

 Navigation

 	
 index

 	
 next |

 	Cloudnode 1.2.0 documentation

Cloudnode Documentation

Deploy your Node.js applications using git and use our infrastructure to host your applications on specialized Virtual Node Machines.

[image: _images/cloudnode-logo2-light.png]
Getting Started

Cloudnode has many documents to help. To get started read the Quick Start Guide. Then browse and read the
documents on the left side.

Support

If you can’t find the resources you are looking for, or need any help, open a ticket from your
dashboard [https://cloudno.de/dashboard].

User’s Guide

These documents are also available as an eBook for your preferred reader:

	cloudnode.pdf [https://media.readthedocs.org/pdf/cloudnode/latest/cloudnode.pdf]— Cloudnode User’s Guide (latest build)

	cloudnode.epub [https://media.readthedocs.org/epub/cloudnode/latest/cloudnode.epub] — Cloudnode User’s Guide (latest build)

Contents:

	Quick Start Guide
	Create a new cloudnode app

	Initialize your local working copy

	Commit to your new app and deploy

	Hello World sample (server.js)

	Prerequisites
	Required Software

	Best Practices

	Read-only Filesystem

	Logs

	Dependency Management

	App Initialization

	Git

	Support Resources

	Cloudnode Command Line
	Installation

	Usage

	Cloudnode Developer Shell
	Getting Started

	Features

	Web preview

	Use Cases

	Node Package Manager

	API
	Status

	User

	App

	Apps

	Env

	NPM

	Appdomains - Add DNS A Record

	CLI Commands

	Git

	Git
	Cloudnode Remote

	Branches

	Special Directories

	Submodules

	Troubleshooting
	Login to the Cloudnode web site

	Using the API / CLI

	SSH issues

	Permission denied (publickey)

	Finding out what keys ssh is using

	SSH private key passphrases

	Analysing the application log files

	Cloudnode Community Channnel

	Open a ticket

	Node.js
	Preparing for deployment

	Deploying to Cloudnode

	Dependencies

	CouchDB
	CouchDB Administration

	CouchDB Credentials

	Usage Example

	MongoDB
	MongoDB Administration

	MongoDB Credentials

	MongoDB Backups

	Usage Example

	Redis
	Redis Administration

	Redis Authorization

	Redis Backups

	Usage Example

	SSL

	HTTP Caching
	Cache Invalidation

	Cache TTL Control

	Cloud Storage
	Special Directories

	Custom Domains
	Example CNAME Record

	Steps to activate a custom domain on Cloudnode

	Deploy Hooks

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Quick Start Guide

If this is your first time using Cloudnode, be sure to first install Git
and look over the platform prerequisites
before proceeding. Also, make sure you have a working Node.js installation,
otherwise any node commands listed below will not work.

	Create a new cloudnode app

	Initialize your local working copy

	Commit to your new app and deploy

Create a new cloudnode app

Go to My Apps [https://cloudno.de/myapps], click on New
Application and fill in the form. This will actually:

	Create a new sub-domain for your application

	Provision a virtual machine for your application

	Setup a git repository to hold your application code

Initialize your local working copy

Method 1:

Git is the only tool you need to push your app online. First clone the empty repository
that has been created in the last step. Lookup the HTTPS clone URL from the
application details and use Git to clone a local copy:

$ git clone https://git.cloudno.de/git/<user>/1924-b4..5f.git hello
Cloning into 'hello'...
Username for 'https://git.cloudno.de': <user>
Password for 'https://<user>@git.cloudno.de': <password>
warning: You appear to have cloned an empty repository.
Checking connectivity... done.

Note

Use your Cloudnode user name as <user> and your API key as <password>.
The API key is shown in your account details [https://cloudno.de/account?admin].

Once your local copy is setup, continue with Commit to your new app and deploy.

Method 2:

Use the command line client to setup your local working copy. If
this is the first time you are using the command line client make sure
to enter your credentials first, or you will get the error ERROR [HTTP
401] No authentication data sent. Details on installing and entering
the credentials can be found here.

Note

Important note for Windows users: The cloudnode app init command
is not yet supported. Please use method 1 to initialize your working copy.

$ cloudnode app init <app name>
cloudnode info initializing git repo for <app name> into folder <app name>
cloudnode info cloning the repo git clone cloudnode@git.cloudno.de:/git.. .git <app name>
cloudnode info clone complete
cloudnode info writing app data to config
cloudnode info writing app files
cloudnode info processing the initial commit
cloudnode info attemping to start the new app.
cloudnode info hello started.
cloudnode info Some helpful app commands:

 cd ./<app name>
 curl http://<app name>.cloudno.de/
 cloudnode app info
 cloudnode app logs
 cloudnode app stop|start|restart

This single command automates the following steps, which could also have
been executed instead:

	Create a local sub directory for the application

	Initialize a local repository (git init)

	Clone the empty repository from the remote origin URL (git clone ...)

	Create a sample server.js file with a simple Hello World
application

	Add the new file to the local repository (git add .)

	Commit the changes (git commit -m “Initial commit”)

	Push the changes live (git push origin master)

You can also launch the application locally to see if it works by
running node server.js and navigating to http://127.0.0.1:8080/ in
a web browser. Use any port number and IP address; they will be
transparently overridden when your app is deployed on Cloudnode.

