

Django-modern-rpc

What is RPC

RPC is an acronym for “Remote Procedure Call”. It is a client-server protocol allowing a program (a desktop
software, a webserver, etc.) to execute a function on another machine, using HTTP messages
as transport for requests and responses.

What is django-modern-rpc

This library can be used to implement a XML-RPC / JSON-RPC server as part of your Django project. It provide a simple
and pythonic API to expose a set of global functions to the outside world.

Requirements

	Python 2.7, 3.3, 3.4, 3.5 or 3.6

	Django 1.8 to 2.0

	By default, no additional dependency is required

	Optionally, you may need to install markdown or docutils to support rich-text in your methods documentation.

Main features

Multi-protocols support

The library supports both XML-RPC [http://xmlrpc.scripting.com/] and JSON-RPC 2.0 [http://www.jsonrpc.org/specification] protocols. Please note that JSON-RPC 1.0 is not supported.
The request’s Content-Type is used to determine how incoming RPC call will be interpreted.

Authentication

Restrict access to your RPC methods by configuring one or more predicates. They are executed before
remote procedure to determine if client is allowed to run it. In addition, a set of pre-defined
decorators can be used to control access based on HTTP Basic auth [https://en.wikipedia.org/wiki/Basic_access_authentication].

Error management

Internally, django-modern-rpc use exceptions to track errors. This help to return a correct error response to clients
as well as tracking error on server side.

Other features

	Multiple entry-points

	You can configure your project to have as many RPC entry point as you want. This allows to
provide different RPC methods depending on the URL used to expose them.

	Auto-generated documentation

	Provide a view and a default template to display a list of all available RPC methods
on the server and the corresponding documentation, based on methods docstring.

	System introspection methods

	Common system methods such as system.listMethods(), system.methodSignature() and
system.methodHelp() are provided to both JSON-RPC and XML-RPC clients. In adition, system.multicall() is
provided to XML-RPC client only to allow launching multiple methods in a single RPC call. JSON-RPC client doesn’t need
such a method since the protocol itself define how client can use batch requests to call multiple RPC methods at once.

Quick-start

Learn how to install and configure django-modern-rpc in one minute: read the Quick-start guide.

Table of Contents

	Quick-start guide
	Installation and configuration

	Declare a RPC Entry Point in URLConf

	Write and register your remote procedures

	Declare your RPC methods modules

	That’s all !

	Standard configuration
	Write and register remote procedures
	Decorate your RPC methods

	Configure the registration

	Access request, protocol and other info from a RPC method

	Entry point configuration
	Basic declaration

	Advanced entry point configuration

	Class reference

	HTML Documentation generation
	Enable documentation

	Customize rendering

	Write documentation

	Authentication
	Basics

	HTTP Basic Authentication support

	Error handling and logging system
	RPC Error codes and pre-defined exceptions

	Customize error handling

	Logging

	Settings
	Basic configuration

	JSON Serialization and deserialization

	XML serialization and deserialization

	Python 2 String standardization

	RPC entry points configuration

	Other available settings

	Advanced topics
	Data types support
	Basic types

	List and structures

	null and NoneType

	Strings

	Dates

	System methods
	system.listMethods

	system.methodSignature

	system.methodHelp

	system.multicall

	Bibliography

	Get involved
	Report issues, suggest enhancements

	Submit a pull request

	Execute the unit tests

	Execute unit tests in all supported environments

	Changelog
	Current development

	Release 0.11.1 (2018-05-13)

	Release 0.11.0 (2018-04-25)

	Release 0.10.0 (2017-12-06)

	Release 0.9.0 (2017-10-03)

	Release 0.8.1 (2017-10-02)

	Release 0.8.0 (2017-07-12)

	Release 0.7.1 (2017-06-24)

	Release 0.7.0 (2017-06-24)

	Release 0.6.0 (2017-05-13)

	Release 0.5.2 (2017-04-18)

	Release 0.5.1 (2017-03-25)

	Release 0.5.0 (2017-02-18)

	Release 0.4.2 (2016-11-20)

	Release 0.4.1 (2016-11-17)

	Release 0.4.0 (2016-11-17)

	Release 0.3.2 (2016-10-26)

	Release 0.3.1 (2016-10-26)

	Release 0.3.0 (2016-10-18)

	Release 0.2.3 (2016-10-13)

	Release 0.2.2 (2016-10-13)

	Release 0.2.1 (2016-10-12)

	Release 0.2.0 (2016-10-05)

	Release 0.1.0 (2016-10-02)

Indices and tables

	Index

	Module Index

	Search Page

Quick-start guide

Configuring django-modern-rpc is quick and simple. Follow that steps to be up and running in few minutes!

Installation and configuration

Use your preferred tool (pip, pipenv, pipsi, easy_install, requirements.txt file, etc.) to install package
django-modern-rpc in your environment:

pip install django-modern-rpc

Add modernrpc app to your Django applications, in settings.INSTALLED_APPS:

in project's settings.py
INSTALLED_APPS = [
 ...
 'modernrpc',
]

Declare a RPC Entry Point in URLConf

The entry point is a standard Django view class which mainly handle RPC calls. Like other Django views, you have
to use django.conf.urls.url() to map URL pattern with this class. This can be done in your project’s URLConf,
or in any app specific one.

In myproject/my_app/urls.py
from django.conf.urls import url

from modernrpc.views import RPCEntryPoint

urlpatterns = [
 # ... other url patterns
 url(r'^rpc/', RPCEntryPoint.as_view()),
]

Entry points behavior can be customized to your needs. Read Entry point configuration for full documentation.

Write and register your remote procedures

Now, you have to write your remote procedures. These are global functions decorated with @rpc_method.

In myproject/rpc_app/rpc_methods.py
from modernrpc.core import rpc_method

@rpc_method
def add(a, b):
 return a + b

@rpc_method behavior can be customized to your needs. Read Configure the registration
for full list of options.

Declare your RPC methods modules

Django-modern-rpc will automatically register functions decorated with @rpc_method, but needs a hint to locate them.
Declare settings.MODERNRPC_METHODS_MODULES to indicate all python modules where remote procedures are defined.

MODERNRPC_METHODS_MODULES = [
 'rpc_app.rpc_methods'
]

That’s all !

Your application is ready to receive XML-RPC or JSON-RPC calls. The entry point URL is http://yourwebsite.com/rpc/
but you can customize it to fit your needs.

