

 [image: _images/cutadapt.svg]
 [https://travis-ci.org/marcelm/cutadapt][image: _images/cutadapt1.svg]
 [https://pypi.python.org/pypi/cutadapt]
Cutadapt

Cutadapt finds and removes adapter sequences, primers, poly-A tails and other
types of unwanted sequence from your high-throughput sequencing reads.

Cleaning your data in this way is often required: Reads from small-RNA
sequencing contain the 3’ sequencing adapter because the read is longer than
the molecule that is sequenced. Amplicon reads start with a primer sequence.
Poly-A tails are useful for pulling out RNA from your sample, but often you
don’t want them to be in your reads.

Cutadapt helps with these trimming tasks by finding the adapter or primer
sequences in an error-tolerant way. It can also modify and filter reads in
various ways. Adapter sequences can contain IUPAC wildcard characters. Also,
paired-end reads and even colorspace data is supported. If you want, you can
also just demultiplex your input data, without removing adapter sequences at all.

Cutadapt comes with an extensive suite of automated tests and is available under
the terms of the MIT license.

If you use Cutadapt, please cite
DOI:10.14806/ej.17.1.200 [http://dx.doi.org/10.14806/ej.17.1.200] .

Links

	Documentation [https://cutadapt.readthedocs.io/]

	Source code [https://github.com/marcelm/cutadapt/]

	Report an issue [https://github.com/marcelm/cutadapt/issues]

	Project page on PyPI (Python package index) [https://pypi.python.org/pypi/cutadapt/]

	Follow @marcelm_ on Twitter [https://twitter.com/marcelm_]

	Wrapper for the Galaxy platform [https://bitbucket.org/lance_parsons/cutadapt_galaxy_wrapper]

Table of contents

	Installation
	Quick installation

	Installation with conda

	Dependencies

	System-wide installation (root required)

	Uninstalling

	Shared installation (on a cluster)

	Installing the development version

	User guide
	Basic usage

	Read processing stages

	Adapter types

	Adapter-trimming parameters

	Specifying adapter sequences

	Modifying reads

	Filtering reads

	Trimming paired-end reads

	Multiple adapters

	Illumina TruSeq

	Dealing with N bases

	Bisulfite sequencing (RRBS)

	Cutadapt’s output

	Colorspace

	Algorithm details
	Adapter alignment algorithm

	Recipes and FAQ
	Remove more than one adapter

	Trim poly-A tails

	Trim a fixed number of bases after adapter trimming

	Trimming (amplicon-) primers from both ends of paired-end reads

	Piping paired-end data

	Support for concatenated compressed files

	Paired-end read name check

	Other things (unfinished)

	Ideas/To Do
	Backwards-incompatible changes

	Specifying adapters

	Paired-end trimming

	Available/used letters for command-line options

	Developing
	Development installation

	Development installation (without virtualenv)

	Code style

	Making a release

	Making a release manually

	Changes
	development version

	v1.18 (2018-09-07)

	v1.17 (2018-08-20)

	v1.16 (2018-02-21)

	v1.15 (2017-11-23)

	v1.14 (2017-06-16)

	v1.13 (2017-03-16)

	v1.12 (2016-11-28)

	v1.11 (2016-08-16)

	v1.10 (2016-05-19)

	v1.9.1 (2015-12-02)

	v1.9 (2015-10-29)

	v1.8.3 (2015-07-29)

	v1.8.2 (2015-07-24)

	v1.8.1 (2015-04-09)

	v1.8 (2015-03-14)

	v1.7 (2014-11-25)

	v1.6 (2014-10-07)

	v1.5 (2014-08-05)

	v1.4 (2014-03-13)

	v1.3 (2013-11-08)

	v1.2 (2012-11-30)

	v1.1 (2012-06-18)

	v1.0 (2011-11-04)

	v0.9.5 (2011-07-20)

	v0.9.4 (2011-05-20)

	v0.9.2 (2011-03-16)

	v0.9 (2011-01-10)

	v0.8 (2010-12-08)

	v0.7 (2010-12-03)

	v0.6 (2010-11-18)

	v0.5 (2010-11-17)

	v0.4 (2010-11-17)

	v0.3 (2010-09-27)

	v0.2 (2010-09-14)

	v0.1 (2010-09-14)

Installation

Cutadapt is being developed and tested under Linux. Users have run it
successfully under macOS and Windows.

Quick installation

The easiest way to install Cutadapt is to use pip3 on the command line:

pip3 install --user --upgrade cutadapt

This will download the software from PyPI (the Python packaging
index) [https://pypi.python.org/pypi/cutadapt/], and
install the cutadapt binary into $HOME/.local/bin. If an old version of
Cutadapt exists on your system, the --upgrade parameter is required in order
to install a newer version. You can then run the program like this:

~/.local/bin/cutadapt --help

If you want to avoid typing the full path, add the directory
$HOME/.local/bin to your $PATH environment variable.

Installation with conda

Alternatively, Cutadapt is available as a conda package from the
bioconda channel [https://bioconda.github.io/]. If you do not have conda,
install miniconda [http://conda.pydata.org/miniconda.html] first.
Then install Cutadapt like this:

conda install -c bioconda cutadapt

If neither pip nor conda installation works, keep reading.

Dependencies

Cutadapt installation requires this software to be installed:

	Python 3.4 or newer

	Possibly a C compiler. For Linux, Cutadapt packages are provided as
so-called “wheels” (.whl files) which come pre-compiled.

Under Ubuntu, you may need to install the packages build-essential and
python3-dev to get a C compiler.

If you get an error message:

error: command 'gcc' failed with exit status 1

Then check the entire error message. If it says something about a missing
Python.h file, then the problem is that you are missing Python development
packages (python3-dev in Ubuntu).

System-wide installation (root required)

If you have root access, then you can install Cutadapt system-wide by running:

sudo python3 -m pip install cutadapt

This installs cutadapt into /usr/local/bin.

If you want to upgrade from an older version, use this command instead:

sudo python3 -m pip install --upgrade cutadapt

If the above does not work for you, then you can try to install Cutadapt
into a virtual environment. This may lead to fewer conflicts with
system-installed packages:

sudo python3 -m venv /usr/local/cutadapt
sudo /usr/local/cutadapt/bin/pip install cutadapt
cd /usr/local/bin/
sudo ln -s ../cutadapt/bin/cutadapt

Uninstalling

Type

pip3 uninstall cutadapt

and confirm with y to remove the package. Under some circumstances, multiple
versions may be installed at the same time. Repeat the above command until you
get an error message in order to make sure that all versions are removed.

Shared installation (on a cluster)

If you have a larger installation and want to provide Cutadapt as a module
that can be loaded and unloaded (with the Lmod system, for example), we
recommend that you create a virtual environment and ‘pip install’ cutadapt into
it. These instructions work on our SLURM cluster that uses the Lmod system
(replace 1.9.1 with the actual version you want to use):

BASE=/software/cutadapt-1.9.1
virtualenv $BASE/venv
$BASE/venv/bin/pip install --install-option="--install-scripts=$BASE/bin" cutadapt==1.9.1

The install-option part is important. It ensures that a second, separate
bin/ directory is created (/software/cutadapt-1.9.1/bin/) that only
contains the cutadapt script and nothing else. To make Cutadapt available to
the users, that directory ($BASE/bin) needs to be added to the $PATH.

Make sure you do not add the bin/ directory within the venv directory
to the $PATH! Otherwise, a user trying to run python who also has the
cutadapt module loaded would get the python from the virtual environment,
which leads to confusing error messages.

A simple module file for the Lmod system matching the above example could look
like this:

conflict("cutadapt")
whatis("adapter trimming tool")
prepend_path("PATH", "/software/cutadapt-1.9.1/bin")

Please note that there is no need to “activate” the virtual environment:
Activation merely adds the bin/ directory to the $PATH, so the
prepend_path directive is equivalent to activating the virtual environment.

Installing the development version

We recommend that you install Cutadapt into a so-called virtual environment if
you decide to use the development version. The virtual environment is a single
directory that contains everything needed to run the software. Nothing else on
your system is changed, so you can simply uninstall this particular version of
Cutadapt by removing the directory with the virtual environment.

The following instructions work on Linux using Python 3. Make sure you have
installed the dependencies (python3-dev and
build-essential on Ubuntu)!

First, choose where you want to place the directory with the virtual
environment and what you want to call it. Let us assume you chose the path
~/cutadapt-venv. Then use these commands for the installation:

python3 -m venv ~/cutadapt-venv
~/cutadapt-venv/bin/pip install Cython
~/cutadapt-venv/bin/pip install https://github.com/marcelm/cutadapt/archive/master.zip

To run Cutadapt and see the version number, type

~/cutadapt-venv/bin/cutadapt --version

The reported version number will be something like 1.14+65.g5610275. This
means that you are now running a Cutadapt version that contains 65 additional
changes (commits) since version 1.14.

User guide

Basic usage

To trim a 3’ adapter, the basic command-line for Cutadapt is:

cutadapt -a AACCGGTT -o output.fastq input.fastq

The sequence of the adapter is given with the -a option. You need to replace
AACCGGTT with the correct adapter sequence. Reads are read from the input
file input.fastq and are written to the output file output.fastq.

Compressed in- and output files are also supported:

cutadapt -a AACCGGTT -o output.fastq.gz input.fastq.gz

Cutadapt searches for the adapter in all reads and removes it when it finds it.
Unless you use a filtering option, all reads that were present in the input file
will also be present in the output file, some of them trimmed, some of them not.
Even reads that were trimmed entirely (because the adapter was found in the very
beginning) are output. All of this can be changed with command-line options,
explained further down.

Trimming of paired-end data is also supported.

Input and output file formats

Input files for Cutadapt need to be in one the these formats:

	FASTA with extensions .fasta, .fa or .fna

	FASTQ with extensions .fastq or .fq

	Any of the above, but compressed as .gz, .bz2 or .xz

Input and output file formats are recognized from the file name extension. You
can override the input format with the --format option.

You can use the automatic format detection to convert from FASTQ to FASTA
(without doing any adapter trimming):

cutadapt -o output.fasta.gz input.fastq.gz

Compressed files

Cutadapt supports compressed input and output files. Whether an input file
needs to be decompressed or an output file needs to be compressed is detected
automatically by inspecting the file name: If it ends in .gz, then gzip
compression is assumed. This is why the example given above works:

cutadapt -a AACCGGTT -o output.fastq.gz input.fastq.gz

All of Cutadapt’s options that expect a file name support this.

The supported compression formats are gzip (.gz), bzip2 (.bz2)
and xz (.xz).

Standard input and output

If no output file is specified via the -o option, then the output is sent to
the standard output stream. Instead of the example command line from above, you
can therefore also write:

cutadapt -a AACCGGTT input.fastq > output.fastq

There is one difference in behavior if you use Cutadapt without -o: The
report is sent to the standard error stream instead of standard output. You
can redirect it to a file like this:

cutadapt -a AACCGGTT input.fastq > output.fastq 2> report.txt

Wherever Cutadapt expects a file name, you can also write a dash (-) in
order to specify that standard input or output should be used. For example:

tail -n 4 input.fastq | cutadapt -a AACCGGTT - > output.fastq

The tail -n 4 prints out only the last four lines of input.fastq, which
are then piped into Cutadapt. Thus, Cutadapt will work only on the last read in
the input file.

In most cases, you should probably use - at most once for an input file and
at most once for an output file, in order not to get mixed output.

For the same reason, you should not use - for non-interleaved paired-end
data.

You cannot combine - and gzip compression since Cutadapt needs to know the
file name of the output or input file. if you want to have a gzip-compressed
output file, use -o with an explicit name.

One last “trick” is to use /dev/null as an output file name. This special
file discards everything you send into it. If you only want to see the
statistics output, for example, and do not care about the trimmed reads at all,
you could use something like this:

cutadapt -a AACCGGTT -o /dev/null input.fastq

Multi-core support

Cutadapt supports parallel processing, that is, it can use multiple CPU cores.
Multi-core is not enabled by default. To enable it, use the option -j N
(or the spelled-out version --cores=N), where N is the
number of cores to use.

To automatically detect the number of available cores, use -j 0
(or --cores=0). The detection takes into account resource restrictions
that may be in place. For example, if running Cutadapt as a batch job on a
cluster system, the actual number of cores assigned to the job will be used.
(This works if the cluster systems uses the cpuset(1) mechanism to impose
the resource limitation.)

Make also sure that you have pigz (parallel gzip) installed if you use
multiple cores and write to a .gz output file. Otherwise, compression of
the output will be done in a single thread and therefore be a bottleneck.

There are some limitations at the moment:

	Multi-core Cutadapt can only write to output files given by -o and -p.
This implies that the following command-line arguments are not compatible with
multi-core:

	--info-file

	--rest-file

	--wildcard-file

	--untrimmed-output, --untrimmed-paired-output

	--too-short-output, --too-short-paired-output

	--too-long-output, --too-long-paired-output

	Multi-core is also not compatible with --format

	Multi-core is also not available when you use Cutadapt for demultiplexing.

If you try to use multiple cores with an incompatible commandline option, you
will get an error message.

Some of these limitations will be lifted in the future, as time allows.

New in version 1.15.

New in version 1.18: --cores=0 for autodetection

Read processing stages

Cutadapt can do a lot more in addition to removing adapters. There are various
command-line options that make it possible to modify and filter reads and to
redirect them to various output files. Each read is processed in the following
order:

	Read modification options are applied. This includes
adapter removal,
quality trimming, read name modifications etc. The
order in which they are applied is the order in which they are listed in the
help shown by cutadapt --help under the “Additional read modifications”
heading. Adapter trimming itself does not appear in that list and is
done after quality trimming and before length trimming (--length/-l).

	Filtering options are applied, such as removal of too
short or untrimmed reads. Some of the filters also allow to redirect a read
to a separate output file. The filters are applied in the order in which
they are listed in the help shown by cutadapt --help under the
“Filtering of processed reads” heading.

	If the read has passed all the filters, it is written to the output file.

Adapter types

Cutadapt can detect multiple adapter types. 5’ adapters preceed the sequence of
interest and 3’ adapters follow it. Further distinctions are made according to
where in the read the adapter sequence is allowed to occur to be found by the
program.

