

django-user-accounts

Provides user accounts to a Django project.

Development

The source repository can be found at https://github.com/pinax/django-user-accounts/

Contents

	Installation
	Dependencies

	Usage
	Limiting access to views

	Customizing the sign up process

	Using email address for authentication

	Allow non-unique email addresses

	Including accounts in fixtures

	Enabling password expiration

	Settings
	ACCOUNT_OPEN_SIGNUP

	ACCOUNT_LOGIN_URL

	ACCOUNT_SIGNUP_REDIRECT_URL

	ACCOUNT_LOGIN_REDIRECT_URL

	ACCOUNT_LOGOUT_REDIRECT_URL

	ACCOUNT_PASSWORD_CHANGE_REDIRECT_URL

	ACCOUNT_PASSWORD_RESET_REDIRECT_URL

	ACCOUNT_PASSWORD_EXPIRY

	ACCOUNT_PASSWORD_USE_HISTORY

	ACCOUNT_REMEMBER_ME_EXPIRY

	ACCOUNT_USER_DISPLAY

	ACCOUNT_CREATE_ON_SAVE

	ACCOUNT_EMAIL_UNIQUE

	ACCOUNT_EMAIL_CONFIRMATION_REQUIRED

	ACCOUNT_EMAIL_CONFIRMATION_EMAIL

	ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS

	ACCOUNT_EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL

	ACCOUNT_EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL

	ACCOUNT_EMAIL_CONFIRMATION_URL

	ACCOUNT_SETTINGS_REDIRECT_URL

	ACCOUNT_NOTIFY_ON_PASSWORD_CHANGE

	ACCOUNT_DELETION_MARK_CALLBACK

	ACCOUNT_DELETION_EXPUNGE_CALLBACK

	ACCOUNT_DELETION_EXPUNGE_HOURS

	ACCOUNT_HOOKSET

	ACCOUNT_TIMEZONES

	ACCOUNT_LANGUAGES

	Templates
	Template Files

	Template Tags

	Signals
	user_signed_up

	user_sign_up_attempt

	user_logged_in

	user_login_attempt

	signup_code_sent

	signup_code_used

	email_confirmed

	email_confirmation_sent

	password_changed

	password_expired

	Management Commands
	user_password_history

	user_password_expiry

	Migration from Pinax
	Database changes

	URL changes

	View changes

	Settings changes

	General changes

	FAQ
	What is the difference between django-user-accounts and django.contrib.auth?

	Why can email addresses get out of sync?

Installation

Install the development version:

pip install django-user-accounts

Add account to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 # ...
 "account",
 # ...
)

See the list of Settings to modify the default behavior of
django-user-accounts and make adjustments for your website.

Add account.urls to your URLs definition:

urlpatterns = patterns("",
 ...
 url(r"^account/", include("account.urls")),
 ...
)

Add account.context_processors.account to TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = [
 ...
 "account.context_processors.account",
 ...
]

Add account.middleware.LocaleMiddleware and
account.middleware.TimezoneMiddleware to MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = [
 ...
 "account.middleware.LocaleMiddleware",
 "account.middleware.TimezoneMiddleware",
 ...
]

Optionally include account.middleware.ExpiredPasswordMiddleware in
MIDDLEWARE_CLASSES if you need password expiration support:

MIDDLEWARE_CLASSES = [
 ...
 "account.middleware.ExpiredPasswordMiddleware",
 ...
]

Once everything is in place make sure you run migrate to modify the
database with the account app models.

Dependencies

django.contrib.auth

This is bundled with Django. It is enabled by default with all new Django
projects, but if you adding django-user-accounts to an existing project you
need to make sure django.contrib.auth is installed.

django.contrib.sites

This is bundled with Django. It is enabled by default with all new Django
projects. It is used to provide links back to the site in emails or various
places in templates that need an absolute URL.

django-appconf [https://github.com/jezdez/django-appconf]

We use django-appconf for app settings. It is listed in install_requires
and will be installed when pip installs.

pytz [http://pypi.python.org/pypi/pytz/]

pytz is used for handling timezones for accounts. This dependency is critical
due to its extensive dataset for timezones.

Usage

This document covers the usage of django-user-accounts. It assumes you’ve
read Installation.

django-user-accounts has very good default behavior when handling user
accounts. It has been designed to be customizable in many aspects. By default
this app will:

	enable username authentication

	provide default views and forms for sign up, log in, password reset and
account management

	handle log out with POST

	require unique email addresses globally

	require email verification for performing password resets

The rest of this document will cover how you can tweak the default behavior
of django-user-accounts.

