

Welcome to configobj’s documentation!

This manual consists of two parts,
the first shows you how to read and write config files,
the second covers using a validation schema,
to verify that a given config file adheres to defined rules.

Contents

	1. ConfigObj 5 Introduction and Reference

	2. Using the Validator class

Indices and tables

	Index

	Module Index

	Search Page

1. ConfigObj 5 Introduction and Reference

	Authors

	Michael Foord, Nicola Larosa, Rob Dennis, Eli Courtwright

	Version

	ConfigObj 5.0.6

	Date

	2014/08/25

	PyPI Entry

	ConfigObj on PyPI [http://pypi.python.org/pypi/configobj/]

	Homepage

	Github Page [https://github.com/DiffSK/configobj]

	License

	BSD License [http://opensource.org/licenses/BSD-3-Clause]

	Support

	Mailing List [http://lists.sourceforge.net/lists/listinfo/configobj-develop]

ConfigObj Manual

	ConfigObj 5 Introduction and Reference

	Introduction

	Downloading

	Development Version

	ConfigObj in the Real World

	Getting Started

	Reading a Config File

	Writing a Config File

	Config Files

	ConfigObj specifications

	Methods

	write

	validate

	Return Value

	Mentioning Default Values

	Mentioning Repeated Sections and Values

	Mentioning SimpleVal

	Mentioning copy Mode

	reload

	reset

	Attributes

	interpolation

	stringify

	BOM

	initial_comment

	final_comment

	list_values

	encoding

	default_encoding

	unrepr

	write_empty_values

	newlines

	The Config File Format

	Sections

	Section Attributes

	Section Methods

	Walking a Section

	Examples

	Exceptions

	Validation

	configspec

	Type Conversion

	Default Values

	List Values

	Repeated Sections

	Repeated Values

	Copy Mode

	Validation and Interpolation

	Extra Values

	SimpleVal

	Empty values

	unrepr mode

	String Interpolation

	String Interpolation and List Values

	Comments

	flatten_errors

	Example Usage

	get_extra_values

	Example Usage

	CREDITS

	LICENSE

	TODO

	ISSUES

	CHANGELOG

	2014/08/25 - Version 5.0.6

	2014/04/28 - Version 5.0.5

	2014/04/11 - Version 5.0.4

	2014/04/04 - Version 5.0.3

	2014/02/27 - Version 5.0.2

	2014/02/19 - Version 5.0.1

	2014/02/08 - Version 5.0.0

	2010/02/27 - Version 4.7.2

	2010/02/06 - Version 4.7.1

	2010/01/09 - Version 4.7.0

	2009/04/13 - Version 4.6.0

	2008/06/27 - Version 4.5.3

	2008/02/05 - Version 4.5.2

	2008/02/05 - Version 4.5.1

	2008/02/05 - Version 4.5.0

	2007/02/04 - Version 4.4.0

	2006/12/17 - Version 4.3.3-alpha4

	2006/12/17 - Version 4.3.3-alpha3

	2006/12/09 - Version 4.3.3-alpha2

	2006/12/09 - Version 4.3.3-alpha1

	2006/06/04 - Version 4.3.2

	2006/04/29 - Version 4.3.1

	2006/03/24 - Version 4.3.0

	2006/02/16 - Version 4.2.0

	2005/12/14 - Version 4.1.0

	2005/12/02 - Version 4.0.2

	2005/11/05 - Version 4.0.1

	2005/10/17 - Version 4.0.0

	2005/09/09 - Version 4.0.0 beta 5

	2005/09/07 - Version 4.0.0 beta 4

	2005/08/28 - Version 4.0.0 beta 3

	2005/08/25 - Version 4.0.0 beta 2

	2005/08/21 - Version 4.0.0 beta 1

	2004/05/24 - Version 3.0.0

	2004/03/14 - Version 2.0.0 beta

	2004/01/29 - Version 1.0.5

	Origins

	Footnotes

Note

The best introduction to working with ConfigObj, including the powerful configuration validation system,
is the article:

	An Introduction to ConfigObj [http://www.voidspace.org.uk/python/articles/configobj.shtml]

1.1. Introduction

ConfigObj is a simple but powerful config file reader and writer: an ini
file round tripper. Its main feature is that it is very easy to use, with a
straightforward programmer’s interface and a simple syntax for config files.
It has lots of other features though :

	Nested sections (subsections), to any level

	List values

	Multiple line values

	String interpolation (substitution)

	Integrated with a powerful validation system

	including automatic type checking/conversion

	repeated sections

	and allowing default values

	When writing out config files, ConfigObj preserves all comments and the order of members and sections

	Many useful methods and options for working with configuration files (like the ‘reload’ method)

	Full Unicode support

For support and bug reports please use the ConfigObj Github Page [https://github.com/DiffSK/configobj].

1.2. Downloading

The current version is 5.0.6, dated 25th August 2014. ConfigObj 5 is
stable and mature. We still expect to pick up a few bugs along the way though, particularly with respect to Python 3 compatibility 1.

We recommend downloading and installing using pip:

pip install configobj

1.2.1. Development Version

It’s possible to get the latest development version of ConfigObj
from the Git Repository maintained on the Github Page [https://github.com/DiffSK/configobj].

1.3. ConfigObj in the Real World

ConfigObj is widely used. Projects using it include:

	Bazaar [http://bazaar-ng.org].

Bazaar is a Python distributed {acro;VCS;Version Control System}.
ConfigObj is used to read bazaar.conf and branches.conf.

	Chandler [http://chandler.osafoundation.org/]

A Python and wxPython [http://www.wxpython.org]
Personal Information Manager, being developed by the
OSAFoundation [http://www.osafoundation.org/].

	matplotlib [http://matplotlib.sourceforge.net/]

A 2D plotting library.

	IPython [http://ipython.scipy.org/moin/]

IPython is an enhanced interactive Python shell. IPython uses ConfigObj in a module called ‘TConfig’ that combines it with enthought Traits [http://code.enthought.com/traits/]: tconfig [http://ipython.scipy.org/ipython/ipython/browser/ipython/branches/saw/sandbox/tconfig].

	Elisa - the Fluendo Mediacenter [http://elisa.fluendo.com/]

Elisa is an open source cross-platform media center solution designed to be simple for people not particularly familiar with computers.

1.4. Getting Started

The outstanding feature of using ConfigObj is simplicity. Most functions can be
performed with single line commands.

1.4.1. Reading a Config File

The normal way to read a config file, is to give ConfigObj the filename :

from configobj import ConfigObj
config = ConfigObj(filename)

You can also pass the config file in as a list of lines, or a StringIO
instance, so it doesn’t matter where your config data comes from.

You can then access members of your config file as a dictionary. Subsections
will also be dictionaries.

from configobj import ConfigObj
config = ConfigObj(filename)
#
value1 = config['keyword1']
value2 = config['keyword2']
#
section1 = config['section1']
value3 = section1['keyword3']
value4 = section1['keyword4']
#
you could also write
value3 = config['section1']['keyword3']
value4 = config['section1']['keyword4']

1.4.2. Writing a Config File

Creating a new config file is just as easy as reading one. You can specify a
filename when you create the ConfigObj, or do it later 2.

If you don’t set a filename, then the write method will return a list of
lines instead of writing to file. See the write method for more details.

Here we show creating an empty ConfigObj, setting a filename and some values,
and then writing to file :

from configobj import ConfigObj
config = ConfigObj()
config.filename = filename
#
config['keyword1'] = value1
config['keyword2'] = value2
#
config['section1'] = {}
config['section1']['keyword3'] = value3
config['section1']['keyword4'] = value4
#
section2 = {
 'keyword5': value5,
 'keyword6': value6,
 'sub-section': {
 'keyword7': value7
 }
}
config['section2'] = section2
#
config['section3'] = {}
config['section3']['keyword 8'] = [value8, value9, value10]
config['section3']['keyword 9'] = [value11, value12, value13]
#
config.write()

Caution

Keywords and section names can only be strings 3. Attempting to set
anything else will raise a ValueError.

See String Interpolation and List Values for an important note on
using lists in combination with String Interpolation.

1.4.3. Config Files

The config files that ConfigObj will read and write are based on the ‘INI’
format. This means it will read and write files created for ConfigParser
4.

Keywords and values are separated by an '=', and section markers are
between square brackets. Keywords, values, and section names can be surrounded
by single or double quotes. Indentation is not significant, but can be
preserved.

Subsections are indicated by repeating the square brackets in the section
marker. You nest levels by using more brackets.

You can have list values by separating items with a comma, and values spanning
multiple lines by using triple quotes (single or double).

For full details on all these see the config file format. Here’s an example
to illustrate:

This is the 'initial_comment'
Which may be several lines
keyword1 = value1
'keyword 2' = 'value 2'

["section 1"]
This comment goes with keyword 3
keyword 3 = value 3
'keyword 4' = value4, value 5, 'value 6'

 [[sub-section]] # an inline comment
 # sub-section is inside "section 1"
 'keyword 5' = 'value 7'
 'keyword 6' = '''A multiline value,
that spans more than one line :-)
The line breaks are included in the value.'''

 [[[sub-sub-section]]]
 # sub-sub-section is *in* 'sub-section'
 # which is in 'section 1'
 'keyword 7' = 'value 8'

[section 2] # an inline comment
keyword8 = "value 9"
keyword9 = value10 # an inline comment
The 'final_comment'
Which also may be several lines

1.5. ConfigObj specifications

config = ConfigObj(infile=None, options=None, configspec=None, encoding=None,
 interpolation=True, raise_errors=False, list_values=True,
 create_empty=False, file_error=False, stringify=True,
 indent_type=None, default_encoding=None, unrepr=False,
 write_empty_values=False, _inspec=False)

Many of the keyword arguments are available as attributes after the config file has been
parsed.

Note

New in ConfigObj 4.7.0: Instantiating ConfigObj with
an options dictionary is now deprecated. To modify code that used to
do this simply unpack the dictionary in the constructor call:

config = ConfigObj(filename, **options)

ConfigObj takes the following arguments (with the default values shown) :

	infile: None

You don’t need to specify an infile. If you omit it, an empty ConfigObj will be
created. infile can be :

	Nothing. In which case the filename attribute of your ConfigObj will be
None. You can set a filename at any time.

	A filename. What happens if the file doesn’t already exist is determined by
the options file_error and create_empty. The filename will be
preserved as the filename attribute. This can be changed at any time.

	A list of lines. Any trailing newlines will be removed from the lines. The
filename attribute of your ConfigObj will be None.

	A StringIO instance or file object, or any object with a read method.
The filename attribute of your ConfigObj will be None 5.

	A dictionary. You can initialise a ConfigObj from a dictionary 6. The
filename attribute of your ConfigObj will be None. All keys must be
strings. In this case, the order of values and sections is arbitrary.

	‘raise_errors’: False

When parsing, it is possible that the config file will be badly formed. The
default is to parse the whole file and raise a single error at the end. You
can set raise_errors = True to have errors raised immediately. See the
exceptions section for more details.

Altering this value after initial parsing has no effect.

	‘list_values’: True

If True (the default) then list values are possible. If False, the
values are not parsed for lists.

If list_values = False then single line values are not quoted or
unquoted when reading and writing.

Changing this value affects whether single line values will be quoted or
not when writing.

	‘create_empty’: False

If this value is True and the file specified by infile doesn’t
exist, ConfigObj will create an empty file. This can be a useful test that
the filename makes sense: an impossible filename will cause an error.

Altering this value after initial parsing has no effect.

	‘file_error’: False

If this value is True and the file specified by infile doesn’t
exist, ConfigObj will raise an IOError. This error will be raised whenever
an attempt to load the infile occurs, either in the constructor or using
the reload method.

	‘interpolation’: True

Whether string interpolation is switched on or not. It is on (True) by
default.

You can set this attribute to change whether string interpolation is done
when values are fetched. See the String Interpolation section for more details.

New in ConfigObj 4.7.0: Interpolation will also be done in list values.

	‘configspec’: None

If you want to use the validation system, you supply a configspec. This is
effectively a type of config file that specifies a check for each member.
This check can be used to do type conversion as well as check that the
value is within your required parameters.

You provide a configspec in the same way as you do the initial file: a
filename, or list of lines, etc. See the validation section for full
details on how to use the system.

When parsed, every section has a configspec with a dictionary of
configspec checks for that section.

	‘stringify’: True

If you use the validation scheme, it can do type checking and conversion
for you. This means you may want to set members to integers, or other
non-string values.

If ‘stringify’ is set to True (default) then non-string values will
be converted to strings when you write the config file. The validation
process converts values from strings to the required type.