	Adapter type

	Command-line option

	Regular 3’ adapter

	-a ADAPTER

	Regular 5’ adapter

	-g ADAPTER

	Non-internal 3’ adapter

	-a ADAPTERX

	Non-internal 5’ adapter

	-g XADAPTER

	Anchored 3’ adapter

	-a ADAPTER$

	Anchored 5’ adapter

	-g ^ADAPTER

	5’ or 3’ (both possible)

	-b ADAPTER

	Linked adapter

	-a ADAPTER1...ADAPTER2

	Non-anchored linked adapter

	-g ADAPTER1...ADAPTER2

By default, all adapters are searched error-tolerantly.
Adapter sequences may also contain any IUPAC wildcard
character (such as N).

In addition, it is possible to remove a fixed number of
bases from the beginning or end of each read, and to remove
low-quality bases (quality trimming) from the 3’ and 5’ ends.

Overview of adapter types

3’ adapter types

A 3’ adapter is assumed to be ligated to the 3’ end of your sequence of interest.
When such an adapter is found, the adapter sequence itself and the sequence
following it (if there is any) are trimmed. This table shows in which ways
the different 3’ adapter types are allowed to occur in a read in order to be
recognized by the program.

	Adapter location in read

	Read layout

	
Found by regular 3’

-a ADAPTER

	
Found by non-internal 3’

-a ADAPTERX

	
Found by anchored 3’

-a ADAPTER$

	Full adapter sequence anywhere

	acgtacgtADAPTERacgt

	yes

	no

	no

	Partial adapter sequence at 3’ end

	acgtacgtacgtADAP

	yes

	yes

	no

	Full adapter sequence at 3’ end

	acgtacgtacgtADAPTER

	yes

	yes

	yes

5’ adapter types

A 5’ adapter is assumed to be ligated to the 5’ end of your sequence of interest.
When such an adapter is found, the adapter sequence itself and the sequence
preceding it (if there is any) are trimmed. This table shows in which ways
the different 5’ adapter types are allowed to occur in a read in order to be
recognized by the program.

	Adapter location in read

	Read layout

	
Found by regular 5’

-g ADAPTER

	
Found by non-internal 5’

-g XADAPTER

	
Found by anchored 5’

-g ^ADAPTER

	Full adapter sequence anywhere

	acgtADAPTERacgtacgt

	yes

	no

	no

	Partial adapter sequence at 5’ end

	PTERacgtacgtacgt

	yes

	yes

	no

	Full adapter sequence at 5’ end

	ADAPTERacgtacgtacgt

	yes

	yes

	yes

Regular 3’ adapters

A 3’ adapter is a piece of DNA ligated to the 3’ end of the DNA fragment you
are interested in. The sequencer starts the sequencing process at the 5’ end of
the fragment and sequences into the adapter if the read is long enough.
The read that it outputs will then have a part of the adapter in the
end. Or, if the adapter was short and the read length quite long, then the
adapter will be somewhere within the read, followed by some other bases.

For example, assume your fragment of interest is MYSEQUENCE and the adapter is
ADAPTER. Depending on the read length, you will get reads that look like this:

MYSEQUEN
MYSEQUENCEADAP
MYSEQUENCEADAPTER
MYSEQUENCEADAPTERSOMETHINGELSE

Use Cutadapt’s -a ADAPTER option to remove this type of adapter. This will
be the result:

MYSEQUEN
MYSEQUENCE
MYSEQUENCE
MYSEQUENCE

As this example shows, Cutadapt allows regular 3’ adapters to occur in full
anywhere within the read (preceeded and/or succeeded by zero or more bases), and
also partially degraded at the 3’ end. Cutadapt deals with 3’ adapters
by removing the adapter itself and any sequence that may follow. As a consequence,
a sequence that starts with an adapter, like this, will be trimmed to an empty read:

ADAPTERSOMETHING

By default, empty reads are kept and will appear in the output. If you do not
want this, use the --minimum-length/-m filtering option.

Regular 5’ adapters

Note

Unless your adapter may also occur in a degraded form, you probably
want to use an anchored 5’ adapter.

A 5’ adapter is a piece of DNA ligated to the 5’ end of the DNA fragment of
interest. For this type of adapter to be found, the adapter sequence needs to
either appear in full somewhere within the read (internal match) or at the
start (5’ end) of it, where in the latter case also partial occurrences are
allowed. In all cases, the adapter itself and the sequence preceding it is
removed.

Assume your fragment of interest is MYSEQUENCE and the adapter is
ADAPTER. The reads may look like this:

ADAPTERMYSEQUENCE
DAPTERMYSEQUENCE
TERMYSEQUENCE
SOMETHINGADAPTERMYSEQUENCE

All the above sequences are trimmed to MYSEQUENCE when you use -g ADAPTER.
As with 3’ adapters, the resulting read may have a length of zero when the
sequence ends with the adapter. For example, the read

SOMETHINGADAPTER

will be empty after trimming.

Anchored 5’ adapters

In many cases, the above behavior is not really what you want for trimming 5’
adapters. You may know, for example, that degradation does not occur and that
the adapter is also not expected to be within the read. Thus, you always expect
the read to look like the first example from above:

ADAPTERSOMETHING

If you want to trim only this type of adapter, use -g ^ADAPTER. The ^ is
supposed to indicate the the adapter is “anchored” at the beginning of the read.
In other words: The adapter is expected to be a prefix of the read. Note that
cases like these are also recognized:

ADAPTER
ADAPT
ADA

The read will simply be empty after trimming.

Be aware that Cutadapt still searches for adapters error-tolerantly and, in
particular, allows insertions. So if your maximum error rate is sufficiently
high, even this read will be trimmed:

BADAPTERSOMETHING

The B in the beginning is seen as an insertion. If you also want to prevent
this from happening, use the option --no-indels to disallow insertions and
deletions entirely.

Anchored 3’ adapters

It is also possible to anchor 3’ adapters to the end of the read. This is
rarely necessary, but if you have merged, for example, overlapping paired-end
reads, then it is useful. Add the $ character to the end of an
adapter sequence specified via -a in order to anchor the adapter to the
end of the read, such as -a ADAPTER$. The adapter will only be found if it
is a suffix of the read, but errors are still allowed as for 5’ adapters.
You can disable insertions and deletions with --no-indels.

Anchored 3’ adapters work as if you had reversed the sequence and used an
appropriate anchored 5’ adapter.

As an example, assume you have these reads:

MYSEQUENCEADAP
MYSEQUENCEADAPTER
MYSEQUENCEADAPTERSOMETHINGELSE

Using -a ADAPTER$ will result in:

MYSEQUENCEADAP
MYSEQUENCE
MYSEQUENCEADAPTERSOMETHINGELSE

That is, only the middle read is trimmed at all.

Non-internal 5’ and 3’ adapters

The non-internal 5’ and 3’ adapter types disallow internal occurrences of the
adapter sequence. This is like a less strict version of anchoring: The
adapter must always be at one of the ends of the read, but - unlike anchored
adapters - partial occurrences are also ok.

Use -a ADAPTERX (replace ADAPTER with your actual adapter sequence, but
use a literal X) to disallow internal matches for a 3’ adapter. Use
-g XADAPTER to disallow them for a 5’ adapter.
Mnemonic: The X is not allowed to “shift into” the read.

Here are some examples for trimming reads with -a ADAPTERX:

	Input read

	Processed read

	mysequenceADAP

	mysequence

	mysequenceADAPTER

	mysequence

	mysequenceADAPTERsomethingelse

	mysequenceADAPTERsomethingelse

Here are some examples for trimming reads with -g XADAPTER:

	Input read

	Processed read

	APTERmysequence

	mysequence

	ADAPTERmysequence

	mysequence

	somethingelseADAPTERmysequence

	somethingelseADAPTERmysequence

New in version 1.17.

Linked adapters (combined 5’ and 3’ adapter)

If your sequence of interest ist “framed” by a 5’ and a 3’ adapter, and you want
to remove both adapters, then you may want to use a linked adapter. A linked
adapter combines an anchored 5’ adapter and a 3’ adapter. The 3’ adapter can be
regular or anchored. The idea is that a read is only trimmed if the anchored
adapters occur. Thus, the 5’ adapter is always required, and if the 3’ adapter
was specified as anchored, it also must exist for a successful match.

See the previous sections for what anchoring means.

Use -a ADAPTER1...ADAPTER2 to search for a linked adapter. ADAPTER1 is
always interpreted as an anchored 5’ adapter. Here, ADAPTER2 is a
regular 3’ adapter. If you write -a ADAPTER1...ADAPTER2$ instead,
then the 3’ adapter also becomes anchored, that is, for a read to be
trimmed, both adapters must exist at the respective ends.

Note that the ADAPTER1 is always interpreted as an anchored 5’ adapter even though
there is no ^ character in the beginning.

In summary:

	-a ADAPTER1...ADAPTER2: The 5’ adapter is removed if it occurs. If a 3’ adapter
occurs, it is removed only when also a 5’ adapter is present.

	-a ADAPTER1...ADAPTER2$: The adapters are removed only if both occur.

As an example, assume the 5’ adapter is FIRST and the 3’ adapter is SECOND
and you have these input reads:

FIRSTMYSEQUENCESECONDEXTRABASES
FIRSTMYSEQUENCESEC
FIRSTMYSEQUE
ANOTHERREADSECOND

Trimming with

cutadapt -a FIRST...SECOND -o output.fastq input.fastq

will result in

MYSEQUENCE
MYSEQUENCE
MYSEQUE
ANOTHERREADSECOND

The 3’ adapter in the last read is not trimmed because the read does not contain
the 5’ adapter.

This feature does not work when used in combination with some other options,
such as --info-file, --mask-adapter.

New in version 1.10.

New in version 1.13: Ability to anchor the 3’ adapter.

Linked adapters without anchoring

This adapter type is especially suited for trimming CRISR screening reads.

Sometimes, the 5’ adapter of a linked adapter pair should not be anchored. It is possible to
specify linked adapters also with -g ADAPTER1...ADAPTER2 (note that -g is used instead
of -a). These work like the linked adapters described in the previous section, but with
these two differences:

	The 5’ adapter is not anchored by default. (So neither the 5’ nor 3’ adapter are anchored.)

	Both adapters are required. If one of them is not found, the read is not trimmed.

That is, when you use the –discard-untrimmed` option (or --trimmed-only) with a
linked adapter specified with -g, then a read is considered to be trimmed if both
adapter parts (5’ and 3’) are present in the read. This is different from linked adapters
specified with -a, where a non-anchored 3’ adapter is optional.

This feature has been added on a tentative basis. It may change in the next program version.

New in version 1.13.

Changed in version 1.15: Require both adapters for a read to be trimmed.

Linked adapter statistics

For linked adapters, the statistics report contains a line like this:

=== Adapter 1 ===

Sequence: AAAAAAAAA...TTTTTTTTTT; Type: linked; Length: 9+10; Trimmed: 3 times; Half matches: 2

The value for “Half matches” tells you how often only the 5’-side of the adapter was found, but not
the 3’-side of it. This applies only to linked adapters with regular (non-anchored) 3’ adapters.

5’ or 3’ adapters

The last type of adapter is a combination of the 5’ and 3’ adapter. You can use
it when your adapter is ligated to the 5’ end for some reads and to the 3’ end
in other reads. This probably does not happen very often, and this adapter type
was in fact originally implemented because the library preparation in an
experiment did not work as it was supposed to.

For this type of adapter, the sequence is specified with -b ADAPTER (or use
the longer spelling --anywhere ADAPTER). The adapter may appear in the
beginning (even degraded), within the read, or at the end of the read (even
partially). The decision which part of the read to remove is made as follows: If
there is at least one base before the found adapter, then the adapter is
considered to be a 3’ adapter and the adapter itself and everything
following it is removed. Otherwise, the adapter is considered to be a 5’
adapter and it is removed from the read, but the sequence after it remains.

Here are some examples.

	Read before trimming

	Read after trimming

	Detected adapter type

	MYSEQUENCEADAPTERSOMETHING

	MYSEQUENCE

	3’ adapter

	MYSEQUENCEADAPTER

	MYSEQUENCE

	3’ adapter

	MYSEQUENCEADAP

	MYSEQUENCE

	3’ adapter

	MADAPTER

	M

	3’ adapter

	ADAPTERMYSEQUENCE

	MYSEQUENCE

	5’ adapter

	PTERMYSEQUENCE

	MYSEQUENCE

	5’ adapter

	TERMYSEQUENCE

	MYSEQUENCE

	5’ adapter

The -b option cannot be used with colorspace data.

Multiple adapter occurrences within a single read

If a single read contains multiple copies of the same adapter, the basic rule is
that the leftmost match is used for both 5’ and 3’ adapters. For example, when
searching for a 3’ adapter in

cccccADAPTERgggggADAPTERttttt

the read will be trimmed to

ccccc

When the adapter is a 5’ adapter instead, the read will be trimmed to

gggggADAPTERttttt

The above applies when both occurrences of the adapter are exact matches, and
it also applies when both occurrences of the adapter are inexact matches (that
is, it has at least one indel or mismatch). However, if one match is exact, but
the other is inexact, then the exact match wins, even if it is not the leftmost
one! The reason for this behavior is that Cutadapt searches for exact matches
first and, to improve performance, skips the error-tolerant matching step if an
exact match was found.

Adapter-trimming parameters

The adapter-trimming algorithm has a few parameters specific to each adapter
that steer how the adapter sequence is found. The command-line options -e
and -O set the maximum error rate and minimum overlap parameters (see
details in the following sections) for all
adapters listed via the -a/-b/-g etc. options. When trimming more
than one adapter, it may be necessary to change parameters for each
adapter individually. You can do so by adding a semicolon and parameter=value to the end
of the adapter sequence, as in -a "ADAPTER;max_error_rate=0.2".
Multiple parameters can also be set, as in -a "ADAPTER;max_error_rate=0.2;min_overlap=5".
Remember to add the quotation marks; otherwise the shell will interpret the semicolon as a
separator between two commands.