Standard configuration

	Write and register remote procedures
	Decorate your RPC methods

	Configure the registration

	Access request, protocol and other info from a RPC method

	Entry point configuration
	Basic declaration

	Advanced entry point configuration

	Class reference

	HTML Documentation generation
	Enable documentation

	Customize rendering

	Write documentation

	Authentication
	Basics

	HTTP Basic Authentication support

	Error handling and logging system
	RPC Error codes and pre-defined exceptions

	Customize error handling

	Logging

	Settings
	Basic configuration

	JSON Serialization and deserialization

	XML serialization and deserialization

	Python 2 String standardization

	RPC entry points configuration

	Other available settings

Write and register remote procedures

Django-modern-rpc will automatically register RPC methods at startup. To ensure this automatic registration is performed
quickly, you must provide the list of python modules where your remote methods are declared.

In settings.py, add the variable MODERNRPC_METHODS_MODULES to define this list. In our example, the only defined
RPC method is add(), declared in myproject/rpc_app/rpc_methods.py.

MODERNRPC_METHODS_MODULES = [
 'rpc_app.rpc_methods'
]

When django-modern-rpc application will be loaded, it’s AppConfig.ready() method [https://docs.djangoproject.com/en/dev/ref/applications/#django.apps.AppConfig.ready] is executed. The automatic
registration is performed at this step.

Decorate your RPC methods

Decorator usage is simple. You only need to add @rpc_method decorator before any method you want to provide
via RPC calls.

In myproject/rpc_app/rpc_methods.py
from modernrpc.core import rpc_method

@rpc_method()
def add(a, b):
 return a + b

Configure the registration

If you decorate your methods with @rpc_method without specifying argument, the registered method will be available
for all entry points, for any XML-RPC or JSON-RPC call and will have the name of the corresponding function.

You can also change this behavior by setting arguments to the decorator:

	name = None

	Can be used to override the external name of a RPC method. This is the only way to define dotted names for RPC
methods, since python syntax does not allows such names in functions definitions. Example:

@rpc_method(name='math.additioner')
def add(a, b):
 return a + b

	protocol = ALL

	Set the protocol argument to modernrpc.handlers.JSONRPC or modernrpc.handlers.XMLRPC to
ensure a method will be available only via the corresponding protocol. Example:

@rpc_method(protocol=modernrpc.handlers.JSONRPC)
def add(a, b):
 return a + b

	entry_point = ALL

	Set the entry_point argument to one or more str value to ensure the method will be available only via calls to
corresponding entry point name. Fore more information, please check the documentation about
multiple entry points declaration.
Example:

@rpc_method(entry_point='apiV2')
def add(a, b):
 return a + b

Access request, protocol and other info from a RPC method

If you need to access some environment from your RPC method, simply adds **kwargs in function parameters. When the
function will be executed, a dict will be passed as argument, providing the following information:

	Current HTTP request, as proper Django HttpRequest instance

	Current protocol (JSON-RPC or XML-RPC)

	Current entry point name

	Current handler instance

See the example to see how to access these values:

from modernrpc.core import REQUEST_KEY, ENTRY_POINT_KEY, PROTOCOL_KEY, HANDLER_KEY
from modernrpc.core import rpc_method

@rpc_method
def content_type_printer(**kwargs):

 # Get the current request
 request = kwargs.get(REQUEST_KEY)

 # Other available objects are:
 # protocol = kwargs.get(PROTOCOL_KEY)
 # entry_point = kwargs.get(ENTRY_POINT_KEY)
 # handler = kwargs.get(HANDLER_KEY)

 # Return the content-type of the current request
 return request.META.get('Content-Type', '')

Entry point configuration

Django-modern-rpc provides a class to handle RPC calls called RPCEntryPoint. This standard Django view
will return a valid response to any valid RPC call made via HTTP POST requests.

Basic declaration

RPCEntryPoint is a standard Django view, you can declare it in your project or app’s urls.py:

In myproject/rpc_app/urls.py
from django.conf.urls import url

from modernrpc.views import RPCEntryPoint

urlpatterns = [
 # ... other views

 url(r'^rpc/', RPCEntryPoint.as_view()),
]

As a result, all RPC requests made to http://yourwebsite/rpc/ will be handled by the RPC entry point. Obviously,
you can decide to handle requests from a different URL by updating the regex argument of url(). You can also
declare more entry points with different URLs.

Advanced entry point configuration

You can modify the behavior of the view by passing some arguments to as_view().

Limit entry point to JSON-RPC or XML-RPC only

Using protocol parameter, you can make sure a given entry point will only handle JSON-RPC or XML-RPC requests. This
is useful, for example if you need to have different addresses to handle protocols.

from django.conf.urls import url

from modernrpc.handlers import JSONRPC, XMLRPC
from modernrpc.views import RPCEntryPoint

urlpatterns = [
 url(r'^json-rpc/$', RPCEntryPoint.as_view(protocol=JSONRPC)),
 url(r'^xml-rpc/$', RPCEntryPoint.as_view(protocol=XMLRPC)),
]

Declare multiple entry points

Using entry_point parameter, you can declare different entry points. Later, you will be able to configure your RPC
methods to be available to one or more specific entry points.

from django.conf.urls import url

from modernrpc.views import RPCEntryPoint

urlpatterns = [
 url(r'^rpc/$', RPCEntryPoint.as_view(entry_point='apiV1')),
 url(r'^rpcV2/$', RPCEntryPoint.as_view(entry_point='apiV2')),
]

Class reference

	
class modernrpc.views.RPCEntryPoint(**kwargs)

	This is the main entry point class. It inherits standard Django View class.

	
dispatch(request, *args, **kwargs)

	Overrides the default dispatch method, to disable CSRF validation on POST requests. This
is mandatory to ensure RPC calls wil be correctly handled

	
get_context_data(**kwargs)

	Update context data with list of RPC methods of the current entry point.
Will be used to display methods documentation page

	
get_handler_classes()

	Return the list of handlers to use when receiving RPC requests.

	
post(request, *args, **kwargs)

	Handle a XML-RPC or JSON-RPC request.

	Parameters

	
	request – Incoming request

	args – Additional arguments

	kwargs – Additional named arguments

	Returns

	A HttpResponse containing XML-RPC or JSON-RPC response, depending on the incoming request

HTML Documentation generation

Django-modern-rpc can optionally process the docstring attached to your RPC methods and display it in a web page.
This article will explain how generated documentation can bu used and customized.

