

 Navigation

 	
 index

 	
 next |

 	cocaine-framework-python v0.10.6

Cocaine

What is Cocaine? It’s an open-source cloud platform enabling you to build your own PaaS clouds using simple yet
effective dynamic components.

	Page on github: https://github.com/cocaine/cocaine-core

This documentation is for cocaine-framework-python.

	Page on PyPI: https://pypi.python.org/pypi/cocaine

	Repository: https://github.com/cocaine/cocaine-framework-python

	Requires at least Python 2.6

More documentation

	Packages

	Cocaine Framework API

	Cocaine Tools Command Line Interface

Features

	Possibility to write cocaine workers

	Wide support of asynchronous event-driven usage

	Ready for usage with cloud services

	Lot of examples included

	Provided with cocaine-tools and embedded cocaine proxy

	PyPy support

Quick example

Here’s some extremely useful Cocaine app written in Python:

#!/usr/bin/env python

from cocaine.services import Service
from cocaine.worker import Worker

storage = Service("storage")

def process(value):
 return len(value)

def handle(request, response):
 key = yield request.read()
 value = yield storage.read("collection", key)

 response.write(process(value))
 response.close()

Worker().run({
 'calculate_length': handle
})

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocaine-framework-python v0.10.6

Packages

Package cocaine

	
exception cocaine.exceptions.ServiceError(servicename, reason, code)

	Exception raised when error message is received from service

	
exception cocaine.exceptions.RequestError(reason)

	Exception raised when u try to request chunks from closed request

Package cocaine.asio

	
class cocaine.asio.ev.Loop(ioloop=None)

	Event loop wrapper

	
class cocaine.asio.ev.Timer(callback, callback_time, io_loop)

	Timer wrapper

	
class cocaine.asio.service.AbstractService(name)

	Represents abstract cocaine service.

It provides basic service operations like getting its actual network address, determining if the service is
connecting or connected.

There is no other useful public methods, so the main aim of this class - is to provide superclass for inheriting
for actual services or service-like objects (i.e. Locator).

	
AbstractService.address

	Return actual network address (sockaddr) of the current service if it is connected.

Returned sockaddr is a tuple describing a socket address, whose format depends on the returned
family (address, port) 2-tuple for AF_INET, or (address, port, flow info, scope id) 4-tuple for AF_INET6),
and is meant to be passed to the socket.connect() method.

It the service is not connected this method returns tuple (‘NOT_CONNECTED’, 0).

	
AbstractService.disconnect()

	Disconnect service from its endpoint and destroys all communications between them.

Note

This method does nothing if the service is not connected.

	
AbstractService.isConnected()

	Return true if the service is in connected state.

	
AbstractService.isConnecting()

	Return true if the service is in connecting state.

	
AbstractService.perform_sync(method, *args, **kwargs)

	Performs synchronous method invocation via direct socket usage without the participation of the event loop.

Returns generator of chunks.

	Parameters:	
	method – method name.

	args – method arguments.

	kwargs – method keyword arguments. You can specify timeout keyword to set socket timeout.

Note

Left for backward compatibility, tests and other stuff. Indiscriminate using of this method can lead
to the summoning of Satan.

Warning

Do not mix synchronous and asynchronous usage of service!

	
class cocaine.asio.service.Locator

	Represents locator service.

Locator is the special service which can resolve other services in the cloud by name.

Note

Normally, you shouldn’t use this class directly - it is using behind the scene for resolving other
services endpoints.

	
Locator.connect(host, port, timeout, blocking)

	Connects to the locator at specified host and port.

The locator itself always runs on a well-known host and port.

	Parameters:	
	host – locator hostname.

	port – locator port.

	timeout – connection timeout.

	blocking – strategy of the connection. If flag blocking is set to True, direct blocking socket
connection will be used. Otherwise this method returns cocaine.futures.chain.Chain object,
which is normally requires event loop running.

	
Locator.resolve(name, timeout, blocking)

	Resolve service by its name.

	Returned tuple is describing resolved service information - (endpoint, version, api):

	
	endpoint - a 2-tuple containing (host, port) information about service endpoint.

	version - an integer number showing actual service version.

	api - a dict of number -> string structure, describing service’s api.

	Parameters:	
	name – service name.

	timeout – resolving timeout.

	blocking – strategy of the resolving. If flag blocking is set to True, direct blocking socket
usage will be selected. Otherwise this method returns cocaine.futures.chain.Chain object,
which is normally requires event loop running.

	
class cocaine.asio.service.Service(name, blockingConnect=True, host='127.0.0.1', port=10053)

	Represents cocaine services or applications and provides API to communicate with them.

This is the main class you will use to manage cocaine services in python. Let’s start with the simple example:

>>> from cocaine.services import Service
>>> node = Service('node')

We just created node service object by passing its name to the cocaine.services.Service initialization method.
If no errors occurred, you can use it right now.