The following parameters are supported at the moment:

	Parameter

	Global option

	Adapter-specific parameter

	Maximum error rate

	-e 0.2

	
ADAPTER;e=0.2 or

ADAPTER;max_error_rate=0.2

	Minimum overlap

	-O 5

	
ADAPTER;o=5 or

ADAPTER;min_overlap=5

	Allow matches anywhere

	
	ADAPTER;anywhere

Adapter-specific parameters override the global option.

Error tolerance

All searches for adapter sequences are error tolerant. Allowed errors are
mismatches, insertions and deletions. For example, if you search for the
adapter sequence ADAPTER and the error tolerance is set appropriately
(as explained below), then also ADABTER will be found (with 1 mismatch),
as well as ADAPTR (with 1 deletion), and also ADAPPTER (with 1
insertion).

The level of error tolerance is adjusted by specifying a maximum error rate,
which is 0.1 (=10%) by default. Use the -e option to set a different value
globally or the max_error_rate adapter-specific parameter to change it for
a single adapter only. Example: -a "ADAPTER;max_error_rate=0.15"
(the quotation marks are necessary).

To determine the number of allowed errors, the maximum error rate is multiplied
by the length of the match (and then rounded off).
What does that mean?
Assume you have a long adapter LONGADAPTER and it appears in full somewhere
within the read. The length of the match is 11 characters since the full adapter
has a length of 11, therefore 11·0.1=1.1 errors are allowed with the default
maximum error rate of 0.1. This is rounded off to 1 allowed error. So the
adapter will be found within this read:

SEQUENCELONGADUPTERSOMETHING

If the match is a bit shorter, however, the result is different:

SEQUENCELONGADUPT

Only 9 characters of the adapter match: LONGADAPT matches LONGADUPT
with one substitution. Therefore, only 9·0.1=0.9 errors are allowed. Since this
is rounded off to zero allowed errors, the adapter will not be found.

The number of errors allowed for a given adapter match length is also shown in
the report that Cutadapt prints:

Sequence: 'LONGADAPTER'; Length: 11; Trimmed: 2 times.

No. of allowed errors:
0-9 bp: 0; 10-11 bp: 1

This tells us what we now already know: For match lengths of 0-9 bases, zero
errors are allowed and for matches of length 10-11 bases, one error is allowed.

The reason for this behavior is to ensure that short matches are not favored
unfairly. For example, assume the adapter has 40 bases and the maximum error
rate is 0.1, which means that four errors are allowed for full-length matches.
If four errors were allowed even for a short match such as one with 10 bases, this would
mean that the error rate for such a case is 40%, which is clearly not what was
desired.

Insertions and deletions can be disallowed by using the option
--no-indels.

See also the section on details of the alignment algorithm.

Minimum overlap (reducing random matches)

Since Cutadapt allows partial matches between the read and the adapter sequence,
short matches can occur by chance, leading to erroneously trimmed bases. For
example, roughly 25% of all reads end with a base that is identical to the
first base of the adapter. To reduce the number of falsely trimmed bases,
the alignment algorithm requires that, by default, at least three bases match between
adapter and read.

This minimum overlap length can be changed globally (for all adapters) with the parameter
--overlap (or its short version -O). Alternatively, use the adapter-specific
parameter min_overlap to change it for a single adapter only. Example:
-a "ADAPTER;min_overlap=5" (the quotation marks are necessary).

If a read contains a partial adapter sequence shorter than the minimum overlap length,
no match will be found (and therefore no bases are trimmed).

Requiring at least three bases to match is quite conservative. Even if no
minimum overlap was required, we can compute that we lose only about 0.44 bases
per read on average, see Section 2.3.3 in my
thesis [http://hdl.handle.net/2003/31824]. With the default minimum
overlap length of 3, only about 0.07 bases are lost per read.

When choosing an appropriate minimum overlap length, take into account that
true adapter matches are also lost when the overlap length is higher than
zero, reducing Cutadapt’s sensitivity.

Allowing partial matches at both ends

The regular 5’ and 3’ adapter types allow partial adapter occurrences only
at the 5’ and 3’ end, respectively. To allow partial matches at both ends,
you can use the anywhere adapter-specific parameter.

A 3’ adapter specified via -a ADAPTER will be found even
when it occurs partially at the 3’ end, as in mysequenceADAPT. However,
it will by default not be found if it occurs partially at the 5’ end, as in
APTERmysequence. To find the adapter in both cases, specify
the adapter as -a "ADAPTER;anywhere".

Similarly, for a 5’ adapter specified via -g ADAPTER, partial matches at
the 3’ end are not found, as in mysequenceADAPT. To allow partial matches
at both ends, use -g "ADAPTER;anywhere".

Note

With anywhere, partial matches at the end that is usually not allowed
to be matched will result in empty reads! This means that short random
matches have a much greater detrimental effect and you should
increase the minimum overlap length.

Specifying adapter sequences

Wildcards

All IUPAC nucleotide codes [http://www.bioinformatics.org/sms/iupac.html]
(wildcard characters) are supported. For example, use an N in the adapter
sequence to match any nucleotide in the read, or use -a YACGT for an adapter
that matches both CACGT and TACGT. The wildcard character N is
useful for trimming adapters with an embedded variable barcode:

cutadapt -a ACGTAANNNNTTAGC -o output.fastq input.fastq

Even the X wildcard that does not match any nucleotide is supported. If
used as in -a ADAPTERX or -g XADAPTER, it acquires a special meaning for
and disallows internal adapter matches.

Wildcard characters are by default only allowed in adapter sequences and
are not recognized when they occur in a read. This is to avoid matches in reads
that consist of many (often low-quality) N bases. Use
--match-read-wildcards to enable wildcards also in reads.

Use the option -N to disable interpretation of wildcard characters even in
the adapters. If wildcards are disabled entirely, that is, when you use -N
and do not use --match-read-wildcards, then Cutadapt compares characters
by their ASCII value. Thus, both the read and adapter can be arbitrary strings
(such as SEQUENCE or ADAPTER as used here in the examples).

Wildcards do not work in colorspace.

Repeated bases

If you have many repeated bases in the adapter sequence, such as many N s or
many A s, you do not have to spell them out. For example, instead of writing
ten A in a row (AAAAAAAAAA), write A{10} instead. The number within
the curly braces specifies how often the character that preceeds it will be
repeated. This works also for IUPAC wildcard characters, as in N{5}.

It is recommended that you use quotation marks around your adapter sequence if
you use this feature. For poly-A trimming, for example, you would write:

cutadapt -a "A{100}" -o output.fastq input.fastq

Modifying reads

This section describes in which ways reads can be modified other than adapter
removal.

Removing a fixed number of bases

By using the --cut option or its abbreviation -u, it is possible to
unconditionally remove bases from the beginning or end of each read. If
the given length is positive, the bases are removed from the beginning
of each read. If it is negative, the bases are removed from the end.

For example, to remove the first five bases of each read:

cutadapt -u 5 -o trimmed.fastq reads.fastq

To remove the last seven bases of each read:

cutadapt -u -7 -o trimmed.fastq reads.fastq

The -u/--cut option can be combined with the other options, but
the --cut is applied before any adapter trimming.

Quality trimming

The -q (or --quality-cutoff) parameter can be used to trim
low-quality ends from reads before adapter removal. For this to work
correctly, the quality values must be encoded as ascii(phred quality +
33). If they are encoded as ascii(phred quality + 64), you need to add
--quality-base=64 to the command line.

Quality trimming can be done without adapter trimming, so this will work:

cutadapt -q 10 -o output.fastq input.fastq

By default, only the 3’ end of each read is quality-trimmed. If you want to
trim the 5’ end as well, use the -q option with two comma-separated cutoffs:

cutadapt -q 15,10 -o output.fastq input.fastq

The 5’ end will then be trimmed with a cutoff of 15, and the 3’ end will be
trimmed with a cutoff of 10. If you only want to trim the 5’ end, then use a
cutoff of 0 for the 3’ end, as in -q 10,0.

A description of the quality-trimming algorithm is also
available. The algorithm is the same as used by BWA.

Quality trimming of reads using two-color chemistry (NextSeq)

Some Illumina instruments use a two-color chemistry to encode the four bases.
This includes the NextSeq and the (at the time of this writing) recently
announced NovaSeq. In those instruments, a ‘dark cycle’ (with no detected color)
encodes a G. However, dark cycles also occur when when sequencing “falls
off” the end of the fragment. The read then contains a run of high-quality, but
incorrect ``G` calls <https://sequencing.qcfail.com/articles/illumina-2-colour-chemistry-can-overcall-high-confidence-g-bases/>`_
at its 3’ end.

Since the regular quality-trimming algorithm cannot deal with this situation,
you need to use the --nextseq-trim option:

cutadapt --nextseq-trim=20 -o out.fastq input.fastq

This works like regular quality trimming (where one would use -q 20
instead), except that the qualities of G bases are ignored.

New in version 1.10.

Shortening reads to a fixed length

To shorten each read down to a certain length, use the --length option or
the short version -l:

cutadapt -l 10 -o output.fastq.gz input.fastq.gz

This shortens all reads from input.fastq.gz down to 10 bases. The removed bases
are those on the 3’ end.

If you want to remove a fixed number of bases from each read, use
the –cut option instead.

Modifying read names

If you feel the need to modify the names of processed reads, some of the
following options may be useful.

Use -y or --suffix to append a text to read names. The given string can
contain the placeholder {name}, which will be replaced with the name of the
adapter found in that read. For example, writing

cutadapt -a adapter1=ACGT -y ' we found {name}' input.fastq

changes a read named read1 to read1 we found adapter1 if the adapter
ACGT was found. The options -x/--prefix work the same, but the text
is added in front of the read name. For both options, spaces need to be
specified explicitly, as in the above example. If no adapter was found in a
read, the text no_adapter is inserted for {name}.

In order to remove a suffix of each read name, use --strip-suffix.

Some old 454 read files contain the length of the read in the name:

>read1 length=17
ACGTACGTACAAAAAAA

If you want to update this to the correct length after trimming, use the option
--length-tag. In this example, this would be --length-tag 'length='.
After trimming, the read would perhaps look like this:

>read1 length=10
ACGTACGTAC

Read modification order

The read modifications described above are applied in the following order to
each read. Steps not requested on the command-line are skipped.

	Unconditional base removal with --cut

	Quality trimming (-q)

	Adapter trimming (-a, -b, -g and uppercase versions)

	Read shortening (--length)

	N-end trimming (--trim-n)

	Length tag modification (--length-tag)

	Read name suffix removal (--strip-suffix)

	Addition of prefix and suffix to read name (-x/--prefix and -y/--suffix)

	Double-encode the sequence (only colorspace)

	Replace negative quality values with zero (zero capping, only colorspace)

	Trim primer base (only colorspace)

The last three steps are colorspace-specific.

Filtering reads

By default, all processed reads, no matter whether they were trimmed are not,
are written to the output file specified by the -o option (or to standard
output if -o was not provided). For paired-end reads, the second read in a
pair is always written to the file specified by the -p option.

The options described here make it possible to filter reads by either discarding
them entirely or by redirecting them to other files. When redirecting reads,
the basic rule is that each read is written to at most one file. You cannot
write reads to more than one output file.

In the following, the term “processed read” refers to a read to which all
modifications have been applied (adapter removal, quality trimming etc.). A
processed read can be identical to the input read if no modifications were done.

	--minimum-length LENGTH or -m LENGTH

	Discard processed reads that are shorter than LENGTH. Reads that are too
short even before adapter removal are also discarded. Without this option,
reads that have a length of zero (empty reads) are kept in the output.

	--too-short-output FILE

	Instead of discarding the reads that are too short according to -m,
write them to FILE (in FASTA/FASTQ format).

	--maximum-length LENGTH or -M LENGTH

	Discard processed reads that are longer than LENGTH. Reads that are too
long even before adapter removal are also discarded.

	--too-long-output FILE

	Instead of discarding reads that are too long (according to -M),
write them to FILE (in FASTA/FASTQ format).

	--untrimmed-output FILE

	Write all reads without adapters to FILE (in FASTA/FASTQ format) instead
of writing them to the regular output file.

	--discard-trimmed

	Discard reads in which an adapter was found.

	--discard-untrimmed

	Discard reads in which no adapter was found. This has the same effect as
specifying --untrimmed-output /dev/null.

The options --too-short-output and --too-long-output are applied first.
This means, for example, that a read that is too long will never end up in the
--untrimmed-output file when --too-long-output was given, no matter
whether it was trimmed or not.

The options --untrimmed-output, --discard-trimmed and -discard-untrimmed
are mutually exclusive.

The following filtering options do not have a corresponding option for redirecting
reads. They always discard reads for which the filtering criterion applies.

	--max-n COUNT_or_FRACTION

	Discard reads with more than COUNT N bases. If COUNT_or_FRACTION is an
number between 0 and 1, it is interpreted as a fraction of the read length

	--discard-casava

	Discard reads that did not pass CASAVA filtering. Illumina’s CASAVA pipeline in
version 1.8 adds an is_filtered header field to each read. Specifying this
option, the reads that did not pass filtering (these are the reads that have
a Y for is_filtered) will be discarded. Reads for which the header cannot
be recognized are kept.

Trimming paired-end reads

Cutadapt supports trimming of paired-end reads. To enable this, provide two
input files and a second output file with the -p option (this is the short
form of --paired-output). This is the basic command line syntax:

cutadapt -a ADAPTER_FWD -A ADAPTER_REV -o out.1.fastq -p out.2.fastq reads.1.fastq reads.2.fastq

Here, the input reads are in reads.1.fastq and reads.2.fastq, and the
result will be written to out.1.fastq and out.2.fastq.

In paired-end mode, the options -a, -b, -g and -u that also
exist in single-end mode are applied to the forward reads only. To modify
the reverse read, these options have uppercase versions -A, -B,
-G and -U that work just like their counterparts.
In the example above, ADAPTER_FWD will therefore be trimmed from the
forward reads and ADAPTER_REV from the reverse reads.

	Single-end/R1 option

	Corresponding option for R2

	--adapter, -a

	-A

	--front, -g

	-G

	--anywhere, -b

	-B

	--cut, -u

	-U

	--output, -o

	--paired-output, -p

In paired-end mode, Cutadapt checks whether the input files are
properly paired. An error is raised if one of the files contains more reads than
the other or if the read names in the two files do not match. The read name
comparison ignores a trailing /1 or /2 to allow processing some old
Illumina paired-end files.

