

Corrfunc Documentation

Corrfunc is a set of high-performance routines to measure clustering statistics.
The main features of Corrfunc are:

	Fast All theory pair-counting is at least an order of magnitude faster than all existing public codes. Particularly suited for MCMC.

	OpenMP Parallel All pair-counting codes can be done in parallel (with strong scaling efficiency >~ 95% up to 10 cores)

	Python Extensions Python extensions allow you to do the compute-heavy bits using C while retaining all of the user-friendliness of python.

	Modular The code is written in a modular fashion and is easily extensible to compute arbitrary clustering statistics.

	Future-proof As I get access to newer instruction-sets, the codes will
get updated to use the latest and greatest CPU features.

The source code is publicly available at https://github.com/manodeep/Corrfunc.

Overview of Corrfunc

	Package Installation

	Getting started with Corrfunc

	Typical Tasks for Computing Correlation Functions

	Developer documentation

Reference

	Comprehensive API reference

License and Credits

	Package contributors

	License and Citation Information

Package Installation

To install Corrfunc, you can either use pip or clone the repo from GitHub and build the source code.
Either way, be sure to read the Dependencies section prior to installation.

Using pip

The simplest way to install the latest release of the code is with pip. Before installation, be sure you have installed the package dependencies described in the Dependencies section

pip install Corrfunc

This will install the latest official release of the code.
If you want the latest master branch,
you will need to build the code from source following the instructions in the next section.

Building from source

If you don’t install the latest release using pip,
you can instead clone the cource code and call the setup file.
Before installation, be sure you have installed the package dependencies
described in the Dependencies section.
The first step is to clone the Corrfunc repository

git clone https://github.com/manodeep/Corrfunc.git
cd Corrfunc
make install
python setup.py install

Dependencies

The command-line version of Corrfunc needs the following packages to be installed:

	make [https://www.gnu.org/software/make/]: 3.80 or later

	C compiler [https://gcc.gnu.org/]: gcc >=4.6, clang, icc. Multi-threading
will be disabled if the compiler does not support OpenMP.

	gsl [https://www.gnu.org/software/gsl/]: any recent version

If you plan to use the C extensions, then the following are required:

	Python [http://www.python.org/]: 2.6 or later

	Numpy [http://www.numpy.org/]: 1.7 or later

Any of the above can be installed with either pip or conda.

Verifying your installation

After installing Corrfunc, you should run the integrated test suite to make
sure that the package was installed correctly. If you installed from source,
then type the following in the root package directory,

make tests

If you installed using pip/conda, then use the following to run the tests

from Corrfunc.tests import tests
tests()

Once you have installed the package, see Getting started with Corrfunc for instructions on how to get up and running.

Getting started with Corrfunc

Corrfunc is a set of high-performance routines to measure clustering
statistics. The codes are divided conceptually into two different segments:

	theory - calculates clustering statistics on simulation volumes. Input
positions are expected to be Cartesian X/Y/Z. Periodic boundary conditions
are supported. Relevant C codes are in directory theory/

	mocks - calculates clustering statistics on observation volumes. Input
positions are assumed to be in obverser frame, Right Ascension, Declination
and SpeedofLight*Redshift (where required; \(\omega(\theta)\)
only needs RA and DEC). Relevant C codes are in directory mocks/

This getting-started guide assumes you have already followed the
Package Installation section of the documentation to get the package
and its dependencies set up on your machine.

If you want to compute correlation functions and have installed the python
extensions, then see Typical Tasks for Computing Correlation Functions for typical
tasks. Otherwise, read on for the various interfaces available within Corrfunc.

Computing Clustering Statistics with Corrfunc

Corrfunc supports three separate mechanisms to compute the clustering statistics:

	Via python (if you have python and numpy installed)

Pros: Fully flexible API to modulate code behaviour at runtime. For instance,
calculations can be performed in double-precision simply by passing arrays of
doubles (rather than floats).

Cons: Has fixed python overhead. For low particle numbers, can be as much as
20% slower compared to the command-line executables.

See Using the python extensions in Corrfunc for details on how to use the python interface.

	Via static libraries directly in C codes

Pros: Fully flexible API to modulate code behaviour at runtime. All features supported by the python extensions are also supported here.

Cons: Requires coding in C. See example C codes invoking the theory and
mocks in the directories: theory/examples/run_correlations.c and mocks/examples/run_correlations_mocks.c.

See Using the static library interface in Corrfunc for details on how to use the static library interface.

	Command-line executables

Pros: Fastest possible implementations of all clustering statistics

Cons: API is fixed. Any changes require full re-compilation.

See Using the command-line interface in Corrfunc for details on how to use the command-line executables.

Available Corrfunc interfaces

	Using the python extensions in Corrfunc

	Using the static library interface in Corrfunc

	Using the command-line interface in Corrfunc

	Cheat-sheet for all available interfaces in Corrfunc

Using the python extensions in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine. Rest of document also assumes that you have installed
the C extensions for python.

Importing Corrfunc

After installing Corrfunc you can open up a python terminal and import the
base package by:

>>> import Corrfunc

All of the functionality is divided into theory routines and mocks
routines. These routines can be independently imported by using:

>>> from Corrfunc.theory import *
>>> from Corrfunc.mocks import *

You can access the full API documentation by simply typing:

help(DD) # theory pair-counter in 3-D separation (r)
help(DDrppi_mocks) # mocks pair-counter in 2-D (rp, pi)

First steps with Corrfunc

Overview of Corrfunc inputs

Broadly speaking, Corrfunc requires these following inputs:

	(At least) 3 arrays specifying the positions for the particles

	For Corrfunc.theory routines, these positions are Cartesian XYZ in
co-moving Mpc/h units.

	For Corrfunc.mocks routines, these positions are Right Ascension,
Declination, and Speed of Light * Redshift or Co-moving
distance. The angles are expected in degrees, while the distance is
expected in co-moving Mpc/h.

See Reading Catalogs for Corrfunc for details on how to read in arrays from a file.

	A boolean flag specifying in an auto-correlation or cross-correlation is
being performed. In case of cross-correlations, another set of 3 arrays
must be passed as input. This second set of arrays typically represents
randoms for Corrfunc.mocks.

	A file containing the bins for the clustering statistic (where
relevant). Look at theory/tests/bins for an example of the contents of
the file for spatial bins. See mocks/tests/angular_bins for an example
containing angular bins for mocks routines. Passing a filename is the most
general way of specifying bins in Corrfunc. However, you can also pass in a
1-D array for the bins.

See Specifying the separation bins in Corrfunc for details on how to specify the bins as a file as
well as an array

See Typical Tasks for Computing Correlation Functions for a broad overview of the typical tasks
associated with computing correlation functions. Read on for the various
pair-counters available within the python interfaces of Corrfunc.

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the
counts-in-cells. For all of these calculations a few inputs are required. The
following code section sets up the default inputs that are used later on in the
clustering functions:

>>> import numpy as np
>>> from Corrfunc.io import read_catalog

Read the default galaxies supplied with
Corrfunc. ~ 1 million galaxies on a 420 Mpc/h cube
>>> X, Y, Z = read_catalog()

Specify boxsize for the XYZ arrays
>>> boxsize = 420.0

Number of threads to use
>>> nthreads = 2

Create the bins array
>>> rmin = 0.1
>>> rmax = 20.0
>>> nbins = 20
>>> rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

Specify the distance to integrate along line of sight
>>> pimax = 40.0

Specify the max. of the cosine of the angle to the LOS for
DD(s, mu)
>>> mu_max = 1.0

Specify the number of linear bins in `mu`
>>> nmu_bins = 20

Specify that an autocorrelation is wanted
>>> autocorr = 1

Calculating 2-D projected auto-correlation (Corrfunc.theory.wp)

Corrfunc can directly compute the projected auto-correlation function,
\(w_p(r_p)\). This calculation sets periodic boundary conditions. Randoms
are calculated analytically based on the supplied boxsize. The projected
separation, \(r_p\) is calculated in the X-Y plane while the line-of-sight
separation, \(\pi\) is calculated in the Z plane. Only pairs with
\(\pi\) separation less than \(\pi_{max}\) are counted.

from Corrfunc.theory.wp import wp
results_wp = wp(boxsize, pimax, nthreads, rbins, X, Y, Z)

Calculating 3-D autocorrelation (Corrfunc.theory.xi)

Corrfunc can also compute the 3-D auto-correlation function,
\(\xi(r)\). Like \(w_p(r_p)\), this calculation also enforces periodic
boundary conditions and an auto-correlation. Randoms are calculated
analytically on the supplied boxsize.

from Corrfunc.theory.xi import xi
results_xi = xi(boxsize, nthreads, rbins, X, Y, Z)

Calculating 3-D pair-counts (Corrfunc.theory.DD)

Corrfunc can return the pair counts in 3-D real-space for a set of arrays. The
calculation can be either auto or cross-correlation, and with or without periodic
boundaries. The pairs are always double-counted. Additionally, if the smallest
bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DD import DD
results_DD = DD(autocorr, nthreads, rbins, X, Y, Z)

Calculating 2-D pair-counts (Corrfunc.theory.DDrppi)

Corrfunc can return the pair counts in 2-D real-space for a set of arrays. The
calculation can be either auto or cross-correlation, and with or without periodic
boundaries. The projected separation, \(r_p\) is calculated in the X-Y plane while the
line-of-sight separation, \(\pi\) is calculated in the Z plane.

The pairs are always double-counted. Additionally, if the smallest
bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DDrppi import DDrppi
results_DDrppi = DDrppi(autocorr, nthreads, pimax, rbins, X, Y, Z, boxsize=boxsize)

Calculating 2-D pair-counts (Corrfunc.theory.DDsmu)

Corrfunc can return the pair counts in 2-D real-space for a set of arrays. The
calculation can be either auto or cross-correlation, and with or without periodic
boundaries. The spatial separation, \(s\) is calculated in 3-D while
\(mu\) is the cosine of angle to the line-of-sight and is calculated
assuming that the Z-axis is the line-of-sight.

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
{\mu} &= \frac{\left(z_1 - z_2 \right)}{\Vert\mathbf{s}\Vert}\end{split}\]

where, \(\mathbf{v_1}:=(x_1, y_1, z_1)\) and \(\mathbf{v_2}:=(x_2, y_2, z_2)\) are the vectors for the
two points under consideration, and, \(\Vert\mathbf{s}\Vert=\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}\)

The pairs are always double-counted. Additionally, if the smallest
bin is 0.0 for an autocorrelation, then the self-pairs will be counted.

from Corrfunc.theory.DDsmu import DDsmu
results_DDsmu = DDsmu(autocorr, nthreads, rbins, mu_max, nmu_bins, X, Y, Z, boxsize=boxsize)

Calculating the Counts-in-Cells (Corrfunc.theory.vpf)

Corrfunc can calculate the counts-in-cells statistics. The simplest example for
counts-in-cells is the Void Probability Function – the probability that a
sphere of a certain size contains zero galaxies.

from Corrfunc.theory.vpf import vpf

Maximum radius of the sphere in Mpc/h
rmax = 10.0

Number of bins to cover up to rmax
nbins = 10

Number of random spheres to place
nspheres = 10000

Max number of galaxies in sphere (must be >=1)
numpN = 6

Random number seed (used for choosing sphere centres)
seed = 42

results_vpf = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z)

Calculating clustering statistics in mock catalogs

In order to calculate clustering statistics in mock catalogs, the galaxy
positions are assumed to be specified as on-sky (Right Ascension,
Declination, and speed of light * redshift). The following code section
sets up the default arrays and parameters for the actual clustering calculations:

import numpy as np
import Corrfunc
from os.path import dirname, abspath, join as pjoin
from Corrfunc.io import read_catalog

Mock catalog (SDSS-North) supplied with Corrfunc
mock_catalog = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/", "Mr19_mock_northonly.rdcz.ff")
RA, DEC, CZ = read_catalog(mock_catalog)

Randoms catalog (SDSS-North) supplied with Corrfunc
randoms_catalog = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/", "Mr19_randoms_northonly.rdcz.ff")
RAND_RA, RAND_DEC, RAND_CZ = read_catalog(randoms_catalog)

Number of threads to use
nthreads = 2

Specify cosmology (1->LasDamas, 2->Planck)
cosmology = 1

Create the bins array
rmin = 0.1
rmax = 20.0
nbins = 20
rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

Specify the distance to integrate along line of sight
pimax = 40.0

Specify the max. of the cosine of the angle to the LOS
for DD(s, mu)
mu_max = 1.0

Specify the number of linear bins in `mu`
nmu_bins = 20

Specify that an autocorrelation is wanted
autocorr = 1

Calculating 2-D pair counts (Corrfunc.mocks.DDrppi_mocks)

Corrfunc can calculate pair counts for mock catalogs. The input positions are
expected to be Right Ascension, Declination and CZ (speed of light
times redshift, in Mpc/h). Cosmology has to be specified since CZ needs
to be converted into co-moving distance. If you want to calculate in arbitrary
cosmology, then convert CZ into co-moving distance, and then pass the
converted array while setting the option is_comoving_dist=True. The
projected and line of sight separations are calculated using the following
equations from Zehavi et al. 2002 [http://adsabs.harvard.edu/abs/2002ApJ...571..172Z]

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
\mathbf{l} &= \frac{1}{2}\left(\mathbf{v_1} + \mathbf{v_2}\right), \\
\pi &= \left(\mathbf{s} \cdot \mathbf{l}\right)/\Vert\mathbf{l}\Vert, \\
r_p^2 &= \mathbf{s} \cdot \mathbf{s} - \pi^2\end{split}\]

where, \(\mathbf{v_1}:=(x_1, y_1, z_1)\) and \(\mathbf{v_2}:=(x_2, y_2, z_2)\) are the vectors for the
two points under consideration, and, \(\Vert\mathbf{s}\Vert=\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}\).

Here is the python code to call Corrfunc.mocks.DDrppi_mocks:

from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
results_DDrppi_mocks = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, rbins, RA, DEC, CZ)

Calculating 2-D pair counts (Corrfunc.mocks.DDsmu_mocks)

Corrfunc can calculate pair counts for mock catalogs. The input positions are
expected to be Right Ascension, Declination and CZ (speed of light
times redshift, in Mpc/h). Cosmology has to be specified since CZ needs
to be converted into co-moving distance. If you want to calculate in arbitrary
cosmology, then convert CZ into co-moving distance, and then pass the
converted array while setting the option is_comoving_dist=True. The
projected and line of sight separations are calculated using the following
equations from Zehavi et al. 2002 [http://adsabs.harvard.edu/abs/2002ApJ...571..172Z]

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
\mathbf{l} &= \frac{1}{2}\left(\mathbf{v_1} + \mathbf{v_2}\right), \\
\mu &= \left(\mathbf{s} \cdot \mathbf{l}\right)/\left(\Vert\mathbf{l}\Vert \Vert\mathbf{s}\Vert \right)\end{split}\]

where, \(\mathbf{v_1}:=(x_1, y_1, z_1)\) and \(\mathbf{v_2}:=(x_2, y_2, z_2)\) are the vectors for the
two points under consideration, and, \(\Vert\mathbf{s}\Vert=\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}\)

Here is the python code to call Corrfunc.mocks.DDsmu_mocks:

from Corrfunc.mocks.DDsmu_mocks import DDsmu_mocks
results_DDsmu_mocks = DDsmu_mocks(autocorr, cosmology, nthreads, mu_max, nmu_bins, rbins, RA, DEC, CZ)

Calculating angular pair-counts (Corrfunc.mocks.DDtheta_mocks)

Corrfunc can compute angular pair counts for mock catalogs. The input positions
are expected to be Right Ascension and Declination. Since all
calculations are in angular space, cosmology is not required.

from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
results_DDtheta_mocks = DDtheta_mocks(autocorr, nthreads, rbins, RA, DEC)

Calculating the Counts-in-Cells (Corrfunc.mocks.vpf_mocks)

Corrfunc can calculate the counts-in-cells statistics. The simplest example for
counts-in-cells is the Void Probability Function – the probability that a
sphere of a certain size contains zero galaxies.

from Corrfunc.mocks.vpf_mocks import vpf_mocks

Maximum radius of the sphere in Mpc/h
rmax = 10.0

Number of bins to cover up to rmax
nbins = 10

Number of random spheres to place
nspheres = 10000

Max number of galaxies in sphere (must be >=1)
numpN = 6

Minimum number of random points needed in a ``rmax`` sphere
such that it is considered to be entirely within the mock
footprint. Does not matter in this case, since we already
have the centers for the fully enclosed spheres
threshold_ngb = 1

File with sphere centers (centers such that spheres with size
rmax=10 Mpc/h are completely inside the survey)
centers_file = pjoin(dirname(abspath(Corrfunc.__file__)), "../mocks/tests/data/", "Mr19_centers_xyz_forVPF_rmax_10Mpc.txt")

results_vpf_mocks = vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb, centers_file, cosmology, RA, DEC, CZ, RAND_RA, RAND_DEC, RAND_CZ)

See the complete reference here Corrfunc.

Using the static library interface in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine. This guide also assumes some familiarity with C coding.

This concepts in this guide are implemented in the files
theory/examples/run_correlations.c and
mocks/examples/run_correlations_mocks.c for simulations and mock
catalogs respectively.

The basic principle of using the static libraries has the following steps:

	Include the appropriate header to get the correct function signature (at
compile time)

	In your code, include call with clustering function with appropriate parameters

	Compile your code with -I </path/to/Corrfunc/include> flags. If you have
installed Corrfunc via pip, then use
os.path.join(os.path.dirname(Corrfunc.__file__), ../include/) as the
include header.

	Link your code with the appropriate static library. Look in the
examples/Makefile for the linker flags.

	Run your code

Worked out example C code for clustering statistics in simulation boxes

Common setup code for the simulation C routines

In this code section, we will setup the arrays and the overall common inputs
required by the C static libraries.

#include "io.h"

const char file[] = {"theory/tests/data/gals_Mr19.ff"};
const char fileformat[] = {"f"};
const char binfile[] = {"theory/tests/bins"};
const double boxsize=420.0;
const double pimax=40.0;
int autocorr=1;
const int nthreads=2;

double *x1=NULL, *y1=NULL, *z1=NULL, *x2=NULL, *y2=NULL, *z2=NULL;

const int64_t ND1 = read_positions(file,fileformat,sizeof(*x1),3, &x1, &y1, &z1);
x2 = x1;
y2 = y1;
z2 = z1;
const int64_t ND2 = ND1;

struct config_options options = get_config_options();
options.verbose = 1;
options.need_avg_sep = 1;
options.periodic = 1;
options.float_type = sizeof(*x1);

Calculating 2-D projected auto-correlation (theory/wp/libcountpairs_wp.a)

Corrfunc can directly compute the projected auto-correlation function,
\(w_p(r_p)\). This calculation sets periodic boundary conditions. Randoms
are calculated analytically based on the supplied boxsize. The projected
separation, \(r_p\) is calculated in the X-Y plane while the line-of-sight
separation, \(\pi\) is calculated in the Z plane. Only pairs with
\(\pi\) separation less than \(\pi_{max}\) are counted.

 #include "countpairs_wp.h"

 results_countpairs_wp results;
 int status = countpairs_wp(ND1,x1,y1,z1,
 boxsize,
 nthreads,
 binfile,
 pimax,
 &results,
 &options, NULL);

 if(status != EXIT_SUCCESS) {
 fprintf(stderr,"Runtime error occurred while using wp static library\n");
 return status;
 }

 double rlow=results.rupp[0];
 for(int i=1;i<results.nbin;++i) {
 fprintf(stdout,"%e\t%e\t%e\t%e\t%12"PRIu64" \n",
 results.wp[i],results.rpavg[i],rlow,results.rupp[i],results.npairs[i]);
 rlow=results.rupp[i];
}

This is the generic pattern for using all of the correlation function. Look in
theory/examples/run_correlations.c for details on how to use all of the available
static libraries.

Worked out example C code for clustering statistics in mock catalogs

Corrfunc can calculate pair counts for mock catalogs. The input positions are
expected to be Right Ascension, Declination and CZ (speed of light
times redshift, in Mpc/h). Cosmology has to be specified since CZ needs
to be converted into co-moving distance. If you want to calculate in arbitrary
cosmology, then you have two options:

	convert CZ into co-moving distance, and then pass the converted array while setting config_option.is_comoving_dist=1.

	Add another cosmology in utils/cosmology_params.c in the function
init_cosmology. Then, recompile the Corrfunc.mocks and pass
cosmology=integer_for_newcosmology into the relevant functions.

Common setup code for the mocks C routines

In this code section, we will setup the arrays and the overall common inputs
required by the C static libraries.

#include "io.h" //for read_positions function

const char file[] = {"mocks/tests/data/Mr19_mock_northonly.rdcz.dat"};
const char fileformat[] = {"a"}; // ascii format
const char binfile[] = {"mocks/tests/bins"};
const double pimax=40.0;
int autocorr=1;
const int nthreads=2;
const int cosmology=1; // 1->LasDamas cosmology, 2->Planck

// This computes in double-precision. Change to float for computing in float
double *ra1=NULL, *dec1=NULL, *cz1=NULL, *ra2=NULL, *dec2=NULL, *cz2=NULL;

//Read-in the data
const int64_t ND1 = read_positions(file,fileformat,sizeof(*ra1),3, &ra1, &dec1, &cz1);

ra2 = ra1;
dec2 = dec1;
cz2 = cz1;
const int64_t ND2 = ND1;

struct config_options options = get_config_options();
options.verbose=1;
options.periodic=0;
options.need_avg_sep=1;
options.float_type = sizeof(*ra1);

Calculating 2-D pair counts (mocks/DDrppi_mocks/libcountpairs_rp_pi_mocks.a)

Here is a code snippet demonstrating how to calculate \(DD(r_p, \pi)\) for
mock catalogs. The projected separation, \(r_p\) and line of sight
separation, \(\pi\) are calculated using the following equations from Zehavi et
al 2002 [http://adsabs.harvard.edu/abs/2002ApJ...571..172Z]:

\[\begin{split}\mathbf{s} &= \mathbf{v_1} - \mathbf{v_2}, \\
\mathbf{l} &= \frac{1}{2}\left(\mathbf{v_1} + \mathbf{v_2}\right), \\
\pi &= \left(\mathbf{s} \cdot \mathbf{l}\right)/\Vert\mathbf{l}\Vert, \\
r_p^2 &= \mathbf{s} \cdot \mathbf{s} - \pi^2\end{split}\]

where, \(\mathbf{v_1}\) and \(\mathbf{v_2}\) are the vectors for the
two points under consideration. Here is the C code for calling DDrppi_mocks:

#include "countpairs_rp_pi_mocks.h"

results_countpairs_mocks results;
int status = countpairs_mocks(ND1,ra1,dec1,cz1,
 ND2,ra2,dec2,cz2,
 nthreads,
 autocorr,
 binfile,
 pimax,
 cosmology,
 &results,
 &options, NULL);

const double dpi = pimax/(double)results.npibin ;
const int npibin = results.npibin;
for(int i=1;i<results.nbin;i++) {
 const double logrp = LOG10(results.rupp[i]);
 for(int j=0;j<npibin;j++) {
 int index = i*(npibin+1) + j;
 fprintf(stdout,"%10"PRIu64" %20.8lf %20.8lf %20.8lf \n",results.npairs[index],results.rpavg[index],logrp,(j+1)*dpi);
 }
}

This is the generic pattern for using all of the correlation function. Look in
mocks/examples/run_correlations_mocks.c for details on how to use all of the available
static libraries.

Using the command-line interface in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine.

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the
counts-in-cells. The easiest way to get help on the command-line is by calling
the executables without any input parameters. Here is the list of executables
associated with each type of clustering statistic:

	Clustering Statistic

	Full path to executable

	\(DD(r)\)

	theory/DD/DD

	\(DD(r_p,\pi)\)

	theory/DDrppi/DDrppi

	\(w_p(r_p)\)

	theory/wp/wp

	\(\xi(r)\)

	theory/xi/xi

	\(pN(n)\)

	theory/vpf/vpf

Calculating clustering statistics in mock catalogs

The list of clustering statistics supported on mock catalogs and the associated
command-line executables are:

	Clustering Statistic

	Full path to executable

	\(DD(r_p,\pi)\)

	mocks/DDrppi_mocks/DDrppi_mocks

	\(DD(\theta)\)

	mocks/DDtheta_mocks/DDtheta_mocks

	\(pN(n)\)

	mocks/vpf_mocks/vpf_mocks

Cheat-sheet for all available interfaces in Corrfunc

This guide assumes that you already followed the Package Installation
section of the documentation to get the package and its dependencies set
up on your machine. There are three available interfaces in Corrfunc

	Using the python extensions in Corrfunc

	Using the static library interface in Corrfunc. The static libraries
have the form libcount<statistic>.a; the corresponding header file is named
count<statistic>.h.

