

Welcome to CGRateS’s documentation!

Full contents:

	1. Introduction
	1.1. CGRateS Features

	1.2. Links

	1.3. License

	2. Architecture
	2.1. cgr-engine

	2.2. cgr-loader

	2.3. cgr-console

	2.4. cgr-tester

	2.5. cgr-migrator

	3. Installation
	3.1. Using packages

	3.2. Using source

	3.3. Post-install

	4. Configuration
	4.1. cgr-engine configuration file

	4.2. Tariff Plans

	5. Administration

	6. Advanced Topics
	API Calls

	CDR Server

	CDR Client (cdrc)

	CDR Exporter

	CDR Stats Server

	DerivedCharging

	Rating logic

	FilterS

	7. Tutorials
	Asterisk Integration Tutorials

	FreeSWITCH Integration Tutorials

	Kamailio Integration Tutorials

	OpenSIPS Integration Tutorials

	8. Miscellaneous
	8.1. FreeSWITCH integration

1. Introduction

CGRateS [http://cgrates.org] is a very fast and easily scalable (charging, rating, accounting, lcr, mediation, billing, authorization) ENGINE targeted especially for ISPs and Telecom Operators.

It is written in Go [http://golang.org] programming language and is accessible from any programming language via JSON RPC.
The code is well documented (go doc compliant API docs [https://godoc.org/github.com/cgrates/cgrates/apier]) and heavily tested. (also 1300+ tests are part of the build system).

After testing various databases like Kyoto Cabinet [http://fallabs.com/kyotocabinet], Apache Cassandra [http://cassandra.apache.org], Redis [http://redis.io] and MongoDB [http://www.mongodb.org],
the project focused on Redis as it delivers the best trade-off between speed, configuration and scalability.

Important

MongoDB [http://www.mongodb.org] full support is now added.

Thanks to CGRateS flexibility, connection to any database can be easily integrated by writing a simple adapter.

To better understand the CGRateS architecture, below are some logical configurations in which CGRateS can operate:

Note

RALs - is a CGRateS component and stands for RatingAccountingLCR service.

[image: _images/Simple.png]
This scenario fits most of the simple installations.

[image: _images/Normal.png]
While the network grows more RALs can be thrown into the stack to offer more requests per seconds workload.
This implies the usage of the Balancer to distribute the requests to the RALs running on the different machines.

[image: _images/Normal_ha.png]
Without Balancer using HA (broadcast) ….

[image: _images/Complicated.png]
Of course more SessionManagers can serve multiple Telecom Switches and all of them are connected to the same Balancer.

[image: _images/Complicated_ha.png]
Without Balancer using HA (broadcast) ….

Note

We are planning to support multiple Balancers for huge networks if the need arises.

1.1. CGRateS Features

	
	Reliable and Fast (very fast ;)). To get an idea about speed, we have benchmarked 13000+ req/sec on a rather modest machine without requiring special tweaks in the kernel.

	
	Using most modern programming concepts like multiprocessor support, asynchronous code execution within microthreads.

	Built-in data caching system per call duration.

	In-Memory database with persistence over restarts.

	Use of Linux enterprise ready tools to assure High-Availability of the Balancer where that is required (Supervise for Application level availability and LinuxHA for Host level availability).

	High-Availability of main components is now part of CGRateS core.

	
	Modular architecture

	
	Easy to enhance functionality by writing custom session managers or mediators.

	Flexible API accessible via both Gob (Golang specific, increased performance) or JSON (platform independent, universally accessible).

	
	Prepaid, Postpaid and Pseudo-Prepaid Controller.

	
	Mutiple Primary Balances per Account (eg: MONETARY, SMS, INTERNET_MINUTES, INTERNET_TRAFFIC).

	Multiple Auxiliary Balances per Account (eg: Free Minutes per Destination, Volume Rates, Volume Discounts).

	Concurrent sessions per account sharing the same balance with configurable debit interval (starting with 1 second).

	Built-in Task-Scheduler supporting both one-time as well as recurrent actions (eg: TOPUP_MINUTES_PER_DESTINATION, DEBIT_MONETARY, RESET_BALANCE).

	ActionTriggers (useful for commercial offerings like receive amounts of monetary units if a specified number of minutes was charged in a month).

	
	Highly configurable Rating.

	
	Connect Fees.

	Priced Units definition.

	Rate increments.

	Millisecond timestaps.

	Four decimal currencies.

	Multiple TypeOfRecord rating (eg: standard vs. premium calls, SMSes, Internet Traffic).

	Rating subject concatenations for combined records (eg: location based rating for same user).

	Recurrent rates definition (per year, month, day, dayOfWeek, time).

	Rating Profiles activation times (eg: rates becoming active at specific time in the future).

	Multi-Tenant for both Prepaid as well as Rating.

	Flexible Mediator able to run multiple mediation processes on the same CDR.

	Verbose action logging in persistent databases (eg: MongoDB/PostgreSQL/MySQL) to cope with country specific law requirements.

	Good documentation (that’s me :).

	“Free as in Beer” with commercial support available on-demand.

1.2. Links

	CGRateS quick overview 1. Overview

	CGRateS home page http://www.cgrates.org

	Documentation http://cgrates.readthedocs.io

	API docs https://godoc.org/github.com/cgrates/cgrates/apier

	Source code https://github.com/cgrates/cgrates

	Travis CI https://travis-ci.org/cgrates/cgrates

	Google group https://groups.google.com/forum/#!forum/cgrates

	IRC irc.freenode.net #cgrates [http://webchat.freenode.net/?randomnick=1&channels=#cgrates]

1.3. License

CGRateS [http://cgrates.org] is released under the terms of the [GNU GENERAL PUBLIC LICENSE Version 3] [http://www.gnu.org/licenses/gpl-3.0.en.html]. See LICENSE.txt file for details.

2. Architecture

The CGRateS suite consists of five software applications described below.

	
	cgr-engine

	
	cgr-loader

	
	cgr-console

	
	cgr-tester

	
	cgr-migrator

CGRateS has an internal cache.

"internal_cache" - cache

Operates with different external databases mentioned below.

"data_db" - MongoDB, Redis
"stor_db" - MongoDB, MySQL, PostgreSQL

	
	data_db - used to store runtime data (eg: accounts)

	stor_db - used to store offline tariff plan(s) and CDRs

[image: CGRateS Architecture]
CGRateS high level design

2.1. cgr-engine

Is the most important and complex component.
Customisable through the use of json configuration file(s),
it will start on demand one or more service(s), outlined below.

cgrates@OCS:~$ cgr-engine -help
Usage of cgr-engine:
 -cdrs
 Enforce starting of the cdrs daemon overwriting config
 -config_dir string
 Configuration directory path. (default "/etc/cgrates/")
 -cpuprofile string
 write cpu profile to file
 -pid string
 Write pid file
 -rater
 Enforce starting of the rater daemon overwriting config
 -scheduler
 Enforce starting of the scheduler daemon .overwriting config
 -scheduled_shutdown string
 shutdown the engine after this duration
 -singlecpu
 Run on single CPU core
 -version
 Prints the application version.

Hint

cgr-engine -config_dir=/etc/cgrates

2.1.1. RALs service

Responsible with the following tasks:

	Operates on balances.

	Computes prices for rating subjects.

	Monitors and executes triggers.

	LCR functionality

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (dataDb)
"stor_db" - (cdrDb, loadDb)

	
	Config section in the CGRateS configuration file:

	
	"rals": {...}

2.1.2. Scheduler service

Used to execute periodic/scheduled tasks.

	
	Communicates via:

	
	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (dataDb)

	
	Config section in the CGRateS configuration file:

	
	"scheduler": {...}

2.1.3. SessionManager service

Responsible with call control on the Telecommunication Switch side. Operates in two different modes (per call or globally):

	
	PREPAID

	
	Monitors call start.

	Checks balance availability for the call.

	Enforces global timer for a call at call-start.

	Executes routing commands for the call where that is necessary (eg call un-park in case of FreeSWITCH).

	Periodically executes balance debits on call at the beginning of debit interval.

	Enforce call disconnection on insufficient balance.

	Refunds the balance taken in advance at the call stop.

	
	POSTPAID

	
	Executes balance debit on call-stop.

All call actions are logged into CGRateS’s LogDB.

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"stor_db" - (cdrDb)

2.1.4. DiameterAgent service

Responsible for the communication with Diameter server via diameter protocol.
Despite the name it is a flexible Diameter Server.

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

- none

	
	Config section in the CGRateS configuration file:

	
	"diameter_agent": {...}

2.1.5. CDR service

Centralized CDR server and CDR (raw or rated) replicator.

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"stor_db" - (cdrDb)
"data_db" - (accountDb)

	
	Config section in the CGRateS configuration file:

	
	"cdrs": {...}

2.1.6. CDRStats service

Computes real-time CDR stats. Capable with real-time fraud detection and mitigation with actions triggered.

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (dataDb)

	
	Config section in the CGRateS configuration file:

	
	"cdrstats": {...}

2.1.7. CDRC service

Gathers offline CDRs and post them to CDR Server - (CDRS component)

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

- none

	
	Config section in the CGRateS configuration file:

	
	"cdrc": {...}

2.1.8. Aliases service

Generic purpose aliasing system.

	Possible applications:

	
	Change destination name based on user or destination prefix matched.

	Change lcr supplier name based on the user calling.

	Locale specifics, ability to display specific tags in user defined language.

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (accountDb)

	
	Config section in the CGRateS configuration file:

	
	"aliases": {...}

2.1.9. User service

Generic purpose user system to maintain user profiles (LDAP similarity).

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (accountDb)

	
	Config section in the CGRateS configuration file:

	
	"users": {...}

2.1.10. PubSub service

PubSub service used to expose internal events to interested external components (eg: balance ops)

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (accountDb)

	
	Config section in the CGRateS configuration file:

	
	"pubsubs": {...}

2.1.11. Resource Limiter service

Resource Limiter service used to limit resources during authorization (eg: maximum calls per destination for an account)

	
	Communicates via:

	
	RPC

	internal/in-process within the same running cgr-engine process.

	Operates with the following CGRateS database(s):

"data_db" - (accountDb)

	
	Config section in the CGRateS configuration file:

	
	"rls": {...}

2.1.12. APIER RPC service

RPC service used to expose external access towards internal components.

	
	Communicates via:

	
	JSON/GOB over socket

	JSON over HTTP

	JSON over WebSocket

2.1.13. Cdre

Component to retrieve rated CDRs from internal CDRs database.

	Communicates via:

	Operates with the following CGRateS database(s):

"stor_db" - (cdrDb)

	
	Config section in the CGRateS configuration file:

	
	"cdre": {...}

2.1.14. Mailer

TBD

	Communicates via:

	Operates with the following CGRateS database(s):

	
	Config section in the CGRateS configuration file:

	
	"mailer": {...}

2.1.15. Suretax

TBD

	Communicates via:

	Operates with the following CGRateS database(s):

	
	Config section in the CGRateS configuration file:

	
	"suretax": {...}

2.1.X Mediator service

Important

This service is not valid anymore. Its functionality is replaced by CDRC and CDRS services.

Responsible to mediate the CDRs generated by Telecommunication Switch.

Has the ability to combine CDR fields into rating subject and run multiple mediation processes on the same record.

On Linux machines, able to work with inotify kernel subsystem in order to process the records close to real-time after the Switch has released them.

2.2. cgr-loader

Used for importing the rating information into the CGRateS database system.

	Can be used to:

	
	Import information from csv files to data_db.

	Import information from csv files to stor_db. -to_stordb -tpid

	Import information from stor_db to data_db. -from_stordb -tpid

cgrates@OCS:~$ cgr-loader -help
Usage of cgr-loader:
 -cdrstats_address string
 CDRStats service to contact for data reloads, empty to disable automatic data reloads (default "127.0.0.1:2013")
 -datadb_host string
 The DataDb host to connect to. (default "127.0.0.1")
 -datadb_name string
 The name/number of the DataDb to connect to. (default "11")
 -datadb_passwd string
 The DataDb user's password.
 -datadb_port string
 The DataDb port to bind to. (default "6379")
 -datadb_type string
 The type of the DataDb database <redis> (default "redis")
 -datadb_user string
 The DataDb user to sign in as.
 -dbdata_encoding string
 The encoding used to store object data in strings (default "msgpack")
 -disable_reverse_mappings
 Will disable reverse mappings rebuilding
 -dry_run
 When true will not save loaded data to dataDb but just parse it for consistency and errors.
 -flushdb
 Flush the database before importing
 -from_stordb
 Load the tariff plan from storDb to dataDb
 -load_history_size int
 Limit the number of records in the load history (default 10)
 -migrate_rc8 string
 Migrate Accounts, Actions, ActionTriggers, DerivedChargers, ActionPlans and SharedGroups to RC8 structures, possible values: *all,acc,atr,act,dcs,apl,shg
 -path string
 The path to folder containing the data files (default "./")
 -rater_address string
 Rater service to contact for cache reloads, empty to disable automatic cache reloads (default "127.0.0.1:2013")
 -runid string
 Uniquely identify an import/load, postpended to some automatic fields
 -stats
 Generates statsistics about given data.
 -stordb_host string
 The storDb host to connect to. (default "127.0.0.1")
 -stordb_name string
 The name/number of the storDb to connect to. (default "cgrates")
 -stordb_passwd string
 The storDb user's password. (default "CGRateS.org")
 -stordb_port string
 The storDb port to bind to. (default "3306")
 -stordb_type string
 The type of the storDb database <mysql> (default "mysql")
 -stordb_user string
 The storDb user to sign in as. (default "cgrates")
 -timezone string
 Timezone for timestamps where not specified <""|UTC|Local|$IANA_TZ_DB> (default "Local")
 -to_stordb
 Import the tariff plan from files to storDb
 -users_address string
 Users service to contact for data reloads, empty to disable automatic data reloads (default "127.0.0.1:2013")
 -validate
 When true will run various check on the loaded data to check for structural errors
 -verbose
 Enable detailed verbose logging output
 -version
 Prints the application version.

Hint

cgr-loader -flushdb

Hint

cgr-loader -verbose -datadb_port=”27017” -datadb_type=”mongo”

2.3. cgr-console

Command line tool used to interface with the RALs service. Able to execute sub-commands.

cgrates@OCS:~$ cgr-console -help
Usage of cgr-console:
 -rpc_encoding string
 RPC encoding used <gob|json> (default "json")
 -server string
 server address host:port (default "127.0.0.1:2012")
 -verbose
 Show extra info about command execution.
 -version
 Prints the application version.

rif@grace:~$ cgr-console help_more
2013/04/13 17:23:51
Usage: cgr-console [cfg_opts...{-h}] <status|get_balance>

Hint

cgr-console status

2.4. cgr-tester

Command line stress testing tool.

cgrates@OCS:~$ cgr-tester --help
Usage of cgr-tester:
 -datadb_host string
 The DataDb host to connect to. (default "127.0.0.1")
 -datadb_name string
 The name/number of the DataDb to connect to. (default "11")
 -datatdb_passwd string
 The DataDb user's password.
 -datadb_port string
 The DataDb port to bind to. (default "6379")
 -datadb_type string
 The type of the DataDb database <redis> (default "redis")
 -datadb_user string
 The DataDb user to sign in as.
 -category string
 The Record category to test. (default "call")
 -cpuprofile string
 write cpu profile to file
 -dbdata_encoding string
 The encoding used to store object data in strings. (default "msgpack")
 -destination string
 The destination to use in queries. (default "1002")
 -json
 Use JSON RPC
 -load_history_size int
 Limit the number of records in the load history (default 10)
 -memprofile string
 write memory profile to this file
 -parallel int
 run n requests in parallel
 -rater_address string
 Rater address for remote tests. Empty for internal rater.
 -runs int
 stress cycle number (default 10000)
 -subject string
 The rating subject to use in queries. (default "1001")
 -tenant string
 The type of record to use in queries. (default "cgrates.org")
 -tor string
 The type of record to use in queries. (default "*voice")

Hint

cgr-tester -runs=10000

2.5. cgr-migrator

Command line migration tool.

cgrates@OCS:~$ cgr-migrator --help
Usage of cgr-migrator:
 -datadb_host string
 The DataDb host to connect to. (default "192.168.100.40")
 -datadb_name string
 The name/number of the DataDb to connect to. (default "10")
 -datadb_passwd string
 The DataDb user's password.
 -datadb_port string
 The DataDb port to bind to. (default "6379")
 -datadb_type string
 The type of the DataDb database <redis> (default "redis")
 -datadb_user string
 The DataDb user to sign in as. (default "cgrates")
 -dbdata_encoding string
 The encoding used to store object data in strings (default "msgpack")
 -dry_run
 When true will not save loaded data to dataDb but just parse it for consistency and errors.(default "false")
 -load_history_size int
 Limit the number of records in the load history (default 10)
 -migrate string
 Fire up automatic migration *to use multiple values use ',' as separator
 <*set_versions|*cost_details|*accounts|*actions|*action_triggers|*action_plans|*shared_groups>
 -old_datadb_host string
 The DataDb host to connect to. (default "192.168.100.40")
 -old_datadb_name string
 The name/number of the DataDb to connect to. (default "10")
 -old_datadb_passwd string
 The DataDb user's password.
 -old_datadb_port string
 The DataDb port to bind to. (default "6379")
 -old_datadb_type string
 The type of the DataDb database <redis>
 -old_datadb_user string
 The DataDb user to sign in as. (default "cgrates")
 -old_dbdata_encoding string
 The encoding used to store object data in strings
 -old_load_history_size int
 Limit the number of records in the load history
 -old_stordb_host string
 The storDb host to connect to. (default "192.168.100.40")
 -old_stordb_name string
 The name/number of the storDb to connect to. (default "cgrates")
 -old_stordb_passwd string
 The storDb user's password.
 -old_stordb_port string
 The storDb port to bind to. (default "3306")
 -old_stordb_type string
 The type of the storDb database <mysql|postgres>
 -old_stordb_user string
 The storDb user to sign in as. (default "cgrates")
 -stats
 Generates statsistics about given data.(default "false")
 -stordb_host string
 The storDb host to connect to. (default "192.168.100.40")
 -stordb_name string
 The name/number of the storDb to connect to. (default "cgrates")
 -stordb_passwd string
 The storDb user's password.
 -stordb_port string
 The storDb port to bind to. (default "3306")
 -stordb_type string
 The type of the storDb database <mysql|postgres> (default "mysql")
 -stordb_user string
 The storDb user to sign in as. (default "cgrates")
 -verbose
 Enable detailed verbose logging output.(default "false")
 -version
 Prints the application version.

3. Installation

CGRateS can be installed via packages as well as Go automated source install.
We recommend using source installs for advanced users familiar with Go programming and packages for users not willing to be involved in the code building process.

3.1. Using packages

3.1.1. Debian

This is for the moment the only packaged and the most recommended to use method to install CGRateS.

On the server you want to install CGRateS, simply execute the following commands:

wget http://www.cgrates.org/tmp_pkg/cgrates_0.9.1~rc8_amd64.deb
dpkg -i cgrates_0.9.1~rc8_amd64.deb

Once the installation is completed, one should perform the 3.2.3 Create Debian / Ubuntu Packages from Source section in order to have the CGRateS properly set and ready to run.
After post-install actions are performed, CGRateS will be configured in /etc/cgrates/cgrates.json and enabled in /etc/default/cgrates.

3.2. Using source

For developing CGRateS and switching between its versions, we are using the new vendor directory feature introduced in go 1.6.
In a nutshell all the dependencies are installed and used from a folder named vendor placed in the root of the project.

3.2.1 Install GO Lang

First we have to setup the GO Lang to our OS. Feel free to download
the latest GO binary release from https://golang.org/dl/
In this Tutorial we are going to install Go 1.11

rm -rf /usr/local/go
cd /tmp
wget https://dl.google.com/go/go1.11.linux-amd64.tar.gz
sudo tar -xvf go1.11.0.linux-amd64.tar.gz -C /usr/local/
export PATH=$PATH:/usr/local/go/bin:$GOPATH/bin

3.2.2 Build CGRateS from Source

To manage this vendor folder we use a tool named glide [https://github.com/Masterminds/glide] which will download specific versions of the external packages used by CGRateS.
To configure the project with glide [https://github.com/Masterminds/glide] use the following commands:

go get github.com/Masterminds/glide
go get github.com/cgrates/cgrates
cd $GOPATH/src/github.com/cgrates/cgrates
glide install
./build.sh

The glide install command will install the external dependencies versions, specified in the glide.lock file, in the vendor folder.
There are different versions for each CGRateS branch, versions that are recorded in the lock file when the GCRateS releases are made (using glide update command).

Note

The vendor folder should not be registered with the VCS we are using.

For more information and command options use glide [https://github.com/Masterminds/glide] readme page.

3.2.3 Create Debian / Ubuntu Packages from Source

After compiling the source code you are ready to create the .deb packages
for your Debian like OS. But First lets install some dependencies.

sudo apt-get install build-essential fakeroot dh-systemd

Finally we are ready to create the system package. Before creation we make
sure that we delete the old one first.

cd $GOPATH/src/github.com/cgrates/cgrates/packages
rm -rf $GOPATH/src/github.com/cgrates/*.deb
make deb

After some time and maybe some console warnings, your CGRateS package will be ready.

3.2.4 Install Custom Debian / Ubuntu Package

cd $GOPATH/src/github.com/cgrates
sudo dpkg -i cgrates_*.deb

3.3. Post-install

3.3.1. Database setup

For its operation CGRateS uses one or more database types, depending on its nature, install and configuration being further necessary.

At present we support the following databases:

	Redis [http://redis.io]

Can be used as data_db .
Optimized for real-time information access.
Once installed there should be no special requirements in terms of setup since no schema is necessary.

	MySQL [http://www.mysql.org]

Can be used as stor_db .
Optimized for CDR archiving and offline Tariff Plan versioning.
Once MySQL is installed, CGRateS database needs to be set-up out of provided scripts. (example for the paths set-up by debian package)

cd /usr/share/cgrates/storage/mysql/
./setup_cgr_db.sh root CGRateS.org localhost

	PostgreSQL [http://www.postgresql.org]

Can be used as stor_db .
Optimized for CDR archiving and offline Tariff Plan versioning.
Once PostgreSQL is installed, CGRateS database needs to be set-up out of provided scripts (example for the paths set-up by debian package)

cd /usr/share/cgrates/storage/postgres/
./setup_cgr_db.sh

	MongoDB [http://www.mongodb.org]

Can be used as data_db - stor_db .
It is the first database that can be used to store all kinds of data stored from CGRateS from accounts, tariff plans to cdrs and logs.
This is provided as an alternative to Redis and/or MySQL/PostgreSQL and right now there are NO plans to drop support for any of them soon.

Once MongoDB is installed, CGRateS database needs to be set-up out of provided scripts (example for the paths set-up by debian package)

cd /usr/share/cgrates/storage/mongo/
./setup_cgr_db.sh

3.3.2 Set versions data

Once database setup is completed, we need to write the versions data. To do this, run migrator tool with the parameters specific to your database.

Sample usage for MySQL:

cgr-migrator -stordb_passwd="CGRateS.org" -migrate="*set_versions"

3.3.3.Git

The historys (History Service) component will use Git [http://git-scm.com] to archive tariff plan changes in a local repository,
hence Git [http://git-scm.com] installation is necessary if you want to use this service.

4. Configuration

The behaviour of CGRateS can be externally influenced by following means:

	Engine configuration files: usually located at /etc/cgrates/.
There can be one or multiple file(s)/folder(s) hierarchies behind configuration folder with support for automatic includes.
The file(s)/folder(s) will be imported in alphabetical order into final configuration object.

	Tariff Plans: set of files used to import various data used in CGRateS subsystems (eg: Rating, Accounting, LCR, DerivedCharging, etc).

	RPC APIs: set of JSON/GOB encoded APIs remotely available for various operational/administrative tasks.

	4.1. cgr-engine configuration file

	4.2. Tariff Plans
	4.2.1. Destinations

	4.2.2. Timings

	4.2.3. Rates

	4.2.4. Destination Rates

	4.2.5. Rating Plans

	4.2.6. Rating profiles

	4.2.7. Account actions

	4.2.8 Action triggers

	4.2.9. Action Plans

	4.2.10. Actions

	4.2.11. Derived Chargers

	4.2.12. CDR Stats

	4.2.13. Shared groups

	4.2.14. LCR rules

	4.2.15. Users

	4.2.16. Aliases

	4.2.17. Resource Limits

4.1. cgr-engine configuration file

Organized into configuration sections. All configuration options come with defaults and we have tried our best to choose the best ones for a minimum of efforts necessary when running.

Below is the default configuration file which comes hardcoded into cgr-engine.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

	{

// Real-time Online/Offline Charging System (OCS) for Telecom & ISP environments
// Copyright (C) ITsysCOM GmbH
//
// This file contains the default configuration hardcoded into CGRateS.
// This is what you get when you load CGRateS with an empty configuration file.

