

Welcome to cert-manager’s documentation!

cert-manager is a native Kubernetes [https://kubernetes.io] certificate management controller.
It can help with issuing certificates from a variety of sources, such as
Let’s Encrypt [https://letsencrypt.org], HashiCorp Vault [https://www.vaultproject.io], a simple signing keypair, or self signed.

It will ensure certificates are valid and up to date, and attempt to renew
certificates at a configured time before expiry.

It is loosely based upon the work of kube-lego [https://github.com/jetstack/kube-lego] and has borrowed some wisdom
from other similar projects e.g. kube-cert-manager [https://github.com/PalmStoneGames/kube-cert-manager].

[image: _images/high-level-overview.png]
This is the full technical documentation for the project, and should be used as
a source of references when seeking help with the project.

Contents:

	Get started
	Installing cert-manager

	Webhook component

	Troubleshooting installation

	Tutorials
	ACME Issuer Tutorials

	Tasks
	Setting up Issuers

	Issuing Certificates

	ACME specific tasks

	Backing up and restoring

	Upgrading cert-manager

	Reference documentation
	Certificates

	Orders

	Challenges

	Issuers

	ClusterIssuers

	API documentation

	Development documentation
	Develop with minikube

	Running end-to-end tests

	Contributing DNS01 providers

	DCO Sign off

	Release process

	Generating Documentation

Get started

The guides in this section will explain how to install and set up cert-manager.

If you run into issues deploying, upgrading or running cert-manager please
check the troubleshooting document.

Contents:

	Installing cert-manager
	Installing with regular manifests

	Installing with Helm

	Verifying the installation

	Configuring your first Issuer

	Debugging installation issues

	Webhook component
	How it works

	Disable the webhook component

	Troubleshooting installation
	Internal error occurred: failed calling admission webhook … the server is currently unable to handle the request

Installing cert-manager

cert-manager runs within your Kubernetes cluster as a series of deployment
resources. It utilises CustomResourceDefinitions [https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/] to configure Certificate
Authorities and request certificates.

It is deployed using regular YAML manifests, like any other applications on
Kubernetes.

Once cert-manager has been deployed, you must configure Issuer or ClusterIssuer
resources which represent certificate authorities.
More information on configuring different Issuer types can be found in the
respective setup guides.

Installing with regular manifests

In order to install cert-manager, we must first create a namespace to run it
within. This guide will install cert-manager into the cert-manager
namespace. It is possible to run cert-manager in a different namespace,
although you will need to make modifications to the deployment manifests.

Create a namespace to run cert-manager in
kubectl create namespace cert-manager

As part of the installation, cert-manager also deploys a
ValidatingWebhookConfiguration [https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/] resource in order to validate that the
Issuer, ClusterIssuer and Certificate resources we will create after
installation are valid.

In order to deploy the ValidatingWebhookConfiguration, cert-manager creates
a number of ‘internal’ Issuer and Certificate resources in its own namespace.

This creates a chicken-and-egg problem, where cert-manager requires the
webhook in order to create the resources, and the webhook requires cert-manager
in order to run.

We avoid this problem by disabling resource validation on the namespace that
cert-manager runs in:

Disable resource validation on the cert-manager namespace
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

You can read more about the webhook on the webhook document.

We can now go ahead and install cert-manager. This is a two-stage process where
we first install the CustomResourceDefinition resources, and then afterwards
install cert-manager along with the webhook component:

Install the CustomResourceDefinition resources
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/00-crds.yaml

Install cert-manager itself
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/cert-manager.yaml

Note

If you are running kubectl v1.12 or below, you will need to add the
--validate=false flag to your kubectl apply command above else you
will receive a validation error relating to the caBundle field of the
ValidatingWebhookConfiguration resource.
This issue is resolved in Kubernetes 1.13 onwards. More details can be found
in kubernetes/kubernetes#69590 [https://github.com/kubernetes/kubernetes/issues/69590].

Note

When running on GKE (Google Kubernetes Engine), you may encounter a
‘permission denied’ error when creating some of these resources. This is a
nuance of the way GKE handles RBAC and IAM permissions, and as such you
should ‘elevate’ your own privileges to that of a ‘cluster-admin’ before
running the above commands. If you have already run the above commands, you
should run them again after elevating your permissions:

kubectl create clusterrolebinding cluster-admin-binding \
 --clusterrole=cluster-admin \
 --user=$(gcloud config get-value core/account)

Installing with Helm

As an alternative to the YAML manifests referenced above, we also provide an
official Helm chart for installing cert-manager.

Pre-requisites

	Helm [https://helm.sh/] and Tiller installed (or alternatively, use Tillerless Helm v2 [https://rimusz.net/tillerless-helm/])

	cluster-admin privileges bound to the Tiller pod [https://github.com/helm/helm/blob/240e539cec44e2b746b3541529d41f4ba01e77df/docs/rbac.md#Example-Service-account-with-cluster-admin-role]

Foreword

Before deploying cert-manager with Helm, you must ensure Tiller [https://github.com/helm/helm] is up and
running in your cluster. Tiller is the server side component to Helm.

Your cluster administrator may have already setup and configured Helm for you,
in which case you can skip this step.

Full documentation on installing Helm can be found in the Installing helm docs [https://github.com/kubernetes/helm/blob/master/docs/install.md].

If your cluster has RBAC (Role Based Access Control) enabled (default in GKE
v1.7+), you will need to take special care when deploying Tiller, to ensure
Tiller has permission to create resources as a cluster administrator. More
information on deploying Helm with RBAC can be found in the Helm RBAC docs [https://github.com/helm/helm/blob/master/docs/rbac.md].

Steps

In order to install the Helm chart, you must run:

Install the CustomResourceDefinition resources separately
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/00-crds.yaml

Create the namespace for cert-manager
kubectl create namespace cert-manager

Label the cert-manager namespace to disable resource validation
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

Update your local Helm chart repository cache
helm repo update

Install the cert-manager Helm chart
helm install \
 --name cert-manager \
 --namespace cert-manager \
 --version v0.6.2 \
 stable/cert-manager

The default cert-manager configuration is good for the majority of users, but a
full list of the available options can be found in the Helm chart README [https://github.com/helm/charts/blob/master/stable/cert-manager/README.md].

Verifying the installation

Once you’ve installed cert-manager, you can verify it is deployed correctly by
checking the cert-manager namespace for running pods:

kubectl get pods --namespace cert-manager

NAME READY STATUS RESTARTS AGE
cert-manager-5c6866597-zw7kh 1/1 Running 0 2m
webhook-78fb756679-9bsmf 1/1 Running 0 2m
webhook-ca-sync-1543708620-n82gj 0/1 Completed 0 1m

You should see both the cert-manager and webhook component in a Running
state, and the ca-sync pod is Completed. If the webhook has not Completed
but the cert-manager pod has recently started, wait a few minutes for the
ca-sync pod to be retried.
If you experience problems, please check the
troubleshooting guide.

The following steps will confirm that cert-manager is set up correctly and able
to issue basic certificate types:

Create a ClusterIssuer to test the webhook works okay
cat <<EOF > test-resources.yaml
apiVersion: v1
kind: Namespace
metadata:
 name: cert-manager-test

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: test-selfsigned
 namespace: cert-manager-test
spec:
 selfSigned: {}

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: selfsigned-cert
 namespace: cert-manager-test
spec:
 commonName: example.com
 secretName: selfsigned-cert-tls
 issuerRef:
 name: test-selfsigned
EOF

Create the test resources
kubectl apply -f test-resources.yaml

Check the status of the newly created certificate
You may need to wait a few seconds before cert-manager processes the
certificate request
kubectl describe certificate -n cert-manager-test
...
Spec:
 Common Name: example.com
 Issuer Ref:
 Name: test-selfsigned
 Secret Name: selfsigned-cert-tls
Status:
 Conditions:
 Last Transition Time: 2019-01-29T17:34:30Z
 Message: Certificate is up to date and has not expired
 Reason: Ready
 Status: True
 Type: Ready
 Not After: 2019-04-29T17:34:29Z
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal CertIssued 4s cert-manager Certificate issued successfully

Clean up the test resources
kubectl delete -f test-resources.yaml

If all the above steps have completed with error, you are good to go!

If you experience problems, please check the
troubleshooting guide.

Configuring your first Issuer

Before you can begin issuing certificates, you must configure at least one
Issuer or ClusterIssuer resource in your cluster.

You should read the Setting up Issuers guide to
learn how to configure cert-manager to issue certificates from one of the
supported backends.

Debugging installation issues

If you have any issues with your installation, please refer to the
troubleshooting guide.

Webhook component

In order to provide advanced resource validation, cert-manager includes a
ValidatingWebhookConfiguration [https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/] resource which is deployed into the cluster.

This allows cert-manager to validate that Issuer, ClusterIssuer and Certificate
resources that are submitted to the apiserver are syntactically valid, and
catch issues with your resources early on.

If you disable the webhook component, cert-manager will still perform the
same resource validation however it will not reject ‘create’ events when the
resources are submitted to the apiserver if they are invalid.
This means it may be possible for a user to submit a resource that renders
the controller inoperable.
For this reason, it is strongly advised to keep the webhook enabled.

Note

This feature requires Kubernetes v1.9 or greater.

How it works

This sections walks through how the resource validation webhook is configured
and explains the process required for it to provision.

The webhook is a ValidatingWebhookConfiguration [https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/] resource combined with an
extra pod that is deployed alongside the cert-manager-controller.

The ValidatingWebhookConfiguration instructs the Kubernetes apiserver to
POST the contents of any Create or Update operations performed on cert-manager
resource types in order to validate that they are setting valid configurations.

This allows us to ensure mis-configurations are caught early on and communicated
to you.

In order for this to work, the webhook requires a TLS certificate that the
apiserver is configured to trust.

The cert-manager deployment manifests define two Issuer resources, and two
Certificate resources:

	issuer/cert-manager-webhook-selfsign - A self signing Issuer that is used
to issue a self signed root CA certificate.

	certificate/cert-manager-webhook-ca - A self-signed root CA certificate
which is used to sign certificates for the webhook pod.

	issue/cert-manager-webhook-ca - A CA Issuer that is used to issue
certificates used by the webhook pod to serve with.

	certificate/cert-manager-webhook-webhook-tls - A TLS certificate issued by the
root CA above, served by the webhook.

You can check the status of these resources to ensure they’re functioning
correctly by running:

kubectl get issuer --namespace cert-manager
NAME AGE
cert-manager-webhook-ca 10m
cert-manager-webhook-selfsign 10m

kubectl get certificate -o wide --namespace cert-manager
NAME READY SECRET ISSUER STATUS AGE
cert-manager-webhook-ca True cert-manager-webhook-ca cert-manager-webhook-selfsign Certificate is up to date and has not expired 10m
cert-manager-webhook-webhook-tls True cert-manager-webhook-webhook-tls cert-manager-webhook-ca Certificate is up to date and has not expired 10m

If the certificates or issuer are not Ready or you cannot see them, you should
check the troubleshooting guide for help.

Note

If you are running Kubernetes v1.10 or earlier, you may need to run
kubectl describe instead of kubectl get as the
‘additionalPrinterColumns’ functionality only moved to beta in v1.11.

ca-sync CronJob

In order to configure the Kubernetes apiserver with the generated root CA that
the webhook uses, we also deploy a CronJob resource:

kubectl get cronjob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cert-manager-webhook-ca-sync @weekly False 0 2d21h 20d

As you can see, this job runs weekly.

It copies across the CA defined in the ‘cert-manager-webhook-ca’ secret
generated above to the spec.caBundle field on the
v1beta1.admission.certmanager.k8s.io APIService resource.
It also sets the webhooks.clientConfig.caBundle field on the
cert-manager-webhook ValidatingWebhookConfiguration resource to that of
your Kubernetes API server.