In some cases, it works to run Cutadapt twice in single-end mode on the input
files, but we recommend against it as the check whether the files are properly
paired cannot be done.

Also, as soon as you start to use one of the filtering options that discard
reads, it is mandatory you process both files at the same time to make sure that the
output files are kept synchronized. If a read is removed from one of the files,
Cutadapt will always ensure that it is also removed from the other file.

The following command-line options are applied to both reads:

	-q (along with --quality-base)

	--times applies to all the adapters given

	--no-trim

	--trim-n

	--mask

	--length

	--length-tag

	--prefix, --suffix

The following limitations still exist:

	The --info-file, --rest-file and --wildcard-file options write out
information only from the first read.

Filtering paired-end reads

The filtering options listed above can also be used when
trimming paired-end data.

Importantly, Cutadapt always discards both reads of a pair if it determines
that the pair should be discarded. This ensures that the reads in the output
files are in sync. (If you don’t want or need this, you can run Cutadapt
separately on the R1 and R2 files.)

The same applies also to the options that redirect reads to other files if they
fulfill a filtering criterion, such as
--too-short-output/--too-short-paired-output. That is, the reads are
always sent in pairs to these alternative output files.

By default, a read pair is discarded (or redirected) if one of the reads
(R1 or R2) fulfills the filtering criterion. As an example, if option
--minimum-length=20 is used and paired-end data is processed, a read pair
if discarded if one of the reads is shorter than 20 nt.

To require that filtering criteria must apply to both reads in order for a
read pair to be discarded, use the option --pair-filter=both. The following
table describes the effect for some filtering options.

	Filtering option

	With --pair-filter=any, the pair
is discarded if …

	With -pair-filter=both, the pair
is discarded if …

	--minimum-length

	one of the reads is too short

	both reads are too short

	--maximum-length

	one of the reads is too long

	both reads are too long

	--discard-trimmed

	one of the reads contains an adapter

	both reads contain an adapter

	--discard-untrimmed

	one of the reads does not contain an adapter

	both reads do not contain an adapter

	--max-n

	one of the reads contains too many N bases

	both reads contain too many N bases

To further complicate matters, Cutadapt switches to a backwards compatibility
mode (“legacy mode”) when none of the uppercase modification options
(-A/-B/-G/-U) are given. In that mode, filtering criteria are
checked only for the first read. Cutadapt will also tell you at the top of
the report whether legacy mode is active. Check that line if you get strange
results!

These are the paired-end specific filtering and output options:

	--minimum-length LENGTH1:LENGTH2 or -m LENGTH1:LENGTH2

	When trimming paired-end reads, the minimum lengths for R1 and R2 can be specified
separately by separating them with a colon (:). If the colon syntax is not used,
the same minimum length applies to both reads, as discussed above. Also, one of the
values can be omitted to impose no restrictions. For example, with -m 17:,
the length of R1 must be at least 17, but the length of R2 is ignored.

	--maximum-length LENGTH1:LENGTH2 or -M LENGTH1:LENGTH2

	Maximum lengths can also be specified separately, see the explanation of -m above.

	--paired-output FILE or -p FILE

	Write the second read of each processed pair to FILE (in FASTA/FASTQ
format).

	--untrimmed-paired-output FILE

	Used together with --untrimmed-output. The second read in a pair is
written to this file when the processed pair was not trimmed.

	--too-short-paired-output FILE

	Write the second read in a pair to this file if pair is too short. Use
together with --too-short-output.

	--too-long-paired-output FILE

	Write the second read in a pair to this file if pair is too long. Use
together with --too-long-output.

	--pair-filter=(any|both)

	Which of the reads in a paired-end read have to match the filtering
criterion in order for it to be filtered.

Note that the option names can be abbreviated as long as it is clear which
option is meant (unique prefix). For example, instead of --untrimmed-output
and --untrimmed-paired-output, you can write --untrimmed-o and
--untrimmed-p.

Interleaved paired-end reads

Paired-end reads can be read from a single FASTQ file in which the entries for
the first and second read from each pair alternate. The first read in each pair
comes before the second. Enable this file format by adding the --interleaved
option to the command-line. For example:

cutadapt --interleaved -q 20 -a ACGT -A TGCA -o trimmed.fastq reads.fastq

To read from an interleaved file, but write regular two-file output, provide the
second output file as usual with the -p option:

cutadapt --interleaved -q 20 -a ACGT -A TGCA -o trimmed.1.fastq -p trimmed.2.fastq reads.fastq

Reading two-file input and writing interleaved is also possible by providing
a second input file:

cutadapt --interleaved -q 20 -a ACGT -A TGCA -o trimmed.1.fastq reads.1.fastq reads.2.fastq

Cutadapt will detect if an input file is not properly interleaved by checking
whether read names match and whether the file contains an even number of entries.

When --interleaved is used, legacy mode is disabled (that is,
read-modification options such as -q always apply to both reads).

Legacy paired-end read trimming

Note

This section describes the way paired-end trimming was done
in Cutadapt before 1.8, where the -A, -G, -B options were not
available. It is more complicated, but you can still use it.

If you do not use any of the filtering options that discard reads, such
as --discard, --minimum-length or --maximum-length, you can run
Cutadapt on each file separately:

cutadapt -a ADAPTER_FWD -o trimmed.1.fastq reads1.fastq
cutadapt -a ADAPTER_REV -o trimmed.2.fastq reads2.fastq

You can use the options that are listed under ‘Additional modifications’
in Cutadapt’s help output without problems. For example, if you want to
quality-trim the first read in each pair with a threshold of 10, and the
second read in each pair with a threshold of 15, then the commands could
be:

cutadapt -q 10 -a ADAPTER_FWD -o trimmed.1.fastq reads1.fastq
cutadapt -q 15 -a ADAPTER_REV -o trimmed.2.fastq reads2.fastq

If you use any of the filtering options, you must use Cutadapt in the following
way (with the -p option) to make sure that read pairs remain sychronized.

First trim the forward read, writing output to temporary files (we also
add some quality trimming):

cutadapt -q 10 -a ADAPTER_FWD --minimum-length 20 -o tmp.1.fastq -p tmp.2.fastq reads.1.fastq reads.2.fastq

Then trim the reverse read, using the temporary files as input:

cutadapt -q 15 -a ADAPTER_REV --minimum-length 20 -o trimmed.2.fastq -p trimmed.1.fastq tmp.2.fastq tmp.1.fastq

Finally, remove the temporary files:

rm tmp.1.fastq tmp.2.fastq

Please see the previous section for a much simpler way of trimming paired-end
reads!

In legacy paired-end mode, the read-modifying options such as -q only
apply to the first file in each call to Cutadapt (first reads.1.fastq, then
tmp.2.fastq in this example). Reads in the second file are not affected by those
options, but by the filtering options: If a read in the first file is
discarded, then the matching read in the second file is also filtered
and not written to the output given by --paired-output in order to
keep both output files synchronized.

Multiple adapters

It is possible to specify more than one adapter sequence by using the options
-a, -b and -g more than once. Any combination is allowed, such as
five -a adapters and two -g adapters. Each read will be searched for
all given adapters, but only the best matching adapter is removed. (But it
is possible to trim more than one adapter from each
read). This is how a command may look to trim one of two
possible 3’ adapters:

cutadapt -a TGAGACACGCA -a AGGCACACAGGG -o output.fastq input.fastq

The adapter sequences can also be read from a FASTA file. Instead of giving an
explicit adapter sequence, you need to write file: followed by the name of
the FASTA file:

cutadapt -a file:adapters.fasta -o output.fastq input.fastq

All of the sequences in the file adapters.fasta will be used as 3’
adapters. The other adapter options -b and -g also support this.
The file: syntax can be combined with the regular way of specifying an
adapter. But no matter how you specify multiple adapter sequences, remember
that only the best matching adapter is trimmed from each read.

When Cutadapt has multiple adapter sequences to work with, either specified
explicitly on the command line or via a FASTA file, it decides in the
following way which adapter should be trimmed:

	All given adapter sequences are matched to the read.

	Adapter matches where the overlap length (see the -O parameter) is too
small or where the error rate is too high (-e) are removed from further
consideration.

	Among the remaining matches, the one with the greatest number of matching
bases is chosen.

	If there is a tie, the first adapter wins. The order of adapters is the order
in which they are given on the command line or in which they are found in the
FASTA file.

If your adapter sequences are all similar and differ only by a variable barcode
sequence, you should use a single adapter sequence instead that
contains wildcard characters.

If you want to search for a combination of a 5’ and a 3’ adapter, you may want
to provide them as a single so-called “linked adapter”
instead.

Named adapters

Cutadapt reports statistics for each adapter separately. To identify the
adapters, they are numbered and the adapter sequence is also printed:

=== Adapter 1 ===

Sequence: AACCGGTT; Length 8; Trimmed: 5 times.

If you want this to look a bit nicer, you can give each adapter a name in this
way:

cutadapt -a My_Adapter=AACCGGTT -o output.fastq input.fastq

The actual adapter sequence in this example is AACCGGTT and the name
assigned to it is My_Adapter. The report will then contain this name in
addition to the other information:

=== Adapter 'My_Adapter' ===

Sequence: TTAGACATATCTCCGTCG; Length 18; Trimmed: 5 times.

When adapters are read from a FASTA file, the sequence header is used as the
adapter name.

Adapter names are also used in column 8 of info files.

Demultiplexing

Cutadapt supports demultiplexing, which means that reads are written to different
output files depending on which adapter was found in them. To use this, include
the string {name} in the name of the output file and give each adapter
a name.
The path is then interpreted as a template and each trimmed read is written
to the path in which {name} is replaced with the name of the adapter that
was found in the read. Reads in which no adapter was found will be written to a
file in which {name} is replaced with unknown.

Example:

cutadapt -a one=TATA -a two=GCGC -o trimmed-{name}.fastq.gz input.fastq.gz

This command will create the three files demulti-one.fastq.gz,
demulti-two.fastq.gz and demulti-unknown.fastq.gz. You can also
provide adapter sequences in a FASTA file.

In order to not trim the input files at all, but to only do multiplexing, use
option --no-trim. And if you want to output the reads in which no
adapters were found to a different file, use the --untrimmed-output
parameter with a file name. Here is an example that uses both parameters and
reads the adapters from a FASTA file (note that --untrimmed-output can be
abbreviated):

cutadapt -a file:barcodes.fasta --no-trim --untrimmed-o untrimmed.fastq.gz -o trimmed-{name}.fastq.gz input.fastq.gz

Here is a made-up example for the barcodes.fasta file:

>barcode01
TTAAGGCC
>barcode02
TAGCTAGC
>barcode03
ATGATGAT

Demultiplexing is also supported for paired-end data if you provide the {name} template
in both output file names (-o and -p). Paired-end demultiplexing always uses the adapter
matches of the first read to decide where a read should be written.
If adapters to be found in read 2 are given (-A/-G), they are detected and removed as normal, but
these matches do not influence where the read pair is written. This is
to ensure that read 1 and read 2 are always synchronized. Example:

cutadapt -a first=AACCGG -a second=TTTTGG -A ACGTACGT -A TGCATGCA -o trimmed-{name}.1.fastq.gz -p trimmed-{name}.2.fastq.gz input.1.fastq.gz input.2.fastq.gz

This will create up to six output files named trimmed-first.1.fastq.gz, trimmed-second.1.fastq.gz,
trimmed-unknown.1.fastq.gz and trimmed-first.2.fastq.gz, trimmed-second.2.fastq.gz,
trimmed-unknown.2.fastq.gz.

You can use --untrimmed-paired-output to change the name for the output file that receives the
untrimmed second reads.

New in version 1.15: Demultiplexing of paired-end data.

Trimming more than one adapter from each read

By default, at most one adapter sequence is removed from each read, even if
multiple adapter sequences were provided. This can be changed by using the
--times option (or its abbreviated form -n). Cutadapt will then search
for all the given adapter sequences repeatedly, either until no adapter match
was found or until the specified number of rounds was reached.

As an example, assume you have a protocol in which a 5’ adapter gets ligated
to your DNA fragment, but it’s possible that the adapter is ligated more than
once. So your sequence could look like this:

ADAPTERADAPTERADAPTERMYSEQUENCE

To be on the safe side, you assume that there are at most five copies of the
adapter sequence. This command can be used to trim the reads correctly:

cutadapt -g ^ADAPTER -n 5 -o output.fastq.gz input.fastq.gz

To search for a combination of a 5’ and a 3’ adapter, have a look
at the support for “linked adapters” instead, which
works better for that particular case because it is allows you to require that
the 3’ adapter is trimmed only when the 5’ adapter also occurs, and it cannot
happen that the same adapter is trimmed twice.

Before Cutadapt supported linked adapters, the --times option was the
recommended way to search for 5’/3’ linked adapters. For completeness, we
describe how it was done. For example, when the 5’ adapter is FIRST and the
3’ adapter is SECOND, then the read could look like this:

FIRSTMYSEQUENCESECOND

That is, the sequence of interest is framed by the 5’ and the 3’ adapter. The
following command can be used to trim such a read:

cutadapt -g ^FIRST -a SECOND -n 2 ...

Illumina TruSeq

If you have reads containing Illumina TruSeq adapters, follow these
steps.

Single-end reads as well as the first reads of paired-end data need to be
trimmed with A + the “TruSeq Indexed Adapter”. Use only the prefix of the
adapter sequence that is common to all Indexed Adapter sequences:

cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -o trimmed.fastq.gz reads.fastq.gz

If you have paired-end data, trim also read 2 with the reverse complement of the
“TruSeq Universal Adapter”. The full command-line looks as follows:

cutadapt \
 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \
 -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT \
 -o trimmed.1.fastq.gz -p trimmed.2.fastq.gz \
 reads.1.fastq.gz reads.2.fastq.gz

See also the section about paired-end adapter trimming above.

