

 Navigation

 	
 index

 	
 next |

 	discord.py 0.9.2 documentation

Welcome to discord.py’s documentation!

Contents:

	Setting Up Logging

	API Reference
	Client

	Utility Functions

	Data Classes

	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Rapptz.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	discord.py 0.9.2 documentation

New in version 0.6.0.

Setting Up Logging

discord.py logs errors and debug information via the logging [https://docs.python.org/2/library/logging.html] python
module. It is strongly recommended that the logging module is
configured, as no errors or warnings will be output if it is not set up.
Configuration of the logging module can be as simple as:

import logging

logging.basicConfig(level=logging.INFO)

Placed at the start of the application. This will output the logs from
discord as well as other libraries that uses the logging module
directly to the console.

The optinal level argument specifies what level of events to log
out and can any of CRITICAL, ERROR, WARNING, INFO, and
DEBUG and if not specified defaults to WARNING.

More advance setups are possible with the logging module. To for
example write the logs to a file called discord.log instead of
outputting them to to the console the following snippet can be used:

import discord
import logging

logger = logging.getLogger('discord')
logger.setLevel(logging.DEBUG)
handler = logging.FileHandler(filename='discord.log', encoding='utf-8', mode='w')
handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s:%(name)s: %(message)s'))
logger.addHandler(handler)

This is recommended, especially at verbose levels such as INFO,
and DEBUG as there are a lot of events logged and it would clog the
stdout of your program.

For more information, check the documentation and tutorial of the
logging [https://docs.python.org/2/library/logging.html] module.

 Copyright 2015, Rapptz.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	discord.py 0.9.2 documentation

API Reference

The following section outlines the API of discord.py.

Note

This module uses the Python logging module to log diagnostic and errors
in an output independent way. If the logging module is not configured,
these logs will not be output anywhere. See Setting Up Logging for
more information on how to set up and use the logging module with
discord.py.

Client

	
class discord.Client(**kwargs)

	Represents a client connection that connects to Discord.
This class is used to interact with the Discord WebSocket and API.

A number of options can be passed to the Client via keyword arguments.

	Parameters:	max_length (int) – The maximum number of messages to store in messages. Defaults to 5000.

Instance attributes:

	
user

	A User that represents the connected client. None if not logged in.

	
servers

	A list of Server that the connected client has available.

	
private_channels

	A list of PrivateChannel that the connected client is participating on.

	
messages

	A deque [https://docs.python.org/3.4/library/collections.html#collections.deque] of Message that the client has received from all servers and private messages.

	
email

	The email used to login. This is only set if login is successful, otherwise it’s None.

	
accept_invite(invite)

	Accepts an Invite, URL or ID to an invite.

The URL must be a discord.gg URL. e.g. “http://discord.gg/codehere”.
An ID for the invite is just the “codehere” portion of the invite URL.

This function raises HTTPException if the request failed. If
the invite is invalid, then InvalidArgument is raised.

	Parameters:	invite – The Invite or URL to an invite to accept.

	
add_roles(member, *roles)

	Gives the specified Member a number of Role s.

You must have the proper permissions to use this function.
This function raises HTTPException if the request failed.

This method appends a role to a member.

	Parameters:	
	member – The Member to give roles to.

	roles – An argument list of Role s to give the member.

	
ban(server, user)

	Bans a User from their respective Server.

You must have the proper permissions to ban a user in the server.

This function raises HTTPException if the request failed.

	Parameters:	
	server – The Server to ban the member from.

	user – The User to ban.

	
change_status(game=None, idle=False)

	Changes the client’s status.

The game parameter is a Game object that represents a game being played
currently. May be None if no game is being played.

The idle parameter is a boolean parameter that indicates whether the
client should go idle or not.

	Parameters:	
	game – A Game object representing the game being played. None if no game is being played.

	idle – A boolean indicating if the client should go idle.

	
create_channel(server, name, type='text')

	Creates a Channel in the specified Server.

Note that you need the proper permissions to create the channel.

This function raises HTTPException if the request failed.

	Parameters:	
	server – The Server to create the channel in.

	name – The channel’s name.

	type – The type of channel to create. ‘text’ or ‘voice’.

	Returns:	The newly created Channel.

	
create_invite(destination, **options)

	Creates an invite for the destination which could be either a Server or Channel.

This function raises HTTPException if the request failed.

The available options are:

	Parameters:	
	destination – The Server or Channel to create the invite to.

	max_age – How long the invite should last. If it’s 0 then the invite doesn’t expire. Defaults to 0.

	max_uses – How many uses the invite could be used for. If it’s 0 then there are unlimited uses. Defaults to 0.

	temporary – A boolean to denote that the invite grants temporary membership (i.e. they get kicked after they disconnect). Defaults to False.

	xkcd – A boolean to indicate if the invite URL is human readable. Defaults to False.

	Returns:	The Invite if creation is successful.

	
create_role(server, **fields)

	Creates a Role.

The fields parameter is the same as edit_role().

This function raises HTTPException if the request failed.

	Returns:	The Role that was created.

	
delete_channel(channel)

	Deletes a channel.

In order to delete the channel, the client must have the proper permissions
in the server the channel belongs to.

This function raises HTTPException if the request failed.

	Parameters:	channel – The Channel to delete.

	
delete_channel_permissions(channel, target)

	Removes a channel specific permission overwrites for a target
in the specified Channel.

The target parameter follows the same rules as set_channel_permissions().

You must have the proper permissions to do this.
This function raises HTTPException if the request failed.

	Parameters:	
	channel – The Channel to give the specific permissions for.

	target – The Member or Role to overwrite permissions for.

	
delete_message(message)

	Deletes a Message.

Your own messages could be deleted without any proper permissions. However to
delete other people’s messages, you need the proper permissions to do so.

This function raises HTTPException if the request failed.

	Parameters:	message – The Message to delete.

	
delete_role(server, role)

	Deletes the specified Role for the entire Server.

Works in a similar matter to edit_role().
This function raises HTTPException if the request failed.