	Using the command-line interface in Corrfunc

Calculating spatial clustering statistics in simulation boxes

Corrfunc can compute a range of spatial correlation functions and the
counts-in-cells. The easiest way to get help on the command-line is by calling
the executables without any input parameters. Here is the list of executables
associated with each type of clustering statistic:

	Clustering Statistic

	Python Interface

	Static library

	Command-line (executable name)

	\(\xi(r)\)

	Corrfunc.theory.DD

	theory/DD/libcountpairs.a

	theory/DD/DD

	\(\xi(r_p,\pi)\)

	Corrfunc.theory.DDrppi

	theory/DDrppi/libcountpairs_rp_pi.a

	theory/DDrppi/DDrppi

	\(\xi(s,\mu)\)

	Corrfunc.theory.DDsmu

	theory/DDsmu/libcountpairs_s_mu.a

	theory/DDsmu/DDsmu

	\(w_p(r_p)\)

	Corrfunc.theory.wp

	theory/wp/libcountpairs_wp.a

	theory/wp/wp

	\(\xi(r)\)

	Corrfunc.theory.xi

	theory/xi/libcountpairs_xi.a

	theory/xi/xi

	\(pN(n)\)

	Corrfunc.theory.vpf

	theory/vpf/libcountspheres.a

	theory/vpf/vpf

Calculating clustering statistics in mock catalogs

The list of clustering statistics supported on mock catalogs and the associated
command-line executables are:

	Clustering Statistic

	Python Interface

	Static library

	Command-line (executable name)

	\(\xi(r_p,\pi)\)

	Corrfunc.mocks.DDrppi_mocks

	mocks/DDrppi_mocks/libcountpairs_rp_pi_mocks.a

	mocks/DDrppi_mocks/DDrppi_mocks

	\(\xi(s,\mu)\)

	Corrfunc.mocks.DDsmu_mocks

	mocks/DDsmu_mocks/libcountpairs_s_mu_mocks.a

	mocks/DDsmu_mocks/DDsmu_mocks

	\(\omega(\theta)\)

	Corrfunc.mocks.DDtheta_mocks

	mocks/DDtheta_mocks/libcountpairs_theta_mocks.a

	mocks/DDtheta_mocks/DDtheta_mocks

	\(pN(n)\)

	Corrfunc.mocks.vpf_mocks

	mocks/vpf_mocks/libcountspheres_mocks

	mocks/vpf_mocks/vpf_mocks

If you are not sure which correlation function to use, then please also see Which correlation function to use?.

Typical Tasks for Computing Correlation Functions

Here we present docstrings of the most commonly used functions and classes
grouped together by functionality.
Many docstrings contain example code to demonstrate basic usage.
For documentation of functions not listed here, see Corrfunc.

Reading input data

	Reading Catalogs for Corrfunc

Creating a file with bins for the clustering statistics

	Specifying the separation bins in Corrfunc

Choosing the correlation function

	Which correlation function to use?

Calculating Correlation Functions on Simulations

	Converting 3D pair counts into a correlation function

	Converting \((r_p, \pi)\) pairs into a projected correlation function

	Directly Computing \(\xi(r)\) and \(wp(rp)\)

	Detailed API for Clustering Statistics on Simulations

	Notes on the Random-Random Term in Autocorrelations

Calculating Correlation Functions on Mock Catalogs

	Calculating the projected correlation function, \(wp(rp)\)

	Calculating the angular correlation function, \(\omega(\theta)\)

	Detailed API for Clustering Statistics on Mock Catalogs

Weighted Correlation Functions

	Computing Weighted Correlation Functions

	Implementing Custom Weight Functions

Reading Catalogs for Corrfunc

All of the Corrfunc routines require some sort of
position arrays, X/Y/Z, as input. These arrays are
expected to be 1-D arrays of type np.array. If
you already have have the required numpy arrays,
then you can just pass them straight to Corrfunc.
If you need to read the arrays in from disk, then read
on. For the command-line interface, the input files can only
be in ASCII or fast-food format (for description of fast-food
binaries, see Fast-food binary format).

	Fast-food binary format

Reading from ASCII files

This is the most straight forward way – you need an ASCII
file with columns X/Y/Z (white-space separated).

Using numpy.genfromtxt

import numpy as np
fname = "myfile_containing_xyz_columns.dat"

For double precision calculations
dtype = np.float ## change to np.float32 for single precision

X, Y, Z = np.genfromtxt(fname, dtype=dtype, unpack=True)

Note

Corrfunc.read_catalog uses this exact code-snippet to read in ASCII files in python.

Reading from fast-food files

If you are using the command-line interface, then the code will have to
read the arrays from files. While Corrfunc natively supports both
ASCII and fast-food formats (for description of fast-food binaries, see
Fast-food binary format), the following python utility is intended to
read both these types of files.

Using utility: Corrfunc.io.read_catalog

Corrfunc.io.read_catalog can directly read ASCII files or fast-food binary
files.

from Corrfunc.io import read_catalog

Read the standard theory catalog (on a box)
supplied with Corrfunc
X, Y, Z = read_catalog()

Read some other format -> have to specify
filename
fname = "myfile_containing_xyz_columns.dat"
X, Y, Z = read_catalog(fname)

Fast-food binary format

The fast-food format is a fortran binary format – all fields are surrounded
with 4 bytes padding. These value of these padding bytes
is the number of bytes of data contained in between the padding bytes. For
example, to write out 20 bytes of data in
a fast-food file format would require a total of 4+20+4=28 bytes. The first
and last 4 bytes of the file will contain the value 20 –
showing that 20 bytes of real data are contained in between the two paddings.

The fast-food file consists of a header:

int idat[5];
float fdat[9];
float znow;

For the purposes of these correlation function codes, the only useful quantity
is idat[1] which contains N – the number of particles
in the file. The rest can simply filled with 0.

After this header, the actual X/Y/Z values are stored. The first 4
bytes after the header contains 4*N for float precision or
8*N for double precision where N=idat[1], is the number
of particles in the file. After all of the X values there will
be another 4 bytes containing 4*N or 8*N.

Note

Even when the X/Y/Z arrays are written out in double-precision, the padding is still 4 bytes.
The blocks for Y/Z similarly follow after the X block.

Specifying the separation bins in Corrfunc

All of the python extensions for Corrfunc accept
either a filename or an array for specifying the
\(r_p\) or \(\theta\).

Manually creating a file with arbitrary bins

This manual method lets you specify generic bins
as long as the upper-edge of one bin is the
same as the lower-edge of the next (i.e., continuous bins). The
bins themselves can have arbitrary widths, and the
smallest bin can start from 0.0.

	Open a text editor with a new file

	Add two columns per bin you want, the first
column should be low-edge of the bin while
the second column should be the high-edge
of the bin. Like so:

0.10 0.15

	Now add as many such lines as the number of bins you
want. Here is a valid example:

0.10 0.15
0.15 0.50
0.50 5.00

This example specifies 3 bins, with the individual
bin limits specified on each line. Notice that the
width of each bin can be independently specified (but
the bins do have to be continuous)

Note

Make sure that the bins are in increasing order – smallest bin first, then the next smallest
bin and so on up to the largest bin.

Specifying bins as an array

You can specify the bins using numpy.linspace or
numpy.logspace.

import numpy as np
rmin = 0.1
rmax = 10.0
nbins = 20
rbins = np.linspace(rmin, rmax, nbins + 1)
log_rbins = np.logspace(np.log10(rmin), np.log10(rmax), nbins + 1)

Which correlation function to use?

Corrfunc has a variety of correlation functions to cover a broad range of Science applications. The basic distinction occurs if the input particles are directly
from a simulation or from an observational survey (or equivalently, a simulation that has been processed to look like a survey). For simulation data, referred throughout
as theory, the assumption is that the particle positions are Cartesian, co-moving XYZ. For survey data, referred throughout as mocks, the assumption is that
particle positions are Right Ascension (0 – 360 deg), Declination (-90 – 90 deg) and CZ (speed of light multiplied by the redshift). Depending on the exact
type of data, and the desired correlation function you want, the following table should help you figure out which code you should use.

	Input Data

	Periodic

	Particle domain

	Desired correlation function

	Returns

	Python code

	X, Y, Z

	True

	Cube (box)

	wp(\(r_p\))

	2-D Projected Correlation

	Corrfunc.theory.wp

	\(\xi(r)\)

	3-D Real-space Correlation

	Corrfunc.theory.xi

	X, Y, Z

	True or False

	Arbitrary

	\(\xi(r)\)

	Pair-counts in 3-D real-space

	Corrfunc.theory.DD

	\(\xi(r_p, \pi)\)

	Pair-counts in 2-D

	Corrfunc.theory.DDrppi

	\(\xi(s, \mu)\)

	Pair-counts in 2-D

	Corrfunc.theory.DDsmu

	ra, dec, cz

	False

	Arbitrary

	\(\xi(r_p, \pi)\)

	Pair-counts in 2-D

	Corrfunc.mocks.DDrppi_mocks

	\(\xi(s, \mu)\)

	Pair-counts in 2-D

	Corrfunc.mocks.DDsmu_mocks

	ra, dec

	False

	Arbitrary

	\(\omega(\theta)\)

	Pair-counts in angular space

	Corrfunc.mocks.DDtheta_mocks

In all cases where only pair-counts are returned (e.g., all of the mocks routines), you will need to compute at least
an additional RR term. Please see Corrfunc.utils.convert_3d_counts_to_cf to
convert 3-D pair-counts (or angular pair counts) into a correlation
function. For 2-D pair-counts, please use Corrfunc.utils.convert_rp_pi_counts_to_wp
to convert into a projected correlation function. If you want to compute
the \(\xi(r_p, \pi)\) from the 2-D pair-counts, then simply call
Corrfunc.utils.convert_3d_counts_to_cf with the arrays.

Also, see Using the command-line interface in Corrfunc for a detailed list of the clustering statistics and the various available API interfaces.

Converting 3D pair counts into a correlation function

3D pair counts can be converted into a correlation function
by using the helper function Corrfunc.utils.convert_3d_counts_to_cf.
First, we have to compute the relevant pair counts using the python
wrapper Corrfunc.theory.DD

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> from Corrfunc.theory.DD import DD
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf

>>> # Read the supplied galaxies on a periodic box
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> nthreads = 2

Generate randoms on the box
>>> rand_N = 3*N
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)

Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # note that +1 to nbins

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DD(autocorr, nthreads, bins, X, Y, Z,
... periodic=False, verbose=True)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DD(autocorr, nthreads, bins, X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z,
... periodic=False, verbose=True)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DD(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z,
... periodic=False, verbose=True)

All the pair counts are done, get the correlation function
>>> cf = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)

See the complete reference here Corrfunc.

Converting \((r_p, \pi)\) pairs into a projected correlation function

Pair counts in \((r_p, \pi)\) can be converted into a projected correlation function
by using the helper function Corrfunc.utils.convert_rp_pi_counts_to_wp.

>>> import numpy as np
>>> from Corrfunc.theory import DDrppi
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp

Read the supplied galaxies on a periodic box
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0

Generate randoms on the box
>>> rand_N = 3*N
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 2
>>> pimax = 40.0

Setup the bins
>>> nrpbins = 10
>>> bins = np.linspace(0.1, 10.0, nrpbins + 1)

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDrppi(autocorr, nthreads, bins, X, Y, Z,
... periodic=False, verbose=True)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDrppi(autocorr, nthreads, bins, X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z,
... periodic=False, verbose=True)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDrppi(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z,
... periodic=False, verbose=True)

All the pair counts are done, get the correlation function
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts, nrpbins, pimax)

See the complete reference here Corrfunc.

Directly Computing \(\xi(r)\) and \(wp(rp)\)

For a periodic cosmological box, the 3-d auto correlation, \(\xi(r)\), and
the projected auto correlation function, \(wp(rp)\), can be directly computed
using the Natural Estimator. The relevant python wrappers are present in
Corrfunc.theory.xi and Corrfunc.theory.wp. See Notes on the Random-Random Term in Autocorrelations
for details on how the Natural Estimator is computed.

>>> import numpy as np
>>> from Corrfunc.theory.wp import wp
>>> from Corrfunc.theory.xi import xi
>>> from Corrfunc.io import read_catalog
>>> X, Y, Z = read_catalog()
>>> boxsize = 420.0
>>> nthreads = 2
>>> pimax = 40.0
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # Note the + 1 to nbins
>>> wp_counts = wp(boxsize, pimax, nthreads, bins, X, Y, Z)
>>> xi_counts = xi(boxsize, nthreads, bins, X, Y, Z)

See the complete reference here Corrfunc.

Detailed API for Clustering Statistics on Simulations

All of these can be imported from Corrfunc.theory. See the complete reference here Corrfunc.

Clustering in 3-D

	Pair counts for (auto or cross) correlations for \(\xi(r)\) – Corrfunc.theory.DD

	Auto-correlation on periodic, cosmological boxes, \(\xi(r)\), – Corrfunc.theory.xi

Clustering in 2-D

	Pair counts (auto or cross) correlations for \(\xi(rp, \pi)\) – Corrfunc.theory.DDrppi

	Pair counts (auto or cross) correlations for \(\xi(s, \mu)\) – Corrfunc.theory.DDsmu

	Projected auto-correlation function, \(wp(rp)\) – Corrfunc.theory.wp

Counts-in-cells

	Void Probability functions and counts-in-cells stats \(pN(r)\) – Corrfunc.theory.vpf

Notes on the Random-Random Term in Autocorrelations

The following discussion is adapted from this notebook [http://nbviewer.jupyter.org/gist/lgarrison/1efabe4430429996733a9d29397423d2] by Lehman Garrison [https://lgarrison.github.io].

\[\newcommand{\RR}{\mathrm{RR}}
\newcommand{\DD}{\mathrm{DD}}\]

When computing a two-point correlation function estimator like

\[\xi(r) = \frac{\DD}{\RR} - 1,\]

the \(\RR\) term can be computed analytically if the domain is a periodic box.
Often, this is done as

\[\begin{split}\begin{align}
\RR_i &= N V_i \bar\rho \\
&= N V_i \frac{N}{L^3}
\end{align}\end{split}\]

where \(\RR_i\) is the expected number of random-random pairs in bin \(i\), \(N\) is the total number of points, \(V_i\) is the volume (or area if 2D) of bin \(i\), \(L\) is the box size, and \(\bar\rho\) is the average density in the box.

However, using \(\bar\rho = \frac{N}{L^3}\) is only correct for continuous fields, not sets of particles. When sitting on a particle, only \(N-1\) particles are available to be in a bin at some non-zero distance. The remaining particle is the particle you’re sitting on, which is always at distance \(0\). Thus, the correct expression is

\[\RR_i = N V_i \frac{N-1}{L^3}.\]

See this notebook [http://nbviewer.jupyter.org/gist/lgarrison/1efabe4430429996733a9d29397423d2] for an empirical demonstration of this effect; specifically, that computing the density with \(N-1\) is correct, and that using \(N\) introduces bias of order \(\frac{1}{N}\) into the estimator. This is a tiny correction for large \(N\) problems, but important for small \(N\).

Any Corrfunc function that returns a clustering statistic (not just raw pair counts) implements this correction.
Currently, this includes Corrfunc.theory.xi and Corrfunc.theory.wp.

Cross-correlations of two different particle sets don’t suffer from this problem; the particle you’re sitting on is never part of the set of particles under consideration for pair-making.

Corrfunc also allows bins of zero separation, in which “self-pairs” are included in the pair counting. \(\RR_i\) must reflect this by simply adding \(N\) to any such bin.

RR in Weighted Clustering Statistics

We can extend the above discussion to weighted correlation functions in which
each particle is assigned a weight, and the pair weight is taken as the product
of the particle weights (see Computing Weighted Correlation Functions).

Let \(w_j\) be the weight of particle \(j\), and \(W\) be the sum of the weights.
We will define the “unclustered” particle distribution to be the case of \(N\) particles
uniformly distributed, where each is assigned the mean weight \(\bar w\). We thus have

\[\begin{split}\begin{align}
\RR_i &= \sum_{j=1}^N \bar w (W - \bar w) \frac{V_i}{L^3} \\
&= (W^2 - \bar w W) \frac{V_i}{L^3} \\
&= W^2\left(1 - \frac{1}{N}\right) \frac{V_i}{L^3}.
\end{align}\end{split}\]

When the particles all have \(w_j = 1\), then \(W = N\) and we recover the unweighted result from above.

There are other ways to define the unclustered distribution. If we were to redistribute
the particles uniformly but preserve their individual weights, we would find

\[\begin{split}\begin{align}
\RR_i &= \sum_{j=1}^N w_j (W - w_j) \frac{V_i}{L^3} \\
&= \left(W^2 - \sum_{j=1}^N w_j^2\right) \frac{V_i}{L^3}.
\end{align}\end{split}\]

This is not what we use in Corrfunc, but this should help illuminate some of the considerations that
go into defining the “unclustered” case when writing a custom weight function (see Implementing Custom Weight Functions).

Calculating the projected correlation function, \(wp(rp)\)

2-D Pair counts can be converted into a \(wp(rp)\)
by using the helper function Corrfunc.utils.convert_rp_pi_counts_to_wp.
First, we have to compute the relevant pair counts using the python
wrapper Corrfunc.mocks.DDrppi_mocks

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp

>>> galaxy_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_mock_northonly.rdcz.ff")

Read the supplied galaxies on a periodic box
>>> RA, DEC, CZ = read_catalog(galaxy_catalog)
>>> N = len(RA)

Read the supplied randoms catalog
>>> random_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_randoms_northonly.rdcz.ff")
>>> rand_RA, rand_DEC, rand_CZ = read_catalog(random_catalog)
>>> rand_N = len(rand_RA)

Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 20.0, nbins + 1)
>>> pimax = 40.0

>>> cosmology = 1
>>> nthreads = 2

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... RA, DEC, CZ)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... RA, DEC, CZ,
... RA2=rand_RA, DEC2=rand_DEC, CZ2=rand_CZ)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDrppi_mocks(autocorr, cosmology, nthreads, pimax, bins,
... rand_RA, rand_DEC, rand_CZ)

All the pair counts are done, get the angular correlation function
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts, nbins, pimax)

See the complete reference here Corrfunc.

Calculating the angular correlation function, \(\omega(\theta)\)

Angular pair counts can be converted into a \(\omega(\theta)\)
by using the helper function Corrfunc.utils.convert_3d_counts_to_cf.
First, we have to compute the relevant pair counts using the python
wrapper Corrfunc.mocks.DDtheta_mocks

>>> from os.path import dirname, abspath, join as pjoin
>>> import numpy as np
>>> import Corrfunc
>>> from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf

>>> galaxy_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data",
... "Mr19_mock_northonly.rdcz.ff")

Read the supplied galaxies on a periodic box
>>> RA, DEC, _ = read_catalog(galaxy_catalog)

Read the supplied randoms catalog
>>> random_catalog=pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data", "Mr19_randoms_northonly.rdcz.ff")
>>> rand_RA, rand_DEC, _ = read_catalog(random_catalog)
>>> rand_N = len(rand_RA)

Setup the bins
>>> nbins = 10
>>> bins = np.linspace(0.1, 10.0, nbins + 1) # note the +1 to nbins

Number of threads to use
>>> nthreads = 2

Auto pair counts in DD
>>> autocorr=1
>>> DD_counts = DDtheta_mocks(autocorr, nthreads, bins,
... RA, DEC)

Cross pair counts in DR
>>> autocorr=0
>>> DR_counts = DDtheta_mocks(autocorr, nthreads, bins,
... RA, DEC,
... RA2=rand_RA, DEC2=rand_DEC)

Auto pairs counts in RR
>>> autocorr=1
>>> RR_counts = DDtheta_mocks(autocorr, nthreads, bins,
... rand_RA, rand_DEC)

All the pair counts are done, get the angular correlation function
>>> wtheta = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)

See the complete reference here Corrfunc.

Detailed API for Clustering Statistics on Mock Catalogs

All of these can be imported from Corrfunc.mocks. See the complete reference here Corrfunc.`

Clustering in 2-D

	Pair counts (auto or cross) correlations for \(\xi(rp, \pi)\) – Corrfunc.mocks.DDrppi_mocks

	Pair counts (auto or cross) correlations for \(\xi(s, \mu)\) – Corrfunc.mocks.DDsmu_mocks

Angular clustering

	Pair counts (auto or cross) correlations for \(\omega(\theta)\) – Corrfunc.mocks.DDtheta_mocks

Counts-in-cells

	Void Probability functions and counts-in-cells stats \(pN(r)\) – Corrfunc.mocks.vpf_mocks

Computing Weighted Correlation Functions

Every clustering statistic in Corrfunc accepts an array
of weights that can be used to compute weighted correlation
functions. The API reference for each clustering statistic
(Corrfunc.theory.xi, Corrfunc.mocks.DDrppi_mocks,
etc.) contains examples of how to do this. The interface is standard across functions: the
inputs are a weights array and a weight_type string
that specifies how to use the “point weights” to compute a “pair weight”.
Currently, the only supported weight_type is pair_product,
in which the pair weight is the product of the point weights
(but see Implementing Custom Weight Functions for how to write your own
function).

If weight_type and weights (or weights1 and weights2
for cross-correlations) are given, the mean pair weight in a
separation bin will be given in the weightavg field of the
output. This field is 0.0 if weights are disabled.

Pair counts (i.e. the npairs field in the results array)
are never affected by weights. For theory functions like
Corrfunc.theory.xi and Corrfunc.theory.wp
that actually return a clustering statistic, the statistic is weighted.
For pair_product, the distribution used to compute the
expected bin weight from an unclustered particle set (the RR term)
is taken to be a spatially uniform particle set where every particle
has the mean weight. See RR in Weighted Clustering Statistics for more discussion.

Running with weights incurrs a modest performance hit (around
20%, similar to enabling ravg). Weights are supported for
all instruction sets (SSE, AVX, and fallback).

Consider the following simple example adapted from the Corrfunc.theory.xi
docstring, in which we assign a weight of 0.5 to every particle and get
the expected average pair weight of 0.25 (last column of the output).
Note that xi (fourth column) is also weighted, but the case of uniform
weights is equivalent to the unweighted case.

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.xi import xi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.full_like(X, 0.5)
>>> results = xi(boxsize, nthreads, binfile, X, Y, Z, weights=weights, weight_type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}"
... .format(r['rmin'], r['rmax'],
... r['ravg'], r['xi'], r['npairs'], r['weightavg']))
...
 0.167536 0.238755 0.226592 -0.205733 4 0.250000
 0.238755 0.340251 0.289277 -0.176729 12 0.250000
 0.340251 0.484892 0.426819 -0.051829 40 0.250000
 0.484892 0.691021 0.596187 -0.131853 106 0.250000
 0.691021 0.984777 0.850100 -0.049207 336 0.250000
 0.984777 1.403410 1.225112 0.028543 1052 0.250000
 1.403410 2.000000 1.737153 0.011403 2994 0.250000
 2.000000 2.850200 2.474588 0.005405 8614 0.250000
 2.850200 4.061840 3.532018 -0.014098 24448 0.250000
 4.061840 5.788530 5.022241 -0.010784 70996 0.250000
 5.788530 8.249250 7.160648 -0.001588 207392 0.250000
 8.249250 11.756000 10.207213 -0.000323 601002 0.250000
 11.756000 16.753600 14.541171 0.000007 1740084 0.250000
 16.753600 23.875500 20.728773 -0.001595 5028058 0.250000

Implementing Custom Weight Functions

Corrfunc supports custom weight functions. On this page we describe
the recommended procedure for writing your own. When in doubt, follow
the example of pair_product.