If you want to simplify this a bit, you can also use the common prefix
AGATCGGAAGAGC as the adapter sequence in both cases. However, you should
be aware that this sequence occurs multiple times in the human genome and it
could therefore skew your results very slightly at those loci

cutadapt \
 -a AGATCGGAAGAGC -A AGATCGGAAGAGC \
 -o trimmed.1.fastq.gz -p trimmed.2.fastq.gz \
 reads.1.fastq.gz reads.2.fastq.gz

The adapter sequences can be found in the document Illumina TruSeq Adapters
De-Mystified [http://tucf-genomics.tufts.edu/documents/protocols/TUCF_Understanding_Illumina_TruSeq_Adapters.pdf].

Under some circumstances you may want to consider not trimming adapters at all.
If you have whole-exome or whole-genome reads, there will be very few reads
with adapters anyway. And if you use BWA-MEM, the trailing (5’) bases of
a read that do not match the reference are soft-clipped, which covers those
cases in which an adapter does occur.

Warning about incomplete adapter sequences

Sometimes Cutadapt’s report ends with these lines:

WARNING:
 One or more of your adapter sequences may be incomplete.
 Please see the detailed output above.

Further up, you’ll see a message like this:

Bases preceding removed adapters:
 A: 95.5%
 C: 1.0%
 G: 1.6%
 T: 1.6%
 none/other: 0.3%
WARNING:
 The adapter is preceded by "A" extremely often.
 The provided adapter sequence may be incomplete.
 To fix the problem, add "A" to the beginning of the adapter sequence.

This means that in 95.5% of the cases in which an adapter was removed from a
read, the base coming before that was an A. If your DNA fragments are
not random, such as in amplicon sequencing, then this is to be expected and
the warning can be ignored. If the DNA fragments are supposed to be random,
then the message may be genuine: The adapter sequence may be incomplete and
should include an additional A in the beginning.

This warning exists because some documents list the Illumina TruSeq adapters
as starting with GATCGGA.... While that is technically correct, the
library preparation actually results in an additional A before that
sequence, which also needs to be removed. See the previous
section for the correct sequence.

Dealing with N bases

Cutadapt supports the following options to deal with N bases in your reads:

	--max-n COUNT

	Discard reads containing more than COUNT N bases. A fractional COUNT
between 0 and 1 can also be given and will be treated as the proportion of
maximally allowed N bases in the read.

	--trim-n

	Remove flanking N bases from each read. That is, a read such as this:

NNACGTACGTNNNN

Is trimmed to just ACGTACGT. This option is applied after adapter
trimming. If you want to get rid of N bases before adapter removal, use
quality trimming: N bases typically also have a low quality value
associated with them.

Bisulfite sequencing (RRBS)

When trimming reads that come from a library prepared with the RRBS (reduced
representation bisulfite sequencing) protocol, the last two 3’ bases must be
removed in addition to the adapter itself. This can be achieved by using not
the adapter sequence itself, but by adding two wildcard characters to its
beginning. If the adapter sequence is ADAPTER, the command for trimming
should be:

cutadapt -a NNADAPTER -o output.fastq input.fastq

Details can be found in Babraham bioinformatics’ “Brief guide to
RRBS” [http://www.bioinformatics.babraham.ac.uk/projects/bismark/RRBS_Guide.pdf].
A summary follows.

During RRBS library preparation, DNA is digested with the restriction enzyme
MspI, generating a two-base overhang on the 5’ end (CG). MspI recognizes
the sequence CCGG and cuts
between C and CGG. A double-stranded DNA fragment is cut in this way:

5'-NNNC|CGGNNN-3'
3'-NNNGGC|CNNN-5'

The fragment between two MspI restriction sites looks like this:

5'-CGGNNN...NNNC-3'
 3'-CNNN...NNNGGC-5'

Before sequencing (or PCR) adapters can be ligated, the missing base positions
must be filled in with GTP and CTP:

5'-ADAPTER-CGGNNN...NNNCcg-ADAPTER-3'
3'-ADAPTER-gcCNNN...NNNGGC-ADAPTER-5'

The filled-in bases, marked in lowercase above, do not contain any original
methylation information, and must therefore not be used for methylation calling.
By prefixing the adapter sequence with NN, the bases will be automatically
stripped during adapter trimming.

Cutadapt’s output

Reporting

Cutadapt will by default print a full report after it has finished processing
the reads. To suppress all output except error messages, use the option
--quiet.

The report type can be changed to a one-line summary with the option
--report=minimal. The output will be a tab-separated table (tsv) with one
header row and one row of content. Here is an example:

$ cutadapt --report=minimal -a ... -m 20 -q 10 -o ... -p ... in.[12].fastq.gz
status in_reads in_bp too_short too_long too_many_n out_reads w/adapters qualtrim_bp out_bp w/adapters2 qualtrim2_bp out2_bp
OK 1000000 202000000 24827 0 0 975173 28968 1674222 97441426 0 0 98492473

This is the meaning of each column:

	Column heading

	Explanation

	status

	Incomplete adapter warning (OK or WARN)

	in_reads

	Number of processed reads (read pairs for paired-end)

	in_bp

	Number of processed basepairs

	too_short

	Number of reads/read pairs that were too short

	too_long

	Number of reads/read pairs that were too long

	too_many_n

	Number of reads/read pairs that contained too many N

	out_reads

	Number of reads written

	w/adapters

	Number of reads containing at least one adapter

	qualtrim_bp

	Number of bases removed from R1 reads by quality trimming

	out_bp

	Number of bases written to R1 reads

	w/adapters2

	Number of R2 reads containing at least one adapter

	qualtrim2_bp

	Number of bases removed from R3 reads by quality trimming

	out2_bp

	Number of bases written

The last three fields are omitted for single-end data.

How to read the report

After every run, Cutadapt prints out per-adapter statistics. The output
starts with something like this:

Sequence: 'ACGTACGTACGTTAGCTAGC'; Length: 20; Trimmed: 2402 times.

The meaning of this should be obvious.

The next piece of information is this:

No. of allowed errors:
0-7 bp: 0; 8-15 bp: 1; 16-20 bp: 2

The adapter, as was shown above, has a length of 20
characters. We are using a custom error rate of 0.12. What this
implies is shown above: Matches up to a length of 7 bp are allowed to
have no errors. Matches of lengths 8-15 bp are allowd to have 1 error
and matches of length 16 or more can have 2 errors. See also the section about
error-tolerant matching.

Finally, a table is output that gives more detailed information about
the lengths of the removed sequences. The following is only an excerpt;
some rows are left out:

Overview of removed sequences
length count expect max.err error counts
3 140 156.2 0 140
4 57 39.1 0 57
5 50 9.8 0 50
6 35 2.4 0 35
7 13 0.3 0 1 12
8 31 0.1 1 0 31
...
100 397 0.0 3 358 36 3

The first row tells us the following: Three bases were removed in 140
reads; randomly, one would expect this to occur 156.2 times; the maximum
number of errors at that match length is 0 (this is actually redundant
since we know already that no errors are allowed at lengths 0-7 bp).

The last column shows the number of reads that had 0, 1, 2 … errors.
In the last row, for example, 358 reads matched the adapter with zero
errors, 36 with 1 error, and 3 matched with 2 errors.

In the row for length 7 is an apparent anomaly, where the max.err column
is 0 and yet we have 31 reads matching with 1 error. This is because the
matches are actually contributed by alignments to the first 8 bases of
the adapter with one deletion, so 7 bases are removed but the error
cut-off applied is for length 8.

The “expect” column gives only a rough estimate of the number of
sequences that is expected to match randomly, but it can help to
estimate whether the matches that were found are true adapter matches
or if they are due to chance. At lengths 6, for example, only 2.4
reads are expected, but 35 do match, which hints that most of these
matches are due to actual adapters.
For slightly more accurate estimates, you can provide the correct
GC content (as a percentage) of your reads with the option
--gc-content. The default is --gc-content=50.

Note that the “length” column refers to the length of the removed
sequence. That is, the actual length of the match in the above row at
length 100 is 20 since that is the adapter length. Assuming the read
length is 100, the adapter was found in the beginning of 397 reads and
therefore those reads were trimmed to a length of zero.

The table may also be useful in case the given adapter sequence contains
an error. In that case, it may look like this:

...
length count expect max.err error counts
10 53 0.0 1 51 2
11 45 0.0 1 42 3
12 51 0.0 1 48 3
13 39 0.0 1 0 39
14 40 0.0 1 0 40
15 36 0.0 1 0 36
...

We can see that no matches longer than 12 have zero errors. In this
case, it indicates that the 13th base of the given adapter sequence is
incorrect.

Format of the info file

When the --info-file command-line parameter is given, detailed
information about the found adapters is written to the given file. The
output is a tab-separated text file. Each line corresponds to one read
of the input file (unless –times is used, see below). A row is written
for all reads, even those that are discarded from the final output
FASTA/FASTQ due to filtering options (such as --minimum-length).

The fields in each row are:

	Read name

	Number of errors

	0-based start coordinate of the adapter match

	0-based end coordinate of the adapter match

	Sequence of the read to the left of the adapter match (can be empty)

	Sequence of the read that was matched to the adapter

	Sequence of the read to the right of the adapter match (can be empty)

	Name of the found adapter.

	Quality values corresponding to sequence left of the adapter match (can be empty)

	Quality values corresponding to sequence matched to the adapter (can be empty)

	Quality values corresponding to sequence to the right of the adapter match (can be empty)

The concatenation of the fields 5-7 yields the full read sequence. Column 8 identifies
the found adapter. The section about named adapters <named-adapters> describes
how to give a name to an adapter. Adapters without a name are numbered starting
from 1. Fields 9-11 are empty if quality values are not available.
Concatenating them yields the full sequence of quality values.

If no adapter was found, the format is as follows:

	Read name

	The value -1

	The read sequence

	Quality values

When parsing the file, be aware that additional columns may be added in
the future. Note also that some fields can be empty, resulting in
consecutive tabs within a line.

If the --times option is used and greater than 1, each read can appear
more than once in the info file. There will be one line for each found adapter,
all with identical read names. Only for the first of those lines will the
concatenation of columns 5-7 be identical to the original read sequence (and
accordingly for columns 9-11). For subsequent lines, the shown sequence are the
ones that were used in subsequent rounds of adapter trimming, that is, they get
successively shorter.

New in version 1.9: Columns 9-11 were added.

Colorspace

Support for processing data in so-called “colorspace”, as produced by
the ABI SOLiD sequencer, was removed from Cutadapt versions newer than
1.18.

To process colorspace data, please use Cutadapt 1.18 or earlier.
That version also knows how to process .csfasta/.qual file
pairs.

See also the colorspace section in the documentation for
Cutadapt 1.18 [https://cutadapt.readthedocs.io/en/v1.18/colorspace.html].

Algorithm details

Adapter alignment algorithm

Since the publication of the EMBnet journal application note about
Cutadapt [http://dx.doi.org/10.14806/ej.17.1.200], the alignment algorithm
used for finding adapters has changed significantly. An overview of this new
algorithm is given in this section. An even more detailed description is
available in Chapter 2 of my PhD thesis Algorithms and tools for the analysis
of high-throughput DNA sequencing data [http://hdl.handle.net/2003/31824].

The algorithm is based on semiglobal alignment, also called free-shift,
ends-free or overlap alignment. In a regular (global) alignment, the
two sequences are compared from end to end and all differences occuring over
that length are counted. In semiglobal alignment, the sequences are allowed to
freely shift relative to each other and differences are only penalized in the
overlapping region between them:

 FANTASTIC
ELEFANT

The prefix ELE and the suffix ASTIC do not have a counterpart in the
respective other row, but this is not counted as an error. The overlap FANT
has a length of four characters.

Traditionally, alignment scores are used to find an optimal overlap aligment:
This means that the scoring function assigns a positive value to matches,
while mismatches, insertions and deletions get negative values. The optimal
alignment is then the one that has the maximal total score. Usage of scores
has the disadvantage that they are not at all intuitive: What does a total score
of x mean? Is that good or bad? How should a threshold be chosen in order to
avoid finding alignments with too many errors?

For Cutadapt, the adapter alignment algorithm uses unit costs instead.
This means that mismatches, insertions and deletions are counted as one error, which
is easier to understand and allows to specify a single parameter for the
algorithm (the maximum error rate) in order to describe how many errors are
acceptable.

There is a problem with this: When using costs instead of scores, we would like
to minimize the total costs in order to find an optimal alignment. But then the
best alignment would always be the one in which the two sequences do not overlap
at all! This would be correct, but meaningless for the purpose of finding an
adapter sequence.

The optimization criteria are therefore a bit different. The basic idea is to
consider the alignment optimal that maximizes the overlap between the two
sequences, as long as the allowed error rate is not exceeded.

Conceptually, the procedure is as follows:

	Consider all possible overlaps between the two sequences and compute an
alignment for each, minimizing the total number of errors in each one.

	Keep only those alignments that do not exceed the specified maximum error
rate.

	Then, keep only those alignments that have a maximal number of matches
(that is, there is no alignment with more matches).

	If there are multiple alignments with the same number of matches, then keep
only those that have the smallest error rate.

	If there are still multiple candidates left, choose the alignment that starts
at the leftmost position within the read.

In Step 1, the different adapter types are taken into account: Only those
overlaps that are actually allowed by the adapter type are actually considered.

Quality trimming algorithm

The trimming algorithm implemented in Cutadapt is the same as the one used by
BWA, but applied to both
ends of the read in turn (if requested). That is: Subtract the given cutoff
from all qualities; compute partial sums from all indices to the end of the
sequence; cut the sequence at the index at which the sum is minimal. If both
ends are to be trimmed, repeat this for the other end.

The basic idea is to remove all bases starting from the end of the read whose
quality is smaller than the given threshold. This is refined a bit by allowing
some good-quality bases among the bad-quality ones. In the following example,
we assume that the 3’ end is to be quality-trimmed.

Assume you use a threshold of 10 and have these quality values:

42, 40, 26, 27, 8, 7, 11, 4, 2, 3

Subtracting the threshold gives:

32, 30, 16, 17, -2, -3, 1, -6, -8, -7

Then sum up the numbers, starting from the end (partial sums). Stop early if
the sum is greater than zero:

(70), (38), 8, -8, -25, -23, -20, -21, -15, -7

The numbers in parentheses are not computed (because 8 is greater than zero),
but shown here for completeness. The position of the minimum (-25) is used as
the trimming position. Therefore, the read is trimmed to the first four bases,
which have quality values 42, 40, 26, 27.