	Parameters:	
	server – The Server the role belongs to.

	role – The Role to delete.

	
edit_channel(channel, **options)

	Edits a Channel.

You must have the proper permissions to edit the channel.

References pointed to the channel will be updated with the new information.

This function raises HTTPException if the request failed.

	Parameters:	
	channel – The Channel to update.

	name – The new channel name.

	position – The new channel’s position in the GUI.

	topic – The new channel’s topic.

	
edit_message(message, new_content, mentions=True)

	Edits a Message with the new message content.

The new_content must be able to be transformed into a string via str(new_content).

This function raises HTTPException if the request failed.

	Parameters:	
	message – The Message to edit.

	new_content – The new content to replace the message with.

	mentions – The mentions for the user. Same as send_message().

	Returns:	The new edited message.

	
edit_profile(password, **fields)

	Edits the current profile of the client.

All fields except password are optional.

This function raises HTTPException if the request failed.

To upload an avatar, a bytes-like object must be passed in that
represents the image being uploaded. If this is done through a file
then the file must be opened via open('some_filename', 'rb') and
the bytes-like object is given through the use of fp.read().

The only image formats supported for uploading is JPEG and PNG.

	Parameters:	
	password – The current password for the client’s account.

	new_password – The new password you wish to change to.

	email – The new email you wish to change to.

	username – The new username you wish to change to.

	avatar – A bytes-like object representing the image to upload.

	
edit_role(server, role, **fields)

	Edits the specified Role for the entire Server.

This function raises HTTPException if the request failed.

Changed in version 0.8.0: Editing now uses keyword arguments instead of editing the Role object directly.

Note

At the moment, the Discord API allows you to set the colour to any
RGB value. This will change in the future so it is recommended that
you use the constants in the Colour instead such as
Colour.green().

	Parameters:	
	server – The Server the role belongs to.

	role – The Role to edit.

	name – The new role name to change to. (optional)

	permissions – The new Permissions to change to. (optional)

	colour – The new Colour to change to. (optional) (aliased to color as well)

	hoist – A boolean indicating if the role should be shown separately. (optional)

	
event(function)

	A decorator that registers an event to listen to.

You can find more info about the events on the documentation below.

Example:

@client.event
def on_ready():
 print('Ready!')

	
get_all_channels()

	Returns a generator with every Channel the client can ‘access’.

This is equivalent to:

for server in client.servers:
 for channel in server.channels:
 yield channel

Note that just because you receive a Channel does not mean that
you can communicate in said channel. Channel.permissions_for() should
be used for that.

	
get_all_members()

	Returns a generator with every Member the client can see.

This is equivalent to:

for server in client.servers:
 for member in server.members:
 yield member

	
get_channel(id)

	Returns a Channel or PrivateChannel with the
following ID. If not found, returns None.

	
get_invite(url)

	Returns a Invite object from the discord.gg invite URL or ID.

Note

If the invite is for a server you have not joined, the server and channel
attributes of the returned invite will be Object with the names
patched in.

	
is_logged_in

	Returns True if the client is successfully logged in. False otherwise.

	
kick(server, user)

	Kicks a User from their respective Server.

You must have the proper permissions to kick a user in the server.

This function raises HTTPException if the request failed.

	Parameters:	
	server – The Server to kick the member from.

	user – The User to kick.

	
leave_server(server)

	Leaves a Server.

This function raises HTTPException if the request failed.

	Parameters:	server – The Server to leave.

	
login(email, password)

	Logs in the user with the following credentials and initialises
the connection to Discord.

After this function is called, is_logged_in returns True if no
errors occur. If an error occurs during the login process, then
LoginFailure or HTTPException is raised.

This function raises GatewayNotFound if it was unavailable to connect
to a websocket gateway.

	Parameters:	
	email (str) – The email used to login.

	password (str) – The password used to login.

	
logout()

	Logs out of Discord and closes all connections.

	
logs_from(channel, limit=100, before=None, after=None)

	A generator that obtains logs from a specified channel.

Yielding from the generator returns a Message object with the message data.

Will return the newest messages within the specified range, up to limit messages.

This function raises HTTPException if the request failed.

Example:

for message in client.logs_from(channel):
 if message.content.startswith('!hello'):
 if message.author == client.user:
 client.edit_message(message, 'goodbye')

	Parameters:	
	channel – The Channel to obtain the logs from.

	limit – The number of messages to retrieve.

	before – Message before which all returned messages must be.

	after – Message after which all returned messages must be.

	
register(username, invite, fingerprint=None)

	Register a new unclaimed account using an invite to a server.

After this function is called, the client will be logged in to the
user created and is_logged_in returns True if no errors
occur.

This function raises GatewayNotFound if the gateway to
connect the websocket is not found. It also raises HTTPException
if the request failed.

	Parameters:	
	username (str) – The username to register as.

	invite – An invite URL, ID, or Invite to register with.

	fingerprint (str) – Unknown API parameter, defaults to None

	
remove_roles(member, *roles)

	Removes the Role s from the Member.

You must have the proper permissions to use this function.
This function raises HTTPException if the request failed.

	Parameters:	
	member – The Member to remove roles from.

	roles – An argument list of Role s to remove from the member.

	
replace_roles(member, *roles)

	Replaces the Member‘s roles.

You must have the proper permissions to use this function.

This function replaces all roles that the member has.
For example if the member has roles [a, b, c] and the
call is client.replace_roles(member, d, e, c) then
the member has the roles [d, e, c].

This function raises HTTPException if the request failed.

	Parameters:	
	member – The Member to replace roles for.

	roles – An argument list of Role s to replace with.

	
run()

	Runs the client and allows it to receive messages and events.

This function can raise a GatewayNotFound exception while attempting
to reconnect.

Note

This function attempts to reconnect if the websocket got closed
without explicitly calling logout(). When this reconnect is
triggered, the discord.on_ready() event is called again.

	
send_file(destination, fp, filename=None)

	Sends a message to the destination given with the file given.

The destination parameter follows the same rules as send_message().

The fp parameter should be either a string denoting the location for a
file or a file-like object. The file-like object passed is not closed
at the end of execution. You are responsible for closing it yourself.

