

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	cloudns 1.1.0.1 documentation

Welcome to cloudns’s documentation!

cloudns module is a python client for the YY cloudns API.

You can read about YY cloudns API at
http://www.nsbeta.info/doc/YY-DNS-API.pdf

For installation instructions and quick start see
https://pypi.python.org/pypi/cloudns

For detailed API document, check modules below. The key module is user and
zone.

	cloudns
	cloudns Package
	cloudns Package

	base Module

	record Module

	user Module

	zone Module

	cloudns command line program
	Authentication

	Config File Format

	Subcommand Reference
	Direct invocation

	Interactive shell

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cloudns 1.1.0.1 documentation

cloudns

	cloudns Package
	cloudns Package

	base Module

	record Module

	user Module

	zone Module

 Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cloudns 1.1.0.1 documentation

 	cloudns

cloudns Package

cloudns Package

cloudns API python client.

The cloudns API is documented at http://wiki.dev.game.yy.com/moin/DNS

This python client is based on that API.

The major version of this client tries to match the the API version. Thus
1.1.* (or later) supports API v1.1.

base Module

defines exception types and constants

	
exception cloudns.base.CloudnsBadUsage

	Bases: cloudns.base.CloudnsError

	
exception cloudns.base.CloudnsError

	Bases: exceptions.Exception

	
exception cloudns.base.CloudnsRuntimeError

	Bases: cloudns.base.CloudnsError, exceptions.RuntimeError

	
exception cloudns.base.CloudnsServerError

	Bases: cloudns.base.CloudnsRuntimeError

an error occurred on cloudns server, not your fault.

	
exception cloudns.base.CloudnsValidationError

	Bases: cloudns.base.CloudnsError

	
exception cloudns.base.DuplicateRecord

	Bases: cloudns.base.CloudnsRuntimeError

raised when you want to create a duplicate record.

two records are dup if zone, name, content, isp are all the same.

	
exception cloudns.base.RecordNotFound

	Bases: cloudns.base.CloudnsRuntimeError

	
exception cloudns.base.RecordNotReady

	Bases: cloudns.base.CloudnsRuntimeError

raised when you delete a record that is in PENDING_ACTIVE status.

record Module

defines the Record class

	
class cloudns.record.Record(**kwargs)

	Bases: object

a record is a simple object with these attribute:

	attr
	description

	rid
	record id

	type
	record type

	name
	DNS label

	content
	DNS value

	isp
	tel or uni for China Telecom and China Unicom

	ctime
	last modification timestamp

	z
	zone name

	ttl
	DNS TTL

	prio
	MX priority, default is 0

	status
	this is returned from server. 0 means PENDING_ACTIVE,
1 means ACTIVE, 2 means PENDING_REMOVAL.

It represents a record in cloudns system.

	
RESERVED_ATTRIBUTES = ('rid', 'name', 'type', 'content', 'isp', 'ctime', 'z', 'ttl', 'prio', 'status')

	

	
as_dict()

	

	
pretty_print()

	print record in a human readable format.

	
static pretty_print_status(status)

	

	
update(**kwargs)

	return a new Record with given values replaced.

	allowed keys:

	z, name, content, isp, type, ttl

rid is not allowed here, because it is used to locate which record to
update.

user Module

defines the User class

	
class cloudns.user.User(passport=None, token=None, api=None)

	Bases: object

a User in cloudns admin system.

A User can manage any zone or record it has permission with.

A User is identified by his/her passport and is authenticated by a token.

	
create_record(zone, name, content, isp, type='A', ttl=300)

	create a new record.

Note

Create duplicate record will result in DuplicateRecord raised.

	Args:

	zone: zone name
name: the host name (a label)
content: the value
isp: ‘tel’ for China Telecom, ‘uni’ for China Unicom
type: record type, could be ‘A’, ‘cname’ etc
ttl: time to live, cache/expiration duration in seconds

	
create_records(zone, records)

	add a list of records to given zone.

records example:

[{"type": "A",
 "name": "test1",
 "content": "1.2.3.4",
 "isp": "tel",
 "ttl": 300},
 {"type": "A",
 "name": "test1",
 "content": "1.2.3.4",
 "isp": "uni",
 "ttl": 300}]

	Args:

	
	records: a python object or a json string. In either case, it

	should be a list of objects with these keys: type, name,
content, isp, ttl.

	
create_zone(zone)

	create a zone.

	
delete_record_by_id(zone, rid, auto_retry=False)

	delete record by id.

if auto_retry is True, continue retry until delete is successful.

if given rid does not exist, py:class:cloudns.RecordNotFound will be
raised.

	
delete_records(rids)

	delete records matching given rids.

