg_event_handler('all','all','your_function_name');

Your function can then be defined as:

function your_function_name($object, $event) {
 if ($object instanceof Loggable) {
 ...
 }
}

You can then use the extra methods defined by Loggable to extract the information you need.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

File System

Filestore

Location

Elgg’s filestore is located in the site’s dataroot that is configured during
installation, and can be modified via site settings in Admin interface.

Directory Structure

The structure of the filestore is tied to file ownership by Elgg entities. Whenever
the first file owned by an entity is written to the filestore, a directory corresponding
to the entity GUID will be created within a parent bucket directory (buckets are bound to 5000 guids).
E.g. files owned by user with guid 7777 will be located in 5000/7777/.

When files are created, filenames can contain subdirectory names (often referred to as
$prefix throughout the code). For instance, avatars of the above user, can be found
under 5000/7777/profile/.

File Objects

Writing Files

To write a file to the filestore, you would use an instance of ElggFile. Even though
ElggFile extends ElggObject and can be stored as an actual Elgg entity, that is not
always necessary (e.g. when writing thumbs of an image).

$file = new ElggFile();
$file->owner_guid = 7777;
$file->setFilename('portfolio/files/sample.txt');
$file->open('write');
$file->write('Contents of the file');
$file->close();

// to uprade this file to an entity
$file->subtype = 'file';
$file->save();

Reading Files

You can read file contents using instanceof of ElggFile.

// from an Elgg entity
$file = get_entity($file_guid);
readfile($file->getFilenameOnFilestore());

// arbitrary file on the filestore
$file = new ElggFile();
$file->owner_guid = 7777;
$file->setFilename('portfolio/files/sample.txt');

// option 1
$file->open('read');
$contents = $file->grabFile();
$file->close();

// option 2
$contents = file_get_contents($file->getFilenameOnFilestore());

Serving Files

You can serve files from filestore using elgg_get_inline_url() and elgg_get_download_url().
Both functions accept 3 arguments:

	``file`` An instance of ElggFile to be served

	``use_cookie`` If set to true, validity of the URL will be limited to current session

	``expires`` Expiration time of the URL

You can use use_cookie and expires arguments as means of access control. For example,
users avatars in most cases have a long expiration time and do not need to be restricted by
current session - this will allows browsers to cache the images and file service will
send appropriate Not Modified headers on consecutive requests.

For entities that are under Elgg’s access control, you may want to use cookies to ensure
that access settings are respected and users do not share download URLs with somebody else.

You can also invalidated all previously generated URLs by updating file’s modified time, e.g.
by using touch().

Embedding Files

Please note that due to their nature inline and download URLs are not suitable for embedding.
Embed URLs must be permanent, whereas inline and download URLs are volatile (bound to user session
and file modification time).

To embed an entity icon, use elgg_get_embed_url().

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Forms + Actions

Create, update, or delete content.

Elgg forms submit to actions. Actions define the behavior for form submission.

This guide assumes basic familiarity with:

	Plugins

	Views

	Internationalization

Contents

	Registering actions
	Permissions

	Writing action files

	Customizing actions

	Actions available in core
	entity/delete

	Forms
	Inputs

	Input types

	Files and images

	Sticky forms
	Helper functions

	Overview

	Example: User registration

	Example: Bookmarks

	Ajax

	Security

	Security Tokens

Registering actions

Actions must be registered before use. Use elgg_register_action for this:

elgg_register_action("example", __DIR__ . "/actions/example.php");

The mod/example/actions/example.php script will now be run whenever a form is submitted to http://localhost/elgg/action/example.

Warning

A stumbling point for many new developers is the URL for actions. The URL always uses /action/ (singular) and never /actions/ (plural). However, action script files are usually saved under the directory /actions/ (plural) and always have an extension.

Permissions

By default, actions are only available to logged in users.

To make an action available to logged out users, pass "public" as the third parameter:

elgg_register_action("example", $filepath, "public");

To restrict an action to only administrators, pass "admin" for the last parameter:

elgg_register_action("example", $filepath, "admin");

Writing action files

Use the get_input function to get access to request parameters:

$field = get_input('input_field_name', 'default_value');

You can then use the Database api to load entities and perform actions on them accordingly.

To redirect the page once you’ve completed your actions, use the forward function:

forward('url/to/forward/to');

For example, to forward to the user’s profile:

$user = elgg_get_logged_in_user_entity();
forward($user->getURL());

URLs can be relative to the Elgg root:

$user = elgg_get_logged_in_user_entity();
forward("/example/$user->username");

Redirect to the referring page by using the REFERRER constant:

forward(REFERRER);
forward(REFERER); // equivalent

Give feedback to the user about the status of the action by using
system_message for positive feedback or register_error for warnings and errors:

if ($success) {
 system_message(elgg_echo(‘actions:example:success’));
} else {
 register_error(elgg_echo(‘actions:example:error’));
}

Customizing actions

Before executing any action, Elgg triggers a hook:

$result = elgg_trigger_plugin_hook('action', $action, null, true);

Where $action is the action being called. If the hook returns false then the action will not be executed.

Example: Captcha

The captcha module uses this to intercept the register and user/requestnewpassword actions and redirect them to a function which checks the captcha code. This check returns true if valid or false if not (which prevents the associated action from executing).

This is done as follows:

elgg_register_plugin_hook_handler("action", "register", "captcha_verify_action_hook");
elgg_register_plugin_hook_handler("action", "user/requestnewpassword", "captcha_verify_action_hook");

...

function captcha_verify_action_hook($hook, $entity_type, $returnvalue, $params) {
 $token = get_input('captcha_token');
 $input = get_input('captcha_input');

 if (($token) && (captcha_verify_captcha($input, $token))) {
 return true;
 }

 register_error(elgg_echo('captcha:captchafail'));

 return false;
}

This lets a plugin extend an existing action without the need to replace the whole action. In the case of the captcha plugin it allows the plugin to provide captcha support in a very loosely coupled way.

Actions available in core

entity/delete

If your plugin does not implement any custom logic when deleting an entity, you can use bundled delete action

$guid = 123;
// You can provide optional forward path as a URL query parameter
$forward_url = 'path/to/forward/to';
echo elgg_view('output/url', array(
 'text' => elgg_echo('delete'),
 'href' => "action/entity/delete?guid=$guid&forward_url=$forward_url",
 'confirm' => true,
));

You can customize the success message keys for your entity type and subtype, using "entity:delete:$type:$subtype:success" and "entity:delete:$type:success" keys.

// to add a custom message when a blog post or file is deleted
// add the translations keys in your language files
return array(
 'entity:delete:object:blog:success' => 'Blog post has been deleted,
 'entity:delete:object:file:success' => 'File titled %s has been deleted',
);

Forms

To output a form, use the elgg_view_form function like so:

echo elgg_view_form('example');

Doing this generates something like the following markup:

<form action="http://localhost/elgg/action/example">
 <fieldset>
 <input type="hidden" name="__elgg_ts" value="1234567890" />
 <input type="hidden" name="__elgg_token" value="3874acfc283d90e34" />
 </fieldset>
</form>

Elgg does some things automatically for you when you generate forms this way:

	It sets the action to the appropriate URL based on the name of the action you pass to it

	It adds some anti-csrf tokens (__elgg_ts and __elgg_token) to help keep your actions secure

	It automatically looks for the body of the form in the forms/example view.

Put the content of your form in your plugin’s forms/example view:

// /mod/example/views/default/forms/example.php
echo elgg_view('input/text', array('name' => 'example'));
echo elgg_view('input/submit');

Now when you call elgg_view_form('example'), Elgg will produce:

<form action="http://localhost/elgg/action/example">
 <fieldset>
 <input type="hidden" name="__elgg_ts" value="...">
 <input type="hidden" name="__elgg_token" value="...">

 <input type="text" class="elgg-input-text" name="example">
 <input type="submit" class="elgg-button elgg-button-submit" value="Submit">
 </fieldset>
</form>

Inputs

To render a form input, use one of the bundled input views, which cover all standard
HTML input elements. See individual view files for a list of accepted parameters.

echo elgg_view('input/select', array(
 'required' => true,
 'name' => 'status',
 'options_values' => array(
 'draft' => elgg_echo('status:draft'),
 'published' => elgg_echo('status:published'),
),
 // most input views will render additional parameters passed to the view
 // as tag attributes
 'data-rel' => 'blog',
));

The above example will render a dropdown select input:

<select required="required" name="status" data-rel="blog" class="elgg-input-dropdown">
 <option value="draft">Draft</option>
 <option value="published">Published</option>
</select>

To ensure consistency in field markup, use elgg_view_input(), which accepts
all the parameters of the input being rendered, as well as label and help
parameters (both of which are optional and accept HTML or text).

echo elgg_view_input('select', array(
 'required' => true,
 'name' => 'status',
 'options_values' => array(
 'draft' => elgg_echo('status:draft'),
 'published' => elgg_echo('status:published'),
),
 'data-rel' => 'blog',
 'label' => elgg_echo('blog:status:label'),
 'help' => elgg_view_icon('help') . elgg_echo('blog:status:help'),
));

The above will generate the following markup:

<div class="elgg-field elgg-field-required">
 <label for="elgg-field-1" class="elgg-field-label">Blog status*</label>
 <select required="required" name="status" data-rel="blog" id="elgg-field-1" class="elgg-input-dropdown">
 <option value="draft">Draft</option>
 <option value="published">Published</option>
 </select>
 <div class="elgg-field-help elgg-text-help">
 This indicates whether or not the blog is visible in the feed
 </div>
</div>

Input types

A list of bundled input types/views:

	input/text - renders a text input <input type="text">

	input/plaintext - renders a textarea <textarea></textarea>

	input/longtext - renders a WYSIWYG text input

	input/url - renders a url input <input type="url">

	input/email - renders an email input <input type="email">

	input/checkbox - renders a single checkbox <input type="checkbox">

	input/checkboxes - renders a set of checkboxes with the same name

	input/radio - renders one or more radio buttons <input type="radio">

	input/submit - renders a submit button <input type="submit">

	input/button - renders a button <button></button>

	input/file - renders a file input <input type="file">

	input/select - renders a select input <select></select>

	input/hidden - renders a hidden input <input type="hidden">

	input/password - renders a password input <input type="password">

	input/date - renders a jQuery datepicker

	input/access - renders an Elgg access level select

	input/tags - renders an Elgg tags input

	input/autocomplete - renders an Elgg entity autocomplete

	input/captcha - placeholder view for plugins to extend

	input/friendspicker - renders an Elgg friend picker

	input/userpicker - renders an Elgg user autocomplete

	input/location renders an Elgg location input

Files and images

Use the input/file view in your form’s content view.

// /mod/example/views/default/forms/example.php
echo elgg_view(‘input/file’, array(‘name’ => ‘icon’));

Set the enctype of the form to multipart/form-data:

echo elgg_view_form(‘example’, array(
 ‘enctype’ => ‘multipart/form-data’
));

In your action file, use the $_FILES global to access the uploaded file:

$icon = $_FILES[‘icon’]

Sticky forms

Sticky forms are forms that retain user input if saving fails. They are “sticky” because the user’s data “sticks” in the form after submitting, though it was never saved to the database. This greatly improves the user experience by minimizing data loss. Elgg 1.8 includes helper functions so you can make any form sticky.

Helper functions

Sticky forms are implemented in Elgg 1.8 by the following functions:

elgg_make_sticky_form($name)
Tells the engine to make all input on a form sticky.

elgg_clear_sticky_form($name)
Tells the engine to discard all sticky input on a form.

elgg_is_sticky_form($name)
Checks if $name is a valid sticky form.

elgg_get_sticky_values($name)
Returns all sticky values saved for $name by elgg_make_sticky_form().

Overview

The basic flow of using sticky forms is:
Call elgg_make_sticky_form($name) at the top of actions for forms you want to be sticky.
Use elgg_is_sticky_form($name) and elgg_get_sticky_values($name) to get sticky values when rendering a form view.
Call elgg_clear_sticky_form($name) after the action has completed successfully or after data has been loaded by elgg_get_sticky_values($name).

Example: User registration

Simple sticky forms require little logic to determine the input values for the form. This logic is placed at the top of the form body view itself.

The registration form view first sets default values for inputs, then checks if there are sticky values. If so, it loads the sticky values before clearing the sticky form:

// views/default/forms/register.php
$password = $password2 = '';
$username = get_input('u');
$email = get_input('e');
$name = get_input('n');

if (elgg_is_sticky_form('register')) {
 extract(elgg_get_sticky_values('register'));
 elgg_clear_sticky_form('register');
}

The registration action sets creates the sticky form and clears it once the action is completed:

// actions/register.php
elgg_make_sticky_form('register');

...

$guid = register_user($username, $password, $name, $email, false, $friend_guid, $invitecode);

if ($guid) {
 elgg_clear_sticky_form('register');

}

Example: Bookmarks

The bundled plugin Bookmarks’ save form and action is an example of a complex sticky form.

The form view for the save bookmark action uses elgg_extract() to pull values from the $vars array:

// mod/bookmarks/views/default/forms/bookmarks/save.php
$title = elgg_extract('title', $vars, '');
$desc = elgg_extract('description', $vars, '');
$address = elgg_extract('address', $vars, '');
$tags = elgg_extract('tags', $vars, '');
$access_id = elgg_extract('access_id', $vars, ACCESS_DEFAULT);
$container_guid = elgg_extract('container_guid', $vars);
$guid = elgg_extract('guid', $vars, null);
$shares = elgg_extract('shares', $vars, array());

The page handler scripts prepares the form variables and calls elgg_view_form() passing the correct values:

// mod/bookmarks/pages/add.php
$vars = bookmarks_prepare_form_vars();
$content = elgg_view_form('bookmarks/save', array(), $vars);

Similarly, mod/bookmarks/pages/edit.php uses the same function, but passes the entity that is being edited as an argument:

$bookmark_guid = get_input('guid');
$bookmark = get_entity($bookmark_guid);

...

$vars = bookmarks_prepare_form_vars($bookmark);
$content = elgg_view_form('bookmarks/save', array(), $vars);

The library file defines bookmarks_prepare_form_vars(). This function accepts an ElggEntity as an argument and does 3 things:

	Defines the input names and default values for form inputs.

	Extracts the values from a bookmark object if it’s passed.

	Extracts the values from a sticky form if it exists.

TODO: Include directly from lib/bookmarks.php

// mod/bookmarks/lib/bookmarks.php
function bookmarks_prepare_form_vars($bookmark = null) {
 // input names => defaults
 $values = array(
 'title' => get_input('title', ''), // bookmarklet support
 'address' => get_input('address', ''),
 'description' => '',
 'access_id' => ACCESS_DEFAULT,
 'tags' => '',
 'shares' => array(),
 'container_guid' => elgg_get_page_owner_guid(),
 'guid' => null,
 'entity' => $bookmark,
);

 if ($bookmark) {
 foreach (array_keys($values) as $field) {
 if (isset($bookmark->$field)) {
 $values[$field] = $bookmark->$field;
 }
 }
 }

 if (elgg_is_sticky_form('bookmarks')) {
 $sticky_values = elgg_get_sticky_values('bookmarks');
 foreach ($sticky_values as $key => $value) {
 $values[$key] = $value;
 }
 }

 elgg_clear_sticky_form('bookmarks');

 return $values;
}

The save action checks the input, then clears the sticky form upon success:

// mod/bookmarks/actions/bookmarks/save.php
elgg_make_sticky_form('bookmarks');
...

if ($bookmark->save()) {
 elgg_clear_sticky_form('bookmarks');
}

Ajax

See the Ajax guide for instructions on calling actions from JavaScript.

Security

For enhanced security, all actions require an CSRF token. Calls to action URLs that do not include security tokens will be ignored and a warning will be generated.

A few views and functions automatically generate security tokens:

elgg_view('output/url', array('is_action' => TRUE));
elgg_view('input/securitytoken');
$url = elgg_add_action_tokens_to_url("http://localhost/elgg/action/example");

In rare cases, you may need to generate tokens manually:

$__elgg_ts = time();
$__elgg_token = generate_action_token($__elgg_ts);

You can also access the tokens from javascript:

elgg.security.token.__elgg_ts;
elgg.security.token.__elgg_token;

These are refreshed periodically so should always be up-to-date.

Security Tokens

On occasion we need to pass data through an untrusted party or generate an “unguessable token” based on some data.
The industry-standard HMAC [http://security.stackexchange.com/a/20301/4982] algorithm is the right tool for this.
It allows us to verify that received data were generated by our site, and were not tampered with. Note that even
strong hash functions like SHA-2 should not be used without HMAC for these tasks.

Elgg provides elgg_build_hmac() to generate and validate HMAC message authentication codes that are unguessable
without the site’s private key.

// generate a querystring such that $a and $b can't be altered
$a = 1234;
$b = "hello";
$query = http_build_query([
 'a' => $a,
 'b' => $b,
 'mac' => elgg_build_hmac([$a, $b])->getToken(),
]);
$url = "action/foo?$query";

// validate the querystring
$a = (int) get_input('a', '', false);
$b = (string) get_input('b', '', false);
$mac = get_input('mac', '', false);

if (elgg_build_hmac([$a, $b])->matchesToken($mac)) {
 // $a and $b have not been altered
}

Note: If you use a non-string as HMAC data, you must use types consistently. Consider the following:

$mac = elgg_build_hmac([123, 456])->getToken();

// type of first array element differs
elgg_build_hmac(["123", 456])->matchesToken($mac); // false

// types identical to original
elgg_build_hmac([123, 456])->matchesToken($mac); // true

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Helper functions

Input and output

	get_input($name) Grabs information from a form field (or any variable passed using GET or POST). Also sanitises input, stripping Javascript etc.

	set_input($name, $value) Forces a value to a particular variable for subsequent retrieval by get_input()

Entity methods

	$entity->getURL() Returns the URL of any entity in the system

	$entity->getGUID() Returns the GUID of any entity in the system

	$entity->canEdit() Returns whether or not the current user can edit the entity

	$entity->getOwnerEntity() Returns the ElggUser owner of a particular entity

Entity and context retrieval

	elgg_get_logged_in_user_entity() Returns the ElggUser for the current user

	elgg_get_logged_in_user_guid() Returns the GUID of the current user

	elgg_is_logged_in() Is the viewer logged in

	elgg_is_admin_logged_in() Is the view an admin and logged in

	elgg_gatekeeper() Shorthand for checking if a user is logged in. Forwards user to front page if not

	elgg_admin_gatekeeper() Shorthand for checking the user is logged in and is an admin. Forwards user to front page if not

	get_user($user_guid) Given a GUID, returns a full ElggUser entity

	elgg_get_page_owner_guid() Returns the GUID of the current page owner, if there is one

	elgg_get_page_owner_entity() Like elgg_get_page_owner_guid() but returns the full entity

	get_context() Returns the current page’s context - eg “blog” for the blog plugin, “thewire” for the wire, etc. Returns “main” as default

	set_context($context) Forces the context to be a particular value

	elgg_push_context($context) Adds a context to the stack

	elgg_pop_context() Removes the top context from the stack

	elgg_in_context($context) Checks if you’re in a context (this checks the complete stack, eg. ‘widget’ in ‘groups’)

Plugins

	elgg_is_active_plugin($plugin_id) Check if a plugin is installed and enabled

Interface and annotations

	elgg_view_image_block($icon, $info) Return the result in a formatted list

	elgg_view_comments($entity) Returns any comments associated with the given entity

	elgg_get_friendly_time($unix_timestamp) Returns a date formatted in a friendlier way - “18 minutes ago”, “2 days ago”, etc.

	You can pass 'use_hover' => false to the user icon view if you don’t want the avatar drop down menu to appear e.g.

elgg_view_entity_icon($user, 'small', array('use_hover' => false));

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Internationalization

Make your UI translatable into many different languages.

If you’d like to contribute translations to Elgg, see the contributors’ guide.

The default language is en for English. Currently Elgg will always fall back to an English translation,
even if the site’s language is not English; this is a known bug.

Overview

Translations are stored in PHP files in the /languages directory of your plugin. Each file corresponds to a language. The format is /languages/{language-code}.php where {language-code} is the ISO 639-1 short code for the language. For example:

<?php // mod/example/languages/en.php

return [
 'example:text' => 'Some example text',
];

To override an existing translation, include it in your plugin’s language file, and make sure your plugin is
ordered later on the Admin > Plugins page:

<?php // mod/better_example/languages/en.php

return [
 'example:text' => 'Some better text!',
];

Note

Unless you are overriding core’s or another plugin’s language strings, it is good practice for the language keys to start with your plugin name. For example: yourplugin:success, yourplugin:title, etc. This helps avoid conflicts with other language keys.

Server-side API

elgg_echo($key, $args, $language)

Output the translation of the key in the current language.

Example:

echo elgg_echo('example:text');

It also supports variable replacement using sprintf syntax:

// 'welcome' => 'Welcome to %s, %s!'
echo elgg_echo('welcome', [
 elgg_get_config('sitename'),
 elgg_get_logged_in_user_entity()->name,
]);

To force which language should be used for translation, set the third parameter:

echo elgg_echo('welcome', [], $user->language);

To first test whether elgg_echo() can find a translation:

$key = 'key:that:might:not:exist';
if (!elgg_language_key_exists($key)) {
 $key = 'fallback:key';
}

echo elgg_echo($key);

Note

Some APIs allow creating translations for new keys. Translators should always include an English
translation as a fallback. This makes elgg_language_key_exists($key) a reliable way to predict
whether elgg_echo($key) will succeed.

Javascript API

elgg.echo(key, args)

This function is like elgg_echo in PHP.

Client-side translations are loaded asynchronously. Ensure translations are available by requiring the “elgg” AMD module:

define(function(require) {
 var elgg = require("elgg");

 alert(elgg.echo('my_key'));
});

Translations are also available after the init, system JavaScript event.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

JavaScript

Contents

	AMD
	Executing a module in the current page

	Defining the Module

	Making modules dependent on other modules

	Passing settings to modules

	Setting the URL of a module

	Using traditional JS libraries as modules

	Booting your plugin

	Modules provided with Elgg
	Modules jquery and jquery-ui

	Module elgg

	Module elgg/Ajax

	Module elgg/init

	Module elgg/Plugin

	Module elgg/ready

	Module elgg/spinner

	Module elgg/popup

	Module elgg/widgets

	Module elgg/lightbox

	Module elgg/ckeditor

	Traditional scripts

	Hooks
	Registering hook handlers

	The handler function

	Triggering custom hooks

	Available hooks

	Third-party assets

AMD

Developers should use the AMD (Asynchronous Module
Definition) [http://requirejs.org/docs/whyamd.html] standard for writing JavaScript code in Elgg.

Here we’ll describe making and executing AMD modules. The RequireJS documentation for
defining modules [http://requirejs.org/docs/api.html#define] may also be of use.

Executing a module in the current page

Telling Elgg to load an existing module in the current page is easy:

<?php
elgg_require_js("myplugin/say_hello");

On the client-side, this will asynchronously load the module, load any dependencies, and
execute the module’s definition function, if it has one.

Defining the Module

Here we define a basic module that alters the page, by passing a “definition function” to define():

// in views/default/myplugin/say_hello.js

define(function(require) {
 var elgg = require("elgg");
 var $ = require("jquery");

 $('body').append(elgg.echo('hello_world'));
});

The module’s name is determined by the view name, which here is myplugin/say_hello.js.
We strip the .js extension, leaving myplugin/say_hello.

Warning

The definition function must have one argument named require.

Making modules dependent on other modules

Below we refactor a bit so that the module depends on a new myplugin/hello module to provide
the greeting:

// in views/default/myplugin/hello.js

define(function(require) {
 var elgg = require("elgg");

 return elgg.echo('hello_world');
});

// in views/default/myplugin/say_hello.js

define(function(require) {
 var $ = require("jquery");
 var hello = require("myplugin/hello");

 $('body').append(hello);
});

Passing settings to modules

The elgg.data plugin hooks

The elgg module provides an object elgg.data which is populated from two server side hooks:

	elgg.data, site: This filters an associative array of site-specific data passed to the client and cached.

	elgg.data, page: This filters an associative array of uncached, page-specific data passed to the client.

Let’s pass some data to a module:

<?php

function myplugin_config_site($hook, $type, $value, $params) {
 // this will be cached client-side
 $value['myplugin']['api'] = elgg_get_site_url() . 'myplugin-api';
 $value['myplugin']['key'] = 'none';
 return $value;
}

function myplugin_config_page($hook, $type, $value, $params) {
 $user = elgg_get_logged_in_user_entity();
 if ($user) {
 $value['myplugin']['key'] = $user->myplugin_api_key;
 return $value;
 }
}

elgg_register_plugin_hook_handler('elgg.data', 'site', 'myplugin_config_site');
elgg_register_plugin_hook_handler('elgg.data', 'page', 'myplugin_config_page');

define(function(require) {
 var elgg = require("elgg");

 var api = elgg.data.myplugin.api;
 var key = elgg.data.myplugin.key; // "none" or a user's key

 // ...
});

Note

In elgg.data, page data overrides site data. Also note json_encode() is used to copy
data client-side, so the data must be JSON-encodable.

Making a config module

You can use a PHP-based module to pass values from the server. To make the module myplugin/settings,
create the view file views/default/myplugin/settings.js.php (note the double extension
.js.php).

<?php

// this will be cached client-side
$settings = [
 'api' => elgg_get_site_url() . 'myplugin-api',
 'key' => null,
];
?>
define(<?php echo json_encode($settings); ?>);

You must also manually register the view as an external resource:

<?php
// note the view name does not include ".php"
elgg_register_simplecache_view('myplugin/settings.js');

Note

The PHP view is cached, so you should treat the output as static (the same for all users) and
avoid session-specific logic.

Setting the URL of a module

You may have an AMD script outside your views you wish to make available as a module.

The best way to accomplish this is by configuring the path to the file using the
views.php file in the root of your plugin:

<?php // views.php
return [
 'underscore.js' => 'vendor/bower-asset/underscore/underscore.min.js',
];

If you’ve copied the script directly into your plugin instead of managing it with Composer,
you can use something like this instead:

<?php // views.php
return [
 'underscore.js' => __DIR__ . '/bower_components/underscore/underscore.min.js',
];

That’s it! Elgg will now load this file whenever the “underscore” module is requested.

Using traditional JS libraries as modules

It’s possible to support JavaScript libraries that do not declare themselves as AMD
modules (i.e. they declare global variables instead) if you shim them by
setting exports and deps in elgg_define_js:

// set the path, define its dependencies, and what value it returns
elgg_define_js('jquery.form', [
 'deps' => ['jquery'],
 'exports' => 'jQuery.fn.ajaxForm',
]);

When this is requested client-side:

	The jQuery module is loaded, as it’s marked as a dependency.

	https://elgg.example.org/cache/125235034/views/default/jquery.form.js is loaded and executed.

	The value of window.jQuery.fn.ajaxForm is returned by the module.

Warning

Calls to elgg_define_js() must be in an init, system event handler.

Some things to note

	Do not use elgg.provide() anymore nor other means to attach code to elgg or other
global objects. Use modules.

	Return the value of the module instead of adding to a global variable.

	Static (.js,.css,etc.) files are automatically minified and cached by Elgg’s simplecache system.

	The configuration is also cached in simplecache, and should not rely on user-specific values
like get_language().

Booting your plugin

To add functionality to each page, or make sure your hook handlers are registered early enough, you may create a boot module for your plugin, with the name boot/<plugin_id>.

// in views/default/boot/example.js

define(function(require) {
 var elgg = require("elgg");
 var Plugin = require("elgg/Plugin");

 // plugin logic
 function my_init() { ... }

 return new Plugin({
 // executed in order of plugin priority
 init: function () {
 elgg.register_hook_handler("init", "system", my_init, 400);
 }
 });
});

When your plugin is active, this module will automatically be loaded on each page. Other modules can depend on elgg/init to make sure all boot modules are loaded.

Each boot module must return an instance of elgg/Plugin. The constructor must receive an object with a function in the init key. The init function will be called in the order of the plugin in Elgg’s admin area.

Note

Though not strictly necessary, you may want to use the init, system event to control when your initialization code runs with respect to other modules.

Warning

A boot module cannot depend on the modules elgg/init or elgg/ready.

Modules provided with Elgg

Modules jquery and jquery-ui

You must depend on these modules to use $ or $.ui methods. In the future Elgg may stop loading these by default.

Module elgg

elgg.echo()

Translate interface text

elgg.echo('example:text', ['arg1']);

elgg.system_message()

Display a status message to the user.

elgg.system_message(elgg.echo('success'));

elgg.register_error()

Display an error message to the user.

elgg.register_error(elgg.echo('error'));

elgg.normalize_url()

Normalize a URL relative to the elgg root:

// "http://localhost/elgg/blog"
elgg.normalize_url('/blog');

elgg.forward()

Redirect to a new page.

elgg.forward('/blog');

This function automatically normalizes the URL.

elgg.parse_url()

Parse a URL into its component parts:

// returns {
// fragment: "fragment",
// host: "community.elgg.org",
// path: "/file.php",
// query: "arg=val"
// }
elgg.parse_url('http://community.elgg.org/file.php?arg=val#fragment');

elgg.get_page_owner_guid()

Get the GUID of the current page’s owner.

elgg.register_hook_handler()

Register a hook handler with the event system. For best results, do this in a plugin boot module.

// boot module: /views/default/boot/example.js
define(function (require) {
 var elgg = require('elgg');
 var Plugin = require('elgg/Plugin');

 elgg.register_hook_handler('foo', 'bar', function () { ... });

 return new Plugin();
});

elgg.trigger_hook()

Emit a hook event in the event system. For best results depend on the elgg/init module.

// old
value = elgg.trigger_hook('my_plugin:filter', 'value', {}, value);

define(function (require) {
 require('elgg/init');
 var elgg = require('elgg');

 value = elgg.trigger_hook('my_plugin:filter', 'value', {}, value);
});

elgg.security.refreshToken()

Force a refresh of all XSRF tokens on the page.

This is automatically called every 5 minutes by default.

This requires a valid security token in 1.8, but not in 1.9.

The user will be warned if their session has expired.

elgg.security.addToken()

Add a security token to an object, URL, or query string:

// returns {
// __elgg_token: "1468dc44c5b437f34423e2d55acfdd87",
// __elgg_ts: 1328143779,
// other: "data"
// }
elgg.security.addToken({'other': 'data'});

// returns: "action/add?__elgg_ts=1328144079&__elgg_token=55fd9c2d7f5075d11e722358afd5fde2"
elgg.security.addToken("action/add");

// returns "?arg=val&__elgg_ts=1328144079&__elgg_token=55fd9c2d7f5075d11e722358afd5fde2"
elgg.security.addToken("?arg=val");

elgg.get_logged_in_user_entity()

Returns the logged in user as an JS ElggUser object.

elgg.get_logged_in_user_guid()

Returns the logged in user’s guid.

elgg.is_logged_in()

True if the user is logged in.

elgg.is_admin_logged_in()

True if the user is logged in and is an admin.

elgg.config.get_language()

Get the current page’s language.

There are a number of configuration values set in the elgg object:

// The root of the website.
elgg.config.wwwroot;
// The default site language.
elgg.config.language;
// The current page's viewtype
elgg.config.viewtype;
// The Elgg version (YYYYMMDDXX).
elgg.config.version;
// The Elgg release (X.Y.Z).
elgg.config.release;

Module elgg/Ajax

See the Ajax page for details.

Module elgg/init

elgg/init loads and initializes all boot modules in priority order and triggers the [init, system] hook.

Require this module to make sure all plugins are ready.

Module elgg/Plugin

Used to create a boot module.

Module elgg/ready

elgg/ready loads and initializes all plugin boot modules in priority order.

Require this module to make sure all plugins are ready.

Module elgg/spinner

The elgg/spinner module can be used to create an Ajax loading indicator fixed to the top of the window.

define(function (require) {
 var spinner = require('elgg/spinner');

 elgg.action('friend/add', {
 beforeSend: spinner.start,
 complete: spinner.stop,
 success: function (json) {
 // ...
 }
 });
});

Note

The elgg/Ajax module uses the spinner by default.

Module elgg/popup

The elgg/popup module can be used to display an overlay positioned relatively to its anchor (trigger).

The elgg/popup module is loaded by default, and binding a popup module to an anchor is as simple as adding rel="popup"
attribute and defining target module with a href (or data-href) attribute. Popup module positioning can be defined with
data-position attribute of the trigger element.

echo elgg_format_element('div', [
 'class' => 'elgg-module-popup hidden',
 'id' => 'popup-module',
], 'Popup module content');

// Simple anchor
echo elgg_view('output/url', [
 'href' => '#popup-module',
 'text' => 'Show popup',
 'rel' => 'popup',
]);

// Button with custom positioning of the popup
echo elgg_format_element('button', [
 'rel' => 'popup',
 'class' => 'elgg-button elgg-button-submit',
 'text' => 'Show popup',
 'data-href' => '#popup-module',
 'data-position' => json_encode([
 'my' => 'center bottom',
 'at' => 'center top',
]),
]);

The elgg/popup module allows you to build out more complex UI/UX elements. You can open and close
popup modules programmatically:

define(function(require) {
 var $ = require('jquery');
 $(document).on('click', '.elgg-button-popup', function(e) {

 e.preventDefault();

 var $trigger = $(this);
 var $target = $('#my-target');
 var $close = $target.find('.close');

 require(['elgg/popup'], function(popup) {
 popup.open($trigger, $target, {
 'collision': 'fit none'
 });

 $close.on('click', popup.close);
 });
 });
});

You can use getOptions, ui.popup plugin hook to manipulate the position of the popup before it has been opened.
You can use jQuery open and close events to manipulate popup module after it has been opened or closed.

define(function(require) {

 var elgg = require('elgg');
 var $ = require('jquery');

 $('#my-target').on('open', function() {
 var $module = $(this);
 var $trigger = $module.data('trigger');

 elgg.ajax('ajax/view/my_module', {
 beforeSend: function() {
 $trigger.hide();
 $module.html('').addClass('elgg-ajax-loader');
 },
 success: function(output) {
 $module.removeClass('elgg-ajax-loader').html(output);
 }
 });
 }).on('close', function() {
 var $trigger = $(this).data('trigger');
 $trigger.show();
 });
});

Open popup modules will always contain the following data that can be accessed via $.data():

	trigger - jQuery element used to trigger the popup module to open

	position - An object defining popup module position that was passed to $.position()

Module elgg/widgets

Plugins that load a widget layout via Ajax should initialize via this module:

require(['elgg/widgets'], function (widgets) {
 widgets.init();
});

Module elgg/lightbox

Elgg is distributed with the Colorbox jQuery library. Please go to http://www.jacklmoore.com/colorbox for more information on the options of this lightbox.

Use the following classes to bind your anchor elements to a lightbox:

	elgg-lightbox - loads an HTML resource

	elgg-lightbox-photo - loads an image resource (should be used to avoid displaying raw image bytes instead of an img tag)

	elgg-lightbox-inline - displays an inline HTML element in a lightbox

	elgg-lightbox-iframe - loads a resource in an iframe

You may apply colorbox options to an individual elgg-lightbox element by setting the attribute data-colorbox-opts to a JSON settings object.

echo elgg_view('output/url', [
 'text' => 'Open lightbox',
 'href' => 'ajax/view/my_view',
 'class' => 'elgg-lightbox',
 'data-colorbox-opts' => json_encode([
 'width' => '300px',
])
]);

Use "getOptions", "ui.lightbox" plugin hook to filter options passed to $.colorbox() whenever a lightbox is opened. Note that the hook handler should depend on elgg/init AMD module.

elgg/lightbox AMD module should be used to open and close the lightbox programmatically:

define(function(require) {
 var lightbox = require('elgg/lightbox');
 var spinner = require('elgg/spinner');

 lightbox.open({
 html: '<p>Hello world!</p>',
 onClosed: function() {
 lightbox.open({
 onLoad: spinner.start,
 onComplete: spinner.stop,
 photo: true,
 href: 'https://elgg.org/cache/1457904417/default/community_theme/graphics/logo.png',
 });
 }
 });
});

To support gallery sets (via rel attribute), you need to bind colorbox directly to a specific selector (note that this will ignore data-colorbox-opts on all elements in a set):

require(['elgg/lightbox'], function(lightbox) {
 var options = {
 photo: true,
 width: 500
 };
 lightbox.bind('a[rel="my-gallery"]', options, false); // 3rd attribute ensures binding is done without proxies
});

You can also resize the lightbox programmatically if needed:

define(function(require) {
 var lightbox = require('elgg/lightbox');

 lightbox.resize({
 width: '300px'
 });
});

Module elgg/ckeditor

This module can be used to add WYSIWYG editor to a textarea (requires ckeditor plugin to be enabled).
Note that WYSIWYG will be automatically attached to all instances of .elgg-input-longtext.

require(['elgg/ckeditor'], function (editor) {
 editor.bind('.my-text-area');
});

Traditional scripts

Although we highly recommend using AMD modules, you can register scripts with elgg_register_js:

elgg_register_js('jquery', $cdnjs_url);

This will override any URLs previously registered under this name.

Load a library on the current page with elgg_load_js:

elgg_load_js('jquery');

This will load the library in the page footer. You must use the require() function to depend on
modules like elgg and jquery.

Warning

	Using inline scripts is NOT SUPPORTED because:

	
	They are not testable (maintainability)

	They are not cacheable (performance)

	They prevent use of Content-Security-Policy (security)

	They prevent scripts from being loaded with defer or async (performance)

Inline scripts in core or bundled plugins are considered legacy bugs.

Hooks

The JS engine has a hooks system similar to the PHP engine’s plugin hooks: hooks are triggered and plugins can register functions to react or alter information. There is no concept of Elgg events in the JS engine; everything in the JS engine is implemented as a hook.

Registering hook handlers

Handler functions are registered using elgg.register_hook_handler(). Multiple handlers can be registered for the same hook.

The following example registers the handleFoo function for the foo, bar hook.

define(function (require) {
 var elgg = require('elgg');
 var Plugin = require('elgg/Plugin');

 function handleFoo(hook, type, params, value) {
 // do something
 }

 elgg.register_hook_handler('foo', 'bar', handleFoo);

 return new Plugin();
});

The handler function

The handler will receive 4 arguments:

	hook - The hook name

	type - The hook type

	params - An object or set of parameters specific to the hook

	value - The current value

The value will be passed through each hook. Depending on the hook, callbacks can simply react or alter data.

Triggering custom hooks

Plugins can trigger their own hooks:

define(function(require) {
 require('elgg/init');
 var elgg = require('elgg');

 elgg.trigger_hook('name', 'type', {params}, "value");
});

Note

Be aware of timing. If you don’t depend on elgg/init, other plugins may not have had a chance to register their handlers.

Available hooks

	init, system

	Plugins should register their init functions for this hook. It is fired after Elgg’s JS is loaded and all plugin boot modules have been initialized. Depend on the elgg/init module to be sure this has completed.

	ready, system

	This hook is fired when the system has fully booted (after init). Depend on the elgg/ready module to be sure this has completed.

	getOptions, ui.popup

	This hook is fired for pop up displays ("rel"="popup") and allows for customized placement options.

	getOptions, ui.lightbox

	This hook can be used to filter options passed to $.colorbox()

	config, ckeditor

	This filters the CKEditor config object. Register for this hook in a plugin boot module. The defaults can be seen in the module elgg/ckeditor/config.

	prepare, ckeditor

	This hook can be used to decorate CKEDITOR global. You can use this hook to register new CKEditor plugins and add event bindings.

	ajax_request_data, *

	This filters request data sent by the elgg/Ajax module. See Ajax for details.

	ajax_response_data, *

	This filters the response data returned to users of the elgg/Ajax module. See Ajax for details.

	insert, editor

	This hook is triggered by the embed plugin and can be used to filter content before it is inserted into the textarea. This hook can also be used by WYSIWYG editors to insert content using their own API (in this case the handler should return false). See ckeditor plugin for an example.

Third-party assets

We recommend managing third-party scripts and styles with Composer.
Elgg core uses fxp/composer-asset-plugin for this purpose.
This plugin allows you to pull dependencies from the Bower or NPM package repositories,
but using the Composer command-line tool.

For example, to include jQuery, you could run the following Composer commands:

composer global require fxp/composer-asset-plugin:~1.1.4
composer require bower-asset/jquery:~2.0

Note

fxp/composer-asset-plugin must be installed globally!
See https://github.com/francoispluchino/composer-asset-plugin for more info.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Menus

Elgg contains helper code to build menus throughout the site.

Every single menu requires a name, as does every single menu item. These are
required in order to allow easy overriding and manipulation, as well as to
provide hooks for theming.