Note

If the file-like object passed is opened via open then the modes
‘rb’ should be used.

The filename parameter is the filename of the file.
If this is not given then it defaults to fp.name or if fp is a string
then the filename will default to the string given. You can overwrite
this value by passing this in.

Note that this requires proper permissions in order to work.
This function raises HTTPException if the request failed.
It also raises InvalidArgument if fp.name is an invalid
default for filename.

	Parameters:	
	destination – The location to send the message.

	fp – The file-like object or file path to send.

	filename – The filename of the file. Defaults to fp.name if it’s available.

	Returns:	The Message sent.

	
send_message(destination, content, mentions=True, tts=False)

	Sends a message to the destination given with the content given.

The destination could be a Channel, PrivateChannel or Server.
For convenience it could also be a User. If it’s a User or PrivateChannel
then it sends the message via private message, otherwise it sends the message to the channel.
If the destination is a Server then it’s equivalent to calling
Server.get_default_channel() and sending it there. If it is a Object
instance then it is assumed to be the destination ID.

Changed in version 0.9.0: str being allowed was removed and replaced with Object.

The content must be a type that can convert to a string through str(content).

The mentions must be either an array of User to mention or a boolean. If
mentions is True then all the users mentioned in the content are mentioned, otherwise
no one is mentioned. Note that to mention someone in the content, you should use User.mention().

If the destination parameter is invalid, then this function raises InvalidArgument.
This function raises HTTPException if the request failed.

	Parameters:	
	destination – The location to send the message.

	content – The content of the message to send.

	mentions – A list of User to mention in the message or a boolean. Ignored for private messages.

	tts – If True, sends tries to send the message using text-to-speech.

	Returns:	The Message sent.

	
send_typing(destination)

	Send a “typing” status to the destination.

“Typing” status will go away after 10 seconds, or after a message is sent.

The destination parameter follows the same rules as send_message().

	Parameters:	destination – The location to send the typing update.

	
set_channel_permissions(channel, target, allow=None, deny=None)

	Sets the channel specific permission overwrites for a target in the
specified Channel.

The target parameter should either be a Member or a
Role that belongs to the channel’s server.

You must have the proper permissions to do this.

This function raises HTTPException if the request failed.
This function also raises InvalidArgument if invalid arguments are
passed to this function.

Example code:

allow = discord.Permissions.none()
deny = discord.Permissions.none()
allow.can_mention_everyone = True
deny.can_manage_messages = True
client.set_channel_permissions(message.channel, message.author, allow, deny)

	Parameters:	
	channel – The Channel to give the specific permissions for.

	target – The Member or Role to overwrite permissions for.

	allow – A Permissions object representing the permissions to explicitly allow. (optional)

	deny – A Permissions object representing the permissions to explicitly deny. (optional)

	
start_private_message(user)

	Starts a private message with the user. This allows you to send_message() to it.

Note that this method should rarely be called as send_message() does it automatically.

This function raises HTTPException if the request failed.

	Parameters:	user – A User to start the private message with.

	
unban(server, user)

	Unbans a User from their respective Server.

You must have the proper permissions to unban a user in the server.

This function raises HTTPException if the request failed.

	Parameters:	
	server – The Server to unban the member from.

	user – The User to unban.

	Returns:	True if unban was successful, False otherwise.

Event Reference

This page outlines the different types of events listened by Client.

There are two ways to register an event, the first way is through the use of
Client.event(). The second way is through subclassing Client and
overriding the specific events. For example:

import discord

class MyClient(discord.Client):
 def on_message(self, message):
 self.send_message(message.channel, 'Hello World!')

If an event handler raises an exception, on_error() will be called
to handle it, which defaults to print a traceback and ignore the exception.

New in version 0.7.0: Subclassing to listen to events.

	
discord.on_ready()

	Called when the client is done preparing the data received from Discord. Usually after login is successful
and the Client.servers and co. are filled up.

	
discord.on_error(event, *args, **kwargs)

	Usually when an event raises an uncaught exception, a traceback is
printed to stderr and the exception is ignored. If you want to
change this behaviour and handle the exception for whatever reason
yourself, this event can be overridden. Which, when done, will
supress the default action of printing the traceback.

The information of the exception rasied and the exception itself can
be retreived with a standard call to sys.exc_info().

If you want exception to propogate out of the Client class
you can define an on_error handler consisting of a single empty
raise statement. Exceptions raised by on_error will not be
handled in any way by Client.

	Parameters:	
	event – The name of the event that raised the exception.

	args – The positional arguments for the event that raised the
exception.

	kwargs – The keyword arguments for the event that raised the
execption.

	
discord.on_message(message)

	Called when a message is created and sent to a server.

	Parameters:	message – A Message of the current message.

	
discord.on_socket_opened()

	Called whenever the websocket is successfully opened. This is not the same thing as being ready.
For that, use on_ready().

	
discord.on_socket_closed()

	Called whenever the websocket is closed, through an error or otherwise.

	
discord.on_socket_update(event, data)

	Called whenever a recognised websocket event is found. This function would normally be not be
called as there are higher level events in the library such as on_message().

	Parameters:	
	event (str) – The string of the event received. e.g. READY.

	data – The data associated with the socket event. Usually a dict.

	
discord.on_socket_response(response)

	Called whenever a message is received from the websocket. Used mainly for debugging purposes.
The parameter passed is raw data that was parsed via json.loads. Note that this is called
before the Client processes the event.

	Parameters:	response – The received message response after gone through json.loads.

	
discord.on_socket_raw_receive(msg)

	Called whenever a message is received from the websocket, before
it’s processed. Unlike on_socket_response this event is always
dispatched when a message is received and the passed data is not
processed in any way.

This is only really useful for grabing the websocket stream and
debugging purposes.

	Parameters:	msg – The message passed on from the ws4py library. Can be an
instance of either ws4py.messaging.TextMessage, or
ws4py.messaging.BinaryMessage.

	
discord.on_socket_raw_send(payload, binary=False)

	Called whenever a send operation is done on the websocket before the
message is sent. The passed parameter is the message that is to
sent to the websocket.