// "general": {
// 	"node_id": "",											// identifier of this instance in the cluster, if empty it will be autogenerated
// 	"logger": "*syslog",									// controls the destination of logs <*syslog|*stdout>
// 	"log_level": 6,											// control the level of messages logged (0-emerg to 7-debug)
// 	"http_skip_tls_verify": false,							// if enabled Http Client will accept any TLS certificate
// 	"rounding_decimals": 5,									// system level precision for floats
// 	"dbdata_encoding": "*msgpack",							// encoding used to store object data in strings: <*msgpack|*json>
// 	"tpexport_dir": "/var/spool/cgrates/tpe",				// path towards export folder for offline Tariff Plans
// 	"poster_attempts": 3,									// number of attempts before considering post request failed (eg: *call_url, CDR replication)
// 	"failed_posts_dir": "/var/spool/cgrates/failed_posts",	// directory path where we store failed requests
// 	"default_request_type": "*rated",						// default request type to consider when missing from requests: <""|*prepaid|*postpaid|*pseudoprepaid|*rated>
// 	"default_category": "call",								// default category to consider when missing from requests
// 	"default_tenant": "cgrates.org",						// default tenant to consider when missing from requests
// 	"default_timezone": "Local",							// default timezone for timestamps where not specified <""|UTC|Local|$IANA_TZ_DB>
// 	"connect_attempts": 3,									// initial server connect attempts
// 	"reconnects": -1,										// number of retries in case of connection lost
// 	"connect_timeout": "1s",								// consider connection unsuccessful on timeout, 0 to disable the feature
// 	"reply_timeout": "2s",									// consider connection down for replies taking longer than this value
// 	"response_cache_ttl": "0s",								// the life span of a cached response
// 	"internal_ttl": "2m",									// maximum duration to wait for internal connections before giving up
// 	"locking_timeout": "0",									// timeout internal locks to avoid deadlocks
// 	"digest_separator": ",",
// 	"digest_equal": ":",
// },

// "data_db": {								// database used to store runtime data (eg: accounts, cdr stats)
// 	"db_type": "redis",						// data_db type: <*redis|*mongo|*internal>
// 	"db_host": "127.0.0.1",					// data_db host address
// 	"db_port": 6379,						// data_db port to reach the database
// 	"db_name": "10",						// data_db database name to connect to
// 	"db_user": "cgrates",					// username to use when connecting to data_db
// 	"db_password": "",						// password to use when connecting to data_db
// 	"redis_sentinel": "",					// redis_sentinel is the name of sentinel
// },

// "stor_db": {								// database used to store offline tariff plans and CDRs
// 	"db_type": "mysql",						// stor database type to use: <*mongo|*mysql|*postgres|*internal>
// 	"db_host": "127.0.0.1",					// the host to connect to
// 	"db_port": 3306,						// the port to reach the stordb
// 	"db_name": "cgrates",					// stor database name
// 	"db_user": "cgrates",					// username to use when connecting to stordb
// 	"db_password": "",						// password to use when connecting to stordb
// 	"max_open_conns": 100,					// maximum database connections opened, not applying for mongo
// 	"max_idle_conns": 10,					// maximum database connections idle, not applying for mongo
// 	"conn_max_lifetime": 0,					// maximum amount of time in seconds a connection may be reused (0 for unlimited), not applying for mongo
// 	"cdrs_indexes": [],						// indexes on cdrs table to speed up queries, used only in case of mongo
// },

// "listen": {
// 	"rpc_json": "127.0.0.1:2012",			// RPC JSON listening address
// 	"rpc_gob": "127.0.0.1:2013",			// RPC GOB listening address
// 	"http": "127.0.0.1:2080",				// HTTP listening address
// 	"rpc_json_tls": "127.0.0.1:2022",		// RPC JSON TLS listening address
// 	"rpc_gob_tls": "127.0.0.1:2023",		// RPC GOB TLS listening address
// 	"http_tls": "127.0.0.1:2280",			// HTTP TLS listening address
// 	"tls_server_certificate": "",			// path to server certificate(must conatin server.crt + ca.crt)
// 	"tls_server_key": "",					// path to server key
// 	"tls_client_certificate": "",			// path to client certificate(must conatin client.crt + ca.crt)
// 	"tls_client_key": "",					// path to client key
// },

// "tls": {
// 	"server_certificate" : "",			// path to server certificate
// 	"server_key":"",					// path to server key
// 	"client_certificate" : "",			// path to client certificate
// 	"client_key":"",					// path to client key
// 	"ca_certificate":"",				// path to CA certificate (populate if used self-sign certificate otherwise let it empty)
// 	"server_policy":4,					// server_policy determine the TLS Client Authentication (0-NoClientCert, 1-RequestClientCert, 2-RequireAnyClientCert, 3-VerifyClientCertIfGiven, 4-RequireAndVerifyClientCert)
// 	"server_name":"",					
// },

// "http": {									// HTTP server configuration
// 	"json_rpc_url": "/jsonrpc",					// JSON RPC relative URL ("" to disable)
// 	"ws_url": "/ws",							// WebSockets relative URL ("" to disable)
// 	"freeswitch_cdrs_url": "/freeswitch_json",	// Freeswitch CDRS relative URL ("" to disable)
// 	"http_cdrs": "/cdr_http",					// CDRS relative URL ("" to disable)
// 	"use_basic_auth": false,					// use basic authentication
// 	"auth_users": {},							// basic authentication usernames and base64-encoded passwords (eg: { "username1": "cGFzc3dvcmQ=", "username2": "cGFzc3dvcmQy "})
// },

// "scheduler": {
// 	"enabled": false,				// start Scheduler service: <true|false>
// 	"cdrs_conns": [],				// address where to reach CDR Server, empty to disable CDR capturing <*internal|x.y.z.y:1234>
// },

// "cache":{
// 	"destinations": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},			// destination caching
// 	"reverse_destinations": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},	// reverse destinations index caching
// 	"rating_plans": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},			// rating plans caching
// 	"rating_profiles": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// rating profiles caching
// 	"lcr_rules": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// lcr rules caching
// 	"cdr_stats": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// cdr stats queues caching
// 	"actions": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// actions caching
// 	"action_plans": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},			// action plans caching
// 	"account_action_plans": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},	// account action plans index caching
// 	"action_triggers": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// action triggers caching
// 	"shared_groups": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},			// shared groups caching
// 	"aliases": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// aliases caching
// 	"reverse_aliases": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// reverse aliases index caching
// 	"derived_chargers": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// derived charging rule caching
// 	"timings": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// timings caching
// 	"resource_profiles": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// control resource profiles caching
// 	"resources": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// control resources caching
// 	"event_resources": {"limit": -1, "ttl": "1m", "static_ttl": false},							// matching resources to events
// 	"statqueue_profiles": {"limit": -1, "ttl": "1m", "static_ttl": false, "precache": false},	// statqueue profiles
// 	"statqueues": {"limit": -1, "ttl": "1m", "static_ttl": false, "precache": false},			// statqueues with metrics
// 	"threshold_profiles": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// control threshold profiles caching
// 	"thresholds": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// control thresholds caching
// 	"filters": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},				// control filters caching
// 	"supplier_profiles": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// control supplier profile caching
// 	"attribute_profiles": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// control attribute profile caching
// 	"charger_profiles": {"limit": -1, "ttl": "", "static_ttl": false, "precache": false},		// control charger profile caching
// 	"resource_filter_indexes" : {"limit": -1, "ttl": "", "static_ttl": false}, 					// control resource filter indexes caching
// 	"stat_filter_indexes" : {"limit": -1, "ttl": "", "static_ttl": false}, 						// control stat filter indexes caching
// 	"threshold_filter_indexes" : {"limit": -1, "ttl": "", "static_ttl": false}, 				// control threshold filter indexes caching
// 	"supplier_filter_indexes" : {"limit": -1, "ttl": "", "static_ttl": false}, 					// control supplier filter indexes caching
// 	"attribute_filter_indexes" : {"limit": -1, "ttl": "", "static_ttl": false}, 				// control attribute filter indexes caching
// 	"charger_filter_indexes" : {"limit": -1, "ttl": "", "static_ttl": false}, 					// control charger filter indexes caching
// },

// "filters": {								// Filters configuration (*new)
// 	"stats_conns": [],						// address where to reach the stat service, empty to disable stats functionality: <""|*internal|x.y.z.y:1234>
// 	"indexed_selects":true,					// enable profile matching exclusively on indexes
// },

// "rals": {
// 	"enabled": false,						// enable Rater service: <true|false>
// 	"thresholds_conns": [],					// address where to reach the thresholds service, empty to disable thresholds functionality: <""|*internal|x.y.z.y:1234>
// 	"cdrstats_conns": [],					// address where to reach the cdrstats service, empty to disable stats functionality: <""|*internal|x.y.z.y:1234>
// 	"stats_conns": [],						// address where to reach the stat service, empty to disable stats functionality: <""|*internal|x.y.z.y:1234>
// 	"pubsubs_conns": [],					// address where to reach the pubusb service, empty to disable pubsub functionality: <""|*internal|x.y.z.y:1234>
// 	"users_conns": [],						// address where to reach the user service, empty to disable user profile functionality: <""|*internal|x.y.z.y:1234>
// 	"aliases_conns": [],					// address where to reach the aliases service, empty to disable aliases functionality: <""|*internal|x.y.z.y:1234>
// 	"rp_subject_prefix_matching": false,	// enables prefix matching for the rating profile subject
// 	"lcr_subject_prefix_matching": false,	// enables prefix matching for the lcr subject
// 	"max_computed_usage": {					// do not compute usage higher than this, prevents memory overload
// 		"*any": "189h",
// 		"*voice": "72h",
// 		"*data": "107374182400",
// 		"*sms": "10000"
// 	},
// },

// "cdrs": {
// 	"enabled": false,						// start the CDR Server service: <true|false>
// 	"extra_fields": [],						// extra fields to store in CDRs for non-generic CDRs
// 	"store_cdrs": true,						// store cdrs in storDb
// 	"sessions_cost_retries": 5,				// number of queries to sessions_costs before recalculating CDR
// 	"chargers_conns": [],					// address where to reach the charger service, empty to disable charger functionality: <""|*internal|x.y.z.y:1234>
// 	"rals_conns": [
// 		{"address": "*internal"}			// address where to reach the Rater for cost calculation, empty to disable functionality: <""|*internal|x.y.z.y:1234>
//],
// 	"pubsubs_conns": [],					// address where to reach the pubusb service, empty to disable pubsub functionality: <""|*internal|x.y.z.y:1234>
// 	"attributes_conns": [],					// address where to reach the attribute service, empty to disable attributes functionality: <""|*internal|x.y.z.y:1234>
// 	"users_conns": [],						// address where to reach the user service, empty to disable user profile functionality: <""|*internal|x.y.z.y:1234>
// 	"aliases_conns": [],					// address where to reach the aliases service, empty to disable aliases functionality: <""|*internal|x.y.z.y:1234>
// 	"cdrstats_conns": [],					// address where to reach the cdrstats service, empty to disable cdrstats functionality: <""|*internal|x.y.z.y:1234>
// 	"thresholds_conns": [],					// address where to reach the thresholds service, empty to disable thresholds functionality: <""|*internal|x.y.z.y:1234>
// 	"stats_conns": [],						// address where to reach the stat service, empty to disable stats functionality: <""|*internal|x.y.z.y:1234>
// 	"online_cdr_exports": [],				// list of CDRE profiles to use for real-time CDR exports
// },

// "cdre": {
// 	"*default": {
// 		"export_format": "*file_csv",					// exported CDRs format <*file_csv|*file_fwv|*http_post|*http_json_cdr|*http_json_map|*amqp_json_cdr|*amqp_json_map>
// 		"export_path": "/var/spool/cgrates/cdre",		// path where the exported CDRs will be placed
// 		"filters" :[],									// new filters for cdre
// 		"tenant": "cgrates.org",						// tenant used in filterS.Pass
// 		"synchronous": false,							// block processing until export has a result
// 		"attempts": 1,									// Number of attempts if not success
// 		"field_separator": ",",							// used field separator in some export formats, eg: *file_csv
// 		"usage_multiply_factor": {
// 			"*any": 1									// multiply usage based on ToR field or *any for all
// 		},
// 		"cost_multiply_factor": 1,						// multiply cost before export, eg: add VAT
// 		"header_fields": [],							// template of the exported header fields
// 		"content_fields": [// template of the exported content fields
// 			{"tag": "CGRID", "type": "*composed", "value": "~CGRID"},
// 			{"tag":"RunID", "type": "*composed", "value": "~RunID"},
// 			{"tag":"TOR", "type": "*composed", "value": "~ToR"},
// 			{"tag":"OriginID", "type": "*composed", "value": "~OriginID"},
// 			{"tag":"RequestType", "type": "*composed", "value": "~RequestType"},
// 			{"tag":"Tenant", "type": "*composed", "value": "~Tenant"},
// 			{"tag":"Category", "type": "*composed", "value": "~Category"},
// 			{"tag":"Account", "type": "*composed", "value": "~Account"},
// 			{"tag":"Subject", "type": "*composed", "value": "~Subject"},
// 			{"tag":"Destination", "type": "*composed", "value": "~Destination"},
// 			{"tag":"SetupTime", "type": "*composed", "value": "~SetupTime", "layout": "2006-01-02T15:04:05Z07:00"},
// 			{"tag":"AnswerTime", "type": "*composed", "value": "~AnswerTime", "layout": "2006-01-02T15:04:05Z07:00"},
// 			{"tag":"Usage", "type": "*composed", "value": "~Usage"},
// 			{"tag":"Cost", "type": "*composed", "value": "~Cost", "rounding_decimals": 4},
//],
// 		"trailer_fields": [],							// template of the exported trailer fields
// 	},
// },

// "cdrstats": {
// 	"enabled": false,						// starts the cdrstats service: <true|false>
// 	"save_interval": "1m",					// interval to save changed stats into dataDb storage
// },

// "cdrc": [
// 	{
// 		"id": "*default",								// identifier of the CDRC runner
// 		"enabled": false,								// enable CDR client functionality
// 		"dry_run": false,								// do not send the CDRs to CDRS, just parse them
// 		"cdrs_conns": [
// 			{"address": "*internal"}					// address where to reach CDR server. <*internal|x.y.z.y:1234>
//],
// 		"cdr_format": "csv",							// CDR file format <*csv|*freeswitch_csv|*fwv|*opensips_flatstore|*partial_csv>
// 		"field_separator": ",",							// separator used in case of csv files
// 		"timezone": "",									// timezone for timestamps where not specified <""|UTC|Local|$IANA_TZ_DB>
// 		"run_delay": 0,									// sleep interval in seconds between consecutive runs, 0 to use automation via inotify
// 		"max_open_files": 1024,							// maximum simultaneous files to process, 0 for unlimited
// 		"data_usage_multiply_factor": 1024,				// conversion factor for data usage
// 		"cdr_in_dir": "/var/spool/cgrates/cdrc/in",		// absolute path towards the directory where the CDRs are stored
// 		"cdr_out_dir": "/var/spool/cgrates/cdrc/out",	// absolute path towards the directory where processed CDRs will be moved
// 		"failed_calls_prefix": "missed_calls",			// used in case of flatstore CDRs to avoid searching for BYE records
// 		"cdr_path": "",									// path towards one CDR element in case of XML CDRs
// 		"cdr_source_id": "freeswitch_csv",				// free form field, tag identifying the source of the CDRs within CDRS database
// 		"filters": [],									// new filters used in FilterS subsystem
// 		"tenant": "cgrates.org",						// default tenant
// 		"continue_on_success": false,					// continue to the next template if executed
// 		"partial_record_cache": "10s",					// duration to cache partial records when not pairing
// 		"partial_cache_expiry_action": "*dump_to_file",	// action taken when cache when records in cache are timed-out <*dump_to_file|*post_cdr>
// 		"header_fields": [],							// template of the import header fields
// 		"content_fields":[// import content_fields template, tag will match internally CDR field, in case of .csv value will be represented by index of the field value
// 			{"tag": "TOR", "field_id": "ToR", "type": "*composed", "value": "~2", "mandatory": true},
// 			{"tag": "OriginID", "field_id": "OriginID", "type": "*composed", "value": "~3", "mandatory": true},
// 			{"tag": "RequestType", "field_id": "RequestType", "type": "*composed", "value": "~4", "mandatory": true},
// 			{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~6", "mandatory": true},
// 			{"tag": "Category", "field_id": "Category", "type": "*composed", "value": "~7", "mandatory": true},
// 			{"tag": "Account", "field_id": "Account", "type": "*composed", "value": "~8", "mandatory": true},
// 			{"tag": "Subject", "field_id": "Subject", "type": "*composed", "value": "~9", "mandatory": true},
// 			{"tag": "Destination", "field_id": "Destination", "type": "*composed", "value": "~10", "mandatory": true},
// 			{"tag": "SetupTime", "field_id": "SetupTime", "type": "*composed", "value": "~11", "mandatory": true},
// 			{"tag": "AnswerTime", "field_id": "AnswerTime", "type": "*composed", "value": "~12", "mandatory": true},
// 			{"tag": "Usage", "field_id": "Usage", "type": "*composed", "value": "~13", "mandatory": true},
//],
// 		"trailer_fields": [],							// template of the import trailer fields
// 		"cache_dump_fields": [// template used when dumping cached CDR, eg: partial CDRs
// 			{"tag": "CGRID", "type": "*composed", "value": "~CGRID"},
// 			{"tag": "RunID", "type": "*composed", "value": "~RunID"},
// 			{"tag": "TOR", "type": "*composed", "value": "~ToR"},
// 			{"tag": "OriginID", "type": "*composed", "value": "~OriginID"},
// 			{"tag": "RequestType", "type": "*composed", "value": "~RequestType"},
// 			{"tag": "Tenant", "type": "*composed", "value": "~Tenant"},
// 			{"tag": "Category", "type": "*composed", "value": "~Category"},
// 			{"tag": "Account", "type": "*composed", "value": "~Account"},
// 			{"tag": "Subject", "type": "*composed", "value": "~Subject"},
// 			{"tag": "Destination", "type": "*composed", "value": "~Destination"},
// 			{"tag": "SetupTime", "type": "*composed", "value": "~SetupTime", "layout": "2006-01-02T15:04:05Z07:00"},
// 			{"tag": "AnswerTime", "type": "*composed", "value": "~AnswerTime", "layout": "2006-01-02T15:04:05Z07:00"},
// 			{"tag": "Usage", "type": "*composed", "value": "~Usage"},
// 			{"tag": "Cost", "type": "*composed", "value": "~Cost"},
//],
// 	},
//],

// "sessions": {
// 	"enabled": false,						// starts session manager service: <true|false>
// 	"listen_bijson": "127.0.0.1:2014",		// address where to listen for bidirectional JSON-RPC requests
// 	"chargers_conns": [],					// address where to reach the charger service, empty to disable charger functionality: <""|*internal|x.y.z.y:1234>
// 	"rals_conns": [
// 		{"address": "*internal"}			// address where to reach the RALs <""|*internal|127.0.0.1:2013>
//],
// 	"cdrs_conns": [
// 		{"address": "*internal"}			// address where to reach CDR Server, empty to disable CDR capturing <*internal|x.y.z.y:1234>
//],
// 	"resources_conns": [],					// address where to reach the ResourceS <""|*internal|127.0.0.1:2013>
// 	"thresholds_conns": [],					// address where to reach the ThresholdS <""|*internal|127.0.0.1:2013>
// 	"stats_conns": [],						// address where to reach the StatS <""|*internal|127.0.0.1:2013>
// 	"suppliers_conns": [],					// address where to reach the SupplierS <""|*internal|127.0.0.1:2013>
// 	"attributes_conns": [],					// address where to reach the AttributeS <""|*internal|127.0.0.1:2013>
// 	"session_replication_conns": [],		// replicate sessions towards these session services
// 	"debit_interval": "0s",					// interval to perform debits on.
// 	"min_call_duration": "0s",				// only authorize calls with allowed duration higher than this
// 	"max_call_duration": "3h",				// maximum call duration a prepaid call can last
// 	"session_ttl": "0s",					// time after a session with no updates is terminated, not defined by default
// 	//"session_ttl_max_delay": "",			// activates session_ttl randomization and limits the maximum possible delay
// 	//"session_ttl_last_used": "",			// tweak LastUsed for sessions timing-out, not defined by default
// 	//"session_ttl_usage": "",				// tweak Usage for sessions timing-out, not defined by default
// 	"session_indexes": [],					// index sessions based on these fields for GetActiveSessions API
// 	"client_protocol": 1.0,					// version of protocol to use when acting as JSON-PRC client <"0","1.0">
// 	"channel_sync_interval": "0",			// sync channels regularly (0 to disable sync session)
// },

// "asterisk_agent": {
// 	"enabled": false,						// starts the Asterisk agent: <true|false>
// 	"sessions_conns": [
// 		{"address": "*internal"}			// connection towards session service: <*internal>
//],
// 	"create_cdr": false,					// create CDR out of events and sends it to CDRS component
// 	"asterisk_conns":[// instantiate connections to multiple Asterisk servers
// 		{"address": "127.0.0.1:8088", "user": "cgrates", "password": "CGRateS.org", "connect_attempts": 3,"reconnects": 5}
//],
// },

// "freeswitch_agent": {
// 	"enabled": false,						// starts the FreeSWITCH agent: <true|false>
// 	"sessions_conns": [
// 		{"address": "*internal"}			// connection towards session service: <*internal>
//],
// 	"subscribe_park": true,					// subscribe via fsock to receive park events
// 	"create_cdr": false,					// create CDR out of events and sends them to CDRS component
// 	"extra_fields": [],						// extra fields to store in auth/CDRs when creating them
// 	//"min_dur_low_balance": "5s",			// threshold which will trigger low balance warnings for prepaid calls (needs to be lower than debit_interval)
// 	//"low_balance_ann_file": "",			// file to be played when low balance is reached for prepaid calls
// 	"empty_balance_context": "",			// if defined, prepaid calls will be transferred to this context on empty balance
// 	"empty_balance_ann_file": "",			// file to be played before disconnecting prepaid calls on empty balance (applies only if no context defined)
// 	"max_wait_connection": "2s",			// maximum duration to wait for a connection to be retrieved from the pool
// 	"event_socket_conns": [// instantiate connections to multiple FreeSWITCH servers
// 		{"address": "127.0.0.1:8021", "password": "ClueCon", "reconnects": 5,"alias":""}
//],
// },

// "kamailio_agent": {
// 	"enabled": false,						// starts SessionManager service: <true|false>
// 	"sessions_conns": [
// 		{"address": "*internal"}			// connection towards session service: <*internal>
//],
// 	"create_cdr": false,					// create CDR out of events and sends them to CDRS component
// 	"timezone": "",							// timezone of the Kamailio server
// 	"evapi_conns": [// instantiate connections to multiple Kamailio servers
// 		{"address": "127.0.0.1:8448", "reconnects": 5}
//],
// },

// "diameter_agent": {
// 	"enabled": false,											// enables the diameter agent: <true|false>
// 	"listen": "127.0.0.1:3868",									// address where to listen for diameter requests <x.y.z.y:1234>
// 	"dictionaries_path": "/usr/share/cgrates/diameter/dict/",	// path towards directory holding additional dictionaries to load
// 	"sessions_conns": [
// 		{"address": "*internal"}								// connection towards SessionService
//],
// 	"origin_host": "CGR-DA",									// diameter Origin-Host AVP used in replies
// 	"origin_realm": "cgrates.org",								// diameter Origin-Realm AVP used in replies
// 	"vendor_id": 0,												// diameter Vendor-Id AVP used in replies
// 	"product_name": "CGRateS",									// diameter Product-Name AVP used in replies
// 	"templates": {
// 		"*cca": [
// 				{"tag": "SessionId", "field_id": "Session-Id", "type": "*composed",
// 					"value": "~*req.Session-Id", "mandatory": true},
// 				{"tag": "OriginHost", "field_id": "Origin-Host", "type": "*composed",
// 					"value": "~*vars.OriginHost", "mandatory": true},
// 				{"tag": "OriginRealm", "field_id": "Origin-Realm", "type": "*composed",
// 					"value": "~*vars.OriginRealm", "mandatory": true},
// 				{"tag": "AuthApplicationId", "field_id": "Auth-Application-Id", "type": "*composed",
// 					 "value": "~*vars.*appid", "mandatory": true},
// 				{"tag": "CCRequestType", "field_id": "CC-Request-Type", "type": "*composed",
// 					"value": "~*req.CC-Request-Type", "mandatory": true},
// 				{"tag": "CCRequestNumber", "field_id": "CC-Request-Number", "type": "*composed",
// 					"value": "~*req.CC-Request-Number", "mandatory": true},
//]
// 	},
// 	"request_processors": [],
// },

// "radius_agent": {
// 	"enabled": false,											// enables the radius agent: <true|false>
// 	"listen_net": "udp",										// network to listen on <udp|tcp>
// 	"listen_auth": "127.0.0.1:1812",							// address where to listen for radius authentication requests <x.y.z.y:1234>
// 	"listen_acct": "127.0.0.1:1813",							// address where to listen for radius accounting requests <x.y.z.y:1234>
// 	"client_secrets": {											// hash containing secrets for clients connecting here <*default|$client_ip>
// 		"*default": "CGRateS.org"
// 	},
// 	"client_dictionaries": {									// per client path towards directory holding additional dictionaries to load (extra to RFC)
// 		"*default": "/usr/share/cgrates/radius/dict/",			// key represents the client IP or catch-all <*default|$client_ip>
// 	},
// 	"sessions_conns": [
// 		{"address": "*internal"}								// connection towards SessionService
//],
// 	"cdr_requires_session": false,								// only create CDR if there is an active session at terminate
// 	"request_processors": [],
// },

// "http_agent": [],				// HTTP Agents, ie towards cnc.to MVNE platform

// "pubsubs": {
// 	"enabled": false,				// starts PubSub service: <true|false>.
// },

// "aliases": {
// 	"enabled": false,				// starts Aliases service: <true|false>.
// },

// "users": {
// 	"enabled": false,				// starts User service: <true|false>.
// 	"indexes": [],					// user profile field indexes
// },

// "attributes": {							// Attribute service
// 	"enabled": false,						// starts attribute service: <true|false>.
// 	//"string_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"prefix_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"process_runs": 1,						// number of run loops when processing event
// },

// "chargers": {							// Charger service
// 	"enabled": false,						// starts charger service: <true|false>.
// 	"attributes_conns": [],					// address where to reach the AttributeS <""|127.0.0.1:2013>
// 	//"string_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"prefix_indexed_fields": [],			// query indexes based on these fields for faster processing
// },

// "resources": {							// Resource service (*new)
// 	"enabled": false,						// starts ResourceLimiter service: <true|false>.
// 	"store_interval": "",					// dump cache regularly to dataDB, 0 - dump at start/shutdown: <""|$dur>
// 	"thresholds_conns": [],					// address where to reach the thresholds service, empty to disable thresholds functionality: <""|*internal|x.y.z.y:1234>
// 	//"string_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"prefix_indexed_fields": [],			// query indexes based on these fields for faster processing
// },

// "stats": {								// Stat service (*new)
// 	"enabled": false,						// starts Stat service: <true|false>.
// 	"store_interval": "",					// dump cache regularly to dataDB, 0 - dump at start/shutdown: <""|$dur>
// 	"thresholds_conns": [],					// address where to reach the thresholds service, empty to disable thresholds functionality: <""|*internal|x.y.z.y:1234>
// 	//"string_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"prefix_indexed_fields": [],			// query indexes based on these fields for faster processing
// },

// "thresholds": {							// Threshold service (*new)
// 	"enabled": false,						// starts ThresholdS service: <true|false>.
// 	"store_interval": "",					// dump cache regularly to dataDB, 0 - dump at start/shutdown: <""|$dur>
// 	//"string_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"prefix_indexed_fields": [],			// query indexes based on these fields for faster processing
// },

// "suppliers": {							// Supplier service (*new)
// 	"enabled": false,						// starts SupplierS service: <true|false>.
// 	//"string_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"prefix_indexed_fields": [],			// query indexes based on these fields for faster processing
// 	"attributes_conns": [],					// address where to reach the AttributeS <""|127.0.0.1:2013>
// 	"rals_conns": [
// 		{"address": "*internal"},			// address where to reach the RALs for cost/accounting <*internal>
//],
// 	"resources_conns": [],					// address where to reach the Resource service, empty to disable functionality: <""|*internal|x.y.z.y:1234>
// 	"stats_conns": [],						// address where to reach the Stat service, empty to disable stats functionality: <""|*internal|x.y.z.y:1234>
// },

// "loaders": [
// 	{
// 		"id": "*default",									// identifier of the Loader
// 		"enabled": false,									// starts as service: <true|false>.
// 		"tenant": "cgrates.org",							// tenant used in filterS.Pass
// 		"dry_run": false,									// do not send the CDRs to CDRS, just parse them
// 		"run_delay": 0,										// sleep interval in seconds between consecutive runs, 0 to use automation via inotify
// 		"lock_filename": ".cgr.lck",						// Filename containing concurrency lock in case of delayed processing
// 		"caches_conns": [
// 			{"address": "*internal"},						// address where to reach the CacheS for data reload, empty for no reloads <""|*internal|x.y.z.y:1234>
//],
// 		"field_separator": ",",								// separator used in case of csv files
// 		"tp_in_dir": "/var/spool/cgrates/loader/in",		// absolute path towards the directory where the CDRs are stored
// 		"tp_out_dir": "/var/spool/cgrates/loader/out",		// absolute path towards the directory where processed CDRs will be moved
// 		"data": [// data profiles to load
// 			{
// 				"type": "*attributes",						// data source type
// 				"file_name": "Attributes.csv",				// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "TenantID", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ProfileID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "Contexts", "field_id": "Contexts", "type": "*composed", "value": "~2"},
// 					{"tag": "FilterIDs", "field_id": "FilterIDs", "type": "*composed", "value": "~3"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~4"},
// 					{"tag": "FieldName", "field_id": "FieldName", "type": "*composed", "value": "~5"},
// 					{"tag": "Initial", "field_id": "Initial", "type": "*composed", "value": "~6"},
// 					{"tag": "Substitute", "field_id": "Substitute", "type": "*composed", "value": "~7"},
// 					{"tag": "Append", "field_id": "Append", "type": "*composed", "value": "~8"},
// 					{"tag": "Weight", "field_id": "Weight", "type": "*composed", "value": "~9"},
//],
// 			},
// 			{
// 				"type": "*filters",							// data source type
// 				"file_name": "Filters.csv",					// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "FilterType", "field_id": "FilterType", "type": "*composed", "value": "~2"},
// 					{"tag": "FilterFieldName", "field_id": "FilterFieldName", "type": "*composed", "value": "~3"},
// 					{"tag": "FilterFieldValues", "field_id": "FilterFieldValues", "type": "*composed", "value": "~4"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~5"},
//],
// 			},	
// 			{
// 				"type": "*resources",						// data source type
// 				"file_name": "Resources.csv",				// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "FilterIDs", "field_id": "FilterIDs", "type": "*composed", "value": "~2"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~3"},
// 					{"tag": "TTL", "field_id": "UsageTTL", "type": "*composed", "value": "~4"},
// 					{"tag": "Limit", "field_id": "Limit", "type": "*composed", "value": "~5"},
// 					{"tag": "AllocationMessage", "field_id": "AllocationMessage", "type": "*composed", "value": "~6"},
// 					{"tag": "Blocker", "field_id": "Blocker", "type": "*composed", "value": "~7"},
// 					{"tag": "Stored", "field_id": "Stored", "type": "*composed", "value": "~8"},
// 					{"tag": "Weight", "field_id": "Weight", "type": "*composed", "value": "~9"},
// 					{"tag": "ThresholdIDs", "field_id": "ThresholdIDs", "type": "*composed", "value": "~10"},
//],
// 			},
// 			{
// 				"type": "*stats",							// data source type
// 				"file_name": "Stats.csv",					// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "FilterIDs", "field_id": "FilterIDs", "type": "*composed", "value": "~2"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~3"},
// 					{"tag": "QueueLength", "field_id": "QueueLength", "type": "*composed", "value": "~4"},
// 					{"tag": "TTL", "field_id": "TTL", "type": "*composed", "value": "~5"},
// 					{"tag": "Metrics", "field_id": "Metrics", "type": "*composed", "value": "~6"},
// 					{"tag": "MetricParams", "field_id": "Parameters", "type": "*composed", "value": "~7"},
// 					{"tag": "Blocker", "field_id": "Blocker", "type": "*composed", "value": "~8"},
// 					{"tag": "Stored", "field_id": "Stored", "type": "*composed", "value": "~9"},
// 					{"tag": "Weight", "field_id": "Weight", "type": "*composed", "value": "~10"},
// 					{"tag": "MinItems", "field_id": "MinItems", "type": "*composed", "value": "~11"},
// 					{"tag": "ThresholdIDs", "field_id": "ThresholdIDs", "type": "*composed", "value": "~12"},
//],
// 			},
// 			{
// 				"type": "*thresholds",						// data source type
// 				"file_name": "Thresholds.csv",				// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "FilterIDs", "field_id": "FilterIDs", "type": "*composed", "value": "~2"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~3"},
// 					{"tag": "MaxHits", "field_id": "MaxHits", "type": "*composed", "value": "~4"},
// 					{"tag": "MinHits", "field_id": "MinHits", "type": "*composed", "value": "~5"},
// 					{"tag": "MinSleep", "field_id": "MinSleep", "type": "*composed", "value": "~6"},
// 					{"tag": "Blocker", "field_id": "Blocker", "type": "*composed", "value": "~7"},
// 					{"tag": "Weight", "field_id": "Weight", "type": "*composed", "value": "~8"},
// 					{"tag": "ActionIDs", "field_id": "ActionIDs", "type": "*composed", "value": "~9"},
// 					{"tag": "Async", "field_id": "Async", "type": "*composed", "value": "~10"},
//],
// 			},
// 			{
// 				"type": "*suppliers",						// data source type
// 				"file_name": "Suppliers.csv",				// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "FilterIDs", "field_id": "FilterIDs", "type": "*composed", "value": "~2"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~3"},
// 					{"tag": "Sorting", "field_id": "Sorting", "type": "*composed", "value": "~4"},
// 					{"tag": "SortingParamameters", "field_id": "SortingParamameters", "type": "*composed", "value": "~5"},
// 					{"tag": "SupplierID", "field_id": "SupplierID", "type": "*composed", "value": "~6"},
// 					{"tag": "SupplierFilterIDs", "field_id": "SupplierFilterIDs", "type": "*composed", "value": "~7"},
// 					{"tag": "SupplierAccountIDs", "field_id": "SupplierAccountIDs", "type": "*composed", "value": "~8"},
// 					{"tag": "SupplierRatingPlanIDs", "field_id": "SupplierRatingPlanIDs", "type": "*composed", "value": "~9"},
// 					{"tag": "SupplierResourceIDs", "field_id": "SupplierResourceIDs", "type": "*composed", "value": "~10"},
// 					{"tag": "SupplierStatIDs", "field_id": "SupplierStatIDs", "type": "*composed", "value": "~11"},
// 					{"tag": "SupplierWeight", "field_id": "SupplierWeight", "type": "*composed", "value": "~12"},
// 					{"tag": "SupplierBlocker", "field_id": "SupplierBlocker", "type": "*composed", "value": "~13"},
// 					{"tag": "SupplierParameters", "field_id": "SupplierParameters", "type": "*composed", "value": "~14"},
// 					{"tag": "Weight", "field_id": "Weight", "type": "*composed", "value": "~15"},
//],
// 			},
// 			{
// 				"type": "*chargers",						// data source type
// 				"file_name": "Chargers.csv",				// file name in the tp_in_dir
// 				"fields": [
// 					{"tag": "Tenant", "field_id": "Tenant", "type": "*composed", "value": "~0", "mandatory": true},
// 					{"tag": "ID", "field_id": "ID", "type": "*composed", "value": "~1", "mandatory": true},
// 					{"tag": "FilterIDs", "field_id": "FilterIDs", "type": "*composed", "value": "~2"},
// 					{"tag": "ActivationInterval", "field_id": "ActivationInterval", "type": "*composed", "value": "~3"},
// 					{"tag": "RunID", "field_id": "RunID", "type": "*composed", "value": "~4"},
// 					{"tag": "AttributeIDs", "field_id": "AttributeIDs", "type": "*composed", "value": "~5"},
// 					{"tag": "Weight", "field_id": "Weight", "type": "*composed", "value": "~6"},
//],
// 			},
//],
// 	},
//],

