

Cuckoo Sandbox Book

Cuckoo Sandbox is an open source software for automating analysis of
suspicious files. To do so it makes use of custom components that monitor the
behavior of the malicious processes while running in an isolated environment.

This guide will explain how to set up Cuckoo, use it, and customize it.

Using the new Cuckoo Package?

There are various big improvements related to usability in the newly released
Cuckoo Package. To get the most out of it, start reading on the different
subjects related to it. Following are some of the highlights:

	Cuckoo Working Directory

	Cuckoo Working Directory Usage

	Installing Cuckoo

	Upgrading from a previous release

	Cuckoo Feedback

Having troubles?

If you’re having troubles you might want to check out the FAQ
as it may already have the answers to your questions.

	FAQ
	General Questions
	Can I analyze URLs with Cuckoo?

	Can I use Volatility with Cuckoo?

	What do I need to use Cuckoo with VMware ESXi?

	Troubleshooting
	After upgrade Cuckoo stops to work

	Cuckoo stumbles and produces some error I don’t understand

	Check and restore current snapshot with KVM

	Check and restore current snapshot with VirtualBox

	Unable to bind result server error

	Error during template rendering

	501 Unsupported Method (‘GET’)

	Permission denied for tcpdump

	DistributionNotFound / No distribution matching the version..

	IOError: [Errno 24] Too many open files

	pkg_resources.ContextualVersionConflict

	Troubleshooting VM network configuration

Otherwise you can ask the developers and/or other Cuckoo users, see
Join the discussion.

Contents

	Introduction
	Sandboxing
	Using a Sandbox

	What is Cuckoo?
	Some History

	Use Cases

	Architecture

	Obtaining Cuckoo

	License

	Disclaimer

	Cuckoo Foundation

	Installation
	Preparing the Host
	Requirements
	Installing Python libraries (on Ubuntu/Debian-based distributions)

	Installing Python libraries (on Mac OS X)

	Installing Python libraries (on Windows 7)

	Virtualization Software

	Installing tcpdump

	Installing Volatility

	Installing M2Crypto

	Installing Cuckoo
	Create a user

	Raising file limits

	Install Cuckoo

	Install Cuckoo from file

	Per-Analysis Network Routing
	Simple Global Routing

	Per-Analysis Network Routing Options

	Using Per-Analysis Network Routing

	Configuring iproute2
	None Routing

	Drop Routing

	Internet Routing

	InetSim Routing

	Tor Routing

	VPN Routing

	Cuckoo Working Directory
	Configuration

	CWD path

	Configuration
	cuckoo.conf

	auxiliary.conf

	<machinery>.conf

	memory.conf

	processing.conf

	reporting.conf

	Monitoring Cuckoo with Icinga2
	Installing the Icinga2 master

	Configuring the Icinga2 master

	Notifications Events

	Configuring a Icinga2 satellite (client)

	Setting up the Cuckoo check service

	Configuration (Android Analysis)
	avd.conf

	Preparing the Guest
	Creation of the Virtual Machine

	Requirements
	Install Python

	Additional Software

	Network Configuration
	Windows Settings

	Virtual Networking

	Installing the Agent

	Saving the Virtual Machine
	VirtualBox

	KVM

	VMware Workstation

	XenServer
	Memory Snapshots

	Booting from Disk

	Cloning the Virtual Machine

	Preparing the Guest (Physical Machine)
	Creation of the Physical Machine

	Requirements
	Install Python

	Additional Software

	Additional Host Requirements

	Network Configuration
	Windows Settings

	Networking

	Installing the Agent

	Saving the Guest
	Fog

	Setup using VMWare (Bonus!)

	Upgrading from a previous release
	The cuckoo import command

	Usage
	Starting Cuckoo
	Cuckoo in the background

	Cuckoo Working Directory Usage
	Usage

	Submit an Analysis
	Submission Utility

	API

	Distributed Cuckoo

	Python Functions

	Web interface
	Configuration

	Starting the Web Interface
	Web Deployment
	uWSGI setup

	nginx setup

	REST API
	Starting the API server
	Web deployment
	uWSGI setup

	nginx setup

	Resources
	/tasks/create/file

	/tasks/create/url

	/tasks/create/submit

	/tasks/list

	/tasks/view

	/tasks/reschedule

	/tasks/delete

	/tasks/report

	/tasks/screenshots

	/tasks/rereport

	/tasks/reboot

	/memory/list

	/memory/get

	/files/view

	/files/get

	/pcap/get

	/machines/list

	/machines/view

	/cuckoo/status

	/vpn/status

	/exit

	Distributed Cuckoo
	Starting the Distributed REST API

	Distributed Cuckoo Configuration
	Report Formats

	Samples Directory

	Reports Directory

	RESTful resources
	GET /api/node

	POST /api/node

	GET /api/node/<name>

	PUT /api/node/<name>

	DELETE /api/node/<name>

	GET /api/task

	POST /api/task

	GET /api/task/<id>

	DELETE /api/task/<id>

	GET /api/report/<id>/<format>

	Quick usage

	Proposed setup
	Configuration settings
	conf/cuckoo.conf

	conf/processing.conf

	conf/reporting.conf

	conf/virtualbox.conf

	Setup Cuckoo

	Setup Distributed Cuckoo

	Register Cuckoo nodes

	Utilities
	Cuckoo Apps

	Submission Utility

	Web Utility

	Processing Utility

	Community Download Utility

	Database migration utility

	Stats utility

	Machine utility

	Distributed scripts

	Mac OS X Bootstrap scripts

	SMTP Sinkhole

	Setup script

	Cuckoo Rooter
	Virtualenv

	Cuckoo Rooter Usage

	Cuckoo Feedback

	Analysis Packages

	Analysis Results
	analysis.log

	dump.pcap

	dump_sorted.pcap

	memory.dmp

	files/

	files.json

	logs/

	reports/

	shots/

	tlsmaster.txt

	Clean all Tasks and Samples

	Customization
	Auxiliary Modules

	Machinery Modules
	Configuration

	LibVirt

	Analysis Packages
	Getting started
	start()

	check()

	execute()

	finish()

	Options

	Process API
	Methods

	Processing Modules
	Global Container

	Getting started

	Signatures
	Getting started

	Creating your new signature

	Evented Signatures

	Marks & Helpers

	Reporting Modules
	Getting Started

	Development
	Development Notes
	Git branches

	Release Versioning

	Ticketing system

	Contribute

	Coding Style
	Formatting
	Copyright header

	Indentation

	Maximum Line Length

	Blank Lines

	Imports

	Strings

	Printing and Logging

	Exceptions
	Naming

	Exception handling

	Documentation

	Automated testing

	Development with the Python Package

	Final Remarks
	Links

	Join the discussion

	Support Us

	People
	Active Developers

	Contributors

	Supporters

Introduction

This is an introductory chapter to Cuckoo Sandbox.
It explains some basic malware analysis concepts, what’s Cuckoo and how it can fit
in malware analysis.

	Sandboxing
	Using a Sandbox

	What is Cuckoo?
	Some History

	Use Cases

	Architecture

	Obtaining Cuckoo

	License

	Disclaimer

	Cuckoo Foundation

Sandboxing

As defined by Wikipedia [http://en.wikipedia.org/wiki/Sandbox_%28computer_security%29], “in computer security, a sandbox is a security
mechanism for separating running programs. It is often used to execute untested
code, or untrusted programs from unverified third-parties, suppliers, untrusted
users and untrusted websites.”.

This concept applies to malware analysis’ sandboxing too: our goal is to run an
unknown and untrusted application or file inside an isolated environment and get
information on what it does.

Malware sandboxing is a practical application of the dynamical analysis
approach: instead of statically analyzing the binary file, it gets executed and
monitored in real-time.

This approach obviously has pros and cons, but it’s a valuable technique to
obtain additional details on the malware, such as its network behavior.
Therefore it’s a good practice to perform both static and dynamic analysis while
inspecting a malware, in order to gain a deeper understanding of it.

Simple as it is, Cuckoo is a tool that allows you to perform sandboxed malware
analysis.

Using a Sandbox

Before starting to install, configure and use Cuckoo, you should take some
time to think on what you want to achieve with it and how.

Some questions you should ask yourself:

	What kind of files do I want to analyze?

	What volume of analyses do I want to be able to handle?

	Which platform do I want to use to run my analysis on?

	What kind of information I want about the file?

The creation of the isolated environment (for example a virtual machine) is
probably the most critical and important part of a sandbox deployment: it should
be done carefully and with proper planning.

Before getting hands on the virtualization product of your choice, you should
already have a design plan that defines:

	Which operating system, language and patching level to use.

	Which software to install and which versions (particularly important when analyzing exploits).

Consider that automated malware analysis is not deterministic and its success
might depend on a trillion of factors: you are trying to make a malware run
in a virtualized system as it would do on a native one, which could be tricky to
achieve and may not always succeed.
Your goal should be both to create a system able to handle all the requirements
you need as well as try to make it as realistic as possible.

For example you could consider leaving some intentional traces of normal usage,
such as browsing history, cookies, documents, images etc. If a malware is
designed to operate, manipulate or steal such files you’ll be able to notice it.

Virtualized operating systems usually carry a lot of traces with them that makes
them very easily detectable. Even if you shouldn’t overestimate this problem,
you might want to take care of this and try to hide as many virtualization
traces as possible.
There is a lot of literature on Internet regarding virtualization detection
techniques and countermeasures.

Once you finished designing and preparing the prototype of system you want, you
can proceed creating it and deploying it. You will be always in time to
change things or slightly fix them, but remember that good planning at the
beginning always means less troubles in the long run.

What is Cuckoo?

Cuckoo is an open source automated malware analysis system.

It’s used to automatically run and analyze files and collect comprehensive
analysis results that outline what the malware does while running inside an
isolated operating system.

It can retrieve the following type of results:

	Traces of calls performed by all processes spawned by the malware.

	Files being created, deleted and downloaded by the malware during its execution.

	Memory dumps of the malware processes.

	Network traffic trace in PCAP format.

	Screenshots taken during the execution of the malware.

	Full memory dumps of the machines.

Some History

Cuckoo Sandbox started as a Google Summer of Code [http://www.google-melange.com] project in 2010 within
The Honeynet Project [http://www.honeynet.org]. It was originally designed and developed by
Claudio “nex” Guarnieri, who is still the project leader and core developer.

After initial work during the summer 2010, the first beta release was published
on Feb. 5th 2011, when Cuckoo was publicly announced and distributed for the
first time.

In March 2011, Cuckoo has been selected again as a supported project during
Google Summer of Code 2011 with The Honeynet Project, during which
Dario Fernandes joined the project and extended its functionality.

On November 2nd 2011 Cuckoo the release of its 0.2 version to the public as the
first real stable release.
On late November 2011 Alessandro “jekil” Tanasi joined the team expanding
Cuckoo’s processing and reporting functionality.

On December 2011 Cuckoo v0.3 gets released and quickly hits release 0.3.2 in
early February.

In late January 2012 we opened Malwr.com [http://malwr.com], a free and public running Cuckoo
Sandbox instance provided with a full fledged interface through which people
can submit files to be analysed and get results back.

In March 2012 Cuckoo Sandbox wins the first round of the Magnificent7 [http://community.rapid7.com/community/open_source/magnificent7] program
organized by Rapid7 [http://www.rapid7.com].

During the Summer of 2012 Jurriaan “skier” Bremer joined the development team,
refactoring the Windows analysis component sensibly improving the analysis’
quality.

On 24th July 2012, Cuckoo Sandbox 0.4 is released.

On 20th December 2012, Cuckoo Sandbox 0.5 “To The End Of The World” is released.

On 15th April 2013 we released Cuckoo Sandbox 0.6, shortly after having launched
the second version of Malwr.com [http://malwr.com].

On 1st August 2013 Claudio “nex” Guarnieri, Jurriaan “skier” Bremer and
Mark “rep” Schloesser presented Mo’ Malware Mo’ Problems - Cuckoo Sandbox to the rescue [https://media.blackhat.com/us-13/US-13-Bremer-Mo-Malware-Mo-Problems-Cuckoo-Sandbox-Slides.pdf]
at Black Hat Las Vegas.

On 9th January 2014, Cuckoo Sandbox 1.0 is released.

In March 2014 Cuckoo Foundation [http://cuckoofoundation.org/] born as non-profit organization dedicated to growth of Cuckoo Sandbox and the
surrounding projects and initiatives.

On 7th April 2014, Cuckoo Sandbox 1.1 is released.

On the 7th of October 2014, Cuckoo Sandbox 1.1.1 is released after a
Critical Vulnerability [https://cuckoosandbox.org/2014-10-07-cuckoo-sandbox-111.html] had been disclosed by Robert Michel.

On the 4th of March 2015, Cuckoo Sandbox 1.2 has been released featuring a
wide array of improvements regarding the usability of Cuckoo.

During summer 2015 Cuckoo Sandbox started the development of Mac OS X malware
analysis as a Google Summer of Code [http://www.google-melange.com] project within The Honeynet Project [http://www.honeynet.org].
Dmitry Rodionov qualified for the project and developed a working analyzer
for Mac OS X.

On the 21st of February 2016 version 2.0 Release Candidate 1 [https://cuckoosandbox.org/2016-01-21-cuckoo-sandbox-20-rc1.html] is released.
This version ships with almost two years of combined effort into making Cuckoo
Sandbox a better project for daily usage.

Use Cases

Cuckoo is designed to be used both as a standalone application as well as to be
integrated in larger frameworks, thanks to its extremely modular design.

It can be used to analyze:

	Generic Windows executables

	DLL files

	PDF documents

	Microsoft Office documents

	URLs and HTML files

	PHP scripts

	CPL files

	Visual Basic (VB) scripts

	ZIP files

	Java JAR

	Python files

	Almost anything else

Thanks to its modularity and powerful scripting capabilities, there’s no limit
to what you can achieve with Cuckoo.

For more information on customizing Cuckoo, see the Customization
chapter.

Architecture

Cuckoo Sandbox consists of a central management software which handles sample
execution and analysis.

Each analysis is launched in a fresh and isolated virtual or physical machine.
The main components of Cuckoo’s infrastructure are an Host machine (the
management software) and a number of Guest machines (virtual or physical
machines for analysis).

The Host runs the core component of the sandbox that manages the whole
analysis process, while the Guests are the isolated environments
where the malware samples get actually safely executed and analyzed.

The following picture explains Cuckoo’s main architecture:

[image: ../_images/architecture-main.png]

Obtaining Cuckoo

Deprecated since version 2.0-rc2: Although Cuckoo can still be downloaded from the website we discourage
from doing so, given that simply installing it through pip is the
preferred way to get Cuckoo. Please refer to
Installing Cuckoo.

Cuckoo can be downloaded from the official website [http://www.cuckoosandbox.org], where the stable and
packaged releases are distributed, or can be cloned from our official git
repository [http://github.com/cuckoosandbox/cuckoo].