This is only really useful for grabing the websocket stream and
debugging purposes.

Note

If the payload parameter is mutable, and modified during the
execution of this event, then the actual data sent out on the
websocket will be mangled. This is especially true if
payload is a generator, as reading them modifies their
state.

	Parameters:	
	payload – The message that is about to be passed on to the
ws4py library. It can be any of a string, a bytearray, an
instance of ws4py.message.Message and a generator.

	binary (bool) – True if the message being sent out is marked as
binary.

	
discord.on_message_delete(message)

	
discord.on_message_edit(before, after)

	Called when a message is deleted or edited from any given server. If the message is not found in the
Client.messages cache, then these events will not be called. This happens if the message
is too old or the client is participating in high traffic servers. To fix this, increase
the max_length option of Client.

	Parameters:	
	message – A Message of the deleted message.

	before – A Message of the previous version of the message.

	after – A Message of the current version of the message.

	
discord.on_status(member, old_game, old_status)

	Called whenever a Member changes their status or game playing status.

	Parameters:	
	member – The Member who has had their status changed.

	old_game_id – The Game the member had before it changed.

	old_status – The status the member had before it changed.

	
discord.on_channel_delete(channel)

	
discord.on_channel_create(channel)

	Called whenever a channel is removed or added from a server.

Note that you can get the server from Channel.server.
on_channel_create() could also pass in a PrivateChannel depending
on the value of Channel.is_private.

	Parameters:	channel – The Channel that got added or deleted.

	
discord.on_channel_update(channel)

	Called whenever a channel is updated. e.g. changed name, topic, permissions.

	Parameters:	channel – The Channel that got updated.

	
discord.on_member_join(member)

	
discord.on_member_remove(member)

	Called when a Member leaves or joins a Server.

	Parameters:	member – The Member that joined or left.

	
discord.on_member_update(before, after)

	Called when a Member updates their profile.

This is called when one or more of the following things change:

	status

	game playing

	avatar

	nickname

	Parameters:	
	before – The Member that updated their profile with the old info.

	after – The Member that updated their profile with the updated info.

	
discord.on_server_join(server)

	Called when a Server is either created by the Client or when the
Client joins a server.

	Parameters:	server – The class:Server that was joined.

	
discord.on_server_remove(server)

	Called when a Server is removed from the Client.

This happens through, but not limited to, these circumstances:

	The client got banned.

	The client got kicked.

	The client left the server.

	The client or the server owner deleted the server.

In order for this event to be invoked then the Client must have
been part of the server to begin with. (i.e. it is part of Client.servers)

	Parameters:	server – The Server that got removed.

	
discord.on_server_role_create(server, role)

	
discord.on_server_role_delete(server, role)

	Called when a Server creates or deletes a new Role.

	Parameters:	
	server – The Server that was created or deleted.

	role – The Role that was created or deleted.

	
discord.on_server_role_update(role)

	Called when a Role is changed server-wide.

	Parameters:	role – The Role that was updated.

	
discord.on_server_available(server)

	
discord.on_server_unavailable(server)

	Called when a server becomes available or unavailable. The server must have
existed in the Client.servers cache.

	Parameters:	server – The Server that has changed availability.

	
discord.on_voice_state_update(member)

	Called when a Member changes their voice state.

The following, but not limited to, examples illustrate when this event is called:

	A member joins a voice room.

	A member leaves a voice room.

	A member is muted or deafened by their own accord.

	A member is muted or deafened by a server administrator.

	Parameters:	member – The Member whose voice state changed.

	
discord.on_typing(channel, user, when)

	Called when someone begins typing a message.

The channel parameter could either be a PrivateChannel or a
Channel. If channel is a PrivateChannel then the
user parameter is a User, otherwise it is a Member.

	Parameters:	
	channel – The location where the typing originated from.

	user – The user that started typing.

	when – A datetime.datetime object representing when typing started.

Utility Functions

	
discord.utils.find(predicate, seq)

	A helper to return the first element found in the sequence
that meets the predicate. For example:

member = find(lambda m: m.name == 'Mighty', channel.server.members)

would find the first Member whose name is ‘Mighty’ and return it.

This is different from filter [https://docs.python.org/3.6/library/functions.html#filter] due to the fact it stops the moment it finds
a valid entry.

	Parameters:	
	predicate – A function that returns a boolean-like result.

	seq – The sequence to iterate through.

	Returns:	The first result of the predicate that returned a True-like value or None if nothing was found.

Data Classes

Some classes are just there to be data containers, this lists them.

Note

With the exception of Object, Colour, and Permissions the
data classes listed below are not intended to be created by users and are also
read-only.

For example, this means that you should not make your own User instances
nor should you modify the User instance yourself.

If you want to get one of these data classes instances they’d have to be through
the cache, and a common way of doing so is through the utils.find() function
or attributes of data classes that you receive from the events specified in the
Event Reference.

	
class discord.Object(id)

	Represents a generic Discord object.

The purpose of this class is to allow you to create ‘miniature’
versions of data classes if you want to pass in just an ID. All functions
that take in a specific data class with an ID can also take in this class
as a substitute instead. Note that even though this is the case, not all
objects (if any) actually inherit from this class.

There are also some cases where some websocket events are received
in strange order [https://github.com/Rapptz/discord.py/issues/21] and when such events happened you would
receive this class rather than the actual data class. These cases are
extremely rare.

	
id

	The ID of the object.

	
class discord.User(username, id, discriminator, avatar, **kwargs)

	Represents a Discord user.

Supported Operations:

	Operation
	Description

	x == y
	Checks if two users are equal.

	x != y
	Checks if two users are not equal.

	str(x)
	Returns the user’s name.

Instance attributes:

	
name

	The user’s username.

	
id

	The user’s unique ID.

	
discriminator

	The user’s discriminator. This is given when the username has conflicts.

	
avatar

	The avatar hash the user has. Could be None.

	
avatar_url()

	Returns a friendly URL version of the avatar variable the user has. An empty string if
the user has no avatar.

	
mention()

	Returns a string that allows you to mention the given user.

	
class discord.Message(**kwargs)

	Represents a message from Discord.