Enable documentation

RPCEntryPoint class can be configured to provide HTML documentation of your RPC methods.
To enable the feature, simply set enable_doc = True in your view instance

urlpatterns = [

 # Configure the RPCEntryPoint directly by passing some arguments to as_view() method
 url(r'^rpc/', RPCEntryPoint.as_view(enable_doc=True)),
]

If you prefer provide documentation on a different URL than the one used to handle RPC requests, you just need to
specify two different URLConf.

urlpatterns = [

 # By default, RPCEntryPoint does NOT provide documentation but handle RPC requests
 url(r'^rpc/', RPCEntryPoint.as_view()),

 # And you can configure it to display doc without handling RPC requests.
 url(r'^rpc-doc/', RPCEntryPoint.as_view(enable_doc=True, enable_rpc=False)),
]

Customize rendering

By default, documentation will be rendered using a Bootstrap 4 based template with collapse [https://getbootstrap.com/docs/4.0/components/collapse/] component, to display
doc in a list of accordion [https://getbootstrap.com/docs/4.0/components/collapse/#accordion-example] widgets.

You can customize the documentation page by setting your own template. RPCEntryPoint inherits
django.views.generic.base.TemplateView, so you have to set view’s template_name attribute:

urlpatterns = [

 # Configure the RPCEntryPoint directly by passing some arguments to as_view() method
 url(r'^rpc/', RPCEntryPoint.as_view(
 enable_doc=True,
 template_name='my_app/my_custom_doc_template.html'
)
),
]

In the template, you will get a list of modernrpc.core.RPCMethod instance (one per registered RPC method). Each
instance of this class has some methods and properties to retrieve documentation.

Write documentation

The documentation is generated directly from RPC methods docstring

@rpc_method(name="util.printContentType")
def content_type_printer(**kwargs):
 """
 Inspect request to extract the Content-Type heaser if present.
 This method demonstrate how a RPC method can access the request object.
 :param kwargs: Dict with current request, protocol and entry_point information.
 :return: The Content-Type string for incoming request
 """
 # The other available variables are:
 # protocol = kwargs.get(MODERNRPC_PROTOCOL_PARAM_NAME)
 # entry_point = kwargs.get(MODERNRPC_ENTRY_POINT_PARAM_NAME)

 # Get the current request
 request = kwargs.get(REQUEST_KEY)
 # Return the content-type of the current request
 return request.META.get('Content-Type', '')

If you want to use Markdown or reStructuredText syntax in your RPC method documentation, you have to install the
corresponding package in you environment.

pip install Markdown

or

pip install docutils

Then, set settings.MODERNRPC_DOC_FORMAT to indicate which parser must be used to process your docstrings

In settings.py
MODERNRPC_DOC_FORMAT = 'markdown'

or

In settings.py
MODERNRPC_DOC_FORMAT = 'rst'

Authentication

New in version 0.5.

django-modern-rpc supports authentication. It is possible to restrict access to any
RPC method depending on conditions named “predicate”.

Basics

To provide authentication features, django-modern-rpc introduce concept of “predicate”. It is a python function
taking a request as argument and returning a boolean:

def forbid_bots_access(request):
 forbidden_bots = [
 'Googlebot', # Google
 'Bingbot', # Microsoft
 'Slurp', # Yahoo
 'DuckDuckBot', # DuckDuckGo
 'Baiduspider', # Baidu
 'YandexBot', # Yandex
 'facebot', # Facebook
]
 incoming_UA = request.META.get('HTTP_USER_AGENT')
 if not incoming_UA:
 return False

 for bot_ua in forbidden_bots:
 # If we detect the caller is one of the bots listed above...
 if bot_ua.lower() in incoming_UA.lower():
 # ... forbid access
 return False

 # In all other cases, allow access
 return True

It is associated with RPC method using @set_authentication_predicate decorator.

from modernrpc.core import rpc_method
from modernrpc.auth import set_authentication_predicate
from myproject.myapp.auth import forbid_bots_access

@rpc_method
@set_authentication_predicate(forbid_bots_access)
def my_rpc_method(a, b):
 return a + b

Now, the RPC method becomes unavailable to callers if User-Agent is not provided or if it has an invalid value.

In addition, you can provide arguments to your predicate using params:

@rpc_method
@set_authentication_predicate(my_predicate_with_params, params=('param_1', 42))
def my_rpc_method(a, b):
 return a + b

It is possible to declare multiple predicates for a single method. In such case, all predicates must return
True to allow access to the method.

@rpc_method
@set_authentication_predicate(forbid_bots_access)
@set_authentication_predicate(my_predicate_with_params, params=('param_1', 42))
def my_rpc_method(a, b):
 return a + b

HTTP Basic Authentication support

django-modern-rpc comes with a builtin support for HTTP Basic Auth [https://en.wikipedia.org/wiki/Basic_access_authentication]. It provides a set of decorators to directly
extract user information from request, and test this user against Django authentication system:

from modernrpc.auth.basic import http_basic_auth_login_required, http_basic_auth_superuser_required, \
 http_basic_auth_permissions_required, http_basic_auth_any_of_permissions_required, \
 http_basic_auth_group_member_required, http_basic_auth_all_groups_member_required
from modernrpc.core import rpc_method

@rpc_method
@http_basic_auth_login_required
def logged_user_required(x):
 """Access allowed only to logged users"""
 return x

@rpc_method
@http_basic_auth_superuser_required
def logged_superuser_required(x):
 """Access allowed only to superusers"""
 return x

@rpc_method
@http_basic_auth_permissions_required(permissions='auth.delete_user')
def delete_user_perm_required(x):
 """Access allowed only to users with specified permission"""
 return x

@rpc_method
@http_basic_auth_any_of_permissions_required(permissions=['auth.add_user', 'auth.change_user'])
def any_permission_required(x):
 """Access allowed only to users with at least 1 of the specified permissions"""
 return x

@rpc_method
@http_basic_auth_permissions_required(permissions=['auth.add_user', 'auth.change_user'])
def all_permissions_required(x):
 """Access allowed only to users with all the specified permissions"""
 return x

@rpc_method
@http_basic_auth_group_member_required(groups='A')
def in_group_A_required(x):
 """Access allowed only to users contained in specified group"""
 return x

@rpc_method
@http_basic_auth_group_member_required(groups=['A', 'B'])
def in_group_A_or_B_required(x):
 """Access allowed only to users contained in at least 1 of the specified group"""
 return x

@rpc_method
@http_basic_auth_all_groups_member_required(groups=['A', 'B'])
def in_groups_A_and_B_required_alt(x):
 """Access allowed only to users contained in all the specified group"""
 return x

Error handling and logging system

RPC Error codes and pre-defined exceptions

django-modern-rpc provide exceptions to cover common errors when requests are processed.

Error handling is fully described in both XML & JSON-RPC standards. Each common error have an associated faultCode
and the response format is described, so errors can be handled correctly on the client side.

In django-modern-rpc, all errors are reported using a set of pre-defined exceptions. Thus, in JSON and XML-RPC handlers,
when an exception is caught, the correct error response is returned to the view and transmitted to the client.