If the ca-sync job fails more than 20 times, it will not be retried until the
next time the CronJob is scheduled. This may occur when you first setup
cert-manager if you have run into issues during installation.

You can manually trigger the ca-sync CronJob to run immediately using:

kubectl create job ca-sync-manually-triggered --from cronjob/cert-manager-webhook-ca-sync

If you have run the create job command above multiple times, you will need
to choose a new name or delete the old job resource else you will receive an
‘AlreadyExists’ error.

Note

The --from flag was only introduced in kubectl v1.11

The code for this component can be found at munnerz/apiextensions-ca-helper [https://github.com/munnerz/apiextensions-ca-helper]

Known issues

This section contains known issues with the webhook component.

If you’re having problems, or receiving errors when creating cert-manager
resources, please read through this section for help.

Disabling validation on the cert-manager namespace

If you’ve installed cert-manager with custom manifests, or have performed an
upgrade from an earlier version, it’s important to make sure that the namespace
that the webhook is running in has an additional label applied to it in order
to disable resource validation on the namespace that the webhook runs in.

If this step is not completed, cert-manager will not be able to provision
certificates for the webhook correctly, causing a chicken-egg situation.

To apply the label, run:

kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

You may need to wait a little while before cert-manager retries issuing the
certificates if they have been failing for a while due to cert-manager’s built
in back-offs.

Running on Amazon EKS

Unfortunately, Amazon EKS does not configure the options needed on the
Kubernetes apiserver that are required for ValidatingWebhookConfiguration
resources to work.

This means there is currently no option other than disabling the webhook until
this issue is resolved by Amazon.

You can read how to disable the webhook component below.

Running on private GKE clusters

When Google configure the control plane for private clusters, they
automatically configure VPC peering between your Kubernetes cluster’s network
and a separate Google managed project.

In order to restrict what Google are able to access within your cluster, the
firewall rules configured restrict access to your Kubernetes pods.

This means that in order to use the webhook component with a GKE private
cluster, you must configure an additional firewall rule to allow the GKE
control plane access to your webhook pod.

You can read more information on how to add firewall rules for the GKE control
plane nodes in the GKE docs [https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters#add_firewall_rules].

Alternatively, you can read how to disable the webhook component below.

Todo

add an example command for how to do this here & explain any security
implications

Disable the webhook component

If you are having issues with the webhook and cannot use it at this time,
you can optionally disable the webhook altogether.

Doing this may expose your cluster to mis-configuration problems that in some
cases could cause cert-manager to stop working altogether (i.e. if invalid
types are set for fields on cert-manager resources).

How you disable the webhook depends on your deployment method.

With Helm

The Helm chart exposes an option that can be used to disable the webhook.

To do so with an existing installation, you can run:

helm upgrade cert-manager \
 --reuse-values \
 --set webhook.enabled=false

If you have not installed cert-manager yet, you can add the
--set webhook.enabled=false to the helm install command used to install
cert-manager.

With static manifests

Because we cannot specify options when installing the static manifests to
conditionally disable different components, we also ship a copy of the
deployment files that do not include the webhook.

Instead of installing with cert-manager.yaml [https://github.com/jetstack/cert-manager/blob/release-0.6/deploy/manifests/cert-manager.yaml] file, you should instead use
the cert-manager-no-webhook.yaml [https://github.com/jetstack/cert-manager/blob/release-0.6/deploy/manifests/cert-manager-no-webhook.yaml] file located in the deploy directory.

This is a destructive operation, as it will remove the CustomResourceDefinition
resources, causing your configured Issuers, Certificates etc to be deleted.

You should first backup your configuration
before running the following commands.

To re-install cert-manager without the webhook, run:

kubectl delete -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/cert-manager.yaml

kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/cert-manager-no-webhook.yaml

Once you have re-installed cert-manager, you should then
restore your configuration.

Troubleshooting installation

Internal error occurred: failed calling admission webhook … the server is currently unable to handle the request

When installing or upgrading cert-manager, you may run into issues when going
through the Validation Steps in the install guide which relate to the admission
webhook.

If you see an error like the above, this guide will talk you through a few
checks that can pick up common installation problems.

1. Check the namespace cert-manager is running in

As described in the Webhook component documentation, the webhook component
requires TLS certificates in order to start and communicate securely with the
Kubernetes API server.

In order for cert-manager to be able to issue certificates for the webhook
before it has started, we must disable resource validation on the namespace
that cert-manager is running in.

Assuming you have deployed into the cert-manager namespace, run the
following command to verify that your cert-manager namespace has the necessary
label:

kubectl get namespace

Name: cert-manager
Labels: certmanager.k8s.io/disable-validation=true
...

If you cannot see the certmanager.k8s.io/disable-validation=true label on
your namespace, you should add it with:

kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

Please continue reading this guide once you have added the label.

2. Verify that the webhook Issuer and Certificate resources exist

If you had any issues upgrading, especially if you install cert-manager using
Helm, you may run into an issue where either:

	the CustomResourceDefinition resources do not exist

	the webhook’s Issuer and Certificate resources do not exist

We can first check for the existence of the CustomResourceDefinition resources:

kubectl get crd | grep certmanager

NAME CREATED AT
certificates.certmanager.k8s.io 2018-08-17T20:12:26Z
challenges.certmanager.k8s.io 2018-08-02T15:33:02Z
clusterissuers.certmanager.k8s.io 2018-08-17T20:12:26Z
issuers.certmanager.k8s.io 2018-08-17T20:12:26Z
orders.certmanager.k8s.io 2018-08-02T14:40:11Z

We should then also check for that the webhook’s Issuer and Certificate
resources exist and have been issued correctly:

kubectl get issuer,certificate

NAME AGE
issuer.certmanager.k8s.io/cert-manager-webhook-ca 22d
issuer.certmanager.k8s.io/cert-manager-webhook-selfsign 22d

NAME READY SECRET AGE
certificate.certmanager.k8s.io/cert-manager-webhook-ca True cert-manager-webhook-ca 22d
certificate.certmanager.k8s.io/cert-manager-webhook-webhook-tls True cert-manager-webhook-webhook-tls 22d

If you do not see the CustomResourceDefinitions installed, or cannot see the
webhook’s Issuer and Certificate resources, please go back to the install guide
and ensure you’ve followed every step closely.

Take particular care to install the CRD manifest before installing
cert-manager itself.

3. Verify all cert-manager pods are running successfully

You can verify that cert-manager has managed to start successfully by checking
the state of the pods that have been deployed:

Get all pods, including Completed and Errored pods
kubectl get pods --show-all --namespace cert-manager

NAME READY STATUS RESTARTS AGE
cert-manager-7cbdc48784-rpgnt 1/1 Running 0 3m
cert-manager-webhook-5b5dd6999-kst4x 1/1 Running 0 3m
cert-manager-webhook-ca-sync-1547942400-g6985 0/1 Completed 0 3m

If the ‘webhook’ pod (2nd line) is in a ContainerCreating state, it may still
be waiting for the Secret in step 2 to be mounted into the pod.

Provided the Secret resource does now exist, Waiting a few minutes, or
deleting the pod and allowing it to be recreated should get things moving
again.

Note

Check if the Secret exists by running:

kubectl get secret cert-manager-webhook-webhook-tls

If the ca-sync pod has not reached a Completed state, or has not been run,
you may need to manually re-trigger it to run. You can read more on how to do
this below.

4. Manually trigger the ca-sync CronJob to run

If the ‘ca-sync’ pod above does not show Completed, you may need to re-start
the Job using the kubectl create job command:

Find the name of the CronJob resource
kubectl get cronjob --namespace cert-manager
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cert-manager-webhook-ca-sync @weekly False 0 3m

Trigger the CronJob to run immediately
kubectl create job \
 --namespace cert-manager \
 --from cronjob/cert-manager-webhook-ca-sync \
 ca-sync-manually-triggered

This will trigger the cert-manager job to run again.

Note

The --from flag was only introduced in kubectl v1.11

Note

If the job continues to fail, please read the Webhook
docs for additional information.

Tutorials

This section contains guides that help you get started using cert-manager for
more specific use cases.

For more information on performing individual tasks, read the
tasks section.

	ACME Issuer Tutorials
	Quick-Start using Cert-Manager with NGINX Ingress

	Issuing an ACME certificate using DNS validation

	Issuing an ACME certificate using HTTP validation

	Migrating from kube-lego

ACME Issuer Tutorials

This sections contains tutorials relating to the ACME issuer.

	Quick-Start using Cert-Manager with NGINX Ingress

	Issuing an ACME certificate using DNS validation

	Issuing an ACME certificate using HTTP validation

	Migrating from kube-lego

Quick-Start using Cert-Manager with NGINX Ingress

Step 0 - Install Helm Client

Skip this section if you have helm installed.

The easiest way to install cert-manager is to use Helm [https://helm.sh], a templating and
deployment tool for Kubernetes resources.

First, ensure the Helm client is installed following the
Helm installation instructions [https://github.com/helm/helm/blob/master/docs/install.md].

For example, on macOS:

$ brew install kubernetes-helm

Step 1 - Installer Tiller

Skip this section if you have Tiller set-up.

Tiller is Helm’s server-side component, which the helm client uses to
deploy resources.

Deploying resources is a privileged operation; in the general case requiring
arbitrary privileges. With this example, we give Tiller complete control
of the cluster. View the documentation on securing helm [https://docs.helm.sh/using_helm/#securing-your-helm-installation] for details on
setting up appropriate permissions for your environment.

Create the a ServiceAccount for tiller:

$ kubectl create serviceaccount tiller --namespace=kube-system
serviceaccount "tiller" created

Grant the tiller service account cluster admin privileges:

$ kubectl create clusterrolebinding tiller-admin --serviceaccount=kube-system:tiller --clusterrole=cluster-admin
clusterrolebinding.rbac.authorization.k8s.io "tiller-admin" created

Install tiller with the tiller service account:

$ helm init --service-account=tiller
$HELM_HOME has been configured at /Users/myaccount/.helm.

Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated users' policy.
To prevent this, run `helm init` with the --tiller-tls-verify flag.
For more information on securing your installation see: https://docs.helm.sh/using_helm/#securing-your-helm-installation
Happy Helming!

Update the helm repository with the latest charts:

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "coreos" chart repository
Update Complete. ⎈ Happy Helming!⎈

Step 2 - Deploy the NGINX Ingress Controller

A kubernetes ingress controller [https://kubernetes.io/docs/concepts/services-networking/ingress/] is designed to be the access point for
HTTP and HTTPS traffic to the software running within your cluster. The
nginx-ingress controller does this by providing an HTTP proxy service
supported by your cloud provider’s load balancer.

You can get more details about nginx-ingress and how it works from the
documentation for nginx-ingress [https://kubernetes.github.io/ingress-nginx/].