If ‘stringify’ is set to False, attempting to set a member to a
non-string value 7 will raise a TypeError (no type conversion is
done by validation).

	‘indent_type’: ' '

Indentation is not significant; it can however be present in the input and
output config. Any combination of tabs and spaces may be used: the string
will be repeated for each level of indentation. Typical values are: ''
(no indentation), ' ' (indentation with four spaces, the default),
'\t' (indentation with one tab).

If this option is not specified, and the ConfigObj is initialised with a
dictionary, the indentation used in the output is the default one, that is,
four spaces.

If this option is not specified, and the ConfigObj is initialised with a
list of lines or a file, the indentation used in the first indented line is
selected and used in all output lines. If no input line is indented, no
output line will be either.

If this option is specified, the option value is used in the output
config, overriding the type of indentation in the input config (if any).

	‘encoding’: None

By default ConfigObj does not decode the file/strings you pass it into
Unicode 8. If you want your config file as Unicode (keys and members)
you need to provide an encoding to decode the file with. This encoding will
also be used to encode the config file when writing.

You can change the encoding attribute at any time.

Any characters in your strings that can’t be encoded with the specified
encoding will raise a UnicodeEncodeError.

Note

UTF16 encoded files will automatically be detected and decoded,
even if encoding is None.

This is because it is a 16-bit encoding, and ConfigObj will mangle it
(split characters on byte boundaries) if it parses it without decoding.

	‘default_encoding’: None

When using the write method, ConfigObj uses the encoding
attribute to encode the Unicode strings. If any members (or keys) have
been set as byte strings instead of Unicode, these must first be decoded
to Unicode before outputting in the specified encoding.

default_encoding, if specified, is the encoding used to decode byte
strings in the ConfigObj before writing. If this is None, then
the Python default encoding (sys.defaultencoding - usually ASCII) is
used.

For most Western European users, a value of latin-1 is sensible.

default_encoding is only used if an encoding is specified.

Any characters in byte-strings that can’t be decoded using the
default_encoding will raise a UnicodeDecodeError.

	‘unrepr’: False

The unrepr option reads and writes files in a different mode. This
allows you to store and retrieve the basic Python data-types using config
files.

This uses Python syntax for lists and quoting. See unrepr mode for the
full details.

	‘write_empty_values’: False

If write_empty_values is True, empty strings are written as
empty values. See Empty Values for more details.

	‘_inspec’: False

Used internally by ConfigObj when parsing configspec files. If you are
creating a ConfigObj instance from a configspec file you must pass True
for this argument as well as list_values=False.

1.5.1. Methods

The ConfigObj is a subclass of an object called Section, which is itself a
subclass of dict, the builtin dictionary type. This means it also has
all the normal dictionary methods.

In addition, the following Section Methods may be useful :

	‘restore_default’

	‘restore_defaults’

	‘walk’

	‘merge’

	‘dict’

	‘as_bool’

	‘as_float’

	‘as_int’

	‘as_list’

Read about Sections for details of all the methods.

Hint

The merge method of sections is a recursive update.

You can use this to merge sections, or even whole ConfigObjs, into each
other.

You would typically use this to create a default ConfigObj and then merge
in user settings. This way users only need to specify values that are
different from the default. You can use configspecs and validation to
achieve the same thing of course.

The public methods available on ConfigObj are :

	‘write’

	‘validate’

	‘reset’

	‘reload’

1.5.1.1. write

write(file_object=None)

This method writes the current ConfigObj and takes a single, optional argument
9.

If you pass in a file like object to the write method, the config file will
be written to this. (The only method of this object that is used is its
write method, so a StringIO instance, or any other file like object
will work.)

Otherwise, the behaviour of this method depends on the filename attribute
of the ConfigObj.

	filename

	ConfigObj will write the configuration to the file specified.

	None

	write returns a list of lines. (Not '\n' terminated)

First the ‘initial_comment’ is written, then the config file, followed by the
‘final_comment’. Comment lines and inline comments are written with each
key/value.

1.5.1.2. validate

validate(validator, preserve_errors=False, copy=False)

filename is the config file
filename2 is the configspec
(which could also be hardcoded into your program)
config = ConfigObj(filename, configspec=filename2)
#
from configobj.validate import Validator
val = Validator()
test = config.validate(val)
if test == True:
 print 'Succeeded.'

The validate method uses the :validate: module to do the
validation.

This method validates the ConfigObj against the configspec. By doing type
conversion as well it can abstract away the config file altogether and present
the config data to your application (in the types it expects it to be).

If the configspec attribute of the ConfigObj is None, it raises a
ValueError.

If the stringify attribute is set, this process will convert values to the
type defined in the configspec.

The validate method uses checks specified in the configspec and defined in the
Validator object. It is very easy to extend.

The configspec looks like the config file, but instead of the value, you
specify the check (and any default value). See the validation section for
details.

Hint

The system of configspecs can seem confusing at first, but is actually
quite simple and powerful. The best guide to them is this article on
ConfigObj:

	An Introduction to ConfigObj [http://www.voidspace.org.uk/python/articles/configobj.shtml]

The copy parameter fills in missing values from the configspec (default
values), without marking the values as defaults. It also causes comments to
be copied from the configspec into the config file. This allows you to use a
configspec to create default config files. (Normally default values aren’t
written out by the write method.)

As of ConfigObj 4.3.0 you can also pass in a ConfigObj instance as your
configspec. This is especially useful if you need to specify the encoding of
your configspec file. When you read your configspec file, you must specify
list_values=False. If you need to support hashes inside the configspec
values then you must also pass in _inspec=True. This is because configspec
files actually use a different syntax to config files and inline comment support
must be switched off to correctly read configspec files with hashes in the values.

from configobj import ConfigObj
configspec = ConfigObj(configspecfilename, encoding='UTF8',
 list_values=False, _inspec=True)
config = ConfigObj(filename, configspec=configspec)

1.5.1.2.1. Return Value

By default, the validate method either returns True (everything passed)
or a dictionary of True / False representing pass/fail. The dictionary
follows the structure of the ConfigObj.

If a whole section passes then it is replaced with the value True. If a
whole section fails, then it is replaced with the value False.

If a value is missing, and there is no default in the check, then the check
automatically fails.

The validate method takes an optional keyword argument preserve_errors.
If you set this to True, instead of getting False for failed checks you
get the actual error object from the validate module. This usually contains
useful information about why the check failed.

See the flatten_errors function for how to turn your results dictionary into
a useful list of error messages.

Even if preserve_errors is True, missing keys or sections will still be
represented by a False in the results dictionary.

1.5.1.2.2. Mentioning Default Values

In the check in your configspec, you can specify a default to be used - by
using the default keyword. E.g.

key1 = integer(0, 30, default=15)
key2 = integer(default=15)
key3 = boolean(default=True)
key4 = option('Hello', 'Goodbye', 'Not Today', default='Not Today')

If the configspec check supplies a default and the value is missing in the
config, then the default will be set in your ConfigObj. (It is still passed to
the Validator so that type conversion can be done: this means the default
value must still pass the check.)

ConfigObj keeps a record of which values come from defaults, using the
defaults attribute of sections. Any key in this list isn’t written out by
the write method. If a key is set from outside (even to the same value)
then it is removed from the defaults list.

There is additionally a special case default value of None. If you set the
default value to None and the value is missing, the value will always be
set to None. As the other checks don’t return None (unless you
implement your own that do), you can tell that this value came from a default
value (and was missing from the config file). It allows an easy way of
implementing optional values. Simply check (and ignore) members that are set
to None.

Note

If stringify is False then default=None returns '' instead of
None. This is because setting a value to a non-string raises an error
if stringify is unset.

The default value can be a list. See List Values for the way to do this.

Writing invalid default values is a guaranteed way of confusing your users.
Default values must pass the check.

1.5.1.2.3. Mentioning Repeated Sections and Values

In the configspec it is possible to cause every sub-section in a section to
be validated using the same configspec. You do this with a section in the
configspec called __many__. Every sub-section in that section has the
__many__ configspec applied to it (without you having to explicitly name
them in advance).

Your __many__ section can have nested subsections, which can also include
__many__ type sections.

You can also specify that all values should be validated using the same configspec,
by having a member with the name __many__. If you want to use repeated values
along with repeated sections then you can call one of them ___many___ (triple
underscores).

Sections with repeated sections or values can also have specifically named sub-sections
or values. The __many__ configspec will only be used to validate entries that don’t
have an explicit configspec.

See Repeated Sections for examples.

1.5.1.2.4. Mentioning SimpleVal

If you just want to check if all members are present, then you can use the
SimpleVal object that comes with ConfigObj. It only fails members if they
are missing.

Write a configspec that has all the members you want to check for, but set
every section to ''.

val = SimpleVal()
test = config.validate(val)
if test is True:
 print 'Succeeded.'

1.5.1.2.5. Mentioning copy Mode

As discussed in Mentioning Default Values, you can use a configspec to
supply default values. These are marked in the ConfigObj instance as defaults,
and not written out by the write mode. This means that your users only
need to supply values that are different from the defaults.

This can be inconvenient if you do want to write out the default values,
for example to write out a default config file.

If you set copy=True when you call validate, then no values are marked as
defaults. In addition, all comments from the configspec are copied into
your ConfigObj instance. You can then call write to create your config
file.

There is a limitation with this. In order to allow String Interpolation to work
within configspecs, DEFAULT sections are not processed by
validation; even in copy mode.

1.5.1.3. reload

If a ConfigObj instance was loaded from the filesystem, then this method will reload it. It
will also reuse any configspec you supplied at instantiation (including reloading it from
the filesystem if you passed it in as a filename).

If the ConfigObj does not have a filename attribute pointing to a file, then a ReloadError
will be raised.

1.5.1.4. reset

This method takes no arguments and doesn’t return anything. It restores a ConfigObj
instance to a freshly created state.

1.5.2. Attributes

A ConfigObj has the following attributes :

	indent_type

	interpolation

	stringify

	BOM

	initial_comment

	final_comment

	list_values

	encoding

	default_encoding

	unrepr

	write_empty_values

	newlines

Note

This doesn’t include comments, inline_comments, defaults, or
configspec. These are actually attributes of Sections.

It also has the following attributes as a result of parsing. They correspond to
options when the ConfigObj was created, but changing them has no effect.

	raise_errors

	create_empty

	file_error

1.5.2.1. interpolation

ConfigObj can perform string interpolation in a similar way to
ConfigParser. See the String Interpolation section for full details.

If interpolation is set to False, then interpolation is not done when
you fetch values.

1.5.2.2. stringify

If this attribute is set (True) then the validate method changes the
values in the ConfigObj. These are turned back into strings when write is
called.

If stringify is unset (False) then attempting to set a value to a non
string (or a list of strings) will raise a TypeError.

1.5.2.3. BOM

If the initial config file started with the UTF8 Unicode signature (known
slightly incorrectly as the BOM - Byte Order Mark), or the UTF16 BOM, then
this attribute is set to True. Otherwise it is False.

If it is set to True when write is called then, if encoding is set
to None or to utf_8 (and variants) a UTF BOM will be written.

For UTF16 encodings, a BOM is always written.

1.5.2.4. initial_comment

This is a list of lines. If the ConfigObj is created from an existing file, it
will contain any lines of comments before the start of the members.

If you create a new ConfigObj, this will be an empty list.

The write method puts these lines before it starts writing out the members.

1.5.2.5. final_comment

This is a list of lines. If the ConfigObj is created from an existing file, it
will contain any lines of comments after the last member.

If you create a new ConfigObj, this will be an empty list.

The write method puts these lines after it finishes writing out the
members.

1.5.2.6. list_values

This attribute is True or False. If set to False then values are
not parsed for list values. In addition single line values are not unquoted.

This allows you to do your own parsing of values. It exists primarily to
support the reading of the configspec - but has other use cases.

For example you could use the LineParser from the
listquote module [http://www.voidspace.org.uk/python/listquote.html#lineparser]
to read values for nested lists.

Single line values aren’t quoted when writing - but multiline values are
handled as normal.

Caution

Because values aren’t quoted, leading or trailing whitespace can be lost. This behaviour was changed in version 4.0.1. Prior to this, single line values might have been quoted; even with list_values=False. This means that files written by earlier versions of ConfigObj could now be incompatible and need the quotes removing by hand.

1.5.2.7. encoding

This is the encoding used to encode the output, when you call write. It
must be a valid encoding recognised by Python [http://docs.python.org/lib/standard-encodings.html].

If this value is None then no encoding is done when write is called.