This simplify error management, and allow developers to simply return errors to clients from inside a RPC Method.
The error codes values are defined in:

	http://www.jsonrpc.org/specification#error_object for JSON-RPC

	http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php for XML-RPC

Pre-defined exceptions uses the following error codes:

RPC_PARSE_ERROR = -32700
RPC_INVALID_REQUEST = -32600
RPC_METHOD_NOT_FOUND = -32601
RPC_INVALID_PARAMS = -32602
RPC_INTERNAL_ERROR = -32603

Used as minimal value for any custom error returned by the server
RPC_CUSTOM_ERROR_BASE = -32099
Used as maximal value for any custom error returned by the server
RPC_CUSTOM_ERROR_MAX = -32000

	
exception modernrpc.exceptions.AuthenticationFailed(method_name)

	Raised when authentication system forbade execution of a RPC Method

	
exception modernrpc.exceptions.RPCException(code, message, data=None)

	This is the base class of all RPC exception. Custom exceptions raised by your RPC methods
should inherits from RPCException.

	
exception modernrpc.exceptions.RPCInternalError(message, data=None)

	Raised by handlers if any standard exception is raised during the execution of the RPC method.

	
exception modernrpc.exceptions.RPCInvalidParams(message, data=None)

	Raised by handlers if the RPC method’s params does not match the parameters in RPC request

	
exception modernrpc.exceptions.RPCInvalidRequest(message, data=None)

	Raised by handlers if incoming JSON or XML data is not a valid JSON-RPC or XML-RPC data.

	
exception modernrpc.exceptions.RPCParseError(message, data=None)

	Raised by handlers if the request can’t be read as valid JSOn or XML data.

	
exception modernrpc.exceptions.RPCUnknownMethod(name, data=None)

	Raised by handlers the RPC method called is not defined for the current entry point and protocol.

Customize error handling

If you want to define customized exceptions for your application, you can create RPCException sub-classes and set,
for each custom exception, a faultCode to RPC_CUSTOM_ERROR_BASE + N with N a unique number.

Here is an example:

class MyException1(RPCException):
 def __init__(self, message):
 super(MyException1, self).__init__(RPC_CUSTOM_ERROR_BASE + 1, message)

class MyException2(RPCException):
 def __init__(self, message):
 super(MyException2, self).__init__(RPC_CUSTOM_ERROR_BASE + 2, message)

Anyway, any exception raised during the RPC method execution will generate a RPCInternalError with an error message
constructed from the underlying error. As a result, the RPC client will have a correct message describing what went
wrong.

Logging

Django-modern-rpc use Python logging system to report some information, warning and errors. If you need to
troubleshoot issues, you can enable logging capabilities.

You only have to configure settings.LOGGING to handle log messages from modernrpc.core and modernrpc.views.
Here is a basic example of such a configuration:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 # Your formatters configuration...
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 # your other loggers configuration
 'modernrpc': {
 'handlers': ['console'],
 'level': 'DEBUG',
 'propagate': True,
 },
 }
}

All information about logging configuration can be found in official Django docs [https://docs.djangoproject.com/en/dev/topics/logging/#configuring-logging].

New in version 0.7: By default, logs from modernrpc.* modules are discarded silently. This behavior prevent
the common Python 2 error message “No handlers could be found for logger XXX”.

Settings

Django-modern-rpc behavior can be customized by defining some values in project’s settings.py.

Basic configuration

MODERNRPC_METHODS_MODULES

Default: [] (Empty list)

Define the list of python modules containing RPC methods. You must set this list with at least one module.
At startup, the list is looked up to register all python functions decorated with @rpc_method.

JSON Serialization and deserialization

You can configure how JSON-RPC handler will serialize and unserialize data:

MODERNRPC_JSON_DECODER

Default: 'json.decoder.JSONDecoder'

Decoder class used to convert python data to JSON

MODERNRPC_JSON_ENCODER

Default: 'django.core.serializers.json.DjangoJSONEncoder'

Encoder class used to convert JSON to python values. Internally, modernrpc uses the default Django JSON encoder [https://docs.djangoproject.com/en/dev/topics/serialization/#djangojsonencoder],
which improves the builtin python encoder by adding support for additional types (DateTime, UUID, etc.).

XML serialization and deserialization

MODERNRPC_XMLRPC_USE_BUILTIN_TYPES

Default: True

Control how builtin types are handled by XML-RPC serializer and deserializer. If set to True (default), dates will be
converted to datetime.datetime by XML-RPC deserializer. If set to False, dates will be converted to
XML-RPC DateTime [https://docs.python.org/3/library/xmlrpc.client.html#datetime-objects] instances (or equivalent [https://docs.python.org/2/library/xmlrpclib.html#datetime-objects] for Python 2).

This setting will be passed directly to ServerProxy [https://docs.python.org/3/library/xmlrpc.client.html#xmlrpc.client.ServerProxy] instantiation.

MODERNRPC_XMLRPC_ALLOW_NONE

Default: True

Control how XML-RPC serializer will handle None values. If set to True (default), None values will be converted to
<nil>. If set to False, the serializer will raise a TypeError when encountering a None value.

MODERNRPC_XMLRPC_DEFAULT_ENCODING

Default: None

Configure the default encoding used by XML-RPC serializer.

MODERNRPC_XML_USE_BUILTIN_TYPES

Default: True

Deprecated. Define MODERNRPC_XMLRPC_USE_BUILTIN_TYPES instead.

Python 2 String standardization

MODERNRPC_PY2_STR_TYPE

Default: None

Define target type for Global String standardization (project level).

MODERNRPC_PY2_STR_ENCODING

Default: UTF-8

Define global encoding used in Global String standardization (project level).

RPC entry points configuration

MODERNRPC_HANDLERS

Default: ['modernrpc.handlers.JSONRPCHandler', 'modernrpc.handlers.XMLRPCHandler']

List of handler classes used by default in any RPCEntryPoint instance. If you defined your custom handler for any
protocol, you can replace the default class used

MODERNRPC_DEFAULT_ENTRYPOINT_NAME

Default: '__default_entry_point__'

Default name used for anonymous RPCEntryPoint

Other available settings

MODERNRPC_DOC_FORMAT

Default: '' (Empty String)

Configure the format of the docstring used to document your RPC methods.

Possible values are: (empty), rst or markdown.

Note

The corresponding package is not automatically installed. You have to ensure library markdown or docutils is
installed in your environment if you set settings.MODERNRPC_DOC_FORMAT to a non-empty value

Advanced topics

	Data types support
	Basic types

	List and structures

	null and NoneType

	Strings

	Dates

	System methods
	system.listMethods

	system.methodSignature

	system.methodHelp

	system.multicall

Data types support

JSON transport supported types are limited by JSON type system described in http://www.ietf.org/rfc/rfc4627.txt.