Contents

	Basic usage

	Advanced usage

	Creating a new menu

	Theming

	JavaScript

Basic usage

Basic functionalities can be achieved through these two functions:

	elgg_register_menu_item() [http://reference.elgg.org/engine_2lib_2navigation_8php.html#a344445364078d03607904c44bad36c1c] to add an item to a menu

	elgg_unregister_menu_item() [http://reference.elgg.org/engine_2lib_2navigation_8php.html#ae26ee09e330a130984c9a6f9e19f6546] to remove an item from a menu

You normally want to call them from your plugin’s init function.

Examples

// Add a new menu item to the site main menu
elgg_register_menu_item('site', array(
 'name' => 'itemname',
 'text' => 'This is text of the item',
 'href' => '/item/url',
));

// Remove the "Elgg" logo from the topbar menu
elgg_unregister_menu_item('topbar', 'elgg_logo');

Advanced usage

You can get more control over menus by using plugin hooks
and the public methods provided by the ElggMenuItem [http://reference.elgg.org/classElggMenuItem.html] class.

	There are two hooks that can be used to modify a menu:

	
	'register', 'menu:<menu name>' to add or modify items (especially in dynamic menus)

	'prepare', 'menu:<menu name>' to modify the structure of the menu before it is displayed

When you register a plugin hook handler, replace the <menu name> part with the
internal name of the menu.

The third parameter passed into a menu handler contains all the menu items that
have been registered so far by Elgg core and other enabled plugins. In the
handler we can loop through the menu items and use the class methods to
interact with the properties of the menu item.

Examples

Example 1: Change the URL for menu item called “albums” in the owner_block menu:

/**
 * Initialize the plugin
 */
function my_plugin_init() {
 // Register a plugin hook handler for the owner_block menu
 elgg_register_plugin_hook_handler('register', 'menu:owner_block', 'my_owner_block_menu_handler');
}

/**
 * Change the URL of the "Albums" menu item in the owner_block menu
 */
function my_owner_block_menu_handler($hook, $type, $items, $params) {
 $owner = $params['entity'];

 // Owner can be either user or a group, so we
 // need to take both URLs into consideration:
 switch ($owner->getType()) {
 case 'user':
 $url = "album/owner/{$owner->guid}";
 break;
 case 'group':
 $url = "album/group/{$owner->guid}";
 break;
 }

 foreach ($items as $key => $item) {
 if ($item->getName() == 'albums') {
 // Set the new URL
 $item->setURL($url);
 break;
 }
 }

 return $items;
}

	Example 2: Modify the entity menu for the ElggBlog objects

	
	Remove the thumb icon

	Change the “Edit” text into a custom icon

/**
 * Initialize the plugin
 */
function my_plugin_init() {
 // Register a plugin hook handler for the entity menu
 elgg_register_plugin_hook_handler('register', 'menu:entity', 'my_entity_menu_handler');
}

/**
 * Customize the entity menu for ElggBlog objects
 */
function my_entity_menu_handler($hook, $type, $items, $params) {
 // The entity can be found from the $params parameter
 $entity = $params['entity'];

 // We want to modify only the ElggBlog objects, so we
 // return immediately if the entity is something else
 if (!$entity instanceof ElggBlog) {
 return $menu;
 }

 foreach ($items as $key => $item) {
 switch ($item->getName()) {
 case 'likes':
 // Remove the "likes" menu item
 unset($items[$key]);
 break;
 case 'edit':
 // Change the "Edit" text into a custom icon
 $item->setText(elgg_view_icon('pencil'));
 break;
 }
 }

 return $items;
}

Creating a new menu

Elgg provides multiple different menus by default. Sometimes you may however
need some menu items that don’t fit in any of the existing menus.
If this is the case, you can create your very own menu with the
elgg_view_menu() [http://reference.elgg.org/views_8php.html#ac2d475d3efbbec30603537013ac34e22] function. You must call the function from the view,
where you want to menu to be displayed.

Example: Display a menu called “my_menu” that displays it’s menu items
in alphapetical order:

// in a resource view
echo elgg_view_menu('my_menu', array('sort_by' => 'title'));

You can now add new items to the menu like this:

// in plugin init
elgg_register_menu_item('my_menu', array(
 'name' => 'my_page',
 'href' => 'path/to/my_page',
 'text' => elgg_echo('my_plugin:my_page'),
));

Furthermore it is now possible to modify the menu using the hooks
'register', 'menu:my_menu' and 'prepare', 'menu:my_menu'.

Theming

The menu name, section names, and item names are all embedded into the HTML as
CSS classes (normalized to contain only hyphens, rather that underscores or
colons). This increases the size of the markup slightly but provides themers
with a high degree of control and flexibility when styling the site.

Example: The following would be the output of the foo menu with sections
alt and default containing items baz and bar respectively.

<ul class="elgg-menu elgg-menu-foo elgg-menu-foo-alt">
 <li class="elgg-menu-item elgg-menu-item-baz">

<ul class="elgg-menu elgg-menu-foo elgg-menu-foo-default">
 <li class="elgg-menu-item elgg-menu-item-bar">

JavaScript

It is common that menu items rely on JavaScript. You can bind client-side events
to menu items by placing your JavaScript into AMD module and defining the
requirement during the registration.

elgg_register_menu_item('my_menu', array(
 'name' => 'hide_on_click',
 'href' => '#',
 'text' => elgg_echo('hide:on:click'),
 'item_class' => '.hide-on-click',
 'deps' => ['navigation/menu/item/hide_on_click'],
));

// in navigation/menu/item/hide_on_click.js
define(function(require) {
 var $ = require('jquery');

 $(document).on('click', '.hide-on-click', function(e) {
 e.preventDefault();
 $(this).hide();
 });
});

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Notifications

	There are two ways to send notifications in Elgg:

	
	Instant notifications

	Event-based notifications send using a notifications queue

Contents

	Instant notifications

	Enqueued notifications

	Registering a new notification method

	Sending the notifications using your own method

	Subscriptions

Instant notifications

The generic method to send a notification to a user is via the function notify_user() [http://reference.elgg.org/notification_8php.html#a9d8de7faa63baf2dcd5d42eb8f76eaa1].
It is normally used when we want to notify only a single user. Notification like
this might for example inform that someone has liked or commented the user’s post.

The function usually gets called in an action file.

Example:

In this example a user ($user) is triggering an action to rate a post created
by another user ($owner). After saving the rating (ElggAnnotation $rating)
to database, we could use the following code to send a notification about the new
rating to the owner.

// Subject of the notification
$subject = elgg_echo('ratings:notification:subject', array(), $owner->language);

// Summary of the notification
$summary = elgg_echo('ratings:notification:summary', array($user->name), $owner->language);

// Body of the notification message
$body = elgg_echo('ratings:notification:body', array(
 $user->name,
 $owner->name,
 $rating->getValue() // A value between 1-5
), $owner->language);

$params = array(
 'object' => $rating,
 'action' => 'create',
 'summary' => $summary
);

// Send the notification
notify_user($owner->guid, $user->guid, $subject, $body, $params);

Note

The language used by the recipient isn’t necessarily the same as the language of the person
who triggers the notification. Therefore you must always remember to pass the recipient’s
language as the third parameter to elgg_echo().

Note

The 'summary' parameter is meant for notification plugins that only want to display
a short message instead of both the subject and the body. Therefore the summary should
be terse but still contain all necessary information.

Enqueued notifications

On large sites there may be many users who have subscribed to receive notifications
about a particular event. Sending notifications immediately when a user triggers
such an event might remarkably slow down page loading speed. This is why sending
of such notifications shoud be left for Elgg’s notification queue.

New notification events can be registered with the elgg_register_notification_event() [http://reference.elgg.org/notification_8php.html#af7a43dcb0cf13ba55567d9d7874a3b20]
function. Notifications about registered events will be sent automatically to all
subscribed users.

This is the workflow of the notifications system:

	
	Someone does an action that triggers an event within Elgg

	
	The action can be create, update or delete

	The target of the action can be any instance of the ElggEntity class (e.g. a Blog post)

	The notifications system saves this event into a notifications queue in the database

	When the pluging hook handler for the one-minute interval gets triggered, the event is taken from the queue and it gets processed

	
	Subscriptions are fetched for the user who triggered the event

	
	By default this includes all the users who have enabled any notification method
for the user at www.site.com/notifications/personal/<username>

	Plugins are allowed to alter the subscriptions using the [get, subscriptions] hook

	Plugins are allowed to alter the notification parameters with the [send:before, notifications] hook

	Plugins are allowed to alter the notification message with the [prepare, notification:<action>:<type>:<subtype>] hook

	
	Notifications are sent to each subscriber using the methods they have chosen

	
	Plugins can take over or prevent sending of each individual notification with the [send, notification:<method>] hook

	The [send:after, notifications] hook is triggered for the event after all notifications have been sent

Example

Tell Elgg to send notifications when a new object of subtype “photo” is created:

/**
 * Initialize the photos plugin
 */
function photos_init() {
 elgg_register_notification_event('object', 'photo', array('create'));
}

Note

In order to send the event-based notifications you must have the one-minute
CRON interval configured.

Contents of the notification message can be defined with the
'prepare', 'notification:[action]:[type]:[subtype]' hook.

Example

Tell Elgg to use the function photos_prepare_notification() to format
the contents of the notification when a new objects of subtype ‘photo’ is created:

/**
 * Initialize the photos plugin
 */
function photos_init() {
 elgg_register_notification_event('object', 'photo', array('create'));
 elgg_register_plugin_hook_handler('prepare', 'notification:create:object:photo', 'photos_prepare_notification');
}

/**
 * Prepare a notification message about a new photo
 *
 * @param string $hook Hook name
 * @param string $type Hook type
 * @param Elgg_Notifications_Notification $notification The notification to prepare
 * @param array $params Hook parameters
 * @return Elgg_Notifications_Notification
 */
function photos_prepare_notification($hook, $type, $notification, $params) {
 $entity = $params['event']->getObject();
 $owner = $params['event']->getActor();
 $recipient = $params['recipient'];
 $language = $params['language'];
 $method = $params['method'];

 // Title for the notification
 $notification->subject = elgg_echo('photos:notify:subject', array($entity->title), $language);

 // Message body for the notification
 $notification->body = elgg_echo('photos:notify:body', array(
 $owner->name,
 $entity->title,
 $entity->getExcerpt(),
 $entity->getURL()
), $language);

 // Short summary about the notification
 $notification->summary = elgg_echo('photos:notify:summary', array($entity->title), $language);

 return $notification;
}

Note

Make sure the notification will be in the correct language by passing
the reciepient’s language into the elgg_echo() function.

Registering a new notification method

By default Elgg has two notification methods: email and the bundled
site_notifications plugin. You can register a new notification
method with the elgg_register_notification_method() [http://reference.elgg.org/notification_8php.html#ac9e7b5583afbb992b8222ae1db072dd1] function.

Example:

Register a handler that will send the notifications via SMS.

/**
 * Initialize the plugin
 */
function sms_notifications_init () {
 elgg_register_notification_method('sms');
}

After registering the new method, it will appear to the notification
settings page at www.example.com/notifications/personal/[username].

Sending the notifications using your own method

Besides registering the notification method, you also need to register
a handler that takes care of actually sending the SMS notifications.
This happens with the 'send', 'notification:[method]' hook.

Example:

/**
 * Initialize the plugin
 */
function sms_notifications_init () {
 elgg_register_notification_method('sms');
 elgg_register_plugin_hook_handler('send', 'notification:sms', 'sms_notifications_send');
}

/**
 * Send an SMS notification
 *
 * @param string $hook Hook name
 * @param string $type Hook type
 * @param bool $result Has anyone sent a message yet?
 * @param array $params Hook parameters
 * @return bool
 * @access private
 */
function sms_notifications_send($hook, $type, $result, $params) {
 /* @var Elgg_Notifications_Notification $message */
 $message = $params['notification'];

 $recipient = $message->getRecipient();

 if (!$recipient || !$recipient->mobile) {
 return false;
 }

 // (A pseudo SMS API class)
 $sms = new SmsApi();

 return $sms->send($recipient->mobile, $message->body);
}

Subscriptions

In most cases Elgg core takes care of handling the subscriptions,
so notification plugins don’t usually have to alter them.

	Subscriptions can however be:

	
	Added using the elgg_add_subscription() [http://reference.elgg.org/notification_8php.html#ab793c2e2a7027cfe3a1db3395f85917b] function

	Removed using the elgg_remove_subscription() [http://reference.elgg.org/notification_8php.html#a619fcbadea86921f7a19fb09a6319de7] function

It’s possible to modify the recipients of a notification dynamically
with the 'get', 'subscriptions' hook.

Example:

/**
 * Initialize the plugin
 */
function discussion_init() {
 elgg_register_plugin_hook_handler('get', 'subscriptions', 'discussion_get_subscriptions');
}

/**
 * Get subscriptions for group notifications
 *
 * @param string $hook 'get'
 * @param string $type 'subscriptions'
 * @param array $subscriptions Array containing subscriptions in the form
 * <user guid> => array('email', 'site', etc.)
 * @param array $params Hook parameters
 * @return array
 */
function discussion_get_subscriptions($hook, $type, $subscriptions, $params) {
 $reply = $params['event']->getObject();

 if (!elgg_instanceof($reply, 'object', 'discussion_reply', 'ElggDiscussionReply')) {
 return $subscriptions;
 }

 $group_guid = $reply->getContainerEntity()->container_guid;
 $group_subscribers = elgg_get_subscriptions_for_container($group_guid);

 return ($subscriptions + $group_subscribers);
}

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Page handler

Elgg offers a facility to manage your plugin pages via a page handler, enabling custom urls like http://yoursite/your_plugin/section. To add a page handler to a plugin, a handler function needs to be registered in the plugin’s start.php file with elgg_register_page_handler():

elgg_register_page_handler('your_plugin', 'your_plugin_page_handler');

The plugin’s page handler is passed two parameters:

	an array containing the sections of the URL exploded by ‘/’. With this information the handler will be able to apply any logic necessary, for example loading the appropriate view and returning its contents.

	the handler, this is the handler that is currently used (in our example your_plugin). If you don’t register multiple page handlers to the same function you’ll never need this.

Code flow

Pages in plugins should be rendered via page handlers (not by using Elgg\Application). Generally the rendering is done by views with names starting with resources/. The program flow is something like this:

	A user requests /plugin_name/section/entity

	Elgg checks if plugin_name is registered to a page handler and calls that function, passing array('section', 'entity') as the first argument

	The page handler function determines which resource view will display the page.

	The handler uses elgg_view_resource() to render the page, also passing in any relevant info to the view via the $vars argument.

	The resource view combines many separate views, calls formatting functions like elgg_view_layout() and elgg_view_page(), and then echos the final output

	The user sees a fully rendered page

There is no syntax enforced on the URLs, but Elgg’s coding standards suggests a certain format.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Routing

Elgg has two mechanisms to respond to HTTP requests that don’t already go through the
Actions and Simplecache systems.

URL Identifier and Segments

After removing the site URL, Elgg splits the URL path by / into an array. The first
element, the identifier, is shifted off, and the remaining elements are called the
segments. For example, if the site URL is http://example.com/elgg/, the URL
http://example.com/elgg/blog/owner/jane?foo=123 produces:

Identifier: 'blog'. Segments: ['owner', 'jane']. (the query string parameters are
available via get_input())

The site URL (home page) is a special case that produces an empty string identifier and
an empty segments array.

Warning

URL identifier/segments should be considered potentially dangerous user input. Elgg uses htmlspecialchars to escapes HTML entities in them.

Page Handler

To handle all URLs that begin with a particular identifier, you can register a function to
act as a Page handler. When the handler is called, the segments array is
passed in as the first argument.

The following code registers a page handler for “blog” URLs and shows how one might route
the request to a resource view.

elgg_register_page_handler('blog', 'blog_page_handler');

function blog_page_handler(array $segments) {
 // if the URL is http://example.com/elgg/blog/view/123/my-blog-post
 // $segments contains: ['view', '123', 'my-blog-post']

 $subpage = elgg_extract(0, $segments);
 if ($subpage === 'view') {

 // use a view for the page logic to allow other plugins to easily change it
 echo elgg_view_resource('blog/view', [
 'guid' => (int)elgg_extract(1, $segments);
]);

 // in page handlers, return true says, "we've handled this request"
 return true;
 }

 // ... handle other subpages
}

The route Plugin Hook

The route plugin hook is triggered before page handlers are called. The URL
identifier is given as the type of the hook. This hook can be used to add some logic before the
request is handled elsewhere, or take over page rendering completely.

Generally devs should instead use a page handler unless they need to affect a single page or a wider
variety of URLs.

The following code results in /blog/all requests being completely handled by the plugin hook handler.
For these requests the blog page handler is never called.

function myplugin_blog_all_handler($hook, $type, $returnvalue, $params) {
 $segments = elgg_extract('segments', $returnvalue, array());

 if (isset($segments[0]) && $segments[0] === 'all') {
 $title = "We're taking over!";
 $content = elgg_view_layout('one_column', array(
 'title' => $title,
 'content' => "We can take over page rendering completely"
));
 echo elgg_view_page($title, $content);

 // in the route hook, return false says, "stop rendering, we've handled this request"
 return false;
 }
}

elgg_register_plugin_hook_handler('route', 'blog', 'myplugin_blog_all_handler');

Note

As of 2.1, route modification should be done in the route:rewrite hook.

The route:rewrite Plugin Hook

For URL rewriting, the route:rewrite hook (with similar arguments as route) is triggered very early,
and allows modifying the request URL path (relative to the Elgg site).

Here we rewrite requests for news/* to blog/*:

function myplugin_rewrite_handler($hook, $type, $value, $params) {
 $value['identifier'] = 'blog';
 return $value;
}

elgg_register_plugin_hook_handler('route:rewrite', 'news', 'myplugin_rewrite_handler');

Warning

The hook must be registered directly in your plugin start.php (the [init, system] event
is too late).

Routing overview

For regular pages, Elgg’s program flow is something like this:

	A user requests http://example.com/news/owner/jane.

	Plugins are initialized.

	Elgg parses the URL to identifier news and segments ['owner', 'jane'].

	Elgg triggers the plugin hook route:rewrite, news (see above).

	Elgg triggers the plugin hook route, blog (was rewritten in the rewrite hook).

	Elgg finds a registered page handler (see above) for blog, and calls the function, passing in
the segments.

	The page handler function determines it needs to render a single user’s blog. It calls
elgg_view_resource('blog/owner', $vars) where $vars contains the username.

	The resources/blog/owner view gets the username via $vars['username'], and uses many other views and
formatting functions like elgg_view_layout() and elgg_view_page() to create the entire HTML page.

	The page handler echos the view HTML and returns true to indicate it handled the request.

	PHP invokes Elgg’s shutdown sequence.

	The user receives a fully rendered page.

Elgg’s coding standards suggest a particular URL layout, but there is no syntax enforced.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Services

Elgg uses the Elgg\Application class to load and bootstrap Elgg. In future releases this
class will offer a set of service objects for plugins to use.

Note

If you have a useful idea, you can add a new service!

Menus

elgg()->menus provides low-level methods for constructing menus. In general, menus should be
passed to elgg_view_menu for rendering instead of manual rendering.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Page ownership

One recurring task of any plugin will be to determine the page ownership in order to decide which actions are allowed or not. Elgg has a number of functions related to page ownership and also offers plugin developers flexibility by letting the plugin handle page ownership requests as well.
Determining the owner of a page can be determined with elgg_get_page_owner_guid(), which will return the GUID of the owner. Alternatively, elgg_get_page_owner_entity() will retrieve the whole page owner entity.
If the page already knows who the page owner is, but the system doesn’t, the page can set the page owner by passing the GUID to elgg_set_page_owner_guid($guid).

Note

The page owner entity can be any ElggEntity. If you wish to only apply some setting in case of a user or a group make sure you check that you have the correct entity.

Custom page owner handlers

Plugin developers can create page owner handlers, which could be necessary in certain cases, for example when integrating third party functionality. The handler will be a function which will need to get registered with elgg_register_plugin_hook_handler('page_owner', 'system', 'your_page_owner_function_name'); . The handler will only need to return a value (an integer GUID) when it knows for certain who the page owner is.

By default, the system uses default_page_owner_handler() to determine the page_owner from the following elements:

	The username URL parameter

	The owner_guid URL parameter

	The URL path

It then passes off to any page owner handlers defined using the plugin hook. If no page owner can be determined, the page owner is set to 0, which is the same as the logged out user.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Permissions Check

Warning

As stated in the page, this method works only for granting write access to entities. You cannot use this method to retrieve or view entities for which the user does not have read access.

Elgg provides a mechanism of overriding write permissions check through the permissions_check plugin hook . This is useful for allowing plugin write to all accessible entities regardless of access settings. Entities that are hidden, however, will still be unavailable to the plugin.

Hooking permissions_check

In your plugin, you must register the plugin hook for permissions_check.

elgg_register_plugin_hook_handler('permissions_check', 'all', 'myplugin_permissions_check');

The override function

Now create the function that will be called by the permissions check hook. In this function we determine if the entity (in parameters) has write access. Since it is important to keep Elgg secure, write access should be given only after checking a variety of situations including page context, logged in user, etc.
Note that this function can return 3 values: true if the entity has write access, false if the entity does not, and null if this plugin doesn’t care and the security system should consult other plugins.

function myplugin_permissions_check($hook_name, $entity_type, $return_value, $parameters) {
 $has_access = determine_access_somehow();

 if ($has_access === true) {
 return true;
 } else if ($has_access === false) {
 return false;
 }

 return null;
}

Full Example

This is a full example using the context to determine if the entity has write access.

<?php

function myaccess_init() {
 // Register cron hook
 if (!elgg_get_plugin_setting('period', 'myaccess')) {
 elgg_set_plugin_setting('period', 'fiveminute', 'myaccess');
 }

 // override permissions for the myaccess context
 elgg_register_plugin_hook_handler('permissions_check', 'all', 'myaccess_permissions_check');

 elgg_register_plugin_hook_handler('cron', elgg_get_plugin_setting('period', 'myaccess'), 'myaccess_cron');
}

/**
 * Hook for cron event.
 */
function myaccess_cron($event, $object_type, $object) {

 elgg_push_context('myaccess_cron');

 // returns all entities regardless of access permissions.
 // will NOT return hidden entities.
 $entities = get_entities();

 elgg_pop_context();
}

/**
 * Overrides default permissions for the myaccess context
 */
function myaccess_permissions_check($hook_name, $entity_type, $return_value, $parameters) {
 if (elgg_in_context('myaccess_cron')) {
 return true;
 }

 return null;
}

// Initialise plugin
register_elgg_event_handler('init', 'system', 'myaccess_init');
?>

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Plugin settings

You need to perform some extra steps if your plugin needs settings to be saved and controlled via the administration panel:

	Create a file in your plugin’s default view folder called plugins/your_plugin/settings.php, where your_plugin is the name of your plugin’s directory in the mod hierarchy

	Fill this file with the form elements you want to display together with internationalised text labels

	Set the name attribute in your form components to param[`varname`] where varname is the name of the variable. These will be saved as private settings attached to a plugin entity. So, if your variable is called param[myparameter] your plugin (which is also passed to this view as $vars['entity']) will be called $vars['entity']->myparameter

An example settings.php would look like:

<p>
 <?php echo elgg_echo('myplugin:settings:limit'); ?>

 <select name="params[limit]">
 <option value="5" <?php if ($vars['entity']->limit == 5) echo " selected=\"yes\" "; ?>>5</option>
 <option value="8" <?php if ((!$vars['entity']->limit) || ($vars['entity']->limit == 8)) echo " selected=\"yes\" "; ?>>8</option>
 <option value="12" <?php if ($vars['entity']->limit == 12) echo " selected=\"yes\" "; ?>>12</option>
 <option value="15" <?php if ($vars['entity']->limit == 15) echo " selected=\"yes\" "; ?>>15</option>
 </select>
</p>

Note

You don’t need to add a save button or the form, this will be handled by the framework.

Note

You cannot use form components that send no value when “off.” These include radio inputs and check boxes.

User settings

Your plugin might need to store per user settings too, and you would like to have your plugin’s options to appear in the user’s settings page. This is also easy to do and follows the same pattern as setting up the global plugin configuration explained earlier. The only difference is that instead of using a settings file you will use usersettings. So, the path to the user edit view for your plugin would be plugins/your_plugin/usersettings.php.

Note

The title of the usersettings form will default to the plugin name. If you want to change this, add a translation for plugin_id:usersettings:title.

Retrieving settings in your code

To retrieve settings from your code use:

$setting = elgg_get_plugin_setting($name, $plugin_id);

or for user settings

$user_setting = elgg_get_plugin_user_setting($name, $user_guid, $plugin_id);

where:

	$name Is the value you want to retrieve

	$user_guid Is the user you want to retrieve these for (defaults to the currently logged in user)

	$plugin_name Is the name of the plugin (detected if run from within a plugin)

Setting values while in code

Values may also be set from within your plugin code, to do this use one of the following functions:

elgg_set_plugin_setting($name, $value, $plugin_id);

or

elgg_set_plugin_user_setting($name, $value, $user_guid, $plugin_id);

Warning

The $plugin_id needs to be provided when setting plugin (user)settings.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

River

Elgg natively supports the “river”, an activity stream containing descriptions
of activities performed by site members. This page gives an overview of adding
events to the river in an Elgg plugin.

Pushing river items

Items are pushed to the activity river through a function call, which you must
include in your plugins for the items to appear.

Here we add a river item telling that a user has created a new blog post:

<?php

elgg_create_river_item(array(
 'view' => 'river/object/blog/create',
 'action_type' => 'create',
 'subject_guid' => $blog->owner_guid,
 'object_guid' => $blog->getGUID(),
));

All available parameters:

	view => STR The view that will handle the river item (must exist)

	action_type => STR An arbitrary string to define the action (e.g. ‘create’, ‘update’, ‘vote’, ‘review’, etc)

	subject_guid => INT The GUID of the entity doing the action

	object_guid => INT The GUID of the entity being acted upon

	target_guid => INT The GUID of the the object entity’s container (optional)

	access_id => INT The access ID of the river item (default: same as the object)

	posted => INT The UNIX epoch timestamp of the river item (default: now)

	annotation_id => INT The annotation ID associated with this river entry (optional)

When an item is deleted or changed, the river item will be updated automatically.

River views

In order for events to appear in the river you need to provide a corresponding
view with the name specified in the function above.

We recommend /river/{type}/{subtype}/{action}, where:

	{type} is the entity type of the content we’re interested in (object for objects, user for users, etc)

	{subtype} is the entity subtype of the content we’re interested in (blog for blogs, photo_album for albums, etc)

	{action} is the action that took place (‘’create’‘, ‘’update’‘, etc)

River item information will be passed in an object called $vars['item'], which contains the following important parameters:

	$vars['item']->subject_guid The GUID of the user performing the action

	$vars['item']->object_guid The GUID of the entity being acted upon

Timestamps etc will be generated for you.

For example, the blog plugin uses the following code for its river view:

<?php

$object = $vars['item']->getObjectEntity();

$excerpt = $object->excerpt ? $object->excerpt : $object->description;
$excerpt = strip_tags($excerpt);
$excerpt = elgg_get_excerpt($excerpt);

echo elgg_view('river/elements/layout', array(
 'item' => $vars['item'],
 'message' => $excerpt,
));

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Routing

Elgg has two mechanisms to respond to HTTP requests that don’t already go through the
Actions and Simplecache systems.

URL Identifier and Segments

After removing the site URL, Elgg splits the URL path by / into an array. The first
element, the identifier, is shifted off, and the remaining elements are called the
segments. For example, if the site URL is http://example.com/elgg/, the URL
http://example.com/elgg/blog/owner/jane?foo=123 produces:

Identifier: 'blog'. Segments: ['owner', 'jane']. (the query string parameters are
available via get_input())

The site URL (home page) is a special case that produces an empty string identifier and
an empty segments array.

Warning

URL identifier/segments should be considered potentially dangerous user input. Elgg uses htmlspecialchars to escapes HTML entities in them.

Page Handler

To handle all URLs that begin with a particular identifier, you can register a function to
act as a Page handler. When the handler is called, the segments array is
passed in as the first argument.

The following code registers a page handler for “blog” URLs and shows how one might route
the request to a resource view.

elgg_register_page_handler('blog', 'blog_page_handler');

function blog_page_handler(array $segments) {
 // if the URL is http://example.com/elgg/blog/view/123/my-blog-post
 // $segments contains: ['view', '123', 'my-blog-post']

 $subpage = elgg_extract(0, $segments);
 if ($subpage === 'view') {

 // use a view for the page logic to allow other plugins to easily change it
 echo elgg_view_resource('blog/view', [
 'guid' => (int)elgg_extract(1, $segments);
]);

 // in page handlers, return true says, "we've handled this request"
 return true;
 }

 // ... handle other subpages
}

The route Plugin Hook

The route plugin hook is triggered before page handlers are called. The URL
identifier is given as the type of the hook. This hook can be used to add some logic before the
request is handled elsewhere, or take over page rendering completely.

Generally devs should instead use a page handler unless they need to affect a single page or a wider
variety of URLs.

The following code results in /blog/all requests being completely handled by the plugin hook handler.
For these requests the blog page handler is never called.

function myplugin_blog_all_handler($hook, $type, $returnvalue, $params) {
 $segments = elgg_extract('segments', $returnvalue, array());

 if (isset($segments[0]) && $segments[0] === 'all') {
 $title = "We're taking over!";
 $content = elgg_view_layout('one_column', array(
 'title' => $title,
 'content' => "We can take over page rendering completely"
));
 echo elgg_view_page($title, $content);

 // in the route hook, return false says, "stop rendering, we've handled this request"
 return false;
 }
}

elgg_register_plugin_hook_handler('route', 'blog', 'myplugin_blog_all_handler');

Note

As of 2.1, route modification should be done in the route:rewrite hook.

The route:rewrite Plugin Hook

For URL rewriting, the route:rewrite hook (with similar arguments as route) is triggered very early,
and allows modifying the request URL path (relative to the Elgg site).

Here we rewrite requests for news/* to blog/*:

function myplugin_rewrite_handler($hook, $type, $value, $params) {
 $value['identifier'] = 'blog';
 return $value;
}

elgg_register_plugin_hook_handler('route:rewrite', 'news', 'myplugin_rewrite_handler');

Warning

The hook must be registered directly in your plugin start.php (the [init, system] event
is too late).

Routing overview

For regular pages, Elgg’s program flow is something like this:

	A user requests http://example.com/news/owner/jane.

	Plugins are initialized.

	Elgg parses the URL to identifier news and segments ['owner', 'jane'].

	Elgg triggers the plugin hook route:rewrite, news (see above).

	Elgg triggers the plugin hook route, blog (was rewritten in the rewrite hook).

	Elgg finds a registered page handler (see above) for blog, and calls the function, passing in
the segments.

	The page handler function determines it needs to render a single user’s blog. It calls
elgg_view_resource('blog/owner', $vars) where $vars contains the username.

	The resources/blog/owner view gets the username via $vars['username'], and uses many other views and
formatting functions like elgg_view_layout() and elgg_view_page() to create the entire HTML page.

	The page handler echos the view HTML and returns true to indicate it handled the request.

	PHP invokes Elgg’s shutdown sequence.

	The user receives a fully rendered page.

Elgg’s coding standards suggest a particular URL layout, but there is no syntax enforced.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Themes

Customize the look and feel of Elgg.

A theme is a type of plugin that overrides display aspects of Elgg.

	This guide assumes you are familiar with:

	
	Plugins

	Views

Contents

	Create your plugin

	Customize the CSS
	View extension

	View overloading

	Icons

	Tools

	Customizing the front page

Create your plugin

Create your plugin as described in the developer guide.

	Create a new directory under mod/

	Create a new start.php

	Create a manifest.xml file describing your theme.

Customize the CSS

As of Elgg 1.8, the css is split into several files based on what
aspects of the site you’re theming. This allows you to tackle them one
at a time, giving you a chance to make real progress without getting
overwhelmed.

Here is a list of the existing CSS views:

	elements/buttons.css: Provides a way to style all the different kinds of buttons your site will use. There are 5 kinds of buttons that plugins will expect to be available: action, cancel, delete, submit, and special.

	elements/chrome.css: This file has some miscellaneous look-and-feel classes.

	elements/components.css: This file contains many “css objects” that are used all over the site: media block, list, gallery, table, owner block, system messages, river, tags, photo, and comments.

	elements/forms.css: This file determines what your forms and input elements will look like.

	elements/icons.css: Contains styles for the icons and avatars used on your site.

	elements/layout.css: Determines what your page layout will look like: sidebars, page wrapper, main body, header, footer, etc.

	elements/modules.css: Lots of content in Elgg is displayed in boxes with a title and a content body. We called these modules. There are a few kinds: info, aside, featured, dropdown, popup, widget. Widget styles are included in this file too, since they are a subset of modules.

	elements/navigation.css: This file determines what all your menus will look like.

	elements/typography.css: This file determines what the content and headings of your site will look like.

	rtl.css: Custom rules for users viewing your site in a right-to-left language.

	admin.css: A completely separate theme for the admin area (usually not overridden).

	elgg.css: Compiles all the core elements/* files into one file (DO NOT OVERRIDE).

	elements/core.css: Contains base styles for the more complicated “css objects”. If you find yourself wanting to override this, you probably need to report a bug to Elgg core instead (DO NOT OVERRIDE).

	elements/reset.css: Contains a reset stylesheet that forces elements to have the same default

View extension

There are two ways you can modify views:

The first way is to add extra stuff to an existing view via the extend
view function from within your start.php’s initialization function.

For example, the following start.php will add mytheme/css to Elgg’s core
css file:

<?php

 function mytheme_init() {
 elgg_extend_view('elgg.css', 'mytheme/css');
 }

 elgg_register_event_handler('init', 'system', 'mytheme_init');
?>

View overloading

Plugins can have a view hierarchy, any file that exists here will
replace any files in the existing core view hierarchy... so for example,
if my plugin has a file:

/mod/myplugin/views/default/elements/typography.css

it will replace:

/views/default/elements/typography.css

But only when the plugin is active.

This gives you total control over the way Elgg looks and behaves. It
gives you the option to either slightly modify or totally replace
existing views.

Icons

As of Elgg 2.0 the default Elgg icons come from the FontAwesome [http://fontawesome.io/] library.
You can use any of these icons by calling:

elgg_view_icon('icon-name');

icon-name can be any of the FontAwesome icons [http://fontawesome.io/icons/] without the fa--prefix.

Tools

Starting in Elgg 1.8, we’ve provided you with some development tools to help you
with theming: Turn on the “Developers” plugin and go to the “Theme
Preview” page to start tracking your theme’s progress.

Customizing the front page

The main Elgg index page runs a plugin hook called ‘index,system’. If this
returns true, it assumes that another front page has been drawn and
doesn’t display the default page.

Therefore, you can override it by registering a function to the
‘index,system’ plugin hook and then returning true from that function.

Here’s a quick overview:

	Create your new plugin

	In the start.php you will need something like the following:

<?php

function pluginname_init() {
 // Replace the default index page
 elgg_register_plugin_hook_handler('index', 'system', 'new_index');
}

function new_index() {
 if (!include_once(dirname(dirname(__FILE__)) . "/pluginname/pages/index.php"))
 return false;

 return true;
}

// register for the init, system event when our plugin start.php is loaded
elgg_register_event_handler('init', 'system', 'pluginname_init');
?>

	Then, create an index page (/pluginname/pages/index.php) and use that
to put the content you would like on the front page of your Elgg
site.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Views

Contents

	Introduction

	Using views

	Views as templates

	Views as cacheable assets

	Views and third-party assets

	Viewtypes

	Altering views via plugins

	Displaying entities

	Full and partial entity views

	Listing entities

	Related

Introduction

Views are responsible for creating output. They handle everything from:

	the layout of pages

	chunks of presentation output (like a footer or a toolbar)

	individual links and form inputs.

	the images, js, and css needed by your web page

Using views

At their most basic level, the default views are just PHP files with snippets of html:

<h1>Hello, World!</h1>

Assuming this view is located at /views/default/hello.php, we could output it like so:

echo elgg_view('hello');

For your convenience, Elgg comes with quite a lot of views by default.
In order to keep things manageable, they are organized into subdirectories.
Elgg handles this situation quite nicely. For example, our simple view might live in
/views/default/hello/world.php, in which case it would be called like so:

echo elgg_view('hello/world');

The name of the view simply reflects the location of the view in the views directory.

Views as templates

You can pass arbitrary data to a view via the $vars array.
Our hello/world view might be modified to accept a variable like so:

<h1>Hello, <?= $vars['name']; ?>!</h1>

In this case, we can pass an arbitrary name parameter to the view like so:

echo elgg_view('hello/world', ['name' => 'World']);

which would produce the following output:

<h1>Hello, World!</h1>

Warning

Views don’t do any kind of automatic output sanitization by default.
You are responsible for doing the correct sanitization yourself
to prevent XSS attacks and the like.

Views as cacheable assets

As mentioned before, views can contain JS, CSS, or even images.

Asset views must meet certain requirements:

	They must not take any $vars parameters

	They must not change their output based on global state like
	who is logged in

	the time of day

	They must contain a valid file extension
	Bad: my/cool/template

	Good: my/cool/template.html

For example, suppose you wanted to load some CSS on a page.
You could define a view mystyles.css, which would look like so:

/* /views/default/mystyles.css */
.mystyles-foo {
 background: red;
}

Note

Leave off the trailing ”.php” from the filename and Elgg will automatically
recognize the view as cacheable.

To get a URL to this file, you would use elgg_get_simplecache_url:

// Returns "https://mysite.com/.../289124335/default/mystyles.css
elgg_get_simplecache_url('mystyles.css');

Elgg automatically adds the magic numbers you see there for cache-busting and
sets long-term expires headers on the returned file.

Warning

Elgg may decide to change the location or structure of the returned URL in a
future release for whatever reason, and the cache-busting numbers change
every time you flush Elgg’s caches, so the exact URL is not stable by design.

With that in mind, here’s a couple anti-patterns to avoid:

	Don’t rely on the exact structure/location of this URL

	Don’t try to generate the URLs yourself

	Don’t store the returned URLs in a database

In your plugin’s init function, register the css file:

elgg_register_css('mystyles', elgg_get_simplecache_url('mystyles.css'));

Then on the page you want to load the css, call:

elgg_load_css('mystyles');

Views and third-party assets

The best way to serve third-party assets is through views. However, instead of manually copy/pasting
the assets into the right location in /views/*, you can use a views.php file in your plugin’s
directory to map the assets into the views system.

A views file must return a 2 dimensional array. The first level maps a viewtype to a list of view
mappings. The secondary lists map view names to file paths, either absolute or relative to the Elgg root directory.

If you check your assets into source control, point to them like this:

<?php // mod/example/views.php
return [
 // viewtype
 'default' => [
 // view => /path/from/filesystem/root
 'js/jquery-ui.js' => __DIR__ . '/bower_components/jquery-ui/jquery-ui.min.js',
],
];

To point to assets installed with fxp/composer-asset-plugin, use install-root-relative
paths by leaving off the leading slash:

<?php // mod/example/views.php
return [
 // viewtype
 'default' => [
 // view => path/from/install/root
 'js/jquery-ui.js' => 'vendor/bower-asset/jquery-ui/jquery-ui.min.js',
],
];

Elgg core uses this feature extensively. See /engine/views.php.

Note

You don’t have to use Bower, Composer Asset Plugin, or any other script for
managing your plugin’s assets, but we highly recommend using a package manager
of some kind because it makes upgrading so much easier.

Specifying additional views directories

In your views.php file you can also specify directories to be scanned for views. Just provide
a view name prefix ending with / and a directory path (like above).

<?php // mod/file/views.php
return [
 'default' => [
 'file/icon/' => __DIR__ . '/graphics/icons',
],
];

With the above, files found within the icons folder will be interpreted as views. E.g. the view
file/icon/general.gif will be created and mapped to mod/file/graphics/icons/general.gif.

Note

This is a fully recursive scan. All files found will be brought into the views system.

Multiple paths can share the same prefix, just give an array of paths:

<?php // mod/file/views.php
return [
 'default' => [
 'file/icon/' => [
 __DIR__ . '/graphics/icons',
 __DIR__ . '/more_icons', // processed 2nd (may override)
],
],
];

Viewtypes

You might be wondering: “Why /views/default/hello/world.php instead of just /views/hello/world.php?”.

The subdirectory under /views determines the viewtype of the views below it.
A viewtype generally corresponds to the output format of the views.

The default viewtype is assumed to be HTML and other static assets necessary to
render a responsive web page in a desktop or mobile browser, but it could also be:

	RSS

	ATOM

	JSON

	Mobile-optimized HTML

	TV-optimized HTML

	Any number of other data formats

You can force Elgg to use a particular viewtype to render the page
by setting the view input variable like so: https://mysite.com/?view=rss.

