

django-bakery

A set of helpers for baking your Django site out as flat files

Why and what for

The code documented here is intended to make it easier to save every page gen­er­ated by a data­base-backed site as a flat file. This allows you to host the site us­ing a stat­ic-file ser­vice like Amazon S3 [http://en.wikipedia.org/wiki/Amazon_S3].

At the Los Angeles Times Data Desk, we call this pro­cess “bak­ing.” It’s our path to cheap­, stable host­ing for simple sites. We’ve used it for pub­lish­ing elec­tion res­ults [http://graphics.latimes.com/2012-election-gop-results-map-iowa/], timelines [http://timelines.latimes.com/complete-guide-lafd-hiring-controversy/], doc­u­ments [http://documents.latimes.com/barack-obama-long-form-birth-certificate/], in­ter­act­ive tables [http://spreadsheets.latimes.com/city-appointees-tied-garcetti/], spe­cial pro­jects [http://graphics.latimes.com/flight-from-rage/] and numerous [http://graphics.latimes.com/towergraphic-washington-landslide-victims/] other [http://graphics.latimes.com/how-fast-is-lafd/] things [http://graphics.latimes.com/picksheet-critics-picks-april-4-10-2014/].

The sys­tem comes with some ma­jor ad­vant­ages, like:

	No data­base crashes

	Zero serv­er con­fig­ur­a­tion and up­keep

	No need to op­tim­ize your app code

	You don’t pay to host CPUs, only band­width

	An off­line ad­min­is­tra­tion pan­el is more se­cure

	Less stress (This one can change your life)

There are draw­backs. For one, you have to integrate the “bakery” in­to your code base. More im­port­ant, a flat site can only be so com­plex. No on­line data­base means your site is all read and no write, which means no user-gen­er­ated con­tent and no com­plex searches.

Django’s class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/] are at the heart of our approach. Putting all the pieces together is a little tricky at first, particularly if you haven’t studied the Django source code [https://github.com/django/django/tree/master/django/views/generic] or lack experience working with Python classes [http://www.diveintopython.net/object_oriented_framework/defining_classes.html] in general. But once you figure it out, you can do all kinds of crazy things: Like configuring Django to bake out your entire site with a single command.

Here’s how.

Documentation

	Getting started

	Common challenges

	Buildable views

	Buildable models

	Buildable feeds

	Settings variables

	Management commands

	Changelog

	Credits

In the wild

	Hundreds of Los Angeles Times custom pages at latimes.com/projects [http://www.latimes.com/projects/] and graphics.latimes.com [http://graphics.latimes.com/]

	The California Civic Data Coalition’s data downloads [https://calaccess.californiacivicdata.org/downloads/latest/]

	A [https://apps.statesman.com/votetracker/entities/austin-city-council/] series [https://apps.statesman.com/sxsw/2017/] of [https://apps.statesman.com/question-of-restraint/data/] projects [https://apps.statesman.com/homicides/] by [https://apps.statesman.com/council-candidate-explorer/election/2016/] the [https://apps.statesman.com/austin360/eats/] Austin American Statesman [https://apps.statesman.com/austin360/booze-guide/]

	The Dallas Morning News’ legislative tracker [http://interactives.dallasnews.com/2017/the-85th/]

	Newsday’s police misconduct investigation [http://data.newsday.com/crime/police-misconduct/]

	Southern California Public Radio’s water report tracker [http://projects.scpr.org/applications/monthly-water-use/]

	The Daily Californian’s sexual misconduct case tracker [http://projects.dailycal.org/misconduct/]

	The pretalx [https://pretalx.org] open-source conference management system

	The static-site extension [https://github.com/moorinteractive/wagtail-bakery] to the Wagtail content management system

Have you used django bakery for something cool? Send a link to ben.welsh@gmail.com and we will add it to this list.

Considering alternatives

If you are seeking to “bake” out a very simple site, maybe you don’t have a database or only a single page, it is quicker
to try Tarbell [http://tarbell.tribapps.com/] or Frozen-Flask [https://pythonhosted.org/Frozen-Flask/], which don’t require all
the overhead of a full Django installation.

This library is better to suited for projects that require a database, want to take advantage of other Django features (like the administration panel)
or require more complex views.

Contributing

	Code repository: https://github.com/datadesk/django-bakery

	Issues: https://github.com/datadesk/django-bakery/issues

	Packaging: https://pypi.python.org/pypi/django-bakery

	Testing: https://travis-ci.org/datadesk/django-bakery

	Coverage: https://coveralls.io/r/datadesk/django-bakery

Getting started

Installation

Before you begin, you should have a Django project created and configured [https://docs.djangoproject.com/en/dev/intro/install/].

In­stall our library from PyPI, like so:

$ pip install django-bakery

Edit your settings.py and add the app to your INSTALLED_APPS list.

IN­STALLED_APPS = (
 # ...
 # other apps would be above this of course
 # ...
 'bakery',
)

Configuration

Also in settings.py, add a build directory where the site will be built as flat files. This is where bakery will create the static version of your website that can be hosted elsewhere.

BUILD_DIR = '/home/you/code/your-site/build/'

The trickiest step is to re­fact­or your views to in­her­it our
buildable class-based views. They are similar to
Django’s generic class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/],
except extended to know how to auto­mat­ic­ally build them­selves as flat files.

Here is a list view and a de­tail view us­ing our sys­tem.

from yourapp.mod­els im­port Dummy­Mod­el
from bakery.views im­port Build­able­De­tailView, Build­ableL­istView

class DummyL­istView(Build­ableL­istView):
 """
 Generates a page that will feature a list linking to detail pages about
 each object in the queryset.
 """
 queryset = Dummy­Mod­el.live.all()

class DummyDe­tailView(Build­able­De­tailView):
 """
 Generates a separate HTML page for each object in the queryset.
 """
 queryset = Dummy­Mod­el.live.all()

If you’ve never seen class-based views before, you should study up in
the Django docs [https://docs.djangoproject.com/en/dev/topics/class-based-views/]
because we aren’t going to rewrite their documentation here.

If you’ve already seen class-based views and decided you dislike them,
you’re not alone [http://lukeplant.me.uk/blog/posts/djangos-cbvs-were-a-mistake/]
but you’ll have to take our word that they’re worth the trouble in this case. You’ll see why soon enough.

After you’ve con­ver­ted your views, add them to a list in settings.py where
all build­able views should be recorded as in the BAKERY_VIEWS variable.

BAKERY_VIEWS = (
 'yourapp.views.DummyL­istView',
 'yourapp.views.DummyDe­tailView',
)

Execution

Then run the man­age­ment com­mand that will bake them out.

$ python manage.py build

This will create a copy of every page that your views support in the BUILD_DIR.
You can re­view its work by fir­ing up the buildserver, which will loc­ally
host your flat files in the same way the Django’s runserver hosts your
dynamic data­base-driv­en pages.

$ python manage.py buildserver

To pub­lish the site on Amazon S3, all that’s ne­ces­sary yet is to cre­ate a
“buck­et” inside Amazon’s service. You can go to aws.amazon.com/s3/ [http://aws.amazon.com/s3/]
to set up an ac­count. If you need some ba­sic in­struc­tions you can find
them here [http://docs.amazonwebservices.com/AmazonS3/latest/gsg/GetStartedWithS3.html?r=9703].
Then set your buck­et name in settings.py.