// "mailer": {
// 	"server": "localhost",								// the server to use when sending emails out
// 	"auth_user": "cgrates",								// authenticate to email server using this user
// 	"auth_password": "CGRateS.org",						// authenticate to email server with this password
// 	"from_address": "cgr-mailer@localhost.localdomain"	// from address used when sending emails out
// },

// "suretax": {
// 	"url": "",								// API url
// 	"client_number": "",					// client number, provided by SureTax
// 	"validation_key": "",					// validation key provided by SureTax
// 	"business_unit": "",					// client’s Business Unit
// 	"timezone": "Local",					// convert the time of the events to this timezone before sending request out <UTC|Local|$IANA_TZ_DB>
// 	"include_local_cost": false,			// sum local calculated cost with tax one in final cost
// 	"return_file_code": "0",				// default or Quote purposes <0|Q>
// 	"response_group": "03",					// determines how taxes are grouped for the response <03|13>
// 	"response_type": "D4",					// determines the granularity of taxes and (optionally) the decimal precision for the tax calculations and amounts in the response
// 	"regulatory_code": "03",				// provider type
// 	"client_tracking": "CGRID",				// template extracting client information out of StoredCdr; <$RSRFields>
// 	"customer_number": "Subject",			// template extracting customer number out of StoredCdr; <$RSRFields>
// 	"orig_number": "Subject", 				// template extracting origination number out of StoredCdr; <$RSRFields>
// 	"term_number": "Destination",			// template extracting termination number out of StoredCdr; <$RSRFields>
// 	"bill_to_number": "",					// template extracting billed to number out of StoredCdr; <$RSRFields>
// 	"zipcode": "",							// template extracting billing zip code out of StoredCdr; <$RSRFields>
// 	"plus4": "",							// template extracting billing zip code extension out of StoredCdr; <$RSRFields>
// 	"p2pzipcode": "",						// template extracting secondary zip code out of StoredCdr; <$RSRFields>
// 	"p2pplus4": "",							// template extracting secondary zip code extension out of StoredCdr; <$RSRFields>
// 	"units": "^1",							// template extracting number of “lines” or unique charges contained within the revenue out of StoredCdr; <$RSRFields>
// 	"unit_type": "^00",						// template extracting number of unique access lines out of StoredCdr; <$RSRFields>
// 	"tax_included": "^0",					// template extracting tax included in revenue out of StoredCdr; <$RSRFields>
// 	"tax_situs_rule": "^04",				// template extracting tax situs rule out of StoredCdr; <$RSRFields>
// 	"trans_type_code": "^010101",			// template extracting transaction type indicator out of StoredCdr; <$RSRFields>
// 	"sales_type_code": "^R",				// template extracting sales type code out of StoredCdr; <$RSRFields>
// 	"tax_exemption_code_list": "",			// template extracting tax exemption code list out of StoredCdr; <$RSRFields>
// },

// "loader": {								// loader for tariff plans out of .csv files
// 	"tpid": "",								// tariff plan identificator
// 	"data_path": "",						// path towards tariff plan files
// 	"disable_reverse": false,				// disable reverse computing
// 	"caches_conns": [// addresses towards cacheS components for reloads
// 		{"address": "127.0.0.1:2012", "transport": "*json"}
//],
// 	"scheduler_conns": [
// 		{"address": "127.0.0.1:2012"}
//],
// },

// "migrator": {
// 	"out_datadb_type": "redis",
// 	"out_datadb_host": "127.0.0.1",
// 	"out_datadb_port": "6379",
// 	"out_datadb_name": "10",
// 	"out_datadb_user": "cgrates",
// 	"out_datadb_password": "",
// 	"out_datadb_encoding": "msgpack",
// 	"out_stordb_type": "mysql",
// 	"out_stordb_host": "127.0.0.1",
// 	"out_stordb_port": "3306",
// 	"out_stordb_name": "cgrates",
// 	"out_stordb_user": "cgrates",
// 	"out_stordb_password": "",
// },

// "dispatcher":{
// 	"enabled": false,						// starts DispatcherS service: <true|false>.
// 	"rals_conns": [],						// address where to reach the RALs for dispatcherS <*internal>		
// 	"resources_conns": [],					// address where to reach the ResourceS <""|127.0.0.1:2013>
// 	"thresholds_conns": [],					// address where to reach the ThresholdS <""|127.0.0.1:2013>
// 	"stats_conns": [],						// address where to reach the StatS <""|127.0.0.1:2013>
// 	"suppliers_conns": [],					// address where to reach the SupplierS <""|127.0.0.1:2013>
// 	"attributes_conns": [],					// address where to reach the AttributeS <""|127.0.0.1:2013>
// 	"sessions_conns": [],					// connection towards SessionService
// 	"chargers_conns": [],					// address where to reach the ChargerS <""|127.0.0.1:2013>
// 	"dispatching_strategy": "*first",		// strategy for dispatching <*first|*random|*next|*broadcast>
// },

// "analyzers":{
// 	"enabled":false							// starts AnalyzerS service: <true|false>.
// },

}

4.2. Tariff Plans

Major concept within CGRateS architecture, implement mechanisms to load rating as well as account data into CGRateS.
For importing the data into CGRateS database(s) we are using csv files.
The import process can be started as many times it is desired with one ore more csv files
and the existing values are overwritten.

Important

If -flushdb option is used when importing data with cgr-loader,
then the database is cleaned before importing.

For more details see the cgr-loader tool from the tutorial chapter.

The rest of this section we will describe the content of every csv file.

4.2.1. Destinations

The destinations are binding together various prefixes / caller ids to define a
logical destination group. A prefix can appear in multiple destination groups.

"Destinations.csv" - csv
"tp_destinations" - stor_db

	#Id

	Prefix

	DST_1002

	1002

	DST_1001

	1001

	DST_FS

	10

	DST_1003

	1003

	[0] - Id:

	Destination Id, a string by which this destination will be referenced in other places by.

	[1] - Prefix:

	Prefix(es) attached to this destination.
The prefix or caller id to be added to the specified destination.

4.2.2. Timings

Holds time related definitions.
Describes the time periods that have different rates attached to them.

"Timings.csv" - csv
"tp_timings" - stor_db

	[0] - Tag:

	String by which this timing will be referenced in other places by.

	[1] - Years:

	Integers separated by semicolons (;) specifying the years for this time period.

*any in case of always.

	[2] - Months:

	Integers from 1=January to 12=December separated by semicolons (;) specifying the months for this time period.

*any in case of always (equivalent to 1;2;3;4;5;6;7;8;9;10;11;12).

	[3] - MonthDays:

	Integers from 1 to 31 separated by semicolons (;) specifying the month days for this time period.

*any in case of always.

	[4] - WeekDays:

	Integers from 1=Monday to 7=Sunday separated by semicolons (;) specifying the week days for this time period.

*any in case of always.

	[5] - Time:

	The start time for this time period.

If you set it to *asap (was *now) it will be replaced with the time of the data importing.

4.2.3. Rates

Defines price groups for various destinations which will be associated to
various timings.

"Rates.csv" - csv
"tp_rates" - stor_db

	#Id

	ConnectFee

	Rate

	RateUnit

	RateIncrement

	GroupIntervalStart

	RT_10CNT

	0.2

	0.1

	60s

	60s

	0s

	RT_10CNT

	0

	0.05

	60s

	1s

	60s

	RT_20CNT

	0.4

	0.2

	60s

	60s

	0s

	RT_20CNT

	0

	0.1

	60s

	1s

	60s

	RT_40CNT

	0.8

	0.4

	60s

	30s

	0s

	RT_40CNT

	0

	0.2

	60s

	10s

	60s

	RT_1CNT

	0

	0.01

	60s

	60s

	0s

	RT_1CNT_PER_SEC

	0

	0.01

	1s

	1s

	0s

	RT_SMS

	0

	0.01

	1

	1

	0

	[0] - Id:

	Rate Id, a string by which this rate will be referenced in other places by.

	[1] - ConnectFee:

	ConnectFee applied once the call is answered.
The price to be charged once at the beginning of the call to the specified
destination.

	[2] - Rate:

	Number of billing units this rate applies to.
The price for the billing unit expressed in cents.

	[3] - RateUnit:

	The billing unit expressed in seconds.

	[4] - RateIncrement:

	This rate will apply in increments of duration.
The time gap for the rate

	[5] - GroupIntervalStart:

	When the rate starts

See also

Rateincrement and GroupIntervalStart are when the calls has
different rates in the timeframe. For example, the first 30 seconds of the
calls has a rate of €0.1 and after that €0.2. The rate for this will the same
TAG with two RateIncrements

4.2.4. Destination Rates

Attach rates to destinations.

"DestinationRates.csv" - csv
"tp_destination_rates" - stor_db

	#Id

	DestinationId

	RatesTag

	RoundingMethod

	RoundingDecimals

	MaxCost

	MaxCostStrategy

	DR_1001_20CNT

	DST_1001

	RT_20CNT

	*up

	4

	0

	

	DR_1002_20CNT

	DST_1002

	RT_20CNT

	*up

	4

	0

	

	DR_1003_MAXCOST_DISC

	DST_1003

	RT_1CNT_PER_SEC

	*up

	4

	0.12

	*disconnect

	DR_1001_10CNT

	DST_1001

	RT_10CNT

	*up

	4

	0

	

	DR_SMS

	*any

	RT_SMS

	*up

	4

	0

	

	
	
	
	
	
	
	

	[0] - Id:

	tbd

	[1] - DestinationId:

	tbd

	[2] - RatesTag:

	tbd

	[3] - RoundingMethod:

	tbd

	[4] - RoundingDecimals:

	tbd

	[5] - MaxCost:

	tbd

	[6] - MaxCostStrategy:

	tbd

4.2.5. Rating Plans

The rating plan makes the links between Rating Profiles, Timings and Destination Rates so each of them can be
described once and various combinations are made possible.

"RatingPlans.csv" - csv
"tp_rating_plans" - stor_db

	#Id

	DestinationRatesId

	TimingTag

	Weight

	RP_1001

	DR_1002_20CNT

	*any

	10

	RP_1001

	DR_1003_MAXCOST_DISC

	*any

	10

	RP_1002

	DR_1001_20CNT

	*any

	10

	RP_1002_LOW

	DR_1001_10CNT

	*any

	10

	RP_1003

	DR_1001_10CNT

	*any

	10

	RP_SMS

	DR_SMS

	*any

	0

	[0] - Id:

	A string by which this rating plan will be referenced in other places by.

	[1] - DestinationRatesId:

	The rating id/tag described in the Destination rates file. (DestinationRates.csv - Id)

	[2] - TimingTag:

	The timing tag described in the Timings file. (Timings.csv - Tag)

	[3] - Weight:

	If multiple timings cab be applied to a call the one with the lower weight
wins. An example here can be the Christmas day: we can have a special timing
for this day but the regular day of the week timing can also be applied to
this day. The weight will differentiate between the two timings.

4.2.6. Rating profiles

The rating profile describes the prices to be applied for various calls to
various destinations in various time frames. When a call is made the CGRateS
system will locate the rates to be applied to the call using the rating profiles.

"RatingProfiles.csv" - csv
"tp_rating_profiles" - stor_db

	#Direction

	Tenant

	Category

	Subject

	ActivationTime

	RatingPlanId

	RatesFallbackSubject

	CdrStatQueueIds

	*out

	cgrates.org

	call

	1001

	2014-01-14T00:00:00Z

	RP_1001

	
	

	*out

	cgrates.org

	call

	1002

	2014-01-14T00:00:00Z

	RP_1002

	
	

	*out

	cgrates.org

	call

	1003

	2014-01-14T00:00:00Z

	RP_1003

	
	

	*out

	cgrates.org

	sms

	*any

	2014-01-14T00:00:00Z

	RP_SMS

	
	

	[0] - Direction:

	Can be *in or *out for the INBOUND and OUTBOUND calls.

	[1] - Tenant:

	Used to distinguish between carriers if more than one share the same database in the CGRates system.

	[2] - Category:

	Type of record specifies the kind of transmission this rate profile applies to.

	[3] - Subject:

	The client/user for who this profile is detailing the rates.

	[4] - ActivationTime:

	Multiple rates timings/prices can be created for one profile with different
activation times. When a call is made the appropriate profile(s) will be
used to rate the call. So future prices can be defined here and the
activation time can be set as appropriate.

	[5] - RatingPlanId:

	The rating plan id/tag described in the Rating Plans file. (RatingPlans.csv - Id)

This specifies the profile to be used in case the call destination.

	[6] - RatesFallbackSubject:

	This specifies another profile to be used in case the call destination will
not be found in the current profile. The same tenant, tor and direction will
be used.

	[7] - CdrStatQueueIds:

	The cdr stats id described in the Cdr Stats file. (CdrStats.csv - Id)

Stat Queue associated with this account.

4.2.7. Account actions

Describes the actions to be applied to the clients/users accounts. There are two
kinds of actions: timed and triggered. For the timed actions there is a
scheduler application that reads them from the database and executes them at the
appropriate timings. The triggered actions are executed when the specified
balance counters reach certain thresholds.

The accounts hold the various balances and counters to activate the triggered
actions for each the client.

Balance types are: MONETARY, SMS, INTERNET, INTERNET_TIME, MINUTES.

"AccountActions.csv" - csv
"tp_account_actions" - stor_db

	#Tenant

	Account

	ActionPlanId

	ActionTriggersId

	AllowNegative

	Disabled

	cgrates.org

	1001

	AP_PACKAGE_10

	
	
	

	cgrates.org

	1002

	AP_PACKAGE_10

	
	
	

	cgrates.org

	1003

	AP_PACKAGE_10

	
	
	

	[0] - Tenant:

	Used to distinguish between carriers if more than one share the same
database in the CGRates system.

	[1] - Account:

	The identifier for the user’s account.

	[2] - Direction:

	Can be *in or *out for the INBOUND and OUTBOUND calls.

	[3] - ActionPlanId:

	The action plan id/tag described in the Action plans file. (ActionPlans.csv - Id)

Forwards to a timed action group that will be used on this account.

	[4] - ActionTriggersId:

	The action trigger id/tag described in the Action triggers file. (ActionTriggers.csv - Tag)

Forwards to a triggered action group that will be applied to this account.

	[5] - AllowNegative:

	TBD

	[6] - Disabled:

	TBD

4.2.8 Action triggers

For each account there are counters that record the activity on various
balances. Action triggers allow when a counter reaches a threshold to activate a
group of actions. After the execution the action trigger is marked as used and
will no longer be evaluated until the triggers are reset. See actions for action
trigger resetting.

"ActionTriggers.csv" - csv
"tp_action_triggers" - stor_db

	[0] - Tag:

	A string by which this action trigger will be referenced in other places by.

	[1] - UniqueID:

	Unique id for the trigger in multiple ActionTriggers

	[2] - ThresholdType:

	The threshold type. Can have one of the following:

	*min_counter: Fire when counter is less than ThresholdValue

	*max_counter: Fire when counter is greater than ThresholdValue

	*min_balance: Fire when balance is less than ThresholdValue

	*max_balance: Fire when balances is greater than ThresholdValue

	*min_asr: Fire when ASR(Average success Ratio) is less than ThresholdValue

	*max_asr: Fire when ASR is greater than ThresholdValue

	*min_acd: Fire when ACD(Average call Duration) is less than ThresholdValue

	*max_acd: Fire when ACD is greater than ThresholdValue

	*min_acc: Fire when ACC(Average call cost) is less than ThresholdValue

	*max_acc: Fire when ACC is greater than ThresholdValue

	*min_tcc: Fire when TCC(Total call cost) is less than ThresholdValue

	*max_tcc: Fire when TCC is greater than ThresholdValue

	*min_tcd: fire when TCD(total call duration) is less than thresholdvalue

	*max_tcd: fire when TCD is greater than thresholdvalue

	*min_pdd: Fire when PDD(Post Dial Delay) is less than ThresholdValue

	*max_pdd: Fire when PDD is greater than ThresholdValue

	[3] - ThresholdValue:

	The value of the balance counter that will trigger this action.

	[4] - Recurrent(Boolean):

	In case of trigger we can fire recurrent while it’s active, or only the
first time.

	[5] - MinSleep:

	When Threshold is triggered we can sleep for the time specified.

	[6] - ExpiryTime

	TBD

	[7] - ActivationTime

	TBD

	[8] - BalanceTag:

	Specifies the balance counter by which this action will be triggered.
Can be:

	MONETARY

	SMS

	INTERNET

	INTERNET_TIME

	MINUTES

	[9] - BalanceType:

	Specifies the balance type for this action:

	*voice: units of call minutes

	*sms: units of SMS

	*data: units of data

	*monetary: units of money

	[10] - BalanceDirections:

	Can be *in or *out for the INBOUND and OUTBOUND calls.

	[11] - BalanceCategories:

	Category of the call/trigger

	[12] - BalanceDestinationIds:

	The destination id/tag described in the Destinations file. (Destinations.csv - Id) - rinor: need verification

Destination of the call/trigger

	[13] - BalanceRatingSubject:

	TBD

	[14] - BalanceSharedGroup:

	Shared Group of the call/trigger

	[15] - BalanceExpiryTime:

	TBD

	[16] - BalanceTimingIds:

	TBD

	[17] - BalanceWeight:

	TBD

	[18] - BalanceBlocker

	TBD

	[19] - BalanceDisabled:

	TBD

	[20] - StatsMinQueuedItems:

	Min of items that need to have a queue to reach this Trigger.
Trigger actions only if this number is hit (stats only).

	[21] - ActionsId:

	The actions id/tag described in the Actions file. (Actions.csv - ActionsId)

Forwards to an action group to be executed when the threshold is reached.

	[22] - Weight:

	Specifies the order for these triggers to be evaluated. If there are
multiple triggers are fired in the same time the ones with the lower weight
will be executed first.

4.2.9. Action Plans

TBD

"ActionPlans.csv" - csv
"tp_action_plans" - stor_db

	#Id

	ActionsId

	TimingId

	Weight

	AP_PACKAGE_10

	ACT_TOPUP_RST_10

	*asap

	10

	[0] - Id:

	A string by which this action timing will be referenced in other places by.

	[1] - ActionsId:

	Forwards to an action group to be executed when the timing is right.

	[2] - TimingId:

	A timing (one time or recurrent) at which the action group will be executed

	[3] - Weight:

	Specifies the order for these timings to be evaluated. If there are multiple
action timings set to be execute on the same time the ones with the lower
weight will be executed first.

4.2.10. Actions

TBD

"Actions.csv" - csv
"tp_actions" - stor_db

	#ActionsId[0]

	Action[1]

	ExtraParameters[2]

	Filter[3]

	BalanceId[4]

	BalanceType[5]

	Directions[6]

	Categories[7]

	DestinationIds[8]

	RatingSubject[9]

	SharedGroup[10]

	ExpiryTime[11]

	TimingIds[12]

	Units[13]

	BalanceWeight[14]

	BalanceBlocker[15]

	BalanceDisabled[16]

	Weight[17]

	ACT_TOPUP_RST_10

	*topup_reset

	
	
	
	*monetary

	*out

	
	*any

	
	
	*unlimited

	
	10

	10

	false

	false

	10

	ACT_LOG_WARNING

	*log

	
	
	
	
	
	
	
	
	
	
	
	
	
	false

	false

	10

	[0] - ActionsId:

	A string by which this action will be referenced in other places by.

	[1] - Action:

	The action type. Can have one of the following:

	*allow_negative: Allow to the account to have negative balance

	*call_url: Send a http request to the following url

	*call_url_async: Send a http request to the following url Asynchronous

	*cdrlog: Log the current action in the storeDB

	*debit: Debit account balance.

	*deny_negative: Deny to the account to have negative balance

	*disable_account: Disable account in the platform

	*enable_account: Enable account in the platform

	*log: Logs the other action values (for debugging purposes).

	*mail_async: Send a email to the direction

	*reset_account: Sets all counters to 0

	*reset_counter: Sets the counter for the BalanceTag to 0

	*reset_counters: Sets all the counters for the BalanceTag to 0

	*reset_triggers: reset all the triggers for this account

	*set_recurrent: (pending)

	*topup: Add account balance. If the specific balance is not defined, define it (example: minutes per destination).

	*topup_reset: Add account balance. If previous balance found of the same type, reset it before adding.

	*unset_recurrent: (pending)

	*unlimited: (pending)

	[2] - ExtraParameters:

	In Extra Parameter field you can define an argument for the action. In case
of call_url Action, extraParameter will be the url action. In case of
mail_async the email that you want to receive.

	[3] - Filter

	TBD

	[4] - BalanceId:

	The balance on which the action will operate

	[5] - BalanceType:

	Specifies the balance type for this action:

	*voice: units of call minutes

	*sms: units of SMS

	*data: units of data

	*monetary: units of money

	[6] - Directions:

	Can be *in or *out for the INBOUND and OUTBOUND calls.

	[7] - Categories:

	TBD

	[8] - DestinationIds:

	The destination id/tag described in the Destinations file. (Destinations.csv - Id)

This field is used only if the BalanceId is MINUTES. Specifies the
destination of the minutes to be operated.

	[9] - RatingSubject:

	The ratingSubject of the Actions

	[10] - SharedGroup:

	In case of the account uses any shared group for the balances.

	[11] - ExpiryTime:

	TBD

	[12] - TimingIds:

	Timming tag when the action can be executed. Default ALL.

	[13] - Units:

	Number of units for decrease the balance. Only use if BalanceType is voice.

	[14] - BalanceWeight:

	TBD

	[15] - BalanceBlocker

	TBD

	[16] - BalanceDisabled:

	TBD

	[17] - Weight:

	If there are multiple actions in a group, they will be executed in the order
of their weight (smaller first).

4.2.11. Derived Chargers

For each call we can bill more than one time, for that we need to use the
following options:

"DerivedChargers.csv" - csv
"tp_derived_chargers" - stor_db

In derived charges we have 2 different kind of options, FILTERS and ACTIONS :

Filters: With the following fields we filter the calls that need to run a extra
billing parameter.

	[0] - Direction:

	TBD

	[1] - Tenant:

	TBD

	[2] - Category:

	TBD

	[3] - Account:

	TBD

	[4] - Subject:

	TBD

	[5] - DestinationIds:

	TBD

Actions: In case of the filter options match, platform creates extra runid with
the fields that we want to modify.

	[6] - RunId:

	TBD

	[7] - RunFilter:

	TBD

	[8] - ReqTypeField:

	TBD

	[9] - DirectionField:

	TBD

	[10] - TenantField:

	TBD

	[11] - CategoryField:

	TBD

	[12] - AccountField:

	TBD

	[13] - SubjectField:

	TBD

	[14] - DestinationField:

	TBD

	[15] - SetupTimeField:

	TBD

	[16] - PddField:

	TBD

	[17] - AnswerTimeField:

	TBD

	[18] - UsageField:

	TBD

	[19] - SupplierField:

	TBD

	[20] - DisconnectCause:

	TBD

	[21] - RatedField:

	TBD

	[22] - CostField:

	TBD

In the example, all the calls with direction=out, tenant=cgrates.org,
category=”call” and account and subject equal 1001. Will be created a new cdr in
the table rated_cdrs with the runID derived_run1, and the subject 1002.

This feature it’s useful in the case that you want to rated the calls 2 times,
for example rated for different tenants or resellers.

4.2.12. CDR Stats

CDR Stats enables some realtime statistics in your platform for multiple
purposes, you can read more, see CDR Stats Server

"CdrStats.csv" - csv
"tp_cdr_stats" - stor_db

	[0] - Id:

	Tag name for the Queue id

	[1] - QueueLength:

	Maximum number of calls in this queue

	[2] - TimeWindow:

	Window frame to store the calls

	[3] - SaveInterval:

	Each interval queue stats will save in the stordb

	[4] - Metric:

	Type of metric see Metrics Types

	[5] - SetupInterval:

	TBD

	[6] - TOR:

	TBD

	[7] - CdrHost

	TBD

	[8] - CdrSource:

	TBD

	[9] - ReqType:

	Filter by reqtype

	[10] - Direction:

	TBD

	[11] - Tenant:

	Used to distinguish between carriers if more than one share the same
database in the CGRates system.

	[12] - Category:

	Type of record specifies the kind of transmission this rate profile applies
to.

	[13] - Account:

	The identifier for the user’s account.

	[14] - Subject:

	The client/user for who this profile is detailing the rates.