Limiting access to views

To limit view access to logged in users, normally you would use the Django decorator django.contrib.auth.decorators.login_required. Instead you should use account.decorators.login_required.

Customizing the sign up process

In many cases you need to tweak the sign up process to do some domain specific
tasks. Perhaps you need to update a profile for the new user or something else.
The built-in SignupView has hooks to enable just about any sort of
customization during sign up. Here’s an example of a custom SignupView
defined in your project:

import account.views

class SignupView(account.views.SignupView):

 def after_signup(self, form):
 self.update_profile(form)
 super(SignupView, self).after_signup(form)

 def update_profile(self, form):
 profile = self.created_user.profile # replace with your reverse one-to-one profile attribute
 profile.some_attr = "some value"
 profile.save()

This example assumes you had a receiver hooked up to the post_save signal for
the sender, User like so:

from django.dispatch import receiver
from django.db.models.signals import post_save

from django.contrib.auth.models import User

from mysite.profiles.models import UserProfile

@receiver(post_save, sender=User)
def handle_user_save(sender, instance, created, **kwargs):
 if created:
 UserProfile.objects.create(user=instance)

You can define your own form class to add fields to the sign up process:

forms.py

from django import forms
from django.forms.extras.widgets import SelectDateWidget

import account.forms

class SignupForm(account.forms.SignupForm):

 birthdate = forms.DateField(widget=SelectDateWidget(years=range(1910, 1991)))

views.py

import account.views

import myproject.forms

class SignupView(account.views.SignupView):

 form_class = myproject.forms.SignupForm

 def after_signup(self, form):
 self.create_profile(form)
 super(SignupView, self).after_signup(form)

 def create_profile(self, form):
 profile = self.created_user.profile # replace with your reverse one-to-one profile attribute
 profile.birthdate = form.cleaned_data["birthdate"]
 profile.save()

To hook this up for your project you need to override the URL for sign up:

from django.conf.urls import patterns, include, url

import myproject.views

urlpatterns = patterns("",
 url(r"^account/signup/$", myproject.views.SignupView.as_view(), name="account_signup"),
 url(r"^account/", include("account.urls")),
)

Note

Make sure your url for /account/signup/ comes before the
include of account.urls. Django will short-circuit on yours.

Using email address for authentication

django-user-accounts allows you to use email addresses for authentication
instead of usernames. You still have the option to continue using usernames
or get rid of them entirely.

To enable email authentication do the following:

	check your settings for the following values:

ACCOUNT_EMAIL_UNIQUE = True
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True

Note

If you need to change the value of ACCOUNT_EMAIL_UNIQUE make sure your
database schema is modified to support a unique email column in
account_emailaddress.

ACCOUNT_EMAIL_CONFIRMATION_REQUIRED is optional, but highly
recommended to be True.

	define your own LoginView in your project:

import account.forms
import account.views

class LoginView(account.views.LoginView):

 form_class = account.forms.LoginEmailForm

	ensure "account.auth_backends.EmailAuthenticationBackend" is in AUTHENTICATION_BACKENDS

If you want to get rid of username you’ll need to do some extra work:

	define your own SignupForm and SignupView in your project:

forms.py

import account.forms

class SignupForm(account.forms.SignupForm):

 def __init__(self, *args, **kwargs):
 super(SignupForm, self).__init__(*args, **kwargs)
 del self.fields["username"]

views.py

import account.views

import myproject.forms

class SignupView(account.views.SignupView):

 form_class = myproject.forms.SignupForm
 identifier_field = 'email'

 def generate_username(self, form):
 # do something to generate a unique username (required by the
 # Django User model, unfortunately)
 username = "<magic>"
 return username

	many places will rely on a username for a User instance.
django-user-accounts provides a mechanism to add a level of indirection
when representing the user in the user interface. Keep in mind not
everything you include in your project will do what you expect when
removing usernames entirely.

Set ACCOUNT_USER_DISPLAY in settings to a callable suitable for your
site:

ACCOUNT_USER_DISPLAY = lambda user: user.email

Your Python code can use user_display to handle user representation:

from account.utils import user_display
user_display(user)

Your templates can use {% user_display request.user %}:

{% load account_tags %}
{% user_display request.user %}

Allow non-unique email addresses

If your site requires that you support non-unique email addresses globally
you can tweak the behavior to allow this.