AWS_BUCK­ET_­NAME = 'your-buck­et'

While you’re in there, you also need to set your credentials.

AWS_ACCESS_KEY_ID = 'your-key'
AWS_SECRET_ACCESS_KEY = 'your-secret-key'

Fi­nally, now that everything is set up, pub­lish­ing your files to S3 is as simple as:

$ python manage.py publish

You should be able to visit your bucket’s live URLs and see the site in action.
To make your bucket act more like a normal website or connect it to a domain you
control follow these instructions [http://docs.aws.amazon.com/AmazonS3/latest/dev/HowDoIWebsiteConfiguration.html].

Optimization

If you are publishing to S3, you can reduce the size of HTML, JavaScript and CSS files
by having bakery compress them using gzip [http://en.wikipedia.org/wiki/Gzip] as they are uploaded. Read more about this feature here [http://www.savjee.be/2014/03/Jekyll-to-S3-deploy-script-with-gzip/], here [http://sukharevd.net/gzipping-website-in-amazon-s3-bucket.html] or here [http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ServingCompressedFiles.html#CompressedS3].

Getting started is as simple as returning to settings.py and adding the following:

BAKERY_GZIP = True

Then rebuilding and publishing your files.

$ python manage.py build
$ python manage.py publish

Common challenges

Configuring where detail pages are built

If you are seeking to publish a detail page for each record in a database model,
our recommended way is using the BuildableDetailView.

When the view is executed via bakery’s standard build process, it will loop
through each object in the table and build a corresponding page at a path determined by
the view’s get_url method.

You can override get_url to build the pages anywhere you want, but the easiest
route is by configuring Django’s standard get_absolute_url [https://docs.djangoproject.com/en/1.9/ref/models/instances/#get-absolute-url]
method on the model, which is where get_url looks by default.

Here’s an example. Let’s start with a model that will contain a record for each
of America’s 50 states. Notice how we have defined Django’s standard get_absolute_url
method to return a URL that features each state’s unique postal code.

from django.db im­port mod­els
from bakery.mod­els im­port Build­ableMod­el

class State(Build­ableMod­el):
 name = mod­els.Char­Field(max_length=100)
 postal_code = models.CharField(max_length=2, unique=True)

 def get_absolute_url(self):
 return '/%s/' % self.postal_code

That model is then connected to a BuildableDetailView that can create a page
for every state.

from myapp.models import State
from bakery.views import BuildableDetailView

class StateDetailView(BuildableDetailView):
 model = State
 template_name = 'state_detail.html'

As described in the getting started guide, that view will need to be added
to the BAKERY_VIEWS list in settings.py.

Now, because the URL has been preconfigured with get_absolute_url, all 50 pages
can be built with the standard management command (assuming your settings have
been properly configured).

$ python manage.py build

That will create pages like this in the build directory.

build/AL/index.html
build/AK/index.html
build/AR/index.html
build/AZ/index.html
build/CA/index.html
build/CO/index.html
... etc ...

If you wanted to build objects using a pattern independent of the model, you can instead
override the get_url method on the BuildableDetailView.

from myapp.models import State
from bakery.views import BuildableDetailView

class ExampleDetailView(BuildableDetailView):
 model = State
 template_name = 'state_detail.html'

 def get_url(self, obj):
 return '/my-fancy-pattern/state/%s/' % obj.postal_code

That will create pages like this in the build directory.

build/my-fancy-pattern/state/AL/index.html
build/my-fancy-pattern/state/AK/index.html
build/my-fancy-pattern/state/AR/index.html
build/my-fancy-pattern/state/AZ/index.html
build/my-fancy-pattern/state/CA/index.html
build/my-fancy-pattern/state/CO/index.html
... etc ...

Building JSON instead of HTML

Suppose you have a view the acts like an API, generating a small snippet
of JSON. In this case,
the official Django documentation recommends the following [https://docs.djangoproject.com/en/1.6/topics/class-based-views/mixins/#more-than-just-html]
usage of class-based views to render the page in a dynamic website.

import json
from django.http import HttpResponse
from django.views.generic import TemplateView

class JSONResponseMixin(object):
 """
 A mixin that can be used to render a JSON response.
 """
 def render_to_json_response(self, context, **response_kwargs):
 """
 Returns a JSON response, transforming 'context' to make the payload.
 """
 return HttpResponse(
 self.convert_context_to_json(context),
 content_type='application/json',
 **response_kwargs
)

 def convert_context_to_json(self, context):
 "Convert the context dictionary into a JSON object"
 # Note: This is *EXTREMELY* naive; in reality, you'll need
 # to do much more complex handling to ensure that arbitrary
 # objects -- such as Django model instances or querysets
 # -- can be serialized as JSON.
 return json.dumps(context)

class JSONView(JSONResponseMixin, TemplateView):
 def render_to_response(self, context, **response_kwargs):
 return self.render_to_json_response(context, **response_kwargs)

 def get_context_data(self, **kwargs):
 return {'this-is': 'dummy-data'}

The same design pattern can work with django-bakery to build a flat version of
the JSON response. All that’s necessary is to substitute a buildable view with some
additional configuration.

import json
from django.http import HttpResponse
from bakery.views import BuildableTemplateView

class JSONResponseMixin(object):
 """
 A mixin that can be used to render a JSON response.
 """
 def render_to_json_response(self, context, **response_kwargs):
 """
 Returns a JSON response, transforming 'context' to make the payload.
 """
 return HttpResponse(
 self.convert_context_to_json(context),
 content_type='application/json',
 **response_kwargs
)

 def convert_context_to_json(self, context):
 "Convert the context dictionary into a JSON object"
 # Note: This is *EXTREMELY* naive; in reality, you'll need
 # to do much more complex handling to ensure that arbitrary
 # objects -- such as Django model instances or querysets
 # -- can be serialized as JSON.
 return json.dumps(context)

class BuildableJSONView(JSONResponseMixin, BuildableTemplateView):
 # Nothing more than standard bakery configuration here
 build_path = 'jsonview.json'

 def render_to_response(self, context, **response_kwargs):
 return self.render_to_json_response(context, **response_kwargs)

 def get_context_data(self, **kwargs):
 return {'this-is': 'dummy-data'}

 def get_content(self):
 """
 Overrides an internal trick of buildable views so that bakery
 can render the HttpResponse substituted above for the typical Django
 template by the JSONResponseMixin
 """
 return self.get(self.request).content

Building a single view on demand

The build management command can regenerate all pages for all views in the
BAKERY_VIEWS settings variable. A buildable model
can recreate all pages related to a single object. But can you rebuild all pages
created by just one view? Yes, and all it takes is importing the view and invoking
its build_method.

>>> from yourapp.views import DummyDe­tailView
>>> DummyDe­tailView().build_method()

A simple way to automate that kind of targeted build might be to create a
custom management command [https://docs.djangoproject.com/en/dev/howto/custom-management-commands/]
and connect it to a cron job [http://en.wikipedia.org/wiki/Cron].

from django.core.management.base import BaseCommand, CommandError
from yourapp.views import DummyDetailView

class Command(BaseCommand):
 help = 'Rebuilds all pages created by the DummyDetailView'

 def handle(self, *args, **options):
 DummyDe­tailView().build_method()

Or, if you wanted to rebuild the view without deleting everything else in the existing
build directory, you could pass it as an argument to the standard build command
with instructions to skip everything else it normally does.

