

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	edgy.workflow 0.1.1 documentation

edgy.workflow

Workflow is a simple library that allows you to manage lightweight workflows/state machines, and easily add this logic
to business objects you already use.

It supports both python 2 and 3, and does not assume you use any framework. In the future, we may include a light
adapter for the most popular frameworks, but the code should be very trivial.

By design choice, the library does not enforce the validity of objects. If you want to set an invalid state on an
object, you will be allowed to do so. That’s a tradeoff that makes the library more flexible, at the price of less
data interity (in the plans: add a «strict» mode).

Kick-start

from edgy.workflow import Workflow, Transition, StatefulObject

Define transitions
@Transition(source='new', target='accepted')
def accept(self, subject):
 print('accepting {} using {}...'.format(subject, self))

@Transition(source='new', target='refused')
def refuse(self, subject):
 print('refusing {} using {}...'.format(subject, self))

Create a workflow object
workflow = Workflow()
workflow.add_transition(accept)
workflow.add_transition(refuse)

Create a stateful object
class Issue(StatefulObject):
 initial_state = 'new'
 workflow = workflow

Play with your newly workflow-enabled object.
iss42 = Issue()
iss42.accept()

iss43 = Issue()
iss43.refuse()

iss44 = Issue(state='invalid')

Dive-in

	Transitions

	Workflows

	Stateful objects

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	edgy.workflow 0.1.1 documentation

Transitions

The smallest atom of edgy.workflow is a Transition, which basically is a regular python
callable with additional metadata to make the system aware of when it can be applied.

	
class edgy.workflow.Transition(handler=None, name=None, source=None, target=None)[source]

	Defines when and how to go from one state to another, eventually applying a user-defined
side-effect while being applied.

Example:

>>> t = Transition(name='sleep', source='awake', target='asleep')

>>> class Person(object):
... state = 'awake'

>>> me = Person()
>>> t(me)
>>> me.state
'asleep'

This class can also be used as a decorator:

>>> @Transition(source='asleep', target='awake')

>>> def wakeup(self, subject):
... print('HEY!')

>>> wakeup(me)
>>> me.state
'awake'

A special wildcard source can make transitions work from any state. Just specify “*” as a
transition source and you’ll be able to transition from any state.

 Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	edgy.workflow 0.1.1 documentation

Workflows

	
class edgy.workflow.Workflow[source]

	A Workflow is a coherent set of Transitions meant to define a state machine system.

	
add_transition(transition, name=None)[source]

	Add a transition to this workflow instance, to be used on stateful subjects later.

	Parameters:	transition (edgy.workflow.Transition) – Transition to add.

	
states

	Set of valid known states for this workflow. Beware, if you’re using wildcard as source,
there can be states you expect as valid that this instance does not know about, and will
treat as invalid.

	Returns:	set[str]

	
transitions

	Set of transitions living in this state machine system.

	Returns:	set[edgy.workflow.Transition]

 Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	edgy.workflow 0.1.1 documentation

Stateful objects

For now, a “stateful object” is, to this library, anything that as a “state” attribute that can
be read. If it quacks, then it’s a duck.

However, as an helper class to demonstrate how a workflow can be bound to an object, we provide
StatefulObject as an example implementation that you can use.

	
class edgy.workflow.StatefulObject[source]

	Example stateful object.

To use it, subclass me and set the workflow attribute to a edgy.workflow.Workflow instance.

	
workflow

	A workflow instance, setting the system in which the instances of this object live.

	
initial_state

	The default initial state of this object.

	
current_state

	The current state of this object.

	
state

	Helper for getting the actual state of an object. You should use this instead of
initial_state and current_state if your only aim is to read or write a new state to
this object.

Beware though, the setter of this property will override the state, without going through the
transitions. If you wanna run the transitions (and in 95% of the cases, you should, otherwise
this library is a pretty bad choice for you), then a proxy attribute exist on the object
for each transition name, and you should just call it (for example, if a transition is named
wakeup, you can just call instance.wakeup()).

 Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	edgy.workflow 0.1.1 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 edgy	

 	
 	
 edgy.workflow.stateful	

 	
 	
 edgy.workflow.transition	

 	
 	
 edgy.workflow.workflow	

 Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	edgy.workflow 0.1.1 documentation

Index

 A
 | C
 | E
 | I
 | S
 | T
 | W

A

 	

 	add_transition() (edgy.workflow.Workflow method)

C

 	

 	current_state (edgy.workflow.stateful.StatefulObject attribute)

E

 	

 	edgy.workflow.stateful (module)

 	edgy.workflow.transition (module)

 	

 	edgy.workflow.workflow (module)

I

 	

 	initial_state (edgy.workflow.stateful.StatefulObject attribute)