First, see Computing Weighted Correlation Functions for basic usage of Corrfunc’s weight features.

The steps are:

	Add a type to the weight_method_t enum in utils/defs.h (something like MY_WEIGHT_SCHEME=1).

	Determine how many weights per particle your scheme needs, and add a case to the switch-case block in get_num_weights_by_method() in utils/defs.h. Corrfunc supports up to MAX_NUM_WEIGHTS=10 weights per particle; most schemes will simply need 1. To provide multiple weights per particle via the Python interface, simply pass a weights array of shape (N_WEIGHTS_PER_PARTICLE, N_PARTICLES).

	Add an if statement that maps a string name (like “my_weight_scheme”) to the weight_method_t (which you created above) in get_weight_method_by_name() in utils/defs.h.

	Write a function in utils/weight_functions.h.src that returns the weight for a particle pair, given the weights for the two particles. The weights for each particle are packed in a const pair_struct_DOUBLE struct, which also contains the pair separation. You must write one function for every instruction set you wish to support. This can be quite easy for simple weight schemes; the three functions for pair_product are:

/*
 * The pair weight is the product of the particle weights
 */
static inline DOUBLE pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return pair->weights0[0].d*pair->weights1[0].d;
}

#ifdef __AVX__
static inline AVX_FLOATS avx_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return AVX_MULTIPLY_FLOATS(pair->weights0[0].a, pair->weights1[0].a);
}
#endif

#ifdef __SSE4_2__
static inline SSE_FLOATS sse_pair_product_DOUBLE(const pair_struct_DOUBLE *pair){
 return SSE_MULTIPLY_FLOATS(pair->weights0[0].s, pair->weights1[0].s);
}
#endif

See utils/avx_calls.h and utils/sse_calls.h for the lists of available vector instructions.

	For each function you wrote in the last step, add a case to the switch-case block in the appropriate dispatch function in utils/weight_functions.h.src. If you wrote a weighting function for all three instruction sets, then you’ll need to add the corresponding function to get_weight_func_by_method_DOUBLE(), get_avx_weight_func_by_method_DOUBLE(), and get_sse_weight_func_by_method_DOUBLE().

	Done! Your weight scheme should now be accessible through the Python and C interfaces via the name (“my_weight_scheme”) that you specified above. The output will be accessible in the weightavg field of the results array.

Pair counts (i.e. the npairs field in the results array)
are never affected by weights. For theory functions like Corrfunc.theory.xi and Corrfunc.theory.wp
that actually return a clustering statistic, the statistic is weighted.
For pair_product, the random distribution used to compute the
expected bin weight from an unclustered particle set (the RR term)
is taken to be a spatially uniform particle set where every particle
has the mean weight. See RR in Weighted Clustering Statistics for more discussion.
This behavior (automatically returning weighted clustering statistics)
is only implemented for pair_product, since that is the only weighting
method for which we know the desired equivalent random distribution.
Custom weighting methods can implement similar behavior by modifying
countpairs_xi_DOUBLE() in theory/xi/countpairs_xi_impl.c.src and
countpairs_wp_DOUBLE() in theory/wp/countpairs_wp_impl.c.src.

Developer documentation

The developer documentation contains guidlines for how to
stay up-to-date on Corrfunc development, submit bug reports and
contribute to the Corrfunc code base.

	License and Citation Information

	Package contributors

	Submitting a Bug Report

	Staying Up to Date

	Contributing to Corrfunc

License and Citation Information

Citing Corrfunc

Corrfunc is currently preparing for its first “official” release (v2.0.0).
The v2.0.0 release is accompanied with a code-release paper,
ArXiv [http://arxiv.org/]. If you use
Corrfunc modules in your analysis, please cite this code-release paper. While
the paper is being written, you can cite Corrfunc with the Zenodo DOI:

@misc{manodeep_sinha_2016_55161,
author = {Manodeep Sinha},
title = {Corrfunc: Corrfunc-1.1.0},
month = jun,
year = 2016,
doi = {10.5281/zenodo.55161},
url = {{http://dx.doi.org/10.5281/zenodo.55161}}

Corrfunc License

Corrfunc comes with a MIT LICENSE - see the LICENSE file.

Copyright (C) 2014 Manodeep Sinha (manodeep@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Package contributors

Corrfunc project coordinator

	Manodeep Sinha

Lead developers

	Manodeep Sinha

Core package contributors

	Manodeep Sinha (@manodeep)

	Lehman Garrison (@lgarrison)

	Nick Hand (@nickhand)

Other credits

	Corrfunc contains code from Agner Fog [https://agner.org], GeometricTools [http://www.geometrictools.com/], and the package SGLIB [http://sglib.sourceforge.net/]. The LICENSE for these external files
remains with the original author of the package.

	The entirety of the docs for Corrfunc is derived from halotools [https://github.com/astropy/halotools]. I know, first-hand, how much of an
effort it was for the developers of halotools to generate all of this
documentation. Having such a template made creating the docs for Corrfunc a
lot easier process.

	The API generation script for Corrfunc was lifted directly out of the
repo bccp/nbodykit/ [https://github.com/bccp/nbodykit/].

Submitting a Bug Report

If you find or just suspect buggy behavior in Corrfunc,
please raise an issue on GitHub. Navigate to the
Corrfunc Issues page [https://github.com/manodeep/Corrfunc/issues],
create a new issue with a description of the problem and
the full Traceback (if applicable), and attach a bug label to the issue.

Staying Up to Date

If you would like to receive notifications of new code releases, sign up for the google group

https://groups.google.com/forum/#!forum/Corrfunc

Feel free to ask questions about the code on the group. However, note that all
exchanges on the groups are subject to Astropy Community Code of Conduct [http://www.astropy.org/about.html#codeofconduct],
which is basically, “Be nice!”. If you are unsure about some technical aspect
of the code, then feel free to email the author (Manodeep Sinha).

Contributing to Corrfunc

Corrfunc is written in a very modular fashion with minimal interaction between
the various calculations. The algorithm presented in Corrfunc is applicable to
a broad-range of astrophysical problems, viz., any situation that requires
looking at all objects around a target and performing some analysis with
this group of objects.

Here are the basic steps to get your statistic into the Corrfunc package:

	Fork the repo and add your statistic

	Add exhaustive tests. The output of your statistic should exactly agree with a
brute-force implementation (under double-precision). Look at test_periodic.c and test_nonperiodic.c
under theory/tests/ for tests on simulation volumes. For mock
catalogs, look at mocks/tests/tests_mocks.c.

	Add a python extension for the new statistic. This extension should reside in file
theory/python_bindings/_countpairs.c or
mocks/python_bindings/_countpairs_mocks.c for statistics relevant for
simulations and mocks respectively. It is preferred to have the extension
documented but not necessary.

	Add a call to this new extension in the
python_bindings/call_correlation_functions*.py script.

Note

Different from corresponding script in Corrfunc/ directory.

	Add a python wrapper for the previous python extension. This wrapper should
exist in Corrfunc/theory/ or Corrfunc/mocks/. Wrapper must have
inline API docs.

	Add the new wrapper to __all__ in __init__.py within the relevant
directory.

	Add an example call to this wrapper in
Corrfunc/call_correlation_functions.py or
Corrfunc/call_correlation_functions_mocks.py for simulations and mocks
respectively.

Note

Different from corresponding script in python_bindings directory.

	Add the new wrapper to the API docs within
ROOT_DIR/docs/source/theory_functions.rst or
ROOT_DIR/docs/source/mocks_functions.rst.

	Add to the contributors list under
ROOT_DIR/docs/source/development/contributors.rst.

	Submit pull request

Note

Please feel free to email the author or
the Corrfunc Google Groups [https://groups.google.com/forum/#!forum/corrfunc] if you need help at any stage.

Corrfunc Design

All of the algorithms in Corrfunc have the following components:

	Reading in data. Relevant routines are in the io/ directory with a
mapping within io.c to handle the file format

	Creating the 3-D lattice structure. Relevant routines are in the
utils/gridlink_impl.c.src and utils/gridlink_mocks.c.src. This
lattice grids up the particle distribution on cell-sizes of rmax (the
maximum search radius).

Note

The current lattice code duplicates the particle memory. If you
need a lattice that does not duplicate the particle memory, then please email
the author. Relevant code existed in Corrfunc
but has been removed in the current incarnation.

	Setting up the OpenMP sections such that threads have local copies of
histogram arrays. If OpenMP is not enabled, then this section should not
produce any compilable code.

	Looping over all cells in the 3-D lattice and then looping over all
neighbouring cells for each cell.

	For a pair of cells, hand over the two sets of arrays into a specialized
kernel (count*kernel.c.src) for computing pairs.

	Aggregate the results, if OpenMP was enabled.

Directory and file layout

	Codes that compute statistics on simulation volumes (Cartesian XYZ as input)
go into a separate directory within theory

	Codes that compute statistics on mock catalogs (RA, DEC [CZ]) go into a
separate directory within mocks

	Public API in a count*.h file. Corresponding C file simply dispatches to
appropriate floating point implementation.

	Floating point implmentation in file count*_impl.c.src. This file is
processed via sed to generate both single and double precision
implementations.

	A kernel named count*kernels.c.src containing implementations for
counting pairs on two sets of arrays. This kernel file is also preprocessed
to produce both the single and double precision kernels.

	Tests go within tests directory under theory or mocks, as
appropriate. For simulation routines, tests with and without periodic
boundaries go into test_periodic.c and test_nonperiodic.c

	C code to generate the python extensions goes under python_bindings
directory into the file _countpairs*.c

	Each python extension has a python wrapper within Corrfunc directory

Coding Guidelines

C guidelines

Code contents

	Always check for error conditions when calling a function

	If an error condition occurs when making an kernel/external library call,
first call perror and then return the error status. If calling a wrapper
from within Corrfunc, assume that perror has already been called and
simply return the status. Clean up memory before returning status.

	Declare variables in the smallest possible scope.

	Add const qualifiers liberally

	There must not be any compiler warnings (with gcc6.0) under the given set of Warnings
already enabled within common.mk. If the warning can not be avoided
because of logic issues, then suppress the warning but note why that
suppression is required. Warnings are treated as errors on the continuous integration platform (TRAVIS)

	Valgrind should not report any fixable memory or file leaks (memory
leaks in OpenMP library, e.g., libgomp, are fine)

Style

The coding style is loosely based on Linux Kernel Guideline [https://www.kernel.org/doc/Documentation/CodingStyle]. These are recommended
but not strictly enforced. However, note that if you do contribute code to
Corrfunc, the style may get converted.

	Braces
- Opening braces start at the same line, except for functions
- Closing braces on new line
- Even single line conditionals must have opening and closing braces

	Comments
- Explanatory comments on top of code segment enclosed with /**/
- Inline comments must be single-line on the right

	Indentation is tab:=4 spaces

	Avoid typedef for structs and unions

Python guidelines

	Follow the astropy python code guide [http://docs.astropy.org/en/stable/development/codeguide_emacs.html]

	Docs are in numpydocs format. Follow any of the wrapper routines in
Corrfunc (which are, in turn, taken from halotools [http://halotools.readthedocs.io/])

Comprehensive API reference

	Corrfunc package
	Subpackages
	Corrfunc.mocks package
	Submodules

	Corrfunc.mocks.DDrppi_mocks module

	Corrfunc.mocks.DDsmu_mocks module

	Corrfunc.mocks.DDtheta_mocks module

	Corrfunc.mocks.vpf_mocks module

	Corrfunc.theory package
	Submodules

	Corrfunc.theory.DD module

	Corrfunc.theory.DDrppi module

	Corrfunc.theory.DDsmu module

	Corrfunc.theory.vpf module

	Corrfunc.theory.wp module

	Corrfunc.theory.xi module

	Submodules

	Corrfunc.call_correlation_functions module

	Corrfunc.call_correlation_functions_mocks module

	Corrfunc.io module

	Corrfunc.tests module

	Corrfunc.utils module

Corrfunc package

Corrfunc is a set of high-performance routines for
computing clustering statistics on a distribution of
points.

	
Corrfunc.read_text_file(filename, encoding=u'utf-8')

	Reads a file under python3 with encoding (default UTF-8).
Also works under python2, without encoding.
Uses the EAFP (https://docs.python.org/2/glossary.html#term-eafp)
principle.

	
Corrfunc.which(program, mode=1, path=None)

	Mimics the Unix utility which.
For python3.3+, shutil.which provides all of the required functionality.
An implementation is provided in case shutil.which does
not exist.

	Parameters

	
	program – (required) string
Name of program (can be fully-qualified path as well)

	mode – (optional) integer flag bits
Permissions to check for in the executable
Default: os.F_OK (file exists) | os.X_OK (executable file)

	path – (optional) string
A custom path list to check against. Implementation taken from
shutil.py.

	Returns

	A fully qualified path to program as resolved by path or
user environment.
Returns None when program can not be resolved.

	
Corrfunc.write_text_file(filename, contents, encoding=u'utf-8')

	Writes a file under python3 with encoding (default UTF-8).
Also works under python2, without encoding.
Uses the EAFP (https://docs.python.org/2/glossary.html#term-eafp)
principle.

Subpackages

	Corrfunc.mocks package
	Submodules

	Corrfunc.mocks.DDrppi_mocks module

	Corrfunc.mocks.DDsmu_mocks module

	Corrfunc.mocks.DDtheta_mocks module

	Corrfunc.mocks.vpf_mocks module

	Corrfunc.theory package
	Submodules

	Corrfunc.theory.DD module

	Corrfunc.theory.DDrppi module

	Corrfunc.theory.DDsmu module

	Corrfunc.theory.vpf module

	Corrfunc.theory.wp module

	Corrfunc.theory.xi module

Submodules

Corrfunc.call_correlation_functions module

Corrfunc.call_correlation_functions_mocks module

Example python code to call the mocks clustering functions
from python. This script calls the python extensions
directly; however the recommended use is via the wrappers provided
in Corrfunc.mocks.

	
Corrfunc.call_correlation_functions_mocks.main()

	

Corrfunc.io module

Routines to read galaxy catalogs from disk.

	
Corrfunc.io.read_fastfood_catalog(filename, return_dtype=None, need_header=None)

	Read a galaxy catalog from a fast-food binary file.

	Parameters

	
	filename (string) – Filename containing the galaxy positions

	return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies the datatype for the returned arrays. Must be in
{np.float, np.float32}

	need_header (boolean, default None.) – Returns the header found in the fast-food file in addition to the
X/Y/Z arrays.

	Returns

	X, Y, Z – Returns the triplet of X/Y/Z positions as separate numpy arrays.

If need_header is set, then the header is also returned

	Return type

	numpy arrays

Example

>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_fastfood_catalog
>>> filename = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/data/",
... "gals_Mr19.ff")
>>> X, Y, Z = read_fastfood_catalog(filename)
>>> N = 20
>>> for x,y,z in zip(X[0:N], Y[0:N], Z[0:]):
... print("{0:10.5f} {1:10.5f} {2:10.5f}".format(x, y, z))
...
419.94550 1.96340 0.01610
419.88272 1.79736 0.11960
0.32880 10.63620 4.16550
0.15314 10.68723 4.06529
0.46400 8.91150 6.97090
6.30690 9.77090 8.61080
5.87160 9.65870 9.29810
8.06210 0.42350 4.89410
11.92830 4.38660 4.54410
11.95543 4.32622 4.51485
11.65676 4.34665 4.53181
11.75739 4.26262 4.31666
11.81329 4.27530 4.49183
11.80406 4.54737 4.26824
12.61570 4.14470 3.70140
13.23640 4.34750 5.26450
13.19833 4.33196 5.29435
13.21249 4.35695 5.37418
13.06805 4.24275 5.35126
13.19693 4.37618 5.28772

	
Corrfunc.io.read_ascii_catalog(filename, return_dtype=None)

	Read a galaxy catalog from an ascii file.

	Parameters

	
	filename (string) – Filename containing the galaxy positions

	return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies the datatype for the returned arrays. Must be in
{np.float, np.float32}

	Returns

	X, Y, Z – Returns the triplet of X/Y/Z positions as separate numpy arrays.

	Return type

	numpy arrays

Example

>>> from __future__ import print_function
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_ascii_catalog
>>> filename = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data/", "Mr19_mock_northonly.rdcz.dat")
>>> ra, dec, cz = read_ascii_catalog(filename)
>>> N = 20
>>> for r,d,c in zip(ra[0:N], dec[0:N], cz[0:]):
... print("{0:10.5f} {1:10.5f} {2:10.5f}".format(r, d, c))
...
178.45087 67.01112 19905.28514
178.83495 67.72519 19824.02285
179.50132 67.67628 19831.21553
182.75497 67.13004 19659.79825
186.29853 68.64099 20030.64412
186.32346 68.65879 19763.38137
187.36173 68.15151 19942.66996
187.20613 68.56189 19996.36607
185.56358 67.97724 19729.32308
183.27930 67.11318 19609.71345
183.86498 67.82823 19500.44130
184.07771 67.43429 19440.53790
185.13370 67.15382 19390.60304
189.15907 68.28252 19858.85853
190.12209 68.55062 20044.29744
193.65245 68.36878 19445.62469
194.93514 68.34870 19158.93155
180.36897 67.50058 18671.40780
179.63278 67.51318 18657.59191
180.75742 67.95530 18586.88913

	
Corrfunc.io.read_catalog(filebase=None, return_dtype=<Mock id='140449582495120'>)

	Reads a galaxy/randoms catalog and returns 3 XYZ arrays.

	Parameters

	
	filebase (string (optional)) – The fully qualified path to the file. If omitted, reads the
theory galaxy catalog under ../theory/tests/data/

	return_dtype (numpy dtype for returned arrays. Default numpy.float) – Specifies the datatype for the returned arrays. Must be in
{np.float, np.float32}

	Returns

	
	x y z - Unpacked numpy arrays compatible with the installed

	version of Corrfunc.

Note

If the filename is omitted, then first the fast-food file
is searched for, and then the ascii file. End-users should always
supply the full filename.

Corrfunc.tests module

	
Corrfunc.tests.tests()

	Wrapper to run the two scripts that should have been installed
with the Corrfunc package.

If the two scripts (one for theory extensions, one for mocks extensions)
run successfully, then the package is working correctly.

Corrfunc.utils module

A set of utility routines

	
Corrfunc.utils.convert_3d_counts_to_cf(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1, R1R2, estimator=u'LS')

	Converts raw pair counts to a correlation function.

	Parameters

	
	ND1 (integer) – Number of points in the first dataset

	ND2 (integer) – Number of points in the second dataset

	NR1 (integer) – Number of points in the randoms for first dataset

	NR2 (integer) – Number of points in the randoms for second dataset

	D1D2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and D2

	D1R2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and R2

	D2R1 (array-like, integer) – Pair-counts for the cross-correlation between D2 and R1

	R1R2 (array-like, integer) – Pair-counts for the cross-correlation between R1 and R2

	all of these pair-counts arrays, the corresponding numpy (For) –

	returned by the theory/mocks modules can also be passed (struct) –

	estimator (string, default='LS' (Landy-Szalay)) – The kind of estimator to use for computing the correlation
function. Currently, only supports Landy-Szalay

	Returns

	cf – The correlation function, calculated using the chosen estimator,
is returned. NAN is returned for the bins where the RR count
is 0.

	Return type

	A numpy array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.DD import DD
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_3d_counts_to_cf
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> rand_N = 3*N
>>> seed = 42
>>> np.random.seed(seed)
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 2
>>> rmin = 0.1
>>> rmax = 15.0
>>> nbins = 10
>>> bins = np.linspace(rmin, rmax, nbins + 1)
>>> autocorr = 1
>>> DD_counts = DD(autocorr, nthreads, bins, X, Y, Z)
>>> autocorr = 0
>>> DR_counts = DD(autocorr, nthreads, bins,
... X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z)
>>> autocorr = 1
>>> RR_counts = DD(autocorr, nthreads, bins, rand_X, rand_Y, rand_Z)
>>> cf = convert_3d_counts_to_cf(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts)
>>> for xi in cf: print("{0:10.6f}".format(xi))
...
22.769019
 3.612709
 1.621372
 1.000969
 0.691646
 0.511819
 0.398872
 0.318815
 0.255643
 0.207759

	
Corrfunc.utils.convert_rp_pi_counts_to_wp(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1, R1R2, nrpbins, pimax, dpi=1.0, estimator=u'LS')

	Converts raw pair counts to a correlation function.

	Parameters

	
	ND1 (integer) – Number of points in the first dataset

	ND2 (integer) – Number of points in the second dataset

	NR1 (integer) – Number of points in the randoms for first dataset

	NR2 (integer) – Number of points in the randoms for second dataset

	D1D2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and D2

	D1R2 (array-like, integer) – Pair-counts for the cross-correlation between D1 and R2

	D2R1 (array-like, integer) – Pair-counts for the cross-correlation between D2 and R1

	R1R2 (array-like, integer) – Pair-counts for the cross-correlation between R1 and R2

	all of these pair-counts arrays, the corresponding numpy (For) –

	returned by the theory/mocks modules can also be passed (struct) –

	nrpbins (integer) – Number of bins in rp

	pimax (float [https://docs.python.org/3/library/functions.html#float]) – Integration distance along the line of sight direction

	dpi (float [https://docs.python.org/3/library/functions.html#float], default=1.0 Mpc/h) – Binsize in the line of sight direction

	estimator (string, default='LS' (Landy-Szalay)) – The kind of estimator to use for computing the correlation
function. Currently, only supports Landy-Szalay

	Returns

	wp – The projected correlation function, calculated using the chosen
estimator, is returned. If any of the pi bins (in an rp
bin) contains 0 for the RR counts, then NAN is returned
for that rp bin.

	Return type

	A numpy array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.DDrppi import DDrppi
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.utils import convert_rp_pi_counts_to_wp
>>> X, Y, Z = read_catalog()
>>> N = len(X)
>>> boxsize = 420.0
>>> rand_N = 3*N
>>> seed = 42
>>> np.random.seed(seed)
>>> rand_X = np.random.uniform(0, boxsize, rand_N)
>>> rand_Y = np.random.uniform(0, boxsize, rand_N)
>>> rand_Z = np.random.uniform(0, boxsize, rand_N)
>>> nthreads = 4
>>> pimax = 40.0
>>> nrpbins = 20
>>> rpmin = 0.1
>>> rpmax = 10.0
>>> bins = np.linspace(rpmin, rpmax, nrpbins + 1)
>>> autocorr = 1
>>> DD_counts = DDrppi(autocorr, nthreads, pimax, bins,
... X, Y, Z)
>>> autocorr = 0
>>> DR_counts = DDrppi(autocorr, nthreads, pimax, bins,
... X, Y, Z,
... X2=rand_X, Y2=rand_Y, Z2=rand_Z)
>>> autocorr = 1
>>> RR_counts = DDrppi(autocorr, nthreads, pimax, bins,
... rand_X, rand_Y, rand_Z)
>>> wp = convert_rp_pi_counts_to_wp(N, N, rand_N, rand_N,
... DD_counts, DR_counts,
... DR_counts, RR_counts,
... nrpbins, pimax)
>>> for w in wp: print("{0:10.6f}".format(w))
...
187.592199
 83.059181
 53.200599
 40.389354
 33.356371
 29.045476
 26.088133
 23.628340
 21.703961
 20.153125
 18.724781
 17.433235
 16.287183
 15.443230
 14.436193
 13.592727
 12.921226
 12.330074
 11.696364
 11.208365

	
Corrfunc.utils.translate_isa_string_to_enum(isa)

	Helper function to convert an user-supplied string to the
underlying enum in the C-API. The extensions only have specific
implementations for AVX, SSE42 and FALLBACK. Any other value
will raise a ValueError.

	Parameters

	isa (string) – A string containing the desired instruction set. Valid values are
[‘AVX’, ‘SSE42’, ‘FALLBACK’, ‘FASTEST’]

	Returns

	instruction_set – An integer corresponding to the desired instruction set, as used in the
underlying C API. The enum used here should be defined exactly the
same way as the enum in utils/defs.h.

	Return type

	integer

	
Corrfunc.utils.return_file_with_rbins(rbins)

	Helper function to ensure that the binfile required by the Corrfunc
extensions is a actually a string.

Checks if the input is a string and file; return if True. If not, and
the input is an array, then a temporary file is created and the contents
of rbins is written out.