Warning

While being more updated, including new features and bugfixes, the
version available in the git repository should be considered an
under development stage. Therefore its stability is not guaranteed
and it most likely lacks updated documentation.

License

Cuckoo Sandbox license is shipped with Cuckoo and contained in the “LICENSE”
file inside the “docs” folder.

Disclaimer

Cuckoo is distributed as it is, in the hope that it will be useful, but without
any warranty neither the implied merchantability or fitness for a particular
purpose.

Whatever you do with this tool is uniquely your own responsibility.

Cuckoo Foundation

The Cuckoo Foundation [http://www.cuckoofoundation.org] is a non-profit organization incorporated as a
Stichting in the Netherlands and it’s mainly dedicated to support of the
development and growth of Cuckoo Sandbox, an open source malware analysis
system, and the surrounding projects and initiatives.

The Foundation operates to secure financial and infrastructure support to our
software projects and coordinates the development and contributions from the
community.

Usage

This chapter explains how to use Cuckoo.

	Starting Cuckoo
	Cuckoo in the background

	Cuckoo Working Directory Usage
	Usage

	Submit an Analysis
	Submission Utility

	API

	Distributed Cuckoo

	Python Functions

	Web interface
	Configuration

	Starting the Web Interface
	Web Deployment
	uWSGI setup

	nginx setup

	REST API
	Starting the API server
	Web deployment
	uWSGI setup

	nginx setup

	Resources
	/tasks/create/file

	/tasks/create/url

	/tasks/create/submit

	/tasks/list

	/tasks/view

	/tasks/reschedule

	/tasks/delete

	/tasks/report

	/tasks/screenshots

	/tasks/rereport

	/tasks/reboot

	/memory/list

	/memory/get

	/files/view

	/files/get

	/pcap/get

	/machines/list

	/machines/view

	/cuckoo/status

	/vpn/status

	/exit

	Distributed Cuckoo
	Starting the Distributed REST API

	Distributed Cuckoo Configuration
	Report Formats

	Samples Directory

	Reports Directory

	RESTful resources
	GET /api/node

	POST /api/node

	GET /api/node/<name>

	PUT /api/node/<name>

	DELETE /api/node/<name>

	GET /api/task

	POST /api/task

	GET /api/task/<id>

	DELETE /api/task/<id>

	GET /api/report/<id>/<format>

	Quick usage

	Proposed setup
	Configuration settings
	conf/cuckoo.conf

	conf/processing.conf

	conf/reporting.conf

	conf/virtualbox.conf

	Setup Cuckoo

	Setup Distributed Cuckoo

	Register Cuckoo nodes

	Utilities
	Cuckoo Apps

	Submission Utility

	Web Utility

	Processing Utility

	Community Download Utility

	Database migration utility

	Stats utility

	Machine utility

	Distributed scripts

	Mac OS X Bootstrap scripts

	SMTP Sinkhole

	Setup script

	Cuckoo Rooter
	Virtualenv

	Cuckoo Rooter Usage

	Cuckoo Feedback

	Analysis Packages

	Analysis Results
	analysis.log

	dump.pcap

	dump_sorted.pcap

	memory.dmp

	files/

	files.json

	logs/

	reports/

	shots/

	tlsmaster.txt

	Clean all Tasks and Samples

Starting Cuckoo

To start Cuckoo use the command:

$ cuckoo

You will get an output similar to this:

 eeee e e eeee e e eeeee eeeee
 8 8 8 8 8 8 8 8 8 88 8 88
 8e 8e 8 8e 8eee8e 8 8 8 8
 88 88 8 88 88 8 8 8 8 8
 88e8 88ee8 88e8 88 8 8eee8 8eee8

 Cuckoo Sandbox 2.0.0
 www.cuckoosandbox.org
 Copyright (c) 2010-2017

 Checking for updates...
 Good! You have the latest version available.

2017-03-31 17:08:53,527 [cuckoo.core.scheduler] INFO: Using "virtualbox" as machine manager
2017-03-31 17:08:53,935 [cuckoo.core.scheduler] INFO: Loaded 1 machine/s
2017-03-31 17:08:53,964 [cuckoo.core.scheduler] INFO: Waiting for analysis tasks.

Note that Cuckoo checks for updates on a remote API located at
api.cuckoosandbox.org. You can avoid this by disabling the
version_check option in the configuration file.

Now Cuckoo is ready to run and it’s waiting for submissions.

cuckoo accepts some command line options as shown by the help:

$ cuckoo --help
Usage: cuckoo [OPTIONS] COMMAND [ARGS]...

Invokes the Cuckoo daemon or one of its subcommands.

To be able to use different Cuckoo configurations on the same
machine with the same Cuckoo installation, we use the so-called
Cuckoo Working Directory (aka "CWD"). A default CWD is
available, but may be overridden through the following options -
listed in order of precedence.

* Command-line option (--cwd)
* Environment option ("CUCKOO")
* Environment option ("CUCKOO_CWD")
* Current directory (if the ".cwd" file exists)
* Default value ("~/.cuckoo")

Options:
 -d, --debug Enable verbose logging
 -q, --quiet Only log warnings and critical messages
 -m, --maxcount INTEGER Maximum number of analyses to process
 --user TEXT Drop privileges to this user
 --cwd TEXT Cuckoo Working Directory
 --help Show this message and exit.

Commands:
 api Operate the Cuckoo REST API.
 clean Clean the CWD and associated databases.
 community Fetch supplies from the Cuckoo Community.
 distributed Distributed Cuckoo helper utilities.
 dnsserve Custom DNS server.
 import Imports an older Cuckoo setup into a new CWD.
 init Initializes Cuckoo and its configuration.
 machine Dynamically add/remove machines.
 migrate Perform database migrations.
 process Process raw task data into reports.
 rooter Instantiates the Cuckoo Rooter.
 submit Submit one or more files or URLs to Cuckoo.
 web Operate the Cuckoo Web Interface.

The --debug and --quiet flags increase and decrease the logging
verbosity for the cuckoo command or any of its subcommands.

Cuckoo in the background

Running Cuckoo manually is useful the first few times you start using it, but
if you’re running multiple machines with Cuckoo on it, you will want the
process of running Cuckoo to be automated.

Fortunately Cuckoo will automatically provide one with a supervisord.conf
file in the Cuckoo Working Directory (this topic will be explained on the
next page) which may be started either by running supervisord from the
CWD directory, or by providing the configuration directly to
supervisord as follows:

$ supervisord -c $CWD/supervisord.conf

It should be noted that, by default, supervisord will also start four
Processing Utility instances, which means that, as per its documentation,
the process_results configuration in $CWD/conf/cuckoo.conf should be
disabled (i.e., change the value from on to off).

From there on, one may start and stop the various cuckoo processes (i.e., the
main cuckoo process and the four processing instances) by running commands
such as the following (assuming that they’re run from the CWD):

Stop the Cuckoo daemon and the processing utilities.
$ supervisorctl stop cuckoo:

Start the Cuckoo daemon and the processing utilities.
$ supervisorctl start cuckoo:

Note that you’ll need the trailing colon (i.e., cuckoo:) so to denote the
Cuckoo supervisor group, containing the Cuckoo daemon process as well as
the various processing utilities.

Cuckoo Working Directory Usage

Note

Before reading this page, please read on installing Cuckoo and
the Cuckoo Working Directory.

Before we go into the subject of using the CWD we’re first going to walk
you through the many improvements on your Quality of Life during your daily
usage of Cuckoo Sandbox with the introduction of the Cuckoo Package and
CWD and some of the new features that come along with this.

So simply put, the CWD is a per-Cuckoo instance configuration directory.
While people generally speaking only run one Cuckoo instance per server, this
still yields a lot of maintenance-related improvements:

	As outlined by Installing Cuckoo installing Cuckoo
and updating it will now be pretty much pip install -U cuckoo.

	Due to Cuckoo now being an official Python Package we have a much tighter
control on how its installed on users’ systems. No longer will users have
incorrect versions of third party libraries installed breaking their setup.

	Because updating is much easier (again, pip install -U cuckoo) we will
be able to put out new versions more often. E.g., when one or more users
run into a bug, we’ll be able to put out a fix quickly - this has happened a
few times in the past in a way that we weren’t able to properly mitigate
such issues (leaving users high & dry for months).

	The Cuckoo Configuration is no longer part of the Git repository. Users
who have updated Cuckoo in the past will have seen the effort involved in
making a backup of their configuration, pulling a new version of Cuckoo, and
either restoring their old configuration or applying the configuration
against the new Cuckoo version by hand.

	With the new CWD all configurable files will be in one centralized
place in logically structured subdirectories.

	Given that a CWD denotes one Cuckoo instance, it is possible to have
multiple Cuckoo instances through multiple CWD‘s while having
installed/deployed Cuckoo only once.

	With the addition of the cuckoo executable and its associated
Cuckoo Apps (subcommands) the various Cuckoo commands are now
centralized into one command.

Usage

After having installed the Cuckoo Package (Installing Cuckoo) and setup
the initial Cuckoo Working Directory (Cuckoo Working Directory) it
is time to actually get started with Cuckoo. Just to reiterate, installing the
latest version of Cuckoo in a virtualenv environment may look roughly as
follows (note the pip install -U pip setuptools, for more information see
also DistributionNotFound / No distribution matching the version..).

$ virtualenv venv
$. venv/bin/activate
(venv)$ pip install -U pip setuptools
(venv)$ pip install -U cuckoo
(venv)$ cuckoo --cwd ~/.cuckoo

First of all you’ll probably want to update the default Cuckoo configuration
in the $CWD/conf/ directory. If just to switch from the default SQLite3
database to, e.g., PostgreSQL, or to register some virtual machines (more
information on setting up Virtual Machines can be found in
Preparing the Guest). Note that in order to view the results of
analyses in the Web Interface later on it is necessary to enable the
mongodb reporting module in $CWD/conf/reporting.conf (see also
Web interface).

We then proceed by downloading the Cuckoo Community which includes over 300
Cuckoo Signatures which summarize a wide array of malicious behavior in a
digestible way, simplifying the final results of an analysis. Downloading the
Cuckoo Community into our CWD may be done as follows:

(venv)$ cuckoo community

Alternatively, if you have a local copy of the community .tar.gz file
(e.g., after running
wget https://github.com/cuckoosandbox/community/archive/master.tar.gz)
this can be imported as follows:

(venv)$ cuckoo community --file master.tar.gz

Now we’re good to go let’s submit some samples and URLs using the command-line
Submission Utility. Note that multiple tasks may be submitted at once:

(venv)$ cuckoo submit /tmp/sample1.exe /tmp/sample2.exe /tmp/sample3.exe
Success: File "/tmp/sample1.exe" added as task with ID #1
Success: File "/tmp/sample2.exe" added as task with ID #2
Success: File "/tmp/sample3.exe" added as task with ID #3
(venv)$ cuckoo submit --url google.com bing.com
Success: URL "google.com" added as task with ID #4
Success: URL "bing.com" added as task with ID #5

For the actual analysis of these samples, one will have to run the Cuckoo
daemon. Which is equally straightforward. Do keep in mind that, by default,
the command will run indefinitely (unless a maximum analysis count was
provided through the -m parameter, e.g., -m 5).

This command is equal to what used to be "./cuckoo.py -d".
(venv)$ cuckoo -d

Now in order to inspect the analyses that have run we start the Web Interface.
For small and/or home setups this may be done using the built-in Django web
server as follows, although we recommend a proper Web Deployment for
any bigger setup.

(venv)$ cuckoo web
Performing system checks...

System check identified no issues (0 silenced).
March 31, 2017 - 12:10:46
Django version 1.8.4, using settings 'cuckoo.web.web.settings'
Starting development server at http://localhost:8000/
Quit the server with CONTROL-C.

There are some additional Cuckoo Apps such as cuckoo clean
(Clean all Tasks and Samples), the Cuckoo Rooter, and various other utilities listed
in Cuckoo Apps, but other than that there’s not much more to learn
about installing and running Cuckoo Sandbox - so, happy analyzing.

Submit an Analysis

	Submission Utility

	API

	Distributed Cuckoo

	Python Functions

Submission Utility

The easiest way to submit an analysis is to use the cuckoo submit utility.
It currently has the following options available:

$ cuckoo submit --help
Usage: cuckoo submit [OPTIONS] [TARGET]...

 Submit one or more files or URLs to Cuckoo.

Options:
 -u, --url Submitting URLs instead of samples
 -o, --options TEXT Options for these tasks
 --package TEXT Analysis package to use
 --custom TEXT Custom information to pass along this task
 --owner TEXT Owner of this task
 --timeout INTEGER Analysis time in seconds
 --priority INTEGER Priority of this task
 --machine TEXT Machine to analyze these tasks on
 --platform TEXT Analysis platform
 --memory Enable memory dumping
 --enforce-timeout Don't terminate the analysis early
 --clock TEXT Set the system clock
 --tags TEXT Analysis tags
 --baseline Create baseline task
 --remote TEXT Submit to a remote Cuckoo instance
 --shuffle Shuffle the submitted tasks
 --pattern TEXT Provide a glob-pattern when submitting a
 directory
 --max INTEGER Submit up to X tasks at once
 --unique Only submit samples that have not been
 analyzed before
 -d, --debug Enable verbose logging
 -q, --quiet Only log warnings and critical messages
 --help Show this message and exit.

You may specify multiple files or directories at once. For directories
cuckoo submit will enumerate all its files and submit them one by one.

The concept of analysis packages will be dealt later in this documentation (at
Analysis Packages). Following are some usage examples:

Example: submit a local binary:

$ cuckoo submit /path/to/binary

Example: submit an URL:

$ cuckoo submit --url http://www.example.com

Example: submit a local binary and specify an higher priority:

$ cuckoo submit --priority 5 /path/to/binary

Example: submit a local binary and specify a custom analysis timeout of
60 seconds:

$ cuckoo submit --timeout 60 /path/to/binary

Example: submit a local binary and specify a custom analysis package:

$ cuckoo submit --package <name of package> /path/to/binary

Example: submit a local binary and specify a custom analysis package and
some options (in this case a command line argument for the malware):

$ cuckoo submit --package exe --options arguments=--dosomething /path/to/binary.exe

Example: submit a local binary to be run on virtual machine cuckoo1:

$ cuckoo submit --machine cuckoo1 /path/to/binary

Example: submit a local binary to be run on a Windows machine:

$ cuckoo submit --platform windows /path/to/binary

Example: submit a local binary and take a full memory dump of the analysis machine:

$ cuckoo submit --memory /path/to/binary

Example: submit a local binary and force the analysis to be executed for the full timeout (disregarding the internal mechanism that Cuckoo uses to decide when to terminate the analysis):

$ cuckoo submit --enforce-timeout /path/to/binary

Example: submit a local binary and set virtual machine clock. Format is %m-%d-%Y %H:%M:%S. If not specified, the current time is used. For example if we want run a sample the 24 january 2001 at 14:41:20:

$ cuckoo submit --clock "01-24-2001 14:41:20" /path/to/binary

Example: submit a sample for Volatility analysis (to reduce side effects of the cuckoo hooking, switch it off with options free=True):

$ cuckoo submit --memory --options free=yes /path/to/binary

API

Detailed usage of the REST API interface is described in REST API.

