

Welcome to the Django hvad documentation!

About this project

django-hvad provides a high level API to maintain multilingual content in your
database using the Django ORM.

Please note that this documentation assumes that you are familiar with
Django and Python, if you are not, please familiarize yourself with those first.

Notes on Django versions

The guideline is hvad supports all Django versions that are supported by the
Django team. This holds true for Long-Term Support releases as well. Support for
new versions will usually be introduced when they reach the beta stage.

Thus, django-hvad 1.5 is tested on the following configurations:

	Django 1.7.11, running Python 2.7, 3.3 or 3.4.

	Django 1.8.9, running Python 2.7, 3.3, 3.4 or 3.5.

	Django 1.9.2, running Python 2.7, 3.4 or 3.5.

All tests are run against MySQL and PostgreSQL.

Contents

	1. Installation

	2. Quickstart

	3. Models

	4. Queryset API

	5. Forms

	6. Admin

	7. REST Framework

	8. Frequent Questions

	9. Release Notes

	10. Contact and support channels

	11. How to contribute

	12. Internal API Documentation
	General information on django-hvad internals

	hvad.admin

	hvad.descriptors

	hvad.exceptions

	hvad.fieldtranslator

	hvad.forms

	hvad.manager

	hvad.models

	hvad.query

	hvad.utils

	13. Glossary

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

1. Installation

1.1. Requirements

	Django [http://www.djangoproject.com] 1.8 or higher.

	Python 2.7 or PyPy 1.5 or higher, Python 3.4 or higher.

1.2. Installation

Packaged version

This is the recommended way. Install django-hvad using pip [http://pypi.python.org/pypi/pip] by running:

pip install django-hvad

This will download the latest version from pypi [https://pypi.python.org/pypi/django-hvad] and install it.

Then add 'hvad' to your INSTALLED_APPS [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS], and proceed to
Quickstart.

Latest development version

If you need the latest features from a yet unreleased version, or just like
living on the edge, install django-hvad using pip [http://pypi.python.org/pypi/pip] by running:

pip install https://github.com/kristianoellegaard/django-hvad/tarball/master

This will download the development branch from github [https://github.com/kristianoellegaard/django-hvad] and install it.

Then add 'hvad' to your INSTALLED_APPS [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS], and proceed to
Quickstart.

2. Quickstart

2.1. Define a multilingual model

Defining a multilingual model is very similar to defining a normal Django model,
with the difference that instead of subclassing Model [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model]
you have to subclass TranslatableModel and that all fields
which should be translatable have to be wrapped inside a
TranslatedFields.

Let’s write an easy model which describes Django applications with translatable
descriptions and information about who wrote the description:

from django.db import models
from hvad.models import TranslatableModel, TranslatedFields

class DjangoApplication(TranslatableModel):
 name = models.CharField(max_length=255, unique=True)
 author = models.CharField(max_length=255)

 translations = TranslatedFields(
 description=models.TextField(),
 description_author=models.CharField(max_length=255),
)

 def __unicode__(self):
 return self.name

The fields name and author will not get translated, the fields
description and description_author will.

2.2. Create a translated instance

Now that we have defined our model, let’s play around with it a bit. The
following code examples are taken from a Python shell.

Import our model:

>>> from myapp.models import DjangoApplication

Create an instance:

>>> hvad = DjangoApplication.objects.language('en').create(
 name='django-hvad', author='Jonas Obrist',
 description='A project to do multilingual models in Django',
 description_author='Jonas Obrist',
)
>>> hvad.name
'django-hvad'
>>> hvad.author
'Jonas Obrist'
>>> hvad.description
'A project to do multilingual models in Django'
>>> hvad.description_author
'Jonas Obrist'
>>> hvad.language_code
'en'
>>> hvad.save()

This is the most straightforward way to create a new instance with translated
fields. Doing it this way avoids the possibility of creating instances with
no translation at all, something one usually wants to avoid.

Once we have an instance, we can add new translations. Let’s add some French:

>>> hvad.translate('fr')
<DjangoApplication: django-hvad>
>>> hvad.name
'django-hvad'
>>> hvad.description
>>> hvad.description = 'Un projet pour gérer des modèles multilingues sous Django'
>>> hvad.description_author = 'Julien Hartmann'
>>> hvad.save()

Note

The translate() method creates a
brand new translation in the specified language. Please note
that it does not check the database, and that if the translation
already exists, a database integrity exception will be raised when saving.

2.3. Querying translatable models

Get the instance again and check that the fields are correct:

>>> obj = DjangoApplication.objects.language('en').get(name='django-hvad')
>>> obj.name
u'django-hvad'
>>> obj.author
u'Jonas Obrist'
>>> obj.description
u'A project to do multilingual models in Django'
>>> obj.description_author
u'Jonas Obrist'

We use language() to tell hvad we want
to use translated fields, in English. This is one of the three ways to query
a translatable model. It only ever considers instance that have a translation in
the specified language and match the filters in that language.

Other ways are untranslated(), which
uses a fallback algorithm to fetch the best translation within a list of languages,
and direct, vanilla use of the queryset, which does not know about translations or
translated fields at all.

Back to our instance, get it again, in other languages:

>>> obj = DjangoApplication.objects.language('fr').get(name='django-hvad')
>>> obj.description
u'Un projet pour gérer des modèles multilingues sous Django'
>>>
>>> DjangoApplication.objects.language('ja').filter(name='django-hvad')
[]

See how, in the second query, the fact that no translation exist in Japanese for
our object had it filtered out of the query.

Note

We set an explicit language when calling
language() because
we are in an interactive shell, which is not necessarily in English.
In your normal views, you can usually omit the language simply writing
MyModel.objects.language().get(...). This will use
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language]
to get the language the environment is using at the time of the query.

Let’s get all Django applications which have a description written by
'Jonas Obrist' (in English, then in French):

>>> DjangoApplication.objects.language('en').filter(description_author='Jonas Obrist')
[<DjangoApplication: django-hvad>]
>>> DjangoApplication.objects.language('fr').filter(description_author='Jonas Obrist')
[]

Notice how the second query only considers French translations and returns an empty set.

Next, we will have a more detailed look at how to work with translatable models.

3. Models

	Defining models

	New and Changed Methods

	Working with relations

	Advanced Model Definitions

	Custom Managers and Querysets

3.1. Defining models

Defining models with django-hvad is done by inheriting
TranslatableModel. Model definition works like in
regular Django, with the following additional features:

	Translatable fields can be defined on the model, by wrapping them in a
TranslatedFields instance, and assigning it to an
attribute on the model. That attribute will be used to access the
translations of your model directly. Behind the
scenes, it will be a reversed ForeignKey from the
Translations Model to your Shared Model.

	Translatable fields can be used in the model options. For options that take
groupings of fields (unique_together and index_together), each grouping
may have either translatable or non-translatable fields, but not both.

	Special field language_code is automatically created by hvad, and may be used
for defining unique_together constraints that are only unique per language.

A full example of a model with translations:

from django.db import models
from hvad.models import TranslatableModel, TranslatedFields

class TVSeries(TranslatableModel):
 distributor = models.CharField(max_length=255)

 translations = TranslatedFields(
 title = models.CharField(max_length=100),
 subtitle = models.CharField(max_length=255),
 released = models.DateTimeField(),
)
 class Meta:
 unique_together = [('title', 'subtitle')]

Note

The Meta [https://django.readthedocs.io/en/latest/topics/db/models.html#meta-options] class of the model may not use the
translatable fields in order_with_respect_to [https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.order_with_respect_to].

Note

TranslatedFields cannot contain a field named master, as this name
is reserved by hvad to refer to the Shared Model. Also, special
field language_code can be overriden in order to set it to be a
different type of field, or change its options.

3.2. New and Changed Methods

translate

	
translate(language_code)

	Prepares a new translation for this instance for the language specified.

Note

This method does not perform any database queries. It assumes the
translation does not exist. If it does exist, trying to save the
instance will raise an IntegrityError [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.db.IntegrityError].

safe_translation_getter

	
safe_translation_getter(name, default=None)

	Returns the value of the field specified by name if it’s available on
this instance in the currently cached language. It does not try to get the
value from the database. Returns the value specified in default if no
translation was cached on this instance or the translation does not have a
value for this field.

This method is useful to safely get a value in methods such as
__unicode__().

Note

This method never performs any database queries.

Example usage:

class MyModel(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=255)
)

 def __unicode__(self):
 return self.safe_translation_getter('name', str(self.pk))

lazy_translation_getter

Changed in version 0.4.

	
lazy_translation_getter(name, default=None)

	Tries to get the value of the field specified by name using
safe_translation_getter(). If this fails, tries to load a translation
from the database. If none exists, returns the value specified in default.

This method is useful to get a value in methods such as
__unicode__().

get_available_languages

	
get_available_languages()

	Returns a list of available language codes for this instance.

Note

This method runs a database query to fetch the available
languages, unless they were prefetched before (if the instance
was retrieved with a call to prefetch_related('translations')).

save

	
save(force_insert=False, force_update=False, using=None, update_fields=None)

	Overrides save() [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save].

This method runs an extra query to save the translation cached on
this instance, if any translation was cached.

It accepts both translated and untranslated fields in update_fields.

	If only untranslated fields are specified, the extra query will be skipped.

	If only translated fields are specified, the shared model update will be skipped.
Note that this means signals will not be triggered.

3.3. Working with relations

Foreign keys pointing to a Translated Model always point to the
Shared Model. It is not possible to have a foreign key to a
Translations Model.

Please note that select_related() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related] used on
a foreign key pointing from a normal model to a
translatable model does not span to its
translations and therefore accessing a translated
field over the relation will cause an extra query. Foreign keys from a
translatable model do not have this restriction.

If you wish to filter over a translated field over the relation from a
Normal Model you have to use
get_translation_aware_manager() to get a manager that allows
you to do so. That function takes your model class as argument and returns a
manager that works with translated fields on related models.

3.4. Advanced Model Definitions

Abstract Models

New in version 0.5.

Abstract models [https://django.readthedocs.io/en/latest/topics/db/models.html#abstract-base-classes] can be used normally with hvad.
Untranslatable fields of the base models will remain untranslatable, while
translatable fields will be translatable on the concrete model as well:

class Place(TranslatableModel):
 coordinates = models.CharField(max_length=64)
 translations = TranslatedFields(
 name = models.CharField(max_length=255),
)
 class Meta:
 abstract = True

class Restaurant(Place):
 score = models.PositiveIntegerField()
 translations = TranslatedFields() # see note below

Note

The concrete models must have a TranslatedFields
instance as one of their attributes. This is required because this
attribute will be used to access the translations. It can be empty.

Proxy Models

New in version 0.4.

Proxy models [https://django.readthedocs.io/en/latest/topics/db/models.html#proxy-models] can be used normally with hvad, with the
following restrictions:

	The __init__ method of the proxy model will not be called when it is
loaded from the database.

	As a result, the pre_init [https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.pre_init] and
post_init [https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.post_init] signals will not be sent for
the proxy model either.

The __init__ method and signals for the concrete model will still be called.

Multi-table Inheritance

Unfortunately, multi-table inheritance is not supported, and unlikely to be.
Please read #230 [https://github.com/KristianOellegaard/django-hvad/issues/230] about the issues with multi-table inheritance.

3.5. Custom Managers and Querysets

Custom Manager

Vanilla managers [https://django.readthedocs.io/en/latest/topics/db/managers.html#django.db.models.Manager], using vanilla
querysets [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] can be used with translatable
models. However, they will not have access to translations or translatable fields.
Also, such a vanilla manager cannot server as a
default manager for the model. The default manager
must be translation aware.

To have full access to translations and translatable fields, custom managers
must inherit TranslationManager and custom querysets
must inherit either TranslationQueryset (enabling the
use of language()) or
FallbackQueryset (enabling the use of
use_fallbacks()). Both are described in the
dedicated section.

Custom Querysets

Once you have a custom queryset, you can use it to override the default ones
in your manager. This is where it is more complex than a regular manager:
TranslationManager uses three types of queryset, that
can be overriden independently:

	queryset_class must inherit
TranslationQueryset, and will be used for all queries
that call the language() method.

	fallback_class must inherit
FallbackQueryset, and will be used for all queries
that call the untranslated()
method.

	default_class may be any kind of
queryset (a TranslationQueryset, a FallbackQueryset or a plain
QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet]). It will be used for all queries
that call neither language nor untranslated. It defaults to being a
regular, translation-unaware QuerySet for compatibility, see next section
about overriding it.