1.5.2.8. default_encoding

If encoding is set, any byte-strings in your ConfigObj instance (keys or
members) will first be decoded to Unicode using the encoding specified by the
default_encoding attribute. This ensures that the output is in the encoding
specified.

If this value is None then sys.defaultencoding is used instead.

1.5.2.9. unrepr

Another boolean value. If this is set, then repr(value) is used to write
values. This writes values in a slightly different way to the normal ConfigObj
file syntax.

This preserves basic Python data-types when read back in. See unrepr mode
for more details.

1.5.2.10. write_empty_values

Also boolean. If set, values that are an empty string ('') are written as
empty values. See Empty Values for more details.

1.5.2.11. newlines

When a config file is read, ConfigObj records the type of newline separators in the
file and uses this separator when writing. It defaults to None, and ConfigObj
uses the system default (os.linesep) if write is called without newlines having
been set.

1.6. The Config File Format

You saw an example config file in the Config Files section. Here is a fuller
specification of the config files used and created by ConfigObj.

The basic pattern for keywords is:

comment line
comment line
keyword = value # inline comment

Both keyword and value can optionally be surrounded in quotes. The equals sign
is the only valid divider.

Values can have comments on the lines above them, and an inline comment after
them. This, of course, is optional. See the comments section for details.

If a keyword or value starts or ends with whitespace, or contains a quote mark
or comma, then it should be surrounded by quotes. Quotes are not necessary if
whitespace is surrounded by non-whitespace.

Values can also be lists. Lists are comma separated. You indicate a single
member list by a trailing comma, unless you have a config spec that uses force_list,
which implies an automatic conversion of scalar values to a single-element list.
An empty list is shown by a single comma:

keyword1 = value1, value2, value3
keyword2 = value1, # a single member list
keyword3 = , # an empty list

Values that contain line breaks (multi-line values) can be surrounded by triple
quotes. These can also be used if a value contains both types of quotes. List
members cannot be surrounded by triple quotes:

keyword1 = ''' A multi line value
on several
lines''' # with a comment
keyword2 = '''I won't be "afraid".'''
#
keyword3 = """ A multi line value
on several
lines""" # with a comment
keyword4 = """I won't be "afraid"."""

Warning

There is no way of safely quoting values that contain both types of triple
quotes.

A line that starts with a ‘#’, possibly preceded by whitespace, is a comment.

New sections are indicated by a section marker line. That is the section name
in square brackets. Whitespace around the section name is ignored. The name can
be quoted with single or double quotes. The marker can have comments before it
and an inline comment after it:

The First Section
[section name 1] # first section
keyword1 = value1

The Second Section
["section name 2"] # second section
keyword2 = value2

Any subsections (sections that are inside the current section) are
designated by repeating the square brackets before and after the section name.
The number of square brackets represents the nesting level of the sub-section.
Square brackets may be separated by whitespace; such whitespace, however, will
not be present in the output config written by the write method.

Indentation is not significant, but can be preserved. See the description of
the indent_type option, in the ConfigObj specifications chapter, for the
details.

A NestingError will be raised if the number of the opening and the closing
brackets in a section marker is not the same, or if a sub-section’s nesting
level is greater than the nesting level of it parent plus one.

In the outer section, single values can only appear before any sub-section.
Otherwise they will belong to the sub-section immediately before them:

initial comment
keyword1 = value1
keyword2 = value2

[section 1]
keyword1 = value1
keyword2 = value2

 [[sub-section]]
 # this is in section 1
 keyword1 = value1
 keyword2 = value2

 [[[nested section]]]
 # this is in sub section
 keyword1 = value1
 keyword2 = value2

 [[sub-section2]]
 # this is in section 1 again
 keyword1 = value1
 keyword2 = value2

[[sub-section3]]
this is also in section 1, indentation is misleading here
keyword1 = value1
keyword2 = value2

final comment

When parsed, the above config file produces the following data structure:

ConfigObj({
 'keyword1': 'value1',
 'keyword2': 'value2',
 'section 1': {
 'keyword1': 'value1',
 'keyword2': 'value2',
 'sub-section': {
 'keyword1': 'value1',
 'keyword2': 'value2',
 'nested section': {
 'keyword1': 'value1',
 'keyword2': 'value2',
 },
 },
 'sub-section2': {
 'keyword1': 'value1',
 'keyword2': 'value2',
 },
 'sub-section3': {
 'keyword1': 'value1',
 'keyword2': 'value2',
 },
 },
})

Sections are ordered: note how the structure of the resulting ConfigObj is in
the same order as the original file.

Note

In ConfigObj 4.3.0 empty values became valid syntax. They are read as the
empty string. There is also an option/attribute (write_empty_values) to
allow the writing of these.

This is mainly to support ‘legacy’ config files, written from other
applications. This is documented under Empty Values.

unrepr mode introduces another syntax variation, used for storing
basic Python datatypes in config files.

1.7. Sections

Every section in a ConfigObj has certain properties. The ConfigObj itself also
has these properties, because it too is a section (sometimes called the root
section).

Section is a subclass of the standard new-class dictionary, therefore it
has all the methods of a normal dictionary. This means you can update
and clear sections.

Note

You create a new section by assigning a member to be a dictionary.

The new Section is created from the dictionary, but isn’t the same
thing as the dictionary. (So references to the dictionary you use to create
the section aren’t references to the new section).

Note the following.

config = ConfigObj()
vals = {'key1': 'value 1',
 'key2': 'value 2'
 }
config['vals'] = vals
config['vals'] == vals
True
config['vals'] is vals
False

If you now change vals, the changes won’t be reflected in config['vals'].

A section is ordered, following its scalars and sections
attributes documented below. This means that the following dictionary
attributes return their results in order.

	‘__iter__’

More commonly known as for member in section:.

	‘__repr__’ and ‘__str__’

Any time you print or display the ConfigObj.

	‘items’

	‘iteritems’

	‘iterkeys’

	‘itervalues’

	‘keys’

	‘popitem’

	‘values’

1.7.1. Section Attributes

	main

A reference to the main ConfigObj.

	parent

A reference to the ‘parent’ section, the section that this section is a
member of.

On the ConfigObj this attribute is a reference to itself. You can use this
to walk up the sections, stopping when section.parent is section.

	depth

The nesting level of the current section.

If you create a new ConfigObj and add sections, 1 will be added to the
depth level between sections.

	defaults

This attribute is a list of scalars that came from default values. Values
that came from defaults aren’t written out by the write method.
Setting any of these values in the section removes them from the defaults
list.

	default_values

This attribute is a dictionary mapping keys to the default values for the
keys. By default it is an empty dictionary and is populated when you
validate the ConfigObj.

	scalars, sections

These attributes are normal lists, representing the order that members,
single values and subsections appear in the section. The order will either
be the order of the original config file, or the order that you added
members.

The order of members in this lists is the order that write creates in
the config file. The scalars list is output before the sections
list.

Adding or removing members also alters these lists. You can manipulate the
lists directly to alter the order of members.

Warning

If you alter the scalars, sections, or defaults attributes
so that they no longer reflect the contents of the section, you will
break your ConfigObj.

See also the rename method.

	comments

This is a dictionary of comments associated with each member. Each entry is
a list of lines. These lines are written out before the member.

	inline_comments

This is another dictionary of comments associated with each member. Each
entry is a string that is put inline with the member.

	configspec

The configspec attribute is a dictionary mapping scalars to checks. A
check defines the expected type and possibly the allowed values for a
member.

The configspec has the same format as a config file, but instead of values
it has a specification for the value (which may include a default value).
The validate method uses it to check the config file makes sense. If a
configspec is passed in when the ConfigObj is created, then it is parsed
and broken up to become the configspec attribute of each section.

If you didn’t pass in a configspec, this attribute will be None on the
root section (the main ConfigObj).

You can set the configspec attribute directly on a section.

See the validation section for full details of how to write configspecs.

	extra_values

By default an empty list. After validation this is populated with any members
of the section that don’t appear in the configspec (i.e. they are additional
values). Rather than accessing this directly it may be more convenient to get
all the extra values in a config file using the get_extra_values function.

New in ConfigObj 4.7.0.

1.7.2. Section Methods

	dict

This method takes no arguments. It returns a deep copy of the section as a
dictionary. All subsections will also be dictionaries, and list values will
be copies, rather than references to the original 10.

	rename

rename(oldkey, newkey)

This method renames a key, without affecting its position in the sequence.

	merge

merge(indict)

This method is a recursive update method. It allows you to merge two
config files together.

You would typically use this to create a default ConfigObj and then merge
in user settings. This way users only need to specify values that are
different from the default.

For example :

def_cfg contains your default config settings
user_cfg contains the user settings
cfg = ConfigObj(def_cfg)
usr = ConfigObj(user_cfg)
#
cfg.merge(usr)

"""
cfg now contains a combination of the default settings and the user
settings.

The user settings will have overwritten any of the default ones.
"""

	walk

This method can be used to transform values and names. See walking a
section for examples and explanation.

	as_bool

as_bool(key)

Returns True if the key contains a string that represents True, or
is the True object.

Returns False if the key contains a string that represents False,
or is the False object.

Raises a ValueError if the key contains anything else.

Strings that represent True are (not case sensitive):

true, yes, on, 1

Strings that represent False are:

false, no, off, 0

	as_int

as_int(key)

This returns the value contained in the specified key as an integer.

It raises a ValueError if the conversion can’t be done.

	as_float

as_float(key)

This returns the value contained in the specified key as a float.

It raises a ValueError if the conversion can’t be done.

	as_list

as_list(key)

This returns the value contained in the specified key as a list.

If it isn’t a list it will be wrapped as a list so that you can
guarantee the returned value will be a list.

	restore_default

restore_default(key)

Restore (and return) the default value for the specified key.

This method will only work for a ConfigObj that was created
with a configspec and has been validated.

If there is no default value for this key, KeyError is raised.

	restore_defaults

restore_defaults()

Recursively restore default values to all members
that have them.

This method will only work for a ConfigObj that was created
with a configspec and has been validated.

It doesn’t delete or modify entries without default values.

1.7.3. Walking a Section

Note

The walk method allows you to call a function on every member/name.

walk(function, raise_errors=True,
 call_on_sections=False, **keywargs)

walk is a method of the Section object. This means it is also a method
of ConfigObj.

It walks through every member and calls a function on the keyword and value. It
walks recursively through subsections.

It returns a dictionary of all the computed values.

If the function raises an exception, the default is to propagate the error, and
stop. If raise_errors=False then it sets the return value for that keyword
to False instead, and continues. This is similar to the way validation
works.

Your function receives the arguments (section, key). The current value is
then section[key] 11. Any unrecognised keyword arguments you pass to
walk, are passed on to the function.

Normally walk just recurses into subsections. If you are transforming (or
checking) names as well as values, then you want to be able to change the names
of sections. In this case set call_on_sections to True. Now, on
encountering a sub-section, first the function is called for the whole
sub-section, and then it recurses into it’s members. This means your function
must be able to handle receiving dictionaries as well as strings and lists.

If you are using the return value from walk and call_on_sections,
note that walk discards the return value when it calls your function.

Caution

You can use walk to transform the names of members of a section
but you mustn’t add or delete members.

1.7.4. Examples

You can use this for transforming all values in your ConfigObj. For example
you might like the nested lists from ConfigObj 3. This was provided by the
listquote module [http://www.voidspace.org.uk/python/listquote.html#lineparser]. You could switch off the parsing for list values
(list_values=False) and use listquote to parse every value.

Another thing you might want to do is use the Python escape codes in your
values. You might be used to using \n for line feed and \t for tab.
Obviously we’d need to decode strings that come from the config file (using the
escape codes). Before writing out we’ll need to put the escape codes back in
encode.

As an example we’ll write a function to use with walk, that encodes or decodes
values using the string-escape codec.

The function has to take each value and set the new value. As a bonus we’ll
create one function that will do decode or encode depending on a keyword
argument.

We don’t want to work with section names, we’re only transforming values, so
we can leave call_on_sections as False. This means the two datatypes we
have to handle are strings and lists, we can ignore everything else. (We’ll
treat tuples as lists as well).

