

Welcome to DevAssistant documentation!

DevAssistant - making life easier for developers

Contents

	User Documentation

	Developer Documentation
	DevAssistant Core

	Create Your Own Assistant

	Command Reference

	Project Metainfo: the .devassistant File

	Project Types

	Contributing to DevAssistant

Overview

This is documentation for version 0.12.0a1.

DevAssistant - start developing with ease

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects
in various languages, installing dependencies, setting up environment etc.

It is based on idea of per-{language/framework/...} “assistants” (plugins) with hierarchical
structure.

Note: prior to version 0.10.0, DevAssistant has been shipped with a default set of assistants
that only worked on Fedora. We decided to drop this default set and create
DAPI, DevAssistant Package Index, https://dapi.devassistant.org/ - an upstream
PyPI/Rubygems-like repository of packaged assistants. DAPI’s main aim is to create a community
around DevAssistant and provide various assistants with good support for various platforms -
a task that DevAssistant core team alone is not able to achieve for a large set of assistants.

This all means that if you get DevAssistant from upstream repo or from PyPI, you will have
no assistants installed by default. To get assistants, search DAPI through web browser or run
da pkg search <term> and da pkg install <assistant package> . This will install
one or more DAPs (DevAssistant Packages) with the desired assistants.

If you want to create your own assistants and upload them to DAPI, see
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html and
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html.

There are four main modes of DevAssistant execution. Explanations are provided to better
illustrate what each mode is supposed to do:

	create

	Create new projects - scaffold source code, install dependencies, initialize SCM repos ...

	tweak

	Work with existing projects - add source files, import to IDEs, push to GitHub, ...

	prepare

	Prepare environment for working with existing upstream projects - install dependencies,
set up services, ...

	extras

	Tasks not related to a specific project, e.g. enabling services, setting up IDEs, ...

These are some examples of what you can do:

search for assistants that have "Django" in their description
$ da pkg search django
python - Python assistants (library, Django, Flask, GTK3)

install the found "python" DAP, assuming it supports your OS/distro
$ da pkg install python

find out if the installed package has documentation
$ da doc python
INFO: DAP "python" has these docs:
...
INFO: usage.txt
...
show help
$ da doc python usage.txt

if the documentation doesn't say it specifically, find out if there is a "create"
assistant in the installed "python" DAP
$ da create -h
...
{..., python, ...}
...

there is, so let's find out if it has any subassistants
$ da create python -h
...
{..., django, ...}
...

we found out that there is "django" subassistant, let's find out how to use it
$ da create python django -h
<help text with commandline options>

help text tells us that django assistant doesn't have subassistants and is runnable, let's do it
$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir

using the same approach with "pkg search", "pkg install" and "da tweak -h",
we find, install and read help for "tweak" assistant that imports projects to eclipse
$ da tweak eclipse -p ~/myproject # run in project dir or use -p to specify path

using the same approach, we find, install and read help for assistant
that tries to prepare environment for a custom upstream project, possibly utilizing
its ".devassistant" file
$ da prepare custom -u scm_url -p directory_to_save_to

sometimes, DevAssistant can really do a very special thing for you ...
$ da extras make-coffee

Should you have some questions, feel free to ask us at Freenode channel #devassistant
or on our mailing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant).
You can also join our G+ community (https://plus.google.com/u/0/communities/112692240128429771916)
or follow us on Twitter (https://twitter.com/dev_assistant).

DevAssistant works on Python 2.6, 2.7 and >= 3.3.

This whole project is licensed under GPLv2+.

User Documentation

A Brief Intro

DevAssistant - start developing with ease

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects
in various languages, installing dependencies, setting up environment etc.

It is based on idea of per-{language/framework/...} “assistants” (plugins) with hierarchical
structure.

Note: prior to version 0.10.0, DevAssistant has been shipped with a default set of assistants
that only worked on Fedora. We decided to drop this default set and create
DAPI, DevAssistant Package Index, https://dapi.devassistant.org/ - an upstream
PyPI/Rubygems-like repository of packaged assistants. DAPI’s main aim is to create a community
around DevAssistant and provide various assistants with good support for various platforms -
a task that DevAssistant core team alone is not able to achieve for a large set of assistants.

This all means that if you get DevAssistant from upstream repo or from PyPI, you will have
no assistants installed by default. To get assistants, search DAPI through web browser or run
da pkg search <term> and da pkg install <assistant package> . This will install
one or more DAPs (DevAssistant Packages) with the desired assistants.

If you want to create your own assistants and upload them to DAPI, see
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html and
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html.

There are four main modes of DevAssistant execution. Explanations are provided to better
illustrate what each mode is supposed to do:

	create

	Create new projects - scaffold source code, install dependencies, initialize SCM repos ...

	tweak

	Work with existing projects - add source files, import to IDEs, push to GitHub, ...

	prepare

	Prepare environment for working with existing upstream projects - install dependencies,
set up services, ...

	extras

	Tasks not related to a specific project, e.g. enabling services, setting up IDEs, ...

These are some examples of what you can do:

search for assistants that have "Django" in their description
$ da pkg search django
python - Python assistants (library, Django, Flask, GTK3)

install the found "python" DAP, assuming it supports your OS/distro
$ da pkg install python

find out if the installed package has documentation
$ da doc python
INFO: DAP "python" has these docs:
...
INFO: usage.txt
...
show help
$ da doc python usage.txt

if the documentation doesn't say it specifically, find out if there is a "create"
assistant in the installed "python" DAP
$ da create -h
...
{..., python, ...}
...

there is, so let's find out if it has any subassistants
$ da create python -h
...
{..., django, ...}
...

we found out that there is "django" subassistant, let's find out how to use it
$ da create python django -h
<help text with commandline options>

help text tells us that django assistant doesn't have subassistants and is runnable, let's do it
$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir

using the same approach with "pkg search", "pkg install" and "da tweak -h",
we find, install and read help for "tweak" assistant that imports projects to eclipse
$ da tweak eclipse -p ~/myproject # run in project dir or use -p to specify path

using the same approach, we find, install and read help for assistant
that tries to prepare environment for a custom upstream project, possibly utilizing
its ".devassistant" file
$ da prepare custom -u scm_url -p directory_to_save_to

sometimes, DevAssistant can really do a very special thing for you ...
$ da extras make-coffee

Should you have some questions, feel free to ask us at Freenode channel #devassistant
or on our mailing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant).
You can also join our G+ community (https://plus.google.com/u/0/communities/112692240128429771916)
or follow us on Twitter (https://twitter.com/dev_assistant).

Installation

If you can, use the packaged version

To install DevAssistant on your machine, there is usually more than one way. If
you use a Linux distribution where DevAssistant is already packaged, we
strongly suggest you use the packaged version. Doing so can save you quite a
few headaches with configuration and making sure everything works. This applies
especially to Fedora, where it is us, the DevAssistant development team, who
cares about the packaging.

Install from PyPI

If you don’t wan’t to use the packaged version or there isn’t one for your OS
in the first place, you can install DevAssistant from the Python Package Index
via the pip tool. In a large majority of distributions, pip is packaged in
the system repositories.

However, even though pip makes sure the specified dependencies are met, it
is simply not enough to allow you to run DevAssistant to the fullest extent. To
achieve that, you’ll need to do some manual steps:

	Make sure GTK+ version 3 is installed (the package’s name will probably be
something like gtk3)

	Make sure the askpass dialog for OpenSSH is installed (in Fedora, the
package is called openssh-askpass).

	Make sure git is installed.

	Make sure setuptools are installed for the version of Python you intend
to use for running DevAssistant

	If you want to use the Docker functionality, you’ll need Docker installed,
and a Python client for Docker (on PyPI, it’s called docker-py). These
may not be available on some architectures.

	If you want to use DevAssistant with an RPM-based distribution, you’ll need
either YUM or DNF installed. DNF runs only on Python 3, so you will have to
run DevAssistant under Python 3 as well. Furthermore, DNF’s bindings are most
likely in a separate package, in Fedora packaged as python3-dnf.

Run from source

DevAssistant is perfectly runnable from source as well. For this, the same
applies as for installing from PyPI, plus you need to install the contents of
requirements.txt (and requirements-py2.txt if you want to run DevAssistant
under Python 2) in the root folder of the tarball. To do that, you can run the
following command(s) in the unpacked DevAssistant folder:

pip install --user -r requirements.txt
pip install --user -r requirements-py2.txt # Only on Python 2

P. S. We suggest you add the --user flag so that the packages are installed
in the ~/.local directory in your home instead of system-wide. If you
perform system-wide pip installations, you risk breaking packages installed
by the system.

So What is an Assistant?

In short, Assistant is a recipe for creating/tweaking a project or setting up
the environment in a certain way. DevAssistant is in fact just a core that “runs”
Assistants according to certain rules.

Each Assistant specifies a way to achieve a single task, e.g. create a new
project in framework X of language Y.

If you want to know more about how this all works, consult
Create Your Own Assistant.

Assistant Roles

There are four assistant roles:

	creator (create or crt on command line)

	creates new projects

	tweak (tweak or twk on command line)

	works with existing projects

	preparer (prepare or prep on command line)

	prepares environment for development of upstream projects

	extras (extras or extra on command line)

	performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks.
It would be confusing to have e.g. python django assistant (that
creates new project) side-by-side with eclipse assistant (that registers
existing project into Eclipse).

You can learn about how to invoke the
respective roles below in Creating New Projects,
Working with Existing Projects, Preparing Environments and
Extras.

Using Commandline Interface

Getting Assistants

By default, DevAssistant comes with no Assistants pre-installed. If you want to install some,
you can get them from DAPI, DevAssistant Package Index, https://dapi.devassistant.org/.

You can do that from DevAssistant itself. If you want Flask related Assistants, you can run:

$ da pkg search flask
python - Python assistants (library, Django, Flask, GTK3)

da is the short form of devassistant. You can use either of them, but da is preferred.

pkg is an action for manipulating DAPs - DevAssistant packages. It contains several sub-actions,
such as search used here. To get more info about this python DAP, you can use info:

$ da pkg info python
python-0.10.1
=============

Python assistants (library, Django, Flask, GTK3)

Set of crt assistants for Python. Contains assistants that let you
kickstart new Django or Flask web application, pure Python library or GTK3 app.
Supports both Python 2 and 3.

...

The following assistants are contained in this DAP:
 * crt/python/flask
 * crt/python/django
 * crt/python/lib
 * crt/python/gtk3
 * crt/python

If you are satisfied, use install to actually get it:

$ da pkg install python
INFO: Installing DAP python ...
INFO: Successfully installed DAPs python common_args vim eclipse github

As you can see, the command did not only install the python DAP, but several others.
That’s because python depends on those and cannot work properly without them.

If you want to remove some DAP, use either uninstall or remove (they do the same):

$ da pkg remove python
INFO: Uninstalling DAP python ...
DAP python and the following files and directories will be removed:
 ~/.devassistant/meta/python.yaml
 ~/.devassistant/assistants/crt/python.yaml
 ~/.devassistant/assistants/crt/python
 ~/.devassistant/files/crt/python
 ~/.devassistant/icons/crt/python.svg
 ~/.devassistant/snippets/python.yaml
 ~/.devassistant/doc/python
Is that OK? [y/N] y
INFO: DAPs python successfully uninstalled

Once in a while, you can update your DAPs. Either all of them like this:

$ da pkg update
INFO: Updating all DAP packages ...
INFO: Updating DAP git ...
INFO: DAP git successfully updated.
INFO: Updating DAP common_args ...
INFO: DAP common_args is already up to date.
INFO: Updating DAP eclipse ...
INFO: DAP eclipse is already up to date.
INFO: Updating DAP vim ...
INFO: DAP vim successfully updated.
INFO: Updating DAP github ...
INFO: DAP github is already up to date.
INFO: Updating DAP tito ...
INFO: DAP tito successfully updated.

Or if you want to update just some packages, name them:

$ da pkg update git tito
INFO: Updating DAP git ...
INFO: DAP git successfully updated.
INFO: Updating DAP tito ...
INFO: DAP tito successfully updated.

Creating New Projects

DevAssistant can help you create your projects with one line in a terminal. For example:

$ da create python django -n foo -e -g

What this line does precisely depends on the author of the Assistant. You can always
display help by using da create python django -h. Running the above command line
may do something like this:

	Install Django and all needed dependencies.

	Create a Django project named foo in the current working directory.

	Make any necessary adjustments so that you can run the project and start developing
right away.

	The -e switch will make DevAssistant register the newly created projects into
Eclipse. This will also cause installation of Eclipse and PyDev,
unless already installed.

	The -g switch will make DevAssistant register the project on Github and push
sources there.

Working with Existing Projects

DevAssistant allows you to work with previously created projects. You can do
this by using da tweak, as opposed to da create for creating:

$ da tweak eclipse

As noted above, what an Assistant does depends on its author. In this case,
it seems that the Assistant will import an existing project into Eclipse,
possibly installing missing dependencies - to find out if this assumption
is correct, run da tweak eclipse -h and read the help.

Preparing Environments

DevAssistant can set up the environment and install dependencies for
development of an already existing project located
in a remote SCM (e.g. Github). There is, for example, the so-called
custom [https://dapi.devassistant.org/dap/custom/] prepare
assistant, that is supposed to prepare environments for arbitrary upstream projects.
This means that it will checkout the source code from the given git repo and if there
is a .devassistant file in the repo, it will install dependencies and prepare
environment according to it:

$ da prepare custom -u scm_url

Warning: The custom Assistant executes custom pieces of code from a .devassistant file,
so use this only for projects whose upstreams you trust.

We hope that existance of DAPI will attract people from various upstreams to
create prepare Assistants for their specific projects, so that people could do
something like:

$ da prepare openstack

To get development environment prepared for development of OpenStack, etc...

Extras

The last piece of functionality is performing arbitrary tasks that are not related to a specific
project, e.g.:

$ da extras make-coffee

Custom Actions

There are also some custom actions besides pkg, create, tweak, prepare and extras.

	doc - Displays documentation for a given DAP. Uses less as pager, if available:

finds out if "python" DAP has documentation, lists documents if yes
$ da doc python
...
INFO: LICENSE
INFO: somedoc.txt
INFO: docsubdir/someotherdoc.txt
...

displays specific document for "python" DAP
$ da doc python docsubdir/someotherdoc.txt

	help- Displays help :)

	version- Displays current DevAssistant version.

Using the GUI

The DevAssistant GUI provides the full functionality of
Commandline Interface through a Gtk based application.