	[15] - DestinationIds:

	Filter only by destinations prefix. Can be multiple separated with ;

	[16] - PddInterval:

	TBD

	[17] - UsageInterval:

	TBD

	[18] - Supplier:

	TBD

	[19] - DisconnectCause:

	TBD

	[20] - RunIds:

	TBD

	[21] - RatedAccount:

	Filter by rated account

	[22] - RatedSubject:

	Filter by rated subject

	[23] - CostInterval:

	Filter by cost

	[24] - ActionTriggers:

	ActionTriggers associated with this queue

4.2.13. Shared groups

TBD

"SharedGroups.csv" - csv
"tp_shared_groups" - stor_db

	[0] - Id:

	TBD

	[1] - Account:

	TBD

	[2] - Strategy:

	TBD

	[3] - RatingSubject:

	TBD

4.2.14. LCR rules

TBD

"LcrRules.csv" - csv
"tp_lcr_rules" - stor_db

	[0] - Direction:

	TBD

	[1] - Tenant:

	TBD

	[2] - Category:

	TBD

	[3] - Account:

	TBD

	[4] - Subject:

	TBD

	[5] - DestinationTag:

	TBD

	[6] - RpCategory:

	TBD

	[7] - Strategy:

	TBD

	[8] - StrategyParams:

	TBD

	[9] - ActivationTime:

	TBD

	[10] - Weight:

	TBD

4.2.15. Users

TBD

"Users.csv" - csv
"tp_users" - stor_db

	[0] - Tenant:

	TBD

	[1] - UserName:

	TBD

	[2] - Masked:

	TBD

	[3] - AttributeName:

	TBD

	[4] - AttributeValue:

	TBD

	[5] - Weight:

	TBD

4.2.16. Aliases

TBD

"Aliases.csv" - csv
"tp_aliases" - stor_db

	[0] - Direction:

	TBD

	[1] - Tenant:

	TBD

	[2] - Category:

	TBD

	[3] - Account:

	TBD

	[4] - Subject:

	TBD

	[5] - DestinationId:

	TBD

	[6] - Context:

	TBD

	[7] - Target:

	TBD

	[8] - Original:

	TBD

	[9] - Alias:

	TBD

	[10] - Weight:

	TBD

4.2.17. Resource Limits

TBD

"Resources.csv" - csv
"tp_resources" - stor_db

	[0] - Tag

	TBD

	[1] - FilterType

	TBD

	[2] - FilterFieldName

	TBD

	[3] - FilterFieldValues

	TBD

	[4] - ActivationTime

	TBD

	[5] - Weight

	TBD

	[6] - Limit

	TBD

	[7] - ActionTriggerIds

	TBD

5. Administration

The general steps to get CGRateS operational are:

	Create CSV files containing the initial data for CGRateS.

	Load the data in the databases using the Loader application.

	Start a Rater.

	Start the SessionManager talking to your VoIP Switch or directly make API calls to the Rater.

	Make API calls to the Rater or just let the SessionManager do the work.

6. Advanced Topics

	API Calls

	CDR Server
	CDR-CGR

	CDR-FS_JSON

	CDR-RPC

	CDR Client (cdrc)
	Import Templates

	CDR .CSV

	CDR Exporter
	Export Templates

	CGR-CSV

	CGR-FWV

	Hybrid CSV-FWV

	CDR Stats Server
	Configuration

	Metrics Types

	ExternalQueries

	Example use

	DerivedCharging
	Configuration

	Rating logic
	User balances

	FilterS
	Filter profile

	Filter rule

API Calls

API calls are documented in the following GoDoc [https://godoc.org/github.com/cgrates/cgrates/apier]

CDR Server

An important component of every rating system is represented by the CDR Server. CGRateS includes an out of the box CDR Server component, controlable in the configuration file and supporting multiple interfaces for CDR feeds. This component makes the CDRs real-time accessible (influenced by the time of receiving them) to CGRateS subsystems.

Following interfaces are supported:

CDR-CGR

Available as handler within http server.

To feed CDRs in via this interface, one must use url of the form: <http://$ip_configured:$port_configured/cdr_http>.

The CDR fields are received via http form (although for simplicity we support inserting them within query parameters as well) and are expected to be urlencoded in order to transport special characters reliably. All fields are expected by CGRateS as string, particular conversions being done on processing each CDR.
The fields received are split into two different categories based on CGRateS interest in them:

Primary fields: the fields which CGRateS needs for it’s own operations and are stored into cdrs_primary table of storDb.

	ToR: type of record, meta-field, should map to one of the TORs hardcoded inside the server <*voice|*data|*sms>

	OriginID: represents the unique accounting id given by the telecom switch generating the CDR

	OrderID: Stor order id used as export order id

	OriginHost: represents the IP address of the host generating the CDR (automatically populated by the server)

	Source: formally identifies the source of the CDR (free form field)

	RequestType: matching the supported request types by the CGRateS, accepted values are hardcoded in the server <prepaid|postpaid|pseudoprepaid|rated>.

	Category: free-form filter for this record, matching the category defined in rating profiles.

	Tenant: tenant whom this record belongs

	Account: account id (accounting subsystem) the record should be attached to

	Subject: rating subject (rating subsystem) this record should be attached to

	Destination: destination to be charged

	SetupTime: set-up time of the event. Supported formats: datetime RFC3339 compatible, SQL datetime (eg: MySQL), unix timestamp.

	AnswerTime: answer time of the event. Supported formats: datetime RFC3339 compatible, SQL datetime (eg: MySQL), unix timestamp.

	Usage: event usage information (eg: in case of tor=*voice this will represent the total duration of a call)

	CostSource: The source of this cost

	Rated: Mark the CDR as rated so we do not process it during rating

Extra fields: any field coming in via the http request and not a member of primary fields list. These fields are stored as json encoded into cdrs_extra table of storDb.

Example of sample CDR generated simply using curl:

curl --data "ToR=*voice \
 &Source=curl_cdr \
 &OrderID=abcde \
 &OriginHost=192.168.1.2 \
 &Source=sbc1 \
 &OriginID=qwerty3234567 \
 &ToR=*voice \
 &RequestType=*raw \
 &Tenant=192.168.56.66 \
 &Category=call \
 &Account=1004 \
 &Subject=1004 \
 &Destination=%2B4986517174963 \
 &SetupTime=2018-05-21T12:32:50Z \
 &AnswerTime=2018-05-21T12:32:56Z \
 &Usage=306 \
 &CostSource=*cdrs" http://127.0.0.1:2080/cdr_http

CDR-FS_JSON

Available as handler within http server, it implements the mechanism to store CDRs received from FreeSWITCH mod_json_cdr.

This interface is available at url: <http://$ip_configured:$port_configured/freeswitch_json>.

This handler has a different implementation logic than the previous CDR-CGR, filtering fields received in the CDR from FreeSWITCH based on predefined configuration.
The mechanism of extracting CDR information out of JSON encoded CDR received from FreeSWITCH is the following:

	When receiving the CDR from FreeSWITCH, CGRateS will extract the content of ‘’variables’’ object.

	
	Content of the ‘’variables’’ will be filtered out and the following information will be stored into an internal CDR object:

	
	
	Fields used by CGRateS in primary mediation, known as primary fields. These are:

	
	uuid: internally generated uuid by FreeSWITCH for the call

	sip_local_network_addr: IP address of the FreeSWITCH box generating the CDR

	sip_call_id: call id out of SIP protocol

	cgr_reqtype: request type as understood by the CGRateS

	cgr_category: call category (optional)

	cgr_tenant: tenant this call belongs to (optional)

	cgr_account: account id in CGRateS (optional)

	cgr_subject: rating subject in CGRateS (optional)

	cgr_destination: destination being rated (optional)

	user_name: username as seen by FreeSWITCH (considered if cgr_subject or cgr_account not present)

	dialed_extension: destination number considered if cgr_destination is missing

	Fields stored at request in cdr_extra and definable in configuration file under extra_fields.

	Once the content will be filtered, the real CDR object will be processed, stored into storDb under cdrs_primary and cdrs_extra tables and, if configured, it will be passed further for mediation.

CDR-RPC

Available as RPC handler on top of CGR APIs exposed (in-process as well as GOB-RPC and JSON-RPC). This interface is used for example by CGR-SM component capturing the CDRs over event interface (eg: OpenSIPS or FreeSWITCH-ZeroConfig scenario)

The RPC function signature looks like this:

CDRSV1.ProcessCdr(cdr *utils.StoredCdr, reply *string) error

The simplified StoredCdr object is represented by following:

type StoredCdr struct {
 CgrId string
 OrderId int64 // Stor order id used as export order id
 TOR string // type of record, meta-field, should map to one of the TORs hardcoded inside the server <*voice|*data|*sms>
 AccId string // represents the unique accounting id given by the telecom switch generating the CDR
 CdrHost string // represents the IP address of the host generating the CDR (automatically populated by the server)
 CdrSource string // formally identifies the source of the CDR (free form field)
 ReqType string // matching the supported request types by the **CGRateS**, accepted values are hardcoded in the server <prepaid|postpaid|pseudoprepaid|rated>.
 Direction string // matching the supported direction identifiers of the CGRateS <*out>
 Tenant string // tenant whom this record belongs
 Category string // free-form filter for this record, matching the category defined in rating profiles.
 Account string // account id (accounting subsystem) the record should be attached to
 Subject string // rating subject (rating subsystem) this record should be attached to
 Destination string // destination to be charged
 SetupTime time.Time // set-up time of the event. Supported formats: datetime RFC3339 compatible, SQL datetime (eg: MySQL), unix timestamp.
 AnswerTime time.Time // answer time of the event. Supported formats: datetime RFC3339 compatible, SQL datetime (eg: MySQL), unix timestamp.
 Usage time.Duration // event usage information (eg: in case of tor=*voice this will represent the total duration of a call)
 ExtraFields map[string]string // Extra fields to be stored in CDR
}

CDR Client (cdrc)

It’s role is to gather offline CDRs and post them to CDR Server(CDRS) component.

Part of the cgr-engine, can be started on a remote server as standalone component.

Controlled within cdrc section of the configuration file.

Has two modes of operation:

	Automated: CDR file processing is triggered on file creation/move.

	Periodic: CDR file processing will be triggered at configured time interval (delay/sleep between processes) and it will be performed on all files present in the folder (IN) at run time.

Principles behind functionality:

	Monitor/process a CDR folder (IN) as outlined above.

	For every file processed, extract the information based on configuration and post it via configured mechanism to CDRS.

	The fields extracted out of each CDR row are the same ones depicted in the CDRS documentation (following primary and extra fields concept).

	Once the file processing completes, move it in it’s original format in another folder (OUT) in order to avoid re-processing. Here it’s worth mentioning the auto-detection of duplicated CDRs at server side based on accid and host fields.

	Advanced configuration like forking a number of simultaneous client instances monitoring different folders possible through the use of .xml configuration.

Import Templates

To specifiy custom imports (for various sources) one can specify Import Templates. These are definable within both .cfg as well as .xml advanced configuration files.
For increased flexibility the Import Template can be defined using CGR-RSR fields capturing both ReGexp as well as static rules. The static values will be way faster in processing but limited in functionality.

CGR-RSR Regexp Rule

Format:

~field_id:s/regexp_search_and_capture_rule/output_teplate/

Example of usage:

Input CDR field:
 {
 "account": "First-Account123"
 }
Capture Rule:
 ~account:s/^*+(Account123)$/$1-processed/
Result after processing:
 {
 "account": "Account123-processed"
 }

CGR-RSR Static Rule

Format:

^field_id:static_value

Example of usage:

	Input CDR field:

	
{
“account”: “First-Account123”
}

	Capture Rule:

	^account:MasterAccount

	Result after processing:

	{
“account”: “MasterAccount”
}

CDR Formats supported:

CDR .CSV

Most widely used format by Telecom Switches.

Light to read and generic to process.
CDRC should be able to process in this way any .csv CDR, independent of the Telecom Switch generating them. Incompatibilities here can come out of answer time and duration formats which can vary between CDR writer implementations.
As answer time we support a number of formats already - rfc3339, SQL/MySQL, unix timestamp. As duration we support nanoseconds granularity in our code. Time unit can be specified (eg: ms, s, m, h), or if missing, will default to nanoseconds.

In case of .csv files the Import Template will contain indexes for the possition where primary fields are located (0 representing the first field) and fieldname/position format for extra fields which need not only to be extracted by row index but also to be named since .csv format does not save field names/labels. CDRC uses the following convention for extra fields in the configuration: <label_extrafield_1>:<index_extrafield_1>[…,<label_extrafield_n>:<index_extrafield_n>]….

CDR Exporter

Component to retrieve rated CDRs from internal CDRs database.

Although nowadays it is custom to read a storage/database with tools, we do not recommend doing it so due to possibility that reads can slow down complete rating system. For this purpose we have created exporter plugins which are meant to work in tight relationship with CGRateS internal components in order to best optimize performance and avoid system locks.

Export Templates

For advanced needs CGRateS Export Templates are configurable via .cfg, .xml as well as directly within RPC call requesting the export to be performed.
Inside each Export Template one can either specify simple CDR field ids or use CGR-RSR fields capturing both Regexp as well as static rules.

CGR-RSR Regexp Rule

Format:

~field_id:s/regexp_search_and_capture_rule/output_teplate/

Example of usage:

Input CDR field:
 {
 "account": "First-Account123"
 }
Capture Rule:
 ~account:s/^*+(Account123)$/$1-processed/
Result after processing:
 {
 "account": "Account123-processed"
 }

CGR-RSR Static Rule

Format:

^field_id:static_value

Example of usage:

	Input CDR field:

	
{
“account”: “First-Account123”
}

	Capture Rule:

	^account:MasterAccount

	Result after processing:

	{
“account”: “MasterAccount”
}

Export interfaces implemented:

CGR-CSV

Simplest way to export CDRs in a format internally defined (with parts like CDRExtraFields configurable in main configuration file).

Principles behind exports:

	Exports are to be manually requested (although automated is planned for the future through the used of built-in scheduled actions) via exposed JSON-RPC api. Example of api call from python call provided as sample script:

rpc.call("ApierV1.ExportCsvCdrs",{"TimeStart":"1383823746","TimeEnd":"1383833746"})

	On each export call there will be a .csv format file generated using configured separator. Location of the export folder is definable inside cgrates.cfg.

	File name of the export will appear like: cdrs_$(timestamp).csv where $(timestamp) will be replaced by unix timestamp of the server running the export process or requested via API call.

	Each exported file will have as content all the CDRs inside time interval defined in the API call. Both TimeStart and TimeEnd are optional, hence being able to obtain a full export of the available CDRs with one API call.

	To be noted here that CGRateS does not keep anywhere a history of exports, hence it is the responsibility of the system administrator to make sure that his exports are not doubled.

	If not otherwise defined, each line within the exported file will follow an internally predefined template:

	cgrid,mediation_runid,tor,accid,reqtype,direction,tenant,category,account,subject,destination,setup_time,answer_time,usage,cost

	$(cgrid),$(mediation_runid),$(tor),$(accid),$(reqtype),$(direction),$(direction),$(tenant),$(category),$(account),$(subject),$(destination),$(setup_time),$(answer_time),$(usage),$(cost)

	The significance of the fields exported:

	
	tor: type of record, meta-field, should map to one of the TORs hardcoded inside the server <*voice|*data|*sms>

	accid: represents the unique accounting id given by the telecom switch generating the CDR

	cdrhost: represents the IP address of the host generating the CDR (automatically populated by the server)

	cdrsource: formally identifies the source of the CDR (free form field)

	reqtype: matching the supported request types by the CGRateS, accepted values are hardcoded in the server <prepaid|postpaid|pseudoprepaid|rated>.

	direction: matching the supported direction identifiers of the CGRateS <*out>

	tenant: tenant whom this record belongs

	category: free-form filter for this record, matching the category defined in rating profiles.

	account: account id (accounting subsystem) the record should be attached to

	subject: rating subject (rating subsystem) this record should be attached to

	destination: destination to be charged

	setup_time: set-up time of the event. Supported formats: datetime RFC3339 compatible, SQL datetime (eg: MySQL), unix timestamp.

	answer_time: answer time of the event. Supported formats: datetime RFC3339 compatible, SQL datetime (eg: MySQL), unix timestamp.

	usage: event usage information (eg: in case of tor=*voice this will represent the total duration of a call)

	
	extra_cdr_fields:

	
	selected list of cdr_extra fields via cgrates.cfg configuration or

	alphabetical order of the cdr extra fields stored in cdr_extra table

Sample CDR export file content which was made available at path: /var/log/cgrates/cdr/out/cgr/csv/cdrs_1384104724.csv

dbafe9c8614c785a65aabd116dd3959c3c56f7f6,default,*voice,dsafdsaf,rated,*out,cgrates.org,call,1001,1001,1002,2013-11-07T08:42:25Z,2013-11-07T08:42:26Z,10000000000,1.0100

CGR-FWV

Fixed width form of export CDR. Advanced template configuration available via .xml configuration file.

Hybrid CSV-FWV

For advanced needs CGRateS supports exporting the CDRs as combination between .csv and .fwv formats.

CDR Stats Server

Collects CDRs from various sources (eg: CGR-CDRS, CGR-Mediator, CGR-SM,
third-party CDR source via RPC) and builds real-time stats based on them. Each
StatsQueue has attached ActionTriggers with monitoring and actions
capabilities.

Principles of functionality:

	Standalone component (can be started individually on remote hardware, isolated form other CGRateS compoenents).

	Performance oriented. Should be able to process tens of thousands of CDRs per second.

	Cache driven technology. But SaveInterval can be set to store this information
on redis.

	Stats are build within StatsQueues a CDR Stats Server being able to support
unlimited number of StatsQueues. Each CDR will be passed to all of StatsQueues
available and will be processed by individual StatsQueue based on configuration.

	Stats will be build inside Metrics (eg: ASR, ACD, ACC, TCC) and attached to specific StatsQueue.

	Each StatsQueue will have attached one ActionTriggers profile which will
monitor Metrics values and react on thresholds reached (unlimited number of
thresholds and reactions configurable).

	CDRs are processed by StatsQueues if they pass CDR field filters.

	CDRs are auto-removed from StatsQueues in a fifo manner if the QueueLength
is reached or if they do not longer fit within TimeWindow defined.

Configuration

Individual StatsQueue configurations are loaded inside TariffPlan defitions, one
configuration object is internally represented as:

type CdrStats struct {
 Id string // Config id, unique per config instance
 QueueLength int // Number of items in the stats buffer
 TimeWindow time.Duration // Will only keep the CDRs who's call setup time is not older than time.Now()-TimeWindow
 SaveInterval time.Duration // Interval to store the info into database
 Metrics []string // ASR, ACD, ACC, TCC, TCD, PDD
 SetupInterval []time.Time // CDRFieldFilter on SetupInterval, 2 or less items (>= start interval,< stop_interval)
 TOR []string // CDRFieldFilter on TORs
 CdrHost []string // CDRFieldFilter on CdrHosts
 CdrSource []string // CDRFieldFilter on CdrSources
 ReqType []string // CDRFieldFilter on ReqTypes
 Direction []string // CDRFieldFilter on Directions
 Tenant []string // CDRFieldFilter on Tenants
 Category []string // CDRFieldFilter on Categories
 Account []string // CDRFieldFilter on Accounts
 Subject []string // CDRFieldFilter on Subjects
 DestinationPrefix []string // CDRFieldFilter on DestinationPrefixes
 UsageInterval []time.Duration // CDRFieldFilter on UsageInterval, 2 or less items (>= Usage, <Usage)
 PddInterval []time.Duration // CDRFieldFilter on PddInterval, 2 or less items (>= Pdd, <Pdd)
 Supplier []string // CDRFieldFilter on Suppliers
 DisconnectCause []string // Filter on DisconnectCause
 MediationRunIds []string // CDRFieldFilter on MediationRunIds
 RatedAccount []string // CDRFieldFilter on RatedAccounts
 RatedSubject []string // CDRFieldFilter on RatedSubjects
 CostInterval []float64 // CDRFieldFilter on CostInterval, 2 or less items, (>=Cost, <Cost)
 Triggers ActionTriggerPriotityList
}

Metrics Types

	ACC (Average Call Cost): Queue with the average call cost

	ACD (Average Call Duration): Queue with the average call duration

	ASR (Answer-Seizure Ratio): Queue with the answer ratio

	PDD (Post Dial Delay): Queue with the average Post Dial Delay in seconds

	TCC (Total Call Cost): Queue with the Total cost for the time frame.

	TCD (Total Call Duration): Queue with the total call duration for the

time frame

ExternalQueries

The Metrics calculated are available to be real-time queried via RPC methods.

To facilitate interaction there are four commands built in the provided cgr-console tool:

	cdrstats_queueids: returns the queue ids processing CDR Stats.

	cdrstats_metrics: returns metrics calculated within specific CDRStatsQueue.

	cdrstats_reload: reloads the CdrStats configurations out of DataDb.

	cdrstats_reset: resets calculated metrics for one specific or all StatsQueues.

Example use

When you work with balance maybe you want to keep a eye in your users, so you
can add a new queue for the last 5 hours to check that your customer it’s not
hacked, this is an example:

CDR stats:

"result":{
 "CdrStats": [
 {
 "Accounts": "my_account",
 "ActionTriggers": "FRAUD_CHECK",
 "Categories": "",
 "CdrHosts": "",
 "CdrSources": "",
 "CostInterval": "",
 "DestinationPrefixes": "",
 "Directions": "",
 "DisconnectCauses": "",
 "MediationRunIds": "",
 "Metrics": "TCC",
 "PddInterval": "",
 "QueueLength": "0",
 "RatedAccounts": "",
 "RatedSubjects": "",
 "ReqTypes": "",
 "SaveInterval": "15s",
 "SetupInterval": "",
 "Subjects": "",
 "Suppliers": "",
 "TORs": "",
 "Tenants": "foehn",
 "TimeWindow": "5h",
 "UsageInterval": ""
 }
],
 "CdrStatsId": "FRAUD_ACCOUNT",
 "TPid": "test"
 }

Action Trigger:

"result": {
 "ActionTriggers": [
 {
 "ActionsId": "LOG_WARNING",
 "BalanceCategory": "",
 "BalanceDestinationIds": "",
 "BalanceDirection": "",
 "BalanceExpirationDate": "",
 "BalanceId": "",
 "BalanceRatingSubject": "",
 "BalanceSharedGroup": "",
 "BalanceTimingTags": "",
 "BalanceType": "",
 "BalanceWeight": 0,
 "Id": "",
 "MinQueuedItems": 0,
 "MinSleep": "3h",
 "Recurrent": true,
 "ThresholdType": "*max_tcc",
 "ThresholdValue": 150,
 "Weight": 10
 }
],
 "ActionTriggersId": "FRAUD_CHECK",
 "TPid": "test"
 }

Using cgr-console you can check the status of the queue anytime:

cgr-console 'cdrstats_metrics StatsQueueId="FRAUD_ACCOUNT"'

DerivedCharging

DerivedCharging is the process of forking original request into a number (configured) of emulated ones, derived from the original parameters. This mechanism used in combination with multi-tenancy supported by default by CGRateS can give out complex charging scenarios, needed for example in case of whitelabel-ing.

DerivedCharging occurs in two separate places:

	SessionManager: necessary to handle each derived (emulated) session in it’s individuall loop (eg: individual resellers will have their own charging policies implemented, some paying per minute, others per second and so on) and keep them in sync (eg: one reseller is left out of money, original call should be disconnected and all emulated sessions should end their debit loops).

	Mediator: necessary to fork the CDRs into a number of derived ones influenced by the derived charging configuration and rate them individually.

Configuration

DerivedCharging is configured in two places:

	Platform level configured within cgrates.cfg file.

	Account level configured as part of TarrifPlans defition or interactively via RPC methods.

One DerivedCharger object will be configured by an internal object like:

type DerivedCharger struct {
 RunId string // Unique runId in the chain
 RunFilters string // Only run the charger if all the filters match
 ReqTypeField string // Field containing request type info, number in case of csv source, '^' as prefix in case of static values
 DirectionField string // Field containing direction info
 TenantField string // Field containing tenant info
 CategoryField string // Field containing tor info
 AccountField string // Field containing account information
 SubjectField string // Field containing subject information
 DestinationField string // Field containing destination information
 SetupTimeField string // Field containing setup time information
 AnswerTimeField string // Field containing answer time information
 UsageField string // Field containing usage information
}

CGRateS is able to attach an unlimited number of DerivedChargers to a single request, based on configuration.

Rating logic

Let’s start with the most important function: finding the cost of a certain call.

The call information comes to CGRateS having the following vital information like subject, destination, start time and end time. The engine will look up the database for the rates applicable to the received subject and destination.

type CallDescriptor struct {
 Direction
 TOR
 Tenant, Subject, Account, Destination
 TimeStart, TimeEnd
 LoopIndex // indicates the position of this segment in a cost request loop
 CallDuration // the call duration so far (partial or final)
 FallbackSubject // the subject to check for destination if not found on primary subject
 RatingPlans
}

When the session manager receives a call start event it will first check if the call is prepaid or postpaid. If the call is postpaid than the cost will be determined only once at the end of the call but if the call is prepaid there will be a debit operation every X seconds (X is configurable).

In prepaid case the rating engine will have to set rates for multiple parts of the call so the LoopIndex in the above structure will help the engine add the connect fee only to the first part. The CallDuration attribute is used to set the right rate in case the rates database has different costs for the different parts of a call e.g. first minute is more expensive (we can also define the minimum rate unit).

The FallbackSubject is used in case the initial call subject is not found in the rating profiles list (more on this later in this chapter).

What are the activation periods?

At one given time there is a set of prices that applay to different time intervals when a call can be made. In CGRateS one can define multiple such sets that will become active in various point of time called activation time. The activation period is a structure describing different prices for a call on different intervals of time. This structure has an activation time, which specifies the active prices for a period of time by one ore more (usually more than one) rate intervals.

type RateInterval struct {
 Years
 Months
 MonthDays
 WeekDays
 StartTime, EndTime
 Weight, ConnectFee
 Prices
 RoundingMethod
 RoundingDecimals
}

type Price struct {
 GroupIntervalStart
 Value
 RateIncrement
 RateUnit
}

An RateInterval specifies the Month, the MonthDay, the WeekDays, the StartTime and the EndTime when the RateInterval’s price profile is in effect.

	Example

	The RateInterval {“Month”: [1], “WeekDays”:[1,2,3,4,5], “StartTime”:”18:00:00”} specifies the Price for the first month of each year from Monday to Friday starting 18:00. Most structure elements are optional and they can be combined in any way it makes sense. If an element is omitted it means it is zero or any.

The ConnectFee specifies the connection price for the call if this interval is the first one of the call.

The Weight will establish which interval will set the price for a call segment if more then one applies to it.

	Example

	Let’s assume there is an interval defining price for the weekdays and another interval that defines a special holiday rates. As that holiday is also one of the regular weekdays than both intervals are applicable to a call made on that day so the interval with the smaller Weight will give the price for the call in question. If both intervals have the same Weight than the interval with the smaller price wins. It is, however, a good practice to set the Weight for the defined intervals.

The RoundingMethod and the RoundingDecimals will adjust the price using the specified function and number of decimals (more on this in the rates definition chapter).

The Price structure defines the start (GroupIntervalStart) of a section of a call with a specified rate Value per RateUnit diving and rounding the section in RateIncrement subsections.

So when there is a need to define new sets of prices just define new RatingPlans with the activation time set to the moment when it becomes active.

Let’s get back to the engine. When a GetCost or Debit call comes to the engine it will try to match the best rating profile for the given Direction, Tenant, TOR and Subject using the longest Subject prefix method or using the FallbackSubject if not found. The rating profile contains the activation periods that might apply to the call in question.

At this point in rating process the engine will start splitting the call into various time spans using the following criterias:

	Minute Balances: first it will handle the call information to the originator user acount to be split by available minute balances. If the user has free or special price minutes for the call destination they will be consumed by the call.

	Activation periods: if there were not enough special price minutes available than the engine will check if the call spans over multiple activation periods (the call starts in initial rates period and continues in another).

	RateIntervals: for each activation period that apply to the call the engine will select the best rate intervals that apply.

type TimeSpan struct {
 TimeStart, TimeEnd
 Cost
 RatingPlan
 RateInterval
 MinuteInfo
 CallDuration // the call duration so far till TimeEnd
}

The result of this splitting will be a list of TimeSpan structures each having attached the MinuteInfo or the RateInterval that gave the price for it. The CallDuration attribute will select the right Price from the RateInterval Prices list. The final cost for the call will be the sum of the prices of these times spans plus the ConnectionFee from the first time span of the call.

User balances

The user account contains a map of various balances like money, sms, internet traffic, internet time, etc. Each of these lists contains one or more Balance structure that have a wheight and a possible expiration date.

type UserBalance struct {
 Type // prepaid-postpaid
 BalanceMap
 UnitCounters
 ActionTriggers
}

type Balance struct {
 Value
 ExpirationDate
 Weight
}

CGRateS treats special priced or free minutes different from the rest of balances. They will be called free minutes further on but they can have a special price.

The free minutes must be handled a little differently because usually they are grouped by specific destinations (e.g. national minutes, ore minutes in the same network). So they are grouped in balances and when a call is made the engine checks all applicable balances to consume minutes according to that call.

When a call cost needs to be debited these minute balances will be queried for call destination first. If the user has special minutes for the specific destination those minutes will be consumed according to call duration.

A standard debit operation consist of selecting a certaing balance type and taking all balances from that list in the weight order to be debited till the total amount is consumed.