XML-RPC specification contains explicit type information. As a result, more types are supported. They are described
in http://xmlrpc.scripting.com/spec.html.

In addition, Python version used in your project may change how data types are transmitted. Since django-modern-rpc
allows you to declare methods that can handle both protocols, this document describes how specific types are handled
in RPC methods in all cases (JSON or XML-RPC transport with Python 2 or Python 3).

Basic types

The basic types are handled the same way with the 2 supported protocols. Those types are:

	bool

	int

	float

	string (Python 3 only, see Strings for information with Python 2)

As long as a RPC method arguments or return value is of one of the above types, the behavior is consistent across all
Python version and protocols.

List and structures

Both JSON-RPC and XML-RPC supports lists and structures. Conversion is done as follow:

	Input data (RPC method argument)

	structure is converted to Python dict

	list is converted to Python list

	Output data (RPC method return type)

	Python dict is converted to structure

	Python list and tuple is converted to list

In other words, you can use those types without any issue, it works as you expect it.

Both lists and structures can contains any combinations of elements of types defined in this documents. A struct
can contain another struct or a list, etc.

null and NoneType

By default, both JSON-RPC and XML-RPC handlers will be able to return None or to take a None value as argument.
The XML handler will convert such values to <nil/> special argument. Since this type is not part of the original
specification, some XML-RPC clients may misunderstand this value. If you prefer respect the original standard, simply
define in your settings.py:

MODERNRPC_XMLRPC_ALLOW_NONE = False

As a result, the XML handler will raise a TypeError when trying to serialize a response containing a None value.

Strings

If your project runs in a Python 3 environment, the behavior is consistent for XML-RPC and JSON-RPC protocol.

In a Python 2 project, XML deserializer will transmit string values as str when JSON deserializer will
produce unicode values. If this behavior is problematic in your project, you have to manually handle both cases for
each string you manipulate in your RPC methods. As an alternative, django-modern-rpc can dynamically standardize
incoming arguments to ensure contained strings are converted to have always the same type from method point of view.

Note

The strings standardization apply on strings arguments, but also on list and structures. The process inspects
recursively all arguments to perform the conversion of string values. This can be inefficient for big structures or
lists, that’s why this feature is not enabled by default.

You have 2 options to configure this process:

Global String standardization (project level)

In your settings.py, define the variable MODERNRPC_PY2_STR_TYPE with type value str or unicode. This
will automatically converts any incoming string argument to the specified type. In such case, you will need to also
configure settings.MODERNRPC_PY2_STR_ENCODING with the strings encoding (default is UTF-8)

In settings.py

MODERNRPC_PY2_STR_TYPE = str
MODERNRPC_PY2_STR_ENCODING = 'UTF-8'

In rpc_methods

@rpc_method
def print_incoming_type(data):
 """Returns a string representation of input argument type"""
 if isinstance(data, unicode):
 return 'Incoming arg is a unicode object'
 elif isinstance(data, str):
 return 'Incoming arg is a str object'

 return 'Incoming arg has type {}'.format(type(data))

In this example, calling print_incoming_type('abcd') from a Python 2 project will always return Incoming arg is
a str object, no matter which protocol were used to make the request (JSON-RPC or XML-RPC)

Method level String standardization

In the same way, if you need to have a different behavior for a specific RPC method, the equivalent of
settings.MODERNRPC_PY2_STR_TYPE and settings.MODERNRPC_PY2_STR_ENCODING variables can be defined at method
level:

@rpc_method(str_standardization=unicode, str_standardization_encoding='UTF-8')
def print_incoming_type(data):
 """Returns a string representation of input argument type"""
 if isinstance(data, unicode):
 return 'Incoming arg is a unicode object'
 elif isinstance(data, str):
 return 'Incoming arg is a str object'

 return 'Incoming arg has type {}'.format(type(data))

This parameters will override the global settings for a specific RPC method.

Dates

In XML-RPC

XML-RPC transport defines a type to handle dates and date/times: dateTime.iso8601. Conversion is done as follow:

	Input date (RPC method argument)

	If settings.MODERNRPC_XMLRPC_USE_BUILTIN_TYPES = True (default), the date will be converted to
datetime.datetime

	If settings.MODERNRPC_XMLRPC_USE_BUILTIN_TYPES = False, the date will be converted to
xmlrpc.client.DateTime (Python 3) or xmlrpclib.DateTime (Python 2)

	Output date (RPC method return type)

	Any object of type datetime.datetime, xmlrpclib.DateTime or xmlrpc.client.DateTime will
be converted to dateTime.iso8601 in XML response

In JSON-RPC

JSON transport has no specific support of dates, they are transmitted as string formatted with ISO 8601 standard.
The behavior of default encoder and decoder classes is:

	Input date (RPC method argument)

	Dates are transmitted as standard string. Decoder will NOT try to recognize dates to apply specific treatments.
Use

	Output date (RPC method return type)

	datetime.datetime objects will be automatically converted to string (format ISO 8601), so JSON-RPC clients
will be able to handle it as usual. This behavior is due to the use of DjangoJSONEncoder as default encoder.

If you need to customize behavior of JSON encoder and/or decoder, you can specify another classes in settings.py:

MODERNRPC_JSON_DECODER = 'json.decoder.JSONDecoder'
MODERNRPC_JSON_ENCODER = 'django.core.serializers.json.DjangoJSONEncoder'

Using helper to handle all cases

To simplify date handling in your RPC methods, django-modern-rpc defines a helper to convert any object type into a
datetime.datetime instance:

	
modernrpc.helpers.get_builtin_date(date, date_format='%Y-%m-%dT%H:%M:%S', raise_exception=False)

	Try to convert a date to a builtin instance of datetime.datetime.
The input date can be a str, a datetime.datetime, a xmlrpc.client.Datetime or a xmlrpclib.Datetime
instance. The returned object is a datetime.datetime.