This differs from delete_record because it sends a single request to
remote server.

Delete a record that is in PENDING_ACTIVE status will raise
RecordNotReady exception. This is how the cloudns API works.

	Args:

	rids: an iterable of record ids or comma seperated ids.

	
delete_records_by_name(zone, name, auto_retry=False)

	delete all records that match exactly the given name in given zone.

If auto_retry is True, continue retry until delete is successful.

If given name does not match any record,
py:class:cloudns.RecordNotFound will be raised.

	
delete_zone(zone)

	delete a zone.

	
get_all_records(zone, offset=0, limit=20)

	get some/all records under this zone.

offset and limit has the same meaning as in MySQL’s select statement’s
limit clause. They are used to limit result to a subset.

If you don’t pass in offset and limit, default behavior is fetch first
20 records.

	Args:

	offset: return records from this index. index is 0-based.
limit: return this many records. set to -1 to get all records.

	Return:

	json response from server.

	
get_all_zones()

	return all zones current user has permission.

	
get_record_by_id(zone, rid)

	return one Record for given rid or raise RecordNotFound.

	
get_record_count(zone)

	return how many records is in given zone.

Note

you can not rely on this. Because user could have added or deleted
some records after you call this method.

	
get_records_by_name(zone, name)

	return a list of Records that exactly match given name.

	
get_zone(zone)

	return zone information for given zone.

	
get_zones(zones)

	return zone information for given zones.

	Args:

	zones: an iterable of zones, or comma separated zones as a string.

	
search_record(zone, keyword)

	return records that is in given zone and matches given keyword.

You can use * in keyword to match anything. You can use up to two * in
keyword. consecutive * is not allowed.

	Return:

	a list of Records.

	
update_record(record, auto_retry=False)

	update record by record.rid.

To update a record, first fetch a record with
get_records_by_name() or get_record_by_id(), then
call Record.update(), finally User.update_record()
or Zone.update_record().

Here is an example:

>>> old_record = zone.get_record_by_id(rid)
>>> new_record = old_record.update(content="1.2.3.4")
>>> zone.update_record(new_record)

	Args:

	record: update old record with record.rid to match this record.

	
update_record_raw(rid, zone, name, content, isp, type, ttl, auto_retry=False)

	update record with given rid.

You should usually use update_record() instead of this
method.

	
zone(zone)

	return a Zone object under this User.

Create a zone object and call methods on it so that you don’t have to
pass the zone parameter all the time.

	
cloudns.user.join_by_comma_maybe(obj)

	join an iterable maybe.

if obj is a string, do nothing.
if obj is an iterable, join it with u’,’.

zone Module

defines the Zone class.

	
class cloudns.zone.Zone(user, zone_name)

	Bases: object

a Zone can manage records in the zone easier than a User.

a Zone has a zone name (self.zone) and a binded user (self.user).

bulk create/delete records are not defined here, if you wish to use them,
please use User.create_records() and
User.delete_records().

	
create_record(name, content, isp, type='A', ttl=300)

	create a new record.

Note

Create duplicate record will result in DuplicateRecord raised.

	Args:

	name: the host name (a label)
content: the value
isp: ‘tel’ for China Telecom, ‘uni’ for China Unicom
type: record type, could be ‘A’, ‘cname’ etc
ttl: time to live, cache/expiration duration in seconds

	
static create_zone(passport, token, zone_name)

	

	
delete_record_by_id(rid, auto_retry=False)

	delete record by id.

if auto_retry is True, continue retry until delete is successful.

if given rid does not exist, cloudns.RecordNotFound will be
raised.

	
delete_records_by_name(name, auto_retry=False)

	delete all records that match exactly the given name in this zone.

If auto_retry is True, continue retry until delete is successful.

If given name does not match any record,
cloudns.RecordNotFound will be raised.

	
get_all_records(offset=0, limit=20)

	get all records under this zone.

offset and limit has the same meaning as in MySQL’s select statement’s
limit clause. They are used to limit result to a subset.

	Args:

	offset: return records from this index. index is 0-based.
limit: return this many records. set to -1 to get all records.

	Return:

	json response from server.

	
get_record_by_id(rid)

	return one Record for given rid.

raise RecordNotFound if record not found.

	
get_record_count()

	return how many records in this zone.

Note

you can not rely on this. Because user could have added or deleted
some records after you call this method.

	
get_records_by_name(name)

	return a list of Records that exactly match given name.

	
search_record(keyword)

	return records that is in this zone and matches given keyword.