You could also write a plugin to set this automatically using the elgg_set_viewtype() function.
For example, your plugin might detect that the page was accessed with an iPhone’s browser string,
and set the viewtype to iphone by calling:

elgg_set_viewtype('iphone');

The plugin would presumably also supply a set of views optimized for those devices.

Altering views via plugins

Without modifying Elgg’s core, Elgg provides several ways to customize almost all output:

	You can override a view, completely changing the file used to render it.

	You can extend a view by prepending or appending the output of another view to it.

	You can alter a view’s inputs by plugin hook.

	You can alter a view’s output by plugin hook.

Overriding views

Views in plugin directories always override views in the core directory;
however, when plugins override the views of other plugins,
later plugins take precedent.

For example, if we wanted to customize the hello/world view to use an h2
instead of an h1, we could create a file at /mod/example/views/default/hello/world.php like this:

<h2>Hello, <?= $vars['name']; ?></h2>

Note

When considering long-term maintenance, overriding views in the core and bundled plugins has a cost:
Upgrades may bring changes in views, and if you have overridden them, you will not get those changes.

You may instead want to alter the input
or the output of the view via plugin hooks.

Note

Elgg caches view locations. This means that you should disable the system cache while developing with views.
When you install the changes to a production environment you must flush the caches.

Extending views

There may be other situations in which you don’t want to override the whole view,
you just want to prepend or append some more content to it. In Elgg this is called extending a view.

For example, instead of overriding the hello/world view, we could extend it like so:

elgg_extend_view('hello/world', 'hello/greeting');

If the contents of /views/default/hello/greeting.php is:

<h2>How are you today?</h2>

Then every time we call elgg_view('hello/world');, we’ll get:

<h1>Hello, World!</h1>
<h2>How are you today?</h2>

You can prepend views by passing a value to the 3rd parameter that is less than 500:

// appends 'hello/greeting' to every occurrence of 'hello/world'
elgg_extend_view('hello/world', 'hello/greeting');

// prepends 'hello/greeting' to every occurrence of 'hello/world'
elgg_extend_view('hello/world', 'hello/greeting', 450);

All view extensions should be registered in your plugin’s init,system event handler in start.php.

Altering view input

It may be useful to alter a view’s $vars array before the view is rendered.

Since 1.11, before each view rendering the $vars array is filtered by the
plugin hook ["view_vars", $view_name].
Each registered handler function is passed these arguments:

	$hook - the string "view_vars"

	$view_name - the view name being rendered (the first argument passed to elgg_view())

	$returnvalue - the modified $vars array

	$params - an array containing:
	vars - the original $vars array, unaltered

	view - the view name

	viewtype - The viewtype being rendered

Altering view input example

Here we’ll alter the default pagination limit for the comments view:

elgg_register_plugin_hook_handler('view_vars', 'page/elements/comments', 'myplugin_alter_comments_limit');

function myplugin_alter_comments_limit($hook, $type, $vars, $params) {
 // only 10 comments per page
 $vars['limit'] = elgg_extract('limit', $vars, 10);
 return $vars;
}

Altering view output

Sometimes it is preferable to alter the output of a view instead of overriding it.

The output of each view is run through the plugin hook
["view", $view_name] before being returned by elgg_view().
Each registered handler function is passed these arguments:

	$hook - the string "view"

	$view_name - the view name being rendered (the first argument passed to elgg_view())

	$result - the modified output of the view

	$params - an array containing:
	viewtype - The viewtype being rendered

To alter the view output, the handler just needs to alter $returnvalue and return a new string.

Altering view output example

Here we’ll eliminate breadcrumbs that don’t have at least one link.

elgg_register_plugin_hook_handler('view', 'navigation/breadcrumbs', 'myplugin_alter_breadcrumb');

function myplugin_alter_breadcrumb($hook, $type, $returnvalue, $params) {
 // we only want to alter when viewtype is "default"
 if ($params['viewtype'] !== 'default') {
 return $returnvalue;
 }

 // output nothing if the content doesn't have a single link
 if (false === strpos($returnvalue, '<a ')) {
 return '';
 }

 // returning nothing means "don't alter the returnvalue"
}

Replacing view output completely

You can pre-set the view output by setting $vars['__view_output']. The value will be returned as a
string. View extensions will not be used and the view hook will not be triggered.

elgg_register_plugin_hook_handler('view_vars', 'navigation/breadcrumbs', 'myplugin_no_page_breadcrumbs');

function myplugin_no_page_breadcrumbs($hook, $type, $vars, $params) {
 if (elgg_in_context('pages')) {
 return ['__view_output' => ""];
 }
}

Displaying entities

If you don’t know what an entity is, check this page out first.

The following code will automatically display the entity in $entity:

echo elgg_view_entity($entity);

As you’ll know from the data model introduction, all entities have a type
(object, site, user or group), and optionally a subtype
(which could be anything - ‘blog’, ‘forumpost’, ‘banana’).

elgg_view_entity will automatically look for a view called type/subtype;
if there’s no subtype, it will look for type/type. Failing that, before it
gives up completely it tries type/default.

RSS feeds in Elgg generally work by outputting the object/default view in the ‘rss’ viewtype.

For example, the view to display a blog post might be object/blog.
The view to display a user is user/default.

Full and partial entity views

elgg_view_entity actually has a number of parameters,
although only the very first one is required. The first three are:

	$entity - The entity to display

	$viewtype - The viewtype to display in (defaults to the one we’re currently in,
but it can be forced - eg to display a snippet of RSS within an HTML page)

	$full_view - Whether to display a full version of the entity. (Defaults to false.)

This last parameter is passed to the view as $vars['full_view'].
It’s up to you what you do with it; the usual behaviour is to only display comments
and similar information if this is set to true.

Listing entities

This is then used in the provided listing functions.
To automatically display a list of blog posts (see the full tutorial), you can call:

echo elgg_list_entities([
 'type' => 'object',
 'subtype' => 'blog',
]);

This function checks to see if there are any entities; if there are, it first
displays the navigation/pagination view in order to display a way to move
from page to page. It then repeatedly calls elgg_view_entity on each entity
before returning the result.

Note that elgg_list_entities allows the URL to set its limit and offset options,
so set those explicitly if you need particular values (e.g. if you’re not using it for pagination).

Elgg knows that it can automatically supply an RSS feed on pages that use elgg_list_entities.
It initializes the ["head","page"] plugin hook (which is used by the header)
in order to provide RSS autodiscovery, which is why you can see the orange RSS
icon on those pages in some browsers.

If your entity list will display the entity owners,
you can improve performance a bit by preloading all owner entities:

echo elgg_list_entities([
 'type' => 'object',
 'subtype' => 'blog',

 // enable owner preloading
 'preload_owners' => true,
]);

See also this background information on Elgg’s database.

Since 1.11, you can define an alternative view to render list items using 'item_view' parameter.

In some cases, default entity views may be unsuitable for your needs.
Using item_view allows you to customize the look, while preserving pagination, list’s HTML markup etc.

Consider these two examples:

echo elgg_list_entities_from_relationship([
 'type' => 'group',
 'relationship' => 'member',
 'relationship_guid' => elgg_get_logged_in_user_guid(),
 'inverse_relationship' => false,
 'full_view' => false,
]);

echo elgg_list_entities_from_relationship([
 'type' => 'group',
 'relationship' => 'invited',
 'relationship_guid' => (int) $user_guid,
 'inverse_relationship' => true,
 'item_view' => 'group/format/invitationrequest',
]);

In the first example, we are displaying a list of groups a user is a member of using the default group view.
In the second example, we want to display a list of groups the user was invited to.

Since invitations are not entities, they do not have their own views and can not be listed using elgg_list_*.
We are providing an alternative item view, that will use the group entity to display
an invitation that contains a group name and buttons to access or reject the invitation.

Related

	Page structure best practice

	Simplecache

	Page/elements/foot vs footer

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

 	Views

Page structure best practice

Elgg pages have an overall pageshell and a main content area. In Elgg 1.0+, we’ve marked out a space “the canvas” for items to write to the page. This means the user always has a very consistent experience, while giving maximum flexibility to plugin authors for laying out their functionality.

Think of the canvas area as a big rectangle that you can do what you like in. We’ve created a couple of standard canvases for you:

	one column

	two column

	content

	widgets

are the main ones. You can access these with the function:

$canvas_area = elgg_view_layout($canvas_name, array(
 'content' => $content,
 'section' => $section
));

The content sections are passed as an array in the second parameter. The array keys correspond to sections in the layout, the choice of layout will determine which sections to pass. The array values contain the html that should be displayed in those areas. Examples of two common layouts:

$canvas_area = elgg_view_layout('one_column', array(
 'content' => $content
));

$canvas_area = elgg_view_layout('one_sidebar', array(
 'content' => $content,
 'sidebar' => $sidebar
));

You can then, ultimately, pass this into the elgg_view_page function:

echo elgg_view_page($title, $canvas_area);

You may also have noticed that we’ve started including a standard title area at the top of each plugin page (or at least, most plugin pages). This is created using the following wrapper function, and should usually be included at the top of the plugin content:

$start_of_plugin_content = elgg_view_title($title_text);

This will also display any submenu items that exist (unless you set the second, optional parameter to false). So how do you add submenu items?

In your plugin_init function, include the following call:

if (elgg_get_context() == "your_plugin") {
 // add a site navigation item
 $item = new ElggMenuItem('identifier', elgg_echo('your_plugin:link'), $url);
 elgg_register_menu_item('page', $item);
}

The submenu will then automatically display when your page is rendered. The ‘identifier’ is a machine name for the link, it should be unique per menu.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

 	Views

Simplecache

See also

	Performance

	Views

The Simplecache is a mechanism designed to alleviate the need for certain views to be regenerated dynamically.
Instead, they are generated once, saved as a static file, and served in a way that entirely bypasses the Elgg engine.

If Simplecache is turned off (which can be done from the administration panel),
these views will be served as normal, with the exception of site CSS.

The criteria for whether a view is suitable for the Simplecache is as follows:

	The view must not change depending on who or when it is being looked at

	The view must not depend on variables fed to it (except for global variables like site URL that never change)

Regenerating the Simplecache

You can regenerate the Simplecache at any time by:

	Loading /upgrade.php, even if you have nothing to upgrade

	In the admin panel click on ‘Flush the caches’

	Enabling or disabling a plugin

	Reordering your plugins

Using the Simplecache in your plugins

Registering views with the Simplecache

You can register a view with the Simplecache with the following function at init-time:

elgg_register_simplecache_view($viewname);

Accessing the cached view

If you registered a JavaScript or CSS file with Simplecache and put in the view folder as
your_view.js or your_view.css you can very easily get the url to this cached view by calling
elgg_get_simplecache_url($view). For example:

$js = elgg_get_simplecache_url('your_view.js');
$css = elgg_get_simplecache_url('your_view.css');

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

 	Views

Page/elements/foot vs footer

page/elements/footer is the content that goes inside this part of the page:

<div class="elgg-page-footer">
 <div class="elgg-inner">
 <!-- page/elements/footer goes here -->
 </div>
</div>

It’s content is visible to end users and usually where you would put a sitemap or other secondary global navigation, copyright info, powered by elgg, etc.

page/elements/foot is inserted just before the ending </body> tag and is mostly meant as a place to insert scripts that don’t already work with elgg_register_js(array('location' => 'footer')); or elgg_require_js('amd/module');. In other words, you should never override this view and probably don’t need to extend it either. Just use the elgg_*_js functions instead

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Widgets

Widgets are content areas that users can drag around their page to customize the layout. They can typically be customized by their owner to show more/less content and determine who sees the widget. By default Elgg provides plugins for customizing the profile page and dashboard via widgets.

TODO: Screenshot

Contents

	Structure

	Register the widget
	Multiple widgets

	Magic widget name and description

	How to restrict where widgets can be used

	Allow multiple widgets on the same page

	Register widgets in a hook

	Modify widget properties of existing widget registration

	Default widgets

Structure

To create a widget, create two views:

	widgets/widget/edit

	widgets/widget/content

content.php is responsible for all the content that will output within the widget. The edit.php file contains any extra edit functions you wish to present to the user. You do not need to add access level as this comes as part of the widget framework.

Note

Using HTML checkboxes to set widget flags is problematic because if unchecked,
the checkbox input is omitted from form submission.
The effect is that you can only set and not clear flags.
The “input/checkboxes” view will not work properly in a widget’s edit panel.

Register the widget

Once you have created your edit and view pages, you need to initialize the plugin widget. This is done within the plugins init() function.

// Add generic new file widget
elgg_register_widget_type([
 'id' => 'filerepo',
 'name' => elgg_echo('widgets:filerepo:name'),
 'description' => elgg_echo('widgets:filerepo:description'),
]);

Note

The only required attribute is the id.

Multiple widgets

It is possible to add multiple widgets for a plugin. You just initialize as many widget directories as you need.

 // Add generic new file widget
 elgg_register_widget_type([
 'id' => 'filerepo',
 'name' => elgg_echo('widgets:filerepo:name'),
 'description' => elgg_echo('widgets:filerepo:description'),
]);

 // Add a second file widget
elgg_register_widget_type([
 'id' => 'filerepo2',
 'name' => elgg_echo('widgets:filerepo2:name'),
 'description' => elgg_echo('widgets:filerepo2:description'),
]);

 // Add a third file widget
elgg_register_widget_type([
 'id' => 'filerepo3',
 'name' => elgg_echo('widgets:filerepo3:name'),
 'description' => elgg_echo('widgets:filerepo3:description'),
]);

Make sure you have the corresponding directories within your plugin
views structure:

'Plugin'
 /views
 /default
 /widgets
 /filerepo
 /edit.php
 /content.php
 /filerepo2
 /edit.php
 /content.php
 /filerepo3
 /edit.php
 /content.php

Magic widget name and description

When registering a widget you can omit providing a name and a description. If a translation in the following format is provided, they will be used. For the name: widgets:<widget_id>:name and for the description widgets:<widget_id>:description. If you make sure these translation are available in a translation file, you have very little work registering the widget.

elgg_register_widget_type(['id' => 'filerepo']);

How to restrict where widgets can be used

The widget can specify the context that it can be used in (all, just profile, just dashboard, etc.). If you do not specify a context they will be available for all contexts.

elgg_register_widget_type([
 'id' => 'filerepo',
 'context' => ['profile', 'dashboard', 'other_context'],
]);

Allow multiple widgets on the same page

By default you can only add one widget of the same type on the page. If you want more of the same widget on the page, you can specify this when registering the widget:

elgg_register_widget_type([
 'id' => 'filerepo',
 'multiple' => true,
]);

Register widgets in a hook

If, for example, you wish to conditionally register widgets you can also use a hook to register widgets.

function my_plugin_init() {
 elgg_register_plugin_hook_handler('handlers', 'widgets', 'my_plugin_conditional_widgets_hook');
}

function my_plugin_conditional_widgets_hook($hook, $type, $return, $params) {
 if (!elgg_is_active_plugin('file')) {
 return;
 }

 $return[] = \Elgg\WidgetDefinition::factory([
 'id' => 'filerepo',
]);

 return $return;
}

Modify widget properties of existing widget registration

If, for example, you wish to change the allowed contexts of an already registered widget you can do so by re-registering the widget with elgg_register_widget_type as it will override an already existing widget definition. If you want even more control you can also use the handlers, widgets hook to change the widget definition.

function my_plugin_init() {
 elgg_register_plugin_hook_handler('handlers', 'widgets', 'my_plugin_change_widget_definition_hook');
}

function my_plugin_change_widget_definition_hook($hook, $type, $return, $params) {
 foreach ($return as $key => $widget) {
 if ($widget->id === 'filerepo') {
 $return[$key]->multiple = false;
 }
 }

 return $return;
}

Default widgets

If your plugin uses the widget canvas, you can register default widget support with Elgg core, which will handle everything else.

To announce default widget support in your plugin, register for the get_list, default_widgets plugin hook:

elgg_register_plugin_hook_handler('get_list', 'default_widgets', 'my_plugin_default_widgets_hook');

In the plugin hook handler, push an array into the return value defining your default widget support and when to create default widgets. Arrays require the following keys to be defined:

	name - The name of the widgets page. This is displayed on the tab in the admin interface.

	widget_context - The context the widgets page is called from. (If not explicitly set, this is your plugin’s id.)

	widget_columns - How many columns the widgets page will use.

	event - The Elgg event to create new widgets for. This is usually create.

	entity_type - The entity type to create new widgets for.

	entity_subtype - The entity subtype to create new widgets for. The can be ELGG_ENTITIES_ANY_VALUE to create for all entity types.

When an object triggers an event that matches the event, entity_type, and entity_subtype parameters passed, Elgg core will look for default widgets that match the widget_context and will copy them to that object’s owner_guid and container_guid. All widget settings will also be copied.

function my_plugin_default_widgets_hook($hook, $type, $return, $params) {
 $return[] = array(
 'name' => elgg_echo('my_plugin'),
 'widget_context' => 'my_plugin',
 'widget_columns' => 3,

 'event' => 'create',
 'entity_type' => 'user',
 'entity_subtype' => ELGG_ENTITIES_ANY_VALUE,
);

 return $return;
}

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Walled Garden

Elgg supports a “Walled Garden” mode. In this mode, almost all pages are restricted to logged in users. This is useful for sites that don’t allow public registration.

Activating Walled Garden mode

To activate Walled Garden mode in Elgg 1.8, go to the Administration section. On the right sidebar menu, under the “Configure” section, expand “Settings,” then click on “Advanced.”

From the Advanced Settings page, find the option labelled “Restrict pages to logged-in users.” Enable this option, then click “Save” to switch your site into Walled Garden mode.

Exposing pages through Walled Gardens

Many plugins extend Elgg by adding pages. Walled Garden mode will prevent these pages from being viewed by logged out users. Elgg uses plugin hook to manage which pages are visible through the Walled Garden.

Plugin authors must register pages as public if they should be viewable through Walled Gardens by responding to the public_pages, walled_garden plugin hook.

The returned value is an array of regexp expressions for public pages.

The following code shows how to expose http://example.org/my_plugin/public_page through a Walled Garden. This assumes the plugin has registered a Page handler for my_plugin.

elgg_register_plugin_hook_handler('public_pages', 'walled_garden', 'my_plugin_walled_garden_public_pages');

function my_plugin_walled_garden_public_pages($hook, $type, $pages) {
 $pages[] = 'my_plugin/public_page';
 return $pages;
}

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Web services

Build an HTTP API for your site.

Elgg provides a powerful framework for building web services. This
allows developers to expose functionality to other web sites and desktop
applications along with doing integrations with third-party web
applications. While we call the API RESTful, it is actually a REST/RPC
hybrid similar to the APIs provided by sites like Flickr and Twitter.

To create an API for your Elgg site, you need to do 4 things:

	enable the web services plugin

	expose methods

	setup API authentication

	setup user authentication

Additionally, you may want to control what types of authentication are
available on your site. This will also be covered.

Contents

	Security

	Exposing methods
	Response formats

	Parameters

	Receive parameters as associative array

	API authentication
	Key-based authentication

	Signature-based authentication

	OAuth

	User authentication

	Building out your API

	Determining the authentication available

	Related

Security

It is crucial that the web services are consumed via secure protocols. Do not
enable web services if your site is not served via HTTPs. This is especially
important if you allow API key only authentication.

If you are using third-party tools that expose API methods, make sure to carry
out a thorough security audit. You may want to make sure that API authentication
is required for ALL methods, even if they require user authentication. Methods that
do not require API authentication can be easily abused to spam your site.

Ensure that the validity of API keys is limited and provide mechanisms for your
API clients to renew their keys.

Exposing methods

The function to use to expose a method is elgg_ws_expose_function(). As an
example, let’s assume you want to expose a function that echos text back
to the calling application. The function could look like this

function my_echo($string) {
 return $string;
}

Since we are providing this function to allow developers to test their
API clients, we will require neither API authentication nor user
authentication. This call registers the function with the web services
API framework:

elgg_ws_expose_function(
 "test.echo",
 "my_echo",
 [
 "string" => [
 'type' => 'string',
]
],
 'A testing method which echos back a string',
 'GET',
 false,
 false
);

If you add this code to a plugin and then go to
http://yoursite.com/services/api/rest/json/?method=system.api.list, you
should now see your test.echo method listed as an API call. Further, to
test the exposed method from a web browser, you could hit the url:
http://yoursite.com/services/api/rest/json/?method=test.echo&string=testing
and you should see JSON data like this:

{"status":0,"result":"testing"}

Plugins can filter the output of individual API methods by registering a handler
for 'rest:output',$method plugin hook.

Response formats

JSON is the default format, however XML and serialized PHP can be fetched by enabling the data_views
plugin and substituting xml or php in place of json in the above URLs.

You can also add additional response formats by defining new viewtypes.

Parameters

Parameters expected by each method should be listed as an associative array, where the key represents the parameter name, and the value contains an array with type, default and required fields.

Values submitted with the API request for each parameter should match the declared type. API will throw on exception if validation fails.

Recognized parameter types are:

	integer (or int)

	boolean (or bool)

	string

	float

	array

Unrecognized types will throw an API exception.

You can use additional fields to describe your parameter, e.g. description.

elgg_ws_expose_function(
 'test.greet',
 'my_greeting',
 [
 'name' => [
 'type' => 'string',
 'required' => true,
 'description' => 'Name of the person to be greeted by the API',
],
 'greeting' => [
 'type' => 'string',
 'required' => false,
 'default' => 'Hello',
 'description' => 'Greeting to be used, e.g. "Good day" or "Hi"',
],
],
 'A testing method which greets the user with a custom greeting',
 'GET',
 false,
 false
);

Note

If a missing parameter has no default value, the argument will be null. Before 2.1, a bug caused later
arguments to be shifted left in this case.

Receive parameters as associative array

If you have a large number of method parameters, you can force the execution script
to invoke the callback function with a single argument that contains an associative
array of parameter => input pairs (instead of each parameter being a separate argument).
To do that, set $assoc to true in elgg_ws_expose_function().

function greet_me($values) {
 $name = elgg_extract('name', $values);
 $greeting = elgg_extract('greeting', $values, 'Hello');
 return "$greeting, $name";
}

elgg_ws_expose_function(
 "test.greet",
 "greet_me",
 [
 "name" => [
 'type' => 'string',
],
 "greeting" => [
 'type' => 'string',
 'default' => 'Hello',
 'required' => false,
],
],
 'A testing method which echos a greeting',
 'GET',
 false,
 false,
 true // $assoc makes the callback receive an associative array
);

Note

If a missing parameter has no default value, null will be used.

API authentication

You may want to control access to some of the functions that you expose.
Perhaps you are exposing functions in order to integrate Elgg with
another open source platform on the same server. In that case, you only
want to allow that other application access to these methods. Another
possibility is that you want to limit what external developers have
access to your API. Or maybe you want to limit how many calls a
developer can make against your API in a single day.

In all of these cases, you can use Elgg’s API authentication functions
to control access. Elgg provides two built-in methods to perform API
authentication: key based and HMAC signature based. You can also add
your own authentication methods. The key based approach is very similar
to what Google, Flickr, or Twitter. Developers can request a key (a
random string) and pass that key with all calls that require API
authentication. The keys are stored in the database and if an API call
is made without a key or a bad key, the call is denied and an error
message is returned.

Key-based authentication

As an example, let’s write a function that returns the number of users
that have viewed the site in the last x minutes.

function count_active_users($minutes=10) {
 $seconds = 60 * $minutes;
 $count = count(find_active_users($seconds, 9999));
 return $count;
}

Now, let’s expose it and make the number of minutes an optional
parameter:

elgg_ws_expose_function(
 "users.active",
 "count_active_users",
 [
 "minutes" => [
 'type' => 'int',
 'required' => false,
],
],
 'Number of users who have used the site in the past x minutes',
 'GET',
 true,
 false
);

This function is now available and if you check system.api.list, you
will see that it requires API authentication. If you hit the method with
a web browser, it will return an error message about failing the API
authentication. To test this method, you need an API key. Fortunately,
there is a plugin called apiadmin that creates keys for you. It is
available in the Elgg plugin repository. It will return a public and
private key and you will use the public key for this kind of API
authentication. Grab a key and then do a GET request with your browser
on this API method passing in the key string as the parameter
api_key. It might look something like this:
http://yoursite.com/services/api/rest/xml/?method=users.active&api_key=1140321cb56c71710c38feefdf72bc462938f59f.

Signature-based authentication

The HMAC Authentication is similar to what is used with OAuth or
Amazon’s S3 service. This involves both the public and private key. If
you want to be very sure that the API calls are coming from the
developer you think they are coming from and you want to make sure the
data is not being tampered with during transmission, you would use this
authentication method. Be aware that it is much more involved and could
turn off developers when there are other sites out there with key-based
authentication.

OAuth

With the addition of the OAuth plugin, Elgg also fully supports the
OAuth 1.0a authorization standard. Clients can then use standard OAuth
libraries to make any API calls to the site.

User authentication

So far you have been allowing developers to pull data out of your Elgg
site. Now we’ll move on to pushing data into Elgg. In this case, it is
going to be done by a user. Maybe you have created a desktop application
that allows your Users to post to the wire without going to the site.
You need to expose a method for posting to the wire and you need to make
sure that a user cannot post using someone else’s account. Elgg provides
a token-based approach for user authentication. It allows a user to
submit their username and password in exchange for a token using the
method auth.gettoken. This token can then be used for some amount of
time to authenticate all calls to the API before it expires by passing
it as the parameter auth_token. If you do not want to have your
users trusting their passwords to 3rd-party applications, you can also
extend the current capability to use an approach like OAuth.

Let’s write our wire posting function:

function my_post_to_wire($text) {

 $text = substr($text, 0, 140);

 $access = ACCESS_PUBLIC;

 // returns guid of wire post
 return thewire_save_post($text, $access, "api");
}

Exposing this function is the same as the previous except we require
user authentication and we’re going to make this use POST rather than
GET HTTP requests.

elgg_ws_expose_function(
 "thewire.post",
 "my_post_to_wire",
 [
 "text" => [
 'type' => 'string',
],
],
 'Post to the wire. 140 characters or less',
 'POST',
 true,
 true
);

Please note that you will not be able to test this using a web browser
as you did with the other methods. You need to write some client code to
do this. There is some example client code in /engine/lib/api.php.
Take a look at send_api_post_call() [http://reference.elgg.org/lib_2api_8php.html#ee7382c2cbf1ad49ac6892556d3eaff2]. You can also do a search for
clients that have been written for the APIs of Flickr or Twitter or any
other similar API. You will find a wide variety written in almost any
language you can think of.

Building out your API

As soon as you feel comfortable with Elgg’s web services API framework,
you will want to step back and design your API. What sort of data are
you trying to expose? Who or what will be API users? How do you want
them to get access to authentication keys? How are you going to document
your API? Be sure to take a look at the APIs created by popular Web 2.0
sites for inspiration. If you are looking for 3rd party developers to
build applications using your API, you will probably want to provide one
or more language-specific clients.

Determining the authentication available

Elgg’s web services API uses a type of pluggable authentication module
(PAM) [http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules] architecture to manage how users and developers are
authenticated. This provides you the flexibility to add and remove
authentication modules. Do you want to not use the default user
authentication PAM but would prefer using OAuth? You can do this.

The first step is registering a callback function for the rest, init
plugin hook:

register_plugin_hook('rest', 'init', 'rest_plugin_setup_pams');

Then in the callback function, you register the PAMs that you want to
use:

function rest_plugin_setup_pams() {
 // user token can also be used for user authentication
 register_pam_handler('pam_auth_usertoken');

 // simple API key check
 register_pam_handler('api_auth_key', "sufficient", "api");

 // override the default pams
 return true;
}

When testing, you may find it useful to register the
pam_auth_session PAM so that you can easily test your methods from
the browser. Be careful not to use this PAM on a production site because
it could open up your users to a CSRF attack [http://en.wikipedia.org/wiki/Csrf].

Right now, the only other PAMs publicly available besides those provided
by the Elgg core are the OAuth PAMs. See Justin Richer’s OAuth plugin [http://community.elgg.org/pg/plugins/jricher/read/385119/oauth]
for more detail.

Related

	HMAC Authentication

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

 	Web services

HMAC Authentication

Elgg’s RESTful API framework provides functions to support a HMAC [http://en.wikipedia.org/wiki/HMAC] signature scheme for API authentication. The client must send the HMAC signature together with a set of special HTTP headers when making a call that requires API authentication. This ensures that the API call is being made from the stated client and that the data has not been tampered with.

The HMAC must be constructed over the following data:

	The public API key identifying you to the Elgg api server as provided by the APIAdmin plugin

	The private API Key provided by Elgg (that is companion to the public key)

	The current unix time in seconds

	A nonce to guarantee two requests the same second have different signatures

	URL encoded string representation of any GET variable parameters, eg method=test.test&foo=bar

	If you are sending post data, the hash of this data

Some extra information must be added to the HTTP header in order for this data to be correctly processed:

	X-Elgg-apikey - The public API key

	X-Elgg-time - Unix time used in the HMAC calculation

	X-Elgg-none - a random string

	X-Elgg-hmac - The HMAC as base64 encoded

	X-Elgg-hmac-algo - The algorithm used in the HMAC calculation - eg, sha1, md5 etc.

If you are sending POST data you must also send:

	X-Elgg-posthash - The hash of the POST data

	X-Elgg-posthash-algo - The algorithm used to produce the POST data hash - eg, md5

	Content-type - The content type of the data you are sending (if in doubt use application/octet-stream)

	Content-Length - The length in bytes of your POST data

Elgg provides a sample API client that implements this HMAC signature: send_api_call(). It serves as a good reference on how to implement it.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

Upgrading Plugins

Prepare your plugin for the next version of Elgg.

See the administrator guides for how to upgrade a live site.

Contents

	From 2.1 to 2.2
	Deprecated APIs

	Deprecated Views

	Added elgg/popup module

	Added elgg/lightbox module

	Added elgg/embed module

	New API for handling entity icons

	Removed APIs

	Improved elgg/ckeditor module

	From 2.0 to 2.1
	Deprecated APIs

	Application::getDb() changes

	Added elgg/widgets module

	From 1.x to 2.0
	Elgg can be now installed as a composer dependency instead of at document root

	Cacheable views must have a file extension in their names

	Dropped jquery-migrate and upgraded jquery to ^2.1.4

	JS and CSS views have been moved out of the js/ and css/ directories

	fxp/composer-asset-plugin is now required to install Elgg from source

	List of deprecated views and view arguments that have been removed

	All scripts moved to bottom of page

	Attribute formatter removes keys with underscores

	Breadcrumbs

	Callbacks in Queries

	Comments plugin hook

	Container permissions hook

	Creating or deleting a relationship triggers only one event

	Discussion feature has been pulled from groups into its own plugin

	Dropped login-over-https feature

	Elgg has migrated from ext/mysql to PDO MySQL

	Event/Hook calling order may change

	export/ URLs are no longer available

	Icons migrated to Font Awesome

	Increase of z-index value in elgg-menu-site class

	input/autocomplete view

	Introduced third-party library for sending email

	Label elements

	Plugin Aalborg Theme

	Plugin Likes

	Plugin Messages

	Plugin Blog

	Plugin Bookmarks

	Plugin File

	Removed Classes

	Removed keys available via elgg_get_config()

	Removed Functions

	Removed methods

	Removed Plugin Hooks

	Removed Actions

	Removed Views

	Removed View Variables

	Removed libraries

	Specifying View via Properties

	Viewtype is static after the initial elgg_get_viewtype() call

	Deprecations

	From 1.10 to 1.11
	Comment highlighting

	From 1.9 to 1.10
	File uploads

	From 1.8 to 1.9
	The manifest file

	$CONFIG and $vars[‘config’]

	Language files

	Notifications

	Adding items to the Activity listing

	Entity URL handlers

	Web services

	From 1.7 to 1.8
	Updating core

	Updating plugins

From 2.1 to 2.2

Deprecated APIs

	elgg.ui.river JavaScript library: Remove calls to elgg_load_js('elgg.ui.river') from plugin code. Update core/river/filter and forms/comment/save, if overwritten, to require component AMD modules

	elgg.ui.popupOpen() and elgg.ui.popupClose() methods in elgg.ui JS library: Use elgg/popup module instead.

	lightbox.js library: Do not use elgg_load_js('lightbox.js'); unless your code references deprecated elgg.ui.lightbox namespace. Use elgg/lightbox AMD module instead.

	elgg.embed library and elgg.embed object: Do not use elgg_load_js('elgg.embed'). Use elgg/embed AMD module instead

	Accessing icons_sizes config value directly: Use elgg_get_icon_sizes()

	can_write_to_container(): Use ElggEntity::canWriteToContainer()

Deprecated Views

	elgg/ui.river.js is deprecated: Do not rely on simplecache URLs to work.

	groups/js is deprecated: Use groups/navigation AMD module as a menu item dependency for “feature” and “unfeature” menu items instead.

	lightbox/settings.js is deprecated: Use getOptions, ui.lightbox JS plugin hook or data-colorbox-opts attribute.

	elgg/ckeditor/insert.js is deprecated: You no longer need to include it, hook registration takes place in elgg/ckeditor module

	embed/embed.js is deprecated: Use elgg/embed AMD module.

Added elgg/popup module

New elgg/popup module can be used to build out more complex trigger-popup interactions, including binding custom anchor types and opening/closing popups programmatically.

Added elgg/lightbox module

New elgg/lightbox module can be used to open and close the lightbox programmatically.

Added elgg/embed module

Even though rarely necessary, elgg/embed AMD module can be used to access the embed methods programmatically. The module bootstraps itself when necessary and is unlikely to require further decoration.

New API for handling entity icons

	ElggEntity now implements \Elgg\EntityIcon interface

	elgg_get_icon_sizes() - return entity type/subtype specific icon sizes

	ElggEntity::saveIconFromUploadedFile() - creates icons from an uploaded file

	ElggEntity::saveIconFromLocalFile() - creates icons from a local file

	ElggEntity::saveIconFromElggFile() - creates icons from an instance of ElggFile

	ElggEntity::getIcon() - returns an instanceof ElggIcon that points to entity icon location on filestore (this may be just a placeholder, use ElggEntity::hasIcon() to validate if file has been written)

	ElggEntity::deleteIcon() - deletes entity icons

	ElggEntity::getIconLastChange() - return modified time of the icon file

	ElggEntity::hasIcon() - checks if an icon with given size has been created

	elgg_get_embed_url() - can be used to return an embed URL for an entity’s icon (served via /serve-icon handler)

Removed APIs

Just a warning that the private entity cache functions (e.g. _elgg_retrieve_cached_entity) have been removed. Some plugins may have been using them. Plugins should not use private APIs as they will more often be removed without notice.

Improved elgg/ckeditor module

elgg/ckeditor module can now be used to add WYSIWYG to a textarea programmatically with elgg/ckeditor#bind.

From 2.0 to 2.1

Deprecated APIs

	ElggFile::setFilestore

	get_default_filestore

	set_default_filestore

	elgg_get_config('siteemail'): Use elgg_get_site_entity()->email

	URLs starting with /css/ and /js/: Use elgg_get_simplecache_url()

	elgg.ui.widgets JavaScript object is deprecated by elgg/widgets AMD module

Application::getDb() changes

If you’re using this low-level API, do not expect it to return an Elgg\Database instance in 3.0. It now
returns an Elgg\Application\Database with many deprecated. These methods were never meant to be made
public API, but we will do our best to support them in 2.x.

Added elgg/widgets module

If your plugin code calls elgg.ui.widgets.init(), instead use the elgg/widgets module.

From 1.x to 2.0

Elgg can be now installed as a composer dependency instead of at document root

That means an Elgg site can look something like this:

settings.php
vendor/
 elgg/
 elgg/
 engine/
 start.php
 _graphics/
 elgg_sprites.png
mod/
 blog
 bookmarks
 ...

elgg_get_root_path and $CONFIG->path will return the path to the application
root directory, which is not necessarily the same as Elgg core’s root directory (which
in this case is vendor/elgg/elgg/).

Do not attempt to access the core Elgg from your plugin directly, since you cannot
rely on its location on the filesystem.

In particular, don’t try load engine/start.php.

// Don't do this!
dirname(__DIR__) . "/engine/start.php";

To boot Elgg manually, you can use the class Elgg\Application.

// boot Elgg in mod/myplugin/foo.php
require_once dirname(dirname(__DIR__)) . '/vendor/autoload.php';
\Elgg\Application::start();

However, use this approach sparingly. Prefer Routing instead whenever possible
as that keeps your public URLs and your filesystem layout decoupled.

Also, don’t try to access the _graphics files directly.

readfile(elgg_get_root_path() . "_graphics/elgg_sprites.png");

Use Views instead:

echo elgg_view('elgg_sprites.png');

Cacheable views must have a file extension in their names

This requirement makes it possibile for us to serve assets directly
from disk for performance, instead of serving them through PHP.

It also makes it much easier to explore the available cached resources
by navigating to dataroot/views_simplecache and browsing around.

	Bad: my/cool/template

	Good: my/cool/template.html

We now cache assets by "$viewtype/$view", not md5("$viewtype|$view"),
which can result in conflicts between cacheable views that don’t have file extensions
to disambiguate files from directories.

Dropped jquery-migrate and upgraded jquery to ^2.1.4

jQuery 2.x is API-compatible with 1.x, but drops support for IE8-, which Elgg
hasn’t supported for some time anyways.

See http://jquery.com/upgrade-guide/1.9/ for how to move off jquery-migrate.

If you’d prefer to just add it back, you can use this code in your plugin’s init:

elgg_register_js('jquery-migrate', elgg_get_simplecache_url('jquery-migrate.js'), 'head');
elgg_load_js('jquery-migrate');

Also, define a jquery-migrate.js view containing the contents of the script.

JS and CSS views have been moved out of the js/ and css/ directories

They also have been given .js and .css extensions respectively if they didn’t
already have them:

	Old view
	New view

	js/view
	view.js

	js/other.js
	other.js

	css/view
	view.css

	css/other.css
	other.css

	js/img.png
	img.png

The main benefit this brings is being able to co-locate related assets.
So a template (view.php) can have its CSS/JS dependencies right next to it
(view.css, view.js).

Care has been taken to make this change as backwards-compatible as possible,
so you should not need to update any view references right away. However, you are
certainly encouraged to move your JS and CSS views to their new, canonical
locations.

Practically speaking, this carries a few gotchas:

The view_vars, $view_name and view, $view_name hooks will operate on the
canonical view name:

elgg_register_plugin_hook_handler('view', 'css/elgg', function($hook, $view_name) {
 assert($view_name == 'elgg.css') // not "css/elgg"
});

Using the view, all hook and checking for individual views may not work as intended:

elgg_register_plugin_hook_handler('view', 'all', function($hook, $view_name) {
 // Won't work because "css/elgg" was aliased to "elgg.css"
 if ($view_name == 'css/elgg') {
 // Never executed...
 }

 // Won't work because no canonical views start with css/* anymore
 if (strpos($view_name, 'css/') === 0) {
 // Never executed...
 }
});

Please let us know about any other BC issues this change causes.
We’d like to fix as many as possible to make the transition smooth.

fxp/composer-asset-plugin is now required to install Elgg from source

We use fxp/composer-asset-plugin to manage our browser assets (js, css, html)
with Composer, but it must be installed globally before installing Elgg in order
for the bower-asset/* packages to be recognized. To install it, run:

composer global require fxp/composer-asset-plugin

If you don’t do this before running composer install or composer create-project,
you will get an error message:

[InvalidArgumentException]
Package fxp/composer-asset-plugin not found

List of deprecated views and view arguments that have been removed

We dropped support for and/or removed the following views:

	canvas/layouts/*

	categories

	categories/view

	core/settings/tools

	embed/addcontentjs

	footer/analytics (Use page/elements/foot instead)

	groups/left_column

	groups/right_column

	groups/search/finishblurb

	groups/search/startblurb

	input/calendar (Use input/date instead)

	input/datepicker (Use input/date instead)

	input/pulldown (Use input/select instead)

	invitefriends/formitems

	js/admin (Use AMD and elgg_require_js instead of extending JS views)

	js/initialise_elgg (Use AMD and elgg_require_js instead of extending JS views)

	members/nav

	metatags (Use the ‘head’, ‘page’ plugin hook instead)

	navigation/topbar_tools

	navigation/viewtype

	notifications/subscriptions/groupsform

	object/groupforumtopic

	output/calendar (Use output/date instead)

	output/confirmlink (Use output/url instead)

	page_elements/contentwrapper

	page/elements/shortcut_icon (Use the ‘head’, ‘page’ plugin hook instead)

	page/elements/wrapper

	profile/icon (Use elgg_get_entity_icon)

	river/object/groupforumtopic/create

	settings/{plugin}/edit (Use plugins/{plugin}/settings instead)

	user/search/finishblurb

	user/search/startblurb

	usersettings/{plugin}/edit (Use plugins/{plugin}/usersettings instead)

	widgets/{handler}/view (Use widgets/{handler}/content instead)

We also dropped the following arguments to views:

	“value” in output/iframe (Use “src” instead)

	“area2” and “area3” in page/elements/sidebar (Use “sidebar” or view extension instead)

	“js” in icon views (e.g. icon/user/default)

	“options” to input/radio and input/checkboxes which aren’t key-value pairs
will no longer be acceptable.

