

django-fab-deploy documentation

django-fab-deploy is a collection of fabric [http://fabfile.org/] scripts for deploying and
managing django projects on Debian/Ubuntu servers.

Design goals

	Provide (heroku, ep.io, gondor.io, ...)-like experience using
your own VPS/server;

	servers should be configured in most standard and obvious
way: invent as little as possible;

	developer should be able to customize deployment;

	it should be possible to integrate django-fab-deploy into existing projects;

	try to be a library, not a framework; parts of django-fab-deploy
should be usable separately.

Tech overview

	django projects are isolated with virtualenv [http://virtualenv.openplans.org/] and
(optionally) linux and db users;

	python requirements are managed using pip [http://pip.openplans.org/];

	server interactions are automated and repeatable
(the tool is fabric [http://fabfile.org/]);

	several projects can be deployed on the same VPS;

	one project can be deployed on several servers.

Server software:

	First-class support: Debian Squeeze, Ubuntu 10.04 LTS;

	also supported: Debian Lenny, Ubuntu 10.10;

	the project is deployed with Apache [http://httpd.apache.org/] + mod_wsgi [http://code.google.com/p/modwsgi/] for backend and
nginx [http://nginx.org/] in front as a reverse proxy;

	DB: MySQL and PostgreSQL (+PostGIS) support is provided out of box;

	VCS: hg and git support is provided out of box + it is possible not
to store project into VCS.

	User Guide
	Prerequisites

	Prepare the project

	Prepare the server

	Working with the server

	Customization
	Custom deployment scripts

	Custom project layouts

	fabfile.py API
	Overview

	Configuring

	Writing custom commands

	Reference
	Django

	Deployment

	Virtualenv/pip

	MySQL

	Working with crontab

	Web servers

	Test suite
	Preparations

	Running tests

	Coverage reports

	Related work

Make sure you’ve read the following document if you are upgrading from
previous versions of django-fab-deploy:

	CHANGES

Bug tracker

If you have any suggestions, bug reports or
annoyances please report them to the issue tracker
at https://bitbucket.org/kmike/django-fab-deploy/issues/new

Contributing

Development of django-fab-deploy happens at Bitbucket:
https://bitbucket.org/kmike/django-fab-deploy/

You are highly encouraged to participate in the development of
django-fab-deploy. If you don’t like Bitbucket or Mercurial (for some reason)
you’re welcome to send regular patches.

	Authors

License

Licensed under a MIT license.

Indices and tables

	Index

	Module Index

	Search Page

User Guide

The basic workflow for setting up a new web site is
described in this guide. If this workflow doesn’t fit for some reason then
django-fab-deploy can still be used as a collection of scripts, a lot of
them can be used independently.

Prerequisites

	Clean Debian Lenny, Debian Squeeze, Ubuntu 10.04 or 10.10 server/VPS with
root or sudo-enabled user ssh access;

	working ssh key authentication;

Warning

OpenVZ has serious issues with memory management
(VIRT is counted and limited instead of RSS) so a lot of software
(including apache2, Java and mysql’s InnoDB engine) is nearly unusable on
OpenVZ while being memory-wise and performant on XEN/KVM. So please try to
avoid OpenVZ or Virtuozzo VPS’s, use XEN or KVM or real servers.

Prepare the project

	Install django-fab-deploy its requirements:

pip install django-fab-deploy
pip install jinja2
pip install "fabric >= 1.4"
pip install fabric-taskset

	Create fabfile.py at project root. It should provide one or more
function putting server details into Fabric environment. Otherwise it’s just
a standart Fabric’s fabfile (e.g. project-specific scripts can also be put
here). Example:

my_project/fabfile.py
from fabric.api import env, task

from fab_deploy.project import WebProject
from fab_deploy.utils import update_env
from fab_deploy.django import Django
from fab_deploy.webserver.apache import Apache
from fab_deploy.webserver.nginx import Nginx

apps = dict(django=Django(Nginx(), Apache()))
WebProject(apps=apps).expose_to_current_module()

@task
def my_site():
 env.hosts = ['my_site@example.com']
 env.conf = dict(
 DB_USER = 'my_site',
 DB_PASSWORD = 'password',
 DB_BACKEND = 'mysql',

 # uncomment this line if the project is not stored in VCS
 # default value is 'hg', 'git' is also supported
 # VCS = 'none',
)
 update_env()

my_site()

apps dictionary is provided with default values for WebProject. Yes,
that is a fallback to previous versions of django-fab-deploy. And
there is a simpler syntax for the code above:

from fab_deploy.project import WebProject
from fab_deploy.utils import define_host

WebProject().expose_to_current_module()

@define_host('my_site@example.com')
def my_site():
 return dict(
 DB_USER = 'my_site',
 DB_PASSWORD = 'password',
 DB_BACKEND = 'mysql',
)

my_site()

In order to make things simple set the username in env.hosts string
to your project name. It should be a valid python identifier.
Don’t worry if there is no such user on server, django-fab-deploy can
create linux user and setup ssh access for you, and it is
preferrable to have linux user per project if possible.

Note

There are some defaults, e.g. DB_NAME
equals to INSTANCE_NAME,
and INSTANCE_NAME equals
to username obtained from env.hosts.