	Parameters

	rbins (string or array-like) – Expected to be a string or an array containing the bins

	Returns

	binfile – If the input rbins was a valid filename, then returns the same
string. If rbins was an array, then this function creates a
temporary file with the contents of the rbins arrays. This
temporary filename is returned

	Return type

	string, filename

	
Corrfunc.utils.fix_ra_dec(ra, dec)

	Wraps input RA and DEC values into range expected by the extensions.

	Parameters

	
	RA (array-like, units must be degrees) – Right Ascension values (astronomical longitude)

	DEC (array-like, units must be degrees) – Declination values (astronomical latitude)

	Returns

	Tuple (RA, DEC) – RA is wrapped into range [0.0, 360.0]
Declination is wrapped into range [-90.0, 90.0]

	Return type

	array-like

	
Corrfunc.utils.fix_cz(cz)

	Multiplies the input array by speed of light, if the input values are
too small.

Essentially, converts redshift into cz, if the user passed
redshifts instead of cz.

	Parameters

	cz (array-like, reals) – An array containing [Speed of Light *] redshift values.

	Returns

	cz – Actual cz values, multiplying the input cz array by the
Speed of Light, if redshift values were passed as input cz.

	Return type

	array-like

	
Corrfunc.utils.compute_nbins(max_diff, binsize, refine_factor=1, max_nbins=None)

	Helper utility to find the number of bins for
that satisfies the constraints of (binsize, refine_factor, and max_nbins).

	Parameters

	
	max_diff (double) – Max. difference (spatial or angular) to be spanned,
(i.e., range of allowed domain values)

	binsize (double) – Min. allowed binsize (spatial or angular)

	refine_factor (integer, default 1) – How many times to refine the bins. The refinements occurs
after nbins has already been determined (with refine_factor-1).
Thus, the number of bins will be exactly higher by
refine_factor compared to the base case of refine_factor=1

	max_nbins (integer, default None) – Max number of allowed cells

	Returns

	nbins – Number of bins that satisfies the constraints of
bin size >= binsize, the refinement factor
and nbins <= max_nbins.

	Return type

	integer, >= 1

Example

>>> from Corrfunc.utils import compute_nbins
>>> max_diff = 180
>>> binsize = 10
>>> compute_nbins(max_diff, binsize)
18
>>> refine_factor=2
>>> max_nbins = 20
>>> compute_nbins(max_diff, binsize, refine_factor=refine_factor,
... max_nbins=max_nbins)
20

	
Corrfunc.utils.gridlink_sphere(thetamax, ra_limits=None, dec_limits=None, link_in_ra=True, ra_refine_factor=1, dec_refine_factor=1, max_ra_cells=100, max_dec_cells=200, return_num_ra_cells=False, input_in_degrees=True)

	A method to optimally partition spherical regions such that pairs of
points within a certain angular separation, thetamax, can be quickly
computed.

Generates the binning scheme used in Corrfunc.mocks.DDtheta_mocks
for a spherical region in Right Ascension (RA), Declination (DEC)
and a maximum angular separation.

For a given thetamax, regions on the sphere are divided into bands
in DEC bands, with the width in DEC equal to thetamax. If
link_in_ra is set, then these DEC bands are further sub-divided
into RA cells.

	Parameters

	
	thetamax (double) – Max. angular separation of pairs. Expected to be in degrees
unless input_in_degrees is set to False.

	ra_limits (array of 2 doubles. Default [0.0, 2*pi]) – Range of Righ Ascension (longitude) for the spherical region

	dec_limits (array of 2 doubles. Default [-pi/2, pi/2]) – Range of Declination (latitude) values for the spherical region

	link_in_ra (Boolean. Default True) – Whether linking in RA is done (in addition to linking in DEC)

	ra_refine_factor (integer, >= 1. Default 1) – Controls the sub-division of the RA cells. For a large number of
particles, higher ra_refine_factor typically results in a faster
runtime

	dec_refine_factor (integer, >= 1. Default 1) – Controls the sub-division of the DEC cells. For a large number of
particles, higher dec_refine_factor typically results in a faster
runtime

	max_ra_cells (integer, >= 1. Default 100) – The max. number of RA cells per DEC band.

	max_dec_cells (integer >= 1. Default 200) – The max. number of total DEC bands

	return_num_ra_cells (bool [https://docs.python.org/3/library/functions.html#bool], default False) – Flag to return the number of RA cells per DEC band

	input_in_degrees (Boolean. Default True) – Flag to show if the input quantities are in degrees. If set to
False, all angle inputs will be taken to be in radians.

	Returns

	
	sphere_grid (A numpy compound array, shape (ncells, 2)) – A numpy compound array with fields dec_limit and ra_limit of
size 2 each. These arrays contain the beginning and end of DEC
and RA regions for the cell.

	num_ra_cells (numpy array, returned if return_num_ra_cells is set) – A numpy array containing the number of RA cells per declination band

Note

If link_in_ra=False, then there is effectively one RA bin
per DEC band. The ‘ra_limit’ field will show the range of allowed
RA values.

See also

Corrfunc.mocks.DDtheta_mocks

Example

>>> from Corrfunc.utils import gridlink_sphere
>>> import numpy as np
>>> np.set_printoptions(precision=8)
>>> thetamax=30
>>> grid = gridlink_sphere(thetamax)
>>> print(grid)
[([-1.57079633, -1.04719755], [0. , 3.14159265])
 ([-1.57079633, -1.04719755], [3.14159265, 6.28318531])
 ([-1.04719755, -0.52359878], [0. , 3.14159265])
 ([-1.04719755, -0.52359878], [3.14159265, 6.28318531])
 ([-0.52359878, 0.], [0. , 1.25663706])
 ([-0.52359878, 0.], [1.25663706, 2.51327412])
 ([-0.52359878, 0.], [2.51327412, 3.76991118])
 ([-0.52359878, 0.], [3.76991118, 5.02654825])
 ([-0.52359878, 0.], [5.02654825, 6.28318531])
 ([0. , 0.52359878], [0. , 1.25663706])
 ([0. , 0.52359878], [1.25663706, 2.51327412])
 ([0. , 0.52359878], [2.51327412, 3.76991118])
 ([0. , 0.52359878], [3.76991118, 5.02654825])
 ([0. , 0.52359878], [5.02654825, 6.28318531])
 ([0.52359878, 1.04719755], [0. , 3.14159265])
 ([0.52359878, 1.04719755], [3.14159265, 6.28318531])
 ([1.04719755, 1.57079633], [0. , 3.14159265])
 ([1.04719755, 1.57079633], [3.14159265, 6.28318531])]
>>> grid = gridlink_sphere(60, dec_refine_factor=3, ra_refine_factor=2)
>>> print(grid)
[([-1.57079633, -1.22173048], [0. , 1.57079633])
 ([-1.57079633, -1.22173048], [1.57079633, 3.14159265])
 ([-1.57079633, -1.22173048], [3.14159265, 4.71238898])
 ([-1.57079633, -1.22173048], [4.71238898, 6.28318531])
 ([-1.22173048, -0.87266463], [0. , 1.57079633])
 ([-1.22173048, -0.87266463], [1.57079633, 3.14159265])
 ([-1.22173048, -0.87266463], [3.14159265, 4.71238898])
 ([-1.22173048, -0.87266463], [4.71238898, 6.28318531])
 ([-0.87266463, -0.52359878], [0. , 1.57079633])
 ([-0.87266463, -0.52359878], [1.57079633, 3.14159265])
 ([-0.87266463, -0.52359878], [3.14159265, 4.71238898])
 ([-0.87266463, -0.52359878], [4.71238898, 6.28318531])
 ([-0.52359878, -0.17453293], [0. , 1.57079633])
 ([-0.52359878, -0.17453293], [1.57079633, 3.14159265])
 ([-0.52359878, -0.17453293], [3.14159265, 4.71238898])
 ([-0.52359878, -0.17453293], [4.71238898, 6.28318531])
 ([-0.17453293, 0.17453293], [0. , 1.57079633])
 ([-0.17453293, 0.17453293], [1.57079633, 3.14159265])
 ([-0.17453293, 0.17453293], [3.14159265, 4.71238898])
 ([-0.17453293, 0.17453293], [4.71238898, 6.28318531])
 ([0.17453293, 0.52359878], [0. , 1.57079633])
 ([0.17453293, 0.52359878], [1.57079633, 3.14159265])
 ([0.17453293, 0.52359878], [3.14159265, 4.71238898])
 ([0.17453293, 0.52359878], [4.71238898, 6.28318531])
 ([0.52359878, 0.87266463], [0. , 1.57079633])
 ([0.52359878, 0.87266463], [1.57079633, 3.14159265])
 ([0.52359878, 0.87266463], [3.14159265, 4.71238898])
 ([0.52359878, 0.87266463], [4.71238898, 6.28318531])
 ([0.87266463, 1.22173048], [0. , 1.57079633])
 ([0.87266463, 1.22173048], [1.57079633, 3.14159265])
 ([0.87266463, 1.22173048], [3.14159265, 4.71238898])
 ([0.87266463, 1.22173048], [4.71238898, 6.28318531])
 ([1.22173048, 1.57079633], [0. , 1.57079633])
 ([1.22173048, 1.57079633], [1.57079633, 3.14159265])
 ([1.22173048, 1.57079633], [3.14159265, 4.71238898])
 ([1.22173048, 1.57079633], [4.71238898, 6.28318531])]

Corrfunc.mocks package

Wrapper for all clustering statistic calculations on galaxies
in a mock catalog.

	
Corrfunc.mocks.DDrppi_mocks(autocorr, cosmology, nthreads, pimax, binfile, RA1, DEC1, CZ1, weights1=None, RA2=None, DEC2=None, CZ2=None, weights2=None, is_comoving_dist=False, verbose=False, output_rpavg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 2-D pair-counts corresponding to the projected correlation
function, \(\xi(r_p, \pi)\). Pairs which are separated by less
than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted. The input positions are expected to be on-sky co-ordinates.
This module is suitable for calculating correlation functions for mock
catalogs.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Returns a numpy structured array containing the pair counts for the
specified bins.

Note

that this module only returns pair counts and not the actual
correlation function \(\xi(r_p, \pi)\) or \(wp(r_p)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf and
Corrfunc.utils.convert_rp_pi_counts_to_wp for computing
\(\xi(r_p, \pi)\) and \(wp(r_p)\) respectively from the
pair counts.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	cosmology (integer, required) – Integer choice for setting cosmology. Valid values are 1->LasDamas
cosmology and 2->Planck cosmology. If you need arbitrary cosmology,
easiest way is to convert the CZ values into co-moving distance,
based on your preferred cosmology. Set is_comoving_dist=True, to
indicate that the co-moving distance conversion has already been done.

	Choices:

	
	LasDamas cosmology. \(\Omega_m=0.25\), \(\Omega_\Lambda=0.75\)

	Planck cosmology. \(\Omega_m=0.302\), \(\Omega_\Lambda=0.698\)

To setup a new cosmology, add an entry to the function,
init_cosmology in ROOT/utils/cosmology_params.c and re-install
the entire package.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Distances along the \(\pi\) direction are binned with unit
depth. For instance, if pimax=40, then 40 bins will be created
along the pi direction. Only pairs with 0 <= dz < pimax
are counted (no equality).

	binfile (string or an list/array of floats) – For string input: filename specifying the rp bins for
DDrppi_mocks. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	RA1 (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC1 (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1.

	CZ1 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the first set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ1 is interpreted as the
co-moving distance, rather than cz.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field. If only one of weights1 and weights2 is
specified, the other will be set to uniform weights.

	RA2 (array-like, real (float/double)) – The array of Right Ascensions for the second set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Must be of same precision type as RA1/DEC1/CZ1.

	DEC2 (array-like, real (float/double)) – Array of Declinations for the second set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1/DEC1/CZ1.

	CZ2 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the second set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the
co-moving distance, rather than cz.

Must be of same precision type as RA1/DEC1/CZ1.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	is_comoving_dist (boolean (default false)) – Boolean flag to indicate that cz values have already been
converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_rpavg (boolean (default false)) – Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

If you are calculating in single-precision, rpavg will suffer
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	fast_divide_and_NR_steps (integer (default 0)) – Replaces the division in AVX implementation with an approximate
reciprocal, followed by fast_divide_and_NR_steps of Newton-Raphson.
Can improve runtime by ~15-20% on older computers. Value of 0 uses
the standard division operation.

	(xyz)bin_refine_factor (integer, default is (2,2,1); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code
will revert to using fallback (even though sse42 might be
available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type (string, optional) – The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rpmin, rpmax, rpavg, pimax, npairs, weightavg]
for each radial bin specified in the binfile. If output_ravg is
not set, then rpavg will be set to 0.0 for all bins; similarly for
weightavg. npairs
contains the number of pairs in that bin and can be used to compute the
actual \(\xi(r_p, \pi)\) or \(wp(rp)\) by combining with
(DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
>>> import math
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Y = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Z = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> weights = np.ones_like(X)
>>> CZ = np.sqrt(X*X + Y*Y + Z*Z)
>>> inv_cz = 1.0/CZ
>>> X *= inv_cz
>>> Y *= inv_cz
>>> Z *= inv_cz
>>> DEC = 90.0 - np.arccos(Z)*180.0/math.pi
>>> RA = (np.arctan2(Y, X)*180.0/math.pi) + 180.0
>>> autocorr = 1
>>> cosmology = 1
>>> nthreads = 2
>>> pimax = 40.0
>>> results = DDrppi_mocks(autocorr, cosmology, nthreads,
... pimax, binfile, RA, DEC, CZ,
... weights1=weights, weight_type='pair_product',
... output_rpavg=True, is_comoving_dist=True)
>>> for r in results[519:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['rmin'], r['rmax'],
... r['rpavg'], r['pimax'], r['npairs'], r['weightavg']))
...
 11.359969 16.852277 14.285169 40.0 104850 1.000000
 16.852277 25.000000 21.181246 1.0 274144 1.000000
 16.852277 25.000000 21.190844 2.0 272876 1.000000
 16.852277 25.000000 21.183321 3.0 272294 1.000000
 16.852277 25.000000 21.188486 4.0 272506 1.000000
 16.852277 25.000000 21.170832 5.0 272100 1.000000
 16.852277 25.000000 21.165379 6.0 271788 1.000000
 16.852277 25.000000 21.175246 7.0 270040 1.000000
 16.852277 25.000000 21.187417 8.0 269492 1.000000
 16.852277 25.000000 21.172066 9.0 269682 1.000000
 16.852277 25.000000 21.182460 10.0 268266 1.000000
 16.852277 25.000000 21.170594 11.0 268744 1.000000
 16.852277 25.000000 21.178608 12.0 266820 1.000000
 16.852277 25.000000 21.187184 13.0 266510 1.000000
 16.852277 25.000000 21.184937 14.0 265484 1.000000
 16.852277 25.000000 21.180184 15.0 265258 1.000000
 16.852277 25.000000 21.191504 16.0 262952 1.000000
 16.852277 25.000000 21.187746 17.0 262602 1.000000
 16.852277 25.000000 21.189778 18.0 260206 1.000000
 16.852277 25.000000 21.188882 19.0 259410 1.000000
 16.852277 25.000000 21.185684 20.0 256806 1.000000
 16.852277 25.000000 21.194036 21.0 255574 1.000000
 16.852277 25.000000 21.184115 22.0 255406 1.000000
 16.852277 25.000000 21.178255 23.0 252394 1.000000
 16.852277 25.000000 21.184644 24.0 252220 1.000000
 16.852277 25.000000 21.187020 25.0 251668 1.000000
 16.852277 25.000000 21.183827 26.0 249648 1.000000
 16.852277 25.000000 21.183121 27.0 247160 1.000000
 16.852277 25.000000 21.180872 28.0 246238 1.000000
 16.852277 25.000000 21.185251 29.0 246030 1.000000
 16.852277 25.000000 21.183488 30.0 242124 1.000000
 16.852277 25.000000 21.194538 31.0 242426 1.000000
 16.852277 25.000000 21.190702 32.0 239778 1.000000
 16.852277 25.000000 21.188985 33.0 239046 1.000000
 16.852277 25.000000 21.187092 34.0 237640 1.000000
 16.852277 25.000000 21.185515 35.0 236256 1.000000
 16.852277 25.000000 21.190278 36.0 233536 1.000000
 16.852277 25.000000 21.183240 37.0 233274 1.000000
 16.852277 25.000000 21.183796 38.0 231628 1.000000
 16.852277 25.000000 21.200668 39.0 230378 1.000000
 16.852277 25.000000 21.181153 40.0 229006 1.000000

	
Corrfunc.mocks.DDtheta_mocks(autocorr, nthreads, binfile, RA1, DEC1, weights1=None, RA2=None, DEC2=None, weights2=None, link_in_dec=True, link_in_ra=True, verbose=False, output_thetaavg=False, fast_acos=False, ra_refine_factor=2, dec_refine_factor=2, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Function to compute the angular correlation function for points on
the sky (i.e., mock catalogs or observed galaxies).

Returns a numpy structured array containing the pair counts for the
specified angular bins.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\omega(heta)\). See
Corrfunc.utils.convert_3d_counts_to_cf for computing
\(\omega(heta)\) from the pair counts returned.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – Number of threads to use.

	binfile (string or an list/array of floats. Units: degrees.) – For string input: filename specifying the theta bins for
DDtheta_mocks. The file should contain white-space separated values
of (thetamin, thetamax) for each theta wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of theta values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0
degrees. This array does not need to be sorted.

	RA1 (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC1 (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].
Must be of same precision type as RA1.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or
(n_positions,). weight_type specifies how these weights are used;
results are returned in the weightavg field. If only one of weights1
and weights2 is specified, the other will be set to uniform weights.

	RA2 (array-like, real (float/double)) – The array of Right Ascensions for the second set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].
Must be of same precision type as RA1/DEC1.

	DEC2 (array-like, real (float/double)) – Array of Declinations for the second set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].
Must be of same precision type as RA1/DEC1.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	link_in_dec (boolean (default True)) – Boolean flag to create lattice in Declination. Code runs faster with
this option. However, if the angular separations are too small, then
linking in declination might produce incorrect results. When running
for the first time, check your results by comparing with the output
of the code for link_in_dec=False and link_in_ra=False.

	link_in_ra (boolean (default True)) – Boolean flag to create lattice in Right Ascension. Setting this option
implies link_in_dec=True. Similar considerations as link_in_dec
described above.

If you disable both link_in_dec and link_in_ra, then
the code reduces to a brute-force pair counter. No lattices are created
at all. For very small angular separations, the brute-force method
might be the most numerically stable method.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_thetaavg (boolean (default false)) – Boolean flag to output the average `` heta`` for each bin. Code will
run slower if you set this flag.

If you are calculating in single-precision, thetaavg will
suffer from numerical loss of precision and can not be trusted. If you
need accurate thetaavg values, then pass in double precision arrays
for RA/DEC.

Code will run significantly slower if you enable this option.
Use the keyword fast_acos if you can tolerate some loss of
precision.

	fast_acos (boolean (default false)) – Flag to use numerical approximation for the arccos - gives better
performance at the expense of some precision. Relevant only if
output_thetaavg==True.

Developers: Two versions already coded up in utils/fast_acos.h,
so you can choose the version you want. There are also notes on how
to implement faster (and less accurate) functions, particularly relevant
if you know your theta range is limited. If you implement a new
version, then you will have to reinstall the entire Corrfunc package.

Note: Tests will fail if you run the tests with``fast_acos=True``.

	(radec)_refine_factor (integer, default is (2,2); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Only two refine factors are to be specified and these
correspond to ra and dec (rather, than the usual three of
(xyz)bin_refine_factor for all other correlation functions).

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if thetamax
is too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [thetamin, thetamax, thetaavg,
npairs, weightavg] for each angular bin specified in the binfile. If
output_thetaavg is not set then thetavg will be set to 0.0 for
all bins; similarly for
weightavg. npairs contains the number of pairs in that bin.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> import time
>>> from math import pi
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/", "angular_bins")
>>> N = 100000
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> RA = np.random.uniform(0.0, 2.0*pi, N)*180.0/pi
>>> cos_theta = np.random.uniform(-1.0, 1.0, N)
>>> DEC = 90.0 - np.arccos(cos_theta)*180.0/pi
>>> weights = np.ones_like(RA)
>>> autocorr = 1
>>> for isa in ['AVX', 'SSE42', 'FALLBACK']:
... for link_in_dec in [False, True]:
... for link_in_ra in [False, True]:
... results = DDtheta_mocks(autocorr, nthreads, binfile,
... RA, DEC, output_thetaavg=True,
... weights1=weights, weight_type='pair_product',
... link_in_dec=link_in_dec, link_in_ra=link_in_ra,
... isa=isa, verbose=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10d} {4:10.6f}".
... format(r['thetamin'], r['thetamax'],
... r['thetaavg'], r['npairs'], r['weightavg']))
...
 0.010000 0.014125 0.012272 62 1.000000
 0.014125 0.019953 0.016978 172 1.000000
 0.019953 0.028184 0.024380 298 1.000000
 0.028184 0.039811 0.034321 598 1.000000
 0.039811 0.056234 0.048535 1164 1.000000
 0.056234 0.079433 0.068385 2438 1.000000
 0.079433 0.112202 0.096631 4658 1.000000
 0.112202 0.158489 0.136834 9414 1.000000
 0.158489 0.223872 0.192967 19098 1.000000
 0.223872 0.316228 0.272673 37848 1.000000
 0.316228 0.446684 0.385344 75520 1.000000
 0.446684 0.630957 0.543973 150938 1.000000
 0.630957 0.891251 0.768406 301854 1.000000
 0.891251 1.258925 1.085273 599896 1.000000
 1.258925 1.778279 1.533461 1200238 1.000000
 1.778279 2.511886 2.166009 2396338 1.000000
 2.511886 3.548134 3.059159 4775162 1.000000
 3.548134 5.011872 4.321445 9532582 1.000000
 5.011872 7.079458 6.104214 19001930 1.000000
 7.079458 10.000000 8.622400 37842502 1.000000

	
Corrfunc.mocks.vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb, centers_file, cosmology, RA, DEC, CZ, RAND_RA, RAND_DEC, RAND_CZ, verbose=False, is_comoving_dist=False, xbin_refine_factor=1, ybin_refine_factor=1, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest')

	Function to compute the counts-in-cells on points on the sky. Suitable
for mock catalogs and observed galaxies.

Returns a numpy structured array containing the probability of a
sphere of radius up to rmax containing 0--numpN-1 galaxies.

	Parameters

	
	rmax (double) – Maximum radius of the sphere to place on the particles

	nbins (integer) – Number of bins in the counts-in-cells. Radius of first shell
is rmax/nbins

	nspheres (integer (>= 0)) – Number of random spheres to place within the particle distribution.
For a small number of spheres, the error is larger in the measured
pN’s.

	numpN (integer (>= 1)) – Governs how many unique pN’s are to returned. If numpN is set to 1,
then only the vpf (p0) is returned. For numpN=2, p0 and p1 are
returned.

More explicitly, the columns in the results look like the following:

	numpN

	Columns in output

	1

	p0

	2

	p0 p1

	3

	p0 p1 p2

	4

	p0 p1 p2 p3

and so on…

Note: p0 is the vpf

	threshold_ngb (integer) – Minimum number of random points needed in a rmax sphere such that it
is considered to be entirely within the mock footprint. The
command-line version, mocks/vpf/vpf_mocks.c, assumes that the
minimum number of randoms can be at most a 1-sigma deviation from
the expected random number density.

	centers_file (string, filename) – A file containing random sphere centers. If the file does not exist,
then a list of random centers will be written out. In that case, the
randoms arrays, RAND_RA, RAND_DEC and RAND_CZ are used to
check that the sphere is entirely within the footprint. If the file does
exist but either rmax is too small or there are not enough centers
then the file will be overwritten.

Note: If the centers file has to be written, the code will take
significantly longer to finish. However, subsequent runs can re-use
that centers file and will be faster.

	cosmology (integer, required) – Integer choice for setting cosmology. Valid values are 1->LasDamas
cosmology and 2->Planck cosmology. If you need arbitrary cosmology,
easiest way is to convert the CZ values into co-moving distance,
based on your preferred cosmology. Set is_comoving_dist=True, to
indicate that the co-moving distance conversion has already been done.