As a convenience, it is possible to override the queryset at manager instanciation,
avoiding the need to subclass the manager:

class TVSeriesTranslationQueryset(TranslationQueryset):
 def is_public_domain(self):
 threshold = datetime.now() - timedelta(days=365*70)
 return self.filter(released__gt=threshold)

class TVSeries(TranslatableModel):
 # ... (see full definition in previous example)
 objects = TranslationManager(queryset_class=TVSeriesTranslationQueryset)

Overriding Default Queryset

New in version 0.6.

By default, the TranslationManager returns a vanilla,
translation-unaware QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] when a query is
done without either language() or
untranslated(). This conservative
behavior makes it compatible with third party modules. It is, however, possible
to set it to be translation-aware by overriding it:

class MyModel(TranslatableModel):
 objects = TranslationManager(default_class=TranslationQueryset)

This deeply changes key behaviors of the manager, with many benefits:

	The call to language() can be omitted, filtering on translations is
implied in all queries. It is still possible to use it to set another language
on the queryset.

	As a consequence, all third-party modules will only see objects in current
language, unless they are hvad-aware.

	They will also gain access to translated fields.

	Queries that use prefetch_related() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.prefetch_related] will
prefetch the translation as well (in current language).

	Acessing a translatable model from a ForeignKey [https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey] or a
GenericForeignKey [https://django.readthedocs.io/en/latest/ref/contrib/contenttypes.html#django.contrib.contenttypes.fields.GenericForeignKey] will also load
and cache the translation in current language.

In other terms, all queries become translation-aware by default.

Warning

Some third-party modules may break if they rely on the ability
to see all objects. MPTT [https://github.com/django-mptt/django-mptt/], for instance, will corrupt its tree
if some objects have no translation in current language.
Use caution when combining this feature with other manager-altering
modules.

Custom Translation Models

New in version 1.5.

It is possible to have translations use a custom base
class, by specifying a base_class argument to TranslatedFields.
This may be useful for advanced manipulation of translations, such as customizing some
model methods, for instance from_db() [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.from_db]:

class BookTranslation(models.Model):
 @classmethod
 def from_db(cls, db, fields, values):
 obj = super(BookTranslation, self).from_db(cls, db, field, values)
 obj.loaded_at = timezone.now()
 return obj

 class Meta:
 abstract = True

class Book(TranslatableModel):
 translations = TranslatedFields(
 base_class = BookTranslation,
 name = models.CharField(max_length=255),
)

In this example, the Book‘s translation model will have BookTranslation as its
first base class, so every translation will have a loaded_at attribute when loaded
from the database. Keep in mind this attribute will not be available on the book itself,
but can be accessed through get_cached_translation(book).loaded_at.

Such classes are inserted into the translations inheritance tree, so if some other model
inherits Book, its translations will also inherit BookTranslation.

Next, we will detail the translation-aware querysets provided
by hvad.

4. Queryset API

If you do not need to do fancy things such as custom querysets and are not in
the process of optimizing your queries yet, you can skip straight to next
section, to start using your translatable models to build some forms.

The queryset API is at the heart of hvad. It provides the ability to filter
on translatable fields and retrieve instances along with their translations.
They come in two flavors:

	The TranslationQueryset, for working with
instances translated in a specific language. It is the one used when calling
TranslationManager.language().

	The FallbackQueryset, for working with
all instances regardless of their language, and eventually loading translations
using a fallback algorithm. It is the one used when calling
TranslationManager.untranslated().

Note

It is possible to override the querysets used on
a model’s manager.

4.1. TranslationQueryset

The TranslationQueryset works on a translatable model, limiting itself to instances
that have a translation in a specific language. Its API is almost identical to
the regular Django QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet].

New and Changed Methods

language

	
language(language_code=None)

	Sets the language for the queryset to either the given language code or
the currently active language if None. Language resolution will be deferred
until the query is evaluated.

This filters out all instances that are not translated in the given language,
and makes translatable fields available on the query results.

The special value 'all' disables language filtering. This means that objects
will be returned once per language in which they match the query, with
the appropriate translation loaded.

Note

support for select_related() in combination
with language('all') is experimental. Please check the generated
queries and open an issue if you have any problem. Feedback
is appreciated as well.

fallbacks

	
fallbacks(*languages)

	
New in version 0.6.

Enables fallbacks on the queryset. When the queryset has fallbacks enabled,
it will try to use fallback languages if an object has not translation
available in the language given to language().

The languages arguments specified the languages to use, priorized from
first to last. Special value None will be replaced with current language
as returned by get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language]. If called
with an empty argument list, the LANGUAGES [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES] setting will be used.

If an instance has no translation in the
language()-specified language,
nor in any of the languages given to fallbacks(), an arbitrary
translation will be picked.

Passing the single value None alone will disable fallbacks.

Note

This feature requires Django 1.6 or newer.

delete_translations

	
delete_translations()

	Deletes all Translations Model instances matched by a queryset, without
deleting the Shared Model instances.

This can be used to target specific translations of specific objects for deletion.
For instance:

Delete English translation of all objects that have field == "foo"
MyModel.objects.language('en').filter(field='foo').delete_translations()

Delete all translations but English for object with id 42
MyModel.objects.language('all').exclude(language_code='en').filter(pk=42).delete_translations()

Warning

It is an error to delete all translations of an instance. This will
cause the object to be unreachable through translation-aware queries
and invisible in the admin panel.

If you delete all translations and re-create one immediately after,
remember to enclose the whole process in a transaction to avoid
the possibility of leaving the object unreachable.

select_related

	
select_related(*fields)

	Inherited from select_related() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related].

The select_related method also selects translations of translatable
models when it encounters some.

Note

support for select_related in combination with
language('all') is experimental. Please check the generated
queries and open an issue if you have any problem. Feedback
is appreciated as well.

Not implemented public queryset methods

The following are methods on a queryset which are public APIs in Django, but are
not implemented (yet) in django-hvad:

	bulk_create()

	update_or_create()

	complex_filter()

	defer()

	only()

Using any of these methods will raise a NotImplementedError [https://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError].

Performance consideration

While most methods on TranslationQueryset run
using the same amount of queries as if they were untranslated, they all do
slightly more complex queries (one extra join).

The following methods run two queries where standard querysets would run one:

	create()

	update() (only if both translated and
untranslated fields are updated at once)

get_or_create() runs one query if the
object exists, three queries if the object does not exist in this language, but
in another language and four queries if the object does not exist at all. It
will return True for created if either the shared or translated instance
was created.

4.2. FallbackQueryset

Deprecated since version 1.4.

This is a queryset returned by untranslated(),
which can be used both to get the untranslated parts of models only or to use
fallbacks for loading a translation based on a priority list of languages.
By default, only the untranslated parts of models are retrieved from
the database, and accessing translated field will trigger an additional query
for each instance.

Warning

You may not use any translated fields in any method on this
queryset class.

Warning

If you have a default ordering [https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.ordering]
defined on your model and it includes any translated field, you
must specify an ordering on every query so as not to use the
translated fields specified by the default ordering.

New Methods

use_fallbacks

Changed in version 0.5.

	
use_fallbacks(*fallbacks)

	
Deprecated since version 1.4.

Returns a queryset which will use fallbacks to get the translated part of
the instances returned by this queryset. If fallbacks is given as a
tuple of language codes, it will try to get the translations in the order
specified, replacing the special None value with the current language at
query evaluation, as returned by get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language].
Otherwise the order of your LANGUAGES setting will be used, prepended with
current language.

This method is now deprecated, and one should use
TranslationQueryset.fallbacks() for an equivalent
feature.

Warning

Using fallbacks with a version of Django older than 1.6 will
cause a lot of queries! In the worst
case 1 + (n * x) with n being the amount of rows being fetched
and x the amount of languages given as fallbacks. Only ever use
this method when absolutely necessary and on a queryset with as
few results as possible.

Changed in version 0.5: Fallbacks were reworked, so that when running
on Django 1.6 or newer, only one query is needed.

Not implemented public queryset methods

The following are methods on a queryset which are public APIs in Django, but are
not implemented on fallback querysets.

	aggregate() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.aggregate]

	annotate() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.annotate]

	defer() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.defer]

	only() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.only]

Next, we will use our models and queries to build some forms.

5. Forms

Although Django’s ModelForm [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm] can work with translatable
models, they will only know about untranslatable fields. Don’t worry though,
django-hvad’s got you covered with the following form types:

	TranslatableModelForm is the translation-enabled
counterpart to Django’s ModelForm [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm].

	Translatable formsets is the
translation-enabled counterpart to Django’s
model formsets [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#model-formsets], for editing several instances
at once.

	Translatable inline formsets is the
translation-enabled counterpart to Django’s
inline formsets [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#inline-formsets], for editing several instances
attached to another object.

	Translation formsets allows building a formset of
all the translations of a single instance for editing them all at once. For
instance, in a tabbed view.

5.1. TranslatableModelForm

TranslatableModelForms work like ModelForm [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm], but can
display and edit translatable fields as well. Their use is very similar,
except the form must subclass TranslatableModelForm instead of
ModelForm [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm]:

class ArticleForm(TranslatableModelForm):
 class Meta:
 model = Article
 fields = ['pub_date', 'headline', 'content', 'reporter']

Notice the difference from Django's example [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm]?
There is none but for the parent class. This ArticleForm will allow editing
of one Article in one language, correctly introspecting the model to know
which fields are translatable.

The form can work in either normal mode, or enforce mode. This affects the
way the form chooses a language for displaying and committing.

	A form is in normal mode if it has no language set. This is the default. In
this mode, it will use the language of the instance it is given, defaulting
to current language if not instance is specified.

	A form is in enforce mode if is has a language set. This is usually achieved
by calling translatable_modelform_factory.
When in enforce mode, the form will always use its language, disregarding
current language and reloading the instance it is given if it has another
language loaded.

	The language can be overriden manually by providing a
custom clean() method [https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form.clean].

In all cases, the language is not part of the form seen by the browser or sent
in the POST request. If you need to change the language based on some user
input, you must override the clean() method with your own logic, and set
cleaned_data [https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form.cleaned_data] ['language_code'] with it.

All features of Django forms work as usual.

5.2. TranslatableModelForm factory

Similar to Django’s ModelForm factory [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#modelforms-factory], hvad
eases the generation of uncustomized forms by providing a factory:

BookForm = translatable_modelform_factory('en', Book, fields=('author', 'title'))

The translation-aware version works exactly the same way as the original one,
except it takes the language the form should use as an additional argument.

The returned form class is in enforce mode.

Note

If using the form= parameter, the given form class must inherit
TranslatableModelForm.

5.3. TranslatableModel Formset

Similar to Django’s ModelFormset factory [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#model-formsets], hvad
provides a factory to create formsets of translatable models:

AuthorFormSet = translatable_modelformset_factory('en', Author)

This formset allows edition a collection of Author instances, all of them
being in English.

All arguments supported by Django’s modelformset_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelformset_factory]
can be used.

For instance, it is possible to override the queryset, the same way it is done for
a regular formset. In fact, it is recommended for performance, as the default
queryset will not prefetch translations:

BookForm = translatable_modelformset_factory(
 'en', Book, fields=('author', 'title'),
 queryset=Book.objects.language('en').all(),
)

Here, using language() ensures translations
will be loaded at once, and allows filtering on translated fields is needed.

The returned formset class is in enforce mode.

Note

To override the form by passing a form= argument to the factory,
the custom form must inherit TranslatableModelForm.

5.4. TranslatableModel Inline Formset

Similar to Django’s inline formset factory [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#inline-formsets], hvad
provides a factory to create inline formsets of translatable models:

BookFormSet = translatable_inlineformset_factory('en', Author, Book)

This creates an inline formset, allowing edition of a collection of instances of
Book attached to a single instance of Author, all of those objects
being editted in English. It does not allow editting other languages; for this,
please see translationformset_factory.

Any argument accepted by Django’s inlineformset_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.inlineformset_factory]
can be used with translatable_inlineformset_factory as well.

The returned formset class is in enforce mode.

Note

To override the form by passing a form= argument to the factory,
the custom form must inherit TranslatableModelForm.

5.5. Translations Formset

Basic usage

The translation formset allows one to edit all translations of an
instance at once: adding new translations, updating and deleting existing ones.
It works mostly like regular BaseInlineFormSet [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.models.BaseInlineFormSet]
except it automatically sets itself up for working with the Translations Model
of given TranslatableModel.