Read fabfile.py API for more details.

	Copy config_templates folder from django-fab-deploy to your project
root, manually or by running the following command from the project root:

django-fab-deploy config_templates

Read the configs and adjust them if it is needed. Basic configs
are usually a good starting point and should work as-is.

Note

{{ variables }} can be used in config templates (engine is jinja2).
They will be replaced with values from env.conf on server.

If you change web server config file or env.conf variables
after initial deployment, apply the changes in web server configs
by running

fab update_web_servers

It will update all remote configs of all apps of your default project.

	Create config.server.py near your project’s settings.py.
This file will become config.py on server. Example:

my_project/config.server.py
config file for environment-specific settings

DEBUG = False
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': '{{ DB_NAME }}',
 'USER': '{{ DB_USER }}',
 'PASSWORD': '{{ DB_PASSWORD }}',
 }
}

Then create config.py for local development.
Import config in project’s settings.py:

Django settings for my_project project.
...
from config import *
...

config.py trick is also known as local_settings.py
(make sure config.py is ignored in your VCS if one is used).

Note

{{ variables }} can be used in config.server.py. They will be
replaced with values from env.conf on server.

If you change config.server.py or env.conf variables
after initial deployment, apply the changes to config.server.py
by running

fab apps.django.update_config

for default apps configuration. Or more generic

fab apps.{{ django_app_name }}.update_config

	Create reqs folder at project root. This folder should contain
text files with pip requirements [http://pip.openplans.org/requirement-format.html].

You can get basic/example reqs folder by running

django-fab-deploy example_reqs

One file is special: reqs/all.txt. This is the main requirements
file. List all project requirements here one-by-one or (preferrable) by
including other requirement files using “-r” syntax.

There is also

django-fab-deploy generate_reqs

command. It creates reqs folder with all.txt file containing
a list of currently installed packages (obtained from pip freeze).

The project should look like that after finishing steps 1-5:

my_project
 ...
 config_templates <- this folder should be copied from django-fab-deploy
 apache.config
 django_wsgi.py
 hgrc
 nginx.config

 reqs <- a folder with project's pip requirement files
 all.txt <- main requirements file, list all requirements in this file
 active.txt <- put recently modified requirements here
 ... <- you can provide extra files and include them with '-r' syntax in e.g. all.txt

 config.py <- this file should be included in settings.py and ignored in .hgignore
 config.server.py <- this is a production django config template (should be ignored too!)
 fabfile.py <- your project's Fabric deployment script
 settings.py
 manage.py

Note

django-fab-deploy does not enforce this layout; if it doesn’t fit for some
reason (e.g. you prefer single pip requirements file or django
project in subfolder or you use django >= 1.4), take a
look at Custom project layouts.

The project is now ready to be deployed.

Prepare the server

Note

It is assumed that you would manage imports in fabfile.py appropriately. E.g.
for command “fab system.{{commmand}}” to work “from fab_deploy import system”
would be added, for command “fab db.{{command}}” - “from fab_deploy import db”,
and so on.

	If the server doesn’t have sudo installed (e.g. clean Lenny or Squeezy)
then install sudo on server:

fab system.install_sudo

Note

Fabric commands should be executed in shell from the project root
on local machine (not from the python console, not on server shell).

	If there is no linux account for user specified in env.hosts
then add a new linux server user, manually or using

fab system.create_linux_account:"/home/kmike/.ssh/id_rsa.pub"

You’ll need the ssh public key.
create_linux_account
creates a new linux user and uploads provided ssh key. Test that ssh
login is working:

ssh my_site@example.com

SSH keys for other developers can be added at any time:

fab system.ssh_add_key:"/home/kmike/coworker-keys/ivan.id_dsa.pub"

	Setup the database. django-fab-deploy can install mysql and create empty
DB for the project (using defaults in your default host function):

fab db.mysql.install
fab db.mysql.create_db

mysql.install does
nothing if mysql is already installed on server. Otherwise it installs
mysql-server package and set root password to
env.conf.DB_ROOT_PASSWORD. If this option is empty, mysql_install
will ask for a password.

mysql.create_db creates a new
empty database named env.conf.DB_NAME (it equals to
env.conf.INSTANCE_NAME by default, which equals to
the user from env.hosts by default).
mysql.create_db will
ask for a mysql root password if DB_USER
is not ‘root’.

Note

If the DB engine is not mysql then use appropriate commands.

	If you feel brave you can now run fab full_deploy from the project root
and get a working django site.

Warning

django-fab-deploy disables ‘default’ apache and nginx sites and
takes over ‘ports.conf’ so apache is no longer listening to 80 port.

If there are other sites on server (not managed by django-fab-deploy)
they may become unaccessible due to these changes.

fab full_deploy command:

	installs necessary system and python packages;

	configures web-servers for all applications of your project;

	creates virtualenv;

	uploads project to the server;

	runs python manage.py syncdb and python manage.py migrate commands
on server.

Project sources will be available under ~/src/<INSTANCE_NAME>, virtualenv
will be placed in ~/envs/<INSTANCE_NAME>.