	Choices:

	
	LasDamas cosmology. \(\Omega_m=0.25\), \(\Omega_\Lambda=0.75\)

	Planck cosmology. \(\Omega_m=0.302\), \(\Omega_\Lambda=0.698\)

To setup a new cosmology, add an entry to the function,
init_cosmology in ROOT/utils/cosmology_params.c and re-install
the entire package.

	RA (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA.

	CZ (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the first set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ is interpreted as the
co-moving distance, rather than (Speed Of Light * Redshift).

	RAND_RA (array-like, real (float/double)) – The array of Right Ascensions for the randoms. RA’s are expected to be
in [0.0, 360.0], but the code will try to fix cases where the RA’s are
in [-180, 180.0]. For peace of mind, always supply RA’s in
[0.0, 360.0].

Must be of same precision type as RA/DEC/CZ.

	RAND_DEC (array-like, real (float/double)) – Array of Declinations for the randoms. DEC’s are expected to be in the
[-90.0, 90.0], but the code will try to fix cases where the DEC’s are
in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0].

Must be of same precision type as RA/DEC/CZ.

	RAND_CZ (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the randoms. Code
will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the
co-moving distance, rather than (Speed Of Light * Redshift).

	Note: RAND_RA, RAND_DEC and RAND_CZ are only used when the

	centers_file needs to be written out. In that case, the
RAND_RA, RAND_DEC, and RAND_CZ are used as random centers.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	is_comoving_dist (boolean (default false)) – Boolean flag to indicate that cz values have already been
converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

	(xyz)bin_refine_factor (integer, default is (1,1,1); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Note: Since the counts in spheres calculation is symmetric
in all 3 dimensions, the defaults are different from the clustering
routines.

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rmax, pN[numpN]] with nbins
elements. Each row contains the maximum radius of the sphere and the
numpN elements in the pN array. Each element of this array
contains the probability that a sphere of radius rmax contains
exactly N galaxies. For example, pN[0] (p0, the void probibility
function) is the probability that a sphere of radius rmax contains 0
galaxies.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import math
>>> from os.path import dirname, abspath, join as pjoin
>>> import numpy as np
>>> import Corrfunc
>>> from Corrfunc.mocks.vpf_mocks import vpf_mocks
>>> rmax = 10.0
>>> nbins = 10
>>> numbins_to_print = nbins
>>> nspheres = 10000
>>> numpN = 6
>>> threshold_ngb = 1 # does not matter since we have the centers
>>> cosmology = 1 # LasDamas cosmology
>>> centers_file = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data/",
... "Mr19_centers_xyz_forVPF_rmax_10Mpc.txt")
>>> N = 1000000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Y = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Z = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> CZ = np.sqrt(X*X + Y*Y + Z*Z)
>>> inv_cz = 1.0/CZ
>>> X *= inv_cz
>>> Y *= inv_cz
>>> Z *= inv_cz
>>> DEC = 90.0 - np.arccos(Z)*180.0/math.pi
>>> RA = (np.arctan2(Y, X)*180.0/math.pi) + 180.0
>>> results = vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb,
... centers_file, cosmology,
... RA, DEC, CZ,
... RA, DEC, CZ,
... is_comoving_dist=True)
>>> for r in results:
... print("{0:10.1f} ".format(r[0]), end="")
...
... for pn in r[1]:
... print("{0:10.3f} ".format(pn), end="")
...
... print("")
 1.0 0.999 0.001 0.000 0.000 0.000 0.000
 2.0 0.992 0.007 0.001 0.000 0.000 0.000
 3.0 0.982 0.009 0.005 0.002 0.001 0.000
 4.0 0.975 0.006 0.006 0.005 0.003 0.003
 5.0 0.971 0.004 0.003 0.003 0.004 0.003
 6.0 0.967 0.003 0.003 0.001 0.003 0.002
 7.0 0.962 0.004 0.002 0.003 0.002 0.001
 8.0 0.958 0.004 0.002 0.003 0.001 0.002
 9.0 0.953 0.003 0.003 0.002 0.003 0.001
 10.0 0.950 0.003 0.002 0.002 0.001 0.002

	
Corrfunc.mocks.DDsmu_mocks(autocorr, cosmology, nthreads, mu_max, nmu_bins, binfile, RA1, DEC1, CZ1, weights1=None, RA2=None, DEC2=None, CZ2=None, weights2=None, is_comoving_dist=False, verbose=False, output_savg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 2-D pair-counts corresponding to the projected correlation
function, \(\xi(s, \mu)\). The pairs are counted in bins of
radial separation and cosine of angle to the line-of-sight (LOS). The
input positions are expected to be on-sky co-ordinates. This module is
suitable for calculating correlation functions for mock catalogs.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Returns a numpy structured array containing the pair counts for the
specified bins.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(s, \mu)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf
for computing \(\xi(s, \mu)\) from the pair counts.

New in version 2.1.0.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	cosmology (integer, required) – Integer choice for setting cosmology. Valid values are 1->LasDamas
cosmology and 2->Planck cosmology. If you need arbitrary cosmology,
easiest way is to convert the CZ values into co-moving distance,
based on your preferred cosmology. Set is_comoving_dist=True, to
indicate that the co-moving distance conversion has already been done.

	Choices:

	
	LasDamas cosmology. \(\Omega_m=0.25\), \(\Omega_\Lambda=0.75\)

	Planck cosmology. \(\Omega_m=0.302\), \(\Omega_\Lambda=0.698\)

To setup a new cosmology, add an entry to the function,
init_cosmology in ROOT/utils/cosmology_params.c and re-install
the entire package.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	mu_max (double. Must be in range [0.0, 1.0]) – A double-precision value for the maximum cosine of the angular
separation from the line of sight (LOS). Here, mu is defined as
the angle between s and l. If \(v_1\) and \(v_2\)
represent the vectors to each point constituting the pair, then
\(s := v_1 - v_2\) and \(l := 1/2 (v_1 + v_2)\).

Note: Only pairs with \(0 <= \cos(\theta_{LOS}) < \mu_{max}\)
are counted (no equality).

	nmu_bins (int [https://docs.python.org/3/library/functions.html#int]) – The number of linear mu bins, with the bins ranging from
from (0, \(\mu_{max}\))

	binfile (string or an list/array of floats) – For string input: filename specifying the s bins for
DDsmu_mocks. The file should contain white-space separated values
of (smin, smax) specifying each s bin wanted. The bins
need to be contiguous and sorted in increasing order (smallest bins
come first).

For array-like input: A sequence of s values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	RA1 (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC1 (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1.

	CZ1 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the first set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ1 is interpreted as the
co-moving distance, rather than cz.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions)
or (n_positions,). weight_type specifies how these weights are used;
results are returned in the weightavg field. If only one of
weights1 or weights2 is specified, the other will be set
to uniform weights.

	RA2 (array-like, real (float/double)) – The array of Right Ascensions for the second set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Must be of same precision type as RA1/DEC1/CZ1.

	DEC2 (array-like, real (float/double)) – Array of Declinations for the second set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1/DEC1/CZ1.

	CZ2 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the second set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the
co-moving distance, rather than cz.

Must be of same precision type as RA1/DEC1/CZ1.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	is_comoving_dist (boolean (default false)) – Boolean flag to indicate that cz values have already been
converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_savg (boolean (default false)) – Boolean flag to output the average s for each bin. Code will
run slower if you set this flag. Also, note, if you are calculating
in single-precision, savg will suffer from numerical loss of
precision and can not be trusted. If you need accurate savg
values, then pass in double precision arrays for the particle
positions.

	fast_divide_and_NR_steps (integer (default 0)) – Replaces the division in AVX implementation with an approximate
reciprocal, followed by fast_divide_and_NR_steps of Newton-Raphson.
Can improve runtime by ~15-20% on older computers. Value of 0 uses
the standard division operation.

	(xyz)bin_refine_factor (integer, default is (2,2,1); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code
will revert to using fallback (even though sse42 might be
available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type (string, optional) – The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [smin, smax, savg, mumax, npairs, weightavg]
for each separation bin specified in the binfile. If output_savg is
not set, then savg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and
can be used to compute the actual \(\xi(s, \mu)\) by combining
with (DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only
the time spent within the C library and ignores all python overhead.

Submodules

Corrfunc.mocks.DDrppi_mocks module

Python wrapper around the C extension for the pair counter in
mocks/DDrppi_mocks/. This python wrapper is
Corrfunc.mocks.DDrppi_mocks

	
Corrfunc.mocks.DDrppi_mocks.DDrppi_mocks(autocorr, cosmology, nthreads, pimax, binfile, RA1, DEC1, CZ1, weights1=None, RA2=None, DEC2=None, CZ2=None, weights2=None, is_comoving_dist=False, verbose=False, output_rpavg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 2-D pair-counts corresponding to the projected correlation
function, \(\xi(r_p, \pi)\). Pairs which are separated by less
than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted. The input positions are expected to be on-sky co-ordinates.
This module is suitable for calculating correlation functions for mock
catalogs.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Returns a numpy structured array containing the pair counts for the
specified bins.

Note

that this module only returns pair counts and not the actual
correlation function \(\xi(r_p, \pi)\) or \(wp(r_p)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf and
Corrfunc.utils.convert_rp_pi_counts_to_wp for computing
\(\xi(r_p, \pi)\) and \(wp(r_p)\) respectively from the
pair counts.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	cosmology (integer, required) – Integer choice for setting cosmology. Valid values are 1->LasDamas
cosmology and 2->Planck cosmology. If you need arbitrary cosmology,
easiest way is to convert the CZ values into co-moving distance,
based on your preferred cosmology. Set is_comoving_dist=True, to
indicate that the co-moving distance conversion has already been done.

	Choices:

	
	LasDamas cosmology. \(\Omega_m=0.25\), \(\Omega_\Lambda=0.75\)

	Planck cosmology. \(\Omega_m=0.302\), \(\Omega_\Lambda=0.698\)

To setup a new cosmology, add an entry to the function,
init_cosmology in ROOT/utils/cosmology_params.c and re-install
the entire package.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Distances along the \(\pi\) direction are binned with unit
depth. For instance, if pimax=40, then 40 bins will be created
along the pi direction. Only pairs with 0 <= dz < pimax
are counted (no equality).

	binfile (string or an list/array of floats) – For string input: filename specifying the rp bins for
DDrppi_mocks. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	RA1 (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC1 (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1.

	CZ1 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the first set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ1 is interpreted as the
co-moving distance, rather than cz.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field. If only one of weights1 and weights2 is
specified, the other will be set to uniform weights.

	RA2 (array-like, real (float/double)) – The array of Right Ascensions for the second set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Must be of same precision type as RA1/DEC1/CZ1.

	DEC2 (array-like, real (float/double)) – Array of Declinations for the second set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1/DEC1/CZ1.

	CZ2 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the second set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the
co-moving distance, rather than cz.

Must be of same precision type as RA1/DEC1/CZ1.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	is_comoving_dist (boolean (default false)) – Boolean flag to indicate that cz values have already been
converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_rpavg (boolean (default false)) – Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

If you are calculating in single-precision, rpavg will suffer
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	fast_divide_and_NR_steps (integer (default 0)) – Replaces the division in AVX implementation with an approximate
reciprocal, followed by fast_divide_and_NR_steps of Newton-Raphson.
Can improve runtime by ~15-20% on older computers. Value of 0 uses
the standard division operation.

	(xyz)bin_refine_factor (integer, default is (2,2,1); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code
will revert to using fallback (even though sse42 might be
available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type (string, optional) – The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rpmin, rpmax, rpavg, pimax, npairs, weightavg]
for each radial bin specified in the binfile. If output_ravg is
not set, then rpavg will be set to 0.0 for all bins; similarly for
weightavg. npairs
contains the number of pairs in that bin and can be used to compute the
actual \(\xi(r_p, \pi)\) or \(wp(rp)\) by combining with
(DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDrppi_mocks import DDrppi_mocks
>>> import math
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Y = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Z = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> weights = np.ones_like(X)
>>> CZ = np.sqrt(X*X + Y*Y + Z*Z)
>>> inv_cz = 1.0/CZ
>>> X *= inv_cz
>>> Y *= inv_cz
>>> Z *= inv_cz
>>> DEC = 90.0 - np.arccos(Z)*180.0/math.pi
>>> RA = (np.arctan2(Y, X)*180.0/math.pi) + 180.0
>>> autocorr = 1
>>> cosmology = 1
>>> nthreads = 2
>>> pimax = 40.0
>>> results = DDrppi_mocks(autocorr, cosmology, nthreads,
... pimax, binfile, RA, DEC, CZ,
... weights1=weights, weight_type='pair_product',
... output_rpavg=True, is_comoving_dist=True)
>>> for r in results[519:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['rmin'], r['rmax'],
... r['rpavg'], r['pimax'], r['npairs'], r['weightavg']))
...
 11.359969 16.852277 14.285169 40.0 104850 1.000000
 16.852277 25.000000 21.181246 1.0 274144 1.000000
 16.852277 25.000000 21.190844 2.0 272876 1.000000
 16.852277 25.000000 21.183321 3.0 272294 1.000000
 16.852277 25.000000 21.188486 4.0 272506 1.000000
 16.852277 25.000000 21.170832 5.0 272100 1.000000
 16.852277 25.000000 21.165379 6.0 271788 1.000000
 16.852277 25.000000 21.175246 7.0 270040 1.000000
 16.852277 25.000000 21.187417 8.0 269492 1.000000
 16.852277 25.000000 21.172066 9.0 269682 1.000000
 16.852277 25.000000 21.182460 10.0 268266 1.000000
 16.852277 25.000000 21.170594 11.0 268744 1.000000
 16.852277 25.000000 21.178608 12.0 266820 1.000000
 16.852277 25.000000 21.187184 13.0 266510 1.000000
 16.852277 25.000000 21.184937 14.0 265484 1.000000
 16.852277 25.000000 21.180184 15.0 265258 1.000000
 16.852277 25.000000 21.191504 16.0 262952 1.000000
 16.852277 25.000000 21.187746 17.0 262602 1.000000
 16.852277 25.000000 21.189778 18.0 260206 1.000000
 16.852277 25.000000 21.188882 19.0 259410 1.000000
 16.852277 25.000000 21.185684 20.0 256806 1.000000
 16.852277 25.000000 21.194036 21.0 255574 1.000000
 16.852277 25.000000 21.184115 22.0 255406 1.000000
 16.852277 25.000000 21.178255 23.0 252394 1.000000
 16.852277 25.000000 21.184644 24.0 252220 1.000000
 16.852277 25.000000 21.187020 25.0 251668 1.000000
 16.852277 25.000000 21.183827 26.0 249648 1.000000
 16.852277 25.000000 21.183121 27.0 247160 1.000000
 16.852277 25.000000 21.180872 28.0 246238 1.000000
 16.852277 25.000000 21.185251 29.0 246030 1.000000
 16.852277 25.000000 21.183488 30.0 242124 1.000000
 16.852277 25.000000 21.194538 31.0 242426 1.000000
 16.852277 25.000000 21.190702 32.0 239778 1.000000
 16.852277 25.000000 21.188985 33.0 239046 1.000000
 16.852277 25.000000 21.187092 34.0 237640 1.000000
 16.852277 25.000000 21.185515 35.0 236256 1.000000
 16.852277 25.000000 21.190278 36.0 233536 1.000000
 16.852277 25.000000 21.183240 37.0 233274 1.000000
 16.852277 25.000000 21.183796 38.0 231628 1.000000
 16.852277 25.000000 21.200668 39.0 230378 1.000000
 16.852277 25.000000 21.181153 40.0 229006 1.000000

Corrfunc.mocks.DDsmu_mocks module

Python wrapper around the C extension for the pair counter in
mocks/DDsmu. This python wrapper is Corrfunc.mocks.DDsmu_mocks

	
Corrfunc.mocks.DDsmu_mocks.DDsmu_mocks(autocorr, cosmology, nthreads, mu_max, nmu_bins, binfile, RA1, DEC1, CZ1, weights1=None, RA2=None, DEC2=None, CZ2=None, weights2=None, is_comoving_dist=False, verbose=False, output_savg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 2-D pair-counts corresponding to the projected correlation
function, \(\xi(s, \mu)\). The pairs are counted in bins of
radial separation and cosine of angle to the line-of-sight (LOS). The
input positions are expected to be on-sky co-ordinates. This module is
suitable for calculating correlation functions for mock catalogs.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Returns a numpy structured array containing the pair counts for the
specified bins.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(s, \mu)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf
for computing \(\xi(s, \mu)\) from the pair counts.

New in version 2.1.0.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	cosmology (integer, required) – Integer choice for setting cosmology. Valid values are 1->LasDamas
cosmology and 2->Planck cosmology. If you need arbitrary cosmology,
easiest way is to convert the CZ values into co-moving distance,
based on your preferred cosmology. Set is_comoving_dist=True, to
indicate that the co-moving distance conversion has already been done.

	Choices:

	
	LasDamas cosmology. \(\Omega_m=0.25\), \(\Omega_\Lambda=0.75\)

	Planck cosmology. \(\Omega_m=0.302\), \(\Omega_\Lambda=0.698\)

To setup a new cosmology, add an entry to the function,
init_cosmology in ROOT/utils/cosmology_params.c and re-install
the entire package.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	mu_max (double. Must be in range [0.0, 1.0]) – A double-precision value for the maximum cosine of the angular
separation from the line of sight (LOS). Here, mu is defined as
the angle between s and l. If \(v_1\) and \(v_2\)
represent the vectors to each point constituting the pair, then
\(s := v_1 - v_2\) and \(l := 1/2 (v_1 + v_2)\).

Note: Only pairs with \(0 <= \cos(\theta_{LOS}) < \mu_{max}\)
are counted (no equality).

	nmu_bins (int [https://docs.python.org/3/library/functions.html#int]) – The number of linear mu bins, with the bins ranging from
from (0, \(\mu_{max}\))

	binfile (string or an list/array of floats) – For string input: filename specifying the s bins for
DDsmu_mocks. The file should contain white-space separated values
of (smin, smax) specifying each s bin wanted. The bins
need to be contiguous and sorted in increasing order (smallest bins
come first).

For array-like input: A sequence of s values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	RA1 (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC1 (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1.

	CZ1 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the first set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ1 is interpreted as the
co-moving distance, rather than cz.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions)
or (n_positions,). weight_type specifies how these weights are used;
results are returned in the weightavg field. If only one of
weights1 or weights2 is specified, the other will be set
to uniform weights.

	RA2 (array-like, real (float/double)) – The array of Right Ascensions for the second set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Must be of same precision type as RA1/DEC1/CZ1.

	DEC2 (array-like, real (float/double)) – Array of Declinations for the second set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA1/DEC1/CZ1.

	CZ2 (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the second set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the
co-moving distance, rather than cz.

Must be of same precision type as RA1/DEC1/CZ1.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	is_comoving_dist (boolean (default false)) – Boolean flag to indicate that cz values have already been
converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_savg (boolean (default false)) – Boolean flag to output the average s for each bin. Code will
run slower if you set this flag. Also, note, if you are calculating
in single-precision, savg will suffer from numerical loss of
precision and can not be trusted. If you need accurate savg
values, then pass in double precision arrays for the particle
positions.

	fast_divide_and_NR_steps (integer (default 0)) – Replaces the division in AVX implementation with an approximate
reciprocal, followed by fast_divide_and_NR_steps of Newton-Raphson.
Can improve runtime by ~15-20% on older computers. Value of 0 uses
the standard division operation.

	(xyz)bin_refine_factor (integer, default is (2,2,1); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code
will revert to using fallback (even though sse42 might be
available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type (string, optional) – The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [smin, smax, savg, mumax, npairs, weightavg]
for each separation bin specified in the binfile. If output_savg is
not set, then savg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and
can be used to compute the actual \(\xi(s, \mu)\) by combining
with (DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only
the time spent within the C library and ignores all python overhead.

Corrfunc.mocks.DDtheta_mocks module

Python wrapper around the C extension for the angular correlation function
\(\omega(\theta)\). Corresponding C routines are in
mocks/DDtheta_mocks/, while the python interface is
Corrfunc.mocks.DDtheta_mocks

	
Corrfunc.mocks.DDtheta_mocks.DDtheta_mocks(autocorr, nthreads, binfile, RA1, DEC1, weights1=None, RA2=None, DEC2=None, weights2=None, link_in_dec=True, link_in_ra=True, verbose=False, output_thetaavg=False, fast_acos=False, ra_refine_factor=2, dec_refine_factor=2, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Function to compute the angular correlation function for points on
the sky (i.e., mock catalogs or observed galaxies).

Returns a numpy structured array containing the pair counts for the
specified angular bins.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\omega(heta)\). See
Corrfunc.utils.convert_3d_counts_to_cf for computing
\(\omega(heta)\) from the pair counts returned.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – Number of threads to use.

	binfile (string or an list/array of floats. Units: degrees.) – For string input: filename specifying the theta bins for
DDtheta_mocks. The file should contain white-space separated values
of (thetamin, thetamax) for each theta wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of theta values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0
degrees. This array does not need to be sorted.

	RA1 (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC1 (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].
Must be of same precision type as RA1.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or
(n_positions,). weight_type specifies how these weights are used;
results are returned in the weightavg field. If only one of weights1
and weights2 is specified, the other will be set to uniform weights.

	RA2 (array-like, real (float/double)) – The array of Right Ascensions for the second set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].
Must be of same precision type as RA1/DEC1.

	DEC2 (array-like, real (float/double)) – Array of Declinations for the second set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].
Must be of same precision type as RA1/DEC1.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	link_in_dec (boolean (default True)) – Boolean flag to create lattice in Declination. Code runs faster with
this option. However, if the angular separations are too small, then
linking in declination might produce incorrect results. When running
for the first time, check your results by comparing with the output
of the code for link_in_dec=False and link_in_ra=False.

	link_in_ra (boolean (default True)) – Boolean flag to create lattice in Right Ascension. Setting this option
implies link_in_dec=True. Similar considerations as link_in_dec
described above.

If you disable both link_in_dec and link_in_ra, then
the code reduces to a brute-force pair counter. No lattices are created
at all. For very small angular separations, the brute-force method
might be the most numerically stable method.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_thetaavg (boolean (default false)) – Boolean flag to output the average `` heta`` for each bin. Code will
run slower if you set this flag.

If you are calculating in single-precision, thetaavg will
suffer from numerical loss of precision and can not be trusted. If you
need accurate thetaavg values, then pass in double precision arrays
for RA/DEC.

Code will run significantly slower if you enable this option.
Use the keyword fast_acos if you can tolerate some loss of
precision.

	fast_acos (boolean (default false)) – Flag to use numerical approximation for the arccos - gives better
performance at the expense of some precision. Relevant only if
output_thetaavg==True.

Developers: Two versions already coded up in utils/fast_acos.h,
so you can choose the version you want. There are also notes on how
to implement faster (and less accurate) functions, particularly relevant
if you know your theta range is limited. If you implement a new
version, then you will have to reinstall the entire Corrfunc package.

Note: Tests will fail if you run the tests with``fast_acos=True``.

	(radec)_refine_factor (integer, default is (2,2); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Only two refine factors are to be specified and these
correspond to ra and dec (rather, than the usual three of
(xyz)bin_refine_factor for all other correlation functions).