$ python manage.py build yourapp.views.DummyDetailView --keep-build-dir --skip-static --skip-media

Enabling Amazon’s accelerated uploads

If your bucket has enabled Amazon’s S3 transfer acceleration service [https://aws.amazon.com/blogs/aws/aws-storage-update-amazon-s3-transfer-acceleration-larger-snowballs-in-more-regions/?sc_channel=sm&sc_campaign=launches_2016&sc_publisher=tw_go&sc_content=chi_summit_s3_transfer_acc&sc_country_video=global&sc_geo=global&sc_category=s3&adbsc=social60723236&adbid=983704521666913&adbpl=fb&adbpr=153063591397681&adbid=983942131643152&adbpl=fb&adbpr=153063591397681],
you can configure bakery it use by overriding the default AWS_S3_HOST variable in settings.py.

AWS_S3_HOST = 's3-accelerate.amazonaws.com'

Buildable views

Django’s class-based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/] are used to render HTML pages to flat files. Putting all the pieces together is a little tricky at first, particularly if you haven’t studied the Django source code [https://github.com/django/django/tree/master/django/views/generic] or lack experience working with Python classes [http://www.diveintopython.net/object_oriented_framework/defining_classes.html] in general. But if you figure it out, we think it’s worth the trouble.

BuildableTemplateView

	
class BuildableTemplateView(TemplateView, BuildableMixin)

	Renders and builds a simple template as a flat file. Extended from Django’s
generic TemplateView [https://docs.djangoproject.com/en/dev/ref/class-based-views/base/#django.views.generic.base.TemplateView].
The base class has a number of options not documented here you should consult.

	
build_path

	The target location of the built file in the BUILD_DIR.
index.html would place it at the built site’s root.
foo/index.html would place it inside a subdirectory. Required.

	
template_name

	The name of the template you would like Django to render. Required.

	
build()

	Writes the rendered template’s HTML to a flat file. Only override this if you know what you’re doing.

	
build_method

	An alias to the build method used by the management commands

Example myapp/views.py

from bakery.views import BuildableTemplateView

class ExampleTemplateView(BuildableTemplateView):
 build_path = 'examples/index.html'
 template_name = 'examples.html'

BuildableListView

	
class BuildableListView(ListView, BuildableMixin)

	Render and builds a page about a list of objects. Extended from Django’s
generic ListView [https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-display/#django.views.generic.list.ListView].
The base class has a number of options not documented here you should consult.

	
model

	A Django database model where the list of objects can be drawn
with a Model.objects.all() query. Optional. If you want to provide
a more specific list, define the queryset attribute instead.

	
queryset

	The list of objects that will be provided to the template. Can be
any iterable of items, not just a Django queryset. Optional, but
if this attribute is not defined the model attribute must be
defined.

	
build_path

	The target location of the flat file in the BUILD_DIR.
Optional. The default is index.html, would place the flat file
at the site’s root. Defining it as foo/index.html would place
the flat file inside a subdirectory.

	
template_name

	The template you would like Django to render. You need
to override this if you don’t want to rely on the Django ListView
defaults.

	
build_method

	An alias to the build_queryset method used by the management commands

	
build_queryset()

	Writes the rendered template’s HTML to a flat file. Only override this if you know what you’re doing.

Example myapp/views.py

from myapp.models import MyModel
from bakery.views import BuildableListView

class ExampleListView(BuildableListView):
 model = MyModel
 template_name = 'mymodel_list.html'

class DifferentExampleListView(BuildableListView):
 build_path = 'mymodel/index.html'
 queryset = MyModel.objects.filter(is_published=True)
 template_name = 'mymodel_list.html'

BuildableDetailView

	
class BuildableDetailView(DetailView, BuildableMixin)

	Render and build a “detail” page about an object or a series of pages
about a list of objects. Extended from Django’s generic DetailView [https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-display/#detailview].
The base class has a number of options not documented here you should consult.

	
model

	A Django database model where the list of objects can be drawn
with a Model.objects.all() query. Optional. If you want to provide
a more specific list, define the queryset attribute instead.

	
queryset

	The Django model queryset objects are to be looked up from. Optional, but
if this attribute is not defined the model attribute must be
defined.

	
template_name

	The name of the template you would like Django to render. You need
to override this if you don’t want to rely on the default, which is
os.path.join(settings.BUILD_DIR, obj.get_absolute_url(), 'index.html').

	
get_build_path(obj)

	Used to determine where to build the detail page. Override this if you
would like your detail page at a different location. By default it
will be built at os.path.join(obj.get_url(), "index.html".

	
get_html(obj)

	How to render the output for the provided object’s page. If you choose to render
using something other than a Django template, like HttpResponse for
instance, you will want to override this. By default it uses the template
object’s default render method.

	
get_url(obj)

	Returns the build directory, and therefore the URL, where the provided
object’s flat file should be placed. By default it is obj.get_absolute_url(),
so simplify defining that on your model is enough.

	
build_method

	An alias to the build_queryset method used by the management commands

	
build_object(obj)

	Writes the rendered HTML for the template and the provided object to the build directory.

	
build_queryset()

	Writes the rendered template’s HTML for each object in the queryset or model to a flat file. Only override this if you know what you’re doing.

	
unbuild_object(obj)

	Deletes the directory where the provided object’s flat files are stored.

Example myapp/models.py

from django.db im­port mod­els
from bakery.mod­els im­port Build­ableMod­el

class My­Mod­el(Build­ableMod­el):
 de­tail_views = ('myapp.views.ExampleDetailView',)
 title = mod­els.Char­Field(max_length=100)
 slug = models.SlugField(max_length=100)

 def get_absolute_url(self):
 """
 If you are going to publish a detail view for each object,
 one easy way to set the path where it will be built is to
 configure Django's standard get_absolute_url method.
 """
 return '/%s/' % self.slug

Example myapp/views.py

from myapp.models import MyModel
from bakery.views import BuildableDetailView

class ExampleDetailView(BuildableListView):
 queryset = MyModel.objects.filter(is_published=True)
 template_name = 'mymodel_detail.html'

BuildableArchiveIndexView

	
class BuildableArchiveIndexView(ArchiveIndexView, BuildableMixin)

	Renders and builds a top-level index page showing the “latest” objects,
by date. Extended from Django’s generic ArchiveIndexView [https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-date-based/#archiveindexview].
The base class has a number of options not documented here you should consult.

	
model

	A Django database model where the list of objects can be drawn
with a Model.objects.all() query. Optional. If you want to provide
a more specific list, define the queryset attribute instead.

	
queryset

	The list of objects that will be provided to the template. Can be
any iterable of items, not just a Django queryset. Optional, but
if this attribute is not defined the model attribute must be
defined.

	
build_path

	The target location of the flat file in the BUILD_DIR.
Optional. The default is archive/index.html, would place the flat file
at the ‘/archive/’ URL.

	
template_name

	The template you would like Django to render. You need
to override this if you don’t want to rely on the Django default,
which is <model_name_lowercase>_archive.html.

	
build_method

	An alias to the build_queryset method used by the management commands

	
build_queryset()

	Writes the rendered template’s HTML to a flat file. Only override this if you know what you’re doing.