Distributed Cuckoo

Detailed usage of the Distributed Cuckoo API interface is described in
Distributed Cuckoo.

Python Functions

In order to keep track of submissions, samples and overall execution, Cuckoo
uses a popular Python ORM called SQLAlchemy [http://www.sqlalchemy.org] that allows you to make the sandbox
use SQLite, MySQL or MariaDB, PostgreSQL and several other SQL database systems.

Cuckoo is designed to be easily integrated in larger solutions and to be fully
automated. In order to automate analysis submission we suggest to use the REST
API interface described in REST API, but in case you want to write your
own Python submission script, you can also use the add_path() and add_url() functions.

	
add_path(file_path[, timeout=0[, package=None[, options=None[, priority=1[, custom=None[, owner=""[, machine=None[, platform=None[, tags=None[, memory=False[, enforce_timeout=False], clock=None[]]]]]]]]]]]]])

	Add a local file to the list of pending analysis tasks. Returns the ID of the newly generated task.

	Parameters:	
	file_path (string) – path to the file to submit

	timeout (integer) – maximum amount of seconds to run the analysis for

	package (string or None) – analysis package you want to use for the specified file

	options (string or None) – list of options to be passed to the analysis package (in the format key=value,key=value)

	priority (integer) – numeric representation of the priority to assign to the specified file (1 being low, 2 medium, 3 high)

	custom (string or None) – custom value to be passed over and possibly reused at processing or reporting

	owner (string or None) – task owner

	machine (string or None) – Cuckoo identifier of the virtual machine you want to use, if none is specified one will be selected automatically

	platform (string or None) – operating system platform you want to run the analysis one (currently only Windows)

	tags (string or None) – tags for machine selection

	memory (True or False) – set to True to generate a full memory dump of the analysis machine

	enforce_timeout (True or False) – set to True to force the execution for the full timeout

	clock (string or None) – provide a custom clock time to set in the analysis machine

	Return type:	integer

Example usage:

	1
2
3
4
5

	>>> from cuckoo.core.database import Database
>>> db = Database()
>>> db.add_path("/tmp/malware.exe")
1
>>>

	
add_url(url[, timeout=0[, package=None[, options=None[, priority=1[, custom=None[, owner=""[, machine=None[, platform=None[, tags=None[, memory=False[, enforce_timeout=False], clock=None[]]]]]]]]]]]]])

	Add a local file to the list of pending analysis tasks. Returns the ID of the newly generated task.

	Parameters:	
	url (string) – URL to analyze

	timeout (integer) – maximum amount of seconds to run the analysis for

	package (string or None) – analysis package you want to use for the specified URL

	options (string or None) – list of options to be passed to the analysis package (in the format key=value,key=value)

	priority (integer) – numeric representation of the priority to assign to the specified URL (1 being low, 2 medium, 3 high)

	custom (string or None) – custom value to be passed over and possibly reused at processing or reporting

	owner (string or None) – task owner

	machine (string or None) – Cuckoo identifier of the virtual machine you want to use, if none is specified one will be selected automatically

	platform (string or None) – operating system platform you want to run the analysis one (currently only Windows)

	tags (string or None) – tags for machine selection

	memory (True or False) – set to True to generate a full memory dump of the analysis machine

	enforce_timeout (True or False) – set to True to force the execution for the full timeout

	clock (string or None) – provide a custom clock time to set in the analysis machine

	Return type:	integer

Example Usage:

	1
2
3
4
5
6

	>>> from cuckoo.core.database import Database
>>> db = Database()
>>> db.connect()
>>> db.add_url("http://www.cuckoosandbox.org")
2
>>>

Web interface

Cuckoo provides a full-fledged web interface in the form of a Django
application. This interface will allow you to submit files, browse through the
reports, and search across all the analysis results.

Configuration

The web interface pulls data from a Mongo database, so having the Mongo
reporting module enabled in reporting.conf is mandatory for the Web
Interface to function. If that’s not the case, the Web Interface won’t be able
to start and will instead raise an exception.

Some additional configuration options exist in the
$CWD/web/local_settings.py configuration file.

Copyright (C) 2010-2013 Claudio Guarnieri.
Copyright (C) 2014-2017 Cuckoo Foundation.
This file is part of Cuckoo Sandbox - http://www.cuckoosandbox.org
See the file 'docs/LICENSE' for copying permission.

import web.errors

Maximum upload size (10GB, so there's basically no limit).
MAX_UPLOAD_SIZE = 10*1024*1024*1024

Override default secret key stored in $CWD/web/.secret_key
Make this unique, and don't share it with anybody.
SECRET_KEY = "YOUR_RANDOM_KEY"

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = "en-us"

ADMINS = (
 # ("Your Name", "your_email@example.com"),
)

MANAGERS = ADMINS

Allow verbose debug error message in case of application fault.
It's strongly suggested to set it to False if you are serving the
web application from a web server front-end (i.e. Apache).
DEBUG = False
DEBUG404 = False

A list of strings representing the host/domain names that this Django site
can serve.
Values in this list can be fully qualified names (e.g. 'www.example.com').
When DEBUG is True or when running tests, host validation is disabled; any
host will be accepted. Thus it's usually only necessary to set it in production.
ALLOWED_HOSTS = ["*"]

handler404 = web.errors.handler404
handler500 = web.errors.handler500

It is recommended to keep the DEBUG variable at False in production
setups and to configure at least one ADMIN entry to enable error
notification by email.

Changed in version 2.0.0: The default maximum upload size has been bumped from 25 MB to 10 GB so that
virtually any file should be accepted.

Starting the Web Interface

In order to start the web interface, you can simply run the following command
from the web/ directory:

$ cuckoo web runserver

If you want to configure the web interface as listening for any IP on a
specified port, you can start it with the following command (replace PORT
with the desired port number):

$ cuckoo web runserver 0.0.0.0:PORT

Or directly without the runserver part as follows while also specifying
the host to listen on:

$ cuckoo web -H 0

Web Deployment

While the default method of starting the Web Interface server works fine for
many cases, some users may wish to deploy the server in a more robust manner.
This can be done by exposing the Web Interface as a WSGI application to a web
server. This section shows a simple example of deploying the Web Interface via
uWSGI [http://uwsgi-docs.readthedocs.org/en/latest/] and nginx [http://nginx.org/]. These instructions are written with Ubuntu GNU/Linux in
mind, but may be adapted to other platforms.

This solution requires uWSGI, the uWSGI Python plugin, and nginx.
All are available as packages:

$ sudo apt-get install uwsgi uwsgi-plugin-python nginx

uWSGI setup

First, use uWSGI to run the Web Interface server as an application.

To begin, create a uWSGI configuration file at
/etc/uwsgi/apps-available/cuckoo-web.ini that contains the actual
configuration as reported by the cuckoo web --uwsgi command, e.g.:

$ cuckoo web --uwsgi
[uwsgi]
plugins = python
virtualenv = /home/cuckoo/cuckoo
module = cuckoo.web.web.wsgi
uid = cuckoo
gid = cuckoo
static-map = /static=/home/..somepath..
If you're getting errors about the PYTHON_EGG_CACHE, then
uncomment the following line and add some path that is
writable from the defined user.
env = PYTHON_EGG_CACHE=
env = CUCKOO_APP=web
env = CUCKOO_CWD=/home/..somepath..

This configuration inherits a number of settings from the distribution’s
default uWSGI configuration and imports cuckoo.web.web.wsgi from the
Cuckoo package to do the actual work. In this example we installed Cuckoo in a
virtualenv located at /home/cuckoo/cuckoo. If Cuckoo is installed globally
no virtualenv option is required (and cuckoo web --uwsgi would not report
one).

Enable the app configuration and start the server.

$ sudo ln -s /etc/uwsgi/apps-available/cuckoo-web.ini /etc/uwsgi/apps-enabled/
$ sudo service uwsgi start cuckoo-web # or reload, if already running

Note

Logs for the application may be found in the standard directory for distribution
app instances, i.e., /var/log/uwsgi/app/cuckoo-web.log.
The UNIX socket is created in a conventional location as well,
/run/uwsgi/app/cuckoo-web/socket.

nginx setup

With the Web Interface server running in uWSGI, nginx can now be set up to run
as a web server/reverse proxy, backending HTTP requests to it.

To begin, create a nginx configuration file at
/etc/nginx/sites-available/cuckoo-web that contains the actual
configuration as reported by the cuckoo web --nginx command:

$ cuckoo web --nginx
upstream _uwsgi_cuckoo_web {
 server unix:/run/uwsgi/app/cuckoo-web/socket;
}

server {
 listen localhost:8000;

 # Cuckoo Web Interface
 location / {
 client_max_body_size 1G;
 uwsgi_pass _uwsgi_cuckoo_web;
 include uwsgi_params;
 }
}

Make sure that nginx can connect to the uWSGI socket by placing its user in the
cuckoo group:

$ sudo adduser www-data cuckoo

Enable the server configuration and start the server.

$ sudo ln -s /etc/nginx/sites-available/cuckoo-web /etc/nginx/sites-enabled/
$ sudo service nginx start # or reload, if already running

At this point, the Web Interface server should be available at port 8000
on the server. Various configurations may be applied to extend this
configuration, such as to tune server performance, add authentication, or to
secure communications using HTTPS. However, we leave this as an exercise for
the user.

REST API

As mentioned in Submit an Analysis, Cuckoo provides a simple and lightweight REST
API server that is under the hood implemented using Flask [http://flask.pocoo.org/].

Starting the API server

In order to start the API server you can simply do:

$ cuckoo api

By default it will bind the service on localhost:8090. If you want to change
those values, you can use the following syntax:

$ cuckoo api --host 0.0.0.0 --port 1337
$ cuckoo api -H 0.0.0.0 -p 1337

Web deployment

While the default method of starting the API server works fine for many cases,
some users may wish to deploy the server in a robust manner. This can be done
by exposing the API as a WSGI application through a web server. This section shows
a simple example of deploying the API via uWSGI [http://uwsgi-docs.readthedocs.org/en/latest/] and nginx [http://nginx.org/]. These
instructions are written with Ubuntu GNU/Linux in mind, but may be adapted for
other platforms.

This solution requires uWSGI, the uWSGI Python plugin, and nginx. All are
available as packages:

$ sudo apt-get install uwsgi uwsgi-plugin-python nginx

uWSGI setup

First, use uWSGI to run the API server as an application.

To begin, create a uWSGI configuration file at
/etc/uwsgi/apps-available/cuckoo-api.ini that contains the actual
configuration as reported by the cuckoo api --uwsgi command:

$ cuckoo api --uwsgi
[uwsgi]
plugins = python
virtualenv = /home/cuckoo/cuckoo
module = cuckoo.apps.api
callable = app
uid = cuckoo
gid = cuckoo
env = CUCKOO_APP=api
env = CUCKOO_CWD=/home/..somepath..

This configuration inherits a number of settings from the distribution’s
default uWSGI configuration and imports cuckoo.apps.api from the Cuckoo
package to do the actual work. In this example we installed Cuckoo in a
virtualenv located at /home/cuckoo/cuckoo. If Cuckoo is installed globally
no virtualenv option is required.

Enable the app configuration and start the server.

$ sudo ln -s /etc/uwsgi/apps-available/cuckoo-api.ini /etc/uwsgi/apps-enabled/
$ sudo service uwsgi start cuckoo-api # or reload, if already running

Note

Logs for the application may be found in the standard directory for distribution
app instances, i.e., /var/log/uwsgi/app/cuckoo-api.log.
The UNIX socket is created in a conventional location as well,
/run/uwsgi/app/cuckoo-api/socket.

nginx setup

With the API server running in uWSGI, nginx can now be set up to run as a web
server/reverse proxy, backending HTTP requests to it.

To begin, create a nginx configuration file at
/etc/nginx/sites-available/cuckoo-api that contains the actual
configuration as reportd by the cuckoo api --nginx command:

$ cuckoo api --nginx
upstream _uwsgi_cuckoo_api {
 server unix:/run/uwsgi/app/cuckoo-api/socket;
}

server {
 listen localhost:8090;

 # REST API app
 location / {
 client_max_body_size 1G;
 uwsgi_pass _uwsgi_cuckoo_api;
 include uwsgi_params;
 }
}

Make sure that nginx can connect to the uWSGI socket by placing its user in the
cuckoo group:

$ sudo adduser www-data cuckoo

Enable the server configuration and start the server.

$ sudo ln -s /etc/nginx/sites-available/cuckoo-api /etc/nginx/sites-enabled/
$ sudo service nginx start # or reload, if already running

At this point, the API server should be available at port 8090 on the server.
Various configurations may be applied to extend this configuration, such as to
tune server performance, add authentication, or to secure communications using
HTTPS.

Resources

Following is a list of currently available resources and a brief description of
each one. For details click on the resource name.

	Resource
	Description

	POST /tasks/create/file
	Adds a file to the list of pending tasks to be processed and analyzed.

	POST /tasks/create/url
	Adds an URL to the list of pending tasks to be processed and analyzed.

	POST /tasks/create/submit
	Adds one or more files and/or files embedded in archives to the list of pending tasks.

	GET /tasks/list
	Returns the list of tasks stored in the internal Cuckoo database.
You can optionally specify a limit of entries to return.

	GET /tasks/view
	Returns the details on the task assigned to the specified ID.

	GET /tasks/reschedule
	Reschedule a task assigned to the specified ID.

	GET /tasks/delete
	Removes the given task from the database and deletes the results.

	GET /tasks/report
	Returns the report generated out of the analysis of the task associated with the specified ID.
You can optionally specify which report format to return, if none is specified the JSON report will be returned.

	GET /tasks/screenshots
	Retrieves one or all screenshots associated with a given analysis task ID.

	GET /tasks/rereport
	Re-run reporting for task associated with a given analysis task ID.

	GET /tasks/reboot
	Reboot a given analysis task ID.

	GET /memory/list
	Returns a list of memory dump files associated with a given analysis task ID.

	GET /memory/get
	Retrieves one memory dump file associated with a given analysis task ID.

	GET /files/view
	Search the analyzed binaries by MD5 hash, SHA256 hash or internal ID (referenced by the tasks details).

	GET /files/get
	Returns the content of the binary with the specified SHA256 hash.

	GET /pcap/get
	Returns the content of the PCAP associated with the given task.

	GET /machines/list
	Returns the list of analysis machines available to Cuckoo.

	GET /machines/view
	Returns details on the analysis machine associated with the specified name.

	GET /cuckoo/status
	Returns the basic cuckoo status, including version and tasks overview.

	GET /vpn/status
	Returns VPN status.

	GET /exit
	Shuts down the API server.

/tasks/create/file

POST /tasks/create/file

Adds a file to the list of pending tasks. Returns the ID of the newly created task.