Commit to your new app and deploy

To commit changes to your application use the normal git workflow:

	Edit your files (vi server.js)

	Stage the changes (git add .)

	Commit the changes (git commit -m “Change log”)

	Push the changes online (git push origin master)

Hello World sample (server.js)

//
// This simple web server written in Node responds with "Hello World" for every request.
//
var http = require('http');
var util = require('util');
var app_port = process.env.app_port || 8080;
var app_host = process.env.app_host || '127.0.0.1';

http.createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.write('Hello World from Cloudnode\n\n');
 res.end();
}).listen(app_port);
console.log('Web server running at http://' + app_host + ':' + app_port);

Package.json

Though not strictly required, it is a good idea to add a package.json file to your project.
Later when you are using pre-built modules like express, you can add these dependencies in
the corresponding section and the platform will use npm to add
those dependencies when deploying.

{
 "name": "helloworld",
 "version": "0.0.1",
 "private": true,
 "dependencies": {
 }
}

Commit the changes

$ git add .
$ git commit -m "Initial commit"
Created commit f57b7a0: Message change
1 files changed, 1 insertions(+), 1 deletions(-)

Push the changes online

$ git push origin master
Counting objects: 5, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 315 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
To cloudnode@git.cloudno.de:/git/hs/62-6f..71.git
 5f3a0f9..f57b7a0 master -> master
Syncing repo with your node VM
From /git/hs/62-6f..71.git/.
 5f3a0f9..f57b7a0 master -> origin/master
Updating 5f3a0f9..f57b7a0
Fast forward
 server.js | 2 +-
 1 files changed, 1 insertions(+), 1 deletions(-)

==== Compiling hello...
==== Restarting your app: hello
==== App restarted
==== App successfully deployed to http://hello.cloudno.de

 Finished.

Your new version is now deployed on Cloudnode and the application has
been restarted. You can see it running in your browser at the
.cloudno.de URL listed in the push output.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Prerequisites

Since Cloudnode is a cloud hosting environment, your app must conform to
a couple different requirements and prerequisites in order to run on it.
By following these best practices in app architecture and design, you
can ensure that your app will run well on the Cloudnode platform.

	Required Software

	Best Practices

	Read-only Filesystem

	Analysing the application log files

	Dependency Management

	App Initialization

	Git

Required Software

The workflow used to develop and deploy apps on Cloudnode depends on
Git, Node.js, npm and our command line client, which in fact is a node
app itself. The tools are available for all major OS’es. See the
following links

	git - http://git-scm.com/ - The distributed version control
system

	node.js - http://nodejs.org - The node server

	cloudnode (optional) - npm install cloudnode-cli -g - The Cloudnode command
line

Best Practices

Take care to keep the size of your app small.

Do not include large files (documents, media files, data files, etc.) in
your app. These should be hosted on an outside asset store such as
Amazon S3.

Only include modules that you will use.

Sensitive data and passwords

Make sure to keep sensitive data outside of your code. It is recommended
to store sensitive data using environment variables.

Read-only Filesystem

Cloudnode apps are not able to write to file filesystem in general.
However there are a couple special locations to which you can write
files.

Cloud storage (/mnt)

All Cloudnode apps have access to limited persistent file storage under
/mnt. Cloud storage is persistent between requests and app instances.

Cloud storage is designed to store files generated from within your app
(e.g. generated stylesheets or asset packages). See Cloud
Storage for details.

Temporary files (/tmp)

The /tmp directory in your app root is writeable (for files of
reasonable size), but anything written to it should not be expected to
endure over hours.

Logs

Logs on the Cloudnode platform should be considered transient. It is
possible to tail the last several 100 lines through the command line
or the dashboard.

See Troubleshooting for full details.

Dependency Management

If your app depends on any npm packages, they need to be installed into
your Node VM. The easiest way is to list them in the “package.json” file.
See Node package manager for details.

App Initialization

Node looks for a startup file normally called server.js to boot your
application. You can choose a different file and directory, when you
create the application. For details see the Cloudnode command
line.

Git

Git [http://git-scm.com] is the only way to push code to
Cloudnode for deployment. This means your app must be part of a Git
repository. You don’t necessarily need to use Git for version control
during development, but when it comes time to deploy to Cloudnode, your
app code does need to be committed to a Git repo.

Deployment is as easy as git push origin master. See the Quick
Start Guide for more details.

For additional help on using Git see the excellent help files at GitHub
especially the setup and troubleshooting guides when using ssh key and
key phrases: http://help.github.com/

Git Submodules

Git submodules are supported on the Cloudnode platform.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Support Resources

If you can’t find the information here you are looking for, use our
Slack Cloudnode Community Channel [https://slackin.cloudno.de/] to contact us
or the other users.

You can also use slack for technical questions or to showcase your
apps.

If you need further help, open a ticket from your
dashboard [https://cloudno.de/dashboard].

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Cloudnode Command Line

Current version: 0.2.23 (see also: how to update,
changelog)

The Cloudnode command line tool is an interface to the Cloudnode Web
API and includes support for creating apps, reading log files,
managing apps and user accounts, setting up domains, and configuring
apps.