Working with the server

django-fab-deploy provides additional commands that should be useful for
updating the server:

	Source changes are deployed with fab_deploy.deploy.push() command:

fab push

Another example (deploy changes on ‘prod’ server, update pip
requirements and perform migrations in one step:

fab prod push:pip_update,migrate

	Update web servers configuration:

fab update_web_servers

	Update some app configuration (config.server.py for django
or production.ini for pyramid):

fab apps.{{ app_name }}.update_config

where app_name actually is a key in apps dictionary.

	Requirements are updated with fab_deploy.virtualenv.pip_update()
command. Update requirements listed in reqs/active.txt:

fab update_r

Update requirements listed in reqs/my_apps.txt:

fab update_r:my_apps

	Remotely change branch or revision (assuming env.conf.VCS
is not ‘none’):

fab up:my_branch

Full list of commands can be found here.

Customization guide is also worth reading.

Customization

Custom deployment scripts

django-fab-deploy is intended to be a library, not a framework.
So the preferred way for customizing standard command is to just
wrap it or to create a new command by combining existing commands:

fabfile.py
from fab_deploy import *
from fab_deploy.utils import run_as_sudo
import fab_deploy.deploy

@run_as_sudo
def install_java():
 run('aptitude update')
 run('aptitude install -y default-jre')

def full_deploy():
 install_java()
 fab_deploy.deploy.full_deploy()

fab_deploy.deploy.push() accepts callable ‘before_restart’
keyword argument. This callable will be executed after code uploading
but before the web server reloads the code.

An example of ‘fab push’ customization

fabfile.py
from fab_deploy import *
import fab_deploy.deploy

@inside_src
def rebuild_docs():
 with cd('docs'):
 run ('rm -rf ./_build')
 run('make html > /dev/null')

def push(*args):

 # run local tests before pushing
 local('./runtests.sh')

 # rebuild static files before restarting the web server
 def before_restart():
 manage('collectstatic --noinput')
 manage('assets rebuild')

 # execute default push command
 fab_deploy.deploy.push(*args, before_restart=before_restart)

 # rebuild developer documentation after pushing
 rebuild_docs()

Custom project layouts

User Guide describes standard project layout:

my_project
 ...
 config_templates <- this folder should be copied from django-fab-deploy
 ...

 reqs <- a folder with project's pip requirement files
 all.txt <- main requirements file, list all requirements in this file
 active.txt <- put recently modified requirements here
 ... <- you can provide extra files and include them with '-r' syntax in e.g. all.txt

 config.py <- this file should be included in settings.py and ignored in .hgignore
 config.server.py <- this is a production django config template
 fabfile.py <- your project's Fabric deployment script
 settings.py
 manage.py

django-fab-deploy does not enforce this layout. Requirements handling,
config templates placement, local settings file names and project source
folder can be customized using these options:

	env.conf.PROJECT_PATH

	env.conf.LOCAL_CONFIG

	env.conf.REMOTE_CONFIG_TEMPLATE

	env.conf.CONFIG_TEMPLATES_PATHS

	env.conf.PIP_REQUIREMENTS_PATH

	env.conf.PIP_REQUIREMENTS

	env.conf.PIP_REQUIREMENTS_ACTIVE

Example

Let’s configure django-fab-deploy to use the following layout:

my_project
 hosting <- a folder with server configs
 staging <- custom configs for 'staging' server
 apache.config <- custom apache config for staging server

 production <- custom configs for 'production' server
 apache.config
 nginx.config

 apache.config <- default configs
 django_wsgi.py
 nginx.config

 src <- django project source files
 apps
 ...

 local_settings.py <- local settings
 stage_settings.py <- local settings for staging server
 prod_settings.py <- local settings for production server

 settings.py
 manage.py

 requirements.txt <- single file with all pip requirements
 fabfile.py <- project's Fabric deployment script

It uses subfolder for storing django project sources, single pip requirements
file and different config templates for different servers in
non-default locations.

fabfile.py:

from fab_deploy.utils import define_host

Common layout options.
They are separated in this example in order to stay DRY.
COMMON_OPTIONS = dict(
 PROJECT_PATH = 'src',
 LOCAL_CONFIG = 'local_settings.py',
 PIP_REQUIREMENTS = 'requirements.txt',
 PIP_REQUIREMENTS_ACTIVE = 'requirements.txt',
 PIP_REQUIREMENTS_PATH = '',
)

@define_host('user@staging.example.com', COMMON_OPTIONS)
def staging():
 return dict(
 REMOTE_CONFIG_TEMPLATE = 'stage_settings.py',
 CONFIG_TEMPLATES_PATHS = ['hosting/staging', 'hosting'],
)

@define_host('user@example.com', COMMON_OPTIONS)
def production():
 return dict(
 REMOTE_CONFIG_TEMPLATE = 'prod_settings.py',
 CONFIG_TEMPLATES_PATHS = ['hosting/production', 'hosting'],
)

Example 2: django 1.4 layout

Django 1.4 presents a new project layout. It can be used e.g. this way:

my_project
 my_project
 config_templates
 ...
 reqs
 ...
 ...
 config.py
 config.server.py
 settings.py

 fabfile.py
 manage.py
 ...

fabfile.py:

from fab_deploy.utils import define_host

@define_host('user@example.com')
def staging():
 return dict(
 CONFIG_TEMPLATES_PATHS=['my_project/config_templates'],
 LOCAL_CONFIG = 'my_project/config.py',
 REMOTE_CONFIG_TEMPLATE = 'my_project/config.server.py',
 PIP_REQUIREMENTS_PATH = 'my_project/reqs/',
)

fabfile.py API

Overview

	Write a function populating env.hosts and env.conf for
each server configuration.