All scripts moved to bottom of page

You should test your plugin with the JavaScript error console visible. For performance reasons, Elgg no longer
supports script elements in the head element or in HTML views. elgg_register_js will now load all
scripts at the end of the body element.

You must convert inline scripts to AMD or to external scripts loaded with
elgg_load_js.

Early in the page, Elgg provides a shim of the RequireJS require() function that simply queues code until
the AMD elgg and jQuery modules are defined. This provides a straightforward way to convert many inline
scripts to use require().

Inline code which will fail because the stack is not yet loaded:

<script>
$(function () {
 // code using $ and elgg
});
</script>

This should work in Elgg 2.0:

<script>
require(['elgg', 'jquery'], function (elgg, $) {
 $(function () {
 // code using $ and elgg
 });
});
</script>

Attribute formatter removes keys with underscores

elgg_format_attributes() (and all APIs that use it) now filter out attributes whose name contains an
underscore. If the attribute begins with data-, however, it will not be removed.

Breadcrumbs

Breadcrumb display now removes the last item if it does not contain a link. To restore the previous behavior,
replace the plugin hook handler elgg_prepare_breadcrumbs with your own:

elgg_unregister_plugin_hook_handler('prepare', 'breadcrumbs', 'elgg_prepare_breadcrumbs');
elgg_register_plugin_hook_handler('prepare', 'breadcrumbs', 'myplugin_prepare_breadcrumbs');

function myplugin_prepare_breadcrumbs($hook, $type, $breadcrumbs, $params) {
 // just apply excerpt to titles
 foreach (array_keys($breadcrumbs) as $i) {
 $breadcrumbs[$i]['title'] = elgg_get_excerpt($breadcrumbs[$i]['title'], 100);
 }
 return $breadcrumbs;
}

Callbacks in Queries

Make sure to use only valid callable values for “callback” argument/options in the API.

Querying functions will now will throw a RuntimeException if is_callable() returns false for the given
callback value. This includes functions such as elgg_get_entities(), get_data(), and many more.

Comments plugin hook

Plugins can now return an empty string from 'comments',$entity_type hook in order to override the default comments component view. To force the default comments component, your plugin must return false. If you were using empty strings to force the default comments view, you need to update your hook handlers to return false.

Container permissions hook

The behavior of the container_permissions_check hook has changed when an entity is being created: Before 2.0, the hook would be called twice if the entity’s container was not the owner. On the first call, the entity’s owner would be passed in as $params['container'], which could confuse handlers.

In 2.0, when an entity is created in a container like a group, if the owner is the same as the logged in user (almost always the case), this first check is bypassed. So the container_permissions_check hook will almost always be called once with $params['container'] being the correct container of the entity.

Creating or deleting a relationship triggers only one event

The “create” and “delete” relationship events are now only fired once, with "relationship" as the object type.

E.g. Listening for the "create", "member" or "delete", "member" event(s) will no longer capture group membership additions/removals. Use the "create", "relationship" or "delete", "relationship" events.

Discussion feature has been pulled from groups into its own plugin

The object, groupforumtopic subtype has been replaced with the
object, discussion subtype. If your plugin is using or altering
the old discussion feature, you should upgrade it to use the new
subtype.

Nothing changes from the group owners’ point of view. The discussion
feature is still available as a group tool and all old discussions
are intact.

Dropped login-over-https feature

For the best security and performance, serve all pages over HTTPS by switching
the scheme in your site’s wwwroot to https at http://yoursite.tld/admin/settings/advanced

Elgg has migrated from ext/mysql to PDO MySQL

Elgg now uses a PDO_MYSQL connection and no longer uses any ext/mysql functions. If you use
mysql_* functions, implicitly relying on an open connection, these will fail.

If your code uses one of the following functions, read below.

	execute_delayed_write_query()

	execute_delayed_read_query()

If you provide a callable $handler to be called with the results, your handler will now receive a
\Doctrine\DBAL\Driver\Statement object. Formerly this was an ext/mysql result resource.

Event/Hook calling order may change

When registering for events/hooks, the all keyword for wildcard matching no longer has any effect
on the order that handlers are called. To ensure your handler is called last, you must give it the
highest priority of all matching handlers, or to ensure your handler is called first, you must give
it the lowest priority of all matching handlers.

If handlers were registered with the same priority, these are called in the order they were registered.

To emulate prior behavior, Elgg core handlers registered with the all keyword have been raised in
priority. Some of these handlers will most likely be called in a different order.

export/ URLs are no longer available

Elgg no longer provides this endpoint for exposing resource data.

Icons migrated to Font Awesome

Elgg’s sprites and most of the CSS classes beginning with elgg-icon-
have been removed [https://github.com/Elgg/Elgg/pull/8578/files#diff-b3912b37ca7bd6c53a2968ccb6c22a94L22].

Usage of elgg_view_icon() is backward compatible, but static HTML using the elgg-icon
classes will have to be updated to the new markup.

Increase of z-index value in elgg-menu-site class

The value of z-index in the elgg-menu-site class has been increased from 1 to 50 to allow for page elements
in the content area to use the z-index property without the “More” site menu’s dropdown being displayed
behind these elements. If your plugin/theme overrides the elgg-menu-site class or views/default/elements/navigation.css
please adjust the z-index value in your modified CSS file accordingly.

input/autocomplete view

Plugins that override the input/autocomplete view will need to include the source URL in the data-source attribute of the input element, require the new elgg/autocomplete AMD module, and call its init method. The 1.x javascript library elgg.autocomplete is no longer used.

Introduced third-party library for sending email

We are using the excellent Zend\Mail library to send emails in Elgg 2.0.
There are likely edge cases that the library handles differently than Elgg 1.x.
Take care to test your email notifications carefully when upgrading to 2.0.

Label elements

The following views received label elements around some of the input fields. If your plugin/theme overrides these views please check for the new content.

	views/default/core/river/filter.php

	views/default/forms/admin/plugins/filter.php

	views/default/forms/admin/plugins/sort.php

	views/default/forms/login.php

Plugin Aalborg Theme

The view page/elements/navbar now uses a Font Awesome icon for the mobile menu selector instead of an image. The bars.png image and supporting CSS for the 1.12 rendering has been removed, so update your theme accordingly.

Plugin Likes

Objects are no longer likable by default. To support liking, you can register a handler to permit the annotation,
or more simply register for the hook ["likes:is_likable", "<type>:<subtype>"] and return true. E.g.

elgg_register_plugin_hook_handler('likes:is_likable', 'object:mysubtype', 'Elgg\Values::getTrue');

Just as before, the permissions_check:annotate hook is still called and may be used to override default behavior.

Plugin Messages

If you’ve removed or replaced the handler function messages_notifier to hide/alter the inbox icon, you’ll instead need to do the
same for the topbar menu handler messages_register_topbar. messages_notifier is no longer used to add the menu link.

Messages will no longer get the metadata ‘msg’ for newly created messages. This means you can not rely on that metadata to exist.

Plugin Blog

The blog pages showing ‘Mine’ or ‘Friends’ listings of blogs have been changed to list all the blogs owned by the users (including those created in groups).

Plugin Bookmarks

The bookmark pages showing ‘Mine’ or ‘Friends’ listings of bookmarks have been changed to list all the bookmarks owned by the users (including those created in groups).

Plugin File

The file pages showing ‘Mine’ or ‘Friends’ listings of files have been changed to list all the files owned by the users (including those created in groups).

Removed Classes

	ElggInspector

	Notable

	FilePluginFile: replace with ElggFile (or load with get_entity())

Removed keys available via elgg_get_config()

	allowed_ajax_views

	dataroot_in_settings

	externals

	externals_map

	i18n_loaded_from_cache

	language_paths

	pagesetupdone

	registered_tag_metadata_names

	simplecache_enabled_in_settings

	translations

	viewpath

	views

	view_path

	viewtype

	wordblacklist

Also note that plugins should not be accessing the global $CONFIG variable except for in settings.php.

Removed Functions

	blog_get_page_content_friends

	blog_get_page_content_read

	count_unread_messages()

	delete_entities()

	delete_object_entity()

	delete_user_entity()

	elgg_get_view_location()

	elgg_validate_action_url()

	execute_delayed_query()

	extend_view()

	get_db_error()

	get_db_link()

	get_entities()

	get_entities_from_access_id()

	get_entities_from_access_collection()

	get_entities_from_annotations()

	get_entities_from_metadata()

	get_entities_from_metadata_multi()

	get_entities_from_relationship()

	get_filetype_cloud()

	get_library_files()

	get_views()

	is_ip_in_array()

	list_entities()

	list_entities_from_annotations()

	list_group_search()

	list_registered_entities()

	list_user_search()

	load_plugins()

	menu_item()

	make_register_object()

	mysql_*(): Elgg no longer uses ext/mysql

	remove_blacklist()

	search_for_group()

	search_for_object()

	search_for_site()

	search_for_user()

	search_list_objects_by_name()

	search_list_groups_by_name()

	search_list_users_by_name()

	set_template_handler()

	test_ip()

Removed methods

	ElggCache::set_variable()

	ElggCache::get_variable()

	ElggData::initialise_attributes()

	ElggData::getObjectOwnerGUID()

	ElggDiskFilestore::make_directory_root()

	ElggDiskFilestore::make_file_matrix()

	ElggDiskFilestore::user_file_matrix()

	ElggDiskFilestore::mb_str_split()

	ElggEntity::clearMetadata()

	ElggEntity::clearRelationships()

	ElggEntity::clearAnnotations()

	ElggEntity::getOwner()

	ElggEntity::setContainer()

	ElggEntity::getContainer()

	ElggEntity::getIcon()

	ElggEntity::setIcon()

	ElggExtender::getOwner()

	ElggFileCache::create_file()

	ElggObject::addToSite(): parent function in ElggEntity still available

	ElggObject::getSites(): parent function in ElggEntity still available

	ElggSite::getCollections()

	ElggUser::addToSite(): parent function in ElggEntity still available

	ElggUser::getCollections()

	ElggUser::getOwner()

	ElggUser::getSites(): parent function in ElggEntity still available

	ElggUser::listFriends()

	ElggUser::listGroups()

	ElggUser::removeFromSite(): parent function in ElggEntity still available

The following arguments have also been dropped:

	ElggSite::getMembers()
- 2: $offset

	elgg_view_entity_list()
- 3: $offset
- 4: $limit
- 5: $full_view
- 6: $list_type_toggle
- 7: $pagination

Removed Plugin Hooks

	[display, view]: See the new plugin hook.

Removed Actions

	widgets/upgrade

Removed Views

	forms/admin/plugins/change_state

Removed View Variables

During rendering, the view system no longer injects these into the scope:

	$vars['url']: replace with elgg_get_site_url()

	$vars['user']: replace with elgg_get_logged_in_user_entity()

	$vars['config']: use elgg_get_config() and elgg_set_config()

	$CONFIG: use elgg_get_config() and elgg_set_config()

Also several workarounds for very old views are no longer performed. Make these changes:

	Set $vars['full_view'] instead of $vars['full'].

	Set $vars['name'] instead of $vars['internalname'].

	Set $vars['id'] instead of $vars['internalid'].

Removed libraries

	elgg:markdown: Elgg no longer provides a markdown implementation. You must provide your own.

Specifying View via Properties

The metadata $entity->view no longer specifies the view used to render in elgg_view_entity().

Similarly the property $annotation->view no longer has an effect within elgg_view_annotation().

Viewtype is static after the initial elgg_get_viewtype() call

elgg_set_viewtype() must be used to set the viewtype at runtime. Although Elgg still checks the
view input and $CONFIG->view initially, this is only done once per request.

Deprecations

It’s deprecated to read or write to metadata keys starting with filestore:: on ElggFile objects. In Elgg 3.0 this metadata will be deleted if it points to the current data root path, so few file objects will have it. Plugins should only use ElggFile::setFilestore if files need to be stored in a custom location.

Note

This is not the only deprecation in Elgg 2.0. Plugin developers should watch their site error logs.

From 1.10 to 1.11

Comment highlighting

If your theme is using the file views/default/css/elements/components.php, you must add the following style definitions in it to enable highlighting for comments and discussion replies:

.elgg-comments .elgg-state-highlight {
 -webkit-animation: comment-highlight 5s;
 animation: comment-highlight 5s;
}
@-webkit-keyframes comment-highlight {
 from {background: #dff2ff;}
 to {background: white;}
}
@keyframes comment-highlight {
 from {background: #dff2ff;}
 to {background: white;}
}

From 1.9 to 1.10

File uploads

If your plugin is using a snippet copied from the file/upload action to fix detected mime types for Microsoft zipped formats, it can now be safely removed.

If your upload action performs other manipulations on detected mime and simple types, it is recommended to make use of available plugin hooks:

	'mime_type','file' for filtering detected mime types

	'simple_type','file' for filtering parsed simple types

From 1.8 to 1.9

In the examples we are upgrading an imaginary “Photos” plugin.

Only the key changes are included. For example some of the deprecated functions are not mentioned here separately.

Each section will include information whether the change is backwards compatible with Elgg 1.8.

The manifest file

No changes are needed if your plugin is compatible with 1.8.

It’s however recommended to add the <id> tag. It’s value should be the name of the directory where the plugin is located inside the mod/ directory.

If you make changes that break BC, you must update the plugin version and the required Elgg release.

Example of (shortened) old version:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">
 <name>Photos</name>
 <author>John Doe</author>
 <version>1.0</version>
 <description>Adds possibility to upload photos and arrange them into albums.</description>
 <requires>
 <type>elgg_release</type>
 <version>1.8</version>
 </requires>
</plugin_manifest>

Example of (shortened) new version:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">
 <name>Photos</name>
 <id>photos</id>
 <author>John Doe</author>
 <version>2.0</version>
 <description>Adds possibility to upload photos and arrange them into albums.</description>
 <requires>
 <type>elgg_release</type>
 <version>1.9</version>
 </requires>
</plugin_manifest>

$CONFIG and $vars[‘config’]

Both the global $CONFIG variable and the $vars['config'] parameter have been deprecated. They should be replaced with the elgg_get_config() function.

Example of old code:

// Using the global $CONFIG variable:
global $CONFIG;
$plugins_path = $CONFIG->plugins_path

// Using the $vars view parameter:
$plugins_path = $vars['plugins_path'];

Example of new code:

$plugins_path = elgg_get_config('plugins_path');

Note

Compatible with 1.8

Note

See how the community_plugins plugin was updated: https://github.com/Elgg/community_plugins/commit/f233999bbd1478a200ee783679c2e2897c9a0483

Language files

In Elgg 1.8 the language files needed to use the add_translation() function. In 1.9 it is enough to just return the array that was
previously passed to the function as a parameter. Elgg core will use the file name (e.g. en.php) to tell which language the file contains.

Example of the old way in languages/en.php:

$english = array(
 'photos:all' => 'All photos',
);
add_translation('en', $english);

Example of new way:

return array(
 'photos:all' => 'All photos',
);

Warning

Not compatible with 1.8

Notifications

One of the biggest changes in Elgg 1.9 is the notifications system. The new system allows more flexible and scalable way of sending notifications.

Example of the old way:

function photos_init() {
 // Tell core that we want to send notifications about new photos
 register_notification_object('object', 'photo', elgg_echo('photo:new'));

 // Register a handler that creates the notification message
 elgg_register_plugin_hook_handler('notify:entity:message', 'object', 'photos_notify_message');
}

/**
 * Set the notification message body
 *
 * @param string $hook Hook name
 * @param string $type Hook type
 * @param string $message The current message body
 * @param array $params Parameters about the photo
 * @return string
 */
function photos_notify_message($hook, $type, $message, $params) {
 $entity = $params['entity'];
 $to_entity = $params['to_entity'];
 $method = $params['method'];
 if (elgg_instanceof($entity, 'object', 'photo')) {
 $descr = $entity->excerpt;
 $title = $entity->title;
 $owner = $entity->getOwnerEntity();
 return elgg_echo('photos:notification', array(
 $owner->name,
 $title,
 $descr,
 $entity->getURL()
));
 }
 return null;
}

Example of the new way:

function photos_init() {
 elgg_register_notification_event('object', 'photo', array('create'));
 elgg_register_plugin_hook_handler('prepare', 'notification:publish:object:photo', 'photos_prepare_notification');
}

/**
 * Prepare a notification message about a new photo
 *
 * @param string $hook Hook name
 * @param string $type Hook type
 * @param Elgg_Notifications_Notification $notification The notification to prepare
 * @param array $params Hook parameters
 * @return Elgg_Notifications_Notification
 */
function photos_prepare_notification($hook, $type, $notification, $params) {
 $entity = $params['event']->getObject();
 $owner = $params['event']->getActor();
 $recipient = $params['recipient'];
 $language = $params['language'];
 $method = $params['method'];

 // Title for the notification
 $notification->subject = elgg_echo('photos:notify:subject', array($entity->title), $language);

 // Message body for the notification
 $notification->body = elgg_echo('photos:notify:body', array(
 $owner->name,
 $entity->title,
 $entity->getExcerpt(),
 $entity->getURL()
), $language);

 // The summary text is used e.g. by the site_notifications plugin
 $notification->summary = elgg_echo('photos:notify:summary', array($entity->title), $language);

 return $notification;
}

Warning

Not compatible with 1.8

Note

See how the community_plugins plugin was updated to use the new system: https://github.com/Elgg/community_plugins/commit/bfa356cfe8fb99ebbca4109a1b8a1383b70ff123

Notifications can also be sent with the notify_user() function.

It has however been updated to support three new optional parameters passed inside an array as the fifth parameter.

The parameters give notification plugins more control over the notifications, so they should be included whenever possible. For example the bundled site_notifications plugin won’t work properly if the parameters are missing.

Parameters:

	object The object that we are notifying about (e.g. ElggEntity or ElggAnnotation). This is needed so that notification plugins can provide a link to the object.

	action String that describes the action that triggered the notification (e.g. “create”, “update”, etc).

	summary String that contains a summary of the notification. (It should be more informative than the notification subject but less informative than the notification body.)

Example of the old way:

// Notify $owner that $user has added a $rating to an $entity created by him

$subject = elgg_echo('rating:notify:subject');
$body = elgg_echo('rating:notify:body', array(
 $owner->name,
 $user->name,
 $entity->title,
 $entity->getURL(),
));

notify_user($owner->guid,
 $user->guid,
 $subject,
 $body
);

Example of the new way:

// Notify $owner that $user has added a $rating to an $entity created by him

$subject = elgg_echo('rating:notify:subject');
$summary = elgg_echo('rating:notify:summary', array($entity->title));
$body = elgg_echo('rating:notify:body', array(
 $owner->name,
 $user->name,
 $entity->title,
 $entity->getURL(),
));

$params = array(
 'object' => $rating,
 'action' => 'create',
 'summary' => $summary,
);

notify_user($owner->guid,
 $user->guid,
 $subject,
 $body,
 $params
);

Note

Compatible with 1.8

Adding items to the Activity listing

add_to_river('river/object/photo/create', 'create', $user_guid, $photo_guid);

elgg_create_river_item(array(
 'view' => 'river/object/photo/create',
 'action_type' => 'create',
 'subject_guid' => $user_guid,
 'object_guid' => $photo_guid,
));

You can also add the optional target_guid parameter which tells the target of the create action.

If the photo would had been added for example into a photo album, we could add it by passing in also:

'target_guid' => $album_guid,

Warning

Not compatible with 1.8

Entity URL handlers

The elgg_register_entity_url_handler() function has been deprecated. In 1.9 you should use the 'entity:url', 'object' plugin hook instead.

Example of the old way:

/**
 * Initialize the photo plugin
 */
my_plugin_init() {
 elgg_register_entity_url_handler('object', 'photo', 'photo_url_handler');
}

/**
 * Returns the URL from a photo entity
 *
 * @param ElggEntity $entity
 * @return string
 */
function photo_url_handler($entity) {
 return "photo/view/{$entity->guid}";
}

Example of the new way:

/**
 * Initialize the photo plugin
 */
my_plugin_init() {
 elgg_register_plugin_hook_handler('entity:url', 'object', 'photo_url_handler');
}

/**
 * Returns the URL from a photo entity
 *
 * @param string $hook 'entity:url'
 * @param string $type 'object'
 * @param string $url The current URL
 * @param array $params Hook parameters
 * @return string
 */
function photo_url_handler($hook, $type, $url, $params) {
 $entity = $params['entity'];

 // Check that the entity is a photo object
 if ($entity->getSubtype() !== 'photo') {
 // This is not a photo object, so there's no need to go further
 return;
 }

 return "photo/view/{$entity->guid}";
}

Warning

Not compatible with 1.8

Web services

In Elgg 1.8 the web services API was included in core and methods were exposed
using expose_function(). To enable the same functionality for Elgg 1.9,
enable the “Web services 1.9” plugin and replace all calls to
expose_function() with elgg_ws_expose_function().

From 1.7 to 1.8

Elgg 1.8 is the biggest leap forward in the development of Elgg since version 1.0.
As such, there is more work to update core and plugins than with previous upgrades.
There were a small number of API changes and following our standard practice,
the methods we deprecated have been updated to work with the new API.
The biggest changes are in the standardization of plugins and in the views system.

Updating core

Delete the following core directories (same level as _graphics and engine):

	_css

	account

	admin

	dashboard

	entities

	friends

	search

	settings

	simplecache

	views

Warning

If you do not delete these directories before an upgrade, you will have problems!

Updating plugins

Use standardized routing with page handlers

	All: /page_handler/all

	User’s content: /page_handler/owner/:username

	User’s friends’ content: /page_handler/friends/:username

	Single entity: /page_handler/view/:guid/:title

	Added: /page_handler/add/:container_guid

	Editing: /page_handler/edit/:guid

	Group list: /page_handler/group/:guid/all

Include page handler scripts from the page handler

Almost every page handler should have a page handler script.
(Example: bookmarks/all => mod/bookmarks/pages/bookmarks/all.php)

	Call set_input() for entity guids in the page handler and use get_input() in the page handler scripts.

	Call gatekeeper() and admin_gatekeeper() in the page handler function if required.

	The group URL should use the pages/:handler/owner.php script.

	Page handlers should not contain HTML.

	Update the URLs throughout the plugin. (Don’t forget to remove /pg/!)

Use standardized page handlers and scripts

	Store page handler scripts in mod/:plugin/pages/:page_handler/:page_name.php

	Use the content page layout in page handler scripts:

$content = elgg_view_layout('content', $options);

	Page handler scripts should not contain HTML.

	Call elgg_push_breadcrumb() in the page handler scripts.

	No need to set page owner if the URLs are in the standardized format.

	For group content, check the container_guid by using elgg_get_page_owner_entity().

The object/:subtype view

	Make sure there are views for $vars['full_view'] == true and $vars['full_view'] == false. $vars['full_view'] replaced $vars['full].

	Check for the object in $vars['entity']. Use elgg_instance_of() to make sure it’s the type of entity you want.

	Return true to short circuit the view if the entity is missing or wrong.

	Use elgg_view(‘object/elements/summary’, array(‘entity’ => $entity)); and elgg_view_menu(‘entity’, array(‘entity’ => $entity)); to help format. You should use very little markup in these views.

Update action structure

	Namespace action files and action names (example: mod/blog/actions/blog/save.php => action/blog/save)

	Use the following action URLs:
	Add: action/:plugin/save

	Edit: action/:plugin/save

	Delete: action/:plugin/delete

	Make the delete action accept action/:handler/delete?guid=:guid so the metadata entity menu has the correct URL by default.

Update deprecated functions

	Functions deprecated in 1.7 will produce visible errors in 1.8.

	You can also update functions deprecated in 1.8.
	Many registration functions simply added an elgg_ prefix for consistency, and should be easy to update.

	See /engine/lib/deprecated-1.8.php for the full list.

	You can set the debug level to “warning” to get visual reminders of deprecated functions.

Update the widget views

See the blog or file widgets for examples.

Update the group profile module

Use the blog or file plugins for examples. This will help with making your plugin themeable by the new CSS framework.

Update forms

	Move form bodies to the forms/:action view to use Evan’s new elgg_view_form.

	Use input views in form bodies rather than html. This helps with theming and future-proofing.

	Add a function that prepares the form (see mod/file/lib/file.php for an example)

	Make your forms sticky (see the file plugin’s upload action and form prepare function).

The forms API is discussed in more detail in Forms + Actions.

Clean up CSS/HTML

We have added many CSS patterns to the base CSS file (modules, image block, spacing primitives). We encourage you to use these patterns and classes wherever possible. Doing so should:

	Reduce maintenance costs, since you can delete most custom CSS.

	Make your plugin more compatible with community themes.

Look for patterns that can be moved into core if you need significant CSS.

We use hyphens rather than underscores in classes/ids and encourage you do the same for consistency.

If you do need your own CSS, you should use your own namespace, rather than elgg-.

Update manifest.xml

	Use http://el.gg/manifest17to18 to automate this.

	Don’t use the “bundled” category with your plugins. That is only for plugins distributed with Elgg.

Update settings and user settings views

	The view for settings is now plugins/:plugin/settings (previously settings/:plugin/edit).

	The view for user settings is now plugins/:plugin/usersettings (previously usersettings/:plugin/edit).

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

List of events in core

Contents

	System events

	User events

	Relationship events

	Entity events

	Metadata events

	Annotation events

	River events

	Notes

System events

	boot, system

	First event triggered. Triggered before plugins have been loaded.

	plugins_boot, system

	Triggered just after the plugins are loaded. Rarely used. init, system is used instead.

	init, system

	Plugins tend to use this event for initialization (extending views, registering callbacks, etc.)

	ready, system

	Triggered after the init, system event. All plugins are fully loaded and the engine is ready
to serve pages.

	pagesetup, system

	Called just before the first content is produced. Is triggered by elgg_view().

	shutdown, system

	Triggered after the page has been sent to the user. Expensive operations could be done here
and not make the user wait.

Note

Depending upon your server configuration the PHP output
might not be shown until after the process is completed. This means that any long-running
processes will still delay the page load.

Note

This event is prefered above using register_shutdown_function as you may not have access
to all the Elgg services (eg. database) in the shutdown function but you will in the event.

	regenerate_site_secret:before, system

	Return false to cancel regenerating the site secret. You should also provide a message
to the user.

	regenerate_site_secret:after, system

	Triggered after the site secret has been regenerated.

	log, systemlog

	Called for all triggered events. Used internally by system_log_default_logger() to populate
the system_log table.

	upgrade, system

	Triggered after a system upgrade has finished. All upgrade scripts have run, but the caches
are not cleared.

	upgrade, upgrade

	
	A single upgrade script finished executing. Handlers are passed a stdClass object with the properties

	
	from - The version of Elgg upgrading from.

	to - The version just upgraded to.

	activate, plugin

	Return false to prevent activation of the plugin.

	deactivate, plugin

	Return false to prevent deactivation of the plugin.

	init:cookie, <name>

	Return false to override setting a cookie.

	cache:flush, system

	Reset internal and external caches, by default including system_cache, simplecache, and memcache. One might use it to reset others such as APC, OPCache, or WinCache.

User events

	login:before, user

	Triggered during login. Returning false prevents the user from logging

	login:after, user

	Triggered after the user logs in.

	logout:before, user

	Triggered during logout. Returning false should prevent the user from logging out.

	logout:after, user

	Triggered after the user logouts.

	validate, user

	When a user registers, the user’s account is disabled. This event is triggered
to allow a plugin to determine how the user should be validated (for example,
through an email with a validation link).

	profileupdate, user

	User has changed profile

	profileiconupdate, user

	User has changed profile icon

	ban, user

	Triggered before a user is banned. Return false to prevent.

	unban, user

	Triggered before a user is unbanned. Return false to prevent.

	make_admin, user

	Triggered before a user is promoted to an admin. Return false to prevent.

	remove_admin, user

	Triggered before a user is demoted from an admin. Return false to prevent.

Relationship events

	create, relationship

	Triggered after a relationship has been created. Returning false deletes
the relationship that was just created.

Note

This event was broken in Elgg 1.9 - 1.12.3, returning false would not
delete the relationship. This is working as of 1.12.4

	delete, relationship

	Triggered before a relationship is deleted. Return false to prevent it
from being deleted.

	join, group

	Triggered after the user $params['user'] has joined the group $params['group'].

	leave, group

	Triggered before the user $params['user'] has left the group $params['group'].

Entity events

	create, <entity type>

	Triggered for user, group, object, and site entities after creation. Return false to delete entity.

	update, <entity type>

	Triggered before an update for the user, group, object, and site entities. Return false to prevent update.
The entity method getOriginalAttributes() can be used to identify which attributes have changed since
the entity was last saved.

	update:after, <entity type>

	Triggered after an update for the user, group, object, and site entities.
The entity method getOriginalAttributes() can be used to identify which attributes have changed since
the entity was last saved.

	delete, <entity type>

	Triggered before entity deletion. Return false to prevent deletion.

	disable, <entity type>

	Triggered before the entity is disabled. Return false to prevent disabling.

	disable:after, <entity type>

	Triggered after the entity is disabled.

	enable, <entity type>

	Return false to prevent enabling.

	enable:after, <entity type>

	Triggered after the entity is enabled.

Metadata events

	create, metadata

	Called after the metadata has been created. Return false to delete the
metadata that was just created.

	update, metadata

	Called after the metadata has been updated. Return false to delete the metadata.

	delete, metadata

	Called before metadata is deleted. Return false to prevent deletion.

	enable, metadata

	Called when enabling metadata. Return false to prevent enabling.

	disable, metadata

	Called when disabling metadata. Return false to prevent disabling.

Annotation events

	annotate, <entity type>

	Called before the annotation has been created. Return false to prevent
annotation of this entity.

	create, annotation

	Called after the annotation has been created. Return false to delete
the annotation.

	update, annotation

	Called after the annotation has been updated. Return false to delete the annotation.

	delete, annotation

	Called before annotation is deleted. Return false to prevent deletion.

	enable, annotation

	Called when enabling annotations. Return false to prevent enabling.

	disable, annotations

	Called when disabling annotations. Return false to prevent disabling.

River events

	created, river

	Called after a river item is created.

Notes

Because of bugs in the Elgg core, some events may be thrown more than once
on the same action. For example, update, object is thrown twice.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Developer Guides

List of plugin hooks in core

Contents

	System hooks

	User hooks

	Object hooks

	Action hooks

	Ajax

	Permission hooks

	Routing

	Views

	Files

	Other

	Plugins

System hooks

	email, system

	Triggered when sending email. $params contains:

	to

	from

	subject

	body

	headers

	params

	page_owner, system

	Filter the page_owner for the current page. No options are passed.

siteid, system

	gc, system

	Allows plugins to run garbage collection for $params['period'].

	unit_test, system

	Add a Simple Test test. (Deprecated.)

	diagnostics:report, system

	Filter the output for the diagnostics report download.

search_types, get_types

	cron, <period>

	Triggered by cron for each period.

	validate, input

	Filter GET and POST input. This is used by get_input() to sanitize user input.

	geocode, location

	Deprecated as of 1.9.

	diagnostics:report, system

	Filters the output for a diagnostic report.

	debug, log

	Triggered by the Logger. Return false to stop the default logging method. $params includes:

	
	level - The debug level. One of:

	
	Elgg_Logger::OFF

	Elgg_Logger::ERROR

	Elgg_Logger::WARNING

	Elgg_Logger::NOTICE

	Elgg_Logger::INFO

	msg - The message

	display - Should this message be displayed?

	format, friendly:title

	Formats the “friendly” title for strings. This is used for generating URLs.

	format, friendly:time

	Formats the “friendly” time for the timestamp $params['time'].

	format, strip_tags

	Filters a string to remove tags. The original string is passed as $params['original_string']
and an optional set of allowed tags is passed as $params['allowed_tags'].

	output:before, page

	In elgg_view_page(), this filters $vars before it’s passed to the page shell
view (page/<page_shell>). To stop sending the X-Frame-Options header, unregister the
handler _elgg_views_send_header_x_frame_options() from this hook.

	output, page

	In elgg_view_page(), this filters the output return value.

	output:before, layout

	In elgg_view_layout(), filters $params before it’s passed to the layout view.

	output:after, layout

	In elgg_view_layout(), filters the return value of the layout view.

	parameters, menu:<menu_name>

	Triggered by elgg_view_menu(). Used to change menu variables (like sort order) before rendering.

	register, menu:<menu_name>

	Filters the initial list of menu items pulled from configuration, before the menu has been split into
sections. Triggered by elgg_view_menu() and elgg()->menus->getMenu().

	prepare, menu:<menu_name>

	Filters the array of menu sections before they’re displayed. Each section is a string key mapping to
an area of menu items. This is a good hook to sort, add, remove, and modify menu items. Triggered by
elgg_view_menu() and elgg()->menus->prepareMenu().

	creating, river

	Triggered before a river item is created. Return false to prevent river item from being created.

	simplecache:generate, <view>

	Triggered when generating the cached content of a view.

	get, subscriptions

	Filter notification subscriptions for users for the Elgg_Notifications_Event $params['event'].
Return an array like:

array(
 <user guid> => array('subscription', 'types'),
 <user_guid2> => array('email', 'sms', 'ajax')
);

	prepare, breadcrumbs

	In elgg_get_breadcrumbs(), this filters the registered breadcrumbs before
returning them, allowing a plugin to alter breadcrumb strategy site-wide.

add, river

	elgg.data, site

	Filters cached configuration data to pass to the client. More info

	elgg.data, page

	Filters uncached, page-specific configuration data to pass to the client. More info

User hooks

	usersettings:save, user

	Triggered in the aggregate action to save user settings. Return false prevent sticky
forms from being cleared.

	access:collections:write, user

	Filters an array of access permissions that the user $params['user_id'] is allowed to save
content with. Permissions returned are of the form (id => ‘Human Readable Name’).

	registeruser:validate:username, all

	Return boolean for if the string in $params['username'] is valid for a username.

	registeruser:validate:password, all

	Return boolean for if the string in $params['password'] is valid for a password.

	registeruser:validate:email, all

	Return boolean for if the string in $params['email'] is valid for an email address.

	register, user

	Triggered by the register action after the user registers. Return false to delete the user.
Note the function register_user does not trigger this hook.

	login:forward, user

	Filters the URL to which the user will be forwarded after login.

	find_active_users, system

	Return the number of active users.

	status, user

	Triggered by The Wire when adding a post.

	username:character_blacklist, user

	Filters the string of blacklisted characters used to validate username during registration.
The return value should be a string consisting of the disallowed characters. The default
string can be found from $params['blacklist'].

Object hooks

	comments, <entity_type>

	Triggered in elgg_view_comments(). If returning content, this overrides the
page/elements/comments view.

	comments:count, <entity_type>

	Return the number of comments on $params['entity'].

	likes:count, <entity_type>

	Return the number of likes for $params['entity'].

Action hooks

	action, <action>

	Triggered before executing action scripts. Return false to abort action.

	action_gatekeeper:permissions:check, all

	Triggered after a CSRF token is validated. Return false to prevent validation.

	action_gatekeeper:upload_exceeded_msg, all

	Triggered when a POST exceeds the max size allowed by the server. Return an error message
to display.

	forward, <reason>

	Filter the URL to forward a user to when forward($url, $reason) is called.

Ajax

	ajax_response, *

	When the elgg/Ajax AMD module is used, this hook gives access to the response object
(\Elgg\Services\AjaxResponse) so it can be altered/extended. The hook type depends on
the method call:

	elgg/Ajax method
	plugin hook type

	action()
	action:<action_name>

	path()
	path:<url_path>

	view()
	view:<view_name>

	form()
	form:<action_name>

	output, ajax

	This filters the JSON output wrapper returned to the legacy ajax API (elgg.ajax, elgg.action, etc.).
Plugins can alter the output, forward URL, system messages, and errors. For the elgg/Ajax AMD module,
use the ajax_response hook documented above.

Permission hooks

	container_permissions_check, <entity_type>

	Return boolean for if the user $params['user'] can use the entity $params['container']
as a container for an entity of <entity_type> and subtype $params['subtype'].

In the rare case where an entity is created with neither the container_guid nor the owner_guid
matching the logged in user, this hook is called twice, and in the first call $params['container']
will be the owner, not the entity’s real container.

	permissions_check, <entity_type>

	Return boolean for if the user $params['user'] can edit the entity $params['entity'].

	permissions_check:delete, <entity_type>

	Return boolean for if the user $params['user'] can delete the entity $params['entity']. Defaults to $entity->canEdit().

	permissions_check, widget_layout

	Return boolean for if $params['user'] can edit the widgets in the context passed as
$params['context'] and with a page owner of $params['page_owner'].

	permissions_check:metadata, <entity_type>

	Return boolean for if the user $params['user'] can edit the metadata $params['metadata']
on the entity $params['entity'].

	permissions_check:comment, <entity_type>

	Return boolean for if the user $params['user'] can comment on the entity $params['entity'].

	permissions_check:annotate:<annotation_name>, <entity_type>

	Return boolean for if the user $params['user'] can create an annotation <annotation_name> on the
entity $params['entity']. If logged in, the default is true.

Note

This is called before the more general permissions_check:annotate hook, and its return value is that hook’s initial value.

	permissions_check:annotate, <entity_type>

	Return boolean for if the user $params['user'] can create an annotation $params['annotation_name']
on the entity $params['entity']. if logged in, the default is true.

Warning

This is functions differently than the permissions_check:metadata hook by passing the annotation name instead of the metadata object.

	permissions_check:annotation

	Return boolean for if the user in $params['user'] can edit the annotation $params['annotation'] on the
entity $params['entity']. The user can be null.

	fail, auth

	Return the failure message if authentication failed. An array of previous PAM failure methods
is passed as $params.

	api_key, use

	Triggered by api_auth_key(). Returning false prevents the key from being authenticated.

	access:collections:read, user

	Filters an array of access IDs that the user $params['user_id'] can see.

Warning

The handler needs to either not use parts of the API that use the access system (triggering the hook again) or to ignore the second call. Otherwise, an infinite loop will be created.

	access:collections:write, user

	Filters an array of access IDs that the user $params['user_id'] can write to. In
get_write_access_array(), this hook filters the return value, so it can be used to alter
the available options in the input/access view. For core plugins, the value “input_params”
has the keys “entity” (ElggEntity|false), “entity_type” (string), “entity_subtype” (string),
“container_guid” (int) are provided. An empty entity value generally means the form is to
create a new object.

Warning

The handler needs to either not use parts of the API that use the access system (triggering the hook again) or to ignore the second call. Otherwise, an infinite loop will be created.

	access:collections:addcollection, collection

	Triggered after an access collection $params['collection_id'] is created.

	access:collections:deletecollection, collection

	Triggered before an access collection $params['collection_id'] is deleted.
Return false to prevent deletion.

	access:collections:add_user, collection

	Triggered before adding user $params['user_id'] to collection $params['collection_id'].
Return false to prevent adding.

	access:collections:remove_user, collection

	Triggered before removing user $params['user_id'] to collection $params['collection_id'].
Return false to prevent removal.

	get_sql, access

	Filters the SQL clauses used in _elgg_get_access_where_sql().

	gatekeeper, <entity_type>:<entity_subtype>

	Filters the result of elgg_entity_gatekeeper() to prevent access to an entity that user would otherwise have access to. A handler should return false to deny access to an entity.

Routing

	route, <identifier>

	Allows applying logic or returning a response before the page handler is called. See Routing
for details.

	route:rewrite, <identifier>

	Allows altering the site-relative URL path. See Routing for details.

	ajax_response, path:<path>

	Filters ajax responses before they’re sent back to the elgg/Ajax module. This hook type will
only be used if the path did not start with “action/” or “ajax/”.

Views

	view_vars, <view_name>

	Filters the $vars array passed to the view

	view, <view_name>

	Filters the returned content of the view

	layout, page

	In elgg_view_layout(), filters the layout name

	shell, page

	In elgg_view_page(), filters the page shell name

	head, page

	In elgg_view_page(), filters $vars['head']
Return value contains an array with title, metas and links keys,
where metas is an array of elements to be formatted as <meta> head tags,
and links is an array of elements to be formatted as <link> head tags.
Each meta and link element contains a set of key/value pairs that are formatted
into html tag attributes, e.g.

return [
 'title' => 'Current page title',
 'metas' => [
 'viewport' => [
 'name' => 'viewport',
 'content' => 'width=device-width',
]
],
 'links' => [
 'rss' => [
 'rel' => 'alternative',
 'type' => 'application/rss+xml',
 'title' => 'RSS',
 'href' => elgg_format_url($url),
],
 'icon-16' => [
 'rel' => 'icon',
 'sizes' => '16x16',
 'type' => 'image/png',
 'href' => elgg_get_simplecache_url('favicon-16.png'),
],
],
];

	ajax_response, view:<view>

	Filters ajax/view/ responses before they’re sent back to the elgg/Ajax module.

	ajax_response, form:<action>

	Filters ajax/form/ responses before they’re sent back to the elgg/Ajax module.