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if thetamax
is too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [thetamin, thetamax, thetaavg,
npairs, weightavg] for each angular bin specified in the binfile. If
output_thetaavg is not set then thetavg will be set to 0.0 for
all bins; similarly for
weightavg. npairs contains the number of pairs in that bin.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> import time
>>> from math import pi
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.mocks.DDtheta_mocks import DDtheta_mocks
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/", "angular_bins")
>>> N = 100000
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> RA = np.random.uniform(0.0, 2.0*pi, N)*180.0/pi
>>> cos_theta = np.random.uniform(-1.0, 1.0, N)
>>> DEC = 90.0 - np.arccos(cos_theta)*180.0/pi
>>> weights = np.ones_like(RA)
>>> autocorr = 1
>>> for isa in ['AVX', 'SSE42', 'FALLBACK']:
... for link_in_dec in [False, True]:
... for link_in_ra in [False, True]:
... results = DDtheta_mocks(autocorr, nthreads, binfile,
... RA, DEC, output_thetaavg=True,
... weights1=weights, weight_type='pair_product',
... link_in_dec=link_in_dec, link_in_ra=link_in_ra,
... isa=isa, verbose=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10d} {4:10.6f}".
... format(r['thetamin'], r['thetamax'],
... r['thetaavg'], r['npairs'], r['weightavg']))
...
 0.010000 0.014125 0.012272 62 1.000000
 0.014125 0.019953 0.016978 172 1.000000
 0.019953 0.028184 0.024380 298 1.000000
 0.028184 0.039811 0.034321 598 1.000000
 0.039811 0.056234 0.048535 1164 1.000000
 0.056234 0.079433 0.068385 2438 1.000000
 0.079433 0.112202 0.096631 4658 1.000000
 0.112202 0.158489 0.136834 9414 1.000000
 0.158489 0.223872 0.192967 19098 1.000000
 0.223872 0.316228 0.272673 37848 1.000000
 0.316228 0.446684 0.385344 75520 1.000000
 0.446684 0.630957 0.543973 150938 1.000000
 0.630957 0.891251 0.768406 301854 1.000000
 0.891251 1.258925 1.085273 599896 1.000000
 1.258925 1.778279 1.533461 1200238 1.000000
 1.778279 2.511886 2.166009 2396338 1.000000
 2.511886 3.548134 3.059159 4775162 1.000000
 3.548134 5.011872 4.321445 9532582 1.000000
 5.011872 7.079458 6.104214 19001930 1.000000
 7.079458 10.000000 8.622400 37842502 1.000000

Corrfunc.mocks.vpf_mocks module

Python wrapper around the C extension for the counts-in-cells
for positions on the sky. Corresponding C codes are in mocks/vpf_mocks/
while the python wrapper is in Corrfunc.mocks.vpf_mocks

	
Corrfunc.mocks.vpf_mocks.vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb, centers_file, cosmology, RA, DEC, CZ, RAND_RA, RAND_DEC, RAND_CZ, verbose=False, is_comoving_dist=False, xbin_refine_factor=1, ybin_refine_factor=1, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest')

	Function to compute the counts-in-cells on points on the sky. Suitable
for mock catalogs and observed galaxies.

Returns a numpy structured array containing the probability of a
sphere of radius up to rmax containing 0--numpN-1 galaxies.

	Parameters

	
	rmax (double) – Maximum radius of the sphere to place on the particles

	nbins (integer) – Number of bins in the counts-in-cells. Radius of first shell
is rmax/nbins

	nspheres (integer (>= 0)) – Number of random spheres to place within the particle distribution.
For a small number of spheres, the error is larger in the measured
pN’s.

	numpN (integer (>= 1)) – Governs how many unique pN’s are to returned. If numpN is set to 1,
then only the vpf (p0) is returned. For numpN=2, p0 and p1 are
returned.

More explicitly, the columns in the results look like the following:

	numpN

	Columns in output

	1

	p0

	2

	p0 p1

	3

	p0 p1 p2

	4

	p0 p1 p2 p3

and so on…

Note: p0 is the vpf

	threshold_ngb (integer) – Minimum number of random points needed in a rmax sphere such that it
is considered to be entirely within the mock footprint. The
command-line version, mocks/vpf/vpf_mocks.c, assumes that the
minimum number of randoms can be at most a 1-sigma deviation from
the expected random number density.

	centers_file (string, filename) – A file containing random sphere centers. If the file does not exist,
then a list of random centers will be written out. In that case, the
randoms arrays, RAND_RA, RAND_DEC and RAND_CZ are used to
check that the sphere is entirely within the footprint. If the file does
exist but either rmax is too small or there are not enough centers
then the file will be overwritten.

Note: If the centers file has to be written, the code will take
significantly longer to finish. However, subsequent runs can re-use
that centers file and will be faster.

	cosmology (integer, required) – Integer choice for setting cosmology. Valid values are 1->LasDamas
cosmology and 2->Planck cosmology. If you need arbitrary cosmology,
easiest way is to convert the CZ values into co-moving distance,
based on your preferred cosmology. Set is_comoving_dist=True, to
indicate that the co-moving distance conversion has already been done.

	Choices:

	
	LasDamas cosmology. \(\Omega_m=0.25\), \(\Omega_\Lambda=0.75\)

	Planck cosmology. \(\Omega_m=0.302\), \(\Omega_\Lambda=0.698\)

To setup a new cosmology, add an entry to the function,
init_cosmology in ROOT/utils/cosmology_params.c and re-install
the entire package.

	RA (array-like, real (float/double)) – The array of Right Ascensions for the first set of points. RA’s
are expected to be in [0.0, 360.0], but the code will try to fix cases
where the RA’s are in [-180, 180.0]. For peace of mind, always supply
RA’s in [0.0, 360.0].

Calculations are done in the precision of the supplied arrays.

	DEC (array-like, real (float/double)) – Array of Declinations for the first set of points. DEC’s are expected
to be in the [-90.0, 90.0], but the code will try to fix cases where
the DEC’s are in [0.0, 180.0]. Again, for peace of mind, always supply
DEC’s in [-90.0, 90.0].

Must be of same precision type as RA.

	CZ (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the first set of
points. Code will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ is interpreted as the
co-moving distance, rather than (Speed Of Light * Redshift).

	RAND_RA (array-like, real (float/double)) – The array of Right Ascensions for the randoms. RA’s are expected to be
in [0.0, 360.0], but the code will try to fix cases where the RA’s are
in [-180, 180.0]. For peace of mind, always supply RA’s in
[0.0, 360.0].

Must be of same precision type as RA/DEC/CZ.

	RAND_DEC (array-like, real (float/double)) – Array of Declinations for the randoms. DEC’s are expected to be in the
[-90.0, 90.0], but the code will try to fix cases where the DEC’s are
in [0.0, 180.0]. Again, for peace of mind, always supply DEC’s in
[-90.0, 90.0].

Must be of same precision type as RA/DEC/CZ.

	RAND_CZ (array-like, real (float/double)) – Array of (Speed Of Light * Redshift) values for the randoms. Code
will try to detect cases where redshifts have been
passed and multiply the entire array with the speed of light.

If is_comoving_dist is set, then CZ2 is interpreted as the
co-moving distance, rather than (Speed Of Light * Redshift).

	Note: RAND_RA, RAND_DEC and RAND_CZ are only used when the

	centers_file needs to be written out. In that case, the
RAND_RA, RAND_DEC, and RAND_CZ are used as random centers.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	is_comoving_dist (boolean (default false)) – Boolean flag to indicate that cz values have already been
converted into co-moving distances. This flag allows arbitrary
cosmologies to be used in Corrfunc.

	(xyz)bin_refine_factor (integer, default is (1,1,1); typically within [1-3]) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Note: Since the counts in spheres calculation is symmetric
in all 3 dimensions, the defaults are different from the clustering
routines.

	max_cells_per_dim (integer, default is 100, typical values in [50-300]) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (string (default fastest)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rmax, pN[numpN]] with nbins
elements. Each row contains the maximum radius of the sphere and the
numpN elements in the pN array. Each element of this array
contains the probability that a sphere of radius rmax contains
exactly N galaxies. For example, pN[0] (p0, the void probibility
function) is the probability that a sphere of radius rmax contains 0
galaxies.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import math
>>> from os.path import dirname, abspath, join as pjoin
>>> import numpy as np
>>> import Corrfunc
>>> from Corrfunc.mocks.vpf_mocks import vpf_mocks
>>> rmax = 10.0
>>> nbins = 10
>>> numbins_to_print = nbins
>>> nspheres = 10000
>>> numpN = 6
>>> threshold_ngb = 1 # does not matter since we have the centers
>>> cosmology = 1 # LasDamas cosmology
>>> centers_file = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../mocks/tests/data/",
... "Mr19_centers_xyz_forVPF_rmax_10Mpc.txt")
>>> N = 1000000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Y = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> Z = np.random.uniform(-0.5*boxsize, 0.5*boxsize, N)
>>> CZ = np.sqrt(X*X + Y*Y + Z*Z)
>>> inv_cz = 1.0/CZ
>>> X *= inv_cz
>>> Y *= inv_cz
>>> Z *= inv_cz
>>> DEC = 90.0 - np.arccos(Z)*180.0/math.pi
>>> RA = (np.arctan2(Y, X)*180.0/math.pi) + 180.0
>>> results = vpf_mocks(rmax, nbins, nspheres, numpN, threshold_ngb,
... centers_file, cosmology,
... RA, DEC, CZ,
... RA, DEC, CZ,
... is_comoving_dist=True)
>>> for r in results:
... print("{0:10.1f} ".format(r[0]), end="")
...
... for pn in r[1]:
... print("{0:10.3f} ".format(pn), end="")
...
... print("")
 1.0 0.999 0.001 0.000 0.000 0.000 0.000
 2.0 0.992 0.007 0.001 0.000 0.000 0.000
 3.0 0.982 0.009 0.005 0.002 0.001 0.000
 4.0 0.975 0.006 0.006 0.005 0.003 0.003
 5.0 0.971 0.004 0.003 0.003 0.004 0.003
 6.0 0.967 0.003 0.003 0.001 0.003 0.002
 7.0 0.962 0.004 0.002 0.003 0.002 0.001
 8.0 0.958 0.004 0.002 0.003 0.001 0.002
 9.0 0.953 0.003 0.003 0.002 0.003 0.001
 10.0 0.950 0.003 0.002 0.002 0.001 0.002

Corrfunc.theory package

Wrapper for all clustering statistic calculations on galaxies
in a simulation volume.

	
Corrfunc.theory.DD(autocorr, nthreads, binfile, X1, Y1, Z1, weights1=None, periodic=True, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, boxsize=0.0, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 3-D pair-counts corresponding to the real-space correlation
function, \(\xi(r)\).

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(r)\). See
Corrfunc.utils.convert_3d_counts_to_cf for computing
for computing \(\xi(r)\) from the pair counts returned.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	binfile (string or an list/array of floats) – For string input: filename specifying the r bins for
DD. The file should contain white-space separated values
of (rmin, rmax) for each r wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of r values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X1/Y1/Z1 (array_like, real (float/double)) – The array of X/Y/Z positions for the first set of points.
Calculations are done in the precision of the supplied arrays.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field. If only one of weights1 and weights2 is
specified, the other will be set to uniform weights.

	periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

	X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for the second set of points. Must be the same
precision as the X1/Y1/Z1 arrays. Only required when autocorr==0.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	boxsize (double) – The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	output_ravg (boolean (default false)) – Boolean flag to output the average r for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, ravg will
suffer from numerical loss of precision and can not be trusted.
If you need accurate ravg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional

	The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rmin, rmax, ravg, npairs, weightavg]
for each radial bin specified in the binfile. If output_ravg is
not set, then ravg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can
be used to compute the actual \(\xi(r)\) by combining with (DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DD import DD
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DD(autocorr, nthreads, binfile, X, Y, Z, weights1=weights, weight_type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10d} {4:10.6f}".
... format(r['rmin'], r['rmax'], r['ravg'],
... r['npairs'], r['weightavg']))
 0.167536 0.238755 0.000000 0 0.000000
 0.238755 0.340251 0.000000 0 0.000000
 0.340251 0.484892 0.000000 0 0.000000
 0.484892 0.691021 0.000000 0 0.000000
 0.691021 0.984777 0.945372 2 1.000000
 0.984777 1.403410 1.340525 10 1.000000
 1.403410 2.000000 1.732968 36 1.000000
 2.000000 2.850200 2.558878 54 1.000000
 2.850200 4.061840 3.564959 208 1.000000
 4.061840 5.788530 4.999278 674 1.000000
 5.788530 8.249250 7.126673 2154 1.000000
 8.249250 11.756000 10.201834 5996 1.000000
 11.756000 16.753600 14.517830 17746 1.000000
 16.753600 23.875500 20.716017 50252 1.000000

	
Corrfunc.theory.DDrppi(autocorr, nthreads, pimax, binfile, X1, Y1, Z1, weights1=None, periodic=True, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, boxsize=0.0, output_rpavg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 3-D pair-counts corresponding to the real-space correlation
function, \(\xi(r_p, \pi)\) or \(\wp(r_p)\). Pairs which are
separated by less than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

that this module only returns pair counts and not the actual
correlation function \(\xi(r_p, \pi)\) or \(wp(r_p)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf and
Corrfunc.utils.convert_rp_pi_counts_to_wp for computing
\(\xi(r_p, \pi)\) and \(wp(r_p)\) respectively from the
pair counts.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Distances along the :math:\pi direction are binned with unit
depth. For instance, if pimax=40, then 40 bins will be created
along the pi direction.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

	binfile: string or an list/array of floats

	For string input: filename specifying the rp bins for
DDrppi. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X1/Y1/Z1: array-like, real (float/double)

	The array of X/Y/Z positions for the first set of points.
Calculations are done in the precision of the supplied arrays.

	weights1: array_like, real (float/double), optional

	A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field. If only one of weights1 and weights2 is
specified, the other will be set to uniform weights.

	X2/Y2/Z2: array-like, real (float/double)

	Array of XYZ positions for the second set of points. Must be the same
precision as the X1/Y1/Z1 arrays. Only required when autocorr==0.

	weights2: array-like, real (float/double), optional

	Same as weights1, but for the second set of positions

	periodic: boolean

	Boolean flag to indicate periodic boundary conditions.

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	boxsize: double

	The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	output_rpavg: boolean (default false)

	Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional

	The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rpmin, rpmax, rpavg, pimax, npairs, weightavg]
for each radial bin specified in the binfile. If output_rpavg
is not set, then rpavg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can
be used to compute \(\xi(r_p, \pi)\) by combining with (DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DDrppi import DDrppi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> pimax = 40.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DDrppi(autocorr, nthreads, pimax, binfile,
... X, Y, Z, weights1=weights, weight_type='pair_product', output_rpavg=True)
>>> for r in results[519:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['rmin'], r['rmax'],
... r['rpavg'], r['pimax'], r['npairs'], r['weightavg']))
...
 11.756000 16.753600 14.379250 40.0 1150 1.000000
 16.753600 23.875500 20.449131 1.0 2604 1.000000
 16.753600 23.875500 20.604834 2.0 2370 1.000000
 16.753600 23.875500 20.523989 3.0 2428 1.000000
 16.753600 23.875500 20.475181 4.0 2462 1.000000
 16.753600 23.875500 20.458005 5.0 2532 1.000000
 16.753600 23.875500 20.537162 6.0 2522 1.000000
 16.753600 23.875500 20.443087 7.0 2422 1.000000
 16.753600 23.875500 20.474580 8.0 2360 1.000000
 16.753600 23.875500 20.420360 9.0 2512 1.000000
 16.753600 23.875500 20.478355 10.0 2472 1.000000
 16.753600 23.875500 20.485268 11.0 2406 1.000000
 16.753600 23.875500 20.372985 12.0 2420 1.000000
 16.753600 23.875500 20.647998 13.0 2378 1.000000
 16.753600 23.875500 20.556208 14.0 2420 1.000000
 16.753600 23.875500 20.527992 15.0 2462 1.000000
 16.753600 23.875500 20.581017 16.0 2380 1.000000
 16.753600 23.875500 20.491819 17.0 2346 1.000000
 16.753600 23.875500 20.534440 18.0 2496 1.000000
 16.753600 23.875500 20.529129 19.0 2512 1.000000
 16.753600 23.875500 20.501946 20.0 2500 1.000000
 16.753600 23.875500 20.513349 21.0 2544 1.000000
 16.753600 23.875500 20.471915 22.0 2430 1.000000
 16.753600 23.875500 20.450651 23.0 2354 1.000000
 16.753600 23.875500 20.550753 24.0 2460 1.000000
 16.753600 23.875500 20.540262 25.0 2490 1.000000
 16.753600 23.875500 20.559572 26.0 2350 1.000000
 16.753600 23.875500 20.534245 27.0 2382 1.000000
 16.753600 23.875500 20.511302 28.0 2508 1.000000
 16.753600 23.875500 20.491632 29.0 2456 1.000000
 16.753600 23.875500 20.592493 30.0 2386 1.000000
 16.753600 23.875500 20.506234 31.0 2484 1.000000
 16.753600 23.875500 20.482109 32.0 2538 1.000000
 16.753600 23.875500 20.518463 33.0 2544 1.000000
 16.753600 23.875500 20.482515 34.0 2534 1.000000
 16.753600 23.875500 20.503124 35.0 2382 1.000000
 16.753600 23.875500 20.471307 36.0 2356 1.000000
 16.753600 23.875500 20.384231 37.0 2554 1.000000
 16.753600 23.875500 20.454012 38.0 2458 1.000000
 16.753600 23.875500 20.585543 39.0 2394 1.000000
 16.753600 23.875500 20.504965 40.0 2500 1.000000

	
Corrfunc.theory.wp(boxsize, pimax, nthreads, binfile, X, Y, Z, weights=None, weight_type=None, verbose=False, output_rpavg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, c_cell_timer=False, isa=u'fastest')

	Function to compute the projected correlation function in a
periodic cosmological box. Pairs which are separated by less
than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted.

If weights are provided, the resulting correlation function
is weighted. The weighting scheme depends on weight_type.

Note

Pairs are double-counted. And if rpmin is set to
0.0, then all the self-pairs (i’th particle with itself) are
added to the first bin => minimum number of pairs in the first bin
is the total number of particles.

	Parameters

	
	boxsize (double) – A double-precision value for the boxsize of the simulation
in same units as the particle positions and the rp bins.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

	nthreads: integer

	Number of threads to use.

	binfile: string or an list/array of floats

	For string input: filename specifying the rp bins for
wp. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X/Y/Z: arraytype, real (float/double)

	Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	weights: array_like, real (float/double), optional

	A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field.

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	output_rpavg: boolean (default false)

	Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	c_cell_timerboolean (default false)

	Boolean flag to measure actual time spent per cell-pair within the
C libraries. A very detailed timer that stores information about the
number of particles in each cell, the thread id that processed that
cell-pair and the amount of time in nano-seconds taken to process that
cell pair. This timer can be used to study the instruction set
efficiency, and load-balancing of the code.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional

	The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rpmin, rpmax, rpavg, wp, npairs, weightavg]
for each radial specified in the binfile. If output_rpavg is not
set then rpavg will be set to 0.0 for all bins; similarly for weightavg.
wp contains the projected correlation function while npairs contains the
number of unique pairs in that bin. If using weights, wp will be weighted
while npairs will not be.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time spent
within the C library and ignores all python overhead.

	cell_time (list, optional) – Only returned if c_cell_timer is set. Contains
detailed stats about each cell-pair visited during pair-counting,
viz., number of particles in each of the cells in the pair, 1-D
cell-indices for each cell in the pair, time (in nano-seconds) to
process the pair and the thread-id for the thread that processed that
cell-pair.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.wp import wp
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> pimax = 40.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> results = wp(boxsize, pimax, nthreads, binfile, X, Y, Z, weights=np.ones_like(X), weight_type='pair_product')
>>> for r in results:
... print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}".
... format(r['rmin'], r['rmax'],
... r['rpavg'], r['wp'], r['npairs'], r['weightavg']))
...
 0.167536 0.238755 0.000000 66.717143 18 1.000000
 0.238755 0.340251 0.000000 -15.786045 16 1.000000
 0.340251 0.484892 0.000000 2.998470 42 1.000000
 0.484892 0.691021 0.000000 -15.779885 66 1.000000
 0.691021 0.984777 0.000000 -11.966728 142 1.000000
 0.984777 1.403410 0.000000 -9.699906 298 1.000000
 1.403410 2.000000 0.000000 -11.698771 588 1.000000
 2.000000 2.850200 0.000000 3.848375 1466 1.000000
 2.850200 4.061840 0.000000 -0.921452 2808 1.000000
 4.061840 5.788530 0.000000 0.454851 5802 1.000000
 5.788530 8.249250 0.000000 1.428344 11926 1.000000
 8.249250 11.756000 0.000000 -1.067885 23478 1.000000
 11.756000 16.753600 0.000000 -0.553319 47994 1.000000
 16.753600 23.875500 0.000000 -0.086433 98042 1.000000

	
Corrfunc.theory.xi(boxsize, nthreads, binfile, X, Y, Z, weights=None, weight_type=None, verbose=False, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest')

	Function to compute the projected correlation function in a
periodic cosmological box. Pairs which are separated by less
than the r bins (specified in binfile) in 3-D real space.

If weights are provided, the resulting correlation function
is weighted. The weighting scheme depends on weight_type.

Note

Pairs are double-counted. And if rmin is set to
0.0, then all the self-pairs (i’th particle with itself) are
added to the first bin => minimum number of pairs in the first bin
is the total number of particles.

	Parameters

	
	boxsize (double) – A double-precision value for the boxsize of the simulation
in same units as the particle positions and the r bins.

	nthreads (integer) – Number of threads to use.

	binfile (string or an list/array of floats) – For string input: filename specifying the r bins for
xi. The file should contain white-space separated values
of (rmin, rmax) for each r wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of r values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X/Y/Z (arraytype, real (float/double)) – Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	weights (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or
(n_positions,). weight_type specifies how these weights are used;
results are returned in the weightavg field.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_ravg (boolean (default false)) – Boolean flag to output the average r for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional, Default: None.

	The type of weighting to apply. One of [“pair_product”, None].

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rmin, rmax, ravg, xi, npairs, weightavg] for
each radial specified in the binfile. If output_ravg is not
set then ravg will be set to 0.0 for all bins; similarly for weightavg.
xi contains the correlation function while npairs contains the number of
pairs in that bin. If using weights, xi will be weighted while npairs
will not be.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time spent
within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.xi import xi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = xi(boxsize, nthreads, binfile, X, Y, Z, weights=weights, weight_type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}"
... .format(r['rmin'], r['rmax'],
... r['ravg'], r['xi'], r['npairs'], r['weightavg']))
...
 0.167536 0.238755 0.226592 -0.205733 4 1.000000
 0.238755 0.340251 0.289277 -0.176729 12 1.000000
 0.340251 0.484892 0.426819 -0.051829 40 1.000000
 0.484892 0.691021 0.596187 -0.131853 106 1.000000
 0.691021 0.984777 0.850100 -0.049207 336 1.000000
 0.984777 1.403410 1.225112 0.028543 1052 1.000000
 1.403410 2.000000 1.737153 0.011403 2994 1.000000
 2.000000 2.850200 2.474588 0.005405 8614 1.000000
 2.850200 4.061840 3.532018 -0.014098 24448 1.000000
 4.061840 5.788530 5.022241 -0.010784 70996 1.000000
 5.788530 8.249250 7.160648 -0.001588 207392 1.000000
 8.249250 11.756000 10.207213 -0.000323 601002 1.000000
 11.756000 16.753600 14.541171 0.000007 1740084 1.000000
 16.753600 23.875500 20.728773 -0.001595 5028058 1.000000

	
Corrfunc.theory.vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z, verbose=False, periodic=True, boxsize=0.0, xbin_refine_factor=1, ybin_refine_factor=1, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest')

	Function to compute the counts-in-cells on 3-D real-space points.

Returns a numpy structured array containing the probability of a
sphere of radius up to rmax containing [0, numpN-1] galaxies.

	Parameters

	
	rmax (double) – Maximum radius of the sphere to place on the particles

	nbins (integer) – Number of bins in the counts-in-cells. Radius of first shell
is rmax/nbins

	nspheres (integer (>= 0)) – Number of random spheres to place within the particle distribution.
For a small number of spheres, the error is larger in the measured
pN’s.

	numpN (integer (>= 1)) – Governs how many unique pN’s are to returned. If numpN is set to 1,
then only the vpf (p0) is returned. For numpN=2, p0 and p1 are
returned.

More explicitly, the columns in the results look like the following:

	numpN

	Columns in output

	1

	p0

	2

	p0 p1

	3

	p0 p1 p2

	4

	p0 p1 p2 p3

and so on…

Note: p0 is the vpf

	seed: unsigned integer

	Random number seed for the underlying GSL random number generator. Used
to draw centers of the spheres.