We’re not using the return values, so it doesn’t need to return anything, just
change the values if appropriate.

def string_escape(section, key, encode=False):
 """
 A function to encode or decode using the 'string-escape' codec.
 To be passed to the walk method of a ConfigObj.
 By default it decodes.
 To encode, pass in the keyword argument ``encode=True``.
 """
 val = section[key]
 # is it a type we can work with
 # NOTE: for platforms where Python > 2.2
 # you can use basestring instead of (str, unicode)
 if not isinstance(val, (str, unicode, list, tuple)):
 # no !
 return
 elif isinstance(val, (str, unicode)):
 # it's a string !
 if not encode:
 section[key] = val.decode('string-escape')
 else:
 section[key] = val.encode('string-escape')
 else:
 # it must be a list or tuple!
 # we'll be lazy and create a new list
 newval = []
 # we'll check every member of the list
 for entry in val:
 if isinstance(entry, (str, unicode)):
 if not encode:
 newval.append(entry.decode('string-escape'))
 else:
 newval.append(entry.encode('string-escape'))
 else:
 newval.append(entry)
 # done !
 section[key] = newval

assume we have a ConfigObj called ``config``
#
To decode
config.walk(string_escape)
#
To encode.
Because ``walk`` doesn't recognise the ``encode`` argument
it passes it to our function.
config.walk(string_escape, encode=True)

Here’s a simple example of using walk to transform names and values. One
usecase of this would be to create a standard config file with placeholders
for section and keynames. You can then use walk to create new config files
and change values and member names :

We use 'XXXX' as a placeholder
config = '''
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2
XXXXkey3 = XXXXvalue3
[XXXXsection1]
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2
XXXXkey3 = XXXXvalue3
[XXXXsection2]
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2
XXXXkey3 = XXXXvalue3
 [[XXXXsection1]]
 XXXXkey1 = XXXXvalue1
 XXXXkey2 = XXXXvalue2
 XXXXkey3 = XXXXvalue3
'''.splitlines()
cfg = ConfigObj(config)
#
def transform(section, key):
 val = section[key]
 newkey = key.replace('XXXX', 'CLIENT1')
 section.rename(key, newkey)
 if isinstance(val, (tuple, list, dict)):
 pass
 else:
 val = val.replace('XXXX', 'CLIENT1')
 section[newkey] = val
#
cfg.walk(transform, call_on_sections=True)
print cfg
ConfigObj({'CLIENT1key1': 'CLIENT1value1', 'CLIENT1key2': 'CLIENT1value2',
'CLIENT1key3': 'CLIENT1value3',
'CLIENT1section1': {'CLIENT1key1': 'CLIENT1value1',
 'CLIENT1key2': 'CLIENT1value2', 'CLIENT1key3': 'CLIENT1value3'},
'CLIENT1section2': {'CLIENT1key1': 'CLIENT1value1',
 'CLIENT1key2': 'CLIENT1value2', 'CLIENT1key3': 'CLIENT1value3',
 'CLIENT1section1': {'CLIENT1key1': 'CLIENT1value1',
 'CLIENT1key2': 'CLIENT1value2', 'CLIENT1key3': 'CLIENT1value3'}}})

1.8. Exceptions

There are several places where ConfigObj may raise exceptions (other than
because of bugs).

	
	If a configspec filename you pass in doesn’t exist, or a config file

	filename doesn’t exist and file_error=True, an IOError will be
raised.

	
	If you try to set a non-string key, or a non string value when

	stringify=False, a TypeError will be raised.

	A badly built config file will cause parsing errors.

	A parsing error can also occur when reading a configspec.

	
	In string interpolation you can specify a value that doesn’t exist, or

	create circular references (recursion).

Number 5 (which is actually two different types of exceptions) is documented
in String Interpolation.

This section is about errors raised during parsing.

The base error class is ConfigObjError. This is a subclass of
SyntaxError, so you can trap for SyntaxError without needing to
directly import any of the ConfigObj exceptions.

The following other exceptions are defined (all deriving from
ConfigObjError) :

	NestingError

This error indicates either a mismatch in the brackets in a section marker,
or an excessive level of nesting.

	ParseError

This error indicates that a line is badly written. It is neither a valid
key = value line, nor a valid section marker line, nor a comment line.

	DuplicateError

The keyword or section specified already exists.

	ConfigspecError

An error occurred whilst parsing a configspec.

	UnreprError

An error occurred when parsing a value in unrepr mode.

	ReloadError

reload was called on a ConfigObj instance that doesn’t have a valid
filename attribute.

When parsing a configspec, ConfigObj will stop on the first error it
encounters. It will raise a ConfigspecError. This will have an error
attribute, which is the actual error that was raised.

Behaviour when parsing a config file depends on the option raise_errors.
If ConfigObj encounters an error while parsing a config file:

If raise_errors=True then ConfigObj will raise the appropriate error
and parsing will stop.

If raise_errors=False (the default) then parsing will continue to the
end and all errors will be collected.

If raise_errors is False and multiple errors are found a ConfigObjError
is raised. The error raised has a config attribute, which is the parts of
the ConfigObj that parsed successfully. It also has an attribute errors,
which is a list of all the errors raised. Each entry in the list is an
instance of the appropriate error type. Each one has the following attributes
(useful for delivering a sensible error message to your user) :

	line: the original line that caused the error.

	line_number: its number in the config file.

	message: the error message that accompanied the error.

If only one error is found, then that error is re-raised. The error still has
the config and errors attributes. This means that your error handling
code can be the same whether one error is raised in parsing , or several.

It also means that in the most common case (a single error) a useful error
message will be raised.

Unless you want to format the error message differently from the default, you
should use str(ex) or better yet, use the exception in a format where the
conversion is implicit. This uses the exception’s __str__() method which in all
likelyhood will output all the information you want to know.

Note

One wrongly written line could break the basic structure of your config
file. This could cause every line after it to flag an error, so having a
list of all the lines that caused errors may not be as useful as it sounds.

1.9. Validation

Hint

The system of configspecs can seem confusing at first, but is actually
quite simple and powerful. The best reference is my article on ConfigObj:

	An Introduction to ConfigObj [http://www.voidspace.org.uk/python/articles/configobj.shtml]

Validation is done through a combination of the configspec and a Validator
object. For this you need validate.py 12. See downloading if you don’t
have a copy.

Validation can perform two different operations :

	
	Check that a value meets a specification. For example, check that a value

	is an integer between one and six, or is a choice from a specific set of
options.

	
	It can convert the value into the type required. For example, if one of

	your values is a port number, validation will turn it into an integer for
you.

So validation can act as a transparent layer between the datatypes of your
application configuration (boolean, integers, floats, etc) and the text format
of your config file.

1.9.1. configspec

The validate method checks members against an entry in the configspec. Your
configspec therefore resembles your config file, with a check for every member.

In order to perform validation you need a Validator object. This has
several useful built-in check functions. You can also create your own custom
functions and register them with your Validator object.

Each check is the name of one of these functions, including any parameters and
keyword arguments. The configspecs look like function calls, and they map to
function calls.

The basic datatypes that an un-extended Validator can test for are :

	boolean values (True and False)

	integers (including minimum and maximum values)

	floats (including min and max)

	strings (including min and max length)

	IP addresses (v4 only)

It can also handle lists of these types and restrict a value to being one from
a set of options.

An example configspec is going to look something like:

port = integer(0, 100)
user = string(max=25)
mode = option('quiet', 'loud', 'silent')

You can specify default values, and also have the same configspec applied to
several sections. This is called repeated sections.

For full details on writing configspecs, please refer to the
validate.py documentation.

Important

Your configspec is read by ConfigObj in the same way as a config file.

That means you can do interpolation within your configspec.

In order to allow this, checks in the ‘DEFAULT’ section (of the root level
of your configspec) are not used.

If you want to use a configspec without interpolation being done in it
you can create your configspec manually and switch off interpolation:

from configobj import ConfigObj

configspec = ConfigObj(spec_filename, interpolation=False, list_values=False,
 _inspec=True)
conf = ConfigObj(config_filename, configspec=configspec)

If you need to specify the encoding of your configspec, then you can pass in a
ConfigObj instance as your configspec. When you read your configspec file, you
must specify list_values=False. If you need to support hashes in
configspec values then you must also pass in _inspec=True.

from configobj import ConfigObj
configspec = ConfigObj(configspecfilename, encoding='UTF8',
 list_values=False, _inspec=True)
config = ConfigObj(filename, configspec=configspec)

1.9.2. Type Conversion

By default, validation does type conversion. This means that if you specify
integer as the check, then calling validate will actually change the value
to an integer (so long as the check succeeds).

It also means that when you call the write method, the value will be converted
back into a string using the str function.

To switch this off, and leave values as strings after validation, you need to
set the stringify attribute to False. If this is the case, attempting to
set a value to a non-string will raise an error.

1.9.3. Default Values

You can set a default value in your check. If the value is missing from the
config file then this value will be used instead. This means that your user
only has to supply values that differ from the defaults.

If you don’t supply a default then for a value to be missing is an error,
and this will show in the return value from validate.

Additionally you can set the default to be None. This means the value will
be set to None (the object) whichever check is used. (It will be set to
'' rather than None if stringify is False). You can use this
to easily implement optional values in your config files.

port = integer(0, 100, default=80)
user = string(max=25, default=0)
mode = option('quiet', 'loud', 'silent', default='loud')
nick = string(default=None)

Note

Because the default goes through type conversion, it also has to pass the
check.

Note that default=None is case sensitive.

1.9.3.1. List Values

It’s possible that you will want to specify a list as a default value. To avoid
confusing syntax with commas and quotes you use a list constructor to specify
that keyword arguments are lists. This includes the default value. This
makes checks look something like:

checkname(default=list('val1', 'val2', 'val3'))

This works with all keyword arguments, but is most useful for default values.

1.9.4. Repeated Sections

Repeated sections are a way of specifying a configspec for a section that
should be applied to all unspecified subsections in the same section.

The easiest way of explaining this is to give an example. Suppose you have a
config file that describes a dog. That dog has various attributes, but it can
also have many fleas. You don’t know in advance how many fleas there will be,
or what they will be called, but you want each flea validated against the same
configspec.

We can define a section called fleas. We want every flea in that section
(every sub-section) to have the same configspec applied to it. We do this by
defining a single section called __many__.

[dog]
name = string(default=Rover)
age = float(0, 99, default=0)

 [[fleas]]

 [[[__many__]]]
 bloodsucker = boolean(default=True)
 children = integer(default=10000)
 size = option(small, tiny, micro, default=tiny)

Every flea on our dog will now be validated using the __many__ configspec.

__many__ sections can have sub-sections, including their own __many__
sub-sections. Defaults work in the normal way in repeated sections.

1.9.5. Repeated Values

As well as using __many__ to validate unspecified sections you can use it to validate values. For
example, to specify that all values in a section should be integers:

[section]
__many__ = integer

If you want to use repeated values alongside repeated sections you can call one __many__ and the
other ___many___ (with three underscores).

1.9.6. Copy Mode

Because you can specify default values in your configspec, you can use
ConfigObj to write out default config files for your application.

However, normally values supplied from a default in a configspec are not
written out by the write method.

To do this, you need to specify copy=True when you call validate. As well
as not marking values as default, all the comments in the configspec file
will be copied into your ConfigObj instance.

from configobj import ConfigObj
from configobj.validate import Validator
vdt = Validator()
config = ConfigObj(configspec='default.ini')
config.filename = 'new_default.ini'
config.validate(vdt, copy=True)
config.write()

If you need to support hashes in the configspec values then you must create
it with _inspec=True. This has the side effect of switching off the parsing
of inline comments, meaning that they won’t be copied into the new config file.
(ConfigObj syntax is slightly different from configspec syntax and the parser
can’t support both inline comments and hashes in configspec values.)

1.9.7. Validation and Interpolation

String interpolation and validation don’t play well together. When validation
changes type it sets the value. If the value uses interpolation, then the
interpolation reference would normally be overwritten. Calling write would
then use the absolute value and the interpolation reference would be lost.

As a compromise - if the value is unchanged by validation then it is not reset.
This means strings that pass through validation unmodified will not be
overwritten. If validation changes type - the value has to be overwritten, and
any interpolation references are lost.

1.9.8. Extra Values

After validation the extra_values member of every section that is listed in
the configspec will be populated with the names of members that are in the
config file but not in the configspec.

If you are reporting configuration errors to your user this information can be
useful, for example some missing entries may be due to misspelt entries that
appear as extra values.

See the get_extra_values function

New in ConfigObj 4.7.0.

1.9.9. SimpleVal

You may not need a full validation process, but still want to check if all the
expected values are present.

Provided as part of the ConfigObj module is the SimpleVal object. This has
a dummy test method that always passes.

The only reason a test will fail is if the value is missing. The return value
from validate will either be True, meaning all present, or a dictionary
with False for all missing values/sections.

To use it, you still need to pass in a valid configspec when you create the
ConfigObj, but just set all the values to ''. Then create an instance of
SimpleVal and pass it to the validate method.