Example myapp/views.py

from myapp.models import MyModel
from bakery.views import BuildableArchiveIndexView

class ExampleArchiveIndexView(BuildableArchiveIndexView):
 model = MyModel
 date_field = "pub_date"

class DifferentExampleArchiveIndexView(BuildableArchiveIndexView):
 build_path = 'my-archive-directory/index.html'
 queryset = MyModel.objects.filter(is_published=True)
 date_field = "pub_date"
 template_name = 'mymodel_list.html'

BuildableYearArchiveView

	
class BuildableYearArchiveView(YearArchiveView, BuildableMixin)

	Renders and builds a yearly archive showing all available months
(and, if you’d like, objects) in a given year. Extended from Django’s generic YearArchiveView [https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-date-based/#yeararchiveview].
The base class has a number of options not documented here you should consult.

	
model

	A Django database model where the list of objects can be drawn
with a Model.objects.all() query. Optional. If you want to provide
a more specific list, define the queryset attribute instead.

	
queryset

	The list of objects that will be provided to the template. Can be
any iterable of items, not just a Django queryset. Optional, but
if this attribute is not defined the model attribute must be
defined.

	
template_name

	The template you would like Django to render. You need
to override this if you don’t want to rely on the Django default,
which is <model_name_lowercase>_archive_year.html.

	
get_build_path()

	Used to determine where to build the detail page. Override this if you
would like your detail page at a different location. By default it
will be built at os.path.join(obj.get_url(), "index.html".

	
get_url()

	The URL at which the detail page should appear. By default it is /archive/ + the year in
the generic view’s year_format attribute. An example would be /archive/2016/

	
build_method

	An alias to the build_dated_queryset method used by the management commands

	
build_dated_queryset()

	Writes the rendered HTML for all publishable dates to the build directory.

	
build_year(dt)

	Writes the rendered HTML for the provided year to the build directory.

	
unbuild_year(dt)

	Deletes the directory where the provided year’s flat files are stored.

Example myapp/views.py

from myapp.models import MyModel
from bakery.views import BuildableYearArchiveView

class ExampleArchiveYearView(BuildableYearArchiveView):
 model = MyModel
 date_field = "pub_date"

BuildableMonthArchiveView

	
class BuildableMonthArchiveView(MonthArchiveView, BuildableMixin)

	Renders and builds a monthly archive showing all objects in a given month. Extended from Django’s generic MonthArchiveView [https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-date-based/#montharchiveview].
The base class has a number of options not documented here you should consult.

	
model

	A Django database model where the list of objects can be drawn
with a Model.objects.all() query. Optional. If you want to provide
a more specific list, define the queryset attribute instead.

	
queryset

	The list of objects that will be provided to the template. Can be
any iterable of items, not just a Django queryset. Optional, but
if this attribute is not defined the model attribute must be
defined.

	
template_name

	The template you would like Django to render. You need
to override this if you don’t want to rely on the Django default,
which is <model_name_lowercase>_archive_month.html.

	
get_build_path()

	Used to determine where to build the detail page. Override this if you
would like your detail page at a different location. By default it
will be built at os.path.join(obj.get_url(), "index.html".

	
get_url()

	The URL at which the detail page should appear. By default it is /archive/ + the
year in self.year_format + the month in self.month_format. An example would be /archive/2016/01/.

	
build_method

	An alias to the build_dated_queryset method used by the management commands

	
build_dated_queryset()

	Writes the rendered HTML for all publishable dates to the build directory.

	
build_month(dt)

	Writes the rendered HTML for the provided month to the build directory.

	
unbuild_month(dt)

	Deletes the directory where the provided month’s flat files are stored.

Example myapp/views.py

from myapp.models import MyModel
from bakery.views import BuildableMonthArchiveView

class ExampleMonthArchiveView(BuildableMonthArchiveView):
 model = MyModel
 date_field = "pub_date"

BuildableDayArchiveView

	
class BuildableDayArchiveView(DayArchiveView, BuildableMixin)

	Renders and builds a day archive showing all objects in a given day. Extended from Django’s generic DayArchiveView [https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-date-based/#dayarchiveview].
The base class has a number of options not documented here you should consult.

	
model

	A Django database model where the list of objects can be drawn
with a Model.objects.all() query. Optional. If you want to provide
a more specific list, define the queryset attribute instead.

	
queryset

	The list of objects that will be provided to the template. Can be
any iterable of items, not just a Django queryset. Optional, but
if this attribute is not defined the model attribute must be
defined.

	
template_name

	The template you would like Django to render. You need
to override this if you don’t want to rely on the Django default,
which is <model_name_lowercase>_archive_day.html.

	
get_build_path()

	Used to determine where to build the detail page. Override this if you
would like your detail page at a different location. By default it
will be built at os.path.join(obj.get_url(), "index.html".

	
get_url()

	The URL at which the detail page should appear. By default it is /archive/ + the year in self.year_format + the
month in self.month_format + the day in the self.day_format. An example would be /archive/2016/01/01/.

	
build_method

	An alias to the build_dated_queryset method used by the management commands

	
build_dated_queryset()

	Writes the rendered HTML for all publishable dates to the build directory.

	
build_day(dt)

	Writes the rendered HTML for the provided day to the build directory.

	
unbuild_day(dt)

	Deletes the directory where the provided day’s flat files are stored.

Example myapp/views.py

from myapp.models import MyModel
from bakery.views import BuildableDayArchiveView

class ExampleDayArchiveView(BuildableDayArchiveView):
 model = MyModel
 date_field = "pub_date"

Buildable404View

	
class Buildable404View(BuildableTemplateView)

	Renders and builds a simple 404 error page template as a flat file. Extended from the BuildableTemplateView above.
The base class has a number of options not documented here you should consult.

All it does

from bakery.views import BuildableTemplateView

class Buildable404View(BuildableTemplateView):
 build_path = '404.html'
 template_name = '404.html'

BuildableRedirectView

	
class BuildableRedirectView(RedirectView, BuildableMixin)

	Render and build a redirect. Extended from Django’s generic
RedirectView [https://docs.djangoproject.com/en/dev/ref/class-based-views/base/#redirectview].
The base class has a number of options not documented here you should consult.

	
build_path

	The URL being requested, which will be published as a flatfile
with a redirect away from it.

	
url

	The URL where redirect will send the user. Operates
in the same way as the standard generic RedirectView.

Example myapp/views.py

from bakery.views import BuildableRedirectView

class ExampleRedirectView(BuildableRedirectView):
 build_path = "mymodel/oldurl.html"
 url = '/mymodel/'

Buildable models

Models that build themselves

If your site pub­lishes numerous pages built from a large data­base, the build-and-pub­lish routine can take
a long time to run. Some­times that’s ac­cept­able, but if you’re peri­od­ic­ally
mak­ing small up­dates to the site it can be frus­trat­ing to wait for the en­tire
data­base to re­build every time there’s a minor edit.

We tackle this prob­lem by hook­ing tar­geted build routines to our Django mod­els.
When an ob­ject is ed­ited, the mod­el is able to re­build only those pages that
ob­ject is con­nec­ted to. We ac­com­plish this with a BuildableModel class
you can in­her­it. It works the same as a standard Django model, except that
you are asked define a list of the de­tail views con­nec­ted to each ob­ject.