Example request:

curl -F file=@/path/to/file http://localhost:8090/tasks/create/file

Example request using Python..

import requests

REST_URL = "http://localhost:8090/tasks/create/file"
SAMPLE_FILE = "/path/to/malwr.exe"

with open(SAMPLE_FILE, "rb") as sample:
 files = {"file": ("temp_file_name", sample)}
 r = requests.post(REST_URL, files=files)

Add your code to error checking for r.status_code.

task_id = r.json()["task_id"]

Add your code for error checking if task_id is None.

Example response.

{
 "task_id" : 1
}

Form parameters:

	file (required) - sample file (multipart encoded file content)

	package (optional) - analysis package to be used for the analysis

	timeout (optional) (int) - analysis timeout (in seconds)

	priority (optional) (int) - priority to assign to the task (1-3)

	options (optional) - options to pass to the analysis package

	machine (optional) - label of the analysis machine to use for the analysis

	platform (optional) - name of the platform to select the analysis machine from (e.g. “windows”)

	tags (optional) - define machine to start by tags. Platform must be set to use that. Tags are comma separated

	custom (optional) - custom string to pass over the analysis and the processing/reporting modules

	owner (optional) - task owner in case multiple users can submit files to the same cuckoo instance

	clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)

	memory (optional) - enable the creation of a full memory dump of the analysis machine

	unique (optional) - only submit samples that have not been analyzed before

	enforce_timeout (optional) - enable to enforce the execution for the full timeout value

Status codes:

	200 - no error

	400 - duplicated file detected (when using unique option)

/tasks/create/url

POST /tasks/create/url

Adds a file to the list of pending tasks. Returns the ID of the newly created task.

Example request.

curl -F url="http://www.malicious.site" http://localhost:8090/tasks/create/url

Example request using Python.

import requests

REST_URL = "http://localhost:8090/tasks/create/url"
SAMPLE_URL = "http://example.org/malwr.exe"

data = {"url": SAMPLE_URL}
r = requests.post(REST_URL, data=data)

Add your code to error checking for r.status_code.

task_id = r.json()["task_id"]

Add your code to error checking if task_id is None.

Example response.

{
 "task_id" : 1
}

Form parameters:

	url (required) - URL to analyze (multipart encoded content)

	package (optional) - analysis package to be used for the analysis

	timeout (optional) (int) - analysis timeout (in seconds)

	priority (optional) (int) - priority to assign to the task (1-3)

	options (optional) - options to pass to the analysis package

	machine (optional) - label of the analysis machine to use for the analysis

	platform (optional) - name of the platform to select the analysis machine from (e.g. “windows”)

	tags (optional) - define machine to start by tags. Platform must be set to use that. Tags are comma separated

	custom (optional) - custom string to pass over the analysis and the processing/reporting modules

	owner (optional) - task owner in case multiple users can submit files to the same cuckoo instance

	memory (optional) - enable the creation of a full memory dump of the analysis machine

	enforce_timeout (optional) - enable to enforce the execution for the full timeout value

	clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)

Status codes:

	200 - no error

/tasks/create/submit

POST /tasks/create/submit

Adds one or more files and/or files embedded in archives to the list of
pending tasks. Returns the submit ID as well as the task IDs of the newly
created task(s).

Example request.

curl http://localhost:8090/tasks/create/submit -F files=@1.exe -F files=@2.exe

Example request using Python.

import requests

r = requests.post("http://localhost:8090/tasks/create/submit", files=[
 ("files", open("1.exe", "rb")),
 ("files", open("2.exe", "rb")),
])

Add your code to error checking for r.status_code.

submit_id = r.json()["submit_id"]
task_ids = r.json()["task_ids"]
errors = r.json()["errors"]

Add your code to error checking on "errors".

Example response.

{
 "submit_id": 1,
 "task_ids": [1, 2],
 "errors": []
}

Form parameters:

	file (optional) - backwards compatibility with naming scheme for /tasks/create/file

	files (required) - sample(s) to inspect and add to our pending queue

	timeout (optional) (int) - analysis timeout (in seconds)

	priority (optional) (int) - priority to assign to the task (1-3)

	options (optional) - options to pass to the analysis package

	tags (optional) - define machine to start by tags. Platform must be set to use that. Tags are comma separated

	custom (optional) - custom string to pass over the analysis and the processing/reporting modules

	owner (optional) - task owner in case multiple users can submit files to the same cuckoo instance

	memory (optional) - enable the creation of a full memory dump of the analysis machine

	enforce_timeout (optional) - enable to enforce the execution for the full timeout value

	clock (optional) - set virtual machine clock (format %m-%d-%Y %H:%M:%S)

Status codes:

	200 - no error

/tasks/list

GET /tasks/list/ (int: limit) / (int: offset)

Returns list of tasks.

Example request.

curl http://localhost:8090/tasks/list

Example response.

{
 "tasks": [
 {
 "category": "url",
 "machine": null,
 "errors": [],
 "target": "http://www.malicious.site",
 "package": null,
 "sample_id": null,
 "guest": {},
 "custom": null,
 "owner": "",
 "priority": 1,
 "platform": null,
 "options": null,
 "status": "pending",
 "enforce_timeout": false,
 "timeout": 0,
 "memory": false,
 "tags": []
 "id": 1,
 "added_on": "2012-12-19 14:18:25",
 "completed_on": null
 },
 {
 "category": "file",
 "machine": null,
 "errors": [],
 "target": "/tmp/malware.exe",
 "package": null,
 "sample_id": 1,
 "guest": {},
 "custom": null,
 "owner": "",
 "priority": 1,
 "platform": null,
 "options": null,
 "status": "pending",
 "enforce_timeout": false,
 "timeout": 0,
 "memory": false,
 "tags": [
 "32bit",
 "acrobat_6",
],
 "id": 2,
 "added_on": "2012-12-19 14:18:25",
 "completed_on": null
 }
]
}

Parameters:

	limit (optional) (int) - maximum number of returned tasks

	offset (optional) (int) - data offset

Status codes:

	200 - no error

/tasks/view

GET /tasks/view/ (int: id)

Returns details on the task associated with the specified ID.

Example request.

curl http://localhost:8090/tasks/view/1

Example response.

{
 "task": {
 "category": "url",
 "machine": null,
 "errors": [],
 "target": "http://www.malicious.site",
 "package": null,
 "sample_id": null,
 "guest": {},
 "custom": null,
 "owner": "",
 "priority": 1,
 "platform": null,
 "options": null,
 "status": "pending",
 "enforce_timeout": false,
 "timeout": 0,
 "memory": false,
 "tags": [
 "32bit",
 "acrobat_6",
],
 "id": 1,
 "added_on": "2012-12-19 14:18:25",
 "completed_on": null
 }
}

Note: possible value for key status:

	pending

	running

	completed

	reported

Parameters:

	id (required) (int) - ID of the task to lookup

Status codes:

	200 - no error

	404 - task not found

/tasks/reschedule

GET /tasks/reschedule/ (int: id) / (int: priority)

Reschedule a task with the specified ID and priority (default priority
is 1).

Example request.

curl http://localhost:8090/tasks/reschedule/1

Example response.

{
 "status": "OK"
}

Parameters:

	id (required) (int) - ID of the task to reschedule

	priority (optional) (int) - Task priority

Status codes:

	200 - no error

	404 - task not found

/tasks/delete

GET /tasks/delete/ (int: id)

Removes the given task from the database and deletes the results.

Example request.

curl http://localhost:8090/tasks/delete/1

Parameters:

	id (required) (int) - ID of the task to delete

Status codes:

	200 - no error

	404 - task not found

	500 - unable to delete the task

/tasks/report

GET /tasks/report/ (int: id) / (str: format)

Returns the report associated with the specified task ID.

Example request.

curl http://localhost:8090/tasks/report/1

Parameters:

	id (required) (int) - ID of the task to get the report for

	format (optional) - format of the report to retrieve [json/html/all/dropped/package_files]. If none is specified the JSON report will be returned. all returns all the result files as tar.bz2, dropped the dropped files as tar.bz2, package_files files uploaded to host by analysis packages.

Status codes:

	200 - no error

	400 - invalid report format

	404 - report not found

/tasks/screenshots

GET /tasks/screenshots/ (int: id) / (str: number)

Returns one or all screenshots associated with the specified task ID.

Example request.

wget http://localhost:8090/tasks/screenshots/1

Parameters:

	id (required) (int) - ID of the task to get the report for

	screenshot (optional) - numerical identifier of a single screenshot (e.g. 0001, 0002)

Status codes:

	404 - file or folder not found

/tasks/rereport

GET /tasks/rereport/ (int: id)

Re-run reporting for task associated with the specified task ID.

Example request.

curl http://localhost:8090/tasks/rereport/1

Example response.

{
 "success": true
}

Parameters:

	id (required) (int) - ID of the task to re-run report

Status codes:

	200 - no error

	404 - task not found

/tasks/reboot

GET /tasks/reboot/ (int: id) **

Add a reboot task to database from an existing analysis ID.

Example request.

curl http://localhost:8090/tasks/reboot/1

Example response.

{
 "task_id": 1,
 "reboot_id": 3
}

Parameters:

	id (required) (int) - ID of the task

Status codes:

	200 - success

	404 - error creating reboot task

/memory/list

GET /memory/list/ (int: id)

Returns a list of memory dump files or one memory dump file associated with the specified task ID.

Example request.

wget http://localhost:8090/memory/list/1

Parameters:

	id (required) (int) - ID of the task to get the report for

Status codes:

	404 - file or folder not found

/memory/get

GET /memory/get/ (int: id) / (str: number)

Returns one memory dump file associated with the specified task ID.

Example request.

wget http://localhost:8090/memory/get/1/1908

Parameters:

	id (required) (int) - ID of the task to get the report for

	pid (required) - numerical identifier (pid) of a single memory dump file (e.g. 205, 1908)

Status codes:

	404 - file or folder not found

/files/view

GET /files/view/md5/ (str: md5)

GET /files/view/sha256/ (str: sha256)

GET /files/view/id/ (int: id)

Returns details on the file matching either the specified MD5 hash, SHA256 hash or ID.

Example request.

curl http://localhost:8090/files/view/id/1

Example response.

{
 "sample": {
 "sha1": "da39a3ee5e6b4b0d3255bfef95601890afd80709",
 "file_type": "empty",
 "file_size": 0,
 "crc32": "00000000",
 "ssdeep": "3::",
 "sha256": "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855",
 "sha512": "cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e",
 "id": 1,
 "md5": "d41d8cd98f00b204e9800998ecf8427e"
 }
}

Parameters:

	md5 (optional) - MD5 hash of the file to lookup

	sha256 (optional) - SHA256 hash of the file to lookup

	id (optional) (int) - ID of the file to lookup

Status codes:

	200 - no error

	400 - invalid lookup term

	404 - file not found

/files/get

GET /files/get/ (str: sha256)

Returns the binary content of the file matching the specified SHA256 hash.

Example request.

curl http://localhost:8090/files/get/e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 > sample.exe

Status codes:

	200 - no error

	404 - file not found

/pcap/get

GET /pcap/get/ (int: task)

Returns the content of the PCAP associated with the given task.

Example request.

curl http://localhost:8090/pcap/get/1 > dump.pcap

Status codes:

	200 - no error

	404 - file not found

/machines/list

GET /machines/list

Returns a list with details on the analysis machines available to Cuckoo.

Example request.

curl http://localhost:8090/machines/list

Example response.

{
 "machines": [
 {
 "status": null,
 "locked": false,
 "name": "cuckoo1",
 "resultserver_ip": "192.168.56.1",
 "ip": "192.168.56.101",
 "tags": [
 "32bit",
 "acrobat_6",
],
 "label": "cuckoo1",
 "locked_changed_on": null,
 "platform": "windows",
 "snapshot": null,
 "interface": null,
 "status_changed_on": null,
 "id": 1,
 "resultserver_port": "2042"
 }
]
}

Status codes:

	200 - no error

/machines/view

GET /machines/view/ (str: name)

Returns details on the analysis machine associated with the given name.

Example request.

curl http://localhost:8090/machines/view/cuckoo1

Example response.

{
 "machine": {
 "status": null,
 "locked": false,
 "name": "cuckoo1",
 "resultserver_ip": "192.168.56.1",
 "ip": "192.168.56.101",
 "tags": [
 "32bit",
 "acrobat_6",
],
 "label": "cuckoo1",
 "locked_changed_on": null,
 "platform": "windows",
 "snapshot": null,
 "interface": null,
 "status_changed_on": null,
 "id": 1,
 "resultserver_port": "2042"
 }
}

Status codes:

	200 - no error

	404 - machine not found

/cuckoo/status

GET /cuckoo/status/

Returns status of the cuckoo server. In version 1.3 the diskspace
entry was added. The diskspace entry shows the used, free, and total
diskspace at the disk where the respective directories can be found.
The diskspace entry allows monitoring of a Cuckoo node through the
Cuckoo API. Note that each directory is checked separately as one
may create a symlink for $CUCKOO/storage/analyses to a separate
harddisk, but keep $CUCKOO/storage/binaries as-is. (This feature is
only available under Unix!)

In version 1.3 the cpuload entry was also added - the cpuload entry
shows the CPU load for the past minute, the past 5 minutes, and the
past 15 minutes, respectively. (This feature is only available under
Unix!)

Diskspace directories:

	analyses - $CUCKOO/storage/analyses/

	binaries - $CUCKOO/storage/binaries/

	temporary - tmppath as specified in conf/cuckoo.conf

Example request.

curl http://localhost:8090/cuckoo/status

Example response.

{
 "tasks": {
 "reported": 165,
 "running": 2,
 "total": 167,
 "completed": 0,
 "pending": 0
 },
 "diskspace": {
 "analyses": {
 "total": 491271233536,
 "free": 71403470848,
 "used": 419867762688
 },
 "binaries": {
 "total": 491271233536,
 "free": 71403470848,
 "used": 419867762688
 },
 "temporary": {
 "total": 491271233536,
 "free": 71403470848,
 "used": 419867762688
 }
 },
 "version": "1.0",
 "protocol_version": 1,
 "hostname": "Patient0",
 "machines": {
 "available": 4,
 "total": 5
 }
}

Status codes:

	200 - no error

	404 - machine not found

/vpn/status

GET /vpn/status

Returns VPN status.

Example request.

curl http://localhost:8090/vpn/status

Status codes:

	200 - show status

	500 - not available

/exit

GET /exit

Shuts down the server if in debug mode and using the werkzeug server.

Example request.

curl http://localhost:8090/exit

Status codes:

	200 - success

	403 - this call can only be used in debug mode

	500 - error

Distributed Cuckoo

As mentioned in Submit an Analysis, Cuckoo provides a REST API for Distributed
Cuckoo usage. The distributed script allows one to setup a single REST API
point to which samples and URLs can be submitted which will then, in turn, be
submitted to one of the configured Cuckoo nodes.

A typical setup thus includes a machine on which Distributed Cuckoo is run
and one or more machines running an instance of the Cuckoo daemon and the
Cuckoo REST API.