	Call update_env() at the end of
each function.

	It is possible to reduce boilerplate by using
define_host decorator:

from fab_deploy import *

@define_host('my_site@example.com')
def my_site():
 return {
 # ...
 }

	In order to specify configuration the fab commands should use, run the
configuring function as a first fab command:

fab my_site mysql_install

	In order to make configuration default call the configuring function at
the end of fabfile.py:

from fab_deploy import *

def my_site():
 env.hosts = ['my_site@example.com']
 env.conf = {
 # ...
 }
 # ...
 update_env()

my_site()

This way it’ll be possible to run fab commands omitting the config name:

fab mysql_install

Configuring

	
fab_deploy.utils.update_env()

	Updates env.conf configuration with some defaults and converts
it to state._AttributeDict (that’s a dictionary subclass enabling attribute
lookup/assignment of keys/values).

Call update_env() at the end of each server-configuring function.

from fabric.api import env, task
from fab_deploy.utils import update_env

@task
def my_site():
 env.hosts = ['my_site@example.com']
 env.conf = dict(
 DB_USER = 'my_site',
 DB_PASSWORD = 'password',
)
 update_env()

	
env.hosts

	A list with host string. Example:

env.hosts = ['user@example.com']

See fabric docs [http://docs.fabfile.org/1.0a/usage/execution.html#hosts]
for explanation.

User obtained from this string will be used for ssh logins and
as a default value for env.conf.INSTANCE_NAME.

Note

multiple hosts are supported via multiple config functions, not
via this option.

Warning

Due to bug in Fabric please don’t use env.user and env.port.
Put the username and non-standard ssh port directly into host string.

	
env.conf

	django-fab-deploy server configuration.

All env.conf keys are available in config templates as
jinja2 template variables.

	
env.conf.INSTANCE_NAME

	Project instance name. It equals to username obtained from env.hosts
by default. INSTANCE_NAME should be unique for server. If there are
several sites running as one linux user, set different
INSTANCE_NAMEs for them.

	
env.conf.SERVER_NAME

	Site url for webserver configs. It equals to the first host from
env.hosts by default.

	
env.conf.DB_NAME

	Database name. It equals to env.conf.INSTANCE_NAME by default.

	
env.conf.DB_USER

	Database user. It equals to ‘root’ by default.

	
env.conf.DB_PASSWORD

	Database password.

	
env.conf.DB_ROOT_PASSWORD

	Database password for a ‘root’ user. django-fab-deploy will ask for
mysql root password when necessary if this option is not set.

	
env.conf.SUDO_USER

	User with sudo privileges. It is ‘root’ by default.
Use create_sudo_linux_account
in order to create non-root sudoer.

	
env.conf.PROCESSES

	The number of mod_wsgi daemon processes. It is a good idea to set it
to number of processor cores + 1 for maximum performance or to 1 for
minimal memory consumption. Default is 1.

	
env.conf.THREADS

	The number of mod_wsgi threads per daemon process. Default is 15.

Note

Set env.conf.THREADS to 1 and env.conf.PROCESSES to
a bigger number if your software is not thread-safe (it will
consume more memory though).

	
env.conf.OS

	A string with server operating system name. Set it to the correct value if
autodetection fails for some reason. Supported operating systems:

	lenny

	squeeze

	maverick

	
env.conf.VCS

	The name of VCS the project is stored in. Supported values:

	hg

	git

	none

Default is ‘hg’.

VCS is used for making project clones and for pushing code updates.
‘none’ VCS is able to upload tar.gz file with project sources
on server via ssh and then extract it. Please prefer ‘hg’ or ‘git’
over ‘none’ if possible.

One can write custom VCS module and set env.conf.VCS to
its import path:

env.conf = dict(
 # ...
 VCS = 'my_utils.my_vcs',
)

VCS module should provide ‘init’, ‘up’, ‘push’ and ‘configure’ functions.
Look at fab_deploy.vcs.hg or fab_deploy.vcs.none for examples.

	
env.conf.HG_BRANCH

	Named hg branch that should be active on server. Default is “default”.
This option can be used to have 1 repo with several named branches and
run different servers from different branches.

	
env.conf.GIT_BRANCH

	Git branch that should be active on server. Default is “master”.
This option can be used to run different servers from different git
branches.

	
env.conf.PROJECT_PATH

	Path to django project (relative to repo root). Default is ‘’.
This should be set to a folder where project’s manage.py reside.

	
env.conf.LOCAL_CONFIG

	Local django config file name. Default is ‘config.py’. Common values
include ‘local_settings.py’ and ‘settings_local.py’. This file should
be placed inside env.conf.PROJECT_PATH, imported from settings.py
and excluded from version control.