The command line tool is itself a Node.js application the runs on the
client side. See the Prerequisites for details.

If you don’t want to install software on your local computer, use the
developer shell which comes pre-installed with the command line and many
more tools.

Installation

If you haven’t already done, sign up for a Cloudnode account. You will
need to enter your credentials into the command line tool to authorize
most of the requests.

The command line tool can be installed using
npm which also takes care to resolve
dependencies.

$ npm install cloudnode-cli

The above command does not require root rights and installs the tools in
your home directory. Make sure that your PATH includes
~/node_modules/.bin If you are root you can install the tools globally
using the -g flag.

Usage

After having installed the client, enter your credentials. This needs to
be done only once. The user name is the same as in your Cloudnode name, the
password is the API key shown on your account
page [https://cloudno.de/account?admin].

$ cloudnode user setup <username> <password>

cloudnode info verifying credentials
cloudnode info user verified..
cloudnode info writing user data to config

Now start the client by typing “cloudnode”. It will show a list of the
available commands.

$ cloudnode

cloudnode info showing all available sub commands
cloudnode status
cloudnode coupon
cloudnode apps
cloudnode app
cloudnode user
cloudnode appdomain
cloudnode domain
cloudnode npm
cloudnode appnpm
cloudnode info For more help, type cloudnode help <command>

The commands are divided into three types: general commands, user and
app commands.

General Commands

The status command checks the platform status and displays the number of
hosted and running applications.

$ cloudnode status

The apps command displays all your applications together with their port
and running status.

$ cloudnode apps

User Commands

Type “cloudnode user” to get an overview of the commands in this
category:

$ cloudnode user
cloudnode user register <coupon-code> - Register a user
cloudnode user setup <username> <password> - Setup this user
cloudnode user setpass <password>
 - Set a new password for this user
cloudnode user setkey </path/to/sshkey>
 - Set an sshkey (if no argument, ~/.ssh/id_rsa.pub is used)
cloudnode user create <username> <password> <email address>
 <file containing ssh public key> <coupon code> - Create a user

App Commands

Type “cloudnode app” to get an overview of the commands in this
category:

$ cloudnode app
cloudnode <appname> is not required if inside an app directory after you call setup
cloudnode app setup <appname> - Configure this app for future app commands
cloudnode app info <appname> - Returns app specific information
cloudnode app logs <appname> - Returns app logs
cloudnode app stop|start|restart <appname> - Controls app status.
cloudnode app create <appname> <startfile>
 - Creates a new app named <appname>, <startfile> is optional.
cloudnode app init <appname> - Fetches the remote repo and sets it up.
cloudnode app clone <appname> - Fetches the remote repo.

NPM Commands

Type “cloudnode npm” or “cloudnode appnpm” to get an overview of the
commands in this category:

$ cloudnode npm
cloudnode All arguments after install|update|uninstall will be sent to npm as packages.
cloudnode npm install <packages> - Installs the list of specified packages to this app.
cloudnode npm update <packages> - Update the list of specified packages to this app.
cloudnode npm uninstall <packages> - Removes the list of specified packages to this app.

Because every node application is running in its own virtual machine,
you need to install every module you application depends on.

Domain Commands

The domain command are used to setup and manage custom domains for you
appications. See the Custom Domains chapter for
additional information on this.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Cloudnode Developer Shell

The Developer Shell provides you with command-line access using computing
resources hosted on the Cloudnode platform. It makes it easy for you to
manage your projects from your browser without the need to install the
Cloudnode Command Line and other tools locally
on your system. All tools are always available when you need them.

	Getting Started

	Features

	Use Cases

You can also use the Developer Shell to perform tasks which would normally require a Linux
machine even if you are running a PC or another device.

Note

This is a Beta feature that is not covered by a SLA and may be subject to changes.

Getting Started

To open the Developer Shell navigate to your Dashboard > Applications
page. Slide the Shell window open by dragging from the bottom or by
using the window controls. Click the center button called “Activate
Cloudnode Developer Shell”.

This will:

	Provision a virtual compute instance

	Open a terminal window in the browser

	Mount your persistent /home drive

	Mount your managed /app device (readonly)

Features

Developer Shell has the following features:

	An ephemeral virtual machine instance

	Terminal access from a web browser

	5 GB persistent disk storage

	Preinstalled Cloudnode CLI and other tools (node, git, docker, ...)

	Language support for Javascript, Python, C and C++

	Web preview functionality

	Read-only access to all your managed apps running on the platform

Virtual machine instance

When you launch Developer Shell the platform provisions a docker-based
compute instance running an Ubuntu 14.04 LTS Linux operating system. Shell
instances persist while your Shell session is active and terminate after
a hour of inactivity.

Command-line access

The Developer Shell provides command-line access to the virtual machine
instance in a browser-based terminal window. You can open multiple sessions
to the same instance.

Persistent disk storage

Developer Shell provisions 5GB of persistent disk storage mounted as your
$HOME directory. This storage will unlike the instance itself not time out
on inactivity. All your files stored in your home directory, including projects,
scripts annd configuration files like .bashrc, .cloudnoderc and .vimrc persist
between sessions. Your $HOME directory is private to you and cannot be addressed
by other users.