There should be no need to create one of these manually.

Instance attributes:

	
edited_timestamp

	A naive UTC datetime object containing the edited time of the message. Could be None.

	
timestamp

	A naive UTC datetime object containing the time the message was created.

	
tts

	A boolean specifying if the message was done with text-to-speech.

	
author

	A Member that sent the message. If channel is a private channel,
then it is a User instead.

	
content

	The actual contents of the message.

	
embeds

	A list of embedded objects. The elements are objects that meet oEmbed’s specification [http://oembed.com/].

	
channel

	The Channel that the message was sent from. Could be a PrivateChannel if it’s a private message.
In very rare cases [https://github.com/Rapptz/discord.py/issues/21] this could be a Object instead.

For the sake of convenience, this Object instance has an attribute is_private set to True.

	
server

	The Server that the message belongs to. If not applicable (i.e. a PM) then it’s None instead.

	
mention_everyone

	A boolean specifying if the message mentions everyone.

Note

This does not check if the @everyone text is in the message itself.
Rather this boolean indicates if the @everyone text is in the message
and it did end up mentioning everyone.

	
mentions

	A list of Member that were mentioned. If the message is in a private message
then the list is always empty.

Warning

The order of the mentions list is not in any particular order so you should
not rely on it. This is a discord limitation, not one with the library.

	
channel_mentions

	A list of Channel that were mentioned. If the message is in a private message
then the list is always empty.

	
id

	The message ID.

	
attachments

	A list of attachments given to a message.

	
get_raw_channel_mentions()

	Returns an array of channel IDs matched with the syntax of
<#channel_id> in the message content.

This allows you receive the channel IDs of mentioned users
even in a private message context.

	
get_raw_mentions()

	Returns an array of user IDs matched with the syntax of
<@user_id> in the message content.

This allows you receive the user IDs of mentioned users
even in a private message context.

	
class discord.Server(**kwargs)

	Represents a Discord server.

Instance attributes:

	
name

	The server name.

	
roles

	A list of Role that the server has available.

	
region

	The region the server belongs on.

	
afk_timeout

	The timeout to get sent to the AFK channel.

	
afk_channel

	The Channel that denotes the AFK channel. None if it doesn’t exist.

	
members

	A list of Member that are currently on the server.

	
channels

	A list of Channel that are currently on the server.

	
icon

	The server’s icon.

	
id

	The server’s ID.

	
owner

	The Member who owns the server.

	
unavailable

	A boolean indicating if the server is unavailable. If this is True then the
reliability of other attributes outside of Server.id() is slim and they might
all be None. It is best to not do anything with the server if it is unavailable.

Check the on_server_unavailable() and on_server_available() events.

	
get_default_channel()

	Gets the default Channel for the server.

	
get_default_role()

	Gets the @everyone role that all members have by default.

	
icon_url()

	Returns the URL version of the server’s icon. Returns None if it has no icon.

	
class discord.Member(**kwargs)

	Represents a Discord member to a Server.

This is a subclass of User that extends more functionality
that server members have such as roles and permissions.

Instance attributes:

	
deaf

	A boolean that specifies if the member is currently deafened by the server.

	
mute

	A boolean that specifies if the member is currently muted by the server.

	
self_mute

	A boolean that specifies if the member is currently muted by their own accord.

	
self_deaf

	A boolean that specifies if the member is currently deafened by their own accord.

	
is_afk

	A boolean that specifies if the member is currently in the AFK channel in the server.

	
voice_channel

	A voice Channel that the member is currently connected to. None if the member
is not currently in a voice channel.

	
roles

	A list of Role that the member belongs to. Note that the first element of this
list is always the default '@everyone‘ role.

	
joined_at

	A datetime object that specifies the date and time in UTC that the member joined the server for
the first time.

	
status

	A string that denotes the user’s status. Can be ‘online’, ‘offline’ or ‘idle’.

	
game

	A dictionary representing the game that the user is currently playing. None if no game is being played.

	
server

	The Server that the member belongs to.

	
class discord.Colour(value)

	Represents a Discord role colour. This class is similar
to an (red, green, blue) tuple.

There is an alias for this called Color.

Supported operations:

	Operation
	Description

	x == y
	Checks if two colours are equal.

	x != y
	Checks if two colours are not equal.

Instance attributes:

	
value

	The raw integer colour value.

	
b

	Returns the blue component of the colour.

	
classmethod blue()

	A factory method that returns a Colour with a value of 0x3498db.

	
classmethod dark_blue()

	A factory method that returns a Colour with a value of 0x206694.

	
classmethod dark_gold()

	A factory method that returns a Colour with a value of 0xc27c0e.

	
classmethod dark_green()

	A factory method that returns a Colour with a value of 0x1f8b4c.

	
classmethod dark_grey()

	A factory method that returns a Colour with a value of 0x607d8b.

	
classmethod dark_magenta()

	A factory method that returns a Colour with a value of 0xad1457.

	
classmethod dark_orange()

	A factory method that returns a Colour with a value of 0xa84300.

	
classmethod dark_purple()

	A factory method that returns a Colour with a value of 0x71368a.

	
classmethod dark_red()

	A factory method that returns a Colour with a value of 0x992d22.

	
classmethod dark_teal()

	A factory method that returns a Colour with a value of 0x11806a.

	
classmethod darker_grey()

	A factory method that returns a Colour with a value of 0x546e7a.

	
classmethod default()

	A factory method that returns a Colour with a value of 0.

	
g

	Returns the green component of the colour.

	
classmethod gold()

	A factory method that returns a Colour with a value of 0xf1c40f.

	
classmethod green()

	A factory method that returns a Colour with a value of 0x2ecc71.

	
classmethod light_grey()

	A factory method that returns a Colour with a value of 0x979c9f.

	
classmethod lighter_grey()

	A factory method that returns a Colour with a value of 0x95a5a6.

	
classmethod magenta()

	A factory method that returns a Colour with a value of 0xe91e63.

	
classmethod orange()

	A factory method that returns a Colour with a value of 0xe67e22.

	
classmethod purple()

	A factory method that returns a Colour with a value of 0x9b59b6.

	
r

	Returns the red component of the colour.

	
classmethod red()

	A factory method that returns a Colour with a value of 0xe74c3c.

	
classmethod teal()

	A factory method that returns a Colour with a value of 0x1abc9c.

	
to_tuple()

	Returns an (r, g, b) tuple representing the colour.

	
class discord.Role(**kwargs)

	Represents a Discord role in a Server.

