

DataLad extension module for neuroimaging

	Change log

	Acknowledgments

Demos

	Data management use cases
	An automatically reproducible neuroimaging data analysis

	Creating a “new” derived dataset for Nipype workshop

API

	Python module reference

	datalad-bids2scidata

Metadata

This extension adds metadata extraction support for a range of standards common to
neuroimaging data.

Brain Imaging Data Structure (bids)

This extractor has basic support for the BIDS [http://bids.neuroimaging.io]
standard. This includes participant information, as well as acquisition
properties for individual files. At present, there is no standardized
vocabulary for BIDS, instead field names are based on the conventions in the
standard description.

Digital Imaging and Communications in Medicine (dicom)

Metadata can be extracted from any standard DICOM file. The extractor yields
file-based metadata, and a dataset-level description that identifies individual
image series. For each image series, all metadata are reported that are
invariant across individual images in a series. The extractor uses an
incomplete DICOM vocabulary from http://semantic-dicom.org

Neuroimaging data exchange format (nifti1)

NIfTI-1 metadata is extracted from the header of individual files. Virtually
all header information is reported, except for header extensions. An
adhoc-vocabulary is used, as no standard vocabulary is available.

Indices and tables

	Index

	Module Index

	Search Page

Change log

 ____ _ _ _
_ \ __ _		_ __ _		__ _ __														
			/ _`		__	/ _`			/ _`	/ _`								
	_			(_				_	(_				___	(_			(_	
____/ __,_	__	__,_		_____	__,_	__,_												
 Neuroimaging

This is a high level and scarce summary of the changes between releases.
We would recommend to consult log of the DataLad git
repository [http://github.com/datalad/datalad-neuroimaging] for more
details.

0.1.5 (Sep 28, 2018) – BIDS robustness

	Assorted improvements of the BIDS metadata extractor performance on
datasets in the wild.

0.1.4 (Aug 02, 2018) – PyBIDS

	Fixed compatibility with pybids 0.6.4 and now demand it as the
minimal PyBIDS version

0.1 (Apr 28, 2018) – The Release

Major refactoring and deprecations

	This is the first separate release of DataLad’s neuroimaging
functionality as an extension module.

	Metadata

	BIDS metadata now uniformly refers to subjects and participants
using the metadata key ‘subject’

Enhancements and new features

	Extractors now report progress (with DataLad 0.10+)

	BIDS participant metadata is now read via pybids

Fixes

	Fix issue with unicode characters in BIDS metadata

	DICOM metadata now also contains the ‘PatientName’ field that was
previously excluded due to a too restrictive data type filter

Acknowledgments

DataLad development is being performed as part of a US-German collaboration in
computational neuroscience (CRCNS) project “DataGit: converging catalogues,
warehouses, and deployment logistics into a federated ‘data distribution’”
(Halchenko [http://haxbylab.dartmouth.edu/ppl/yarik.html]/Hanke [http://www.psychoinformatics.de]), co-funded by the US National Science Foundation (NSF
1429999 [http://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999]) and the German Federal Ministry of Education and Research (BMBF
01GQ1411 [http://www.gesundheitsforschung-bmbf.de/de/2550.php]). Additional support is provided by the German federal state of
Saxony-Anhalt and the European Regional Development
Fund (ERDF), Project: Center for Behavioral Brain Sciences [http://cbbs.eu/en/], Imaging Platform

DataLad is built atop the git-annex [http://git-annex.branchable.com] software that is being developed and
maintained by Joey Hess [https://joeyh.name].

Data management use cases

	An automatically reproducible neuroimaging data analysis

	Creating a “new” derived dataset for Nipype workshop

An automatically reproducible neuroimaging data analysis

Scientific studies should be reproducible, and with the increasing
accessibility of data, there is not much excuse for lack of
reproducibility anymore.