Set ACCOUNT_EMAIL_UNIQUE to False. If you have already setup the
tables for django-user-accounts you will need to migrate the
account_emailaddress table:

ALTER TABLE "account_emailaddress" ADD CONSTRAINT "account_emailaddress_user_id_email_key" UNIQUE ("user_id", "email");
ALTER TABLE "account_emailaddress" DROP CONSTRAINT "account_emailaddress_email_key";

ACCOUNT_EMAIL_UNIQUE = False will allow duplicate email addresses per
user, but not across users.

Including accounts in fixtures

If you want to include account_account in your fixture, you may notice
that when you load that fixture there is a conflict because
django-user-accounts defaults to creating a new account for each new
user.

Example:

IntegrityError: Problem installing fixture \
 ...'/app/fixtures/some_users_and_accounts.json': \
 Could not load account.Account(pk=1): duplicate key value violates unique constraint \
 "account_account_user_id_key"
DETAIL: Key (user_id)=(1) already exists.

To prevent this from happening, subclass DiscoverRunner and in
setup_test_environment set CREATE_ON_SAVE to False. For example in a
file called lib/tests.py:

from django.test.runner import DiscoverRunner
from account.conf import AccountAppConf

class MyTestDiscoverRunner(DiscoverRunner):

 def setup_test_environment(self, **kwargs):
 super(MyTestDiscoverRunner, self).setup_test_environment(**kwargs)
 aac = AccountAppConf()
 aac.CREATE_ON_SAVE = False

And in your settings:

TEST_RUNNER = "lib.tests.MyTestDiscoverRunner"

Enabling password expiration

Password expiration is disabled by default. In order to enable password expiration
you must add entries to your settings file:

ACCOUNT_PASSWORD_EXPIRY = 60*60*24*5 # seconds until pw expires, this example shows five days
ACCOUNT_PASSWORD_USE_HISTORY = True

and include ExpiredPasswordMiddleware with your middleware settings:

MIDDLEWARE_CLASSES = {
 ...
 "account.middleware.ExpiredPasswordMiddleware",
}

ACCOUNT_PASSWORD_EXPIRY indicates the duration a password will stay valid. After that period
the password must be reset in order to view any page. If ACCOUNT_PASSWORD_EXPIRY is zero (0)
then passwords never expire.

If ACCOUNT_PASSWORD_USE_HISTORY is False, no history will be generated and password
expiration WILL NOT be checked.

If ACCOUNT_PASSWORD_USE_HISTORY is True, a password history entry is created each time
the user changes their password. This entry links the user with their most recent
(encrypted) password and a timestamp. Unless deleted manually, PasswordHistory items
are saved forever, allowing password history checking for new passwords.

For an authenticated user, ExpiredPasswordMiddleware prevents retrieving or posting
to any page except the password change page and log out page when the user password is expired.
However, if the user is “staff” (can access the Django admin site), the password check is skipped.

Settings

ACCOUNT_OPEN_SIGNUP

Default: True

ACCOUNT_LOGIN_URL

Default: "account_login"

ACCOUNT_SIGNUP_REDIRECT_URL

Default: "/"

ACCOUNT_LOGIN_REDIRECT_URL

Default: "/"

ACCOUNT_LOGOUT_REDIRECT_URL

Default: "/"

ACCOUNT_PASSWORD_CHANGE_REDIRECT_URL

Default: "account_password"

ACCOUNT_PASSWORD_RESET_REDIRECT_URL

Default: "account_login"

ACCOUNT_PASSWORD_EXPIRY

Default: 0

ACCOUNT_PASSWORD_USE_HISTORY

Default: False

ACCOUNT_REMEMBER_ME_EXPIRY

Default: 60 * 60 * 24 * 365 * 10

ACCOUNT_USER_DISPLAY

Default: lambda user: user.username

ACCOUNT_CREATE_ON_SAVE

Default: True

ACCOUNT_EMAIL_UNIQUE

Default: True

ACCOUNT_EMAIL_CONFIRMATION_REQUIRED

Default: False

ACCOUNT_EMAIL_CONFIRMATION_EMAIL

Default: True

ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS

Default: 3

ACCOUNT_EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL

Default: "account_login"