Instance attributes:

	
id

	The ID for the role.

	
name

	The name of the role.

	
permissions

	A Permissions that represents the role’s permissions.

	
color

	
colour

	A Colour representing the role colour.

	
hoist

	A boolean representing if the role will be displayed separately from other members.

	
position

	The position of the role. This number is usually positive.

	
managed

	A boolean indicating if the role is managed by the server through some form of integration
such as Twitch.

	
is_everyone()

	Checks if the role is the @everyone role.

	
class discord.Permissions(permissions=0, **kwargs)

	Wraps up the Discord permission value.

Class attributes:

	
NONE

	A Permission with all permissions set to False.

	
ALL

	A Permission with all permissions set to True.

	
ALL_CHANNEL

	A Permission with all channel-specific permissions set to True
and the server-specific ones set to False. The server-specific permissions
are currently:

	can_manager_server

	can_kick_members

	can_ban_members

	
GENERAL

	A Permission with all “General” permissions set to True.

	
TEXT

	A Permission with all “Text” permissions set to True.

	
VOICE

	A Permission with all “Voice” permissions set to True.

Instance attributes:

	
value

	The raw value. This value is a bit array field of a 32-bit integer representing the
currently available permissions. You should query permissions via the properties provided rather
than using this raw value.

The properties provided are two way. You can set and retrieve individual bits using the properties as if they
were regular bools. This allows you to edit permissions.

	
classmethod all()

	A factory method that creates a Permission with all
permissions set to True.

	
classmethod all_channel()

	A Permission with all channel-specific permissions set to
True and the server-specific ones set to False. The server-specific
permissions are currently:

	can_manager_server

	can_kick_members

	can_ban_members

	
can_attach_files

	Returns True if a user can send files in their messages.

	
can_ban_members

	Returns True if the user can ban users from the server.

	
can_connect

	Returns True if a user can connect to a voice channel.

	
can_create_instant_invite

	Returns True if the user can create instant invites.

	
can_deafen_members

	Returns True if a user can deafen other users.

	
can_embed_links

	Returns True if a user’s messages will automatically be embedded by Discord.

	
can_kick_members

	Returns True if a user can kick users from the server.

	
can_manage_channels

	Returns True if a user can edit, delete, or create channels in the server.

	
can_manage_messages

	Returns True if a user can delete messages from a text channel. Note that there are currently no ways to edit other people’s messages.

	
can_manage_roles

	Returns True if a user can manage server roles. This role overrides all other permissions.

	
can_manage_server

	Returns True if a user can edit server properties.

	
can_mention_everyone

	Returns True if a user’s @everyone will mention everyone in the text channel.

	
can_move_members

	Returns True if a user can move users between other voice channels.

	
can_mute_members

	Returns True if a user can mute other users.

	
can_read_message_history

	Returns True if a user can read a text channel’s previous messages.

	
can_read_messages

	Returns True if a user can read messages from all or specific text channels.

	
can_send_messages

	Returns True if a user can send messages from all or specific text channels.

	
can_send_tts_messages

	Returns True if a user can send TTS messages from all or specific text channels.

	
can_speak

	Returns True if a user can speak in a voice channel.

	
can_use_voice_activation

	Returns True if a user can use voice activation in voice channels.

	
classmethod general()

	A factory method that creates a Permission with all
“General” permissions set to True.

	
classmethod none()

	A factory method that creates a Permission with all
permissions set to False.

	
classmethod text()

	A factory method that creates a Permission with all
“Text” permissions set to True.

	
classmethod voice()

	A factory method that creates a Permission with all
“Voice” permissions set to True.

	
class discord.Channel(**kwargs)

	Represents a Discord server channel.

Instance attributes:

	
name

	The channel name.

	
server

	The Server the channel belongs to.

	
id

	The channel ID.

	
topic

	The channel’s topic. None if it doesn’t exist.

	
is_private

	True if the channel is a private channel (i.e. PM). False in this case.

	
position

	The position in the channel list.

	
type

	The channel type. Usually 'voice' or 'text'.

	
changed_roles

	A list of Roles that have been overridden from their default
values in the Server.roles attribute.

	
voice_members

	A list of Members that are currently inside this voice channel.
If type is not 'voice' then this is always an empty array.

	
is_default_channel()

	Checks if this is the default channel for the Server it belongs to.

	
mention()

	Returns a string that allows you to mention the channel.

	
permissions_for(member)

	Handles permission resolution for the current Member.

This function takes into consideration the following cases:

	Server owner

	Server roles

	Channel overrides

	Member overrides

	Whether the channel is the default channel.

	Parameters:	member – The Member to resolve permissions for.

	Returns:	The resolved Permissions for the Member.

	
class discord.PrivateChannel(user, id, **kwargs)

	Represents a Discord private channel.

Instance attributes:

	
user

	The User in the private channel.

	
id

	The private channel ID.

	
is_private

	True if the channel is a private channel (i.e. PM). True in this case.

	
permissions_for(user)

	Handles permission resolution for a User.

This function is there for compatibility with Channel.

Actual private messages do not really have the concept of permissions.

This returns all the Text related permissions set to true except:

	can_send_tts_messages: You cannot send TTS messages in a PM.

	can_manage_messages: You cannot delete others messages in a PM.

	can_mention_everyone: There is no one to mention in a PM.

	Parameters:	user – The User to check permissions for.