DataLad can help with the technical aspects of reproducible
science…

It always starts with a dataset

~ % datalad create demo
[INFO] Creating a new annex repo at /demo/demo
create(ok): /demo/demo (dataset)
~ % cd demo

For this demo we are using two public brain imaging datasets that
were published on OpenFMRI.org, and are available from DataLad’s
datasets.datalad.org

~/demo % datalad install -d . -s ///openfmri/ds000001 inputs/ds000001
[INFO] Cloning http://datasets.datalad.org/openfmri/ds000001 to '/demo/demo/inputs/ds000001'
add(ok): inputs/ds000001 (dataset) [added new subdataset]
add(notneeded): inputs/ds000001 (dataset) [nothing to add from /demo/demo/inputs/ds000001]
add(notneeded): .gitmodules (file) [already included in the dataset]
save(ok): /demo/demo (dataset)
[INFO] access to dataset sibling "datalad" not auto-enabled, enable with:
| datalad siblings -d "/demo/demo/inputs/ds000001" enable -s datalad
install(ok): inputs/ds000001 (dataset)
action summary:
 add (notneeded: 2, ok: 1)
 install (ok: 1)
 save (ok: 1)

BTW: ‘///’ is just short for http://datasets.datalad.org

~/demo % datalad install -d . -s ///openfmri/ds000002 inputs/ds000002
[INFO] Cloning http://datasets.datalad.org/openfmri/ds000002 to '/demo/demo/inputs/ds000002'
add(ok): inputs/ds000002 (dataset) [added new subdataset]
add(notneeded): inputs/ds000002 (dataset) [nothing to add from /demo/demo/inputs/ds000002]
add(notneeded): .gitmodules (file) [already included in the dataset]
save(ok): /demo/demo (dataset)
[INFO] access to dataset sibling "datalad" not auto-enabled, enable with:
| datalad siblings -d "/demo/demo/inputs/ds000002" enable -s datalad
install(ok): inputs/ds000002 (dataset)
action summary:
 add (notneeded: 2, ok: 1)
 install (ok: 1)
 save (ok: 1)

Both datasets are now registered as subdatasets, and their precise
versions are on record

~/demo % datalad --output-format '{path}: {revision_descr}' subdatasets
[WARNING] Result rendering failed for: {'status': 'ok', 'gitmodule_name': u'inputs/ds000001', 'parentds': '/demo/demo', 'gitmodule_url': u'http://datasets.datalad.org/openfmri/ds000001/.git', 'action': 'subdataset', 'path': '/demo/demo/inputs/ds000001', 'type': 'dataset', 'refds': '/demo/demo', 'revision': 'f47099a5124e8f619f763f44f70e1faf5154d41a'} [u'revision_descr' [base.py:<lambda>:412]]
[WARNING] Result rendering failed for: {'status': 'ok', 'gitmodule_name': u'inputs/ds000002', 'parentds': '/demo/demo', 'gitmodule_url': u'http://datasets.datalad.org/openfmri/ds000002/.git', 'action': 'subdataset', 'path': '/demo/demo/inputs/ds000002', 'type': 'dataset', 'refds': '/demo/demo', 'revision': 'e1b7df06da8dd8f1d8802d699d9ad7781fad8bb6'} [u'revision_descr' [base.py:<lambda>:412]]

However, very little data were actually downloaded (the full datasets
are several gigabytes in size):

~/demo % du -sh inputs/
20M inputs/

DataLad datasets are fairly lightweight in size, they only contain
pointers to data and history information in their minimal form.

Both datasets contain brain imaging data, and are compliant with
the BIDS standard. This makes it really easy to locate particular
images and perform analysis across datasets.