ACCOUNT_EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL

Default: None

ACCOUNT_EMAIL_CONFIRMATION_URL

Default: "account_confirm_email"

ACCOUNT_SETTINGS_REDIRECT_URL

Default: "account_settings"

ACCOUNT_NOTIFY_ON_PASSWORD_CHANGE

Default: True

ACCOUNT_DELETION_MARK_CALLBACK

Default: "account.callbacks.account_delete_mark"

ACCOUNT_DELETION_EXPUNGE_CALLBACK

Default: "account.callbacks.account_delete_expunge"

ACCOUNT_DELETION_EXPUNGE_HOURS

Default: 48

ACCOUNT_HOOKSET

Default: "account.hooks.AccountDefaultHookSet"

This setting allows you define your own hooks for specific functionality that
django-user-accounts exposes. Point this to a class using a string and you can
override the following methods:

	send_invitation_email(to, ctx)

	send_confirmation_email(to, ctx)

	send_password_change_email(to, ctx)

	send_password_reset_email(to, ctx)

ACCOUNT_TIMEZONES

Default: list(zip(pytz.all_timezones, pytz.all_timezones))

ACCOUNT_LANGUAGES

See full list in: https://github.com/pinax/django-user-accounts/blob/master/account/language_list.py

Templates

This document covers the implementation of django-user-accounts within Django
templates. The pinax-theme-bootstrap [https://github.com/pinax/pinax-theme-bootstrap] package provides a good starting point [https://github.com/pinax/pinax-theme-bootstrap/tree/master/pinax_theme_bootstrap/templates/account]
to build from. Note, this document assumes you have read the installation docs.

Template Files

By default, django-user-accounts expects the following templates. If you
don’t use pinax-theme-bootstrap, then you will have to create these
templates yourself.

Login/Registration/Signup Templates:

account/login.html
account/logout.html
account/signup.html
account/signup_closed.html

Email Confirmation Templates:

account/email_confirm.html
account/email_confirmation_sent.html
account/email_confirmed.html

Password Management Templates:

account/password_change.html
account/password_reset.html
account/password_reset_sent.html
account/password_reset_token.html
account/password_reset_token_fail.html

Account Settings:

account/settings.html

Emails (actual emails themselves):

account/email/email_confirmation_message.txt
account/email/email_confirmation_subject.txt
account/email/invite_user.txt
account/email/invite_user_subject.txt
account/email/password_change.txt
account/email/password_change_subject.txt
account/email/password_reset.txt
account/email/password_reset_subject.txt

Template Tags

To use the built in template tags you must first load them within the templates:

{% load account_tags %}

To display the current logged-in user:

{% user_display request.user %}

Signals

user_signed_up

Triggered when a user signs up successfully. Providing arguments user
(User instance) and form (form instance) as arguments.

user_sign_up_attempt

Triggered when a user tried but failed to sign up. Providing arguments
username (string), email (string) and result (boolean, False if
the form did not validate).

user_logged_in

Triggered when a user logs in successfully. Providing arguments user
(User instance) and form (form instance).

user_login_attempt

Triggered when a user tries and fails to log in. Providing arguments
username (string) and result (boolean, False if the form did not
validate).

signup_code_sent

Triggered when a signup code was sent. Providing argument signup_code
(SignupCode instance).

signup_code_used

Triggered when a user used a signup code. Providing argument
signup_code_result (SignupCodeResult instance).

email_confirmed

Triggered when a user confirmed an email. Providing argument
``email_address``(EmailAddress instance).

email_confirmation_sent

Triggered when an email confirmation was sent. Providing argument
confirmation (EmailConfirmation instance).

password_changed

Triggered when a user changes his password. Providing argument user
(User instance).

password_expired

Triggered when a user password is expired. Providing argument user
(User instance).

Management Commands

user_password_history

Creates an initial password history for all users who don’t already
have a password history.

Accepts two optional arguments:

-d --days <days> - Sets the age of the current password. Default is 10 days.
-f --force - Sets a new password history for ALL users, regardless of prior history.

user_password_expiry

Creates a password expiry specific to one user.

Password expiration checks use a global value (ACCOUNT_PASSWORD_EXPIRY)
for the expiration time period. This value can be superseded on a per-user basis
by creating a user password expiry.

Requires one argument:

<username> [<username>] - username(s) of the user(s) who needs specific password expiry.

Accepts one optional argument:

-e --expire <seconds> - Sets the number of seconds for password expiration.
 Default is the current global ACCOUNT_PASSWORD_EXPIRY value.