CGRateS provide api for adding/substracting user’s money credit. The prepaid and postpaid are uniformly treated except that the prepaid is checked to be always greater than zero and the postpaid can go bellow zero.

Both prepaid and postpaid can have a limited number of free SMS and Internet traffic per month and this budget is replenished at regular intervals based on the user tariff plan or as the user buys more free SMSs (for example).

Another special feature allows user to get a better price as the call volume increases each month. This can be added on one ore more thresholds so the more he/she talks the cheaper the calls.

Finally bonuses can be rewarded to users who received a certain volume of calls.

FilterS

FilterS are code blocks applied to generic events (hashmaps) in order to allow/deny further processing.

A Tenant will define multiple Filter profiles via .csv or API calls. The Filter profile ID is unique within a tenant but it can be repeated over multiple Tenants.

In order to be used in event processing a Filter profile will be attached inside another subsystem profile definition, otherwise Filter profile will have no effect on it’s own.
A Filter profile can be shared between multiple subsystem profile definitions.

Filter profile

Definition:

type Filter struct {
 Tenant string
 ID string
 Rules []*FilterRule
 ActivationInterval *utils.ActivationInterval
}

A Filter profile can contain any number of Filter rules and all of them must pass in order for the filter profile to pass.

A Filter profile can be activated on specific interval, if multiple filters are used within a subsystem profile at least one needs to be active and passing in order for the subsystem profile to pass the event.

Filter rule

Definition:

type FilterRule struct {
 Type string // Filter type (*string, *timing, *rsr, *stats, *lt, *lte, *gt, *gte)
 FieldName string // Name of the field providing us the Values to check (used in case of some)
 Values []string // Filter definition
}

The matching logic of each FilterRule is given by it’s type.

The following types are implemented:

	*string will match in full the FieldName with at least one value defined inside Values. Any of them matching will match the FilterRule. It is indexed for performance and, in order to be enabled, the subsystem configuration where the Filter profile is used needs to have the parameter string_indexed_fields nil or contain the Filter profile ID inside.

	*prefix will match at beginning of FieldName one of the values defined inside Values. It is indexed for performance and, in order to be enabled, the subsystem configuration where the Filter profile is used needs to have the parameter prefix_indexed_fields nil or contain the Filter profile ID inside.

	*timings will compare the time contained in FieldName with one of the TimingIDs defined in Values.

	*destinations will make sure that the FieldName is a prefix contained inside one of the destination IDs as Values.

	*rsr will match the RSRRules defined in Values. The field name is taken out of RSRRule.ID and matching logic is done against RSRRule.Filters

	*lt (less than), *lte (less than or equal), *gt (greather than), *gte (greather than or equal) are comparison operators and they pass if at least one of the values defined in Values are passing for the FieldName of event. The operators are able to compare string, float, int, time.Time, time.Duration, however both types need to be the same, otherwise the filter will raise incomparable as error.

7. Tutorials

	Asterisk Integration Tutorials
	Software installation

	CGRateS Installation

	SIP UA - Jitsi

	Asterisk interaction via ARI

	CGRateS Usage

	FreeSWITCH Integration Tutorials
	Software installation

	CGRateS Installation

	SIP UA - Jitsi

	FreeSWITCH generating http-json CDRs

	CGRateS Usage

	Kamailio Integration Tutorials
	Software installation

	CGRateS Installation

	SIP UA - Jitsi

	Kamailio interaction via evapi module

	CGRateS Usage

	OpenSIPS Integration Tutorials
	Software installation

	CGRateS Installation

	SIP UA - Jitsi

	OpenSIPS interaction via event_datagram

	CGRateS Usage

Asterisk [http://www.asterisk.org/] Integration Tutorials

In these tutorials we exemplify a few cases of integration between Asterisk [http://www.asterisk.org/] and CGRateS [http://www.cgrates.org/]. We start with common steps, installation and postinstall processes, then we dive into particular configurations, depending on the case we run.

	Software installation
	Asterisk

	CGRateS Installation
	Prerequisites

	Installation

	SIP UA - Jitsi

	Asterisk interaction via ARI
	Scenario

	Starting Asterisk with custom configuration

	Starting CGRateS with custom configuration

	CDR processing

	CGRateS Usage

	CGRateS Usage
	Loading CGRateS Tariff Plans

	Test calls

	CDR Exporting

	Fraud detection

Software installation

We have chosen Debian Jessie as operating system.

Asterisk

We got Asterisk14 [http://www.asterisk.org/] installed via following commands:

apt-get install autoconf build-essential openssl libssl-dev libsrtp-dev libxml2-dev libncurses5-dev uuid-dev sqlite3 libsqlite3-dev pkg-config libjansson-dev
cd /tmp/
wget http://downloads.asterisk.org/pub/telephony/asterisk/asterisk-14-current.tar.gz
tar xzvf asterisk-14-current.tar.gz
cd asterisk-14.0.2/
./configure --with-pjproject-bundled
make
make install
adduser --quiet --system --group --disabled-password --shell /bin/false --gecos "Asterisk" asterisk || true

Once installed we proceed with loading the configuration out of specific tutorial cases bellow.

CGRateS Installation

We have chosen Debian Jessie as operating system, since all the software components we use provide packaging for it.

Prerequisites

Some components of CGRateS (whether enabled or not, is up to the administrator) depend on external software like:

	Git [http://git-scm.com/] used by CGRateS History Server as archiver.

	Redis [http://redis.io/] to serve as Rating and Accounting DB for CGRateS.

	MySQL [http://www.mysql.org/] to serve as StorDB for CGRateS.

We will install them in one shot using the command bellow.

apt-get install git redis-server mysql-server

Note: We will use this MySQL [http://www.mysql.org/] root password when asked: CGRateS.org.

Installation

Installation steps are provided within the CGRateS install documentation [https://cgrates.readthedocs.org/en/latest/installation.html].

Since this tutorial is for master version of CGRateS, we will install CGRateS out of temporary .deb packages built out of master code:

wget http://www.cgrates.org/tmp_pkg/cgrates_0.9.1~rc8_amd64.deb
dpkg -i cgrates_0.9.1~rc8_amd64.deb

As described in post-install section, we will need to set up the MySQL [http://www.mysql.org/] database (using CGRateS.org as our root password):

cd /usr/share/cgrates/storage/mysql/
./setup_cgr_db.sh root CGRateS.org localhost

Once the database is in place, we can now set versions:

cgr-migrator -stordb_passwd="CGRateS.org" -migrate="*set_versions"

At this point we have CGRateS installed but not yet configured. To facilitate understanding and speed up the process, CGRateS has the configurations used in these tutorials available in the /usr/share/cgrates/tutorials folder.

SIP UA - Jitsi [http://www.jitsi.org/]

On our ubuntu desktop host, we have installed Jitsi [http://www.jitsi.org/] to be used as SIP UA, out of stable provided packages on Jitsi download [https://jitsi.org/Main/Download] and had Jitsi [http://www.jitsi.org/] configured with 4 accounts: 1001/CGRateS.org, 1002/CGRateS.org, 1003/CGRateS.org and 1004/CGRateS.org.

Asterisk [http://www.asterisk.org/] interaction via ARI

Scenario

	Asterisk out of basic-pbx configuration samples.

	Considering the following users: 1001-prepaid, 1002-postpaid, 1003-pseudoprepaid, 1004-rated, 1007-rated.

	CGRateS with following components:

	CGR-SM started as translator between Asterisk [http://www.asterisk.org/] and CGR-RALs for both authorization events (prepaid/pseudoprepaid) as well as postpaid ones.

	CGR-CDRS component processing raw CDRs from CGR-SM component and storing them inside CGR StorDB.

	CGR-CDRE exporting rated CDRs from CGR StorDB (export path: /tmp).

	CGR-History component keeping the archive of the rates modifications (path browsable with git client at /tmp/cgr_history).

Starting Asterisk [http://www.asterisk.org/] with custom configuration

/usr/share/cgrates/tutorials/asterisk_ari/asterisk/etc/init.d/asterisk start

To verify that Asterisk [http://www.asterisk.org/] is running we run the console command:

asterisk -r -s /tmp/cgr_asterisk_ari/asterisk/run/asterisk.ctl

 ari show status

Starting CGRateS with custom configuration

/usr/share/cgrates/tutorials/asterisk_ari/cgrates/etc/init.d/cgrates start

Make sure that cgrates is running

cgr-console status

CDR processing

At the end of each call Asterisk [http://www.asterisk.org/] will generate an CDR event and due to automatic handler registration built in CGRateS-SM component, this will be directed towards the port configured inside cgrates.json. This event will reach inside CGRateS through the SM component (close to real-time). Once in-there it will be instantly rated and be ready for export.

CGRateS Usage

Since it is common to most of the tutorials, the example for CGRateS usage is provided in a separate page here [http://cgrates.readthedocs.org/en/latest/tut_cgrates_usage.html]

CGRateS Usage

Loading CGRateS Tariff Plans

Before proceeding to this step, you should have CGRateS installed and
started with custom configuration, depending on the tutorial you have followed.

For our tutorial we load again prepared data out of shared folder, containing
following rules:

	Create the necessary timings (always, asap, peak, offpeak).

	Configure 3 destinations (1002, 1003 and 10 used as catch all rule).

	As rating we configure the following:

	Rate id: RT_10CNT with connect fee of 20cents, 10cents per minute for the first 60s in 60s increments followed by 5cents per minute in 1s increments.

	Rate id: RT_20CNT with connect fee of 40cents, 20cents per minute for the first 60s in 60s increments, followed by 10 cents per minute charged in 1s increments.

	Rate id: RT_40CNT with connect fee of 80cents, 40cents per minute for the first 60s in 60s increments, follwed by 20cents per minute charged in 10s increments.

	Rate id: RT_1CNT having no connect fee and a rate of 1 cent per minute, chargeable in 1 minute increments.

	Rate id: RT_1CNT_PER_SEC having no connect fee and a rate of 1 cent per second, chargeable in 1 second increments.

	Accounting part will have following configured:

	Create 3 accounts: 1001, 1002, 1003.

	1001, 1002 will receive 10units of *monetary balance.

cgr-loader -verbose -path=/usr/share/cgrates/tariffplans/tutorial

To verify that all actions successfully performed, we use following cgr-console commands:

	Make sure all our balances were topped-up:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'
cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

	Query call costs so we can see our calls will have expected costs (final cost will result as sum of ConnectFee and Cost fields):

cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="1m25s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1003" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'

Test calls

1001 -> 1002

Since the user 1001 is marked as prepaid inside the telecom switch, calling between 1001 and 1002 should generate pre-auth and prepaid debits which can be checked with get_account command integrated within cgr-console tool. Charging will be done based on time of day as described in the tariff plan definition above.

Note: An important particularity to note here is the ability of CGRateS SessionManager to refund units booked in advance (eg: if debit occurs every 10s and rate increments are set to 1s, the SessionManager will be smart enough to refund pre-booked credits for calls stoped in the middle of debit interval).

Check that 1001 balance is properly deducted, during the call, and moreover considering that general balance has priority over the shared one debits for this call should take place at first out of general balance.

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'

1002 -> 1001

The user 1002 is marked as postpaid inside the telecom switch hence his calls will be debited at the end of the call instead of during a call and his balance will be able to go on negative without influencing his new calls (no pre-auth).

To check that we had debits we use again console command, this time not during the call but at the end of it:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

1001 -> 1003

The user 1001 call user 1003 and after 12 seconds the call will be disconnected.

CDR Exporting

Once the CDRs are mediated, they are available to be exported. One can use available RPC APIs for that or directly call exports from console:

cgr-console 'cdrs_export CdrFormat="csv" ExportPath="/tmp"'

Fraud detection

Since we have configured some action triggers (more than 20 units of balance topped-up or less than 2 and more than 5 units spent on FS_USERS we should be notified over syslog when things like unexpected events happen (eg: fraud with more than 20 units topped-up). Most important is the monitor for 100 units topped-up which will also trigger an account disable together with killing it’s calls if prepaid debits are used.

To verify this mechanism simply add some random units into one account’s balance:

cgr-console 'balance_set Tenant="cgrates.org" Account="1003" Direction="*out" Value=23'
tail -f /var/log/syslog -n 20

cgr-console 'balance_set Tenant="cgrates.org" Account="1001" Direction="*out" Value=101'
tail -f /var/log/syslog -n 20

On the CDRs side we will be able to integrate CdrStats monitors as part of our Fraud Detection system (eg: the increase of average cost for 1001 and 1002 accounts will signal us abnormalities, hence we will be notified via syslog).

FreeSWITCH Integration Tutorials

In these tutorials we exemplify a few cases of integration between FreeSWITCH [http://www.freeswitch.org/] and CGRateS. We start with common steps, installation and postinstall processes, then we dive into particular configurations.

	Software installation
	FreeSWITCH

	CGRateS Installation
	Prerequisites

	Installation

	SIP UA - Jitsi

	FreeSWITCH generating http-json CDRs
	Scenario

	Starting FreeSWITCH with custom configuration

	Starting CGRateS with custom configuration

	CDR processing

	CGRateS Usage

	CGRateS Usage
	Loading CGRateS Tariff Plans

	Test calls

	CDR Exporting

	Fraud detection

Software installation

As operating system we have chosen Debian Jessie, since all the software components we use provide packaging for it.

FreeSWITCH [http://www.freeswitch.org/]

More information regarding the installation of FreeSWITCH [http://www.freeswitch.org/] on Debian can be found on it’s official installation wiki [https://freeswitch.org/confluence/display/FREESWITCH/FreeSWITCH+1.6+Video].

To get FreeSWITCH [http://www.freeswitch.org/] installed and configured, we have choosen the simplest method, out of vanilla packages, plus one individual module we need: mod-json-cdr.

We will install FreeSWITCH [http://www.freeswitch.org/] via following commands:

wget -O - http://files.freeswitch.org/repo/deb/freeswitch-1.6/key.gpg |apt-key add -
echo "deb http://files.freeswitch.org/repo/deb/freeswitch-1.6/ jessie main" > /etc/apt/sources.list.d/freeswitch.list
apt-get update
apt-get install freeswitch-meta-vanilla freeswitch-mod-json-cdr libyuv-dev

Once installed, we will proceed with loading the configuration out of specific tutorial cases bellow.

CGRateS Installation

We have chosen Debian Jessie as operating system, since all the software components we use provide packaging for it.

Prerequisites

Some components of CGRateS (whether enabled or not, is up to the administrator) depend on external software like:

	Git [http://git-scm.com/] used by CGRateS History Server as archiver.

	Redis [http://redis.io/] to serve as Rating and Accounting DB for CGRateS.

	MySQL [http://www.mysql.org/] to serve as StorDB for CGRateS.

We will install them in one shot using the command bellow.

apt-get install git redis-server mysql-server

Note: We will use this MySQL [http://www.mysql.org/] root password when asked: CGRateS.org.

Installation

Installation steps are provided within the CGRateS install documentation [https://cgrates.readthedocs.org/en/latest/installation.html].

Since this tutorial is for master version of CGRateS, we will install CGRateS out of temporary .deb packages built out of master code:

wget http://www.cgrates.org/tmp_pkg/cgrates_0.9.1~rc8_amd64.deb
dpkg -i cgrates_0.9.1~rc8_amd64.deb

As described in post-install section, we will need to set up the MySQL [http://www.mysql.org/] database (using CGRateS.org as our root password):

cd /usr/share/cgrates/storage/mysql/
./setup_cgr_db.sh root CGRateS.org localhost

Once the database is in place, we can now set versions:

cgr-migrator -stordb_passwd="CGRateS.org" -migrate="*set_versions"

At this point we have CGRateS installed but not yet configured. To facilitate understanding and speed up the process, CGRateS has the configurations used in these tutorials available in the /usr/share/cgrates/tutorials folder.

SIP UA - Jitsi [http://www.jitsi.org/]

On our ubuntu desktop host, we have installed Jitsi [http://www.jitsi.org/] to be used as SIP UA, out of stable provided packages on Jitsi download [https://jitsi.org/Main/Download] and had Jitsi [http://www.jitsi.org/] configured with 4 accounts: 1001/CGRateS.org, 1002/CGRateS.org, 1003/CGRateS.org and 1004/CGRateS.org.

FreeSWITCH [http://www.freeswitch.org/] generating http-json CDRs

Scenario

	FreeSWITCH with vanilla configuration adding mod_json_cdr for CDR generation.

	Modified following users (with configs in etc/freeswitch/directory/default): 1001-prepaid, 1002-postpaid, 1003-pseudoprepaid, 1004-rated, 1006-prepaid, 1007-rated.

	Have added inside default dialplan CGR own extensions just before routing towards users (etc/freeswitch/dialplan/default.xml).

	FreeSWITCH configured to generate default http-json CDRs.

	CGRateS with following components:

	CGR-SM started as prepaid controller, with debits taking place at 5s intervals.

	CGR-CDRS component receiving raw CDRs from FreeSWITCH, storing them and attaching costs inside CGR StorDB.

	CGR-CDRE exporting processed CDRs from CGR StorDB (export path: /tmp).

	CGR-History component keeping the archive of the rates modifications (path browsable with git client at /tmp/cgr_history).

Starting FreeSWITCH [http://www.freeswitch.org/] with custom configuration

/usr/share/cgrates/tutorials/fs_evsock/freeswitch/etc/init.d/freeswitch start

To verify that FreeSWITCH [http://www.freeswitch.org/] is running we run the console command:

fs_cli -x status

Starting CGRateS with custom configuration

/usr/share/cgrates/tutorials/fs_evsock/cgrates/etc/init.d/cgrates start

Check that cgrates is running

cgr-console status

CDR processing

At the end of each call FreeSWITCH [http://www.freeswitch.org/] will issue a http post with the CDR. This will reach inside CGRateS through the CDRS component (close to real-time). Once in-there it will be instantly rated and it is ready to be exported:

cgr-console 'cdrs_export CdrFormat="csv" ExportPath="/tmp"'

CGRateS Usage

Since it is common to most of the tutorials, the example for CGRateS usage is provided in a separate page here [http://cgrates.readthedocs.org/en/latest/tut_cgrates_usage.html]

CGRateS Usage

Loading CGRateS Tariff Plans

Before proceeding to this step, you should have CGRateS installed and
started with custom configuration, depending on the tutorial you have followed.

For our tutorial we load again prepared data out of shared folder, containing
following rules:

	Create the necessary timings (always, asap, peak, offpeak).

	Configure 3 destinations (1002, 1003 and 10 used as catch all rule).

	As rating we configure the following:

	Rate id: RT_10CNT with connect fee of 20cents, 10cents per minute for the first 60s in 60s increments followed by 5cents per minute in 1s increments.

	Rate id: RT_20CNT with connect fee of 40cents, 20cents per minute for the first 60s in 60s increments, followed by 10 cents per minute charged in 1s increments.

	Rate id: RT_40CNT with connect fee of 80cents, 40cents per minute for the first 60s in 60s increments, follwed by 20cents per minute charged in 10s increments.

	Rate id: RT_1CNT having no connect fee and a rate of 1 cent per minute, chargeable in 1 minute increments.

	Rate id: RT_1CNT_PER_SEC having no connect fee and a rate of 1 cent per second, chargeable in 1 second increments.

	Accounting part will have following configured:

	Create 3 accounts: 1001, 1002, 1003.

	1001, 1002 will receive 10units of *monetary balance.

cgr-loader -verbose -path=/usr/share/cgrates/tariffplans/tutorial

To verify that all actions successfully performed, we use following cgr-console commands:

	Make sure all our balances were topped-up:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'
cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

	Query call costs so we can see our calls will have expected costs (final cost will result as sum of ConnectFee and Cost fields):

cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="1m25s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1003" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'

Test calls

1001 -> 1002

Since the user 1001 is marked as prepaid inside the telecom switch, calling between 1001 and 1002 should generate pre-auth and prepaid debits which can be checked with get_account command integrated within cgr-console tool. Charging will be done based on time of day as described in the tariff plan definition above.

Note: An important particularity to note here is the ability of CGRateS SessionManager to refund units booked in advance (eg: if debit occurs every 10s and rate increments are set to 1s, the SessionManager will be smart enough to refund pre-booked credits for calls stoped in the middle of debit interval).

Check that 1001 balance is properly deducted, during the call, and moreover considering that general balance has priority over the shared one debits for this call should take place at first out of general balance.

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'

1002 -> 1001

The user 1002 is marked as postpaid inside the telecom switch hence his calls will be debited at the end of the call instead of during a call and his balance will be able to go on negative without influencing his new calls (no pre-auth).

To check that we had debits we use again console command, this time not during the call but at the end of it:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

1001 -> 1003

The user 1001 call user 1003 and after 12 seconds the call will be disconnected.

CDR Exporting

Once the CDRs are mediated, they are available to be exported. One can use available RPC APIs for that or directly call exports from console:

cgr-console 'cdrs_export CdrFormat="csv" ExportPath="/tmp"'

Fraud detection

Since we have configured some action triggers (more than 20 units of balance topped-up or less than 2 and more than 5 units spent on FS_USERS we should be notified over syslog when things like unexpected events happen (eg: fraud with more than 20 units topped-up). Most important is the monitor for 100 units topped-up which will also trigger an account disable together with killing it’s calls if prepaid debits are used.

To verify this mechanism simply add some random units into one account’s balance:

cgr-console 'balance_set Tenant="cgrates.org" Account="1003" Direction="*out" Value=23'
tail -f /var/log/syslog -n 20

cgr-console 'balance_set Tenant="cgrates.org" Account="1001" Direction="*out" Value=101'
tail -f /var/log/syslog -n 20

On the CDRs side we will be able to integrate CdrStats monitors as part of our Fraud Detection system (eg: the increase of average cost for 1001 and 1002 accounts will signal us abnormalities, hence we will be notified via syslog).

Kamailio [http://www.kamailio.org/] Integration Tutorials

In these tutorials we exemplify a few cases of integration between Kamailio [http://www.kamailio.org/] and CGRateS [http://www.cgrates.org/]. We start with common steps, installation and postinstall processes, then we dive into particular configurations, depending on the case we run.

	Software installation
	Kamailio

	CGRateS Installation
	Prerequisites

	Installation

	SIP UA - Jitsi

	Kamailio interaction via evapi module
	Scenario

	Starting Kamailio with custom configuration

	Starting CGRateS with custom configuration

	CDR processing

	CGRateS Usage

	CGRateS Usage
	Loading CGRateS Tariff Plans

	Test calls

	CDR Exporting

	Fraud detection

Software installation

We have chosen Debian Jessie as operating system, since all the software components we use provide packaging for it.

Kamailio [http://www.kamailio.org/]

We got Kamailio [http://www.kamailio.org/] installed via following commands:

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 0xfb40d3e6508ea4c8
echo "deb http://deb.kamailio.org/kamailio51 jessie main" > /etc/apt/sources.list.d/kamailio.list
apt-get update
apt-get install kamailio kamailio-extra-modules kamailio-json-modules

Once installed we proceed with loading the configuration out of specific tutorial cases bellow.

CGRateS Installation

We have chosen Debian Jessie as operating system, since all the software components we use provide packaging for it.

Prerequisites

Some components of CGRateS (whether enabled or not, is up to the administrator) depend on external software like:

	Git [http://git-scm.com/] used by CGRateS History Server as archiver.

	Redis [http://redis.io/] to serve as Rating and Accounting DB for CGRateS.

	MySQL [http://www.mysql.org/] to serve as StorDB for CGRateS.

We will install them in one shot using the command bellow.

apt-get install git redis-server mysql-server

Note: We will use this MySQL [http://www.mysql.org/] root password when asked: CGRateS.org.

Installation

Installation steps are provided within the CGRateS install documentation [https://cgrates.readthedocs.org/en/latest/installation.html].

Since this tutorial is for master version of CGRateS, we will install CGRateS out of temporary .deb packages built out of master code:

wget http://www.cgrates.org/tmp_pkg/cgrates_0.9.1~rc8_amd64.deb
dpkg -i cgrates_0.9.1~rc8_amd64.deb

As described in post-install section, we will need to set up the MySQL [http://www.mysql.org/] database (using CGRateS.org as our root password):

cd /usr/share/cgrates/storage/mysql/
./setup_cgr_db.sh root CGRateS.org localhost

Once the database is in place, we can now set versions:

cgr-migrator -stordb_passwd="CGRateS.org" -migrate="*set_versions"

At this point we have CGRateS installed but not yet configured. To facilitate understanding and speed up the process, CGRateS has the configurations used in these tutorials available in the /usr/share/cgrates/tutorials folder.

SIP UA - Jitsi [http://www.jitsi.org/]

On our ubuntu desktop host, we have installed Jitsi [http://www.jitsi.org/] to be used as SIP UA, out of stable provided packages on Jitsi download [https://jitsi.org/Main/Download] and had Jitsi [http://www.jitsi.org/] configured with 4 accounts: 1001/CGRateS.org, 1002/CGRateS.org, 1003/CGRateS.org and 1004/CGRateS.org.

Kamailio [http://www.kamailio.org/] interaction via evapi module

Scenario

	Kamailio default configuration modified for CGRateS interaction. For script maintainability and simplicity we have separated CGRateS specific routes in kamailio-cgrates.cfg file which is included in main kamailio.cfg via include directive.

	Considering the following users (with configs hardcoded in the kamailio.cfg configuration script and loaded in htable): 1001-prepaid, 1002-postpaid, 1003-pseudoprepaid, 1004-rated, 1005-rated, 1006-prepaid, 1007-prepaid.

	CGRateS with following components:

	CGR-SM started as translator between Kamailio [http://www.kamailio.org/] and CGR-Rater for both authorization events as well as accounting ones.

	CGR-CDRS component processing raw CDRs from CGR-SM component and storing them inside CGR StorDB.

	CGR-CDRE exporting rated CDRs from CGR StorDB (export path: /tmp).

	CGR-History component keeping the archive of the rates modifications (path browsable with git client at /tmp/cgr_history).

Starting Kamailio [http://www.kamailio.org/] with custom configuration

/usr/share/cgrates/tutorials/kamevapi/kamailio/etc/init.d/kamailio start

To verify that Kamailio [http://www.kamailio.org/] is running we run the console command:

kamctl moni

Starting CGRateS with custom configuration

/usr/share/cgrates/tutorials/kamevapi/cgrates/etc/init.d/cgrates start

Make sure that cgrates is running

cgr-console status

CDR processing

At the end of each call Kamailio [http://www.kamailio.org/] will generate an CDR event via evapi and this will be directed towards the port configured inside cgrates.json. This event will reach inside CGRateS through the SM component (close to real-time). Once in-there it will be instantly rated and be ready for export.

CGRateS Usage

Since it is common to most of the tutorials, the example for CGRateS usage is provided in a separate page here [http://cgrates.readthedocs.org/en/latest/tut_cgrates_usage.html]

CGRateS Usage

Loading CGRateS Tariff Plans

Before proceeding to this step, you should have CGRateS installed and
started with custom configuration, depending on the tutorial you have followed.

For our tutorial we load again prepared data out of shared folder, containing
following rules:

	Create the necessary timings (always, asap, peak, offpeak).

	Configure 3 destinations (1002, 1003 and 10 used as catch all rule).

	As rating we configure the following:

	Rate id: RT_10CNT with connect fee of 20cents, 10cents per minute for the first 60s in 60s increments followed by 5cents per minute in 1s increments.

	Rate id: RT_20CNT with connect fee of 40cents, 20cents per minute for the first 60s in 60s increments, followed by 10 cents per minute charged in 1s increments.

	Rate id: RT_40CNT with connect fee of 80cents, 40cents per minute for the first 60s in 60s increments, follwed by 20cents per minute charged in 10s increments.

	Rate id: RT_1CNT having no connect fee and a rate of 1 cent per minute, chargeable in 1 minute increments.

	Rate id: RT_1CNT_PER_SEC having no connect fee and a rate of 1 cent per second, chargeable in 1 second increments.

	Accounting part will have following configured:

	Create 3 accounts: 1001, 1002, 1003.

	1001, 1002 will receive 10units of *monetary balance.

cgr-loader -verbose -path=/usr/share/cgrates/tariffplans/tutorial

To verify that all actions successfully performed, we use following cgr-console commands:

	Make sure all our balances were topped-up:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'
cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

	Query call costs so we can see our calls will have expected costs (final cost will result as sum of ConnectFee and Cost fields):

cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="1m25s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1003" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'

Test calls

1001 -> 1002

Since the user 1001 is marked as prepaid inside the telecom switch, calling between 1001 and 1002 should generate pre-auth and prepaid debits which can be checked with get_account command integrated within cgr-console tool. Charging will be done based on time of day as described in the tariff plan definition above.

Note: An important particularity to note here is the ability of CGRateS SessionManager to refund units booked in advance (eg: if debit occurs every 10s and rate increments are set to 1s, the SessionManager will be smart enough to refund pre-booked credits for calls stoped in the middle of debit interval).