Here we will use a small script that performs ‘brain extraction’
using FSL as a stand-in for a full analysis pipeline

~/demo % mkdir code
~/demo % cat << EOT > code/brain_extraction.sh
> # enable FSL
> . /etc/fsl/5.0/fsl.sh
>
> # obtain all inputs
> datalad get \$@
> # perform brain extraction
> count=1
> for nifti in \$@; do
> subdir="sub-\$(printf %03d \$count)"
> mkdir -p \$subdir
> echo "Processing \$nifti"
> bet \$nifti \$subdir/anat -m
> count=\$((count + 1))
> done
> EOT

Note that this script uses the ‘datalad get’ command which
automatically obtains the required files from their remote source –
we will see this in action shortly

We are saving this script in the dataset. This way we will know
exactly which code was used for the analysis. Also, we track this
code file with Git, so we can see more easily how it was edited
over time.

~/demo % datalad add code -m "Brain extraction script" --to-git
add(ok): /demo/demo/code/brain_extraction.sh (file) [non-large file; adding content to git repository]
add(ok): /demo/demo/code (directory)
save(ok): /demo/demo (dataset)
action summary:
 add (ok: 2)
 save (ok: 1)

In addition, we will “tag” this state of the dataset. This is
optional, but it can help to identify important milestones more
easily

~/demo % datalad save --version-tag setup_done
save(ok): /demo/demo (dataset)

Now we can run our analysis code to produce results. However, instead
of running it directly, we will run it with DataLad – this will
automatically create a record of exactly how this script was executed

For this demo we will just run it on the structural images of
the first subject from each dataset. The uniform structure of the
datasets makes this very easy. Of course we could run it on all
subjects; we are simply saving some time for this demo.
While the command runs, you should notice a few things:

1) We run this command with ‘bash -e’ to stop at any failure that
may occur

2) You’ll see the required data files being obtained as they
are needed – and only those that are actually required will be
downloaded

~/demo % datalad run bash -e code/brain_extraction.sh inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command start (output follows) =====
get(ok): /demo/demo/inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file)
get(ok): /demo/demo/inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file)
action summary:
 get (ok: 2)
Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
save(ok): /demo/demo (dataset)
action summary:
 add (ok: 4)
 save (ok: 1)

The analysis step is done, all generated results were saved in the
dataset. All changes, including the command that caused them are
on record

~/demo % git show --stat
commit 7607ddef8c03dc5516869f1e35025083772efc5a (HEAD -> master)
Author: DataLad Demo <demo@datalad.org>
Date: Fri Mar 16 08:26:11 2018 +0100

 [DATALAD RUNCMD] bash -e code/brain_extraction.sh inputs/...

 === Do not change lines below ===
 {
 "pwd": ".",
 "cmd": [
 "bash",
 "-e",
 "code/brain_extraction.sh",
 "inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz",
 "inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz"
],
 "exit": 0,
 "chain": []
 }
 ^^^ Do not change lines above ^^^

 sub-001/anat.nii.gz | 1 +
 sub-001/anat_mask.nii.gz | 1 +
 sub-002/anat.nii.gz | 1 +
 sub-002/anat_mask.nii.gz | 1 +
 4 files changed, 4 insertions(+)

DataLad has enough information stored to be able to re-run a command.

On command exit, it will inspect the results and save them again,
but only if they are different.

In our case, the re-run yields bit-identical results, hence nothing
new is saved.

~/demo % datalad rerun
unlock(ok): sub-001/anat.nii.gz (file)
unlock(ok): sub-001/anat_mask.nii.gz (file)
unlock(ok): sub-002/anat.nii.gz (file)
unlock(ok): sub-002/anat_mask.nii.gz (file)
[INFO] == Command start (output follows) =====
get(notneeded): /demo/demo/inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [already present]
get(notneeded): /demo/demo/inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [already present]
action summary:
 get (notneeded: 2)
Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
save(notneeded): /demo/demo (dataset)
action summary:
 add (ok: 4)
 save (notneeded: 1)
 unlock (ok: 4)

Now that we are done, and have checked that we can reproduce the
results ourselves, we can clean up

DataLad can easily verify if any part of our input dataset was
modified since we configured our analysis

~/demo % datalad diff --revision setup_done inputs

Nothing was changed.

