

Django Extras documentation contents

	API Reference
	django_extras.contrib.auth

	Forms
	Form field reference

	Form widget reference

	Middleware
	Timing Middleware

	Models
	Model field reference

	Response objects
	HttpResponse subclasses

	Validators
	Additional validators

	User authentication extensions
	Installation

	Convenience decorators
	The staff_required decorator

	The superuser_required decorator

	Ownership Mixin Models
	SingleOwnerMixin

	MultipleOwnerMixin

	OwnerMixinManager

	Shortcuts

Django Extras documentation

Project Status

This is a fairly new project, while this package is utilised in production on
several projects the status will remain as beta until unit-test coverage has
been expanded. Documentation is now fairly complete, in general areas of the
code base that have not been documented should be considered unstable.

Getting help

	Report bugs with Django Extras with the issue tracker [https://bitbucket.org/timsavage/django-extras/issues].

What’s in Django Extras

Django Extras is a project that provides extensions for Django [https://www.djangoproject.com/] to solve common
development situations not (or not yet) covered by the core Django framework.

Examples of this include:

	additional decorators

	model mixins to easily assign owners to a model

	additional model and form fields

	greatly expanded collection of default response classes

See API Reference full reference.

First steps

If you are new to Django it is recommended you visit the Django documentation [https://docs.djangoproject.com/]
as they have excellent documentation to get you up and running.

Other batteries included

	Authentication

Source code

Full source code [https://github.com/timsavage/django-extras] is available on Git Hub. Have migrated away from BitBucket for Travis CI support.

API Reference

	django_extras.contrib.auth

	Forms

	Middleware

	Models

	Response objects

	Validators

django_extras.contrib.auth

See User authentication extensions.

Forms

Form API reference.

	Form field reference

	Form widget reference

Form field reference

Field types

ColorField

	
class ColorField([allow_alpha=False, max_length=40, **options])

	A CharField that checks that the value is a valid CSS color value.
allow_alpha controls if colors can support alpha values.

Specifies that the default widget is the JQueryColorPicker.

JsonField

	
class JsonField([dump_options={'cls': DjangoJSONEncoder}, load_options={}, **options])

	A TextField that handles serialisation/deserialization of JSON
structures for display in a Text input.

Form widget reference

Widget types

HTML5 Input types

Html5EmailInput

	
class Html5EmailInput

	HTML 5 email input.

Html5NumberInput

	
class Html5NumberInput

	HTML 5 number input.

Html5DateInput

	
class Html5DateInput

	HTML 5 date input.

Html5DateTimeInput

	
class Html5DateTimeInput

	HTML 5 datetime input.

Html5TimeInput

	
class Html5TimeInput

	HTML 5 time input.

JQuery enhanced widgets

JQueryColorPicker

	
class JQueryColorPicker

	Widget that displays a color picker. This widget assumes jQuery has been
included on the page. JavaScript and CSS is included and is defined using
Django media definitions.

Middleware

Timing Middleware

	
class TimingMiddleware

	Adds a header to all responses with the total time spent generating a
response. This middleware component should be added as early as possible in
the list of middleware classes to get best results.

The name of the header returned to the browser is X-PROCESSING_TIME_MS,
time is in milliseconds.

Models

Model API reference.

	Model field reference

Model field reference

Note

All fields registered with south [http://south.aeracode.org/] (if used by your project).

Field types

ColorField

	
class ColorField([allow_alpha=False, max_length=40, **options])

	A CharField that checks that the value is a valid CSS color value.
allow_alpha controls if colors can support alpha values.

MoneyField

	
class MoneyField([max_digits=40, decimal_places=4, **options])

	A DecimalField that sets up sensible defaults for monetary values, in
addition the MoneyField will return values as instances of the
Money type. The Money type is based on Pythons decimal
object.

Note

The current implementation does not store the currency code with the money
value.

PercentField

	
class PercentField(**options)

	A FloatField that represents a percentage value. Validates provided value to
ensure it is within the range 0 to 100.

LatitudeField

	
class LatitudeField(**options)

	A FloatField that represents a latitude. Validates provided value to
ensure it is within the range -90.0 to 90.0

LongitudeField

	
class LongitudeField(**options)

	A FloatField that represents a longitude. Values are validated
to be within the range -180.0 to 180.0.