Installed software

The virtual machine comes with the following pre-installed tools.

	Type
	Installed

	Shell
	bash, sh

	Linux Utilites
	Standard Ubuntu Utilities

	Editors
	vi(m), mc

	Build Tools
	make, npm, nvm

	Compilers
	Python 2.7, Node.js 0.12.9 and 4.2.4, gcc 4.8.4

	Source Control
	git 1.9.1

	Additional Tools
	Docker 1.9.1, Cloudnode-cli 0.2.23, redis-cli 2.8.4, mongo 3.0.8

Additional software can be installed as Docker containers or using apt. We will also
add tools you are missing to the base images upon request. We welcome your feeedback.

Web preview

Developer Shell provides web preview functionality that allows you to run web
applications on the virtual machine instance and preview them from anywhere.
The web applications must listen for HTTP requests on port 8080.

To connect to a web application running on an instance, click the Web Preview
Button above the Developer Shell terminal window. This opens a preview URL on
the Developer Shell proxy service in a new browser window. You can share this
URL for collaboration and demostration puposes. Keep in mind that the service
runs on a ephemeral instance and will only be running for 48 hours if not
stopped before.

Use Cases

	Manage your applications using the Cloudnode CLI

	Manage your Git repositories

	Inspect you managed apps, view full log files

	Manage, import and export your Redis and MongoDB databases

	Checkout your apps, make changes and commit, all from your browser

	Run a preview of your apps

	Build and run Docker containers

	Checkout from and commit to Docker registries from your browser

	Work from wherever you are

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Node Package Manager

Current version: npm 1.4.9 (see also: how to update,
changelog)

Cloudnode uses npm [http://npmjs.org/] for dependency management.
For an introduction and additional information see the Author’s
article on How To
Node [http://howtonode.org/introduction-to-npm]. If you need more
specific information, the best place to look is npm’s help system
itself, which is very extensive. Just use npm help .

When you application depends on some other modules use the Cloudnode
command line to install the required packages into your VM. Additional
dependencies wil be resolved by npm. If your application requires for
instance express, run the following command:

$ cloudnode npm install express

All arguments after install will be sent to npm as package names. You
can also use the npm command to update and uninstall packages. To get an
overview of all npm commands run “cloudnode npm”:

$ cloudnode npm
cloudnode All arguments after install|update|uninstall will be sent to npm as packages.
cloudnode npm list - Lists the installed npm packages for this app.
cloudnode npm install <packages> - Installs the list of specified packages to this app.
cloudnode npm update <packages> - Update the list of specified packages to this app.
cloudnode npm uninstall <packages> - Removes the list of specified packages to this app.

Remember that each application runs in its own isolated environment. You
need to handle dependencies for each application individually. When you
want to share program code among your applications and that code might
also be useful for other node users, consider to publish your own npm
package.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

API

Cloudnode is build on a RESTful API that allows to execute all commands
from the web frontend, the command line tool or a future client-side
app.

We are currently running the “stable” version of Node.js v0.10.35 and we
support Node.js VMs, we call Cloudnode machines. This means that you can
install your own NPM modules. Git is required to push updates to your
Cloudnode machine. The following API calls are defined:

	Status

	User

	App

	Apps

	Env

	NPM

	Appdomains - Add DNS A Record

	CLI Commands

	Git

Status

Get Status :: GET

/status - Returns platform status and number of apps running

$ curl https://cloudno.de/status

User

Register User :: POST (Coupon is required.)

/user - creates user account (pass in user and password and email
and id_rsa.pub string) Ensure that all + in the ssh key are
substituted for their %2B counter parts, else your key will break.
Run this on your command line to copy your RSA string and swap out
the plus signs: "cat ~/.ssh/id_rsa.pub \| sed s/'+'/'%2B'/g \|
pbcopy"

$ curl -X POST -d "user=testuser&password=123& \
 email=chris@cloudno.de&rsakey=ssh-rsa AAAAB3NzaC1yc..." https://cloudno.de/user

Update User :: PUT

/user - update user account (pass in password and/or RSA key - "cat
~/.ssh/id_rsa.pub \| sed s/'+'/'%2B'/g \| pbcopy")

$ curl -X PUT -u "testuser:123" -d "password=test" https://api.cloudno.de/user
$ curl -X PUT -u "testuser:123" -d "rsakey=1234567" https://api.cloudno.de/user

Delete User :: DELETE

/user - delete user account (requires basic auth)

$ curl -X DELETE -u "testuser:123" https://api.cloudno.de/user

App

Create Application :: POST

/app - create nodejs app for hosting (requires basic auth and
returns the port address required for use along with a git repo to
push to)

$ curl -X POST -u "testuser:123" -d "appname=a&start=hello.js" https://api.cloudno.de/app

Change Application :: PUT

/app - update starting app name (requires basic auth, appname, and
starting page and returns the port address required for use along
with a git repo to push to and running status of the app)

$ curl -X PUT -u "testuser:123" -d "appname=a&start=hello1.js" https://api.cloudno.de/app

Start/Stop Application :: POST

/app - start and stop your hosted nodejs app (requires basic auth,
appname, and running=true\|false and returns the port address
required for use along with a git repo to push to)