Files

	mime_type, file

	Return the mimetype for the filename $params['filename'] with original filename $params['original_filename']
and with the default detected mimetype of $params['default'].

	simple_type, file

	In elgg_get_file_simple_type(), filters the return value. The hook uses $params['mime_type']
(e.g. application/pdf or image/jpeg) and determines an overall category like
document or image. The bundled file plugin and other-third party plugins usually store
simpletype metadata on file entities and make use of it when serving icons and constructing
ege* filters and menus.

Other

	config, comments_per_page

	Filters the number of comments displayed per page. Default is 25.

	default, access

	In get_default_access(), this hook filters the return value, so it can be used to alter
the default value in the input/access view. For core plugins, the value “input_params” has
the keys “entity” (ElggEntity|false), “entity_type” (string), “entity_subtype” (string),
“container_guid” (int) are provided. An empty entity value generally means the form is to
create a new object.

	entity:icon:sizes, <entity_type>

	Triggered by elgg_get_icon_sizes() and sets entity type/subtype specific icon sizes.
entity_subtype will be passed with the $params array to the callback.

	entity:<icon_type>:sizes, <entity_type>

	Allows filtering sizes for custom icon types, see entity:icon:sizes, <entity_type>.

The hook must return an associative array where keys are the names of the icon sizes
(e.g. “large”), and the values are arrays with the following keys:

	w - Width of the image in pixels

	h - Height of the image in pixels

	square - Should the aspect ratio be a square (true/false)

	upscale - Should the image be upscaled in case it is smaller than the given
width and height (true/false)

If the configuration array for an image size is empty, the image will be
saved as an exact copy of the source without resizing or cropping.

Example:

return [
 'small' => [
 'w' => 60,
 'h' => 60,
 'square' => true,
 'upscale' => true,
],
 'large' => [
 'w' => 600,
 'h' => 600,
 'upscale' => false,
],
 'original' => [],
];

	entity:icon:url, <entity_type>

	Triggered when entity icon URL is requested, see entity icons. Callback should
return URL for the icon of size $params['size'] for the entity $params['entity'].
Following parameters are available through the $params array:

	entity

	Entity for which icon url is requested.

	viewtype

	The type of view e.g. 'default' or 'json'.

	size

	Size requested, see entity icons for possible values.

Example on how one could default to a Gravatar icon for users that
have not yet uploaded an avatar:

// Priority 600 so that handler is triggered after avatar handler
elgg_register_plugin_hook_handler('entity:icon:url', 'user', 'gravatar_icon_handler', 600);

/**
 * Default to icon from gravatar for users without avatar.
 */
function gravatar_icon_handler($hook, $type, $url, $params) {
 // Allow users to upload avatars
 if ($params['entity']->icontime) {
 return $url;
 }

 // Generate gravatar hash for user email
 $hash = md5(strtolower(trim($params['entity']->email)));

 // Default icon size
 $size = '150x150';

 // Use configured size if possible
 $config = elgg_get_icon_sizes('user');
 $key = $params['size'];
 if (isset($config[$key])) {
 $size = $config[$key]['w'] . 'x' . $config[$key]['h'];
 }

 // Produce URL used to retrieve icon
 return "http://www.gravatar.com/avatar/$hash?s=$size";
}

	entity:<icon_type>:url, <entity_type>

	Allows filtering URLs for custom icon types, see entity:icon:url, <entity_type>

	entity:icon:file, <entity_type>

	Triggered by ElggEntity::getIcon() and allows plugins to provide an alternative ElggIcon object
that points to a custom location of the icon on filestore. The handler must return an instance of ElggIcon
or an exception will be thrown.

	entity:<icon_type>:file, <entity_type>

	Allows filtering icon file object for custom icon types, see entity:icon:file, <entity_type>

	entity:<icon_type>:prepare, <entity_type>

	Triggered by ElggEntity::saveIcon*() methods and can be used to prepare an image from uploaded/linked file.
This hook can be used to e.g. rotate the image before it is resized/cropped, or it can be used to extract an image frame
if the uploaded file is a video. The handler must return an instance of ElggFile with a simpletype
that resolves to image. The $return value passed to the hook is an instance of ElggFile that points
to a temporary copy of the uploaded/linked file.

The $params array contains:

	entity - entity that owns the icons

	file - original input file before it has been modified by other hooks

	entity:<icon_type>:save, <entity_type>

	Triggered by ElggEntity::saveIcon*() methods and can be used to apply custom image manipulation logic to
resizing/cropping icons. The handler must return true to prevent the core APIs from resizing/cropping icons.
The $params array contains:

	entity - entity that owns the icons

	file - ElggFile object that points to the image file to be used as source for icons

	x1, y1, x2, y2 - cropping coordinates

	entity:<icon_type>:saved, <entity_type>

	Triggered by ElggEntity::saveIcon*() methods once icons have been created. This hook can be used by plugins
to create river items, update cropping coordinates for custom icon types etc. The handler can access the
created icons using ElggEntity::getIcon().
The $params array contains:

	entity - entity that owns the icons

	x1, y1, x2, y2 - cropping coordinates

	entity:<icon_type>:delete, <entity_type>

	Triggered by ElggEntity::deleteIcon() method and can be used for clean up operations. This hook is triggered
before the icons are deleted. The handler can return false to prevent icons from being deleted.
The $params array contains:

	entity - entity that owns the icons

	entity:url, <entity_type>

	Return the URL for the entity $params['entity']. Note: Generally it is better to override the
getUrl() method of ElggEntity. This hook should be used when it’s not possible to subclass
(like if you want to extend a bundled plugin without overriding many views).

	to:object, <entity_type|metadata|annotation|relationship|river_item>

	Converts the entity $params['entity'] to a StdClass object. This is used mostly for exporting
entity properties for portable data formats like JSON and XML.

	extender:url, <annotation|metadata>

	Return the URL for the annotation or metadatum $params['extender'].

	file:icon:url, override

	Override a file icon URL.

	is_member, group

	Return boolean for if the user $params['user'] is a member of the group $params['group'].

	entity:annotate, <entity_type>

	Triggered in elgg_view_entity_annotations(), which is called by elgg_view_entity(). Can
be used to add annotations to all full entity views.

	usersetting, plugin

	Filter user settings for plugins. $params contains:

	user - An ElggUser instance

	plugin - An ElggPlugin instance

	plugin_id - The plugin ID

	name - The name of the setting

	value - The value to set

	setting, plugin

	Filter plugin settings. $params contains:

	plugin - An ElggPlugin instance

	plugin_id - The plugin ID

	name - The name of the setting

	value - The value to set

	relationship:url, <relationship_name>

	Filter the URL for the relationship object $params['relationship'].

	profile:fields, group

	Filter an array of profile fields. The result should be returned as an array in the format
name => input view name. For example:

array(
 'about' => 'longtext'
);

	profile:fields, profile

	Filter an array of profile fields. The result should be returned as an array in the format
name => input view name. For example:

array(
 'about' => 'longtext'
);

	widget_settings, <widget_handler>

	Triggered when saving a widget settings $params['params'] for widget $params['widget'].
If handling saving the settings, the handler should return true to prevent the default code from running.

	handlers, widgets

	Triggered when a list of available widgets is needed. Plugins can conditionally add or remove widgets from this list
or modify attributes of existing widgets like context or multiple.

	get_list, default_widgets

	Filters a list of default widgets to add for newly registered users. The list is an array
of arrays in the format:

array(
 'event' => $event,
 'entity_type' => $entity_type,
 'entity_subtype' => $entity_subtype,
 'widget_context' => $widget_context
)

	public_pages, walled_garden

	Filter the URLs that are can be seen by logged out users if Walled Garden is
enabled. $value is an array of regex strings that will allow access if matched.

	volatile, metadata

	Triggered when exporting an entity through the export handler. This is rare.
This allows handler to handle any volatile (non-persisted) metadata on the entity.
It’s preferred to use the to:object, <type> hook.

	maintenance:allow, url

	
	Return boolean if the URL $params['current_url'] and the path $params['current_path']

	is allowed during maintenance mode.

	robots.txt, site

	Filter the robots.txt values for $params['site'].

	config, amd

	Filter the AMD config for the requirejs library.

Plugins

Embed

embed_get_items, <active_section>

embed_get_sections, all

embed_get_upload_sections, all

Groups

	profile_buttons, group

	Filters buttons (ElggMenuItem instances) to be registered in the title menu of the group profile page

	tool_options, group

	Use this hook to influence the available group tool options

HTMLawed

	allowed_styles, htmlawed

	Filter the HTMLawed allowed style array.

	config, htmlawed

	Filter the HTMLawed config array.

Likes

	likes:is_likable, <type>:<subtype>

	This is called to set the default permissions for whether to display/allow likes on an entity of type
<type> and subtype <subtype>.

Note

The callback 'Elgg\Values::getTrue' is a useful handler for this hook.

Members

	members:list, <page_segment>

	To handle the page /members/$page_segment, register for this hook and return the HTML of the list.

	members:config, tabs

	This hook is used to assemble an array of tabs to be passed to the navigation/tabs view
for the members pages.

Twitter API

	authorize, twitter_api

	Triggered when a user is authorizes Twitter for a login. $params['token'] contains the Twitter
authorization token.

Reported Content

	reportedcontent:add, system

	Triggered after adding the reported content object $params['report']. Return false to delete report.

	reportedcontent:archive, system

	Triggered before archiving the reported content object $params['report']. Return false to prevent archiving.

	reportedcontent:delete, system

	Triggered before deleting the reported content object $params['report']. Return false to prevent deleting.

Search

	search, <type>:<subtype>

	Filter more granular search results than searching by type alone. Must return an array with count as the
total count of results and entities an array of ElggUser entities.

search, tags

	search, <type>

	Filter the search for entities for type $type. Must return an array with count as the
total count of results and entities an array of ElggUser entities.

	search_types, get_types

	Filter an array of search types. This allows plugins to add custom types that don’t correspond
directly to entities.

	search_types, get_queries

	Before a search this filters the types queried. This can be used to reorder
the display of search results.

Web Services

	rest, init

	Triggered by the web services rest handler. Plugins can set up their own authentication
handlers, then return true to prevent the default handlers from being registered.

	rest:output, <method_name>

	Filter the result (and subsequently the output) of the API method

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Tutorials

Walk through all the required steps in order to customize Elgg.

The instructions are detailed enough that you don’t need much previous experience with Elgg.

	Hello world

	Customizing the Home Page

	Building a Blog Plugin

	Integrating a Rich Text Editor

	Basic Widget

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Tutorials

Hello world

This tutorial shows you how to create a new plugin that consists of a new page with the text “Hello world” on it.

Before anything else, you need to install Elgg.

In this tutorial we will pretend your site’s URL is https://elgg.example.com.

First, create a directory that will contain the plugin’s files. It should be located under the mod/ directory which is located in your Elgg installation directory. So in this case, create mod/hello/.

Manifest file

Elgg requires that your plugin has a manifest file that contains information about the plugin. Therefore, in the directory you just created, create a file called manifest.xml and copy this code into it:

<?xml version="1.0" encoding="UTF-8"?>
<plugin_manifest xmlns="http://www.elgg.org/plugin_manifest/1.8">
 <name>Hello world</name>
 <id>hello</id>
 <author>Your Name Here</author>
 <version>0.1</version>
 <description>Hello world, testing.</description>
 <requires>
 <type>elgg_release</type>
 <version>2.0</version>
 </requires>
</plugin_manifest>

This is the minimum amount of information in a manifest file:

	<name> is the display name of the plugin

	<id> must be the same as the directory you just created

	<requires> must include which version of Elgg your plugin requires

	<author>, <version> and <description> should have some appropriate values but can be filled freely

Initializer

Next, create start.php in the mod/hello/ directory and copy this code into it:

<?php

elgg_register_event_handler('init', 'system', 'hello_world_init');

function hello_world_init() {

}

The above code tells Elgg that it should call the function
hello_world_init() once the Elgg core system is initiated.

Registering a page handler

The next step is to register a page handler which has the purpose of handling
request that users make to the URL https://elgg.example.com/hello.

Update start.php to look like this:

<?php

elgg_register_event_handler('init', 'system', 'hello_world_init');

function hello_world_init() {
 elgg_register_page_handler('hello', 'hello_world_page_handler');
}

function hello_world_page_handler() {
 echo elgg_view_resource('hello');
}

The call to elgg_register_page_handler() tells Elgg that it should
call the function hello_world_page_handler() when a user navigates to
https://elgg.example.com/hello/*.

The hello_world_page_handler() passes off rendering the actual page to a view file called hello.php.

View file

Create mod/hello/views/default/resources/hello.php with this content:

<?php

$params = array(
 'title' => 'Hello world!',
 'content' => 'My first page!',
 'filter' => '',
);

$body = elgg_view_layout('content', $params);

echo elgg_view_page('Hello', $body);

The code creates an array of parameters to be given to the elgg_view_layout() function, including:

	The title of the page

	The contents of the page

	Filter which is left empty because there’s currently nothing to filter

This creates the basic layout for the page. The layout is then run through
elgg_view_page() which assembles and outputs the full page.

Last step

Finally, activate the plugin through your Elgg administrator page: https://elgg.example.com/admin/plugins (the new plugin appears at the bottom).

You can now go to the address https://elgg.example.com/hello/ and you should see your new page!

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Tutorials

Customizing the Home Page

To override the homepage, just override Elgg’s resources/index view by
creating a file at /views/default/resources/index.php.

Any output from this view will become your new homepage.

You can take a similar approach with any other page in Elgg or official plugins.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Tutorials

Building a Blog Plugin

Build a simple blogging site using Elgg.

This duplicates features in the bundled blog plugin,
so be sure to disable that while working on your own version.

Contents

	Create a page for composing the blogs

	Create the form for creating a new my_blog post

	The action file

	The object view

	start.php

	Registering a page handler

	Trying it out

	Displaying list of my_blogs

	A user’s blog page

	The end

Prerequisites:

	Install Elgg

Create a page for composing the blogs

Create the file /views/default/resources/my_blog/add.php.

<?php
// make sure only logged in users can see this page
gatekeeper();

// set the title
// be sure to use ``elgg_echo()`` for internationalization if you need it
$title = "Create a new my_blog post";

// start building the main column of the page
$content = elgg_view_title($title);

// add the form to this section
$content .= elgg_view_form("my_blog/save");

// optionally, add the content for the sidebar
$sidebar = "";

// layout the page
$body = elgg_view_layout('one_sidebar', array(
 'content' => $content,
 'sidebar' => $sidebar
));

// draw the page, including the HTML wrapper and basic page layout
echo elgg_view_page($title, $body);

Create the form for creating a new my_blog post

Create a file at /views/default/forms/my_blog/save.php
that contains the form body. This corresponds to view that is called above:
elgg_view_form("my_blog/save").

The form should have input fields for the title, body and tags.
Because you used elgg_view_form(), you do not need to include form tag markup.
The view will be automatically wrapped with:

	a <form> tag and the necessary attributes

	anti-csrf tokens

The form’s action will be "<?= elgg_get_site_url() ?>action/my_blog/save",
which we will create in a moment. Here is the content of
/views/default/forms/my_blog/save.php:

echo elgg_view_input('text', [
 'name' => 'title',
 'label' => elgg_echo('title'),
 'required' => true,
]);

echo elgg_view_input('longtext', [
 'name' => 'body',
 'label' => elgg_echo('body'),
 'required' => true,
]);

echo elgg_view_input('tags', [
 'name' => 'tags',
 'label' => elgg_echo('tags'),
 'help' => elgg_echo('tags:help'),
]);

echo elgg_view_input('submit', array(
 'value' => elgg_echo('save'),
 'field_class' => 'elgg-foot',
));

Notice how the form is calling elgg_view_input() to render inputs. This helper function maintains
consistency in field markup, and is used as a shortcut for rendering field elements, such as label,
help text, and input. See Forms + Actions.

You can see a complete list of input views in the /vendor/elgg/elgg/views/default/input/ directory.

The action file

Create the file /actions/my_blog/save.php.
This will save the blog post to the database.

<?php
// get the form inputs
$title = get_input('title');
$body = get_input('body');
$tags = string_to_tag_array(get_input('tags'));

// create a new my_blog object
$blog = new ElggObject();
$blog->subtype = "my_blog";
$blog->title = $title;
$blog->description = $body;

// for now make all my_blog posts public
$blog->access_id = ACCESS_PUBLIC;

// owner is logged in user
$blog->owner_guid = elgg_get_logged_in_user_guid();

// save tags as metadata
$blog->tags = $tags;

// save to database and get id of the new my_blog
$blog_guid = $blog->save();

// if the my_blog was saved, we want to display the new post
// otherwise, we want to register an error and forward back to the form
if ($blog_guid) {
 system_message("Your blog post was saved");
 forward($blog->getURL());
} else {
 register_error("The blog post could not be saved");
 forward(REFERER); // REFERER is a global variable that defines the previous page
}

A few fields are built into Elgg objects. Title and description are two of these.
It makes sense to use description to contain the my_blog text.
Every entity can have a subtype and in this we are using "my_blog".
The tags are stored as metadata.

Every object in Elgg has a built-in URL automatically,
although you can override this if you wish.
The getURL() method is called to get that unique URL.

The object view

Elgg will automatically call the object/my_blog view to view the
my_blog post so we need to create the object view.

Objects in Elgg are a subclass of something called an “entity”.
Users, sites, and groups are also subclasses of entity.
All entities can (and should) have a subtype,
which allows granular control for listing and displaying.
Here, we have used the subtype “my_blog” to identify a my_blog post,
but any alphanumeric string can be a valid subtype.
When picking subtypes, be sure to pick ones that make sense for your plugin.

Create the file /views/default/object/my_blog.php.

Each my_blog post will be passed to this PHP file as
$vars['entity']. ($vars is an array used in the views system to
pass variables to a view.) The content of object/my_blog.php can
just be something like:

<?php

echo elgg_view_title($vars['entity']->title);
echo elgg_view('output/longtext', array('value' => $vars['entity']->description));
echo elgg_view('output/tags', array('tags' => $vars['entity']->tags));

The last line takes the tags on the my_blog post and automatically
displays them as a series of clickable links. Search is handled
automatically.

(If you’re wondering about the ‘default‘ in /views/default/,
you can create alternative views. RSS, OpenDD, FOAF, mobile and others
are all valid view types.)

start.php

For this example, we just need to register the action file we created earlier:
Also see a related guide about Forms + Actions.

<?php

elgg_register_action("my_blog/save", __DIR__ . "/actions/my_blog/save.php");

The action will now be available as /action/my_blog/save.
By default, all actions are available only to logged in users.
If you want to make an action available to only admins or open it up to unauthenticated users,
you can pass ‘admin’ or ‘public’ as the third parameter of elgg_register_action(), respectively.

Registering a page handler

In order to be able to serve the page that generates the form, you’ll
need to register a page handler. Add the following to your start.php:

elgg_register_page_handler('my_blog', 'my_blog_page_handler');

function my_blog_page_handler($segments) {
 if ($segments[0] == 'add') {
 echo elgg_view_resource('my_blog/add');
 return true;
 }
 return false;
}

Page handling functions need to return true or false. true
means the page exists and has been handled by the page handler.
false means that the page does not exist and the user will be
forwarded to the site’s 404 page (requested page does not exist or not found).
In this particular example, the URL must contain
/my_blog/add for the user to view a page with a form, otherwise the
user will see a 404 page.

Trying it out

The page to create a new my_blog post should be accessible at https://elgg.example.com/my_blog/add.

Displaying list of my_blogs

Let’s also create a page that lists my_blog entries that have been created.

Create /views/default/resources/my_blog/all.php.

To grab the latest my_blog posts, we’ll use elgg_list_entities.
Note that this function returns only the posts that the user can see,
so access restrictions are handled transparently:

$body = elgg_list_entities(array(
 'type' => 'object',
 'subtype' => 'my_blog',
));

The function `elgg_list_entities` (and its cousins) also
transparently handle pagination, and even create an RSS feeds for your
my_blogs if you have defined these views.

Finally, we’ll draw the page:

$body = elgg_view_layout('one_column', array('content' => $body));

echo elgg_view_page("All Site Blogs", $body);

We will then need to modify our my_blog page handler to grab the new
page when the URL is set to /my_blog/all. So, your new
my_blog_page_handler() function in start.php should look like:

function my_blog_page_handler($segments) {
 switch ($segments[0]) {
 case 'add':
 echo elgg_view_resource('my_blog/add');
 break;

 case 'all':
 default:
 echo elgg_view_resource('my_blog/all');
 break;
 }

 return true;
}

Now, if the URL contains just /my_blog or /my_blog/all,
the user will see an “All Site Blogs” page.

A user’s blog page

If we grab the Global Unique IDentifier (GUID) of the logged in user, we
can limit the my_blog posts to those posted by specifying the
owner_guid argument in the list function above.

echo elgg_list_entities(array(
 'type' => 'object',
 'subtype' => 'my_blog',
 'owner_guid' => elgg_get_logged_in_user_guid()
));

The end

There’s much more that could be done,
but hopefully this gives you a good idea of how to get started with your own.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Tutorials

Integrating a Rich Text Editor

Build your own wysiwyg plugin.

Elgg is bundled with a plugin for CKEditor [http://ckeditor.com/], and previously shipped with TinyMCE [http://www.tinymce.com/] support.
However, if you have a wysiwyg that you prefer, you could use this tutorial to help you build your own.

All forms in Elgg should try to use the provided input views located in views/default/input.
If these views are used, then it is simple for plugin authors to replace a view,
in this case input/longtext, with their wysiwyg.

Add the WYSIWYG library code

Now you need to upload TinyMCE into a directory in your plugin.
We strongly encourage you to use composer to manage third-party dependencies,
since it is so much easier to upgrade and maintain that way:

.. code:: shell

composer require bower-asset/tinymce

Tell Elgg when and how to load TinyMCE

Now that you have:

	created your start file

	intialized the plugin

	uploaded the wysiwyg code

It is time to tell Elgg how to apply TinyMCE to longtext fields.

We’re going to do that by extending the input/longtext view and including some javascript.
Create a view tinymce/longtext and add the following code:

<?php

 /**
 * Elgg long text input with the tinymce text editor intacts
 * Displays a long text input field
 *
 * @package ElggTinyMCE
 *
 *
 */

?>
<!-- include tinymce -->
<script language="javascript" type="text/javascript" src="<?php echo $vars['url']; ?>mod/tinymce/tinymce/jscripts/tiny_mce/tiny_mce.js"></script>
<!-- intialise tinymce, you can find other configurations here http://wiki.moxiecode.com/examples/tinymce/installation_example_01.php -->
<script language="javascript" type="text/javascript">
 tinyMCE.init({
 mode : "textareas",
 theme : "advanced",
 theme_advanced_buttons1 : "bold,italic,underline,separator,strikethrough,justifyleft,justifycenter,justifyright, justifyfull,bullist,numlist,undo,redo,link,unlink,image,blockquote,code",
 theme_advanced_buttons2 : "",
 theme_advanced_buttons3 : "",
 theme_advanced_toolbar_location : "top",
 theme_advanced_toolbar_align : "left",
 theme_advanced_statusbar_location : "bottom",
 theme_advanced_resizing : true,
 extended_valid_elements : "a[name|href|target|title|onclick],img[class|src|border=0|alt|title|hspace|vspace|width|height|align|onmouseover|onmouseout|name],
hr[class|width|size|noshade],font[face|size|color|style],span[class|align|style]"
});
</script>

Then, in your plugin’s init function, extend the input/longtext view

function tinymce_init() {
 elgg_extend_view('input/longtext', 'tinymce/longtext');
}

That’s it! Now every time someone uses input/longtext,
TinyMCE will be loaded and applied to that textarea.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Tutorials

Basic Widget

Create a widget that will display “Hello, World!” and optionally any text the user wants.

In Elgg, widgets are those components that you can drag onto your profile or admin dashboard.

This tutorial assumes you are familiar with basic Elgg concepts such as:

	Views

	Plugins

You should review those if you get confused along the way.

Contents

	Adding the widget view code

	Registering your widget

	Allow user customization

Adding the widget view code

Elgg automatically scans particular directories under plugins looking for particular files.
Views make it easy to add your display code or do other things like override default Elgg behavior.
For now, we will just be adding the view code for your widget.
Create a file at /views/default/widgets/helloworld/content.php.
“helloworld” will be the name of your widget within the hello plugin.
In this file add the code:

<?php

echo "Hello, world!";

This will add these words to the widget canvas when it is drawn.
Elgg takes care of loading the widget.

Registering your widget

Elgg needs to be told explicitly that the plugin contains a widget
so that it will scan the widget views directory.
This is done by calling the elgg_register_widget_type() function.
Edit /start.php. In it add these lines:

<?php

function hello_init() {
 elgg_register_widget_type([
 'id' => 'helloworld',
 'name' => 'Hello, world!',
 'description' => 'The "Hello, world!" widget',
]);
}

elgg_register_event_handler('init', 'system', 'hello_init');

Now go to your profile page using a web browser and add the “hello, world” widget.
It should display “Hello, world!”.

Note

For real widgets, it is always a good idea to support Internationalization.

Allow user customization

Click on the edit link on the toolbar of the widget that you’ve created.
You will notice that the only control it gives you by default is over
access (over who can see the widget).

Suppose you want to allow the user to control what greeting is displayed in the widget.
Just as Elgg automatically loads content.php when viewing a widget,
it loads edit.php when a user attempts to edit a widget.
Put the following code into /views/default/widgets/helloworld/edit.php:

<div>
 <label>Message:</label>
 <?php
 //This is an instance of the ElggWidget class that represents our widget.
 $widget = $vars['entity'];

 // Give the user a plain text box to input a message
 echo elgg_view('input/text', array(
 'name' => 'params[message]',
 'value' => $widget->message,
 'class' => 'hello-input-text',
));
 ?>
</div>

Notice the relationship between the values passed to the ‘name’ and the
‘value’ fields of input/text.
The name of the input text box is params[message]
because Elgg will automatically handle widget variables put in the array params.
The actual php variable name will be message.
If we wanted to use the field greeting instead of message
we would pass the values params[greeting] and $widget->greeting respectively.

The reason we set the ‘value’ option of the array is so that the edit
view remembers what the user typed in the previous time he changed the
value of his message text.

Now to display the user’s message we need to modify content.php to use this message variable.
Edit /views/default/widgets/helloworld/content.php and change it to:

<?php

$widget = $vars['entity'];

// Always use the corresponding output/* view for security!
echo elgg_view('output/text', array('value' => $widget->message));

You should now be able to enter a message in the text box and see it appear in the widget.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Design Docs

Gain a deep understanding of how Elgg works
and why it’s built the way it is.

	Actions

	Database

	Events and Plugin Hooks

	Internationalization

	AMD

	Security

	Loggable

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

Actions

Actions are the primary way users interact with an Elgg site.

Overview

An action in Elgg is the code that runs to make changes to the database when a user does something. For example, logging in, posting a comment, and making a blog post are actions. The action script processes input, makes the appropriate modifications to the database, and provides feedback to the user about the action.

Action Handler

Actions are registered during the boot process by calling elgg_register_action(). All actions URLs start with action/ and are served by Elgg’s front end controller through the action service. This approach is different from traditional PHP applications that send information to a specific file. The action service performs CSRF security checks, and calls the registered action script file, then optionally forwards the user to a new page. By using the action service instead of a single script file, Elgg automatically provides increased security and extensibility.

In Elgg 1.8 and before, actions were handled by an action handler script in `engine/handlers/action_handler.php. This required specific rewrite rules for URLs beginning with /action/.

See Forms + Actions for details on how to register and construct an action. To look at the core actions, check out the directory /actions.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

Database

A thorough discussion of Elgg’s data model design and motivation.

Contents

	Overview

	Datamodel

	Entities
	Types

	Subtypes

	Subtype Gotchas

	GUIDs

	ElggObject

	ElggUser

	ElggSite

	ElggGroup
	The Groups plugin

	Writing a group-aware plugin

	Ownership

	Containers

	Annotations
	Adding an annotation

	Reading annotations

	Useful helper functions

	Metadata
	The simple case

	Finer control

	Common mistakes

	Relationships
	Working with relationships

	Access Control
	Access controls in the data model

	How access affects data retrieval

	Write access

	Schema
	Main tables

Overview

In Elgg, everything runs on a unified data model based on atomic
units of data called entities.

Plugins are discouraged from interacting directly with the database,
which creates a more stable system and a better user experience becase
content created by different plugins can be mixed together in
consistent ways. With this approach, plugins are faster to develop,
and are at the same time much more powerful.

Every entity in the system inherits the ElggEntity class. This class
controls access permissions, ownership

You can extend entities with extra information in two ways:

	Metadata: This is information describing the entity, usually

	added by the author of the entity when the entity is created.
For example, tags, an ISBN number, a file location, or
source language is metadata.

	Annotations: This is information about the entity, usually

	added by a third party after the entity is created.
For example, ratings, likes, and votes are annotations.
(Comments were before 1.9.)

Datamodel

[image: The Elgg data model diagram]
The Elgg data model diagram

Entities

ElggEntity is the base class for the Elgg data model and supports a common set of properties
and methods.

	A numeric Globally Unique IDentifier (See GUIDs).

	Access permissions. (When a plugin requests data, it never gets to
touch data that the current user doesn’t have permission to see.)

	An arbitrary subtype (more below).

	An owner.

	The site that the entity belongs to.

	A container, used to associate content with a group or a user.

Types

Actual entities will be instances of four different subclasses, each having a distinct type
property and their own additional properties and methods.

	Type
	PHP class
	Represents

	object
	ElggObject
	Most user-created content, like blog posts, uploads, and bookmarks.

	group
	ElggGroup
	An organized group of users with its own profile page

	user
	ElggUser
	A system user

	site
	ElggSite
	The site served by the Elgg installation

Each has its own extended API. E.g. objects have a title and description, users have a
username and a way to set their password, and so on.

Subtypes

Each entity also has a custom string subtype, which plugins use to further specialize the entity.
Elgg makes it easy to query specific subtypes as well as assign them special behaviors and views.

Subtypes are most commonly given to instances of ElggObject to denote the kind of content created.
E.g. the blog plugin creates objects with subtype "blog".

For historic reasons, the subtype API is a bit complex, but boils down to: write to ->subtype
before saving, otherwise always read getSubtype(). Below are more details.

Subtype Gotchas

	Before an entity’s save() method is called, the subtype can be set by writing a string to the
subtype property.

	Subtype cannot be changed after saving.

	After saving, you must always use getSubtype() to read it.

	If no subtype was set, "" is returned, however some parts of the Elgg API (like Views) may map
this value to the string "default". E.g. a group with getSubtype() === "" will be rendered
using the view "group/default".

	Read carefully the documentation for elgg_get_entities() before trying to match subtypes; this

	API is a bit of a minefield. E.g. you cannot use "" to fetch entities with the default subtype.

GUIDs

A GUID is an integer that uniquely identifies every entity in an Elgg
installation (a Globally Unique IDentifier). It’s assigned automatically
when the entity is first saved and can never be changed.

Some Elgg API functions work with GUIDs instead of ElggEntity objects.

ElggObject

The ElggObject entity type represents arbitrary content within an
Elgg install; things like blog posts, uploaded files, etc.

Beyond the standard ElggEntity properties, ElggObjects also support:

	title The title of the object (HTML escaped text)

	description A description of the object (HTML)

Most other data about the object is generally stored via metadata.

ElggUser

The ElggUser entity type represents users within an Elgg install.
These will be set to disabled until their accounts have been activated
(unless they were created from within the admin panel).

Beyond the standard ElggEntity properties, ElggUsers also support:

	name The user’s plain text name. e.g. “Hugh Jackman”

	username Their login name. E.g. “hjackman”

	password A hashed version of their password

	salt The salt that their password has been hashed with

	email Their email address

	language Their default language code.

	code Their session code (moved to a separate table in 1.9).

	last_action The UNIX timestamp of the last time they loaded a page

	prev_last_action The previous value of last_action

	last_login The UNIX timestamp of their last log in

	prev_last_login the previous value of last_login

ElggSite

The ElggSite entity type represents sites within your Elgg install.
Most installs will have only one.

Beyond the standard ElggEntity properties, ElggSites also support:

	name The site name

	description A description of the site

	url The address of the site

ElggGroup

The ElggGroup entity type represents an association of Elgg users.
Users can join, leave, and post content to groups.

Beyond the standard ElggEntity properties, ElggGroups also support:

	name The group’s name (HTML escaped text)

	description A description of the group (HTML)

ElggGroup has addition methods to manage content and membership.

The Groups plugin

Not to be confused with the entity type ElggGroup, Elgg comes with
a plugin called “Groups” that provides a default UI/UX for site users
to interact with groups. Each group is given a discussion forum and a
profile page linking users to content within the group.

You can alter the user experience via the traditional means of extending
plugins or completely replace the Groups plugin with your own.

Because ElggGroup can be subtyped like all other ElggEntities, you
can have multiple types of groups running on the same site.

Writing a group-aware plugin

Plugin owners need not worry too much about writing group-aware
functionality, but there are a few key points:

Adding content

By passing along the group as container_guid via a hidden input field,
you can use a single form and action to add both user and group content.

Use
can_write_to_container [http://reference.elgg.org/entities_8php.html#16a972909c7cb75f646cb707be001a6f]
to determine whether or not the current user has the right to
add content to a group.

Be aware that you will then need to pass the container GUID
or username to the page responsible for posting and the accompanying
value, so that this can then be stored in your form as a hidden input
field, for easy passing to your actions. Within a “create” action,
you’ll need to take in this input field and save it as a property of
your new element (defaulting to the current user’s container):

$user = elgg_get_logged_in_user_entity();
$container_guid = (int)get_input('container_guid');
if ($container_guid) {
 if (!can_write_to_container($user->guid, $container_guid)) {
 // register error and forward
 }
} else {
 $container_guid = elgg_get_logged_in_user_guid();
}

$object = new ElggObject;
$object->container_guid = $container_guid;

...

$container = get_entity($container_guid);
forward($container->getURL());

Usernames and page ownership

Groups have a simulated username of the form group:GUID, which you
can get the value of by checking $group->username. If you pass this
username to a page on the URL line as part of the username variable
(i.e., /yourpage?username=group:nnn), Elgg will automatically
register that group as being the owner of the page (unless overridden).

Juggling users and groups

In fact, [[Engine/DataModel/Entities/ElggGroup|ElggGroup]] simulates
most of the methods of
[[Engine/DataModel/Entities/ElggUser|ElggUser]]. You can grab the
icon, name etc using the same calls, and if you ask for a group’s
friends, you’ll get its members. This has been designed specifically for
you to alternate between groups and users in your code easily.

Menu options

This section is deprecated as of Elgg 1.8

The final piece of the puzzle, for default groups, is to add a link to
your functionality from the group’s profile. Here we’ll use the file
plugin as an example.

This involves creating a view within your plugin - in this case
file/menu - which will extend the group’s menu. File/menu consists of a
link within paragraph tags that points to the file repository of the
page_owner():

<p>
 <a href="<?php echo $vars['url']; ?>pg/file/<?php echo page_owner_entity()->username; ?>">
 <?php echo elgg_echo("file"); ?>

</p>

You can then extend the group’s menu view with this one, within your
plugin’s input function (in this case file_init):

extend_view('groups/menu/links', 'file/menu');

Ownership

Entities have a owner_guid GUID property, which defines its
owner. Typically this refers to the GUID of a user, although sites and
users themselves often have no owner (a value of 0).

The ownership of an entity dictates, in part, whether or not you can
access or edit that entity.

Containers

In order to easily search content by group or by user, content is generally
set to be “contained” by either the user who posted it, or the group to which
the user posted. This means the new object’s container_guid property
will be set to the GUID of the current ElggUser or the target ElggGroup.

E.g., three blog posts may be owned by different authors, but all be
contained by the group they were posted to.

Note: This is not always true. Comment entities are contained by the object
commented upon, and in some 3rd party plugins the container may be used
to model a parent-child relationship between entities (e.g. a “folder”
object containing a file object).

Annotations

Annotations are pieces of data attached to an entity that allow users
to leave ratings, or other relevant feedback. A poll plugin might
register votes as annotations. Before Elgg 1.9, comments and group
discussion replies were stored as annotations.

Annotations are stored as instances of the ElggAnnotation class.

Each annotation has:

	An internal annotation type (like comment)

	A value (which can be a string or integer)

	An access permission distinct from the entity it’s attached to

	An owner

Adding an annotation

The easiest way to annotate is to use the annotate method on an
entity, which is defined as:

public function annotate(
 $name, // The name of the annotation type (eg 'comment')
 $value, // The value of the annotation
 $access_id = 0, // The access level of the annotation
 $owner_id = 0, // The annotation owner, defaults to current user
 $vartype = "" // 'text' or 'integer'
)

For example, to leave a rating on an entity, you might call:

$entity->annotate('rating', $rating_value, $entity->access_id);

Reading annotations

To retrieve annotations on an object, you can call the following method:

$annotations = $entity->getAnnotations(
 $name, // The type of annotation
 $limit, // The number to return
 $offset, // Any indexing offset
 $order, // 'asc' or 'desc' (default 'asc')
);

If your annotation type largely deals with integer values, a couple of
useful mathematical functions are provided:

$averagevalue = $entity->getAnnotationsAvg($name); // Get the average value
$total = $entity->getAnnotationsSum($name); // Get the total value
$minvalue = $entity->getAnnotationsMin($name); // Get the minimum value
$maxvalue = $entity->getAnnotationsMax($name); // Get the maximum value

Useful helper functions

Comments

If you want to provide comment functionality on your plugin objects, the
following function will provide the full listing, form and actions:

function elgg_view_comments(ElggEntity $entity)

Metadata

Metadata in Elgg allows you to store extra data on an entity beyond
the built-in fields that entity supports. For example, ElggObjects
only support the basic entity fields plus title and description, but you
might want to include tags or an ISBN number. Similarly, you might want
users to be able to save a date of birth.

Under the hood, metadata is stored as an instance of the
ElggMetadata class, but you don’t need to worry about that in
practice (although if you’re interested, see the ElggMetadata class
reference). What you need to know is:

	Metadata has an owner and access ID, both of which may be different
to the owner of the entity it’s attached to

	You can potentially have multiple items of each type of metadata
attached to a single entity

The simple case

Adding metadata

To add a piece of metadata to an entity, just call:

$entity->metadata_name = $metadata_value;

For example, to add a date of birth to a user:

$user->dob = $dob_timestamp;

Or to add a couple of tags to an object:

$object->tags = array('tag one', 'tag two', 'tag three');

When adding metadata like this:

	The owner is set to the currently logged-in user

	Access permissions are inherited from the entity

	Reassigning a piece of metadata will overwrite the old value

This is suitable for most purposes. Be careful to note which attributes
are metadata and which are built in to the entity type that you are
working with. You do not need to save an entity after adding or updating
metadata. You do need to save an entity if you have changed one of its
built in attributes. As an example, if you changed the access id of an
ElggObject, you need to save it or the change isn’t pushed to the
database.

Reading metadata

To retrieve metadata, treat it as a property of the entity:

$tags_value = $object->tags;

Note that this will return the absolute value of the metadata. To get
metadata as an ElggMetadata object, you will need to use the methods
described in the finer control section below.

If you stored multiple values in this piece of metadata (as in the
“tags” example above), you will get an array of all those values back.
If you stored only one value, you will get a string or integer back.
Storing an array with only one value will return a string back to you.
E.g.

$object->tags = array('tag');
$tags = $object->tags;
// $tags will be the string "tag", NOT array('tag')

To always get an array back, simply cast to an array;

$tags = (array)$object->tags;

Finer control

Adding metadata

If you need more control, for example to assign an access ID other than
the default, you can use the create_metadata function, which is
defined as follows:

function create_metadata(
 $entity_guid, // The GUID of the parent entity
 $name, // The name of the metadata (eg 'tags')
 $value, // The metadata value
 $value_type, // Currently either 'string' or 'integer'
 $owner_guid, // The owner of the metadata
 $access_id = 0, // The access restriction
 $allow_multiple = false // Do we have more than one value?
)

For single values, you can therefore write metadata as follows (taking
the example of a date of birth attached to a user):

create_metadata($user_guid, 'dob', $dob_timestamp, 'integer', $_SESSION['guid'], $access_id);

For multiple values, you will need to iterate through and call
create_metadata on each one. The following piece of code comes from
the profile save action:

$i = 0;
foreach ($value as $interval) {
 $i++;
 $multiple = ($i != 1);
 create_metadata($user->guid, $shortname, $interval, 'text', $user->guid, $access_id, $multiple);
}

Note that the allow multiple setting is set to false in the first
iteration and true thereafter.