With DataLad with don’t have to keep those inputs around – without
losing the ability to reproduce an analysis.

Let’s uninstall them – checking the size on disk before and after

~/demo % du -sh
32M .
~/demo % datalad uninstall inputs/*
drop(ok): /demo/demo/inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [checking http://openneuro.s3.amazonaws.com/ds000002/ds000002_R2.0.0/uncompressed/sub-01/anat/sub-01_T1w.nii.gz?versionId=vXK2.bQ360phhPqbVV_n6RMYqaWAy4Dg...]
drop(ok): /demo/demo/inputs/ds000002 (directory)
uninstall(ok): /demo/demo/inputs/ds000002 (dataset)
drop(ok): /demo/demo/inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [checking http://openneuro.s3.amazonaws.com/ds000001/ds000001_R1.1.0/uncompressed/sub001/anatomy/highres001.nii.gz?versionId=8TJ17W9WInNkQPdiQ9vS7wo8ZJ9llF80...]
drop(ok): /demo/demo/inputs/ds000001 (directory)
uninstall(ok): /demo/demo/inputs/ds000001 (dataset)
action summary:
 drop (ok: 4)
 uninstall (ok: 2)
~/demo % du -sh .
3.0M .

All inputs are gone…

~/demo % ls inputs/*
inputs/ds000001:

inputs/ds000002:

Only the remaining data (our code and the results) need to be kept
and require a backup for long term archival. Everything else can
be re-obtained as needed, when needed.

As DataLad knows everything needed about the inputs, including where
to get the right version, we can re-run the analysis with a single
command. Watch how DataLad re-obtains all required data, re-runs
the code, and checks that none of the results changed and need saving

~/demo % datalad rerun
unlock(ok): sub-001/anat.nii.gz (file)
unlock(ok): sub-001/anat_mask.nii.gz (file)
unlock(ok): sub-002/anat.nii.gz (file)
unlock(ok): sub-002/anat_mask.nii.gz (file)
[INFO] == Command start (output follows) =====
[INFO] Cloning http://datasets.datalad.org/openfmri/ds000001/.git to '/demo/demo/inputs/ds000001'
[INFO] access to dataset sibling "datalad" not auto-enabled, enable with:
| datalad siblings -d "/demo/demo/inputs/ds000001" enable -s datalad
install(ok): /demo/demo/inputs/ds000001 (dataset) [Installed subdataset in order to get /demo/demo/inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz]
[INFO] Cloning http://datasets.datalad.org/openfmri/ds000002/.git to '/demo/demo/inputs/ds000002'
[INFO] access to dataset sibling "datalad" not auto-enabled, enable with:
| datalad siblings -d "/demo/demo/inputs/ds000002" enable -s datalad
install(ok): /demo/demo/inputs/ds000002 (dataset) [Installed subdataset in order to get /demo/demo/inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz]
get(ok): /demo/demo/inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file)
get(ok): /demo/demo/inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file)
action summary:
 get (ok: 2)
 install (ok: 2)
Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
save(notneeded): /demo/demo (dataset)
action summary:
 add (ok: 4)
 save (notneeded: 1)
 unlock (ok: 4)

Reproduced!

This dataset could now be published and enable anyone to replicate
the exact same analysis. Public data for the win!

Creating a “new” derived dataset for Nipype workshop

For more information about the workshop, please visit
http://nipy.org/workshops/2017-03-boston/index.html .
As we will present git-annex and DataLad, I have decided to prepare a DataLad
dataset from the tarball Satrajit Ghosh has shared URL to. That tarball
is a trimmed down version of OpenfMRI [https://openfmri.org] ds000114 [https://openfmri.org/dataset/ds000114/]
dataset which we also crawl and provide as a
DataLad dataset [http://datasets.datalad.org/?dir=/openfmri/ds000114].