A few notes;

	Using the distributed script only makes sense when running at least two
cuckoo nodes.

	The distributed script can be run on a machine that also runs a Cuckoo
daemon and REST API, however, make sure it has enough disk space if the
intention is to submit a lot of samples.

Starting the Distributed REST API

The Distributed REST API has the following command line options:

$ cuckoo distributed server --help
Usage: cuckoo distributed server [OPTIONS]

Options:
 -H, --host TEXT Host to bind the Distributed Cuckoo server on
 -p, --port INTEGER Port to bind the Distributed Cuckoo server on
 --uwsgi Dump uWSGI configuration
 --nginx Dump nginx configuration
 --help Show this message and exit.

As may be derived from the help output, starting Distributed Cuckoo may be as
simple as running cuckoo distributed server.

The various configuration options are described in the configuration file, but
following we have more in-depth descriptions as well. More advanced usage
naturally includes deploying to uWSGI and nginx.

Distributed Cuckoo Configuration

Report Formats

The reporting formats denote which reports you’d like to retrieve later on.
Note that all task-related data will be removed from the Cuckoo nodes once the
related reports have been fetched so that the machines are not running out of
disk space. This does, however, force you to specify all the report formats
that you’re interested in, because otherwise that information will be lost.

Reporting formats include, but are not limited to and may also include your
own reporting formats, report.json, report.html, etc.

Samples Directory

The samples directory denotes the directory where the submitted samples will
be stored temporarily, until the associated task has been deleted.

Reports Directory

Much like the Samples Directory the Reports Directory defines the
directory where reports will be stored until they’re fetched and deleted from
the Distributed REST API.

RESTful resources

Following are all RESTful resources. Also make sure to check out the
Quick usage section which documents the most commonly used commands.

	Resource
	Description

	GET GET /api/node
	Get a list of all enabled Cuckoo nodes.

	POST POST /api/node
	Register a new Cuckoo node.

	GET GET /api/node/<name>
	Get basic information about a node.

	PUT PUT /api/node/<name>
	Update basic information of a node.

	DELETE DELETE /api/node/<name>
	Disable (not completely remove!) a node.

	GET GET /api/task
	Get a list of all (or a part) of the tasks in the database.

	POST POST /api/task
	Create a new analysis task.

	GET GET /api/task/<id>
	Get basic information about a task.

	DELETE DELETE /api/task/<id>
	Delete all associated information of a task.

	GET GET /api/report/<id>/<format>
	Fetch an analysis report.

GET /api/node

Returns all enabled nodes. For each node the information includes the
associated name, its API URL, and machines:

$ curl http://localhost:9003/api/node
{
 "success": true,
 "nodes": {
 "localhost": {
 "machines": [
 {
 "name": "cuckoo1",
 "platform": "windows",
 "tags": []
 }
],
 "name": "localhost",
 "url": "http://localhost:8090/"
 }
 }
}

POST /api/node

Register a new Cuckoo node by providing the name and the URL:

$ curl http://localhost:9003/api/node -F name=localhost \
 -F url=http://localhost:8090/
{
 "success": true
}

GET /api/node/<name>

Get basic information about a particular Cuckoo node:

$ curl http://localhost:9003/api/node/localhost
{
 "success": true,
 "nodes": [
 {
 "name": "localhost",
 "url": "http://localhost:8090/"
 "machines": [
 {
 "name": "cuckoo1",
 "platform": "windows",
 "tags": []
 }
]
 }
]
}

PUT /api/node/<name>

Update basic information of a Cuckoo node:

$ curl -XPUT http://localhost:9003/api/node/localhost -F name=newhost \
 -F url=http://1.2.3.4:8090/
{
 "success": true
}

DELETE /api/node/<name>

Disable a Cuckoo node, therefore not having it process any new tasks, but
keeping its history in the Distributed Cuckoo database:

$ curl -XDELETE http://localhost:9003/api/node/localhost
{
 "success": true
}

GET /api/task

Get a list of all tasks in the database. In order to limit the amount of
results, there’s an offset, limit, finished, and owner field
available:

$ curl http://localhost:9003/api/task?limit=1
{
 "success": true,
 "tasks": {
 "1": {
 "clock": null,
 "custom": null,
 "owner": "",
 "enforce_timeout": null,
 "machine": null,
 "memory": null,
 "options": null,
 "package": null,
 "path": "/tmp/dist-samples/tmphal8mS",
 "platform": "windows",
 "priority": 1,
 "tags": null,
 "task_id": 1,
 "timeout": null
 }
 }
}

POST /api/task

Submit a new file or URL to be analyzed:

$ curl http://localhost:9003/api/task -F file=@sample.exe
{
 "success": true,
 "task_id": 2
}

GET /api/task/<id>

Get basic information about a particular task:

$ curl http://localhost:9003/api/task/2
{
 "success": true,
 "tasks": {
 "2": {
 "id": 2,
 "clock": null,
 "custom": null,
 "owner": "",
 "enforce_timeout": null,
 "machine": null,
 "memory": null,
 "options": null,
 "package": null,
 "path": "/tmp/tmpPwUeXm",
 "platform": "windows",
 "priority": 1,
 "tags": null,
 "timeout": null,
 "task_id": 1,
 "node_id": 2,
 "finished": false
 }
 }
}

DELETE /api/task/<id>

Delete all associated data of a task, namely the binary, the PCAP, and the
reports:

$ curl -XDELETE http://localhost:9003/api/task/2
{
 "success": true
}

GET /api/report/<id>/<format>

Fetch a report for the given task in the specified format:

Defaults to the JSON report.
$ curl http://localhost:9003/api/report/2
...

Quick usage

For practical usage the following few commands will be most interesting.

Register a Cuckoo node - a Cuckoo API running on the same machine in this
case:

$ curl http://localhost:9003/api/node -F name=localhost -F ip=127.0.0.1

Disable a Cuckoo node:

$ curl -XDELETE http://localhost:9003/api/node/localhost

Submit a new analysis task without any special requirements (e.g., using
Cuckoo tags, a particular machine, etc):

$ curl http://localhost:9003/api/task -F file=@/path/to/sample.exe

Get the report of a task has been finished (if it hasn’t finished you’ll get
an error with code 420). Following example will default to the JSON
report:

$ curl http://localhost:9003/api/report/1

Proposed setup

The following description depicts a Distributed Cuckoo setup with two Cuckoo
machines, cuckoo0 and cuckoo1. In this setup the first machine,
cuckoo0, also hosts the Distributed Cuckoo REST API.

Configuration settings

Our setup will require a couple of updates with regards to the configuration
files.

conf/cuckoo.conf

Update process_results to off as we will be running our own results
processing script (for performance reasons).

Update tmppath to something that holds enough storage to store a few
hundred binaries. On some servers or setups /tmp may have a limited amount
of space and thus this wouldn’t suffice.

Update connection to use something not sqlite3. Preferably PostgreSQL or
MySQL. SQLite3 doesn’t support multi-threaded applications and as such is not
a good choice for systems such as Cuckoo (as-is).

You should create a database specifically for the distributed cuckoo setup. Do
not be tempted to use any existing cuckoo database in order to avoid update
problems with the DB scripts. In the configuration use the new database name.
The remaining configuration such as usernames, servers, etc can be the same as
for your cuckoo install. Don’t forget to use one DB per node and one for the
machine running Distributed Cuckoo (the “management machine” or “controller”).

conf/processing.conf

You may want to disable some processing modules, such as virustotal.

conf/reporting.conf

Depending on which report(s) are required for integration with your system it
might make sense to only make those report(s) that you’re going to use. Thus
disabling the other ones.

conf/virtualbox.conf

Assuming VirtualBox is the Virtual Machine manager of choice, the mode
will have to be changed to headless or you will have some restless nights
(this is the default nowadays).

Setup Cuckoo

On each machine you will have to run the Cuckoo Daemon, the Cuckoo API, and
one or more Cuckoo Process instances. For more information on setting that up,
please refer to Starting Cuckoo.

Setup Distributed Cuckoo

On the Distributed Cuckoo machine you’ll have to setup the Distributed Cuckoo
REST API and the Distributed Cuckoo Worker.

As stated earlier, Distributed Cuckoo REST API may be started by running
cuckoo distributed server or by deploying it properly with uWSGI and
nginx.

The Distributed Cuckoo Worker may be started by running
supervisorctl start distributed in the CWD. This will automatically
start the Worker with the correct configuration and arguments, etc.

Register Cuckoo nodes

As outlined in Quick usage the Cuckoo nodes have to be registered with
the Distributed Cuckoo REST API:

$ curl http://localhost:9003/api/node -F name=cuckoo0 -F url=http://localhost:8090/
$ curl http://localhost:9003/api/node -F name=cuckoo1 -F url=http://1.2.3.4:8090/

Having registered the Cuckoo nodes all that’s left to do now is to submit
tasks and fetch reports once finished. Documentation on these commands can be
found in the Quick usage section. In case your Cuckoo node is not on
localhost, replace localhost with the IP address of the node where
the Cuckoo REST API is running.

If you want to experiment a real load balancing between the nodes you may want
to try using a lower value for the threshold parameter in the
$CWD/distributed/settings.py file as the default value is 500 (meaning
tasks are assigned to Cuckoo nodes in batches of 500).

Utilities

Cuckoo comes with a set of pre-built utilities to automate several common
tasks. Before these utilities could be found in the utils/ directory but
since then we have moved to Cuckoo Apps.

Cuckoo Apps

A Cuckoo App is essentially just a Cuckoo sub-command. There exist a
couple of Cuckoo Apps, each with their own functionality. It is important to
note that each Cuckoo App can be invoked in the same way. Following are some
examples:

$ cuckoo submit --help
$ cuckoo api --help
$ cuckoo clean --help

In these examples we provided the --help parameter which shows the
functionality and all available parameters for the particular Cuckoo App.

Submission Utility

Submits samples to analysis. This tool is described in Submit an Analysis.

Web Utility

Cuckoo’s web interface. This tool is described in Web interface.

Processing Utility

Changed in version 2.0.0: We used to have longstanding issues with ./utils/process.py randomly
freezing up and ./utils/process2.py only being able to handle
PostgreSQL-based databases. These two commands have now been merged into
one Cuckoo App and no longer show signs of said issues or limitations.

For bigger Cuckoo setups it is recommended to separate the results processing
from the Cuckoo analyses due to performance issues (with multiple threads &
the Python GIL [https://wiki.python.org/moin/GlobalInterpreterLock]). Using cuckoo process it is also possible to
re-generate Cuckoo reports, this is mostly used while developing and debugging
Cuckoo Processing modules, Cuckoo Signatures, and Cuckoo Reporting modules.

In order to do results processing in one or more separate process(es) one has
to disable the process_results configuration item in
$CWD/conf/cuckoo.conf by setting the value to off. Then a Cuckoo
Processing instance has to be started, this can be done as follows:

$ cuckoo process instance1

If one Cuckoo Processing instance is not enough to handle all the incoming
analyses, simply create a second, third, and possibly more instances:

$ cuckoo process instance2

In order to re-generate a Cuckoo report of an analysis task, use the -r
switch:

$ cuckoo process -r 1

It is also possible to re-generate multiple or a range of Cuckoo reports at
once. The following will reprocess tasks 1, 2, 5, 6, 7,
8, 9, 10:

$ cuckoo process -r 1,2,5-10

For more information see also the help on this Cuckoo App:

$ cuckoo process --help
Usage: cuckoo process [OPTIONS] [INSTANCE]

 Process raw task data into reports.

Options:
 -r, --report TEXT Re-generate one or more reports
 -m, --maxcount INTEGER Maximum number of analyses to process
 --help Show this message and exit.

In automated mode an instance name is required (e.g., instance1) as seen
in the examples earlier above!

Community Download Utility

This Cuckoo App downloads Cuckoo Signatures, the latest monitoring
binaries, and other goodies from the Cuckoo Community Repository [https://github.com/cuckoosandbox/community] and
installs them in your CWD.

To get all the latest and greatest from the Cuckoo Community simply execute
as follows and wait until it finishes - it currently doesn’t have any progress
indication:

$ cuckoo community

For more usage see as follows:

$ cuckoo community --help
Usage: cuckoo community [OPTIONS]

 Utility to fetch supplies from the Cuckoo Community.

Options:
 -f, --force Overwrite existing files
 -b, --branch TEXT Specify a different community branch rather than
 master
 --file, --filepath PATH Specify a local copy of a community .tar.gz file
 --help Show this message and exit.

Database migration utility

Changed in version 2.0.0: This used to be a special process, but has since been integrated properly
as a Cuckoo App.

This utility helps migrating your data between Cuckoo releases. It’s developed
on top of the Alembic [http://alembic.readthedocs.org/en/latest/] framework and it should provide data migration for
both SQL database and Mongo database. This tool is already described
in Upgrading from a previous release.

Stats utility

Deprecated since version 2.0-rc2: This utility will not be ported to a Cuckoo App as this information can
also be retrieved through both the Cuckoo API as well as the Cuckoo Web
Interface.

Machine utility

Changed in version 2.0.0: This used to be a standalone and hacky script directly modifying the Cuckoo
configuration. It’s now much better integrated and will be able to somewhat
properly interact with Cuckoo.

The machine Cuckoo App is designed to help you automatize the
configuration of virtual machines in Cuckoo. It takes a list of machine
details as arguments and write them in the specified
configuration file of the machinery module enabled in cuckoo.conf.
Following are the available options:

$ cuckoo machine --help
Usage: cuckoo machine [OPTIONS] VMNAME [IP]

Options:
 --debug Enable verbose logging
 --add Add a Virtual Machine
 --delete Delete a Virtual Machine
 --platform TEXT Guest Operating System
 --options TEXT Machine options
 --tags TEXT Tags for this Virtual Machine
 --interface TEXT Sniffer interface for this Virtual Machine
 --snapshot TEXT Specific Virtual Machine Snapshot to use
 --resultserver TEXT IP:Port of the Result Server
 --help Show this message and exit.

As an example, a machine may be added to Cuckoo’s configuration as follows:

$ cuckoo machine --add cuckoo1 192.168.56.101 --platform windows --snapshot vmcloak

Distributed scripts

This tool is described in Distributed Cuckoo.

Mac OS X Bootstrap scripts

Deprecated since version 2.0.0: These files will be moved elsewhere in an upcoming update and so should
any documentation that references these scripts.

A couple of bootstrap scripts used for Mac OS X analysis are located in
utils/darwin folder, they are used to bootstrap the guest and host system for
Mac OS X malware analysis.
Some settings are defined as constants inside them, so it is suggested to have a
look at them and configure them for your needs.

SMTP Sinkhole

Deprecated since version 2.0.0: This script has been removed since this functionality should be
implemented properly using a Postfix setup.

Setup script

Deprecated since version 2.0.0: This script has been replaced by a similar but much more powerful
SaltStack state.

Cuckoo Rooter

The Cuckoo Rooter is a new concept, providing root access for various
commands to Cuckoo (which itself generally speaking runs as non-root). This
command is currently only available for Ubuntu and Debian-like systems.