Recipes and FAQ

This section gives answers to frequently asked questions. It shows you how to
get Cutadapt to do what you want it to do!

Remove more than one adapter

If you want to remove a 5’ and 3’ adapter at the same time, use the
support for linked adapters.

If your situation is different, for example, when you have many 5’ adapters
but only one 3’ adapter, then you have two options.

First, you can specify the adapters and also --times=2 (or the short
version -n 2). For example:

cutadapt -g ^TTAAGGCC -g ^AAGCTTA -a TACGGACT -n 2 -o output.fastq input.fastq

This instructs Cutadapt to run two rounds of adapter finding and removal. That
means that, after the first round and only when an adapter was actually found,
another round is performed. In both rounds, all given adapters are searched and
removed. The problem is that it could happen that one adapter is found twice (so
the 3’ adapter, for example, could be removed twice).

The second option is to not use the -n option, but to run Cutadapt twice,
first removing one adapter and then the other. It is easiest if you use a pipe
as in this example:

cutadapt -g ^TTAAGGCC -g ^AAGCTTA input.fastq | cutadapt -a TACGGACT - > output.fastq

Trim poly-A tails

If you want to trim a poly-A tail from the 3’ end of your reads, use the 3’
adapter type (-a) with an adapter sequence of many repeated A
nucleotides. Starting with version 1.8 of Cutadapt, you can use the
following notation to specify a sequence that consists of 100 A:

cutadapt -a "A{100}" -o output.fastq input.fastq

This also works when there are sequencing errors in the poly-A tail. So this
read

TACGTACGTACGTACGAAATAAAAAAAAAAA

will be trimmed to:

TACGTACGTACGTACG

If for some reason you would like to use a shorter sequence of A, you can
do so: The matching algorithm always picks the leftmost match that it can find,
so Cutadapt will do the right thing even when the tail has more A than you
used in the adapter sequence. However, sequencing errors may result in shorter
matches than desired. For example, using -a "A{10}", the read above (where
the AAAT is followed by eleven A) would be trimmed to:

TACGTACGTACGTACGAAAT

Depending on your application, perhaps a variant of -a A{10}N{90} is an
alternative, forcing the match to be located as much to the left as possible,
while still allowing for non-A bases towards the end of the read.

Trim a fixed number of bases after adapter trimming

If the adapters you want to remove are preceded by some unknown sequence (such
as a random tag/molecular identifier), you can specify this as part of the
adapter sequence in order to remove both in one go.

For example, assume you want to trim Illumina adapters preceded by 10 bases
that you want to trim as well. Instead of this command:

cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC ...

Use this command:

cutadapt -O 13 -a N{10}AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC ...

The -O 13 is the minimum overlap for an adapter match, where the 13 is
computed as 3 plus 10 (where 3 is the default minimum overlap and 10 is the
length of the unknown section). If you do not specify it, the adapter sequence
would match the end of every read (because N matches anything), and ten
bases would then be removed from every read.

Trimming (amplicon-) primers from both ends of paired-end reads

If you want to remove primer sequences that flank your sequence of
interest, you should use a “linked adapter”
to remove them. If you have paired-end data (with R1 and R2), you
can correctly trim both R1 and R2 by using linked adapters for both
R1 and R2. Here is how to do this.

The full DNA fragment that is put on the sequencer looks like this
(looking only at the forward strand):

5’ sequencing primer – forward primer – sequence of interest – reverse complement of reverse primer – reverse complement of 3’ sequencing primer

Since sequencing of R1 starts after the 5’ sequencing primer, R1 will
start with the forward primer and then continue into the sequence of
interest and into the two primers to the right of it, depending on
the read length and how long the sequence of interest is. For R1,
the linked adapter option that needs to be used is therefore

-a FWDPRIMER...RCREVPRIMER

where FWDPRIMER needs to be replaced with the sequence of your
forward primer and RCREVPRIMER with the reverse complement of
the reverse primer. The three dots ... need to be entered
as they are – they tell Cutadapt that this is a linked adapter
with a 5’ and a 3’ part.

Sequencing of R2 starts before the 3’ sequencing primer and
proceeds along the reverse-complementary strand. For the correct
linked adapter, the sequences from above therefore need to be
swapped and reverse-complemented:

-A REVPRIMER...RCFWDPRIMER

The uppercase -A specifies that this option is
meant to work on R2. Similar to above, REVPRIMER is
the sequence of the reverse primer and RCFWDPRIMER is the
reverse-complement of the forward primer. Note that Cutadapt
does not reverse-complement any sequences of its own; you
will have to do that yourself.

Finally, you may want to filter the trimmed read pairs.
Use --discard-untrimmed to throw away all read pairs in
which R1 doesn’t start with FWDPRIMER or in which R2
does not start with REVPRIMER.

A note on how the filtering works: In linked adapters, by default
the first part (before the ...) is anchored. Anchored
sequences must occur. If they don’t, then the other sequence
(after the ...) is not even searched for and the entire
read is internally marked as “untrimmed”. This is done for both
R1 and R2 and as soon as any of them is marked as “untrimmed”,
the entire pair is considered to be “untrimmed”. If
--discard-untrimmed is used, this means that the entire
pair is discarded if R1 or R2 are untrimmed. (Option
--pair-filter=both can be used to change this to require
that both were marked as untrimmed.)

In summary, this is how to trim your data and discard all
read pairs that do not contain the primer sequences that
you know must be there:

cutadapt -a FWDPRIMER...RCREVPRIMER -A REVPRIMER...RCFWDPRIMER --discard-untrimmed -o out.1.fastq.gz -p out.2.fastq.gz in.1.fastq.gz in.2.fastq.gz

Piping paired-end data

Sometimes it is necessary to run Cutadapt twice on your data. For example, when
you want to change the order in which read modification or filtering options are
applied. To simplify this, you can use Unix pipes (|), but this is more
difficult with paired-end data since then input and output consists of two files
each.

The solution is to interleave the paired-end data, send it over the pipe
and then de-interleave it in the other process. Here is how this looks in
principle:

cutadapt [options] --interleaved in.1.fastq.gz in.2.fastq.gz | \
 cutadapt [options] --interleaved -o out.1.fastq.gz -p out.2.fastq.gz -

Note the - character in the second invocation to Cutadapt.

Support for concatenated compressed files

Cutadapt supports concatenated gzip and bzip2 input files.

Paired-end read name check

When reading paired-end files, Cutadapt checks whether the read names match.
Only the part of the read name before the first space is considered. If the
read name ends with /1 or /2, then that is also ignored. For example,
two FASTQ headers that would be considered to denote properly paired reads are:

@my_read/1 a comment

and:

@my_read/2 another comment

This is an example for improperly paired read names:

@my_read/1;1

and:

@my_read/2;1

Since the /1 and /2 are ignored only if the occur at the end of the read
name, and since the ;1 is considered to be part of the read name, these
reads will not be considered to be propely paired.

Other things (unfinished)

	How to detect adapters

	Use Cutadapt for quality-trimming only

	Use it for minimum/maximum length filtering

	Use it for conversion to FASTQ

Ideas/To Do

This is a rather unsorted list of features that would be nice to have, of
things that could be improved in the source code, and of possible algorithmic
improvements.

	show average error rate

	In colorspace and probably also for Illumina data, gapped alignment
is not necessary

	--progress

	run pylint, pychecker

	length histogram

	check whether input is FASTQ although -f fasta is given

	search for adapters in the order in which they are given on the
command line

	more tests for the alignment algorithm

	--detect prints out best guess which of the given adapters is the correct one

	alignment algorithm: make a ‘banded’ version

	it seems the str.find optimization isn’t very helpful. In any case, it should be
moved into the Aligner class.

	allow to remove not the adapter itself, but the sequence before or after it

	instead of trimming, convert adapter to lowercase

	warn when given adapter sequence contains non-IUPAC characters

	extensible file type detection

	the –times setting should be an attribute of Adapter

Backwards-incompatible changes

	Drop --rest-file support

	Possibly drop wildcard-file support, extend info-file instead

	Drop “legacy mode”

	For non-anchored 5’ adapters, find rightmost match

Specifying adapters

The idea is to deprecate the -b, -g and -u parameters. Only -a
is used with a special syntax for each adapter type. This makes it a bit easier
to add new adapter types in the feature.

	back

	-a ADAPTER

	-a ADAPTER or -a ...ADAPTER

	suffix

	-a ADAPTER$

	-a ...ADAPTER$

	front

	-g ADAPTER

	-a ADAPTER...

	prefix

	-g ^ADAPTER

	-a ^ADAPTER... (or have anchoring by default?)

	anywhere

	-b ADAPTER

	-a ...ADAPTER... ???

	unconditional

	-u +10

	-a 10... (collides with colorspace)

	unconditional

	-u -10

	-a ...10$

	linked

	-a ADAPTER...ADAPTER

	-a ADAPTER...ADAPTER or -a ^ADAPTER...ADAPTER

Or add only -a ADAPTER... as an alias for -g ^ADAPTER and
-a ...ADAPTER as an alias for -a ADAPTER.

The ... would be equivalent to N* as in regular expressions.

Another idea: Allow something such as -a ADAP$TER or -a ADAPTER$NNN.
This would be a way to specify less strict anchoring.

Make it possible to specify that the rightmost or leftmost match should be
picked. Default right now: Leftmost, even for -g adapters.

Allow N{3,10} as in regular expressions (for a variable-length sequence).

Use parentheses to specify the part of the sequence that should be kept:

	-a (...)ADAPTER (default)

	-a (...ADAPTER) (default)

	-a ADAPTER(...) (default)

	-a (ADAPTER...) (??)

Or, specify the part that should be removed:

-a ...(ADAPTER...)
-a ...ADAPTER(...)
-a (ADAPTER)...

Model somehow all the flags that exist for semiglobal alignment. For start of the adapter:

	Start of adapter can be degraded or not

	Bases are allowed to be before adapter or not

Not degraded and no bases before allowed = anchored.
Degraded and bases before allowed = regular 5’

By default, the 5’ end should be anchored, the 3’ end not.

	-a ADAPTER... → not degraded, no bases before allowed

	-a N*ADAPTER... → not degraded, bases before allowed

	-a ADAPTER^... → degraded, no bases before allowed

	-a N*ADAPTER^... → degraded, bases before allowed

	-a ...ADAPTER → degraded, bases after allowed

	-a ...ADAPTER$ → not degraded, no bases after allowed

Paired-end trimming

	Could also use a paired-end read merger, then remove adapters with -a and -g

Available/used letters for command-line options

	Remaining characters: All uppercase letters except A, B, G, M, N, O, U

	Lowercase letters: i, j, k, s, w

	Planned/reserved: Q (paired-end quality trimming), j (multithreading)

Developing

The Cutadapt source code is on GitHub [https://github.com/marcelm/cutadapt/].
Cutadapt is written in Python 3 with some extension modules that are written
in Cython. Support for Python 2 has been dropped.

Development installation

For development, make sure that you install Cython and tox. We also recommend
using a virtualenv. This sequence of commands should work:

git clone https://github.com/marcelm/cutadapt.git # or clone your own fork
cd cutadapt
python3 -m venv venv
venv/bin/pip3 install Cython pytest nose tox
venv/bin/pip3 install -e .

Then you can run Cutadapt like this (or activate the virtualenv and omit the
venv/bin part):

venv/bin/cutadapt --help

The tests can then be run like this:

venv/bin/pytest

Or with tox (but then you will need to have binaries for all tested Python
versions installed):

venv/bin/tox

Development installation (without virtualenv)

Alternatively, if you do not want to use virtualenv, running the following may
work from within the cloned repository:

python3 setup.py build_ext -i
pytest

This requires Cython and pytest to be installed. Avoid this method and use a
virtualenv instead if you can.

Code style

Cutadapt tries to follow PEP8, with some exceptions:

	Indentation is made with tabs, not with spaces

	The maximum line length for code 100 characters, not 80, but try to wrap
comments at 80 characters for readability.

Yes, there are inconsistencies in the current code base since it’s a few years old already.

Making a release

Since version 1.17, Travis CI is used to automatically deploy a new Cutadapt release
(both as an sdist and as wheels) whenever a new tag is pushed to the Git repository.

Cutadapt uses versioneer [https://github.com/warner/python-versioneer] to automatically manage
version numbers. This means that the version is not stored in the source code but derived from
the most recent Git tag. The following procedure can be used to bump the version and make a new
release.

	Update CHANGES.rst (version number and list of changes)

	Ensure you have no uncommitted changes in the working copy.

	Run a git pull.

	Run tox, ensuring all tests pass.

	Tag the current commit with the version number (there must be a v prefix):

git tag v0.1

To release a development version, use a dev version number such as v1.17.dev1.
Users will not automatically get these unless they use pip install --pre.

	Push the tag:

git push --tags

	Wait for Travis to finish and to deploy to PyPI.

	Update the bioconda recipe [https://github.com/bioconda/bioconda-recipes/blob/master/recipes/cutadapt/meta.yaml].
It is probly easiest to edit the recipe via the web interface and send in a
pull request. Ensure that the list of dependencies (the requirements:
section in the recipe) is in sync with the setup.py file.

Since this is just a version bump, the pull request does not need a
review by other bioconda developers. As soon as the tests pass and if you
have the proper permissions, it can be merged directly.

Releases to bioconda still need to be made manually.

Making a release manually

If this is the first time you attempt to upload a distribution to PyPI, create a
configuration file named .pypirc in your home directory with the following
contents:

[distutils]
index-servers =
 pypi

[pypi]
username=my-user-name
password=my-password

See also this blog post about getting started with
PyPI [http://peterdowns.com/posts/first-time-with-pypi.html]. In particular,
note that a % in your password needs to be doubled and that the password
must not be put between quotation marks even if it contains spaces.

Cutadapt uses versioneer [https://github.com/warner/python-versioneer] to automatically manage
version numbers. This means that the version is not stored in the source code but derived from
the most recent Git tag. The following procedure can be used to bump the version and make a new
release.