The GUI provides all Assistants of the same type (creating, tweaking, preparing and extras)
in one tab to keep things organized.

The GUI workflow is dead simple:

	Choose the Assistant that you want to use, click it and possibly choose
a proper subassistant (e.g. django for python).

	The GUI displays a window where you can modify some settings and choose from
various Assistant-specific options.

	Click the “Run” button and then just watch as DevAssistant sets up your environment.
If your input is needed (such as confirming dependencies to install), DevAssistant will
ask you, so don’t go get your coffee just yet.

	After all is done, get your coffee and enjoy.

Where are the Assistants located?

You may wonder where DAPs are installed. The short answer is ~/.devassistant.
However, the long answer is a little bit more complicated.

There are two variable defined in DevAssistant: DEVASSISTANT_HOME and DEVASSISTANT_PATH.
Be default, DEVASSISTANT_HOME is set to ~/.devassistant and DEVASSISTANT_PATH contains
the following:

	~/.devassistant

	/usr/local/share/devassistant

	/usr/share/devassistant

DAPs installed from DAPI can be found in DEVASSISTANT_HOME, however, you can run Assistants from all the
locations present in DEVASSISTANT_PATH. If the Assistant with the same name is present in more
of them, locations on the beginning of the list have bigger priority.

Sometimes the values of DEVASSISTANT_HOME and DEVASSISTANT_PATH are different. For example
when installing DAPs as root, ~/.devassistant is no longer there and
/usr/local/share/devassistant is used as DEVASSISTANT_HOME instead. So all the users can use
Assistants installed by root. You can also redefine the values entirely by using environment
variables. The following example will install DAP python to .bah:

$ DEVASSISTANT_HOME=.bah da pkg install python

However, be advised that you cannot use the python Assistants installed this way if you don’t
specify the DEVASSISTANT_HOME variable when running DevAssistant again.

Manipulating DEVASSISTANT_PATH is very similar, but directories defined in that variable are
used in addition to the default ones. If you want to use only the directories in
DEVASSISTANT_PATH, define the variable DEVASSISTANT_NO_DEFAULT_PATH. You must then define
DEVASSISTANT_HOME too, because its default value is unset in the process.

Also note that with DEVASSISTANT_NO_DEFAULT_PATH, the DAPs are installed into the first directory
from DEVASSISTANT_PATH, not to DEVASSISTANT_HOME.

The pkg command line action works with multiple directories.

	running install always installs to DEVASSISTANT_HOME. However, the installation will not take place if a package of the same name is present in some location specified in DEVASSISTANT_PATH - to override this behavior, use the --reinstall option.

	remove/uninstall only removes DAPs from DEVASSISTANT_HOME unless you use the --all-paths option. If you want to remove packages from directories where you don’t have write access, perform the action as root.

	update updates DAPs in DEVASSISTANT_HOME. It may happen that the transaction requires packages in other locations to be updated too. In that case, those packages will be left untouched, and newer versions will be installed in DEVASSISTANT_HOME. You may override this behavior by using the --all-paths option, but you may need to perform that action as root if you don’t have write access in all the locations.

Note that /usr/share/devassistant is protected from the --all-paths option because it’s
supposed to be managed by your distribution packaging system. If you want to disable this
protection, just add /usr/share/devassistant to the DEVASSISTANT_PATH environment variable.

Developer Documentation

	DevAssistant Core

	Create Your Own Assistant
	Create Assistant in Yaml DSL
	Tutorial: Creating Your Own Assistant in Yaml DSL

	Yaml DSL Reference

	Run Sections Reference

	Snippets

	Create Assistant Using Scripting Language (a.k.a DevAssistant PingPong)
	How It Works/PingPong Protocol Reference

	Tutorial: Assistants Utilizing PingPong

	Tutorial: Python PingPong Script

	Common Assistant Behaviour

	Packaging and Distributing Your Assistant

	Command Reference

	Project Metainfo: the .devassistant File

	Project Types

	Contributing to DevAssistant

Talk to Us!

If you want to see where DevAssistant development is going and you want to influence it
and send your suggestions and comments, you should join our ML:
https://lists.fedoraproject.org/mailman/listinfo/devassistant. We also have IRC channel
#devassistant on Freenode and you can join our
Google+ community [https://plus.google.com/communities/112692240128429771916].

Overall Design

DevAssistant consists of several parts:

	Core

	Core of DevAssistant is written in Python. It is responsible for
interpreting Yaml Assistants and it provides an API that can be used
by any consumer for the interpretation.

	CL Interface

	CL interface allows users to interact with DevAssistant
on commandline; it consumes the Core API.

	GUI

	(work in progress) GUI allows users to interact with Developer
Assistant from GTK based GUI; it consumes the Core API.

	Assistants

	Assistants are Yaml files with special syntax and semantics (defined
in Yaml DSL Reference). They are indepent of the Core,
therefore any software distribution can carry its own assistants
and drop them into the directory from where DevAssistant
loads them - they will be loaded on next invocation.
Note, that there is also a possibility to write assistants in Python,
but this is no longer supported and will be removed in near future.

Assistants

Internally, each assistant is represented by instance of
devassistant.yaml_assistant.YamlAssistant. Instances are constructed
by DevAssistant in runtime from parsed yaml files. Each assistant can
have zero or more subassistants. This effectively forms a tree-like
structure. For example:

 MainAssistant
 / \
 / \
 Python Ruby
 / \ / \
 / \ / \
Django Flask Rails Sinatra

This structure is defined by filesystem hierarchy as explained in
Assistants Loading Mechanism

Each assistant can optionally define arguments that it accepts (either
on commandline, or from GUI). For example, you can run
the leftmost path with:

$ da create python [python assistant arguments] django [django assistant arguments]

If an assistant has any subassistants, one of them must be used. E.g.
in the example above, you can’t use just Python assistant, you have to
choose between Django and Flask. If Django would get a subassistant, it
wouldn’t be usable on its own any more, etc.

Assistant Roles

The create in the above example means, that we’re running an assistant that
creates a project.

There are four assistant roles:

	creator (create or crt on command line)

	creates new projects

	tweak (tweak or twk on command line)

	works with existing projects

	preparer (prepare or prep on command line)

	prepares environment for development of upstream projects

	extras (extras or extra on command line)

	performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks.
It would be confusing to have e.g. python django assistant (that
creates new project) side-by-side with eclipse assistant (that registers
existing project into Eclipse).

Writing Assistants: Yaml or Scripting Languages

There are two ways to write assistants. You can either use our
Yaml based DSL or
write assistants in popular scripting languages (for list of supported languages see
Supported Languages).
This method is referred to as DevAssistant PingPong.

Contributing

If you want to contribute (bug reporting, new assistants, patches for core,
improving documentation, ...), please use our Github repo:

	code: https://github.com/devassistant/devassistant

	issue tracker: https://github.com/devassistant/devassistant/issues

If you have DevAssistant installed (version 0.8.0 or newer), there is a fair chance that you have
devassistant preparer. Just run da prepare devassistant and it will
checkout our sources and do all the boring stuff that you’d have to do
without DevAssistant.

If you don’t have DevAssistant installed, you can checkout the sources
like this (just copy&paste this to get the job done):

git clone https://github.com/devassistant/devassistant

You can find list of core Python dependencies in file requirements.txt. If you want
to write and run tests (you should!), install dependencies from requirements-devel.txt:

pip install --user -r requirements-devel.txt

If you develop on Python 2, you’ll also need to install extra dependencies:

pip install --user -r requirements-py2.txt

Regardless of Python version, you’ll need polkit for requesting root privileges for dependency installation
etc. If you want to play around with GUI, you have to install pygobject, too.
To run guitest, you also need to install behave [https://pypi.python.org/pypi/behave] from PyPI and dogtail
(not on PyPI, get it from Fedora Hosted [https://fedorahosted.org/dogtail/] or from your favorite package manager).
(See how hard this is compared to da prepare devassistant?)

DevAssistant Core

Note: So far, this only covers some bits and pieces of the whole core.

DevAssistant Load Paths

DevAssistant has couple of load path entries, that are searched for assistants,
snippets, icons and files used by assistants. In standard installations,
there are three paths:

	“user” path, ~/.devassistant/

	“local” path, /usr/local/share/devassistant/

	“system” path, /usr/share/devassistant/

Another path(s) can be added by specifying DEVASSISTANT_PATH environment
variable (if more paths are used, they must be separated by colon). These paths
are prepended to the list of standard load paths.

Each load path entry has this structure:

assistants/
 crt/
 twk/
 prep/
 extra/
files/
 crt/
 twk/
 prep/
 extra/
 snippets/
icons/
 crt/
 twk/
 prep/
 extra/
snippets/

Icons under icons directory and files in files directory “copy”
must the structure of assistants directory. E.g. for assistant
assistants/crt/foo/bar.yaml, the icon must be icons/crt/foo/bar.svg
and files must be placed under files/crt/foo/bar/

Assistants Loading Mechanism

DevAssistant loads assistants from all load paths mentioned above (more
specifically from <load_path>/assistants/ only), traversing them in
order “user”, “local”, “system”.

When DevAssistant starts up, it loads all assistants from all these paths. It
assumes, that Creator assistants are located under crt subdirectories
the same applies to Tweak (twk), Preparer (prep) and Extras (extra) assistants.

For example, loading process for Creator assistants looks like this:

	Load all assistants located in crt subdirectories of each
<load path>/assistants/ (do not descend into subdirectories).
If there are multiple assistants with the same name in different
load paths, the first traversed wins.

	For each assistant named foo.yaml:
	If crt/foo directory doesn’t exist in any load path entry, then this
assistant is “leaf” and therefore can be directly used by users.

	Else this assistant is not leaf and DevAssistant loads its subassistants
from the directory, recursively going from point 1).

Command Runners

Command runners... well, they run commands. They are the functionality that
makes DevAssistant powerful, since they effectively allow you to create
callbacks to Python, where you can cope with the hard parts unsuitable for
Yaml assistants.

When DevAssistant executes a run section, it reads commands one by one
and dispatches them to their respective command runners. Every command runner
can do whatever it wants - for example, we have a command runner that creates
Github repos.

After a command runner is run, DevAssistant sets LAST_LRES and LAST_RES global variables
for usage (these are rewritten with every command run). These variables represent the logical
result of the command (True/False) and result (a “return value”, something computed),
much like with Expressions.

For reference of current commands, see Command Reference.

If you’re missing some cool functionality, you can implement your own command
runner and send us a pull request or include it in files shipped with your assistants.
Command runners shipped with assistants must be loaded with
load_cmd command runner.
Each command must be a class with two classmethods:

from devassistant.command_runners import command_runners
from devassistant.logger import logger

NOTE: Command runners included in DA itself are decorated with @register_command_runner
wrapper. If you're shipping your own commands runners with assistants, don't do this.
class MyCommandRunner(CommandRunner):
 @classmethod
 def matches(cls, c):
 return c.comm_type == 'mycomm'

 def run(self):
 input = self.c.input_res
 logger.info('MyCommandRunner was invoked: {ct}: {ci}'.format(ct=self.c.comm_type,
 ci=input))
 return (True, len(input))

This command runner will run all commands with command type mycomm.
For example if your assistant contains:

run:
- load_cmd: *file_from_files_section
- $foo: $(echo "using DevAssistant")
- mycomm: You are $foo!

than DevAssistant will print out something like:

INFO: MyCommandRunner was invoked: mycomm: You are using DevAssistant!

When run, this command returns a tuple with logical result and result. This means
you can assign the length of a string to a variable like this:

run:
- $thiswillbetrue, $length~:
 - mycomm: Some string.

(Also, LAST_LRES will be set to True and LAST_RES to length of the input string.)

Generally, the matches method should just decide (True/False) whether given
command is runnable or not and the run method should actually run it.
The run method should use devassistant.logger.logger object to log any
messages and it can also raise any exception that’s subclass of
devassistant.exceptions.ExecutionException.

The c argument of the matches method and the CommandRunner’s
__init__ method (not shown in the example) is a
devassistant.lang.Command object. You can use various attributes of
Command:

	comm_type - command type, e.g. mycomm
(this will always be stripped of exec flag ~).

	comm - raw command input. The input is raw in the sense that it is uninterpreted.
It’s literally the same as what’s written in assistant yaml file.

	input_res and input_log_res - result and logical result of comm, i.e.
interpreted input. This is what you usually want to use to examine what was
passed to your command. See Section Results for rules on interpreting command input.

	had_exec_flag - True if the command type had exec flag, False otherwise.

Note: input only gets evaluated one time - at time of using input_log_res or input_res. This
means, among other things, that if exec flag is used, the command runner still has to access
input_log_res or input_res to actually execute the input.

Create Your Own Assistant

	Create Assistant in Yaml DSL
	Tutorial: Creating Your Own Assistant in Yaml DSL

	Yaml DSL Reference

	Run Sections Reference

	Snippets

	Create Assistant Using Scripting Language (a.k.a DevAssistant PingPong)
	How It Works/PingPong Protocol Reference

	Tutorial: Assistants Utilizing PingPong

	Tutorial: Python PingPong Script

	Common Assistant Behaviour

	Packaging and Distributing Your Assistant

There are two basic ways to create your own assistants. You can either learn
our Yaml DSL and write pure Yaml assistants or you can
use an approach called “DevAssistant PingPong”.
PingPong let’s you write assistants in scripting languages, while still utilizing
DevAssistant functionality, so you don’t have to learn the DSL (to be precise, you only
need to learn a very small portion of it).

Create Assistant in Yaml DSL

	Tutorial: Creating Your Own Assistant in Yaml DSL

	Yaml DSL Reference

	Run Sections Reference

	Snippets

Using DevAssistant Yaml DSL is the first option to create assistants.
The DSL is fairly simple and understandable and is very good at what it does. However,
it’s not well suited for very complex computations (which you usually don’t need to do
during project setup).

If, for some reason, you need to execute complex algorithms in assistants (or you just
don’t want to learn the DSL), you can consider using the
PingPong approach, which basically
lets you write assistants in popular scripting languages.

Tutorial: Creating Your Own Assistant in Yaml DSL

So you want to create your own assistant? There is nothing easier... They say
that in all tutorials, right?

This tutorial will guide you through the process of creating simple assistants
of different roles - Creator, Tweak,
Preparer, Extras.

This tutorial doesn’t cover everything. Consult Yaml DSL Reference
when you’re missing something you really need to achieve. If you think
that DevAssistant misses some functionality that would be useful, open
a bug at https://www.github.com/devassistant/devassistant/issues or send us
a pull request.

