

 Navigation

 	
 index

 	
 next |

 	Django Debug Toolbar 1.4 documentation

Django Debug Toolbar

	Installation
	Getting the code

	Quick setup

	Explicit setup

	Configuration
	DEBUG_TOOLBAR_PATCH_SETTINGS

	DEBUG_TOOLBAR_PANELS

	DEBUG_TOOLBAR_CONFIG

	Tips
	The toolbar isn’t displayed!

	Middleware isn’t working correctly

	Using the toolbar offline

	Performance considerations

	Panels
	Default built-in panels

	Non-default built-in panels

	Third-party panels

	API for third-party panels

	Commands
	debugsqlshell

	Change log
	1.4

	1.3

	1.2

	1.1

	1.0

	Contributing
	Bug reports and feature requests

	Code

	Tests

	Style

	Patches

	Translations

	Mailing list

	Making a release

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Installation

Getting the code

The recommended way to install the Debug Toolbar is via pip [http://www.pip-installer.org/]:

$ pip install django-debug-toolbar

If you aren’t familiar with pip, you may also obtain a copy of the
debug_toolbar directory and add it to your Python path.

To test an upcoming release, you can install the in-development version
instead with the following command:

$ pip install -e git+https://github.com/django-debug-toolbar/django-debug-toolbar.git#egg=django-debug-toolbar

Quick setup

Make sure that 'django.contrib.staticfiles' is set up properly [https://docs.djangoproject.com/en/stable/howto/static-files/] and add
'debug_toolbar' to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 # ...
 'django.contrib.staticfiles',
 # ...
 'debug_toolbar',
)

STATIC_URL = '/static/'

For a simple Django project, that’s all you need!

The Debug Toolbar will automatically adjust a few settings when you start the
development server, provided the DEBUG setting is True.

If you’re upgrading from a previous version, you should review the
change log and look for specific upgrade instructions.

If the automatic setup doesn’t work for your project, if you want to learn
what it does, or if you prefer defining your settings explicitly, read below.

Note

The automatic setup relies on debug_toolbar.models being imported when
the server starts. Django doesn’t provide a better hook to execute code
during the start-up sequence. This works with manage.py runserver
because it validates models before serving requests.

Warning

The automatic setup imports your project’s URLconf in order to add the
Debug Toolbar’s URLs. This may trigger circular imports, for instance when
the URLconf imports views that import models. If the development server
crashes with a long stack trace after hitting an ImportError or an
ImproperlyConfigured [http://docs.djangoproject.com/en/dev/ref/exceptions/#django.core.exceptions.ImproperlyConfigured] exception, follow the
explicit setup instructions.

When the automatic setup is used, the Debug Toolbar is not compatible with
GZipMiddleware [http://docs.djangoproject.com/en/dev/ref/middleware/#django.middleware.gzip.GZipMiddleware]. Please disable that
middleware during development or use the explicit setup to allow the
toolbar to function properly.

Explicit setup

First, tell the toolbar not to adjust your settings automatically by adding
this line in your settings module:

DEBUG_TOOLBAR_PATCH_SETTINGS = False

URLconf

Add the Debug Toolbar’s URLs to your project’s URLconf as follows:

from django.conf import settings
from django.conf.urls import include, patterns, url

if settings.DEBUG:
 import debug_toolbar
 urlpatterns += patterns('',
 url(r'^__debug__/', include(debug_toolbar.urls)),
)

This example uses the __debug__ prefix, but you can use any prefix that
doesn’t clash with your application’s URLs. Note the lack of quotes around
debug_toolbar.urls.

If the URLs aren’t included in your root URLconf, the Debug Toolbar
automatically appends them.