Reading metadata

elgg_get_metadata is the best function for retrieving metadata as ElggMetadata
objects:

E.g., to retrieve a user’s DOB

elgg_get_metadata(array(
 'metadata_name' => 'dob',
 'metadata_owner_guid' => $user_guid,
));

Or to get all metadata objects:

elgg_get_metadata(array(
 'metadata_owner_guid' => $user_guid,
 'limit' => 0,
));

Common mistakes

“Appending” metadata

Note that you cannot “append” values to metadata arrays as if they were
normal php arrays. For example, the following will not do what it looks
like it should do.

$object->tags[] = "tag four";

Trying to store hashmaps

Elgg does not support storing ordered maps (name/value pairs) in
metadata. For example, the following does not work as you might first
expect it to:

// Won't work!! Only the array values are stored
$object->tags = array('one' => 'a', 'two' => 'b', 'three' => 'c');

You can instead store the information like so:

$object->one = 'a';
$object->two = 'b';
$object->three = 'c';

Storing GUIDs in metadata

Though there are some cases to store entity GUIDs in metadata,
Relationships are a much better construct for relating entities
to each other.

Relationships

Relationships allow you to bind entities together. Examples: an
artist has fans, a user is a member of an organization, etc.

The class ElggRelationship models a directed relationship between
two entities, making the statement:

“{subject} is a {noun} of {target}.”

	API name
	Models
	Represents

	guid_one
	The subject
	Which entity is being bound

	relationship
	The noun
	The type of relationship

	guid_two
	The target
	The entity to which the subject is bound

The type of relationship may alternately be a verb, making the statement:

“{subject} {verb} {target}.”

E.g. User A “likes” blog post B

Each relationship has direction. Imagine an archer shoots
an arrow at a target; The arrow moves in one direction, binding
the subject (the archer) to the target.

A relationship does not imply reciprocity. A follows B does
not imply that B follows A.

Relationships_ do not have access control. They’re never
hidden from view and can be edited with code at any privilege
level, with the caveat that the entities in a relationship
may be invisible due to access control!

Working with relationships

Creating a relationship

E.g. to establish that “$user is a fan of $artist”
(user is the subject, artist is the target):

// option 1
$success = add_entity_relationship($user->guid, 'fan', $artist->guid);

// option 2
$success = $user->addRelationship($artist->guid, 'fan');

This triggers the event [create, relationship], passing in
the created ElggRelationship object. If a handler returns
false, the relationship will not be created and $success
will be false.

Verifying a relationship

E.g. to verify that “$user is a fan of $artist”:

if (check_entity_relationship($user->guid, 'fan', $artist->guid)) {
 // relationship exists
}

Note that, if the relationship exists, check_entity_relationship()
returns an ElggRelationship object:

$relationship = check_entity_relationship($user->guid, 'fan', $artist->guid);
if ($relationship) {
 // use $relationship->id or $relationship->time_created
}

Deleting a relationship

E.g. to be able to assert that “$user is no longer a fan of $artist”:

$was_removed = remove_entity_relationship($user->guid, 'fan', $artist->guid);

This triggers the event [delete, relationship], passing in
the associated ElggRelationship object. If a handler returns
false, the relationship will remain, and $was_removed will
be false.

Other useful functions:

	delete_relationship() : delete by ID

	remove_entity_relationships() : delete those relating to an entity (note: in versions before Elgg 1.9, this did not trigger delete events)

Finding relationships and related entities

Below are a few functions to fetch relationship objects
and/or related entities. A few are listed below:

	get_entity_relationships() : fetch relationships by subject or target entity

	get_relationship() : get a relationship object by ID

	elgg_get_entities_from_relationship() : fetch entities in relationships in a
variety of ways

E.g. retrieving users who joined your site in January 2014.

$entities = elgg_get_entities_from_relationship(array(
 'relationship' => 'member_of_site',
 'relationship_guid' => elgg_get_site_entity()->guid,
 'inverse_relationship' => true,

 'relationship_created_time_lower' => 1388534400, // January 1st 2014
 'relationship_created_time_upper' => 1391212800, // February 1st 2014
));

Access Control

Granular access controls are one of the fundamental design principles in
Elgg, and a feature that has been at the centre of the system throughout
its development. The idea is simple: a user should have full control
over who sees an item of data he or she creates.

Access controls in the data model

In order to achieve this, every entity, annotation and piece of
metadata contains an access_id property, which in turn corresponds
to one of the pre-defined access controls or an entry in the
access_collections database table.

Pre-defined access controls

	ACCESS_PRIVATE (value: 0) Private.

	ACCESS_LOGGED_IN (value: 1) Logged in users.

	ACCESS_PUBLIC (value: 2) Public data.

	ACCESS_FRIENDS (value: -2) Owner and his/her friends.

User defined access controls

You may define additional access groups and assign them to an entity,
annotation or metadata. A number of functions have been defined to
assist you; see the access library reference [http://reference.elgg.org/engine_2lib_2access_8php.html] for more information.

How access affects data retrieval

All data retrieval functions above the database layer - for example
get_entities and its cousins - will only return items that the
current user has access to see. It is not possible to retrieve items
that the current user does not have access to. This makes it very hard
to create a security hole for retrieval.

Write access

The following rules govern write access:

	The owner of an entity can always edit it

	The owner of a container can edit anything therein (note that this
does not mean that the owner of a group can edit anything therein)

	Admins can edit anything

You can override this behaviour using a plugin hook called
permissions_check, which passes the entity in question to any
function that has announced it wants to be referenced. Returning
true will allow write access; returning false will deny it. See
the plugin hook reference for permissions_check for more details.

See also

Access library reference [http://reference.elgg.org/engine_2lib_2access_8php.html]

Schema

The database contains a number of primary tables and secondary tables.
Its schema table is stored in /engine/schema/mysql.sql.

Each table is prefixed by “prefix_”, this is replaced by the Elgg
framework during installation.

Main tables

This is a description of the main tables. Keep in mind that in a given
Elgg installation, the tables will have a prefix (typically “elgg_”).

Table: entities

This is the main Entities table containing Elgg users, sites,
objects and groups. When you first install Elgg this is automatically
populated with your first site.

It contains the following fields:

	guid An auto-incrementing counter producing a GUID that uniquely
identifies this entity in the system.

	type The type of entity - object, user, group or site

	subtype A reference to the entity_subtypes table, or 0 for the default subtype.

	owner_guid The GUID of the owner’s entity.

	site_guid The site the entity belongs to.

	container_guid The GUID this entity is contained by - either a user or
a group.

	access_id Access controls on this entity.

	time_created Unix timestamp of when the entity is created.

	time_updated Unix timestamp of when the entity was updated.

	enabled If this is ‘yes’ an entity is accessible, if ‘no’ the entity
has been disabled (Elgg treats it as if it were deleted without actually
removing it from the database).

Table: entity_subtypes

This table contains entity subtype information:

	id A counter.

	type The type of entity - object, user, group or site.

	subtype The subtype name as a string.

	class Optional class name if this subtype is linked with a class

Table: metadata

This table contains Metadata, extra information attached to an entity.

	id A counter.

	entity_guid The entity this is attached to.

	name_id A link to the metastrings table defining the name
table.

	value_id A link to the metastrings table defining the value.

	value_type The value class, either text or an integer.

	owner_guid The owner GUID of the owner who set this item of
metadata.

	access_id An Access controls on this item of metadata.

	time_created Unix timestamp of when the metadata is created.

	enabled If this is ‘yes’ an item is accessible, if ‘no’ the item
has been deleted.

Table: annotations

This table contains Annotations, this is distinct from Metadata.

	id A counter.

	entity_guid The entity this is attached to.

	name_id A link to the metastrings table defining the type of
annotation.

	value_id A link to the metastrings table defining the value.

	value_type The value class, either text or an integer.

	owner_guid The owner GUID of the owner who set this item of
metadata.

	access_id An Access controls on this item of metadata.

	time_created Unix timestamp of when the metadata is created.

	enabled If this is ‘yes’ an item is accessible, if ‘no’ the item
has been deleted.

Table: relationships

This table defines Relationships, these link one entity with another.

	guid_one The GUID of the subject entity.

	relationship The type of the relationship.

	guid_two The GUID of the target entity.

Table: objects_entity

Extra information specifically relating to objects. These are split in
order to reduce load on the metadata table and make an obvious
difference between attributes and metadata.

Table: sites_entity

Extra information specifically relating to sites. These are split in
order to reduce load on the metadata table and make an obvious
difference between attributes and metadata.

Table: users_entity

Extra information specifically relating to users. These are split in
order to reduce load on the metadata table and make an obvious
difference between attributes and metadata.

Table: groups_entity

Extra information specifically relating to groups. These are split in
order to reduce load on the metadata table and make an obvious
difference between attributes and metadata.

Table: metastrings

Metastrings contain the actual string of metadata which is linked to by
the metadata and annotations tables.

This is to avoid duplicating strings, saving space and making database
lookups more efficient.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

Events and Plugin Hooks

Contents

	Overview
	Elgg Events vs. Plugin Hooks

	Elgg Events
	Before and After Events

	Elgg Event Handlers

	Register to handle an Elgg Event

	Trigger an Elgg Event

	Plugin Hooks
	Plugin Hook Handlers

	Register to handle a Plugin Hook

	Trigger a Plugin Hook

	Unregister Event/Hook Handlers

	Handler Calling Order

Overview

Elgg has an event system that can be used to replace or extend core
functionality.

Plugins influence the system by creating handlers (callables [http://php.net/manual/en/language.types.callable.php]
such as functions and methods) and registering them to handle
two types of events: Elgg Events and Plugin Hooks.

When an event is triggered, a set of handlers is executed in order
of priority. Each handler is passed arguments
and has a chance to influence the process. After execution, the “trigger”
function returns a value based on the behavior of the handlers.

Elgg Events vs. Plugin Hooks

The main differences between Elgg Events and Plugin Hooks are:

	Most Elgg events can be cancelled; unless the event is an “after” event,
a handler that returns false can cancel the event, and no more handlers
are called.

	Plugin hooks cannot be cancelled; all handlers are always called.

	Plugin hooks pass an arbitrary value through the handlers, giving each
a chance to alter along the way.

Elgg Events

Elgg Events are triggered when an Elgg object is created, updated, or
deleted; and at important milestones while the Elgg framework is
loading. Examples: a blog post being created or a user logging in.

Unlike Plugin Hooks, most Elgg events can be cancelled, halting the
execution of the handlers, and possibly cancelling an some
action in the Elgg core.

Each Elgg event has a name and an object type (system, user, object,
relationship name, annotation, group) describing the type of object
passed to the handlers.

Before and After Events

Some events are split into “before” and “after”. This avoids confusion
around the state of the system while in flux. E.g. Is the user
logged in during the [login, user] event?

Before Events have names ending in ”:before” and are triggered before
something happens. Like traditional events, handlers can cancel the
event by returning false.

After Events, with names ending in ”:after”, are triggered after
something happens. Unlike traditional events, handlers cannot cancel
these events; all handlers will always be called.

Where before and after events are available, developers are encouraged
to transition to them, though older events will be supported for
backwards compatibility.

Elgg Event Handlers

Elgg event handlers should have the following prototype:

/**
 * @param string $event The name of the event
 * @param string $object_type The type of $object (e.g. "user", "group")
 * @param mixed $object The object of the event
 *
 * @return bool if false, the handler is requesting to cancel the event
 */
function event_handler($event, $object_type, $object) {
 ...
}

If the handler returns false, the event is cancelled, preventing
execution of the other handlers. All other return values are ignored.

Register to handle an Elgg Event

Register your handler to an event using elgg_register_event_handler:

elgg_register_event_handler($event, $object_type, $handler, $priority);

Parameters:

	$event The event name.

	$object_type The object type (e.g. “user” or “object”) or ‘all’ for
all types on which the event is fired.

	$handler The callback of the handler function.

	$priority The priority - 0 is first and the default is 500.

Object here does not refer to an ElggObject but rather a string describing any object
in the framework: system, user, object, relationship, annotation, group.

Example:

// Register the function myPlugin_handle_login() to handle the
// user login event with priority 400.
elgg_register_event_handler('login', 'user', 'myPlugin_handle_login', 400);

Warning

If you handle the “update” event on an object, avoid calling save() in your event handler. For one it’s
probably not necessary as the object is saved after the event completes, but also because save() calls
another “update” event and makes $object->getOriginalAttributes() no longer available.

Trigger an Elgg Event

You can trigger a custom Elgg event using elgg_trigger_event:

if (elgg_trigger_event($event, $object_type, $object)) {
 // Proceed with doing something.
} else {
 // Event was cancelled. Roll back any progress made before the event.
}

For events with ambiguous states, like logging in a user, you should use Before and After Events
by calling elgg_trigger_before_event or elgg_trigger_after_event.
This makes it clear for the event handler what state to expect and which events can be cancelled.

// handlers for the user, login:before event know the user isn't logged in yet.
if (!elgg_trigger_before_event('login', 'user', $user)) {
 return false;
}

// handlers for the user, login:after event know the user is logged in.
elgg_trigger_after_event('login', 'user', $user);

Parameters:

	$event The event name.

	$object_type The object type (e.g. “user” or “object”).

	$object The object (e.g. an instance of ElggUser or ElggGroup)

The function will return false if any of the selected handlers returned
false and the event is stoppable, otherwise it will return true.

Plugin Hooks

Plugin Hooks provide a way for plugins to collaboratively determine or alter
a value. For example, to decide whether a user has permission to edit an entity
or to add additional configuration options to a plugin.

A plugin hook has a value passed into the trigger function, and each handler
has an opportunity to alter the value before it’s passed to the next handler.
After the last handler has completed, the final value is returned by the
trigger.

Plugin Hook Handlers

Plugin hook handlers should have the following prototype:

/**
 * @param string $hook The name of the plugin hook
 * @param string $type The type of the plugin hook
 * @param mixed $value The current value of the plugin hook
 * @param mixed $params Data passed from the trigger
 *
 * @return mixed if not null, this will be the new value of the plugin hook
 */
function plugin_hook_handler($hook, $type, $value, $params) {
 ...
}

If the handler returns no value (or null explicitly), the plugin hook value
is not altered. Otherwise the return value becomes the new value of the plugin
hook. It will then be passed to the next handler as $value.

Register to handle a Plugin Hook

Register your handler to a plugin hook using elgg_register_plugin_hook_handler:

elgg_register_plugin_hook_handler($hook, $type, $handler, $priority);

Parameters:

	$hook The name of the plugin hook.

	$type The type of the hook or ‘all’ for all types.

	$handler The callback of the handler function.

	$priority The priority - 0 is first and the default is 500.

Type can vary in meaning. It may mean an Elgg entity type or something
specific to the plugin hook name.

Example:

// Register the function myPlugin_hourly_job() to be called with priority 400.
elgg_register_plugin_hook_handler('cron', 'hourly', 'myPlugin_hourly_job', 400);

Trigger a Plugin Hook

You can trigger a custom plugin hook using elgg_trigger_plugin_hook:

// filter $value through the handlers
$value = elgg_trigger_plugin_hook($hook, $type, $params, $value);

Parameters:

	$hook The name of the plugin hook.

	$type The type of the hook or ‘all’ for all types.

	$params Arbitrary data passed from the trigger to the handlers.

	$value The initial value of the plugin hook.

Warning

The $params and $value arguments are reversed between the plugin hook handlers and trigger functions!

Unregister Event/Hook Handlers

The functions elgg_unregister_event_handler and elgg_unregister_plugin_hook_handler can be used to remove
handlers already registered by another plugin or Elgg core. The parameters are in the same order as the registration
functions, except there’s no priority parameter.

elgg_unregister_event_handler('login', 'user', 'myPlugin_handle_login');

Anonymous functions or invokable objects cannot be unregistered, but dynamic method callbacks can be unregistered
by giving the static version of the callback:

$obj = new MyPlugin\Handlers();
elgg_register_plugin_hook_handler('foo', 'bar', [$obj, 'handleFoo']);

// ... elsewhere

elgg_unregister_plugin_hook_handler('foo', 'bar', 'MyPlugin\Handlers::handleFoo');

Even though the event handler references a dynamic method call, the code above will successfully
remove the handler.

Handler Calling Order

Handlers are called first in order of priority, then registration order.

Note

Before Elgg 2.0, registering with the all keywords caused handlers to be called later, even
if they were registered with lower priorities.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

Internationalization

Elgg 1.0+ departs from previous versions in that it uses a custom text array rather than gettext.
This improves system performance and reliability of the translation system.

TODO: more plz

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

AMD

Overview

There are two JavaScript system in Elgg: the deprecated 1.8 system, and the newer AMD (Asynchronous Module
Definition) [http://requirejs.org/docs/whyamd.html] compatible system introduced in 1.9.

This discusses the benefits of using AMD in Elgg.

Why AMD?

We have been working hard to make Elgg’s JavaScript more maintainable and useful.
We made some strides in 1.8 with the introduction of the “elgg” JavaScript object and library, but
have quickly realized the approach we were taking was not scalable.

The size of JS on the web is growing [http://httparchive.org/trends.php?s=All&minlabel=Feb+11+2011&maxlabel=Feb+1+2013#bytesJS&reqJS]
quickly, and JS in Elgg is growing too. We want Elgg to be able to offer a solution that makes JS
development as productive and maintainable as possible going forward.

The reasons to choose AMD [http://requirejs.org/docs/whyamd.html] are plenteous and
well-documented. Let’s highlight just a few of the most relevant reasons as they relate to Elgg
specifically.

1. Simplified dependency management

AMD modules load asynchronously and execute as soon as their dependencies are available, so this
eliminates the need to specify “priority” and “location” when registering JS libs in Elgg. Also, you
don’t need to worry about explicitly loading a module’s dependencies in PHP. The AMD loader (RequireJS in this
case) takes care of all that hassle for you. It’s also possible have
text dependencies [http://requirejs.org/docs/api.html#text] with the RequireJS text plugin,
so client-side templating should be a breeze.

2. AMD works in all browsers. Today.

Elgg developers are already writing lots of JavaScript. We know you want to write more. We cannot
accept waiting 5-10 years for a native JS modules solution to be available in all browsers before
we can organize our JavaScript in a maintainable way.

3. You do not need a build step to develop in AMD.

We like the edit-refresh cycle of web development. We wanted to make sure everyone developing in
Elgg could continue experiencing that joy. Synchronous module formats like Closure or CommonJS just
weren’t an option for us. But even though AMD doesn’t require a build step, it is still very
build-friendly. Because of the define() wrapper, it’s possible to concatenate multiple modules
into a single file and ship them all at once in a production environment. [1]

AMD is a battle-tested and well thought out module loading system for the web today. We’re very
thankful for the work that has gone into it, and are excited to offer it as the standard solution
for JavaScript development in Elgg starting with Elgg 1.9.

	[1]	This is not currently supported by Elgg core, but we’ll be looking into it since reducing round-trips is critical for a good first-view experience, especially on mobile devices.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

Security

Elgg’s approach to the various security issues common to all web applications.

Tip

To report a potential vulnerability in Elgg, email security@elgg.org.

Contents

	Passwords
	Password validation

	Password salting

	Password hashing

	Password storage

	Password throttling

	Password resetting

	Sessions
	Session fixation

	Session hijacking

	“Remember me” cookie

	Alternative authentication

	HTTPS

	XSS

	CSRF / XSRF

	SQL Injection

	Privacy

Passwords

Password validation

The only restriction that Elgg places on a password is that it must be at least 6 characters long by default, though this may be changed in /elgg-config/settings.php. Additional criteria can be added by a plugin by registering for the registeruser:validate:password plugin hook.

Password salting

	Elgg salts passwords with a unique 8 character random string. The salt is generated each time the password is set. The main security advantages of the salting are:

	
	preventing anyone with access to the database from conducting a precomputed dictionary attack

	preventing a site administration from noting users with the same password.

Password hashing

The hashed password is computed using md5 from the user’s password text and the salt.

Password storage

The hashed password and the salt are stored in the users table. Neither are stored in any cookies on a user’s computer.

Password throttling

Elgg has a password throttling mechanism to make dictionary attacks from the outside very difficult. A user is only allowed 5 login attempts over a 5 minute period.

Password resetting

If a user forgets his password, a new random password can be requested. After the request, an email is sent with a unique URL. When the user visits that URL, a new random password is sent to the user through email.

Sessions

Elgg uses PHP’s session handling with custom handlers. Session data is stored in the database. The session cookie contains the session id that links the user to the browser. The user’s metadata is stored in the session including GUID, username, email address. The session’s lifetime is controlled through the server’s PHP configuration.

Session fixation

Elgg protects against session fixation by regenerating the session id when a user logs in.

Session hijacking

Warning

This section is questionable.

Besides protecting against session fixation attacks, Elgg also has a further check to try to defeat session hijacking if the session identifier is compromised. Elgg stores a hash of the browser’s user agent and a site secret as a session fingerprint. The use of the site secret is rather superfluous but checking the user agent might prevent some session hijacking attempts.

“Remember me” cookie

To allow users to stay logged in for a longer period of time regardless of whether the browser has been closed, Elgg uses a cookie (called elggperm) that contains what could be considered a super session identifier. This identifier is stored in a cookies table. When a session is being initiated, Elgg checks for the presence of the elggperm cookie. If it exists and the session code in the cookie matches the code in the cookies table, the corresponding user is automatically logged in.

Alternative authentication

Note

This section is very hand-wavy

To replace Elgg’s default user authentication system, a plugin would have to replace the default action with its own through register_action(). It would also have to register its own pam handler using register_pam_handler().

Note

The pam_authenticate() function used to call the different modules has a bug related to the importance variable.

HTTPS

Note

You must enable SSL support on your server for any of these techniques to work.

To make the login form submit over https, turn on login-over-ssl from Elgg’s admin panel.

You can also serve your whole site over SSL by simply changing the site URL to include “https” instead of just “http.”

XSS

Filtering is used in Elgg to make XSS attacks more difficult. The purpose of the filtering is to remove Javascript and other dangerous input from users.

Filtering is performed through the function filter_tags(). This function takes in a string and returns a filtered string. It triggers a validate, input plugin hook.

By default Elgg comes with the htmLawed filtering code as a plugin. Developers can drop in any additional or replacement filtering code as a plugin.

The filter_tags() function is called on any user input as long as the input is obtained through a call to get_input(). If for some reason a developer did not want to perform the default filtering on some user input, the get_input() function has a parameter for turning off filtering.

CSRF / XSRF

Elgg generates security tokens to prevent cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery]. These are embedded in all forms and state-modifying AJAX requests as long as the correct API is used. Read more in the Forms + Actions developer guide.

SQL Injection

Elgg’s API sanitizes all input before issuing DB queries. Read more in the Database design doc.

Privacy

Elgg uses an ACL system to control which users have access to various pieces of content. Read more in the Database design doc.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Design Docs

Loggable

Loggable is an interface inherited by any class that wants events relating to its member objects to be saved to the system log. ElggEntity and ElggExtender both inherit Loggable.

Loggable defines several class methods that are used in saving to the default system log, and can be used to define your own (as well as for other purposes):

	getSystemLogID() Return a unique identifier for the object for storage in the system log. This is likely to be the object’s GUID

	getClassName() Return the class name of the object

	getType() Return the object type

	getSubtype() Get the object subtype

	getObjectFromID($id) For a given ID, return the object associated with it

Database details

The default system log is stored in the system_log database table. It contains the following fields:

	id - A unique numeric row ID

	object_id - The GUID of the entity being acted upon

	object_class - The class of the entity being acted upon (eg ElggObject)

	object_type - The type of the entity being acted upon (eg object)

	object_subtype - The subtype of the entity being acted upon (eg blog)

	event - The event being logged (eg create or update)

	performed_by_guid - The GUID of the acting entity (the user performing the action)

	owner_guid - The GUID of the user which owns the entity being acted upon

	access_id - The access restriction associated with this log entry

	time_created - The UNIX epoch timestamp of the time the event took place

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Contributor Guides

Participate in making Elgg even better.

Elgg is a community-driven project.
It relies on the support of volunteers to succeed.
Here are some ways you can help:

	Translations

	Reporting Issues

	Writing Code

	Adding a Service to Elgg

	Writing Documentation

	Internationalizing documentation

	Becoming a Financial Supporter

	Release Process Workflow

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Translations

Translations multiply the impact that Elgg can have
by making it accessible to a larger percentage of the world.

The community will always be indebted to those of you who work hard
to provide high quality translations for Elgg’s UI and docs.

Transifex

All translation for the Elgg project is organized through Transifex.

https://www.transifex.com/organization/elgg

Plugin authors are encouraged to coordinate translations via Transifex as well
so the whole community can be unified and make it really easy for translators
to contribute to any plugin in the Elgg ecosystem.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Reporting Issues

Report bugs and features requests to https://github.com/Elgg/Elgg/issues.
See below for guidelines.

DISCLAIMERS

	SECURITY ISSUES SHOULD BE REPORTED TO security @ elgg . org!
Please do not post any security issues on github!!

	Support requests belong on the community site [http://community.elgg.org].
Tickets with support requests will be closed.

	We cannot make any guarantees as to when your ticket will be resolved.

Bug reports

Before submitting a bug report:

	Search for an existing ticket on the issue you’re having. Add any
extra info there.

	Verify the problem is reproducible
	On the latest version of Elgg

	With all third-party plugins disabled

Good bug report checklist:

	Expected behavior and actual behavior

	Clear steps to reproduce the problem

	The version of Elgg you’re running

	Browsers affected by this problem

Feature requests

Before submitting a feature request:

	Check the community site [http://community.elgg.org] for a plugin that has the features you
need.

	Consider if you can develop a plugin that does what you need.

	Search through the closed tickets to see if someone else suggested
the same feature, but got turned down. You’ll need to be able to
explain why your suggestion should be considered this time.

Good feature request checklist:

	Detailed explanation of the feature

	Real-life use-cases

	Proposed API

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Writing Code

Understand Elgg’s standards and processes to get your changes accepted as quickly as possible.

Contents

	License agreement

	Pull requests

	Testing

	Coding best practices

	Deprecating APIs

License agreement

By submitting a patch you are agreeing to license the code
under a GPLv2 license [http://www.gnu.org/licenses/old-licenses/gpl-2.0.html] and MIT license [http://en.wikipedia.org/wiki/MIT_License].

Pull requests

Pull requests (PRs) are the best way to get code contributed to Elgg core.
The core development team uses them even for the most trivial changes.

For new features, submit a feature request [https://github.com/Elgg/Elgg/issues] or talk to us [http://community.elgg.org/groups/profile/211069/feedback-and-planning] first and make
sure the core team approves of your direction before spending lots of time on code.

Checklists

Use these markdown checklists for new PRs on github to ensure high-quality contributions
and help everyone understand the status of open PRs.

Bugfix PRs:

- [] Commit messages are in the standard format
- [] Includes regression test
- [] Includes documentation update (if applicable)
- [] Is submitted against the correct branch
- [] Has LGTM from at least one core developer

Feature PRs:

- [] Commit messages are in the standard format
- [] Includes tests
- [] Includes documentation
- [] Is submitted against the correct branch
- [] Has LGTM from at least two core developers

Choosing a branch to submit to

The following table assumes the latest stable release is 2.1.

	Type of change
	Branch to submit against

	Security fix
	Don’t! Email security@elgg.org for guidance.

	Bug fix
	1.12 (or 2.1 if the 1.12 fix is too complex)

	Performance
	2.x

	Deprecation
	2.x

	Minor feature
	2.x

	Major feature
	master

	Has any breaking change
	master

If you’re not sure which branch to submit against, just ask!

The difference between minor and major feature is subjective and up to the core team.

Commit message format

We require a particular format to allow releasing more often, and with improved changelogs and source history. Just
follow these steps:

	Start with the type by selecting the last category which applies from this list:

	docs - only docs are being updated

	chore - this include refactoring, code style changes, adding missing tests, Travis stuff, etc.

	perf - the primary purpose is to improve performance

	fix - this fixes a bug

	deprecate - the change deprecates any part of the API

	feature - this adds a new user-facing or developer feature

	security - the change affects a security issue in any way. Please do not push this commit to any public repo. Instead contact security@elgg.org.

E.g. if your commit refactors to fix a bug, it’s still a “fix”. If that bug is security-related, however, the type
must be “security” and you should email security@elgg.org before proceeding. When in doubt, make your best guess
and a reviewer will provide guidance.

	In parenthesis, add the component, a short string which describes the subsystem being changed.

Some examples: views, i18n, seo, a11y, cache, db, session, router, <plugin_name>.

	Add a colon, a space, and a brief summary of the changes, which will appear in the changelog.

No line may exceed 100 characters in length, so keep your summary concise.

	Good summary
	Bad summary (problem)

	page owners see their own owner blocks on pages
	bug fix (vague)

	bar view no longer dies if ‘foo’ not set
	updates views/default/bar.php so bar view no longer... (redundant info)

	narrows river layout to fit iPhone
	alters the river layout (vague)

	elgg_foo() handles arrays for $bar
	in elgg_foo() you can now pass an array for $bar and the function will... (move detail to description)

	removes link color from comments header in river
	fixes db so that... (redundant info)

	requires non-empty title when saving pages
	can save pages with no title (confusingly summarizes old behavior)

	(recommended) Skip a line and add a description of the changes. Include the motivation for making them, any info
about back or forward compatibility, and any rationale of why the change had to be done a certain way. Example:

We speed up the Remember Me table migration by using a single INSERT INTO ... SELECT query instead of row-by-row.
This migration takes place during the upgrade to 1.9.

Unless your change is trivial/obvious, a description is required.

	If the commit resolves a GitHub issue, skip a line and add Fixes # followed by the issue number. E.g.
Fixes #1234. You can include multiple issues by separating with commas.

GitHub will auto-close the issue when the commit is merged. If you just want to reference an issue, use
Refs # instead.

When done, your commit message will have the format:

type(component): summary

Optional body
Details about the solution.
Opportunity to call out as breaking change.

Closes/Fixes/Refs #123, #456, #789

Here is an example of a good commit message:

perf(upgrade): speeds up migrating remember me codes

We speed up the Remember Me table migration by using a single INSERT INTO ... SELECT query instead of row-by-row.
This migration takes place during the upgrade to 1.9.

Fixes #6204

To validate commit messages locally, make sure .scripts/validate_commit_msg.php is executable, and make a copy
or symlink to it in the directory .git/hooks/commit-msg.

chmod u+x .scripts/validate_commit_msg.php
ln -s .scripts/validate_commit_msg.php .git/hooks/commit-msg/validate_commit_msg.php

Rewriting commit messages

If your PR does not conform to the standard commit message format, we’ll ask you to rewrite it.

To edit just the last commit:

	Amend the commit: git commit --amend (git opens the message in a text editor).

	Change the message and save/exit the editor.

	Force push your branch: git push -f your_remote your_branch (your PR with be updated).

	Rename the PR title to match

Otherwise you may need to perform an interactive rebase:

	Rebase the last N commits: git rebase -i HEAD~N where N is a number.
(Git will open the git-rebase-todo file for editing)

	For the commits that need to change, change pick to r (for reword) and save/exit the editor.

	Change the commit message(s), save/exit the editor (git will present a file for each commit that needs rewording).

	git push -f your_remote your_branch to force push the branch (updating your PR).

	Rename the PR title to match

Testing

Elgg has automated tests for both PHP and JavaScript functionality. All new contributions are required to come with appropriate tests.

General guidelines

Break tests up by the behaviors you want to test and use names that describe the behavior. E.g.:

	Not so good: One big method testAdd().

	Better: Methods testAddingZeroChangesNothing and testAddingNegativeNumberSubtracts

Strive for componentized designs that allow testing in isolation, without large dependency graphs or DB access. Injecting dependencies is key here.

PHP Tests

PHPUnit

Located in engine/tests/phpunit, this is our preferred test suite. It uses no DB access, and has only superficial access to the entities API.

	We encourage you to create components that are testable in this suite if possible.

	Consider separating storage from your component so at least business logic can be tested here.

	Depend on the Elgg\Filesystem* classes rather than using PHP filesystem functions.

SimpleTest

The rest of the files in engine/tests form our integration suite, for anything that needs access to the DB or entity APIs.

	Our long-term goals are to minimize these and convert them to PHPUnit

Testing interactions between services

Ideally your tests would construct your own isolated object graphs for direct manipulation, but this isn’t always possible.

If your test relies on Elgg’s Service Provider (_elgg_services() returns a Elgg\Di\ServiceProvider), realize that it maintains a singleton instance for most services it hands out, and many services keep their own local references to these services as well.

Due to these local references, replacing services on the SP within a test often will not have the desired effect. Instead, you may need to use functionality baked into the services themselves:

	The events and hooks services have methods backup() and restore().

	The logger service has methods disable() and enable().

Jasmine Tests

Test files must be named *Test.js and should go in either js/tests/ or next
to their source files in views/default/**.js. Karma will automatically pick up
on new *Test.js files and run those tests.

Test boilerplate

define(function(require) {
 var elgg = require('elgg');

 describe("This new test", function() {
 it("fails automatically", function() {
 expect(true).toBe(false);
 });
 });
});

Running the tests

Elgg uses Karma [http://karma-runner.github.io/0.8/index.html] with Jasmine [http://pivotal.github.io/jasmine/] to run JS unit tests.

You will need to have nodejs and npm installed.

First install all the development dependencies:

npm install

Run through the tests just once and then quit:

npm test

You can also run tests continuously during development so they run on each save:

karma start js/tests/karma.conf.js

Debugging JS tests

You can run the test suite inside Chrome dev tools:

npm run chrome

This will output a URL like http://localhost:9876/.

	Open the URL in Chrome, and click “Debug”.

	Open Chrome dev tools and the Console tab.

	Reload the page.

If you alter a test you’ll have to quit Karma with Ctrl-c and restart it.

Coding best practices

Make your code easier to read, easier to maintain, and easier to debug.
Consistent use of these guidelines means less guess work for developers,
which means happier, more productive developers.

General coding

Don’t Repeat Yourself

If you are copy-pasting code a significant amount of code, consider whether there’s an opportunity to reduce
duplication by introducing a function, an additional argument, a view, or a new component class.

E.g. If you find views that are identical except for a single value, refactor into a single view
that takes an option.

Note: In a bugfix release, some duplication is preferrable to refactoring. Fix bugs in the simplest
way possible and refactor to reduce duplication in the next minor release branch.

Embrace SOLID and GRASP

Use these principles for OO design [http://nikic.github.io/2011/12/27/Dont-be-STUPID-GRASP-SOLID.html] to solve problems using loosely coupled
components, and try to make all components and integration code testable.

Whitespace is free

Don’t be afraid to use it to separate blocks of code.
Use a single space to separate function params and string concatenation.

Variable names

Use self-documenting variable names. $group_guids is better than $array.

Avoid double-negatives. Prefer $enable = true to $disable = false.

Interface names

Use the pattern Elgg\{Namespace}\{Name}.

Do not include an I prefix or an Interface suffix.

We do not include any prefix or suffix so that we’re encouraged to:

	name implementation classes more descriptively (the “default” name is taken).

	type-hint on interfaces, because that is the shortest, easiest thing to do.

Name implementations like Elgg\{Namespace}\{Interface}\{Implementation}.

Functions

Where possible, have functions/methods return a single type.
Use empty values such as array(), "", or 0 to indicate no results.

Be careful where valid return values (like "0") could be interpreted as empty.

Functions not throwing an exception on error should return false upon failure.

Functions returning only boolean should be prefaced with is_ or has_
(eg, elgg_is_logged_in(), elgg_has_access_to_entity()).

Ternary syntax

Acceptable only for single-line, non-embedded statements.

Minimize complexity

Minimize nested blocks and distinct execution paths through code. Use
Return Early [http://www.mrclay.org/2013/09/18/when-reasonable-return-early/] to reduce nesting levels and cognitive load when reading code.

Use comments effectively

Good comments describe the “why.” Good code describes the “how.” E.g.:

Bad:

// increment $i only when the entity is marked as active.
foreach ($entities as $entity) {
 if ($entity->active) {
 $i++;
 }
}

Good:

// find the next index for inserting a new active entity.
foreach ($entities as $entity) {
 if ($entity->active) {
 $i++;
 }
}

Always include a comment if it’s not obvious that something must be done in a certain way. Other
developers looking at the code should be discouraged from refactoring in a way that would break the code.

// Can't use empty()/boolean: "0" is a valid value
if ($str === '') {
 register_error(elgg_echo('foo:string_cannot_be_empty'));
 forward(REFERER);
}

Commit effectively

	Err on the side of atomic commits [http://en.wikipedia.org/wiki/Atomic_commit#Atomic_Commit_Convention] which are highly focused on changing one aspect of the system.

	Avoid mixing in unrelated changes or extensive whitespace changes. Commits with many changes are scary and
make pull requests difficult to review.

	Use visual git tools to craft highly precise and readable diffs [http://www.mrclay.org/2014/02/14/gitx-for-cleaner-commits/].

Include tests

When at all possible include unit tests for code you add or alter.

Keep bugfixes simple

Avoid the temptation to refactor code for a bugfix release. Doing so tends to
introduce regressions, breaking functionality in what should be a stable release.

PHP guidelines

These are the required coding standards for Elgg core and all bundled plugins.
Plugin developers are strongly encouraged to adopt these standards.

Developers should first read the PSR-2 Coding Standard Guide [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md].

Elgg’s standards extend PSR-2, but differ in the following ways:

	Indent using one tab character, not spaces.

	Opening braces for classes, methods, and functions must go on the same line.

	If a line reaches over 100 characters, consider refactoring (e.g. introduce variables).

	Compliance with PSR-1 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md] is encouraged, but not strictly required.

Documentation

	Include PHPDoc comments on functions and classes (all methods; declared
properties when appropriate), including types and descriptions of all
parameters.

	In lists of @param declarations, the beginnings of variable names and
descriptions must line up.

	Annotate classes, methods, properties, and functions with @access private
unless they are intended for public use, are already of limited visibility,
or are within a class already marked as private.

	Use // or /* */ when commenting.

	Use only // comments inside function/method bodies.

Naming

	Use underscores to separate words in the names of functions, variables,
and properties. Method names are camelCase.

	Names of functions for public use must begin with elgg_.

	All other function names must begin with _elgg_.

	Name globals and constants in ALL_CAPS (ACCESS_FRIENDS, $CONFIG).

Miscellaneous

For PHP requirements, see composer.json.

Do not use PHP shortcut tags <? or <%.
It is OK to use <?= since it is always enabled as of PHP 5.4.

When creating strings with variables:

	use double-quoted strings

	wrap variables with braces only when necessary.

Bad (hard to read, misuse of quotes and {}s):

echo 'Hello, '.$name."! How is your {$time_of_day}?";

Good:

echo "Hello, $name! How is your $time_of_day?";

Remove trailing whitespace at the end of lines. An easy way to do this before you commit is to run
php .scripts/fix_style.php from the installation root.

CSS guidelines

Use shorthand where possible

Bad:

background-color: #333333;
background-image: url(...);
background-repeat: repeat-x;
background-position: left 10px;
padding: 2px 9px 2px 9px;

Good:

background: #333 url(...) repeat-x left 10px;
padding: 2px 9px;

Use hyphens, not underscores

Bad:

.example_class {}

Good:

.example-class {}

One property per line

Bad:

color: white;font-size: smaller;

Good:

color: white;
font-size: smaller;

Property declarations

These should be spaced like so: property: value;

Bad:

color:value;
color :value;
color : value;

Good:

color: value;

Vendor prefixes

	Group vendor-prefixes for the same property together

	Longest vendor-prefixed version first

	Always include non-vendor-prefixed version

	Put an extra newline between vendor-prefixed groups and other properties

Bad:

-moz-border-radius: 5px;
border: 1px solid #999999;
-webkit-border-radius: 5px;
width: auto;

Good:

border: 1px solid #999999;

-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;

width: auto;

Group subproperties

Bad:

background-color: white;
color: #0054A7;
background-position: 2px -257px;

Good:

background-color: white;
background-position: 2px -257px;
color: #0054A7;

Javascript guidelines

Same formatting standards as PHP apply.

All functions should be in the elgg namespace.

Function expressions should end with a semi-colon.

elgg.ui.toggles = function(event) {
 event.preventDefault();
 $(target).slideToggle('medium');
};

Deprecating APIs

Occasionally functions and classes must be deprecated in favor of newer
replacements. Since 3rd party plugin authors rely on a consistent API,
backward compatibility must be maintained, but will not be maintained
indefinitely as plugin authors are expected to properly update their plugins.
In order to maintain backward compatibility, deprecated APIs will follow
these guidelines:

	Minor version (1.x) that deprecates an API must include a wrapper
function/class (or otherwise appropriate means) to maintain backward
compatibility, including any bugs in the original function/class.
This compatibility layer uses elgg_deprecated_notice('...', '1.11')
to log that the function is deprecated.