If the service is not available, you will see something like that:

>>> from cocaine.services import Service
>>> node = Service('WAT?')
Traceback (most recent call last):
...
cocaine.exceptions.ServiceError: error in service "locator" - the specified service is not available [1]

Behind the scene it has synchronously connected to the locator, resolved service’s API and connected to the
service’s endpoint obtained by resolving. This is the normal usage of services.

If you don’t want immediate blocking service initialization, you can set blockingConnect argument to False
and then to connect manually:

>>> from cocaine.services import Service
>>> node = Service('node', blockingConnect=False)
>>> node.connect()

You can also specify locator’s address by passing host and port parameters like this:

>>> from cocaine.services import Service
>>> node = Service('node', host='localhost', port=666)

Note

If you refused service connection-at-initialization, you shouldn’t pass locator endpoint information,
because this is mutual exclusive information. Specify them later when connect while method invoking.

Note

If you don’t want to create connection to the locator each time you create service, you can use
connectThroughLocator method, which is specially designed for that cases.

Note

Actual service’s API is building dynamically. Sorry, IDE users, there is no autocompletion :(

Package cocaine.futures

	
class cocaine.futures.chain.All(futures)

	Represents yieldable object for asynchronous future grouping.

This class provides ability to yield multiple yieldable objects in chain context. Program control returns after
all of them completed. Future results will be placed in the list in original order.

Typical usage:

from cocaine.services import Service
from cocaine.futures import chain
@chain.source
def func():
 r1, r2 = yield chain.All([s1.execute(), s2.execute()])
 print(r1, r2)
s1 = Service('s1')
s2 = Service('s2')
func()

If you have specified deferred, you can invoke execute method and pass that deferred to it. This will have the
same effect as yielding.

Note

You can yield this class’s objects only in chain context and only once. Think about this class as some
kind of single-shot.

Note

All methods in this class are thread-safe.

	
All.execute(deferred)

	Executes asynchronous grouped future invocation and binds deferred to the completion event.

	Parameters:	deferred – deferred, which will be invoked after all of futures are completed.

	
class cocaine.futures.chain.Chain(functions=None, ioLoop=None)

	Represents pipeline of processing functions over chunks.

This class represents chain of processing functions over incoming chunks. It manages creating chunk pipeline by
binding them one-by-one.
Incoming chunks will be processed separately in direct order.
If some of processing function fails and raise an exception, it will be transported to the next chain item over and
over again until it will be caught by except block or transferred to the event loop exception trap.

There is also synchronous API provided, but it should be used only for scripting or tests.

	
Chain.get(timeout=None)

	Returns next result of chaining execution. If chain haven’t been completed after timeout seconds, an
TimeoutError will be raised.

Default implementation simply starts event loop, sets timeout condition and run chain expression. Event loop
will be stopped after getting chain result or after timeout expired.
It is correct to call this method multiple times to receive multiple chain results until you exactly know
how much chunks there will be. A ChokeEvent will be raised if there is no more chunks to process.

Warning

This is synchronous usage of chain object. Do not mix asynchronous and synchronous chain usage!

	Parameters:	timeout – Timeout in seconds after which TimeoutError will be raised. If timeout is not set (default) it
means forever waiting.

	Raises:	
	ChokeEvent – If there is no more chunks to process.

	ValueError – If timeout is set and it is less than 1 ms.

	TimeoutError – If timeout expired.

	
Chain.hasPendingResult()

	Provides information if chain object has pending result that can be taken from it.

	
Chain.next()

	Gets next chain result. Normally, you should not use this method directly - python uses it automatically in
the for loop.

Warning

This is synchronous usage of chain object. Do not mix asynchronous and synchronous chain usage!

	
Chain.then(func)

	Puts specified chunk processing function into chain pipeline.

With this method, you can create a pipeline of several chunk handlers. Chunks will be processed asynchronously,
transported after that to the next chain item.
If some error occurred in the middle of chain and no one caught it, it will be redirected next over pipeline,
so make sure you catch all exceptions you need and correctly process it.

	Parameters:	func – chunk processing function or method. Its signature must have one parameter of class FutureResult
if specified function is not the chunk source. If function is chunk source (i.e. service execution
method) than there is no parameters must be provided in function signature.

	
Chain.wait(timeout=None)

	Waits chaining execution during some time or forever.

This method provides you nice way to do asynchronous waiting future result from chain expression. Default
implementation simply starts event loop, sets timeout condition and run chain expression. Event loop will be
stopped after getting final chain result or after timeout expired. Unlike get method there will be no
exception raised if timeout is occurred while chaining execution running.

Warning

This is synchronous usage of chain object. Do not mix asynchronous and synchronous chain usage!

