

    
      Navigation

      
        	
          index

        	
          next |

        	D2Moddin 1.0 documentation 
 
      

    


    
      
          
            
  
Welcome to D2Moddin Docs

D2Moddin [http://d2modd.in/] is a platform to easily play Dota 2 custom game modes. It is also a
base for the Dota 2 modding community, with the D2Moddin forums [http://d2modd.in/] and the
developer documentation [http://docs.d2modd.in/] you are reading right now.


SDK Setup

Dota 2 game modes are built using the addon framework used to build the official Frostivus [http://www.dota2.com/frostivus/day1/]
and New Bloom [http://www.dota2.com/newbloom/day1/] events. Addons are essentially overlays on the game
directory - any content in an addon will override the default content. Game code
is written in lua and operates server-side only. Custom assets (models, sounds,
and UI) can be added to the client and used in maps.

As there is currently no officially released toolchain, including map and
particle editors, the Alien Swarm SDK [https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)]  and pipeline is used to create maps and assets.

See the below documentation pages to get started:



	SDK Setup Tutorial
	Extract Dota’s Files

	Misc. Files

	Alien Swarm Search Paths

	Configuring Hammer

	Creating a Test Map

	Next Steps





	Creating an Addon
	Addon Bootstrapper












Mapping

Mapping is done in the old Source Engine map editor, Hammer.

See the below documentation pages to get started:



	Mapping with Hammer
	General Mapping Notes

	Overlay Limit

	Fog of War Calculation

	Building the NavGrid

	Creating a NETPBM

	Creating a Minimap












Game Logic

Game logic is written in LUA.

See the below documentation pages to get started:



	LUA Scripting Guide
	Addon Initialization

	Lua Scope

	Game Mode Class

	Registering Hooks

	Timers












Integration with D2Moddin

Integrating your addon with D2Moddin is a relatively painless process.
D2Moddin’s server network supports granular versioning using simple version
numbers, and normal Dota 2 addons.

See the below documentation pages to get started:










Chat with Us

If you have any questions during development you can chat on the forums [http://forum.d2modd.in/] or in
the irc channel #dota2mods on GameSurge [https://gamesurge.net/].







          

      

      

    


    
         Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	D2Moddin 1.0 documentation 
 
      

    


    
      
          
            
  
SDK Setup Tutorial

This page is based on the Dota 2 wiki [https://developer.valvesoftware.com/wiki/Dota_2_Maps].

Install the Alien Swarm SDK. In Steam, go to the Library section, and under
Tools, download the Alien Swarm SDK. You can also click this shortcut link.


Extract Dota’s Files

Dota 2’s content files are distributed in compressed VPK form. You can extract
them using GCFScape [http://nemesis.thewavelength.net/index.php?p=26] to later modify them in your game mode. You may need to
use the x86 version, which works fine on 64 bit systems.

The primary Dota 2 package is the pak01_dir.vpk file under the base dota
game directory. Open the pak in GCFScape, right click the root element, and
extract the files to Alien Swarm\swarm\addons so they may be used in the
Alien Swarm editors.

Rename the directory you have just created in the Alien Swarm addons to
Dota2Extract.




Misc. Files

Copy the bin and platform directories into the Dota2Extract directory.

Finally, download dota2fgd [https://github.com/RoyAwesome/dota2fgd] (by RoyAwesome on GitHub) and UpVersion.exe [http://moddota.com/builds/UpVersion/UpVersion.exe] (by
ModDota) to the bin directory within Dota2Extract.




Alien Swarm Search Paths

Replace the contents of Alien Swarm\swarm\gameinfo.txt with:

"GameInfo"
{
        "game"    "Alien Swarm"
        "title"   "    "  // asw - leave this blank as we have a texture logo
        "type"    "multiplayer_only"
        GameData  "swarm.fgd"
        InstancePath   "tilegen/instances/"

        SupportsDX8     0

        "FileSystem"
        {
                "SteamAppId"  "630"
                "ToolsAppId"  "211"

                "SearchPaths"
                {
                        "Game"  "|gameinfo_path|."
                        "Game"  "swarm_base"
                        "Game"  "platform"
                        "Game"  "|gameinfo_path|addons\Dota2Extract"
                }
        }
}








Configuring Hammer

Start the Alien Swarm SDK, select Hammer World Editor and let it open up.
Now go to “Tools” -> “Options” and add the “dota2.fgd” from Alien Swarm\Swarm\addons\Dota2Extract\bin\dota2.fgd.