Middleware

The Debug Toolbar is mostly implemented in a middleware. Enable it in your
settings module as follows:

MIDDLEWARE_CLASSES = (
 # ...
 'debug_toolbar.middleware.DebugToolbarMiddleware',
 # ...
)

The order of MIDDLEWARE_CLASSES is important. You should include the Debug
Toolbar middleware as early as possible in the list. However, it must come
after any other middleware that encodes the response’s content, such as
GZipMiddleware [http://docs.djangoproject.com/en/dev/ref/middleware/#django.middleware.gzip.GZipMiddleware].

If MIDDLEWARE_CLASSES doesn’t contain the middleware, the Debug Toolbar
automatically adds it the beginning of the list.

Internal IPs

The Debug Toolbar is shown only if your IP is listed in the INTERNAL_IPS
setting. (You can change this logic with the SHOW_TOOLBAR_CALLBACK
option.) For local development, you should add '127.0.0.1' to
INTERNAL_IPS.

If INTERNAL_IPS is empty, the Debug Toolbar automatically sets it to
'127.0.0.1' and '::1'.

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Configuration

The debug toolbar provides two settings that you can add in your project’s
settings module to customize its behavior.

Note

Do you really need a customized configuration?

The debug toolbar ships with a default configuration that is considered
sane for the vast majority of Django projects. Don’t copy-paste blindly
the default values shown below into you settings module! It’s useless and
it’ll prevent you from taking advantage of better defaults that may be
introduced in future releases.

DEBUG_TOOLBAR_PATCH_SETTINGS

This setting defines whether the toolbar will attempt to automatically adjust
your project’s settings, as described in the installation instructions. By default it has the same value as your DEBUG setting.

DEBUG_TOOLBAR_PANELS

This setting specifies the full Python path to each panel that you want
included in the toolbar. It works like Django’s MIDDLEWARE_CLASSES
setting. The default value is:

DEBUG_TOOLBAR_PANELS = [
 'debug_toolbar.panels.versions.VersionsPanel',
 'debug_toolbar.panels.timer.TimerPanel',
 'debug_toolbar.panels.settings.SettingsPanel',
 'debug_toolbar.panels.headers.HeadersPanel',
 'debug_toolbar.panels.request.RequestPanel',
 'debug_toolbar.panels.sql.SQLPanel',
 'debug_toolbar.panels.staticfiles.StaticFilesPanel',
 'debug_toolbar.panels.templates.TemplatesPanel',
 'debug_toolbar.panels.cache.CachePanel',
 'debug_toolbar.panels.signals.SignalsPanel',
 'debug_toolbar.panels.logging.LoggingPanel',
 'debug_toolbar.panels.redirects.RedirectsPanel',
]

This setting allows you to:

	add built-in panels that aren’t enabled by default,

	add third-party panels,

	remove built-in panels,

	change the order of panels.

DEBUG_TOOLBAR_CONFIG

This dictionary contains all other configuration options. Some apply to the
toolbar itself, others are specific to some panels.

Toolbar options

	DISABLE_PANELS

Default: set(['debug_toolbar.panels.redirects.RedirectsPanel'])

This setting is a set of the full Python paths to each panel that you
want disabled (but still displayed) by default.

	INSERT_BEFORE

Default: '</body>'

The toolbar searches for this string in the HTML and inserts itself just
before.

	JQUERY_URL

Default: '//ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js'

URL of the copy of jQuery that will be used by the toolbar. Set it to a
locally-hosted version of jQuery for offline development. Make it empty to
rely on a version of jQuery that already exists on every page of your site.

	RENDER_PANELS

Default: None

If set to False, the debug toolbar will keep the contents of panels in
memory on the server and load them on demand. If set to True, it will
render panels inside every page. This may slow down page rendering but it’s
required on multi-process servers, for example if you deploy the toolbar in
production (which isn’t recommended).

The default value of None tells the toolbar to automatically do the
right thing depending on whether the WSGI container runs multiple processes.
This setting allows you to force a different behavior if needed.

	RESULTS_CACHE_SIZE

Default: 10

The toolbar keeps up to this many results in memory.