	Parameters:	timeout – Timeout in seconds after which event loop will be stopped. If timeout is not set (default) it
means forever waiting.

	Raises ValueError:

		If timeout is set and it is less than 1 ms.

	
class cocaine.futures.chain.Deferred

	Deferred future result.

This class represents deferred result of asynchronous operation. It is designed specially for returning from
function that is like to be used in Chain context.

Typical usage assumes that you create Deferred object, keep it somewhere, start asynchronous operation and
return this deferred from function. When asynchronous operation is done, just invoke ready and pass the result
(including Exceptions) into it.

Here the example of asynchronous function that starts timer and signals the deferred after 1.0 sec.:

from tornado.ioloop import IOLoop
def timer_function():
 deferred = Deferred()
 timeout = 1.0
 IOLoop.current().add_timer(time.time() + timeout, lambda: deferred.ready('Done')
 return deferred

Now you can use timer_function in Chain context:

result = yield timer_function()

	
class cocaine.futures.chain.FutureResult(result)

	Represents future result and provides methods to obtain this result, manipulate or reset.

The result itself can be any object or exception. If some exception is stored, then it will be thrown after user
invokes get method.

Note

All methods in this class are thread safe.

	
FutureResult.get()

	Extracts future result from object.

If an exception is stored in this object, than it will be raised, so surround dangerous code with try/except
blocks.

>>> FutureResult(1).get()
1
>>> FutureResult(ValueError('ErrorMessage')).get()
Traceback (most recent call last):
...
ValueError: ErrorMessage

	
class cocaine.futures.chain.PreparedFuture(result, ioLoop=None)

	Represents prepared future object with in advance known result.

It is useful when you need to return already defined result from function and to use that function in some future
context (like chain).

Specified callback or errorback will be triggered on the next event loop turn after bind method is invoked.

Note

While in chain context, you don’t need to use it directly - if you return something from function that
meant to be used as chain item, the result will be automatically wrapped with PreparedFuture.

Note

All methods in this class are thread safe.

	
cocaine.futures.chain.concurrent(func)

	Wraps function or method, so it can be invoked concurrently by yielding in chain context.

Program control will be returned to the yield statement once processing is done. Current implementation invokes
function in separate thread.

	
cocaine.futures.chain.source(func)

	Marks function or method as source of chain context.

It means, that the decorated function becomes the first function in the chain pipeline. As a result, there
shouldn’t be any parameter passed to that function (except self or cls for class methods).

Cocaine Framework API

Method get

	Use Case

	We want to create some script to test some cocaine service.

	Solution

	All service’s methods returns Chain object instances. You can use get method from it.

	Example

	Let’s get all application names from node service and print them:

from cocaine.services import Service
node = Service('node')
apps = node.list().get()
print(apps)

	Comments

	This method blocks execution of the current client code until at least one chunk will be received or an exception
will be thrown.
If succeed there is chunk returned from method, otherwise an exception will be reraised.

Timeout can be specified by passing keyword argument:

>>> apps = node.list().get(timeout=1.0)

Note

This method starts event loop, and stops it after chunk receiving. If the current event loop is running
when get method invoked, then it won’t be stopped. Anyway, it is not recommended to mix asynchronous
and synchronous usage of services, because there are other mechanism to deal with it while event loop is
running.

Warning

Use get method only in scripts!

Yield statement

	Use Case

	We want to start asynchronous execution of some function or method and receive program control after it is
finished.

	Solution

	Use python’s yield statement in Chain context.

	Example

	Let’s get all application names from node service and print them while event loop is running (maybe in
Worker context or in some other asynchronous event):

from tornado.ioloop import IOLoop
from cocaine.futures import chain
from cocaine.services import Service

node = Service('node')

@chain.source
def magic():
 apps = yield node.list()
 print(apps)

magic()
IOLoop.current().start()

You can also use tornado and python 3.3 futures in Chain context. Let’s download list of pages simultaneously
and print response time of each:

from tornado.ioloop import IOLoop
from tornado.httpclient import AsyncHTTPClient
from cocaine.futures import chain
client = AsyncHTTPClient()

@chain.source
def downloadInternet(url):
 response = yield client.fetch(url)
 print(response.request.url, response.request_time)

urls = [
 'http://yandex.ru',
 'http://www.google.ru',
 'http://www.google.com',
 'https://cocaine.readthedocs.org/en/latest/',
 'https://github.com/cocaine/cocaine-core',
 'https://github.com/cocaine/cocaine-framework-native',
 'https://github.com/cocaine/cocaine-framework-python',
 'https://github.com/cocaine/cocaine-plugins',
 'http://www.tornadoweb.org/en/stable/httpclient.html',
]

for url in urls:
 downloadInternet(url)
IOLoop.current().start()

When it is done, there will be sorted list of urls with its response time printed. Note, that the order of urls in
the result list is not equal with urls list.