Note

Default value is not set to one of widely-used file names by default
(e.g. ‘local_settings.py’) in order to prevent potential data loss
during converting existing project to django-fab-deploy:
this file is overwritten on server during deployment process; it is
usually excluded from VCS and contains important information.

	
env.conf.REMOTE_CONFIG_TEMPLATE

	The name of file with remote config template. Default is
‘config.server.py’. This file should be placed inside
env.conf.PROJECT_PATH. It will become
env.conf.LOCAL_CONFIG on server.

	
env.conf.CONFIG_TEMPLATES_PATHS

	An iterable with paths to web server and other config templates.
Default is ['config_templates'].

	
env.conf.PIP_REQUIREMENTS_PATH

	Default is ‘reqs’. This path is relative to repo root.

	
env.conf.PIP_REQUIREMENTS

	The name of main requirements file. Requirements from it are installed
during deployment. Default is ‘all.txt’.

	
env.conf.PIP_REQUIREMENTS_ACTIVE

	The name of pip requirements file with commonly updated requirements.
Requirements from this file are updated by
fab_deploy.virtualenv.pip_install() and
fab_deploy.virtualenv.pip_update() commands when they are executed
without arguments.

fab push:pip_update command also updates only requirements listed here.

Default is ‘all.txt’.

You can put any other variables into the env.conf.
They will be accessible in config templates as template context variables.

Writing custom commands

While django-fab-deploy commands are just Fabric [http://fabfile.org/]
commands, there are some helpers to make writing them easier.

	
fab_deploy.utils.inside_project(func)

	Decorator. Use it to perform actions inside remote project dir
(that’s a folder where manage.py resides) with
virtualenv activated:

from fabric.api import run, task
from fab_deploy.utils import inside_project

@task
@inside_project
def cleanup():
 # the current dir is a project source dir and
 # virtualenv is activated
 run('python manage.py cleanup')

	
fab_deploy.utils.inside_src(func)

	Decorator. Use it to perform actions inside remote source dir
(repository root) with virtualenv activated.

	
fab_deploy.utils.run_as_sudo(func)

	Decorator. By default all commands are executed as user without
sudo access for security reasons. Use this decorator to run fabric
command as user with sudo access (env.conf.SUDO_USER):

from fabric.api import run, task
from fab_deploy import utils

@task
@utils.run_as_sudo
def aptitude_update():
 run('aptitude update')

	
fab_deploy.utils.define_host(host_string, defaults=None)

	This decorator populates env.hosts, env.conf and
calls update_env():

from fab_deploy.utils import define_host

@define_host('my_site@example.com')
def my_site():
 return {
 'DB_USER': 'my_site',
 'DB_PASSWORD': 'password',
 }

Decorated function should return a dict with desired env.conf
values.

There is no need to wrap function in @fabric.api.task decorator because
define_host will do it for you.

define_host also accepts a dict
with default values:

from fab_deploy.utils import define_host

DEFAULTS = dict(
 PROCESSES = 3,
 VCS = 'git',
)

@define_host('my_site@example.com', DEFAULTS)
def my_site():
 return {
 'DB_USER': 'my_site',
 'DB_PASSWORD': 'password',
 'PROCESSES': 2,
 }

env.conf will contain PROCESSES=2 and VCS='git'.

Reference

Note

This is auto-generated API reference. Don’t expect much from it.

[source] links are most useful.

Warning

django-fab-deploy is still at early stages of development and API may
change in future.

Django

Deployment

	
fab_deploy.system.create_linux_account

	Creates linux account, setups ssh access and pip.conf file.

Example:

fab create_linux_account:"/home/kmike/.ssh/id_rsa.pub"

	
fab_deploy.system.create_sudo_linux_account

	Creates linux account, setups ssh access and
adds the created user to sudoers. This command requires root ssh access.

	
fab_deploy.system.ssh_add_key

	Adds a ssh key from passed file to user’s authorized_keys on server.

	
fab_deploy.system.ssh_add_root_key

	Adds a ssh key from passed file to root’s authorized_keys on server.

	
fab_deploy.system.install_sudo

	Installs sudo on server.

Virtualenv/pip

MySQL

Working with crontab

	
fab_deploy.crontab.set_content

	Sets crontab content

	
fab_deploy.crontab.add_line

	Adds line to crontab. Line can be appended with special marker
comment so it’ll be possible to reliably remove or update it later.

	
fab_deploy.crontab.puts_content

	Shows current crontab

	
fab_deploy.crontab.remove_line

	Removes a line added and marked using add_line.

	
fab_deploy.crontab.update_line

	Adds or updates a line in crontab.

	
fab_deploy.crontab.add_management

	Adds django management command to crontab.

	when - crontab’s ‘when’ part (m h dom mon dow)

	command - django management command (with all options)

	marker - unique marker for future command updating or removing

Example:

$ fab crontab_add_management:"0 0 * * *","cleanup"

Web servers

Test suite

django-fab-deploy test suite executes fab commands against VirtualBox
virtual machines. Full test suite can take a very long time to run
(e.g. about 25 minutes for 4mbps broadband, the exact time depends heavily
on internet connection speed): all operations are really performed.