BuildableModel

	
class BuildableModel(models.Model)

	An abstract base model that creates an object that can builds out its own detail pages.

	
detail_views

	An iterable containing paths to the views that are built using the object, which should inherit from buildable class-based views.

	
build()

	Iterates through the views pointed to by detail_views, running
each view’s build_object method with self. Then calls _build_extra()
and _build_related().

	
unbuild()

	Iterates through the views pointed to by detail_views, running
each view’s unbuild_object method with self. Then calls _unbuild_extra()
and _build_related().

	
_build_extra()

	A place to include code that will build extra content related to the object
that is not rendered by the detail_views, such a related image.
Empty by default.

	
_build_related()

	A place to include code that will build related content, such as an RSS feed,
that does not require passing in the object to a view. Empty by default.

	
_unbuild_extra()

	A place to include code that will remove extra content related to the object
that is not rendered by the detail_views, like deleting a related image.
Empty by default.

from django.db im­port mod­els
from bakery.mod­els im­port Build­ableMod­el

class My­Mod­el(Build­ableMod­el):
 de­tail_views = ('myapp.views.ExampleDetailView',)
 title = mod­els.Char­Field(max_length=100)
 slug = models.SlugField(max_length=100)
 de­scrip­tion = mod­els.Text­Field()
 is_published = models.BooleanField(default=False)

 def get_absolute_url(self):
 """
 If you are going to publish a detail view for each object,
 one easy way to set the path where it will be built is to
 configure Django's standard get_absolute_url method.
 """
 return '/%s/' % self.slug

 def _build_re­lated(self):
 from myapp import views
 views.MySitem­apView().build_queryset()
 views.MyRSS­Feed().build_queryset()

Models that publish themselves

With a buildable model in place, you can take things a step further with the
AutoPublishingBuildableModel so that a up­date pos­ted to the data­base by an entrant
us­ing the Django ad­min [https://docs.djangoproject.com/en/dev/ref/contrib/admin/]
can set in­to mo­tion a small build that is then synced with your live site on Amazon S3.

At the Los Angeles Times Data Desk, we use that sys­tem to host ap­plic­a­tions
with in-house Django ad­min­is­tra­tion pan­els that, for the entrant, walk and
talk like a live website, but behind the scenes auto­mat­ic­ally fig­ure out how
to serve them­selves on the Web as flat files. That’s how a site like
graphics.latimes.com [http://graphics.latimes.com] is man­aged.

This is accomplished by handing off the build from the user’s save re­quest in the ad­min to a
job serv­er that does the work in the back­ground. This pre­vents a user who makes a push-but­ton save
in the ad­min from hav­ing to wait for the full process to com­plete be­fore receiving a re­sponse.

This is done by passing off build in­struc­tions to a Cel­ery job serv­er [http://celery.readthedocs.org/en/latest/django/first-steps-with-django.html].
You need to install Celery and have it fully configured before this model will work.

AutoPublishingBuildableModel

	
class AutoPublishingBuildableModel(BuildableModel)

	Integrates with Celery tasks to automatically publish or unpublish
objects when they are saved.

This is done using an override on the save method that inspects
if the object ought to be published, republished or unpublished.

Requires an indicator of whether the object should been
published or unpublished. By default it looks to a BooleanField
called is_published for the answer, but other methods could
be employed by overriding the get_publication_status method.

	
publication_status_field

	The name of the field that this model will inspect to determine
the object’s publication status. By default it is is_published.

	
get_publication_status()

	Returns a boolean (True or False) indicating whether the object
is “live” and ought to be published or not.

Used to determine whether the save method should seek to publish,
republish or unpublish the object when it is saved.

By default, it looks for a BooleanField with the name defined in
the model’s publication_status_field.

If your model uses a list of strings or other more complex
means to indicate publication status you need to override this method
and have it negotiate your object to return either True or False.

	
save(publish=True)

	A custom save that uses Celery tasks to publish or unpublish the
object where appropriate.

Save with keyword argument obj.save(publish=False) to skip the process.

	
delete(unpublish=True)

	Triggers a task that will unpublish the object after it is deleted.

Save with keyword argument obj.delete(unpublish=False) to skip it.

from django.db im­port mod­els
from bakery.mod­els im­port AutoPublishingBuildableModel

class My­Mod­el(AutoPublishingBuildableModel):
 de­tail_views = ('myapp.views.ExampleDetailView',)
 title = mod­els.Char­Field(max_length=100)
 slug = models.SlugField(max_length=100)
 de­scrip­tion = mod­els.Text­Field()
 is_published = models.BooleanField(default=False)

 def get_absolute_url(self):
 """
 If you are going to publish a detail view for each object,
 one easy way to set the path where it will be built is to
 configure Django's standard get_absolute_url method.
 """
 return '/%s/' % self.slug

Buildable feeds

You can build a RSS feed in much the same manner as buildable class-based views.

BuildableFeed

	
class BuildableFeed(Feed, BuildableMixin)

	Extends the base Django Feed class [https://docs.djangoproject.com/en/dev/ref/contrib/syndication/] to be buildable.
Configure it in the same way you configure that plus our bakery options listed below.

	
build_path

	The target location of the flat file in the BUILD_DIR.
Optional. The default is latest.xml, would place the flat file
at the site’s root. Defining it as foo/latest.xml would place
the flat file inside a subdirectory.

	
build_method

	An alias to the build_queryset method used by the management commands.

	
build_queryset()

	Writes the rendered template’s HTML to a flat file. Only override this if you know what you’re doing.

	
get_queryset()

	The Feed class allows a single feed instance to return different content for requests to different URLs.
The “subject” for a request is determinted by the object returned from the get_object method, by default None.
(See the Django docs <https://docs.djangoproject.com/en/dev/ref/contrib/syndication/#a-complex-example> for details.)
Override this method to provide a collection of “subjects” for which bakery should render the feed.

As in Django, you can replace certain bakery feed attributes (such as build_path) with methods that accept the subject as an extra “obj” parameter.

Example myapp/feeds.py

import os
from myapp.models import MyModel, MyParentModel
from bakery.feeds import BuildableFeed

class ExampleRSSFeed(BuildableFeed):
 link = '/'
 feed_url = '/rss.xml'
 build_path = 'rss.xml'

 def items(self):
 return MyModel.objects.filter(is_published=True)

class ExampleFeedWithSubject(BuildableFeed):
 def get_object(self, request, obj_id):
 return MyParentModel.objects.get(pk=obj_id)

 def get_queryset(self):
 return MyParentModel.objects.filter(is_published=True)

 def get_content(self, obj):
 return super().get_content(obj.id)

 def link(self, obj):
 return obj.get_absolute_url()

 def feed_url(self, obj):
 return os.path.join(obj.get_absolute_url(), 'rss.xml')

 def build_path(self, obj):
 return self.feed_url(obj)[1:] # Discard initial slash

 def items(self, obj):
 return MyModel.objects.filter(parent__id=obj.id)

Settings variables

Configuration options for your settings.py.

ALLOW_BAKERY_AUTO_PUBLISHING

	
ALLOW_BAKERY_AUTO_PUBLISHING

	Decides whether the AutoPublishingBuildableModel is allowed to run the
publish management command as part of its background task. True by default.