	Comments

	This is typical usage of cocaine python framework.

To simplify code, there is @chain.source decorator which just patch function and creates Chain object from it.
Decorated function will be executed automatically when event loop is started.

While in Chain context we can use yield statement on any callable object that returns
cocaine.futures.Future objects or its heirs, cocaine.futures.chain objects, python futures
(including tornado futures) or any simple objects.

When asynchronous operation completed, program control will be returned to the yield statement,
returning actual result. If some exception is thrown while processing asynchronous function,
it will be rethrown to the client side just after yield statement, so prepare to catch it.
If not caught, it will walk down to the event loop and will be lost forever.

Note

If you want to write cocaine applications, it is recommended to use yield way.

Note

If you need more examples check cocaine.tools package - you can find there a lot of real usage of
asynchronous chain API.

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	cocaine-framework-python v0.10.6

Cocaine Tools Command Line Interface

This part describes cocaine command line tools.
It is useful for management your cocaine cloud, uploading applications, profiles and other stuff.

Common tools

This part describes common tools.

cocaine-tool info

Show information about cocaine runtime

Return json-like string with information about cocaine-runtime.

>>> cocaine-tool info
{
 "uptime": 738,
 "identity": "dhcp-666-66-wifi.yandex.net"
}

If some applications is running, its information will be displayed too.

>>> cocaine-tool info
{
 "uptime": 738,
 "apps": {
 "Echo": {
 "load-median": 0,
 "profile": "EchoProfile",
 "sessions": {
 "pending": 0
 },
 "queue": {
 "depth": 0,
 "capacity": 100
 },
 "state": "running",
 "slaves": {
 "active": 0,
 "idle": 0,
 "capacity": 4
 }
 }
 },
 "identity": "dhcp-666-66-wifi.yandex.net"
}

cocaine-tool call

Invoke specified method from service.

Performs method invocation from specified service. Service name should be correct string and must be correctly
located through locator. By default, locator endpoint is `localhost, 10053`, but it can be changed by passing
global –host and –port arguments.

Method arguments should be passed in double quotes as they would be written in Python.
If no method provided, service API will be printed.

Request service API:

>>> cocaine-tool call node
API of service "node": [
 "start_app",
 "pause_app",
 "info"
]

Invoke `info` method from service `node`:

>>> cocaine-tool call node info
{'uptime': 1855, 'identity': 'dhcp-666-66-wifi.yandex.net'}

Specifying locator endpoint

>>> cocaine-tool call node info --host localhost --port 10052
LocatorResolveError: Unable to resolve API for service node at localhost:10052, because [Errno 61] Connection
refused

Passing complex method arguments

>>> cocaine-tool call storage read "'apps', 'Echo'"
[Lot of binary data]

Application specific tools

This part describes application specific tools.

cocaine-tool app list

Show installed applications list.

Returns list of installed applications.

>>> cocaine-tools app list
[
 "app1",
 "app2"
]

cocaine-tool app view

Show manifest context for application.

If application is not uploaded, an error will be displayed.

	name:	application name.

>>> cocaine-tool app view --name Echo
{
 "slave": "/home/satan/echo/echo.py"
}

cocaine-tool app upload

Upload application with its environment (directory) into the storage.

Application directory or its subdirectories must contain valid manifest file named manifest.json or manifest
otherwise you must specify it explicitly by setting –manifest option.

You can specify application name. By default, leaf directory name is treated as application name.

If you have already prepared application archive (*.tar.gz), you can explicitly specify path to it by setting
–package option. Note, that PATH and –package options are mutual exclusive as well as –package and –venv
options.

If you specify option –venv, then virtual environment will be created for application.

	Possible values:

	
	N - do not create virtual environment (default)

	P - python virtual environment using virtualenv package

	R - ruby virtual environment using Bundler (not yet implemented)

	J - jar archive will be created (not yet implemented)

	Algorithm of creating and configuring python virtual environment contains following steps:

	
	locating virtualenv module. It must be installed.

	creating clear virtual environment via virtualenv module.

	locating manifest.json or manifest file somewhere in the target directory or its subdirectories.

	creating bootstrap.sh scrips for correct starting application via virtual environment.

	cloning and installing cocaine-framework-python through git.

	locating requirements.txt or requirements file somewhere in the target directory or its subdirectories.

	installing all requirements specified in the file above (if it has been found)

You can control process of creating and uploading application by specifying –debug=tools option. This is helpful
when some errors occurred.

Warning

Creating virtual environment may take a long time and can cause timeout. You can increase timeout by
specifying –timeout option.

Warning

This is experimental feature.

	path:	path to the application root.

	name:	application name. If it is not specified, application will be named as its directory name.

	manifest:	path to application manifest json file.

	package:	path to application archive.

	venv:	virtual environment type. This is optional parameter and does nothing if not specified. Otherwise virtual
environment will be created and configured.