Use helm to install an Nginx Ingress controller:

$ helm install stable/nginx-ingress --name quickstart

NAME: quickstart
LAST DEPLOYED: Sat Nov 10 10:25:06 2018
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1/ConfigMap
NAME AGE
quickstart-nginx-ingress-controller 0s

==> v1beta1/ClusterRole
quickstart-nginx-ingress 0s

==> v1beta1/Deployment
quickstart-nginx-ingress-controller 0s
quickstart-nginx-ingress-default-backend 0s

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE
quickstart-nginx-ingress-controller-6cfc45747-wcxrg 0/1 ContainerCreating 0 0s
quickstart-nginx-ingress-default-backend-bf9db5c67-dkg4l 0/1 ContainerCreating 0 0s

==> v1/ServiceAccount

NAME AGE
quickstart-nginx-ingress 0s

==> v1beta1/ClusterRoleBinding
quickstart-nginx-ingress 0s

==> v1beta1/Role
quickstart-nginx-ingress 0s

==> v1beta1/RoleBinding
quickstart-nginx-ingress 0s

==> v1/Service
quickstart-nginx-ingress-controller 0s
quickstart-nginx-ingress-default-backend 0s

NOTES:
The nginx-ingress controller has been installed.
It may take a few minutes for the LoadBalancer IP to be available.
You can watch the status by running 'kubectl --namespace default get services -o wide -w quickstart-nginx-ingress-controller'

An example Ingress that makes use of the controller:

 apiVersion: extensions/v1beta1
 kind: Ingress
 metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: example
 namespace: foo
 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - backend:
 serviceName: exampleService
 servicePort: 80
 path: /
 # This section is only required if TLS is to be enabled for the Ingress
 tls:
 - hosts:
 - www.example.com
 secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and key must also be provided:

 apiVersion: v1
 kind: Secret
 metadata:
 name: example-tls
 namespace: foo
 data:
 tls.crt: <base64 encoded cert>
 tls.key: <base64 encoded key>
 type: kubernetes.io/tls

It can take a minute or two for the cloud provider to provide and link a public
IP address. When it is complete, you can see the external IP address using the
kubectl command:

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.63.240.1 <none> 443/TCP 23m
quickstart-nginx-ingress-controller LoadBalancer 10.63.248.177 35.233.154.161 80:31345/TCP,443:31376/TCP 16m
quickstart-nginx-ingress-default-backend ClusterIP 10.63.250.234 <none> 80/TCP 16m

This command shows you all the services in your cluster (in the default
namespace), and any external IP addresses they have. When you first create the
controller, your cloud provider won’t have assigned and allocated an IP address
through the LoadBalancer yet. Until it does, the external IP address for the
service will be listed as <pending>.

Your cloud provider may have options for reserving an IP address prior to
creating the ingress controller and using that IP address rather than assigning
an IP address from a pool. Read through the documentation from your cloud
provider on how to arrange that.

Step 3 - Assign a DNS name

The external IP that is allocated to the ingress-controller is the IP to which
all incoming traffic should be routed. To enable this, add it to a DNS zone you
control, for example as example.your-domain.com.

This quickstart assumes you know how to assign a DNS entry to an IP address and
will do so.

Step 4 - Deploy an Example Service

Your service may have its own chart, or you may be deploying it directly with
manifests. This quickstart uses manifests to create and expose a sample
service. The example service uses kuard [https://github.com/kubernetes-up-and-running/kuard], a demo application which makes an
excellent back-end for examples.

The quickstart example uses three manifests for the sample. The first two are a
sample deployment and an associated service:

	deployment manifest: deployment.yaml [https://raw.githubusercontent.com/jetstack/cert-manager/master/docs/tutorials/acme/quick-start/example/deployment.yaml]

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: kuard
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: kuard
 spec:
 containers:
 - image: gcr.io/kuar-demo/kuard-amd64:1
 imagePullPolicy: Always
 name: kuard
 ports:
 - containerPort: 8080

	service manifest: service.yaml [https://raw.githubusercontent.com/jetstack/cert-manager/master/docs/tutorials/acme/quick-start/example/service.yaml]

apiVersion: v1
kind: Service
metadata:
 name: kuard
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 selector:
 app: kuard

You can create download and reference these files locally, or you can
reference them from the GitHub source repository for this documentation.
To install the example service from the tutorial files straight from GitHub,
you may use the commands:

$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/master/docs/tutorials/acme/quick-start/example/deployment.yaml
deployment.extensions "kuard" created

$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/master/docs/tutorials/acme/quick-start/example/service.yaml
service "kuard" created

An ingress resource [https://kubernetes.io/docs/concepts/services-networking/ingress/] is what Kubernetes uses to expose this example service
outside the cluster. You will need to download and modify the example manifest
to reflect the domain that you own or control to complete this example.

A sample ingress you can start with is:

	ingress manifest: ingress.yaml [https://raw.githubusercontent.com/jetstack/cert-manager/master/docs/tutorials/acme/quick-start/example/ingress.yaml]

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: kuard
 annotations:
 kubernetes.io/ingress.class: "nginx"
 #certmanager.k8s.io/issuer: "letsencrypt-staging"
 #certmanager.k8s.io/acme-challenge-type: http01

spec:
 tls:
 - hosts:
 - example.example.com
 secretName: quickstart-example-tls
 rules:
 - host: example.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: kuard
 servicePort: 80

You can download the sample manifest from github, edit it, and submit the manifest to Kubernetes with the command:

$ kubectl create --edit -f https://raw.githubusercontent.com/jetstack/cert-manager/master/docs/tutorials/acme/quick-start/example/ingress.yaml

edit the file in your editor, and once it is saved:
ingress.extensions "kuard" created

Note

The ingress example we show above has a host definition within it. The
nginx-ingress-controller will route traffic when the hostname requested matches the
definition in the ingress. You can deploy an ingress without a host definition
in the rule, but that pattern isn’t usable with a TLS certificate, which expects a
fully qualified domain name.

	Once it is deployed, you can use the command kubectl get ingress to see the status

	of the ingress:

NAME HOSTS ADDRESS PORTS AGE
kuard * 80, 443 17s

It may take a few minutes, depending on your service provider, for the ingress
to be fully created. When it has been created and linked into place, the
ingress will show an address as well:

NAME HOSTS ADDRESS PORTS AGE
kuard * 35.199.170.62 80 9m

Note

The IP address on the ingress may not match the IP address that the
nginx-ingress-controller. This is fine, and is a quirk/implementation detail
of the service provider hosting your Kubernetes cluster. Since we are using
the nginx-ingress-controller instead of any cloud-provider specific ingress
backend, use the IP address that was defined and allocated for the
nginx-ingress-service LoadBalancer resource as the primary access point for
your service.

Make sure the service is reachable at the domain name you added above, for
example http://example.your-domain.com. The simplest way is to open a browser
and enter the name that you set up in DNS, and for which we just added the
ingress.

You may also use a command line tool like curl to check the ingress.

$ curl -kivL -H 'Host: example.your-domain.com' 'http://35.199.164.14'

The options on this curl command will provide verbose output, following any
redirects, show the TLS headers in the output, and not error on insecure
certificates. With nginx-ingress-controller, the service will be available
with a TLS certificate, but it will be using a self-signed certificate
provided as a default from the nginx-ingress-controller. Browsers will show
a warning that this is an invalid certificate. This is expected and normal,
as we have not yet used cert-manager to get a fully trusted certificate
for our site.

Warning

It is critical to make sure that your ingress is available and responding correctly
on the internet. This quickstart example uses Let’s Encypt to provide the certificates,
which expects and validates both that the service is available and that during the
process of issuing a certificate uses that valdiation as proof that the request for
the domain belongs to someone with sufficient control over the domain.

Step 5 - Deploy Cert Manager

We need to install cert-manager to do the work with kubernetes to request a
certificate and respond to the challenge to validate it. We can use helm to
install cert-manager. This example installed cert-manager into the
kube-system namespace from the public helm charts.

Install the cert-manager CRDs. We must do this before installing the Helm
chart in the next step
$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/00-crds.yaml

Update your local Helm chart repositories
$ helm repo update

Install cert-manager
$ helm install --name cert-manager --namespace cert-manager stable/cert-manager

NAME: cert-manager
LAST DEPLOYED: Wed Jan 9 13:36:13 2019
NAMESPACE: cert-manager
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/ClusterRoleBinding
NAME AGE
cert-manager-webhook-ca-sync 2s
cert-manager-webhook:auth-delegator 2s
cert-manager 2s

==> v1beta1/APIService
NAME AGE
v1beta1.admission.certmanager.k8s.io 2s

==> v1alpha1/Certificate
cert-manager-webhook-webhook-tls 1s
cert-manager-webhook-ca 1s

==> v1beta1/ValidatingWebhookConfiguration
cert-manager-webhook 1s

==> v1/ServiceAccount
NAME SECRETS AGE
cert-manager-webhook-ca-sync 1 2s
cert-manager-webhook 1 2s
cert-manager 1 2s

==> v1beta1/RoleBinding
NAME AGE
cert-manager-webhook:webhook-authentication-reader 2s

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
cert-manager-webhook 1 1 1 0 2s
cert-manager 1 1 1 0 2s

==> v1/Job
NAME DESIRED SUCCESSFUL AGE
cert-manager-webhook-ca-sync 1 0 2s

==> v1beta1/CronJob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cert-manager-webhook-ca-sync * * */24 * * False 0 <none> 2s

==> v1beta1/ClusterRole
NAME AGE
cert-manager-webhook-ca-sync 2s
cert-manager 2s

==> v1/ClusterRole
cert-manager-webhook:webhook-requester 2s
cert-manager-view 2s
cert-manager-edit 2s

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cert-manager-webhook ClusterIP 10.3.244.237 <none> 443/TCP 2s

==> v1/ConfigMap
NAME DATA AGE
cert-manager-webhook-ca-sync 1 2s

==> v1alpha1/Issuer
NAME AGE
cert-manager-webhook-ca 1s
cert-manager-webhook-selfsign 1s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
cert-manager-webhook-745b49d445-rnxm2 0/1 ContainerCreating 0 2s
cert-manager-9cdd9f774-t856z 0/1 ContainerCreating 0 2s
cert-manager-webhook-ca-sync-ddf4b 0/1 ContainerCreating 0 2s

NOTES:
cert-manager has been deployed successfully!

In order to begin issuing certificates, you will need to set up a ClusterIssuer
or Issuer resource (for example, by creating a 'letsencrypt-staging' issuer).

More information on the different types of issuers and how to configure them
can be found in our documentation:

https://cert-manager.readthedocs.io/en/latest/reference/issuers.html

For information on how to configure cert-manager to automatically provision
Certificates for Ingress resources, take a look at the `ingress-shim`
documentation:

https://cert-manager.readthedocs.io/en/latest/reference/ingress-shim.html

Cert-manager uses two different custom resources, also known as CRD [https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/]’s,
to configure and control how it operates, as well as share status of its
operation. These two resources are:

Issuers (or ClusterIssuers)

An Issuer is the definition for where cert-manager will get request TLS
certificates. An Issuer is specific to a single namespace in Kubernetes,
and a ClusterIssuer is meant to be a cluster-wide definition for the same
purpose.

Certificate

A certificate is the resource that cert-manager uses to expose the state
of a request as well as track upcoming expirations.

Step 6 - Configure Let’s Encrypt Issuer

We will set up two issuers for Let’s Encrypt in this example. The Let’s Encrypt
production issuer has very strict rate limits [https://letsencrypt.org/docs/rate-limits/]. When you are experimenting
and learning, it is very easy to hit those limits, and confuse rate limiting
with errors in configuration or operation.

Because of this, we will start with the Let’s Encrypt staging issuer, and once
that is working switch to a production issuer.

Create this definition locally and update the email address to your own. This
email required by Let’s Encryppt and used to notify you of certificate
expirations and updates.

 apiVersion: certmanager.k8s.io/v1alpha1
 kind: Issuer
 metadata:
 name: letsencrypt-staging
 spec:
 acme:
 # The ACME server URL
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 # Email address used for ACME registration
 email: user@example.com
 # Name of a secret used to store the ACME account private key
 privateKeySecretRef:
 name: letsencrypt-staging
 # Enable the HTTP-01 challenge provider
 http01: {}

Once edited, apply the custom resource:

$ kubectl apply -f staging-issuer.yaml
issuer.certmanager.k8s.io "letsencrypt-staging" created

Also create a production issuer and deploy it. As with the staging issuer, you
will need to update this example and add in your own email address.

 apiVersion: certmanager.k8s.io/v1alpha1
 kind: Issuer
 metadata:
 name: letsencrypt-prod
 spec:
 acme:
 # The ACME server URL
 server: https://acme-v02.api.letsencrypt.org/directory
 # Email address used for ACME registration
 email: user@example.com
 # Name of a secret used to store the ACME account private key
 privateKeySecretRef:
 name: letsencrypt-prod
 # Enable the HTTP-01 challenge provider
 http01: {}

$ kubectl apply -f production-issuer.yaml
issuer.certmanager.k8s.io "letsencrypt-prod" created

Both of these issuers are configured to use the
HTTP01 challenge provider.