$ curl -X PUT -u "testuser:123" -d "appname=a&running=true" https://api.cloudno.de/app

Delete Application :: DELETE

/app - delete nodejs app (requires basic auth and appname)

$ curl -X DELETE -u "testuser:123" -d "appname=test" https://api.cloudno.de/app

Application Information :: GET

/app/ - get nodejs app info (requires basic auth and appname)

$ curl -u "testuser:123" https://api.cloudno.de/app/appname

Apps

All Applications Information :: GET

/apps - get all nodejs app info(requires basic auth)

$ curl -u "testuser:123" https://api.cloudno.de/apps

Env

Create/Update Environment :: PUT

/env - create/update environment key/value pair (requires basic
authentication, appname and key/value)

$ curl -X PUT -u "testuser:123" -d "appname=test&key=color&value=red" https://api.cloudno.de/env

Delete Environment :: DELETE

/env - delete environment key/value pair (requires basic
authentication, appname and key/value)

$ curl -X DELETE -u "testuser:123" -d "appname=test&key=color" https://api.cloudno.de/env

Get Environment :: GET

/env - get all environment key/value pairs (requires basic
authentication and appname)

$ curl -u "testuser:123" https://api.cloudno.de/env/test

NPM

Install/Upgrade/Uninstall NPM Packages :: POST

/npm - Allows you to manage the NPM packages for an application.

$ curl -X POST -u "testuser:123" -d "appname=a&action=install&package=express" \
 https://api.cloudno.de/npm

$ curl -X POST -u "testuser:123" -d "appname=a&action=update&package=express" \
 https://api.cloudno.de/npm

$ curl -X POST -u "testuser:123" -d "appname=a&action=uninstall&package=express" \
 https://api.cloudno.de/npm

Appdomains - Add DNS A Record

Create Application Domain :: POST

/appdomains - create app domain for hosting example.com (requires
basic auth)

$ curl -X POST -u "testuser:123" -d "appname=test&domain=example.com" \
 https://api.cloudno.de/appdomains

Delete Application Domain :: DELETE

/appdomains - delete app domain for hosting example.com (requires
basic auth)

$ curl -X DELETE -u "testuser:123" -d "appname=test&domain=example.com" \
 https://api.cloudno.de/appdomains

Application Domain Information :: GET

/appdomains - get list of your domains (requires basic auth)

$ curl -u "testuser:123" https://api.cloudno.de/appdomains

CLI Commands

You can install our Command Line Interface by running “npm install
cloudnode-cli”

cloudnode <command> <param1> <param2>

Commands are:

$ cloudnode coupon <email address>
$ cloudnode user create <username> <password> <email address> \
 <file containing ssh public key> <coupon code>
$ cloudnode user setup <username> <password>

The commands below require you to have run ‘user setup’ before:

$ cloudnode user setpass <new password>

You should run user setup after running setpass.

$ cloudnode user setkey <file containing ssh public key>
$ cloudnode apps list
$ cloudnode app create <app-name> <initial js file>
$ cloudnode app info <app-name>
$ cloudnode app logs <app-name>
$ cloudnode app start <app-name>
$ cloudnode app restart <app-name>
$ cloudnode app stop <app-name>
$ cloudnode app gitreset <app-name>
$ cloudnode npm install <app-name> <package name>
$ cloudnode npm upgrade <app-name> <package name>
$ cloudnode npm uninstall <app-name> <package name>
$ cloudnode appdomain add <app-name> <domain-name>
$ cloudnode appdomain delete <app-name> <domain-name>
$ cloudnode appdomains

Git

Deploying and updating your Node.js application is simple.

$ curl -X POST -u "testuser:123" -d "appname=myapp&start=hello.js" \
 https://api.cloudno.de/app

Upon creating or changing your application via our API, you will receive
a Git repo URL from our API response. Add a Cloudnode remote to your
project as follows:

$ git remote add cloudnode the_url_returned_by_our_api

Finally push your updates to your new Cloudnode environment as follows:

$ git push cloudnode master

Start your application.

$ curl -X PUT -u "testuser:123" -d "appname=myapp&running=true" \
 https://api.cloudno.de/app

Visit your application via http://myapp.cloudno.de

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Git

Git is a distributed version control system. Each application on
Cloudnode has its own repository. On every push command the Node VM is
updated with the latest version of your application. An automatic
restart ensures that the most recent version goes live after the push
command completes.

	Cloudnode Remote

	Branches

	Special Directories

	Submodules

Cloudnode Remote

When creating a new Cloudnode app with the command line client, a Git
remote pointing to Cloudnode is automatically configured. If you wish to
configure the remote manually or re-add the remote under a different
name, you can use the Git remote command. The remote repository URL (SSH or HTTPS)
is displayed in the application details.

$ git remote add cloudnode https://git.cloudno.de/demoapp.git

In this example Cloudnode (the third argument to git) is the name of the
remote and demoapp should be replaced with your app name.

Branches

Cloudnode will ignore branches other than master if they are pushed.
Only the master branch is used for deployment.

