

 Navigation

 	
 index

 	
 next |

 	Counterpart 1.4.0 documentation

Counterpart: Object Matching for PHP

Counterpart is a matching framework for PHP and is used to compare values in
an object oriented way.

Some example use cases:

	A testing framework could use Counterpart’s matchers and Assert class for
assertions.

	A mock object library could use Counterpart to match argument expectations.

	A validation library could use Counterpart to check that values match
expectations.

Contents:

	Matchers
	Built in Matchers

	Logical Combinations
	Logical Not (Negating Matchers)

	Logical And

	Logical Or

	Logical Xor

	Custom Matchers
	Better Negation Messages

	Mismatch Descriptions

	Using Custom Matchers for Assertions

	Github [https://github.com/chrisguitarguy/Counterpart]

	API Documentation [http://api.counterpartphp.org]

Quickstart

Counterpart can be installed via composer, just add it it to your composer.json.

{
 "name": "somevendor/someproject",
 "require": {
 "counterpart/counterpart": "~1.4"
 }
}

Then simply composer install or composer update.

Counterpart provides two traits full of static factory and helper methods.

	Counterpart\Matchers

	Counterpart\Assert

Matchers

The Counterpart\Matchers trait comes with a set of static factory methods
to make using matchers easy.

<?php

use Counterpart\Matchers;

$matcher = Matchers::hasKey('a_key');
$matcher->matches(['a_key' => '']); // true
echo $matcher; // "is an array or ArrayAccess with the key a_key"

Every matcher object implements Counterpart\Matcher whose match method
does all the heavy lifting. The matcher interface also includes a __toString
method which will return a textual description of what’s being looked for.

Logical Combinations

Counterpart provides a set of matchers that allow users to create logical
combinations of one or more matchers.

See Logical Combinations for more.

Assertions

The Counterpart\Assert trait provides assertions: matchers wrapped up in a
helper that throws a Counterpart\Exception\AssertionFailed exception when
the matcher fails.

<?php
use Counterpart\Assert;

Assert::assertEquals(10, 10, "two values that are equal are not matching as equal, something is wrong");
Assert::assertFileExists(__FILE__);

It’s also passible to use a custom matcher with the Assert trait directly.
Simple paces an instance of Counterpart\Matcher as the first argument to
Assert::assertThat.

<?php
use Counterpart\Assert;
use Counterpart\Matcher\IsEqual;

Assert::assertThat(new IsEqual(1), 1, "1 != 1, something is very broken");

 Copyright 2014, Christopher Davis.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Counterpart 1.4.0 documentation

Matchers

This document is a brief overview of all the matchers that counter part provides.
For a more in depth look at the matchers, head over to the
api documentation [http://api.counterpartphp.org].

For information about custom matchers see Custom Matchers.

Built in Matchers

	Anything: Match literally anything.

	Callback: Run the actual value through a user defined callback. If the
callback returns a truthy value it’s a match.

	Contains: Check if an array of Traversable contains a value

	Count: Check if an array, Traversable, or Countable matches an
expected count.

	FileExists: Check if a file exists.

	GreaterThan: Check if a value is greater than an expected number.

	HasKey: Check if an array or ArrayAccess contains a given key.

	HasProperty: Check if an object has a given property. This can be configured
to only match public properties.

	IsEmpty: Check if a value is empty (eg. empty($actual)).

	IsEqual: Check if two values are equal – can be configured to use strict
equality.

	IsFalse: Check if an actual value is exactly equal to false.

	IsFalsy: Check if an actual value is falsy. These are things like "no",
0, or "0".

	IsInstanceOf: Check of an actual value is an instance of a given class or
interfact.

	IsJson: Check if an actual value is a valid JSON <http://www.json.org/>
string.

	IsNull: Check if an actual value is exactly equal to null.

	IsTrue: Check if an actual value is exactly equal to true.

	IsTruthy: Check if an actual value is truthy. These are things like
"yes", 1, or "1".

	IsType: Check if an object is an internal type.

	LessThan: Check if an actual value is less than a given number.

	LogicalAnd: Combine one or more matchers with a conjuction. See
Logical Combinations. Will match if all sub-matchers match.

	LogicalNot: Negate a matcher. See Logical Combinations.

	LogicalOr: Combine one or more matchers with a disjunction. See
Logical Combinations. Will match if an only if one of its sub-matchers
matches.

	LogicalXor: Combine one or more matchers with an XOR. LogicalXor will
match if an only if exactly one of its sub-matchers matches.

	MatchesRegex: Checks a string (or object with a __toString method)
against a regular expression.

	PhptFormat: Checks a string against a phpt format <http://qa.php.net/phpt_details.php#expectf_section>.

	StringContains: Checks to see if a string contains an expected value.

 Copyright 2014, Christopher Davis.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Counterpart 1.4.0 documentation

Logical Combinations

Counterpart provides a set of matchers that allow users to create logical
combinations of one or more matchers.

Logical Not (Negating Matchers)

A matcher can be negated with LogicalNot.