General Rules

Some things are common for all assistant types:

	Each assistant is one Yaml file, that must contain exactly one mapping -
the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant
...

	You have to place them in a proper place, see DevAssistant Load Paths and
Assistants Loading Mechanism.

	Files (e.g. templates, scripts, PingPong script files etc.)
used by assistant should be placed in the same load dir, e.g. if your assistant is placed at
~/.devassistant/assistants, DevAssistant will look for files under
~/.devassistant/files.

	As mentioned in DevAssistant Load Paths, there are three main load paths in
standard DevAssistant installation, “system”, “local” and “user”.
The “system” dir is used for assistants delivered by your
distribution/packaging system and you shouldn’t touch or add files in
this path. The “local” path can be used by system admin to add system-wide
assistants while not touching “system” path. Lastly, “user” path can be
used by user to install assistants just for himself.

	When developing new assistants, that you e.g. put in a separate Git repo and want to work on it,
commit, push, etc, it is best to utilize DEVASSISTANT_PATH bash environment variable,
see DevAssistant Load Paths for more info.

Creating a Simple Creator

The title says it all. In this section, we will create a “Creator” assistant,
that means an assistant that will take care of kickstarting a new project.
We will write an assistant that creates a project containing a simple Python
script that uses argh Python module. Let’s suppose that we’re writing
this assistant for an RPM based system like Fedora, CentOS or RHEL.

To start, we’ll create a file hierarchy for our new assistant, say in
~/programming and modify DEVASSISTANT_PATH accordingly. Luckily,
there is an assistant that does all this - dap [https://dapi.devassistant.org/dap/dap/]:

da pkg install dap
da create dap -n ~/programming/pyargh --crt
export DEVASSISTANT_PATH=~/programming/pyargh/

Running da create dap scaffolds everything that’s needed to create a DAP package
that can be distributed on DevAssistant Package Index, DAPI [https://dapi.devassistant.org/],
see Packaging and Distributing Your Assistant for more information.

Since this assistant is a “creator”, we need to put it somewhere under
~/programming/assistants/crt/. Assistants can be organized in a hierarchical
structure, so you could have e.g. ~/programming/pyargh/assistants/crt/python-scripts.yaml
as a superassistant and ~/programming/pyargh/assistants/crt/python-scripts/pyargs.yaml
as its subassistant, but for this example we’ll keep things simple and put pyargh.yaml
directly under ~/programming/pyargh/assistants/crt/.

Note, that in pre-0.10.0 DevAssistant versions, it was recommended to hook such assistants
in already existing hierarchies (e.g. using superassistants provided by someone else).
Since 0.10.0, this is no longer recommended. The main reason for this is that we are introducing
a simple upstream packaging and distribution format, as well as “DevAssistant package index” -
a central repository of upstream assistant packages. See Packaging and Distributing Your Assistant
for more details. In this concept, each package can only have one superassistant (named
as the whole package is named) in each crt, twk, prep and extra and can only
place subassistants into hierarchies defined by these. Package names have to be unique
in the DevAssistant Package Index.

Setting it Up

So, let’s start writing ~/programming/pyargh/assistants/crt/pyargh.yaml by providing
some initial metadata:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

If you now save the file and run da create pyargh -h, you’ll see that
your assistant was already recognized by DevAssistant, although it doesn’t
provide any functionality yet. (Including project type in your Creator assistant
is not necessary, but it may bring some benefits - see Project Types.

Dependencies

Now, we’ll want to add a dependency on python-argh (which is how the
package is called e.g. on Fedora). You can do this just by adding:

dependencies:
- rpm: [python-argh]

Now, if you save the file and actually try to run your assistant with
da create pyargh, it will install python-argh! (Well, assuming
it’s not already installed, in which case it will do nothing.) This is
really super-cool, but the assistant still doesn’t do any project setup,
so let’s get on with it.

Files

Since we want the script to always look the same, we will create a file that
our assistant will copy into proper place. This file should be put into
into crt/pyargh subdirectory the files directory
(~/programming/files/crt/pyargh). The file will be called
arghscript.py and will have this content:

#!/usr/bin/python2

from argh import *

def main():
 return 'Hello world'

dispatch_command(main)

We will need to refer to this file from our assistant, so let’s open
argh.yaml again and add a files section:

files:
 arghs: &arghs
 source: arghscript.py

DevAssistant will automatically search for this file in the correct directory,
that is ~/programming/files/crt/pyargh.
If an assistant has more subassistants, e.g. crt/pyargh/someassistant and
these assistants need to share some files, it is reasonable to place them into
~/programming/files/crt/pyargh and refer to them with relative path like
../file.foo from the subassistants.
Note, that the two arghs in arghs: &arghs should be the same because of
issue 74 [https://github.com/devassistant/devassistant/issues/74].

Run

Finally, we will be adding a run section, which is the section that does
all the hard work. A run section is a list of commands. Every command
is in fact a Yaml mapping with exactly one key and value. The key determines
command type, while value is the command input. For example, cl is
a command type that says that given input should be run on commandline,
log_i is a command type that lets us print the input (message in
this case) for user, etc.

Let’s start writing our run section:

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.

But wait! We don’t know what the project should be called and where it
should be placed... Before we finish the run section, we’ll need to add
some arguments to our assistant.

Oh Wait, Arguments!

Creating any type of project typically requires some user input, at least name
of the project to be created. To ask user for this sort of information, we can
use DevAssistant arguments like this:

args:
 name:
 flags: [-n, --name]
 required: True
 help: 'Name of project to create'

This means that this assistant will have one argument called name. On
commandline, it will expect -n foo or --name foo and since the
argument is required, it will refuse to run without it.

You can now try running da create pyargh -h and you’ll see that the
argument is printed out in commandline help.

Since there are some common arguments that the standard installation of
DevAssistant ships with so called “snippets”, that contain (among other
things) definitions of frequentyl used arguments. You can use name argument
for Creator assistants like this:

args:
 name:
 use: common_args

See Common Assistant Behaviour for more information.

Run Again

Now that we’re able to obtain project name (let’s assume that it’s an arbitrary
path to a directory where the argh script should be placed), we can continue.
First, we will make sure that the directory doesn’t already exist. If so,
we need to exit, because we don’t want to overwrite or break something:

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):
 - log_e: '"$name" already exists, can't proceed.'

There are few things to note here:

	There is a simple if condition with a shell command. If the shell command
returns a non-zero value, the condition will evaluate to false, else it will
evaluate to true. So in this case, if something exists at path "$name",
the condition will evaluate to true.

	In any command, we can use value of the name argument by prefixing
argument name with $ (so $name or ${name}).

	The log_e command type is used to print a message and then abort the
assistant execution immediately.

Let’s continue by creating the directory. Add this line to run section:

- cl: mkdir -p "$name"

You may be wondering what will happen, if DevAssistant doesn’t have write
permissions or more generally if the mkdir command just fails. In this
case, DevAssistant will exit, printing the output of failed command for user.

Next, we want to copy our script into the directory. We want to name it the
same as name of the directory itself. But what if directory is a path, not
simple name? We have to find out the project name and remember it somehow:

- $proj_name~: $(basename "$name")

What just happened? We assigned output of command basename "$name" to
a new variable proj_name that we can use from now on. Note the ~ at the end
of $proj_name~. This is called execution flag and it says that the command input
should be executed as an expression, not taken as a literal. See Expressions
for detailed expressions reference and Variables and Context to find out more
about variables.

Note: the execution flag makes DevAssistant execute the input as a so-called “execution
section”. The input can either be a string, evaluated as an expression, or a list of commands,
evaluated as another “run” section.

So let’s copy the script and make it executable:

- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x ${name}/${proj_name}.py

One more thing to note here: by using *arghs, we reference a file
from the files section.

Now, we’ll use a super-special command:

- dda_c: "$name"

What is dda_c? The first part, dda stands for “dot devassistant file”,
the second part, _c, says, that we want to create this file (there are
more things that can be done with .devassistant file, see .devassistant Commands).
The “command” part of this call just says where the file should be stored,
which is directory $name in our case.

The .devassistant file serves for storing meta information about the
project. Amongst other things, it stores information about which assistant was
invoked. This information can later serve to prepare the environment (e.g.
install python-argh) on another machine. Assuming that we commit the
project to a git repository, one just needs to run
da prepare custom -u <repo_url>, and DevAssistant will checkout the project
from git and use information stored in .devassistant to reinstall
dependencies. (There is more to this, you can for example add a custom
run section to .devassistant file or add custom dependencies,
but this is not covered by this tutorial (see Project Metainfo: the .devassistant File).

Note: There can be more dependencies sections and run sections in one
assistant. To find out more about the rules of when they’re used and how
run sections can call each other, consult
dependencies reference and
run reference.

Something About Snippets

Wait, did we say Git? Wouldn’t it be nice if we could setup a Git repository
inside the project directory and do an initial commit? These things are always
the same, which is exactly the type of task that DevAssistant should do for
you.

Previously, we’ve seen usage of argument from snippet. But what if you could
use a part of run section from there? Well, you can. And you’re lucky,
since there is a snippet called git.init_add_commit, which does exactly
what we need. This snippet can be found in the git [https://dapi.devassistant.org/dap/git/]
DAP. During development, you can install git DAP using da pkg install git.
For runtime, you’ll need to add it as dependency to meta.yaml - see
meta.yaml explained for more info on dependencies.
We’ll use the snippet like this:

- cl: cd "$name"
- use: git.init_add_commit.run

This calls section run from snippet git_init_add_commit in this place.
Note, that all variables are “global” and the snippet will have access to them
and will be able to change their values. However, variables defined in called
snippet section will not propagate into current section.

Finished!

It seems that everything is set. It’s always nice to print a message that
everything went well, so we’ll do that and we’re done:

- log_i: Project "$proj_name" has been created in "$name".

The Whole Assistant

... looks like this:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

dependencies:
- rpm: [python-argh]

files:
 arghs: &arghs
 source: arghscript.py

args:
 name:
 use: common_args

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):
 - log_e: '"$name" already exists, cannot proceed.'
- cl: mkdir -p "$name"
- $proj_name~: $(basename "$name")
- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x *arghs ${name}/${proj_name}.py
- dda_c: "$name"
- cl: cd "$name"
- use: git_init_add_commit.run
- log_i: Project "$proj_name" has been created in "$name".

And can be run like this: da create pyargh -n foo/bar.

Creating a Tweak Assistant

This section assumes that you’ve read the previous tutorial and are therefore
familiar with DevAssistant basics.
Tweak assistants are meant to work with existing projects. They usually try to look
for .devassistant file of the project, but it is not necessary.

Tweak Assistant Specialties

The special behaviour of tweak assistants only applies if you use dda_r in pre_run
section. This command reads .devassistant file from given directory and
puts the read variables in global variable context, so they’re available from
all the following dependencies and run section.

If tweak assistant reads .devassistant file in pre_run section, DevAssistant
tries to search for more dependencies sections to use. If the project was
previously created by crt python django, the engine will install dependencies
from sections dependencies_python_django, dependencies_python and dependencies.

Also, the engine will try to run run_python_django section first, then it
will try run_python and then run - note, that this will only run the
first found section and then exit, unlike with dependencies, where all found
sections are used.

– IN PROGRESS –

Yaml DSL Reference

Note: The Yaml DSL has changed significantly in 0.9.0 in backwards incompatible manner.
This documentation is only for version 0.9.0 and later.

This is a reference manual to writing yaml assistants. Yaml assistants
use a special DSL defined on this page. For real examples, have a look
at assistants in our Github repo [https://github.com/devassistant/devassistant-assistants-fedora/].

	Why the hell another DSL?

	When we started creating DevAssistant and we were asking people who
work in various languages whether they’d consider contributing assistants
for those languages, we hit the “I’m not touching Python” barrier. Since
we wanted to keep the assistants consistent (centralized logging, sharing
common functionality, same backtraces, etc...), we created a new DSL. This DSL
is very well suited for what it’s supposed to do, but we understand that some
people don’t want to learn it for various reasons. That is why, in 0.10.0, we
introduced a concept called DevAssistant PingPong.
Using PingPong, you can write assistants in scripting languages, while still
utilizing DevAssistant as a “library of functions”.

Assistant Roles

For list and description of assistant roles see Assistant Roles.

The role is implied by assistant location in one of the load path directories,
as mentioned in Assistants Loading Mechanism.

All the rules mentioned in this document apply to all types of assistants,
with exception of sections Tweak Assistants, Preparer Assistants and
Extras Assistants that talk about specifics of Tweak, resp. Preparer, resp. Extras
assistants.

Assistant Name

Assistant name is a short name used on command line, e.g. python. Historically,
it had to be the only top-level yaml mapping in the file, e.g.:

python:
 fullname: Python
 description: Some verbose description

Since DevAssistant 0.9.0, it is preferred to omit it and just provide the assistant
attributes as the top level mapping:

fullname: Python
description: Some verbose description

Assistant name is derived from the filename by stripping the .yaml extension,
e.g. assistant python.yaml file is named python.

Assistant Attributes

Assistant attributes form the top level mapping in Yaml file:

fullname: Python

run:
- cl: mkdir -p $name
- log_i: I'm in $name

List of allowed attributes follows (all of them are optional, and have some
sort of reasonable default, it’s up to your consideration which of them to use):

	fullname

	a verbose name that will be displayed to user (Python Assistant)

	description

	a (verbose) description to show to user (Bla bla create project bla bla)

	dependencies (and dependencies_*)

	specification of dependencies, see below Dependencies

	args

	specification of arguments, see below Arguments

	files

	specification of used files, see below Files

	project_type

	type of the project, see Project Types

	run (and run_*)

	specification of actual operations, see Run Sections Reference

	pre_run and post_run

	specification of operations to carry out before/after running main run section,
see below Assistants Invocation; follow the rules specified in Run Sections Reference

	files_dir

	directory where to take files (templates, helper scripts, ...) from. Defaults
to base directory from where this assistant is taken + files. E.g. if
this assistant is ~/.devassistant/assistants/crt/path/and/more.yaml,
files will be taken from ~/.devassistant/files/crt/path/and/more by default.

	icon_path

	absolute or relative path to icon of this assistant (will be used by GUI).
If not present, a default path will be used - this is derived from absolute
assistant path by replacing assistants by icons and .yaml by
.svg - e.g. for ~/.devassistant/assistants/crt/foo/bar.yaml,
the default icon path is ~/.devassistant/icons/crt/foo/bar.svg

Assistants Invocation

When you invoke DevAssistant with it will run following assistants sections in following order:

	pre_run

	dependencies

	run (possibly different section for Tweak Assistants)

	post_run

If any of the first three sections fails in any step, DevAssistant will immediately skip to
post_run and the whole invocation will be considered as failed (will return non-zero code
on command line and show “Failed” in GUI).