Example:

from django.forms.models import modelform_factory
from hvad.forms import translationformset_factory
from myapp.models import MyTranslatableModel

MyUntranslatableFieldsForm = modelform_factory(MyTranslatableModel)
MyTranslationsFormSet = translationformset_factory(MyTranslatableModel)

Now, MyUntranslatableFieldsForm is a regular, Django, translation-unaware
form class, showing only the untranslatable fields of an instance, while
MyTranslationsFormSet is a formset class showing only the translatable
fields of an instance, with one form for each available translation (plus any
additional forms requested with the extra parameter - see
modelform_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory]).

Custom Translation Form

As with regular formsets, one may specify a custom form class to use. For instance:

class MyTranslationForm(ModelForm):
 class Meta:
 fields = ['title', 'content', 'slug']

MyTranslationFormSet = translationformset_factory(
 MyTranslatableModel, form=MyTranslationForm, extra=1
)

Note

The translations formset will use a language_code field if defined,
or create one automatically if none was defined.

One may also specify a custom formset class to use. It must inherit
BaseTranslationFormSet.

Wrapping it up: editing the whole instance

A common requirement, being able to edit the whole instance at once, can be
achieved by combining a regular, translation unaware ModelForm [https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm]
with a translation formset in the same view. It works the way one would expect it to.
The following code samples highlight a few gotchas.

Creating the form and formset for the object:

FormClass = modelform_factory(MyTranslatableModel)
TranslationsFormSetClass = translationformset_factory(MyTranslatablemodel)

self.object = self.get_object()
form = FormClass(instance=self.object, data=request.POST)
formset = TranslationsFormSetClass(instance=self.object, data=request.POST)

Checking submitted form validity:

if form.is_valid() and formset.is_valid():
 form.save(commit=False)
 formset.save()
 self.object.save_m2m() # only if our model has m2m relationships
 return HttpResponseRedirect('/confirm_edit_success.html')

Note

When saving the formset, translations will be recombined with the main
object, and saved as a whole. This allows custom
save() [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save] defined on the model to be called
properly and signal handlers to be fed a full instance. For this
reason, we use commit=False while saving the form, avoiding a
useless query.

Warning

You must ensure that form.instance and formset.instance
reference the same object, so that saving the formset does not
overwrite the values computed by form.

A common way to use this view would be to render the form on top, with
the formset below it, using JavaScript to show each translation in a tab.

Next, we will take a look at the administration panel.

6. Admin

When you want to use a Translated Model in the Django admin, you have
to subclass hvad.admin.TranslatableAdmin instead of
django.contrib.admin.ModelAdmin [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin].

6.1. New methods

all_translations

	
all_translations(obj)

	A method that can be used in list_display and shows a list of
languages in which this object is available. Entries are linked to their
corresponding admin page.

Note

You should add prefetch_related(‘translations’) to your queryset
if you use this in list_display [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display],
else one query will be run for every item in the list.

6.2. ModelAdmin APIs you should not change on TranslatableAdmin

Some public APIs on django.contrib.admin.ModelAdmin [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] are crucial for
hvad.admin.TranslatableAdmin to work and should not be altered in
subclasses. Only do so if you have a good understanding of what the API you
want to change does.

The list of APIs you should not alter is:

change_form_template

If you wish to alter the template used to render your admin, use the implicit
template fallback in the Django admin by creating a template named
admin/<appname>/<modelname>/change_form.html or
admin/<appname>/change_form.html. The template used in django-hvad will
automatically extend that template if it’s available.

get_form

Use hvad.admin.TranslatableAdmin.form instead, but please see the
notes regarding Forms in admin.

render_change_form

The only thing safe to alter in this method in subclasses is the context, but
make sure you call this method on the superclass too. There’s three variable
names in the context you should not alter:

	title

	language_tabs

	base_template

get_object

Just don’t try to change this.

queryset

If you alter this method, make sure to call it on the superclass too to prevent
duplicate objects to show up in the changelist or change views raising
django.core.exceptions.MultipleObjectsReturned [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned] errors.

6.3. Forms in admin

If you want to alter the form to be used on your
hvad.admin.TranslatableAdmin subclass, it must inherit from
hvad.forms.TranslatableModelForm. For more informations, see
Forms.

6.4. ModelAdmin APIs not available on TranslatableAdmin

A list of public APIs on django.contrib.admin.ModelAdmin [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] which are not
implemented on hvad.admin.TranslatableAdmin for handling translatable
fields, these APIs should continue to work as usual for non-translatable
fields.

	actions [1]

	date_hierarchy [1]

	fieldsets [1]

	list_display [1]

	list_display_links [1]

	list_filter [1]

	list_select_related [1]

	list_ediable [1]

	prepopulated_fields [1]

	search_fields [1]

Footnotes

	[1]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) This API can only be used with Shared Fields.

7. REST Framework

New in version 1.2.

What would be a modern application without dynamic components? Well, it would not
be so modern to begin with. This is why django-hvad provides fully tested and integrated
support for Django REST framework [http://www.django-rest-framework.org/].

The philosophy is the same one that is used for Django’s forms,
hvad providing the following extensions:

	TranslatableModelSerializer is the
translation-enabled counterpart to ModelSerializer [http://www.django-rest-framework.org/api-guide/serializers/#modelserializer].

	HyperlinkedTranslatableModelSerializer is the
translation-enabled counterpart to HyperlinkedModelSerializer [http://www.django-rest-framework.org/api-guide/serializers/#hyperlinkedmodelserializer].

	TranslationsMixin can be plugged into a ModelSerializer to add a
dictionary of all available translations. Writing is supported as well.

Note

Support for REST framework requires Django REST Framework version 3.1
or newer.

7.1. TranslatableModelSerializer

hvad.contrib.restframework.TranslatableModelSerializer

TranslatableModelSerializer works like ModelSerializer [http://www.django-rest-framework.org/api-guide/serializers/#modelserializer], but can
serialize and deserialize translatable fields as well. Their use is very similar,
except the serializer must subclass
hvad.contrib.restframework.TranslatableModelSerializer:

class BookSerializer(TranslatableModelSerializer):
 class Meta:
 model = Book
 fields = ['title', 'author', 'review']

Notice the difference from a regular serializer? There is none. This
BookSerializer will allow serializing and deserializing one Book in one
language, correctly introspecting the model to know which fields are translatable.

It is also possible to include the language on the serializer. This is done by
default (if no fields is specified), or you may include 'language_code'
as part of the field list.

Like TranslatableModelForm,
TranslatableModelSerializer can work in either normal mode, or enforce mode.
The semantics of both mode are exactly the same as with forms, selecting the way
a language is chosen for serializing and deserializing.

	A serializer is in normal mode if it has no language set. This is the default. In
this mode, it will use the language of the instance it is given, defaulting
to current language if no instance is specified.

	A serializer is in enforce mode if is has a language set. This is achieved
by giving it a language= argument at instanciation.
When in enforce mode, the serializer will always use its own language, disregarding
current language and reloading the instance it is given if it has another
language loaded.

	The language can be overriden manually by providing a custom validate()
method. This method should set the desired language in data['language_code'].
Please refer to REST framework
documentation [http://www.django-rest-framework.org/api-guide/serializers/#validation]
for details on the validate() method.

When the serializer is in normal mode, it is possible to send 'language_code'
as part of the serialized representation. More on this below. In enforce mode
however, including a language code in a POST, PATCH or PUT request is an error that
will raise a ValidationError as appropriate.

All features of regular REST framework serializers work as usual.

Examples

Adding the language to the serialized data, in normal mode:

class BookSerializer(TranslatableModelSerializer):
 class Meta:
 model = Book
 fields = ['title', 'author', 'language_code']

Now language appears in serialized representation
serializer = BookSerializer(instance=Book.objects.language('ja').get(pk=1))
=> {"title": "星の王子さま", "author": "12", "language_code": "ja" }

It can also be set explicitly in POST/PUT/PATCH data
print(data['language_code']) # 'fr'
serializer = BookSerializer(data=data)
if serializer.is_valid():
 obj = serializer.save()
 assert obj.language_code == 'fr'

Setting a serializer in enforce mode:

In enforce mode, serialized data will always use the enforced language
serializer = BookSerializer(instance=Book.objects.untranslated().get(pk=1), language='en')
assert serializer.data['language_code'] == 'en'

In enforce mode, language is implicit
assert 'language_code' not in request.data
serializer = BookSerializer(data=request.data, language='fr')
if serializer.is_valid():
 obj = serializer.save()
 assert obj.language_code == 'fr'

In enforce mode, language must not be provided in data
assert 'language_code' in request.data
serializer = BookSerializer(data=request.data, language='fr')
assert not serializer.is_valid()

Manually overriding deserialized language:

class UserBookSerializer(TranslatableModelSerializer):
 def validate(self, data):
 # assuming you made a custom User model that has an associated
 # preferences object including the user's preferred language
 data = super(UserBookSerializer, self).validate(data)
 data['language_code'] = self.context['request'].user.preferences.language
 return data

 class Meta:
 model = Book

7.2. HyperlinkedTranslatableModelSerializer

hvad.contrib.restframework.HyperlinkedTranslatableModelSerializer

The HyperlinkedTranslatableModelSerializer is equivalent to TranslatableModelSerializer,
except it outputs hyperlinks instead of ids. There is not much to add here,
everything that applies to TranslatableModelSerializer also applies to
HyperlinkedTranslatableModelSerializer, except it uses REST framework’s
HyperlinkedModelSerializer [http://www.django-rest-framework.org/api-guide/serializers/#hyperlinkedmodelserializer] semantics.

7.3. TranslationsMixin

hvad.contrib.restframework.TranslationsMixin

This mixin is another approach to handling translations for your REST api. With
TranslatableModelSerializer, a relevant language is made visible, which
is perfect for translation-unaware client-side applications. TranslationsMixin
takes the other approach: it exposes all translations at once, letting the
client-side application choose or handle translations the way it wants. This is
most useful for admin-type applications.

Use is very simple: mix it into a regular serializer:

from rest_framework.serializers import ModelSerializer

class BookSerializer(TranslationsMixin, ModelSerializer):
 class Meta:
 model = Book

obj = Book.objects.untranslated().prefetch_related('translations').get(pk=1)
serializer = BookSerializer(instance=obj)
pprint(serializer.data)
{'author': '1',
'id': 1,
'translations': {'en': {'title': 'The Little Prince'},
'fr': {'title': 'Le Petit Prince'}}}

Note

For performance, you should always prefetch the translations like in
the above example, otherwise the serializer will have to fetch them
for each object independently, resulting in a large number of queries.

Writing is supported as well. It takes a dictionary of translations, the very same
format it outputs. Existing translations will be updated, missing translations
will be created. Any existing translation that is not in the data will be deleted.

For convenience, you can include both the translations dictionary and translated
fields in the same serializer. This can be handy if only some parts of your
application care about all the translations. For instance, a book listing might
just want the title in the preferred language, while the book editing dialog
allows editing all languages.
In this case, direct translated fields will be read-only, use the translations
dictionary for updating.

It is possible to override the representation of translations. This is done by
specifying a custom serializer on the meta:

from rest_framework import serializers

class BookTranslationSerializer(serializers.ModelSerializer):
 class Meta:
 exclude = ['subtitle', 'cover']

class BookSerializer(TranslationsMixin, serializers.ModelSerializer):
 class Meta:
 model = Book
 translations_serializer = BookTranslationSerializer

In case advanced customisation of translations is required, be aware that your
custom translation serializer is handed the full object. This allows building
computed fields using both translated and untranslated data.

However, it can interfer with some field types, most notable related fields,
which expect the actual translation model. Hvad handles this automatically in its
default translation serializer. You can inherit this handling by making your own
translation serializer a subclass of hvad.contrib.restframework.NestedTranslationSerializer.

8. Frequent Questions

	Why “django-hvad”?

	How do I get the right language from the request?

	How about multilingual URI?

	How do I use hvad with MPTT?

	How do I separate translatable fields in admin?

8.1. Why “django-hvad”?

The project first started as “django-nani”, created by Jonas Obrist. The word
nani is the romanized form of “なに”, which means What?.

When Kristian Øllegaard took responsibility for updating and maintaining the project,
including a major refactor of the internals, the project was renamed to hvad,
which is the Danish word for What?.

If we were to continue the trend, we would rename to django-quoi, but that is
very unlikely unless Django introduces major breaking changes in a future version.

8.2. How do I get the right language from the request?

In most cases, you will be using language() with no
arguments in your views and forms. When used with no arguments, it defaults
to using the current language, as returned by Django’s
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language].