The simplest usage

>>> cd /home/user/your_app
>>> cocaine-tool app upload
Application your_app has been successfully uploaded

But you can specify path directly as first positional argument like this

>>> cocaine-tool app upload ~/echo
Application echo has been successfully uploaded

Explicitly set application name

>>> cocaine-tool app upload ~/echo --name TheEchoApp
Application TheEchoApp has been successfully uploaded

If you want to explicitly specify application archive

>>> cocaine-tool app upload --name echo --manifest ~/echo/manifest.json --package ~/echo/echo.tar.gz
Application echo has been successfully uploaded

Let’s create python virtual environment and see detail log

>>> cocaine-tool app upload ~/echo --venv P --timeout 60 --debug tools
You specified building virtual environment
It may take a long time and can cause timeout. Increase it by specifying `--timeout` option if needed
cocaine.tools.installer: DEBUG : Filenames found: [('../examples/echo/manifest.json', 111)]
cocaine.tools: DEBUG : Repository temporary path - "/var/folders/dx/sww3lm4j7x73x7x3njzv770jqq7lhf/T/tmpSO_cva/repo"
cocaine.tools: DEBUG : Creating virtual environment "P" ...
cocaine.tools.installer: DEBUG : Start installing python module
...
cocaine.tools.installer: DEBUG : All requirements has been successfully installed
cocaine.tools.installer: DEBUG : Python module has been successfully installed
cocaine.tools: DEBUG : Creating package
Application echo has been successfully uploaded

cocaine-tool app remove

Remove application from storage.

No error messages will display if specified application is not uploaded.

	name:	application name.

>>> cocaine-tool app remove --name echo
The app "echo" has been successfully removed

cocaine-tool app start

Start application with specified profile.

Does nothing if application is already running.

	name:	application name.

	profile:	desired profile.

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app has been started"
}

If application is already running

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app is already running"
}

cocaine-tool app pause/stop

Stop application.

This command is alias for `cocaine-tool app stop`.

	name:	application name.

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app has been stopped"
}

For non running application

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app is not running"
}

cocaine-tool app restart

Restart application.

Executes `cocaine-tool app pause` and `cocaine-tool app start` sequentially.

It can be used to quickly change application profile.

	name:	application name.

	profile:	desired profile. If no profile specified, application will be restarted with the current profile.

Usual case

>>> cocaine-tool app restart --name Echo
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "the app has been started"
 }
]

If application was not run and no profile name provided

>>> cocaine-tool app restart --name Echo
Error occurred: Application "Echo" is not running and profile not specified

But if we specify profile name

>>> cocaine-tool app restart --name Echo --profile EchoProfile
[
 {
 "Echo": "the app is not running"
 },
 {
 "Echo": "the app has been started"
 }
]

In case wrong profile just stops application

>>> cocaine-tool app restart --name Echo --profile EchoProf
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "object 'EchoProf' has not been found in 'profiles'"
 }
]

cocaine-tool app check

Checks application status.

	name:	application name.

>>> cocaine-tool app check --name Echo
{
 "Echo": "stopped or missing"
}

Profile specific tools

This part describes profile specific tools.

cocaine-tool profile list

Show installed profiles.

Returns list of installed profiles.

>>> cocaine-tool profile list
[
 "EchoProfile"
]

cocaine-tool profile view

Show profile configuration context.

	name:	profile name

>>> cocaine-tool profile view --name EchoProfile
{
 "pool-limit": 4
}

cocaine-tool profile upload

Upload profile into the storage.

	name:	profile name.

	profile:	path to the profile json file.

>>> cocaine-tool profile upload --name EchoProfile --profile ../examples/echo/profile.json
The profile "EchoProfile" has been successfully uploaded

cocaine-tool profile remove

Remove profile from the storage.

	name:	profile name.

>>> cocaine-tool profile remove --name EchoProfile
The profile "EchoProfile" has been successfully removed

Profile specific tools

This part describes runlist specific tools.

cocaine-tool runlist list

Show uploaded runlists.

Returns list of installed runlists.

>>> cocaine-tool runlist list
[
 "default"
]

cocaine-tool runlist view

Show configuration context for runlist.

	name:	runlist name.

>>> cocaine-tool runlist view --name default
{
 "Echo": "EchoProfile"
}

cocaine-tool runlist upload

Upload runlist with context into the storage.

	name:	runlist name.

	runlist:	path to the runlist configuration json file.

>>> cocaine-tool runlist upload --name default --runlist ../examples/echo/runlsit.json
The runlist "default" has been successfully uploaded

cocaine-tool runlist create

Create runlist and upload it into the storage.

	name:	runlist name.