Dependencies

Yaml assistants can express their dependencies in multiple sections.

	Packages from section dependencies are always installed.

	If there is a section named dependencies_foo, then dependencies from this section are installed
iff foo argument is used (either via commandline or via gui). For example:

$ da python --foo

	These rules differ for Tweak Assistants

Each section contains a list of mappings dependency type: [list, of, deps].
If you provide more mappings like this:

dependencies:
- rpm: [foo]
- rpm: ["@bar"]

they will be traversed and installed one by one. Supported dependency types:

	rpm

	the dependency list can contain RPM packages or YUM groups
(groups must begin with @ and be quoted, e.g. "@Group name")

	use / call (these two do completely same, call is obsolete and will be removed in 0.9.0)

	installs dependencies from snippet/another dependency section of this assistant/dependency
section of superassistant. For example:

dependencies:
- use: foo.dependencies
- use: foo.dependencies_bar # will install dependencies from snippet "foo", section "bar"
- use: self.dependencies_baz # will install dependencies from section "dependencies_baz" of this assistant
- use: super.dependencies # will install dependencies from "dependencies" section of first superassistant that has such section

	if, else

	conditional dependency installation. For more info on conditions see Run Sections Reference.
A very simple example:

dependencies:
- if $foo:
 - rpm: [bar]
- else:
 - rpm: [spam]

Full example:

dependencies: - rpm: [foo, "@bar"]

dependencies_spam:
- rpm: [beans, eggs]
- if $with_spam:
 - use: spam.spamspam
- rpm: ["ham${more_ham}"]

Sometimes your dependencies may get terribly complex - they depend on many
parameters, you need to use them dynamically during run, etc. In these
cases, consider using Dependencies Command in run section.

Arguments

Arguments are used for specifying commandline arguments or GUI inputs.
Every assistant can have zero to multiple arguments.

The args section of each yaml assistant is a mapping of arguments to
their attributes:

args:
 name:
 flags:
 - -n
 - --name
 help: Name of the project to create.

Alternatively, the arguments can be provided in a list, which is useful when
you want multiple positional arguments, i. e. their order is important to you:

args:
 - from:
 flags: [from]
 help: Source destination
 - to:
 flags: [to]
 help: Target destination

Available argument attributes:

	flags

	specifies commandline flags to use for this argument. The longer flag
(without the --, e.g. name from --name) will hold the specified
commandline/gui value during run section, e.g. will be accessible as $name.

	help

	a help string

	required

	one of {true,false} - is this argument required?

	nargs

	how many parameters this argument accepts, one of {0, ?,*,+}
(e.g. {0, 0 or 1, 0 or more, 1 or more})

	default

	a default value (this will cause the default value to be
set even if the parameter wasn’t used by user)

	action

	one of {store_true, [default_iff_used, value]} - the store_true value
will create a switch from the argument, so it won’t accept any
parameters; the [default_iff_used, value] will cause the argument to
be set to default value value iff it was used without parameters
(if it wasn’t used, it won’t be defined at all)

	metavar

	a name of variable to show in help on command line, e.g. with metavar: META, you’ll
get a help line --some-arg META <help>.

	use

	name of the snippet to load this argument from; any other specified attributes
will override those from the snippet By convention, some arguments
should be common to all or most of the assistants.
See Common Assistant Behaviour

	preserved

	if set, the value of this argument will be saved and will reappear in the next launch
of devassistant GUI. The attribute string is a key under which the argument value
will be stored. The key should be of the form “scope.argname” so that you can
either share the value across more assistants or avoid collisions if any other
assistant uses an argument with same name but different meaning.
The argument values are stored in “~/.devassistant/.config”.
It is ignored in command-line interface.

Gui Hints

GUI needs to work with arguments dynamically, choose proper widgets and offer
sensible default values to user. These are not always automatically
retrieveable from arguments that suffice for commandline. For example, GUI
cannot meaningfully prefill argument that says it “defaults to current working
directory”. Also, it cannot tell whether to choose a widget for path (with the
“Browse ...” button) or just a plain text field.

Because of that, each argument can have gui_hints attribute.
This can specify that this argument is of certain type (path/str/bool) and
has a certain default. If not specified in gui_hints, the default is
taken from the argument itself, if not even there, a sensible “empty” default
value is used (home directory/empty string/false). For example:

args:
 path:
 flags:
 - [-p, --path]
 gui_hints:
 type: path
 default: $(pwd)/foo

If you want your assistant to work properly with GUI, it is good to use
gui_hints (currently, it only makes sense to use it for path
attributes, as str and bool get proper widgets and default values
automatically).

Files

This section serves as a list of aliases of files stored in one of the
files dirs of DevAssistant. E.g. if your assistant is
assistants/crt/foo/bar.yaml, then files are taken relative to
files/crt/foo/bar/ directory. So if you have a file
files/crt/foo/bar/spam.foo, you can use:

files:
 spam: &spam
 source: spam.foo

This will allow you to reference the spam.foo file in run section as
*spam without having to know where exactly it is located in your
installation of DevAssistant. Note, that the Yaml anchor name should be
the same as mapping name, e.g. the two spam in spam: &spam should
match. This is because of issue 74 [https://github.com/devassistant/devassistant/issues/74],
that can’t really be reasonably fixed.

Run

Reference for run sections has a separate page: Run Sections Reference.

Creator Assistants

Creator assistants are assistants that create something, be it a source file,
a configuration file template or a whole new project. They must be placed under
assistants/crt subdirectory or one of the load paths, as mentioned in
Assistants Loading Mechanism.

They usually create .devassistant file (see Project Metainfo: the .devassistant File).

Tweak Assistants

Tweak assistants are assistants that are supposed to work with
already created project. They must be placed under assistants/twk
subdirectory of one of the load paths, as mentioned in
Assistants Loading Mechanism.

There are few special things about tweak assistants:

	They usually utilize dda_r to read the whole .devassistant file (usually from directory
specified by path variable or from current directory). Since version 0.8.0, every tweak
assistant has to do this on its own, be it in pre_run or run section. This also allows you
to work non-devassistant projects - just don’t use dda_r.

The special rules below only apply if you use dda_t in pre_run section.

	They use dependency sections according to the normal rules + they use all
the sections that are named according to project_type loaded from .devassistant,
e.g. if project_type is [foo, bar], dependency sections
dependencies, dependencies_foo and dependencies_foo_bar will
be used as well as any sections that would get installed according to
specified parameters. The rationale behind this is, that if you have e.g.
eclipse tweak assistant that should work for both python django and
python flask projects, chance is that they have some common dependencies,
e.g. eclipse-pydev. So you can just place these common dependencies in
dependencies_python and you’re done (you can possibly place special
per-framework dependencies into e.g. dependencies_python_django).

	By default, they don’t use run section. Assuming that project_type
is [foo, bar], they first try to find run_foo_bar, then run_foo
and then just run. The first found is used. If you however use cli/gui
parameter spam and section run_spam is present, then this is run instead.

Preparer Assistants

Preparer assistants are assistants that are supposed to checkout sources of upstream
projects and set up environment for them (possibly utilizing their .devassistant file,
if they have one). Preparers must be placed under assistants/prep subdirectory of one
of the load paths, as mentioned in Assistants Loading Mechanism.

Preparer assistants commonly utilize the dda_dependencies and dda_run
commands in run section.

Extras Assistants

Extras assistants are supposed to carry out arbitrary task that are not related to a specific
project. They must be placed under assistants/extra subdirectory of one of the load paths,
as mentioned in Assistants Loading Mechanism. Otherwise, there is nothing special about
extras assistants in terms of execution by DevAssistant.

Run Sections Reference

Run sections are the essence of DevAssistant. They are responsible for
performing all the tasks and actions to set up the environment and
the project itself. For Creator and Preparer assistants, the section named run
is always invoked, Tweak Assistants may invoke different sections
based on metadata in a .devassistant file.

Note, that pre_run and post_run follow the same rules as run sections.
See Assistants Invocation to find out how and when these sections are invoked.

Every section is a sequence of various commands, mostly invocations
of commandline. Each command is a mapping of command type to command input:

run:
- command_runner: command_input
- command_runner_2: another_command_input

Note, that section is a general term used for any sequence of commands. Sections
can have subsections (e.g. in conditions or loops), assuming they follow some rules (see below).

Introduction to Commands and Variables

The list of all supported commands can be found at Command Reference, we only document
the basic usage of the most important commands here. Note, that when you use variables
(e.g. $variable) in command input, they get substituted for their values
(undefined variables will remain unchanged).

	command line invocation:

- cl: mkdir -p $spam

This will invoke a subshell and create a directory named $spam. If the command returns
non-zero return code, DevAssistant will fail.

	logging:

- log_i: Directory $spam created.

This command will log the given message at INFO level - either to terminal or GUI.
You can use similar commands to log at different log levels: log_d for DEBUG,
log_w for WARNING, log_e for ERROR and log_c for CRITICAL. By default,
messages of level INFO and higher are logged. Log messages with levels ERROR and
CRITICAL emit the message and then raise an exception.

	conditions:

- if not $foo and $(ls /spam/spam/spam):
 - log_i: This gets executed if the condition is satisfied.
- else:
 - log_i: Else this section gets executed.

Conditions work as you’d expect in any programming language - if subsection gets executed if
the condition evaluates to true, otherwise else subsection gets executed. The condition
itself is an expression, see Expressions for detailed reference of expressions.

	loops:

- for $i word_in $(ls):
 - log_i: Found file $i.

Loops probably also work as you’d expect - they’ve got the control variable and an iterable.
Loop iterators are expressions, see Expressions. Note, that you can use two
forms of for loop. If you use word_in, DevAssistant will split the given expression on
whitespace and then iterate over that, while if you use in, DevAssistant will iterate
over single characters of the string.

	variable assignment:

- $foo: "Some literal with value of "foo" variable: $foo"

This shows how to assign a literal value to a variable. It is also possible to assign
the result of another command to a variable, see Section Results for how to
use the execution flag.

Remember to check Command Reference for a comprehensive description of all commands.

Literal Sections vs. Execution Sections

DevAssistant distinguishes two different section types: input sections and
execution sections. Some sections are inherently execution sections:

	all run sections of assistants

	if, else subsections

	for subsections

Generally, execution sections can be either:

	expression (e.g. a Yaml string that gets interpreted as an expression)

or

	section (sequence of commands)

Literal section can be any valid Yaml structure - string, list or mapping.

Section Results

Similarly to expressions, sections return logical result and result:

	literal section
	result is a string/list/mapping with variables substituted for their values

	logical result is False if the structure is empty (empty string, list or mapping),
True otherwise

	execution sections
	result is the result of last command of given section

	logical result is the logical result of last command of given section

Some examples follow:

run:
now we're inherently in an execution section
- if $(ls /foo):
 # now we're also in an execution section, e.g. the below sequence is executed
 - foo:
 # the input passed to "foo" command runner is inherently a literal input, e.g. not executed
 # this means foo command runner will get a mapping with two key-value pairs as input, e.g.:
 # {'some': 'string value', 'with': [...]}
 some: string value
 with: [$list, $of, $substituted, $variables]
- $var: this string gets assigned to "var" with $substituted $variables

If you need to assign the result of an expression or execution section to a variable or pass it to
a command runner, you need to use the execution flag: ~:

run:
- $foo~: ($this or $gets) and $executed_as_expression
- foo~:
 # input of "foo" command runner will be result of the below execution section
 - command_runner: literal_section
 - command_runner_2~:
 # similarly, input of command_runner_2 will be result of the below execution section
 - cr: ci
 - cr2: ci2

Note, that a string starting with the execution flag is also executed as an expression. If you
want to create a literal that starts with ~, just use the escape value for it (~~):

run:
- $foo: ~$(ls) and $bar
- $bar: ~~/some_dir_in_users_home
- log_i: The tilde character (~) only needs to be escaped when starting a string.

Each command specifies its return value in a different way, see Command Reference.

Exceptions

If an unexpected error happens in a command runner, then this command runner raises
exception. This means that execution of the current section is immediately terminated -
in fact, the whole assistant run is terminated at that moment. In terminology terms, this
is called raising exception. Since version 0.11.0, it is possible to
catch exceptions.

For command line execution of DevAssistant, raising exception without catching it means
ending DevAssistant with non-zero return code immediately. In GUI, this means ending the
execution of an assistant, but keeping the GUI running.

Variables and Context

The set of all variables existing during an assistant run section is referred to as
global context or just context (it is implemented as dictionary, Python’s associative
array type). This means, that it is in fact mapping of variable names to their values.

Initially, the context is populated with values of arguments from the
commandline/gui and some other useful values, see Global Variables below.
You can of course define (and assign to) your own variables or change the values
of current ones - see Variable Assignment. Names of some of the preset
variables start and end with double underscores. You shouldn’t modify these, as they
can be used internally by DevAssistant.

Additionally, after each command, variables $LAST_RES and $LAST_LRES are populated
with the result of the last command (these are also the return values of the command) -
see Command Reference.

The variable scope works as follows:

	When invoking a different run section (from the current assistant or snippet),
the variables get passed by value (e.g. they don’t get modified for the
remainder of this scope).

	Variables defined in subsections (if, else, for) continue to be available
until the end of the current run section.

All variables are global in the sense that if you call a snippet or another
section, it can see all the arguments that are defined.

Quoting

When using variables that contain user input, they should always be
quoted in the places where they are used for bash execution. That
includes cl* commands, conditions that use bash return values and
variable assignment that uses bash.

Global Variables

In all assistants, a few useful global variables are available. These include:

	$__system_name__ - name of the system, e.g. “linux”

	$__system_version__ - version of the system, e.g. “3.13.3-201.fc20.x86_64”

	$__distro_name__ - name of Linux distro, e.g. “fedora”

	$__distro_version__ - version of Linux distro, e.g. “20”

	$__env__ - mapping of environment variables that get passed to subprocess shell

Note: if any of this information is not available, the corresponding variable will be empty.
Also note, that you can rely on all the variables having lowercase content.

Expressions

Expressions are used in assignments, conditions and as loop “iterables”.
Every expression has a logical result (meaning success - True or
failure - False) and result (meaning output). Logical result
is used in conditions and variable assignments, result is used in
variable assignments and loops.
Note: when assigned to a variable, the logical result of an expression can
be used in conditions as expected; the result is either True or False.