	Parameters

	
	date – The date object to convert.

	date_format – If the given date is a str, format is passed to strptime to parse it

	raise_exception – If set to True, an exception will be raised if the input string cannot be parsed

	Returns

	A valid datetime.datetime instance

Here is an usage example:

from modernrpc.helpers import get_builtin_date

@rpc_method()
def add_one_month(date):
 """Adds 31 days to the given date, and returns the result."""
 return get_builtin_date(date) + datetime.timedelta(days=31)

System methods

XML-RPC [http://xmlrpc.scripting.com/spec.html] specification doesn’t provide default methods to achieve introspection tasks, but some people proposed
a standard for such methods. The original document [http://xmlrpc.usefulinc.com/doc/reserved.html] is now offline, but has been retrieved from Google
cache and is now hosted here [http://scripts.incutio.com/xmlrpc/introspection.html].

system.listMethods

Return a list of all methods available.

system.methodSignature

Return the signature of a specific method

system.methodHelp

Return the documentation for a specific method.

system.multicall

Like 3 others, this system method is not part of the standard. But its behavior has been well defined [https://mirrors.talideon.com/articles/multicall.html]
by Eric Kidd [https://github.com/emk]. It is now implemented most of the XML-RPC servers and supported by number of
clients (including Python’s ServerProxy [https://docs.python.org/3/library/xmlrpc.client.html#multicall-objects]).

This method can be used to make many RPC calls at once, by sending an array of RPC payload. The result is a list of
responses, with the result for each individual request, or a corresponding fault result.

It is available only to XML-RPC clients, since JSON-RPC protocol specify how to call multiple RPC methods
at once using batch request.

Bibliography

The development of django-modern-rpc is a best effort to follow existing standards.

XML-RPC standard:

	http://xmlrpc.scripting.com/spec.html

JSON-RPC specification

	http://www.jsonrpc.org/specification

	JSON type support: http://www.ietf.org/rfc/rfc4627.txt

Specification for system introspection methods (XML-RPC)

	http://scripts.incutio.com/xmlrpc/introspection.html (originally available
from http://xmlrpc.usefulinc.com/doc/reserved.html)

Description of the system.multicall specific method, by Eric Kidd:

	https://mirrors.talideon.com/articles/multicall.html (originally posted
on http://www.xmlrpc.com/discuss/msgReader$1208 and http://directory.xmlrpc.com/services/xmlrpcextensions/)

	Python XML-RPC implementation: https://docs.python.org/3/library/xmlrpc.client.html

Get involved

There is many way to contribute to project development.

Report issues, suggest enhancements

If you find a bug, want to ask question about configuration or suggest an improvement to the project, feel free to use
the issue tracker [https://github.com/alorence/django-modern-rpc/issues]. You will need a GitHub account.

Submit a pull request

If you improved something or fixed a bug by yourself in a fork, you can
submit a pull request [https://github.com/alorence/django-modern-rpc/pulls]. We will be happy to review it before
doing a merge.

Execute the unit tests

The project uses py.test with some plugins to perform unit testing. You can install most of them using pip.
In addition, you will have to install a supported version of Django. This is not part of requirements.txt since the
automatic tests are performed on various Django versions. To install all dependencies for unit tests execution, you
can type:

pip install Django
pip install -r requirements.txt

The file requirements.txt contains references to the following packages:

flake8
pytest>=3.6
pytest-django
pytest-pythonpath
pytest-cov
requests
markdown
docutils
JSON-RPC dropped Python 2 support with version 3.0
jsonrpcclient<3
Do not try to update setuptools to the latest release, which dropped python 3.3 support
setuptools<=39

Installing pytest-django will trigger pytest and all its dependencies. In addition, requests and
jsonrpcclient are used in some tests. flake8 is used to control code quality and respect of PEP8 standards.

When all required packages are installed, you can run the tests using:

pytest .

Execute unit tests in all supported environments

Alternatively to simple pytest run, you may want to check if the tests run correctly in all supported
configurations. To do so, you can install and run tox:

pip install tox
tox .

This will execute all tests under all supported Python and Django versions. In addition, it will execute flake8
to perform code style checks.

Changelog

Current development

Improvements

	To ensure compatibility with JSON-RPC 1.2 [https://www.jsonrpc.org/historical/json-rpc-over-http.html], 2 more “Content-Type” values are supported by JSON-RPC Handler:
“application/json-rpc” and “application/jsonrequest” (#24 [https://github.com/alorence/django-modern-rpc/issues/24]). Thanks to @dansan

	Django 2.1 has been added to supported tests environment. It is now officially supported.

Release 0.11.1 (2018-05-13)

Improvements

Last release introduced some undocumented breaking API changes regarding RPC registry management. Old API has been
restored for backward compatibility. The following global functions are now back in the API:

	modernrpc.core.register_rpc_method()

	modernrpc.core.get_all_method_names()

	modernrpc.core.get_all_methods()

	modernrpc.core.get_method()

	modernrpc.core.reset_registry()

In addition, some improvements have been applied to unit tests, to make sure test environment is the same after each
test function. In addition, some exclusion patterns have been added in .coveragerc file to increase coverage report
accuracy.

Release 0.11.0 (2018-04-25)

Improvements

	Django 2.0 is now officially supported. Tox and Travis default config have been updated to integrate Django 2.0
in existing tests environements.

	Method’s documentation is generated only if needed and uses Django’s @cached_property decorator

	HTML documentation default template has been updated: Bootstrap 4.1.0 stable is now used, and the rendering has been
improved.

API Changes

	Class RPCRequest has been removed and replaced by method execute_procedure(name, args, kwargs) in RPCHandler
class. This method contains common logic used to retrieve a RPC method, execute authentication predicates to make
sure it can be run, execute the concrete method and return the result.

	HTML documentation content is not anymore marked as “safe” using django.utils.safestring.mark_safe(). You
have to use Django decorator safe in your template if you display this value.

Settings

	The kwargs dict passed to RPC methods can have customized keys (#18 [https://github.com/alorence/django-modern-rpc/issues/18]). Set the following values:

	settings.MODERNRPC_KWARGS_REQUEST_KEY

	settings.MODERNRPC_KWARGS_ENTRY_POINT_KEY

	settings.MODERNRPC_KWARGS_PROTOCOL_KEY

	settings.MODERNRPC_KWARGS_HANDLER_KEY

to override dict keys and prevent conflicts with your own methods arguments.

Other updates

	Many units tests have been improved. Some tests with many calls to LiveServer have been splitted into shorter ones.

Release 0.10.0 (2017-12-06)

Improvements

	Logging system / error management

	In case of error, current exception stacktrace is now passed to logger by default. This allows special handler like
django.utils.log.AdminEmailHandler or raven.handlers.logging.SentryHandler to use it to report more useful
information (#13 [https://github.com/alorence/django-modern-rpc/issues/13])

	Error messages have been rewritten to be consistent across all modules and classes

	Decrease log verbosity: some INFO log messages now have DEBUG level (startup methods registration)

	Documentation has been updated

	Added a page to explain how to configure RPC methods documentation generation, and add a note to explicitly
state that markdown or docutils package must be installed if settings.MODERNRPC_DOC_FORMAT is set
to non-empty value (#16 [https://github.com/alorence/django-modern-rpc/issues/16])

	Added a page to list implemented system introspection methods

	Added a bibliography page, to list all references used to write the library

	Default template for generated RPC methods documentation now uses Bootstrap 4.0.0-beta.2 (previously 4.0.0-alpha.5)

Release 0.9.0 (2017-10-03)

This is a major release with many improvements, protocol support and bug fixes. This version introduce an API break,
please read carefully.