>>> cocaine-tool runlist create --name default
The runlist "default" has been successfully created

cocaine-tool runlist remove

Remove runlist from the storage.

	name:	runlist name.

>>> cocaine-tool runlist remove --name default
The runlist "default" has been successfully removed

cocaine-tool runlist add-app

Add specified application with profile to the runlist.

Existence of application or profile is not checked.

	name:	runlist name.

	app:	application name.

	profile:	suggested profile name.

>>> cocaine-tool runlist add-app --name default --app Echo --profile EchoProfile
{
 "status": "Success",
 "added": {
 "profile": "EchoProfile",
 "app": "Echo"
 },
 "runlist": "default"
}

Crashlog specific tools

This part describes crashlog specific tools.

cocaine-tool crashlog list

Show crashlogs list for application.

Prints crashlog list in timestamp - uuid format.

	name:	application name.

>>> cocaine-tool crashlog list --name Echo
Currently available crashlogs for application 'Echo'
1372165800114964 Tue Jun 25 17:10:00 2013 2d92aa19-535d-4aa3-9c68-7aa32f9967df
1372166090866950 Tue Jun 25 17:14:50 2013 e27b2ccc-64a6-4958-a9b4-f2abac974e4a
1372166371522675 Tue Jun 25 17:19:31 2013 762f2fb8-8d8c-4b1d-ab79-14cdb6332ecb
1372166822795587 Tue Jun 25 17:27:02 2013 1fd3ca03-3402-4279-8b2b-1e40ff92f4a7

cocaine-tool crashlog view

Show crashlog for application with specified timestamp.

	name:	application name.

	timestamp:	desired timestamp - time_t format.

>>> cocaine-tool crashlog view --name Echo --timestamp 1372165800114964
Crashlog:
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/ioloop.py", line 672, in start
 self._handlers[fd](fd, events)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 331, in wrapped
 raise_exc_info(exc)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 302, in wrapped
 ret = fn(*args, **kwargs)
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/ev.py", line 93, in proxy
 self._callbacks[(fd, self.WRITE)]()
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/stream.py", line 128, in _on_event
 sent = self.pipe.write(buffer(current, self.tx_offset))
TypeError: an integer is required
ERROR:tornado.application:Exception in I/O handler for fd 11

cocaine-tool crashlog remove

Remove crashlog for application with specified timestamp from the storage.

	name:	application name.

	timestamp:	desired timestamp - time_t format.

>>> cocaine-tool crashlog remove --name Echo --timestamp 1372165800114964
Crashlog for app "Echo" has been removed

cocaine-tool crashlog removeall

Remove all crashlogs for application from the storage.

	name:	application name.

>>> cocaine-tool crashlog removeall --name Echo
Crashlogs for app "Echo" have been removed

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	cocaine-framework-python v0.10.6

Index

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		cocaine-framework-python v0.10.6 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.1.3.

man.html

 Navigation

 		
 index

 		cocaine-framework-python v0.10.6 »

Welcome to cocaine-framework-python’s documentation!

Various tools to query and manipulate running Cocaine instances.

Cocaine Tools Command Line Interface

This part describes cocaine command line tools.
It is useful for management your cocaine cloud, uploading applications, profiles and other stuff.

Common tools

This part describes common tools.

cocaine-tool info

Show information about cocaine runtime

Return json-like string with information about cocaine-runtime.

>>> cocaine-tool info
{
 "uptime": 738,
 "identity": "dhcp-666-66-wifi.yandex.net"
}

If some applications is running, its information will be displayed too.

>>> cocaine-tool info
{
 "uptime": 738,
 "apps": {
 "Echo": {
 "load-median": 0,
 "profile": "EchoProfile",
 "sessions": {
 "pending": 0
 },
 "queue": {
 "depth": 0,
 "capacity": 100
 },
 "state": "running",
 "slaves": {
 "active": 0,
 "idle": 0,
 "capacity": 4
 }
 }
 },
 "identity": "dhcp-666-66-wifi.yandex.net"
}

cocaine-tool call

Invoke specified method from service.

Performs method invocation from specified service. Service name should be correct string and must be correctly
located through locator. By default, locator endpoint is `localhost, 10053`, but it can be changed by passing
global –host and –port arguments.

Method arguments should be passed in double quotes as they would be written in Python.
If no method provided, service API will be printed.

Request service API:

>>> cocaine-tool call node
API of service "node": [
 "start_app",
 "pause_app",
 "info"
]

Invoke `info` method from service `node`:

>>> cocaine-tool call node info
{'uptime': 1855, 'identity': 'dhcp-666-66-wifi.yandex.net'}

Specifying locator endpoint

>>> cocaine-tool call node info --host localhost --port 10052
LocatorResolveError: Unable to resolve API for service node at localhost:10052, because [Errno 61] Connection
refused

Passing complex method arguments

>>> cocaine-tool call storage read "'apps', 'Echo'"
[Lot of binary data]

Application specific tools

This part describes application specific tools.

cocaine-tool app list

Show installed applications list.