Check that 1001 balance is properly deducted, during the call, and moreover considering that general balance has priority over the shared one debits for this call should take place at first out of general balance.

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'

1002 -> 1001

The user 1002 is marked as postpaid inside the telecom switch hence his calls will be debited at the end of the call instead of during a call and his balance will be able to go on negative without influencing his new calls (no pre-auth).

To check that we had debits we use again console command, this time not during the call but at the end of it:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

1001 -> 1003

The user 1001 call user 1003 and after 12 seconds the call will be disconnected.

CDR Exporting

Once the CDRs are mediated, they are available to be exported. One can use available RPC APIs for that or directly call exports from console:

cgr-console 'cdrs_export CdrFormat="csv" ExportPath="/tmp"'

Fraud detection

Since we have configured some action triggers (more than 20 units of balance topped-up or less than 2 and more than 5 units spent on FS_USERS we should be notified over syslog when things like unexpected events happen (eg: fraud with more than 20 units topped-up). Most important is the monitor for 100 units topped-up which will also trigger an account disable together with killing it’s calls if prepaid debits are used.

To verify this mechanism simply add some random units into one account’s balance:

cgr-console 'balance_set Tenant="cgrates.org" Account="1003" Direction="*out" Value=23'
tail -f /var/log/syslog -n 20

cgr-console 'balance_set Tenant="cgrates.org" Account="1001" Direction="*out" Value=101'
tail -f /var/log/syslog -n 20

On the CDRs side we will be able to integrate CdrStats monitors as part of our Fraud Detection system (eg: the increase of average cost for 1001 and 1002 accounts will signal us abnormalities, hence we will be notified via syslog).

OpenSIPS [http://www.opensips.org/] Integration Tutorials

In these tutorials we exemplify a few cases of integration between OpenSIPS [http://www.opensips.org/] and CGRateS [http://www.cgrates.org/]. We start with common steps, installation and postinstall processes, then we dive into particular configurations, depending on the case we run.

	Software installation
	OpenSIPS

	CGRateS Installation
	Prerequisites

	Installation

	SIP UA - Jitsi

	OpenSIPS interaction via event_datagram
	Scenario

	Starting OpenSIPS with custom configuration

	Starting CGRateS with custom configuration

	CDR processing

	CGRateS Usage

	CGRateS Usage
	Loading CGRateS Tariff Plans

	Test calls

	CDR Exporting

	Fraud detection

Software installation

We have chosen Debian Jessie as operating system, since all the software components we use provide packaging for it.

OpenSIPS [http://www.opensips.org/]

We got OpenSIPS [http://www.opensips.org/] installed via following commands:

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 049AD65B
echo "deb http://apt.opensips.org jessie 2.4-nightly" >/etc/apt/sources.list.d/opensips.list
apt-get update
apt-get install opensips opensips-cgrates-module

Once installed we proceed with loading the configuration out of specific tutorial cases bellow.

CGRateS Installation

We have chosen Debian Jessie as operating system, since all the software components we use provide packaging for it.

Prerequisites

Some components of CGRateS (whether enabled or not, is up to the administrator) depend on external software like:

	Git [http://git-scm.com/] used by CGRateS History Server as archiver.

	Redis [http://redis.io/] to serve as Rating and Accounting DB for CGRateS.

	MySQL [http://www.mysql.org/] to serve as StorDB for CGRateS.

We will install them in one shot using the command bellow.

apt-get install git redis-server mysql-server

Note: We will use this MySQL [http://www.mysql.org/] root password when asked: CGRateS.org.

Installation

Installation steps are provided within the CGRateS install documentation [https://cgrates.readthedocs.org/en/latest/installation.html].

Since this tutorial is for master version of CGRateS, we will install CGRateS out of temporary .deb packages built out of master code:

wget http://www.cgrates.org/tmp_pkg/cgrates_0.9.1~rc8_amd64.deb
dpkg -i cgrates_0.9.1~rc8_amd64.deb

As described in post-install section, we will need to set up the MySQL [http://www.mysql.org/] database (using CGRateS.org as our root password):

cd /usr/share/cgrates/storage/mysql/
./setup_cgr_db.sh root CGRateS.org localhost

Once the database is in place, we can now set versions:

cgr-migrator -stordb_passwd="CGRateS.org" -migrate="*set_versions"

At this point we have CGRateS installed but not yet configured. To facilitate understanding and speed up the process, CGRateS has the configurations used in these tutorials available in the /usr/share/cgrates/tutorials folder.

SIP UA - Jitsi [http://www.jitsi.org/]

On our ubuntu desktop host, we have installed Jitsi [http://www.jitsi.org/] to be used as SIP UA, out of stable provided packages on Jitsi download [https://jitsi.org/Main/Download] and had Jitsi [http://www.jitsi.org/] configured with 4 accounts: 1001/CGRateS.org, 1002/CGRateS.org, 1003/CGRateS.org and 1004/CGRateS.org.

OpenSIPS [http://www.opensips.org/] interaction via event_datagram

Scenario

	OpenSIPS out of residential configuration generated.

	Considering the following users (with configs hardcoded in the opensips.cfg configuration script): 1002-postpaid, 1003-pseudoprepaid, 1004-rated, 1007-rated.

	For simplicity we configure no authentication (WARNING: Not for production usage).

	CGRateS with following components:

	CGR-SM started as translator between OpenSIPS [http://www.opensips.org/] and cgr-rater for both authorization events (pseudoprepaid) as well as CDR ones.

	CGR-CDRS component processing raw CDRs from CGR-SM component and storing them inside CGR StorDB.

	CGR-CDRE exporting rated CDRs from CGR StorDB (export path: /tmp).

	CGR-History component keeping the archive of the rates modifications (path browsable with git client at /tmp/cgr_history).

Starting OpenSIPS [http://www.opensips.org/] with custom configuration

/usr/share/cgrates/tutorials/osips_native/opensips/etc/init.d/opensips start

To verify that OpenSIPS [http://www.opensips.org/] is running we run the console command:

opensipsctl moni

Starting CGRateS with custom configuration

/usr/share/cgrates/tutorials/osips_native/cgrates/etc/init.d/cgrates start

Make sure that cgrates is running

cgr-console status

CDR processing

At the end of each call OpenSIPS [http://www.opensips.org/] will generate an CDR event and due to automatic handler registration built in CGRateS-SM component, this will be directed towards the port configured inside cgrates.json. This event will reach inside CGRateS through the SM component (close to real-time). Once in-there it will be instantly rated and be ready for export.

CGRateS Usage

Since it is common to most of the tutorials, the example for CGRateS usage is provided in a separate page here [http://cgrates.readthedocs.org/en/latest/tut_cgrates_usage.html]

CGRateS Usage

Loading CGRateS Tariff Plans

Before proceeding to this step, you should have CGRateS installed and
started with custom configuration, depending on the tutorial you have followed.

For our tutorial we load again prepared data out of shared folder, containing
following rules:

	Create the necessary timings (always, asap, peak, offpeak).

	Configure 3 destinations (1002, 1003 and 10 used as catch all rule).

	As rating we configure the following:

	Rate id: RT_10CNT with connect fee of 20cents, 10cents per minute for the first 60s in 60s increments followed by 5cents per minute in 1s increments.

	Rate id: RT_20CNT with connect fee of 40cents, 20cents per minute for the first 60s in 60s increments, followed by 10 cents per minute charged in 1s increments.

	Rate id: RT_40CNT with connect fee of 80cents, 40cents per minute for the first 60s in 60s increments, follwed by 20cents per minute charged in 10s increments.

	Rate id: RT_1CNT having no connect fee and a rate of 1 cent per minute, chargeable in 1 minute increments.

	Rate id: RT_1CNT_PER_SEC having no connect fee and a rate of 1 cent per second, chargeable in 1 second increments.

	Accounting part will have following configured:

	Create 3 accounts: 1001, 1002, 1003.

	1001, 1002 will receive 10units of *monetary balance.

cgr-loader -verbose -path=/usr/share/cgrates/tariffplans/tutorial

To verify that all actions successfully performed, we use following cgr-console commands:

	Make sure all our balances were topped-up:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'
cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

	Query call costs so we can see our calls will have expected costs (final cost will result as sum of ConnectFee and Cost fields):

cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1002" AnswerTime="2014-08-04T13:00:00Z" Usage="1m25s"'
cgr-console 'cost Category="call" Tenant="cgrates.org" Subject="1001" Destination="1003" AnswerTime="2014-08-04T13:00:00Z" Usage="20s"'

Test calls

1001 -> 1002

Since the user 1001 is marked as prepaid inside the telecom switch, calling between 1001 and 1002 should generate pre-auth and prepaid debits which can be checked with get_account command integrated within cgr-console tool. Charging will be done based on time of day as described in the tariff plan definition above.

Note: An important particularity to note here is the ability of CGRateS SessionManager to refund units booked in advance (eg: if debit occurs every 10s and rate increments are set to 1s, the SessionManager will be smart enough to refund pre-booked credits for calls stoped in the middle of debit interval).

Check that 1001 balance is properly deducted, during the call, and moreover considering that general balance has priority over the shared one debits for this call should take place at first out of general balance.

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1001"]'

1002 -> 1001

The user 1002 is marked as postpaid inside the telecom switch hence his calls will be debited at the end of the call instead of during a call and his balance will be able to go on negative without influencing his new calls (no pre-auth).

To check that we had debits we use again console command, this time not during the call but at the end of it:

cgr-console 'accounts Tenant="cgrates.org" AccountIds=["1002"]'

1001 -> 1003

The user 1001 call user 1003 and after 12 seconds the call will be disconnected.

CDR Exporting

Once the CDRs are mediated, they are available to be exported. One can use available RPC APIs for that or directly call exports from console:

cgr-console 'cdrs_export CdrFormat="csv" ExportPath="/tmp"'

Fraud detection

Since we have configured some action triggers (more than 20 units of balance topped-up or less than 2 and more than 5 units spent on FS_USERS we should be notified over syslog when things like unexpected events happen (eg: fraud with more than 20 units topped-up). Most important is the monitor for 100 units topped-up which will also trigger an account disable together with killing it’s calls if prepaid debits are used.

To verify this mechanism simply add some random units into one account’s balance:

cgr-console 'balance_set Tenant="cgrates.org" Account="1003" Direction="*out" Value=23'
tail -f /var/log/syslog -n 20

cgr-console 'balance_set Tenant="cgrates.org" Account="1001" Direction="*out" Value=101'
tail -f /var/log/syslog -n 20

On the CDRs side we will be able to integrate CdrStats monitors as part of our Fraud Detection system (eg: the increase of average cost for 1001 and 1002 accounts will signal us abnormalities, hence we will be notified via syslog).

8. Miscellaneous

	8.1. FreeSWITCH integration
	8.1.1. SessionManager

	8.1.2. Mediator

8.1. FreeSWITCH integration

Being the original platform supported by CGRateS, FreeSWITCH [http://www.freeswitch.org] has the advantage of support for complete set of CGRateS features.
When used as Telecom Switch it fully supports all rating modes: prepaid/postpaid/pseudoprepaid/rated.
A typical use case would be like the one in the diagram below:

[image: _images/CGRateSFSTypicalUsage.png]
The process of rating is decoupled into two different components:

8.1.1. SessionManager

TODO - update and add CDRs and CDRc.

	Attached to FreeSWITCH [http://www.freeswitch.org] via the socket library, enhancing CGRateS with real-time call monitoring and call control functions.

	
	In Prepaid mode implements the following behaviour:

	
	
	On CHANNEL_PARK event received from FreeSWITCH [http://www.freeswitch.org]:

	
	Authorize the call by calling GetMaxSessionTime on the Rater.

	
	Sets the channel variable cgr_notify via uuid_setvar to one of the following values:

	
	MISSING_PARAMETER: if one of the required channel variables is missing and CGRateS cannot make rating.

	SYSTEM_ERROR: if rating could not be performed due to a system error.

	INSUFFICIENT_FUNDS: if MaximSessionTime is 0.

	AUTH_OK: Call is authorized to proceed.

	Un-Park the call via uuid_transfer to original dialed number. The FreeSWITCH [http://www.freeswitch.org] administrator is expected to make use of cgr_notify variable value to either allow the call going further or reject it (eg: towards an IVR or returning authorization fail message to call originator).

	
	On CHANNEL_ANSWER event received:

	
	Index the call into CGRateS’s cache.

	Starts debit loop by calling at configured interval MaxDebit on the Rater.

	
	If any of the debits fail:

	
	Set cgr_notify channel variable to either SYSTEM_ERROR in case of errors or INSUFFICIENT_FUNDS of there would be not enough balance for the next debit to proceed.

	Send hangup command with cause MANAGER_REQUEST.

	
	On CHANNEL_HANGUP_COMPLETE event received:

	
	Refund the reserved balance back to the user’s account (works for both monetary and minutes debited).

	Save call costs into CGRateS LogDB.

	In Postpaid mode:

	
	On CHANNEL_ANSWER event received:

	
	Index the call into CGRateS’s cache.

	
	On CHANNEL_HANGUP_COMPLETE event received:

	
	Call Debit RPC method on the Rater.

	Save call costs into CGRateS LogDB.

	
	On CGRateS Shutdown execute, for security reasons, hangup commands on calls which can be CGR related:

	
	hupall MANAGER_REQUEST cgr_reqtype prepaid

	hupall MANAGER_REQUEST cgr_reqtype postpaid

8.1.2. Mediator

TODO - remove this section. Mediator functionality is handled by CDRs and CDRc.

Attaches costs to FreeSWITCH [http://www.freeswitch.org] native written .csv files. Since writing channel variables during hangup is asynchronous and can be missed by the CDR recorder mechanism of FreeSWITCH [http://www.freeswitch.org], we decided to keep this as separate process after the call is completed and do not write the costs via channel variables.

8.1.2.1. Modes of operation

The Mediator process for FreeSWITCH works in two different modes:

	
	Costs from LogDB (activated by setting -1 as subject_idx in the cgrates.cfg:

	
	Queries LogDB for a previous saved price by SessionManager.

	This behavior is typical for prepaid/postpaid calls which were previously processed by SessionManager and important in the sense that we write in CDRs exactly what was billed real-time from user’s account.

	
	Costs queried from Rater:

	
	This mode is specific for multiple process mediation and does not necessary reflect the price which was deducted from the user’s account during real-time rating.

	Another application for this mode is pseudoprepaid when there is no SessionManager monitoring and charging calls in real-time (debit done directly from CDRs).

	This mode is triggered from configuration file by setting proper indexes (or leave them defaults if cgrates rating template is using whitin FreeSWITCH [http://www.freeswitch.org] cdr_csv configuration file.

A typical usage into our implementations is a combination between the two modes of operation (by setting at a minimum -1 as subject_idx to run from LogDB and succesive mediation processes with different indexes).

8.1.2.2. Implementation logic

	The Mediator process is configured and started in the cgrates.cfg file and is alive as long as the cgr-engine application is on.

	To avoid concurrency issues, the Mediator does not process active maintained CDR csv files by FreeSWITCH [http://www.freeswitch.org] but picks them up as soon as FreeSWITCH [http://www.freeswitch.org] has done with them by rotating. The information about rotation comes in real-time on the Linux OS through the use of inotify.

	Based on configured indexes in the configuration file, the Mediator will start multiple processes for the same CDR.

	For each mediation process configured the Mediator will apped the original CDR with costs calculated. In case of errors of some kind, the value -1 will be prepended.

	When mediation is completed on a file, the file will be moved to configured cdr_out_dir path.

Index

DestinationRates.csv

Attach rates to destinations.

CSV fields as tabular representation:

	Tag

	DestinationsTag

	RatesTag

	DR_RETAIL_PEAK

	GERMANY

	LANDLINE_PEAK

	DR_RETAIL_OFFPEAK

	GERMANY

	LANDLINE_OFFPEAK

Fields

	Index 0 - Tag

	Free-text field used to reference the entry from other files.

	Index 1 - DestinationsTag

	References profile in Destinations.csv.

	Index 2 - RatesTag

	References profile defined in Rates.csv.

Destinations.csv

Group together prefixes into destination groups identified by tag.

CSV fields example as tabular representation:

	Tag

	Prefix

	GERMANY

	49

	GERMANY_O2

	49176

	Index 0 - Tag

	Free-text field used to reference the specific destination from other files.

	Index 1 - Prefix

	Destination prefix as group element

DestinationRateTimings.csv

Enable DestinationRates at specific times.

CSV fields examples as tabular representations:

	Tag

	DestinationRatesTag

	TimingTag

	Weight

	RETAIL1

	DR_RETAIL_PEAK

	PEAK

	10

	RETAIL1

	DR_FREESWITCH_USERS

	ALWAYS

	10

Fields

	Index 0 - Tag

	Free-text field used to reference the entry from other files.

	Index 1 - DestinationRatesTag

	References profile in DestinationRates.csv.

	Index 2 - TimingTag

	References profile defined in Timings.csv.

	Index 3 - Weight

	Solves possible conflicts between different DestinationRateTimings profiles matching on same interval.
Higher Weight has higher priority.

Rates.csv

Defines the rates on the system.
Each entry is a part of a rate group, each group having at least one entry. Group entries share Tag, ConnectFee, Weight parameters.

CSV fields example as tabular representation:

	Tag

	ConnectFee

	Rate

	RateUnit

	RateIncrement

	GroupIntervalStart

	RoundingMethod

	RoundingDecimals

	Weight

	LANDLINE_PEAK

	0.02

	0.02

	60s

	60s

	0s

	*up

	4

	10

	MOBILE_PEAK

	1

	2

	60s

	10s

	0s

	*middle

	4

	10

	MOBILE_PEAK

	1

	1

	60s

	20s

	40s

	*middle

	4

	10

	MOBILE_PEAK

	1

	0

	60s

	10s

	60s

	*middle

	4

	10

	Index 0 - Tag

	Free-text field used to reference the entry from other files.

	Index 1 - ConnectFee

	Connect fee charged at start of each call. Should be the same for all members of a group interval.

	Possible values:

	
	Float or integer value, granularity given by rates administrator and not predefined (eg: cent vs euro).

	Index 2 - Rate

	The rate which will be charged.

	Possible values:

	
	Float or integer value, granularity given by rates administrator and not predefined (eg: cent vs euro).

	Index 3 - RateUnit

	The duration unit which is rated by Rate field.

	Possible values:

	
	Duration string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as “300ms”, “1.5h” or “2h45m”. Valid time units are “ns”, “us” (or “µs”), “ms”, “s”, “m”, “h”.

	Index 4 - RateIncrement

	The total duration will be split and rounded into smaller intervals based on this (eg: for RateIncrement of 60s, total duration of 1m2s will be charged as 2 minutes).

	Possible values:

	
	Duration string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as “300ms”, “1.5h” or “2h45m”. Valid time units are “ns”, “us” (or “µs”), “ms”, “s”, “m”, “h”.

	Index 5 - GroupIntervalStart

	The position in the rate group.

	Possible values:

	
	Duration string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as “300ms”, “1.5h” or “2h45m”. Valid time units are “ns”, “us” (or “µs”), “ms”, “s”, “m”, “h”.

	Index 6 - RoundingMethod

	The routine which will round the cost on each timespan.

	Possible values:

	
	A MetaTag referring the internal routine doing the rounding (eg: *up, *down, *middle)

	Index 7 - RoundingDecimals

	Round the number of decimals of each timespan based on this setting.

	Possible values:

	
	An integer value.

	Index 8 - Weight

	Solve possible conflicts between different rates matching same interval based on this parameter.
Higher Weight has bigger priority.
Should be the same for all members of a group interval.

	Possible values:

	
	Float/Integer representing the rate weight on collisions.

RatingProfiles.csv

Main definitions file for the Rating subsystem.

	Tenant

	TOR

	Direction

	Subject

	ActivationTime

	DestinationRateTimingTag

	RatesFallbackSubject

	cgrates.org

	call

	*out

	*any

	2012-01-01T00:00:00Z

	RETAIL1

	

Fields

	Index 0 - Tenant

	Free-text field used to identify the tenant the entries are valid for.

	Index 1 - TOR

	Free-text field used to identify the type of record the entries are valid for.

	Index 2 - Direction

	Metatag identifying the traffic direction the entries are valid for. Outbound direction is the only one supported for now.

	Index 3 - Subject

	Rating subject definition.

	Possible values:

	
	Free-text rating subject (flexible defition for example out of concatenating various cdr fields)

	“*any” metatag matching any rating subject in the eventuality of no explicit subject string matching.

	Index 4 - ActivationTime

	Time this rating profile gets active at.

	Possible values:

	
	RFC3339 time as string

	Unix timestamp

	String starting with “+” to represent duration dynamically calculated at runtime (eg: +1h to specify ActivationTime one hour after runtime).

	“*monthly” metatag for ActivationTime dynamically calculated one month after runtime.

	Index 4 - DestinationRateTimingTag

	References profile in DestinationRateTimings.csv.

	Index 5 - RatesFallbackSubject

	Name of the fallback subject to be considered if existing subject has no destination matching the one searched. Tenant, TOR, Direction, Subject are kept when matching the fallback profile.

Timings.csv

Holds time related definitions.

CSV fields examples as tabular representations:

	Tag

	Years

	Months

	MonthDays

	WeekDays

	Time

	WORKDAYS

	*any

	*any

	*any

	1;2;3;4;5

	00:00:00

	WEEKENDS

	*any

	*any

	*any

	6;7

	00:00:00

	ALWAYS

	*any

	*any

	*any

	*any

	00:00:00

	ASAP

	*any

	*all

	*all

	*all

	*asap

Fields

	Index 0 - Tag

	Free-text field used to reference the entry from other files.

	Index 1 - Years

	Years this timing is valid on.

	Possibile values:

	
	Semicolon (;) separated list of years as descriptive filter.

	“*any” metatag used as match-any filter.

	Index 2 - Months

	Months this timing is valid on.

	Possibile values:

	
	Semicolon (;) separated list of months as descriptive filter.

	“*any” metatag used as match-any filter.

	Index 3 - MonthDays

	Days of a month this timing is valid on.

	Possibile values:

	
	Semicolon (;) separated list of month days as descriptive filter.

	“*any” metatag used as match-any filter.

	Index 4 - WeekDays

	Days of a week this timing is valid on. Week days represented as integers where 1=Monday and 7=Sunday

	Possibile values:

	
	Semicolon (;) separated list of week days as descriptive filter.

	“*any” metatag used as match-any filter.

	Index 4 - Time

	The start time for this time period.

	Possible values:

	
	String representation of time (hh:mm:ss).

	“*asap” metatag used to represent time converted at runtime.

Rating history

Enhances CGRateS with ability to archive rates modifications.

Large scaling posibility using server-agents approach.
In a distributed environment, there will be a single server (which can be backed up using technologies such as Linux-HA) and more agents sending the modifications to be archived.

History-Agent

Integrated in the rating loader components.

Part of cgr-engine and cgr-loader.

Enabled via history_agent configuration section within cgr-engine and history_server command line parameter in case of cgr-loader.

Sends the complete rating data loaded into dataDb to history_server for archiving.

Data importing

For importing the data into CGRateS database we are using cvs files. The import process can be started as many times it is desired with one ore more csv files and the existing values are overwritten. If the -flush option is used then the database is cleaned before importing.For more details see the cgr-loader tool from the tutorial chapter.

The rest of this section we will describe the content of every csv files.

Rates profile

The rates profile describes the prices to be applied for various calls to various destinations in various time frames. When a call is made the CGRateS system will locate the rates to be applied to the call using the rating profiles.

	Tenant

	TOR

	Direction

	Subject

	RatesFallbackSubject

	RatesTimingTag

	ActivationTime

	CUSTOMER_1

	0

	OUT

	rif:from:tm

	danb

	PREMIUM

	2012-01-01T00:00:00Z

	CUSTOMER_1

	0

	OUT

	rif:from:tm

	danb

	STANDARD

	2012-02-28T00:00:00Z

	Tenant

	Used to distinguish between carriers if more than one share the same database in the CGRates system.

	TOR

	Type of record specifies the kind of transmission this rate profile applies to.

	Direction

	Can be IN or OUT for the INBOUND and OUTBOUND calls.

	Subject

	The client/user for who this profile is detailing the rates.

	RatesFallbackSubject

	This specifies another profile to be used in case the call destination will not be found in the current profile. The same tenant, tor and direction will be used.

	RatesTimingTag

	Forwards to a tag described in the rates timing file to be used for this profile.

	ActivationTime

	Multiple rates timings/prices can be created for one profile with different activation times. When a call is made the appropriate profile(s) will be used to rate the call. So future prices can be defined here and the activation time can be set as appropriate.

Rates timing

This file makes links between a ratings and timings so each of them can be described once and various combinations are made possible.

	Tag

	RatesTag

	TimingTag

	Weight

	STANDARD

	RT_STANDARD

	WORKDAYS_00

	10

	STANDARD

	RT_STD_WEEKEND

	WORKDAYS_18

	10

	Tag

	A string by witch this rates timing will be referenced in other places by.

	RatesTag

	The rating tag described in the rates file.

	TimingTag

	The timing tag described in the timing file

	Weight

	If multiple timings cab be applied to a call the one with the lower weight wins. An example here can be the Christmas day: we can have a special timing for this day but the regular day of the week timing can also be applied to this day. The weight will differentiate between the two timings.

Rates

Defines price groups for various destinations which will be associated to various timings.

	Tag

	DestinationsTag

	ConnectFee

	Price

	BillingUnit

	RT_STANDARD

	GERMANY

	0

	0.2

	1

	RT_STANDARD

	GERMANY_O2

	0

	0.1

	1

	Tag

	A string by witch this rate will be referenced in other places by.

	DestinationsTag

	The destination tag witch these rates apply to.

	ConnectFee

	The price to be charged once at the beginning of the call to the specified destination.

	Price

	The price for the billing unit expressed in cents.

	BillingUnit

	The billing unit expressed in seconds

Timings

Describes the time periods that have different rates attached to them.

	Tag

	Months

	MonthDays

	WeekDays

	StartTime

	WORKDAYS

	*all

	*all

	1;2;3;4;5

	00:00:00

	WEEKENDS

	*all

	*all

	6,7

	00:00:00

	DAILY_SAME_TIME

	*all

	*all

	*all

	*now

	ONE_TIME_RUN

	*none

	*none

	*none

	*now

	Tag

	A string by witch this timing will be referenced in other places by.

	Months

	Integers from 1=January to 12=December separated by semicolons (;) specifying the months for this time period.

	MonthDays

	Integers from 1 to 31 separated by semicolons (;) specifying the month days for this time period.

	WeekDays

	Integers from 1=Monday to 7=Sunday separated by semicolons (;) specifying the week days for this time period.

	StartTime

	The start time for this time period. *now will be replaced with the time of the data importing.

Destinations

The destinations are binding together various prefixes / caller ids to define a logical destination group. A prefix can appear in multiple destination groups.

	Tag

	Prefix

	GERMANY

	49

	GERMANY_O2

	49176

	Tag

	A string by witch this destination will be referenced in other places by.

	Prefix

	The prefix or caller id to be added to the specified destination.

Account actions

Describes the actions to be applied to the clients/users accounts. There are two kinds of actions: timed and triggered. For the timed actions there is a scheduler application that reads them from the database and executes them at the appropriate timings. The triggered actions are executed when the specified balance counters reach certain thresholds.

The accounts hold the various balances and counters to activate the triggered actions for each the client.

Balance types are: MONETARY, SMS, INTERNET, INTERNET_TIME, MINUTES.

	Tenant

	Account

	Direction

	ActionTimingsTag

	ActionTriggersTag

	CUSTOMER_1

	rif

	OUT

	STANDARD_ABO

	STANDARD_TRIGGER

	CUSTOMER_1

	dan

	OUT

	STANDARD_ABO

	STANDARD_TRIGGER

	Tenant

	Used to distinguish between carriers if more than one share the same database in the CGRates system.

	Account

	The identifier for the user’s account.

	Direction

	Can be IN or OUT for the INBOUND and OUTBOUND calls.

	ActionTimingsTag

	Forwards to a timed action group that will be used on this account.

	ActionTriggersTag

	Forwards to a triggered action group that will be applied to this account.

Action triggers

For each account there are counters that record the activity on various balances. Action triggers allow when a counter reaches a threshold to activate a group of actions. After the execution the action trigger is marked as used and will no longer be evaluated until the triggers are reset. See actions for action trigger resetting.

	Tag

	BalanceTag

	ThresholdValue

	DestinationTag

	ActionsTag

	Weight

	STANDARD_TRIGGER

	MONETARY

	30

	*all

	SOME_1

	10

	STANDARD_TRIGGER

	SMS

	30

	*all

	SOME_2

	10

	Tag

	A string by witch this action trigger will be referenced in other places by.

	BalanceTag

	Specifies the balance counter by which this action will be triggered. Can be MONETARY, SMS, INTERNET, INTERNET_TIME, MINUTES.