Syntax and semantics:

	$foo
	if $foo is defined:
	logical result: True iff value is not empty and it is not
False

	result: value of $foo

	otherwise:
	logical result: False

	result: empty string

	note: boolean values (e.g. those acquired by argument with action: store_true)
always have an empty string as a result and their value as logical result

	$(commandline command) (yes, that is a command invocation that looks like
running command in a subshell)
	if commandline command has return value 0:
	logical result: True

	otherwise:
	logical result: False

	regardless of logical result, result always contains both stdout
and stderr lines in the order they were printed by commandline command

	note: Due to the way the expression parser works, DevAssistant may sometimes add spaces
around special characters between $(and). This is a known issue, but we don’t have
any systematic solution right now. The problem can be worked around by putting quotes (single
or double) around the whole commandline invocation, e.g. you can use $("echo +-"). See
issue 271 <https://github.com/devassistant/devassistant/issues/271>.

	as_root $(commandline command) runs commandline command as superuser; DevAssistant
may achieve this differently on different platforms, so the actual way how this is done
is considered to be an implementation detail

	defined $foo - works exactly as $foo, but has logical result
True even if the value is empty or False

	not $foo negates the logical result of an expression, while leaving
result intact

	$foo and $bar
	logical result is the logical conjunction of the two arguments

	result is an empty string if at least one of the arguments is empty, or the latter argument

	$foo or $bar
	logical result is the logical disjunction of the two arguments

	result is the first non-empty argument or an empty string

	literals - "foo", 'foo'
	logical result True for non-empty strings, False otherwise

	result is the string itself, sans quotes

	Note: If you use an expression that is formed by just a literal, e.g. "foo" , then
DevAssistant will fail, since Yaml parser will strip these. Therefore you have to use
'"foo"' .

	$foo in $bar
	logical result is True if the result of the second argument contains the result of the second argument (e.g. “inus” in “Linus Torvalds”) and False otherwise

	result is always the first agument

All these can be chained together, so, for instance, "1.8.1.4" in $(git --version)
and defined $git is also a valid expression

Snippets

Snippets are the DevAssistant’s way of sharing common pieces of assistant code. For example,
if you have two assistants that need to log identical messages, you want the messages
to be in one place, so that you don’t need to change them twice when a change is needed.

Example

Let’s assume we have two assistants like this:

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more slightly different stuff

So we have two assistants that have three lines of identical code in them - that breaks a widely
known programmer best practice: Don’t do it twice, write a function for it.
In DevAssistant terms, we’ll write a run section and place it in a snippet:

snippets/mysnip.yaml
run:
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...

Then we’ll change the two assistants like this (we’ll utilize
“use” command runner):

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- use: mysnip.run
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- use: mysnip.run
- do: more slightly different stuff

How Snippets Work

This section summarizes important notes about how snippets are formed and how they work.

Syntax and Sections

Snippets are very much like assistants. They can (but don’t have to) have args,
dependencies* and run* sections - structured in the same manner as in assistants.
A snippet can contain any combination of the above sections (even empty file is a valid snippet).

Variables

When a snippet section is called (this applies to both dependencies* and run*, it gets
a copy of all arguments of its caller - e.g. it can use the variables, it can assign to them,
but they’ll be unchanged in the calling section after the snippet finishes.

Using Snippets and Return Value

As noted above, snippets can hold 3 types of content (args, dependencies* sections
and run* sections), each of which can be used in assistants:

snippets/mysnip.yaml

args:
 foo:
 flags: [-f, --foo]
 help: Foo is foo
 required: True

dependencies:
- rpm: [python3]

run:
- log_i: Spam spam spam

assistants/crt/assistant1.yaml

args:
 foo:
 use: mysnip

dependencies:
- use: mysnip.dependencies

run:
- do: stuff
- use: mysnip.run

Return values (RES and LRES) of snippet are determined by the
use command runner - RES and LRES of last command of the snippet section.

Create Assistant Using Scripting Language (a.k.a DevAssistant PingPong)

	How It Works/PingPong Protocol Reference

	Tutorial: Assistants Utilizing PingPong

	Tutorial: Python PingPong Script

(Why PingPong?)

The PingPong approach is the second approach you can take to write complex assistant
functionality. It utilizes a small subset of the Yaml DSL
for describing metadata, dependencies and assistant arguments.

The actual execution part is written in one of the supported Supported Languages.
For each of these languages, there is a binding library available, that allows the PingPong
script to make callbacks to DevAssistant. Hence you can write assistants in a scripting
language while still utilizing DevAssistant functionality.

The general part about metadata, dependencies and arguments is described at
Tutorial: Assistants Utilizing PingPong and you should read it regardless of the language
you choose to implement the script. Then you should choose a language-specific tutorial
to see how to write the actual PingPong script.

Supported Languages

Currently, only Python PingPong client library has been implemented. It works with
Python 2.6, 2.7 and > 3.3. You can get it at https://pypi.python.org/pypi/dapp,
bug reports/feature requests are welcome at https://github.com/devassistant/dapp/issues.
This library is maintained by developers of DevAssistant.

Note on terminology: The PingPong script is not the assistant. Even if you’re using
the PingPong approach, the assistant is still a Yaml file (very simple in this case).

How It Works/PingPong Protocol Reference

The DevAssistant PingPong protocol is a simple protocol that DevAssistant (Server) and
PingPong script (Client) use to communicate through a pipe. It’s designed to be as simple
and portable as possible.

The overall idea of PingPong is:

	Server invokes Client script as a subprocess and attaches to its stdin/stdout/stderr,
creating a pipe.

	Client waits for Server to initiate the communication.

	Server sends the first message, initiating the communication.

	Server and Client communicate through the pipe.

	At one point, the Client is done and the subprocess exits. Server gathers its output
data and acts up on them in some way.

Right now, only Python implementation of the protocol is available. In future, we’ll be
aiming to implement the Client side (used in PingPong scripts) in other dynamic languages
(or you can do it yourself using the reference below and let us know!)

Why PingPong?

The “PingPong” name comes from the similarity to table tennis. There are two players,
Server (DevAssistant) and Client (PingPong script). The Server serves (sends the first
message), Client receives it and responds to server, Server receives the message and
responds again to Client, ...

How Does PingPong Integrate With DSL?

In terms of integration with DevAssistant Yaml DSL, PingPong is just another
command runner that computes something and then returns
a result. This means that you can mix it up arbitrarily with other DSL commands or even
run several PingPong scripts in one assistant.

Reference

This part describes DevAssistant PingPong Protocol (DAPP) version 2. There is a
reference Python implementation [https://github.com/devassistant/dapp],
called dapp, which you can examine into detail. Note that the reference implementation
implements both Server and Client side. If you’re considering implementing DAPP
in another scripting language, you’ll only need to implement Client side.

Errors

Throughout this reference, there are certain situations marked as “being an error”.
These situations usually mean that a (fatal) error was encountered in message format.
The side getting the error should terminate immediately, possibly running cleanup code first.

Message Format

These points are general rules that apply to all messages, both sent from Server to Client
(S->C) and Client to Server (C->S).

	Currently, sending random binary data is not supported, everything has to be valid
UTF-8 encoded string. Not being able to decode is an error.

	Each message starts with string START and ends with string STOP. These have to be
on separate lines.

	Any non-empty line between previous STOP and following START is an error.

	The lines between START and STOP must a valid Yaml mapping, otherwise it is an error.

	Every message has to contain msg_number, msg_type and dapp_protocol_version.

	dapp_protocol_version must be an integer specifying the DAPP protocol version.
Other side using a different protocol version is an error.

	msg_number must be a unique integer identifying the message during a PingPong script run.
Sequence of message numbers must be increasing; both sides use the same sequence (e.g. Server
sends message 1, client then has to send message with number no lower than 2, then
Server has to send a message with number no lower than the number of message sent by client
etc). This rule has one exception, confirmation messages (msg_type is msg_received)
have the same number as the message that they’re confirming. More on the confirmation
messages below.

	If msg_type is different than msg_received, message must contain ctxt. Valid
message types are listed below.

	ctxt has to be a Yaml DSL context (e.g. mapping of variable names to their values).
In every message (except confirmation message), the whole context has to be passed and the
receiving communication side must update its copy of the context.

Message Types and Content

	Both Client and Server send msg_received messages to confirm messages received from
the other communicating side.

	Server sends these messages:
	run - This message must always be the first message in the whole communication,
Server sends it to tell Client to start and pass the initial context. This message
shouldn’t contain any special data.

	command_result - Reports result of a command that Client previously invoked. Must
contain lres and res values, these two represent results of the command
(see Command Reference for details).

	command_exception - Sent if the command called by Client raised an exception. Must
contain exception value, which is a string representation of the exception.

	no_such_command - Sent if Server (DevAssistant) doesn’t know how to execute
the sent command. Doesn’t contain any extra data.

	Client sends these messages:
	call_command - Client calls a command. Must contain command_type and
command_input, as specified in Command Reference.

	finished - Client ended successfully. Must contain lres and res values.
These must be the same types as return values of DevAssistant commands (again, see
Command Reference).

	failed - Client failed. Must contain fail_desc with the description of
the failure.

If run from Server to Client isn’t the first message and finished or failed
isn’t the last message from Client to Server, it is an error.

Example Communication

To illustrate better how the protocol works, here is a simple example of valid message sequence.
We’re assuming that the Server has already started the Client and Client is now waiting to
for Server to initiate the communication.

Note that all the communication is shown as an already decoded Unicode, but in fact it’s sent
as UTF-8 through the pipe.

Server initiates communication by sending run message:

START
dapp_protocol_version: 2
msg_type: run
msg_number: 1
ctxt:
 name: user_input_name
 some_list_variable: [foo, bar, baz]
STOP

Client confirms that it got the message:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 1
STOP

And imediatelly after that it starts to actually do something. At certain points, it needs to
call back to Server (DevAssistant) to carry out some tasks implemented in DevAssistant itself.
Note, that while computing, the Client process has done some modifications to the context:

START
dapp_protocol_version: 2
msg_type: call_command
msg_number: 2
ctxt:
 name: user_input_name
 some_dict_variable: {foo: a, bar: b, baz: c}
command_type: log_i
command_input: This will get logged by DevAssistant to either GUI or console.
STOP

The Server (DevAssistant) first confirms receiving the message by sending msg_received:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 2
STOP

Then the server actually runs the command and sends a message with result to Client:

START
dapp_protocol_version: 2
msg_type: command_result
msg_number: 3
ctxt:
 name: user_input_name
 some_dict_variable: {foo: a, bar: b, baz: c}
lres: True
res: This will get logged by DevAssistant to either GUI or console.
STOP

(Note that for the log_i command, the res result is actually equal to the input; this
is usually not the case, of course).

Again, Client confirms receiving the message:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 3
STOP

And then Client continues to compute. Since this is a simple example, the Client doesn’t call any
more commands, but it could call as many as it’d like. The client is now finished and prepared
to exit, so it sends a finished message:

START
dapp_protocol_version: 2
msg_type: command_result
msg_number: 4
ctxt:
 name: user_input_name
 some_dict_variable: {foo: a, bar: b, baz: c}
 another_variable: some_var
lres: True
res: 42
STOP

Server sends one last confirmation message to Client:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 4
STOP

And everything is done. The Client can safely exit and Server can do anything it wishes with
the result.

Tutorial: Assistants Utilizing PingPong

Regardless of which language you want to choose for implementing the PingPong script,
you should read this section. It provides general information about specifying metadata,
dependencies, arguments and file placement for the PingPong scripts.

DevAssistant distinguishes four different assistant roles -
Creator, Tweak, Preparer, Extras. From the point of view of this tutorial, the roles
only differ in file placement and where they’ll be presented to user on command line/in GUI.
Therefore we choose to create a simple Creator. We’ll be implementing an assistant, that
creates a simple reStructuredText [http://docutils.sourceforge.net/rst.html] document.

Note on terminology: The PingPong script is not the assistant. Even if you’re using
the PingPong approach, the assistant is still a Yaml file (very simple in this case).

General Rules

Some things are common for all assistant types:

	Each assistant is one Yaml file, that must contain exactly one mapping -
the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant
...

	You have to place them in a proper place, see DevAssistant Load Paths and
Assistants Loading Mechanism.

	Files (e.g. templates, scripts, PingPong script files etc.)
used by assistant should be placed in the same load dir, e.g. if your assistant is placed at
~/.devassistant/assistants, DevAssistant will look for files under
~/.devassistant/files.

	As mentioned in DevAssistant Load Paths, there are three main load paths in
standard DevAssistant installation, “system”, “local” and “user”.
The “system” dir is used for assistants delivered by your
distribution/packaging system and you shouldn’t touch or add files in
this path. The “local” path can be used by system admin to add system-wide
assistants while not touching “system” path. Lastly, “user” path can be
used by user to install assistants just for himself.

	When developing new assistants, that you e.g. put in a separate Git repo and want to work on it,
commit, push, etc, it is best to utilize DEVASSISTANT_PATH bash environment variable,
see DevAssistant Load Paths for more info.

Getting Set Up

To get started, we’ll create a file hierarchy for our new assistant, say in
~/programming. We’ll also modify DEVASSISTANT_PATH so that DevAssistant
can see this assistant in directory outside of standard load paths. Luckily,
there is assistant that does all this - dap [https://dapi.devassistant.org/dap/dap/]:

da pkg install dap
da create dap -n ~/programming/rstcreate --crt
export DEVASSISTANT_PATH=~/programming/rstcreate/

Running da create dap scaffolds everything that’s needed to create a DAP package
that can be distributed on DevAssistant Package Index, DAPI [https://dapi.devassistant.org/],
see Packaging and Distributing Your Assistant for more information.

Since this assistant is a Creator, we need to put it somewhere under assistants/crt
directory. The related files (if any), including the PingPong script have to go under
files/crt/rstcreate (assuming, of course, we name the assistant rstcreate.yaml).
More details on assistants file locations and subassistants can be found in the
tutorial for the Yaml DSL.

Now go to one of the language-specific tutorials to see how to actually create a
simple assistant and the PingPong script.

Tutorial: Python PingPong Script

This tutorial explains how to write a Python assistant using PingPong protocol.
You should start by setting up the general things explained in
general tutorial.