As a trivial example if you had the following config file:

config file for an application
port = 80
protocol = http
domain = voidspace
top_level_domain = org.uk

You would write the following configspec:

port = ''
protocol = ''
domain = ''
top_level_domain = ''

config = Configobj(filename, configspec=configspec)
val = SimpleVal()
test = config.validate(val)
if test == True:
 print 'All values present.'
elif test == False:
 print 'No values present!'
else:
 for entry in test:
 if test[entry] == False:
 print '"%s" missing.' % entry

1.10. Empty values

Many config files from other applications allow empty values. As of version
4.3.0, ConfigObj will read these as an empty string.

A new option/attribute has been added (write_empty_values) to allow
ConfigObj to write empty strings as empty values.

from configobj import ConfigObj
cfg = '''
 key =
 key2 = # a comment
'''.splitlines()
config = ConfigObj(cfg)
print config
ConfigObj({'key': '', 'key2': ''})

config.write_empty_values = True
for line in config.write():
 print line

key =
key2 = # a comment

1.11. unrepr mode

The unrepr option allows you to store and retrieve the basic Python
data-types using config files. It has to use a slightly different syntax to
normal ConfigObj files. Unsurprisingly it uses Python syntax.

This means that lists are different (they are surrounded by square brackets),
and strings must be quoted.

The types that unrepr can work with are :

strings, lists tuples

None, True, False

dictionaries, integers, floats

longs and complex numbers

You can’t store classes, types or instances.

unrepr uses repr(object) to write out values, so it currently doesn’t
check that you are writing valid objects. If you attempt to read an unsupported
value, ConfigObj will raise a configobj.UnknownType exception.

Values that are triple quoted cased. The triple quotes are removed before
converting. This means that you can use triple quotes to write dictionaries
over several lines in your config files. They won’t be written like this
though.

If you are writing config files by hand, for use with unrepr, you should
be aware of the following differences from normal ConfigObj syntax :

List : ['A List', 'With', 'Strings']

Strings : "Must be quoted."

Backslash : "The backslash must be escaped \\"

These all follow normal Python syntax.

In unrepr mode inline comments are not saved. This is because lines are
parsed using the compiler package [http://docs.python.org/lib/compiler.html]
which discards comments.

1.12. String Interpolation

Note

String interpolation can slow down (slightly) the fetching of values
from your config object. If you aren’t using interpolation and it
is performance critical then create your instance with
interpolation=False.

ConfigObj allows string interpolation similar to the way ConfigParser
or string.Template work. The value of the interpolation attribute
determines which style of interpolation you want to use. Valid values are
“ConfigParser” or “Template” (case-insensitive, so “configparser” and
“template” will also work). For backwards compatibility reasons, the value
True is also a valid value for the interpolation attribute, and
will select ConfigParser-style interpolation. At some undetermined point
in the future, that default may change to Template-style interpolation.

For ConfigParser-style interpolation, you specify a value to be
substituted by including %(name)s in the value.

For Template-style interpolation, you specify a value to be substituted
by including ${cl}name{cr} in the value. Alternately, if ‘name’ is a valid
Python identifier (i.e., is composed of nothing but alphanumeric characters,
plus the underscore character), then the braces are optional and the value
can be written as $name.

Note that ConfigParser-style interpolation and Template-style
interpolation are mutually exclusive; you cannot have a configuration file
that’s a mix of one or the other. Pick one and stick to it. Template-style
interpolation is simpler to read and write by hand, and is recommended if
you don’t have a particular reason to use ConfigParser-style.

Interpolation checks first the current section to see if name is the key
to a value. (‘name’ is case sensitive).

If it doesn’t find it, next it checks the ‘DEFAULT’ sub-section of the current
section.

If it still doesn’t find it, it moves on to check the parent section and the
parent section’s ‘DEFAULT’ subsection, and so on all the way up to the main
section.

If the value specified isn’t found in any of these locations, then a
MissingInterpolationOption error is raised (a subclass of
ConfigObjError).

If it is found then the returned value is also checked for substitutions. This
allows you to make up compound values (for example directory paths) that use
more than one default value. It also means it’s possible to create circular
references. If there are any circular references which would cause an infinite
interpolation loop, an InterpolationLoopError is raised.

Both of these errors are subclasses of InterpolationError, which is a
subclass of ConfigObjError.

String interpolation and validation don’t play well together. This is because
validation overwrites values - and so may erase the interpolation references.
See Validation and Interpolation. (This can only happen if validation
has to change the value).

New in ConfigObj 4.7.0: String interpolation is now done in members of list
values.

1.12.1. String Interpolation and List Values

Since version 4.7 string interpolation is done on string members of list values.
If interpolation changes any members of the list then what you get back is a
copy of the list rather than the original list.

This makes fetching list values slightly slower when interpolation is on, it
also means that if you mutate the list changes won’t be reflected in the
original list:

>>> c = ConfigObj()
>>> c['foo'] = 'boo'
>>> c['bar'] = ['%(foo)s']
>>> c['bar']
['boo']
>>> c['bar'].append('fish')
>>> c['bar']
['boo']

Instead of mutating the list you must create a new list and reassign it.

1.13. Comments

Any line that starts with a ‘#’, possibly preceded by whitespace, is a comment.

If a config file starts with comments then these are preserved as the
initial_comment.

If a config file ends with comments then these are preserved as the
final_comment.

Every key or section marker may have lines of comments immediately above it.
These are saved as the comments attribute of the section. Each member is a
list of lines.

You can customize the line comment markers by changing the COMMENT_MARKERS
class variable of ConfigObj, one way to do that is to inherit from it:

class ConfigObjPHP(ConfigObj):
 """Handle classic INI style comments to read 'php.ini'."""
 COMMENT_MARKERS = ['#', ';']

You can also have a comment inline with a value. These are saved as the
inline_comments attribute of the section, with one entry per member of the
section.

Subsections (section markers in the config file) can also have comments.

See Section Attributes for more on these attributes.

These comments are all written back out by the write method.

1.14. flatten_errors

flatten_errors(cfg, res)

Validation is a powerful way of checking that the values supplied by the user
make sense.

The validate method returns a results dictionary that represents pass or fail
for each value. This doesn’t give you any information about why the check
failed.

flatten_errors is an example function that turns a results dictionary into
a flat list, that only contains values that failed.

cfg is the ConfigObj instance being checked, res is the results
dictionary returned by validate.

It returns a list of keys that failed. Each member of the list is a tuple:

([list of sections...], key, result)

If validate was called with preserve_errors=False (the default)
then result will always be False.

list of sections is a flattened list of sections that the key was found
in.

If the section was missing then key will be None.

If the value (or section) was missing then result will be False.

If validate was called with preserve_errors=True and a value
was present, but failed the check, then result will be the exception
object returned. You can use this as a string that describes the failure.

For example :

The value “3” is of the wrong type.

1.14.1. Example Usage

The output from flatten_errors is a list of tuples.

Here is an example of how you could present this information to the user.

vtor = validate.Validator()
ini is your config file - cs is the configspec
cfg = ConfigObj(ini, configspec=cs)
res = cfg.validate(vtor, preserve_errors=True)
for entry in flatten_errors(cfg, res):
 # each entry is a tuple
 section_list, key, error = entry
 if key is not None:
 section_list.append(key)
 else:
 section_list.append('[missing section]')
 section_string = ', '.join(section_list)
 if error == False:
 error = 'Missing value or section.'
 print section_string, ' = ', error

1.15. get_extra_values

get_extra_values(conf)

New in ConfigObj 4.7.0.

Find all the values and sections not in the configspec from a validated
ConfigObj.

get_extra_values returns a list of tuples where each tuple represents
either an extra section, or an extra value.

The tuples contain two values, a tuple representing the section the value
is in and the name of the extra values. For extra values in the top level
section the first member will be an empty tuple. For values in the ‘foo’
section the first member will be ('foo',). For members in the ‘bar’
subsection of the ‘foo’ section the first member will be ('foo', 'bar').

Extra sections will only have one entry. Values and subsections inside
an extra section aren’t listed separately.

NOTE: If you call get_extra_values on a ConfigObj instance that hasn’t
been validated it will return an empty list.

1.15.1. Example Usage

The output from get_extra_values is a list of tuples.

Here is an example of how you could present this information to the user.

vtor = validate.Validator()
ini is your config file - cs is the configspec
cfg = ConfigObj(ini, configspec=cs)
cfg.validate(vtor, preserve_errors=True)

for sections, name in get_extra_values(cfg):

 # this code gets the extra values themselves
 the_section = cfg
 for section in sections:
 the_section = the_section[section]

 # the_value may be a section or a value
 the_value = the_section[name]

 section_or_value = 'value'
 if isinstance(the_value, dict):
 # Sections are subclasses of dict
 section_or_value = 'section'

 section_string = ', '.join(sections) or "top level"
 print 'Extra entry in section: %s. Entry %r is a %s' % (section_string, name, section_or_value)

1.16. CREDITS

ConfigObj version 4 and forward is written by (and copyright) Michael Foord,
Nicola Larosa, Rob Dennis and Eli Courtwright.

Rob Dennis and Eli Courtwright added Python 2 and 3 compatibility in a single
source starting with version 5, and have taken stewardship of ConfigObj moving
forward.

Particularly thanks to Nicola Larosa for help on the config file spec, the
validation system and the doctests.

validate.py was originally written by Michael Foord and Mark Andrews.

Thanks to many others for input, patches and bugfixes.

1.17. LICENSE

ConfigObj, and related files, are licensed under the BSD license. This is a
very unrestrictive license, but it comes with the usual disclaimer. This is
free software: test it, break it, just don’t blame us if it eats your data !
Of course if it does, let us know and we’ll fix the problem so it doesn’t
happen to anyone else:

Copyright (C) 2005-2014:
(name) : (email)
Michael Foord: fuzzyman AT voidspace DOT org DOT uk
Nicola Larosa: nico AT tekNico DOT net
Rob Dennis: rdennis AT gmail DOT com
Eli Courtwright: eli AT courtwright DOT org

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

 * None of the authors names may be used to endorse or
 promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You should also be able to find a copy of this license at : BSD License [http://opensource.org/licenses/BSD-3-Clause]

1.18. TODO

Better support for configuration from multiple files, including tracking
where the original file came from and writing changes to the correct
file.

Make newline a keyword argument (as well as an attribute) ?

UTF16 encoded files, when returned as a list of lines, will have the
BOM at the start of every line. Should this be removed from all but the
first line ?

Option to set warning type for unicode decode ? (Defaults to strict).

A method to optionally remove uniform indentation from multiline values.
(do as an example of using walk - along with string-escape)

Should the results dictionary from validate be an ordered dictionary if
odict [http://www.voidspace.org.uk/python/odict.html] is available ?

Implement some of the sequence methods (which include slicing) from the
newer odict ?

Preserve line numbers of values (and possibly the original text of each value).

1.19. ISSUES

Note

Please file any bug reports at the Github Page [https://github.com/DiffSK/configobj]

There is currently no way to specify the encoding of a configspec file.

As a consequence of the changes to configspec handling in version 4.6.0, when
you create a ConfigObj instance and provide a configspec, the configspec
attribute is only set on the ConfigObj instance - it isn’t set on the sections until you validate. You also can’t set the configspec attribute to be a dictionary. This wasn’t documented but did work previously.

In order to fix the problem with hashes in configspecs I had to turn off the parsing of inline comments in configspecs. This will only affect you if you are using copy=True when validating and expecting inline comments to be copied from the configspec into the ConfigObj instance (all other comments will be copied as usual).

If you create the configspec by passing in a ConfigObj instance (usual way is to pass in a filename or list of lines) then you should pass in _inspec=True to the constructor to allow hashes in values. This is the magic that switches off inline comment parsing.

When using copy mode for validation, it won’t copy DEFAULT
sections. This is so that you can use interpolation in configspec
files. This is probably true even if interpolation is off in the
configspec.

You can’t have a keyword with the same name as a section (in the same
section). They are both dictionary keys - so they would overlap.

ConfigObj doesn’t quote and unquote values if list_values=False.
This means that leading or trailing whitespace in values will be lost when
writing. (Unless you manually quote).

Interpolation checks first the current section, then the ‘DEFAULT’ subsection
of the current section, before moving on to the current section’s parent and
so on up the tree.

Does it matter that we don’t support the ‘:’ divider, which is supported
by ConfigParser ?

String interpolation and validation don’t play well together. When
validation changes type it sets the value. This will correctly fetch the
value using interpolation - but then overwrite the interpolation reference.
If the value is unchanged by validation (it’s a string) - but other types
will be.