Check on the status of the issuer after you create it:

You should see the issuer listed with a registered account.

Step 7 - Deploy a TLS Ingress Resource

With all the pre-requisite configuration in place, we can now do the pieces
to request the TLS certificate. There are two primary ways to do this: using
annotations on the ingress with
ingress-shim or directly
creating a certificate resource.

In this example, we will add annotations to the ingress, and take advantage
of ingress-shim to have it create the certificate resource on our behalf.
After creating a certificate, the cert-manager will update or create a ingress
resource and use that to validate the domain. Once verified and issued,
cert-manager will create or update the secret defined in the certificate.

Note

The secret that is used in the ingress should match the secret defined in the certificate.
There isn’t any explicit checking, so a typo will resut in the nginx-ingress-controller
falling back to its self-signed certificate. In our example, we are using annotations on
the ingress (and ingress-shim) which will create the correct secrets on your behalf.

Edit the ingress add the annotations that were commented out in our earlier
example:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: kuard
 annotations:
 kubernetes.io/ingress.class: "nginx"
 certmanager.k8s.io/issuer: "letsencrypt-staging"
 certmanager.k8s.io/acme-challenge-type: http01

spec:
 tls:
 - hosts:
 - example.example.com
 secretName: quickstart-example-tls
 rules:
 - host: example.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: kuard
 servicePort: 80

and apply it:

$ kubectl apply -f ingress-tls.yaml
ingress.extensions "kuard" configured

Cert-manager will read these annotations and use them to create a certificate,
which you can request and see:

$ kubectl get certificate
NAME AGE
quickstart-example-tls 38s

Cert-manager reflects the state of the process for every request in the
certificate object. You can view this information using the
kubectl describe command:

 $ kubectl describe certificate quickstart-example-tls

 Name: quickstart-example-tls
 Namespace: default
 Labels: <none>
 Annotations: <none>
 API Version: certmanager.k8s.io/v1alpha1
 Kind: Certificate
 Metadata:
 Cluster Name:
 Creation Timestamp: 2018-11-17T17:58:37Z
 Generation: 0
 Owner References:
 API Version: extensions/v1beta1
 Block Owner Deletion: true
 Controller: true
 Kind: Ingress
 Name: kuard
 UID: a3e9f935-ea87-11e8-82f8-42010a8a00b5
 Resource Version: 9295
 Self Link: /apis/certmanager.k8s.io/v1alpha1/namespaces/default/certificates/quickstart-example-tls
 UID: 68d43400-ea92-11e8-82f8-42010a8a00b5
 Spec:
 Acme:
 Config:
 Domains:
 example.your-domain.com
 Http 01:
 Ingress:
 Ingress Class: nginx
 Dns Names:
 example.your-domain.com
 Issuer Ref:
 Kind: Issuer
 Name: letsencrypt-staging
 Secret Name: quickstart-example-tls
 Status:
 Acme:
 Order:
 URL: https://acme-staging-v02.api.letsencrypt.org/acme/order/7374163/13665676
 Conditions:
 Last Transition Time: 2018-11-17T18:05:57Z
 Message: Certificate issued successfully
 Reason: CertIssued
 Status: True
 Type: Ready
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal CreateOrder 9m cert-manager Created new ACME order, attempting validation...
 Normal DomainVerified 8m cert-manager Domain "example.your-domain.com" verified with "http-01" validation
 Normal IssueCert 8m cert-manager Issuing certificate...
 Normal CertObtained 7m cert-manager Obtained certificate from ACME server
 Normal CertIssued 7m cert-manager Certificate issued Successfully

The events associated with this resource and listed at the bottom
of the describe results show the state of the request. In the above
example the certificate was validated and issued within a couple of minutes.

Once complete, cert-manager will have created a secret with the details of
the certificate based on the secret used in the ingress resource. You can
use the describe command as well to see some details:

$ kubectl describe secret quickstart-example-tls

Name: quickstart-example-tls
Namespace: default
Labels: certmanager.k8s.io/certificate-name=quickstart-example-tls
Annotations: certmanager.k8s.io/alt-names=example.your-domain.com
 certmanager.k8s.io/common-name=example.your-domain.com
 certmanager.k8s.io/issuer-kind=Issuer
 certmanager.k8s.io/issuer-name=letsencrypt-staging

Type: kubernetes.io/tls

Data
====
tls.crt: 3566 bytes
tls.key: 1675 bytes

Now that we have confidence that everything is configured correctly, you
can update the annotations in the ingress to specify the production issuer:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: kuard
 annotations:
 kubernetes.io/ingress.class: "nginx"
 certmanager.k8s.io/issuer: "letsencrypt-prod"
 certmanager.k8s.io/acme-challenge-type: http01

spec:
 tls:
 - hosts:
 - example.example.com
 secretName: quickstart-example-tls
 rules:
 - host: example.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: kuard
 servicePort: 80

$ kubectl apply -f ingress.yaml

ingress.extensions "kuard" configured

You will also need to delete the existing secret, which cert-manager is watching
and will cause it to reprocess the request with the updated issuer.

$ kubectl delete secret quickstart-example-tls

secret "quickstart-example-tls" deleted

This will start the process to get a new certificate, and using describe
you can see the status. Once the production certificate has been updated,
you should see the example KUARD running at your domain with a signed TLS
certificate.

 $ kubectl describe certificate

 Name: quickstart-example-tls
 Namespace: default
 Labels: <none>
 Annotations: <none>
 API Version: certmanager.k8s.io/v1alpha1
 Kind: Certificate
 Metadata:
 Cluster Name:
 Creation Timestamp: 2018-11-17T18:36:48Z
 Generation: 0
 Owner References:
 API Version: extensions/v1beta1
 Block Owner Deletion: true
 Controller: true
 Kind: Ingress
 Name: kuard
 UID: a3e9f935-ea87-11e8-82f8-42010a8a00b5
 Resource Version: 283686
 Self Link: /apis/certmanager.k8s.io/v1alpha1/namespaces/default/certificates/quickstart-example-tls
 UID: bdd93b32-ea97-11e8-82f8-42010a8a00b5
 Spec:
 Acme:
 Config:
 Domains:
 example.your-domain.com
 Http 01:
 Ingress:
 Ingress Class: nginx
 Dns Names:
 example.your-domain.com
 Issuer Ref:
 Kind: Issuer
 Name: letsencrypt-prod
 Secret Name: quickstart-example-tls
 Status:
 Conditions:
 Last Transition Time: 2019-01-09T13:52:05Z
 Message: Certificate does not exist
 Reason: NotFound
 Status: False
 Type: Ready
 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Generated 18s cert-manager Generated new private key
 Normal OrderCreated 18s cert-manager Created Order resource "quickstart-example-tls-889745041"

You can see the current state of the ACME Order by running kubectl describe
on the Order resource that cert-manager has created for your Certificate:

$ kubectl describe order quickstart-example-tls-889745041
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 90s cert-manager Created Challenge resource "quickstart-example-tls-889745041-0" for domain "example.your-domain.com"

Here, we can see that cert-manager has created 1 ‘Challenge’ resource to fulfil
the Order. You can dig into the state of the current ACME challenge by running
kubectl describe on the automatically created Challenge resource:

$ kubectl describe challenge quickstart-example-tls-889745041-0
...

Status:
 Presented: true
 Processing: true
 Reason: Waiting for http-01 challenge propagation
 State: pending
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Started 15s cert-manager Challenge scheduled for processing
 Normal Presented 14s cert-manager Presented challenge using http-01 challenge mechanism

From above, we can see that the challenge has been ‘presented’ and cert-manager
is waiting for the challenge record to propagate to the ingress controller.
You should keep an eye out for new events on the challenge resource, as a
‘success’ event should be printed after a minute or so (depending on how fast
your ingress controller is at updating rules):

$ kubectl describe challenge quickstart-example-tls-889745041-0
...

Status:
 Presented: false
 Processing: false
 Reason: Successfully authorized domain
 State: valid
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Started 71s cert-manager Challenge scheduled for processing
 Normal Presented 70s cert-manager Presented challenge using http-01 challenge mechanism
 Normal DomainVerified 2s cert-manager Domain "example.your-domain.com" verified with "http-01" validation

Note

If your challenges are not becoming ‘valid’ and remain in the ‘pending’
state (or enter into a ‘failed’ state), it is likely there is some kind of
configuration error.
Read the Challenge resource reference docs
for more information on debugging failing challenges.

Once the challenge(s) have been completed, their corresponding challenge
resources will be deleted, and the ‘Order’ will be updated to reflect the
new state of the Order:

$ kubectl describe order quickstart-example-tls-889745041
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 90s cert-manager Created Challenge resource "quickstart-example-tls-889745041-0" for domain "example.your-domain.com"
 Normal OrderValid 16s cert-manager Order completed successfully

Finally, the ‘Certificate’ resource will be updated to reflect the state of the
issuance process. If all is well, you should be able to ‘describe’ the Certificate
and see something like the below:

$ kubectl describe certificate quickstart-example-tls

Status:
 Conditions:
 Last Transition Time: 2019-01-09T13:57:52Z
 Message: Certificate is up to date and has not expired
 Reason: Ready
 Status: True
 Type: Ready
 Not After: 2019-04-09T12:57:50Z
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Generated 11m cert-manager Generated new private key
 Normal OrderCreated 11m cert-manager Created Order resource "quickstart-example-tls-889745041"
 Normal OrderComplete 10m cert-manager Order "quickstart-example-tls-889745041" completed successfully

Issuing an ACME certificate using DNS validation

Todo

This guide needs rewriting to be clearer, splitting into sections and
potentially rewriting altogether.

cert-manager can be used to obtain certificates from a CA using the ACME [https://en.wikipedia.org/wiki/Automated_Certificate_Management_Environment] protocol.
The ACME protocol supports various challenge mechanisms which are used to prove
ownership of a domain so that a valid certificate can be issued for that domain.

One such challenge mechanism is DNS-01. With a DNS-01 challenge, you prove
ownership of a domain by proving you control its DNS records.
This is done by creating a TXT record with specific content that proves you
have control of the domains DNS records.

The following Issuer defines the necessary information to enable DNS validation.
You can read more about the Issuer resource in the Issuer reference docs.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: letsencrypt-staging
 namespace: default
spec:
 acme:
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 email: user@example.com

 # Name of a secret used to store the ACME account private key
 privateKeySecretRef:
 name: letsencrypt-staging

 # ACME DNS-01 provider configurations
 dns01:

 # Here we define a list of DNS-01 providers that can solve DNS challenges
 providers:

 - name: prod-dns
 clouddns:
 # A secretKeyRef to a google cloud json service account
 serviceAccountSecretRef:
 name: clouddns-service-account
 key: service-account.json
 # The project in which to update the DNS zone
 project: gcloud-prod-project

 - name: cf-dns
 cloudflare:
 email: user@example.com
 # A secretKeyRef to a cloudflare api key
 apiKeySecretRef:
 name: cloudflare-api-key
 key: api-key.txt

We have specified the ACME server URL for Let’s Encrypt’s staging environment [https://letsencrypt.org/docs/staging-environment/].
The staging environment will not issue trusted certificates but is used to
ensure that the verification process is working properly before moving to
production. Let’s Encrypt’s production environment imposes much stricter
rate limits [https://letsencrypt.org/docs/rate-limits/], so to reduce the chance of you hitting those limits it is
highly recommended to start by using the staging environment. To move to
production, simply create a new Issuer with the URL set to
https://acme-v02.api.letsencrypt.org/directory.

The first stage of the ACME protocol is for the client to register with the
ACME server. This phase includes generating an asymmetric key pair which is
then associated with the email address specified in the Issuer. Make sure to
change this email address to a valid one that you own. It is commonly used to
send expiry notices when your certificates are coming up for renewal. The
generated private key is stored in a Secret named letsencrypt-staging.