	ThresholdValue

	The value of the balance counter that will trigger this action.

	DestinationTag

	This field is used only if the balanceTag is MINUTES. If the balance counter monitors call minutes this field indicates the destination of the calls for which the minutes are recorded.

	ActionsTag

	Forwards to an action group to be executed when the threshold is reached.

	Weight

	Specifies the order for these triggers to be evaluated. If there are multiple triggers are fired in the same time the ones with the lower weight will be executed first.

Action timings

	Tag

	ActionsTag

	TimingTag

	Weight

	STANDARD_ABO

	SOME

	WEEKLY_SAME_TIME

	10

	STANDARD_ABO

	SOME

	WEEKLY_SAME_TIME

	10

	Tag

	A string by witch this action timing will be referenced in other places by.

	ActionsTag

	Forwards to an action group to be executed when the timing is right.

	TimingTag

	A timing (one time or recurrent) at which the action group will be executed

	Weight

	Specifies the order for these timings to be evaluated. If there are multiple action timings set to be execute on the same time the ones with the lower weight will be executed first.

Actions

	Tag

	Action

	BalanceTag

	Units

	DestinationTag

	PriceType

	PriceValue

	MinutesWeight

	Weight

	SOME

	TOPUP_RESET

	MONETARY

	10

	*all

	
	
	
	10

	SOME_1

	DEBIT

	MINUTES

	10

	GERMANY_O2

	PERCENT

	25

	10

	10

	Tag

	A string by witch this action will be referenced in other places by.

	Action

	The action type. Can have one of the following:

	LOG: Logs the other action values (for debugging purposes).

	RESET_TRIGGERS: Marks all action triggers as ready to be executed.

	SET_POSTPAID: Sets account to postpaid, maintains it’s balances.

	RESET_POSTPAID: Set account to postpaid, reset all it’s balances.

	SET_PREPAID: Sets account to prepaid, maintains it’s balances. Makes sense after an account was set to POSTPAID and admin wants it back.

	RESET_PREPAID: Set account to prepaid, reset all it’s balances.

	TOPUP_RESET: Add account balance. If previous balance found of the same type, reset it before adding.

	TOPUP: Add account balance. If the specific balance is not defined, define it (eg: minutes per destination).

	DEBIT: Debit account balance.

	RESET_COUNTER: Sets the counter for the BalanceTag to 0

	RESET_ALL_COUNTERS: Sets all counters to 0

	BalanceTag

	The balance on which the action will operate

	Units

	The units which will be operated on the balance BalanceTag.

	DestinationTag

	This field is used only if the balanceTag is MINUTES. Specifies the destination of the minutes to be operated.

	PriceType

	This field is used only if the balanceTag is MINUTES. Specifies if the minutes price will be absolute or a percent of the normal price, Can be ABSOLUTE or PERCENT. If the value is percent the

	PriceValue

	This field is used only if the balanceTag is MINUTES. The price for each second.

	MinutesWeight

	This field is used only if the balanceTag is MINUTES. If more minute balances are suitable for a call the one with smaller weight will be used first.

	Weight

	If there are multiple actions in a group, they will be executed in the order of their weight (smaller first).

LCR System

In voice telecommunications, least-cost routing (LCR) is the process of selecting the path of outbound communications traffic based on cost. Within a telecoms carrier, an LCR team might periodically (monthly, weekly or even daily) choose between routes from several or even hundreds of carriers for destinations across the world. This function might also be automated by a device or software program known as a “Least Cost Router.” [WIKI2015]

Data structures

The LCR rule parameters are: Direction, Tenant, Category, Account, Subject, DestinationId, RPCategory, Strategy, StrategyParameters, ActivationTime, Weight.

The first five are used to match the rule for a specific call descriptor. They can have a value or marked as *any.

The DestinationId can be used to filter the LCR rules entries or to make the rule more specific.

RPCategory is used to indicate the rating profile category.

Strategy indicates supplier selection algorithm and StrategyParams will be specific to each strategy. Strategy can be one of the following:

	*static (filter)

	Will use the suppliers provided as params.
StrategyParams: suppier1;supplier2;etc

	*lowest_cost (sorting)

	Matching suppliers will be sorted by ascending cost.
StrategyParams: None

	*highest_cost (sorting)

	Matching suppliers will be sorted by descending cost.
StrategyParams: None

	*qos_with_threshold (filter)

	The system will reject the suppliers that have out of bounds average success ratio or average call duration.
StrategyParams: min_asr;max_asr;min_acd;max_acd;min_tcd;max_tcd;min_acc;max_acc;min_tcc;max_tcc

	*qos (sorting)

	The system will sort by metrics in the order of appearance.
StrategyParams: metric1;metric2;etc

	*load_distribution (sorting/filter)

	The system will sort the suppliers in order to achieve the specified load distribution.
- if all have less than ratio return random order
- if some have a cdr count not divisible by ratio return them first and all ordered by cdr times, oldest first
- if all have a multiple of ratio return in the order of cdr times, oldest first
StrategyParams: supplier1:ratio;supplier2:ratio;*default:ratio

ActivationTime is the date/time when the LCR entry starts to be active.

Weight is used to sort the rules with the same activation time.

Example

*in, cgrates.org,call,*any,*any,EU_LANDLINE,LCR_STANDARD,*static,ivo;dan;rif,2012-01-01T00:00:00Z,10

Code implementation

The general process of getting LCRs is this.

The LCR rules for a specific call descriptor are searched using direction, tenant, category, account and subject of the call descriptor matched as strictly as possible with LCR rules.

Because a rule can have several entries they will be sorted by activation time.

Next the system will find out the most recent LCR entry that applies to this call considering entries activation times.

The LCR entry is processed according to it’s strategy. For static strategy the cost is calculated for each supplier found in the parameters and the suppliers are listed as they are found.

For the QOS strategies the suppliers are searched using call descriptor parameters (direction, tenant, category, account, subject), than the cdrstats module is queried for the QOS values and the suppliers are filtered or sorted according to the StrategyParameters field. The suppliers that have the QOS parameters in the stats queues but did not get the chance to process any calls are favored in the QOS sorting algorithm. If a certain QOS metric is missing from the supplier queues than the metric is ignored and the sorting or filtering is done using the next metrics that are considered.

For the lowest/highest cost strategies the matched suppliers are sorted ascending/descending on cost.

{
 "Entry": {
 "DestinationId": "*any",
 "RPCategory": "LCR_STANDARD",
 "Strategy": "*lowest_cost",
 "StrategyParams": "",
 "Weight": 20
 },
 "SupplierCosts": [{"Supplier":"rif", Cost:"2.0"},{"Supplier":"dan", Cost:"1.0"}]
 }

	WIKI2015

	http://en.wikipedia.org/wiki/Least-cost_routing

1. Overview

Starting as a pure billing engine, CGRateS has evolved over the years into a reliable real-time charging framework able to accommodate various business cases in a generic way.
Meant to be pluggable into existing billing infrastructure and as non-intrusive as possible,
CGRateS passes the decisions about logic flow to system administrators and incorporates as less as possible business logic.

Being an “engine style” the project focuses on providing best ratio between functionality (
over 15 daemons/services implemented,
Multi-tenancy,
derived charging - eg: chaining of the business resellers,
account bundles,
LCR,
CDRStatS,
Diameter Server,
A-Number rating,
built-in High-Availability support
agile in developing new features
)
and performance (
dedicated benchmark tool,
asynchronous request processing,
own transactional cache with majority of handled data loaded on start or reloaded during runtime,
)
however not losing focus of quality (over 1300 tests part of the build environment).

	Modular and flexible, CGRateS provides APIs over a variety of simultaneously accessible communication interfaces:

	
	In-process : optimal when there is no need to split services over different processes.

	JSON over TCP : most preferred due to its simplicity and readability.

	JSON over HTTP : popular due to fast interoperability development.

	JSON over Websockets : useful where 2 ways interaction over same TCP socket is required.

	GOB over TCP : slightly faster than JSON one but only accessible for the moment out of Go (https://golang.org/).

CGRateS is capable of four charging modes

	
	*prepaid

	
	Session events monitored in real-time

	Session authorization via events with security call timer

	Real-time balance updates with configurable debit interval

	Support for simultaneous sessions out of the same account

	Real-time fraud detection with automatic mitigation

	
	*pseudoprepaid

	
	Session authorization via events

	Charging done at the end of the session out of CDR received

	Advantage: less CPU intensive due to less events processed

	Disadvantage: as balance updates happen only at the end of the session there can be costs discrepancy in case of multiple sessions out of same account
(including going on negative balance).

	
	*postpaid

	
	Charging done at the end of the session out of CDR received without session authorization

	Useful when no authorization is necessary (trusted accounts) and no real-time event interaction is present (balance is updated only when CDR is present).

	
	*rated

	
	Special charging mode where there is no accounting interaction (no balances are used) but the primary interest is attaching costs to CDRs.

	Specific mode for Wholesale business processing high-throughput CDRs.

	Least CPU usage out of the four modes (fastest charging)

2. CGRateS Subsystems

2.1. RALs (RatingAccountingLCRservice)

	Primary component, offering the most functionality out of the subsystems.

	Computes replies based on static list of “rules” defined in TariffPlan.

2.1.1. Rater

	Defines the performance of the system as a whole being the “heart” component

	Support for multiple TypeOfRecord (*voice, *data, *sms, *generic)

	Time based calculations (activation time in the future/rate-destination timely coupled) with granular time definitions (year, month, month day, weekday, time in seconds)

	Compressed destination prefixes, helping on faster destination match as well as memory consumption

	Advanced Rating capabilities:
ConnectFee (charged at beginning of the session);
RateUnit (automatic divider for the cost);
RateIncrement (increase verbosity of the charging interval);
Grouped interval rating inside the call duration (charging each second within a session independently)

	Per destination rounding: control number of decimals displayed in costs, decide rounding methods (*up, *down, *middle)

	Control of the MaxSessionCost with decision on action taken on threshold hit (*free, *disconnect)

	Unlimited chaining of rating profiles (escalation price lists)

2.1.2. Accounting

	Maintains accounts with bundles and usage counters

	Support for multiple TypeOfRecord (*voice, *data, *sms, *generic)

	Unlimited number of balances per account

	Balance prioritization via balance weights

	Advanced balance selection (Direction, Destinations, RatingSubject - volume discounts in real-time, Categories)

	Accurate balance lifespan definition (ExpirationDate, Activation intervals)

	Safe account operations via in-/inter-process locks and on-disk storage

	Shared balances between multiple accounts (family/company bundles) with per-consumer configurable debit strategy and rates selected.

	Concurrent sessions per account doing balance reservation in chunks of debit interval and support for refunds and debit sleep when needed

	Scheduled account operations via predefined actions (eg: *topup, *debit) or notifications (*http_call_url, *mail)

	Fraud detection with automatic mitigation via action triggers/thresholds monitoring both balance status as well as combined usage

2.1.3. LCR

	Accessible via RPC for queries or coupled with external communication systems sharing supplier information via specific channel variables.

	Integrates traffic patterns (LCR for specific session duration)

	Advanced profile selection mechanism (Direction, Tenant, Category, Account, Subject, Destination).

	Weight based prioritisation.

	Profile activation in the future possible through ActivationTime parameter.

	Tightly coupled with Accounting subsystem providing LCR over bundles (eg: consider minutes with special price only during weekend)

	
	Extended functionality through the use of strategies and individual parameters per strategy

	
	*static: list of suppliers is always statically returned, independent on cost

	*least_cost: classic LCR where suppliers are ordered based on cheapest cost

	*highest_cost: suppliers are ordered based on highest cost

	*qos_thresholds: suppliers are ordered based on cheapest cost and considered only if their quality stats (ASR, ACD, TCD, ACC, TCC, PDD, DDC) are within the defined intervals

	*qos: suppliers are ordered by their quality stats (ASR, ACD, TCD, ACC, TCC, PDD, DDC)

	*load_distribution: suppliers are ordered based on preconfigured load distribution scheme, independent on their costs.

2.2. CDRs

	Real-time, centralized CDR server designed to receive CDRs via RPC interfaces

	Attaches Costs received from RALs to CDR events

	Offline CDR storage

	Real-time CDR replication to multiple upstream servers (CDR Rating queues) for high performance (optional disk-less) CDR processing

	Flexible export interfaces (JSON templates) with output mediation

	SureTax integration for US specific tax calculations

2.3. CDRStatS

	Compute real-time stats based on CDR events received

	In-memory / performance oriented

	Unlimited StatQueues computing the same CDR event

	Flexible queue configuration (QueueLength, TimeWindow, Metrics, CDR field filters)

	Fraud detection with automatic mitigation through action triggers

2.4. AliaseS

	Context based data aliasing (*rating - converts data on input before calculations)

	Multiple layers for filtering (Direction, Tenant, Category, Account, Subject, DestinationID, Context)

	Multiple fields replaced simultaneously based on Target parameter

2.5. UserS

	Populate requests with user profile fields (replace *users marked fields with data from matched profile)

	Best match inside user properties

	Attribute-value store (similar to LDAP/Diameter)

2.6. RLs (ResourceLimiterService)

	Limits resources during authorization (eg: maximum calls per destination for an account)

	Time aware (resources available during predefined time interval)

2.7. PubsubS

	Expose internal events to subscribed external entities (eg: real-time balance updates being sent to an external http server)

	Advanced regexp filters for subscriptions

	Configurable subscription lifespan

2.8. HistoryS

	Archive rate changes in git powered environment

	In-memory diffs with regular dumps to filesystem

2.9. DA (DiameterAgent)

	Diameter server implementation

	Flexible processing logic configured inside JSON templates (standard agnostic)

	Mediation for incoming fields (regexp support with in-memory compiled rules).

2.10. SM (SessionManager)

	Maintain/disconnect sessions

	Balance reservation and refunds

2.10.1. SMG (SessionManagerGeneric)

	Switch agnostic session management via RPC interface

	Bi-JSONRPC support

2.10.2. SMG-Asterisk

	Asterisk specific communication over ARI and AMI interfaces

	Bidirectional (subscribing for events as well as sending commands)

2.10.3. FreeSWITCHAgent

	FreeSWITCH specific communication interface via ESL

	Bidirectional (subscribing for events as well as sending commands)

	Zero configuration in FreeSWITCH for CDR generation (useful for billing assurance/parallel billing)

	Ability to manage multiple FreeSWITCH servers from the same CGR-SM component

2.10.4. SM-Kamailio

	Bidirectional Kamailio communication via evapi

	Ability to manage multiple Kamailio instances from the same CGR-SM component

2.10.5. SM-OpenSIPS

	Bidirectional OpenSIPS communication via event_diagram/mi_datagram

	Deadlink detection via subscription mechanism

2.11. CDRC (CDR Client)

	Offline CDR processing for .csv, .xml and .fwv file sources

	Mediation via in-memory regexp rules inside JSON templates

	Linux inotify support for instant file processing or delayed folder monitoring

3. CGRateS Peripherals

Packaged together due to common usage

3.1. cgr-engine

	Configured via .json files, encorporating CGRateS subsystems mentioned above

	Can start as many / less services as needed communicating over internal or external sockets

	Multiple cgr-engine processes can be started on the same host

	Asynchronous service runs (services synchronize later inside process via specific communication channels, however they all run independent of each other).

	RPC Server with multiple interfaces started automatically based on needs.

	TCP sockets shared between services

3.2. cgr-console

	Application interfacing with cgr-engine via TCP sockets (JSON serialization)

	History and help command support

3.3. cgr-loader

	Loads TariffPlan data out of .csv files into CGRateS live database or imports it into offline one for offline management

	Automatic cache reloads with optimizations for data loaded

3.4. cgr-tester

	Benchmarking tool to test based on particular TariffPlans of users.

3.5. cgr-admin (https://github.com/cgrates/cgradmin)

	PoC web interface demonstrating recommended way to interact with CGRateS from an external GUI.

4. Fraud detection within CGRateS

	Due to its importance in billing, CGRateS has invested considerable efforts into fraud detection and automatic mitigation.

	For redundancy and reliability purposes, there are two mechanisms available within CGRateS to detect fraud.

4.1. Fraud detection within Accounting:

	Events are happening in real-time, being available during updates (eg: every n seconds of a session).

	Thresholds set by the administrator are reacting by calling a set of predefined actions synchronously
(with the advantage of having account in locked state, eg. no other events are possible until decision is made) or asynchronously (unlocking the accounts faster)

	
	Two types of thresholds can be set

	
	min-/max-balance monitoring balance values

	min-/max-usage counters (eg: amount of minutes to specific destination).

	Middle session control (sessions can be disconnected as fraud is detected

4.2. Fraud detection within CDRStatS:

	Thresholds are monitoring CDRStatS queues and reacting by calling synchronously or asynchronously a set of predefined actions.

	Various stats metrics can be monitored (min-/max- ASR, ACD, TCD, ACC, TCC, PDD, DDC)

TariffPlans

Major concept within CGRateS architecture, implement mechanisms to load rating as well as account data into CGRateS.

Currently TariffPlans can be loaded using 2 different approaches:

Direct load out of TP-CSV files

This represents the fastest and easiest way to manage small set of TP definitions. It has the advantage of being simple to define and load but on the other hand as soon as the data set grows it becomes relatively hard to be maintaned.

Due to complex data definition we have split information necessary on each load process in more .csv files, identified by names close to their utility.

Each individual CSV file can have any number of rows starting with comment character (#) which will be ignored on processing.

Depending on CGRateS subsystem, following files are required:

Rating

	Timings.csv

	Destinations.csv

	Rates.csv

	DestinationRates.csv

	DestinationRateTimings.csv

	RatingProfiles.csv

Accounting

	Timings.csv

	Destinations.csv

FreeSWITCH [http://www.freeswitch.org/] generating .csv CDRs

Scenario

	FreeSWITCH with vanilla configuration, minimal modifications to fit our needs.

	Modified following users (with configs in etc/freeswitch/directory/default): 1001-prepaid, 1002-postpaid, 1003-pseudoprepaid, 1004-rated.

	Have added inside default dialplan CGR own extensions just before routing towards users (etc/freeswitch/dialplan/default.xml).

	FreeSWITCH configured to generate default .csv CDRs, modified example template to add cgr_reqtype from user variables (etc/freeswitch/autoload_configs/cdr_csv.conf.xml).

	CGRateS with following components:

	CGR-SM started as prepaid controller, with debits taking place at 5s intervals.

	CGR-CDRC component importing FreeSWITCH [http://www.freeswitch.org/] generated .csv CDRs into CGR and moving the processed .csv files to /tmp folder.

	CGR-Mediator compoenent attaching costs to the raw CDRs from CGR-CDRC inside CGR StorDB.

	CGR-CDRE exporting mediated CDRs from CGR StorDB (export path: /tmp).

	CGR-History component keeping the archive of the rates modifications (path browsable with git client at /tmp/cgr_history).

Starting FreeSWITCH [http://www.freeswitch.org/] with custom configuration

/usr/share/cgrates/tutorials/fs_csv/freeswitch/etc/init.d/freeswitch start

To verify that FreeSWITCH [http://www.freeswitch.org/] is running we run the console command:

fs_cli -x status

Starting CGRateS with custom configuration

/usr/share/cgrates/tutorials/fs_csv/cgrates/etc/init.d/cgrates start

Check that cgrates is running

cgr-console status

CDR processing

For every call FreeSWITCH [http://www.freeswitch.org/] will generate CDR records within the Master.csv file.
In order to avoid double-processing we will use the rotate mechanism built in FreeSWITCH [http://www.freeswitch.org/].
Once rotated, we will move the resulted files inside the path considered by CGRateS CDRC component as inbound.

These steps are automated in a script provided in the /usr/share/cgrates/scripts location:

/usr/share/cgrates/scripts/freeswitch_cdr_csv_rotate.sh

On each rotate CGR-CDRC component will be informed via inotify subsystem and will instantly process the CDR file. The records end up in CGRateS/StorDB inside cdrs_primary table via CGR-CDRS. As soon as the CDR will hit CDRS component, mediation will occur, either considering the costs calculated in case of prepaid and postpaid calls out of cost_details table or query it’s own one from rater in case of pseudoprepaid and rated CDRs.

Once the CDRs are mediated, can be exported as .csv format again via remote command offered by cgr-console tool:

cgr-console 'cdrs_export CdrFormat="csv" ExportDir="/tmp"'

CGRateS Usage

Since it is common to most of the tutorials, the example for CGRateS usage is provided in a separate page here [http://cgrates.readthedocs.org/en/latest/tut_cgrates_usage.html]

2. User Life Cycle

Following steps will cover use-case “User Life cycle”

2.1 User Management

2.1.1 Create User Account

	Hint

	cgr> account_set Tenant=”cgrates.org” Account=”1003” ActionPlanIDs=[“PACKAGE_10”] ActionTriggerIDs=[“STANDARD_TRIGGERS”]

Request

{
 "method": "ApierV2.SetAccount",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1003",
 "ActionPlanIDs": ["PACKAGE_10"],
 "ActionPlansOverwrite": false,
 "ActionTriggerIDs": ["STANDARD_TRIGGERS"],
 "ActionTriggerOverwrite": false,
 "AllowNegative": null,
 "Disabled": null,
 "ReloadScheduler": false
 }],
 "id": 0
}

Response

{"id": 0,"result": "OK","error": null}

2.1.2 Get User Account

	Hint

	cgr> accounts Tenant=”cgrates.org” AccountIds=[“1003”]

Request

{
 "method": "ApierV2.GetAccounts",
 "params": [{
 "Tenant": "cgrates.org",
 "AccountIds": ["1003"],
 "Offset": 0,
 "Limit": 0
 }],
 "id": 1
}

Response

{
 "id": 1,
 "result": [{
 "ID": "cgrates.org:1003",
 "BalanceMap": {
 "*monetary": [{
 "Uuid": "df24bcbd-d0e2-4a67-a188-7c9621ae81d7",
 "ID": "",
 "Value": 0.15,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "Weight": 10,
 "DestinationIDs": {},
 "RatingSubject": "",
 "Categories": {},
 "SharedGroups": {},
 "Timings": [],
 "TimingIDs": {},
 "Disabled": false,
 "Factor": {},
 "Blocker": false
 }, {
 "Uuid": "9a22f090-a49a-4da6-bdca-5e40810e4b18",
 "ID": "23456",
 "Value": 12,
 "Directions": {},
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "Weight": 0,
 "DestinationIDs": {},
 "RatingSubject": "",
 "Categories": {},
 "SharedGroups": {},
 "Timings": [],
 "TimingIDs": {},
 "Disabled": false,
 "Factor": {},
 "Blocker": false
 }, {
 "Uuid": "4da21ba2-d899-49b1-ae60-3e8a237a49bb",
 "ID": "123456",
 "Value": 0.2,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "Weight": 0,
 "DestinationIDs": {},
 "RatingSubject": "",
 "Categories": {},
 "SharedGroups": {},
 "Timings": [],
 "TimingIDs": {},
 "Disabled": false,
 "Factor": {},
 "Blocker": false
 }]
 },
 "UnitCounters": {
 "*monetary": [{
 "CounterType": "*event",
 "Counters": [{
 "Value": 0,
 "Filter": {
 "Uuid": null,
 "ID": "df4d286a-445f-40a8-ab84-215153d4f2ac",
 "Type": "*monetary",
 "Value": null,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": null,
 "Weight": null,
 "DestinationIDs": {
 "FS_USERS": true
 },
 "RatingSubject": null,
 "Categories": null,
 "SharedGroups": null,
 "TimingIDs": null,
 "Timings": [],
 "Disabled": null,
 "Factor": null,
 "Blocker": null
 }
 }]
 }]
 },
 "ActionTriggers": [{
 "ID": "STANDARD_TRIGGERS",
 "UniqueID": "621cb77f-c427-445f-8dfc-05b8105a1709",
 "ThresholdType": "*min_balance",
 "ThresholdValue": 2,
 "Recurrent": false,
 "MinSleep": 0,
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "ActivationDate": "0001-01-01T00:00:00Z",
 "Balance": {
 "Uuid": null,
 "ID": null,
 "Type": "*monetary",
 "Value": null,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": null,
 "Weight": null,
 "DestinationIDs": null,
 "RatingSubject": null,
 "Categories": null,
 "SharedGroups": null,
 "TimingIDs": null,
 "Timings": [],
 "Disabled": null,
 "Factor": null,
 "Blocker": null
 },
 "Weight": 10,
 "ActionsID": "LOG_WARNING",
 "MinQueuedItems": 0,
 "Executed": true,
 "LastExecutionTime": "2017-12-12T15:19:45.742Z"
 }, {
 "ID": "STANDARD_TRIGGERS",
 "UniqueID": "df4d286a-445f-40a8-ab84-215153d4f2ac",
 "ThresholdType": "*max_event_counter",
 "ThresholdValue": 5,
 "Recurrent": false,
 "MinSleep": 0,
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "ActivationDate": "0001-01-01T00:00:00Z",
 "Balance": {
 "Uuid": null,
 "ID": "df4d286a-445f-40a8-ab84-215153d4f2ac",
 "Type": "*monetary",
 "Value": null,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": null,
 "Weight": null,
 "DestinationIDs": {
 "FS_USERS": true
 },
 "RatingSubject": null,
 "Categories": null,
 "SharedGroups": null,
 "TimingIDs": null,
 "Timings": [],
 "Disabled": null,
 "Factor": null,
 "Blocker": null
 },
 "Weight": 10,
 "ActionsID": "LOG_WARNING",
 "MinQueuedItems": 0,
 "Executed": false,
 "LastExecutionTime": "0001-01-01T00:00:00Z"
 }, {
 "ID": "STANDARD_TRIGGERS",
 "UniqueID": "cb60f788-6077-4f3c-b8b2-4d1ba3077abc",
 "ThresholdType": "*max_balance",
 "ThresholdValue": 20,
 "Recurrent": false,
 "MinSleep": 0,
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "ActivationDate": "0001-01-01T00:00:00Z",
 "Balance": {
 "Uuid": null,
 "ID": null,
 "Type": "*monetary",
 "Value": null,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": null,
 "Weight": null,
 "DestinationIDs": null,
 "RatingSubject": null,
 "Categories": null,
 "SharedGroups": null,
 "TimingIDs": null,
 "Timings": [],
 "Disabled": null,
 "Factor": null,
 "Blocker": null
 },
 "Weight": 10,
 "ActionsID": "LOG_WARNING",
 "MinQueuedItems": 0,
 "Executed": false,
 "LastExecutionTime": "0001-01-01T00:00:00Z"
 }, {
 "ID": "STANDARD_TRIGGERS",
 "UniqueID": "7f7621f4-6074-4502-bbc0-a8aeca7c1008",
 "ThresholdType": "*max_balance",
 "ThresholdValue": 100,
 "Recurrent": false,
 "MinSleep": 0,
 "ExpirationDate": "0001-01-01T00:00:00Z",
 "ActivationDate": "0001-01-01T00:00:00Z",
 "Balance": {
 "Uuid": null,
 "ID": null,
 "Type": "*monetary",
 "Value": null,
 "Directions": {
 "*out": true
 },
 "ExpirationDate": null,
 "Weight": null,
 "DestinationIDs": null,
 "RatingSubject": null,
 "Categories": null,
 "SharedGroups": null,
 "TimingIDs": null,
 "Timings": [],
 "Disabled": null,
 "Factor": null,
 "Blocker": null
 },
 "Weight": 10,
 "ActionsID": "DISABLE_AND_LOG",
 "MinQueuedItems": 0,
 "Executed": false,
 "LastExecutionTime": "0001-01-01T00:00:00Z"
 }],
 "AllowNegative": false,
 "Disabled": false
 }],
 "error": null
}

2.1.3 Remove User Account

	Hint

	cgr> account_remove Tenant=”cgrates.org” Account=”1003”

Request

{
 "method": "ApierV1.RemoveAccount",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1003",
 "ReloadScheduler": false
 }],
 "id": 3
}

Response

{"id": 3,"result": "OK","error": null}

2.1.4 Get Users Profile

GetUsers returns list of all users profile:

	Hint

	cgr> users

Request

{
 "method": "UsersV1.GetUsers",
 "params": [{
 "Tenant": "",
 "UserName": "",
 "Masked": false,
 "Profile": null,
 "Weight": 0
 }],
 "id": 2
}

Response

{
 "id": 2,
 "result": [{
 "Tenant": "cgrates.org",
 "UserName": "1001",
 "Masked": false,
 "Profile": {
 "Account": "1001",
 "Cli": "+4986517174963",
 "RequestType": "*prepaid",
 "Subject": "1001",
 "SubscriberId": "1001",
 "SysPassword": "hisPass321",
 "SysUserName": "danb",
 "Uuid": "388539dfd4f5cefee8f488b78c6c244b9e19138e"
 },
 "Weight": 0
 },