Next, increase the render distance so that the entire map will be visible at any
given time. Under “3D Views” increase the Model Render Distance and Detail
Render Distance.




Creating a Test Map

Under File, create a new map. Save it as test.vmf. Next, select
File->Run Map and press “Expert” in the bottom left corner:

[image: http://i.imgur.com/oHosYCQ.png]
Click “Edit” and create a new config for Dota 2. We will define the build process as a series of commands.


The BSP Command

Click “New”, then “Cmds” and “BSP Program”. Add -alldetail -game $gamedir $path\$file.




UpVersion

Upversion is a tool that will convert the BSP into a format suitable for Dota 2.

Click “new” then “cmds”. Select “Executable” and find “UpVersion.exe” in
Alien Swarm\swarm\addons\Dota2Extract\bin. If it’s not there, return t
the Misc Files step and download it.

Add the parameters $path\$file.bsp $path\$file.$ext $path\$file.pbm.




Copy Map

Finally, to use the map in Dota 2 we will copy the compiled .bsp to the Dota 2
maps directory.

Click “new” then “cmds”. Select “Executable” and specify:
CgWindows\System32\xcopy.exe, the built in Windows copy tool. Add the
parameters: $path\$file.bsp "C:\Program Files (x86)\Steam\SteamApps\common\dota 2
beta\dota\maps" /y. Make sure the path is the correct path to your Dota 2 maps
directory.`






Next Steps

You now have the Alien Swarm SDK set up properly to start working on Dota 2 game
modes. You can follow the mapping tutorial in the next section.







          

      

      

    


    
         Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	D2Moddin 1.0 documentation 
 
      

    


    
      
          
            
  
Creating an Addon

“Addon” and “Game Mode” are used interchangeably throughout this documentation.


Addon Bootstrapper

[image: http://i.imgur.com/7JIgVZL.png]
The D2Moddin addon bootstrapper [https://github.com/D2Modding/d2tool] will ask you some simple questions about your
game mode and build the files for your mode based on your answers. In the future
it will also be able to create additional files for you for NPCs, units,
particles, maps, etc.

To use the bootstrapper, you will need Node.JS [http://nodejs.org/]. Download and install it.

First, download the latest version of the bootstrapper. You can use git clone
--recursive https://github.com/D2Modding/d2tool.git or just download from here [https://github.com/D2Modding/d2tool].

If you downloaded from the link you need to also download barebones [https://github.com/D2Modding/barebones] and put
it into the barebones directory in d2tool. Otherwise you will see an error
saying info.json is missing.

Use the cd command to move into the d2tool directory.

Install the dependencies with NPM, run npm install in the d2tool directory.

Next, run the bootstrapper with Node.JS. node d2tool.js. In the future there
will be a compiled exe for this as well.

Answer the questions:

[image: http://fat.gfycat.com/InferiorIncompatibleBabirusa.gif]
The result will be the following directory structure (in this example, a mode
called “teamfight”):

├── addoninfo.txt     - Version & name information.
├── info.json         - D2Moddin metadata
├── maps              - Maps
│   ├── teamfight.bsp - Compiled map
│   └── teamfight.gnv - Compiled gridnav
├── materials         - Any engine materials
│   └── overviews     - Minimaps (named Overviews)
│       ├── teamfight.vmt
│       └── teamfight.vtf
├── particles         - Custom particles
│   ├── frostivus_gameplay.pcf
│   ├── frostivus_herofx.pcf
│   └── test_particle.pcf
├── PhysicsReadme.txt - Readme of the physics system
├── resource          - Translations & flash resources
│   ├── addon_english.txt
│   ├── flash3
│   │   └── images
│   │       ├── items
│   │       │   └── example_item.png
│   │       └── spellicons
│   │           ├── holdout_battle_rage.png
│   │           ├── holdout_blade_fury.png
│   │           ├── holdout_culling_blade.png
│   │           ├── holdout_fiery_soul.png
│   │           ├── holdout_focusfire.png
│   │           ├── holdout_friendly_skewer.png
│   │           ├── holdout_glacier_arrows.png
│   │           ├── holdout_gods_strength.png
│   │           ├── holdout_guardian_angel.png
│   │           ├── holdout_multishot.png
│   │           ├── holdout_omnislash.png
│   │           ├── holdout_scourge_ward.png
│   │           ├── holdout_voodoo.png
│   │           └── templar_assassin_refraction_holdout.png
│   └── overviews - Define any custom overviews
│       └── teamfight.txt
├── scripts       - Scripts and other game mode data.
│   ├── custom_events.txt
│   ├── game_sounds_custom.txt
│   ├── maps
│   │   └── barebones.txt
│   ├── npc       - KV files for heros, items, units
│   │   ├── herolist.txt
│   │   ├── npc_abilities_custom.txt
│   │   ├── npc_abilities_override.txt
│   │   ├── npc_heroes_custom.txt
│   │   ├── npc_items_custom.txt
│   │   └── npc_units_custom.txt
│   ├── shops     - Shop data
│   │   └── barebones_shops.txt
│   ├── vscripts  - Server-side scripts (can be excluded in the client)
│   │   ├── addon_game_mode.lua
│   │   ├── addon_init.lua
│   │   ├── physics.lua
│   │   ├── teamfight.lua
│   │   └── util.lua
│   └── world_map_custom.txt
└── sound        - Custom sounds
    └── mini_rosh_firebreath.wav