Creating the Yaml Assistant

Since one of the points of PingPong is to avoid as much of the Yaml DSL as possible, this
will be very short (and self-explanatory, too!). This is what you should put in
~/programming/rstcreate/assistants/crt/rstcreate.yaml:

fullname: RST Document
description: Create a simple reStructuredText document.

dependencies:
- rpm: [python3, python3-dapp]

args:
 title:
 flags: [-t, --title]
 help: Title of the reStructuredText document.
 required: True

files:
 ppscript: &ppscript
 source: ppscript.py

run:
- pingpong: python3 *ppscript

This is pretty much all you’ll need to write in the Yaml DSL everytime you’ll be writing
assistants based on PingPong. A brief explanation follows (more detailed explanation of the
DSL can be found at Tutorial: Creating Your Own Assistant in Yaml DSL):

	fullname and description are “nice” attributes to show to users.

	dependencies list packages that DevAssistant is supposed to install prior to invoking
the PingPong script; you can add any dependencies that your PingPong script needs here

	args are a Yaml mapping of arguments that the assistant will accept from user (be it
on commandline or in GUI).

	files is a Yaml mapping of files; each file must a have a unique name (ppscript),
should be referenced to by Yaml anchor (&ppscript; shouldn’t be different from
ppscript because of issue 74 [https://github.com/devassistant/devassistant/issues/74])
and has to have source argument that specifies filename. (Will be searched for in
appropriate files subdirectory.

	run just runs the PingPong script the way it’s supposed to be run
(the python3 *ppscript) is exactly what will get executed to execute the PingPong
subprocess (of course after substituting *ppscript with expanded path to the actual
script from files).

Creating the PingPong Script

We’ll write the PingPong script in Python 3, using the
dapp library [https://github.com/devassistant/dapp]. Note, that this tutorial uses
version 0.3.0 of dapp; consult dapp documentation if your version is different (you can
find a detailed documentation of this library at its
Github project page [https://github.com/devassistant/dapp]).

This is the content of the ~/programming/rstcreate/files/crt/rstcreate/ppscript.py
file (see comments below for explanation):

#!/usr/bin/python3
import os

import dapp

class MyScript(dapp.DAPPClient):
 def run(self, ctxt):
 # call a DA command that replaces funny characters by underscores,
 # so that we can use title as a filename
 _, normalized = self.call_command(ctxt, 'normalize', ctxt['title'])
 filename = normalized.lower() + '.rst'

 # if file already exists, just fail
 if os.path.exists(filename):
 self.send_msg_failed(ctxt,
 'File "{0}" already exists, cannot continue!'.format(filename))

 self.call_command(ctxt, 'log_i', 'Creating file {0} ...'.format(filename))
 with open(filename, 'w') as f:
 # Issue a debug message that will show if DA is run with --debug
 self.call_command(ctxt, 'log_d', 'Writing to file {0}'.format(filename))
 f.write(ctxt['title'].capitalize())
 f.write('\n')
 f.write('=' * len(ctxt['title']))

 # inform user that everything went fine and return
 self.call_command(ctxt, 'log_i', 'File {0} was created.'.format(filename))
 return (True, filename)

if __name__ == '__main__':
 MyScript().pingpong()

	The PingPong script mustn’t write anything to stdout or stderr. If you need to
tell something to user, use log_i command (log_w for warnings and log_d for
debug output).

	The whole PingPong script is just a Python 3 script that imports dapp library, subclasses
the dapp.DAPPClient class and runs pingpong() method when script is run (note: the
implemented class has to implement run() method, but pingpong() has to be called!).

	The run method takes ctxt as an argument, which is the Yaml DSL context. In short,
it is a dictionary mapping DSL variables to their values. This context has to be passed
as the first argument to all functions that interact with DevAssistant. Note, that all
changes that you do to ctxt are permanent and will reflect in any subsequent Yaml DSL
commands following the PingPong script invocation. See Variables and Context for more
details on how context and variables work.

	You can run DevAssistant commands by calling self.call_command
method. It takes three parameters: Yaml DSL context, command type and command input
(consult command_ref for details on command types and their input). This function
returns 2-tuple, logical result (boolean) and result (type depends on command)
(again, consult command_ref).

	You can pass arbitrary dictionaries (== crafted to make commands see a different context)
to call_command() to achieve desired results. Doing this does not alter the Yaml DSL
context in any way, the changes will be limited to the dictionary you pass.

	Similarly, the called commands can change the context that you pass to them as argument
(usually they don’t do this; if they do, they usually just add variables, not remove/change).

	The run() method has to return a 2-tuple, a logical result and result. This is exactly
the same as what any DevAssistant command returns (since pingpong is in fact just a Yaml
command). You can choose what you want to return as result as you wish - in this case, we
return the name of the file created.

Wrap-up

That is it. Now you can run the assistant with:

da create rstcreate -t "My Article"

And that’s it. Enjoy!

Common Assistant Behaviour

Common Parameters of Assistants and Their Meanings

	-e

	Create Eclipse project, optional. Should create .project (or any other
appropriate file) and register project to Eclipse workspace (~/workspace
by default, or the given path if any).

	-g

	Register project on GitHub (uses current user name by default, or given name if any).

	-n

	Name of the project to create, mandatory. Should also be able to accept full or
relative path.

	-p

	Path to existing project supplied to tweak assistants (optional, defaults to .).

To include these parameters in your assistant with common help strings etc., include
them from common_args.yaml (-n, -g) or eclipse.yaml (-e) snippet:

args:
 name:
 snippet: common_args

Other Conventions

When creating snippets/Python commands, they should operate under the assumption
that current working directory is the project directory (not one dir up or
anywhere else). It is the duty of assistant to switch to that directory. The benefit
of this approach is that you just cd once in assistant and then call all the
snippets/commands, otherwise you’d have to put 2x cd in every snippet/command.

Packaging and Distributing Your Assistant

Note: this functionality is under heavy development and is not fully implemented yet.

So now you know how to create an Assistant.
But what if you want to share your Assistant with others?

For that you could send them all the files from your Assistant and tell them where they belong.
But that would be very unpleasant and that’s why we’ve invented DAP.
DAP is a format of extension for DevAssistant that contains custom Assistants.
It means DevAssistant Package.

A DAP is a tar.gz archive with .dap extension. The name of a DAP is always
<package_name>-<version>.dap - i.e. foo-0.0.1.dap.

Directory structure of a DAP

The directory structure of a DAP copies the structure of ~/.devassistant or
/usr/share/devassistant folder. The only difference is, that it can only contain Assistants,
files and icons that that belongs to it’s namespace.

Each DAP has an unique name (lat’s say foo) and it can only contain Assistants foo or
foo/*. Therefore, the directory structure looks like this:

foo-0.0.1/
 meta.yaml
 assistants/
 {crt,twk,prep,extra}/
 foo.yaml
 foo/
 files/
 {crt,twk,prep,extra,snippets}/
 foo/
 snippets/
 foo.yaml
 foo/
 icons/
 {crt,twk,prep,extra,snippets}/
 foo.{png,svg}
 foo/
 doc/
 foo/

Note several things:

	Each of this is optional, i.e. you don’t create files or snippets folder if you provide
no files or snippets. Only mandatory thing is meta.yaml (see below).

	Everything goes to the particular folder, just like you’ve learned in the chapter about
creating Assistants. However, you can only add stuff named
as your DAP (means either a folder or a file with a particular extension). If you have more
levels of Assistants, such as crt/foo/bar/spam.yaml, you have to include top-level
Assistants (in this case both crt/foo.yaml and crt/foo/bar.yaml). And you have to
preserve the structure in other folders as well (i.e. no icons/crt/foo/spam.svg but
icons/crt/foo/bar/spam.svg).

	The top level folder is named <package_name>-<version>.

meta.yaml explained

There is an important file called meta.yaml in every DAP. It contains mandatory information about the DAP as well as additional optional metadata. Let’s see an explained example:

package_name: foo # required
version: 0.0.1 # required
license: GPLv2 # required
authors: [Bohuslav Kabrda <bkabrda@mailserver.com>, ...] # required
homepage: https://github.com/bkabrda/assistant-foo # optional
summary: Some brief one line text # required
bugreports: <a single URL or email address> # optional
dependencies:
 # for now, dependencies are possible, but the version specifiers are ignored
 - bar
 - eggs >= 1.0
 - spam== 0.1 # as you can see, spaces are optional
 - ook < 2.5 # and more can be added, however, don't use tabs
supported_platforms: [fedora, darwin] # optional
description: |
 Some not-so-brief optional text.
 It can be split to multiple lines.

 BTW you can use **Markdown**.

	package name can contain lowercase letters (ASCII only), numbers, underscore and dash (while it can only start and end with a letter or digit), it has to be unique, several names are reserved by DevAssistant itself (e.g. python, ruby)

	version follows this scheme: <num>[.<num>]*[dev|a|b], where 1.0.5 < 1.1dev < 1.1a < 1.1b < 1.1

	license is specified via license tag used in Fedora https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Good_Licenses

	authors is a list of authors with their e-mail addresses (_at_ can be used instead of @)

	homepage is an URL to existing webpage that describes the DAP or contains the code (such as in example), only http(s) or ftp is allowed, no IP addresses

	summary and description are self-descriptive in the given example

	bugreports defines where the user should report bugs, it can be either an URL (issue tracker) or an e-mail address (mailing list or personal)

	dependencies specifies other DAPs this one needs to run - either non-versioned or versioned, optional; note, that versions are ignored for now, they’ll start working in one of the future DevAssistant releases

	supported_platforms optionally lists all platforms (Linux distributions etc.), that this DAP is known to work on. When missing or empty, all platforms are considered supported. You can choose from the following options: arch, centos, debian, fedora, gentoo, mageia, mandrake, mandriva, redhat, rocks, slackware, suse, turbolinux, unitedlinux, yellowdog and darwin (for Mac OS).

Assistant for creating Assistants packages

There is a DevAssistant package containing set of Assistants that help you create this quite complicated directory structure and package your DAP. It’s called dap and you can get it form DAPI [https://dapi.devassistant.org/dap/dap/].

install dap from DAPI
$ da pkg install dap

observe available options
$ da create dap --help

create DAP directory structure named foo with (empty) create and tweak Assistants
$ da create dap -n foo --crt --twk

you can also tweak your DAP directory structure a bit by adding Assistants of different kind

observe available options
$ da tweak dap add -h

add a snippet
$ da tweak dap add --snippet

once ready, you can also pack you Assistant
$ da tweak dap pack

as well as check if DevAssistant thinks your package is sane
$ da pkg lint foo-0.0.1.dap

Uploading your DAP to DevAssistant Package Index

Once the package is finished (you have run all the steps from the previous
chapter - that means you have a DAP file which passes the linting without
errors), you can share your DAP on DAPI [http://dapi.devassistant.org/]
(DevAssistant Package Index).

To do that, log into DAPI [http://dapi.devassistant.org/] with your Github
or Fedora account, and click Upload a DAP [http://dapi.devassistant.org/upload/] link in the top menu. There you will
find legal information about what you may (and may not) upload and an upload
field, where you select the *.dap file on your machine. After that, just click
Upload, and the server will take care of the rest.

To update your package later, simply increase the version in meta.yaml,
re-run da tweak dap pack and da pkg lint foo-0.0.2.dap, and upload it to
DAPI just the same. The server will understand it’s an update and will act
accordingly.

Uploading from command line

If you’d prefer to upload your package via command line, you can use extra Assistant from the
dap DAP mentioned before:

assuming you dap is packaged in foo-0.0.1.dap
$ da extra dap upload -d foo-0.0.1.dap
By uploading the DAP, you agree to the DAPI Terms of Use (https://dapi.devassistant.org/terms/)
Have you read the DAPI Terms of Use and do you agree with them? [y/n]
y
INFO: foo-0.0.1.dap successfully uploaded

When you do this for the first time, you will be prompted for your authorization token.
To obtain it, log into DAPI [http://dapi.devassistant.org/] with your Github
or Fedora account, click on your username in the top menu and select View profile.
Get the token on the bottom of your profile page.

Once you provide the token, it is saved to devassistant.dapi.token git global configuration.
If you ever want to unset it, just run:

$ git config --global --unset devassistant.dapi.token

Uploading from GitHub with Travis CI

It is also possible to upload your DAPs directly from GitHub using
Travis CI [https://travis-ci.org/] . Unfortunately you cannot do it via the deploy
statement, because DAPI is not yet supported there. But you can still do it with after_success.
Here is an example .travis.yml that will upload your DAP to DAPI on tagged commits only:

language: python # Use python here so you can install DevAssistant easily
python:
- '3.4' # Just one version is required, 3.4 is the latest
install:
- pip install devassistant
- sudo apt-get install realpath # needed by the packing assistant
- da pkg install dap
script:
- da twk dap pack
- da pkg lint *.dap

Upload to DAPI on tagged commits from owner/dap-foo
By using --agree-with-terms, you express agreement with https://dapi.devassistant.org/terms/
after_success:
- if [-n "$TRAVIS_TAG"] && ["$TRAVIS_PULL_REQUEST" == "false"] &&
 ["$TRAVIS_REPO_SLUG" == "owner/dap-foo"] && [-n "$DAPI_TOKEN"]; then
 git config --global devassistant.dapi.token $DAPI_TOKEN;
 da extra dap upload -d *.dap --agree-with-terms;
 fi

This was generated by: travis encrypt DAPI_TOKEN=xxxxxxxxxxxxxxxxxxxx --add
env:
 global:
 secure: dCacnOhnVEckP7m9Mg8+0WyxH3c7mvQjgxQlhxivBEtbxs/t5RhRzwg8Divicq49QPM0mgQPP50fdBIt3XLJrmxq4VU4SWVqKDgo1m7LMrT2fuNs6kk5fqENojf+PFHmNgL0hnXciuY7ht9Az5f1bWL+A6+/rQu4SCCw35yvGnA=

If you need help with setting up Travis CI, continue to the
Travis CI Documentation [http://docs.travis-ci.com/].

Command Reference

This page serves as a reference for commands of the DevAssistant
Yaml DSL. These commands
are also callable from PingPong scripts.
Every command consists of a command_type and command_input. After it gets executed,
it sets the LAST_LRES and LAST_RES variables. These are also its return values,
similar to Expressions logical result and result.

	LAST_LRES is the logical result of the run - True/False if successful/unsuccessful

	LAST_RES is the “return value” - e.g. a computed value

In the Yaml DSL, commands are called like this:

- command_type: command_input

This reference summarizes commands included in DevAssistant itself in the following format:

command_type - some optional info

	Input: what should the input look like?

	RES: what is LAST_RES set to after this command?

	LRES: what is LAST_LRES set to after this command?

	Example: example usage

Note: if a command explanation says that command “raises exception” under some circumstances,
it means that a critical error has occured and assistant execution has to be interrupted
immediately. See documentation for exceptions in run sections
for details on how this reflects on command line and in GUI. In terms of the underlying Python
source code, this means that exceptions.CommandException has been raised. Exceptions
can be caught.