In particular, the rooter helps Cuckoo out with running network-related
commands in order to provide per-analysis routing options. For more
information on that, please refer to the Per-Analysis Network Routing document. Cuckoo and
the rooter communicate through a UNIX socket for which the rooter
makes sure that Cuckoo can reach it.

Its usage is as follows:

$ cuckoo rooter --help
Usage: cuckoo rooter [OPTIONS] [SOCKET]

Options:
 -g, --group TEXT Unix socket group
 --ifconfig PATH Path to ifconfig(8)
 --service PATH Path to service(8) for invoking OpenVPN
 --iptables PATH Path to iptables(8)
 --ip PATH Path to ip(8)
 --sudo Request superuser privileges
 --help Show this message and exit.

By default the rooter will default to chown‘ing the cuckoo user as
user and group for the UNIX socket, as recommended when Installing Cuckoo.
If you’re running Cuckoo under a user other than cuckoo, you will have to
specify this to the rooter as follows:

$ sudo cuckoo rooter -g <user>

The other options are fairly straightforward - you can specify the paths to
specific Linux commands. By default one shouldn’t have to do this though, as
the rooter takes the default paths for the various utilities as per a
default setup.

Virtualenv

Due to the fact that the rooter must be run as root user, there are
some slight complications when using a virtualenv to run Cuckoo. More
specifically, when running sudo cuckoo rooter, the $VIRTUAL_ENV
environment variable will not be passed along, due to which Python will not be
executed from the same virtualenv as it would have been normally.

To resolve this one simply has to execute the cuckoo binary from the
virtualenv session directly. E.g., if your virtualenv is located at
~/venv, then running the rooter command could be done as follows:

$ sudo ~/venv/bin/cuckoo rooter

Alternatively one may use the --sudo flag which will call sudo on the
correct cuckoo binary with all the provided flags. In turn the user will
have to enter his or her password and, assuming all is fine, the Cuckoo Rooter
will be started properly, e.g.:

(venv)$ cuckoo rooter --sudo

Cuckoo Rooter Usage

Using the Cuckoo Rooter is actually pretty easy. If you know how to start
it, you’re basically good to go. Even though Cuckoo talks with the Cuckoo
Rooter for each analysis with a routing option other than None Routing,
the Cuckoo Rooter does not keep any state or attach to any Cuckoo instance in
particular.

It is therefore that once the Cuckoo Rooter has been started you may leave it
be - the Cuckoo Rooter will take care of itself from that point onwards, no
matter how often you restart your Cuckoo instance.

Cuckoo Feedback

New in version 2.0.0.

The Cuckoo Feedback form allows users to provide instant feedback to the
Cuckoo Core Developer team. By doing so, our development team will be able to
more quickly react upon errors, partially incorrect analysis results,
errors occurred during an analysis or in the web interface, and anything else
that our users think requires some extra attention.
All in all, this optional feature gives those users that are interested in a
second opinion the ability to do so in a convenient way for both the user as
well as the team behind Cuckoo Sandbox.

Note

As a user you are able to ping back to us through the Cuckoo Feedback from
embedded in most pages of the web interface (e.g., an analysis page or a
404 page not found / 500 internal error page).

Following a screenshot of a part of the new (as of Cuckoo 2.0.0) analysis
results page with the side bar locked in (i.e., permanently open).

[image: ../_images/side-bar.png]
At the bottom of the side bar you’ll see the Feedback button which will
pop up the following feedback form. Naturally filling out all of the fields in
this form will allow you to send us feedback (in a secure manner).

It should be noted that, may you decide to provide feedback on a regular, you
can also fill out your name, company, and email address (where you’ll receive
any answers) in the $CWD/conf/cuckoo.conf configuration file so those will
be auto-filled for you upon opening the feedback form.

[image: ../_images/feedback-form.png]

Analysis Packages

The analysis packages are a core component of Cuckoo Sandbox.
They consist in structured Python classes which, when executed in the guest machines,
describe how Cuckoo’s analyzer component should conduct the analysis.

Cuckoo provides some default analysis packages that you can use, but you are
able to create your own or modify the existing ones. You can find them at
analyzer/windows/modules/packages/.

As described in Submit an Analysis, you can specify some options to the
analysis packages in the form of key1=value1,key2=value2. The existing analysis
packages already include some default options that can be enabled.

Following is a list of the options that work for all analysis packages unless
explicitly stated otherwise:

	free [yes/no]: if enabled, no behavioral logs will be produced and the malware will be executed freely.

	procmemdump [yes/no]: if enabled, take memory dumps of all actively monitored processes.

	human 0: if disabled, human-like interaction (i.e., mouse movements) will not be enabled

Following is the list of existing packages in alphabetical order:

	applet: used to analyze Java applets.

Options:

	class: specify the name of the class to be executed. This option is mandatory for a correct execution.

	bin: used to analyze generic binary data, such as shellcodes.

	cpl: used to analyze Control Panel Applets.

	dll: used to run and analyze Dynamically Linked Libraries.

Options:

	function: specify the function to be executed. If none is specified, Cuckoo will try to run DllMain.

	arguments: specify arguments to pass to the DLL through commandline.

	loader: specify a process name to use to fake the DLL launcher name instead of rundll32.exe (this is used to fool possible anti-sandboxing tricks of certain malware)

	doc: used to run and analyze Microsoft Word documents.

	exe: default analysis package used to analyze generic Windows executables.

Options:

	arguments: specify any command line argument to pass to the initial process of the submitted malware.

	generic: used to run and analyze generic samples via cmd.exe.

	ie: used to analyze Internet Explorer‘s behavior when opening the given URL or HTML file.

	js: used to run and analyze Javascript files (e.g., those found in attachments of emails).

	jar: used to analyze Java JAR containers.

Options:

	class: specify the path of the class to be executed. If none is specified, Cuckoo will try to execute the main function specified in the Jar’s MANIFEST file.

	msi: used to run and analyze MSI windows installer.

	pdf: used to run and analyze PDF documents.

	ppt: used to run and analyze Microsoft PowerPoint documents.

	ps1: used to run and analyze PowerShell scripts.

	python: used to run and analyze Python scripts.

	vbs: used to run and analyze VBScript files.

	wsf: used to run and analyze Windows Script Host files.

	xls: used to run and analyze Microsoft Excel documents.

	zip: used to run and analyze Zip archives.

Options:

	file: specify the name of the file contained in the archive to execute. If none is specified, Cuckoo will try to execute sample.exe.

	arguments: specify any command line argument to pass to the initial process of the submitted malware.

	password: specify the password of the archive. If none is specified, Cuckoo will try to extract the archive without password or use the password “infected”.

You can find more details on how to start creating new analysis packages in the
Analysis Packages customization chapter.

As you already know, you can select which analysis package to use by specifying
its name at submission time (see Submit an Analysis) as follows:

$ cuckoo submit --package <package name> /path/to/malware

If none is specified, Cuckoo will try to detect the file type and select
the correct analysis package accordingly. If the file type is not supported by
default the analysis will be aborted, therefore we encourage to
specify the package name whenever possible.

For example, to launch a malware and specify some options you can do:

$ cuckoo submit --package dll --options function=FunctionName,loader=explorer.exe /path/to/malware.dll

Analysis Results

Once an analysis is completed, several files are stored in a dedicated
directory. All the analyses are stored under the $CWD/storage/analyses/
inside a subdirectory named after the incremental numerical ID that represents
the analysis task in the database.

Following is an example of an analysis directory structure:

.
|-- analysis.log
|-- binary
|-- dump.pcap
|-- memory.dmp
|-- files
| |-- 1234567890_dropped.exe
|-- logs
| |-- 1232.bson
| |-- 1540.bson
| `-- 1118.bson
|-- reports
| |-- report.html
| |-- report.json
`-- shots
 |-- 0001.jpg
 |-- 0002.jpg
 |-- 0003.jpg
 `-- 0004.jpg

analysis.log

This is a log file generated by the analyzer that contains a trace of
the analysis execution inside the guest environment. It will report the
creation of processes, files and eventual errors occurred during the
execution.

dump.pcap

This is the network dump generated by tcpdump or any other corresponding
network sniffer.

dump_sorted.pcap

This is a sorted version of dump.pcap in the sense that it allows the Web
Interface to quickly lookup TCP stream.

memory.dmp

In case you enabled it, this file contains the full memory dump of the analysis
machine.

files/

This directory contains all the files the malware operated on and that Cuckoo
was able to dump.

files.json

This file contains a JSON-encoded entry for each dropped file available (i.e.,
all files in files/, shots/, etc). It contains meta information, where
available, about all processes that touched the file, its original file path
in the Guest, etc.

logs/

This directory contains all the raw logs generated by Cuckoo’s process monitoring.

reports/

This directory contains all the reports generated by Cuckoo as explained in the
Configuration chapter.

shots/

This directory contains all the screenshots of the guest’s desktop taken during
the malware execution.

tlsmaster.txt

This file contains the TLS Master Secrets that were captured during the
analysis. TLS Master Secrets can be used to decrypt SSL/TLS traffic and are
thus used to decrypt HTTPS streams.

Clean all Tasks and Samples

Changed in version 2.0.0: Turned into a proper Cuckoo App rather than a standalone script.

Since Cuckoo 1.2 a built-in clean feature has been featured, it drops all
associated information of the tasks and samples in the database, on the
harddisk, from MongoDB, and from ElasticSearch. If you submit a task after
running clean you’ll start over with Task #1 again.

To clean your setup, run:

$ cuckoo clean

To sum up, this command does the following:

	Delete analysis results.

	Delete submitted binaries.

	Delete all associated information of the tasks and samples in the configured
database.

	Delete all data in the configured MongoDB database (if configured and
enabled in $CWD/conf/reporting.conf).

	Delete all data in the configured ElasticSearch database (if configured and
enabled in $CWD/conf/reporting.conf).

Warning

If you use this command you will permanently delete all data stored by
Cuckoo in all available storages: the file system, the SQL database, the
MongoDB database, and the ElasticSearch database. Use it only if you are
sure you would clean up all the data.

Customization

This chapter explains how to customize Cuckoo.
Cuckoo is written in a modular architecture built to be as customizable as it can,
to fit the needs of all users.

	Auxiliary Modules

	Machinery Modules
	Configuration

	LibVirt

	Analysis Packages
	Getting started
	start()

	check()

	execute()

	finish()

	Options

	Process API
	Methods

	Processing Modules
	Global Container

	Getting started

	Signatures
	Getting started

	Creating your new signature

	Evented Signatures

	Marks & Helpers

	Reporting Modules
	Getting Started

Auxiliary Modules

Auxiliary modules define some procedures that need to be executed in parallel
to every single analysis process. All auxiliary modules should be placed under
the cuckoo/cuckoo/auxiliary/ directory, that way the module will fall
under the cuckoo.auxiliary module.

The skeleton of a module would look something like this:

	1
2
3
4
5
6
7
8
9

	from cuckoo.common.abstracts import Auxiliary

class MyAuxiliary(Auxiliary):

 def start(self):
 # Do something.

 def stop(self):
 # Stop the execution.

The function start() will be executed before starting the analysis machine
and effectively executing the submitted malicious file, while the stop()
function will be launched at the very end of the analysis process, before
launching the processing and reporting procedures.

For example, an auxiliary module provided by default in Cuckoo is called
sniffer.py and takes care of executing tcpdump in order to dump the
generated network traffic.

Machinery Modules

Machinery modules define how Cuckoo should interact with
your virtualization software (or potentially even with physical disk imaging
solutions).
Since we decided to not enforce any particular vendor, from release 0.4 you
are able to use your preferred solution and, in case it’s not supported by
default, write a custom Python module that defines how to make Cuckoo use it.

Every machinery module should be located inside the
cuckoo/cuckoo/machinery/ directory so that it will fall under the
cuckoo.machinery module.

A basic machinery module would look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from cuckoo.common.abstracts import Machinery
from cuckoo.common.exceptions import CuckooMachineError

class MyMachinery(Machinery):
 def start(self, label):
 try:
 revert(label)
 start(label)
 except SomethingBadHappens:
 raise CuckooMachineError("oops!")

 def stop(self, label):
 try:
 stop(label)
 except SomethingBadHappens:
 raise CuckooMachineError("oops!")

The only requirements for Cuckoo are that:

	The class inherits from Machinery.

	You have a start() and stop() functions.

	You raise CuckooMachineError when something fails.

As you understand, the machinery module is a core part of a Cuckoo setup,
therefore make sure to spend enough time debugging your code and make it
solid and resistant to any unexpected error.

Configuration

Every machinery module should come with a dedicated configuration file
located in $CWD/conf/<machinery module name>.conf (which translates to
cuckoo/data/conf/<machinery>conf in the Git repository). For example for
cuckoo/cuckoo/machinery/kvm.py we have a $CWD/conf/kvm.conf.

The configuration file should follow the default structure:

[kvm]
Specify a comma-separated list of available machines to be used. For each
specified ID you have to define a dedicated section containing the details
on the respective machine. (E.g. cuckoo1,cuckoo2,cuckoo3)
machines = cuckoo1

[cuckoo1]
Specify the label name of the current machine as specified in your
libvirt configuration.
label = cuckoo1

Specify the operating system platform used by current machine
[windows/darwin/linux].
platform = windows

Specify the IP address of the current machine. Make sure that the IP address
is valid and that the host machine is able to reach it. If not, the analysis
will fail.
ip = 192.168.122.105

A main section called [<name of the module>] with a machines field
containing a comma-separated list of machines IDs.

For each machine you should specify a label, a platform and its
ip.

These fields are required by Cuckoo in order to use the already embedded
initialize() function that generates the list of available machines.

If you plan to change the configuration structure you should override the
initialize() function (inside your own module, no need to modify Cuckoo’s
core code). You can find its original code in the Machinery abstract
inside cuckoo/common/abstracts.py.

LibVirt

Starting with Cuckoo 0.5 developing new machinery modules based on LibVirt is
easy. Inside cuckoo/common/abstracts.py you can find LibVirtMachinery
that already provides all the functionality for a LibVirt module. Just inherit
this base class and specify your connection string, as in the example below:

	1
2
3
4
5

	from cuckoo.common.abstracts import LibVirtMachinery

class MyMachinery(LibVirtMachinery):
 # Set connection string.
 dsn = "my:///connection"

This works for all the virtualization technologies supported by LibVirt. Just
remember to check if your LibVirt package (if you are using one, for example
from your Linux distribution) is compiled with the support for the technology
you need.

You can check it with the following command:

$ virsh -V
Virsh command line tool of libvirt 0.9.13
See web site at http://libvirt.org/

Compiled with support for:
 Hypervisors: QEmu/KVM LXC UML Xen OpenVZ VMWare Test
 Networking: Remote Daemon Network Bridging Interface Nwfilter VirtualPort
 Storage: Dir Disk Filesystem SCSI Multipath iSCSI LVM
 Miscellaneous: Nodedev AppArmor Secrets Debug Readline Modular

If you don’t find your virtualization technology in the list of
Hypervisors, you will need to recompile LibVirt with the specific support
for the missing one.