	The next major revision (2.0) removes the compatibility layer.
Any use of the deprecated API should be corrected before this.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Adding a Service to Elgg

The services guide has general information about using Elgg services.

To add a new service object to Elgg:

	Annotate your class as @access private.

	Open the class Elgg\Di\ServiceProvider.

	Add a @property-read annotation for your service at the top. This allows IDEs and static code
analyzers to understand the type of the property.

	To the constructor, add code to tell the service provider what to return. See the class
Elgg\Di\DiContainer for more information on how Elgg’s DI container works.

At this point your service will be available from the service provider object, but will not yet be accessible to plugins.

Inject your dependencies

Design your class constructor to ask for the necessary dependencies rather than creating them or using
_elgg_services(). The service provider’s setFactory() method provides access to the service provider
instance in your factory method.

Here’s an example of a foo service factory, injecting the config and db services into the constructor:

// in Elgg\Di\ServiceProvider::__construct()

$this->setFactory('foo', function (ServiceProvider $c) {
 return new Elgg\FooService($c->config, $c->db);
});

The full list of internal services can be seen in the @property-read declarations at the top
of Elgg\Di\ServiceProvider.

Warning

Avoid performing work in your service constructor, particularly if it requires database queries.
Currently PHPUnit tests cannot perform them.

Making a service part of the public API

If your service is meant for use by plugin developers:

	Make an interface Elgg\Services\<Name> that contains only those methods needed in the public API.

	Have your service class implement that interface.

	For methods that are in the interface, move the documentation to the interface. You can simply use
{@inheritdoc} in the PHPDocs of the concrete class methods.

	Document your service in docs/guides/services.rst (this file).

	Open the PHPUnit test Elgg\ApplicationTest and add your service key to the $names array
in testServices().

	Open the class Elgg\Application.

	Add @property-read declaration to document your service, but use your interface as the type,
not your service class name.

	Add your service key to the array in the $public_services property, e.g. 'foo' => true,

Now your service will be available via property access on the Elgg\Application instance:

// using the public foo service
$three = elgg()->foo->add(1, 2);

Note

For examples, see the config service, including the interface Elgg\Services\Config
and the concrete implementation Elgg\Config.

Service Life Cycle and Factories

By default, services registered on the service provider are “shared”, meaning the service provider
will store the created instance for the rest of the request, and serve that same instance to all
who request the property.

If you need developers to be able to construct objects that are pre-wired to Elgg services, you may
need to add a public factory method to Elgg\Application. Here’s an example that returns a new
instance using internal Elgg services:

public function createFoo($bar) {
 $logger = $this->services->logger;
 $db = $this->services->db;
 return new Elgg\Foo($bar, $logger, $db);
}

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Writing Documentation

New documentation should fit well with the rest of Elgg’s docs.

Contents

	Testing docs locally

	Follow the existing document organization

	Use “Elgg” in a grammatically correct way

	Avoid first person pronouns

	Eliminate fluff

	Prefer absolute dates over relative ones

	Do not remind the reader to contribute

Testing docs locally

Elgg has a grunt [http://gruntjs.com/] script that automatically builds the docs, opens them in a browser
window, and automatically reloads as you make changes (the reload takes just a few
seconds).

cd path/to/elgg/
npm install
grunt

It’s that easy! Grunt will continue running, watching the docs for changes and
automatically rebuilding.

Follow the existing document organization

The current breakdown is not necessarily the One True Way to organize docs,
but consistency is better than randomness.

intro/*

This is everything that brand new users need to know (installation, features, license, etc.)

admin/*

Guides for administrators. Task-oriented.

guides/*

API guides for plugin developers. Cookbook-style. Example heavy. Code snippet heavy.
Broken down by services (actions, i18n, routing, db, etc.).
This should only discuss the public API and its behavior, not implementation details or reasoning.

design/*

Design docs for people who want to get a better understanding of how/why core is built the way it is.
This should discuss internal implementation details of the various services, what tradeoffs were made,
and the reasoning behind the final decision. Should be useful for people who want to contribute and
for communication b/w core devs.

contribute/*

Contributors guides for the various ways people can participate in the project.

appendix/*

More detailed/meta/background information about the project (history, roadmap, etc.)

Use “Elgg” in a grammatically correct way

Elgg is not an acronym, so writing it in all caps (ELGG or E-LGG) is incorrect. Please don’t do this.

	In English, Elgg does not take an article when used as a noun. Here are some examples to emulate:

	
	“I’m using Elgg to run my website”

	“Install Elgg to get your community online”

	When used as an adjective, the article applies to the main noun, so you should use one. For example:

	
	“Go to the Elgg community website to get help.”

	“I built an Elgg-based network yesterday”

This advice may not apply in languages other than English.

Avoid first person pronouns

Refer to the reader as “you.” Do not include yourself in the normal narrative.

Before:

When we’re done installing Elgg, we’ll look for some plugins!

After:

When you’re done installing Elgg, look for some plugins!

To refer to yourself (avoid this if possible), use your name and write in the third person.
This clarifies to future readers/editors whose opinions are being expressed.

Before:

I think the best way to do X is to use Y.

After:

Evan thinks the best way to do X is to use Y.

Eliminate fluff

Before:

If you want to use a third-party javascript library within the Elgg framework, you should take care to call the elgg_register_js function to register it.

After:

To use a third-party javascript library, call elgg_register_js to register it.

Prefer absolute dates over relative ones

It is not easy to tell when a particular sentence or paragraph was written, so relative dates quickly become meaningless.
Absolute dates also give the reader a good indication of whether a project has been abandoned, or whether some advice might be out of date.

Before:

Recently the foo was barred. Soon, the baz will be barred too.

After:

Recently (as of September 2013), the foo was barred.
The baz is expected to be barred by October 2013.

Do not remind the reader to contribute

Focus on addressing only the topic at hand.
Constant solicitation for free work is annoying and makes the project look needy.
If people want to contribute to the project, they can visit the contributor guide.

Internationalizing documentation

When you change documentation, remember to update the documentation translation
templates before you commit:

cd docs/
make gettext

For more information, see
http://sphinx-doc.org/latest/intl.html#translating-with-sphinx-intl

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Becoming a Financial Supporter

	All funds raised via the Elgg supporters network go directly into:

	
	Elgg core development

	Infrastructure provision (elgg.org, github, etc.)

It is a great way to help with Elgg development!

Benefits

For only $50 per year for individuals or $150 per year for organizations,
you can get listed as a supporter on our supporters page [http://elgg.org/supporter.php].
Elgg supporters are listed there unless they request not to be.

Supporters are able to put this official logo on their site if they wish:

[image: Proud supporter of Elgg]

Disclaimer

We operate a no refund policy on supporter subscriptions.
If you would like to withdraw your support, go to PayPal and cancel your subscription.
You will not be billed the following year.

Being an Elgg Supporter does not give an individual or organization the right to impersonate,
trade as or imply they are connected to the Elgg project.
They can, however, mention that they support the Elgg project.

If you have any questions about this disclaimer, email info@elgg.org.

We reserve the right to remove or refuse a listing without any prior warning at our complete discretion.
There is no refund policy.

If there is no obvious use of Elgg, your site will be linked to with “nofollow” set.

Sign up

If you would like to become an Elgg supporter:

	read the disclaimer above

	on the supporters page, subscribe via PayPal [http://elgg.org/supporter.php]

	send an email to info@elgg.org with:
	the date you subscribed

	your name (and organization name, if applicable)

	your website

	your Elgg community profile

Once all the details have been received, we will add you to the appropriate list. Thanks for your support!

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Contributor Guides

Release Process Workflow

Release a new version of Elgg.

This is the process the core team follows for making a new Elgg release.
We have published this information in the spirit of openness,
and to streamline onboarding of new team members.

Contents

	Requirements

	0. Merge commits up from lower branches

	1. First new stable minor/major release

	2. Prepare the release

	3. Tag the release

	4. Update the website

	5. Make the announcement

Requirements

	SSH access to elgg.org

	Commit access to http://github.com/Elgg/Elgg

	Admin access to https://elgg.org/

	Access to Twitter account [https://twitter.com/elgg]

	Access to G+ page [https://plus.google.com/+ElggOrg]

	Node.js and NPM installed

	Sphinx installed (easy_install sphinx && easy_install sphinx-intl)

	Transifex client installed (easy_install transifex-client)

	Transifex account with access to Elgg project

0. Merge commits up from lower branches

Determine the LTS branch (currently 1.12). We need to merge any new commits there up through the other
branches.

For each branch

Check out the branch, make sure it’s up to date, and make a new work branch with the merge. E.g. here we’re
merging 1.12 commits into 2.0:

git checkout 2.0
git pull
git checkout -b merge112
git merge 1.12

Note

If already up-to-date (no commits to merge), we can stop here for this branch.

If there are conflicts, resolve them, git add ., and git merge.

Make a PR for the branch and wait for automated tests and approval by other dev(s).

git push -u my_fork merge112

Once merged, we would repeat the process to merge 2.0 commits into 2.1.

1. First new stable minor/major release

Update the Support policy to include the new minor/major release date and fill in the blanks for the previous release.

2. Prepare the release

Bring your local git clone up to date.

Merge latest commits up from lowest supported branch.

Visit https://github.com/Elgg/Elgg/compare/<new>...<old> and submit the PR if there is anything that needs to be merged up.

Install the prerequisites:

npm install elgg-conventional-changelog
easy_install sphinx
easy_install sphinx-intl
easy_install transifex-client

Run the release.php script. For example, to release 1.12.5:

git checkout 1.12
php .scripts/release.php 1.12.5

This creates a release-1.12.5 branch in your local repo.

Next, manually browse to the /admin/settings/basic page and verify it loads. If it does not, a language file from Transifex may have a PHP syntax error. Fix the error and amend your commit with the new file:

only necessary if you fixed a language file
git add .
git commit --amend

Next, submit a PR via GitHub for automated testing and approval by another developer:

git push your-remote-fork release-1.12.5

3. Tag the release

Once approved and merged, tag the release:

git checkout release-${version}
git tag -a ${version} -m'Elgg ${version}'
git push --tags origin release-${version}

	Mark GitHub release milestones as completed

	Move unresolved tickets in released milestones to later milestones

4. Update the website

	ssh to elgg.org

	Clone https://github.com/Elgg/elgg-scripts

Build zip package

Use elgg-scripts/build/elgg-starter-project.sh to generate the .zip file. Run without arguments to see usage.

regular release
./elgg-starter-project.sh master 2.0.4 /var/www/www.elgg.org/download/

MIT release
./elgg-starter-project.sh master 2.0.4-mit /var/www/www.elgg.org/download/

	Verify that vendor/elgg/elgg/composer.json in the zip file has the expected version.

	If not, make sure GitHub has the release tag, and that the starter project has a compatible elgg/elgg
item in the composer requires list.

Building 1.x zip packages

Use elgg-scripts/build/build.sh to generate the .zip file. Run without arguments to see usage.

regular release
./build.sh 1.12.5 1.12.5 /var/www/www.elgg.org/download/

MIT release
./build.sh 1.12.5 1.12.5-mit /var/www/www.elgg.org/download/

Update elgg.org

	Clone https://github.com/Elgg/www.elgg.org

	Add the new versions to src/Elgg/Releases.php

	Update vendors

composer update

	Commit and push the changes

	Pull to live site

cd /var/www/www.elgg.org && sudo su deploy && git pull

	Update dependencies

composer install --no-dev --prefer-dist --optimize-autoloader

	
	Go to community admin panel

	
	Flush APC cache

	Run upgrade

5. Make the announcement

This should be the very last thing you do.

	Open https://github.com/Elgg/Elgg/blob/<tag>/CHANGELOG.md and copy the contents for that version

	Sign in at https://elgg.org/blog and compose a new blog with a summary

	Copy in the CHANGELOG contents, clear formatting, and manually remove the SVG anchors

	Add tags release and elgg2.x where x is whatever branch is being released

	Tweet from the elgg Twitter account [https://twitter.com/elgg]

	Post from the G+ page [https://plus.google.com/+ElggOrg]

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

Appendix

Miscellaneous information about the project.

	FAQs and Other Troubleshooting
	General

	Security

	Development

	Roadmap
	Values

	FAQ

	Release Policy
	Patch/Bugfix Releases (2.1.x)

	Minor/Feature Releases (2.x.0)

	Major/Breaking Releases (x.0.0)

	Alphas, Betas, and Release Candidates

	Support policy
	Long Term Support Releases

	History

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

FAQs and Other Troubleshooting

Below are some commonly asked questions about Elgg.

Contents

	General
	“Plugin cannot start and has been deactivated” or “This plugin is invalid”

	White Page (WSOD)

	Page not found

	Login token mismatch

	Form is missing __token or __ts fields

	Maintenance mode

	Missing email

	Server logs

	How does registration work?

	User validation

	Manually add user

	I’m making or just installed a new theme, but graphics or other elements aren’t working

	Changing profile fields

	Changing registration

	How do I change PHP settings using .htaccess?

	HTTPS login turned on accidently

	Using a test site

	500 - Internal Server Error

	When I upload a photo or change my profile picture I get a white screen

	CSS is missing

	Should I edit the database manually?

	Internet Explorer (IE) login problem

	Emails don’t support non-Latin characters

	Session length

	File is missing an owner

	No images

	Deprecation warnings

	Javascript not working

	Security
	Is upgrade.php a security concern?

	Should I delete install.php?

	Filtering

	Development
	What should I use to edit php code?

	I don’t like the wording of something in Elgg. How do I change it?

	How do I find the code that does x?

	Debug mode

	What events are triggered on every page load?

	What variables are reserved by Elgg?

	Copy a plugin

General

See also

Getting Help

“Plugin cannot start and has been deactivated” or “This plugin is invalid”

This error is usually accompanied by more details explaining why the plugin is invalid. This is usually
caused by an incorrectly installed plugin.

If you are installing a plugin called “test”, there will be a test directory under mod. In that test directory there needs to be a start.php file: /mod/test/start.php and a manifest.xml file /mod/test/manifest.xml.

	If these files do not exist, it could be caused by:

	
	installing a plugin to the wrong directory

	creating a directory under /mod that does not contain a plugin

	a bad ftp transfer

	unzipping a plugin into an extra directory (myplugin.zip unzips to myplugin/myplugin)

If you are on a Unix-based host and the files exist in the correct directory, check the permissions. Elgg must have read access to the files and read + execute access on the directories.

White Page (WSOD)

	A blank, white page (often called a “white screen of death”) means there is a PHP syntax error. There are a few possible causes of this:

	
	corrupted file - try transfering the code again to your server

	a call to a php module that was not loaded - this can happen after you install a plugin that requires a specific module.

	bad plugin - not all plugins have been written to the same quality so you should be careful which ones you install.

To find where the error is occurring, change the .htaccess file to display errors to the browser. Set display_errors to 1 and load the same page again. You should see a PHP error in your browser. Change the setting back once you’ve resolved the problem.

Note

If you are using the Developer’s Tools plugin, go to its settings page and make sure you have “Display fatal PHP errors” enabled.

If the white screen is due to a bad plugin, remove the latest plugins that you have installed by deleting their directories and then reload the page.

Note

You can temporarily disable all plugins by creating an empty file at mod/disabled. You can then disable the offending module via the administrator tools panel.

If you are getting a WSOD when performing an action, like logging in or posting a blog, but there are no error messages, it’s most likely caused by non-printable characters in plugin code. Check the plugin for white spaces/new lines characters after finishing php tag (?>) and remove them.

Page not found

If you have recently installed your Elgg site, the most likely cause for a page not found error is that mod_rewrite is not setup correctly on your server. There is information in the Install Troubleshooting page on fixing this. The second most likely cause is that your site url in your database is incorrect.

If you’ve been running your site for a while and suddenly start getting page not found errors, you need to ask yourself what has changed. Have you added any plugins? Did you change your server configuration?

To debug a page not found error:

	Confirm that the link leading to the missing page is correct. If not, how is that link being generated?

	Confirm that the .htaccess rewrite rules are being picked up.

Login token mismatch

If you have to log in twice to your site and the error message after the first attempt says there was a token mismatch error, the URL in Elgg’s settings does not match the URL used to access it. The most common cause for this is adding or removing the “www” when accessing the site. For example, www.elgg.org vs elgg.org. This causes a problem with session handling because of the way that web browsers save cookies.

To fix this, you can add rewrite rules. To redirect from www.elgg.org to elgg.org in Apache, the rules might look like:

RewriteCond %{HTTP_HOST} .
RewriteCond %{HTTP_HOST} !^elgg\.org
RewriteRule (.*) http://elgg.org/$1 [R=301,L]

Redirecting from non-www to www could look like this:

RewriteCond %{HTTP_HOST} ^elgg\.org
RewriteRule ^(.*)$ http://www.elgg.org/$1 [R=301,L]

If you don’t know how to configure rewrite rules, ask your host for more information.

Form is missing __token or __ts fields

All Elgg actions require a security token, and this error occurs when that token is missing. This is either a problem with your server configuration or with a 3rd party plugin.

If you experience this on a new installation, make sure that your server is properly configured and your rewrite rules are correct. If you experience this on an upgrade, make sure you have updated your rewrite rules either in .htaccess (Apache) or in the server configuration.

If you are experiencing this, disable all 3rd party plugins and try again. Very old plugins for Elgg don’t use security tokens. If the problem goes away when plugins are disabled, it’s due to a plugin that should be updated by its author.

Maintenance mode

To take your site temporarily offline, go to Administration -> Utilities -> Maintenance Mode. Complete the form and hit save to disable your site for everyone except admin users.

Missing email

If your users are reporting that validation emails are not showing up, have them check their spam folder. It is possible that the emails coming from your server are being marked as spam. This depends on many factors such as whether your hosting provider has a problem with spammers, how your PHP mail configuration is set up, what mail transport agent your server is using, or your host limiting the number of email that you can send in an hour.

If no one gets email at all, it is quite likely your server is not configured properly for email. Your server needs a program to send email (called a Mail Transfer Agent - MTA) and PHP must be configured to use the MTA.

To quickly check if PHP and an MTA are correctly configured, create a file on your server with the following content:

<?php
$address = "your_email@your_host.com";

$subject = 'Test email.';

$body = 'If you can read this, your email is working.';

echo "Attempting to email $address...
";

if (mail($address, $subject, $body)) {
 echo 'SUCCESS! PHP successfully delivered email to your MTA. If you don\'t see the email in your inbox in a few minutes, there is a problem with your MTA.';
} else {
 echo 'ERROR! PHP could not deliver email to your MTA. Check that your PHP settings are correct for your MTA and your MTA will deliver email.';
}

Be sure to replace “your_email@your_host.com” with your actual email address. Take care to keep quotes around it! When you access this page through your web browser, it will attempt to send a test email. This test will let you know that PHP and your MTA are correctly configured. If it fails–either you get an error or you never receive the email–you will need to do more investigating and possibly contact your service provider.

Fully configuring an MTA and PHP’s email functionality is beyond the scope of this FAQ and you should search the Internet for more resources on this. Some basic information on php parameters can be found on PHP’s site [http://php.net/manual/en/mail.configuration.php]

Server logs

Most likely you are using Apache as your web server. Warnings and errors are written to a log by the web server and can be useful for debugging problems. You will commonly see two types of log files: access logs and error logs. Information from PHP and Elgg is written to the server error log.

	Linux – The error log is probably in /var/log/httpd or /var/log/apache2.

	Windows - It is probably inside your Apache directory.

	Mac OS - The error log is probably in /var/log/apache2/error_log

If you are using shared hosting without ssh access, your hosting provider may provide a mechanism for obtaining access to your server logs. You will need to ask them about this.

How does registration work?

With a default setup, this is how registration works:

	User fills out registration form and submits it

	User account is created and disabled until validated

	Email is sent to user with a link to validate the account

	When a user clicks on the link, the account is validated

	The user can now log in

Failures during this process include the user entering an incorrect email address, the validation email being marked as spam, or a user never bothering to validate the account.

User validation

By default, all users who self-register must validate their accounts through email. If a user has
problems validating an account, you can validate users manually by going to Administration -> Users -> Unvalidated.

You can remove this requirement by deactivating the User Validation by Email plugin.

Note

Removing validation has some consequences: There is no way to know that a user registered with a working email address, and it may leave you system open to spammers.

Manually add user

To manually add a user, under the Administer controls go to Users. There you will see a link title “Add new User”. After you fill out the information and submit the form, the new user will receive an email with username and password and a reminder to change the password.

Note

Elgg does not force the user to change the password.

I’m making or just installed a new theme, but graphics or other elements aren’t working

Make sure the theme is at the bottom of the plugin list.

Clear your browser cache and reload the page. To lighten the load on the server, Elgg instructs the browser to rarely load the CSS file. A new theme will completely change the CSS file and a refresh should cause the browser to request the CSS file again.

If you’re building or modifying a theme, make sure you have disabled the simple and system caches. This can be done by
enabling the Developer Tools plugin, then browsing to Administration -> Develop -> Settings. Once you’re satisfied with the changes, enable the caches or performance will suffer.

Changing profile fields

Within the Administration settings of Elgg is a page for replacing the default profile fields. Elgg by default gives the administrator two choices:

	Use the default profile fields

	Replace the default with a set of custom profile fields

You cannot add new profile fields to the default ones. Adding a new profile field through the replace profile fields option clears the default ones. Before letting in users, it is best to determine what profile fields you want, what field types they should be, and the order they should appear. You cannot change the field type or order or delete fields after they have been created without wiping the entire profile blank.

More flexibility can be gained through plugins. There is at least two plugins on the community site that enable you to have more control over profile fields. The Profile Manager [https://community.elgg.org/plugins/385114] plugin has become quite popular in the Elgg community. It lets you add new profile fields whenever you want, change the order, group profile fields, and add them to registration.

Changing registration

The registration process can be changed through a plugin. Everything about registration can be changed: the look and feel, different registration fields, additional validation of the fields, additional steps and so on. These types of changes require some basic knowledge of HTML, CSS, PHP.

Another option is to use the Profile Manager [https://community.elgg.org/plugins/385114] plugin that lets you add fields to both user profiles and the registration form.

	Create the plugin skeleton

	Plugin skeleton

	Changing registration display

	Override the account/forms/register view

	Changing the registration action handler

	You can write your own action to create the user’s account

How do I change PHP settings using .htaccess?

You may want to change php settings in your .htaccess file. This is especially true if your hosting provider does not give you access to the server’s php.ini file. The variables could be related to file upload size limits, security, session length, or any number of other php attributes. For examples of how to do this, see the PHP documentation [http://us2.php.net/configuration.changes] on this.

HTTPS login turned on accidently

If you have turned on HTTPS login but do not have SSL configured, you are now locked out of your Elgg install. To turn off this configuration parameter, you will need to edit your database. Use a tool like phpMyAdmin to view your database. Select the config table and delete the row that has the name https_login.

Using a test site

It is recommended to always try out new releases or new plugins on a test site before running them on a production site (a site with actual users). The easiest way to do this is to maintain a separate install of Elgg with dummy accounts. When testing changes it is important to use dummy accounts that are not admins to test what your users will see.

A more realistic test is to mirror the content from your production site to your test site. Following the instructions for duplicating a site. Then make sure you prevent emails from being sent to your users. You could write a small plugin that redirects all email to your own account (be aware of plugins that include their own custom email sending code so you’ll have to modify those plugins). After this is done you can view all of the content to make sure the upgrade or new plugin is functioning as desired and is not breaking anything. If this process sounds overwhelming, please stick with running a simple test site.

500 - Internal Server Error

What is it?

A 500 - Internal Server Error means the web server experienced a problem serving a request.

See also

The Wikipedia page on HTTP status codes [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error]

Possible causes

	Web server configuration

	The most common cause for this is an incorrectly configured server. If you edited the .htaccess file and added something incorrect, Apache will send a 500 error.

	Permissions on files

	It could also be a permissions problem on a file. Apache needs to be able to read Elgg’s files. Using permissions 755 on directories and 644 on files will allow Apache to read the files.

When I upload a photo or change my profile picture I get a white screen

Most likely you don’t have the PHP GD library installed or configured properly. You may need assistance from the administrator of your server.

CSS is missing

Wrong URL

Sometimes people install Elgg so that the base URL is localhost and then try to view the site using a hostname. In this case, the browser won’t be able to load the CSS file. Try viewing the source of the web page and copying the link for the CSS file. Paste that into your browser. If you get a 404 error, it is likely this is your problem. You will need to change the base URL of your site.

Syntax error

Elgg stores its CSS as PHP code to provide flexibility and power. If there is a syntax error, the CSS file served to the browser may be blank. Disabling non-bundled plugins is the recommended first step.

Rewrite rules errors

A bad .htaccess file could also result in a 404 error when requesting the CSS file. This could happen when doing an upgrade and forgetting to also upgrade .htaccess.

Should I edit the database manually?

Warning

No, you should never manually edit the database!

Will editing the database manually break my site?

Yes.

Can I add extra fields to tables in the database?

(AKA: I don’t understand the Elgg data model so I’m going to add columns. Will you help?)

No, this is a bad idea. Learn the data model and you will see that unless it’s a very specific and highly customized installation, you can do everything you need within Elgg’s current data model.

I want to remove users. Can’t I just delete them from the elgg_users_entity table?

No, it will corrupt your database. Delete them through the site.

I want to remove spam. Can’t I just search and delete it from the elgg_objects_entity table?

No, it will corrupt your database. Delete it through the site.

Someone on the community site told me to edit the database manually. Should I?

Who was it? Is it someone experienced with Elgg, like one of the core developers or a well-known plugin author? Did he or she give you clear and specific instructions on what to edit? If you don’t know who it is, or if you can’t understand or aren’t comfortable following the instructions, do not edit the database manually.

I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit the database?

Make sure you understand Elgg’s data model and schema first. Make a backup, edit carefully, then test copiously.

Internet Explorer (IE) login problem

Canonical URL

IE does not like working with sites that use both http://example.org and http://www.example.org. It stores multiple cookies and this causes problems. Best to only use one base URL. For details on how to do this see Login token mismatch error.

Chrome Frame

Using the chrome frame within IE can break the login process.

Emails don’t support non-Latin characters

In order to support non-Latin characters, (such as Cyrillic or Chinese) Elgg requires multibyte string support [http://uk.php.net/manual/en/mbstring.installation.php] to be compiled into PHP.

On many installs (e.g. Debian & Ubuntu) this is turned on by default. If it is not, you need to turn it on (or recompile PHP to include it). To check whether your server supports multibyte strings, check phpinfo [http://php.net/manual/en/function.phpinfo.php].

Session length

Session length is controlled by your php configuration. You will first need to locate your php.ini file. In that file will be several session variables. A complete list and what they do can be found in the php manual [http://php.net/manual/en/session.configuration.php].

File is missing an owner

There are three causes for this error. You could have an entity in your database that has an owner_guid of 0. This should be extremely rare and may only occur if your database/server crashes during a write operation.

The second cause would be an entity where the owner no longer exists. This could occur if a plugin is turned off that was involved in the creation of the entity and then the owner is deleted but the delete operation failed (because the plugin is turned off). If you can figure out entity is causing this, look in your entities table and change the owner_guid to your own and then you can delete the entity through Elgg.

Warning

Reed the section “Should I edit the database manually?”. Be very carefull when editing the database directly. It can break your site. Always make a backup before doing this.

The third cause is a user not having a username. This also indicates a database problem as this should not be possible. If it does occur, you could see this error when viewing a list of users (such as with the Members plugin). To fix, check your users_entity table for users without a username and if so, create a fake a username for that person. You should probably then delete the user through Elgg.

Fixes

Database Validator [https://community.elgg.org/plugins/438616] plugin will check your database for these causes and provide an option to fix them. Be sure to backup the database before you try the fix option.

No images

If profile images, group images, or other files have stopped working on your site it is likely due to a misconfiguration, especially if you have migrated to a new server.

These are the most common misconfigurations that cause images and other files to stop working.

Wrong path for data directory

Make sure the data directory’s path is correct in the Site Administration admin area. It should have a trailing slash.

Wrong permissions on the data directory

Check the permissions for the data directory. The data directory should be readable and writeable by the web server user.

Different timezone

Note

This only applies to Elgg versions before 1.9

If you migrated servers or upgraded PHP, check that PHP’s timezone settings are the same between the old and the new. If you cannot or don’t want to change the system-wide php.ini file, you can put the following at the top of settings.php:

date_default_timezone_set('MY_TIME_ZONE');

Where MY_TIME_ZONE is a valid PHP timezone [http://php.net/manual/en/timezones.php].

Migrated installation with new data directory location

If you migrated an installation and need to change your data directory path, be sure to update the SQL for the filestore location as documented in the Duplicate Installation instructions.

Deprecation warnings

If you are seeing many deprecation warnings that say things like

Deprecated in 1.7: extend_view() was deprecated by elgg_extend_view()!

then you are using a plugin that was written for an older version of Elgg. This means the plugin is using functions that are scheduled to be removed in a future version of Elgg. You can ask the plugin developer if the plugin will be updated or you can update the plugin yourself. If neither of those are likely to happen, you should not use that plugin.

Javascript not working

If the user hover menu stops working or you cannot dismiss system messages, that means JavaScript is broken on your site. This usually due to a plugin having bad JavaScript code. You should find the plugin causing the problem and disable it. You can do this be disabling non-bundled plugins one at a time until the problem goes away. Another approach is disabling all non-bundled plugins and then enabling them one by one until the problem occurs again.

Most web browsers will give you a hint as to what is breaking the JavaScript code. They often have a console for JavaScript errors or an advanced mode for displaying errors. Once you see the error message, you may have an easier time locating the problem.

Security

Is upgrade.php a security concern?

Upgrade.php is a file used to run code and database upgrades. It is in the root of the directory and doesn’t require a logged in account to access. On a fully upgraded site, running the file will only reset the caches and exit, so this is not a security concern.

If you are still concerned, you can either delete, move, or change permissions on the file until you need to upgrade.

Should I delete install.php?

This file is used to install Elgg and doesn’t need to be deleted. The file checks if Elgg is already installed and forwards the user to the front page if it is.

Filtering

Filtering is used in Elgg to make XSS [http://en.wikipedia.org/wiki/Cross-site_scripting] attacks more difficult. The purpose of the filtering is to remove Javascript and other dangerous input from users.

Filtering is performed through the function filter_tags(). This function takes in a string and returns a filtered string. It triggers a validate, input plugin hook. By default Elgg comes with the htmLawed filtering code as a plugin. Developers can drop in any additional or replacement filtering code as a plugin.

The filter_tags() function is called on any user input as long as the input is obtained through a call to get_input(). If for some reason a developer did not want to perform the default filtering on some user input, the get_input() function has a parameter for turning off filtering.

Development

What should I use to edit php code?

There are two main options: text editor or integrated development environment [http://en.wikipedia.org/wiki/Integrated_development_environment] (IDE).

Text Editor

If you are new to software development or do not have much experience with IDEs, using a text editor will get you up and running the quickest. At a minimum, you will want one that does syntax highlighting to make the code easier to read. If you think you might submit patches to the bug tracker, you will want to make sure that your text editor does not change line endings. If you are using Windows, Notepad++ [http://notepad-plus-plus.org/] is a good choice. If you are on a Mac, TextWrangler [http://www.barebones.com/products/textwrangler/index.html] is a popular choice. You could also give TextMate [http://macromates.com/] a try.

Integrated Development Environment

An IDE does just what its name implies: it includes a set of tools that you would normally use separately. Most IDEs will include source code control which will allow you to directly commit and update your code from your cvs repository. It may have an FTP client built into it to make the transfer of files to a remote server easier. It will have syntax checking to catch errors before you try to execute the code on a server.

The two most popular free IDEs for PHP developers are Eclipse [http://www.eclipse.org/] and NetBeans [http://netbeans.org/]. Eclipse has two different plugins for working with PHP code: PDT [http://www.eclipse.org/pdt/] and PHPEclipse [http://www.phpeclipse.com/].

I don’t like the wording of something in Elgg. How do I change it?

The best way to do this is with a plugin.

Create the plugin skeleton

Plugin skeleton

Locate the string that you want to change

All the strings that a user sees should be in the /languages directory or in a plugin’s languages directory (/mod/<plugin name>/languages). This is done so that it is easy to change what language Elgg uses. For more information on this see the developer documentation on Internationalization .

To find the string use grep or a text editor that provides searching through files to locate the string. (A good text editor for Windows is Notepad++ [http://notepad-plus-plus.org/]) Let’s say we want to change the string “Add friend” to “Make a new friend”. The grep command to find this string would be grep -r "Add friend" *. Using Notepad++ [http://notepad-plus-plus.org/] , you would use the “Find in files” command. You would search for the string, set the filter to *.php, set the directory to the base directory of Elgg, and make sure it searches all subdirectories. You might want to set it to be case sensitive also.

You should locate the string “Add friend” in /languages/en.php. You should see something like this in the file:

'friend:add' => "Add friend",

This means every time Elgg sees friend:add it replaces it with “Add friend”. We want to change the definition of friend:add.

Override the string

To override this definition, we will add a languages file to the plugin that we built in the first step.

	Create a new directory: /mod/<your plugin name>/languages

	Create a file in that directory called en.php

	Add these lines to that file

<?php

return array(
 'friend:add' => 'Make a new friend',
);

Make sure that you do not have any spaces or newlines before the <?php.

You’re done now and should be able to enable the plugin and see the change. If you are override the language of a plugin, make sure your plugin is loaded after the one you are trying to modify. The loading order is determined in the Tools Administration page of the admin section. As you find more things that you’d like to change, you can keep adding them to this plugin.

How do I find the code that does x?

The best way to find the code that does something that you would like to change is to use grep or a similar search tool. If you do not have grep as a part of your operating system, you will want to install a grep tool or use a text-editor/IDE that has good searching in files. Notepad++ [http://notepad-plus-plus.org/] is a good choice for Windows users. Eclipse [http://www.eclipse.org/] with PHP and NetBeans [http://netbeans.org/] are good choices for any platform.

String Example

Let’s say that you want to find where the Log In box code is located. A string from the Log In box that should be fairly unique is Remember me. Grep for that string. You will find that it is only used in the en.php file in the /languages directory. There it is used to define the Internationalization string user:persistent. Grep for that string now. You will find it in two places: the same en.php language file and in /views/default/forms/login.php. The latter defines the html code that makes up the Log In box.

Action Example

Let’s say that you want to find the code that is run when a user clicks on the Save button when arranging widgets on a profile page. View the Profile page for a test user. Use Firebug to drill down through the html of the page until you come to the action of the edit widgets form. You’ll see the url from the base is action/widgets/move.

Grep on widgets/move and two files are returned. One is the JavaScript code for the widgets : /js/lib/ui.widgets.js. The other one, /engine/lib/widgets.php, is where the action is registered using elgg_register_action('widgets/reorder'). You may not be familiar with that function in which case, you should look it up at the API reference. Do a search on the function and it returns the documentation on the function. This tells you that the action is in the default location since a file location was not specified. The default location for actions is /actions so you will find the file at /actions/widgets/move.php.

Debug mode

During the installation process you might have noticed a checkbox that controlled whether debug mode was turned on or off. This setting can also be changed on the Site Administration page. Debug mode writes a lot of extra data to your php log. For example, when running in this mode every query to the database is written to your logs. It may be useful for debugging a problem though it can produce an overwhelming amount of data that may not be related to the problem at all. You may want to experiment with this mode to understand what it does, but make sure you run Elgg in normal mode on a production server.

Warning

Because of the amount of data being logged, don’t enable this on a production server as it can fill up the log files really quick.

What goes into the log in debug mode?

	All database queries

	Database query profiling

	Page generation time

	Number of queries per page

	List of plugin language files

	Additional errors/warnings compared to normal mode (it’s very rare for these types of errors to be related to any problem that you might be having)

What does the data look like?

[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and enabled='yes') results cached
[07-Mar-2009 14:27:20] SELECT guid from elggsites_entity where guid = 1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and enabled='yes') results cached
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and enabled='yes') results returned from cache
[07-Mar-2009 14:27:20] ** Sub part of GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggsites_entity where guid=1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: user" in file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: pass" in file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] ***************** DB PROFILING ********************
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggdatalists'
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggentities where guid=1 and ((access_id in (2) or (owner_guid = -1) or (access_id = 0 and owner_guid = -1)) and enabled='yes')'
...
[07-Mar-2009 14:27:20] 2 times: 'update elggmetadata set access_id = 2 where entity_guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggentities set owner_guid='0', access_id='2', container_guid='0', time_updated='1236461868' WHERE guid=1'
[07-Mar-2009 14:27:20] 1 times: 'SELECT guid from elggsites_entity where guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggsites_entity set name='3124/944', description='', url='http://example.org/' where guid=1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggusers_entity set prev_last_action = last_action, last_action = 1236461868 where guid = 2'
[07-Mar-2009 14:27:20] DB Queries for this page: 56
[07-Mar-2009 14:27:20] ***
[07-Mar-2009 14:27:20] Page /action/admin/site/update_basic generated in 0.36997294426 seconds

What events are triggered on every page load?

There are 5 Elgg events that are triggered on every page load:

	boot, system

	plugins_boot, system

	init, system

	pagesetup, system

	shutdown, system

The boot, system event is triggered before the plugins get loaded. There does not appear to be any difference between the timing of the next two events: plugins_boot, system and init, system so plugins tend to use init, system. This event is triggered in Elgg\Application::bootCore. The pagesetup, system event is thrown the first time elgg_view() is called. Some pages like the default index.php do not call elgg_view() so it is not triggered for them. The shutdown, system event is triggered after the page has been sent to the requester and is handled through the PHP function register_shutdown_function().

There are other events that are triggered by the Elgg core but they happen occasionally (such as when a user logs in).

What variables are reserved by Elgg?

	$CONFIG

	$vars

	$autofeed

	$_GET['action'] / $_POST['action']

	$viewtype

Copy a plugin

There are many questions asked about how to copy a plugin. Let’s say you want to copy the blog plugin in order to run one plugin called blog and another called poetry. This is not difficult but it does require a lot of work. You would need to

	change the directory name

	change the names of every function (having two functions causes PHP to crash)

	change the name of every view (so as not to override the views on the original plugin)

	change any data model subtypes

	change the language file

	change anything else that was specific to the original plugin

Note

If you are trying to clone the groups plugin, you will have the additional difficulty that the group plugin does not set a subtype.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

 	FAQs and Other Troubleshooting

General

See also

Getting Help

“Plugin cannot start and has been deactivated” or “This plugin is invalid”

This error is usually accompanied by more details explaining why the plugin is invalid. This is usually
caused by an incorrectly installed plugin.

If you are installing a plugin called “test”, there will be a test directory under mod. In that test directory there needs to be a start.php file: /mod/test/start.php and a manifest.xml file /mod/test/manifest.xml.

	If these files do not exist, it could be caused by:

	
	installing a plugin to the wrong directory

	creating a directory under /mod that does not contain a plugin

	a bad ftp transfer

	unzipping a plugin into an extra directory (myplugin.zip unzips to myplugin/myplugin)

If you are on a Unix-based host and the files exist in the correct directory, check the permissions. Elgg must have read access to the files and read + execute access on the directories.

White Page (WSOD)

	A blank, white page (often called a “white screen of death”) means there is a PHP syntax error. There are a few possible causes of this:

	
	corrupted file - try transfering the code again to your server

	a call to a php module that was not loaded - this can happen after you install a plugin that requires a specific module.

	bad plugin - not all plugins have been written to the same quality so you should be careful which ones you install.

To find where the error is occurring, change the .htaccess file to display errors to the browser. Set display_errors to 1 and load the same page again. You should see a PHP error in your browser. Change the setting back once you’ve resolved the problem.

Note

If you are using the Developer’s Tools plugin, go to its settings page and make sure you have “Display fatal PHP errors” enabled.

If the white screen is due to a bad plugin, remove the latest plugins that you have installed by deleting their directories and then reload the page.

Note

You can temporarily disable all plugins by creating an empty file at mod/disabled. You can then disable the offending module via the administrator tools panel.

If you are getting a WSOD when performing an action, like logging in or posting a blog, but there are no error messages, it’s most likely caused by non-printable characters in plugin code. Check the plugin for white spaces/new lines characters after finishing php tag (?>) and remove them.

Page not found

If you have recently installed your Elgg site, the most likely cause for a page not found error is that mod_rewrite is not setup correctly on your server. There is information in the Install Troubleshooting page on fixing this. The second most likely cause is that your site url in your database is incorrect.

If you’ve been running your site for a while and suddenly start getting page not found errors, you need to ask yourself what has changed. Have you added any plugins? Did you change your server configuration?