1.20. CHANGELOG

This is an abbreviated changelog showing the major releases up to version 4.
From version 4 it lists all releases and changes.

1.20.1. 2014/08/25 - Version 5.0.6

	BUGFIX: Did not correctly handle %-chars in invalid lines

	BUGFIX: unhelpful error message when nesting invalid

1.20.2. 2014/04/28 - Version 5.0.5

	BUGFIX: error in writing out config files to disk with non-ascii characters

1.20.3. 2014/04/11 - Version 5.0.4

	BUGFIX: correcting that the code path fixed in 5.0.3 didn’t cover reading in
config files

1.20.4. 2014/04/04 - Version 5.0.3

	BUGFIX: not handling unicode encoding well, especially with respect to writing out files

1.20.5. 2014/02/27 - Version 5.0.2

	Specific error message for installing version this version on Python versions older than 2.5

	Documentation corrections

1.20.6. 2014/02/19 - Version 5.0.1

	BUGFIX: Fixed regression on python 2.x where passing an encoding parameter did
not convert a bytestring config file (which is the most common) to unicode. Added
unit tests for this and related cases

	BUGFIX: A particular error message would fail to display with a type error on python 2.6
only

1.20.7. 2014/02/08 - Version 5.0.0

	Python 3 single-source compatibility at the cost of a more restrictive set of versions: 2.6, 2.7, 3.2, 3.3 (otherwise unchanged)

	New maintainers: Rob Dennis and Eli Courtwright

	New home on github

1.20.8. 2010/02/27 - Version 4.7.2

	BUGFIX: Restore Python 2.3 compatibility

	BUGFIX: Members that were lists were being returned as copies due to interpolation
introduced in 4.7. Lists are now only copies if interpolation changes a list
member.

	BUGFIX: pop now does interpolation in list values as well.

	BUGFIX: where interpolation matches a section name rather than a value it is
ignored instead of raising an exception on fetching the item.

	BUGFIX: values that use interpolation to reference members that don’t exist can
now be repr’d.

	BUGFIX: Fix to avoid writing ‘\r\r\n’ on Windows when given a file opened in
text write mode (‘w’).

See String Interpolation and List Values for information about the problem with lists and interpolation.

1.20.9. 2010/02/06 - Version 4.7.1

	Fix bug in options deprecation warning added in 4.7.0

1.20.10. 2010/01/09 - Version 4.7.0

	Minimum supported version of Python is now 2.3

	~25% performance improvement thanks to Christian Heimes

	String interpolation now works in list value members

	After validation any additional entries not in the configspec are listed in
the extra_values section member

	Addition of the get_extra_values function for finding all extra values
in a validated ConfigObj instance

	Deprecated the use of the options dictionary in the ConfigObj constructor
and added explicit keyword arguments instead. Use **options if you want
to initialise a ConfigObj instance from a dictionary

	Constructing a ConfigObj from an existing ConfigObj instance now preserves
the order of values and sections from the original instance in the new one

	BUGFIX: Checks that failed validation would not populate default_values and
restore_default_value() wouldn’t work for those entries

	BUGFIX: clear() now clears ‘defaults’

	BUGFIX: empty values in list values were accidentally valid syntax. They now
raise a ParseError. e.g. “value = 1, , 2”

	BUGFIX: Change to the result of a call to validate when preserve_errors
is True. Previously sections where all values failed validation would
return False for the section rather than preserving the errors. False will
now only be returned for a section if it is missing

	Distribution includes version 1.0.1 of validate.py

	Removed __revision__ and __docformat__

1.20.11. 2009/04/13 - Version 4.6.0

	Pickling of ConfigObj instances now supported (thanks to Christian Heimes)

	Hashes in confgspecs are now allowed (see note below)

	Replaced use of hasattr (which can swallow exceptions) with getattr

	__many__ in configspecs can refer to scalars (ordinary values) as well as sections

	You can use ___many___ (three underscores!) where you want to use __many__ as well

	You can now have normal sections inside configspec sections that use __many__

	You can now create an empty ConfigObj with a configspec, programmatically set values and then validate

	A section that was supplied as a value (or vice-versa) in the actual config file would cause an exception during validation (the config file is still broken of course, but it is now handled gracefully)

	Added as_list method

	Removed the deprecated istrue, encode and decode methods

	Running test_configobj.py now also runs the doctests in the configobj module

As a consequence of the changes to configspec handling, when you create a ConfigObj instance and provide
a configspec, the configspec attribute is only set on the ConfigObj instance - it isn’t set on the
sections until you validate. You also can’t set the configspec attribute to be a dictionary. This wasn’t
documented but did work previously.

In order to fix the problem with hashes in configspecs I had to turn off the parsing of inline comments
in configspecs. This will only affect you if you are using copy=True when validating and expecting
inline comments to be copied from the configspec into the ConfigObj instance (all other comments will be
copied as usual).

If you create the configspec by passing in a ConfigObj instance (usual way is to pass in a filename or
list of lines) then you should pass in _inspec=True to the constructor to allow hashes in values.
This is the magic that switches off inline comment parsing.

1.20.12. 2008/06/27 - Version 4.5.3

BUGFIX: fixed a problem with copy=True when validating with configspecs that use
__many__ sections.

1.20.13. 2008/02/05 - Version 4.5.2

Distribution updated to include version 0.3.2 of validate. This means that
None as a default value in configspecs works.

1.20.14. 2008/02/05 - Version 4.5.1

Distribution updated to include version 0.3.1 of validate. This means that
Unicode configspecs now work.

1.20.15. 2008/02/05 - Version 4.5.0

ConfigObj will now guarantee that files will be written terminated with a
newline.

ConfigObj will no longer attempt to import the validate module, until/unless
you call ConfigObj.validate with preserve_errors=True. This makes it
faster to import.

New methods restore_default and restore_defaults. restore_default
resets an entry to its default value (and returns that value). restore_defaults
resets all entries to their default value. It doesn’t modify entries without a
default value. You must have validated a ConfigObj (which populates the
default_values dictionary) before calling these methods.

BUGFIX: Proper quoting of keys, values and list values that contain hashes
(when writing). When list_values=False, values containing hashes are
triple quoted.

Added the reload method. This reloads a ConfigObj from file. If the filename
attribute is not set then a ReloadError (a new exception inheriting from
IOError) is raised.

BUGFIX: Files are read in with ‘rb’ mode, so that native/non-native line endings work!

Minor efficiency improvement in unrepr mode.

Added missing docstrings for some overidden dictionary methods.

Added the reset method. This restores a ConfigObj to a freshly created state.

Removed old CHANGELOG file.

1.20.16. 2007/02/04 - Version 4.4.0

Official release of 4.4.0

1.20.17. 2006/12/17 - Version 4.3.3-alpha4

By Nicola Larosa

Allowed arbitrary indentation in the indent_type parameter, removed the
NUM_INDENT_SPACES and MAX_INTERPOL_DEPTH (a leftover) constants,
added indentation tests (including another docutils workaround, sigh), updated
the documentation.

By Michael Foord

Made the import of compiler conditional so that ConfigObj can be used
with IronPython [http://www.codeplex.com/IronPython].

1.20.18. 2006/12/17 - Version 4.3.3-alpha3

By Nicola Larosa

Added a missing self. in the _handle_comment method and a related test,
per Sourceforge bug #1523975.

1.20.19. 2006/12/09 - Version 4.3.3-alpha2

By Nicola Larosa

Changed interpolation search strategy, based on this patch by Robin Munn:
http://sourceforge.net/mailarchive/message.php?msg_id=17125993

1.20.20. 2006/12/09 - Version 4.3.3-alpha1

By Nicola Larosa

Added Template-style interpolation, with tests, based on this patch by
Robin Munn: http://sourceforge.net/mailarchive/message.php?msg_id=17125991
(awful archives, bad Sourceforge, bad).

1.20.21. 2006/06/04 - Version 4.3.2

Changed error handling, if parsing finds a single error then that error will
be re-raised. That error will still have an errors and a config
attribute.

Fixed bug where ‘\n’ terminated files could be truncated.

Bugfix in unrepr mode, it couldn’t handle ‘#’ in values. (Thanks to
Philippe Normand for the report.)

As a consequence of this fix, ConfigObj doesn’t now keep inline comments in
unrepr mode. This is because the parser in the compiler package [http://docs.python.org/lib/compiler.html]
doesn’t keep comments.

Error messages are now more useful. They tell you the number of parsing errors
and the line number of the first error. (In the case of multiple errors.)

Line numbers in exceptions now start at 1, not 0.

Errors in unrepr mode are now handled the same way as in the normal mode.
The errors stored will be an UnreprError.

1.20.22. 2006/04/29 - Version 4.3.1

Added validate.py back into configobj.zip. (Thanks to Stewart
Midwinter)

Updated to validate.py 0.2.2.

Preserve tuples when calling the dict method. (Thanks to Gustavo Niemeyer.)

Changed __repr__ to return a string that contains ConfigObj({ ... }).

Change so that an options dictionary isn’t modified by passing it to ConfigObj.
(Thanks to Artarious.)

Added ability to handle negative integers in unrepr. (Thanks to Kevin
Dangoor.)

1.20.23. 2006/03/24 - Version 4.3.0

Moved the tests and the CHANGELOG (etc) into a separate file. This has reduced
the size of configobj.py by about 40%.

Added the unrepr mode to reading and writing config files. Thanks to Kevin
Dangoor for this suggestion.

Empty values are now valid syntax. They are read as an empty string ''.
(key =, or key = # comment.)

validate now honours the order of the configspec.

Added the copy mode to validate. Thanks to Louis Cordier for this
suggestion.

Fixed bug where files written on windows could be given '\r\r\n' line
terminators.

Fixed bug where last occurring comment line could be interpreted as the
final comment if the last line isn’t terminated.

Fixed bug where nested list values would be flattened when write is
called. Now sub-lists have a string representation written instead.

Deprecated encode and decode methods instead.

You can now pass in a ConfigObj instance as a configspec (remember to read
the configspec file using list_values=False).

Sorted footnotes in the docs.

1.20.24. 2006/02/16 - Version 4.2.0

Removed BOM_UTF8 from __all__.

The BOM attribute has become a boolean. (Defaults to False.) It is
only True for the UTF16/UTF8 encodings.

File like objects no longer need a seek attribute.

Full unicode support added. New options/attributes encoding,
default_encoding.

ConfigObj no longer keeps a reference to file like objects. Instead the
write method takes a file like object as an optional argument. (Which
will be used in preference of the filename attribute if that exists as
well.)

utf16 files decoded to unicode.

If BOM is True, but no encoding specified, then the utf8 BOM is
written out at the start of the file. (It will normally only be True if
the utf8 BOM was found when the file was read.)

Thanks to Aaron Bentley for help and testing on the unicode issues.

File paths are not converted to absolute paths, relative paths will
remain relative as the filename attribute.

Fixed bug where final_comment wasn’t returned if write is returning
a list of lines.

Deprecated istrue, replaced it with as_bool.

Added as_int and as_float.

1.20.25. 2005/12/14 - Version 4.1.0

Added merge, a recursive update.

Added preserve_errors to validate and the flatten_errors
example function.

Thanks to Matthew Brett for suggestions and helping me iron out bugs.

Fixed bug where a config file is all comment, the comment will now be
initial_comment rather than final_comment.

Validation no longer done on the ‘DEFAULT’ section (only in the root level).
This allows interpolation in configspecs.

Also use the new list syntax in validate 0.2.1. (For configspecs).

1.20.26. 2005/12/02 - Version 4.0.2

Fixed bug in create_empty. Thanks to Paul Jimenez for the report.

1.20.27. 2005/11/05 - Version 4.0.1

Fixed bug in Section.walk when transforming names as well as values.

Added the istrue method. (Fetches the boolean equivalent of a string
value).

Fixed list_values=False - they are now only quoted/unquoted if they
are multiline values.

List values are written as item, item rather than item,item.

1.20.28. 2005/10/17 - Version 4.0.0

ConfigObj 4.0.0 Final

Fixed bug in setdefault. When creating a new section with setdefault the
reference returned would be to the dictionary passed in not to the new
section. Bug fixed and behaviour documented.

Obscure typo/bug fixed in write. Wouldn’t have affected anyone though.

1.20.29. 2005/09/09 - Version 4.0.0 beta 5

Removed PositionError.

Allowed quotes around keys as documented.

Fixed bug with commas in comments. (matched as a list value)

1.20.30. 2005/09/07 - Version 4.0.0 beta 4

Fixed bug in __delitem__. Deleting an item no longer deletes the
inline_comments attribute.