Therefore, having hvad use the right language is mostly a matter of having
Django setting it right. Fortunately, Django provide the tools to do this,
in the form of the LocaleMiddleware [https://django.readthedocs.io/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware]. Here is
a short guide to making it work.

First, the middleware must be enabled. This is done by adding
'django.middleware.locale.LocaleMiddleware' to MIDDLEWARE_CLASSES
in you settings file.

	It must come after SessionMiddleware [https://django.readthedocs.io/en/latest/ref/middleware.html#django.contrib.sessions.middleware.SessionMiddleware].

	If you use the CacheMiddleware, then the LocaleMiddleware must come after
that too.

	Right after those, as close to the top as possible, should the LocaleMiddleware
come:

MIDDLEWARE_CLASSES = (
 'django.middleware.cache.UpdateCacheMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.cache.FetchFromCacheMiddleware',
)

Now, the middleware will try to determine the user’s language preference. There is
a detailed explanation of how it proceeds in
Django documentation [https://django.readthedocs.io/en/latest/topics/i18n/translation.html#how-django-discovers-language-preference].

Hvad will happily follow the language discovered by the middleware. Although this
will usually be enough, you may sometimes want to force the language. Either
on a specific request by explicitly passing a language code to
language(), or by changing the current language. The
later is done through activate() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.activate].

8.3. How about multilingual URI?

We will assume the URI we want to be multilingual are made of two kind of components:
static components, and dynamic components. We want to translate both kind:

	Static components, through ugettext_lazy() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy].

	Dynamic components, from our translatable models.

Static components

This is thoroughly documented in Django’s
URL i18n documentation [https://django.readthedocs.io/en/latest/topics/i18n/translation.html#url-internationalization] and does not actually
involve hvad, so this will be a short guide. It requires the
LocaleMiddleware [https://django.readthedocs.io/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware] to be properly
configured, so please do that first.

With this middleware active, each request will set a current language before
looking up the URI in your urlconf.py. This makes it possible to use
ugettext_lazy() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy] in your patterns, like this:

from django.conf.urls import url
from django.utils.translation import ugettext_lazy as _

urlpatterns = [
 url(_(r'^en/news/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<slug>.*)'),
 views.NewsView, name='news-detail'),
]

The pattern would then appear in the list of translatable string, making it
possible to add, for instance, a translation that would read
^fr/actualites/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<slug>.*)

Note

Notice the language code at the beginning. Although not required,
prefixing your URI with it makes the life much easier to the
LocaleMiddleware [https://django.readthedocs.io/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware].

Dynamic components

We translated the static parts of the URI with Django mechanics. What now?
Well, if we touch nothing, everything will work fine: the language of the user
will be used for URI resolution, and then hvad’s language()
will follow the same. Database queries will filter on the user’s language
by default, and your view will 404 if nothing is found in that language.

Now, in some instances, the language might not be known. Because your URI does
not include a language code, or because you want to find objects regardless
of the user’s language. Maybe based on a translatable slug. This can be done
by querying with language('all'):

from django.views.generic.base import TemplateView

class NewsView(TemplateView):
 def get(self, request, *args, **kwargs):
 slug = kwargs['slug']
 obj = News.objects.language('all').get(published=True, slug=slug)

 context = self.get_context_data(news=obj, language=obj.language_code)
 return self.render_to_response(context)

This view will find the news given its slug, regardless of which language it
is in. It will display it in the language it is found with. It would be possible
to force it to be in the user’s preferred language by adding another query:

obj = News.objects.language('all').get(published=True, slug=slug)
try:
 # Try to replace obj with a version in current user's language
 obj = News.objects.language().get(pk=obj.pk)
except News.DoesNotExist:
 # No translation for user's language, stick with that of the slug
 pass

Note

Note those examples assume slugs are unique amongst all news of all
languages.

8.4. How do I use hvad with MPTT?

Note

Since version 0.5, hvad no longer uses a custom metaclass, making
the old metaclass workaround unneeded.

The mptt [https://github.com/django-mptt/django-mptt/] application implements Modified Preorder Tree Traversal
for Django models. If you have any model in your project that is organized
in a hierarchy of items, you should be using it.

MPTT and hvad can cooperate pretty well by merging the TranslationManager
from hvad with the MPTTManager from MPTT.
Doing so is relatively straightforward:

class FolderManager(TranslationManager, MPTTManager):
 use_for_related_fields = True

class Folder(MPTTModel, TranslatableModel):
 # ...
 objects = FolderManager()

The same principle would work with a custom queryset too, but MPTT does not
define one.

8.5. How do I separate translatable fields in admin?

This comes froms #68 [https://github.com/KristianOellegaard/django-hvad/issues/68].

We need to separate the fields in fieldsets. Unfortunately, technical
restrictions on Django < 1.6 make support for translated fields directly
on ModelAdmin difficult. Therefore, it must be worked around by defining a
custom get_fieldsets() [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.get_fieldsets] as such:

class MyModelAdmin(TranslatableAdmin):
 # ... other admin stuff
 def get_fieldsets(self, request, obj=None):
 return (
 (_('Common fields'), {
 'fields': ('owner', 'is_published',),
 }),
 (_('Translated fields'), {
 'fields': ('name', 'slug', 'description',),
 }),
)

The model admin will then be generated with two fieldsets, one for common fields
and one for translated fields. At this point though, language tabs still appear
at the top, with both fieldsets beneath. This can be changed by providing a
custom template for rendering the form. This is a 2-step process. First, we
specify a custom template on the admin:

class MyModelAdmin(TranslatableAdmin):
 # ... ohter admin stuff
 change_form_template = 'myapp/change_form.html'

Then we create the template, by extending the base admin change form. Only, we
place the language tabs where we want them to be:

{% extends "admin/change_form.html" %}

{% block field_sets %}
 {% for fieldset in adminform %}
 {% include "admin/includes/fieldset.html" %}
 {% if forloop.first %}
 {% include "admin/hvad/includes/translation_tabs.html" %}
 {% endif %}
 {% endfor %}
{% endblock %}

In that example, the language tabs will end up in between the first and second
fieldsets. We are mostly done, all we miss is some CSS rules to have the tabs
look right. We may simply copy-paste the extrahead block straight from
hvad/templates/admin/hvad/change_form.html.

Note

Remember that language tabs are links to other pages. This means that
clicking them without saving the form will not save anything, not even
common fields. Basically, a new, fresh form will be built from DB
values. If adding new object, common fields will be blanked as well.

9. Release Notes

9.1. 1.8.0 - current release

Released on April 28, 2017

Python and Django versions supported:

	Support for Django 1.10 was added.

	Django 1.7 is no longer supported.

	So, as a reminder, supported Django versions for this release are:
1.8 LTS, 1.9, 1.10.x (for x

 10. Contact and support channels

10. Contact and support channels

	Github: https://github.com/KristianOellegaard/django-hvad

 11. How to contribute

11. How to contribute

11.1. Running the tests

Common Setup

	virtualenv env

	source env/bin/activate

	pip install django sphinx djangorestframework

Postgres Setup

Additional to the steps above, install psycopg2 using pip and have a
postgres server running that you have access to with a user that can create
databases.

Mysql Setup

Additional to the steps above, install mysql-python using pip and have a
mysql server running that you have access to with a user that can create
databases.

Run the test

	python runtests.py

Optionally, prefix it with a environment variable called DATBASE_URL, for
example for a Postgres server running on myserver.com on port 5432
with the user username and password password and database name hvad:

	DATABASE_URL=postgres://username:password@myserver.com:5432/hvad python runtests.py

If in doubt, you can check .travis.yml for some examples.

11.2. Contributing Code

If you want to contribute code, one of the first things you should do is read
the Internal API Documentation. It was written for developers who want to
understand how things work.

Patches can be sent as pull requests on Github to
https://github.com/KristianOellegaard/django-hvad.

Code Style

The PEP 8 [https://www.python.org/dev/peps/pep-0008] coding guidelines should be followed when contributing code to this
project.

Patches must include unittests that fully cover the changes in the patch.

Patches must contain the necessary changes or additions to both the
internal and public documentation.

If you need help with any of the above, feel free to Contact and support channels us.

11.3. Contributing Documentation

If you wish to contribute documentation, be it for fixes of typos and grammar or
to cover the code you’ve written for your patch, or just generally improve our
documentation, please follow the following style guidelines:

	Documentation is written using reStructuredText [http://docutils.sourceforge.net/rst.html] and Sphinx [http://sphinx.pocoo.org].

	Text should be wrapped at 80 characters per line. Only exception are over-long
URLs that cannot fit on one line and code samples.

	The language does not have to be perfect, but please give your best.

	For section headlines, please use the following style:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

 12. Internal API Documentation

12. Internal API Documentation

12.1. About this part of the documentation

Warning

All APIs described in this part of the documentation which are not
mentioned in the public API documentation are internal and are
subject to change without prior notice.
This part of the documentation is for developers who wish to work
on django-hvad, not with it. It may also be useful to get a better
insight on how things work and may proof helpful during
troubleshooting.

12.2. Contents

This part of the documentation is grouped by file, not by topic.

	General information on django-hvad internals
	How it works

	A word on caching

	hvad.admin
	TranslatableAdmin

	hvad.descriptors
	BaseDescriptor

	TranslatedAttribute

	LanguageCodeAttribute

	hvad.exceptions

	hvad.fieldtranslator

	hvad.forms
	TranslatableModelFormMetaclass

	TranslatableModelForm

	BaseTranslationFormSet

	hvad.manager
	FieldTranslator

	ValuesMixin

	SkipMasterSelectMixin

	TranslationQueryset

	TranslationManager

	FallbackQueryset

	TranslationAwareQueryset

	TranslationAwareManager

	hvad.models
	TranslatedFields

	BaseTranslationModel

	TranslatableModel

	hvad.query

	hvad.utils

 General information on django-hvad internals

General information on django-hvad internals

How it works

Model Definition

Function hvad.models.prepare_translatable_model() is invoked by Django
metaclass using class_prepared [https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.class_prepared] signal. It
scans all attributes on the model defined for instances of
hvad.models.TranslatedFields, and if it finds one, sets the respective
options onto meta.

TranslatedFields both creates the
Translations Model and makes a foreign key from that model to point to
the Shared Model which has the name of the attribute of the
TranslatedFields instance as related name.

In the database, two tables are created:

	The table for the Shared Model with the normal Django way of defining
the table name.

	The table for the Translations Model, which if not specified otherwise
in the options (meta) of the Translations Model will have the name of
the database table of the Shared Model suffixed by _translations
as database table name.

Queries

The main idea of django-hvad is that when you query the Shared Model
using the Django ORM, what actually happens behind the scenes (in the queryset)
is that it queries the Translations Model and selects the relation to
the Shared Model. This means that model instances can only be queried if
they have a translation in the language queried in, unless an alternative
manager is used, for example by using
untranslated().

Due to the way the Django ORM works, this approach does not seem to be possible
when querying from a Normal Model, even when using
hvad.utils.get_translation_aware_manager() and therefore in that case we
just add extra filters to limit the lookups to rows in the database where the
Translations Model row existist in a specific language, using
<translations_accessor>__language_code=<current_language>. This is
suboptimal since it means that we use two different ways to query translations
and should be changed if possible to use the same technique like when a
Translated Model is queried.

A word on caching

Throughout this documentation, caching of translations is mentioned a lot. By
this we don’t mean proper caching using the Django cache framework, but rather
caching the instance of the Translations Model on the instance of the
Shared Model for easier access. This is done by setting the instance of
the Translations Model on the attribute defined by the
translations_cache on the Shared Model‘s options (meta).

 hvad.admin

hvad.admin

	
hvad.admin.translatable_modelform_factory(model, form=TranslatableModelForm, fields=None, exclude=None, formfield_callback=None)

	The same as django.forms.models.modelform_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory] but uses type
instead of django.forms.models.ModelFormMetaclass to create the
form.

TranslatableAdmin

	
class hvad.admin.TranslatableAdmin

	A subclass of django.contrib.admin.ModelAdmin [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] to be used for
hvad.models.TranslatableModel subclasses.

	
query_language_key

	The GET parameter to be used to switch the language, defaults to
'language', which results in GET parameters like ?language=en.

	
form

	The form to be used for this admin class, defaults to
hvad.forms.TranslatableModelForm and if overwritten should
always be a subclass of that class.

	
change_form_template

	We use 'admin/hvad/change_form.html' here which extends the correct
template using the logic from django admin, see
get_change_form_base_template(). This attribute should never
change.

	
get_form(self, request, obj=None, **kwargs)

	Returns a form created by translatable_modelform_factory().

	
all_translations(self, obj)

	A helper method to be used in list_display [https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display]
to show available languages.

	
render_change_form(self, request, context, add=False, change=False, form_url='', obj=None)

	Injects title, language_tabs and base_template into the
context before calling the render_change_form() method on the
super class.
title just appends the current language to the end of the existing
title in the context.
language_tabs is the return value of get_language_tabs(),
base_template is the return value of
get_change_form_base_template().

	
queryset(self, request)

	Calls untranslated()
on the queryset returned by the call to the super class and returns that
queryset. This allows showing all objects, even if they have no
translation in current language, at the cost of more database queries.