Missing something? Commands are your entry point for extending DevAssistant.
If you’re missing some functionality in run sections, just
write a command runner and either
include it with your assistant or send us a pull request
to get it merged in DevAssistant core.

Builtin Commands

There are three builtin commands that are inherent part of DevAssistant Yaml DSL:

	variable assignment

	condition

	loop

All of these builtin commands utilize expressions in some way - these must follow rules in
Expressions.

Variable Assignment

Assign result (and possibly also logical result) of Expressions
to a variable(s).

$<var1>[, $<var2>] - if one variable is given, result of expression (command input)
is assigned. If two variables are given, the first gets assigned logical result and the
second result.

	Input: an expression

	RES: result of the expression

	LRES: logical result of the expression

	Example:

- $foo: "bar"
- $spam:
 - spam
 - spam
 - spam
- $bar: $baz
- $success, $list~: $(ls "$foo")

Condition

Conditional execution.

if <expression>, else - conditionally execute one or the other section (if can
stand alone, of course)

	Input: a subsection to run

	RES: RES of last command in the subsection, if this clause is invoked. If not invoked,
RES remains untouched.

	LRES: LRES of last command in the subsection, if this clause is invoked. If not invoked,
LRES remains untouched.

	Example:

- if defined $foo:
 - log_i: Foo is $foo!
- else:
 - log_i: Foo is not defined!

Loop

A simple for loop.

for <var>[, <var>] [word_in,in] <expression> - loop over result of the expression. If
word_in is used and <expression> is a string, it will be split on whitespaces and
iterated over; with in, string will be split to single characters and iterated over.
For iterations over lists and mappings, word_in and in behave the same. When iterating
over mapping, two control variables may be provided to get both key and its value.

	Input: a subsection to repeat in loop

	RES: RES of last command of last iteration in the subsection. If there are no interations,
RES is untouched.

	LRES: LRES of last command of last iteration in the subsection. If there are no interations,
RES remains untouched.

	Example:

- for $i word_in $(ls):
 - log_i: File: $i

- $foo:
 1: one
 2: two
- for $k, $v in $foo:
 - log_i: $k, $v

Catching Exceptions

Catching runtime exceptions.

catch $was_exc, $exc - execute passed subsection, catch exception if raised. $was_exc
contains True if exception was raised, False otherwise; $exc contains string
representation of exception if one was raised, else it’s empty string.

	Input: a subsection to execute and catch exception for

	RES: string representation of exception if one was raised, empty string otherwise

	LRES: True if exception was raised, False otherwise

	Example:

- catch $was_exc, $exc:
 - cl: ls something_that_doesn_exist

- if $was_exc:
 # handle exception

Note that $exc may theoretically be empty string even if an exception was raised
(an example of that is running cl: false, which fails without output). It is therefore
important to use $was_exc variable to determine whether an exception was raised.

Ask Commands

User interaction commands, let you ask for password and various other input.

ask_confirm

	Input: mapping containing prompt (short prompt for user) and message
(a longer description of what the user should confirm)

	RES: the confirmation (True or False)

	LRES: same as RES

	Example:

- $confirmed~:
 - ask_confirm:
 message: "Do you think DevAssistant is great?"
 prompt: "Please select yes."

ask_input

	Input: mapping containing prompt (short prompt for user)

	RES: the string that was entered by the user

	LRES: True if non-empty string was provided

	Example:

- $variable:
 - ask_input:
 prompt: "Your name"

ask_password

	Input: mapping containing prompt (short prompt for user)

	This command works the same way as ask_input, but the entered text is
hidden (displayed as bullets)

	RES: the password

	LRES: True if non-empty password was provided

	Example:

- $passwd:
 - ask_password:
 prompt: "Please provide your password"

Command Line Commands

Run commands in subprocesses and receive their output.

cl, cl_[i,r] (these do the same, but appending i logs the command output on INFO level
and appending r runs command as root; appending p makes DevAssistant pass subcommand error,
e.g. execution continues normally even if subcommand return code is non-zero)

	Input: a string, possibly containing variables and references to files

	RES: stdout + stdin interleaved as they were returned by the executed process

	LRES: always True, raises exception on non-zero return code

	Example:

- cl: mkdir ${name}
- cl: cp *file ${name}/foo
- cl_i: echo "Hey!"
- cl_ir: echo "Echoing this as root"
- cl_r: mkdir /var/lib/foo
- $lres, $res:
 - cl_ip: cmd -this -will -log -in -realtime -and -save -lres -and -res -and -then -continue

If you need to set environment variables for multiple subsequent commands, consult
Modifying Subprocess Environment Variables.

Note: when using r, it’s job of DevAssistant core to figure out what to use as authentication
method. Consider this an implementation detail.

A note on changing current working directory: Due to the way Python interpreter works,
DevAssistant has to specialcase “cd <dir>” command, since it needs to call a special Python
method for changing current working directory of the running interpreter. Therefore you
must always use “cd <dir>” as a single command (do not use “ls foo && cd foo”);
also, using pushd/popd is not supported for now.

Modifying Subprocess Environment Variables

Globaly set/unset shell variables for subprocesses invoked by Command Line Commands
and in Expressions.

env_set, env_unset

	Input: a mapping of variables to set if using env_set, name (string) or names (list)
of variables to unset if using env_unset

	RES: mapping of newly set variable name(s) to their new values (for env_set)
or unset variables to their last values (for env_unset)

	LRES: always True

	Example:

- env_set:
 FOO: bar
If FOO is not in local DevAssistant context, DevAssistant does no substitution.
This measn that the shell still gets "echo $FOO" to execute and prints "bar".
- cl_i: echo $FOO
- env_unset: FOO

Note: If some variables to be unset are not defined, their names are just ignored.

Dependencies Command

Install dependencies from given command input.

dependencies

	Input: list of mappings, similar to Dependencies section, but without
conditions and usage of sections from snippets etc.

	RES: command input, but with expanded variables

	LRES: always True if everything is ok, raises exception otherwise

	Example:

- if $foo:
 - $rpmdeps: [foo, bar]
- else:
 - $rpmdeps: []

- dependencies:
 - rpm: $rpmdeps

.devassistant Commands

Commands that operate with .devassistant file.

dda_c - creates a .devassistant file, should only be used in creator assistants

	Input: directory where the file is supposed to be created

	RES: always True, terminates DevAssistant if something goes wrong

	LRES: always empty string

	Example:

- dda_c: ${path}/to/project

dda_r - reads an existing .devassistant file, should be used by tweak and preparer
assistants.Sets some global variables accordingly, most importantly original_kwargs (arguments
used when the project was created) - these are also made available with dda__ prefix (yes,
that’s double underscore).

	Input: directory where the file is supposed to be

	RES: always empty string

	LRES: True, raises exception if something goes wrong

	Example:

- dda_r: ${path}/to/project

dda_w - writes a mapping (dict in Python terms) to .devassistant

	
	Input: mapping with two elements:

	
	path: The directory name containing the .devassistant file

	write: Mapping with values to write

	Variables in the write mapping will be substituted, you have to use
$$foo (two dollars instead of one) to get them as variables in .devassistant.

	RES: always empty string

	LRES: True, raises exception if something goes wrong

	Example:

- dda_w:
 path: ${path}/to/project
 write:
 run:
 - $$foo: $name # name will get substituted from current variable
 - log_i: $$foo

Note: The input for the dda_w command can also be in the form of a list
with two items: the directory name, and the mapping with values to write. This
way is discouraged and will be deprecated

dda_dependencies - installs dependencies from .devassistant file, should be used by
preparer assistants. Utilizes both dependencies of creator assistants that created this project
plus dependencies from dependencies section, if present (this section is evaluated in the
context of current assistant, not the creator).

	Input: directory where the file is supposed to be

	RES: always empty string

	LRES: True, raises exception if something goes wrong

	Example:

- dda_dependencies: ${path}/to/project

dda_run - run run section from from .devassistant file, should be used by
preparer assistants. This section is evaluated in the context of current assistant, not the
creator.

	Input: directory where the file is supposed to be

	RES: always empty string

	LRES: True, raises exception if something goes wrong

	Example:

- dda_run: ${path}/to/project

Github Command

Manipulate Github repositories. Two factor authentication is supported out of
the box.

Github command (github) has many “subcommands”. Subcommands are part of the command input,
see below.

	
	Input: a string with a subcommand or a mapping, containing these items:

	
	do: Name of the subcommand to run (see below)

	Other parameters for the subcommand

	RES: if command succeeds, either a string with URL of manipulated repo or empty string is
returned (depends on subcommand), else a string with problem description (it is already logged
at WARNING level)

	LRES: True if the Github operation succeeds, False otherwise

	Example:

- github:
 do: create_repo
 login: $ghlogin
 reponame: $reponame

- github:
 do: create_and_push
 login: bkabrda
 reponame: devassistant

- github: push

- github:
 do: create_fork
 repo_url: $repo_url
 login: $reponame

Note: The input for the github command can also be in the form of a list
with two items: the subcommand name, and the mapping with values to use. This
way is discouraged and will be deprecated

Explanation of individual subcommands follows. Each subcommand takes defined arguments.
E.g. create_and_push takes an argument login.

	create_repo

	Creates a repo with given reponame for a user with given login.
If no or empty login is specified, local username is used.
Optionally accepts private argument to create repo as private.

	create_and_push

	Same as create_repo, but it also adds a proper git remote to repository in current
working dir and pushes to Github.

	push

	Just does git push -u origin master, no arguments needed.

	create_fork

	Creates a fork of repo at given repo_url under user specified by login.

Jinja2 Render Command

Render a Jinja2 template.

jinja_render, jinja_render_dir - render a single template or a directory containing
more templates

	Input: a mapping containing

	template - a reference to file (or a directory if using jinja_render_dir)
in files section

	destination - directory where to place rendered template (or rendered directory)

	data - a mapping of values used to render the template itself

	overwrite (optional) - overwrite the file if it exists? (defaults to false)

	output (optional) - specify a filename of the rendered template (see below for
information on how the filename is costructed if not provided), not used with
jinja_render_dir

	RES: always success string

	LRES: True, raises exception if something goes wrong

	Example:

- jinja_render:
 template: *somefile
 destination: ${dest}/foo
 overwrite: yes
 output: filename.foo
 data:
 foo: bar
 spam: spam

- jinja_render_dir:
 template: *somedir
 destination: ${dest}/somedir
 data:
 foo: foo!
 spam: my_spam

The filename of the rendered template is created in this way (the first step is omitted
with jinja_render_dir:

	if output is provided, use that as the filename

	else if name of the template endswith .tpl, strip .tpl and use it

	else use the template name

For template syntax reference, see Jinja2 documentation [http://jinja.pocoo.org/docs/].

Logging Commands

Log commands on various levels. Logging on ERROR or CRITICAL logs the message and then terminates the execution.

log_[d,i,w,e,c] (the letters stand for DEBUG, INFO, WARNING, ERROR, CRITICAL)

	Input: a string, possibly containing variables and references to files

	RES: the logged message (with expanded variables and files)

	LRES: always True

	Example:

- log_i: Hello $name!
- log_e: Yay, something has gone wrong, exiting.

Docker Commands

Control Docker from assistants.

docker_[build,cc,start,stop,attach,find_img,container_ip,container_name]

	Input:

	attach - list or string with names/hashes of container(s) (if string is provided,
it’s split on whitespaces to get names/hashes)

	build - mapping with arguments same as build method from docker_py_api [https://github.com/docker/docker-py/#api],
but path is required and fileobj is ignored

	cc - mapping with arguments same as create_container method from
docker_py_api [https://github.com/docker/docker-py/#api], image is required

	container_ip - string (container hash/name)

	container_name - string (container hash)

	find_img - string (a start of hash of image to find)

	start - mapping with arguments same as start method from docker_py_api [https://github.com/docker/docker-py/#api],
container is required

	stop - mapping with arguments same as stop method from docker_py_api [https://github.com/docker/docker-py/#api],
container is required

	LRES and RES:

	attach - LRES is True if all attached containers end with success, False
otherwise; RES is always a string composed of outputs of all containers

	build - True and hash of built image on success, otherwise raises exception

	cc - True and hash of created container, otherwise raises exception

	container_ip - True and IPv4 container address on success, otherwise
raises exception

	container_name - True and container name on success, otherwise raises exception

	find_img - True and image hash on success if there is only one image that starts
with provided input; False and string with space separated image hashes if there are
none or more than one images

	start - True and container hash on success, raises exception otherwise

	stop - True and container hash on success, raises exception otherwise

	Example (build an image, create container, start it and attach to output; stop it on
DevAssistant shutdown):

run:
build image
- $image~:
 - docker_build:
 path: .
create container
- $container~:
 - docker_cc:
 image: $image
start container
- docker_start:
 container: $container
- log_i~:
 - docker_container_ip: $container
register container to be shutdown on DevAssistant exit
- atexit:
 - docker_stop:
 container: $container
 timeout: 3
attach to container output - this can be interrupted by Ctrl+C in terminal,
but currently not in GUI, see https://github.com/devassistant/devassistant/issues/284
- docker_attach: $container

Vagrant-Docker Commands

Control Docker using Vagrant from assistants.

vagrant_docker

	Input: string with vagrant command to run, must start with one of up, halt,
destroy, reload

	RES: hashes/names of containers from Vagrantfile (not all of these were necessarily
manipulated with, for example if you use halt, all container hashes are returned
even if no containers were previously running)

	LRES: True, raises exception if something goes wrong

	Example:

- vagrant_docker: halt
- vagrant_docker: up

SCL Command

Run subsection in SCL environment.

scl [args to scl command] (note: you must use the scriptlet name - usually enable -
because it might vary)

	Input: a subsection

	RES: RES of the last command in the given section

	LRES: LRES of the last command in the given section

	Example:

- scl enable python33 postgresql92:
 - cl_i: python --version
 - cl_i: pgsql --version

Note: currently, this command can’t be nested, e.g. you can’t run scl enable in another
scl enable.

Running Commands as Another User

Run subsection as a different user (how this command runner does this is considered
an implementation detail).
as <username> (note: use as root, to run subsection under superuser)

	Input: a subsection

	RES: output of the whole subsection

	LRES: LRES of the last command in the given section

	Example:

- as root:
 - cl: ls /root
- as joe:
 - log_i~: $(echo "this is run as joe")

Note: This command invokes DevAssistant under another user and passes the whole section to it.
This means some behaviour differences from e.g. scl command, where each command is run in
current assistant. Most importantly, RES of this command is RES of all commands from given
subsection.