	ROOT_TAG_EXTRA_ATTRS

Default: ''

This setting is injected in the root template div in order to avoid
conflicts with client-side frameworks. For example, when using the debug
toolbar with Angular.js, set this to 'ng-non-bindable' or
'class="ng-non-bindable"'.

	SHOW_COLLAPSED

Default: False

If changed to True, the toolbar will be collapsed by default.

	SHOW_TOOLBAR_CALLBACK

Default: ‘debug_toolbar.middleware.show_toolbar’

This is the dotted path to a function used for determining whether the
toolbar should show or not. The default checks are that DEBUG must be
set to True, the IP of the request must be in INTERNAL_IPS, and the
request must not be an AJAX request. You can provide your own function
callback(request) which returns True or False.

Panel options

	EXTRA_SIGNALS

Default: []

Panel: signals

A list of custom signals that might be in your project, defined as the
Python path to the signal.

	ENABLE_STACKTRACES

Default: True

Panels: cache, SQL

If set to True, this will show stacktraces for SQL queries and cache
calls. Enabling stacktraces can increase the CPU time used when executing
queries.

	HIDE_IN_STACKTRACES

Default: ('socketserver', 'threading', 'wsgiref', 'debug_toolbar',
'django'). The first value is socketserver on Python 3 and
SocketServer on Python 2.

Panels: cache, SQL

Useful for eliminating server-related entries which can result
in enormous DOM structures and toolbar rendering delays.

	PROFILER_MAX_DEPTH

Default: 10

Panel: profiling

This setting affects the depth of function calls in the profiler’s
analysis.

	SHOW_TEMPLATE_CONTEXT

Default: True

Panel: templates

If set to True then a template’s context will be included with it in the
template debug panel. Turning this off is useful when you have large
template contexts, or you have template contexts with lazy datastructures
that you don’t want to be evaluated.

	SQL_WARNING_THRESHOLD

Default: 500

Panel: SQL

The SQL panel highlights queries that took more that this amount of time,
in milliseconds, to execute.

Here’s what a slightly customized toolbar configuration might look like:

This example is unlikely to be appropriate for your project.
CONFIG_DEFAULTS = {
 # Toolbar options
 'RESULTS_CACHE_SIZE': 3,
 'SHOW_COLLAPSED': True,
 # Panel options
 'SQL_WARNING_THRESHOLD': 100, # milliseconds
}

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Tips

The toolbar isn’t displayed!

The Debug Toolbar will only display when DEBUG = True in your project’s
settings. It will also only display if the mimetype of the response is
either text/html or application/xhtml+xml and contains a closing
</body> tag.

Be aware of middleware ordering and other middleware that may intercept
requests and return responses. Putting the debug toolbar middleware after
the Flatpage middleware, for example, means the toolbar will not show up on
flatpages.

Middleware isn’t working correctly

Using the Debug Toolbar in its default configuration and with the profiling
panel will cause middlewares after
debug_toolbar.middleware.DebugToolbarMiddleware to not execute their
process_view functions. This can be resolved by disabling the profiling
panel or moving the DebugToolbarMiddleware to the end of
MIDDLEWARE_CLASSES. Read more about it at
ProfilingPanel

Using the toolbar offline

The Debug Toolbar loads the jQuery [http://jquery.com/] library from the Google Hosted Libraries
CDN. Your browser will keep it in cache, allowing you to use the toolbar even
if you disconnect from the Internet temporarily.

If you want to use the Debug Toolbar without an Internet connection at all, or
if you refuse to depend on Google’s services, look at the JQUERY_URL
configuration option.

Performance considerations

The Debug Toolbar is designed to introduce as little overhead as possible in
the rendering of pages. However, depending on your project, the overhead may
become noticeable. In extreme cases, it can make development impractical.
Here’s a breakdown of the performance issues you can run into and their
solutions.

Problems

The Debug Toolbar works in two phases. First, it gathers data while Django
handles a request and stores this data in memory. Second, when you open a
panel in the browser, it fetches the data on the server and displays it.