You can use * in keyword to match anything. You can use up to two * in
keyword. consecutive * is not allowed.

	
update_record(record, auto_retry=False)

	update record by record.rid.

	Args:

	record: update old record with record.rid to match this record.

 Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	cloudns 1.1.0.1 documentation

cloudns command line program

Cloudns command line program is available in v1.1.1.0+. For quick start, see
https://pypi.python.org/pypi/cloudns

Authentication

cloudns requires a passport and a token for user authentication. To apply for
an account, please contact YY-game department.

There are a few ways to specify authentication information. The earlier ones
has higher priority, thus overwrite the later ones.

	command line arguments –passport –token

	options defined in config file that is specified by -f

	when -f is not used, options defined in default config file, which is
$HOME/.config/cloudns.conf

Config File Format

You can set passport and token in config file using A=B syntax. Other lines
are ignored. Note that config variable names must be upper case. The default
config file is $HOME/.config/cloudns.conf, you can overwrite this using the -f
option.

config file for cloudns shell program
PASSPORT=my_passport
TOKEN=my_token

Subcommand Reference

Here is a reference of all subcommands available.

Direct invocation

Check cloudns --help for options. These subcommands should be used after
all options.

	
create label content tel|uni [type [ttl]]

	Create a new record in DNS system.

	Label :	DNS label

	Content :	DNS value

	Isp :	tel for China Telcom, uni for China Unicom

	Type :	record type, default is A, could be CNAME

	Ttl :	DNS ttl in seconds, default is 300

	
search keyword

	Search existing record by keyword in label. if * is not used, search label
that contains the keyword. Otherwise, do shell glob like matching.

	Keyword :	a keyword in lable. You can use * to do fuzzy matching. for
example v*z

	
delete label

	Delete existing records that match exactly the given label.

	Lable :	the exact record label to delete

Interactive shell

Type help in interactive shell can get a reference of all commands.
Type help <subcommand> to get help on that command.

Here is the current list

	set_passport

	set_token

	set_zone

	info

	create

	search

	delete

	clear_cache

	exit/quit

create, search, delete has similar syntax and exactly the same semantics as
the direct invoke subcommands.

You can also exit the shell by pressing Ctrl-d.

 Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	cloudns 1.1.0.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cloudns	

 	
 	
 cloudns.__init__	

 	
 	
 cloudns.base	

 	
 	
 cloudns.record	

 	
 	
 cloudns.user	

 	
 	
 cloudns.zone	

 Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	cloudns 1.1.0.1 documentation

Index

 A
 | C
 | D
 | G
 | J
 | P
 | R
 | S
 | U
 | Z

A

 	

 	as_dict() (cloudns.record.Record method)

C

 	

 	cloudns.__init__ (module)

 	cloudns.base (module)

 	cloudns.record (module)

 	cloudns.user (module)

 	cloudns.zone (module)

 	CloudnsBadUsage

 	CloudnsError

 	

 	CloudnsRuntimeError

 	CloudnsServerError

 	CloudnsValidationError

 	create_record() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	create_records() (cloudns.user.User method)

 	create_zone() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone static method)

D

 	

 	delete_record_by_id() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	delete_records() (cloudns.user.User method)

 	delete_records_by_name() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	

 	delete_zone() (cloudns.user.User method)

 	DuplicateRecord

G

 	

 	get_all_records() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	get_all_zones() (cloudns.user.User method)

 	get_record_by_id() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	get_record_count() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	

 	get_records_by_name() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	get_zone() (cloudns.user.User method)

 	get_zones() (cloudns.user.User method)

J

 	

 	join_by_comma_maybe() (in module cloudns.user)

P

 	

 	pretty_print() (cloudns.record.Record method)

 	

 	pretty_print_status() (cloudns.record.Record static method)

R

 	

 	Record (class in cloudns.record)

 	RecordNotFound

 	

 	RecordNotReady

 	RESERVED_ATTRIBUTES (cloudns.record.Record attribute)

S

 	

 	search_record() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

U

 	

 	update() (cloudns.record.Record method)

 	update_record() (cloudns.user.User method)

 	

 	(cloudns.zone.Zone method)

 	

 	update_record_raw() (cloudns.user.User method)

 	User (class in cloudns.user)

Z

 	

 	Zone (class in cloudns.zone)

 	

 	zone() (cloudns.user.User method)

 Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		cloudns 1.1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		cloudns 1.1.0.1 documentation »

 All modules for which code is available

		cloudns.base

		cloudns.record

		cloudns.user

		cloudns.zone

 © Copyright 2013, Yuanle Song.
 Created using Sphinx 1.2b1.