S

 	

 	state (edgy.workflow.StatefulObject attribute)

 	StatefulObject (class in edgy.workflow)

 	

 	states (edgy.workflow.Workflow attribute)

T

 	

 	Transition (class in edgy.workflow)

 	

 	transitions (edgy.workflow.Workflow attribute)

W

 	

 	Workflow (class in edgy.workflow)

 	

 	workflow (edgy.workflow.stateful.StatefulObject attribute)

 Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		edgy.workflow 0.1.1 documentation »

 All modules for which code is available

		edgy.workflow.stateful

		edgy.workflow.transition

		edgy.workflow.workflow

 © Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

_modules/edgy/workflow/workflow.html

 Navigation

 		
 index

 		
 modules |

 		edgy.workflow 0.1.1 documentation »

 		Module code »

 Source code for edgy.workflow.workflow

-*- coding: utf-8 -*-
from collections import OrderedDict

import six

from edgy.workflow.transition import Transition
from edgy.workflow.constants import WILDCARD

class DeclarativeTransitionsMetaclass(type):
 """
 Metaclass that collects Transitions declared on the base classes.
 """

 def __new__(mcs, name, bases, attrs):
 # Collect transitions from current class.
 current_transitions = []
 for key, value in list(attrs.items()):
 if isinstance(value, Transition):
 current_transitions.append((key, value))
 attrs.pop(key)
 current_transitions.sort(key=lambda x: x[1].creation_counter)
 attrs['declared_transitions'] = OrderedDict(current_transitions)

 new_class = (super(DeclarativeTransitionsMetaclass, mcs).__new__(mcs, name, bases, attrs))

 # Walk through the MRO.
 declared_transitions = OrderedDict()
 for base in reversed(new_class.__mro__):
 # Collect transitions from base class.
 if hasattr(base, 'declared_transitions'):
 declared_transitions.update(base.declared_transitions)

 # Field shadowing.
 for attr, value in base.__dict__.items():
 if value is None and attr in declared_transitions:
 declared_transitions.pop(attr)

 new_class.declared_transitions = declared_transitions

 return new_class

[docs]class Workflow(six.with_metaclass(DeclarativeTransitionsMetaclass)):
 """
 A ``Workflow`` is a coherent set of Transitions meant to define a state machine system.

 """

 @property
 def states(self):
 """
 Set of valid known states for this workflow. Beware, if you're using wildcard as source,
 there can be states you expect as valid that this instance does not know about, and will
 treat as invalid.

 :return: set[str]
 """
 return set(self._valid_states)

 @property
 def transitions(self):
 """
 Set of transitions living in this state machine system.

 :return: set[edgy.workflow.Transition]
 """
 return set(self._transitions.items())

 def __init__(self):
 # states and transitions indexes
 self._transitions = OrderedDict()
 self._transitions_by_source = {}
 self._valid_states = {WILDCARD}

 for name, transition in self.declared_transitions.items():
 self.add_transition(transition, name=name)

 def __contains__(self, item):
 return item in self._transitions

 def __getitem__(self, item):
 return self._transitions[item]

[docs] def add_transition(self, transition, name=None):
 """Add a transition to this workflow instance, to be used on stateful subjects later.

 :param edgy.workflow.Transition transition: Transition to add.

 """
 name = name or transition.__name__

 # store the transition by name
 self._transitions[name] = transition

 # ensure we know source and target states as valid
 self._valid_states = self._valid_states.union(set(transition.source))
 self._valid_states.add(transition.target)

 # index transitions by source state
 for source_state in transition.source:
 if not source_state in self._transitions_by_source:
 self._transitions_by_source[source_state] = {}
 self._transitions_by_source[source_state][name] = transition

 return transition

 def get_available_transitions_for(self, subject):
 transitions = self._transitions_by_source.get(subject.state, {})
 transitions.update(self._transitions_by_source.get(WILDCARD, {}))
 return transitions

 © Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

_modules/edgy/workflow/stateful.html

 Navigation

 		
 index

 		
 modules |

 		edgy.workflow 0.1.1 documentation »

 		Module code »

 Source code for edgy.workflow.stateful

-*- coding: utf-8 -*-
"""
For now, a "stateful object" is, to this library, anything that as a "state" attribute that can
be read. If it quacks, then it's a duck.

However, as an helper class to demonstrate how a workflow can be bound to an object, we provide
``StatefulObject`` as an example implementation that you can use.

"""

import functools

[docs]class StatefulObject(object):
 """
 Example stateful object.

 To use it, subclass me and set the workflow attribute to a ``edgy.workflow.Workflow`` instance.

 .. attribute:: workflow

 A workflow instance, setting the system in which the instances of this object live.