	X/Y/Z: arraytype, real (float/double)

	Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	periodic: boolean

	Boolean flag to indicate periodic boundary conditions.

	boxsize: double

	The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	(xyz)bin_refine_factor: integer, default is (1,1,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Note: Since the counts in spheres calculation is symmetric
in all 3 dimensions, the defaults are different from the clustering
routines.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	Returns

	results – A numpy structured array containing [rmax, pN[numpN]] with nbins
elements. Each row contains the maximum radius of the sphere and the
numpN elements in the pN array. Each element of this array
contains the probability that a sphere of radius rmax contains
exactly N galaxies. For example, pN[0] (p0, the void probibility
function) is the probability that a sphere of radius rmax contains 0
galaxies.

if c_api_timer is set, then the return value is a tuple containing
(results, api_time). api_time measures only the time spent within
the C library and ignores all python overhead.

	Return type

	Numpy structured array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.vpf import vpf
>>> rmax = 10.0
>>> nbins = 10
>>> nspheres = 10000
>>> numpN = 5
>>> seed = -1
>>> N = 100000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> results = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z)
>>> for r in results:
... print("{0:10.1f} ".format(r[0]), end="")
...
... for pn in r[1]:
... print("{0:10.3f} ".format(pn), end="")
...
... print("")
1.0 0.995 0.005 0.000 0.000 0.000
2.0 0.956 0.044 0.001 0.000 0.000
3.0 0.858 0.130 0.012 0.001 0.000
4.0 0.695 0.252 0.047 0.005 0.001
5.0 0.493 0.347 0.127 0.028 0.005
6.0 0.295 0.362 0.219 0.091 0.026
7.0 0.141 0.285 0.265 0.179 0.085
8.0 0.056 0.159 0.228 0.229 0.161
9.0 0.019 0.066 0.135 0.192 0.192
10.0 0.003 0.019 0.054 0.106 0.150

	
Corrfunc.theory.DDsmu(autocorr, nthreads, binfile, mu_max, nmu_bins, X1, Y1, Z1, weights1=None, periodic=True, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, boxsize=0.0, output_savg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 2-D pair-counts corresponding to the redshift-space
correlation function, \(\xi(s, \mu)\) Pairs which are separated
by less than the s bins (specified in binfile) in 3-D, and
less than s*mu_max in the Z-dimension are counted.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(s, \mu)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf
for computing \(\xi(s, \mu)\) from the pair counts.

New in version 2.1.0.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	binfile (string or an list/array of floats) – For string input: filename specifying the s bins for
DDsmu_mocks. The file should contain white-space separated values
of (smin, smax) specifying each s bin wanted. The bins
need to be contiguous and sorted in increasing order (smallest bins
come first).

For array-like input: A sequence of s values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	mu_max (double. Must be in range (0.0, 1.0]) – A double-precision value for the maximum cosine of the angular
separation from the line of sight (LOS). Here, LOS is taken to be
along the Z direction.

Note: Only pairs with \(0 <= \cos(\theta_{LOS}) < \mu_{max}\)
are counted (no equality).

	nmu_bins (int [https://docs.python.org/3/library/functions.html#int]) – The number of linear mu bins, with the bins ranging from
from (0, \(\mu_{max}\))

	X1/Y1/Z1 (array-like, real (float/double)) – The array of X/Y/Z positions for the first set of points.
Calculations are done in the precision of the supplied arrays.

	weights1 (array-like, real (float/double), shape (n_particles,) or (n_weights_per_particle,n_particles), optional) – Weights for computing a weighted pair count.

	weight_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The type of pair weighting to apply.
Options: “pair_product”, None; Default: None.

	periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

	X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for the second set of points. Must be the same
precision as the X1/Y1/Z1 arrays. Only required when autocorr==0.

	weights2 (array-like, real (float/double), shape (n_particles,) or (n_weights_per_particle,n_particles), optional) – Weights for computing a weighted pair count.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	boxsize (double) – The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	output_savg (boolean (default false)) – Boolean flag to output the average s for each bin. Code will
run slower if you set this flag. Also, note, if you are calculating
in single-precision, s will suffer from numerical loss of
precision and can not be trusted. If you need accurate s
values, then pass in double precision arrays for the particle positions.

	fast_divide_and_NR_steps (integer (default 0)) – Replaces the division in AVX implementation with an approximate
reciprocal, followed by fast_divide_and_NR_steps of Newton-Raphson.
Can improve runtime by ~15-20% on older computers. Value of 0 uses
the standard division operation.

	(xyz)bin_refine_factor (integer (default (2,2,1) typical values in [1-3])) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim (integer (default 100, typical values in [50-300])) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (integer (default -1)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [-1, AVX, SSE42, FALLBACK]

Setting isa to -1 will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
AVX and AVX is not available on the computer, then the code will
revert to using FALLBACK (even though SSE42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are benchmarking,
then the integer values correspond to the enum for the instruction set
defined in utils/defs.h.

	Returns

	
	results (A python list) – A python list containing nmu_bins of [smin, smax, savg, mu_max, npairs, weightavg]
for each spatial bin specified in the binfile. There will be a total of nmu_bins
ranging from [0, mu_max) per spatial bin. If output_savg is not set, then savg
will be set to 0.0 for all bins; similarly for weight_avg. npairs
contains the number of pairs in that bin.

	time (if c_api_timer is set, then the return value contains the time spent) – in the API; otherwise time is set to 0.0

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DDsmu import DDsmu
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> mu_max = 1.0
>>> seed = 42
>>> nmu_bins = 10
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DDsmu(autocorr, nthreads, binfile, mu_max, nmu_bins,
... X, Y, Z, weights1=weights, weight_type='pair_product', output_savg=True)
>>> for r in results[100:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['smin'], r['smax'],
... r['savg'], r['mu_max'], r['npairs'], r['weightavg']))
...
 5.788530 8.249250 7.148213 0.1 230 1.000000
 5.788530 8.249250 7.157218 0.2 236 1.000000
 5.788530 8.249250 7.165338 0.3 208 1.000000
 5.788530 8.249250 7.079905 0.4 252 1.000000
 5.788530 8.249250 7.251661 0.5 184 1.000000
 5.788530 8.249250 7.118536 0.6 222 1.000000
 5.788530 8.249250 7.083466 0.7 238 1.000000
 5.788530 8.249250 7.198184 0.8 170 1.000000
 5.788530 8.249250 7.127409 0.9 208 1.000000
 5.788530 8.249250 6.973090 1.0 206 1.000000
 8.249250 11.756000 10.149183 0.1 592 1.000000
 8.249250 11.756000 10.213009 0.2 634 1.000000
 8.249250 11.756000 10.192220 0.3 532 1.000000
 8.249250 11.756000 10.246931 0.4 544 1.000000
 8.249250 11.756000 10.102675 0.5 530 1.000000
 8.249250 11.756000 10.276180 0.6 644 1.000000
 8.249250 11.756000 10.251264 0.7 666 1.000000
 8.249250 11.756000 10.138399 0.8 680 1.000000
 8.249250 11.756000 10.191916 0.9 566 1.000000
 8.249250 11.756000 10.243229 1.0 608 1.000000
11.756000 16.753600 14.552776 0.1 1734 1.000000
11.756000 16.753600 14.579991 0.2 1806 1.000000
11.756000 16.753600 14.599611 0.3 1802 1.000000
11.756000 16.753600 14.471100 0.4 1820 1.000000
11.756000 16.753600 14.480192 0.5 1740 1.000000
11.756000 16.753600 14.493679 0.6 1746 1.000000
11.756000 16.753600 14.547713 0.7 1722 1.000000
11.756000 16.753600 14.465390 0.8 1750 1.000000
11.756000 16.753600 14.547465 0.9 1798 1.000000
11.756000 16.753600 14.440975 1.0 1828 1.000000
16.753600 23.875500 20.720406 0.1 5094 1.000000
16.753600 23.875500 20.735403 0.2 5004 1.000000
16.753600 23.875500 20.721069 0.3 5172 1.000000
16.753600 23.875500 20.723648 0.4 5014 1.000000
16.753600 23.875500 20.650621 0.5 5094 1.000000
16.753600 23.875500 20.688135 0.6 5076 1.000000
16.753600 23.875500 20.735691 0.7 4910 1.000000
16.753600 23.875500 20.714097 0.8 4864 1.000000
16.753600 23.875500 20.751836 0.9 4954 1.000000
16.753600 23.875500 20.721183 1.0 5070 1.000000

Submodules

Corrfunc.theory.DD module

Python wrapper around the C extension for the pair counter in
theory/DD/. This wrapper is in Corrfunc.theory.DD

	
Corrfunc.theory.DD.DD(autocorr, nthreads, binfile, X1, Y1, Z1, weights1=None, periodic=True, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, boxsize=0.0, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 3-D pair-counts corresponding to the real-space correlation
function, \(\xi(r)\).

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(r)\). See
Corrfunc.utils.convert_3d_counts_to_cf for computing
for computing \(\xi(r)\) from the pair counts returned.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	binfile (string or an list/array of floats) – For string input: filename specifying the r bins for
DD. The file should contain white-space separated values
of (rmin, rmax) for each r wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of r values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X1/Y1/Z1 (array_like, real (float/double)) – The array of X/Y/Z positions for the first set of points.
Calculations are done in the precision of the supplied arrays.

	weights1 (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field. If only one of weights1 and weights2 is
specified, the other will be set to uniform weights.

	periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

	X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for the second set of points. Must be the same
precision as the X1/Y1/Z1 arrays. Only required when autocorr==0.

	weights2 (array-like, real (float/double), optional) – Same as weights1, but for the second set of positions

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	boxsize (double) – The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	output_ravg (boolean (default false)) – Boolean flag to output the average r for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, ravg will
suffer from numerical loss of precision and can not be trusted.
If you need accurate ravg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional

	The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rmin, rmax, ravg, npairs, weightavg]
for each radial bin specified in the binfile. If output_ravg is
not set, then ravg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can
be used to compute the actual \(\xi(r)\) by combining with (DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DD import DD
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DD(autocorr, nthreads, binfile, X, Y, Z, weights1=weights, weight_type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10d} {4:10.6f}".
... format(r['rmin'], r['rmax'], r['ravg'],
... r['npairs'], r['weightavg']))
 0.167536 0.238755 0.000000 0 0.000000
 0.238755 0.340251 0.000000 0 0.000000
 0.340251 0.484892 0.000000 0 0.000000
 0.484892 0.691021 0.000000 0 0.000000
 0.691021 0.984777 0.945372 2 1.000000
 0.984777 1.403410 1.340525 10 1.000000
 1.403410 2.000000 1.732968 36 1.000000
 2.000000 2.850200 2.558878 54 1.000000
 2.850200 4.061840 3.564959 208 1.000000
 4.061840 5.788530 4.999278 674 1.000000
 5.788530 8.249250 7.126673 2154 1.000000
 8.249250 11.756000 10.201834 5996 1.000000
 11.756000 16.753600 14.517830 17746 1.000000
 16.753600 23.875500 20.716017 50252 1.000000

Corrfunc.theory.DDrppi module

Python wrapper around the C extension for the pair counter in
theory/DDrppi/. This wrapper is in Corrfunc.theory.DDrppi

	
Corrfunc.theory.DDrppi.DDrppi(autocorr, nthreads, pimax, binfile, X1, Y1, Z1, weights1=None, periodic=True, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, boxsize=0.0, output_rpavg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 3-D pair-counts corresponding to the real-space correlation
function, \(\xi(r_p, \pi)\) or \(\wp(r_p)\). Pairs which are
separated by less than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

that this module only returns pair counts and not the actual
correlation function \(\xi(r_p, \pi)\) or \(wp(r_p)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf and
Corrfunc.utils.convert_rp_pi_counts_to_wp for computing
\(\xi(r_p, \pi)\) and \(wp(r_p)\) respectively from the
pair counts.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Distances along the :math:\pi direction are binned with unit
depth. For instance, if pimax=40, then 40 bins will be created
along the pi direction.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

	binfile: string or an list/array of floats

	For string input: filename specifying the rp bins for
DDrppi. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X1/Y1/Z1: array-like, real (float/double)

	The array of X/Y/Z positions for the first set of points.
Calculations are done in the precision of the supplied arrays.

	weights1: array_like, real (float/double), optional

	A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field. If only one of weights1 and weights2 is
specified, the other will be set to uniform weights.

	X2/Y2/Z2: array-like, real (float/double)

	Array of XYZ positions for the second set of points. Must be the same
precision as the X1/Y1/Z1 arrays. Only required when autocorr==0.

	weights2: array-like, real (float/double), optional

	Same as weights1, but for the second set of positions

	periodic: boolean

	Boolean flag to indicate periodic boundary conditions.

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	boxsize: double

	The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	output_rpavg: boolean (default false)

	Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional

	The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rpmin, rpmax, rpavg, pimax, npairs, weightavg]
for each radial bin specified in the binfile. If output_rpavg
is not set, then rpavg will be set to 0.0 for all bins; similarly for
weightavg. npairs contains the number of pairs in that bin and can
be used to compute \(\xi(r_p, \pi)\) by combining with (DR, RR) counts.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time
spent within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DDrppi import DDrppi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> pimax = 40.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DDrppi(autocorr, nthreads, pimax, binfile,
... X, Y, Z, weights1=weights, weight_type='pair_product', output_rpavg=True)
>>> for r in results[519:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['rmin'], r['rmax'],
... r['rpavg'], r['pimax'], r['npairs'], r['weightavg']))
...
 11.756000 16.753600 14.379250 40.0 1150 1.000000
 16.753600 23.875500 20.449131 1.0 2604 1.000000
 16.753600 23.875500 20.604834 2.0 2370 1.000000
 16.753600 23.875500 20.523989 3.0 2428 1.000000
 16.753600 23.875500 20.475181 4.0 2462 1.000000
 16.753600 23.875500 20.458005 5.0 2532 1.000000
 16.753600 23.875500 20.537162 6.0 2522 1.000000
 16.753600 23.875500 20.443087 7.0 2422 1.000000
 16.753600 23.875500 20.474580 8.0 2360 1.000000
 16.753600 23.875500 20.420360 9.0 2512 1.000000
 16.753600 23.875500 20.478355 10.0 2472 1.000000
 16.753600 23.875500 20.485268 11.0 2406 1.000000
 16.753600 23.875500 20.372985 12.0 2420 1.000000
 16.753600 23.875500 20.647998 13.0 2378 1.000000
 16.753600 23.875500 20.556208 14.0 2420 1.000000
 16.753600 23.875500 20.527992 15.0 2462 1.000000
 16.753600 23.875500 20.581017 16.0 2380 1.000000
 16.753600 23.875500 20.491819 17.0 2346 1.000000
 16.753600 23.875500 20.534440 18.0 2496 1.000000
 16.753600 23.875500 20.529129 19.0 2512 1.000000
 16.753600 23.875500 20.501946 20.0 2500 1.000000
 16.753600 23.875500 20.513349 21.0 2544 1.000000
 16.753600 23.875500 20.471915 22.0 2430 1.000000
 16.753600 23.875500 20.450651 23.0 2354 1.000000
 16.753600 23.875500 20.550753 24.0 2460 1.000000
 16.753600 23.875500 20.540262 25.0 2490 1.000000
 16.753600 23.875500 20.559572 26.0 2350 1.000000
 16.753600 23.875500 20.534245 27.0 2382 1.000000
 16.753600 23.875500 20.511302 28.0 2508 1.000000
 16.753600 23.875500 20.491632 29.0 2456 1.000000
 16.753600 23.875500 20.592493 30.0 2386 1.000000
 16.753600 23.875500 20.506234 31.0 2484 1.000000
 16.753600 23.875500 20.482109 32.0 2538 1.000000
 16.753600 23.875500 20.518463 33.0 2544 1.000000
 16.753600 23.875500 20.482515 34.0 2534 1.000000
 16.753600 23.875500 20.503124 35.0 2382 1.000000
 16.753600 23.875500 20.471307 36.0 2356 1.000000
 16.753600 23.875500 20.384231 37.0 2554 1.000000
 16.753600 23.875500 20.454012 38.0 2458 1.000000
 16.753600 23.875500 20.585543 39.0 2394 1.000000
 16.753600 23.875500 20.504965 40.0 2500 1.000000

Corrfunc.theory.DDsmu module

Python wrapper around the C extension for the pair counter in
theory/DDsmu/. This wrapper is in Corrfunc.theory.DDsmu

	
Corrfunc.theory.DDsmu.DDsmu(autocorr, nthreads, binfile, mu_max, nmu_bins, X1, Y1, Z1, weights1=None, periodic=True, X2=None, Y2=None, Z2=None, weights2=None, verbose=False, boxsize=0.0, output_savg=False, fast_divide_and_NR_steps=0, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest', weight_type=None)

	Calculate the 2-D pair-counts corresponding to the redshift-space
correlation function, \(\xi(s, \mu)\) Pairs which are separated
by less than the s bins (specified in binfile) in 3-D, and
less than s*mu_max in the Z-dimension are counted.

If weights are provided, the resulting pair counts are weighted. The
weighting scheme depends on weight_type.

Note

This module only returns pair counts and not the actual
correlation function \(\xi(s, \mu)\). See the
utilities Corrfunc.utils.convert_3d_counts_to_cf
for computing \(\xi(s, \mu)\) from the pair counts.

New in version 2.1.0.

	Parameters

	
	autocorr (boolean, required) – Boolean flag for auto/cross-correlation. If autocorr is set to 1,
then the second set of particle positions are not required.

	nthreads (integer) – The number of OpenMP threads to use. Has no effect if OpenMP was not
enabled during library compilation.

	binfile (string or an list/array of floats) – For string input: filename specifying the s bins for
DDsmu_mocks. The file should contain white-space separated values
of (smin, smax) specifying each s bin wanted. The bins
need to be contiguous and sorted in increasing order (smallest bins
come first).

For array-like input: A sequence of s values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	mu_max (double. Must be in range (0.0, 1.0]) – A double-precision value for the maximum cosine of the angular
separation from the line of sight (LOS). Here, LOS is taken to be
along the Z direction.

Note: Only pairs with \(0 <= \cos(\theta_{LOS}) < \mu_{max}\)
are counted (no equality).

	nmu_bins (int [https://docs.python.org/3/library/functions.html#int]) – The number of linear mu bins, with the bins ranging from
from (0, \(\mu_{max}\))

	X1/Y1/Z1 (array-like, real (float/double)) – The array of X/Y/Z positions for the first set of points.
Calculations are done in the precision of the supplied arrays.

	weights1 (array-like, real (float/double), shape (n_particles,) or (n_weights_per_particle,n_particles), optional) – Weights for computing a weighted pair count.

	weight_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The type of pair weighting to apply.
Options: “pair_product”, None; Default: None.

	periodic (boolean) – Boolean flag to indicate periodic boundary conditions.

	X2/Y2/Z2 (array-like, real (float/double)) – Array of XYZ positions for the second set of points. Must be the same
precision as the X1/Y1/Z1 arrays. Only required when autocorr==0.

	weights2 (array-like, real (float/double), shape (n_particles,) or (n_weights_per_particle,n_particles), optional) – Weights for computing a weighted pair count.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	boxsize (double) – The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	output_savg (boolean (default false)) – Boolean flag to output the average s for each bin. Code will
run slower if you set this flag. Also, note, if you are calculating
in single-precision, s will suffer from numerical loss of
precision and can not be trusted. If you need accurate s
values, then pass in double precision arrays for the particle positions.

	fast_divide_and_NR_steps (integer (default 0)) – Replaces the division in AVX implementation with an approximate
reciprocal, followed by fast_divide_and_NR_steps of Newton-Raphson.
Can improve runtime by ~15-20% on older computers. Value of 0 uses
the standard division operation.

	(xyz)bin_refine_factor (integer (default (2,2,1) typical values in [1-3])) – Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim (integer (default 100, typical values in [50-300])) – Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer (boolean (default false)) – Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa (integer (default -1)) – Controls the runtime dispatch for the instruction set to use. Possible
options are: [-1, AVX, SSE42, FALLBACK]

Setting isa to -1 will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
AVX and AVX is not available on the computer, then the code will
revert to using FALLBACK (even though SSE42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are benchmarking,
then the integer values correspond to the enum for the instruction set
defined in utils/defs.h.

	Returns

	
	results (A python list) – A python list containing nmu_bins of [smin, smax, savg, mu_max, npairs, weightavg]
for each spatial bin specified in the binfile. There will be a total of nmu_bins
ranging from [0, mu_max) per spatial bin. If output_savg is not set, then savg
will be set to 0.0 for all bins; similarly for weight_avg. npairs
contains the number of pairs in that bin.

	time (if c_api_timer is set, then the return value contains the time spent) – in the API; otherwise time is set to 0.0

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.DDsmu import DDsmu
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> nthreads = 4
>>> autocorr = 1
>>> mu_max = 1.0
>>> seed = 42
>>> nmu_bins = 10
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = DDsmu(autocorr, nthreads, binfile, mu_max, nmu_bins,
... X, Y, Z, weights1=weights, weight_type='pair_product', output_savg=True)
>>> for r in results[100:]: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.1f}"
... " {4:10d} {5:10.6f}".format(r['smin'], r['smax'],
... r['savg'], r['mu_max'], r['npairs'], r['weightavg']))
...
 5.788530 8.249250 7.148213 0.1 230 1.000000
 5.788530 8.249250 7.157218 0.2 236 1.000000
 5.788530 8.249250 7.165338 0.3 208 1.000000
 5.788530 8.249250 7.079905 0.4 252 1.000000
 5.788530 8.249250 7.251661 0.5 184 1.000000
 5.788530 8.249250 7.118536 0.6 222 1.000000
 5.788530 8.249250 7.083466 0.7 238 1.000000
 5.788530 8.249250 7.198184 0.8 170 1.000000
 5.788530 8.249250 7.127409 0.9 208 1.000000
 5.788530 8.249250 6.973090 1.0 206 1.000000
 8.249250 11.756000 10.149183 0.1 592 1.000000
 8.249250 11.756000 10.213009 0.2 634 1.000000
 8.249250 11.756000 10.192220 0.3 532 1.000000
 8.249250 11.756000 10.246931 0.4 544 1.000000
 8.249250 11.756000 10.102675 0.5 530 1.000000
 8.249250 11.756000 10.276180 0.6 644 1.000000
 8.249250 11.756000 10.251264 0.7 666 1.000000
 8.249250 11.756000 10.138399 0.8 680 1.000000
 8.249250 11.756000 10.191916 0.9 566 1.000000
 8.249250 11.756000 10.243229 1.0 608 1.000000
11.756000 16.753600 14.552776 0.1 1734 1.000000
11.756000 16.753600 14.579991 0.2 1806 1.000000
11.756000 16.753600 14.599611 0.3 1802 1.000000
11.756000 16.753600 14.471100 0.4 1820 1.000000
11.756000 16.753600 14.480192 0.5 1740 1.000000
11.756000 16.753600 14.493679 0.6 1746 1.000000
11.756000 16.753600 14.547713 0.7 1722 1.000000
11.756000 16.753600 14.465390 0.8 1750 1.000000
11.756000 16.753600 14.547465 0.9 1798 1.000000
11.756000 16.753600 14.440975 1.0 1828 1.000000
16.753600 23.875500 20.720406 0.1 5094 1.000000
16.753600 23.875500 20.735403 0.2 5004 1.000000
16.753600 23.875500 20.721069 0.3 5172 1.000000
16.753600 23.875500 20.723648 0.4 5014 1.000000
16.753600 23.875500 20.650621 0.5 5094 1.000000
16.753600 23.875500 20.688135 0.6 5076 1.000000
16.753600 23.875500 20.735691 0.7 4910 1.000000
16.753600 23.875500 20.714097 0.8 4864 1.000000
16.753600 23.875500 20.751836 0.9 4954 1.000000
16.753600 23.875500 20.721183 1.0 5070 1.000000

Corrfunc.theory.vpf module

Python wrapper around the C extension for the counts-in-cells
for 3-D real space. Corresponding C codes are in theory/vpf
while the python wrapper is in Corrfunc.theory.vpf.

	
Corrfunc.theory.vpf.vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z, verbose=False, periodic=True, boxsize=0.0, xbin_refine_factor=1, ybin_refine_factor=1, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest')

	Function to compute the counts-in-cells on 3-D real-space points.

Returns a numpy structured array containing the probability of a
sphere of radius up to rmax containing [0, numpN-1] galaxies.