          

      

      

    


    
         Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	D2Moddin 1.0 documentation 
 
      

    


    
      
          
            
  
Mapping with Hammer

Maps are created with Hammer for Dota 2, an old Source Engine map creation tool
used for Portal 2, Half Life, and other valve games.

Make sure you’ve completed the getting started tutorial first.


General Mapping Notes


	Maps are a much larger scale in Dota 2 than they are in other Source games. Units are around 48 units wide, towers are 128x128x320 units tall.

	If an entity is outside the bounds of the map, it crashes the game with no error.

	AlienSwarm converts all brushwork into func_detail, so you need to seal the
map with a func_brush named structure_seal.  The brush should be textured nodraw.

	Required entities include: info_player_start_goodguys, info_player_start_badguys, ent_dota_game_events, env_global_light.

	Models require a shader that is not provided in Hammer.  In your extracted gamedata, open every .vmt file and replace “GlobalLitSimple” with “VertexLitGeneric”.  A tool such as Notepad++ can do this quickly.

	The func_brush named “structure_seal” should be nodraw (no skybox required).






Overlay Limit

You cannot decompile and re-compile the dota.bsp map as it has too many
overlays. The overlay limit was raised to 8192 from 512 for Dota 2, but the
compiler toolchain still works under the 512 limit.




Fog of War Calculation

Units can climb to virtually any height within the map, but there are only five
Fog or War heights defined in the Dota 2 engine. They are:


	0-128: River

	128-256: Midlane

	256-384: Highground base

	384-512: Ward spots

	512-∞: Edge of the map.



The camera will stay in place above 512 units in the Z axis.




Building the NavGrid

Units in Dota 2 do not navigate based on the structure of the map, rather, they
move on a 2D grid known as the navmesh. Every square in the navgrid has two
states: pathable, and not pathable. If a square is not pathable, the unit will
not walk there and cannot blink/force staff to that location. It is possible to
cross unpathable areas with blinks or force movements.


Install the GNVTool

The GNVtool (by Penguinwizzard) converts netpbm formats to the binary GridNav format. It can do two
way conversion between PBM files, which are editable in photo editing software
to manually touch up the grid.


	Download GNVTool [http://moddota.com/builds/GNVTool/GNVTool.exe]

	List of NetPBM Software [http://netpbm.sourceforge.net/doc/directory.html]

	Paint.Net PBM Plugin [http://forums.getpaint.net/index.php?/topic/17202-pnm-file-type-plugin/]



Netpbms are 1 bit bitmaps. The bitmap size must be the world size / 64. The bitmap must have dimensions divisible by 8 or it will be sheared.

Usage: code::GNVtool.exe tognv source.pbm target.gnv offsetx offsety.

Offset x/Offset y are always negative and 1/2 the dimensions of the bitmap.

You can view your navmesh in game with code::dota_gridnav_show 1.






Creating a NETPBM

First, open up a Hammer map.

[image: http://i.imgur.com/7EjENbW.png]
The first two arguments you need are the dimensions of the map. This will be a
rectangle aligned with the Hammer grid.

In this image it is 4096x4096:

[image: http://i.imgur.com/GLNsy4p.png]
Next, you need the offset of the map from the origin. Get the top left point of
the map (in this image, -2048, 2048).

[image: http://i.imgur.com/MWtKAqZ.png]
Using these values, you can create the netpbm. Divide the dimensions by 64 to get the
size of the pbm file you need to make (here 64x64). Use the offset (with the
y-axis-component negated, because gnv files are upside-down) to calculate the
last 2 arguments to GNVTool, and you should get a gnv file that works for your
map!