After creation, you can modify user password expiration from the Django
admin. Find the desired user at /admin/account/passwordexpiry/ and change the expiry value.

Migration from Pinax

django-user-accounts is based on pinax.apps.account combining some of
the supporting apps. django-email-confirmation, pinax.apps.signup_codes
and bits of django-timezones have been merged to create django-user-accounts.

This document will outline the changes needed to migrate from Pinax to using
this app in your Django project. If you are new to django-user-accounts then
this guide will not be useful to you.

Database changes

Due to combining apps the table layout when converting from Pinax has changed.
We’ve also taken the opportunity to update the schema to take advantage of
much saner defaults. Here is SQL to convert from Pinax to django-user-accounts.

PostgreSQL

ALTER TABLE "signup_codes_signupcode" RENAME TO "account_signupcode";
ALTER TABLE "signup_codes_signupcoderesult" RENAME TO "account_signupcoderesult";
ALTER TABLE "emailconfirmation_emailaddress" RENAME TO "account_emailaddress";
ALTER TABLE "emailconfirmation_emailconfirmation" RENAME TO "account_emailconfirmation";
DROP TABLE "account_passwordreset";
ALTER TABLE "account_signupcode" ALTER COLUMN "code" TYPE varchar(64);
ALTER TABLE "account_signupcode" ADD CONSTRAINT "account_signupcode_code_key" UNIQUE ("code");
ALTER TABLE "account_emailconfirmation" RENAME COLUMN "confirmation_key" TO "key";
ALTER TABLE "account_emailconfirmation" ALTER COLUMN "key" TYPE varchar(64);
ALTER TABLE account_emailconfirmation ADD COLUMN created timestamp with time zone;
UPDATE account_emailconfirmation SET created = sent;
ALTER TABLE account_emailconfirmation ALTER COLUMN created SET NOT NULL;
ALTER TABLE account_emailconfirmation ALTER COLUMN sent DROP NOT NULL;

If ACCOUNT_EMAIL_UNIQUE is set to True (the default value) you need:

ALTER TABLE "account_emailaddress" ADD CONSTRAINT "account_emailaddress_email_key" UNIQUE ("email");
ALTER TABLE "account_emailaddress" DROP CONSTRAINT "emailconfirmation_emailaddress_user_id_email_key";

MySQL

RENAME TABLE `emailconfirmation_emailaddress` TO `account_emailaddress` ;
RENAME TABLE `emailconfirmation_emailconfirmation` TO `account_emailconfirmation` ;
DROP TABLE account_passwordreset;
ALTER TABLE `account_emailconfirmation` CHANGE `confirmation_key` `key` VARCHAR(64) NOT NULL;
ALTER TABLE `account_emailconfirmation` ADD UNIQUE (`key`);
ALTER TABLE account_emailconfirmation ADD COLUMN created datetime NOT NULL;
UPDATE account_emailconfirmation SET created = sent;
ALTER TABLE `account_emailconfirmation` CHANGE `sent` `sent` DATETIME NULL;

If ACCOUNT_EMAIL_UNIQUE is set to True (the default value) you need:

ALTER TABLE `account_emailaddress` ADD UNIQUE (`email`);
ALTER TABLE account_emailaddress DROP INDEX user_id;

If you have installed pinax.apps.signup_codes:

RENAME TABLE `signup_codes_signupcode` TO `account_signupcode` ;
RENAME TABLE `signup_codes_signupcoderesult` TO `account_signupcoderesult` ;

URL changes

Here is a list of all URLs provided by django-user-accounts and how they map
from Pinax. This assumes account.urls is mounted at /account/ as it
was in Pinax.

	Pinax
	django-user-accounts

	/account/login/
	/account/login/

	/account/signup/
	/account/signup/

	/account/confirm_email/
	/account/confirm_email/

	/account/password_change/
	/account/password/ [1]

	/account/password_reset/
	/account/password/reset/

	/account/password_reset_done/
	removed

	/account/password_reset_key/<key>/
	/account/password/reset/<token>/

	[1]	When user is anonymous and requests a GET the user is redirected to
/account/password/reset/.

View changes

All views have been converted to class-based views. This is a big departure
from the traditional function-based, but has the benefit of being much more
flexible.

@@@ todo: table of changes

Settings changes

We have cleaned up settings and set saner defaults used by
django-user-accounts.