JsonField

	
class JsonField([dump_options={'cls': DjangoJSONEncoder}, load_options={}, **options])

	A TextField that handles serialisation/deserialization of JSON
structures into a database field.

Response objects

HttpResponse subclasses

Django extras includes a number of additional HttpResponse subclasses
that handle different types of HTTP responses. These subclasses are defined in
django_extras.http.

Common HTTP response types

Common response codes, most of these codes are defined in the
W3C Protocol specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html]. This collection also includes status codes that
are defined for Web DAV. This list does not include response types that are
already defined in Django.

Successful 2xx responses

	
class HttpResponseCreated

	Status code 201

	
class HttpResponseAccepted

	Status code 202

	
class HttpResponseNonAuthoritative

	Status code 203

	
class HttpResponseNoContent

	Status code 204

	
class HttpResponseResetContent

	Status code 205

	
class HttpResponsePartialContent

	Status code 206

Redirection 3xx responses

All responses within the 3xx class inherit from HttpResponseRedirect.

	
class HttpResponseSeeOther

	Status code 303

Client Error 4xx responses

	
class HttpResponseUnAuthorised

	Status code 401

	
class HttpResponsePaymentRequired

	Status code 402

	
class HttpResponseNotAcceptable

	Status code 406

	
class HttpResponseRequestTimeout

	Status code 408

	
class HttpResponseConflict

	Status code 409

	
class HttpResponseLengthRequired

	Status code 411

	
class HttpResponsePreconditionFailed

	Status code 412

	
class HttpResponseRequestEntityTooLarge

	Status code 413

	
class HttpResponseUnsupportedMediaType

	Status code 415

	
class HttpResponseExpectationFailed

	Status code 417

	
class HttpResponseUnprocessableEntity

	Status code 422

	
class HttpResponseLocked

	Status code 423

	
class HttpResponseFailedDependency

	Status code 424

	
class HttpResponseUpgradeRequired

	Status code 426

Server Error 5xx responses

	
class HttpResponseNotImplemented

	Status code 501

	
class HttpResponseBadGateway

	Status code 502

	
class HttpResponseServiceUnavailable

	Status code 503

	
class HttpResponseGatewayTimeout

	Status code 504

	
class HttpResponseInsufficientStorage

	status_code = 507

Enhanced response types

	
class FileResponse

	The constructor accepts the same content property as the default
:class:HttpResponse class except it is interpreted as a file name or
file handle and content_type. The response object facilitates streaming
the content of the file to the client. There is an optional parameter
include_last_modified which defaults to True that supplies the
last modified date of the specified file as an HTTP header.

	
class JsonResponse

	Acts just like :class:HttpResponse except will encode the first
parameter to JSON (using :class:DjangoJSONEncoder) and changes the
default content_type to application/json.

Validators

Additional validators

The django_extras.core.validators module contains a collection of
callable validators for use with model and form fields. They’re used internally
but are available for use with your own fields, too. They can be used in
addition to, or in lieu of custom field.clean() methods.

validate_color

	
validate_color

	A RegexValidator instance that ensures a value looks like a CSS
color value.

validate_alpha_color

	
validate_alpha_color

	A RegexValidator instance that ensures a value looks like a CSS
color value. Supports color definitions with alpha blending.

validate_json

	
validate_json

	A JsonValidator instance that ensures a value is valid JSON.

User authentication extensions

While Django comes with a built in user authentication system it leaves a
couple of common use-cases incomplete. Django Extras fills in the missing
pieces.

Installation

No installation is required, this extension does not require additional
database models.

Convenience decorators

The staff_required decorator

	
staff_required([include_superusers=True, login_url=None, raise_exception=False])

	This decorator provides a simple way of restricting access to a particular
view to users who have the is_staff flag set. Rather than using the
~django.contrib.auth.decorators.user_passes_test() decorator
restricting a view to staff can be written as:

from django_extras.contrib.auth.decorators import staff_required
@staff_required
def my_view(request):
 ...

By default this decorator also includes users with the is_superuser flag
set, these users can be excluded with the optional include_superuser
parameter. Example:

from django_extras.contrib.auth.decorators import staff_required
@staff_required(include_superusers=False)
def my_view(request):
 ...

As in the login_required(), login_url defaults to
settings.LOGIN_URL.

Mirroring the change in Django 1.4 this decorator also accepts the
raise_exception parameter. If given, the decorator will raise
PermissionDenied.