	
_language(self, request)

	Returns the currently active language by trying to get the value from
the GET parameters of the request using query_language_key or
if that’s not available, use
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language].

	
get_language_tabs(self, request, available_languages)

	Returns a list of triples. The triple contains the URL for the change
view for that language, the verbose name of the language and whether
it’s the current language, available or empty. This is used in the
template to show the language tabs.

	
get_change_form_base_template(self)

	Returns the appropriate base template to be used for this model.
Tries the following templates:

	admin/<applabel>/<modelname>/change_form.html

	admin/<applabel>/change_form.html

	admin/change_form.html

 hvad.descriptors

hvad.descriptors

BaseDescriptor

	
class hvad.descriptors.BaseDescriptor

	Base class for the descriptors, should not be used directly.

	
opts

	The options (meta) of the model.

	
translation(self, instance)

	Get the cached translation object on an instance. If no translation is
cached yet, use the get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language] function
to get the current language, load it from the database and cache it on the
instance.

If no translation is cached, and no translation exists for current language,
raise an AttributeError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

TranslatedAttribute

	
class hvad.descriptors.TranslatedAttribute

	Standard descriptor for translated fields on the Shared Model.

	
name

	The name of this attribute

	
opts

	The options (meta) of the model.

	
__get__(self, instance, instance_type=None)

	Gets the attribute from the translation object using
BaseDescriptor.translation(). If no instance is given (used from
the model instead of an instance) it returns the field object itself,
allowing introspection of the model.

Starting from Django 1.7, calling getattr() [https://docs.python.org/2.7/library/functions.html#getattr] on a translated field
before the App Registry is initialized raises an
AttributeError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

	
__set__(self, instance, value)

	Sets the value on the attribute on the translation object using
BaseDescriptor.translation() if an instance is given, if no
instance is given, raises an AttributeError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

	
__delete__(self, instance)

	Deletes the attribute on the translation object using
BaseDescriptor.translation() if an instance is given, if no
instance is given, raises an AttributeError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

LanguageCodeAttribute

	
class hvad.descriptors.LanguageCodeAttribute

	The language code descriptor is different than the other fields, since it’s
readonly. The getter is inherited from TranslatedAttribute.

	
__set__(self, instance, value)

	Raises an attribute error.

	
__delete__(self, instance)

	Raises an attribute error.

 hvad.exceptions

hvad.exceptions

	
exception hvad.exceptions.WrongManager

	Raised when trying to access the related manager of a foreign key pointing
from a normal model to a translated model using the standard manager instead
of one returned by hvad.utils.get_translation_aware_manager(). Used to
give developers an easier to understand exception than a
django.core.exceptions.FieldError [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.FieldError]. This exception is raised by the
hvad.utils.SmartGetFieldByName which gets patched onto the options
(meta) of translated models.

 hvad.fieldtranslator

hvad.fieldtranslator

	
hvad.fieldtranslator.TRANSLATIONS

	Constant to identify Shared Model classes.

	
hvad.fieldtranslator.TRANSLATED

	Constant to identify Translations Model classes.

	
hvad.fieldtranslator.NORMAL

	Constant to identify normal models.

	
hvad.fieldtranslator.MODEL_INFO

	Caches the model informations in a dictionary with the model class as keys
and the return value of _build_model_info() as values.

	
hvad.fieldtranslator._build_model_info(model)

	Builds the model information dictionary for a model. The dictionary holds
three keys: 'type', 'shared' and 'translated'. 'type' is one
of the constants TRANSLATIONS, TRANSLATED or NORMAL.
'shared' and 'translated' are a list of shared and translated
fieldnames. This method is used by get_model_info().

	
hvad.fieldtranslator.get_model_info(model)

	Returns the model information either from the MODEL_INFO cache or by
calling _build_model_info().

	
hvad.fieldtranslator._get_model_from_field(starting_model, fieldname)

	Get the model the field fieldname on starting_model is pointing to.
This function uses get_field_by_name() on the starting model’s options
(meta) to figure out what type of field it is and what the target model is.

	
hvad.fieldtranslator.translate(querykey, starting_model)

	Translates a querykey (eg 'myfield__someotherfield__contains') to be
language aware by spanning the translations relations wherever necessary. It
also figures out what extra filters to the Translations Model tables
are necessary. Returns the translated querykey and a list of language joins
which should be used to further filter the queryset with the current
language.

 hvad.forms

hvad.forms

TranslatableModelFormMetaclass

	
class hvad.forms.TranslatableModelFormMetaclass

	Metaclass of TranslatableModelForm.

	
__new__(cls, name, bases, attrs)

	Uses Django’s internal fields_for_model to get translated fields
for model and fields declarations, then lets Django handle the other
fields. Once it is done, it merges the translated fields, preserving order.

Special handling is done to:

	Prevent language_code from being used in any way by a field. This is
because the form uses the language_code key in the cleaned_data
dictionary.

	Prevent master from being recognized as a translated field. It is
still a valid field name though.

	Prevent the translations accessor from being used as a field.

TranslatableModelForm

	
class hvad.forms.BaseTranslatableModelForm(BaseModelForm)

	The actual class supporting the features and methods, but lacking metaclass
sugar. Inherited by TranslatableModelForm to attach the metaclass.
Details are documented on that class.

	
class hvad.forms.TranslatableModelForm(BaseTranslatableModelForm)

	
Main form for editing TranslatableModel instances. As with
regular django Form [https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form] classes, it can be used either
directly or by passing it to translatable_modelform_factory().

As an extension to regular forms, it handles translation and can be bound
to a language. Binding to a language is done by setting language
on the class (not the instance), either by inheriting it manually or
using the factory function. Once bound to a language, the form is in
enforce mode: all manipulations will be done using that language
exclusively.

	
__metaclass__

	TranslatableModelFormMetaclass

	
language

	The language the form is bound to. This is a class attribute. If present,
the form is in enforce mode and will only deal with the specified
language. See each method for the exact effects.

	
__init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=ErrorList, label_suffix=':', empty_permitted=False, instance=None)

	If this class is initialized with an instance, that has a translation
loaded, it updates initial to also contain the data from the
Translations Model.

If the form is not bound to a language, it will use the data from the
instance. If the instance has no translation loaded, an attempt will be
made at loading the current language, and if that fails the fields will
be blank.

If the form is in enforce mode and the instance does not have the
correct translation loaded, then:

	it will attempt to load it from the database.

	if that fails, it will try to use the loaded translation on the instance.

	if that fails (instance is untranslated), it will use default values.

This process results in new translations being pre-populated with data
from another language. Simply pass an instance in that language, or an
untranslated instance if the behavior is not desired.

	
clean(self)

	If the form is in enforce mode, namely if it has a
language property, apply the it to cleaned_data. As usual, the
special value None is replaced by current language.

If the form is not bound to a language, this method does nothing. It is
then possible to either use save() in unbound mode or set the
language code manually in cleaned_data['language_code'].

Note

A missing language is not the same as None. While None
will be replaced by current language and applied to cleaned_data,
a missing language will not apply any language at all.

	
_post_clean(self)

	Loads a translation appropriate to the form mode. It is the very same that
will be loaded by save(). Doing it twice is needed because:

	it must be done in _post_clean so that the correct translation is
available for modifications. For instance, if the view updates some
translated fields in between the call to is_valid() and save(),
or if a form defines a custom save().

	it must also be done in save to ensure the language is correctly
enforced when in enforce mode.

This double check has no cost: unless the instance is changed by the view,
the save() check will see the translation is correct and do nothing.

	
save(self, commit=True)

	Saves both the Shared Model and Translations Model and
returns a combined model.

The target language is determined as follows:

	If a language is defined in cleaned_data, that language is used.

	Else, if the instance has a translation loaded, its language is used.

	Else, the current language is used.

Once the language is determined, the following happen:

	If the object does not exist, it is created.

	If the object exists but not in the target language, its shared fields
are updated and a new translation is created.

	If the object exists in the target language, it is updated.

Note

The enforce mode has no direct impact on this method. Rather,
it affects the behavior of clean(), which places relevant
language (or lack thereof) in cleaned_data.

	
hvad.forms.translatable_modelform_factory(language, model, form=TranslatableModelForm, **kwargs)

	Attaches a language and a model class to the specified form and returns the
resulting class. Additional arguments are any arguments accepted by Django’s
modelform_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory], including fields and
exclude.

Having a language attached, the returned form is in enforce mode.

	
hvad.forms.translatable_modelformset_factory(language, model, form=TranslatableModelForm, **kwargs)

	Creates a formset class, allowing edition a collection of instances of model,
all of them in the specified language. Additional arguments are any
argument accepted by Django’s modelformset_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelformset_factory].

Having a language attached, the returned formset is in enforce mode.

	
hvad.forms.translatable_inlineformset_factory(language, parent_model, model, form=TranslatableModelForm, **kwargs)

	Creates an inline formset, allowing edition of a collection of instances of
model attached to an instance of parent_model, all of those objects
being in the specified language. Additional arguments are any argument
accepted by Django’s inlineformset_factory() [https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.inlineformset_factory].

Having a language attached, the returned formset is in enforce mode.

BaseTranslationFormSet

	
class hvad.forms.BaseTranslationFormSet(BaseInlineFormSet)

	
	
instance

	An instance of a TranslatableModel that the formset
works on the translations of. Its untranslatable fields will be used while
validating and saving the translations.

	
order_translations(self, qs)

	Is given a queryset over the Translations Model, that it should
alter and return. This is used for adding order_by clause that will
define the order in which languages will show up in the formset.

Default implementation orders by language_code. If overriding this
method, the default implementation should not be called.

	
clean(self)

	Performs translation-specific cleaning of the form. Namely, it combines
each form’s translation with instance then calls
full_clean() [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.full_clean] on the full object.

It also ensures the last translation of an object cannot be deleted
(unless adding a new translation at the same time).

	
_save_translation(self, form, commit=True)

	Saves one of the formset’s forms to the database. It is used by both
save_new() and save_existing(). It works by combining the
form’s translation with instance‘s untranslatable fields, then
saving the whole object, triggering any custom
save() [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save] method or related signal handlers.

	
save_new(self, form, commit=True)

	Saves a new translation. Called from
save().

	
save_existing(self, form, instance, commit=True)

	Saves an existing, updated translation. Called from
save().

	
add_fields(self, form, index)

	Adds a language_code field if it is not defined on the translation
form.

 hvad.manager

hvad.manager

This module is where most of the functionality is implemented.

	
hvad.manager.FALLBACK_LANGUAGES

	The default sequence for fallback languages, populates itself from
settings.LANGUAGES, could possibly become a setting on it’s own at some
point.

FieldTranslator

	
class hvad.manager.FieldTranslator

	The cache mentioned in this class is the instance of the class itself, since
it inherits dict.

Possibly this class is not feature complete since it does not care about
multi-relation queries. It should probably use
hvad.fieldtranslator.translate() after the first level if it hits
the Shared Model.てz

	
get(self, key)

	Returns the translated fieldname for key. If it’s already cached,
return it from the cache, otherwise call build()

	
build(self, key)

	Returns the key prefixed by 'master__' if it’s a shared field,
otherwise returns the key unchanged.

ValuesMixin

	
class hvad.manager.ValuesMixin

	A mixin class for ValuesQuerySet which
implements the functionality needed by TranslationQueryset.values()
and TranslationQueryset.values_list().

	
_strip_master(self, key)

	Strips 'master__' from the key if the key starts with that string.

	
iterator(self)

	Iterates over the rows from the superclass iterator and calls
_strip_master() on the key if the row is a dictionary.

SkipMasterSelectMixin

	
class hvad.manager.SkipMasterSelectMixin

	A mixin class for specialized querysets such as
DateQuerySet and
DateTimeQuerySet which forces
TranslationQueryset not to add the related lookup
on the master field. This is required as those specialized querysets
use DISTINCT, and added the related lookup brings along all fields on the
Shared Model, breaking the lookup.