You can, of course, push any local branch to the master branch of the
Cloudnode remote. The syntax for that is:

$ git push cloudnode demobranch:master

In this example Cloudnode (the second argument to git) is the name of
the remote and demobranch is the name of the local branch being deployed
to Cloudnode.

Special Directories

A couple directories are handled specially by the Cloudnode app compiler
when receiving your app code. The following directories will be ignored
if they exist in your Git repository, so they can be used by the
platform for special purposes:

/mnt - Used for mounting your app’s Cloud Storage.

/log - Used for log collection. See Logging for details and usage.

/tmp - Writeable directory available for transient file storage. See Platform Prerequisites for
details and usage.

Submodules

Git submodules are supported on the Cloudnode platform.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Troubleshooting

If you need help with your login or with creating / updating your
application, please see the following guides:

	Login to the Cloudnode web site

	Using the API / CLI

	SSH issues

	Analysing the application log files

Login to the Cloudnode web site

With Cloudnode you don’t need to remember passwords, nor you need to
worry about leaked or hacked passwords, because we simply don’t use
passwords and rely on OpenID / OAuth instead. Use your existing account
at one of the supported providers to login into our web site.

Using the API / CLI

The API uses basic authentication over a secure SSL connection. We plan
to change this as soon as the Nodester platform supports OAuth. The user
name is the same as in your Cloudnode name. Instead of a password an API key is
used. The API key is maintained by the platform and is shown on your
account [https://cloudno.de/account?admin] page. You need to
create at least one application to get access to your API key.

To test the platform and the physical connection, use the status
command:

$ cloudnode status
cloudnode info checking api status for: api.cloudno.de
cloudnode info using secure connection
cloudnode info status up
cloudnode info appshosted 23
cloudnode info appsrunning 13

This ensures, that the platform is up and running and that you can open
a secure connection to it.

The next step is to check your credentials by running a command, that
requires authentication.

$ cloudnode apps
cloudnode info hello on port 8062 running: empty

This command will list all your applications. If you get an ERROR
instead, setup the cloudnode client with your user name and API key as a
password.

$ cloudnode user setup <user name> <api key>
cloudnode info verifying credentials
cloudnode info user verified..
cloudnode info writing user data to config

You are now ready to use the command line tool.

SSH issues

If you have SSH issues, you may consider to use Git over HTTPS, which is easier to use.

If you want to use SSH, make sure that you have uploaded your public SSH key to your
account [https://cloudno.de/account?ssh]. Compare the fingerprint
that is displayed on your account page with the one displayed when
running the following command on your local computer:

$ ssh-keygen -l -f .ssh/id_rsa.pub

2048 ab:f2:46:70:30:48:31:05:79:e2:eb:f5:95:38:08:50 .ssh/id_rsa.pub

If you have problems with your SSH key being accepted, make sure that
there are no line breaks in the file. The block should start with
the ssh- identifier followed by the basse64 encoded key block and an
email address or other identifier like in the following sample:

With your SSH key on file, you can create your first application. The
ssh connection will not work, until you have created an application.

After your first app is created, the next step is testing your
connection by running ssh cloudnode@git.cloudno.de. If your key works,
you should get a success message:

$ ssh cloudnode@git.cloudno.de

Hi <user>! You've successfully authenticated, but Cloudnode does not provide shell access.
Connection to git.cloudno.de closed.

Permission denied (publickey)

This is usually caused when ssh cannot find your keys. Make sure your
key is in the default location, ~/.ssh. If you run ssh-keygen again
and just press enter at all 3 prompts it will be placed here
automatically. Then you can add the contents of id_rsa.pub to your
account.

Finding out what keys ssh is using

Finding what keys ssh is offering to the server is fairly simple. Run
ssh -vT cloudnode@git.cloudno.de and look at the output:

debug1: Authentications that can continue: publickey
debug1: Next authentication method: publickey
debug1: Trying private key: /home/user/.ssh/id_rsa
debug1: Trying private key: /home/user/.ssh/id_dsa
debug1: No more authentication methods to try.
Permission denied (publickey).

SSH private key passphrases

Using a private key without a passphrase is basically the same as
writing down that random password in a file on your computer. Anyone who
gains access to your drive has gained access to every system you use
that key with. The solution is obvious, add a passphrase.

$ ssh-keygen -p
Enter file in which the key is (/home/user/.ssh/id_rsa):
Key has comment '/home/user/.ssh/id_rsa'
Enter new passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved with the new passphrase.

When you use a passphrase protected key, you need to add it to your
ssh-agent. It stores it securely and you don’t have to reenter your
passphrase. The use of the agent is mandatory, as on most systems git
eats stdin and you won’t be able to type in your passphrase during git
operations.

Analysing the application log files

Whenever your application throws an exception, it will be logged to you
applications’s main log file. You can also use the console.log()
instruction to write to that file.

You can view the log file from the “My Apps” management page. You can
also use the command line to tail your application log file. Run the
“cloudnode app logs” command from your application directory.

$ cloudnode app logs

cloudnode info Checking config..
cloudnode info Munging require paths..
cloudnode info Globallizing Buffer
cloudnode info Reading file...
cloudnode info Cloudnode wrapped script starting (32623) at Wed, 06 Apr 2011 23:17:40 GMT
cloudnode info [INFO] You asked to listen on port 8080 but cloudnode will use port 8007 instead..
cloudnode info Server running
cloudnode info

Cloudnode Community Channnel

For additional help visit the Cloudnode Community
Slack Channel [https://slackin.cloudno.de/].