The dns01 stanza contains a list of DNS-01 providers that can be used to
solve DNS challenges. Our Issuer defines two providers. This gives us a choice
of which one to use when obtaining certificates.

More information about the DNS provider configuration, including a list of
supported providers, can be found in the dns01 reference docs.

Once we have created the above Issuer we can use it to obtain a certificate.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: letsencrypt-staging
 commonName: '*.example.com'
 dnsNames:
 - example.com
 - foo.com
 acme:
 config:
 - dns01:
 provider: prod-dns
 domains:
 - '*.example.com'
 - example.com
 - dns01:
 provider: cf-dns
 domains:
 - foo.com

The Certificate resource describes our desired certificate and the possible
methods that can be used to obtain it.
You can obtain certificates for wildcard domains just like any other. Make sure to
wrap wildcard domains with asterisks in your YAML resources, to avoid formatting issues.
If you specify both example.com and *.example.com on the same Certificate,
it will take slightly longer to perform validation as each domain will have to be
validated one after the other.
You can learn more about the Certificate resource in the reference docs.
If the certificate is obtained successfully, the resulting key pair will be
stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of *.example.com and the
Subject Alternative Names [https://en.wikipedia.org/wiki/Subject_Alternative_Name] (SANs) will be *.example.com, example.com and foo.com.

In our Certificate we have referenced the letsencrypt-staging Issuer above.
The Issuer must be in the same namespace as the Certificate.
If you want to reference a ClusterIssuer, which is a cluster-scoped version of
an Issuer, you must add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the
ClusterIssuer reference docs.

The acme stanza defines the configuration for our ACME challenges.
Here we have defined the configuration for our DNS challenges which will be used
to verify domain ownership.
For each domain mentioned in a dns01 stanza, cert-manager will use the
provider’s credentials from the referenced Issuer to create a TXT record called
_acme-challenge.
This record will then be verified by the ACME server in order to issue the
certificate.
Once domain ownership has been verified, any cert-manager affected records will
be cleaned up.

Note

It is your responsibility to ensure the selected provider is authoritative for
your domain.

After creating the above Certificate, we can check whether it has been obtained
successfully using kubectl describe:

$ kubectl describe certificate example-com
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal CreateOrder 57m cert-manager Created new ACME order, attempting validation...
 Normal DomainVerified 55m cert-manager Domain "*.example.com" verified with "dns-01" validation
 Normal DomainVerified 55m cert-manager Domain "example.com" verified with "dns-01" validation
 Normal DomainVerified 55m cert-manager Domain "foo.com" verified with "dns-01" validation
 Normal IssueCert 55m cert-manager Issuing certificate...
 Normal CertObtained 55m cert-manager Obtained certificate from ACME server
 Normal CertIssued 55m cert-manager Certificate issued successfully

You can also check whether issuance was successful with
kubectl get secret example-com-tls -o yaml.
You should see a base64 encoded signed TLS key pair.

Once our certificate has been obtained, cert-manager will periodically check its
validity and attempt to renew it if it gets close to expiry.
cert-manager considers certificates to be close to expiry when the ‘Not After’
field on the certificate is less than the current time plus 30 days.

Issuing an ACME certificate using HTTP validation

cert-manager can be used to obtain certificates from a CA using the ACME [https://en.wikipedia.org/wiki/Automated_Certificate_Management_Environment] protocol.
The ACME protocol supports various challenge mechanisms which are used to prove
ownership of a domain so that a valid certificate can be issued for that domain.

One such challenge mechanism is the HTTP-01 challenge. With a HTTP-01 challenge,
you prove ownership of a domain by ensuring that a particular file is present at
the domain.
It is assumed that you control the domain if you are able to publish the given
file under a given path.

The following Issuer defines the necessary information to enable HTTP validation.
You can read more about the Issuer resource in the Issuer reference docs.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: letsencrypt-staging
 namespace: default
spec:
 acme:
 # The ACME server URL
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 # Email address used for ACME registration
 email: user@example.com
 # Name of a secret used to store the ACME account private key
 privateKeySecretRef:
 name: letsencrypt-staging
 # Enable the HTTP-01 challenge provider
 http01: {}

We have specified the ACME server URL for Let’s Encrypt’s staging environment [https://letsencrypt.org/docs/staging-environment/].
The staging environment will not issue trusted certificates but is used to
ensure that the verification process is working properly before moving to
production. Let’s Encrypt’s production environment imposes much stricter
rate limits [https://letsencrypt.org/docs/rate-limits/], so to reduce the chance of you hitting those limits it is
highly recommended to start by using the staging environment. To move to
production, simply create a new Issuer with the URL set to
https://acme-v02.api.letsencrypt.org/directory.

The first stage of the ACME protocol is for the client to register with the
ACME server. This phase includes generating an asymmetric key pair which is
then associated with the email address specified in the Issuer. Make sure to
change this email address to a valid one that you own. It is commonly used to
send expiry notices when your certificates are coming up for renewal. The
generated private key is stored in a Secret named letsencrypt-staging.

The presence of the http01 field simply enables the HTTP-01 challenge for this
Issuer.
No further configuration is necessary or currently possible.

Once we have created the above Issuer we can use it to obtain a certificate.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: letsencrypt-staging
 commonName: example.com
 dnsNames:
 - www.example.com
 acme:
 config:
 - http01:
 ingressClass: nginx
 domains:
 - example.com
 - http01:
 ingress: my-ingress
 domains:
 - www.example.com

The Certificate resource describes our desired certificate and the possible
methods that can be used to obtain it. You can learn more about the Certificate
resource in the reference docs.
If the certificate is obtained successfully, the resulting key pair will be
stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of example.com and the
Subject Alternative Names [https://en.wikipedia.org/wiki/Subject_Alternative_Name] (SANs) will be example.com and www.example.com.

In our Certificate we have referenced the letsencrypt-staging Issuer above.
The Issuer must be in the same namespace as the Certificate.
If you want to reference a ClusterIssuer, which is a cluster-scoped version of
an Issuer, you must add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the
ClusterIssuer reference docs.

The acme stanza defines the configuration for our ACME challenges.
Here we have defined the configuration for our HTTP-01 challenges which will be
used to verify domain ownership.
To verify ownership of each domain mentioned in an http01 stanza, cert-manager
will create a Pod, Service and Ingress that exposes an HTTP endpoint that satisfies
the HTTP-01 challenge.

The fields ingress and ingressClass in the http01 stanza can be used
to control how cert-manager interacts with Ingress resources:

	If the ingress field is specified, then an Ingress resource with the same
name in the same namespace as the Certificate must already exist and it will
be modified only to add the appropriate rules to solve the challenge.
This field is useful for the GCLB ingress controller, as well as a number of
others, that assign a single public IP address for each ingress resource.
Without manual intervention, creating a new ingress resource would cause any
challenges to fail.

	If the ingressClass field is specified, a new ingress resource with a
randomly generated name will be created in order to solve the challenge.
This new resource will have an annotation with key kubernetes.io/ingress.class
and value set to the value of the ingressClass field.
This works for the likes of the NGINX ingress controller.

	If neither are specified, new ingress resources will be created with a randomly
generated name, but they will not have the ingress class annotation set.

	If both are specified, then the ingress field will take precedence.

Once domain ownership has been verified, any cert-manager affected resources will
be cleaned up or deleted.

Note

It is your responsibilty to point each domain name at the correct IP address
for your ingress controller.

After creating the above Certificate, we can check whether it has been obtained
successfully using kubectl describe:

$ kubectl describe certificate example-com
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal CreateOrder 57m cert-manager Created new ACME order, attempting validation...
 Normal DomainVerified 55m cert-manager Domain "example.com" verified with "http-01" validation
 Normal DomainVerified 55m cert-manager Domain "www.example.com" verified with "http-01" validation
 Normal IssueCert 55m cert-manager Issuing certificate...
 Normal CertObtained 55m cert-manager Obtained certificate from ACME server
 Normal CertIssued 55m cert-manager Certificate issued successfully

You can also check whether issuance was successful with
kubectl get secret example-com-tls -o yaml.
You should see a base64 encoded signed TLS key pair.

Once our certificate has been obtained, cert-manager will periodically check its
validity and attempt to renew it if it gets close to expiry.
cert-manager considers certificates to be close to expiry when the ‘Not After’
field on the certificate is less than the current time plus 30 days.

Migrating from kube-lego

kube-lego [https://github.com/jetstack/kube-lego] is an older Jetstack project for obtaining TLS certificates from
Let’s Encrypt (or another ACME server).

Since cert-managers release, kube-lego has been gradually deprecated in favour
of this project. There are a number of key differences between the two:

	Feature

	kube-lego

	cert-manager

	Configuration

	Annotations on Ingress resources

	CRDs

	CAs

	ACME

	ACME, signing keypair

	Kubernetes

	v1.2 - v1.8

	v1.7+

	Debugging

	Look at logs

	Kubernetes Events API

	Multi-tenancy

	Not supported

	Supported

	Distinct issuance sources per Certificate

	Not supported

	Supported

	Ingress controller support (ACME)

	GCE, nginx

	All

This guide will walk through how you can safely migrate your kube-lego
installation to cert-manager, without service interruption.

By the end of the guide, we should have:

	Scaled down and removed kube-lego

	Installed cert-manager

	Migrated ACME private key to cert-manager

	Created an ACME ClusterIssuer using this private key, to issue certificates
throughout your cluster

	Configured cert-manager’s
ingress-shim to
automatically provision Certificate resources for all Ingress resources with
the kubernetes.io/tls-acme: "true" annotation, using the ClusterIssuer
we have created

	Verified that the cert-manager installation is working

1. Scale down kube-lego

Before we begin deploying cert-manager, it is best we scale our kube-lego
deployment down to 0 replicas. This will prevent the two controllers
potentially ‘fighting’ each other. If you deployed kube-lego using the official
deployment YAMLs, a command like so should do:

$ kubectl scale deployment kube-lego \
 --namespace kube-lego \
 --replicas=0

You can then verify your kube-lego pod is no longer running with:

$ kubectl get pods --namespace kube-lego

2. Deploy cert-manager

cert-manager should be deployed using Helm, according to our official
Get started guide. No special steps are required here. We will
return to this deployment at the end of this guide and perform an upgrade of
some of the CLI flags we deploy cert-manager with however.

Please take extra care to ensure you have configured RBAC correctly when
deploying Helm and cert-manager - there are some nuances described in our
deploying document!

3. Obtaining your ACME account private key

In order to continue issuing and renewing certificates on your behalf, we need
to migrate the user account private key that kube-lego has created for you over
to cert-manager.

Your ACME user account identity is a private key, stored in a secret resource.
By default, kube-lego will store this key in a secret named kube-lego-account
in the same namespace as your kube-lego Deployment. You may have overridden
this value when you deploy kube-lego, in which case the secret name to use will
be the value of the LEGO_SECRET_NAME environment variable.

You should download a copy of this secret resource and save it in your local
directory:

$ kubectl get secret kube-lego-account -o yaml \
 --namespace kube-lego \
 --export > kube-lego-account.yaml

Once saved, open up this file and change the metadata.name field to something
more relevant to cert-manager. For the rest of this guide, we’ll assume you
chose letsencrypt-private-key.

Once done, we need to create this new resource in the kube-system namespace.
By default, cert-manager stores supporting resources for ClusterIssuers in the
namespace that it is running in, and we used kube-system when deploying
cert-manager above. You should change this if you have deployed cert-manager into
a different namespace.

$ kubectl create -f kube-lego-account.yaml \
 --namespace kube-system

4. Creating an ACME ClusterIssuer using your old ACME account

We need to create a ClusterIssuer which will hold information about the ACME
account previously registered via kube-lego. In order to do so, we need two
more pieces of information from our old kube-lego deployment: the server URL of
the ACME server, and the email address used to register the account.