If you’re seeing excessive CPU or memory consumption while browsing your site,
you must optimize the “gathering” phase. If displaying a panel is slow, you
must optimize the “rendering” phase.

Culprits

The SQL panel may be the culprit if your view performs many SQL queries. You
should attempt to minimize the number of SQL queries, but this isn’t always
possible, for instance if you’re using a CMS and have disabled caching for
development.

The cache panel is very similar to the SQL panel, except it isn’t always a bad
practice to make many cache queries in a view.

The template panel becomes slow if your views or context processors return large
contexts and your templates have complex inheritance or inclusion schemes.

Solutions

If the “gathering” phase is too slow, you can disable problematic panels
temporarily by deselecting the checkbox at the top right of each panel. That
change will apply to the next request. If you don’t use some panels at all,
you can remove them permanently by customizing the DEBUG_TOOLBAR_PANELS
setting.

By default, data gathered during the last 10 requests is kept in memory. This
allows you to use the toolbar on a page even if you have browsed to a few
other pages since you first loaded that page. You can reduce memory
consumption by setting the RESULTS_CACHE_SIZE configuration option to a
lower value. At worst, the toolbar will tell you that the data you’re looking
for isn’t available anymore.

If the “rendering” phase is too slow, refrain from clicking on problematic
panels :) Or reduce the amount of data gathered and rendered by these panels
by disabling some configuration options that are enabled by default:

	ENABLE_STACKTRACES for the SQL and cache panels,

	SHOW_TEMPLATE_CONTEXT for the template panel.

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Panels

The Django Debug Toolbar ships with a series of built-in panels. In addition,
several third-party panels are available.

Default built-in panels

The following panels are enabled by default.

Version

Path: debug_toolbar.panels.versions.VersionsPanel

Shows versions of Python, Django, and installed apps if possible.

Timer

Path: debug_toolbar.panels.timer.TimerPanel

Request timer.

Settings

Path: debug_toolbar.panels.settings.SettingsPanel

A list of settings in settings.py.

Headers

Path: debug_toolbar.panels.headers.HeadersPanel

This panels shows the HTTP request and response headers, as well as a
selection of values from the WSGI environment.

Note that headers set by middleware placed before the debug toolbar middleware
in MIDDLEWARE_CLASSES won’t be visible in the panel. The WSGI server
itself may also add response headers such as Date and Server.

Request

Path: debug_toolbar.panels.request.RequestPanel

GET/POST/cookie/session variable display.

SQL

Path: debug_toolbar.panels.sql.SQLPanel

SQL queries including time to execute and links to EXPLAIN each query.

Template

Path: debug_toolbar.panels.templates.TemplatesPanel

Templates and context used, and their template paths.

Static files

Path: debug_toolbar.panels.staticfiles.StaticFilesPanel

Used static files and their locations (via the staticfiles finders).

Cache

Path: debug_toolbar.panels.cache.CachePanel

Cache queries. Is incompatible with Django’s per-site caching.

Signal

Path: debug_toolbar.panels.signals.SignalsPanel

List of signals, their args and receivers.

Logging

Path: debug_toolbar.panels.logging.LoggingPanel

Logging output via Python’s built-in logging [http://docs.python.org/library/logging.html#module-logging] module.

Redirects

Path: debug_toolbar.panels.redirects.RedirectsPanel

When this panel is enabled, the debug toolbar will show an intermediate page
upon redirect so you can view any debug information prior to redirecting. This
page will provide a link to the redirect destination you can follow when
ready.

Since this behavior is annoying when you aren’t debugging a redirect, this
panel is included but inactive by default. You can activate it by default with
the DISABLE_PANELS configuration option.

Non-default built-in panels

The following panels are disabled by default. You must add them to the
DEBUG_TOOLBAR_PANELS setting to enable them.

Profiling

Path: debug_toolbar.panels.profiling.ProfilingPanel

Profiling information for the processing of the request.