	Returns:	A Permission with the resolved permission value.

	
class discord.Invite(**kwargs)

	Represents a Discord Server or Channel invite.

Depending on the way this object was created, some of the attributes can
have a value of None.

Instance attributes:

	
max_age

	How long the before the invite expires in seconds. A value of 0 indicates that it doesn’t expire.

	
code

	The URL fragment used for the invite. xkcd is also a possible fragment.

	
server

	The Server the invite is for.

	
revoked

	A boolean indicating if the invite has been revoked.

	
created_at

	A datetime object denoting the time the invite was created.

	
temporary

	A boolean indicating that the invite grants temporary membership.
If True, members who joined via this invite will be kicked upon disconnect.

	
uses

	How many times the invite has been used.

	
max_uses

	How many times the invite can be used.

	
xkcd

	The URL fragment used for the invite if it is human readable.

	
inviter

	The User who created the invite.

	
channel

	The Channel the invite is for.

	
id

	Returns the proper code portion of the invite.

	
url

	A property that retrieves the invite URL.

Exceptions

The following exceptions are thrown by the library.

	
exception discord.DiscordException

	Base exception class for discord.py

Ideally speaking, this could be caught to handle any exceptions thrown from this library.

	
exception discord.ClientException

	Exception that’s thrown when an operation in the Client fails.

These are usually for exceptions that happened due to user input.

	
exception discord.LoginFailure

	Exception that’s thrown when the Client.login() function
fails to log you in from improper credentials or some other misc.
failure.

	
exception discord.HTTPException(response, message=None)

	Exception that’s thrown when an HTTP request operation fails.

	
response

	The response of the failed HTTP request. This is an
instance of requests.Response [http://docs.python-requests.org/en/latest/api/#requests.Response].

	
exception discord.InvalidArgument

	Exception that’s thrown when an argument to a function
is invalid some way (e.g. wrong value or wrong type).

This could be considered the analogous of ValueError and
TypeError except derived from ClientException and thus
DiscordException.

	
exception discord.GatewayNotFound

	An exception that is usually thrown when the gateway hub
for the Client websocket is not found.

 Copyright 2015, Rapptz.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	discord.py 0.9.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	

 	accept_invite() (discord.Client method)

 	add_roles() (discord.Client method)

 	afk_channel (discord.Server attribute)

 	afk_timeout (discord.Server attribute)

 	ALL (discord.Permissions attribute)

 	all() (discord.Permissions class method)

 	

 	ALL_CHANNEL (discord.Permissions attribute)

 	all_channel() (discord.Permissions class method)

 	attachments (discord.Message attribute)

 	author (discord.Message attribute)

 	avatar (discord.User attribute)

 	avatar_url() (discord.User method)

B

 	

 	b (discord.Colour attribute)

 	ban() (discord.Client method)

 	

 	blue() (discord.Colour class method)

C

 	

 	can_attach_files (discord.Permissions attribute)

 	can_ban_members (discord.Permissions attribute)

 	can_connect (discord.Permissions attribute)

 	can_create_instant_invite (discord.Permissions attribute)

 	can_deafen_members (discord.Permissions attribute)

 	can_embed_links (discord.Permissions attribute)

 	can_kick_members (discord.Permissions attribute)

 	can_manage_channels (discord.Permissions attribute)

 	can_manage_messages (discord.Permissions attribute)

 	can_manage_roles (discord.Permissions attribute)

 	can_manage_server (discord.Permissions attribute)

 	can_mention_everyone (discord.Permissions attribute)

 	can_move_members (discord.Permissions attribute)

 	can_mute_members (discord.Permissions attribute)

 	can_read_message_history (discord.Permissions attribute)

 	can_read_messages (discord.Permissions attribute)

 	can_send_messages (discord.Permissions attribute)

 	can_send_tts_messages (discord.Permissions attribute)

 	can_speak (discord.Permissions attribute)

 	

 	can_use_voice_activation (discord.Permissions attribute)

 	change_status() (discord.Client method)

 	changed_roles (discord.Channel attribute)

 	Channel (class in discord)

 	channel (discord.Invite attribute)

 	

 	(discord.Message attribute)

 	channel_mentions (discord.Message attribute)

 	channels (discord.Server attribute)

 	Client (class in discord)

 	ClientException

 	code (discord.Invite attribute)

 	color (discord.Role attribute)

 	Colour (class in discord)

 	colour (discord.Role attribute)

 	content (discord.Message attribute)

 	create_channel() (discord.Client method)

 	create_invite() (discord.Client method)

 	create_role() (discord.Client method)

 	created_at (discord.Invite attribute)

D

 	

 	dark_blue() (discord.Colour class method)

 	dark_gold() (discord.Colour class method)

 	dark_green() (discord.Colour class method)

 	dark_grey() (discord.Colour class method)

 	dark_magenta() (discord.Colour class method)

 	dark_orange() (discord.Colour class method)

 	dark_purple() (discord.Colour class method)

 	dark_red() (discord.Colour class method)

 	dark_teal() (discord.Colour class method)

 	

 	darker_grey() (discord.Colour class method)

 	deaf (discord.Member attribute)

 	default() (discord.Colour class method)

 	delete_channel() (discord.Client method)

 	delete_channel_permissions() (discord.Client method)

 	delete_message() (discord.Client method)

 	delete_role() (discord.Client method)

 	DiscordException

 	discriminator (discord.User attribute)

E

 	

 	edit_channel() (discord.Client method)

 	edit_message() (discord.Client method)

 	edit_profile() (discord.Client method)

 	edit_role() (discord.Client method)

 	

 	edited_timestamp (discord.Message attribute)

 	email (discord.Client attribute)

 	embeds (discord.Message attribute)

 	event() (discord.Client method)

F

 	

 	find() (in module discord.utils)

G

 	

 	g (discord.Colour attribute)

 	game (discord.Member attribute)

 	GatewayNotFound

 	GENERAL (discord.Permissions attribute)

 	general() (discord.Permissions class method)

 	get_all_channels() (discord.Client method)

 	get_all_members() (discord.Client method)

 	get_channel() (discord.Client method)