<?php
use Counterpart\Matchers;

$matcher = Matchers::logicNot(Matchers::hasKey('a_key'));
$matcher->matches(['a_key' => '']); // false
echo $matcher; // "is an array or ArrayAccess without the key a_key"

There are a fair amount negative matcher factories already set up. The above
could be more simply written.

<?php
use Counterpart\Matchers;

$matcher = Matchers::doesNotHaveKey('a_key'));
$matcher->matches(['a_key' => '']); // false
echo $matcher; // "is an array or ArrayAccess without the key a_key"

Logical And

LogicalAnd can be used to combine one or more matchers with an AND
or conjuction. When all sub-matchers match a value, LogicalAnd will return
true. Checking to see if a value is in a range is a great example of this.

<?php
use Counterpart\Matchers;

$matcher = Matchers::logicalAnd(
 Matchers::greaterThan(10),
 Matchers::lessThan(100)
);
$matcher->matches(11); // true
$matchers->matches(101); // false

Logical Or

LogicalOr can be used to combine one or more matchers with an OR or
disjunction. If at least one sub-matcher matches the value, LogicalOr will
also match. Checking that a value is greater than or equal to another is a great
example of this.

<?php
use Counterpart\Matchers;

// same as Matchers::greaterThanOrEqual(10);
$matcher = Matchers::logicalOr(
 Matchers::equalTo(10),
 Matchers::greaterThan(10)
);
$matcher->matches(10); // true
$matcher->matches(20); // true
$matcher->matches(9); // false

Logical Xor

LogicalXor can be used to combine one or more matchers with an XOR.
LogicalXor will return true if one and only one of the sub-matchers matches.
The above greater than or equal to example could be written using logicalXor.

<?php
use Counterpart\Matchers;

$matcher = Matchers::logicalXor(
 Matchers::equalTo(10),
 Matchers::greaterThan(10)
);
$matcher->matches(10); // true
$matcher->matches(20); // true
$matcher->matches(9); // false

 Copyright 2014, Christopher Davis.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Counterpart 1.4.0 documentation

Custom Matchers

One of the goals of Counterpart is to make it easy to create custom matchers. The
Counterpart\Matcher interface only contains two methods: matches and
__toString.

Let’s make a custom matcher that checks to see if a value is in a range.

<?php
namespace Acme\CounterpartExample;

use Counterpart\Matcher;

/**
 * Matches a value if its between $min and $max
 */
class RangeMatcher implements Matcher
{
 private $min;
 private $max;

 public function __construct($min, $max)
 {
 $this->min = $min;
 $this->max = $max;
 }

 /**
 * Matches checks an actual value against the expectations.
 */
 public function matches($actual)
 {
 return $actual > $this->min && $actual < $this->max;
 }

 /**
 * This should return a textual description of the what the matcher
 * is trying to accomplish.
 */
 public function __toString()
 {
 return sprintf('is a value between %d and %d', $this->min, $this->max);
 }
}

Better Negation Messages

By default Counterpart’s LogicalNot will replace
the starting is in a matchers description with is not. That’s not always so
great for generating a negation error message.

For a more customized negative message, a matcher can implement Counterpart\Negative.

<?php
namespace Acme\CounterpartExample;

use Counterpart\Matcher;
use Counterpart\Negative;

/**
 * Matches a value if its between $min and $max
 */
class RangeMatcher implements Matcher, Negative
{
 // all the stuff above

 /**
 * `LogicalNot` will call this this to generate a nice negative message.
 */
 public function negativeMessage()
 {
 // this is what Counterpart would have done anyway
 return sprintf('is not a value between %d and %d', $this->min, $this->max);
 }
}

Mismatch Descriptions

When Counterpart does assertions it will call a matchers __toString method
as part of the error description. Sometimes this isn’t enough – sometimes it
doesn’t provide enough context for the user or developer to take action.

Custom matchers may implement Counterpart\Describer to generate a more thorough
description of a mismatch.

<?php
namespace Acme\CounterpartExample;

use Counterpart\Matcher;
use Counterpart\Negative;
use Counterpart\Describer;

/**
 * Matches a value if its between $min and $max
 */
class RangeMatcher implements Matcher, Negative, Describer
{
 // all the stuff above

 /**
 * `Counterpart\Assert::assertThat` will call this method to to generate
 * a more thorough error description.
 */
 public function describeMismatch($actual)
 {
 if ($actual < $this->min) {
 return 'the value was below the minimum';
 }

 if ($actual > $this->max) {
 return 'the value was above the maximum';
 }

 // the method doesn't know what to do, so decline to do anything.
 return Describer::DECLINE_DESCRIPTION;
 }
}

Using Custom Matchers for Assertions

Simply pass an instance of the custom matcher as the first argument to
Counterpart\Assert::assertThat.

<?php
use Counterpart\Assert;
use Acme\CounterpartExample\RangeMatcher;

$actualValue = 9;
Assert::assertThat(new RangeMatcher(1, 10), $actualValue);

 Copyright 2014, Christopher Davis.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Counterpart 1.4.0 documentation

Index

 Copyright 2014, Christopher Davis.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