If the debug_toolbar.middleware.DebugToolbarMiddleware is first in
MIDDLEWARE_CLASSES then the other middlewares’ process_view methods
will not be executed. This is because ProfilingPanel.process_view will
return a HttpResponse which causes the other middlewares’
process_view methods to be skipped.

Note that the quick setup creates this situation, as it inserts
DebugToolbarMiddleware first in MIDDLEWARE_CLASSES.

If you run into this issues, then you should either disable the
ProfilingPanel or move DebugToolbarMiddleware to the end of
MIDDLEWARE_CLASSES. If you do the latter, then the debug toolbar won’t
track the execution of other middleware.

Third-party panels

Note

Third-party panels aren’t officially supported!

The authors of the Django Debug Toolbar maintain a list of third-party
panels, but they can’t vouch for the quality of each of them. Please
report bugs to their authors.

If you’d like to add a panel to this list, please submit a pull request!

Haystack

URL: https://github.com/streeter/django-haystack-panel

Path: haystack_panel.panel.HaystackDebugPanel

See queries made by your Haystack [http://haystacksearch.org/] backends.

HTML Tidy/Validator

URL: https://github.com/joymax/django-dtpanel-htmltidy

Path: debug_toolbar_htmltidy.panels.HTMLTidyDebugPanel

HTML Tidy or HTML Validator is a custom panel that validates your HTML and
displays warnings and errors.

Inspector

URL: https://github.com/santiagobasulto/debug-inspector-panel

Path: inspector_panel.panels.inspector.InspectorPanel

Retrieves and displays information you specify using the debug statement.
Inspector panel also logs to the console by default, but may be instructed not
to.

Line Profiler

URL: https://github.com/dmclain/django-debug-toolbar-line-profiler

Path: debug_toolbar_line_profiler.panel.ProfilingPanel

This package provides a profiling panel that incorporates output from
line_profiler [http://pythonhosted.org/line_profiler/].

Memcache

URL: https://github.com/ross/memcache-debug-panel

Path: memcache_toolbar.panels.memcache.MemcachePanel or memcache_toolbar.panels.pylibmc.PylibmcPanel

This panel tracks memcached usage. It currently supports both the pylibmc and
memcache libraries.

MongoDB

URL: https://github.com/hmarr/django-debug-toolbar-mongo

Path: debug_toolbar_mongo.panel.MongoDebugPanel

Adds MongoDB debugging information.

Neo4j

URL: https://github.com/robinedwards/django-debug-toolbar-neo4j-panel

Path: neo4j_panel.Neo4jPanel

Trace neo4j rest API calls in your django application, this also works for neo4django and neo4jrestclient, support for py2neo is on its way.

Pympler

URL: https://pythonhosted.org/Pympler/django.html

Path: pympler.panels.MemoryPanel

Shows process memory information (virtual size, resident set size) and model instances for the current request.

Request History

URL: https://github.com/djsutho/django-debug-toolbar-request-history

Path: ddt_request_history.panels.request_history.RequestHistoryPanel

Switch between requests to view their stats. Also adds support for viewing stats for ajax requests.

Sites

URL: https://github.com/elvard/django-sites-toolbar

Path: sites_toolbar.panels.SitesDebugPanel

Browse Sites registered in django.contrib.sites and switch between them.
Useful to debug project when you use django-dynamicsites [https://bitbucket.org/uysrc/django-dynamicsites/src] which sets SITE_ID
dynamically.

Template Profiler

URL: https://github.com/node13h/django-debug-toolbar-template-profiler

Path: template_profiler_panel.panels.template.TemplateProfilerPanel

Shows template render call duration and distribution on the timeline. Lightweight.
Compatible with WSGI servers which reuse threads for multiple requests (Werkzeug).

Template Timings

URL: https://github.com/orf/django-debug-toolbar-template-timings

Path: template_timings_panel.panels.TemplateTimings.TemplateTimings

Displays template rendering times for your Django application.