	Pinax
	django-user-accounts

	ACCOUNT_OPEN_SIGNUP = True
	ACCOUNT_OPEN_SIGNUP = True

	ACCOUNT_UNIQUE_EMAIL = False
	ACCOUNT_EMAIL_UNIQUE = True

	EMAIL_CONFIRMATION_UNIQUE_EMAIL = False
	removed

General changes

django-user-accounts requires Django 1.4. This means we can take advantage of
many of the new features offered by Django. This app implements all of the
best practices of Django 1.4. If there is something missing you should let us
know!

FAQ

This document is a collection of frequently asked questions about
django-user-accounts.

What is the difference between django-user-accounts and django.contrib.auth?

django-user-accounts is designed to supplement django.contrib.auth. This
app provides improved views for log in, password reset, log out and adds
sign up functionality. We try not to duplicate code when Django provides a
good implementation. For example, we did not re-implement password reset, but
simply provide an improved view which calls into the secure Django password
reset code. django.contrib.auth is still providing many of supporting
elements such as User model, default authentication backends, helper
functions and authorization.

django-user-accounts takes your Django project from having simple log in,
log out and password reset to a full blown account management system that you
will end up building anyways.

Why can email addresses get out of sync?

django-user-accounts stores email addresses in two locations. The default
User model contains an email field and django-user-accounts provides an
EmailAddress model. This latter is provided to support multiple email
addresses per user.

If you use a custom user model you can prevent the double storage. This is
because you can choose not to do any email address storage.

If you don’t use a custom user model then make sure you take extra precaution.
When editing email addresses either in the shell or admin make sure you update
in both places. Only the primary email address is stored on the User model.

Index

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		django-user-accounts

 		Installation

 		Dependencies

 		django.contrib.auth

 		django.contrib.sites

 		django-appconf

 		pytz

 		Usage

 		Limiting access to views

 		Customizing the sign up process

 		Using email address for authentication

 		Allow non-unique email addresses

 		Including accounts in fixtures

 		Enabling password expiration

 		Settings

 		ACCOUNT_OPEN_SIGNUP

 		ACCOUNT_LOGIN_URL

 		ACCOUNT_SIGNUP_REDIRECT_URL

 		ACCOUNT_LOGIN_REDIRECT_URL

 		ACCOUNT_LOGOUT_REDIRECT_URL

 		ACCOUNT_PASSWORD_CHANGE_REDIRECT_URL

 		ACCOUNT_PASSWORD_RESET_REDIRECT_URL

 		ACCOUNT_PASSWORD_EXPIRY

 		ACCOUNT_PASSWORD_USE_HISTORY

 		ACCOUNT_REMEMBER_ME_EXPIRY

 		ACCOUNT_USER_DISPLAY

 		ACCOUNT_CREATE_ON_SAVE

 		ACCOUNT_EMAIL_UNIQUE

 		ACCOUNT_EMAIL_CONFIRMATION_REQUIRED

 		ACCOUNT_EMAIL_CONFIRMATION_EMAIL

 		ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS

 		ACCOUNT_EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL

 		ACCOUNT_EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL

 		ACCOUNT_EMAIL_CONFIRMATION_URL

 		ACCOUNT_SETTINGS_REDIRECT_URL

 		ACCOUNT_NOTIFY_ON_PASSWORD_CHANGE

 		ACCOUNT_DELETION_MARK_CALLBACK

 		ACCOUNT_DELETION_EXPUNGE_CALLBACK

 		ACCOUNT_DELETION_EXPUNGE_HOURS

 		ACCOUNT_HOOKSET

 		ACCOUNT_TIMEZONES

 		ACCOUNT_LANGUAGES

 		Templates

 		Template Files

 		Template Tags

 		Signals

 		user_signed_up

 		user_sign_up_attempt

 		user_logged_in

 		user_login_attempt

 		signup_code_sent

 		signup_code_used

 		email_confirmed

 		email_confirmation_sent

 		password_changed

 		password_expired

 		Management Commands

 		user_password_history

 		user_password_expiry

 		Migration from Pinax

 		Database changes

 		PostgreSQL

 		MySQL

 		URL changes

 		View changes

 		Settings changes

 		General changes

 		FAQ

 		What is the difference between django-user-accounts and django.contrib.auth?

 		Why can email addresses get out of sync?

_static/down.png

_static/comment.png