Both of these bits of information are stored within the kube-lego ConfigMap.

To retrieve them, you should be able to get the ConfigMap using kubectl:

$ kubectl get configmap kube-lego -o yaml \
 --namespace kube-lego \
 --export

Your email address should be shown under the .data.lego.email field, and the
ACME server URL under .data.lego.url.

For the purposes of this guide, we will assume the lego email is
user@example.com and the URL https://acme-staging-v02.api.letsencrypt.org/directory.

Now that we have migrated our private key to the new Secret resource, as well
as obtaining our ACME email address and URL, we can create a ClusterIssuer
resource!

Create a file named cluster-issuer.yaml:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 # Adjust the name here accordingly
 name: letsencrypt-staging
spec:
 acme:
 # The ACME server URL
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 # Email address used for ACME registration
 email: user@example.com
 # Name of a secret used to store the ACME account private key from step 3
 privateKeySecretRef:
 name: letsencrypt-private-key
 # Enable the HTTP-01 challenge provider
 http01: {}

We then submit this file to our Kubernetes cluster:

$ kubectl create -f cluster-issuer.yaml

You should be able to verify the ACME account has been verified successfully:

$ kubectl describe clusterissuer letsencrypt-staging
Name: letsencrypt-staging
Namespace:
Labels: <none>
Annotations: <none>
API Version: certmanager.k8s.io/v1alpha1
Kind: ClusterIssuer
Metadata:
 Cluster Name:
 Creation Timestamp: 2017-11-30T22:33:40Z
 Generation: 0
 Resource Version: 4450170
 Self Link: /apis/certmanager.k8s.io/v1alpha1/letsencrypt-staging
 UID: 83d04e6b-d61e-11e7-ac26-42010a840044
Spec:
 Acme:
 Email: user@example.com
 Http 01:
 Private Key Secret Ref:
 Key:
 Name: letsencrypt-private-key
 Server: https://acme-staging-v02.api.letsencrypt.org/directory
Status:
 Acme:
 Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct/11217539
 Conditions:
 Last Transition Time: 2018-04-12T17:32:30Z
 Message: The ACME account was registered with the ACME server
 Reason: ACMEAccountRegistered
 Status: True
 Type: Ready

5. Configuring ingress-shim to use our new ClusterIssuer by default

Now that our ClusterIssuer is ready to issue certificates, we have one last
thing to do: we must reconfigure ingress-shim (deployed as part of
cert-manager) to automatically create Certificate resources for all Ingress
resources it finds with appropriate annotations.

More information on the role of ingress-shim can be found
in the docs, but for now we
can just run a helm upgrade in order to add a few additional flags.
Assuming you’ve named your ClusterIssuer letsencrypt-staging (as above),
run:

helm upgrade cert-manager \
 stable/cert-manager \
 --namespace kube-system \
 --set ingressShim.defaultIssuerName=letsencrypt-staging \
 --set ingressShim.defaultIssuerKind=ClusterIssuer

You should see the cert-manager pod be re-created, and once started it should
automatically create Certificate resources for all of your ingresses that
previously had kube-lego enabled.

6. Verify each ingress now has a corresponding Certificate

Before we finish, we should make sure there is now a Certificate resource for
each ingress resource you previously enabled kube-lego on.

You should be able to check this by running:

$ kubectl get certificates --all-namespaces

There should be an entry for each ingress in your cluster with the kube-lego
annotation.

We can also verify that cert-manager has ‘adopted’ the old TLS certificates by
viewing the logs for cert-manager:

$ kubectl logs -n kube-system -l app=cert-manager -c cert-manager
...
I1025 21:54:02.869269 1 sync.go:206] Certificate my-example-certificate scheduled for renewal in 292 hours

Here we can see cert-manager has verified the existing TLS certificate and
scheduled it to be renewed in 292h time.

Tasks

This section contains guides on using specific features of cert-manager, such
as configuring different Issuer types and any special settings that you may
want to configure.

	Setting up Issuers
	Supported issuer types

	Additional information

	Issuing Certificates
	Creating Certificate resources

	Special fields on Certificate resources for ACME Issuers

	ACME specific tasks
	Issuing Certificates using ACME

	DNS01 Challenge Provider

	HTTP01 Challenge Provider

	Debugging failing Orders

	Backing up and restoring
	Backing up

	Restoring

	Upgrading cert-manager
	Upgrading with Helm

	Upgrading using static manifests

Setting up Issuers

Before you can begin issuing certificates, you must configure at least one
Issuer or ClusterIssuer resource in your cluster.

These represent a certificate authority from which signed x509 certificates can
be obtained, such as Let’s Encrypt, or your own signing key pair stored in a
Kubernetes Secret resource. They are referenced by Certificate resources in
order to request certificates from them.

An Issuer is scoped to a single namespace, and can
only fulfill Certificate resources within its
own namespace. This is useful in a multi-tenant environment where multiple
teams or independent parties operate within a single cluster.

On the other hand, a ClusterIssuer is a
cluster wide version of an Issuer. It is able to be
referenced by Certificate resources in any
namespace.

Users often create letsencrypt-staging and letsencrypt-prod
ClusterIssuers if they operate a
single-tenant environment and want to expose a cluster-wide mechanism for
obtaining TLS certificates from Let’s Encrypt [https://letsencrypt.org].

Supported issuer types

cert-manager supports a number of different issuer backends, each with their
own different types of configuration.

Please follow one of the below linked guides to learn how to set up the issuer
types you require:

	CA - issue certificates signed by a X509 signing keypair,
stored in a Secret in the Kubernetes API server.

	Self signed - issue self signed certificates.

	ACME - issue certificates obtained by performing
challenge validations against an ACME server such as Let’s Encrypt [https://letsencrypt.org].

	Vault- issue certificates from a Vault instance
configured with the Vault PKI backend [https://www.vaultproject.io/docs/secrets/pki/index.html].

Additional information

There are a few key things to know about Issuers, but for full information
you can refer to the Issuer reference docs.

Difference between Issuers and ClusterIssuers

ClusterIssuers are a resource type similar to Issuers.
They are specified in exactly the same way, but they do not belong to a single
namespace and can be referenced by Certificate resources from multiple different
namespaces.

They are particularly useful when you want to provide the ability to obtain
certificates from a central authority (e.g. Letsencrypt, or your internal CA)
and you run single-tenant clusters.

The resource spec is identical, and you should set the
certificate.spec.issuerRef.kind field to ClusterIssuer when creating your
Certificate resources.

Contents:

	Setting up ACME Issuers
	Creating a basic ACME Issuer

	Advanced HTTP01 configuration

	Configuring DNS01 providers

	Setting up CA Issuers
	1. (Optional) Generate a signing key pair

	2. Save the signing key pair as a Secret

	3. Creating an Issuer referencing the Secret

	4. Obtain a signed Certificate

	Setting up self signing Issuers

	Setting up Vault Issuers
	Installing Vault

	Vault PKI Backend

Setting up ACME Issuers

The ACME Issuer type represents a single Account registered with the ACME
server.

When you create a new ACME Issuer, cert-manager will generate a private key
which is used to identify you with the ACME server.

To set up a basic ACME issuer, you should create a new Issuer or ClusterIssuer
resource.

In this example, we will create a non-namespaced ClusterIssuer resource for
the Let’s Encrypt staging endpoint [https://letsencrypt.org/docs/staging-environment/] that has only the
HTTP01 Challenge Provider enabled.

You should read the guides linked at the bottom of this page to learn more
about the ACME challenge validation mechanisms that cert-manager supports and
how to configure the various DNS01 provider implementations.

Creating a basic ACME Issuer

The below example configures a ClusterIssuer named letsencrypt-staging that
is configured to enable the HTTP01 challenge validation mechanism only.

You should copy and paste this example into a new file named
letsencrypt-staging.yaml and update the spec.acme.email field to be your
own email address.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: letsencrypt-staging
spec:
 acme:
 # You must replace this email address with your own.
 # Let's Encrypt will use this to contact you about expiring
 # certificates, and issues related to your account.
 email: user@example.com
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 # Secret resource used to store the account's private key.
 name: example-issuer-account-key
 # Enable the HTTP01 challenge mechanism for this Issuer
 http01: {}

You can then create this resource:

kubectl apply -f letsencrypt-staging.yaml

To verify that the account has been registered successfully, you can run
kubectl describe and check the ‘Ready’ condition:

kubectl describe clusterissuer letsencrypt-staging
...
Status:
 Acme:
 Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct/7571319
 Conditions:
 Last Transition Time: 2019-01-30T14:52:03Z
 Message: The ACME account was registered with the ACME server
 Reason: ACMEAccountRegistered
 Status: True
 Type: Ready

Notes on issuing ACME certificates

Currently, there is some additional configuration needed on Certificate
resources when issuing certificates from ACME issuers.

You should read the
Issuing Certificates using ACME
documentation for more information on how to configure these additional fields.

Advanced HTTP01 configuration

There are a few additional options that can be set on the Issuer resource to
alter the behaviour of the HTTP01 solver.

For full details, read the
HTTP01 Challenge Provider documentation
to learn about these options.

Configuring DNS01 providers

It is also possible to validate domain ownership using DNS01 validation.

In order to do this, your Issuer resource must be configured with credentials
for a supported DNS provider’s account.

The full list of support DNS providers, and information on how to configure
them can be found in the
DNS01 Challenge Provider
documentation.

Setting up CA Issuers

cert-manager can be used to obtain certificates using an arbitrary signing
key pair stored in a Kubernetes Secret resource.

This guide will show you how to configure and create a CA based issuer, backed
by a signing key pair stored in a Secret resource.

1. (Optional) Generate a signing key pair

The CA Issuer does not automatically create and manage a signing key pair for
you. As a result, you will need to either supply your own or generate a self
signed CA using a tool such as openssl [https://github.com/openssl/openssl] or cfssl [https://github.com/cloudflare/cfssl].

This guide will explain how to generate a new signing key pair, however you can
substitute it for your own so long as it has the CA flag set.

Generate a CA private key
$ openssl genrsa -out ca.key 2048

Create a self signed Certificate, valid for 10yrs with the 'signing' option set
$ openssl req -x509 -new -nodes -key ca.key -subj "/CN=${COMMON_NAME}" -days 3650 -reqexts v3_req -extensions v3_ca -out ca.crt

The output of these commands will be two files, ca.key and ca.crt, the
key and certificate for your signing key pair. If you already have your own key
pair, you should name the private key and certificate ca.key and ca.crt
respectively.

2. Save the signing key pair as a Secret

We are going to create an Issuer that will use this key pair to generate signed
certificates. You can read more about the Issuer resource in the Issuer
reference docs. To allow the Issuer to reference our key
pair we will store it in a Kubernetes Secret resource.

Issuers are namespaced resources and so they can only reference Secrets in
their own namespace. We will therefore put the key pair into the same namespace
as the Issuer. We could alternatively create a ClusterIssuer, a cluster-scoped version of an Issuer. For more
information on ClusterIssuers, read the ClusterIssuer reference
documentation.

The following command will create a Secret containing a signing key pair in the
default namespace:

kubectl create secret tls ca-key-pair \
 --cert=ca.crt \
 --key=ca.key \
 --namespace=default

3. Creating an Issuer referencing the Secret

We can now create an Issuer referencing the Secret resource we just created:

	1
2
3
4
5
6
7
8

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: ca-issuer
 namespace: default
spec:
 ca:
 secretName: ca-key-pair

We are now ready to obtain certificates!