	Parameters

	
	rmax (double) – Maximum radius of the sphere to place on the particles

	nbins (integer) – Number of bins in the counts-in-cells. Radius of first shell
is rmax/nbins

	nspheres (integer (>= 0)) – Number of random spheres to place within the particle distribution.
For a small number of spheres, the error is larger in the measured
pN’s.

	numpN (integer (>= 1)) – Governs how many unique pN’s are to returned. If numpN is set to 1,
then only the vpf (p0) is returned. For numpN=2, p0 and p1 are
returned.

More explicitly, the columns in the results look like the following:

	numpN

	Columns in output

	1

	p0

	2

	p0 p1

	3

	p0 p1 p2

	4

	p0 p1 p2 p3

and so on…

Note: p0 is the vpf

	seed: unsigned integer

	Random number seed for the underlying GSL random number generator. Used
to draw centers of the spheres.

	X/Y/Z: arraytype, real (float/double)

	Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	periodic: boolean

	Boolean flag to indicate periodic boundary conditions.

	boxsize: double

	The side-length of the cube in the cosmological simulation.
Present to facilitate exact calculations for periodic wrapping.
If boxsize is not supplied, then the wrapping is done based on
the maximum difference within each dimension of the X/Y/Z arrays.

	(xyz)bin_refine_factor: integer, default is (1,1,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

Note: Since the counts in spheres calculation is symmetric
in all 3 dimensions, the defaults are different from the clustering
routines.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	Returns

	results – A numpy structured array containing [rmax, pN[numpN]] with nbins
elements. Each row contains the maximum radius of the sphere and the
numpN elements in the pN array. Each element of this array
contains the probability that a sphere of radius rmax contains
exactly N galaxies. For example, pN[0] (p0, the void probibility
function) is the probability that a sphere of radius rmax contains 0
galaxies.

if c_api_timer is set, then the return value is a tuple containing
(results, api_time). api_time measures only the time spent within
the C library and ignores all python overhead.

	Return type

	Numpy structured array

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from Corrfunc.theory.vpf import vpf
>>> rmax = 10.0
>>> nbins = 10
>>> nspheres = 10000
>>> numpN = 5
>>> seed = -1
>>> N = 100000
>>> boxsize = 420.0
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> results = vpf(rmax, nbins, nspheres, numpN, seed, X, Y, Z)
>>> for r in results:
... print("{0:10.1f} ".format(r[0]), end="")
...
... for pn in r[1]:
... print("{0:10.3f} ".format(pn), end="")
...
... print("")
1.0 0.995 0.005 0.000 0.000 0.000
2.0 0.956 0.044 0.001 0.000 0.000
3.0 0.858 0.130 0.012 0.001 0.000
4.0 0.695 0.252 0.047 0.005 0.001
5.0 0.493 0.347 0.127 0.028 0.005
6.0 0.295 0.362 0.219 0.091 0.026
7.0 0.141 0.285 0.265 0.179 0.085
8.0 0.056 0.159 0.228 0.229 0.161
9.0 0.019 0.066 0.135 0.192 0.192
10.0 0.003 0.019 0.054 0.106 0.150

Corrfunc.theory.wp module

Python wrapper around the C extension for the theoretical projected
auto-correlation function, wp(rp), in theory/wp. This python
wrapper is in Corrfunc.theory.wp.

	
Corrfunc.theory.wp.wp(boxsize, pimax, nthreads, binfile, X, Y, Z, weights=None, weight_type=None, verbose=False, output_rpavg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, c_cell_timer=False, isa=u'fastest')

	Function to compute the projected correlation function in a
periodic cosmological box. Pairs which are separated by less
than the rp bins (specified in binfile) in the
X-Y plane, and less than pimax in the Z-dimension are
counted.

If weights are provided, the resulting correlation function
is weighted. The weighting scheme depends on weight_type.

Note

Pairs are double-counted. And if rpmin is set to
0.0, then all the self-pairs (i’th particle with itself) are
added to the first bin => minimum number of pairs in the first bin
is the total number of particles.

	Parameters

	
	boxsize (double) – A double-precision value for the boxsize of the simulation
in same units as the particle positions and the rp bins.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

	nthreads: integer

	Number of threads to use.

	binfile: string or an list/array of floats

	For string input: filename specifying the rp bins for
wp. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X/Y/Z: arraytype, real (float/double)

	Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	weights: array_like, real (float/double), optional

	A scalar, or an array of weights of shape (n_weights, n_positions) or (n_positions,).
weight_type specifies how these weights are used; results are returned
in the weightavg field.

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	output_rpavg: boolean (default false)

	Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	c_cell_timerboolean (default false)

	Boolean flag to measure actual time spent per cell-pair within the
C libraries. A very detailed timer that stores information about the
number of particles in each cell, the thread id that processed that
cell-pair and the amount of time in nano-seconds taken to process that
cell pair. This timer can be used to study the instruction set
efficiency, and load-balancing of the code.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional

	The type of weighting to apply. One of [“pair_product”, None]. Default: None.

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rpmin, rpmax, rpavg, wp, npairs, weightavg]
for each radial specified in the binfile. If output_rpavg is not
set then rpavg will be set to 0.0 for all bins; similarly for weightavg.
wp contains the projected correlation function while npairs contains the
number of unique pairs in that bin. If using weights, wp will be weighted
while npairs will not be.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time spent
within the C library and ignores all python overhead.

	cell_time (list, optional) – Only returned if c_cell_timer is set. Contains
detailed stats about each cell-pair visited during pair-counting,
viz., number of particles in each of the cells in the pair, 1-D
cell-indices for each cell in the pair, time (in nano-seconds) to
process the pair and the thread-id for the thread that processed that
cell-pair.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.wp import wp
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 10000
>>> boxsize = 420.0
>>> pimax = 40.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> results = wp(boxsize, pimax, nthreads, binfile, X, Y, Z, weights=np.ones_like(X), weight_type='pair_product')
>>> for r in results:
... print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}".
... format(r['rmin'], r['rmax'],
... r['rpavg'], r['wp'], r['npairs'], r['weightavg']))
...
 0.167536 0.238755 0.000000 66.717143 18 1.000000
 0.238755 0.340251 0.000000 -15.786045 16 1.000000
 0.340251 0.484892 0.000000 2.998470 42 1.000000
 0.484892 0.691021 0.000000 -15.779885 66 1.000000
 0.691021 0.984777 0.000000 -11.966728 142 1.000000
 0.984777 1.403410 0.000000 -9.699906 298 1.000000
 1.403410 2.000000 0.000000 -11.698771 588 1.000000
 2.000000 2.850200 0.000000 3.848375 1466 1.000000
 2.850200 4.061840 0.000000 -0.921452 2808 1.000000
 4.061840 5.788530 0.000000 0.454851 5802 1.000000
 5.788530 8.249250 0.000000 1.428344 11926 1.000000
 8.249250 11.756000 0.000000 -1.067885 23478 1.000000
 11.756000 16.753600 0.000000 -0.553319 47994 1.000000
 16.753600 23.875500 0.000000 -0.086433 98042 1.000000

	
Corrfunc.theory.wp.find_fastest_wp_bin_refs(boxsize, pimax, nthreads, binfile, X, Y, Z, verbose=False, output_rpavg=False, max_cells_per_dim=100, isa=u'fastest', maxbinref=3, nrepeats=3, return_runtimes=False)

	Finds the combination of bin refine factors that produces the
fastest computation for the given dataset and rp limits.

	Parameters

	
	boxsize (double) – A double-precision value for the boxsize of the simulation
in same units as the particle positions and the rp bins.

	pimax (double) – A double-precision value for the maximum separation along
the Z-dimension.

Note: Only pairs with 0 <= dz < pimax are counted (no equality).

	nthreads: integer

	Number of threads to use.

	binfile: string or an list/array of floats

	For string input: filename specifying the rp bins for
wp. The file should contain white-space separated values
of (rpmin, rpmax) for each rp wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of rp values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X/Y/Z: arraytype, real (float/double)

	Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	verbose: boolean (default false)

	Boolean flag to control output of informational messages

	output_rpavg: boolean (default false)

	Boolean flag to output the average rp for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rpmax is
too small relative to the boxsize (and increasing helps the runtime).

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	maxbinref: integer (default 3)

	The maximum bin refine factor to use along each dimension. From
experience, values larger than 3 do not improve wp runtime.

Runtime of module scales as maxbinref^3, so change the value of
maxbinref with caution.

	nrepeats: integer (default 3)

	Number of times to repeat the timing for an individual run. Accounts
for the dispersion in runtimes on computers with multiple user
processes.

	return_runtimes: boolean (default false)

	If set, also returns the array of runtimes.

	Returns

	
	(nx, ny, nz) (tuple of integers) – The combination of bin refine factors along each dimension that
produces the fastest code.

	runtimes (numpy structured array) – if return_runtimes is set, then the return value is a tuple
containing ((nx, ny, nz), runtimes). runtimes is a numpy
structured array containing the fields, [nx, ny, nz,
avg_runtime, sigma_time]. Here, avg_runtime is the
average time, measured over nrepeats invocations, spent in
the python extension. sigma_time is the dispersion of the
run times across those nrepeats invocations.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.io import read_catalog
>>> from Corrfunc.theory.wp import find_fastest_wp_bin_refs
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> X, Y, Z = read_catalog(return_dtype=np.float32)
>>> boxsize = 420.0
>>> pimax = 40.0
>>> nthreads = 4
>>> verbose = 1
>>> best, _ = find_fastest_wp_bin_refs(boxsize, pimax, nthreads, binfile,
... X, Y, Z, maxbinref=2, nrepeats=3,
... verbose=verbose,
... return_runtimes=True)
>>> print(best)
(2, 2, 1)

Note

Since the result might change depending on the computer, doctest
is skipped for this function.

Corrfunc.theory.xi module

Python wrapper around the C extension for the theoretical 3-D
real-space correlation function, \(\xi(r)\). Corresponding
C routines are in theory/xi/, python interface is
Corrfunc.theory.xi.

	
Corrfunc.theory.xi.xi(boxsize, nthreads, binfile, X, Y, Z, weights=None, weight_type=None, verbose=False, output_ravg=False, xbin_refine_factor=2, ybin_refine_factor=2, zbin_refine_factor=1, max_cells_per_dim=100, c_api_timer=False, isa=u'fastest')

	Function to compute the projected correlation function in a
periodic cosmological box. Pairs which are separated by less
than the r bins (specified in binfile) in 3-D real space.

If weights are provided, the resulting correlation function
is weighted. The weighting scheme depends on weight_type.

Note

Pairs are double-counted. And if rmin is set to
0.0, then all the self-pairs (i’th particle with itself) are
added to the first bin => minimum number of pairs in the first bin
is the total number of particles.

	Parameters

	
	boxsize (double) – A double-precision value for the boxsize of the simulation
in same units as the particle positions and the r bins.

	nthreads (integer) – Number of threads to use.

	binfile (string or an list/array of floats) – For string input: filename specifying the r bins for
xi. The file should contain white-space separated values
of (rmin, rmax) for each r wanted. The bins need to be
contiguous and sorted in increasing order (smallest bins come first).

For array-like input: A sequence of r values that provides the
bin-edges. For example,
np.logspace(np.log10(0.1), np.log10(10.0), 15) is a valid
input specifying 14 (logarithmic) bins between 0.1 and 10.0. This
array does not need to be sorted.

	X/Y/Z (arraytype, real (float/double)) – Particle positions in the 3 axes. Must be within [0, boxsize]
and specified in the same units as rp_bins and boxsize. All
3 arrays must be of the same floating-point type.

Calculations will be done in the same precision as these arrays,
i.e., calculations will be in floating point if XYZ are single
precision arrays (C float type); or in double-precision if XYZ
are double precision arrays (C double type).

	weights (array_like, real (float/double), optional) – A scalar, or an array of weights of shape (n_weights, n_positions) or
(n_positions,). weight_type specifies how these weights are used;
results are returned in the weightavg field.

	verbose (boolean (default false)) – Boolean flag to control output of informational messages

	output_ravg (boolean (default false)) – Boolean flag to output the average r for each bin. Code will
run slower if you set this flag.

Note: If you are calculating in single-precision, rpavg will
suffer from numerical loss of precision and can not be trusted. If
you need accurate rpavg values, then pass in double precision
arrays for the particle positions.

	(xyz)bin_refine_factor: integer, default is (2,2,1); typically within [1-3]

	Controls the refinement on the cell sizes. Can have up to a 20% impact
on runtime.

	max_cells_per_dim: integer, default is 100, typical values in [50-300]

	Controls the maximum number of cells per dimension. Total number of
cells can be up to (max_cells_per_dim)^3. Only increase if rmax is
too small relative to the boxsize (and increasing helps the runtime).

	c_api_timer: boolean (default false)

	Boolean flag to measure actual time spent in the C libraries. Here
to allow for benchmarking and scaling studies.

	isa: string (default fastest)

	Controls the runtime dispatch for the instruction set to use. Possible
options are: [fastest, avx, sse42, fallback]

Setting isa to fastest will pick the fastest available instruction
set on the current computer. However, if you set isa to, say,
avx and avx is not available on the computer, then the code will
revert to using fallback (even though sse42 might be available).

Unless you are benchmarking the different instruction sets, you should
always leave isa to the default value. And if you are
benchmarking, then the string supplied here gets translated into an
enum for the instruction set defined in utils/defs.h.

	weight_type: string, optional, Default: None.

	The type of weighting to apply. One of [“pair_product”, None].

	Returns

	
	results (Numpy structured array) – A numpy structured array containing [rmin, rmax, ravg, xi, npairs, weightavg] for
each radial specified in the binfile. If output_ravg is not
set then ravg will be set to 0.0 for all bins; similarly for weightavg.
xi contains the correlation function while npairs contains the number of
pairs in that bin. If using weights, xi will be weighted while npairs
will not be.

	api_time (float, optional) – Only returned if c_api_timer is set. api_time measures only the time spent
within the C library and ignores all python overhead.

Example

>>> from __future__ import print_function
>>> import numpy as np
>>> from os.path import dirname, abspath, join as pjoin
>>> import Corrfunc
>>> from Corrfunc.theory.xi import xi
>>> binfile = pjoin(dirname(abspath(Corrfunc.__file__)),
... "../theory/tests/", "bins")
>>> N = 100000
>>> boxsize = 420.0
>>> nthreads = 4
>>> seed = 42
>>> np.random.seed(seed)
>>> X = np.random.uniform(0, boxsize, N)
>>> Y = np.random.uniform(0, boxsize, N)
>>> Z = np.random.uniform(0, boxsize, N)
>>> weights = np.ones_like(X)
>>> results = xi(boxsize, nthreads, binfile, X, Y, Z, weights=weights, weight_type='pair_product', output_ravg=True)
>>> for r in results: print("{0:10.6f} {1:10.6f} {2:10.6f} {3:10.6f} {4:10d} {5:10.6f}"
... .format(r['rmin'], r['rmax'],
... r['ravg'], r['xi'], r['npairs'], r['weightavg']))
...
 0.167536 0.238755 0.226592 -0.205733 4 1.000000
 0.238755 0.340251 0.289277 -0.176729 12 1.000000
 0.340251 0.484892 0.426819 -0.051829 40 1.000000
 0.484892 0.691021 0.596187 -0.131853 106 1.000000
 0.691021 0.984777 0.850100 -0.049207 336 1.000000
 0.984777 1.403410 1.225112 0.028543 1052 1.000000
 1.403410 2.000000 1.737153 0.011403 2994 1.000000
 2.000000 2.850200 2.474588 0.005405 8614 1.000000
 2.850200 4.061840 3.532018 -0.014098 24448 1.000000
 4.061840 5.788530 5.022241 -0.010784 70996 1.000000
 5.788530 8.249250 7.160648 -0.001588 207392 1.000000
 8.249250 11.756000 10.207213 -0.000323 601002 1.000000
 11.756000 16.753600 14.541171 0.000007 1740084 1.000000
 16.753600 23.875500 20.728773 -0.001595 5028058 1.000000

Package contributors

Corrfunc project coordinator

	Manodeep Sinha

Lead developers

	Manodeep Sinha

Core package contributors

	Manodeep Sinha (@manodeep)

	Lehman Garrison (@lgarrison)

	Nick Hand (@nickhand)

Other credits

	Corrfunc contains code from Agner Fog [https://agner.org], GeometricTools [http://www.geometrictools.com/], and the package SGLIB [http://sglib.sourceforge.net/]. The LICENSE for these external files
remains with the original author of the package.

	The entirety of the docs for Corrfunc is derived from halotools [https://github.com/astropy/halotools]. I know, first-hand, how much of an
effort it was for the developers of halotools to generate all of this
documentation. Having such a template made creating the docs for Corrfunc a
lot easier process.

	The API generation script for Corrfunc was lifted directly out of the
repo bccp/nbodykit/ [https://github.com/bccp/nbodykit/].

License and Citation Information

Citing Corrfunc

Corrfunc is currently preparing for its first “official” release (v2.0.0).
The v2.0.0 release is accompanied with a code-release paper,
ArXiv [http://arxiv.org/]. If you use
Corrfunc modules in your analysis, please cite this code-release paper. While
the paper is being written, you can cite Corrfunc with the Zenodo DOI:

@misc{manodeep_sinha_2016_55161,
author = {Manodeep Sinha},
title = {Corrfunc: Corrfunc-1.1.0},
month = jun,
year = 2016,
doi = {10.5281/zenodo.55161},
url = {{http://dx.doi.org/10.5281/zenodo.55161}}

Corrfunc License

Corrfunc comes with a MIT LICENSE - see the LICENSE file.

Copyright (C) 2014 Manodeep Sinha (manodeep@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 Corrfunc	

 	
 	
 Corrfunc.call_correlation_functions_mocks	

 	
 	
 Corrfunc.io	

 	
 	
 Corrfunc.mocks	

 	
 	
 Corrfunc.mocks.DDrppi_mocks	

 	
 	
 Corrfunc.mocks.DDsmu_mocks	

 	
 	
 Corrfunc.mocks.DDtheta_mocks	

 	
 	
 Corrfunc.mocks.vpf_mocks	

 	
 	
 Corrfunc.tests	

 	
 	
 Corrfunc.theory	

 	
 	
 Corrfunc.theory.DD	

 	
 	
 Corrfunc.theory.DDrppi	

 	
 	
 Corrfunc.theory.DDsmu	

 	
 	
 Corrfunc.theory.vpf	

 	
 	
 Corrfunc.theory.wp	

 	
 	
 Corrfunc.theory.xi	

 	
 	
 Corrfunc.utils	

Index

 C
 | D
 | F
 | G
 | M
 | R
 | T
 | V
 | W
 | X

C

 	
 	compute_nbins() (in module Corrfunc.utils)

 	convert_3d_counts_to_cf() (in module Corrfunc.utils)

 	convert_rp_pi_counts_to_wp() (in module Corrfunc.utils)

 	Corrfunc (module)

 	Corrfunc.call_correlation_functions_mocks (module)

 	Corrfunc.io (module)

 	Corrfunc.mocks (module)

 	Corrfunc.mocks.DDrppi_mocks (module)

 	Corrfunc.mocks.DDsmu_mocks (module)

 	Corrfunc.mocks.DDtheta_mocks (module)

 	
 	Corrfunc.mocks.vpf_mocks (module)

 	Corrfunc.tests (module)

 	Corrfunc.theory (module)

 	Corrfunc.theory.DD (module)

 	Corrfunc.theory.DDrppi (module)

 	Corrfunc.theory.DDsmu (module)

 	Corrfunc.theory.vpf (module)

 	Corrfunc.theory.wp (module)

 	Corrfunc.theory.xi (module)

 	Corrfunc.utils (module)

D

 	
 	DD() (in module Corrfunc.theory)

 	(in module Corrfunc.theory.DD)

 	DDrppi() (in module Corrfunc.theory)

 	(in module Corrfunc.theory.DDrppi)

 	DDrppi_mocks() (in module Corrfunc.mocks)

 	(in module Corrfunc.mocks.DDrppi_mocks)

 	
 	DDsmu() (in module Corrfunc.theory)

 	(in module Corrfunc.theory.DDsmu)

 	DDsmu_mocks() (in module Corrfunc.mocks)

 	(in module Corrfunc.mocks.DDsmu_mocks)

 	DDtheta_mocks() (in module Corrfunc.mocks)

 	(in module Corrfunc.mocks.DDtheta_mocks)

F

 	
 	find_fastest_wp_bin_refs() (in module Corrfunc.theory.wp)

 	
 	fix_cz() (in module Corrfunc.utils)

 	fix_ra_dec() (in module Corrfunc.utils)

G

 	
 	gridlink_sphere() (in module Corrfunc.utils)

M

 	
 	main() (in module Corrfunc.call_correlation_functions_mocks)

R

 	
 	read_ascii_catalog() (in module Corrfunc.io)

 	read_catalog() (in module Corrfunc.io)

 	
 	read_fastfood_catalog() (in module Corrfunc.io)

 	read_text_file() (in module Corrfunc)

 	return_file_with_rbins() (in module Corrfunc.utils)

T

 	
 	tests() (in module Corrfunc.tests)

 	
 	translate_isa_string_to_enum() (in module Corrfunc.utils)

V

 	
 	vpf() (in module Corrfunc.theory)

 	(in module Corrfunc.theory.vpf)

 	
 	vpf_mocks() (in module Corrfunc.mocks)

 	(in module Corrfunc.mocks.vpf_mocks)

W

 	
 	which() (in module Corrfunc)

 	wp() (in module Corrfunc.theory)

 	(in module Corrfunc.theory.wp)

 	
 	write_text_file() (in module Corrfunc)

X

 	
 	xi() (in module Corrfunc.theory)

 	(in module Corrfunc.theory.xi)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Corrfunc Documentation

 		
 Package Installation

 		
 Using pip

 		
 Building from source

 		
 Dependencies

 		
 Verifying your installation

 		
 Getting started with Corrfunc

 		
 Computing Clustering Statistics with Corrfunc

 		
 Available Corrfunc interfaces

 		
 Using the python extensions in Corrfunc

 		
 Using the static library interface in Corrfunc

 		
 Using the command-line interface in Corrfunc

 		
 Cheat-sheet for all available interfaces in Corrfunc

 		
 Typical Tasks for Computing Correlation Functions

 		
 Reading input data

 		
 Reading Catalogs for Corrfunc

 		
 Creating a file with bins for the clustering statistics

 		
 Specifying the separation bins in Corrfunc

 		
 Choosing the correlation function

 		
 Which correlation function to use?

 		
 Calculating Correlation Functions on Simulations

 		
 Converting 3D pair counts into a correlation function

 		
 Converting pairs into a projected correlation function

 		
 Directly Computing and

 		
 Detailed API for Clustering Statistics on Simulations

 		
 Notes on the Random-Random Term in Autocorrelations

 		
 Calculating Correlation Functions on Mock Catalogs

 		
 Calculating the projected correlation function,

 		
 Calculating the angular correlation function,

 		
 Detailed API for Clustering Statistics on Mock Catalogs

 		
 Weighted Correlation Functions

 		
 Computing Weighted Correlation Functions

 		
 Implementing Custom Weight Functions

 		
 Developer documentation

 		
 License and Citation Information

 		
 Citing Corrfunc

 		
 Corrfunc License

 		
 Package contributors

 		
 Corrfunc project coordinator

 		
 Lead developers

 		
 Core package contributors

 		
 Other credits

 		
 Submitting a Bug Report

 		
 Staying Up to Date

 		
 Contributing to Corrfunc

 		
 Corrfunc Design

 		
 Directory and file layout

 		
 Coding Guidelines

 		
 Comprehensive API reference

 		
 Corrfunc package

 		
 Subpackages

 		
 Submodules

 		
 Corrfunc.call_correlation_functions module

 		
 Corrfunc.call_correlation_functions_mocks module

 		
 Corrfunc.io module

 		
 Corrfunc.tests module

 		
 Corrfunc.utils module

 		
 Package contributors

 		
 Corrfunc project coordinator

 		
 Lead developers

 		
 Core package contributors

 		
 Other credits

 		
 License and Citation Information

 		
 Citing Corrfunc

 		
 Corrfunc License

_static/up-pressed.png

_static/up.png