So if you are in your dev environment and want to prevent
the task from publishing to s3, do this.
ALLOW_BAKERY_AUTO_PUBLISHING = False

BUILD_DIR

	
BUILD_DIR

	The location on the filesystem where you want the flat files to be built.

BUILD_DIR = '/home/you/code/your-site/build/'

I like something a little snappier like...
import os
BUILD_DIR = os.path.join(__file__, 'build')

BAKERY_FILESYSTEM

	
BAKERY_FILESYSTEM

	Files are built using PyFilesystem [https://docs.pyfilesystem.org/en/latest/index.html], a module that provides a common interface to a variety of filesystem backends. The default setting is the OS filesystem [https://docs.pyfilesystem.org/en/latest/reference/osfs.html] backend that saves files to the local directory structure. If you don’t set the variable, it will operates as follows:

BAKERY_FILESYSTEM = 'osfs:///'

Here’s how you could change to an in-memory backend [https://docs.pyfilesystem.org/en/latest/reference/memoryfs.html] instead. The complete list of alternatives are documented here [https://docs.pyfilesystem.org/en/latest/builtin.html].

BAKERY_FILESYSTEM = 'mem://'

BAKERY_VIEWS

	
BAKERY_VIEWS

	The list of views you want to be built out as flat files when the build management command is executed.

BAKERY_VIEWS = (
 'myapp.views.ExampleL­istView',
 'myapp.views.ExampleDe­tailView',
 'myapp.views.MyRSSView',
 'myapp.views.MySitemapView',
)

AWS_BUCKET_NAME

	
AWS_BUCKET_NAME

	The name of the Amazon S3 “bucket” [http://aws.amazon.com/s3/] on the Internet were you want to publish the flat files in your local BUILD_DIR.

AWS_BUCK­ET_­NAME = 'your-buck­et'

AWS_ACCESS_KEY_ID

	
AWS_ACCESS_KEY_ID

	A part of your secret Amazon Web Services credentials. Necessary to upload files to S3.

AWS_ACCESS_KEY_ID = 'your-key'

AWS_SECRET_ACCESS_KEY

	
AWS_SECRET_ACCESS_KEY

	A part of your secret Amazon Web Services credentials. Necessary to upload files to S3.

AWS_SECRET_ACCESS_KEY = 'your-secret-key'

AWS_REGION

	
AWS_REGION

	The name of the Amazon Web Services’ region where the S3 bucket is stored. Results depend on the endpoint and region, but if you are not using the default us-east-1 region you may need to set this variable.

AWS_REGION = 'us-west-2'

AWS_S3_ENDPOINT

	
AWS_S3_ENDPOINT

	The URL to use when connecting with Amazon Web Services’ S3 system. If the
setting is not provided the boto package’s default is used.

Substitute in Amazon's accelerated upload service
AWS_S3_ENDPOINT = 'https://s3-accelerate.amazonaws.com'
Specify the region of the bucket to work around bugs with S3 in certain version of boto
AWS_S3_ENDPOINT = 'https://s3-%s.amazonaws.com' % AWS_REGION

BAKERY_GZIP

	
BAKERY_GZIP

	Opt in to automatic gzipping of your files in the build method and addition of
the required headers when deploying to Amazon S3. Defaults to False.

BAKERY_GZIP = True

GZIP_CONTENT_TYPES

	
GZIP_CONTENT_TYPES

	A list of file mime types used to determine which files to add the
‘Content-Encoding: gzip’ metadata header when syncing to Amazon S3.

Defaults to include all ‘text/css’, ‘text/html’, ‘application/javascript’,
‘application/x-javascript’ and everything else recommended by the HTML5
boilerplate guide [https://github.com/h5bp/server-configs-apache].

Only matters if you have set BAKERY_GZIP to True.

GZIP_CONTENT_TYPES = (
 "application/atom+xml",
 "application/javascript",
 "application/json",
 "application/ld+json",
 "application/manifest+json",
 "application/rdf+xml",
 "application/rss+xml",
 "application/schema+json",
 "application/vnd.geo+json",
 "application/vnd.ms-fontobject",
 "application/x-font-ttf",
 "application/x-javascript",
 "application/x-web-app-manifest+json",
 "application/xhtml+xml",
 "application/xml",
 "font/eot",
 "font/opentype",
 "image/bmp",
 "image/svg+xml",
 "image/vnd.microsoft.icon",
 "image/x-icon",
 "text/cache-manifest",
 "text/css",
 "text/html",
 "text/javascript",
 "text/plain",
 "text/vcard",
 "text/vnd.rim.location.xloc",
 "text/vtt",
 "text/x-component",
 "text/x-cross-domain-policy",
 "text/xml"
)

DEFAULT_ACL

	
DEFAULT_ACL

	Set the access control level of the files uploaded. Defaults to ‘public-read’

defaults to 'public-read',
DEFAULT_ACL = 'public-read'

BAKERY_CACHE_CONTROL

	
BAKERY_CACHE_CONTROL

	Set cache-control headers based on content type. Headers are set using the max-age= format so the passed values should be in seconds ('text/html': 900 would result in a Cache-Control: max-age=900 header for all text/html files). By default, none are set.

BAKERY_CACHE_CONTROL = {
 'text/html': 900,
 'application/javascript': 86400
}

Management commands

Custom Django management commands [https://docs.djangoproject.com/en/dev/ref/django-admin/] for
this library that help make things happen.

build

Bake out a site as flat files in the build directory, defined in settings.py by BUILD_DIR.

By default, this wipes the build directory if it exists, then builds
any static files in the STATIC_ROOT to the STATIC_URL,
any media files in the MEDIA_ROOT to the MEDIA_URL and
all pages generated by the buildable views listed in BAKERY_VIEWS.

As a small bonus, files named robots.txt and favicon.ico will be placed
at the build directory’s root if discovered at the STATIC_ROOT.

Defaults can be modified with the following command options.

	
--build_dir <path>

	Specify the path of the build directory. Will use settings.BUILD_DIR by default.

	
--keep-build-dir

	Skip deleting and recreating the build directory before building files. By
default the entire directory is wiped out.

	
--skip-static

	Skip collecting the static files when building.

	
--skip-media

	Skip collecting the media files when building.

$ python manage.py build

View names passed as arguments will override the BAKERY_VIEWS list.

$ python manage.py yourapp.views.DummyL­istView

buildserver

Starts a variation of Django’s runserver [https://docs.djangoproject.com/en/dev/ref/django-admin/#runserver-port-or-address-port] designed to serve the static files you’ve built
in the build directory.

$ python manage.py buildserver

publish

Syncs your Amazon S3 bucket to be identical to the local build directory. New files are uploaded,
changed files are updated and absent files are deleted.

	
--aws-bucket-name <name>

	Specify the AWS bucket to sync with. Will use settings.AWS_BUCKET_NAME by default.

	
--build_dir <path>

	Specify the path of the build directory. Will use settings.BUILD_DIR by default.

	
--force

	Force a re-upload of all files in the build directory to the AWS bucket.

	
--dry-run

	Provide output of what the command would perform, but without changing anything.

	
--no-delete

	Keep files in S3, even if they do not exist in the build directory. The
default behavior is to delete files in the bucket that are not in the
build directory.