[image: http://i.imgur.com/l2HGTsJ.png]



Creating a Minimap

The VTFEdit [http://nemesis.thewavelength.net/index.php?c=238#p238] tool is used to convert an image into a .vtf minimap file.

While Valve paints their minimaps manually, it is generally sufficient to take a
top-down screenshot of the map.

Open VTFEdit, select Import, find your image, and save it as MAPNAME.vtf. Under tools, select “Create VMT”. In the Options tab, for shader, select UnlitGeneric and check the boxes ‘Translucent’ and ‘Vertex Alpha’.  Save it as MAPNAME.vmt.

Put both of these files in a folder named materials/overviews in your addon directory.

Next, create a new textfile named MAPNAME.txt.  This is a Key-Value file denoting where the bounds of the minimap lie.  The structure is as follows:

MAPNAME
{
material "overviews/MAPNAME" //Note no file extension
  //Coordinates to the upper left corner of your map
  pos_y 2560
  pos_x -2560
  scale 5.000 //Minimap scale.
  rotate 0 //Minimap rotation.  This should always be 0.
  zoom 1.0000 //Minimap zoom.  This should always be 1 unless your texture is larger than the playable bounds of your map.
}





Put this file in your code::addon/resource/overviews directory.







          

      

      

    


    
         Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	D2Moddin 1.0 documentation 
 
      

    


    
      
          
            
  
LUA Scripting Guide

This is a short documentation on the various parts of LUA scripting in Dota 2.
You can refer to the API documentation for specific functions/game events etc.


Addon Initialization

When the server starts up and loads your game mode, it will first execute
addon_init.lua. In the bootstrapped addon, addon_init.lua will require util,
physics, and finally your game mode lua file at the end of the script.

Next, when the server is ready to create your game mode instance, it will
execute addon_game_mode.lua, which, in the bootstrapper, will simply call
InitGameMode() on your game mode defined in gamemode.lua.




Lua Scope

Any variables defined in the root of the script, without the local tag, will
be considered global and accessible anywhere in any lua file loaded into the Dota 2 Lua
VM.

You will generally want to use the local tag before variables so you don’t
pollute the global scope.




Game Mode Class

Game modes are Lua objects/tables, defined as such:

TeamFightGameMode = {}
TeamFightGameMode.szEntityGameMode = "gamemode"
TeamFightGameMode.szNativeClassName = "dota_base_game_mode"
TeamFightGameMode.__index = TeamFightGameMode





This definition block occurs in gamemode.lua, which will be named according to
your mod’s name.

Next, the functions that the mode requires are defined on the game mode
table/object, for example:

function TeamFightGameMode:InitGameMode()
  ...
end








Registering Hooks

Most of the logic in the lua game mode code revolves around hooking into the
game’s standard events.

For example, to perform some logic when a player says something, register the
hook in the game mode init:

ListenToGameEvent('player_say', Dynamic_Wrap(TeamFightGameMode, 'PlayerSay'), self)





Here, we ask the Lua engine to call TeamFightGameMode:PlayerSay(keys) when the
player_say game event is fired.

Next, define your implementation:

function TeamFightGameMode:PlayerSay(keys)
  local ply = self.vUserIds[keys.userid]
  Log(keys.text)
end





In this case, keys is a table/object with relevant data to the say event, such
as the text of the message.

You can view the full API in the API docs sections.




Timers

To put off execution of some code into some seconds in the future, you can
register a timer with a unique ID generated by DoUniqueString:

TeamFightGameMode:CreateTimer(DoUniqueString("dothislater"), {
  endTime = GameRules:GetGameTime() + 3,
  useGameTime = true,
  callback = function(teamfight, args)
    Log("Three... seconds... later...")
  end
})





Here, you pass in the ID of the timer (a unique string starting with dothislater, which can be any unique string) and an object with options. In this case, the callback will be called when the game time is greater than endTime, which is set to the current game time plus three seconds. Game time or server time can be used, where server time based timers will tick even while the game is paused.







          

      

      

    


    
         Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	D2Moddin 1.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  _static/down-pressed.png





search.html


    
      Navigation


      
        		
          index


        		D2Moddin 1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, D2Modd.in.
      Created using Sphinx 1.2.2.
    

  

_static/plus.png





_static/minus.png





_static/comment.png





_static/up.png





_static/down.png





_static/ajax-loader.gif





_static/comment-close.png





_static/up-pressed.png





_static/comment-bright.png





_static/file.png