Returns list of installed applications.

>>> cocaine-tools app list
[
 "app1",
 "app2"
]

cocaine-tool app view

Show manifest context for application.

If application is not uploaded, an error will be displayed.

		name:		application name.

>>> cocaine-tool app view --name Echo
{
 "slave": "/home/satan/echo/echo.py"
}

cocaine-tool app upload

Upload application with its environment (directory) into the storage.

Application directory or its subdirectories must contain valid manifest file named manifest.json or manifest
otherwise you must specify it explicitly by setting –manifest option.

You can specify application name. By default, leaf directory name is treated as application name.

If you have already prepared application archive (*.tar.gz), you can explicitly specify path to it by setting
–package option. Note, that PATH and –package options are mutual exclusive as well as –package and –venv
options.

If you specify option –venv, then virtual environment will be created for application.

		Possible values:

		
		N - do not create virtual environment (default)

		P - python virtual environment using virtualenv package

		R - ruby virtual environment using Bundler (not yet implemented)

		J - jar archive will be created (not yet implemented)

		Algorithm of creating and configuring python virtual environment contains following steps:

		
		locating virtualenv module. It must be installed.

		creating clear virtual environment via virtualenv module.

		locating manifest.json or manifest file somewhere in the target directory or its subdirectories.

		creating bootstrap.sh scrips for correct starting application via virtual environment.

		cloning and installing cocaine-framework-python through git.

		locating requirements.txt or requirements file somewhere in the target directory or its subdirectories.

		installing all requirements specified in the file above (if it has been found)

You can control process of creating and uploading application by specifying –debug=tools option. This is helpful
when some errors occurred.

Warning

Creating virtual environment may take a long time and can cause timeout. You can increase timeout by
specifying –timeout option.

Warning

This is experimental feature.

		path:		path to the application root.

		name:		application name. If it is not specified, application will be named as its directory name.

		manifest:		path to application manifest json file.

		package:		path to application archive.

		venv:		virtual environment type. This is optional parameter and does nothing if not specified. Otherwise virtual
environment will be created and configured.

The simplest usage

>>> cd /home/user/your_app
>>> cocaine-tool app upload
Application your_app has been successfully uploaded

But you can specify path directly as first positional argument like this

>>> cocaine-tool app upload ~/echo
Application echo has been successfully uploaded

Explicitly set application name

>>> cocaine-tool app upload ~/echo --name TheEchoApp
Application TheEchoApp has been successfully uploaded

If you want to explicitly specify application archive

>>> cocaine-tool app upload --name echo --manifest ~/echo/manifest.json --package ~/echo/echo.tar.gz
Application echo has been successfully uploaded

Let’s create python virtual environment and see detail log

>>> cocaine-tool app upload ~/echo --venv P --timeout 60 --debug tools
You specified building virtual environment
It may take a long time and can cause timeout. Increase it by specifying `--timeout` option if needed
cocaine.tools.installer: DEBUG : Filenames found: [('../examples/echo/manifest.json', 111)]
cocaine.tools: DEBUG : Repository temporary path - "/var/folders/dx/sww3lm4j7x73x7x3njzv770jqq7lhf/T/tmpSO_cva/repo"
cocaine.tools: DEBUG : Creating virtual environment "P" ...
cocaine.tools.installer: DEBUG : Start installing python module
...
cocaine.tools.installer: DEBUG : All requirements has been successfully installed
cocaine.tools.installer: DEBUG : Python module has been successfully installed
cocaine.tools: DEBUG : Creating package
Application echo has been successfully uploaded

cocaine-tool app remove

Remove application from storage.

No error messages will display if specified application is not uploaded.

		name:		application name.

>>> cocaine-tool app remove --name echo
The app "echo" has been successfully removed

cocaine-tool app start

Start application with specified profile.

Does nothing if application is already running.

		name:		application name.

		profile:		desired profile.

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app has been started"
}

If application is already running

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app is already running"
}

cocaine-tool app pause/stop

Stop application.

This command is alias for `cocaine-tool app stop`.

		name:		application name.

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app has been stopped"
}

For non running application

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app is not running"
}

cocaine-tool app restart

Restart application.

Executes `cocaine-tool app pause` and `cocaine-tool app start` sequentially.

It can be used to quickly change application profile.

		name:		application name.

		profile:		desired profile. If no profile specified, application will be restarted with the current profile.