User

URL: https://github.com/playfire/django-debug-toolbar-user-panel

Path: debug_toolbar_user_panel.panels.UserPanel

Easily switch between logged in users, see properties of current user.

API for third-party panels

Third-party panels must subclass Panel,
according to the public API described below. Unless noted otherwise, all
methods are optional.

Panels can ship their own templates, static files and views. There is no public
CSS API at this time.

	
class debug_toolbar.panels.Panel(*args, **kwargs)

	Base class for panels.

	
nav_title

	Title shown in the side bar. Defaults to title.

	
nav_subtitle

	Subtitle shown in the side bar. Defaults to the empty string.

	
has_content

	True if the panel can be displayed in full screen, False if
it’s only shown in the side bar. Defaults to True.

	
title

	Title shown in the panel when it’s displayed in full screen.

Mandatory, unless the panel sets has_content to False.

	
template

	Template used to render content.

Mandatory, unless the panel sets has_content to False or
overrides attr:content`.

	
content

	Content of the panel when it’s displayed in full screen.

By default this renders the template defined by template.
Statistics stored with record_stats() are available in the
template’s context.

	
classmethod get_urls()

	Return URLpatterns, if the panel has its own views.

	
enable_instrumentation()

	Enable instrumentation to gather data for this panel.

This usually means monkey-patching (!) or registering signal
receivers. Any instrumentation with a non-negligible effect on
performance should be installed by this method rather than at import
time.

Unless the toolbar or this panel is disabled, this method will be
called early in DebugToolbarMiddleware.process_request. It
should be idempotent.

	
disable_instrumentation()

	Disable instrumentation to gather data for this panel.

This is the opposite of enable_instrumentation().

Unless the toolbar or this panel is disabled, this method will be
called late in DebugToolbarMiddleware.process_response. It
should be idempotent.

	
record_stats(stats)

	Store data gathered by the panel. stats is a dict [http://docs.python.org/library/stdtypes.html#dict].

Each call to record_stats updates the statistics dictionary.

	
get_stats()

	Access data stored by the panel. Returns a dict [http://docs.python.org/library/stdtypes.html#dict].

	
process_request(request)

	Like process_request in Django’s middleware.

Write panel logic related to the request there. Save data with
record_stats().

	
process_view(request, view_func, view_args, view_kwargs)

	Like process_view in Django’s middleware.

Write panel logic related to the view there. Save data with
record_stats().

	
process_response(request, response)

	Like process_response in Django’s middleware. This is similar to
generate_stats,
but will be executed on every request. It should be used when either
the logic needs to be executed on every request or it needs to change
the response entirely, such as RedirectsPanel.

Write panel logic related to the response there. Post-process data
gathered while the view executed. Save data with record_stats().

Return a response to overwrite the existing response.

	
generate_stats(request, response)

	Similar to process_response,
but may not be executed on every request. This will only be called if
the toolbar will be inserted into the request.

Write panel logic related to the response there. Post-process data
gathered while the view executed. Save data with record_stats().

Does not return a value.

JavaScript API

Panel templates should include any JavaScript files they need. There are a few
common methods available, as well as the toolbar’s version of jQuery.

	
djdt.close()

	Triggers the event to close any active panels.

	
djdt.cookie.get()

	This is a helper function to fetch values stored in the cookies.

	Arguments:	
	key (string) – The key for the value to be fetched.

	
djdt.cookie.set()

	This is a helper function to set a value stored in the cookies.

	Arguments:	
	key (string) – The key to be used.

	value (string) – The value to be set.

	options (Object) – The options for the value to be set. It should contain
the properties expires and path.

	
djdt.hide_toolbar()

	Closes any panels and hides the toolbar.

	
djdt.jQuery()

	This is the toolbar’s version of jQuery.

	
djdt.show_toolbar()

	Shows the toolbar.