TranslationQueryset

	
class hvad.manager.TranslationQueryset

	Any method on this queryset that returns a model instance or a queryset of
model instances actually returns a Translations Model which gets
combined to behave like a Shared Model. While this manager is on
the Shared Model, it is actually a manager for the
Translations Model since the model gets switched when this queryset
is instantiated from the TranslationManager.

	
override_classes

	A dictionary of django classes to hvad classes to mixin when
_clone() is called with an explicit klass argument.

	
_local_field_names

	A list of field names on the Shared Model.

	
_field_translator

	The cached field translator for this manager.

	
_language_code

	The language code of this queryset, or one of the following special values:

	None: get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language]
will be called to get the current language.

	'all': no language filtering will be applied, a copy of an instance
will be returned for every translation that matched the query.

	
_language_fallbacks

	A tuple of fallbacks used for this queryset, if fallbacks have been
activated by fallbacks(), or None otherwise.

A None value in the tuple will be replaced with current language
at query evaluation.

	
_hvad_switch_fields

	A tuple of attributes to move from the Translations Model to the
Shared Model instance before returning objects to the caller. It
is mostly used by extra() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.extra] so
additional values collected by the select argument are available on
the final instance.

	
translations_manager

	The (real) manager of the Translations Model.

	
shared_model

	The Shared Model.

	
field_translator

	The field translator for this manager, sets _field_translator if
it’s None.

	
shared_local_field_names

	Returns a list of field names on the Shared Model, sets
_local_field_names if it’s None.

	
_translate_args_kwargs(self, *args, **kwargs)

	Translates args (Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] objects) and
kwargs (dictionary of query lookups and values) to be language aware, by
prefixing fields on the Shared Model with 'master__'. Uses
field_translator for the kwargs and _recurse_q() for the
args. Returns a tuple of translated args and translated kwargs.

	
_translate_fieldnames(self, fieldnames)

	Translate a list of fieldnames by prefixing fields on the
Shared Model with 'master__' using field_translator.
Returns a list of translated fieldnames.

	
_recurse_q(self, q)

	Recursively walks a Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object and
translates it’s query lookups to be prefixed by 'master__' if they
access a field on Shared Model.

Every Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object has an attribute
children which is either a list
of other Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] objects or a tuple
where the key is the query lookup.

This method returns a new Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q]
object.

	
_find_language_code(self, q)

	Searches a Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object for
language code lookups. If it finds a child
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object that defines a language
code, it returns that language code if it’s not None. Used in
get() to ensure a language code is defined.

For more information about Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q]
objects, see _recurse_q().

Returns the language code if one was found or None.

	
_split_kwargs(self, **kwargs)

	Splits keyword arguments into two dictionaries holding the shared and
translated fields.

Returns a tuple of dictionaries of shared and translated fields.

	
_get_class(self, klass)

	Given a QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] class or subclass, it
checks if the class is a subclass of any class in
override_classes and if so, returns a new class which mixes
the initial class, the class from override_classes and
TranslationQueryset. Otherwise returns the class given.

	
_get_shared_queryset(self)

	Returns a clone of this queryset but for the shared model. Does so by
creating a QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] on shared_model
and filtering over this queryset. Returns a queryset for the Shared Model.

	
_add_language_filter(self)

	Apply the language filter to current query. Language is retrieved from
_language_code, or get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language] if
None. If fallbacks() have been set, apply the additional join as well.

Special value 'all' will prevent any language filter from being applied,
resulting in the query considering all translations, possibly returning
the same instance mutiple times if several of its translations match.
In that case, each instance will be combined
with one of the matching translations.

Applied filters include the base language filter on the language_code
field, as well as any related model translation set up by
select_related().

	
_add_select_related(self, language_code)

	
New in version 0.5.

Applies the related selections to current query. This includes the basic
selection of master, any relation specified through select_related()
and the translations of any translatable models it navigates through.

	
language(self, language_code=None)

	Specifies a language for this queryset. This sets the
_language_code, but no filter are actually applied until
_add_language_filter() is called. This allows for query-time
resolution of the None value. It is an error to call language()
multiple times on the same queryset.

The following special values are accepted:

	None, or no value: get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language]
will be called to get the current language.

	'all': no language filtering will be applied, a copy of an instance
will be returned for every translation that matched the query, each
copy being combined with one of the
matching translations.

Returns a queryset.

Note

Support for using language('all') and select_related()
on the same queryset is experimental. Please check the generated
queries and open an issue if you have any problem. Feedback
is appreciated as well.

	
fallbacks(self, *languages)

	
New in version 0.6.

Activates fallbacks for this queryset. This sets the
_language_fallbacks attribute, but does not apply any join
or filtering until _add_language_filter() is called. This allows
for query-time resolution of the None values in the list.

The following special cases are accepted:

	None as a single argument will disable fallbacks on the queryset.

	An empty argument list will use LANGUAGES [https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES] setting as a
fallback list.

	A None value a language will be replaced by the current language
at query evalution time, by calling
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language]

Returns a queryset.

Note

Using fallbacks and select_related() on the
same queryset is not supported and will raise a
NotImplementedError [https://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError].

Note

This feature requires Django 1.6 or newer.

	
create(self, **kwargs)

	Creates a new instance using the kwargs given. If _language_code
is not set and language_code is not in kwargs, it uses
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language] to get the current
language and injects that into kwargs.

This causes two queries as opposed to the one by the normal queryset.

Returns the newly created (combined) instance.

Note

It is an error to call create with no language_code
on a queryset whose _language_code is 'all'.
Doing so will raise a ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError].

	
bulk_create(self, objs, batch_size=None)

	Not implemented yet and unlikely to be due to inherent limitations of
multi-table inserts.

	
update_or_create(self, defaults=None, **kwargs)

	Not implemented yet.

	
get(self, *args, **kwargs)

	Gets a single instance from this queryset using the args and kwargs
given. The args and kwargs are translated using
_translate_args_kwargs().

If a language code is given in the kwargs, it calls language()
using the language code provided. If none is given in kwargs, it uses
_find_language_code() on the
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] objects given in args. If no
args were given or they don’t contain a language code, it searches the
django.db.models.sql.where.WhereNode objects on the current
queryset for language codes. If none was found, it will use the language
of this queryset from _language_code, or the current language
as returned by get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language] of that is None.

Returns a (combined) instance if one can be found for the filters given,
otherwise raises an appropriate exception depending on whether no or
multiple objects were found.

Warning

It is an error to pass language_code in a Q object if a
select_related() clause was enabled on this queryset.
Doing so will raise an AssertionError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError].

	
get_or_create(self, **kwargs)

	Will try to fetch the translated instance for the kwargs given.

If it can’t find it, it will try to find a shared instance (using
_splitkwargs()). If it finds a shared instance, it will create
the translated instance. If it does not find a shared instance, it will
create both.

Returns a tuple of a (combined) instance and a boolean flag which is
False if it found the instance or True if it created either
the translated or both instances.

	
filter(self, *args, **kwargs)

	Translates args and kwargs using _translate_args_kwargs() and
calls the superclass using the new args and kwargs.

	
aggregate(self, *args, **kwargs)

	Loops through the passed aggregates and translates the fieldnames using
_translate_fieldnames() and calls the superclass

	
latest(self, field_name=None)

	Translates the fieldname (if given) using field_translator and
calls the superclass.

	
earliest(self, field_name=None)

	
New in version 0.4.

Translates the fieldname (if given) using field_translator and
calls the superclass.

Only defined if django version is 1.6 or newer.

	
in_bulk(self, id_list)

	
New in version 0.4.

Retrieves the objects, building a dict from iterator().

	
delete(self)

	Deletes the Shared Model using _get_shared_queryset().

	
delete_translations(self)

	Deletes the translations (and only the translations) by first
breaking their relation to the Shared Model and then calling the
delete method on the superclass. This uses two queries.

	
update(self, **kwargs)

	Updates this queryset using kwargs. Calls _split_kwargs() to get
two dictionaries holding only the shared or translated fields
respectively. If translated fields are given, calls the superclass with
the translated fields. If shared fields are given, uses
_get_shared_queryset() to update the shared fields.

If both shared and translated fields are updated, two queries are
executed, if only one of the two are given, one query is executed.

Returns the count of updated objects, which if both translated and
shared fields are given is the sum of the two update calls.

	
values(self, *fields)

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
values_list(self, *fields, **kwargs)

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
dates(self, field_name, kind, order='ASC')

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
datetimes(self, field_name, *args, **kwargs)

	Translates fields using _translate_fieldnames() and calls the
superclass.

Only defined if django version is 1.6 or newer.

	
exclude(self, *args, **kwargs)

	Works like filter().

	
complex_filter(self, filter_obj)

	Not really implemented yet, but if filter_obj is an empty dictionary it
just returns this queryset, since this is required to get admin to work.

	
annotate(self, *args, **kwargs)

	Not implemented yet.

	
order_by(self, *field_names)

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
reverse(self)

	Calls the superclass.

	
defer(self, *fields)

	Not implemented yet.

	
only(self, *fields)

	Not implemented yet.

	
_clone(self, klass=None, setup=False, **kwargs)

	Injects _local_field_names, _field_translator, _language_code,
and shared_model into kwargs. If a klass is
given, calls _get_class() to get a mixed class if necessary.

Calls the superclass with the new kwargs and klass.

	
iterator(self)

	Iterates using the iterator from the superclass, if the objects yielded
have a master, it yields a combined instance, otherwise the instance
itself to enable non-cascading deletion.

Interestingly, implementing the combination here also works for
get() and __getitem__(). This is because the former uses the
latter, which in turn fetches results from an iterator.

TranslationManager

	
class hvad.manager.TranslationManager

	Manager to be used on hvad.models.TranslatableModel.

	
translations_model

	The Translations Model for this manager.

	
queryset_class

	The QuerySet for this manager, used by the language() method.
Overwrite to use a custom queryset. Your custom
queryset class must inherit TranslationQueryset. Defaults to
TranslationQueryset.

	
fallback_class

	The QuerySet for this manager, used by the untranslated() method.
Overwrite to use a custom queryset. Defaults to FallbackQueryset.

	
default_class

	The QuerySet for this manager, used by the get_queryset() method
and generally any query that does not invoke either language() or
untranslated(). Overwrite to use a custom queryset. Defaults to
QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet].

	
language(self, language_code=None)

	Instanciates a TranslationQueryset from queryset_class and calls
TranslationQueryset.language() on that queryset. This type of queryset
will filter by language, returning only objects that have a translation
in the specified language. Translated fields will be available on the
objects, in the specified language.

	
untranslated(self)

	Returns an instance of FallbackQueryset for this manager, or any
custom queryset defined by fallback_class. This type of
queryset will load translations using fallbacks if current language is
not available. It can generate a lot a queries, use with caution.

	
get_queryset(self)

	Returns a vanilla, non-translating queryset for this manager. It uses
the default QuerySet [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] or any custom
queryset defined by default_class.

Instances returned will not have translated fields, and attempts to access them
will result in an exception being raised. See language() and untranslated()
to access translated fields.

It is possible to override this behavior by setting default_class
to TranslationQueryset, FallbackQueryset or any queryset
that has a translation-aware implementation.

	
contribute_to_class(self, model, name)

	Contributes this manager onto the class.

FallbackQueryset

	
class hvad.manager.FallbackQueryset

	
Deprecated since version 1.4.

A queryset that can optionally use fallbacks and by default only fetches the
Shared Model.

There are actually two underlying implementations, the LegacyFallbackQueryset
and the SelfJoinFallbackQueryset. Implementation is chosen at initialization
based on the HVAD_LEGACY_FALLBACKS setting. It defaults to False
(use SelfJoin) on Django 1.6 and newer, and True (use Legacy) on older
versions.

The LegacyFallbackQueryset generates lots of queries as it walks through
batches of models, fetches their translations and matches them onto the models.

The SelfJoinFallbackQueryset uses a single self outer join to achieve the same
result in only one (complex) query. Performance is good as the number of items
per model in the cross-product is limited to the number of languages that
Django supports. Implementation digs deeper into Django internals, though.

	
_translation_fallbacks

	List of fallbacks to use (or None).

	
iterator(self)

	If _translation_fallbacks is set, it iterates using the
superclass and tries to get the translation using the order of
language codes defined in _translation_fallbacks. As soon as it
finds a translation for an object, it yields a combined object using
that translation. Otherwise yields an uncombined object. Due to the way
this works, it can cause a lot of queries and this should be
improved if possible.

If no fallbacks are given, it just iterates using the superclass.

	
use_fallbacks(self, *fallbacks)

	
Deprecated since version 1.4.

