

    
      Navigation

      
        	
          index

        	
          next |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Welcome to Django Fieldmaker’s documentation!

This package enables you to design forms in the Django admin. These forms can be used in your code or to extend existing forms in the admin itself. Other libraries may register new fields or widgets for the designer to use.



	Installation
	Requirements

	Settings





	Using Expandable Forms

	Extending Your Admin

	Meta Form Fields
	FormField

	ListFormField





	Using FacetField

	Extending Fieldmaker

	Contrib
	Recaptcha









Download: http://github.com/zbyte64/django-fieldmaker




Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Installation


Requirements


	Python 2.5 or later

	Django 1.3






Settings

Put ‘fieldmaker’ into your INSTALLED_APPS section of your settings file.







          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Using Expandable Forms

ExpandableForm and ExpandableModelForm allow you to define forms and have the user expand those forms through the admin.
The form will add any fields defined in the form definition having the form_key specified in the Meta. The ExpandableModelForm will additionally save the extra information and associate it to the instance.

Example usage:

from django import forms
from fieldmaker.forms import ExpandableForm, ExplandableModelForm
from myapp.models import MyModel

class MyForm(ExpandableForm):
    title = forms.CharField()

    class Meta:
        form_key = 'myform'

class MyModelForm(ExpandableModelForm):
    class Meta:
        model = MyModel
        form_key = 'mymodel'









          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Extending Your Admin

ExpandableModelAdmin allows for forms in the admin to have fields dynamically defined and added to them.
If a ModelAdmin that inherits from this class is registered in the admin, then creating a form definition with the key <app_label>_<object_name> and adding fields will add fields you your admin.

Adding a form definition using the admin with the key “myapp_mymodel” would add dynamically fields to the MyModel admin below:

from django.contrib import admin
from fieldmaker.admin import ExpandableModelAdmin

from myapp.models import MyModel

class MyModelAdmin(ExpandableModelAdmin):
    pass

admin.site.register(MyModel, MyModelAdmin)









          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Meta Form Fields


FormField

FormField is a django field that allows you to embed a form as a field. To work properly, the form must inherit from MetaForm (or use the MetaFormMixin).

Example usage:

from django import forms
from spec_widget import FormField, MetaForm

class PersonForm(forms.Form):
    first_name = forms.CharField()
    last_name = forms.CharField()

class PeopleForm(MetaForm):
    person_one = FormField(form=PersonForm)
    person_two = FormField(form=PersonForm)

form = PeopleForm(data=data)
if form.is_valid():
    print form.cleaned_data








ListFormField

ListFormField works like FormField but instead allows for an array of objects. This works by producing a formset and using that as the form.

Example usage:

from django import forms
from spec_widget import ListFormField, MetaForm

class PersonForm(forms.Form):
    first_name = forms.CharField()
    last_name = forms.CharField()

class GroupForm(MetaForm):
    name = forms.CharField()
    people = ListFormField(form=PersonForm)

form = PeopleForm(data=data)
if form.is_valid():
    print form.cleaned_data











          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Using FacetField

FacetField is used to associate generic data to an instance. A model may have more then one FacetField provided they each are passed a different facet key. If you use an ExpandableModelAdmin or an ExpandableModelForm then one can add a FacetField to allow for easy access of that data.

Example usage:

from django.db import models
from django.core.files import File
from fieldmaker.modelfields import FacetField

class MyModel(models.Model):
    attributes = FacetField()


mymodel = MyModel.objects.get(pk=1)
mymodel.attributes['foo'] = 'bar'
mymodel.attributes['somefile'] = File(open('/path/to/file.txt', 'r'))
mymodel.attributes.save()









          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Extending Fieldmaker

To register a new field:

from fieldmaker.fields import BaseFieldForm, BaseField
from fieldmaker.resources import field_registry

class URLFieldForm(BaseFieldForm):
    max_length = forms.IntegerField(required=False)
    min_length = forms.IntegerField(required=False)
    verify_exits = forms.BooleanField(initial=False, required=False)
    validator_user_agent = forms.CharField(required=False)

class URLField(BaseField):
    form = URLFieldForm
    field = forms.URLField
    identities = ['URLField']

field_registry.register_field('URLField', URLField)





To register a new widget:

from fieldmaker.widgets import BaseWidgetForm, BaseWidget
from fieldmaker.resources import field_registry

class PasswordInputWidgetForm(BaseWidgetForm):
    render_value = forms.BooleanField(required=False, initial=True)

class PasswordInput(BaseWidget):
    widget = widgets.PasswordInput
    identities = ['CharField']

field_registry.register_widget('PasswordInput', PasswordInput)









          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            
  
Contrib

fieldmaker.contrib contains additional django apps that extend the functionality of django fieldmaker.


Recaptcha

fieldmaker.contrib.recaptcha adds a Recaptcha field (http://www.google.com/recaptcha). Add this to your INSTALLED_APPS and the RecaptchaField will be made available to the form definition. The field itself will validate the user input and will invalidate the form until the proper response is entered.







          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	Django Fieldmaker alpha documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2011.
      Created using Sphinx 1.2.2.
    

  _static/up.png





_static/down.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/comment-close.png





_static/up-pressed.png





_static/comment.png





_static/file.png





_static/minus.png





_static/plus.png





_static/comment-bright.png





search.html


    
      Navigation


      
        		
          index


        		Django Fieldmaker alpha documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2011.
      Created using Sphinx 1.2.2.
    

  