VM is rolled back to a clean state or an appropriate snapshot before each test.

This approach is quite extreme but I believe it’s the only way to make sure
deployment system works: actually execute the deployment scripts against
concrete servers.

Preparations

django-fab-deploy requires latest fabtest [https://bitbucket.org/kmike/fabtest] and mock [http://pypi.python.org/pypi/mock] packages
for running tests and (optionally) coverage.py [http://pypi.python.org/pypi/coverage] for test coverage reports:

pip install -U fabtest
pip install 'mock==0.8'
pip install coverage

Please follow instructions [http://pypi.python.org/pypi/fabtest] for
fabtest package in order to prepare OS image. django-fab-deploy tests
have 1 additional requirement: root user should have
‘123’ password (fabtest example VM images are configured this way).

Running tests

Pass VM name (e.g. Squeeze) to runtests.py script:

cd fab_deploy_tests
./runtests.py <VM name or uid> <what to run>

<what to run> can be misc, deploy, all, prepare or any
value acceptable by unittest.main() (e.g. a list of test cases).

Some tests require additional prepared snapshots in order to greatly speedup
test execution. But there is a chicken or the egg dilemma: these
snapshots can be only taken if software works fine for the VM (at least
tests are passed). So there is a very slow prepare test suite that ensures
preparing will work.

	make sure slow tests are passing:

./runtests.py "VM_NAME" prepare

	prepare snapshots:

./preparevm.py "VM_NAME"

	tests can be run now:

./runtests.py "VM_NAME" all

Note

Tests asking for user input (usually for password) should be considered
failed. They mean django-fab-deploy was unable to properly setup
server given the root ssh access.

Note

Mercurial can’t preserve 0600 file permissions and ssh is complaining
if private key is 0644. So in order to run tests change
permissions for the fab_deploy_testskeysid_rsa to 0600:

chmod 0600 fab_deploy_tests/keys/id_rsa

Coverage reports

In order to get coverage reports run:

cd fab_deploy_tests
./runcoverage.sh <VM name or uid> <what to run>

html reports will be placed in htmlcov folder.

Related work

There are great projects aiming the same goal. Many of them are listed
here: http://djangopackages.com/grids/g/deployment/

CHANGES

dev (TBA)

Major changes:

	All tasks are now new-style fabric tasks;

	postgres (+ postgis) support;

	db backends and vcs backends are now fully reusable and extendable
via subclassing (they use https://github.com/kmike/fabric-taskset);

	modules are moved (apache and nginx become webserver.apache and
webserver.nginx, mysql become db.mysql);

	task prefixes are removed in favor of namespaces (so e.g. apache_restart
becomes apache.restart);

	new port management facilities based on port-for [http://pypi.python.org/pypi/port-for/].

Other changes:

	DB_USER default value is removed as per deprecation plan
(it will be changed to non-root default in the next release);

	migrate command no longer converts backup errors to warnings;

	example hgrc config is removed from config_templates;

	crontab.add_management task;

	better staticfiles example in default nginx config template;

	ssh_add_root_key command;

	install_sudo no longer fails if aptitude update was not called;

	support for MS Windows on development machine is improved;

	execute_sql selects current database by default for non-superuser queries.

	memcached is no longer installed by default; add
fab_deploy.system.aptitude_install('memcached') to your deploy script
if you need memcached.

This release has command-line interface that is different from 0.7.x branch
because of moved modules and switch to new-style fabric tasks. It is also
incompatible in python level because of the same reasons.
So custom tasks should be updated: wrap them with fabric.api.task
decorator + update import paths and task names for tasks from django-fab-deploy.

Server itself should also be upgraded. Django-fab-deploy 0.8 introduced
much more powerful port management based on port-for [http://pypi.python.org/pypi/port-for/].

In order to upgrade from 0.7.x to 0.8.x new port management:

	Run ‘fab_deploy.system.install_software’ task for each of your hosts: add

from fab_deploy import system

line to your fabfile.py (or fabfile/__init__.py) and execute

$ fab <host_function_name> system.install_software

for each host.

	Replace {{ APACHE_PORT }} with {{ PORTS['apache'] }} in
apache and nginx configs (apache.conf and nginx.conf);

	Add Listen 127.0.0.1:{{ PORTS['apache'] }} directive to the
top of your apache.conf.

	Run apache.install, apache.update_config and nginx.update_config
tasks for each of your hosts.

0.7.5 (2012-03-02)

	root_password argument for mysql_create_db (thanks Michael Brown).

0.7.4 (2012-03-01)

	django-fab-deploy now is compatible with fabric 1.4 (and require fabric 1.4);

	nginx and wsgi scripts are now compatible with upcoming django 1.4;
example of django 1.4 project configuration is added to guide;

	shortcut for passing env defaults in define_host decorator;

	Ubuntu 10.04 apache restarting fix;

	config_templates/hgrc is removed;

	tests are updated for fabtest >= 0.1;

	apache_is_running function.

In order to upgrade install fabric >= 1.4 and make sure your custom scripts
work.