Fixed bug in initialising ConfigObj from a ConfigObj.

Changed the mailing list address.

1.20.31. 2005/08/28 - Version 4.0.0 beta 3

Interpolation is switched off before writing out files.

Fixed bug in handling StringIO instances. (Thanks to report from
Gustavo Niemeyer.)

Moved the doctests from the __init__ method to a separate function.
(For the sake of IDE calltips).

1.20.32. 2005/08/25 - Version 4.0.0 beta 2

Amendments to validate.py.

First public release.

1.20.33. 2005/08/21 - Version 4.0.0 beta 1

Reads nested subsections to any depth.

Multiline values.

Simplified options and methods.

New list syntax.

Faster, smaller, and better parser.

Validation greatly improved. Includes:

	type conversion

	default values

	repeated sections

Improved error handling.

Plus lots of other improvements.

1.20.34. 2004/05/24 - Version 3.0.0

Several incompatible changes: another major overhaul and change. (Lots of
improvements though).

Added support for standard config files with sections. This has an entirely
new interface: each section is a dictionary of values.

Changed the update method to be called writein: update clashes with a dict
method.

Made various attributes keyword arguments, added several.

Configspecs and orderlists have changed a great deal.

Removed support for adding dictionaries: use update instead.

Now subclasses a new class called caselessDict. This should add various
dictionary methods that could have caused errors before.

It also preserves the original casing of keywords when writing them back out.

Comments are also saved using a caselessDict.

Using a non-string key will now raise a TypeError rather than converting
the key.

Added an exceptions keyword for much better handling of errors.

Made creatempty=False the default.

Now checks indict and any keyword args. Keyword args take precedence over
indict.

' ', ':', '=', ',' and '\t' are now all valid dividers where the
keyword is unquoted.

ConfigObj now does no type checking against configspec when you set items.

delete and add methods removed (they were unnecessary).

Docs rewritten to include all this gumph and more; actually ConfigObj is
really easy to use.

Support for stdout was removed.

A few new methods added.

Charmap is now incorporated into ConfigObj.

1.20.35. 2004/03/14 - Version 2.0.0 beta

Re-written it to subclass dict. My first forays into inheritance and operator
overloading.

The config object now behaves like a dictionary.

I’ve completely broken the interface, but I don’t think anyone was really
using it anyway.

This new version is much more ‘classy’.

It will also read straight from/to a filename and completely parse a config
file without you having to supply a config spec.

Uses listparse, so can handle nested list items as values.

No longer has getval and setval methods: use normal dictionary methods, or add
and delete.

1.20.36. 2004/01/29 - Version 1.0.5

Version 1.0.5 has a couple of bugfixes as well as a couple of useful additions
over previous versions.

Since 1.0.0 the buildconfig function has been moved into this distribution,
and the methods reset, verify, getval and setval have been added.

A couple of bugs have been fixed.

1.20.37. Origins

ConfigObj originated in a set of functions for reading config files in the
atlantibots [http://www.voidspace.org.uk/atlantibots/] project. The original
functions were written by Rob McNeur.

1.21. Footnotes

	1

	And if you discover any bugs, let us know. We’ll fix them quickly.

	2

	If you specify a filename that doesn’t exist, ConfigObj will assume you
are creating a new one. See the create_empty and file_error options.

	3

	They can be byte strings (ordinary strings) or Unicode.

	4

	Except we don’t support the RFC822 style line continuations, nor ‘:’ as
a divider.

	5

	This is a change in ConfigObj 4.2.0. Note that ConfigObj doesn’t call
the seek method of any file like object you pass in. You may want to call
file_object.seek(0) yourself, first.

	6

	A side effect of this is that it enables you to copy a ConfigObj
by using config2 = ConfigObj(config1); be aware this only copies members,
but not attributes/comments.

Since ConfigObj 4.7.0 the order of members and sections will be
preserved when copying a ConfigObj instance.

	7

	Other than lists of strings.

	8

	The exception is if it detects a UTF16 encoded file which it
must decode before parsing.

	9

	The method signature shows that this method takes
two arguments. The second is the section to be written. This is because the
write method is called recursively.

	10

	The dict method doesn’t actually use the deepcopy mechanism. This means
if you add nested lists (etc) to your ConfigObj, then the dictionary
returned by dict may contain some references. For all normal ConfigObjs
it will return a deepcopy.

	11

	Passing (section, key) rather than (value, key) allows you to
change the value by setting section[key] = newval. It also gives you
access to the rename method of the section.

	12

	Minimum required version of validate.py 0.2.0 .

2. Using the Validator class

	Authors

	Michael Foord, Nicola Larosa, Rob Dennis, Eli Courtwright, Mark Andrews

	Version

	Validate 2.0.0

	Date

	2014/02/08

	Homepage

	Github Page [https://github.com/DiffSK/configobj]

	License

	BSD License [http://opensource.org/licenses/BSD-3-Clause]

	Support

	Mailing List [http://lists.sourceforge.net/lists/listinfo/configobj-develop]

Validate Manual

	Using the Validator class

	Introduction

	Downloading

	Files

	The standard functions

	Using Validator

	Instantiate

	Adding functions

	Writing the check

	The check method

	Default Values

	List Values

	get_default_value

	Validator Exceptions

	Writing check functions

	Example

	Known Issues

	TODO

	ISSUES

	CHANGELOG

	2014/02/08 - Version 2.0.0

	2009/10/25 - Version 1.0.1

	2009/04/13 - Version 1.0.0

	2008/02/24 - Version 0.3.2

	2008/02/05 - Version 0.3.1

	2008/02/05 - Version 0.3.0

	2007/02/04 Version 0.2.3

	2006/12/17 Version 0.2.3-alpha1

	2006/04/29 Version 0.2.2

	2005/12/16 Version 0.2.1

	2005/08/18 Version 0.2.0

	2005/02/01 Version 0.1.0

2.1. Introduction

Validation is used to check that supplied values conform to a specification.

The value can be supplied as a string, e.g. from a config file. In this case
the check will also convert the value to the required type. This allows you
to add validation as a transparent layer to access data stored as strings. The
validation checks that the data is correct and converts it to the expected
type.

Checks are also strings, and are easy to write. One generic system can be used
to validate information from different sources via a single consistent
mechanism.

Checks look like function calls, and map to function calls. They can include
parameters and keyword arguments. These arguments are passed to the relevant
function by the Validator instance, along with the value being checked.

The syntax for checks also allows for specifying a default value. This default
value can be None, no matter what the type of the check. This can be used
to indicate that a value was missing, and so holds no useful value.

Functions either return a new value, or raise an exception. See Validator
Exceptions for the low down on the exception classes that validate.py
defines.

Some standard functions are provided, for basic data types; these come built
into every validator. Additional checks are easy to write: they can be provided
when the Validator is instantiated, or added afterwards.

Validate was primarily written to support ConfigObj, but is designed to be
applicable to many other situations.

For support and bug reports please use the ConfigObj Github Page [https://github.com/DiffSK/configobj]

2.2. Downloading

The current version is 2.0.0, dated 8th February 2014.

You can obtain validate in the following ways :

2.2.1. Files

	validate.py from Github Page [https://github.com/DiffSK/configobj]

	The latest development version can be obtained from the Github Page [https://github.com/DiffSK/configobj].

2.3. The standard functions

The standard functions come built-in to every Validator instance. They work
with the following basic data types :

	integer

	float

	boolean

	string

	ip_addr

plus lists of these datatypes.

Adding additional checks is done through coding simple functions.

The full set of standard checks are :

	‘integer’

	matches integer values (including negative). Takes optional ‘min’
and ‘max’ arguments:

integer()
integer(3, 9) # any value from 3 to 9
integer(min=0) # any positive value
integer(max=9)

	‘float’

	matches float values
Has the same parameters as the integer check.

	‘boolean’

	
	matches boolean values: True or False.

	Acceptable string values for True are:

true, on, yes, 1

Acceptable string values for False are:

false, off, no, 0

Any other value raises an error.

	‘string’

	matches any string. Takes optional keyword args ‘min’ and ‘max’ to
specify min and max length of string.

	‘ip_addr’

	matches an Internet Protocol address, v.4, represented by a
dotted-quad string, i.e. ‘1.2.3.4’.

	‘list’

	matches any list. Takes optional keyword args ‘min’, and ‘max’ to
specify min and max sizes of the list. The list checks always
return a list.

	‘force_list’

	is the same as ‘list’, but if anything but a list or tuple is passed in,
it will coerce it into a list containing that value. Useful to avoid
confusion for users not accustomed to Python idioms and thus forget the
trailing comma to turn a single value into a list.

	‘tuple’

	matches any list. This check returns a tuple rather than a list.

	‘int_list’

	Matches a list of integers. Takes the same arguments as list.

	‘float_list’

	Matches a list of floats. Takes the same arguments as list.

	‘bool_list’

	Matches a list of boolean values. Takes the same arguments as
list.

	‘string_list’

	Matches a list of strings. Takes the same arguments as list.

	‘ip_addr_list’

	Matches a list of IP addresses. Takes the same arguments as
list.

	‘mixed_list’

	Matches a list with different types in specific positions.
List size must match the number of arguments.

Each position can be one of:

int, str, boolean, float, ip_addr

So to specify a list with two strings followed by two integers,
you write the check as:

mixed_list(str, str, int, int)

	‘pass’

	matches everything: it never fails and the value is unchanged. It is
also the default if no check is specified.

	‘option’

	matches any from a list of options.
You specify this test with:

option('option 1', 'option 2', 'option 3')

The following code will work without you having to specifically add the
functions yourself.

from configobj.validate import Validator
#
vtor = Validator()
newval1 = vtor.check('integer', value1)
newval2 = vtor.check('boolean', value2)
etc ...

Note

Of course, if these checks fail they raise exceptions. So you should wrap
them in try...except blocks. Better still, use ConfigObj for a higher
level interface.

2.4. Using Validator

Using Validator is very easy. It has one public attribute and one public
method.

Shown below are the different steps in using Validator.

The only additional thing you need to know, is about Writing check
functions.

2.4.1. Instantiate

from configobj.validate import Validator
vtor = Validator()

or even :

from configobj.validate import Validator
#
fdict = {
 'check_name1': function1,
 'check_name2': function2,
 'check_name3': function3,
}
#
vtor = Validator(fdict)

The second method adds a set of your functions as soon as your validator is
created. They are stored in the vtor.functions dictionary. The ‘key’ you
give them in this dictionary is the name you use in your checks (not the
original function name).

Dictionary keys/functions you pass in can override the built-in ones if you
want.

2.4.2. Adding functions

The code shown above, for adding functions on instantiation, has exactly the
same effect as the following code :

from configobj.validate import Validator
#
vtor = Validator()
vtor.functions['check_name1'] = function1
vtor.functions['check_name2'] = function2
vtor.functions['check_name3'] = function3

vtor.functions is just a dictionary that maps names to functions, so we
could also have called vtor.functions.update(fdict).

2.4.3. Writing the check

As we’ve heard, the checks map to the names in the functions dictionary.
You’ve got a full list of The standard functions and the arguments they
take.

If you’re using Validator from ConfigObj, then your checks will look like:

keyword = int_list(max=6)

but the check part will be identical .

2.4.4. The check method

If you’re not using Validator from ConfigObj, then you’ll need to call the
check method yourself.

If the check fails then it will raise an exception, so you’ll want to trap
that. Here’s the basic example :

from configobj.validate import Validator, ValidateError
#
vtor = Validator()
check = "integer(0, 9)"
value = 3
try:
 newvalue = vtor.check(check, value)
except ValidateError:
 print 'Check Failed.'
else:
 print 'Check passed.'

Caution

Although the value can be a string, if it represents a list it should
already have been turned into a list of strings.

2.4.4.1. Default Values

Some values may not be available, and you may want to be able to specify a
default as part of the check.

You do this by passing the keyword missing=True to the check method, as
well as a default=value in the check. (Constructing these checks is done
automatically by ConfigObj: you only need to know about the default=value
part) :

check1 = 'integer(default=50)'
check2 = 'option("val 1", "val 2", "val 3", default="val 1")'

assert vtor.check(check1, '', missing=True) == 50
assert vtor.check(check2, '', missing=True) == "val 1"

If you pass in missing=True to the check method, then the actual value is
ignored. If no default is specified in the check, a ValidateMissingValue
exception is raised. If a default is specified then that is passed to the
check instead.