 	

 	get_default_channel() (discord.Server method)

 	get_default_role() (discord.Server method)

 	get_invite() (discord.Client method)

 	get_raw_channel_mentions() (discord.Message method)

 	get_raw_mentions() (discord.Message method)

 	gold() (discord.Colour class method)

 	green() (discord.Colour class method)

H

 	

 	hoist (discord.Role attribute)

 	

 	HTTPException

I

 	

 	icon (discord.Server attribute)

 	icon_url() (discord.Server method)

 	id (discord.Channel attribute)

 	

 	(discord.Invite attribute)

 	(discord.Message attribute)

 	(discord.Object attribute)

 	(discord.PrivateChannel attribute)

 	(discord.Role attribute)

 	(discord.Server attribute)

 	(discord.User attribute)

 	InvalidArgument

 	Invite (class in discord)

 	inviter (discord.Invite attribute)

 	

 	is_afk (discord.Member attribute)

 	is_default_channel() (discord.Channel method)

 	is_everyone() (discord.Role method)

 	is_logged_in (discord.Client attribute)

 	is_private (discord.Channel attribute)

 	

 	(discord.PrivateChannel attribute)

J

 	

 	joined_at (discord.Member attribute)

K

 	

 	kick() (discord.Client method)

L

 	

 	leave_server() (discord.Client method)

 	light_grey() (discord.Colour class method)

 	lighter_grey() (discord.Colour class method)

 	login() (discord.Client method)

 	

 	LoginFailure

 	logout() (discord.Client method)

 	logs_from() (discord.Client method)

M

 	

 	magenta() (discord.Colour class method)

 	managed (discord.Role attribute)

 	max_age (discord.Invite attribute)

 	max_uses (discord.Invite attribute)

 	Member (class in discord)

 	members (discord.Server attribute)

 	

 	mention() (discord.Channel method)

 	

 	(discord.User method)

 	mention_everyone (discord.Message attribute)

 	mentions (discord.Message attribute)

 	Message (class in discord)

 	messages (discord.Client attribute)

 	mute (discord.Member attribute)

N

 	

 	name (discord.Channel attribute)

 	

 	(discord.Role attribute)

 	(discord.Server attribute)

 	(discord.User attribute)

 	NONE (discord.Permissions attribute)

 	

 	none() (discord.Permissions class method)

O

 	

 	Object (class in discord)

 	on_channel_create() (in module discord)

 	on_channel_delete() (in module discord)

 	on_channel_update() (in module discord)

 	on_error() (in module discord)

 	on_member_join() (in module discord)

 	on_member_remove() (in module discord)

 	on_member_update() (in module discord)

 	on_message() (in module discord)

 	on_message_delete() (in module discord)

 	on_message_edit() (in module discord)

 	on_ready() (in module discord)

 	on_server_available() (in module discord)

 	on_server_join() (in module discord)

 	on_server_remove() (in module discord)

 	

 	on_server_role_create() (in module discord)

 	on_server_role_delete() (in module discord)

 	on_server_role_update() (in module discord)

 	on_server_unavailable() (in module discord)

 	on_socket_closed() (in module discord)

 	on_socket_opened() (in module discord)

 	on_socket_raw_receive() (in module discord)

 	on_socket_raw_send() (in module discord)

 	on_socket_response() (in module discord)

 	on_socket_update() (in module discord)

 	on_status() (in module discord)

 	on_typing() (in module discord)

 	on_voice_state_update() (in module discord)

 	orange() (discord.Colour class method)

 	owner (discord.Server attribute)

P

 	

 	Permissions (class in discord)

 	permissions (discord.Role attribute)

 	permissions_for() (discord.Channel method)

 	

 	(discord.PrivateChannel method)

 	position (discord.Channel attribute)

 	

 	(discord.Role attribute)

 	

 	private_channels (discord.Client attribute)

 	PrivateChannel (class in discord)

 	purple() (discord.Colour class method)

R

 	

 	r (discord.Colour attribute)

 	red() (discord.Colour class method)

 	region (discord.Server attribute)

 	register() (discord.Client method)

 	remove_roles() (discord.Client method)

 	replace_roles() (discord.Client method)

 	

 	response (discord.HTTPException attribute)

 	revoked (discord.Invite attribute)

 	Role (class in discord)

 	roles (discord.Member attribute)

 	

 	(discord.Server attribute)

 	run() (discord.Client method)

S

 	

 	self_deaf (discord.Member attribute)

 	self_mute (discord.Member attribute)

 	send_file() (discord.Client method)

 	send_message() (discord.Client method)

 	send_typing() (discord.Client method)

 	Server (class in discord)

 	

 	server (discord.Channel attribute)

 	

 	(discord.Invite attribute)

 	(discord.Member attribute)

 	(discord.Message attribute)

 	servers (discord.Client attribute)

 	set_channel_permissions() (discord.Client method)

 	start_private_message() (discord.Client method)

 	status (discord.Member attribute)

T

 	

 	teal() (discord.Colour class method)

 	temporary (discord.Invite attribute)

 	TEXT (discord.Permissions attribute)

 	text() (discord.Permissions class method)

 	timestamp (discord.Message attribute)

 	

 	to_tuple() (discord.Colour method)

 	topic (discord.Channel attribute)

 	tts (discord.Message attribute)

 	type (discord.Channel attribute)

U

 	

 	unavailable (discord.Server attribute)

 	unban() (discord.Client method)

 	url (discord.Invite attribute)

 	

 	User (class in discord)

 	user (discord.Client attribute)

 	

 	(discord.PrivateChannel attribute)

 	uses (discord.Invite attribute)

V

 	

 	value (discord.Colour attribute)

 	

 	(discord.Permissions attribute)

 	VOICE (discord.Permissions attribute)

 	voice() (discord.Permissions class method)

 	

 	voice_channel (discord.Member attribute)

 	voice_members (discord.Channel attribute)

X

 	

 	xkcd (discord.Invite attribute)

 Copyright 2015, Rapptz.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		discord.py 0.9.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Rapptz.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/up-pressed.png