 .. attribute:: initial_state

 The default initial state of this object.

 .. attribute:: current_state

 The current state of this object.

 """
 workflow = None
 initial_state = None
 current_state = None

 @property
 def available_transitions(self):
 return self.workflow.get_available_transitions_for(self)

 def __new__(cls, *args, **kwargs):
 if not cls.workflow:
 raise RuntimeError('It is not possible to instanciate a StatefulObject without a workflow.')
 state = kwargs.pop('state', None)
 instance = super(StatefulObject, cls).__new__(cls)
 if state:
 instance.current_state = state
 return instance

 def __repr__(self):
 return '<{}.{} object with {} "{}" at {}>'.format(
 type(self).__module__,
 type(self).__name__,
 'state' if self.state in self.workflow.states else 'unknown state',
 self.state,
 hex(id(self)),
)

 def __getattr__(self, attr):
 if attr in self.workflow:
 return functools.partial(self.workflow[attr], subject=self)

 raise AttributeError("%r object has no attribute %r" % (self.__class__, attr))

 def _get_state(self):
 return self.current_state or self.initial_state

 def _set_state(self, state):
 self.current_state = state

 state = property(fget=_get_state, fset=_set_state, doc='''
 Helper for getting the actual state of an object. You should use this instead of
 ``initial_state`` and ``current_state`` if your only aim is to read or write a new state to
 this object.

 Beware though, the setter of this property will override the state, without going through the
 transitions. If you wanna run the transitions (and in 95% of the cases, you should, otherwise
 this library is a pretty bad choice for you), then a proxy attribute exist on the object
 for each transition name, and you should just call it (for example, if a transition is named
 ``wakeup``, you can just call ``instance.wakeup()``).
 ''')

 © Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

_modules/edgy/workflow/transition.html

 Navigation

 		
 index

 		
 modules |

 		edgy.workflow 0.1.1 documentation »

 		Module code »

 Source code for edgy.workflow.transition

-*- coding: utf-8 -*-
"""
The smallest atom of ``edgy.workflow`` is a ``Transition``, which basically is a regular python
callable with additional metadata to make the system aware of when it can be applied.

"""

from edgy.workflow.constants import WILDCARD
from edgy.workflow.utils import issequence

[docs]class Transition(object):
 """
 Defines when and how to go from one state to another, eventually applying a user-defined
 side-effect while being applied.

 Example::

 >>> t = Transition(name='sleep', source='awake', target='asleep')

 >>> class Person(object):
 ... state = 'awake'

 >>> me = Person()
 >>> t(me)
 >>> me.state
 'asleep'

 This class can also be used as a decorator::

 >>> @Transition(source='asleep', target='awake')

 >>> def wakeup(self, subject):
 ... print('HEY!')

 >>> wakeup(me)
 >>> me.state
 'awake'

 A special wildcard source can make transitions work from any state. Just specify "*" as a
 transition source and you'll be able to transition from any state.

 """

 # Tracks each time a Transition instance is created. Used to retain order.
 creation_counter = 0

 # Transition handler. If absent, the transition is considered as "partial", and should be called with a handler
 # callable to be complete.
 handler = None

 def __init__(self, handler=None, name=None, source=None, target=None):
 self.source = tuple(source if issequence(source) else (source,))
 self.target = target
 self._name = name

 # Increase the creation counter, and save our local copy.
 self.creation_counter = Transition.creation_counter
 Transition.creation_counter += 1

 if handler:
 self.handler = handler or self.handler

 def __call__(self, *args, **kwargs):
 if self.handler:
 return self.__call_complete(*args, **kwargs)
 return self.__call_partial(*args, **kwargs)

 def __call_partial(self, handler):
 self.handler = handler
 return self

 def __call_complete(self, subject, *args, **kwargs):
 if not WILDCARD in self.source and not subject.state in self.source:
 raise RuntimeError(
 'This transition cannot be executed on a subject in "{}" state, authorized source '
 'states are {}.'.format(subject.state,
 ', '.join(['"{}"'.format(state) for state in self.source]))
)
 try:
 retval = self.handler(self, subject, *args, **kwargs)
 subject.state = self.target
 except Exception as e:
 raise
 return retval

 @property
 def __name__(self):
 if self._name:
 return self._name
 if self.handler:
 return self.handler.__name__
 return 'partial'

 # Alias that can be used in django templates, for example.
 name = __name__

 def __repr__(self):
 return '<{}.{} object "{}" ({} to {}) at {}>'.format(
 type(self).__module__,
 type(self).__name__,
 self.__name__,
 '/'.join(self.source),
 self.target,
 hex(id(self)),
)

 © Copyright 2016, Romain Dorgueil.
 Created using Sphinx 1.3.5.