Open a ticket

If you are not finding what you are looking for, open a ticket from your dashboard and we will help you.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Node.js

Current versions: 0.12, 4.x, 5.x (01/01/16)

Node.js is a non-blocking, evented I/O framework using the V8 JavaScript
engine.

We host Node.js applications in their own VMs, which we call Node
Machines. Cloudnode is based on the Nodester platform. During the beta
stage, we may need to shut the service down for upgrades or service
without notice. You should join our community
channel [https://slackin.cloudno.de/] to share any feedback
and get important announcements that can affect running apps.

	Preparing for deployment

	Deploying to Cloudnode

	Dependencies

Preparing for deployment

You can name the main file of your app like you want. Just make sure to
specify that name, when you use the “create app” command. You can also
specify any port you like as parameter to the listen function (in this
sample port 8124). The platform will transparently override the
parameter with the port of your Node VM which is in effect.

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

Whenever a port needs to be specified as a parameter for other function
calls, use the environment variable “app_port” to use the port in use
by your Node VM like in the following example:

var webrepl = require('webrepl');
var port = process.env["app_port"];

webrepl.start(port);
console.log("Web repl started (Listening on port " + port + ")");

Deploying to Cloudnode

To create an app with the the Cloudnode command line use the following
command:

$ cloudnode app create <appname> <startfile>
 - Creates a new app named <appname>, <startfile> is optional

Deployment is done with every Git push command. Additionally the
application is restarted to activate the changes introduced with the push
command.

Dependencies

When your repository includes sub modules, these are also pushed to the
Node Machine.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

CouchDB

The Cloudnode platform offers a CouchDB database option to store
persistent data. The database is connected through a fast local network.
We also provide a SSL secured remote connection, which can be used to
access the database remotely or for replication.

CouchDB Administration

The “Databases” tab lists your databases. From here you can also
create new databases, delete existing database or manage your databases
using the Futon Web GUI. You can add sharing rules and manage your map
reduce functions. Clicking on a database name opens the database detail
page, where you find your API key and URLs to externally access you
database.

CouchDB Credentials

Your app’s environment is populated with variables that contain all data
to access the CouchDB. To do so select the CouchDB during application
creation. The environment will receive the follow variables:

	“DBHOST”=”ip address”

	“DBUSER”=”CouchDB user name”

	“DBPWD”=”CouchDB password” (also called CouchDB apikey)

You can check these values from the “Manage App” screen by clicking “Get
Env”.

Usage Example

We plan to provide example apps that demonstrate how to use Node.js and
CouchDB. We are currently preferring cradle to access CouchDB. Cradle
can be installed using npm. For details on using npm with your Node VM
see Node package manager.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

MongoDB

The Cloudnode platform offers a MongoDB database option to store
persistent data. The database is connected through a fast local network.
We also provide access to the Mongo shell and tools through the
Developer Shell.

MongoDB Administration

The “Databases” tab lists your databases. From here you can also
create new databases, delete existing database or manage your databases
using the Web GUI. Clicking on a database name opens the database detail
page, where you find your API key and URL to connect internally to your
database from your apps. You can also view database and collection metrics.

MongoDB Credentials

Your app’s environment is populated with variables that contain all data
to access the database. To do so, select the MongoDB during application
creation. The environment will receive the follow variables:

	“DBHOST”=”MongoDB host name”

	“DBUSER”=”MongoDB user name”

	“DBPWD”=”MongoDB password” (also called MongoDB apikey)

You can check these values from the “Manage App” screen by clicking “Get
Env”. You are the owner of the database. You can create additional users
and admins using the mongo shell or programmatically from your app.

MongoDB Backups

Every database running on the Cloudnode platform is backed up on a daily basis.
The backup are stored for at least 14 days. You can download your backups
from the database details page and store them in another safe place.

Usage Example

We plan to provide example apps that demonstrate how to use Node.js and
MongoDB. We are currently preferring mongoose [http://mongoosejs.com/] to access MongoDB.
Mongoose can be installed using npm. For details on using npm with your Node VM
see Node package manager.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Redis

The Cloudnode platform offers fully managed, hosted Redis instances for
your Node.js apps. Redis [http://redis.io] is an open source,
advanced key-value store. It works out-of-the-box with Express and many
other Node.js apps and modules. The database instances are on a fast
local network connection and offer superior speed compared to other
hosted solutions.

Redis Administration

The “My Databases” tab lists your databases. From here you can also
control your instances, create new Redis instances and delete existing
ones. Clicking on a database name opens the detail page, where you find
your authorization code and port number to access the Redis instance.
From here you can also access log and configuration files and manage the
instance.

Redis Authorization

Your app’s environment is populated with variables that contain all data
needed to access the Redis Database. Tot do so select the Redis database
during application creation. The environment will receive the following
variables:

	redis_host=”host name”

	redis_port=”port number”

	redis_auth=”autorization code”

You can check these values from the “Manage App” screen by clicking “Get
Env”.