$ python manage.py publish

unbuild

Empties the build directory.

$ python manage.py unbuild

unpublish

Empties the Amazon S3 bucket defined in settings.py.

$ python manage.py unpublish

Changelog

0.12.7

	Expanded feeds framework support

0.12.6

	Refactored BuildableTemplateView to allow for using reverse_lazy to concoct the build path.

0.12.5

	Small logging improvement

0.12.4

	Moved fs config from the AppConfig’s out of the ready method and set it as a base attribute on the class.

0.12.0

	Refactored the build methods to write to files using the PyFilesystem [https://docs.pyfilesystem.org/en/latest/index.html] interface

0.11.1

	Skip gzipping of static files that are already gzipped.

0.11.0

	Django 2.0 testing and support.

0.10.5

	Added get_view_instance method to the build command to allow for more creative subclassing.

0.10.4

	Patched the publish command to calculate multipart md5 checksums for uploads large enough to trigger boto3’s automatic multipart upload. This prevents large files from being improperly reuploaded during syncs.

0.10.3

	AWS_REGION setting now passed on to the s3 connection as an initialization option.

0.10.2

	Added a --aws-bucket-prefix option to the publish command. When specified, the local files will be synced with only those files in the bucket that have that prefix.

0.10.0

	Default pooling of file comparisons between published and local files for faster performance

	Option to opt-in to pooling of building of files locally for faster performance

	When --force and --no-delete options are both passed to publish command the s3 object list is not retrieved for faster performance

0.9.3

	Restored RedirectView boto code after upgrading it to boto3.

0.9.2

	Removed boto code from RedirectView until we can figure out a boto3 replacement.

0.9.1

	Added S3_ENDPOINT_URL for boto3 configuration and a fallback so we can continue to support the boto convention of S3_AWS_HOST

0.9.0

	Replaced boto dependency with boto3 and refactored publish command to adjust

	More verbose logging of gzipped paths during build routine

	Reduced some logging in management commands when verbosity=0

	Added testing for Django 1.11

0.8.14

	Management command drops six.print for self.output.write

	Only strip first slash of urls with lstrip

0.8.13

	Fixed bug in BuildableDayArchiveView argument handling.

0.8.12

	Added create_request method to the base view mixin so there’s a clearer method for overriding the creation of a RequestFactory when building views.

0.8.10

	Expanded default GZIP_CONTENT_TYPES to cover SVGs and everything else recommended by the HTML5 boilerplate guides [https://github.com/h5bp/server-configs-apache].

0.8.9

	Removed CommandError exception handling in build command because errors should never pass silently, unless explicitly silenced.

0.8.8

	Django 1.10 support and testing

0.8.7

	get_month and get_year fix on the month archive view

0.8.6

	get_year fix on the year archive view.

0.8.5

	get_absolute_url bug fix on detail view.

0.8.3

	Added support for AWS_S3_HOST variable to override the default with connecting to S3 via boto.

0.8.2

	Upgraded to Django new style of management command options.

0.8.1

	Patch to allow for models to be imported with django.contrib.contenttypes being installed.

0.8.0

	Added new date-based archive views BuildableArchiveIndexView, BuildableYearArchiveView, BuildableMonthArchiveView, BuildableDayArchiveView

	get_url method on the BuildableDetailView now raises a ImproperlyConfigured error

	Refactored views into separate files

0.7.8

	Improved error handling and documentation of BuildableDetailView’s get_url method.

0.7.7

	Patch provided backwards compatibility to a boto bug fix.

0.7.6

	Patched set_kwargs to override the key name of the slug when it is configured by the detail view’s slug_field setting

0.7.5

	BAKERY_CACHE_CONTROL settings variable and support

	Better tests for publish and unpublish

	Delete operations in publish and unpublish command breaks keys into batches to avoid S3 errors on large sets

0.7.4

	Fixed content_type versus mimetype bug in the static views for Django 1.7 and 1.8

	A few other small Python 3 related bugs

0.7.3

	Added a --no-delete option to the publish management command.

	Fixed testing in Django 1.7

0.7.1

	Added BuildableRedirectView

0.6.4

	Added BuildableFeed for RSS support

0.6.3

	Changed AutoPublishingBuildableModel to commit to the database before triggering a task

	Changed celery tasks to accept primary keys instead of model objects

0.6.0

	An AutoPublishingBuildableModel that is able to use a Celery job queue to automatically build and publish objects when they are saved

	Refactored build management command to allow for its different tasks to be more easily overridden

	Added a --keep-build-dir option to the build command.

0.5.0

	Refactored the publish and unpublish management commands to use boto instead of s3cmd.

	build and publish management commands use file mimetypes instead of a regex on the filename to decide if a file will be gzipped.

	publish management command includes –force and –dry-run uploads to force an upload of all file, regardless of changes, and to print output without uploading files, respectively.

	publish management command now pools uploads to increase speed

0.4.2

	Added a get_content method to all of the buildable views to make it easier to build pages that don’t require a template, like JSON outputs

0.4.1

	Bug fix with calculating Python version in the views in v0.4.0

0.4.0

	Added optional gzip support to build routine for Amazon S3 publishing (via @emamd [https://twitter.com/emamd])

	Mixin buildable view with common methods

0.3.0

	Python 3 support

	Unit tests

	Continuous integration test by Travis CI

	Coverage reporting by Coveralls.io

	PEP8 compliance

	PyFlakes compliance

	Refactored buildserver management command to work with latest versions of Django

0.2.0

	Numerous bug fixes

0.1.0

	Initial release [http://datadesk.latimes.com/posts/2012/03/introducing-django-bakery/]

Credits

This ap­plic­a­tion was written by Ben Welsh [http://palewi.re/who-is-ben-welsh/], Ken Schwencke [http://schwanksta.com/] and Armand Emamdjomeh [https://twitter.com/emamd] at the Los Angeles Times Data Desk [http://datadesk.latimes.com].

The ideas be­hind django-bakery were first presented at the 2012 con­fer­ence [https://docs.google.com/presentation/d/1IybYcc0eVL-Rchm7lEQNwrM-AHRfr_M8ewfGYYNjeu8/edit] of the Na­tion­al In­sti­tute for Com­puter-As­sisted Re­port­ing [http://www.ire.org/nicar/]. The NICAR com­munity is a con­stant source of chal­lenge and in­spir­a­tion. Many of our ideas, here and else­where, have been ad­ap­ted from things the com­munity has taught us.