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Commands

The Debug Toolbar currently provides one Django management command.

debugsqlshell

This command starts an interactive Python shell, like Django’s built-in
shell management command. In addition, each ORM call that results in a
database query will be beautifully output in the shell.

Here’s an example:

>>> from page.models import Page
>>> ### Lookup and use resulting in an extra query...
>>> p = Page.objects.get(pk=1)
SELECT "page_page"."id",
 "page_page"."number",
 "page_page"."template_id",
 "page_page"."description"
FROM "page_page"
WHERE "page_page"."id" = 1

>>> print p.template.name
SELECT "page_template"."id",
 "page_template"."name",
 "page_template"."description"
FROM "page_template"
WHERE "page_template"."id" = 1

Home
>>> ### Using select_related to avoid 2nd database call...
>>> p = Page.objects.select_related('template').get(pk=1)
SELECT "page_page"."id",
 "page_page"."number",
 "page_page"."template_id",
 "page_page"."description",
 "page_template"."id",
 "page_template"."name",
 "page_template"."description"
FROM "page_page"
INNER JOIN "page_template" ON ("page_page"."template_id" = "page_template"."id")
WHERE "page_page"."id" = 1

>>> print p.template.name
Home

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Change log

1.4

This version is compatible with the upcoming Django 1.9 release. It requires
Django 1.7 or later.

New features

	New panel method debug_toolbar.panels.Panel.generate_stats() allows panels
to only record stats when the toolbar is going to be inserted into the
response.

Bugfixes

	Response time for requests of projects with numerous media files has
been improved.

1.3

This is the first version compatible with Django 1.8.

New features

	A new panel is available: Template Profiler.

	The SHOW_TOOLBAR_CALLBACK accepts a callable.

	The toolbar now provides a JavaScript API.

Bugfixes

	The toolbar handle cannot leave the visible area anymore when the toolbar is
collapsed.

	The root level logger is preserved.

	The RESULTS_CACHE_SIZE setting is taken into account.

	CSS classes are prefixed with djdt- to prevent name conflicts.

	The private copy of jQuery no longer registers as an AMD module on sites
that load RequireJS.

1.2

New features

	The JQUERY_URL setting defines where the toolbar loads jQuery from.

Bugfixes

	The toolbar now always loads a private copy of jQuery in order to avoid
using an incompatible version. It no longer attemps to integrate with AMD.

This private copy is available in djdt.jQuery. Third-party panels are
encouraged to use it because it should be as stable as the toolbar itself.

1.1

This is the first version compatible with Django 1.7.

New features

	The SQL panel colors queries depending on the stack level.

	The Profiler panel allows configuring the maximum depth.

Bugfixes

	Support languages where lowercase and uppercase strings may have different
lengths.

	Allow using cursor as context managers.

	Make the SQL explain more helpful on SQLite.

	Various JavaScript improvements.

Deprecated features

	The INTERCEPT_REDIRECTS setting is superseded by the more generic
DISABLE_PANELS.

1.0

This is the first stable version of the Debug Toolbar!

It includes many new features and performance improvements as well a few
backwards-incompatible changes to make the toolbar easier to deploy, use,
extend and maintain in the future.

You’re strongly encouraged to review the installation and configuration docs
and redo the setup in your projects.

Third-party panels will need to be updated to work with this version.

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Django Debug Toolbar 1.4 documentation

Contributing

Bug reports and feature requests

You can report bugs and request features in the bug tracker [http://github.com/django-debug-toolbar/django-debug-toolbar/issues].

Please search the existing database for duplicates before filing an issue.

Code

The code is available on GitHub [http://github.com/django-debug-toolbar/django-debug-toolbar].

Once you’ve obtained a checkout, you should create a virtualenv [http://www.virtualenv.org/] and install
the libraries required for working on the Debug Toolbar:

$ pip install -r requirements_dev.txt

You can run now run the example application:

$ DJANGO_SETTINGS_MODULE=example.settings django-admin migrate
$ DJANGO_SETTINGS_MODULE=example.settings django-admin runserver

For convenience, there’s an alias for the second command:

$ make example

Look at example/settings.py for running the example with another database
than SQLite.