Usual case

>>> cocaine-tool app restart --name Echo
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "the app has been started"
 }
]

If application was not run and no profile name provided

>>> cocaine-tool app restart --name Echo
Error occurred: Application "Echo" is not running and profile not specified

But if we specify profile name

>>> cocaine-tool app restart --name Echo --profile EchoProfile
[
 {
 "Echo": "the app is not running"
 },
 {
 "Echo": "the app has been started"
 }
]

In case wrong profile just stops application

>>> cocaine-tool app restart --name Echo --profile EchoProf
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "object 'EchoProf' has not been found in 'profiles'"
 }
]

cocaine-tool app check

Checks application status.

		name:		application name.

>>> cocaine-tool app check --name Echo
{
 "Echo": "stopped or missing"
}

Profile specific tools

This part describes profile specific tools.

cocaine-tool profile list

Show installed profiles.

Returns list of installed profiles.

>>> cocaine-tool profile list
[
 "EchoProfile"
]

cocaine-tool profile view

Show profile configuration context.

		name:		profile name

>>> cocaine-tool profile view --name EchoProfile
{
 "pool-limit": 4
}

cocaine-tool profile upload

Upload profile into the storage.

		name:		profile name.

		profile:		path to the profile json file.

>>> cocaine-tool profile upload --name EchoProfile --profile ../examples/echo/profile.json
The profile "EchoProfile" has been successfully uploaded

cocaine-tool profile remove

Remove profile from the storage.

		name:		profile name.

>>> cocaine-tool profile remove --name EchoProfile
The profile "EchoProfile" has been successfully removed

Profile specific tools

This part describes runlist specific tools.

cocaine-tool runlist list

Show uploaded runlists.

Returns list of installed runlists.

>>> cocaine-tool runlist list
[
 "default"
]

cocaine-tool runlist view

Show configuration context for runlist.

		name:		runlist name.

>>> cocaine-tool runlist view --name default
{
 "Echo": "EchoProfile"
}

cocaine-tool runlist upload

Upload runlist with context into the storage.

		name:		runlist name.

		runlist:		path to the runlist configuration json file.

>>> cocaine-tool runlist upload --name default --runlist ../examples/echo/runlsit.json
The runlist "default" has been successfully uploaded

cocaine-tool runlist create

Create runlist and upload it into the storage.

		name:		runlist name.

>>> cocaine-tool runlist create --name default
The runlist "default" has been successfully created

cocaine-tool runlist remove

Remove runlist from the storage.

		name:		runlist name.

>>> cocaine-tool runlist remove --name default
The runlist "default" has been successfully removed

cocaine-tool runlist add-app

Add specified application with profile to the runlist.

Existence of application or profile is not checked.

		name:		runlist name.

		app:		application name.

		profile:		suggested profile name.

>>> cocaine-tool runlist add-app --name default --app Echo --profile EchoProfile
{
 "status": "Success",
 "added": {
 "profile": "EchoProfile",
 "app": "Echo"
 },
 "runlist": "default"
}

Crashlog specific tools

This part describes crashlog specific tools.

cocaine-tool crashlog list

Show crashlogs list for application.

Prints crashlog list in timestamp - uuid format.

		name:		application name.

>>> cocaine-tool crashlog list --name Echo
Currently available crashlogs for application 'Echo'
1372165800114964 Tue Jun 25 17:10:00 2013 2d92aa19-535d-4aa3-9c68-7aa32f9967df
1372166090866950 Tue Jun 25 17:14:50 2013 e27b2ccc-64a6-4958-a9b4-f2abac974e4a
1372166371522675 Tue Jun 25 17:19:31 2013 762f2fb8-8d8c-4b1d-ab79-14cdb6332ecb
1372166822795587 Tue Jun 25 17:27:02 2013 1fd3ca03-3402-4279-8b2b-1e40ff92f4a7

cocaine-tool crashlog view

Show crashlog for application with specified timestamp.

		name:		application name.

		timestamp:		desired timestamp - time_t format.

>>> cocaine-tool crashlog view --name Echo --timestamp 1372165800114964
Crashlog:
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/ioloop.py", line 672, in start
 self._handlers[fd](fd, events)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 331, in wrapped
 raise_exc_info(exc)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 302, in wrapped
 ret = fn(*args, **kwargs)
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/ev.py", line 93, in proxy
 self._callbacks[(fd, self.WRITE)]()
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/stream.py", line 128, in _on_event
 sent = self.pipe.write(buffer(current, self.tx_offset))
TypeError: an integer is required
ERROR:tornado.application:Exception in I/O handler for fd 11

cocaine-tool crashlog remove

Remove crashlog for application with specified timestamp from the storage.

		name:		application name.

		timestamp:		desired timestamp - time_t format.

>>> cocaine-tool crashlog remove --name Echo --timestamp 1372165800114964
Crashlog for app "Echo" has been removed

cocaine-tool crashlog removeall

Remove all crashlogs for application from the storage.

		name:		application name.

>>> cocaine-tool crashlog removeall --name Echo
Crashlogs for app "Echo" have been removed

 © Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