The superuser_required decorator

	
superuser_required([login_url=None, raise_exception=False])

	This decorator provides a simple way of restricting access to a particular
view to users who have the is_superuser flag set. Rather than using
the ~django.contrib.auth.decorators.user_passes_test() decorator
restricting a view to super users can be written as:

from django_extras.contrib.auth.decorators import superuser_required
@superuser_required
def my_view(request):
 ...

As in the login_required(), login_url defaults to
settings.LOGIN_URL.

Mirroring the change in Django 1.4 this decorator also accepts the
raise_exception parameter. If given, the decorator will raise
PermissionDenied.

Ownership Mixin Models

Two mixin classes are provided that provide a consistent API for assigning
ownership of a model instance to a user.

Example:

class MyModel(SingleOwnerMixin, models.Model):
 name = models.CharField(max_length=50)

Many methods include include_staff and include_superuser parameters, these
are used to treat staff and superuser users as if they are owners of the
instance.

Both SingleOwnerMixin and MultipleOwnerMixin provide the
following methods.

	
class OwnerMixinBase

	

	
OwnerMixinBase.owned_by(user[, include_staff=False, include_superuser=False])

	Returns a boolean value to indicate if the supplied user is a valid owner
of a model instance.

	
OwnerMixinBase.owner_list()

	Returns a list of User models that are owners of the model
instance. A list is returned by both single and multiple versions of the
mixin.

SingleOwnerMixin

	
class SingleOwnerMixin

	This class provides a simple way to assign ownership of a model instance to
a single user.

	
owner

	User object as provided by a ForeignKey model field.

Note

By default the related_name parameter is set to:
'%(app_label)s_%(class)s_owner'

MultipleOwnerMixin

	
class MultipleOwnerMixin

	This class provides a simple way to assign ownership of a model instance to
multiple users.

	
owners

	RelatedManager object as provided by a ManyToManyField model
field.

Note

By default the related_name parameter is set to:
'%(app_label)s_%(class)s_owners'

OwnerMixinManager

	
class OwnerMixinManager

	Manager class used by SingleOwnerMixin and
MultipleOwnerMixin to obtain the instances of a model that has
ownership assigned to a particular user.

Fetching owned instances

	
OwnerMixinManager.owned_by(user[, include_staff=False, include_superuser=False])

	

Returns a QuerySet filtered by a user or users. The user parameter can
be either a single User object or primary key, a sequence of User objects or
primary keys.

Example:

Single user
>>> MyModel.objects.owned_by(request.user)
[<MyModel: Foo>, <MyModel: Bar>]

Multiple primary keys
>>> MyModel.objects.owned_by([1, 2, 3])
[<MyModel: Foo>, <MyModel: Bar>, <MyModel: Eek>]

Note

It is not possible to use the include_staff and include_superuser
parameters when passing a sequence for the user parameter. A
TypeError exception will be raised in this case.

Shortcuts

	
get_owned_object_or_40x([klass, owner, include_staff=False, include_superuser=False, *args, **kwargs])

	

A convenience method that mirrors the Django shortcut get_object_or_404.
If the object cannot be loaded a Http404 exception is raised, if a
user cannot be verified as an owner a PermissionDenied exception is
raised.

As with the other extensions include_staff and include_superuser flags are
provided. *args and **kwargs work in the same way as get_object_or_404.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_extras	

 	
 	
 django_extras.contrib.auth	
 Extensions to django.contrib.auth

 	
 	
 django_extras.core.validators	
 Validation utilities

 	
 	
 django_extras.db.models.fields	
 Additional field types.

 	
 	
 django_extras.forms.fields	
 Additional field types.

 	
 	
 django_extras.forms.widgets	
 Additional form widgets.

 	
 	
 django_extras.http	
 Additional classes for common responses.