0.7.3 (2011-10-13)

	permanent redirect from www.domain.com to domain.com is added to the default nginx config.
Previously they were both available and this leads to e.g. authorization issues (user logged
in at www.domain.com was not logged in at domain.com with default django settings regarding cookie domain).

0.7.2 (2011-06-14)

	Ubuntu 10.04 (lucid) initial support (this needs more testing);

	backports for Ubuntu 10.04 and 10.10;

	docs are now using default theme;

	remote django management command errors are no longer silinced;

	invoking create_linux_account with non-default username is fixed;

	define_host decorator for easier host definition;

	default DB_USER value (‘root’) is deprecated;

	default nginx config uses INSTANCE_NAME for logs.

In order to upgrade please set DB_USER to ‘root’ explicitly in
env.conf if it was omitted.

0.7.1 (2011-04-21)

	DB_ROOT_PASSWORD handling is fixed

0.7 (2011-04-21)

	requirement for root ssh access is removed: django-fab-deploy is now using
sudo internally (thanks Vladimir Mihailenco);

	better support for non-root mysql users, mysql_create_user and
mysql_grant_permissions commands were added (thanks Vladimir
Mihailenco);

	hgrc is no more required;

	‘synccompress’ management command is no longer called during fab up;

	coverage command is disabled;

	nginx_setup and nginx_install are now available in
command line by default;

	mysqldump no longer requires project dir to be created;

	home dir for root user is corrected;

	utils.detect_os is now failing loudly if detection fails;

	numerous test running improvements.

In order to upgrade from previous verions of django-fab-deploy,
install sudo on server if it was not installed:

fab install_sudo

0.6.1 (2011-03-16)

	verify_exists argument of utils.upload_config_template
function was renamed to skip_unexistent;

	utils.upload_config_template now passes all extra
kwargs directly to fabric’s upload_template (thanks Vladimir Mihailenco);

	virtualenv.pip_setup_conf command for uploading pip.conf
(thanks Vladimir Mihailenco);

	deploy.push no longer calls ‘synccompress’ management command;

	deploy.push accepts ‘before_restart’ keyword argument -
that’s a callable that will be executed just before code reload;

	fixed regression in deploy.push command: ‘notest’ argument
was incorrectly renamed to ‘test’;

	customization docs are added.

0.6 (2011-03-11)

	custom project layouts support (thanks Vladimir Mihailenco):
standard project layout is no longer required; if the project has
pip requirements file(s) and a folder with web server config templates
it should be possible to use django-fab-deploy for deployment;

	git uploads support (thanks Vladimir Mihailenco);

	lxml installation is fixed;

	sqlite deployments are supported (for testing purposes).

If you are planning to migrate to non-default project layout, update the
config templates:

	in apache.config and nginx.config:
replace {{ SRC_DIR }} with {{ PROJECT_DIR }}

	in django_wsgi.py: replace {{ SRC_DIR }} with
{{ PROJECT_DIR }} and make sure DJANGO_SETTINGS_MODULE doesn’t
contain INSTANCE_NAME:

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

0.5.1 (2011-02-25)

	Python 2.5 support for local machine (it was always supported on servers).
Thanks Den Ivanov.

0.5 (2011-02-23)

	OS is now auto-detected;

	Ubuntu 10.10 maverick initial support (needs better testing?);

	fabtest [https://bitbucket.org/kmike/fabtest] package is extracted
from the test suite;

	improved tests;

	fab_deploy.system.ssh_add_key can now add ssh key even
if it is the first key for user;

	‘print’ calls are replaced with ‘puts’ calls in fabfile commands;

	django management commands are not executed if they are not available.

You’ll probably want to remove env.conf.OS option from your fabfile.

If you’re planning to deploy existing project to Ubuntu, add
NameVirtualHost 127.0.0.1:{{ APACHE_PORT }} line to the top of your
config_templates/apache.conf or delete the templates and run
django-fab-deploy config_templates again.

0.4.2 (2011-02-16)

	tests are included in source distribution

0.4.1 (2011-02-14)

	don’t trigger mysql 5.1 installation on Lenny

0.4 (2011-02-13)

	env.conf.VCS: mercurial is no longer required;

	undeploy command now removes virtualenv.

0.3 (2011-02-12)

	Debian Squeeze support;

	the usage of env.user is discouraged;

	fab_deploy.utils.print_env command;

	fab_deploy.deploy.undeploy command;

	better run_as implementation.

In order to upgrade from 0.2 please remove any usages of env.user from the
code, e.g. before upgrade:

def my_site():
 env.hosts = ['example.com']
 env.user = 'foo'
 #...

After upgrade:

def my_site():
 env.hosts = ['foo@example.com']
 #...

0.2 (2011-02-09)

	Apache ports are now managed automatically;

	default threads count is on par with mod_wsgi’s default value;

	env.conf is converted to _AttributeDict by fab_deploy.utils.update_env.

This release is backwards-incompatible with 0.1.x because of apache port
handling changes. In order to upgrade,

	remove the first line (‘Listen ...’) from project’s
config_templates/apache.config;

	remove APACHE_PORT settings from project’s fabfile.py;

	run fab setup_web_server from the command line.