Deriving (cloning) a dataset

I have decided to first create a superdataset for the workshop (may be
more datasets besides ds114 will be later) outside of our master superdataset
which we distribute from http://datasets.datalad.org .
So I just created a new dataset in a random directory.
I wanted our ds114 dataset to be “derived” from original openfmri ds000114 dataset
so we could readily reuse all the knowledge git-annex has about where files
might be coming from. To achieve that I have just installed existing ds000114 dataset
into our superdataset:

Create dataset
datalad create --no-annex nipype-workshop-2017
cd nipype-workshop-2017
datalad install -d . ///openfmri/ds000114
cd ds000114

To make both original and this derived dataset accessible from the same repo
I generated a detached branch (since I did not know at that
point on which version of openfmri it is based on). And then added content
from the tarball available from the OSF.

A few tricky points which you do not necessarily would run into in a more
typical workflow:

	since branch is detached, it would be empty to start with, but we want to
preserve the settings within .gitattributes (such as git annex backend).
I could have just git add .gitattributes
after checkout –orphan but I haven’t thought about that and created
a new file from scratch.

	Original openfmri dataset did not have settings within .gitattributes to
add all text files straight into git, so I have added those settings within
a new .gitattributes . For more about settings git-annex understands
as to what files should it handled (largefiles) or otherwise just pass
to git to handle see https://git-annex.branchable.com/tips/largefiles/ .

cat .gitattributes # sneak preview
git checkout --orphan nipype_test1 # generate a new detached branch
git clean -dfx # remove
git reset --hard # everything, to end up with super clean directory

I did vim .gitattributes, but replacing here with echo
echo -e "* annex.backend=MD5E
* annex.largefiles=(not(mimetype=text/*))
" > .gitattributes

datalad add --to-git .gitattributes # storing this file within git, default commit msg

Adding new content from a tarball off the web

Next goal was to download and add to annex the tarball Satra prepared for
the workshop, and add its content under git-annex control.
In datalad we have ‘download-url’ command, BUT unfortunately it has failed
to download via https for this website
(see issue 1416 [https://github.com/datalad/datalad/issues/1416] if resolved already)
So I have reverted to using git annex directly which uses wget which worked out
correctly

download (~800MB) and add that file under git-annex without
git annex addurl --file=ds114_test1_with_freesurfer.tar.gz "$URL"

datalad save -m "Downloaded the tarball with derived data into annex"
datalad add-archive-content --delete --strip-leading-dirs ds114_test1_with_freesurfer.tar.gz

Above add-archive-content command extracted content from the archive, stripping
leading directory, and added all extracted files under git/git-annex using
those rules specified in .gitattributes file:

	use MD5E (annex keys are based on md5 checksum with extension appended) backend

	add text files directly under git control, so only binary files are added
under annex control and the entire repository’s .git/objects is only around 30MB
while pointing to all openfmri releases, and this derived data

Peering inside

Because I have reused original ///openfmri/ds000114 dataset, I have gained knowledge
about all the files which originated from that dataset. E.g. compare output of
whereis command on sub-01/anat (which is also available from original openfmri)
and derivatives:

in case of a fake tarball, output will not be very interesting
git annex whereis sub-01/anat
git annex whereis derivatives

and you can see that derivatives are available only locally or from “magical”
datalad-archives remote which refers to the original tarball. So, even if
we drop those files locally, they could get extracted from the tarball. And
even if you do not have a tarball, git-annex would happily first download it
from the OSF website for you.

Adding dataset into bigger dataset

Having succeeded with construction of the dataset, I have decided to share it
as a part of our bigger super dataset at http://datasets.datalad.org .
This dataset was the first workshop dataset which was not part of some bigger
collection, so I have decided to establish a new subdataset workshops
within it, and move our nipy workshop superdataset into it.

cd $SUPERDATASET
since in demo we do not have anything there, let's clone our superdataset
datalad install ///
cd datasets*.datalad.org