To debug a page not found error:

	Confirm that the link leading to the missing page is correct. If not, how is that link being generated?

	Confirm that the .htaccess rewrite rules are being picked up.

Login token mismatch

If you have to log in twice to your site and the error message after the first attempt says there was a token mismatch error, the URL in Elgg’s settings does not match the URL used to access it. The most common cause for this is adding or removing the “www” when accessing the site. For example, www.elgg.org vs elgg.org. This causes a problem with session handling because of the way that web browsers save cookies.

To fix this, you can add rewrite rules. To redirect from www.elgg.org to elgg.org in Apache, the rules might look like:

RewriteCond %{HTTP_HOST} .
RewriteCond %{HTTP_HOST} !^elgg\.org
RewriteRule (.*) http://elgg.org/$1 [R=301,L]

Redirecting from non-www to www could look like this:

RewriteCond %{HTTP_HOST} ^elgg\.org
RewriteRule ^(.*)$ http://www.elgg.org/$1 [R=301,L]

If you don’t know how to configure rewrite rules, ask your host for more information.

Form is missing __token or __ts fields

All Elgg actions require a security token, and this error occurs when that token is missing. This is either a problem with your server configuration or with a 3rd party plugin.

If you experience this on a new installation, make sure that your server is properly configured and your rewrite rules are correct. If you experience this on an upgrade, make sure you have updated your rewrite rules either in .htaccess (Apache) or in the server configuration.

If you are experiencing this, disable all 3rd party plugins and try again. Very old plugins for Elgg don’t use security tokens. If the problem goes away when plugins are disabled, it’s due to a plugin that should be updated by its author.

Maintenance mode

To take your site temporarily offline, go to Administration -> Utilities -> Maintenance Mode. Complete the form and hit save to disable your site for everyone except admin users.

Missing email

If your users are reporting that validation emails are not showing up, have them check their spam folder. It is possible that the emails coming from your server are being marked as spam. This depends on many factors such as whether your hosting provider has a problem with spammers, how your PHP mail configuration is set up, what mail transport agent your server is using, or your host limiting the number of email that you can send in an hour.

If no one gets email at all, it is quite likely your server is not configured properly for email. Your server needs a program to send email (called a Mail Transfer Agent - MTA) and PHP must be configured to use the MTA.

To quickly check if PHP and an MTA are correctly configured, create a file on your server with the following content:

<?php
$address = "your_email@your_host.com";

$subject = 'Test email.';

$body = 'If you can read this, your email is working.';

echo "Attempting to email $address...
";

if (mail($address, $subject, $body)) {
 echo 'SUCCESS! PHP successfully delivered email to your MTA. If you don\'t see the email in your inbox in a few minutes, there is a problem with your MTA.';
} else {
 echo 'ERROR! PHP could not deliver email to your MTA. Check that your PHP settings are correct for your MTA and your MTA will deliver email.';
}

Be sure to replace “your_email@your_host.com” with your actual email address. Take care to keep quotes around it! When you access this page through your web browser, it will attempt to send a test email. This test will let you know that PHP and your MTA are correctly configured. If it fails–either you get an error or you never receive the email–you will need to do more investigating and possibly contact your service provider.

Fully configuring an MTA and PHP’s email functionality is beyond the scope of this FAQ and you should search the Internet for more resources on this. Some basic information on php parameters can be found on PHP’s site [http://php.net/manual/en/mail.configuration.php]

Server logs

Most likely you are using Apache as your web server. Warnings and errors are written to a log by the web server and can be useful for debugging problems. You will commonly see two types of log files: access logs and error logs. Information from PHP and Elgg is written to the server error log.

	Linux – The error log is probably in /var/log/httpd or /var/log/apache2.

	Windows - It is probably inside your Apache directory.

	Mac OS - The error log is probably in /var/log/apache2/error_log

If you are using shared hosting without ssh access, your hosting provider may provide a mechanism for obtaining access to your server logs. You will need to ask them about this.

How does registration work?

With a default setup, this is how registration works:

	User fills out registration form and submits it

	User account is created and disabled until validated

	Email is sent to user with a link to validate the account

	When a user clicks on the link, the account is validated

	The user can now log in

Failures during this process include the user entering an incorrect email address, the validation email being marked as spam, or a user never bothering to validate the account.

User validation

By default, all users who self-register must validate their accounts through email. If a user has
problems validating an account, you can validate users manually by going to Administration -> Users -> Unvalidated.

You can remove this requirement by deactivating the User Validation by Email plugin.

Note

Removing validation has some consequences: There is no way to know that a user registered with a working email address, and it may leave you system open to spammers.

Manually add user

To manually add a user, under the Administer controls go to Users. There you will see a link title “Add new User”. After you fill out the information and submit the form, the new user will receive an email with username and password and a reminder to change the password.

Note

Elgg does not force the user to change the password.

I’m making or just installed a new theme, but graphics or other elements aren’t working

Make sure the theme is at the bottom of the plugin list.

Clear your browser cache and reload the page. To lighten the load on the server, Elgg instructs the browser to rarely load the CSS file. A new theme will completely change the CSS file and a refresh should cause the browser to request the CSS file again.

If you’re building or modifying a theme, make sure you have disabled the simple and system caches. This can be done by
enabling the Developer Tools plugin, then browsing to Administration -> Develop -> Settings. Once you’re satisfied with the changes, enable the caches or performance will suffer.

Changing profile fields

Within the Administration settings of Elgg is a page for replacing the default profile fields. Elgg by default gives the administrator two choices:

	Use the default profile fields

	Replace the default with a set of custom profile fields

You cannot add new profile fields to the default ones. Adding a new profile field through the replace profile fields option clears the default ones. Before letting in users, it is best to determine what profile fields you want, what field types they should be, and the order they should appear. You cannot change the field type or order or delete fields after they have been created without wiping the entire profile blank.

More flexibility can be gained through plugins. There is at least two plugins on the community site that enable you to have more control over profile fields. The Profile Manager [https://community.elgg.org/plugins/385114] plugin has become quite popular in the Elgg community. It lets you add new profile fields whenever you want, change the order, group profile fields, and add them to registration.

Changing registration

The registration process can be changed through a plugin. Everything about registration can be changed: the look and feel, different registration fields, additional validation of the fields, additional steps and so on. These types of changes require some basic knowledge of HTML, CSS, PHP.

Another option is to use the Profile Manager [https://community.elgg.org/plugins/385114] plugin that lets you add fields to both user profiles and the registration form.

	Create the plugin skeleton

	Plugin skeleton

	Changing registration display

	Override the account/forms/register view

	Changing the registration action handler

	You can write your own action to create the user’s account

How do I change PHP settings using .htaccess?

You may want to change php settings in your .htaccess file. This is especially true if your hosting provider does not give you access to the server’s php.ini file. The variables could be related to file upload size limits, security, session length, or any number of other php attributes. For examples of how to do this, see the PHP documentation [http://us2.php.net/configuration.changes] on this.

HTTPS login turned on accidently

If you have turned on HTTPS login but do not have SSL configured, you are now locked out of your Elgg install. To turn off this configuration parameter, you will need to edit your database. Use a tool like phpMyAdmin to view your database. Select the config table and delete the row that has the name https_login.

Using a test site

It is recommended to always try out new releases or new plugins on a test site before running them on a production site (a site with actual users). The easiest way to do this is to maintain a separate install of Elgg with dummy accounts. When testing changes it is important to use dummy accounts that are not admins to test what your users will see.

A more realistic test is to mirror the content from your production site to your test site. Following the instructions for duplicating a site. Then make sure you prevent emails from being sent to your users. You could write a small plugin that redirects all email to your own account (be aware of plugins that include their own custom email sending code so you’ll have to modify those plugins). After this is done you can view all of the content to make sure the upgrade or new plugin is functioning as desired and is not breaking anything. If this process sounds overwhelming, please stick with running a simple test site.

500 - Internal Server Error

What is it?

A 500 - Internal Server Error means the web server experienced a problem serving a request.

See also

The Wikipedia page on HTTP status codes [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_Server_Error]

Possible causes

	Web server configuration

	The most common cause for this is an incorrectly configured server. If you edited the .htaccess file and added something incorrect, Apache will send a 500 error.

	Permissions on files

	It could also be a permissions problem on a file. Apache needs to be able to read Elgg’s files. Using permissions 755 on directories and 644 on files will allow Apache to read the files.

When I upload a photo or change my profile picture I get a white screen

Most likely you don’t have the PHP GD library installed or configured properly. You may need assistance from the administrator of your server.

CSS is missing

Wrong URL

Sometimes people install Elgg so that the base URL is localhost and then try to view the site using a hostname. In this case, the browser won’t be able to load the CSS file. Try viewing the source of the web page and copying the link for the CSS file. Paste that into your browser. If you get a 404 error, it is likely this is your problem. You will need to change the base URL of your site.

Syntax error

Elgg stores its CSS as PHP code to provide flexibility and power. If there is a syntax error, the CSS file served to the browser may be blank. Disabling non-bundled plugins is the recommended first step.

Rewrite rules errors

A bad .htaccess file could also result in a 404 error when requesting the CSS file. This could happen when doing an upgrade and forgetting to also upgrade .htaccess.

Should I edit the database manually?

Warning

No, you should never manually edit the database!

Will editing the database manually break my site?

Yes.

Can I add extra fields to tables in the database?

(AKA: I don’t understand the Elgg data model so I’m going to add columns. Will you help?)

No, this is a bad idea. Learn the data model and you will see that unless it’s a very specific and highly customized installation, you can do everything you need within Elgg’s current data model.

I want to remove users. Can’t I just delete them from the elgg_users_entity table?

No, it will corrupt your database. Delete them through the site.

I want to remove spam. Can’t I just search and delete it from the elgg_objects_entity table?

No, it will corrupt your database. Delete it through the site.

Someone on the community site told me to edit the database manually. Should I?

Who was it? Is it someone experienced with Elgg, like one of the core developers or a well-known plugin author? Did he or she give you clear and specific instructions on what to edit? If you don’t know who it is, or if you can’t understand or aren’t comfortable following the instructions, do not edit the database manually.

I know PHP and MySQL and have a legitimate reason to edit the database. Is it okay to manually edit the database?

Make sure you understand Elgg’s data model and schema first. Make a backup, edit carefully, then test copiously.

Internet Explorer (IE) login problem

Canonical URL

IE does not like working with sites that use both http://example.org and http://www.example.org. It stores multiple cookies and this causes problems. Best to only use one base URL. For details on how to do this see Login token mismatch error.

Chrome Frame

Using the chrome frame within IE can break the login process.

Emails don’t support non-Latin characters

In order to support non-Latin characters, (such as Cyrillic or Chinese) Elgg requires multibyte string support [http://uk.php.net/manual/en/mbstring.installation.php] to be compiled into PHP.

On many installs (e.g. Debian & Ubuntu) this is turned on by default. If it is not, you need to turn it on (or recompile PHP to include it). To check whether your server supports multibyte strings, check phpinfo [http://php.net/manual/en/function.phpinfo.php].

Session length

Session length is controlled by your php configuration. You will first need to locate your php.ini file. In that file will be several session variables. A complete list and what they do can be found in the php manual [http://php.net/manual/en/session.configuration.php].

File is missing an owner

There are three causes for this error. You could have an entity in your database that has an owner_guid of 0. This should be extremely rare and may only occur if your database/server crashes during a write operation.

The second cause would be an entity where the owner no longer exists. This could occur if a plugin is turned off that was involved in the creation of the entity and then the owner is deleted but the delete operation failed (because the plugin is turned off). If you can figure out entity is causing this, look in your entities table and change the owner_guid to your own and then you can delete the entity through Elgg.

Warning

Reed the section “Should I edit the database manually?”. Be very carefull when editing the database directly. It can break your site. Always make a backup before doing this.

The third cause is a user not having a username. This also indicates a database problem as this should not be possible. If it does occur, you could see this error when viewing a list of users (such as with the Members plugin). To fix, check your users_entity table for users without a username and if so, create a fake a username for that person. You should probably then delete the user through Elgg.

Fixes

Database Validator [https://community.elgg.org/plugins/438616] plugin will check your database for these causes and provide an option to fix them. Be sure to backup the database before you try the fix option.

No images

If profile images, group images, or other files have stopped working on your site it is likely due to a misconfiguration, especially if you have migrated to a new server.

These are the most common misconfigurations that cause images and other files to stop working.

Wrong path for data directory

Make sure the data directory’s path is correct in the Site Administration admin area. It should have a trailing slash.

Wrong permissions on the data directory

Check the permissions for the data directory. The data directory should be readable and writeable by the web server user.

Different timezone

Note

This only applies to Elgg versions before 1.9

If you migrated servers or upgraded PHP, check that PHP’s timezone settings are the same between the old and the new. If you cannot or don’t want to change the system-wide php.ini file, you can put the following at the top of settings.php:

date_default_timezone_set('MY_TIME_ZONE');

Where MY_TIME_ZONE is a valid PHP timezone [http://php.net/manual/en/timezones.php].

Migrated installation with new data directory location

If you migrated an installation and need to change your data directory path, be sure to update the SQL for the filestore location as documented in the Duplicate Installation instructions.

Deprecation warnings

If you are seeing many deprecation warnings that say things like

Deprecated in 1.7: extend_view() was deprecated by elgg_extend_view()!

then you are using a plugin that was written for an older version of Elgg. This means the plugin is using functions that are scheduled to be removed in a future version of Elgg. You can ask the plugin developer if the plugin will be updated or you can update the plugin yourself. If neither of those are likely to happen, you should not use that plugin.

Javascript not working

If the user hover menu stops working or you cannot dismiss system messages, that means JavaScript is broken on your site. This usually due to a plugin having bad JavaScript code. You should find the plugin causing the problem and disable it. You can do this be disabling non-bundled plugins one at a time until the problem goes away. Another approach is disabling all non-bundled plugins and then enabling them one by one until the problem occurs again.

Most web browsers will give you a hint as to what is breaking the JavaScript code. They often have a console for JavaScript errors or an advanced mode for displaying errors. Once you see the error message, you may have an easier time locating the problem.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

 	FAQs and Other Troubleshooting

Security

Is upgrade.php a security concern?

Upgrade.php is a file used to run code and database upgrades. It is in the root of the directory and doesn’t require a logged in account to access. On a fully upgraded site, running the file will only reset the caches and exit, so this is not a security concern.

If you are still concerned, you can either delete, move, or change permissions on the file until you need to upgrade.

Should I delete install.php?

This file is used to install Elgg and doesn’t need to be deleted. The file checks if Elgg is already installed and forwards the user to the front page if it is.

Filtering

Filtering is used in Elgg to make XSS [http://en.wikipedia.org/wiki/Cross-site_scripting] attacks more difficult. The purpose of the filtering is to remove Javascript and other dangerous input from users.

Filtering is performed through the function filter_tags(). This function takes in a string and returns a filtered string. It triggers a validate, input plugin hook. By default Elgg comes with the htmLawed filtering code as a plugin. Developers can drop in any additional or replacement filtering code as a plugin.

The filter_tags() function is called on any user input as long as the input is obtained through a call to get_input(). If for some reason a developer did not want to perform the default filtering on some user input, the get_input() function has a parameter for turning off filtering.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

 	FAQs and Other Troubleshooting

Development

What should I use to edit php code?

There are two main options: text editor or integrated development environment [http://en.wikipedia.org/wiki/Integrated_development_environment] (IDE).

Text Editor

If you are new to software development or do not have much experience with IDEs, using a text editor will get you up and running the quickest. At a minimum, you will want one that does syntax highlighting to make the code easier to read. If you think you might submit patches to the bug tracker, you will want to make sure that your text editor does not change line endings. If you are using Windows, Notepad++ [http://notepad-plus-plus.org/] is a good choice. If you are on a Mac, TextWrangler [http://www.barebones.com/products/textwrangler/index.html] is a popular choice. You could also give TextMate [http://macromates.com/] a try.

Integrated Development Environment

An IDE does just what its name implies: it includes a set of tools that you would normally use separately. Most IDEs will include source code control which will allow you to directly commit and update your code from your cvs repository. It may have an FTP client built into it to make the transfer of files to a remote server easier. It will have syntax checking to catch errors before you try to execute the code on a server.

The two most popular free IDEs for PHP developers are Eclipse [http://www.eclipse.org/] and NetBeans [http://netbeans.org/]. Eclipse has two different plugins for working with PHP code: PDT [http://www.eclipse.org/pdt/] and PHPEclipse [http://www.phpeclipse.com/].

I don’t like the wording of something in Elgg. How do I change it?

The best way to do this is with a plugin.

Create the plugin skeleton

Plugin skeleton

Locate the string that you want to change

All the strings that a user sees should be in the /languages directory or in a plugin’s languages directory (/mod/<plugin name>/languages). This is done so that it is easy to change what language Elgg uses. For more information on this see the developer documentation on Internationalization .

To find the string use grep or a text editor that provides searching through files to locate the string. (A good text editor for Windows is Notepad++ [http://notepad-plus-plus.org/]) Let’s say we want to change the string “Add friend” to “Make a new friend”. The grep command to find this string would be grep -r "Add friend" *. Using Notepad++ [http://notepad-plus-plus.org/] , you would use the “Find in files” command. You would search for the string, set the filter to *.php, set the directory to the base directory of Elgg, and make sure it searches all subdirectories. You might want to set it to be case sensitive also.

You should locate the string “Add friend” in /languages/en.php. You should see something like this in the file:

'friend:add' => "Add friend",

This means every time Elgg sees friend:add it replaces it with “Add friend”. We want to change the definition of friend:add.

Override the string

To override this definition, we will add a languages file to the plugin that we built in the first step.

	Create a new directory: /mod/<your plugin name>/languages

	Create a file in that directory called en.php

	Add these lines to that file

<?php

return array(
 'friend:add' => 'Make a new friend',
);

Make sure that you do not have any spaces or newlines before the <?php.

You’re done now and should be able to enable the plugin and see the change. If you are override the language of a plugin, make sure your plugin is loaded after the one you are trying to modify. The loading order is determined in the Tools Administration page of the admin section. As you find more things that you’d like to change, you can keep adding them to this plugin.

How do I find the code that does x?

The best way to find the code that does something that you would like to change is to use grep or a similar search tool. If you do not have grep as a part of your operating system, you will want to install a grep tool or use a text-editor/IDE that has good searching in files. Notepad++ [http://notepad-plus-plus.org/] is a good choice for Windows users. Eclipse [http://www.eclipse.org/] with PHP and NetBeans [http://netbeans.org/] are good choices for any platform.

String Example

Let’s say that you want to find where the Log In box code is located. A string from the Log In box that should be fairly unique is Remember me. Grep for that string. You will find that it is only used in the en.php file in the /languages directory. There it is used to define the Internationalization string user:persistent. Grep for that string now. You will find it in two places: the same en.php language file and in /views/default/forms/login.php. The latter defines the html code that makes up the Log In box.

Action Example

Let’s say that you want to find the code that is run when a user clicks on the Save button when arranging widgets on a profile page. View the Profile page for a test user. Use Firebug to drill down through the html of the page until you come to the action of the edit widgets form. You’ll see the url from the base is action/widgets/move.

Grep on widgets/move and two files are returned. One is the JavaScript code for the widgets : /js/lib/ui.widgets.js. The other one, /engine/lib/widgets.php, is where the action is registered using elgg_register_action('widgets/reorder'). You may not be familiar with that function in which case, you should look it up at the API reference. Do a search on the function and it returns the documentation on the function. This tells you that the action is in the default location since a file location was not specified. The default location for actions is /actions so you will find the file at /actions/widgets/move.php.

Debug mode

During the installation process you might have noticed a checkbox that controlled whether debug mode was turned on or off. This setting can also be changed on the Site Administration page. Debug mode writes a lot of extra data to your php log. For example, when running in this mode every query to the database is written to your logs. It may be useful for debugging a problem though it can produce an overwhelming amount of data that may not be related to the problem at all. You may want to experiment with this mode to understand what it does, but make sure you run Elgg in normal mode on a production server.

Warning

Because of the amount of data being logged, don’t enable this on a production server as it can fill up the log files really quick.

What goes into the log in debug mode?

	All database queries

	Database query profiling

	Page generation time

	Number of queries per page

	List of plugin language files

	Additional errors/warnings compared to normal mode (it’s very rare for these types of errors to be related to any problem that you might be having)

What does the data look like?

[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and enabled='yes') results cached
[07-Mar-2009 14:27:20] SELECT guid from elggsites_entity where guid = 1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and enabled='yes') results cached
[07-Mar-2009 14:27:20] ** GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggentities where guid=1 and ((1 = 1) and enabled='yes') results returned from cache
[07-Mar-2009 14:27:20] ** Sub part of GUID:1 loaded from DB
[07-Mar-2009 14:27:20] SELECT * from elggsites_entity where guid=1 results cached
[07-Mar-2009 14:27:20] Query cache invalidated
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: user" in file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] DEBUG: 2009-03-07 14:27:20 (MST): "Undefined index: pass" in file /var/www/elgg/engine/lib/elgglib.php (line 62)
[07-Mar-2009 14:27:20] ***************** DB PROFILING ********************
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggdatalists'
[07-Mar-2009 14:27:20] 1 times: 'SELECT * from elggentities where guid=1 and ((access_id in (2) or (owner_guid = -1) or (access_id = 0 and owner_guid = -1)) and enabled='yes')'
...
[07-Mar-2009 14:27:20] 2 times: 'update elggmetadata set access_id = 2 where entity_guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggentities set owner_guid='0', access_id='2', container_guid='0', time_updated='1236461868' WHERE guid=1'
[07-Mar-2009 14:27:20] 1 times: 'SELECT guid from elggsites_entity where guid = 1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggsites_entity set name='3124/944', description='', url='http://example.org/' where guid=1'
[07-Mar-2009 14:27:20] 1 times: 'UPDATE elggusers_entity set prev_last_action = last_action, last_action = 1236461868 where guid = 2'
[07-Mar-2009 14:27:20] DB Queries for this page: 56
[07-Mar-2009 14:27:20] ***
[07-Mar-2009 14:27:20] Page /action/admin/site/update_basic generated in 0.36997294426 seconds

What events are triggered on every page load?

There are 5 Elgg events that are triggered on every page load:

	boot, system

	plugins_boot, system

	init, system

	pagesetup, system

	shutdown, system

The boot, system event is triggered before the plugins get loaded. There does not appear to be any difference between the timing of the next two events: plugins_boot, system and init, system so plugins tend to use init, system. This event is triggered in Elgg\Application::bootCore. The pagesetup, system event is thrown the first time elgg_view() is called. Some pages like the default index.php do not call elgg_view() so it is not triggered for them. The shutdown, system event is triggered after the page has been sent to the requester and is handled through the PHP function register_shutdown_function().

There are other events that are triggered by the Elgg core but they happen occasionally (such as when a user logs in).

What variables are reserved by Elgg?

	$CONFIG

	$vars

	$autofeed

	$_GET['action'] / $_POST['action']

	$viewtype

Copy a plugin

There are many questions asked about how to copy a plugin. Let’s say you want to copy the blog plugin in order to run one plugin called blog and another called poetry. This is not difficult but it does require a lot of work. You would need to

	change the directory name

	change the names of every function (having two functions causes PHP to crash)

	change the name of every view (so as not to override the views on the original plugin)

	change any data model subtypes

	change the language file

	change anything else that was specific to the original plugin

Note

If you are trying to clone the groups plugin, you will have the additional difficulty that the group plugin does not set a subtype.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

Roadmap

What direction is the project going? What exciting new features are coming soon?

We do not publish detailed roadmaps, but it’s possible to get a sense for our general direction
by utilizing the following resources:

	Our feedback and planning group [http://community.elgg.org/groups/profile/211069/feedback-and-planning] is used to host early discussion about what will be worked on next.

	Our Github milestones [https://github.com/Elgg/Elgg/issues/milestones] represent a general direction for the future releases of Elgg.
This is the closest thing to a traditional roadmap that we have.

	Github pull requests [https://github.com/elgg/elgg/pulls] will give you a good idea of what’s currently being developed,
but nothing is sure until the PR is actually checked in.

	We use the developer blog [https://community.elgg.org/blog/all] to post announcements of features that have recently been checked in to our development branch,
which gives the surest indication of what features will be available in the next release.

Values

We have several overarching goals/values that affect the direction of Elgg.
Enhancements generally must promote these values in order to be accepted.

Accessibility

Elgg-based sites should be usable by anyone anywhere. That means we’ll always strive to make Elgg:

	Device-agnostic – mobile, tablet, desktop, etc. friendly

	Language-agnostic – i18n, RTL, etc.

	Capability-agnostic – touch, keyboard, screen-reader friendly

Testability

We want to make manual testing unnecessary for core developers, plugin authors, and site administrators
by promoting and enabling fast, automated testing at every level of the Elgg stack.

We think APIs are broken if they require plugin authors to write untestable code.
We know there are a lot of violations of this principle in core currently and are working to fix it.

We look forward to a world where the core developers do not need to do any manual testing to verify the correctness of code contributed to Elgg.
Similarly, we envision a world where site administrators can upgrade and install new plugins with confidence that everything works well together.

TODO: other goals/values?

FAQ

When will feature X be implemented?

We cannot promise when features will get implemented because
new features are checked into Elgg only when someone is motivated enough
to implement the feature and submit a pull request.
The best we can do is tell you to look out for what features
existing developers have expressed interest in working on.

The best way to ensure a feature gets implemented is to discuss it with the core team and implement it yourself.
See our Contributor Guides guide if you’re interested. We love new contributors!

Do not rely on future enhancements if you’re on the fence as to whether to use Elgg.
Evaluate it given the current feature set.
Upcoming features will almost certainly not materialize within your timeline.

When is version X.Y.Z going to be released?

The next version will be released when the core team feels it’s ready and has time to cut the release.
http://github.com/Elgg/Elgg/issues/milestones will give you some rough ideas of timeline.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

Release Policy

What to expect when upgrading Elgg.

We adhere to semantic versioning [http://semver.org].

Follow the blog to stay up to date on the latest releases [https://community.elgg.org/blog/all].

Patch/Bugfix Releases (2.1.x)

Every two weeks.

Bugfix releases are made regularly to make sure Elgg stays stable, secure, and bug-free.
The higher the third digit, the more tested and stable the release is.

Since bugfix release focus on fixing bugs and not making major changes,
themes and plugins should work from bugfix release to bugfix release.

Minor/Feature Releases (2.x.0)

Every three months.

Whenever we introduce new features, we’ll bump the middle version number.
These releases aren’t as mature as bugfix release, but are considered stable and useable.

We make every effort to be backward compatible in these releases,
so plugins should work from minor release to minor release.

However, plugins might need to be updated to make use of the new features.

Major/Breaking Releases (x.0.0)

Every year.

Inevitably, improving Elgg requires breaking changes and a new major release is made.
These releases are opportunities for the core team to make strategic, breaking changes to the underlying platform.
Themes and plugins from older versions are not expected to work without modification on different major releases.

We may remove deprecated APIs, but we will not remove APIs without first deprecating them.

Elgg’s dependencies may be upgraded by their major version or removed entirely.
We will not remove any dependences before a major release, but we do not “deprecate”
dependencies or issue any warnings before removing them.

Your package, plugin, or app should declare its own dependencies directly so that
this does not cause a problem.

Alphas, Betas, and Release Candidates

Before major releases (and sometimes before feature releases), the core team will
offer a pre-release version of Elgg to get some real-world testing and feedback
on the release. These are meant for testing only and should not be used on a live
site.

SemVer 2.0 does not define a particular meaning for pre-releases, but we approach
alpha, beta, and rc releases with these general guidelines:

An -alpha.X pre-release means that there are still breaking changes planned,
but the feature set of the release is frozen. No new features or breaking changes
can be proposed for that release.

A -beta.X pre-release means that there are no known breaking changes left to
be included, but there are known regressions or critical bugs left to fix.

An -rc.X pre-release means that there are no known regressions or critical
bugs left to be fixed. This version could become the final stable version of
Elgg if no new blockers are reported.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Elgg master documentation

 	Appendix

Support policy

As of Elgg 2.0, each minor release receives bug and security fixes only until the next minor release.

Long Term Support Releases

Within each major version, the last minor release is designated for long term support (“LTS”) and will
receive bug fixes until the 2nd following major version release, and security fixes until the 3rd
following major version release.

E.g. 1.12 is the last minor release within 1.x. It will receive bug fixes until 3.0 is released and
security fixes until 4.0 is released.

When bugs are found, a good faith effort will be made to patch the LTS release, but not all fixes
will be back-ported. E.g. some fixes may depend on new APIs, break backwards compatibility, or require
significant refactoring. If a fix risks stability of the LTS branch, it will not be included.

See also

Release Policy

Below is a table outlining the specifics for each release (future dates are tentative):

	Version
	First stable release
	Bug fixes through
	Security fixes through

	1.12 LTS
	July 2015
	Until 3.0
	Until 4.0

	2.0
	December 2015
	March 2016
	

	2.1
	March 2016
	June 2016
	

	2.2
	June 2016
	September 2016
	

	2.3 LTS
	September 2016
	Until 4.0
	Until 5.0

	3.0
	December 2016
	
	

	4.0
	December 2017
	
	

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Elgg master documentation

 	Appendix

History

The name comes from a town in Switzerland [http://www.elgg.ch/de/]. It also means “elk” or “moose” in Danish.

Elgg’s initial funding was by a company called Curverider Ltd, which was started by David Tosh and Ben Werdmuller.
In 2010, Curverider was acquired by Thematic Networks and control of the open-source project was turned over to The Elgg Foundation [http://theelggfoundation.org].
Today, Elgg is a community-driven open source project and has a variety of contributors and supporters.

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Elgg master documentation

Index

 Copyright 2013, Various.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_static/comment-bright.png

intro/install/nginx.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on Nginx

To run Elgg on Nginx, you will need to:

		configure Nginx to talk to a PHP process in either CGI or FPM mode

		Port the following rewrite rules

Elgg Nginx configuration. Customize and put into /etc/nginx/sites-enabled

Rewrite http://(www.)?example.org to https://example.org

#server {
#	listen 80;
#	server_name example.org www.example.org;
#	rewrite ^ https://example.org$request_uri permanent;
#}

Rewrite https://www.example.org to https://example.org

#server {
#	include /etc/nginx/ssl.conf;
#	server_name www.example.org;
#	rewrite ^ https://example.org$request_uri? permanent;
#}

server {
	listen 80;
	server_name example.org;

	# Server root, replace it with your elgg installation location
	root /var/www/$server_name;
	index index.php index.html index.htm;
	
	gzip on;
	gzip_types
		# text/html is always compressed by HttpGzipModule
		text/css
		text/javascript
		text/xml
		text/plain
		text/x-component
		application/javascript
		application/x-javascript
		application/json
		application/xml
		application/rss+xml
		font/truetype
		font/opentype
		application/vnd.ms-fontobject
		image/svg+xml;

	# Server logs, replace it with your project names
	error_log /var/log/nginx/$server_name.error.log error;
	access_log /var/log/nginx/$server_name.access.log;

	# Max post size
	client_max_body_size 8M;

	location ~ (^\.|/\.) {
		return 403;
	}

	location = /rewrite.php {
		rewrite ^(.*)$ /install.php;
	}

	location / {
		try_files $uri $uri/ @elgg;
	}

	# pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
	location ~ \.php$ {
		try_files $uri @elgg;
		fastcgi_index index.php;
		fastcgi_pass localhost:9000;
		fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
		include /etc/nginx/fastcgi_params;
	}

	location @elgg {
		fastcgi_pass localhost:9000;

		include /etc/nginx/fastcgi_params;
		fastcgi_param SCRIPT_FILENAME $document_root/index.php;
		fastcgi_param SCRIPT_NAME /index.php;
		fastcgi_param QUERY_STRING __elgg_uri=$uri&$args;
	}
}

Other than that, you should be able to follow the standard installation instructions.

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/easyphp.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on EasyPHP

You should first be familiar with the standard installation instructions.

		Assuming no MySQL, PHP or Apache installations exist already.

		Best run as a development/test server

		Stop IIS running if installed

		Download and install the latest Easy PHP from http://www.easyphp.org

		Set up the database and point the web server to your Elgg folder (all done from the EasyPHP tray icon)
- Right click EasyPHP tray icon, select “Administration”
- A new tab is created in your browser for managing Easy PHP
- Add your Elgg folder to Apache in “Alias” section
- Click “Manage MySQL with PhpMyAdmin”, create a database and account for Elgg

		(Ignore this step for v5.3 or later) From the tray icon go Configuration/Apache
and uncomment this line:

#LoadModule rewrite_module modules/mod_rewrite.so

		(Ignore this step for v5.3 or later) Change AllowOverride None to AllowOverride All
in the relevant directory entry in Configuration/Apache

		(Ignore this step for v5.3 or later) From the tray icon fo Configuration/PHP
and uncomment this line:

;extension=php_curl.dll

		A reboot is best Elgg should run via http://127.0.0.1

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/xampp.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on XAMPP

These intructions are provided in case you want to test your Elgg
installation on your local computer running Windows.

		Download and install XAMPP to your computer from
http://www.apachefriends.org/en/xampp.html

		Once the installation is completed, it will prompt you to start the
XAMPP controller panel. Leave it for now.

		Open C:\xampp\apache\conf\httpd.conf file with notepad and uncomment
these lines:

#LoadModule rewrite_module modules/mod_rewrite.so
#LoadModule filter_module modules/mod_filter.so

		Edit the php.ini file and change
arg_separator.output = &amp; to arg_separator.output = &

		Go to C:\xampp and double click on the xampp_start application

		Go to http://localhost/

		Change your server’s password in the security option

		Go to http://localhost/phpmyadmin and login with the username and the
password of your server

		Create a database called “elgg” in your phpmyadmin panel

		Now download Elgg. Unzip it and extract to C:\xampp\htdocs\sites\elgg

		Create the Elgg data folder as C:\xampp\htdocs\sites\data

		Go to http://localhost/sites/elgg

		You will be taken to the Elgg installation steps. Install it and enjoy.

A note on XAMPP 1.7.4 and eAccelerator

Elgg is compatible with opcode caches and it is highly recommended that
you enable a PHP opcode caching tool for a faster experience. XAMPP comes
with support for eAccelerator out of the box, but unfortunately, the 1.7.4
build of XAMPP leaves out the DLL that’s required. To get eAccelerator
working, follow these steps:

		Download the DLL from http://eac.qme.nl/eAccelerator_v1_0_svn427_for_v5_3_5-VC6.zip

		Copy eAccelerator_ts.dll to C:\xampp\php\ext\php_eaccelerator.dll

		Uncomment this line in C:\xampp\php\php.ini:

;zend_extension = "C:\xampp\php\ext\php_eaccelerator.dll"

		Restart apache

To verify that it is on:

		Go to localhost/xampp

		Click on phpinfo() from the left sidebar

		Ctrl+F for eaccelerator. If you get no results, eAccelerator is not active

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/ubuntu.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on Ubuntu Linux

		Install the dependencies:

sudo apt-get install apache2
sudo apt-get install mysql-server
sudo apt-get install php5 libapache2-mod-php5 php5-mysqlnd
sudo apt-get install phpmyadmin
sudo a2enmod rewrite

		Edit /etc/apache2/sites_available/default to enable .htaccess processing (set AllowOverride to All)

		Restart Apache: sudo /etc/init.d/apache2 restart

		Follow the standard installation instructions

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/mamp.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on MAMP

Follow the standard installation instructions.

On certain versions of MAMP, Elgg will either fail to install or have
intermittent problems while running.

This is a known issue with MAMP and is related to the Zend Optimizer.
Until Zend/MAMP have resolved this issue it is recommended that you
turn off the Zend Optimizer in your PHP settings.

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/mariadb.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on MariaDB

You should be able to follow the standard installation instructions,
since this DBMS is supposed to be a drop-in replacement for MySQL.

Let us know how it goes!

Here is some historical community discussion, for reference:
https://community.elgg.org/discussion/view/1455994/alternative-dbmss

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/virtual.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on a Virtual Host

Examples of “virtual hosts” are Rackspace, Amazon EC2, etc.

For installation to proceed successfully, modify the .htaccess file in the
root, and uncomment:

#RewriteBase /

To be:

RewriteBase /

Then follow the standard installation instructions.

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/iis.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on IIS

You can follow the standard installation instructions with the
following caveats:

When installing on IIS, the problem is that the Apache mod_rewrite
rules will not be recognized, and this breaks the application. You need
to convert the mod_rewrite rules to the IIS URL Rewrite [http://www.iis.net/download/URLRewrite] module
format.

You can do this using the IIS 7+ management console, and the “Import
Rules” feature that will do the conversion, as described in the tutorial
“importing Apache mod_rewrite rules [http://learn.iis.net/page.aspx/470/importing-apache-modrewrite-rules/]”.

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

intro/install/cloud9.html

 Navigation

 		
 index

 		Elgg master documentation »

Installing Elgg on Cloud9 IDE

1. Create a c9 workspace

		Go to http://c9.io

		Login with GitHub

		On the Dashboard, click “Create new workspace” => “Create a new
workspace”

		Choose a project name (e.g. “elgg”)

		Choose “PHP” for project type

		Click “Create”

		Wait... (~1 min for c9 workspace to be ready)

		Click “Start editing” for the workspace

2. Set up the workspace for Elgg

Run the following in cloud9’s terminal:

rm -rf * # Clear out the c9 hello-world stuff
composer create-project elgg/elgg:~1.11 . # the hotness
cp install/config/htaccess.dist .htaccess
cp elgg-config/settings.example.php elgg-config/settings.php
mysql-ctl start # start c9's local mysql server
mkdir ../elgg-data # setup data dir for Elgg

Configure settings.php to be like so:

// Must set timezone explicitly!
date_default_timezone_set('America/Los_Angeles');

$CONFIG->dbuser = getenv('C9_USER');
$CONFIG->dbpass = '';
$CONFIG->dbname = 'c9';
$CONFIG->dbhost = getenv('IP');
$CONFIG->dbprefix = 'elgg_';

3. Complete the install process from Elgg’s UI

		Hit “Run” at the top of the page to start Apache.

		Go to https://{workspace}-{username}.c9.io/install.php?step=database

		Change Site URL to http://your-workspace.your-username.c9.io/

		Put in the data directory path. Should be something like
/var/..../app-root/data/elgg-data/.

		Click “Next”

		Create the admin account

		Click “Go to site”

		You may have to manually visit https://{workspace}-{username}.c9.io/
and login with the admin credentials you just configured.

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

_images/data_model.png

_images/profile.jpg
€, 1 Dashboard " “Toolsv

i)
Elgg 1.0 internal development site

Ben Werdmuller =~

[ERpR————— Current status.

ting sometting to rock aut

Message board

O eatana 2 Aaye o) Ieamet kst

_images/elgg-supporters.png
supporter

_images/user_hover_menu.jpg
Pete

Remove friend
Profile

Friends

Friends of

Blog

Files

Send a message
Pages

Report to admin
Ban

Delete

Reset password
Explore log

_images/file.jpg
Elgg 1.0 internal development site

How to pronounce Elggs a handy vex ks ey
| guide

oo e A, wa it proounca thgs ane. 5

e)

_images/groups.jpg
Elgg 1.0 internal development site

L D Figg fecdback

Growp s

M

Group panes

_images/message_notification.jpg
©, [Dpashboard Toolsv BL[1]
= s

_images/messageboard.jpg
Message board o -

View all

Found the file on Elgg pronunciation.
Thanks bro.

reply on seanang's message board | history €

[[P

hey cant wait for the release!

reply on mahendran's message board | e
history

The widget only display 3 friends
although I have 4 friends.

reply on seanang's message board | history @

_images/dashboard.jpg
©. B oashboard T

Elgg 1.0 internal development site

Activity Friends' activity

updated thir profie icon s e s .
et - mter updated writing documentation, drinking
et thee SecH o tea and working on the website.

o P pdated the pessage st e

siated S e e DOBEAESEN

wpdated 2 e pdated thee messge board ISFT

pisted bookmarked Recent bookmarks

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Elgg master documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_static/comment-close.png

_static/up.png

about/releases.html

 Navigation

 		
 index

 		Elgg master documentation »

Release Policy

This page has moved.

Release Policy

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

about/contributing.html

 Navigation

 		
 index

 		Elgg master documentation »

Contributor Guide

This page has moved.

Contributor Guides

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

about/index.html

 Navigation

 		
 index

 		Elgg master documentation »

About

This page has moved.

Appendix

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

about/roadmap.html

 Navigation

 		
 index

 		Elgg master documentation »

Roadmap

This page has moved.

Roadmap

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

about/history.html

 Navigation

 		
 index

 		Elgg master documentation »

History

This page has moved.

History

 © Copyright 2013, Various.
 Created using Sphinx 1.3.5.