4. Obtain a signed Certificate

We can now create the following Certificate resource which specifies the
desired certificate. You can read more about the Certificate resource in
the reference docs.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: ca-issuer
 # We can reference ClusterIssuers by changing the kind here.
 # The default value is Issuer (i.e. a locally namespaced Issuer)
 kind: Issuer
 commonName: example.com
 organization:
 - Example CA
 dnsNames:
 - example.com
 - www.example.com

In order to use the Issuer to obtain a Certificate, we must create a
Certificate resource in the same namespace as the Issuer, as an Issuer is a
namespaced resource. We could alternatively create a ClusterIssuer if we wanted to reuse the signing key pair across
multiple namespaces.

Once we have created the Certificate resource, cert-manager will attempt to use
the Issuer ca-issuer to obtain a certificate. If successful, the
certificate will be stored in a Secret resource named example-com-tls in
the same namespace as the Certificate resource (default).

The example above explicitly sets the commonName field to example.com.
cert-manager automatically adds the commonName field as a DNS SAN [https://en.wikipedia.org/wiki/Subject_Alternative_Name] if it
is not already contained in the dnsNames field.

If we had not specified the commonName field, then the first DNS
SAN that is specified (under dnsNames) would be used as the certificate’s
common name.

After creating the above Certificate, we can check whether it has been obtained
successfully like so:

$ kubectl describe certificate example-com
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning ErrorCheckCertificate 26s cert-manager-controller Error checking existing TLS certificate: secret "example-com-tls" not found
 Normal PrepareCertificate 26s cert-manager-controller Preparing certificate with issuer
 Normal IssueCertificate 26s cert-manager-controller Issuing certificate...
 Normal CertificateIssued 25s cert-manager-controller Certificate issued successfully

You can also check whether issuance was successful with
kubectl get secret example-com-tls -o yaml. You should see a base64 encoded
signed TLS key pair.

Once the certificate has been obtained, cert-manager will keep checking its
validity and attempt to renew it if it gets close to expiry.
cert-manager considers certificates to be close to expiry when the ‘Not After’
field on the certificate is less than the current time plus 30 days. For CA
based Issuers, cert-manager will issue certificates with the ‘Not After’
field set to the current time plus 365 days.

Setting up self signing Issuers

Self signed Issuers will issue self signed certificates.

This is useful when building PKI within Kubernetes, or as a means to generate a
root CA for use with the CA Issuer.

A self-signed Issuer contains no additional configuration fields, and can be
created with a resource like so:

apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: selfsigning-issuer
spec:
 selfSigned: {}

Note

The presence of the selfSigned: {} line is enough to indicate that this Issuer
is of type ‘self signed’.

Once created, you should be able to issue certificates like usual by
referencing the newly created Issuer in your issuerRef:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-crt
spec:
 secretName: my-selfsigned-cert
 commonName: "my-selfsigned-root-ca"
 isCA: true
 issuerRef:
 name: selfsigning-issuer
 kind: ClusterIssuer

Setting up Vault Issuers

Installing Vault

Vault installation is a complex subject. For a thorough tour of the subject
you can read the official HashiCorp Vault
documentation [https://www.vaultproject.io/intro/getting-started/install.html].

Vault PKI Backend

The PKI Secrets Engine needs to be initialized for cert-manager to be
able to generate certificate. The official Vault documentation can be
found
here [https://www.vaultproject.io/docs/secrets/pki/index.html].

Vault Authentication with a AppRole

This Vault authentication method uses a
Vault AppRole [https://www.vaultproject.io/docs/auth/approle.html].

The secret ID of the AppRole is stored in a secret.

Here an example of a secret containing the secretId of the AppRole:

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: cert-manager-vault-approle
 namespace: default
data:
 secretId: "MDI..."

Where the secretId is the base 64 encoded value of the appRole secretId
giving access to the pki backend in Vault.

We can now create a cluster issuer referencing this secret:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: vault-issuer
 namespace: default
spec:
 vault:
 path: pki_int/sign/example-dot-com
 server: https://vault
 caBundle: <base64 encoded caBundle PEM file>
 auth:
 appRole:
 path: approle
 roleId: "291b9d21-8ff5-..."
 secretRef:
 name: cert-manager-vault-approle
 key: secretId

Where path is the Vault role path of the PKI backend and server is
the Vault server base URL. The path MUST USE the vault sign endpoint.
The Vault appRole credentials are supplied as the
Vault authentication method using the appRole created in Vault. The secretRef
references the Kubernetes secret created previously. More specifically, the field
name is the Kubernetes secret name and key is the name given as the
key value that store the secretId. The optional attribute path specifies
where the AppRole authentication is mounted in Vault. The attribute path default
value is approle.

An optional base64 encoded caBundle in PEM format can be provided to validate
the TLS connection to the Vault Server. When caBundle is set it replaces the CA
bundle inside the container running cert-manager.
This parameter has no effect if the connection used is in plain HTTP.

Once we have created the above Issuer we can use it to obtain a certificate.

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: vault-issuer
 commonName: example.com
 dnsNames:
 - www.example.com

The Certificate resource describes our desired certificate and the possible
methods that can be used to obtain it. You can learn more about the Certificate
resource in the reference docs.
If the certificate is obtained successfully, the resulting key pair will be
stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of example.com and the
Subject Alternative Names [https://en.wikipedia.org/wiki/Subject_Alternative_Name] (SANs) will be example.com and www.example.com.

In our Certificate we have referenced the vault-issuer Issuer above.
The Issuer must be in the same namespace as the Certificate.
If you want to reference a ClusterIssuer, which is a cluster-scoped version of
an Issuer, you must add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the
ClusterIssuer reference docs.

Vault Authentication with a Token

This Vault authentication method uses a plain token. A Vault token is generated by
one of the many authentication backends supported by Vault. Tokens in Vault have
expiration and need to be refreshed. You need to be aware that cert-manager does not
refresh these tokens. Another process must be put in place to keep them from expiring.

For testing purposes a root token is generated at Vault installation time.
WARNING: Root tokens do not expire, so should only be used for testing purposes.

Please refer to the official token documentation [https://www.vaultproject.io/docs/concepts/tokens.html]
for all the details.

Here an example of a secret Kubernetes resource containing the Vault token:

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: cert-manager-vault-token
 namespace: kube-system
data:
 token: "MjI..."

Where the token value is the base 64 encoded value of the token giving
access to the PKI backend in Vault.

We can now create an issuer referencing this secret:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: vault-issuer
 namespace: default
spec:
 vault:
 auth:
 tokenSecretRef:
 name: cert-manager-vault-token
 key: token
 path: pki_int/sign/example-dot-com
 server: https://vault
 caBundle: <base64 encoded caBundle PEM file>

Where path is the Vault role path of the PKI backend and server is
the Vault server base URL. The secret created previously is referenced in the issuer
with its name and key corresponding to the name of the Kubernetes secret and the
property name containing the token value respectively.

An optional base64 encoded caBundle in PEM format can be provided to validate
the TLS connection to the Vault Server. When caBundle is set it replaces the CA
bundle inside the container running cert-manager. This parameter as no effect if the
connection used is in plain HTTP.

Once we have created the above Issuer we can use it to obtain a certificate.

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: vault-issuer
 commonName: example.com
 dnsNames:
 - www.example.com

The Certificate resource describes our desired certificate and the possible
methods that can be used to obtain it. You can learn more about the Certificate
resource in the reference docs.
If the certificate is obtained successfully, the resulting key pair will be
stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of example.com and the
Subject Alternative Names [https://en.wikipedia.org/wiki/Subject_Alternative_Name] (SANs) will be example.com and www.example.com.

In our Certificate we have referenced the vault-issuer Issuer above.
The Issuer must be in the same namespace as the Certificate.
If you want to reference a ClusterIssuer, which is a cluster-scoped version of
an Issuer, you must add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the
ClusterIssuer reference docs.

Issuing Certificates

The Certificate resource type is used to request certificates from different
Issuers.

In order to issue any certificates, you’ll need to configure an Issuer resource
first.

If you have not configured any issuers yet, you should read the
Setting up Issuers guide.

Creating Certificate resources

A Certificate resource specifies fields that are used to generated certificate
signing requests which are then fulfilled by the issuer type you have
referenced.

Certificates specify which issuer they want to obtain the certificate from by
specifying the certificate.spec.issuerRef field.

A basic Certificate resource, for the example.com and www.example.com
DNS names that is valid for 90d and renews 15d before expiry is below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 duration: 2160h # 90d
 renewBefore: 360h # 15d
 commonName: example.com
 dnsNames:
 - example.com
 - www.example.com
 issuerRef:
 name: ca-issuer
 # We can reference ClusterIssuers by changing the kind here.
 # The default value is Issuer (i.e. a locally namespaced Issuer)
 kind: Issuer

The signed certificate will be stored in a Secret resource named
example-com-tls once the issuer has successfully issued the requested
certificate.

The Certificate will be issued using the issuer named ca-issuer in the
default namespace (the same namespace as the Certificate resource).

Note

If you want to create an Issuer that can be referenced by Certificate
resources in all namespaces, you should create a
ClusterIssuer resource and set the
certificate.spec.issuerRef.kind field to ClusterIssuer.

Note

The renewBefore and duration fields must be specified using Golang’s
time.Time string format, which does not allow the d (days) suffix.
You must specify these values using s, m and h suffixes instead.
Failing to do so without installing the
webhook component can prevent cert-manager
from functioning correctly (#1269 [https://github.com/jetstack/cert-manager/issues/1269]).

A full list of the fields supported on the Certificate resource can be found in
the API reference documentation [https://cert-manager.readthedocs.io/en/release-0.6/reference/api-docs/index.html#certificatespec-v1alpha1].

Special fields on Certificate resources for ACME Issuers

When creating Certificate resources that reference ACME Issuers, you must
set an additional certificate.spec.acme stanza on the resource to configure
what challenge mechanism to use for each DNS name specified on the certificate.

More information on setting these fields can be found in the
Issuing Certificates using ACME guide.

	Automatically creating Certificates for Ingress resources
	How it works

	Configuration

	Supported annotations

Automatically creating Certificates for Ingress resources

cert-manager can be configured to automatically provision TLS certificates for
Ingress resources via annotations on your Ingresses.

A small sub-component of cert-manager, ingress-shim, is responsible for this.

How it works

ingress-shim watches Ingress resources across your cluster. If it observes an
Ingress with any of the annotations described in the ‘Usage’ section, it will
ensure a Certificate resource with the same name as the Ingress, and configured
as described on the Ingress exists. For example:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 # add an annotation indicating the issuer to use.
 certmanager.k8s.io/cluster-issuer: nameOfClusterIssuer
 name: myIngress
 namespace: myIngress
spec:
 rules:
 - host: myingress.com
 http:
 paths:
 - backend:
 serviceName: myservice
 servicePort: 80
 path: /
 tls: # < placing a host in the TLS config will indicate a cert should be created
 - hosts:
 - myingress.com
 secretName: myingress-cert # < cert-manager will store the created certificate in this secret.

Configuration

Since cert-manager v0.2.2, ingress-shim is deployed automatically as part of a
Helm chart installation.

If you would also like to use the old kube-lego [https://github.com/jetstack/kube-lego] kubernetes.io/tls-acme: "true"
annotation for fully automated TLS, you will need to configure a default Issuer
when deploying cert-manager. This can be done by adding the following --set
when deploying using Helm:

--set ingressShim.defaultIssuerName=letsencrypt-prod \
--set ingressShim.defaultIssuerKind=ClusterIssuer

In the above example, cert-manager will create Certificate resources that reference the ClusterIssuer letsencrypt-prod for all Ingresses that have a kubernetes.io/tls-acme: "true" annotation.

For more information on deploying cert-manager, read the deployment guide.