	Update CHANGES.rst (version number and list of changes)

	Ensure you have no uncommitted changes in the working copy.

	Run a git pull.

	Run tox, ensuring all tests pass.

	Tag the current commit with the version number (there must be a v prefix):

git tag v0.1

	Create a distribution (.tar.gz file). Double-check that the auto-generated version number in
the tarball is as you expect it by looking at the name of the generated file in dist/:

python3 setup.py sdist

	If necessary, pip install twine and then upload the generated tar file to PyPI:

twine upload dist/cutadapt-0.1.tar.gz # adjust version number

	Push the tag:

git push --tags

	Update the bioconda recipe [https://github.com/bioconda/bioconda-recipes/blob/master/recipes/cutadapt/meta.yaml].
It is probly easiest to edit the recipe via the web interface and send in a
pull request. Ensure that the list of dependencies (the requirements:
section in the recipe) is in sync with the setup.py file.

Since this is just a version bump, the pull request does not need a
review by other bioconda developers. As soon as the tests pass and if you
have the proper permissions, it can be merged directly.

If something went wrong after you uploaded a tarball, fix the problem and follow the
above instructions again, but with an incremented revision in the version number.
That is, go from version x.y to x.y.1. Do not change a version that has already
been uploaded.

Changes

development version

	This release of Cutadapt requires at least Python 3.4 to run.

	Support for colorspace data was removed. Thus, the following command-line
options can no longer be used: -c, -d, -t, --strip-f3,
--maq, --bwa, --no-zero-cap

	Reading of FASTQ files has gotten faster due to a new parser. The FASTA
and FASTQ reading/writing functions are now available as part of the
dnaio library [https://github.com/marcelm/dnaio/]. This is a separate
Python package that can be installed independently from Cutadapt.
There is one regression at the moment: FASTQ files that use a second
header (after the “+”) will have that header removed in the output.

	The switch to dnaio also fixed #275 [https://github.com/marcelm/cutadapt/issues/275]: Input files with
non-standard names now no longer lead to a crash. Instead the format
is now recognized from the file content.

	Some other performance optimizations were made. Speedups of up to 15%
are possible.

	Fix #345 [https://github.com/marcelm/cutadapt/issues/345]: --length now disables legacy mode.

v1.18 (2018-09-07)

Features

	Close #327 [https://github.com/marcelm/cutadapt/issues/327]: Maximum and minimum lengths can now be specified
separately for R1 and R2 with -m LENGTH1:LENGTH2. One of the
lengths can be omitted, in which case only the length of the other
read is checked (as in -m 17: or -m :17).

	Close #322 [https://github.com/marcelm/cutadapt/issues/322]: Use -j 0 to auto-detect how many cores to run on.
This should even work correctly on cluster systems when Cutadapt runs as
a batch job to which fewer cores than exist on the machine have been
assigned. Note that the number of threads used by pigz cannot be
controlled at the moment, see #290 [https://github.com/marcelm/cutadapt/issues/290].

	Close #225 [https://github.com/marcelm/cutadapt/issues/225]: Allow setting the maximum error rate and minimum overlap
length per adapter. A new syntax for adapter-specific
parameters was added for this. Example:
-a "ADAPTER;min_overlap=5".

	Close #152 [https://github.com/marcelm/cutadapt/issues/152]: Using the new syntax for adapter-specific parameters,
it is now possible to allow partial matches of a 3’ adapter at the 5’ end
(and partial matches of a 5’ adapter at the 3’ end) by specifying the
anywhere parameter (as in -a "ADAPTER;anywhere").

	Allow --pair-filter=first in addition to both and any. If
used, a read pair is discarded if the filtering criterion applies to R1;
and R2 is ignored.

	Close #112 [https://github.com/marcelm/cutadapt/issues/112]: Implement a --report=minimal option for printing
a succinct two-line report in tab-separated value (tsv) format. Thanks
to @jvolkening [https://github.com/jvolkening] for coming up with an initial patch!

Bug fixes

	Fix #128 [https://github.com/marcelm/cutadapt/issues/128]: The “Reads written” figure in the report incorrectly
included both trimmed and untrimmed reads if --untrimmed-output was used.

Other

	The options --no-trim and --mask-adapter should now be written as
--action=mask and --action=none. The old options still work.

	This is the last release to support colorspace data.

	This is the last release to support Python 2.

v1.17 (2018-08-20)

	Close #53 [https://github.com/marcelm/cutadapt/issues/53]: Implement adapters that disallow internal matches.
This is a bit like anchoring, but less strict: The adapter sequence
can appear at different lengths, but must always be at one of the ends.
Use -a ADAPTERX (with a literal X) to disallow internal matches
for a 3’ adapter. Use -g XADAPTER to disallow for a 5’ adapter.

	@klugem [https://github.com/klugem] contributed PR #299 [https://github.com/marcelm/cutadapt/issues/299]: The --length option (and its
alias -l) can now be used with negative lengths, which will remove bases
from the beginning of the read instead of from the end.

	Close #107 [https://github.com/marcelm/cutadapt/issues/107]: Add a --discard-casava option to remove reads
that did not pass CASAVA filtering (this is possibly relevant only for
older datasets).

	Fix #318 [https://github.com/marcelm/cutadapt/issues/318]: Cutadapt should now be installable with Python 3.7.

	Running Cutadapt under Python 3.3 is no longer supported (Python 2.7 or
3.4+ are needed)

	Planned change: One of the next Cutadapt versions will drop support for
Python 2 entirely, requiring Python 3.

v1.16 (2018-02-21)

	Fix #291 [https://github.com/marcelm/cutadapt/issues/291]: When processing paired-end reads with multiple cores, there
could be errors about incomplete FASTQs although the files are intact.

	Fix #280 [https://github.com/marcelm/cutadapt/issues/280]: Quality trimming statistics incorrectly show the same
values for R1 and R2.

v1.15 (2017-11-23)

	Cutadapt can now run on multiple CPU cores in parallel! To enable
it, use the option -j N (or the long form --cores=N), where N is
the number of cores to use. Multi-core support is only available on Python 3,
and not yet with some command-line arguments. See
the new section about multi-core in the documentation
for details. When writing .gz files, make sure you have pigz installed
to get the best speedup.

	The plan is to make multi-core the default (automatically using as many cores as
are available) in future releases, so please test it and report an
issue [https://github.com/marcelm/cutadapt/issues/] if you find problems!

	Issue #256 [https://github.com/marcelm/cutadapt/issues/256]: --discard-untrimmed did not
have an effect on non-anchored linked adapters.

	Issue #118 [https://github.com/marcelm/cutadapt/issues/118]: Added support for demultiplexing of paired-end data.

v1.14 (2017-06-16)

	Fix: Statistics for 3’ part of a linked adapter were reported incorrectly

	Fix issue #244 [https://github.com/marcelm/cutadapt/issues/244]:
Quality trimming with --nextseq-trim would not apply to R2 when
trimming paired-end reads.

	--nextseq-trim now disables legacy mode.

	Fix issue #246 [https://github.com/marcelm/cutadapt/issues/246]: installation
failed on non-UTF8 locale

v1.13 (2017-03-16)

	The 3’ adapter of linked adapters can now be anchored. Write
-a ADAPTER1...ADAPTER2$ to enable this. Note that the
5’ adapter is always anchored in this notation.

	Issue #224: If you want the 5’ part of a linked adapter not to be
anchored, you can now write -g ADAPTER...ADAPTER2 (note -g
instead of -a). This feature is experimental and may change behavior
in the next release.

	Issue #236: For more accurate statistics, it is now possible to specify the
GC content of the input reads with --gc-content. This does
not change trimming results, only the number in the “expect”
column of the report. Since this is probably not needed by many
people, the option is not listed when running cutadapt --help.

	Issue #235: Adapter sequences are now required to contain only
valid IUPAC codes (lowercase is also allowed, U is an alias
for T). This should help to catch hard-to-find bugs, especially
in scripts. Use option -N to match characters literally
(possibly useful for amino acid sequences).

	Documentation updates and some refactoring of the code

v1.12 (2016-11-28)

	Add read modification option --length (short: --l), which will
shorten each read to the given length.

	Cutadapt will no longer complain that it has nothing to do when you do not
give it any adapters. For example, you can use this to convert file formats:
cutadapt -o output.fasta input.fastq.gz converts FASTQ to FASTA.

	The xopen module for opening compressed files was moved to a separate
package on PyPI [https://pypi.python.org/pypi/xopen].

v1.11 (2016-08-16)

	The --interleaved option no longer requires that both input and output
is interleaved. It is now possible to have two-file input and interleaved
output, and to have interleaved input and two-file output.

	Fix issue #202: First and second FASTQ header could get out of sync when
options modifying the read name were used.

v1.10 (2016-05-19)

	Added a new “linked adapter” type, which can be used to search for a 5’ and a
3’ adapter at the same time. Use -a ADAPTER1...ADAPTER2 to search
for a linked adapter. ADAPTER1 is interpreted as an anchored 5’ adapter, which
is searched for first. Only if ADAPTER1 is found will ADAPTER2 be searched
for, which is a regular 3’ adapter.

	Added experimental --nextseq-trim option for quality trimming of NextSeq
data. This is necessary because that machine cannot distinguish between G and
reaching the end of the fragment (it encodes G as ‘black’).

	Even when trimming FASTQ files, output can now be FASTA (quality values are
simply dropped). Use the -o/-p options with a file name that ends in
.fasta or .fa to enable this.

	Cutadapt does not bundle pre-compiled C extension modules (.so files)
anymore. This affects only users that run cutadapt directly from an unpacked
tarball. Install through pip or conda instead.

	Fix issue #167: Option --quiet was not entirely quiet.

	Fix issue #199: Be less strict when checking for properly-paired reads.

	This is the last version of cutadapt to support Python 2.6. Future versions
will require at least Python 2.7.

v1.9.1 (2015-12-02)

	Added --pair-filter option, which modifies how filtering criteria
apply to paired-end reads

	Add --too-short-paired-output and --too-long-paired-output options.

	Fix incorrect number of trimmed bases reported if --times option was used.

v1.9 (2015-10-29)

	Indels in the alignment can now be disabled for all adapter types (use
--no-indels).

	Quality values are now printed in the info file (--info-file)
when trimming FASTQ files. Fixes issue #144.

	Options --prefix and --suffix, which modify read names, now accept the
placeholder {name} and will replace it with the name of the found adapter.
Fixes issue #104.

	Interleaved FASTQ files: With the --interleaved switch, paired-end reads
will be read from and written to interleaved FASTQ files. Fixes issue #113.

	Anchored 5’ adapters can now be specified by writing -a SEQUENCE... (note
the three dots).

	Fix --discard-untrimmed and --discard-trimmed not working as expected
in paired-end mode (issue #146).

	The minimum overlap is now automatically reduced to the adapter length if it
is too large. Fixes part of issue #153.

	Thanks to Wolfgang Gerlach, there is now a Dockerfile.

	The new --debug switch makes cutadapt print out the alignment matrix.

v1.8.3 (2015-07-29)

	Fix issue #95: Untrimmed reads were not listed in the info file.

	Fix issue #138: pip install cutadapt did not work with new setuptools versions.

	Fix issue #137: Avoid a hang when writing to two or more gzip-compressed
output files in Python 2.6.

v1.8.2 (2015-07-24)

v1.8.1 (2015-04-09)

	Fix #110: Counts for ‘too short’ and ‘too long’ reads were swapped in statistics.

	Fix #115: Make --trim-n work also on second read for paired-end data.

v1.8 (2015-03-14)

	Support single-pass paired-end trimming with the new -A/-G/-B/-U
parameters. These work just like their -a/-g/-b/-u counterparts, but they
specify sequences that are removed from the second read in a pair.

Also, if you start using one of those options, the read modification options
such as -q (quality trimming) are applied to both reads. For backwards
compatibility, read modifications are applied to the first read only if
neither of -A/-G/-B/-U is used. See the
documentation [http://cutadapt.readthedocs.io/en/latest/guide.html#paired-end]
for details.

This feature has not been extensively tested, so please give feedback if
something does not work.

	The report output has been re-worked in order to accomodate the new paired-end
trimming mode. This also changes the way the report looks like in single-end
mode. It is hopefully now more accessible.

	Chris Mitchell contributed a patch adding two new options: --trim-n
removes any N bases from the read ends, and the --max-n option can be
used to filter out reads with too many N.

	Support notation for repeated bases in the adapter sequence: Write A{10}
instead of AAAAAAAAAA. Useful for poly-A trimming: Use -a A{100} to
get the longest possible tail.

	Quality trimming at the 5’ end of reads is now supported. Use -q 15,10 to
trim the 5’ end with a cutoff of 15 and the 3’ end with a cutoff of 10.

	Fix incorrectly reported statistics (> 100% trimmed bases) when --times
set to a value greater than one.

	Support .xz-compressed files (if running in Python 3.3 or later).

	Started to use the GitHub issue tracker instead of Google Code. All old issues
have been moved.

v1.7 (2014-11-25)

	IUPAC characters are now supported. For example, use -a YACGT for an
adapter that matches both CACGT and TACGT with zero errors. Disable
with -N. By default, IUPAC characters in the read are not interpreted in
order to avoid matches in reads that consist of many (low-quality) N
bases. Use --match-read-wildcards to enable them also in the read.

	Support for demultiplexing was added. This means that reads can be written to
different files depending on which adapter was found. See the section in the
documentation [http://cutadapt.readthedocs.org/en/latest/guide.html#demultiplexing]
for how to use it. This is currently only supported for single-end reads.

	Add support for anchored 3’ adapters. Append $ to the adapter sequence to
force the adapter to appear in the end of the read (as a suffix). Closes
issue #81.

	Option --cut (-u) can now be specified twice, once for each end of the
read. Thanks to Rasmus Borup Hansen for the patch!

	Options --minimum-length/--maximum-length (-m/-M) can be used
standalone. That is, cutadapt can be used to filter reads by length without
trimming adapters.

	Fix bug: Adapters read from a FASTA file can now be anchored.

v1.6 (2014-10-07)

	Fix bug: Ensure --format=... can be used even with paired-end input.