0.1.2 (2011-02-07)

	manual config copying is no longer needed: there is django-fab-deploy
script for that

0.1.1 (2011-02-06)

	cleaner internals;

	less constrains on project structure, easier installation;

	default web server config improvements;

	linux user creation;

	non-interactive mysql installation (thanks Andrey Rahmatullin);

	new documentation.

0.0.11 (2010-01-27)

	fab_deploy.crontab module;

	cleaner virtualenv management;

	inside_project decorator.

this is the last release in 0.0.x branch.

0.0.8 (2010-12-27)

Bugs with multiple host support, backports URL and stray ‘pyc’ files are fixed.

0.0.6 (2010-08-29)

A few bugfixes and docs improvements.

0.0.2 (2010-08-04)

Initial release.

Authors

	Mikhail Korobov (primary author);

	Andrey Rahmatullin (mysql install script, postgresql backups);

	Den Ivanov (python 2.5 compatibility);

	Vladimir Mihailenco (git support, support for custom project layouts,
imports overhaul, etc.);

	Ruslan Popov;

	Michael Brown;

	Denis Untevskiy (windows support, bug fixes).

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fab_deploy	

 	
 	
 fab_deploy.crontab	

 	
 	
 fab_deploy.system	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_line (in module fab_deploy.crontab)

 	
 	add_management (in module fab_deploy.crontab)

C

 	
 	conf (env attribute)

 	CONFIG_TEMPLATES_PATHS (env.conf attribute)

 	
 	create_linux_account (in module fab_deploy.system)

 	create_sudo_linux_account (in module fab_deploy.system)

D

 	
 	DB_NAME (env.conf attribute)

 	DB_PASSWORD (env.conf attribute)

 	
 	DB_ROOT_PASSWORD (env.conf attribute)

 	DB_USER (env.conf attribute)

 	define_host() (in module fab_deploy.utils)

F

 	
 	fab_deploy.crontab (module)

 	
 	fab_deploy.system (module)

G

 	
 	GIT_BRANCH (env.conf attribute)

H

 	
 	HG_BRANCH (env.conf attribute)

 	
 	hosts (env attribute)

I

 	
 	inside_project() (in module fab_deploy.utils)

 	inside_src() (in module fab_deploy.utils)

 	
 	install_sudo (in module fab_deploy.system)

 	INSTANCE_NAME (env.conf attribute)

L

 	
 	LOCAL_CONFIG (env.conf attribute)

O

 	
 	OS (env.conf attribute)

P

 	
 	PIP_REQUIREMENTS (env.conf attribute)

 	PIP_REQUIREMENTS_ACTIVE (env.conf attribute)

 	PIP_REQUIREMENTS_PATH (env.conf attribute)

 	
 	PROCESSES (env.conf attribute)

 	PROJECT_PATH (env.conf attribute)

 	puts_content (in module fab_deploy.crontab)

R

 	
 	REMOTE_CONFIG_TEMPLATE (env.conf attribute)

 	
 	remove_line (in module fab_deploy.crontab)

 	run_as_sudo() (in module fab_deploy.utils)

S

 	
 	SERVER_NAME (env.conf attribute)

 	set_content (in module fab_deploy.crontab)

 	
 	ssh_add_key (in module fab_deploy.system)

 	ssh_add_root_key (in module fab_deploy.system)

 	SUDO_USER (env.conf attribute)

T

 	
 	THREADS (env.conf attribute)

U

 	
 	update_env() (in module fab_deploy.utils)

 	
 	update_line (in module fab_deploy.crontab)

V

 	
 	VCS (env.conf attribute)

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

nav.xhtml

 Table of Contents

 		django-fab-deploy documentation

 		User Guide

 		Prerequisites

 		Prepare the project

 		Prepare the server

 		Working with the server

 		Customization

 		Custom deployment scripts

 		An example of 'fab push' customization

 		Custom project layouts

 		Example

 		Example 2: django 1.4 layout

 		fabfile.py API

 		Overview

 		Configuring

 		Writing custom commands

 		Reference

 		Django

 		Deployment

 		Virtualenv/pip

 		MySQL

 		Working with crontab

 		Web servers

 		Test suite

 		Preparations

 		Running tests

 		Coverage reports

 		Related work

 		CHANGES

 		dev (TBA)

 		0.7.5 (2012-03-02)

 		0.7.4 (2012-03-01)

 		0.7.3 (2011-10-13)

 		0.7.2 (2011-06-14)

 		0.7.1 (2011-04-21)

 		0.7 (2011-04-21)

 		0.6.1 (2011-03-16)

 		0.6 (2011-03-11)

 		0.5.1 (2011-02-25)

 		0.5 (2011-02-23)

 		0.4.2 (2011-02-16)

 		0.4.1 (2011-02-14)

 		0.4 (2011-02-13)

 		0.3 (2011-02-12)

 		0.2 (2011-02-09)

 		0.1.2 (2011-02-07)

 		0.1.1 (2011-02-06)

 		0.0.11 (2010-01-27)

 		0.0.8 (2010-12-27)

 		0.0.6 (2010-08-29)

 		0.0.2 (2010-08-04)

 		Authors

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