 	
 	
 django_extras.middleware	
 Additional middleware

 	
 	
 django_extras.middleware.timing	
 Timing middleware

Index

 C
 | D
 | F
 | G
 | H
 | J
 | L
 | M
 | O
 | P
 | S
 | T
 | V

C

 	
 	ColorField (class in django_extras.db.models)

 	(class in django_extras.forms.fields)

D

 	
 	django_extras.contrib.auth (module)

 	django_extras.core.validators (module)

 	django_extras.db.models.fields (module)

 	django_extras.forms.fields (module)

 	
 	django_extras.forms.widgets (module)

 	django_extras.http (module)

 	django_extras.middleware (module)

 	django_extras.middleware.timing (module)

F

 	
 	FileResponse (class in django_extras.http)

G

 	
 	get_owned_object_or_40x() (in module django_extras.contrib.auth.shortcuts)

H

 	
 	Html5DateInput (class in django_extras.forms.widgets)

 	Html5DateTimeInput (class in django_extras.forms.widgets)

 	Html5EmailInput (class in django_extras.forms.widgets)

 	Html5NumberInput (class in django_extras.forms.widgets)

 	Html5TimeInput (class in django_extras.forms.widgets)

 	HttpResponseAccepted (class in django_extras.http)

 	HttpResponseBadGateway (class in django_extras.http)

 	HttpResponseConflict (class in django_extras.http)

 	HttpResponseCreated (class in django_extras.http)

 	HttpResponseExpectationFailed (class in django_extras.http)

 	HttpResponseFailedDependency (class in django_extras.http)

 	HttpResponseGatewayTimeout (class in django_extras.http)

 	HttpResponseInsufficientStorage (class in django_extras.http)

 	HttpResponseLengthRequired (class in django_extras.http)

 	HttpResponseLocked (class in django_extras.http)

 	
 	HttpResponseNoContent (class in django_extras.http)

 	HttpResponseNonAuthoritative (class in django_extras.http)

 	HttpResponseNotAcceptable (class in django_extras.http)

 	HttpResponseNotImplemented (class in django_extras.http)

 	HttpResponsePartialContent (class in django_extras.http)

 	HttpResponsePaymentRequired (class in django_extras.http)

 	HttpResponsePreconditionFailed (class in django_extras.http)

 	HttpResponseRequestEntityTooLarge (class in django_extras.http)

 	HttpResponseRequestTimeout (class in django_extras.http)

 	HttpResponseResetContent (class in django_extras.http)

 	HttpResponseSeeOther (class in django_extras.http)

 	HttpResponseServiceUnavailable (class in django_extras.http)

 	HttpResponseUnAuthorised (class in django_extras.http)

 	HttpResponseUnprocessableEntity (class in django_extras.http)

 	HttpResponseUnsupportedMediaType (class in django_extras.http)

 	HttpResponseUpgradeRequired (class in django_extras.http)

J

 	
 	JQueryColorPicker (class in django_extras.forms.widgets)

 	JsonField (class in django_extras.db.models)

 	(class in django_extras.forms.fields)

 	
 	JsonResponse (class in django_extras.http)

L

 	
 	LatitudeField (class in django_extras.db.models)

 	
 	LongitudeField (class in django_extras.db.models)

M

 	
 	MoneyField (class in django_extras.db.models)

 	
 	MultipleOwnerMixin (class in django_extras.contrib.auth.models)

O

 	
 	owned_by() (OwnerMixinBase method)

 	(OwnerMixinManager method)

 	owner (SingleOwnerMixin attribute)

 	
 	owner_list() (OwnerMixinBase method)

 	OwnerMixinBase (class in django_extras.contrib.auth.models)

 	OwnerMixinManager (class in django_extras.contrib.auth.models)

 	owners (MultipleOwnerMixin attribute)

P

 	
 	PercentField (class in django_extras.db.models)

S

 	
 	SingleOwnerMixin (class in django_extras.contrib.auth.models)

 	
 	staff_required() (in module django_extras.contrib.auth.decorators)

 	superuser_required() (in module django_extras.contrib.auth.decorators)

T

 	
 	TimingMiddleware (class in django_extras.middleware.timing)

V

 	
 	validate_alpha_color (in module django_extras.core.validators)

 	
 	validate_color (in module django_extras.core.validators)

 	validate_json (in module django_extras.core.validators)

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		Django Extras documentation contents

 		API Reference

 		django_extras.contrib.auth

 		Forms

 		Form field reference

 		Form widget reference

 		Middleware

 		Timing Middleware

 		Models

 		Model field reference

 		Response objects

 		HttpResponse subclasses

 		Validators

 		Additional validators

 		User authentication extensions

 		Installation

 		Convenience decorators

 		The staff_required decorator

 		The superuser_required decorator

 		Ownership Mixin Models

 		SingleOwnerMixin

 		MultipleOwnerMixin

 		OwnerMixinManager

 		Shortcuts

_static/up.png