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | G
 | M
 | P
 | Q
 | S
 | T
 | U

Symbols

 	
 	
 --aws-bucket-name <name>

 	command line option

 	
 --build_dir <path>

 	command line option, [1]

 	
 --dry-run

 	command line option

 	
 --force

 	command line option

 	
 	
 --keep-build-dir

 	command line option

 	
 --no-delete

 	command line option

 	
 --skip-media

 	command line option

 	
 --skip-static

 	command line option

_

 	
 	_build_extra() (BuildableModel method)

 	
 	_build_related() (BuildableModel method)

 	_unbuild_extra() (BuildableModel method)

A

 	
 	AutoPublishingBuildableModel (built-in class)

B

 	
 	build() (BuildableModel method)

 	(BuildableTemplateView method)

 	build_dated_queryset() (BuildableDayArchiveView method)

 	(BuildableMonthArchiveView method)

 	(BuildableYearArchiveView method)

 	build_day() (BuildableDayArchiveView method)

 	build_method (BuildableArchiveIndexView attribute)

 	(BuildableDayArchiveView attribute)

 	(BuildableDetailView attribute)

 	(BuildableFeed attribute)

 	(BuildableListView attribute)

 	(BuildableMonthArchiveView attribute)

 	(BuildableTemplateView attribute)

 	(BuildableYearArchiveView attribute)

 	build_month() (BuildableMonthArchiveView method)

 	build_object() (BuildableDetailView method)

 	build_path (BuildableArchiveIndexView attribute)

 	(BuildableFeed attribute)

 	(BuildableListView attribute)

 	(BuildableRedirectView attribute)

 	(BuildableTemplateView attribute)

 	
 	build_queryset() (BuildableArchiveIndexView method)

 	(BuildableDetailView method)

 	(BuildableFeed method)

 	(BuildableListView method)

 	build_year() (BuildableYearArchiveView method)

 	Buildable404View (built-in class)

 	BuildableArchiveIndexView (built-in class)

 	BuildableDayArchiveView (built-in class)

 	BuildableDetailView (built-in class)

 	BuildableFeed (built-in class)

 	BuildableListView (built-in class)

 	BuildableModel (built-in class)

 	BuildableMonthArchiveView (built-in class)

 	BuildableRedirectView (built-in class)

 	BuildableTemplateView (built-in class)

 	BuildableYearArchiveView (built-in class)

C

 	
 	
 command line option

 	--aws-bucket-name <name>

 	--build_dir <path>, [1]

 	--dry-run

 	--force

 	--keep-build-dir

 	--no-delete

 	--skip-media

 	--skip-static

D

 	
 	delete() (AutoPublishingBuildableModel method)

 	
 	detail_views (BuildableModel attribute)

E

 	
 	
 environment variable

 	ALLOW_BAKERY_AUTO_PUBLISHING

 	AWS_ACCESS_KEY_ID

 	AWS_BUCKET_NAME

 	AWS_REGION

 	AWS_S3_ENDPOINT

 	AWS_SECRET_ACCESS_KEY

 	BAKERY_CACHE_CONTROL

 	BAKERY_FILESYSTEM

 	BAKERY_GZIP

 	BAKERY_VIEWS

 	BUILD_DIR

 	DEFAULT_ACL

 	GZIP_CONTENT_TYPES

G

 	
 	get_build_path() (BuildableDayArchiveView method)

 	(BuildableDetailView method)

 	(BuildableMonthArchiveView method)

 	(BuildableYearArchiveView method)

 	get_html() (BuildableDetailView method)

 	
 	get_publication_status() (AutoPublishingBuildableModel method)

 	get_queryset() (BuildableFeed method)

 	get_url() (BuildableDayArchiveView method)

 	(BuildableDetailView method)

 	(BuildableMonthArchiveView method)

 	(BuildableYearArchiveView method)

M

 	
 	model (BuildableArchiveIndexView attribute)

 	(BuildableDayArchiveView attribute)

 	(BuildableDetailView attribute)

 	(BuildableListView attribute)

 	(BuildableMonthArchiveView attribute)

 	(BuildableYearArchiveView attribute)

P

 	
 	publication_status_field (AutoPublishingBuildableModel attribute)

Q

 	
 	queryset (BuildableArchiveIndexView attribute)

 	(BuildableDayArchiveView attribute)

 	(BuildableDetailView attribute)

 	(BuildableListView attribute)

 	(BuildableMonthArchiveView attribute)

 	(BuildableYearArchiveView attribute)

S

 	
 	save() (AutoPublishingBuildableModel method)

T

 	
 	template_name (BuildableArchiveIndexView attribute)

 	(BuildableDayArchiveView attribute)

 	(BuildableDetailView attribute)

 	(BuildableListView attribute)

 	(BuildableMonthArchiveView attribute)

 	(BuildableTemplateView attribute)

 	(BuildableYearArchiveView attribute)

U

 	
 	unbuild() (BuildableModel method)

 	unbuild_day() (BuildableDayArchiveView method)

 	unbuild_month() (BuildableMonthArchiveView method)

 	
 	unbuild_object() (BuildableDetailView method)

 	unbuild_year() (BuildableYearArchiveView method)

 	url (BuildableRedirectView attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 django-bakery

 		
 Getting started

 		
 Installation

 		
 Configuration

 		
 Execution

 		
 Optimization

 		
 Common challenges

 		
 Configuring where detail pages are built

 		
 Building JSON instead of HTML

 		
 Building a single view on demand

 		
 Enabling Amazon’s accelerated uploads

 		
 Buildable views

 		
 BuildableTemplateView

 		
 BuildableListView

 		
 BuildableDetailView

 		
 BuildableArchiveIndexView

 		
 BuildableYearArchiveView

 		
 BuildableMonthArchiveView

 		
 BuildableDayArchiveView

 		
 Buildable404View

 		
 BuildableRedirectView

 		
 Buildable models

 		
 Models that build themselves

 		
 BuildableModel

 		
 Models that publish themselves

 		
 AutoPublishingBuildableModel

 		
 Buildable feeds

 		
 BuildableFeed

 		
 Settings variables

 		
 ALLOW_BAKERY_AUTO_PUBLISHING

 		
 BUILD_DIR

 		
 BAKERY_FILESYSTEM

 		
 BAKERY_VIEWS

 		
 AWS_BUCKET_NAME

 		
 AWS_ACCESS_KEY_ID

 		
 AWS_SECRET_ACCESS_KEY

 		
 AWS_REGION

 		
 AWS_S3_ENDPOINT

 		
 BAKERY_GZIP

 		
 GZIP_CONTENT_TYPES

 		
 DEFAULT_ACL

 		
 BAKERY_CACHE_CONTROL

 		
 Management commands

 		
 build

 		
 buildserver

 		
 publish

 		
 unbuild

 		
 unpublish

 		
 Changelog

 		
 0.12.7

 		
 0.12.6

 		
 0.12.5

 		
 0.12.4

 		
 0.12.0

 		
 0.11.1

 		
 0.11.0

 		
 0.10.5

 		
 0.10.4

 		
 0.10.3

 		
 0.10.2

 		
 0.10.0

 		
 0.9.3

 		
 0.9.2

 		
 0.9.1

 		
 0.9.0

 		
 0.8.14

 		
 0.8.13

 		
 0.8.12

 		
 0.8.10

 		
 0.8.9

 		
 0.8.8

 		
 0.8.7

 		
 0.8.6

 		
 0.8.5

 		
 0.8.3

 		
 0.8.2

 		
 0.8.1

 		
 0.8.0

 		
 0.7.8

 		
 0.7.7

 		
 0.7.6

 		
 0.7.5

 		
 0.7.4

 		
 0.7.3

 		
 0.7.1

 		
 0.6.4

 		
 0.6.3

 		
 0.6.0

 		
 0.5.0

 		
 0.4.2

 		
 0.4.1

 		
 0.4.0

 		
 0.3.0

 		
 0.2.0

 		
 0.1.0

 		
 Credits

_static/up-pressed.png

_static/up.png

_static/plus.png