Improvements

	Class RPCException and its subclasses now accept an additional data argument (#10 [https://github.com/alorence/django-modern-rpc/issues/10]). This is used by JSON-RPC
handler to report additional information to user in case of error. This data is ignored by XML-RPC handler.

	JSON-RPC: Batch requests are now supported (#11 [https://github.com/alorence/django-modern-rpc/issues/11])

	JSON-RPC: Named parameters are now supported (#12 [https://github.com/alorence/django-modern-rpc/issues/12])

	JSON-RPC: Notification calls are now supported. Missing id in payload is no longer considered as invalid, but
is correectly handled. No HTTP response is returned in such case, according to the standard.

	XML-RPC: exception raised when serializing data to XML are now catched as InternalError and a clear error message

API Changes

	modernrpc.handlers.JSONRPC and modernrpc.handlers.XMLRPC constants have been moved and renamed. They
become respectively modernrpc.core.JSONRPC_PROTOCOL and modernrpc.core.XMLRPC_PROTOCOL

	RPCHandler class updated, as well as subclases XMLRPCHandler and JSONRPCHandler.
RPCHandler.parse_request() is now RPCHandler.process_request(). The new method does not return a tuple
(method_name, params) anymore. Instead, it executes the underlying RPC method using new class RPCRequest.
If you customized your handlers, please make sure you updated your code (if needed).

Minor updates

	Code has been improved to prepare future compatibility with Django 2.0

Release 0.8.1 (2017-10-02)

Important

This version is a security fix. Upgrade is highly recommended

Security fix

	Authentication backend is correctly checked when executing method using system.multicall()

Release 0.8.0 (2017-07-12)

Bugfixes

	Fixed invalid HTML tag rendered from RPC Method documentation. Single new lines are converted to space since they
are mostly used to limit docstrings line width. See pull request #7 [https://github.com/alorence/django-modern-rpc/issues/7], thanks to @adamdonahue

	Signature of auth.set_authentication_predicate has been fixed so it can be used as decorator [http://django-modern-rpc.readthedocs.io/en/latest/advanced/authentication.html#basics] (#8 [https://github.com/alorence/django-modern-rpc/issues/8]).
Thanks to @aplicacionamedida

Release 0.7.1 (2017-06-24)

Minor fix

	Removed useless settings variable introduced in last 0.7.0 release. Logging capabilities are now enabled by simply
configuring a logger for modernrpc.* modules, using Django variable LOGGING. The documentation [http://django-modern-rpc.readthedocs.io/en/latest/advanced/tips_and_tricks.html#enable-logging] has been
updated accordingly.

Release 0.7.0 (2017-06-24)

Improvement

	Default logging behavior has changed. The library will not output any log anymore, unless
MODERNRPC_ENABLE_LOGGING is set to True. See documentation [http://django-modern-rpc.readthedocs.io/en/latest/advanced/tips_and_tricks.html#enable-logging] for more information

Release 0.6.0 (2017-05-13)

Performance Improvements

	Django cache system was previously used to store the list of available methods in the current project. This was
useless, and caused issues with some cache systems (#5 [https://github.com/alorence/django-modern-rpc/issues/5]).
Use of cache system has been removed. The list of RPC methods is computed when the application is
started and kept in memory until it is stopped.

Release 0.5.2 (2017-04-18)

Improvements

	HTTP Basic Authentication backend: User instance is now correctly stored in current request after successful
authentication (#4 [https://github.com/alorence/django-modern-rpc/issues/4])

	Unit testing with Django 1.11 is now performed against release version (Beta and RC are not tested anymore)

	Various Documentation improvements

Release 0.5.1 (2017-03-25)

Improvements

	When RPC methods are registered, if a module file contains errors, a python warning is produced. This ensure the
message will be displayed even if the logging system is not configured in a project (#2 [https://github.com/alorence/django-modern-rpc/issues/2])

	Python 2 strings standardization. Allow to configure an automatic conversion of incoming strings, to ensure they have
the same type in RPC method, no matter what protocol was used to call it. Previously, due to different behavior
between JSON and XML deserializers, strings were received as str when method was called via XML-RPC and as
unicode with JSON-RPC. This standardization process is disabled by default, and can be configured for the whole
project or for specific RPC methods.

	Tests are performed against Django 1.11rc1

	modernrpc.core.register_method() function was deprecated since version 0.4.0 and has been removed.

Release 0.5.0 (2017-02-18)

Improvements

	Typo fixes

	JSON-RPC 2.0 standard explicitly allows requests without ‘params’ member. This doesn’t produce error anymore.

	Setting variable MODERNRPC_XML_USE_BUILTIN_TYPES is now deprecated in favor of
MODERNRPC_XMLRPC_USE_BUILTIN_TYPES

	Unit tests are now performed with python 3.6 and Django 1.11 alpha, in addition to supported environment already
tested. This is a first step to full support for these environments.

	HTTP “Basic Auth” support: it is now possible to define RPC methods available only to specific users. The control can
be done on various user attributes: group, permission, superuser status, etc.
Authentication backend can be extended to support any method based on incoming request.

Release 0.4.2 (2016-11-20)

Improvements

	Various performance improvements

	Better use of logging system (python builtin) to report errors & exceptions from library and RPC methods

	Rewritten docstring parser. Markdown and reStructured formatters are still supported to generate HTML documentation
for RPC methods. They now have unit tests to validate their behavior.

	@rpc_method decorator can be used with or without parenthesis (and this feature is tested)

	System methods have been documented

Release 0.4.1 (2016-11-17)

Improvements

	Method arguments documentation keep the same order as defined in docstring

	API change: MODERNRPC_ENTRY_POINTS_MODULES setting have been renamed to MODERNRPC_METHODS_MODULES.

	A simple warning is displayed when MODERNRPC_METHODS_MODULES is not set, instead of a radical
ImproperlyConfigured exception.

	Some traces have been added to allow debugging in the module easily. It uses the builtin logging framework.

Release 0.4.0 (2016-11-17)

API Changes

	New unified way to register methods. Documentation in progress

	XMl-RPC handler will now correctly serialize and unserialize None values by default. This behavior can be
configured using MODERNRPC_XMLRPC_ALLOW_NONE setting.