Tests

Once you’ve set up a development environment as explained above, you can run
the test suite for the versions of Django and Python installed in that
environment:

$ make test

You can enable coverage measurement during tests:

$ make coverage

You can also run the test suite on all supported versions of Django and
Python:

$ tox

This is strongly recommended before committing changes to Python code.

The test suite includes frontend tests written with Selenium. Since they’re
annoyingly slow, they’re disabled by default. You can run them as follows:

$ make test_selenium

or by setting the DJANGO_SELENIUM_TESTS environment variable:

$ DJANGO_SELENIUM_TESTS=true make test
$ DJANGO_SELENIUM_TESTS=true make coverage
$ DJANGO_SELENIUM_TESTS=true tox

At this time, there isn’t an easy way to test against databases other than
SQLite.

Style

Python code for the Django Debug Toolbar follows PEP8. Line length is limited
to 100 characters. You can check for style violations with:

$ make flake8

Import style is enforce by isort. You can sort import automatically with:

$ make isort

Patches

Please submit pull requests [http://github.com/django-debug-toolbar/django-debug-toolbar/pulls]!

The Debug Toolbar includes a limited but growing test suite. If you fix a bug
or add a feature code, please consider adding proper coverage in the test
suite, especially if it has a chance for a regression.

Translations

Translation efforts are coordinated on Transifex [https://www.transifex.net/projects/p/django-debug-toolbar/].

Help translate the Debug Toolbar in your language!

Mailing list

This project doesn’t have a mailing list at this time. If you wish to discuss
a topic, please open an issue on GitHub.

Making a release

Prior to a release, the English .po file must be updated with make
translatable_strings and pushed to Transifex. Once translators have done
their job, .po files must be downloaded with make update_translations.

The release itself requires the following steps:

	Bump version numbers in docs/conf.py, README.rst and setup.py and commit.

	Tag the new version.

	python setup.py sdist bdist_wheel upload.

	Push the commit and the tag.

	Change the default version of the docs to point to the latest release:
https://readthedocs.org/dashboard/django-debug-toolbar/versions/

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Django Debug Toolbar 1.4 documentation

Index

 C
 | D
 | E
 | G
 | H
 | N
 | P
 | R
 | T

C

 	

 	content (debug_toolbar.panels.Panel attribute)

D

 	

 	disable_instrumentation() (debug_toolbar.panels.Panel method)

 	djdt.close() (djdt method)

 	djdt.cookie.get() (djdt.cookie method)

 	djdt.cookie.set() (djdt.cookie method)

 	

 	djdt.hide_toolbar() (djdt method)

 	djdt.jQuery() (djdt method)

 	djdt.show_toolbar() (djdt method)

E

 	

 	enable_instrumentation() (debug_toolbar.panels.Panel method)

G

 	

 	generate_stats() (debug_toolbar.panels.Panel method)

 	get_stats() (debug_toolbar.panels.Panel method)

 	

 	get_urls() (debug_toolbar.panels.Panel class method)

H

 	

 	has_content (debug_toolbar.panels.Panel attribute)

N

 	

 	nav_subtitle (debug_toolbar.panels.Panel attribute)

 	

 	nav_title (debug_toolbar.panels.Panel attribute)

P

 	

 	Panel (class in debug_toolbar.panels)

 	process_request() (debug_toolbar.panels.Panel method)

 	

 	process_response() (debug_toolbar.panels.Panel method)

 	process_view() (debug_toolbar.panels.Panel method)

R

 	

 	record_stats() (debug_toolbar.panels.Panel method)

T

 	

 	template (debug_toolbar.panels.Panel attribute)

 	

 	title (debug_toolbar.panels.Panel attribute)

 Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Django Debug Toolbar 1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Django Debug Toolbar developers and contributors.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/up.png