Redis Backups

Every database running on the Cloudnode platform is backed up on a daily basis.
The backup are stored for at least 14 days. You can download your backups
from the database details page and store them in another safe place.

Usage Example

The preferred client package to access Redis is
node_redis [https://github.com/mranney/node_redis] by mranney.
It comes with docs and samples.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

SSL

Secure Sockets Layer is a protocol to encrypt traffic over the internet.
We support SSL to access all sites including the API. To access the API use the
following URL:

https://api.cloudno.de/

We also support SSL for every hosted application on a paid plan. When SSL is
enabled, the application can be accessed by using HTTPS, e.g., https://<appname>.cloudno.de.

Our service also includes SSL endpoints for applications running on a custom domain. In this
case obtain a certificate for your domain and upload it to our load balancers through the
application detail page. Once installed the complete traffic of your application is encrypted.

We encourage to use SSL for every application and therefor don’t bill anything extra for the use
of SSL. We are able to offer this free service, because we use SNI, which doesn’t require an extra
IP address for every application. SNI is nowadays supported on all modern OSes and browsers,
including those on mobile.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

HTTP Caching

All hosted applications leverage HTTP caching on Cloudnode. We are using
HTTP acceleration when suitable to improve the performance.

Cache Invalidation

The biggest challenge when using caching is the control of the cache TTL
and cache invalidation. The cache server only delivers a cached asset, when it is
absolutely safe to do so. The URL and all parameters have to match for a
cache hit. An application can control caching in different ways. Per
default no caching takes place, but you should decide which pages or
parts of your app could benefit from caching. Your application’s
response time will improve dramatically when you take the advantage of
caching.

Cache TTL Control

Every application that is hosted on Cloudnode, even when running on a
custom domain, leverages the caching layer. The time to live, or TTL,
can easily be controlled using Node’s response.setCacheable() call. By
default, pages are not cached. When set to true, pages are cached for a
long time, a perfect choice for pictures and other static content. When
set to undefined, the cache headers need to be supplied by the
application. This option allows custom control of the cache TTL times.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Cloud Storage

Every application on Cloudnode runs in a virtual
machine with its own disk storage. The disk holds a full
checkout of the application’s Git repository. So you have
access to modules, sub-modules and static resources, you have checked in.
The disk also holds all Node modules you have installed using the
npm command or through dependencies in the application’s
package.json descriptor. The VM contains also a minimum set of directories
to get Linux running like /etc.

Special Directories

You should not assume, that there is write access to the disk except to
the /mnt and /tmp directories. Your application can use these
directories to store dynamic data. As the names suggest, /tmp can be
used to store volatile files and /mnt can be used to store permanent
files. These will always “follow” your application and will be mounted at
/mnt.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Cloudnode 1.2.0 documentation

Custom Domains

Cloudnode allows you to have applications written and hosted on Cloudnode
respond to requests from your own domain names. For example, if you own
the domain hardtoremember.com and the application
hardtoremember.cloudno.de, then you can configure things such that
visitors to hardtoremember.com are served by the Node app. The app is still
created and hosted on Cloudnode servers.

To accomplish this, you need to:

	Own a domain.

	Configure it to point to the Cloudnode platform.

To own a domain, you can use any popular registrar service such as
GoDaddy or EasyDNS. To configure it to point to the Cloudnode platform,
you need to create a “CNAME” record. See instructions for how to do this
with GoDaddy or with EasyDNS.

DNS can be tricky, so if you need help, just ask in the Cloudnode group.

Example CNAME Record

www.example.com. CNAME example.cloudno.de

Make sure to use the symbolic name and not an IP address, because IP
addresses are changing.

Steps to activate a custom domain on Cloudnode

Custom domains are added as routes to you application using the
Cloudnode command line. To add the domain
www.example.com to your application:

	Go to your configured application directory

	Run the following command line:

$ cloudnode appdomain add www.example.com

After these steps your application should be reachable under the URL
http://www.example.com.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	
 previous |

 	Cloudnode 1.2.0 documentation

Deploy Hooks

Deploy hooks are used internally on Cloudnode to checkout the latest
version into your Node VM. They are currently not supported for custom
actions.

 Copyright 2016, Cloudnode.

 Navigation

 	
 index

 	Cloudnode 1.2.0 documentation

Index

 Copyright 2016, Cloudnode.

 _static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

README.html

 Navigation

 		
 index

 		Cloudnode 1.2.0 documentation »

Cloudnode Docs

[image: Documentation Status] [https://readthedocs.org/projects/cloudnode/]

Purpose

Read the Docs [http://readthedocs.org/] hosts the Cloudnode documentation which is built from this Git [http://git-scm.com/] repository.
All documents are written in reStructuredText [http://sphinx.pocoo.org/rest.html] and are being processed with Sphinx [http://sphinx.pocoo.org/].

Documentation for Cloudnode

You will find here the complete documentation for the Cloudnode site [https://docs.cloudno.de].

 © Copyright 2016, Cloudnode.

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/cloudnode-logo2-light.png
) node

_static/cloudnode-logo2-light.png
) node

_static/ajax-loader.gif

_static/logo.png

_static/comment-bright.png

_static/file.png

_static/up.png