If this method gets called, iterator() will use the fallbacks
defined here. None value will be replaced with current language at
query evaluation, as returned by get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language].
If not fallbacks are given, FALLBACK_LANGUAGES will be used,
with current language prepended.

This method has been superseded by fallbacks()
and will be removed when support for Django 1.4 is dropped.

	
_clone(self, klass=None, setup=False, **kwargs)

	Injects translation_fallbacks into kwargs and calls the superclass.

TranslationAwareQueryset

	
class hvad.manager.TranslationAwareQueryset

	
	
_language_code

	The language code of this queryset.

	
_translate_args_kwargs(self, *args, **kwargs)

	Calls language() using _language_code
as an argument.

Translates args and kwargs into translation aware args and
kwargs using hvad.fieldtranslator.translate() by iterating over
the kwargs dictionary and translating it’s keys and recursing over the
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] objects in args using
_recurse_q().

Returns a triple of newargs, newkwargs and extra_filters where
newargs and newkwargs are the translated versions of args and
kwargs and extra_filters is a
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object to use to filter for the
current language.

	
_recurse_q(self, q)

	Recursively translate the keys in the
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object given using
hvad.fieldtranslator.translate(). For more information about
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q], see
TranslationQueryset._recurse_q().

Returns a tuple of q and language_joins where q is the translated
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object and language_joins is
a list of extra language join filters to be applied using the current
language.

	
_translate_fieldnames(self, fields)

	Calls language() using _language_code
as an argument.

Translates the fieldnames given using
hvad.fieldtranslator.translate()

Returns a tuple of newfields and extra_filters where newfields is
a list of translated fieldnames and extra_filters is a
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object to be used to filter for
language joins.

	
language(self, language_code=None)

	Sets the _language_code attribute either to the language given
with language_code or by getting the current language from
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language]. Unlike
TranslationQueryset.language(), this does not actually filter by
the language yet as this happens in _filter_extra().

	
get(self, *args, **kwargs)

	Gets a single object from this queryset by filtering by args and
kwargs, which are first translated using
_translate_args_kwargs(). Calls _filter_extra() with the
extra_filters returned by _translate_args_kwargs() to get a
queryset from the superclass and to call that queryset.

Returns an instance of the model of this queryset or raises an
appropriate exception when none or multiple objects were found.

	
filter(self, *args, **kwargs)

	Filters the queryset by args and kwargs by translating them using
_translate_args_kwargs() and calling _filter_extra() with
the extra_filters returned by _translate_args_kwargs().

	
aggregate(self, *args, **kwargs)

	Not implemented yet.

	
latest(self, field_name=None)

	If a fieldname is given, uses hvad.fieldtranslator.translate() to
translate that fieldname. Calls _filter_extra() with the
extra_filters returned by hvad.fieldtranslator.translate() if it
was used, otherwise with an empty
Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q] object.

	
in_bulk(self, id_list)

	Not implemented yet

	
values(self, *fields)

	Calls _translate_fieldnames() to translated the fields. Then
calls _filter_extra() with the extra_filters returned by
_translate_fieldnames().

	
values_list(self, *fields, **kwargs)

	Calls _translate_fieldnames() to translated the fields. Then
calls _filter_extra() with the extra_filters returned by
_translate_fieldnames().

	
dates(self, field_name, kind, order='ASC')

	Not implemented yet.

	
exclude(self, *args, **kwargs)

	Not implemented yet.

	
complex_filter(self, filter_obj)

	Not really implemented yet, but if filter_obj is an empty dictionary
it just returns this queryset, to make admin work.

	
annotate(self, *args, **kwargs)

	Not implemented yet.

	
order_by(self, *field_names)

	Calls _translate_fieldnames() to translated the fields. Then
calls _filter_extra() with the extra_filters returned by
_translate_fieldnames().

	
reverse(self)

	Not implemented yet.

	
defer(self, *fields)

	Not implemented yet.

	
only(self, *fields)

	Not implemented yet.

	
_clone(self, klass=None, setup=False, **kwargs)

	Injects _language_code into kwargs and calls the superclass.

	
_filter_extra(self, extra_filters)

	Filters this queryset by the Q [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q]
object provided in extra_filters and returns a queryset from the
superclass, so that the methods that call this method can directely
access methods on the superclass to reduce boilerplate code.

Warning

This internal method returns a super() proxy object,
be sure to understand the implications before using it.

TranslationAwareManager

	
class hvad.manager.TranslationAwareManager

	
	
get_queryset(self)

	Returns an instance of TranslationAwareQueryset.

 hvad.models

hvad.models

	
hvad.models.prepare_translatable_model(sender)

	Gets called from Model [https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model] after Django has
completed its setup. It customizes model creation for translations.
Most notably, it performs checks, overrides _meta methods and defines
translation-aware manager on models that inherit
TranslatableModel.

TranslatedFields

	
class hvad.models.TranslatedFields

	A wrapper for the translated fields which is set onto
TranslatableModel subclasses to define what fields are translated.

	
contribute_to_class(self, cls, name)

	Invoked by Django while setting up a model that defines translated fields.
Django passes is the model being built as cls and the field name
used for translated fields as name.

It triggers translations model creation from the list of field the
TranslatedFields object was created with, and glues the shared
model and the translations model together.

	
create_translations_model(self, model, related_name)

	A model factory used to create the Translations Model for the
given shared model. The translations model will include:

	A foreign key back to the shared model, named master, with the
given related_name.

	A language_code field, indexed together with master, for
looking up a shared model instance’s translations.

	All fields passed to TranslatedFields object.

Adds the new model to the shared model’s module and returns it.

	
contribute_translations(self, model, translations_model, related_name)

	Glues the shared model and the translations_model together.
This step includes setting up attribute descriptors for all translatable
fields onto the shared model.

	
_scan_model_bases(self, model)

	Recursively walks all model‘s base classes, looking for translation
models and collecting translatable fields. Used to build the inheritance
tree of a Translations Model.

Returns the list of bases and the list of fields.

	
_build_meta_class(self, model, tfields)

	Creates the Meta [https://django.readthedocs.io/en/latest/topics/db/models.html#meta-options] class for the
Translations Model passed as model. Takes tfields as a
list of all fields names referring to translatable fields.

Returns the created meta class.

	
static _split_together(constraints, fields, name)

	Helper method that partitions constraint tuples into shared-model
constraints and translations model constraints. Argument constraints
is an iterable of contrain tuples, fields is the list of translated
field names and name is the name of the option being handled (used
for raising exceptions).

Returns two list of constraints. First for shared model, second for
translations model. Raises an
ImproperlyConfigured [https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ImproperlyConfigured] exception if a
constraint has both translated and untranslated fields.

BaseTranslationModel

	
class hvad.models.BaseTranslationModel

	A baseclass for the models created by create_translations_model() to
distinguish Translations Model classes from other models. This model
class is abstract.

TranslatableModel

	
class hvad.models.TranslatableModel

	A model which has translated fields on it. Must define one and exactly one
attribute which is an instance of TranslatedFields. This model is
abstract.

If initalized with data, it splits the shared and translated fields and
prepopulates both the Shared Model and the
Translations Model. If no language_code is given,
get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language] is used to get the language
for the Translations Model instance that gets initialized.

Note

When initializing a TranslatableModel, positional
arguments are only supported for the shared fields.

	
objects

	An instance of hvad.manager.TranslationManager.

	
translate(self, language_code)

	Initializes a new instance of the Translations Model (does not
check the database if one for the language given already exists) and
sets it as cached translation. Used by end users to translate instances
of a model.

	
safe_translation_getter(self, name, default=None)

	Helper method to safely get a field from the Translations Model.

Returns value of translated field name, unless no translation is
loaded, or loaded translation doesn’t have field name. In both
cases, it will return default, performing no database query.

	
lazy_translation_getter(self, name, default=None)

	Helper method to get the cached translation, and in the case the cache
for some reason doesnt exist, it gets it from the database.

Note

Use is discouraged on production code paths. It is mostly
intended as a helper method for introspection.

	
get_available_languages(self)

	Returns a list of language codes in which this instance is available.
Uses cached values if available (eg if object was loaded with
.prefetch_related('translations')), otherwise performs a
database query.

Extra information on _meta of Shared Models

The options (meta) on TranslatableModel subclasses have a few extra
attributes holding information about the translations.

translations_accessor

The name of the attribute that holds the TranslatedFields instance.

translations_model

The model class that holds the translations (Translations Model).

translations_cache

The name of the cache attribute on this model.

Extra information on _meta of Translations Models

The options (meta) on BaseTranslationModel subclasses have a few extra
attributes holding information about the translations.

shared_model

The model class that holds the shared fields (Shared Model).

 hvad.query

hvad.query

This modules containts abstractions for accessing some internal parts of Django
ORM that are used in hvad. The intent is that anytime some code in hvad needs
to access some Django internals, it should do so through a function in this module.

	
hvad.query.query_terms(model, path)

	This iterator yields all terms in the specified path, along with full
introspection data. Each term is output as a named tuple with the following
members:

	depth: how deep in the path is this term. Counted from zero.

	term: the term string.

	model: `` the model the term is attached to. It will start with passed
``model then walk through relations as terms are enumerated.

	field: the actual field, on the model, the term refers to.

	translated: whether the field is a translated field (True) or a shared fielf (False).

	target: the target model of the relation, or None if not a relational field.

	many: whether the target can be multiple (that is, it is a M2M or reverse FK).

If a field is not recognized, it is assumed the path is complete and everything
that follows is a query expression (such as __year__in). Query expression
terms will be yielded with field set to None.

	
hvad.query.q_children(q)

	Iterator that recursively yields all key-value pairs of a Q object. Each
pair is yielded as a 3-tuple: the pair itself, its container and its index in
the container. This allows modifying it.

	
hvad.query.expression_nodes(expression)

	Iterator that recursively yields all nodes in an expression tree.

	
hvad.query.where_node_children(node)

	Iterator that recursively yields all fields of a where node. It is used to
determine whether a custom Q object included a language_code filter.

 hvad.utils

hvad.utils

	
hvad.utils.get_cached_translation(instance)

	Returns the cached translation from an instance or None.
Encapsulates a getattr() [https://docs.python.org/2.7/library/functions.html#getattr] using the model’s translations_cache.

	
hvad.utils.set_cached_translation(instance, translation)

	Sets the currently cached translation for the instance, and returns the
translation that was loaded before the call. Passing None as translation
will unload current translation and let the instance untranslated.

	
hvad.utils.combine(trans, klass)

	Combines a Shared Model with a Translations Model by taking
the Translations Model and setting it onto the
Shared Model‘s translations cache.

klass is the Shared Model class. This argument is required as there
is no way to distinguish a translation of a proxy model from that of a concrete
model otherwise.

This function is only intended for loading models from the database. For other
uses, set_cached_translation() should be used instead.

	
hvad.utils.get_translation(instance, language_code=None)

	Returns the translation for an instance, in the specified language. If given
language is None, uses get_language() [https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language] to get
current language.

Encapsulates a getattr() [https://docs.python.org/2.7/library/functions.html#getattr] using the model’s translations_accessor and
a call to its get() [https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get] method using the
instance’s primary key and given language_code as filters.

	
hvad.utils.load_translation(instance, language, enforce=False)

	Returns the translation for an instance.

	If enforce is False, then language is used as a default language,
if the instance has no language currently loaded.

	If enforce is True, then language will be enforced upon the
translation, ignoring cached translation if it is not in the given
language.

A valid translation instance is always returned. It will be loaded from the
database as required. If this fails, a new, empty, ready-to-use translation
will be returned.

The instance itself is untouched.

	
hvad.utils.get_translation_aware_manager(model)

	Returns a manager for a normal model that is aware of translations and can
filter over translated fields on translated models related to this normal
model.

	
class hvad.utils.SmartGetFieldByName

	Smart version of the standard get_field_by_name() on the options
(meta) of Django models that raises a more useful exception when one tries
to access translated fields with the wrong manager.

This descriptor is pending deprecation as the associated method is being
removed from Django.

	
__init__(self, real)

	Retains a reference to the actual method this descriptor is replacing.

	
__call__(self, meta, name)

	Catches improper use of the get_field_by_name method to access
translated fields and raise a WrongManager exception.

	
class hvad.utils.SmartGetField

	Smart version of the standard get_field() on the options
(meta) of Django models that raises a more useful exception when one tries
to access translated fields with the wrong manager.

	
__init__(self, real)

	Retains a reference to the actual method this descriptor is replacing.