Analysis Packages

As explained in Analysis Packages, analysis packages are structured
Python classes that describe how Cuckoo’s analyzer component should conduct
the analysis procedure for a given file inside the guest environment.

As you already know, you can create your own packages and add them along with
the default ones.
Designing new packages is very easy and requires just a minimal understanding
of programming and of the Python language.

Getting started

As an example we’ll take a look at the default package for analyzing generic
Windows executables, located at $CWD/analyzer/windows/packages/exe.py
(which translates to cuckoo/data/analyzer/windows/packages/exe.py in the
Git repository):

	1
2
3
4
5
6
7
8

	from lib.common.abstracts import Package

class Exe(Package):
 """EXE analysis package."""

 def start(self, path):
 args = self.options.get("arguments")
 return self.execute(path, args)

It seems really easy, thanks to all method inherited by Package object. Let’s
have a look as some of the main methods an analysis package inherits from
Package object:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	from lib.api.process import Process
from lib.common.exceptions import CuckooPackageError

class Package(object):
 def start(self):
 raise NotImplementedError

 def check(self):
 return True

 def execute(self, path, args):
 dll = self.options.get("dll")
 free = self.options.get("free")
 suspended = True
 if free:
 suspended = False

 p = Process()
 if not p.execute(path=path, args=args, suspended=suspended):
 raise CuckooPackageError(
 "Unable to execute the initial process, analysis aborted."
)

 if not free and suspended:
 p.inject(dll)
 p.resume()
 p.close()
 return p.pid

 def finish(self):
 if self.options.get("procmemdump"):
 for pid in self.pids:
 p = Process(pid=pid)
 p.dump_memory()
 return True

	Let’s walk through the code:

	
	Line 1: import the Process API class, which is used to create and manipulate Windows processes.

	Line 2: import the CuckooPackageError exception, which is used to notify issues with the execution of the package to the analyzer.

	Line 4: define the main class, inheriting object.

	Line 5: define the start() function, which takes as argument the path to the file to execute. It should be implemented by each analysis package.

	Line 8: define the check() function.

	Line 13: acquire the free option, which is used to define whether the process should be monitored or not.

	Line 18: initialize a Process instance.

	Line 19: try to execute the malware, if it fails it aborts the execution and notify the analyzer.

	Line 24: check if the process should be monitored.

	Line 25: inject the process with our DLL.

	Line 26: resume the process from the suspended state.

	Line 28: return the PID of the newly created process to the analyzer.

	Line 30: define the finish() function.

	Line 31: check if the procmemdump option was enabled.

	Line 32: loop through the currently monitored processes.

	Line 33: open a Process instance.

	Line 34: take a dump of the process memory.

start()

In this function you have to place all the initialization operations you want
to run. This may include running the malware process, launching additional
applications, taking memory snapshots and more.

check()

This function is executed by Cuckoo every second while the malware is running.
You can use this function to perform any kind of recurrent operation.

For example if in your analysis you are looking for just one specific
indicator to be created (e.g., a file) you could place your condition in this
function and if it returns False, the analysis will terminate right away.

Think of it as “should the analysis continue or not?”.

For example:

def check(self):
 if os.path.exists("C:\\config.bin"):
 return False
 else:
 return True

This check() function will cause Cuckoo to immediately terminate the
analysis whenever C:\\config.bin is created.

execute()

Wraps the malware execution and deal with DLL injection.

finish()

This function is simply called by Cuckoo before terminating the analysis and powering
off the machine.
By default, this function contains an optional feature to dump the process memory of
all the monitored processes.

Options

Every package have automatically access to a dictionary containing all
user-specified options (see Submit an Analysis).

Such options are made available in the attribute self.options. For example
let’s assume that the user specified the following string at submission:

foo=1,bar=2

The analysis package selected will have access to these values:

from lib.common.abstracts import Package

class Example(Package):

 def start(self, path):
 foo = self.options["foo"]
 bar = self.options["bar"]

 def check():
 return True

 def finish():
 return True

These options can be used for anything you might need to configure inside your package.

Process API

The Process class provides access to different process-related features and functions.
You can import it in your analysis packages with:

from lib.api.process import Process

You then initialize an instance with:

p = Process()

In case you want to open an existing process instead of creating a new one, you can
specify multiple arguments:

	pid: PID of the process you want to operate on.

	h_process: handle of a process you want to operate on.

	thread_id: thread ID of a process you want to operate on.

	h_thread: handle of the thread of a process you want to operate on.

This class implements several methods that you can use in your own scripts.

Methods

	
Process.open()

	Opens an handle to a running process. Returns True or False in case of success or failure of the operation.

	Return type:	boolean

Example Usage:

	1
2
3

	p = Process(pid=1234)
p.open()
handle = p.h_process

	
Process.exit_code()

	Returns the exit code of the opened process. If it wasn’t already done before, exit_code() will perform a call to open() to acquire an handle to the process.

	Return type:	ulong

Example Usage:

	1
2

	p = Process(pid=1234)
code = p.exit_code()

	
Process.is_alive()

	Calls exit_code() and verify if the returned code is STILL_ACTIVE, meaning that the given process is still running. Returns True or False.

	Return type:	boolean

Example Usage:

	1
2
3

	p = Process(pid=1234)
if p.is_alive():
 print("Still running!")

	
Process.get_parent_pid()

	Returns the PID of the parent process of the opened process. If it wasn’t already done before, get_parent_pid() will perform a call to open() to acquire an handle to the process.

	Return type:	int

Example Usage:

	1
2

	p = Process(pid=1234)
ppid = p.get_parent_pid()

	
Process.execute(path[, args=None[, suspended=False]])

	Executes the file at the specified path. Returns True or False in case of success or failure of the operation.

	Parameters:	
	path (string) – path to the file to execute

	args (string) – arguments to pass to the process command line

	suspended (boolean) – enable or disable suspended mode flag at process creation

	Return type:	boolean

Example Usage:

	1
2

	p = Process()
p.execute(path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)

	
Process.resume()

	Resumes the opened process from a suspended state. Returns True or False in case of success or failure of the operation.

	Return type:	boolean

Example Usage:

	1
2
3

	p = Process()
p.execute(path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)
p.resume()

	
Process.terminate()

	Terminates the opened process. Returns True or False in case of success or failure of the operation.

	Return type:	boolean

Example Usage:

	1
2
3
4
5

	p = Process(pid=1234)
if p.terminate():
 print("Process terminated!")
else:
 print("Could not terminate the process!")

	
Process.inject([dll[, apc=False]])

	Injects our DLL into the opened process. Returns True or False in case of success or failure of the operation.

	Parameters:	
	dll (string) – path to the DLL to inject into the process

	apc (boolean) – enable to use QueueUserAPC() injection instead of CreateRemoteThread(), beware that if the process is in suspended mode, Cuckoo will always use QueueUserAPC()

	Return type:	boolean

Example Usage:

	1
2
3
4

	p = Process()
p.execute(path="C:\\WINDOWS\\system32\\calc.exe", args="Something", suspended=True)
p.inject()
p.resume()

	
Process.dump_memory()

	Takes a snapshot of the given process’ memory space. Returns True or False in case of success or failure of the operation.

	Return type:	boolean

Example Usage:

	1
2

	p = Process(pid=1234)
p.dump_memory()

Processing Modules

Cuckoo’s processing modules are Python scripts that let you define custom
ways to analyze the raw results generated by the sandbox and append
some information to a global container that will be later used by the
signatures and the reporting modules.

You can create as many modules as you want, as long as they follow a
predefined structure that we will present in this chapter.

Global Container

After an analysis is completed, Cuckoo will invoke all the processing
modules available in the cuckoo/processing/ directory, all of which
fall under the cuckoo.processing module. Any additional module you decide
to create must be placed inside that directory.

Every module should also have a dedicated section in the
$CWD/conf/processing.conf file: for example if you create a module
cuckoo/processing/foobar.py you will have to append the following
section to $CWD/conf/processing.conf:

[foobar]
enabled = yes

Every module will then be initialized and executed and the data returned
will be appended in a data structure that we’ll call global container.

This container is simply just a big Python dictionary that includes
the abstracted results produced by all the modules classified by their
identification key.

Cuckoo already provides a default set of modules which will
generate a standard global container. It’s important for the existing
reporting modules (HTML report etc.) that these default modules are
not modified, otherwise the resulting global container structure would
change and the reporting modules wouldn’t be able to recognize it and
extract the information used to build the final reports.

	The currently available default processing modules are:

	
	AnalysisInfo (cuckoo/processing/analysisinfo.py) - generates some basic information on the current analysis, such as timestamps, version of Cuckoo and so on.

	ApkInfo (cuckoo/processing/apkinfo.py) - generates some basic information on the current APK analysis (Android analysis).

	Baseline (cuckoo/processing/baseline.py) - baseline results from gathered information.

	BehaviorAnalysis (cuckoo/processing/behavior.py) - parses the raw behavioral logs and perform some initial transformations and interpretations, including the complete processes tracing, a behavioral summary and a process tree.

	Buffer (cuckoo/processing/buffer.py) - dropped buffer analysis.

	Debug (cuckoo/processing/debug.py) - includes errors and the analysis.log generated by the analyzer.

	Droidmon (cuckoo/processing/droidmon.py) - extract Dynamic API calls Info From Droidmon logs.

	Dropped (cuckoo/processing/dropped.py) - includes information on the files dropped by the malware and dumped by Cuckoo.

	DumpTls (cuckoo/processing/dumptls.py) - cross-references TLS master secrets extracted from the monitor and key information extracted from the PCAP to dump a master secrets file.

	GooglePlay (cuckoo/processing/googleplay.py) - Google Play information about the analysis session.

	Irma (cuckoo/processing/irma.py) - IRMA connector.

	Memory (cuckoo/processing/memory.py) - executes Volatility on a full memory dump.

	Misp (cuckoo/processing/misp.py) - MISP connector.

	NetworkAnalysis (cuckoo/processing/network.py) - parses the PCAP file and extracts some network information, such as DNS traffic, domains, IPs, HTTP requests, IRC and SMTP traffic.

	ProcMemory (cuckoo/processing/procmemory.py) - performs analysis of process memory dump. Note: the module is able to process user defined Yara rules from data/yara/memory/index_memory.yar. Just edit this file to add your Yara rules.

	ProcMon (cuckoo/processing/procmon.py) - extracts events from procmon.exe output.

	Screenshots (cuckoo/processing/screenshots.py) - screenshot and OCR analysis.

	Snort (cuckoo/processing/snort.py) - Snort processing module.

	StaticAnalysis (cuckoo/processing/static.py) - performs some static analysis of PE32 files.

	Strings (cuckoo/processing/strings.py) - extracts strings from the analyzed binary.

	Suricata (cuckoo/processing/suricata.py) - Suricata processing module.

	TargetInfo (cuckoo/processing/targetinfo.py) - includes information on the analyzed file, such as hashes.

	VirusTotal (cuckoo/processing/virustotal.py) - searches on VirusTotal.com for antivirus signatures of the analyzed file. Note: the file is not uploaded on VirusTotal.com, if the file was not previously uploaded on the website no results will be retrieved.

Getting started

In order to make them available to Cuckoo, all processing modules must be
placed inside the cuckoo/processing/ directory.

A basic processing module could look like:

	1
2
3
4
5
6
7
8

	from cuckoo.common.abstracts import Processing

class MyModule(Processing):

 def run(self):
 self.key = "key"
 data = do_something()
 return data

	Every processing module should contain:

	
	A class inheriting Processing.

	A run() function.

	A self.key attribute defining the name to be used as a sub container
for the returned data.

	A set of data (list, dictionary, string, etc.) that will be appended to
the global container.

You can also specify an order value, which allows you to run the available
processing modules in an ordered sequence. By default all modules are set with
an order value of 1 and are executed in alphabetical order.

If you want to change this value your module would look like:

	1
2
3
4
5
6
7
8
9

	from cuckoo.common.abstracts import Processing

class MyModule(Processing):
 order = 2

 def run(self):
 self.key = "key"
 data = do_something()
 return data

You can also manually disable a processing module by setting the enabled
attribute to False:

	1
2
3
4
5
6
7
8
9

	from cuckoo.common.abstracts import Processing

class MyModule(Processing):
 enabled = False

 def run(self):
 self.key = "key"
 data = do_something()
 return data

The processing modules are provided with some attributes that can be used to
access the raw results for the given analysis:

	self.analysis_path: path to the folder containing the results (e.g., $CWD/storage/analysis/1)

	self.log_path: path to the analysis.log file.

	self.file_path: path to the analyzed file.

	self.dropped_path: path to the folder containing the dropped files.

	self.logs_path: path to the folder containing the raw behavioral logs.

	self.shots_path: path to the folder containing the screenshots.

	self.pcap_path: path to the network pcap dump.

	self.memory_path: path to the full memory dump, if created.

	self.pmemory_path: path to the process memory dumps, if created.

With these attributes you should be able to easily access all the raw results
stored by Cuckoo and perform your analytic operations on them.

As a last note, a good practice is to use the CuckooProcessingError exception
whenever the module encounters an issue you want to report to Cuckoo.
This can be done by importing the class like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from cuckoo.common.exceptions import CuckooProcessingError
from cuckoo.common.abstracts import Processing

class MyModule(Processing):

 def run(self):
 self.key = "key"

 try:
 data = do_something()
 except SomethingFailed:
 raise CuckooProcessingError("Failed")

 return data

Signatures

With Cuckoo you’re able to create some customized signatures that you can run against
the analysis results in order to identify some predefined pattern that might
represent a particular malicious behavior or an indicator you’re interested in.

These signatures are very useful to give a context to the analyses: both because they
simplify the interpretation of the results as well as for automatically identifying
malware samples of interest.

Some examples of what you can use Cuckoo’s signatures for:

	Identify a particular malware family you’re interested in by isolating some unique behaviors (like file names or mutexes).

	Spot interesting modifications the malware performs on the system, such as installation of device drivers.

	Identify particular malware categories, such as Banking Trojans or Ransomware by isolating typical actions commonly performed by those.

	Classify samples into the categories malware/unknown (it is not possible to identify clean samples)

You can find signatures created by us and by other Cuckoo users on our
Community [https://github.com/cuckoosandbox/community] repository.

Getting started

Creation of signatures is a fairly simple process and requires just a decent
understanding of Python programming.

First things first, all signatures must be located inside the
cuckoo/cuckoo/signatures/ directory in Cuckoo or the
modules/signatures/ directory of the Community [https://github.com/cuckoosandbox/community] repository (the Community
repository is still using legacy directory structuring).