Using Another Section

Runs a section specified by command input at this place.

use
This can be used to run:

	another section of this assistant (e.g. use: self.run_foo)

	section of superassistant (e.g. use: super.run) - searches all superassistants
(parent of this, parent of the parent, etc.) and runs the first found section of given name

	section from snippet (e.g. use: snippet_name.run_foo)

	Input: a string with section name

	RES: RES of the last command in the given section

	LRES: LRES of the last command in the given section

	Example:

- use: self.run_foo
- use: super.run
- use: a_snippet.run_spam

This way, the whole context (all variables) are passed into the section run
(by value, so they don’t get modified).

Another, more function-like usage is also available:

- use:
 sect: self.run_foo
 args:
 foo: $bar
 baz: $spam

Using this approach, the assistant/snippet and section name is taken from sect and
only arguments listed in args are passed to the section (plus all “magic” variables,
e.g. those starting and ending with double underscore).

Normalizing User Input

Replace “weird characters” (whitespace, colons, equals...) by underscores and unicode chars
by their ascii counterparts.

	Input: a string or a mapping containing keys what and ok_chars (ok_chars is a string
containing characters that should not be normalized)

	RES: a string with weird characters (e.g. brackets/braces, whitespace, etc) replaced by underscores

	LRES: True

	Example:

- $dir~:
 - normalize: foo!@#$%^bar_ěšč
- cl: mkdir $dir # creates dir named foo______bar_esc
- $dir~:
 - normalize:
 what: f-o.o-@#$baz
 ok_chars: "-."
- cl: mkdir $dir # creates dir named f-o.o-___baz

Setting up Project Directory

Creates a project directory (possibly with a directory containing it) and sets some global variables.

	Input: a mapping of input options, see below

	RES: path of project directory or a directory containing it, if create_topdir is False

	LRES: True, raises exception if something goes wrong

	Example:

- $dir: foo/bar/baz
- setup_project_dir:
 from: $dir
 create_topdir: normalized

Note: as a side effect, this command runner sets 3 global variables for you (their names can
be altered by using arguments contdir_var, topdir_var and topdir_normalized_var):

	contdir - the dir containing project directory (e.g. foo/bar in the example above)

	topdir - the project directory (e.g. baz in the example above)

	topdir_normalized - normalized name (by Normalizing User Input) of the
project directory

Arguments:

	from (required) - a string or a variable containing string with directory name
(possibly a path)

	create_topdir - one of True (default), False, normalized - if False,
only creates the directory containing the project, not the project directory itself
(e.g. it would create only foo/bar in example above, but not the baz directory);
if True, it also creates the project directory itself; if normalized, it creates
the project directory itself, but runs it’s name through Normalizing User Input first

	normalize_ok_chars - string containing characters that should not be normalized,
assuming that create_topdir: normalized is used

	contdir_var, topdir_var, topdir_normalized_var - names to which the global
variables should be assigned to - note: you have to use variable names without dollar sign here

	accept_path - either True (default) or False - if False, this will terminate
DevAssistant if a path is provided

	on_existing - one of fail (default), pass - if fail, this will terminate
DevAssistant if directory specified by from already exists; if pass, nothing will
happen; note, that this is always considered pass, if create_topdir is False
(in which case the assistant is in full control and responsible for checking everything itself)

Running Commands After Assistant Exits

Register commands to be run when assistant exits (this is not necessarily DevAssistant exit).

	Input: section (list of commands to run)

	RES: the passed list of commands (raw, unformatted)

	LRES: True

	Example:

- $server: $(get server pid)
- atexit:
 - cl: kill $server
 - log_i: Server gets killed even if the assistant failed at some point.'

Sections registered by atexit are run at the very end of assistant execution
even after the post_run section. There are some differencies compared to post_run:

	atexit command creates a “closure”, meaning the values of variables in time of
the actual section invocation are the same as they were at the time the atexit command
was used (meaning that even if you change variable values during the run section after
running atexit, the values are preserved).

	You can use multiple atexit command calls to register multiple sections. These are run
in the order in which they were registered.

	Even if some of the sections registered with atexit fail, the others are still invoked.

DevAssistant PingPong

Run DevAssistant PingPong scripts.

	Input: a string to line on commandlie

	RES: Result computed by the PingPong script

	LRES: Logical result computed by the PingPong script

	Example:

- pingpong: python3 *file_from_files_section

Loading Custom Command Runners

Load DevAssistant command runner(s) from a file.

	Input: string or mapping, see below

	RES: List of classnames of loaded command runners

	LRES: True if at least one command runner was loaded, False otherwise

	Example:

files:
 my_cr: &my_cr
 source: cr.py

run:
- load_cmd: *my_cr
assuming that there is a command runner that runs "mycommand" in the file,
we can do this as of now until the end of this assistant
this is equivalent of
- load_cmd:
from_file: *my_cr
- mycommand: foo

load command runner from file provided in hierarchy of a different assistant
- make it prefixed to make sure it doesn't conflict with any core command runners
- load only BlahCommandRunner even if the file includes more runners
- load_cmd:
 from_file: crt/someotherassistant/crs.py
 prefix: foo
 only: BlahCommandRunner
- foo.blah: input # runs ok
- blah: input # will fail, the command runner was registered with "foo" prefix

Note: since command runners loaded by load_cmd have higher priority than DevAssistant
builtin command runners, you can use this to override the builtins. E.g. you can have
a command runner that overrides log_i. If someone wants to use this command runner
of yours but also keep the original one, he can provide a prefix, so that your logging
command is only available as some_prefix.log_i.

Project Metainfo: the .devassistant File

Note: .devassistant file changed some of its contents and semantics in version 0.9.0.

Project created by DevAssistant usually get a .devassistant file, see
.devassistant Commands for information on creating and manipulating it by assistants.
This file contains information about a project, such as project type or paramaters
used when this project was created. It can look like this:

devassistant_version: 0.9.0
original_kwargs:
 name: foo
 github: bkabrda
project_type: [python, django]
dependencies:
- rpm: [python-django]

When .devassistant is used

Generally, there are two use cases for .devassistant:

	Tweak assistants read the .devassistant file to get project type
(which is specified by project_type entry) and decide what to
do with this type of project (by choosing a proper run section to
execute and proper dependencies section, see Tweak Assistants).

	When you use the custom preparer with URL to this project
(da prepare custom -u <url>), DevAssistant will checkout the project,
read the data from .devassistant and do few things:

	It will install any dependendencies that it finds in .devassistant. These
dependencies look like normal dependencies section in
assistant, e.g.:

dependencies:
- rpm: [python-spam]

	It will also run a run section from .devassistant, if it is there.
Again, this is a normal run section:

run:
- log_i: Hey, I'm running from .devassistant after checkout!

Generally, when using custom assistant, you have to be extra careful,
since someone could put rm -rf ~ or similar evil command in the run
section. So use it only with projects whose upstream you trust.

Project Types

This is a list of official project types that projects should use in their
.devassistant file and Creator assistants should state. If you choose one
of the official project types, there is a good chance that Tweak and Preparer
assistants written by others will work well with projects created by your Creator.

The project type is given as a list of strings - these describe the project from
the most general type to the most specific. E.g:

project_type: [python, django]

If you don’t use project_type in your Creator assistant, it will be automatically
generated: If your assistant is crt/footest/foobar.yaml, project
type in .devassistant will be [footest, foobar]. This means that Tweak and
Preparer assistants written by others may not work well with your project, but otherwise
it does no harm.

Current List of Types

Current project types list follows. If you want anything added in here,
open a bug for us at https://github.com/devassistant/devassistant/issues.
Note: the list is currently not very thorough and it is meant to grow
as we get requested by assistant developers.

	c

	cpp

	java

	nodejs
	express

	perl
	dancer

	php

	python
	django

	flask

	gtk3

	lib

	ruby
	rails

Contributing to DevAssistant

We are very happy that you want to contribute to DevAssistant, and we want to
make this as easy as possible for you - that’s what DevAssistant is all about
anyway. To save both you and ourselves a lot of time and energy, here we list
some rules we would like you to follow to make the pull request process as
quick and painless as possible.

Have a look at our code first

Every programmer has a different programming style, a different way of
thinking, and that’s good. However, if several people contribute to the same
project, and each one of them keeps to their style while ignoring the others,
it becomes very hard to read the code afterwards. Please, before you start
coding your solution, have a look at similar parts of DevAssistant’s code to
see how we approached it, and try to follow that if possible. You will make
future maintenance much easier for everyone, and we will be able to review your
pull requests faster as well.

Use PEP8

We follow PEP8, and we ask you to do that as well. It makes the code much more
readable and maintainable. Our only exception is that lines can be as long as
99 characters.

Write tests

Good code has tests. The code you wrote works now, but once someone changes
something, it may all break apart. There are a few general good practices to
go by if you’re writing code:

	If you write some new feature, please write tests that make sure it works
when everything is okay, and that it fails the expected way when it isn’t.

	If you fix something, please create tests that ensure that the code really
works the new way, and that it doesn’t work the way it used to work before.

If you go by these rules, there is very little chance that your code breaks
some other part of DevAssistant, and at the same time, you make your part of
code less likely to break in the future.

For testing, we use pytest [http://pytest.org/latest/contents.html#toc].

When testing, use mocking (namely flexmock)

Often when you need to test some object’s behaviour, you need to “pretend” that
something works somehow, for example that the network is up or that a specific
file exists. That is okay, but it is not okay to actually connect to the
internet for testing, or create or delete specific files in the file system.
This could break something, or might not work on our test server.

Of course, sometimes you may need to create a nameless temporary file with
tempfile.mkstemp(), which is something we do often, and it is a perfectly
acceptable practice. However, you should not touch for example the
~/.devassistant/config file, which actually belongs to the user, and by
writing it, you could delete or damage the user’s config.

To overcome these problems, we are using flexmock, which is a library that
allows you to modify the behaviour of the environment so that you don’t have
to rely on the values on the user’s machine. By calling flexmock on an object,
you can either change some of its methods or attributes, or you can completely
replace it with a flexmock object whose behaviour you fully control.

An example:

import os
from flexmock import flexmock

def test_something(self):
 flexmock(os.path).should_receive('isfile').with_args('/foo/bar/baz').and_return(True)
 do_something_assuming_foobarbaz_is_a_valid_file()

What you did here is modify the behaviour of the method os.path.isfile() so
that it returns True when called with the argument /foo/bar/baz. This
works only within the current code block, so you can mock something in one
test, and then just forget about it. The next test will have clean environment
again.

Here is flexmock documentation [http://has207.github.io/flexmock/user-guide.html].

Just a note here: Mocking doesn’t work well in setup and teardown methods,
because they are different code blocks.

Parameterize tests

It makes perfect sense to feed multiple values to a method to see how it works
in different situations. Very often it’s done like this:

def test_something(self):
 for value, number in [('foo', 1), ('bar', 2), ('baz', 3)]:
 do_something(value, number)

That’s not exactly how we want to do it. For one, if it fails, you can’t
quickly see what the values were when the test failed, so you have to use a
debugger or put some print statements in the code. Another thing is that it’s
harder to read and more prone to error. The preferred way of achieving the same
functionality is this:

@pytest.mark.parametrize(('value', 'number'), [
 ('foo', 1),
 ('bar', 2),
 ('baz', 3),
])
def test_something(self, value, number):
 do_something(value, number)

The second example is much better especially if you’re doing more than just
calling one method - for example mocking, running a setup/teardown method etc.
Pytest also automatically outputs the test parameters if a test fails, so
debugging is much easier. We strongly encourage you to use the second example,
and might not accept your pull request if you don’t, unless you present a good
reason why.

Use six for Python 2 + 3 compatibility

DevAssistant works with both major versions of Python currently in production,
and we want to keep only one codebase, therefore we need an interoperability
library, namely six. This library is much more powerful and easy to use
than, say, importing __future__, so please, use six and nothing else.

In a majority of cases, we use six for these things:

	importing libraries that were moved or renamed

	testing if a variable contains a string/unicode/bytes

	testing what version of python DevAssistant is running on.

To import a library that was renamed in Python 3, you use the
six.moves.builtins module:

from six.moves.builtins import urllib

This imports a module mimicking Python 3’s urllib module, so both in Python 2
and Python 3, you then call:

urllib.request.urlretrieve(url)

The variable containing the information if the code is running under Python 3
is found here:

import six
six.PY3

There is also the six.PY2 constant, but that was added to six quite
recently, so for better backwards compatibility, we kindly ask you to use not
six.PY3 instead.

Use pyflakes to sanitize your code

Pyflakes (as well as pylint), are two great tools for improving the quality of
your code. We especially urge you to use pyflakes to find unused imports,
undeclared variables and other errors detectable without actually running the
code.

Always talk to us [https://devassistant.org/contact] when:

Your contribution changes dependencies

We try to keep DevAssistant’s dependency chain as small as possible, so if your
code adds a dependency, it is a big deal for us. For this reason, we urge you
to talk to us first (here’s how [https://devassistant.org/contact]). If we
decide that the new dependency is necessary, we’ll gladly give you a green
light and accept your contribution. If we think that your idea can do without
adding the new package, we’ll do our best to help you modify your idea.

However, if you do not talk to us and implement your feature right away, there
is a risk that we will reject your contribution and you will have to throw your
existing code away and start from scratch.

You want to implement a large feature

We welcome large contributions, and are very happy that you take the interest
and time to make them. However, we have certain plans where DevAssistant should
go, or what it should look like, and there’s quite a good chance that if you
don’t discuss your idea with us, you might write something quite different,
which we won’t be willing to accept.

To avoid this kind of situations, always consult your intentions with us before
you start coding - we’re more than open to new ideas, but we want to know about
them first.

You want to include your contribution in an upcoming release

We do have a release plan, but this doesn’t mean we couldn’t occasionally wait
a few days for your feature to be included. If you tell us about your
contribution, and we decide that we want it in, we’ll hold a release for you to
finish and submit your code. Of course, the sooner you tell us, the better the
outcome will be.

Index

 _static/down-pressed.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to DevAssistant documentation!

 		User Documentation

 		Developer Documentation

 		DevAssistant Core

 		Create Your Own Assistant

 		Create Assistant in Yaml DSL

 		Create Assistant Using Scripting Language (a.k.a DevAssistant PingPong)

 		Common Assistant Behaviour

 		Packaging and Distributing Your Assistant

 		Command Reference

 		Project Metainfo: the .devassistant File

 		Project Types

 		Contributing to DevAssistant

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