Bugfix

	When django use a persistent cache (Redis, memcached, etc.), ensure the registry is up-to-date
with current sources at startup

Release 0.3.2 (2016-10-26)

Bugfix

	Include missing templates in pypi distribution packages

Release 0.3.1 (2016-10-26)

Improvements

	HTML documentation automatically generated for an entry point

	system.multicall is now supported, only in XML-RPC

	Many tests added

Release 0.3.0 (2016-10-18)

API Changes

	Settings variables have been renamed to limit conflicts with other libraries. In the future, all settings will have
the same prefix.

	JSONRPC_DEFAULT_DECODER becomes MODERNRPC_JSON_DECODER

	JSONRPC_DEFAULT_ENCODER becomes MODERNRPC_JSON_ENCODER

See https://github.com/alorence/django-modern-rpc/blob/master/modernrpc/conf/default_settings.py for more details

	Many other settings added, to make the library more configurable. See
http://django-modern-rpc.readthedocs.io/en/latest/basic_usage/settings.html

Improvements

	RPC methods can now declare the special **kwargs parameter. The dict will contain information about current
context (request, entry point, protocol, etc.)

	About 12 tests added to increase coverage

	Many documentation improvements

	system.methodHelp is now supported

Release 0.2.3 (2016-10-13)

Minor change

	Useless tests & testsite packages have been removed from Pypi distributions (binary & source)

Release 0.2.2 (2016-10-13)

Minor change

	Useless tests packages have been removed from Pypi distributions (binary & source)

Release 0.2.1 (2016-10-12)

Improvements

	Project is now configured to report tests coverage. See https://coveralls.io/github/alorence/django-modern-rpc

	Some documentation have been added, to cover more features of the library.
See http://django-modern-rpc.readthedocs.io/en/latest/

	Many unit tests added to increase coverage

	RPCEntryPoint class can now be configured to handle only requests from a specific protocol

Release 0.2.0 (2016-10-05)

Improvements

	Added very basic documentation: http://django-modern-rpc.rtfd.io/

	system.listMethods is now supported

	system.methodSignature is now supported

	Error reporting has been improved. Correct error codes and messages are returned on usual fail cause.
See module modernrpc.exceptions for more information.

	Many unit tests have been added to increase test coverage of the library

Release 0.1.0 (2016-10-02)

This is the very first version of the library. Only a few subset of planned features were implemented

Current features

	Work with Python 2.7, 3.3, 3.4 (Django 1.8 only) and 3.5

	Work with Django 1.8, 1.9 and 1.10

	JSON-RPC and XML-RPC simple requests support

	Multiple entry-points with defined list of methods and supported protocols

Missing features

	No authentication support

	Unit tests doesn’t cover all the code

	RPC system methods utility (listMethods, methodSignature, etc.) are not yet implemented

	There is no way to provide documentation in HTML form

	The library itself doesn’t have any documentation (appart from README.md)

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 modernrpc	

 	
 	
 modernrpc.exceptions	

Index

 A
 | D
 | G
 | M
 | P
 | R

A

 	
 	AuthenticationFailed

D

 	
 	dispatch() (modernrpc.views.RPCEntryPoint method)

G

 	
 	get_builtin_date() (in module modernrpc.helpers)

 	
 	get_context_data() (modernrpc.views.RPCEntryPoint method)

 	get_handler_classes() (modernrpc.views.RPCEntryPoint method)

M

 	
 	modernrpc.exceptions (module)

P

 	
 	post() (modernrpc.views.RPCEntryPoint method)

R

 	
 	RPCEntryPoint (class in modernrpc.views)

 	RPCException

 	RPCInternalError

 	
 	RPCInvalidParams

 	RPCInvalidRequest

 	RPCParseError

 	RPCUnknownMethod

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Django-modern-rpc

 		
 Quick-start guide

 		
 Installation and configuration

 		
 Declare a RPC Entry Point in URLConf

 		
 Write and register your remote procedures

 		
 Declare your RPC methods modules

 		
 That’s all !

 		
 Standard configuration

 		
 Write and register remote procedures

 		
 Decorate your RPC methods

 		
 Configure the registration

 		
 Access request, protocol and other info from a RPC method

 		
 Entry point configuration

 		
 Basic declaration

 		
 Advanced entry point configuration

 		
 Class reference

 		
 HTML Documentation generation

 		
 Enable documentation

 		
 Customize rendering

 		
 Write documentation

 		
 Authentication

 		
 Basics

 		
 HTTP Basic Authentication support

 		
 Error handling and logging system

 		
 RPC Error codes and pre-defined exceptions

 		
 Customize error handling

 		
 Logging

 		
 Settings

 		
 Basic configuration

 		
 JSON Serialization and deserialization

 		
 XML serialization and deserialization

 		
 Python 2 String standardization

 		
 RPC entry points configuration

 		
 Other available settings

 		
 Advanced topics

 		
 Data types support

 		
 Basic types

 		
 List and structures

 		
 null and NoneType

 		
 Strings

 		
 Dates

 		
 System methods

 		
 system.listMethods

 		
 system.methodSignature

 		
 system.methodHelp

 		
 system.multicall

 		
 Bibliography

 		
 Get involved

 		
 Report issues, suggest enhancements

 		
 Submit a pull request

 		
 Execute the unit tests

 		
 Execute unit tests in all supported environments

 		
 Changelog

 		
 Current development

 		
 Release 0.11.1 (2018-05-13)

 		
 Release 0.11.0 (2018-04-25)

 		
 Release 0.10.0 (2017-12-06)

 		
 Release 0.9.0 (2017-10-03)

 		
 Release 0.8.1 (2017-10-02)

 		
 Release 0.8.0 (2017-07-12)

 		
 Release 0.7.1 (2017-06-24)

 		
 Release 0.7.0 (2017-06-24)

 		
 Release 0.6.0 (2017-05-13)

 		
 Release 0.5.2 (2017-04-18)

 		
 Release 0.5.1 (2017-03-25)

 		
 Release 0.5.0 (2017-02-18)

 		
 Release 0.4.2 (2016-11-20)

 		
 Release 0.4.1 (2016-11-17)

 		
 Release 0.4.0 (2016-11-17)

 		
 Release 0.3.2 (2016-10-26)

 		
 Release 0.3.1 (2016-10-26)

 		
 Release 0.3.0 (2016-10-18)

 		
 Release 0.2.3 (2016-10-13)

 		
 Release 0.2.2 (2016-10-13)

 		
 Release 0.2.1 (2016-10-12)

 		
 Release 0.2.0 (2016-10-05)

 		
 Release 0.1.0 (2016-10-02)