The following is a basic example signature:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from cuckoo.common.abstracts import Signature

class CreatesExe(Signature):
 name = "creates_exe"
 description = "Creates a Windows executable on the filesystem"
 severity = 2
 categories = ["generic"]
 authors = ["Cuckoo Developers"]
 minimum = "2.0"

 def on_complete(self):
 return self.check_file(pattern=".*\\.exe$", regex=True)

As you can see the structure is really simple and consistent with the other
modules. We’re going to get into details later, but since version 1.2 Cuckoo
provides some helper functions that make the process of
creating signatures much easier.

In this example we just walk through all the accessed files in the summary and check
if there is anything ending with “.exe”: in that case it will return True, meaning that
the signature matched, otherwise return False.

The function on_complete is called at the end of the cuckoo signature process.
Other function will be called before on specific events and help you to write
more sophisticated and faster signatures.

In case the signature gets matched, a new entry in the “signatures” section
will be added to the global container roughly as follows:

"signatures": [
 {
 "severity": 2,
 "description": "Creates a Windows executable on the filesystem",
 "alert": false,
 "references": [],
 "data": [
 {
 "file_name": "C:\\d.exe"
 }
],
 "name": "creates_exe"
 }
]

Creating your new signature

In order to make you better understand the process of creating a signature, we
are going to create a very simple one together and walk through the steps and
the available options. For this purpose, we’re simply going to create a
signature that checks whether the malware analyzed opened a mutex named
“i_am_a_malware”.

The first thing to do is import the dependencies, create a skeleton and define
some initial attributes. These are the ones you can currently set:

	name: an identifier for the signature.

	description: a brief description of what the signature represents.

	severity: a number identifying the severity of the events matched (generally between 1 and 3).

	categories: a list of categories that describe the type of event being matched (for example “banker”, “injection” or “anti-vm”).

	families: a list of malware family names, in case the signature specifically matches a known one.

	authors: a list of people who authored the signature.

	references: a list of references (URLs) to give context to the signature.

	enable: if set to False the signature will be skipped.

	alert: if set to True can be used to specify that the signature should be reported (perhaps by a dedicated reporting module).

	minimum: the minimum required version of Cuckoo to successfully run this signature.

	maximum: the maximum required version of Cuckoo to successfully run this signature.

In our example, we would create the following skeleton:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from cuckoo.common.abstracts import Signature

class BadBadMalware(Signature): # We initialize the class inheriting Signature.
 name = "badbadmalware" # We define the name of the signature
 description = "Creates a mutex known to be associated with Win32.BadBadMalware" # We provide a description
 severity = 3 # We set the severity to maximum
 categories = ["trojan"] # We add a category
 families = ["badbadmalware"] # We add the name of our fictional malware family
 authors = ["Me"] # We specify the author
 minimum = "2.0" # We specify that in order to run the signature, the user will simply need Cuckoo 2.0

 def on_complete(self):
 return

This is a perfectly valid signature. It doesn’t really do anything yet,
so now we need to define the conditions for the signature to be matched.

As we said, we want to match a particular mutex name, so we proceed as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from cuckoo.common.abstracts import Signature

class BadBadMalware(Signature):
 name = "badbadmalware"
 description = "Creates a mutex known to be associated with Win32.BadBadMalware"
 severity = 3
 categories = ["trojan"]
 families = ["badbadmalware"]
 authors = ["Me"]
 minimum = "2.0"

 def on_complete(self):
 return self.check_mutex("i_am_a_malware")

Simple as that, now our signature will return True whether the analyzed
malware was observed opening the specified mutex.

If you want to be more explicit and directly access the global container,
you could translate the previous signature in the following way:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from cuckoo.common.abstracts import Signature

class BadBadMalware(Signature):
 name = "badbadmalware"
 description = "Creates a mutex known to be associated with Win32.BadBadMalware"
 severity = 3
 categories = ["trojan"]
 families = ["badbadmalware"]
 authors = ["Me"]
 minimum = "2.0"

 def on_complete(self):
 for process in self.get_processes_by_pid():
 if "summary" in process and "mutexes" in process["summary"]:
 for mutex in process["summary"]["mutexes"]:
 if mutex == "i_am_a_malware":
 return True

 return False

Evented Signatures

Since version 1.0, Cuckoo provides a way to write more high performance
signatures. In the past every signature was required to loop through the whole
collection of API calls collected during the analysis. This was unnecessarily
causing performance issues when such collection would be of a large size.

Since 1.2 Cuckoo only supports the so called “evented signatures”. The old
signatures based on the run function can be ported to using
on_complete. The main difference is that with this new format, all the
signatures will be executed in parallel and a callback function called
on_call() will be invoked for each signature within one single loop
through the collection of API calls.

An example signature using this technique is the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	from cuckoo.common.abstracts import Signature

class SystemMetrics(Signature):
 name = "generic_metrics"
 description = "Uses GetSystemMetrics"
 severity = 2
 categories = ["generic"]
 authors = ["Cuckoo Developers"]
 minimum = "2.0"

 # Evented signatures can specify filters that reduce the amount of
 # API calls that are streamed in. One can filter Process name, API
 # name/identifier and category. These should be sets for faster lookup.
 filter_processnames = set()
 filter_apinames = set(["GetSystemMetrics"])
 filter_categories = set()

 # This is a signature template. It should be used as a skeleton for
 # creating custom signatures, therefore is disabled by default.
 # The on_call function is used in "evented" signatures.
 # These use a more efficient way of processing logged API calls.
 enabled = False

 def on_complete(self):
 # In the on_complete method one can implement any cleanup code and
 # decide one last time if this signature matches or not.
 # Return True in case it matches.
 return False

 # This method will be called for every logged API call by the loop
 # in the RunSignatures plugin. The return value determines the "state"
 # of this signature. True means the signature matched and False it did not this time.
 # Use self.deactivate() to stop streaming in API calls.
 def on_call(self, call, pid, tid):
 # This check would in reality not be needed as we already make use
 # of filter_apinames above.
 if call["api"] == "GetSystemMetrics":
 # Signature matched, return True.
 return True

 # continue
 return None

The inline comments are already self-explanatory.

Another event is triggered when a signature matches.

	1
2
3
4
5
6

	def on_signature(self, matched_sig):
 required = ["creates_exe", "badmalware"]
 for sig in required:
 if not sig in self.list_signatures():
 return
 return True

This kind of signature can be used to combine several signatures identifying
anomalies into one signature classifying the sample (malware alert).

Marks & Helpers

Starting from version 1.2, signatures are able to log exactly what triggered
the signature. This allows users to better understand why this signature is
present in the log, and to be able to better focus malware analysis.

For examples on marks and helpers please refer to the Cuckoo Community [https://github.com/cuckoosandbox/community] for
now - until we write some thorough up-to-date documentation on that.

Reporting Modules

After the raw analysis results have been processed and abstracted by the
processing modules and the global container is generated (ref. Processing Modules),
it is passed over by Cuckoo to all the reporting modules available, which will
make use of it and will make it accessible and consumable in different
formats.

Getting Started

All reporting modules must be placed inside the cuckoo/cuckoo/reporting/
directory (which translates to the cuckoo.reporting module).

Every module must also have a dedicated section in the
$CWD/conf/reporting.conf file: for example if you create a module
cuckoo/cuckoo/reporting/foobar.py you will have to append the following
section to $CWD/conf/reporting.conf (and thus
cuckoo/data/conf/reporting.conf in the Git repository):

[foobar]
enabled = on

Every additional option you add to your section will be available to your
reporting module in the self.options dictionary.

Following is an example of a working JSON reporting module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	import os
import json
import codecs

from cuckoo.common.abstracts import Report
from cuckoo.common.exceptions import CuckooReportError

class JsonDump(Report):
 """Saves analysis results in JSON format."""

 def run(self, results):
 """Writes report.
 @param results: Cuckoo results dict.
 @raise CuckooReportError: if fails to write report.
 """
 try:
 report = codecs.open(os.path.join(self.reports_path, "report.json"), "w", "utf-8")
 json.dump(results, report, sort_keys=False, indent=4)
 report.close()
 except (UnicodeError, TypeError, IOError) as e:
 raise CuckooReportError("Failed to generate JSON report: %s" % e)

This code is very simple, it receives the global container produced by the
processing modules, converts it into JSON and writes it to a file.

There are few requirements for writing a valid reporting module:

	Declare your class inheriting from Report.

	Have a run() function performing the main operations.

	Try to catch most exceptions and raise CuckooReportError to notify the issue.

All reporting modules have access to some attributes:

	self.analysis_path: path to the folder containing the raw analysis results (e.g. storage/analyses/1/)

	self.reports_path: path to the folder where the reports should be written (e.g. storage/analyses/1/reports/)

	self.options: a dictionary containing all the options specified in the report’s configuration section in conf/reporting.conf.

Final Remarks

Links

	www.cuckoosandbox.org [http://www.cuckoosandbox.org]

	community.cuckoosandbox.org [https://community.cuckoosandbox.org]

	github.com/cuckoosandbox [http://github.com/cuckoosandbox]

	malwr.com [https://malwr.com]

Join the discussion

You can get in contact with the Cuckoo developers and users through the Community [https://community.cuckoosandbox.org]
portal or on IRC at the official #cuckoosandbox channel.

If you are encountering an issue you can’t solve and are looking for some help,
go to our Community [https://community.cuckoosandbox.org] website.

Please read the following rules before posting:

	Before posting, read the Community [https://community.cuckoosandbox.org] archives, the Cuckoo blog,
the documentation and Google about your issue. DO NOT post questions that
have already been answered over and over everywhere.

	Posting messages saying just something like “Doesn’t work, help me” are completely
useless. If something is not working report the error, paste the logs,
the config file, the information on the virtual machine, the
results of the troubleshooting, etc. Give context. We are not wizards and we
don’t have a crystal ball.

	Use a proper title. Stuff like “Doesn’t work”, “Help me”, “Error” are not
proper titles.

Support Us

Cuckoo Sandbox is a completely open source software, released freely to the public
and developed mostly during free time by volunteers. If you enjoy it and want to
see it kept developed and updated, please consider supporting us.

We are always looking for financial support, hardware support and contributions of
any sort. If you’re interested in cooperating, feel free to contact us.

People

Cuckoo Sandbox is an open source project result of the efforts and contributions
of a lot of people who enjoyed volunteering some of their time for a greater
good :).

Active Developers

	Name
	Role
	Contact

	Claudio nex [https://twitter.com/botherder] Guarnieri
	Project Leader
	nex at nex dot sx

	Alessandro jekil [https://twitter.com/jekil] Tanasi
	Core Developer
	alessandro at tanasi dot it

	Jurriaan skier [https://twitter.com/skier_t] Bremer
	Core Developer
	jbr at cuckoo dot sh

	Mark rep [https://twitter.com/repmovsb] Schloesser
	Core Developer
	ms at mwcollect dot org

Contributors

It’s hard at this point to keep track of all individual contributions.
In the Cuckoo Contributors [https://github.com/cuckoosandbox/cuckoo/graphs/contributors] page there is the list of people who contributed
code to our GitHub repository.

There is a number of friends who provided feedback, ideas and support during
the years of development of this project, including but not limited to:

	Felix Leder

	Tillmann Werner

	Georg Wicherski

	David Watson

	Christian Seifert

Supporters

	The Honeynet Project [http://www.honeynet.org]

	The Shadowserver Foundation [http://www.shadowserver.org]

 _images/side-bar.png
@ Dashboard Recent ¢ Pending Q Search Submit

I File CVE-2011-2462.pdf_
Summary 2 Download
Dropped Files Size 269.2KB

Type PDF document, version 1.7

Dropped Bufers

MD5 721fda5df552f4130218ad9bd2adab78
SHAT 5d896442142783b99491ebad61bdc5a884477e3

SHA256 036e049C625a2c3fc57434d0784a2a215Fbde7a90c561db7:
oc

SHAS12
CRC32 286348D3
ssdeep None

Yara None matched

$ Score

_images/windows_network.png
=

o) ——

Connest using

B9 AMD PCNET Fami PCI Ethemet ad

Thiconnecton uss th olowing s
%115 Clont o Mictosft Ntk
%] 2}l and it St o Microsot
9] 12} 005 Pocket Schecier
™l % Intemet Protocol (TCPAP)

Intal

Transrission Contal Potacal/Iteret Prctod
wide ate3 network proocol that provides cor]
across dverse interconnected networks

[Show icon in natfication area when connect

] Notiy me whenthis connecion has lited o

General

Yo can get P settings assigned automalical f your network supports
this capabily. therwise, you need to ask your retork adminitator for
the appropiste P settings.

‘Dbtain an P address automatically

® Use the following P acress:

1P address: 192168, 1 101
Subnet mask: 26525 . 286 . 0
Defaul gateway: 192,188, 1 1

® Use the follwing DNS server addesses:
Prefered DNS server 192

Atemste DNS server:

_images/feedback-form.png
Expecting different results? Share this analysis report with us and we will investigate it
Please include a brief message of what you had expected to see and what you got instead.

The Cuckoo Sandbox team

Include memory dump

_images/unsupported_method.png
cuckooWindows7 - Oracle VM VirtualBox

AN

Conputer Adobe Resder

wm

9

Google Chrome:

a)

Mozlla Frefox

Control Pane!

Recyde Bin

_images/fog_scheduled_job.png
Open Source Computer Cloning Solution

28 8B F

BE=E2%F @B O

Main Menu
. Host Management
All Hosts .
Create New Host Create Download task for Host WinXP
Export Hosts
Import Hosts Are you sure you wish to deploy these machines?
Host Menu
General Advanced Settings
Groups
Basic Tasks) Schedule Shutdown after task completion
Adiue Directory O Schedule Instant Deployment
O Schedule Delayed Deployment
Service Settings o
vento Schedule Cron-style Deployment
Virus History
Login History
Delete
Hosts in Task
Host Winxp 00:2590:6b:24:3F
Winxp

CREATE DOWNLOAD TASK FOR HOST WINXP

MAC

_images/fog_host_management.png
Open Source Computer Cloning Solution

28 8B F

Main Menu

Host Management

New Search
List All Hosts
Create New Host New Host

Export Hosts

Import Hosts Add new host definition

Host Name

Primary MAC

Host Description

- P
- —
e
R —

Active Directory

Join Domain after image task. =]

emane —
oo —
e —
Domain Password .
Must be encrypted =

_images/error_template_rendering.png

_images/architecture-main.png
Analysis Guests
Aclean environment when run a

Cuckoo host sample.
Responsible for guest and The sample behavior is reported back to
analysis management. the Cuckoo host.

Start analysis, dumps traffic
and generates reports.

Analysis VM n.1

Analysis VM n.2
(Virtual network 1)

Virtual network
An isolated network where

run analysis virtual

machines. Analysis VM n.3

Internet / Sinkhole

_images/fog_image_management.png
Open Source Computer Cloning Solution

28 8B F

Main Menu

New Search
List All images.
Create New Image

Image Name
Image Description
Storage Group

Operating System

Image Path

Image Type

2 B ©

= £

Image Management

New Image

Add new image definition

I o—

default - (1) |
Windows 2000XP - (1) ™|

/fimages/| winxp

[e Pt mage-Singe ok v e |