-redone because now datasets.datalad.org already has workshops dataset
and datalad should refuse to create a new one (without removing old one first)
datalad create -d . workshops-redone # create subdataset to hold various workshops datasets
cd workshops-redone
mv "$TOPDIR/nipype-workshop-2017" nipype-2017 # chose shorter name
add it as a subdataset (git submodule) within
datalad add -d . nipype-2017

Adding meta-data descriptors for the dataset(s)

If you ever ran datalad search [http://docs.datalad.org/en/latest/generated/man/datalad-search.html]
you know that one of the goals of DataLad
is to use metadata associated with the datasets.

created some dataset_description.json (following BIDS format lazy me)
echo -e '{"Name": "Datasets for various workshops",\n "BIDSVersion": "1.0.0"}' > dataset_description.json
and tell datalad that this is using the BIDS metadata standard
git config --file .datalad/config --add datalad.metadata.nativetype bids
add that file to git
datalad add --to-git --nosave dataset_description.json
discover and aggregate all meta-data within workshops
datalad aggregate-metadata --nosave -r
and finally save all accumulated changes from above commands
while also updating the topmost superdataset about this changes under 'workshops'
datalad save -S -m "Added dataset description and aggregated meta-data" -r
go upstairs and aggregate meta-information across its direct datasets without recursing
(since might take awhile)
cd ..
datalad aggregate-metadata

Publishing

NB instructions here might diverge a little from what was actually performed

Now it was time to publish this dataset as a part of our larger super-dataset.
Because our demo superdataset is just a clone (or sibling) of original
one, it does not have information about where it must be published to. So
we first can create a sibling on remote server where we want also to deploy our
web-frontend and then create similar siblings for every

datalad create-sibling --shared all \
 -s public --ui=true \
 --publish-by-default 'refs/heads/*' \
 --publish-by-default 'refs/tags/*' \
 "$PUBLISHLOC"

datalad create-sibling -s public --inherit -r --existing skip

By default DataLad does not publish any data, and in above create-sibling
we also did not provide any –annex-wanted settings to instruct annex
about what data should be published to our public sibling.
So I decided to provide additional instructions for annex directly
about what data files I want to be published online from our website.
Since original files under sub-* subdirectories are available from original
OpenfMRI S3 bucket, we really needed to publish only derivatives/* files, which
we can describe via

git -C workshops-redone/nipype-2017/ds000114 annex wanted public 'include=derivatives/*'

And now I was ready to publish changes to the entire collection of datasets
with a set of files we decided to share

datalad publish -r --to=public

Above commands created empty repositories for all the datasets we have locally
and now I was ready to “publish” our datasets… Just a few final touches

There is a <”shortcoming” https://github.com/datalad/datalad/issues/1428>__
which was discovered just now, because it was the first time we published
datasets from non-master branch (nipype_test1). Default branch on the remote
where we published is master, so we need to checkout nipype_test1 branch
and re-run out hooks/post-update hook to re-generate meta-data for dataset
listing on web-frontend. Hopefully this portion of explanation will disappear
with DataLad 0.5.1 or later ;-)

(
 cd $PUBLISHDIR/workshops-redone/nipype-2017/ds000114
 git checkout nipype_test1
 # rerun the hook to regenerate meta-data for web-frontend
 cd .git; hooks/post-update
)

If I do any future changes, and save them, it should be sufficient to just
rerun this publish command (possibly even without explicit –to=public)
and have all datasets updated online, with data files under derivatives/
in that repository posted as well.

Browsing

If the location where we published our datasets is served by any http
server, they now could be used from that location by others, while having
complete history of changes stored in annex, and data files available
either from that location or from original openfmri S3 bucket.