	Fix bug: Sometimes output files would be incomplete because they were not
closed correctly.

	Alignment algorithm is a tiny bit faster.

	Extensive work on the documentation. It’s now available at
https://cutadapt.readthedocs.org/ .

	For 3’ adapters, statistics about the bases preceding the trimmed adapter
are collected and printed. If one of the bases is overrepresented, a warning
is shown since this points to an incomplete adapter sequence. This happens,
for example, when a TruSeq adapter is used but the A overhang is not taken
into account when running cutadapt.

	Due to code cleanup, there is a change in behavior: If you use
--discard-trimmed or --discard-untrimmed in combination with
--too-short-output or --too-long-output, then cutadapt now writes also
the discarded reads to the output files given by the --too-short or
--too-long options. If anyone complains, I will consider reverting this.

	Galaxy support files are now in a separate
repository [https://bitbucket.org/lance_parsons/cutadapt_galaxy_wrapper].

v1.5 (2014-08-05)

	Adapter sequences can now be read from a FASTA file. For example, write
-a file:adapters.fasta to read 3’ adapters from adapters.fasta. This works
also for -b and -g.

	Add the option --mask-adapter, which can be used to not remove adapters,
but to instead mask them with N characters. Thanks to Vittorio Zamboni
for contributing this feature!

	U characters in the adapter sequence are automatically converted to T.

	Do not run Cython at installation time unless the –cython option is provided.

	Add the option -u/–cut, which can be used to unconditionally remove a number
of bases from the beginning or end of each read.

	Make --zero-cap the default for colorspace reads.

	When the new option --quiet is used, no report is printed after all reads
have been processed.

	When processing paired-end reads, cutadapt now checks whether the reads are
properly paired.

	To properly handle paired-end reads, an option –untrimmed-paired-output was
added.

v1.4 (2014-03-13)

	This release of cutadapt reduces the overhead of reading and writing files.
On my test data set, a typical run of cutadapt (with a single adapter) takes
40% less time due to the following two changes.

	Reading and writing of FASTQ files is faster (thanks to Cython).

	Reading and writing of gzipped files is faster (up to 2x) on systems
where the gzip program is available.

	The quality trimming function is four times faster (also due to Cython).

	Fix the statistics output for 3’ colorspace adapters: The reported lengths were one
too short. Thanks to Frank Wessely for reporting this.

	Support the --no-indels option. This disallows insertions and deletions while
aligning the adapter. Currently, the option is only available for anchored 5’ adapters.
This fixes issue 69.

	As a sideeffect of implementing the –no-indels option: For colorspace, the
length of a read (for --minimum-length and --maximum-length) is now computed after
primer base removal (when --trim-primer is specified).

	Added one column to the info file that contains the name of the found adapter.

	Add an explanation about colorspace ambiguity to the README

v1.3 (2013-11-08)

	Preliminary paired-end support with the --paired-output option (contributed by
James Casbon). See the README section on how to use it.

	Improved statistics.

	Fix incorrectly reported amount of quality-trimmed Mbp (issue 57, fix by Chris Penkett)

	Add the --too-long-output option.

	Add the --no-trim option, contributed by Dave Lawrence.

	Port handwritten C alignment module to Cython.

	Fix the --rest-file option (issue 56)

	Slightly speed up alignment of 5’ adapters.

	Support bzip2-compressed files.

v1.2 (2012-11-30)

	At least 25% faster processing of .csfasta/.qual files due to faster parser.

	Between 10% and 30% faster writing of gzip-compressed output files.

	Support 5’ adapters in colorspace, even when no primer trimming is requested.

	Add the --info-file option, which has a line for each found adapter.

	Named adapters are possible. Usage: -a My_Adapter=ACCGTA assigns the name “My_adapter”.

	Improve alignment algorithm for better poly-A trimming when there are sequencing errors.
Previously, not the longest possible poly-A tail would be trimmed.

	James Casbon contributed the --discard-untrimmed option.

v1.1 (2012-06-18)

	Allow to “anchor” 5’ adapters (-g), forcing them to be a prefix of the read.
To use this, add the special character ^ to the beginning of the adapter sequence.

	Add the “-N” option, which allows ‘N’ characters within adapters to match literally.

	Speedup of approx. 25% when reading from .gz files and using Python 2.7.

	Allow to only trim qualities when no adapter is given on the command-line.

	Add a patch by James Casbon: include read names (ids) in rest file

	Use nosetest for testing. To run, install nose and run “nosetests”.

	When using cutadapt without installing it, you now need to run bin/cutadapt due to
a new directory layout.

	Allow to give a colorspace adapter in basespace (gets automatically converted).

	Allow to search for 5’ adapters (those specified with -g) in colorspace.

	Speed up the alignment by a factor of at least 3 by using Ukkonen’s algorithm.
The total runtime decreases by about 30% in the tested cases.

	allow to deal with colorspace FASTQ files from the SRA that contain a fake
additional quality in the beginning (use --format sra-fastq)

v1.0 (2011-11-04)

	ASCII-encoded quality values were assumed to be encoded as ascii(quality+33).
With the new parameter --quality-base, this can be changed to ascii(quality+64),
as used in some versions of the Illumina pipeline. (Fixes issue 7.)

	Allow to specify that adapters were ligated to the 5’ end of reads. This change
is based on a patch contributed by James Casbon.

	Due to cutadapt being published in EMBnet.journal, I found it appropriate
to call this release version 1.0. Please see
http://journal.embnet.org/index.php/embnetjournal/article/view/200 for the
article and I would be glad if you cite it.

	Add Galaxy support, contributed by Lance Parsons.

	Patch by James Casbon: Allow N wildcards in read or adapter or both.
Wildcard matching of ‘N’s in the adapter is always done. If ‘N’s within reads
should also match without counting as error, this needs to be explicitly
requested via --match-read-wildcards.

v0.9.5 (2011-07-20)

	Fix issue 20: Make the report go to standard output when -o/--output is
specified.

	Recognize .fq as an extension for FASTQ files

	many more unit tests

	The alignment algorithm has changed. It will now find some adapters that
previously were missed. Note that this will produce different output than
older cutadapt versions!

Before this change, finding an adapter would work as follows:

	Find an alignment between adapter and read – longer alignments are
better.

	If the number of errors in the alignment (divided by length) is above the
maximum error rate, report the adapter as not being found.

Sometimes, the long alignment that is found had too many errors, but a
shorter alignment would not. The adapter was then incorrectly seen as “not
found”. The new alignment algorithm checks the error rate while aligning and only
reports alignments that do not have too many errors.

v0.9.4 (2011-05-20)

	now compatible with Python 3

	Add the --zero-cap option, which changes negative quality values to zero.
This is a workaround to avoid segmentation faults in BWA. The option is now
enabled by default when --bwa/--maq is used.

	Lots of unit tests added. Run them with cd tests && ./tests.sh.

	Fix issue 16: --discard-trimmed did not work.

	Allow to override auto-detection of input file format with the new -f/--format
parameter. This mostly fixes issue 12.

	Don’t break when input file is empty.

v0.9.2 (2011-03-16)

	Install a single cutadapt Python package instead of multiple Python
modules. This avoids cluttering the global namespace and should lead to less
problems with other Python modules. Thanks to Steve Lianoglou for
pointing this out to me!

	ignore case (ACGT vs acgt) when comparing the adapter with the read sequence

	.FASTA/.QUAL files (not necessarily colorspace) can now be read (some
454 software uses this format)

	Move some functions into their own modules

	lots of refactoring: replace the fasta module with a much nicer seqio module.

	allow to input FASTA/FASTQ on standard input (also FASTA/FASTQ is
autodetected)

v0.9 (2011-01-10)

	add --too-short-output and --untrimmed-output, based on patch by Paul Ryvkin (thanks!)

	add --maximum-length parameter: discard reads longer than a specified length

	group options by category in --help output

	add --length-tag option. allows to fix read length in FASTA/Q comment lines
(e.g., length=123 becomes length=58 after trimming) (requested by Paul Ryvkin)

	add -q/--quality-cutoff option for trimming low-quality ends (uses the same algorithm
as BWA)

	some refactoring

	the filename - is now interpreted as standard in or standard output

v0.8 (2010-12-08)

	Change default behavior of searching for an adapter: The adapter is now assumed to
be an adapter that has been ligated to the 3’ end. This should be the correct behavior
for at least the SOLiD small RNA protocol (SREK) and also for the Illumina protocol.
To get the old behavior, which uses a heuristic to determine whether the adapter was
ligated to the 5’ or 3’ end and then trimmed the read accordingly, use the new
-b (--anywhere) option.

	Clear up how the statistics after processing all reads are printed.

	Fix incorrect statistics. Adapters starting at pos. 0 were correctly trimmed,
but not counted.

	Modify scoring scheme: Improves trimming (some reads that should have been
trimmed were not). Increases no. of trimmed reads in one of our SOLiD data sets
from 36.5 to 37.6%.

	Speed improvements (20% less runtime on my test data set).

v0.7 (2010-12-03)

	Useful exit codes

	Better error reporting when malformed files are encountered

	Add --minimum-length parameter for discarding reads that are shorter than
a specified length after trimming.

	Generalize the alignment function a bit. This is preparation for
supporting adapters that are specific to either the 5’ or 3’ end.

	pure Python fallback for alignment function for when the C module cannot
be used.

v0.6 (2010-11-18)

	Support gzipped input and output.

	Print timing information in statistics.

v0.5 (2010-11-17)

	add --discard option which makes cutadapt discard reads in which an adapter occurs

v0.4 (2010-11-17)

	(more) correctly deal with multiple adapters: If a long adapter matches with lots of
errors, then this could lead to a a shorter adapter matching with few errors getting ignored.

v0.3 (2010-09-27)

	fix huge memory usage (entire input file was unintentionally read into memory)

v0.2 (2010-09-14)

	allow FASTQ input

v0.1 (2010-09-14)

	initial release

Index

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Cutadapt

 		
 Installation

 		
 Quick installation

 		
 Installation with conda

 		
 Dependencies

 		
 System-wide installation (root required)

 		
 Uninstalling

 		
 Shared installation (on a cluster)

 		
 Installing the development version

 		
 User guide

 		
 Basic usage

 		
 Input and output file formats

 		
 Compressed files

 		
 Standard input and output

 		
 Multi-core support

 		
 Read processing stages

 		
 Adapter types

 		
 Overview of adapter types

 		
 Regular 3’ adapters

 		
 Regular 5’ adapters

 		
 Anchored 5’ adapters

 		
 Anchored 3’ adapters

 		
 Non-internal 5’ and 3’ adapters

 		
 Linked adapters (combined 5’ and 3’ adapter)

 		
 5’ or 3’ adapters

 		
 Multiple adapter occurrences within a single read

 		
 Adapter-trimming parameters

 		
 Error tolerance

 		
 Minimum overlap (reducing random matches)

 		
 Allowing partial matches at both ends

 		
 Specifying adapter sequences

 		
 Wildcards

 		
 Repeated bases

 		
 Modifying reads

 		
 Removing a fixed number of bases

 		
 Quality trimming

 		
 Shortening reads to a fixed length

 		
 Modifying read names

 		
 Read modification order

 		
 Filtering reads

 		
 Trimming paired-end reads

 		
 Filtering paired-end reads

 		
 Interleaved paired-end reads

 		
 Legacy paired-end read trimming

 		
 Multiple adapters

 		
 Named adapters

 		
 Demultiplexing

 		
 Trimming more than one adapter from each read

 		
 Illumina TruSeq

 		
 Warning about incomplete adapter sequences

 		
 Dealing with N bases

 		
 Bisulfite sequencing (RRBS)

 		
 Cutadapt’s output

 		
 Reporting

 		
 How to read the report

 		
 Format of the info file

 		
 Colorspace

 		
 Algorithm details

 		
 Adapter alignment algorithm

 		
 Quality trimming algorithm

 		
 Recipes and FAQ

 		
 Remove more than one adapter

 		
 Trim poly-A tails

 		
 Trim a fixed number of bases after adapter trimming

 		
 Trimming (amplicon-) primers from both ends of paired-end reads

 		
 Piping paired-end data

 		
 Support for concatenated compressed files

 		
 Paired-end read name check

 		
 Other things (unfinished)

 		
 Ideas/To Do

 		
 Backwards-incompatible changes

 		
 Specifying adapters

 		
 Paired-end trimming

 		
 Available/used letters for command-line options

 		
 Developing

 		
 Development installation

 		
 Development installation (without virtualenv)

 		
 Code style

 		
 Making a release

 		
 Making a release manually

 		
 Changes

 		
 development version

 		
 v1.18 (2018-09-07)

 		
 Features

 		
 Bug fixes

 		
 Other

 		
 v1.17 (2018-08-20)

 		
 v1.16 (2018-02-21)

 		
 v1.15 (2017-11-23)

 		
 v1.14 (2017-06-16)

 		
 v1.13 (2017-03-16)

 		
 v1.12 (2016-11-28)

 		
 v1.11 (2016-08-16)

 		
 v1.10 (2016-05-19)

 		
 v1.9.1 (2015-12-02)

 		
 v1.9 (2015-10-29)

 		
 v1.8.3 (2015-07-29)

 		
 v1.8.2 (2015-07-24)

 		
 v1.8.1 (2015-04-09)

 		
 v1.8 (2015-03-14)

 		
 v1.7 (2014-11-25)

 		
 v1.6 (2014-10-07)

 		
 v1.5 (2014-08-05)

 		
 v1.4 (2014-03-13)

 		
 v1.3 (2013-11-08)

 		
 v1.2 (2012-11-30)

 		
 v1.1 (2012-06-18)

 		
 v1.0 (2011-11-04)

 		
 v0.9.5 (2011-07-20)

 		
 v0.9.4 (2011-05-20)

 		
 v0.9.2 (2011-03-16)

 		
 v0.9 (2011-01-10)

 		
 v0.8 (2010-12-08)

 		
 v0.7 (2010-12-03)

 		
 v0.6 (2010-11-18)

 		
 v0.5 (2010-11-17)

 		
 v0.4 (2010-11-17)

 		
 v0.3 (2010-09-27)

 		
 v0.2 (2010-09-14)

 		
 v0.1 (2010-09-14)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