	
__call__(self, meta, name)

	Catches improper use of the get_field method to access
translated fields and raise a WrongManager exception.

	
class hvad.utils._MinimumDjangoVersionDescriptor

	Helper class used by minimumDjangoVersion() decorator.

	
hvad.utils.minimumDjangoVersion(*args)

	Decorator that will catch attempts to use methods on a Django version that
does not support them and raise a helpful exception.

Arguments must be the minimum allowable Django version, the will be compared
against the django.VERSION tuple.

	
settings_updater(func):

	Decorator for setting globals depending on Django settings. It simply invokes
the decorated function immediately, then calls it again every time the
setting_changed signal is sent by Django.

 13. Glossary

13. Glossary

	Normal Model

	A Django model that does not have Translated Fields.

	Shared Fields

	A field which is not translated, thus shared between the languages.

	Shared Model

	The part of your model which holds the untranslated fields.
Internally this is a separated model to your Translations Model
as well as it’s own database table.

	Translated Fields

	A field which is translatable on a model.

	Translated Model

	A Django model that subclasses TranslatableModel.

	Translation Manager

	A subclass of TranslationManager, which replaces
the default Django manager on Translated Model, allowing access to
translated fields. It will use TranslationQueryset
internally, or a custom subclass if so configured.

	Translation-Aware Manager

	A Django manager that operates on untranslated models, yet is aware of
translated models it meets when crossing relations. It makes it possible
to filter untranslatable models against a translated field of a related
model.

	Translations Model

	The part of your model which holds the translated fields. Internally
this is a (autogenerated) separate model with a ForeignKey to your
Shared Model.

 Python Module Index

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hvad	

 	
 	
 hvad.admin	

 	
 	
 hvad.descriptors	

 	
 	
 hvad.exceptions	

 	
 	
 hvad.fieldtranslator	

 	
 	
 hvad.forms	

 	
 	
 hvad.manager	

 	
 	
 hvad.models	

 	
 	
 hvad.query	

 	
 	
 hvad.utils	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (hvad.utils.SmartGetField method)

 	(hvad.utils.SmartGetFieldByName method)

 	__delete__() (hvad.descriptors.LanguageCodeAttribute method)

 	(hvad.descriptors.TranslatedAttribute method)

 	__get__() (hvad.descriptors.TranslatedAttribute method)

 	__init__() (hvad.forms.TranslatableModelForm method)

 	(hvad.utils.SmartGetField method)

 	(hvad.utils.SmartGetFieldByName method)

 	__metaclass__ (hvad.forms.TranslatableModelForm attribute)

 	__new__() (hvad.forms.TranslatableModelFormMetaclass method)

 	__set__() (hvad.descriptors.LanguageCodeAttribute method)

 	(hvad.descriptors.TranslatedAttribute method)

 	_add_language_filter() (hvad.manager.TranslationQueryset method)

 	_add_select_related() (hvad.manager.TranslationQueryset method)

 	_build_meta_class() (hvad.models.TranslatedFields method)

 	_build_model_info() (in module hvad.fieldtranslator)

 	_clone() (hvad.manager.FallbackQueryset method)

 	(hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	_field_translator (hvad.manager.TranslationQueryset attribute)

 	_filter_extra() (hvad.manager.TranslationAwareQueryset method)

 	_find_language_code() (hvad.manager.TranslationQueryset method)

 	
 	_get_class() (hvad.manager.TranslationQueryset method)

 	_get_model_from_field() (in module hvad.fieldtranslator)

 	_get_shared_queryset() (hvad.manager.TranslationQueryset method)

 	_hvad_switch_fields (hvad.manager.TranslationQueryset attribute)

 	_language() (hvad.admin.TranslatableAdmin method)

 	_language_code (hvad.manager.TranslationAwareQueryset attribute)

 	(hvad.manager.TranslationQueryset attribute)

 	_language_fallbacks (hvad.manager.TranslationQueryset attribute)

 	_local_field_names (hvad.manager.TranslationQueryset attribute)

 	_MinimumDjangoVersionDescriptor (class in hvad.utils)

 	_post_clean() (hvad.forms.TranslatableModelForm method)

 	_recurse_q() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	_save_translation() (hvad.forms.BaseTranslationFormSet method)

 	_scan_model_bases() (hvad.models.TranslatedFields method)

 	_split_kwargs() (hvad.manager.TranslationQueryset method)

 	_split_together() (hvad.models.TranslatedFields static method)

 	_strip_master() (hvad.manager.ValuesMixin method)

 	_translate_args_kwargs() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	_translate_fieldnames() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	_translation_fallbacks (hvad.manager.FallbackQueryset attribute)

A

 	
 	add_fields() (hvad.forms.BaseTranslationFormSet method)

 	aggregate() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	
 	all_translations()

 	(hvad.admin.TranslatableAdmin method)

 	annotate() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

B

 	
 	BaseDescriptor (class in hvad.descriptors)

 	BaseTranslatableModelForm (class in hvad.forms)

 	BaseTranslationFormSet (class in hvad.forms)

 	
 	BaseTranslationModel (class in hvad.models)

 	build() (hvad.manager.FieldTranslator method)

 	bulk_create() (hvad.manager.TranslationQueryset method)

C

 	
 	change_form_template (hvad.admin.TranslatableAdmin attribute)

 	clean() (hvad.forms.BaseTranslationFormSet method)

 	(hvad.forms.TranslatableModelForm method)

 	combine() (in module hvad.utils)

 	complex_filter() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	
 	contribute_to_class() (hvad.manager.TranslationManager method)

 	(hvad.models.TranslatedFields method)

 	contribute_translations() (hvad.models.TranslatedFields method)

 	create() (hvad.manager.TranslationQueryset method)

 	create_translations_model() (hvad.models.TranslatedFields method)

D

 	
 	dates() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	datetimes() (hvad.manager.TranslationQueryset method)

 	default_class (hvad.manager.TranslationManager attribute)

 	
 	defer() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	delete() (hvad.manager.TranslationQueryset method)

 	delete_translations()

 	(hvad.manager.TranslationQueryset method)

E

 	
 	earliest() (hvad.manager.TranslationQueryset method)

 	exclude() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	
 	expression_nodes() (in module hvad.query)

F

 	
 	fallback_class (hvad.manager.TranslationManager attribute)

 	FALLBACK_LANGUAGES (in module hvad.manager)

 	FallbackQueryset (class in hvad.manager)

 	fallbacks()

 	(hvad.manager.TranslationQueryset method)

 	
 	field_translator (hvad.manager.TranslationQueryset attribute)

 	FieldTranslator (class in hvad.manager)

 	filter() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	form (hvad.admin.TranslatableAdmin attribute)

G

 	
 	get() (hvad.manager.FieldTranslator method)

 	(hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	get_available_languages()

 	(hvad.models.TranslatableModel method)

 	get_cached_translation() (in module hvad.utils)

 	get_change_form_base_template() (hvad.admin.TranslatableAdmin method)

 	
 	get_form() (hvad.admin.TranslatableAdmin method)

 	get_language_tabs() (hvad.admin.TranslatableAdmin method)

 	get_model_info() (in module hvad.fieldtranslator)

 	get_or_create() (hvad.manager.TranslationQueryset method)

 	get_queryset() (hvad.manager.TranslationAwareManager method)

 	(hvad.manager.TranslationManager method)

 	get_translation() (in module hvad.utils)

 	get_translation_aware_manager() (in module hvad.utils)

H

 	
 	hvad.admin (module)

 	hvad.descriptors (module)

 	hvad.exceptions (module)

 	hvad.fieldtranslator (module)

 	
 	hvad.forms (module)

 	hvad.manager (module)

 	hvad.models (module)

 	hvad.query (module)

 	hvad.utils (module)

I

 	
 	in_bulk() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	instance (hvad.forms.BaseTranslationFormSet attribute)

 	
 	iterator() (hvad.manager.FallbackQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	(hvad.manager.ValuesMixin method)

L

 	
 	language (hvad.forms.TranslatableModelForm attribute)

 	language()

 	(hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationManager method)

 	(hvad.manager.TranslationQueryset method)

 	
 	LanguageCodeAttribute (class in hvad.descriptors)

 	latest() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	lazy_translation_getter()

 	(hvad.models.TranslatableModel method)

 	load_translation() (in module hvad.utils)

M

 	
 	minimumDjangoVersion() (in module hvad.utils)

 	
 	MODEL_INFO (in module hvad.fieldtranslator)

N

 	
 	name (hvad.descriptors.TranslatedAttribute attribute)

 	
 	NORMAL (in module hvad.fieldtranslator)

 	Normal Model

O

 	
 	objects (hvad.models.TranslatableModel attribute)

 	only() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	opts (hvad.descriptors.BaseDescriptor attribute)

 	(hvad.descriptors.TranslatedAttribute attribute)

 	
 	order_by() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	order_translations() (hvad.forms.BaseTranslationFormSet method)

 	override_classes (hvad.manager.TranslationQueryset attribute)

P

 	
 	prepare_translatable_model() (in module hvad.models)

 	
 	
 Python Enhancement Proposals

 	PEP 8

Q

 	
 	q_children() (in module hvad.query)

 	query_language_key (hvad.admin.TranslatableAdmin attribute)

 	
 	query_terms() (in module hvad.query)

 	queryset() (hvad.admin.TranslatableAdmin method)

 	queryset_class (hvad.manager.TranslationManager attribute)

R

 	
 	render_change_form() (hvad.admin.TranslatableAdmin method)

 	
 	reverse() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

S

 	
 	safe_translation_getter()

 	(hvad.models.TranslatableModel method)

 	save()

 	(hvad.forms.TranslatableModelForm method)

 	save_existing() (hvad.forms.BaseTranslationFormSet method)

 	save_new() (hvad.forms.BaseTranslationFormSet method)

 	select_related()

 	
 	set_cached_translation() (in module hvad.utils)

 	Shared Fields

 	Shared Model

 	shared_local_field_names (hvad.manager.TranslationQueryset attribute)

 	shared_model (hvad.manager.TranslationQueryset attribute)

 	SkipMasterSelectMixin (class in hvad.manager)

 	SmartGetField (class in hvad.utils)

 	SmartGetFieldByName (class in hvad.utils)

T

 	
 	translatable_inlineformset_factory() (in module hvad.forms)

 	translatable_modelform_factory() (in module hvad.admin)

 	(in module hvad.forms)

 	translatable_modelformset_factory() (in module hvad.forms)

 	TranslatableAdmin (class in hvad.admin)

 	TranslatableModel (class in hvad.models)

 	TranslatableModelForm (class in hvad.forms)

 	TranslatableModelFormMetaclass (class in hvad.forms)

 	translate()

 	(hvad.models.TranslatableModel method)

 	(in module hvad.fieldtranslator)

 	TRANSLATED (in module hvad.fieldtranslator)

 	Translated Fields

 	
 	Translated Model

 	TranslatedAttribute (class in hvad.descriptors)

 	TranslatedFields (class in hvad.models)

 	Translation Manager

 	translation() (hvad.descriptors.BaseDescriptor method)

 	Translation-Aware Manager

 	TranslationAwareManager (class in hvad.manager)

 	TranslationAwareQueryset (class in hvad.manager)

 	TranslationManager (class in hvad.manager)

 	TranslationQueryset (class in hvad.manager)

 	TRANSLATIONS (in module hvad.fieldtranslator)

 	Translations Model

 	translations_manager (hvad.manager.TranslationQueryset attribute)

 	translations_model (hvad.manager.TranslationManager attribute)

U

 	
 	untranslated() (hvad.manager.TranslationManager method)

 	update() (hvad.manager.TranslationQueryset method)

 	
 	update_or_create() (hvad.manager.TranslationQueryset method)

 	use_fallbacks()

 	(hvad.manager.FallbackQueryset method)

V

 	
 	values() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	
 	values_list() (hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	ValuesMixin (class in hvad.manager)

W

 	
 	where_node_children() (in module hvad.query)

 	
 	WrongManager

_static/minus.png

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to the Django hvad documentation!

 		Installation

 		Quickstart

 		Models

 		Queryset API

 		Forms

 		Admin

 		REST Framework

 		Frequent Questions

 		Release Notes

 		Contact and support channels

 		How to contribute

 		Internal API Documentation

 		General information on django-hvad internals

 		hvad.admin

 		hvad.descriptors

 		hvad.exceptions

 		hvad.fieldtranslator

 		hvad.forms

 		hvad.manager

 		hvad.models

 		hvad.query

 		hvad.utils

 		Glossary

_static/up-presse