 {
 "Tenant": "cgrates.org",
 "UserName": "1002",
 "Masked": false,
 "Profile": {
 "Account": "1002",
 "RifAttr": "RifVal",
 "Subject": "1002",
 "SubscriberId": "1002",
 "SysUserName": "rif",
 "Uuid": "27f37edec0670fa34cf79076b80ef5021e39c5b5"
 },
 "Weight": 0
 },

 {
 "Tenant": "cgrates.org",
 "UserName": "1004",
 "Masked": false,
 "Profile": {
 "Account": "1004",
 "Cli": "+4986517174964",
 "RequestType": "*rated",
 "Subject": "1004",
 "SubscriberId": "1004",
 "SysPassword": "hisPass321",
 "SysUserName": "danb4"
 },
 "Weight": 0
 }
],
 "error": null
}

2.1.5 Get Profile UserName 1001

Returns a User Profile of user account 1001:

	Hint

	cgr> users UserName=”1001”

Request

{
 "method": "UsersV1.GetUsers",
 "params": [{
 "Tenant": "",
 "UserName": "1001",
 "Masked": false,
 "Profile": null,
 "Weight": 0
 }],
 "id": 2
}

Response

{
 "id": 2,
 "result": [{
 "Tenant": "cgrates.org",
 "UserName": "1001",
 "Masked": false,
 "Profile": {
 "Account": "1001",
 "Cli": "+4986517174963",
 "RequestType": "*prepaid",
 "Subject": "1001",
 "SubscriberId": "1001",
 "SysPassword": "hisPass321",
 "SysUserName": "danb",
 "Uuid": "388539dfd4f5cefee8f488b78c6c244b9e19138e"
 },
 "Weight": 0
 }],
 "error": null
}

2.1.6 Get Action Plans

Returns a list of all ActionPlans defined on user accounts:

	Hint

	cgr> actionplan_get

Request

{
 "method": "ApierV1.GetActionPlan",
 "params": [{
 "ID": ""
 }],
 "id": 3
}

Response

{
 "id": 3,
 "result": [{
 "Id": "PACKAGE_10_SHARED_A_5",
 "AccountIDs": null,
 "ActionTimings": [{
 "Uuid": "93e8cb80-7dad-4efc-8d65-1e0e61ce219d",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_5",
 "Weight": 10
 }, {
 "Uuid": "a4ac319b-144a-49e6-b87f-8878c8adc495",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_SHARED_5",
 "Weight": 10
 }]
 },

 {
 "Id": "PACKAGE_1001",
 "AccountIDs": {
 "cgrates.org:1001": true
 },
 "ActionTimings": [{
 "Uuid": "8261378b-aa47-45c8-a0ad-6fb4a61358a6",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_5",
 "Weight": 10
 }, {
 "Uuid": "a1360fae-d9e9-4a6f-9b29-c4dcdd56b266",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_SHARED_5",
 "Weight": 10
 }, {
 "Uuid": "f3ed64ba-a158-4302-ad46-98646cad8a8f",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_120_DST1003",
 "Weight": 10
 }, {
 "Uuid": "1a5c69fb-c5f8-4852-8c66-5afd296fa5e4",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_DATA_100",
 "Weight": 10
 }]
 },

 {
 "Id": "PACKAGE_10",
 "AccountIDs": {
 "cgrates.org:1002": true,
 "cgrates.org:1003": true,
 "cgrates.org:1004": true
 },
 "ActionTimings": [{
 "Uuid": "6e335f92-ae2e-4253-8809-f124a46eac06",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_10",
 "Weight": 10
 }]
 }, {
 "Id": "USE_SHARED_A",
 "AccountIDs": {
 "cgrates.org:1007": true
 },
 "ActionTimings": [{
 "Uuid": "eee41fa1-aa24-4795-b875-37213473ad3d",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "SHARED_A_0",
 "Weight": 10
 }]
 }
],
 "error": null
}

2.1.7 Get Action Plans of one Package ID

Returns a list of accounts where ActionPlan for “PACKAGE_10” is allocated:

	Hint

	cgr> actionplan_get ID=”PACKAGE_10”

Request

{
 "method": "ApierV1.GetActionPlan",
 "params": [{
 "ID": "PACKAGE_10"
 }],
 "id": 4
}

Response

{
 "id": 4,
 "result": [{
 "Id": "PACKAGE_10",
 "AccountIDs": {
 "cgrates.org:1002": true,
 "cgrates.org:1003": true,
 "cgrates.org:1004": true
 },
 "ActionTimings": [{
 "Uuid": "6e335f92-ae2e-4253-8809-f124a46eac06",
 "Timing": {
 "Timing": {
 "Years": null,
 "Months": null,
 "MonthDays": null,
 "WeekDays": null,
 "StartTime": "*asap",
 "EndTime": ""
 },
 "Rating": null,
 "Weight": 0
 },
 "ActionsID": "TOPUP_RST_10",
 "Weight": 10
 }]
 }],
 "error": null
}

2.1.8 User Indexes

	Hint

	cgr> user_indexes

Request

{
 "method": "UsersV1.GetIndexes",
 "params": [""],
 "id": 2
}

Response

{
 "id": 2,
 "result": {
 "Uuid:27f37edec0670fa34cf79076b80ef5021e39c5b5": ["cgrates.org:1002"],
 "Uuid:388539dfd4f5cefee8f488b78c6c244b9e19138e": ["cgrates.org:1001"]
 },
 "error": null
}

3. Balance Management

3.1 Balance Set

replaces existing value of BalanceID ‘23456’ with value 12 for account 1003 belongs to tenant ‘cgrates.org’

	Hint

	cgr> balance_set Tenant=”cgrates.org” Account=”1003” Direction=”*out” Value=12 BalanceID=”23456”

Request

{
 "method": "ApierV1.SetBalance",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1003",
 "BalanceType": "*monetary",
 "BalanceUUID": null,
 "BalanceID": "23456",
 "Directions": null,
 "Value": 12,
 "ExpiryTime": null,
 "RatingSubject": null,
 "Categories": null,
 "DestinationIds": null,
 "TimingIds": null,
 "Weight": null,
 "SharedGroups": null,
 "Blocker": null,
 "Disabled": null
 }],
 "id": 6
}

Response

{"id":6,"result":"OK","error":null}

3.2 Balance Add

adds 10 cent to account=1003 where tenant=cgrates.org

	Hint

	cgr> balance_add Tenant=”cgrates.org” Account=”1003” BalanceId=”123456” Value=10

Request

{
 "method": "ApierV1.AddBalance",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1003",
 "BalanceUuid": null,
 "BalanceId": "123456",
 "BalanceType": "*monetary",
 "Directions": null,
 "Value": 10,
 "ExpiryTime": null,
 "RatingSubject": null,
 "Categories": null,
 "DestinationIds": null,
 "TimingIds": null,
 "Weight": null,
 "SharedGroups": null,
 "Overwrite": false,
 "Blocker": null,
 "Disabled": null
 }],
 "id": 4
}

Response

{"id":4,"result":"OK","error":null}

3.3 Balance Debit

deducts 5 cents from account 1003 of tenant cgrates.org

	Hint

	cgr> balance_debit Tenant=”cgrates.org” Account=”1003” BalanceId=”23456” Value=5 BalanceType=”*monetary”

Request

{
 "method": "ApierV1.DebitBalance",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1003",
 "BalanceUuid": null,
 "BalanceId": "23456",
 "BalanceType": "*monetary",
 "Directions": null,
 "Value": 5,
 "ExpiryTime": null,
 "RatingSubject": null,
 "Categories": null,
 "DestinationIds": null,
 "TimingIds": null,
 "Weight": null,
 "SharedGroups": null,
 "Overwrite": false,
 "Blocker": null,
 "Disabled": null
 }],
 "id": 5
}

Response

{"id":5,"result":"OK","error":null}

3.4 Get Remaining Balance

Sum of BalanceMap.Value resulted from ApierV2.GetAccounts request

3.5 Debit Air Time (TBV)

	Hint

	cgr> debit Tenant=”cgrates.org” Account=”1001” CallDuration=500

Request

{
 "method": "Responder.Debit",
 "params": [{
 "Direction": "*out",
 "Category": "",
 "Tenant": "cgrates.org",
 "Subject": "",
 "Account": "1001",
 "Destination": "",
 "TimeStart": "0001-01-01T00:00:00Z",
 "TimeEnd": "0001-01-01T00:00:00Z",
 "LoopIndex": 0,
 "DurationIndex": 0,
 "FallbackSubject": "",
 "RatingInfos": null,
 "Increments": null,
 "TOR": "",
 "ExtraFields": null,
 "MaxRate": 0,
 "MaxRateUnit": 0,
 "MaxCostSoFar": 0,
 "CgrID": "",
 "RunID": "",
 "ForceDuration": false,
 "PerformRounding": false,
 "DryRun": false,
 "DenyNegativeAccount": false
 }],
 "id": 16
}

Response

{
 "id": 16,
 "result": {
 "Direction": "*out",
 "Category": "",
 "Tenant": "cgrates.org",
 "Subject": "1001",
 "Account": "1001",
 "Destination": "",
 "TOR": "",
 "Cost": 0,
 "Timespans": null,
 "RatedUsage": 0,
 "AccountSummary": {
 "Tenant": "cgrates.org",
 "ID": "1001",
 "BalanceSummaries": [{
 "UUID": "a6fc6e96-de69-445b-8456-cebd78a1b43d",
 "ID": "a6fc6e96-de69-445b-8456-cebd78a1b43d",
 "Type": "*monetary",
 "Value": 5,
 "Disabled": false
 }, {
 "UUID": "9df5d845-e411-4edd-971c-d98dbb926054",
 "ID": "9df5d845-e411-4edd-971c-d98dbb926054",
 "Type": "*monetary",
 "Value": 25,
 "Disabled": false
 }, {
 "UUID": "4a4d07c8-9548-415d-a029-7e369bf02f60",
 "ID": "4a4d07c8-9548-415d-a029-7e369bf02f60",
 "Type": "*voice",
 "Value": 120,
 "Disabled": false
 }, {
 "UUID": "8d867c57-31b4-407d-afc7-fb4dc359ae4d",
 "ID": "8d867c57-31b4-407d-afc7-fb4dc359ae4d",
 "Type": "*voice",
 "Value": 90,
 "Disabled": false
 }, {
 "UUID": "66009d4e-25ed-47d6-8dfa-ef3c501fd1b0",
 "ID": "66009d4e-25ed-47d6-8dfa-ef3c501fd1b0",
 "Type": "*data",
 "Value": 102400,
 "Disabled": false
 }],
 "AllowNegative": false,
 "Disabled": false
 }
 },
 "error": null
}

3.6 Set Balance for Outbound Calls

	Hint

	cgr> balance_set Tenant=”cgrates.org” Account=”1001” BalanceType=”*voice” Directions=”*out” Value=100 BalanceID=”8d867c57-31b4-407d-afc7-fb4dc359ae4d”

Request

{
 "method": "ApierV1.SetBalance",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1001",
 "BalanceType": "*voice",
 "BalanceUUID": null,
 "BalanceID": "8d867c57-31b4-407d-afc7-fb4dc359ae4d",
 "Directions": "*out",
 "Value": 100,
 "ExpiryTime": null,
 "RatingSubject": null,
 "Categories": null,
 "DestinationIds": null,
 "TimingIds": null,
 "Weight": null,
 "SharedGroups": null,
 "Blocker": null,
 "Disabled": null
 }],
 "id": 18
}

Response

{
 "id": 18,
 "result": "OK",
 "error": null
}

3.7 Set Balance for Inbound Calls

	Hint

	cgr> balance_set Tenant=”cgrates.org” Account=”1001” BalanceType=”*voice” Directions=”*in” Value=600 BalanceID=”9d867c57-31b4-407d-afc7-fb4dc359ae4d”

Request

{
 "method": "ApierV1.SetBalance",
 "params": [{
 "Tenant": "cgrates.org",
 "Account": "1001",
 "BalanceType": "*voice",
 "BalanceUUID": null,
 "BalanceID": "9d867c57-31b4-407d-afc7-fb4dc359ae4d",
 "Directions": "*in",
 "Value": 600,
 "ExpiryTime": null,
 "RatingSubject": null,
 "Categories": null,
 "DestinationIds": null,
 "TimingIds": null,
 "Weight": null,
 "SharedGroups": null,
 "Blocker": null,
 "Disabled": null
 }],
 "id": 28
}

Response

{
 "id": 28,
 "result": "OK",
 "error": null
}

4. CDR Management

4.1 Export CDRs

	Hint

	cgr > cdrs_export CdrFormat=”csv” ExportDir=”/tmp”

Request

{
 "method": "ApierV1.ExportCDRs",
 "params": [{
 "ExportTemplate": null,
 "ExportFormat": null,
 "ExportPath": null,
 "Synchronous": null,
 "Attempts": null,
 "FieldSeparator": null,
 "UsageMultiplyFactor": null,
 "CostMultiplyFactor": null,
 "ExportID": null,
 "ExportFileName": null,
 "RoundingDecimals": null,
 "Verbose": false,
 "CGRIDs": null,
 "NotCGRIDs": null,
 "RunIDs": null,
 "NotRunIDs": null,
 "OriginHosts": null,
 "NotOriginHosts": null,
 "Sources": null,
 "NotSources": null,
 "ToRs": null,
 "NotToRs": null,
 "RequestTypes": null,
 "NotRequestTypes": null,
 "Tenants": null,
 "NotTenants": null,
 "Categories": null,
 "NotCategories": null,
 "Accounts": null,
 "NotAccounts": null,
 "Subjects": null,
 "NotSubjects": null,
 "DestinationPrefixes": null,
 "NotDestinationPrefixes": null,
 "Costs": null,
 "NotCosts": null,
 "ExtraFields": null,
 "NotExtraFields": null,
 "OrderIDStart": null,
 "OrderIDEnd": null,
 "SetupTimeStart": "",
 "SetupTimeEnd": "",
 "AnswerTimeStart": "",
 "AnswerTimeEnd": "",
 "CreatedAtStart": "",
 "CreatedAtEnd": "",
 "UpdatedAtStart": "",
 "UpdatedAtEnd": "",
 "MinUsage": "",
 "MaxUsage": "",
 "MinCost": null,
 "MaxCost": null,
 "Limit": null,
 "Offset": null,
 "SearchTerm": ""
 }],
 "id": 8
}

Response

{
 "id": 8,
 "result": {
 "ExportedPath": "/var/spool/cgrates/cdre/cdre_1513199075.csv",
 "TotalRecords": 186,
 "TotalCost": 56.4371,
 "FirstOrderID": 1513066080275428946,
 "LastOrderID": 1513066080275429038,
 "ExportedCGRIDs": null,
 "UnexportedCGRIDs": null
 },
 "error": null
}

“/var/spool/cgrates/cdre/cdre_1513199075.csv” is the destination cdr file in csv format.

4.2 CDR Stats for Queues

Return list of Queue IDs

	Hint

	cgr> cdrstats_queueids

Request

{
 "method": "CDRStatsV1.GetQueueIds",
 "params": [""],
 "id": 8
}

Response

{
 "id": 8,
 "result": [
 "CDRST_1003",
 "CDRST1",
 "CDRST_1001",
 "CDRST_1002",
 "STATS_SUPPL1",
 "STATS_SUPPL2"
],
 "error": null
}

CGRateS API Document!

Full contents:

	1. Introduction

	2. User Life Cycle
	2.1 User Management

	3. Balance Management
	3.1 Balance Set

	3.2 Balance Add

	3.3 Balance Debit

	3.4 Get Remaining Balance

	3.5 Debit Air Time (TBV)

	3.6 Set Balance for Outbound Calls

	3.7 Set Balance for Inbound Calls

	4. CDR Management
	4.1 Export CDRs

	4.2 CDR Stats for Queues

	5. LCR Strategies
	5.1 LCR Strategy: (*static)

	5.2 LCR Strategy: (*lowest_cost)

	5.3 LCR Strategy: (*highest_cost)

	5.4 LCR Strategy: (*qos_threshold)

	5.5 LCR Strategy: (*qos)

	6. Tariff Plan Management
	6.1 Create TariffPlan

	6.2 Assign TariffPlan

	6.3 Calculate Cost

	7. Suppliers Management
	7.1 List Suppliers

	8. GetCacheStats

1. Introduction

CGRateS is a very fast and easily scalable (charging, rating, accounting, lcr, mediation, billing, authorization) ENGINE targeted especially for ISPs and Telecom Operators. It allow users provisioning and tarif plan management.

It is written in Go programming language and is accessible from any programming language via JSON RPC.

Usage example through cgr-console

	Hint

	cgr> Accounts Tenant=”cgrates.org” AccountIDs=[“1001”]

Usage example through postman

URL: http://your_server_ip:2080/jsonrpc

Request

{"method":"ApierV2.GetAccounts","params":[{"Tenant":"cgrates.org","AccountIds":["1001"],"Offset":0,"Limit":0}],"id":3}
Content-Type: application/json

5. LCR Strategies

5.1 LCR Strategy: (*static)

Use supplier base on LCR rules

	Hint

	cgr> lcr Account=”1001” Destination=”1002”

5.2 LCR Strategy: (*lowest_cost)

Use supplier with least cost

	Hint

	cgr> lcr Account=”1005” Destination=”1001”

5.3 LCR Strategy: (*highest_cost)

Use supplier with highest cost

	Hint

	cgr> lcr Account=”1002” Destination=”1002”

5.4 LCR Strategy: (*qos_threshold)

Use supplier with lowest cost, matching QoS thresholds min/max ASR, ACD, TCD, ACC, TCC

	Hint

	cgr> lcr Account=”1002” Destination=”1002”

5.5 LCR Strategy: (*qos)

Use supplier with best quality, independent of cost

	Hint

	cgr> lcr Account=”1002” Destination=”1005”

8. GetCacheStats

GetCacheStats returns datadb cache status. Empty params return all stats:

	Hint

	cgr> cache_stats

Request

{
 "method": "ApierV1.GetCacheStats",
 "params": [{}],
 "id": 0
}

Response:

{
 "id": 0,
 "result": {
 "Destinations": 0,
 "ReverseDestinations": 0,
 "RatingPlans": 4,
 "RatingProfiles": 0,
 "Actions": 0,
 "ActionPlans": 4,
 "AccountActionPlans": 0,
 "SharedGroups": 0,
 "DerivedChargers": 0,
 "LcrProfiles": 0,
 "CdrStats": 6,
 "Users": 3,
 "Aliases": 0,
 "ReverseAliases": 0,
 "ResourceProfiles": 0,
 "Resources": 0,
 "StatQueues": 0,
 "StatQueueProfiles": 0,
 "Thresholds": 0,
 "ThresholdProfiles": 0,
 "Filters": 0
 },
 "error": null
}

7. Suppliers Management

7.1 List Suppliers

	Hint

	suppliers Tenant=”cgrates.org” ID=”SPP_1”

Request

{
 "method": "ApierV1.GetSupplierProfile",
 "params": [{
 "Tenant": "cgrates.org",
 "ID": "SPP_1"
 }],
 "id": 6
}

Response

{
 "id": 6,
 "result": {
 "Tenant": "cgrates.org",
 "ID": "SPP_1",
 "FilterIDs": ["FLTR_ACNT_dan", "FLTR_DST_DE"],
 "ActivationInterval": {
 "ActivationTime": "2017-07-29T15:00:00Z",
 "ExpiryTime": "0001-01-01T00:00:00Z"
 },
 "Sorting": "*lowest_cost",
 "SortingParams": [],
 "Suppliers": [{
 "ID": "supplier1",
 "FilterIDs": ["FLTR_ACNT_dan"],
 "AccountIDs": [],
 "RatingPlanIDs": ["RPL_1"],
 "ResourceIDs": ["ResGroup1"],
 "StatIDs": ["Stat1"],
 "Weight": 10
 }],
 "Blocker": false,
 "Weight": 10
 },
 "error": null
}

6. Tariff Plan Management

6.1 Create TariffPlan

6.2 Assign TariffPlan

6.3 Calculate Cost

Cost simulator calculates call cost (sum of ConnectFee and Cost fields) for a given pair of source(subject) and destination accounts for a specific time interval. This request can provide Pre Call Cost.

	Hint

	cgr> cost Tenant=”cgrates.org” Category=”call” Subject=”1003” AnswerTime=”2014-08-04T13:00:00Z” Destination=”1002” Usage=”1m25s”

Request

{
 "method": "ApierV1.GetCost",
 "params": [{
 "Tenant": "cgrates.org",
 "Category": "call",
 "Subject": "1003",
 "AnswerTime": "2014-08-04T13:00:00Z",
 "Destination": "1002",
 "Usage": "1m25s"
 }],
 "id": 7
}

Response

{
 "id": 7,
 "result": {
 "CGRID": "",
 "RunID": "",
 "StartTime": "2014-08-04T13:00:00Z",
 "Usage": 90000000000,
 "Cost": 0.25,
 "Charges": [{
 "RatingID": "81ca386",
 "Increments": [{
 "Usage": 60000000000,
 "Cost": 0.2,
 "AccountingID": "",
 "CompressFactor": 1
 }],
 "CompressFactor": 1
 }, {
 "RatingID": "2ff21f2",
 "Increments": [{
 "Usage": 30000000000,
 "Cost": 0.05,
 "AccountingID": "",
 "CompressFactor": 1
 }],
 "CompressFactor": 1
 }],
 "AccountSummary": null,
 "Rating": {
 "2ff21f2": {
 "ConnectFee": 0.4,
 "RoundingMethod": "*up",
 "RoundingDecimals": 4,
 "MaxCost": 0,
 "MaxCostStrategy": "",
 "TimingID": "998f4c1",
 "RatesID": "7977f71",
 "RatingFiltersID": "5165642"
 },
 "81ca386": {
 "ConnectFee": 0.4,
 "RoundingMethod": "*up",
 "RoundingDecimals": 4,
 "MaxCost": 0,
 "MaxCostStrategy": "",
 "TimingID": "998f4c1",
 "RatesID": "e630781",
 "RatingFiltersID": "5165642"
 }
 },
 "Accounting": {},
 "RatingFilters": {
 "5165642": {
 "DestinationID": "DST_1002",
 "DestinationPrefix": "1002",
 "RatingPlanID": "RP_RETAIL2",
 "Subject": "*out:cgrates.org:call:*any"
 }
 },
 "Rates": {
 "7977f71": [{
 "GroupIntervalStart": 0,
 "Value": 0.2,
 "RateIncrement": 60000000000,
 "RateUnit": 60000000000
 }, {
 "GroupIntervalStart": 60000000000,
 "Value": 0.1,
 "RateIncrement": 30000000000,
 "RateUnit": 60000000000
 }],
 "e630781": [{
 "GroupIntervalStart": 0,
 "Value": 0.2,
 "RateIncrement": 60000000000,
 "RateUnit": 60000000000
 }, {
 "GroupIntervalStart": 60000000000,
 "Value": 0.1,
 "RateIncrement": 30000000000,
 "RateUnit": 60000000000
 }]
 },
 "Timings": {
 "998f4c1": {
 "Years": [],
 "Months": [],
 "MonthDays": [],
 "WeekDays": [1, 2, 3, 4, 5],
 "StartTime": "08:00:00"
 }
 }
 },
 "error": null
}

Make Test Call

	Hint

	initiate test call from account 1003 to 1002

 _images/Normal_ha.png
FreeSWITCH Session manager

_images/Simple.png
Session manager
FreeSWITCH +

RALs

_images/Complicated_ha.png
Session

FreeSWITCH

Manager

Session

FreeSWITCH
Manager

_images/Normal.png
Session manager
FreeSWITCH +

Balancer

_static/comment-bright.png

_images/cgrates-arch.png
Data Feeder(s) 1. cgr-engine

ternal_cache

Diameter
rals
cache2go
eter A{d'ameleriagenl}_.[sm_generic
golan
Asterisk T
ARl e sm_asterisk
— Databases
Opensips
P tariffplan_db

nt_datagr:

o om opensips

db_flatstore

Kamailio

data_db

P e sm_kamailio

db_flatstore mongo

FreeSWITCH
vent_socket Je sm_freeswitch
— stor_db
json_cdr
— mongo
cdrcsr eeswitch_csv
r 4 postgres
kamailio_fiatstore
P 4 mysql
(opensips_fiatstore
+FS/Other partial csv
e 4 Remote
cdress
corcustom_ p
b 4 »(remote
xaml
-

2. cgr-console 3. cgr-loader 2. cgr-tester

(cgrconsole Il cgrloader Il cgrtester

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to CGRateS’s documentation!

 		
 1. Introduction

 		
 1.1. CGRateS Features

 		
 1.2. Links

 		
 1.3. License

 		
 2. Architecture

 		
 2.1. cgr-engine

 		
 2.1.1. RALs service

 		
 2.1.2. Scheduler service

 		
 2.1.3. SessionManager service

 		
 2.1.4. DiameterAgent service

 		
 2.1.5. CDR service

 		
 2.1.6. CDRStats service

 		
 2.1.7. CDRC service

 		
 2.1.8. Aliases service

 		
 2.1.9. User service

 		
 2.1.10. PubSub service

 		
 2.1.11. Resource Limiter service

 		
 2.1.12. APIER RPC service

 		
 2.1.13. Cdre

 		
 2.1.14. Mailer

 		
 2.1.15. Suretax

 		
 2.1.X Mediator service

 		
 2.2. cgr-loader

 		
 2.3. cgr-console

 		
 2.4. cgr-tester

 		
 2.5. cgr-migrator

 		
 3. Installation

 		
 3.1. Using packages

 		
 3.1.1. Debian

 		
 3.2. Using source

 		
 3.2.1 Install GO Lang

 		
 3.2.2 Build CGRateS from Source

 		
 3.2.3 Create Debian / Ubuntu Packages from Source

 		
 3.2.4 Install Custom Debian / Ubuntu Package

 		
 3.3. Post-install

 		
 3.3.1. Database setup

 		
 3.3.2 Set versions data

 		
 3.3.3.Git

 		
 4. Configuration

 		
 4.1. cgr-engine configuration file

 		
 4.2. Tariff Plans

 		
 4.2.1. Destinations

 		
 4.2.2. Timings

 		
 4.2.3. Rates

 		
 4.2.4. Destination Rates

 		
 4.2.5. Rating Plans

 		
 4.2.6. Rating profiles

 		
 4.2.7. Account actions

 		
 4.2.8 Action triggers

 		
 4.2.9. Action Plans

 		
 4.2.10. Actions

 		
 4.2.11. Derived Chargers

 		
 4.2.12. CDR Stats

 		
 4.2.13. Shared groups

 		
 4.2.14. LCR rules

 		
 4.2.15. Users

 		
 4.2.16. Aliases

 		
 4.2.17. Resource Limits

 		
 5. Administration

 		
 6. Advanced Topics

 		
 API Calls

 		
 CDR Server

 		
 CDR-CGR

 		
 CDR-FS_JSON

 		
 CDR-RPC

 		
 CDR Client (cdrc)

 		
 Import Templates

 		
 CDR .CSV

 		
 CDR Exporter

 		
 Export Templates

 		
 CGR-CSV

 		
 CGR-FWV

 		
 Hybrid CSV-FWV

 		
 CDR Stats Server

 		
 Configuration

 		
 Metrics Types

 		
 ExternalQueries

 		
 Example use

 		
 DerivedCharging

 		
 Configuration

 		
 Rating logic

 		
 User balances

 		
 FilterS

 		
 Filter profile

 		
 Filter rule

 		
 7. Tutorials

 		
 Asterisk Integration Tutorials

 		
 Software installation

 		
 CGRateS Installation

 		
 SIP UA - Jitsi

 		
 Asterisk interaction via ARI

 		
 CGRateS Usage

 		
 FreeSWITCH Integration Tutorials

 		
 Software installation

 		
 CGRateS Installation

 		
 SIP UA - Jitsi

 		
 FreeSWITCH generating http-json CDRs

 		
 CGRateS Usage

 		
 Kamailio Integration Tutorials

 		
 Software installation

 		
 CGRateS Installation

 		
 SIP UA - Jitsi

 		
 Kamailio interaction via evapi module

 		
 CGRateS Usage

 		
 OpenSIPS Integration Tutorials

 		
 Software installation

 		
 CGRateS Installation

 		
 SIP UA - Jitsi

 		
 OpenSIPS interaction via event_datagram

 		
 CGRateS Usage

 		
 8. Miscellaneous

 		
 8.1. FreeSWITCH integration

 		
 8.1.1. SessionManager

 		
 8.1.2. Mediator

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down-pressed.png

_images/Complicated.png
FreeSWITCH

Session
Manager

Balancer

FreeSWITCH

Session
Manager

_images/CGRateSFSTypicalUsage.png
FreeswiTcH sac corater
CGR SessionManager

atce s ‘
CGRYSON. conjson | oB-QRY
=) CGR-Balancer conpata0n
Contogon
won

FreeswiTcH soc corRater

CGR SessionManager