If you do not have published to location served by a web server, as the case in our
demo script, we could easily start one using the one which comes with Python:

cd "$PUBLISHDIR"
Starting webserver
python -m SimpleHTTPServer 8080 1>/dev/null 2>&1 &
we started webserver and can browse
PUBLISHURL=http://localhost:8080
browser=$(which x-www-browser 2>/dev/null)
if $browser; then
 echo "Opening browser to visit $PUBLISHURL which would allow to browse $PUBLISHDIR content"
 $browser $PUBLISHURL &
else
 echo "Visit http://localhost:8080 in your browser."
fi
echo "

On that page
Press Enter when you want to finish
"

in=$(read)
kill %2 && echo "stopped browser(?)" || : # killing our browser job if any
kill %1 && echo "stopped server"

Since DataLad datasets are just git/git-annex repositories, we could as well
publish them to multiple locations, including github.com, only without data.
See datalad-create-sibling-github [http://docs.datalad.org/en/latest/generated/man/datalad-create-sibling-github.html]
and –publish-depends option to
instruct to publish first to our public http server which will host the data
and then to github.com for more visibility and collaboration.

Python module reference

This module reference extends the manual with a comprehensive overview of the
available functionality. Each module in the package is documented by a general
summary of its purpose and the list of classes and functions it provides.

	bids2scidata

	generate metadata for submission to Scientific Data from a BIDS dataset

datalad_neuroimaging.bids2scidata

generate metadata for submission to Scientific Data from a BIDS dataset

	
class datalad_neuroimaging.bids2scidata.BIDS2Scidata

	Bases: datalad.interface.base.Interface

BIDS to ISA-Tab converter

	
datalad_neuroimaging.bids2scidata.convert(dsmeta, filemeta, output_directory, repository_info=None)

	

	
datalad_neuroimaging.bids2scidata.getprop(obj, path, default)

	Helper to get a property from a metadata structure that might not be there

	
datalad_neuroimaging.bids2scidata.split_term_source_accession(val)

	

datalad-bids2scidata

Synopsis

datalad-bids2scidata [-h] [--repo-name REPO_NAME] [--repo-accession REPO_ACCESSION] [--repo-url REPO_URL] [--output OUTPUT] [-d DATASET] path

Description

BIDS to ISA-Tab converter

Options

path

path to a BIDS-compatible dataset to export metadata on. [Default: None]

-h, –help, –help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

–repo-name REPO_NAME

data repository name to be used in assay tables. Example: OpenfMRI.

–repo-accession REPO_ACCESSION

data repository accession number to be used in assay tables. Example: ds000113d.

–repo-url REPO_URL

data repository URL to be used in assay tables. Example: https://openfmri.org/dataset/ds000113d.

–output OUTPUT

directory where ISA-TAB files will be stored. [Default: None]

-d DATASET, –dataset DATASET

Dataset to query for metadata of a BIDS-compatible dataset. The queried dataset itself does not have to be a BIDS dataset. If not dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) [Default: None]

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 datalad_neuroimaging	

 	
 	
 datalad_neuroimaging.bids2scidata	

 Index

 Index pages by letter:

 B
 | C
 | D
 | G
 | S

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 B
 | C
 | D
 | G
 | S

B

 	
 	BIDS2Scidata (class in datalad_neuroimaging.bids2scidata)

C

 	
 	convert() (in module datalad_neuroimaging.bids2scidata)

D

 	
 	datalad_neuroimaging.bids2scidata (module)

G

 	
 	getprop() (in module datalad_neuroimaging.bids2scidata)

S

 	
 	split_term_source_accession() (in module datalad_neuroimaging.bids2scidata)

_static/ajax-loader.gif

_static/comment.png

_static/datalad_logo.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 DataLad extension module for neuroimaging

 		
 Change log

 		
 0.1.5 (Sep 28, 2018) – BIDS robustness

 		
 0.1.4 (Aug 02, 2018) – PyBIDS

 		
 0.1 (Apr 28, 2018) – The Release

 		
 Major refactoring and deprecations

 		
 Enhancements and new features

 		
 Fixes

 		
 Acknowledgments

 		
 Data management use cases

 		
 An automatically reproducible neuroimaging data analysis

 		
 Creating a “new” derived dataset for Nipype workshop

 		
 Deriving (cloning) a dataset