If the check has default=None (case sensitive) then vtor.check will
always return None (the object). This makes it easy to tell your program
that this check contains no useful value when missing, i.e. the value is
optional, and may be omitted without harm.

Note

As of version 0.3.0, if you specify default='None' (note the quote marks
around None) then it will be interpreted as the string 'None'.

2.4.4.2. List Values

It’s possible that you would like your default value to be a list. It’s even
possible that you will write your own check functions - and would like to pass
them keyword arguments as lists from within the check.

To avoid confusing syntax with commas and quotes you use a list constructor to
specify that keyword arguments are lists. This includes the default value.
This makes checks look something like:

checkname(default=list('val1', 'val2', 'val3'))

2.4.5. get_default_value

Validator instances have a get_default_value method. It takes a check string
(the same string you would pass to the check method) and returns the default value,
converted to the right type. If the check doesn’t define a default value then this method
raises a KeyError.

If the check has been seen before then it will have been parsed and cached already,
so this method is not expensive to call (however the conversion is done each time).

2.5. Validator Exceptions

Note

If you only use Validator through ConfigObj, it traps these Exceptions for
you. You will still need to know about them for writing your own check
functions.

vtor.check indicates that the check has failed by raising an exception.
The appropriate error should be raised in the check function.

The base error class is ValidateError. All errors (except for VdtParamError)
raised are sub-classes of this.

If an unrecognised check is specified then VdtUnknownCheckError is
raised.

There are also VdtTypeError and VdtValueError.

If incorrect parameters are passed to a check function then it will (or should)
raise VdtParamError. As this indicates programmer error, rather than an error
in the value, it is a subclass of SyntaxError instead of ValidateError.

Note

This means it won’t be caught by ConfigObj - but propagated instead.

If the value supplied is the wrong type, then the check should raise
VdtTypeError. e.g. the check requires the value to be an integer (or
representation of an integer) and something else was supplied.

If the value supplied is the right type, but an unacceptable value, then the
check should raise VdtValueError. e.g. the check requires the value to
be an integer (or representation of an integer) less than ten and a higher
value was supplied.

Both VdtTypeError and VdtValueError are initialised with the
incorrect value. In other words you raise them like this :

raise VdtTypeError(value)
#
raise VdtValueError(value)

VdtValueError has the following subclasses, which should be raised if
they are more appropriate.

	VdtValueTooSmallError

	VdtValueTooBigError

	VdtValueTooShortError

	VdtValueTooLongError

2.6. Writing check functions

Writing check functions is easy.

The check function will receive the value as its first argument, followed by
any other parameters and keyword arguments.

If the check fails, it should raise a VdtTypeError or a
VdtValueError (or an appropriate subclass).

All parameters and keyword arguments are always passed as strings. (Parsed
from the check string).

The value might be a string (or list of strings) and need
converting to the right type - alternatively it might already be a list of
integers. Our function needs to be able to handle either.

If the check passes then it should return the value (possibly converted to the
right type).

And that’s it !

2.6.1. Example

Here is an example function that requires a list of integers. Each integer
must be between 0 and 99.

It takes a single argument specifying the length of the list. (Which allows us
to use the same check in more than one place). If the length can’t be converted
to an integer then we need to raise VdtParamError.

Next we check that the value is a list. Anything else should raise a
VdtTypeError. The list should also have ‘length’ entries. If the list
has more or less entries then we will need to raise a
VdtValueTooShortError or a VdtValueTooLongError.

Then we need to check every entry in the list. Each entry should be an integer
between 0 and 99, or a string representation of an integer between 0 and 99.
Any other type is a VdtTypeError, any other value is a
VdtValueError (either too big, or too small).

def special_list(value, length):
 """
 Check that the supplied value is a list of integers,
 with 'length' entries, and each entry between 0 and 99.
 """
 # length is supplied as a string
 # we need to convert it to an integer
 try:
 length = int(length)
 except ValueError:
 raise VdtParamError('length', length)
 #
 # Check the supplied value is a list
 if not isinstance(value, list):
 raise VdtTypeError(value)
 #
 # check the length of the list is correct
 if len(value) > length:
 raise VdtValueTooLongError(value)
 elif len(value) < length:
 raise VdtValueTooShortError(value)
 #
 # Next, check every member in the list
 # converting strings as necessary
 out = []
 for entry in value:
 if not isinstance(entry, (str, unicode, int)):
 # a value in the list
 # is neither an integer nor a string
 raise VdtTypeError(value)
 elif isinstance(entry, (str, unicode)):
 if not entry.isdigit():
 raise VdtTypeError(value)
 else:
 entry = int(entry)
 if entry < 0:
 raise VdtValueTooSmallError(value)
 elif entry > 99:
 raise VdtValueTooBigError(value)
 out.append(entry)
 #
 # if we got this far, all is well
 # return the new list
 return out

If you are only using validate from ConfigObj then the error type (TooBig,
TooSmall, etc) is lost - so you may only want to raise VdtValueError.

Caution

If your function raises an exception that isn’t a subclass of
ValidateError, then ConfigObj won’t trap it. This means validation will
fail.

This is why our function starts by checking the type of the value. If we
are passed the wrong type (e.g. an integer rather than a list) we get a
VdtTypeError rather than bombing out when we try to iterate over
the value.

If you are using validate in another circumstance you may want to create your
own subclasses of ValidateError which convey more specific information.

2.7. Known Issues

The following parses and then blows up. The resulting error message
is confusing:

checkname(default=list(1, 2, 3, 4)

This is because it parses as: checkname(default="list(1", 2, 3, 4).
That isn’t actually unreasonable, but the error message won’t help you
work out what has happened.

2.8. TODO

	A regex check function ?

	A timestamp check function ? (Using the parse function from DateUtil perhaps).

2.9. ISSUES

Note

Please file any bug reports to the Github Page [https://github.com/DiffSK/configobj]

If we could pull tuples out of arguments, it would be easier
to specify arguments for ‘mixed_lists’.

2.10. CHANGELOG

2.10.1. 2014/02/08 - Version 2.0.0

	Python 3 single-source compatibility at the cost of a more restrictive set of versions: 2.6, 2.7, 3.2, 3.3 (otherwise unchanged)

	New maintainers: Rob Dennis and Eli Courtwright

	New home on github

2.10.2. 2009/10/25 - Version 1.0.1

	BUGFIX: Fixed compatibility with Python 2.3.

2.10.3. 2009/04/13 - Version 1.0.0

	BUGFIX: can now handle multiline strings.

	Addition of ‘force_list’ validation option.

As the API is stable and there are no known bugs or outstanding feature requests I am marking this 1.0.

2.10.4. 2008/02/24 - Version 0.3.2

BUGFIX: Handling of None as default value fixed.

2.10.5. 2008/02/05 - Version 0.3.1

BUGFIX: Unicode checks no longer broken.

2.10.6. 2008/02/05 - Version 0.3.0

Improved performance with a parse cache.

New get_default_value method. Given a check it returns the default
value (converted to the correct type) or raises a KeyError if the
check doesn’t specify a default.

Added ‘tuple’ check and corresponding ‘is_tuple’ function (which always returns a tuple).

BUGFIX: A quoted ‘None’ as a default value is no longer treated as None,
but as the string ‘None’.

BUGFIX: We weren’t unquoting keyword arguments of length two, so an
empty string didn’t work as a default.

BUGFIX: Strings no longer pass the ‘is_list’ check. Additionally, the
list checks always return lists.

A couple of documentation bug fixes.

Removed CHANGELOG from module.

2.10.7. 2007/02/04 Version 0.2.3

Release of 0.2.3

2.10.8. 2006/12/17 Version 0.2.3-alpha1

By Nicola Larosa

Fixed validate doc to talk of boolean instead of bool; changed the
is_bool function to is_boolean (Sourceforge bug #1531525).

2.10.9. 2006/04/29 Version 0.2.2

Addressed bug where a string would pass the is_list test. (Thanks to
Konrad Wojas.)

2.10.10. 2005/12/16 Version 0.2.1

Fixed bug so we can handle keyword argument values with commas.

We now use a list constructor for passing list values to keyword arguments
(including default):

default=list("val", "val", "val")

Added the _test test.

Moved a function call outside a try…except block.

2.10.11. 2005/08/18 Version 0.2.0

Updated by Michael Foord and Nicola Larosa

Does type conversion as well.

2.10.12. 2005/02/01 Version 0.1.0

Initial version developed by Michael Foord and Mark Andrews.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to configobj’s documentation!

 		
 ConfigObj 5 Introduction and Reference

 		
 Introduction

 		
 Downloading

 		
 Development Version

 		
 ConfigObj in the Real World

 		
 Getting Started

 		
 Reading a Config File

 		
 Writing a Config File

 		
 Config Files

 		
 ConfigObj specifications

 		
 Methods

 		
 Attributes

 		
 The Config File Format

 		
 Sections

 		
 Section Attributes

 		
 Section Methods

 		
 Walking a Section

 		
 Examples

 		
 Exceptions

 		
 Validation

 		
 configspec

 		
 Type Conversion

 		
 Default Values

 		
 Repeated Sections

 		
 Repeated Values

 		
 Copy Mode

 		
 Validation and Interpolation

 		
 Extra Values

 		
 SimpleVal

 		
 Empty values

 		
 unrepr mode

 		
 String Interpolation

 		
 String Interpolation and List Values

 		
 Comments

 		
 flatten_errors

 		
 Example Usage

 		
 get_extra_values

 		
 Example Usage

 		
 CREDITS

 		
 LICENSE

 		
 TODO

 		
 ISSUES

 		
 CHANGELOG

 		
 2014/08/25 - Version 5.0.6

 		
 2014/04/28 - Version 5.0.5

 		
 2014/04/11 - Version 5.0.4

 		
 2014/04/04 - Version 5.0.3

 		
 2014/02/27 - Version 5.0.2

 		
 2014/02/19 - Version 5.0.1

 		
 2014/02/08 - Version 5.0.0

 		
 2010/02/27 - Version 4.7.2

 		
 2010/02/06 - Version 4.7.1

 		
 2010/01/09 - Version 4.7.0

 		
 2009/04/13 - Version 4.6.0

 		
 2008/06/27 - Version 4.5.3

 		
 2008/02/05 - Version 4.5.2

 		
 2008/02/05 - Version 4.5.1

 		
 2008/02/05 - Version 4.5.0

 		
 2007/02/04 - Version 4.4.0

 		
 2006/12/17 - Version 4.3.3-alpha4

 		
 2006/12/17 - Version 4.3.3-alpha3

 		
 2006/12/09 - Version 4.3.3-alpha2

 		
 2006/12/09 - Version 4.3.3-alpha1

 		
 2006/06/04 - Version 4.3.2

 		
 2006/04/29 - Version 4.3.1

 		
 2006/03/24 - Version 4.3.0

 		
 2006/02/16 - Version 4.2.0

 		
 2005/12/14 - Version 4.1.0

 		
 2005/12/02 - Version 4.0.2

 		
 2005/11/05 - Version 4.0.1

 		
 2005/10/17 - Version 4.0.0

 		
 2005/09/09 - Version 4.0.0 beta 5

 		
 2005/09/07 - Version 4.0.0 beta 4

 		
 2005/08/28 - Version 4.0.0 beta 3

 		
 2005/08/25 - Version 4.0.0 beta 2

 		
 2005/08/21 - Version 4.0.0 beta 1

 		
 2004/05/24 - Version 3.0.0

 		
 2004/03/14 - Version 2.0.0 beta

 		
 2004/01/29 - Version 1.0.5

 		
 Origins

 		
 Footnotes

 		
 Using the Validator class

 		
 Introduction

 		
 Downloading

 		
 Files

 		
 The standard functions

 		
 Using Validator

 		
 Instantiate

 		
 Adding functions

 		
 Writing the check

 		
 The check method

 		
 get_default_value

 		
 Validator Exceptions

 		
 Writing check functions

 		
 Example

 		
 Known Issues

 		
 TODO

 		
 ISSUES

 		
 CHANGELOG

 		
 2014/02/08 - Version 2.0.0

 		
 2009/10/25 - Version 1.0.1

 		
 2009/04/13 - Version 1.0.0

 		
 2008/02/24 - Version 0.3.2

 		
 2008/02/05 - Version 0.3.1

 		
 2008/02/05 - Version 0.3.0

 		
 2007/02/04 Version 0.2.3

 		
 2006/12/17 Version 0.2.3-alpha1

 		
 2006/04/29 Version 0.2.2

 		
 2005/12/16 Version 0.2.1

 		
 2005/08/18 Version 0.2.0

 		
 2005/02/01 Version 0.1.0

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