Supported annotations

You can specify the following annotations on ingresses in order to trigger
Certificate resources to be automatically created:

	certmanager.k8s.io/issuer - the name of an Issuer to acquire the
certificate required for this ingress from. The Issuer must be in the same
namespace as the Ingress resource.

	certmanager.k8s.io/cluster-issuer - the name of a ClusterIssuer to acquire
the certificate required for this ingress from. It does not matter which
namespace your Ingress resides, as ClusterIssuers are non-namespaced resources.

	certmanager.k8s.io/acme-challenge-type - by default, if the Issuer
specified is an ACME issuer (either through ingress-shim’s defaults, or with
one of the above annotations), the ingress-shim will set the ACME challenge
mechanism on the Certificate resource it creates to ‘http01’. This annotation
can be used to alter this behaviour. Must be one of ‘http01’ or ‘dns01’.

	certmanager.k8s.io/acme-dns01-provider - if the ACME challenge type has
been set to dns01, this annotation must be specified to instruct
cert-manager which DNS provider (as configured on the specified Issuer resource)
should be used. This field is required if the challenge type is set to DNS01.

	certmanager.k8s.io/acme-http01-ingress-class - if the ACME challenge type has
been set to http01, this annotation allows you to configure ingress class
that will be used to solve challenges for this ingress. Customising this is useful
when you are trying to secure internal services, and need to solve challenges
using different ingress class to that of the ingress. If not specified and
the ‘acme-http01-edit-in-place’ annotation is not set, this defaults to the ingress
class of the ingress resource.

	kubernetes.io/tls-acme: "true" - this annotation requires additional
configuration of the ingress-shim (see above). Namely, a default issuer must be
specified as arguments to the ingress-shim container.

	certmanager.k8s.io/acme-http01-edit-in-place: "true" - if the ACME challenge type
has been set to http01, and the ingress has the ‘kubernetes.io/tls-acme: true’
annotation, this controls whether the ingress is modified ‘in-place’, or a new
one created specifically for the http01 challenge. If present, and set to “true”
the existing ingress will be modified. Any other value, or the absence of the
annotation assumes “false”.

ACME specific tasks

In order to use the ACME provider, there are a number of required fields.
For your ACME issuer to support the various ACME challenge mechanisms, you may
need to provide some additional configuration on your resource, such as
configuring credentials for a DNS provider or enabling HTTP01 validation.

	Issuing Certificates using ACME
	Configuring Certificates for ACME issuance

	DNS01 Challenge Provider
	Setting nameservers for DNS01 self check

	HTTP01 Challenge Provider
	How HTTP01 validations work

	Extra options

	Debugging failing Orders
	Common problems

Issuing Certificates using ACME

ACME certificates currently require additional configuration on the Certificate
resource that you create in order to determine how to solve the
ACME challenges that the ACME protocol requires.

In future releases of cert-manager, this configuration is likely to move off of
the Certificate resource and onto the Issuer resource in order to create a
better separation of concerns. More info can be found on issue #XXX.

Configuring Certificates for ACME issuance

In order to issue certificates using the ACME issuer type, you must configure
which ACME challenge provider is used for each domain name you are requesting
a Certificate for.

This is done by configuring a mapping between domain names and the solver types
that have been configured on the corresponding Issuer resource.

Using HTTP01 challenges

In order to use the HTTP01 challenge provider, you must first configure your
Issuer with the appropriate settings described in the HTTP01 Challenge Provider
documentation.

Assuming you’ve created the same example ACME Issuer with http01 enabled as in
the Setting up ACME Issuers guide:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: letsencrypt-staging
spec:
 acme:
 # You must replace this email address with your own.
 # Let's Encrypt will use this to contact you about expiring
 # certificates, and issues related to your account.
 email: user@example.com
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 # Secret resource used to store the account's private key.
 name: example-issuer-account-key
 # Enable the HTTP01 challenge mechanism for this Issuer
 http01: {}

We must configure our Certificate resource with the ‘ingress class’ that will
be used to solve the ACME HTTP01 challenges:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: letsencrypt-staging
 commonName: example.com
 dnsNames:
 - example.com
 - www.example.com
 acme:
 config:
 - http01:
 ingressClass: nginx
 domains:
 - example.com
 - www.example.com

Note

If you use ‘ingress-gce’, aka the GCLB ingress controller, you will need to
modify your Certificate definition to specify the
certificate.spec.acme.config.http01.ingress field instead of
ingressClass, like so:

...
 acme:
 config:
 - http01:
 ingress: name-of-gce-ingress-resource
 domains:
 - example.com
 - www.example.com

Using DNS01 challenges

In order to use DNS01 validation, you must first configure your Issuer resource
with credentials and connection information needed to access your DNS
provider’s administrative console.

You can find more information on the different supported DNS providers and how
to configure them in the DNS01 Challenge Provider documentation.

The example Issuer on the DNS01 Challenge Provider page is configured
with credentials for a Google Cloud DNS account:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: letsencrypt-staging
spec:
 acme:
 email: user@example.com
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 name: example-issuer-account-key
 dns01:
 providers:
 - name: prod-clouddns
 clouddns:
 project: my-project
 serviceAccountSecretRef:
 name: prod-clouddns-svc-acct-secret
 key: service-account.json

In the above example on line 13, you can see we have named this DNS provider
prod-clouddns.

When creating Certificates that intend to utilise this DNS01 provider for
validations, we must remember to include this “provider name” in our
Certificate’s spec:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example-com
 namespace: default
spec:
 secretName: example-com-tls
 issuerRef:
 name: letsencrypt-staging
 commonName: example.com
 dnsNames:
 - example.com
 - www.example.com
 acme:
 config:
 - dns01:
 provider: prod-clouddns
 domains:
 - example.com
 - www.example.com

If you do not specify a provider name, cert-manager will not know how to solve
challenges for your domains and the issuance process will not succeed.

DNS01 Challenge Provider

The ACME issuer can also contain DNS provider configuration, which can be used
by Certificates using this Issuer in order to validate DNS01 challenge
requests:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: example-issuer
spec:
 acme:
 email: user@example.com
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 name: example-issuer-account-key
 dns01:
 providers:
 - name: prod-clouddns
 clouddns:
 project: my-project
 serviceAccountSecretRef:
 name: prod-clouddns-svc-acct-secret
 key: service-account.json

Each issuer can specify multiple different DNS01 challenge providers, and
it is also possible to have multiple instances of the same DNS provider on a
single Issuer (e.g. two clouddns accounts could be set, each with their own
name).

Setting nameservers for DNS01 self check

Cert-manager will check the correct DNS records exist before attempting a DNS01
challenge. By default, the DNS servers for this check will be taken from
/etc/resolv.conf. If this is not desired (for example with multiple
authoritative nameservers or split-horizon DNS), the cert-manager controller
provides the --dns01-self-check-nameservers flag, which allows overriding the default
nameservers with a comma seperated list of custom nameservers.

Example usage:

--dns01-self-check-nameservers "8.8.8.8:53,1.1.1.1:53"

Supported DNS01 providers

A number of different DNS providers are supported for the ACME issuer. Below is
a listing of available providers, their .yaml configurations, along with additional Kubernetes
and provider specific notes regarding their usage.

	ACME-DNS

	Akamai FastDNS

	AzureDNS

	Cloudflare

	Google CloudDNS

	Amazon Route53

	DigitalOcean

ACME-DNS

acmedns:
 host: https://acme.example.com
 accountSecretRef:
 name: acme-dns
 key: acmedns.json

In general, clients to acme-dns perform registration on the users behalf and inform
them of the CNAME entries they must create. This is not possible in cert-manager, it
is a non-interactive system. Registration must be carried out beforehand and the resulting
credentials JSON uploaded to the cluster as a secret. In this example, we use curl and the
API endpoints directly. Information about setting up and configuring acme-dns is available on
the acme-dns project page [https://github.com/joohoi/acme-dns].

	First, register with the acme-dns server, in this example, there is one running at “auth.example.com”

curl -X POST http://auth.example.com/register will return a JSON with credentials for your registration:

{
 "username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
 "password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
 "fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
 "subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
 "allowfrom":[]
}

It is strongly recommended to restrict the update endpoint to the IP range of your pods.
This is done at registration time as follows:

curl -X POST http://auth.example.com/register -H "Content-Type: application/json" --data '{"allowfrom": ["10.244.0.0/16"]}'

Make sure to update the allowfrom field to match your cluster configuration. The JSON will now look like

{
 "username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
 "password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
 "fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
 "subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
 "allowfrom":["10.244.0.0/16"]
}

	Save this JSON to a file with the key as your domain. You can specify multiple domains with the same credentials
if you like. In our example, the returned credentials can be used to verify ownership of “example.com” and
and “example.org”.

{
 "example.com": {
 "username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
 "password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
 "fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
 "subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
 "allowfrom":["10.244.0.0/16"]
 },
 "example.org": {
 "username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
 "password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
 "fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
 "subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
 "allowfrom":["10.244.0.0/16"]
 }
}

	Next update your primary DNS server with CNAME record that will tell the verifier how to locate the challenge TXT
record. This is obtained from the “fulldomain” field in the registration:

_acme-challenge.example.com CNAME d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com
_acme-challenge.example.org CNAME d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com

Note that the “name” of the record is always the “_acme-challenge” subdomain, and the “value” of the record matches
exactly the “fulldomain” field from registration.

At verification time, the domain name d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com will be a TXT
record that is set to your validation token. When the verifier queries _acme-challenge.example.com, it will
be directed to the correct location by this CNAME record. This proves that you control “example.com”

	Create a secret from the credentials json that was saved in step 2, this secret is referenced
in the accountSecretRef field of your dns01 issuer settings.

kubectl create secret generic acme-dns --from-file acmedns.json

Akamai FastDNS

akamai:
 serviceConsumerDomain: akab-tho6xie2aiteip8p-poith5aej0ughaba.luna.akamaiapis.net
 clientTokenSecretRef:
 name: akamai-dns
 key: clientToken
 clientSecretSecretRef:
 name: akamai-dns
 key: clientSecret
 accessTokenSecretRef:
 name: akamai-dns
 key: accessToken

AzureDNS

Configuring the AzureDNS DNS-01 Challenge for a Kubernetes cluster requires creating a service principal in Azure.

For security purposes, it is appropriate to utilize RBAC to ensure that you properly maintain access control to your resources in Azure. The service principal that is generated by this tutorial has fine grained access to ONLY the DNS Zone in the specific resource group specified. It requires this permission so that it can read/write the _acme_challenge TXT records to the zone.

To create the service principal:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	AZURE_CERT_MANAGER_SP_NAME=SOME_SERVICE_PRINCIPAL_NAME
AZURE_CERT_MANAGER_SP_PASSWORD=SOME_PASSWORD
AZURE_CERT_MANAGER_DNS_RESOURCE_GROUP=SOME_RESOURCE_GROUP
AZURE_CERT_MANAGER_DNS_NAME=SOME_DNS_ZONE

AZURE_CERT_MANAGER_SP_APP_ID=$(az ad sp create-for-rbac --name $AZURE_CERT_MANAGER_SP_NAME --password $AZURE_CERT_MANAGER_SP_PASSWORD --query "appId" --output tsv)

Lower the Permissions of the SP
az role assignment delete --assignee $AZURE_CERT_MANAGER_SP_APP_ID --role Contributor

Give Access to DNS Zone
DNS_ID=$(az network dns zone show --name $AZURE_CERT_MANAGER_DNS_NAME --resource-group $AZURE_CERT_MANAGER_DNS_RESOURCE_GROUP --query "id" --output tsv)

az role assignment create --assignee $AZURE_CERT_MANAGER_SP_APP_ID --role "DNS Zone Contributor" --scope $DNS_ID

Check Permissions
az role assignment list --assignee $AZURE_CERT_MANAGER_SP_APP_ID

Create Secret
kubectl create secret generic azuredns-config \
 --from-literal=CLIENT_SECRET=$AZURE_CERT_MANAGER_SP_PASSWORD

Get the Service Principal App ID for configuration
echo $AZURE_CERT_MANAGER_SP_APP_ID

You can configure the issuer like so:

apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: letsencrypt-prod
spec:
 acme:
 server: https://acme-v02.api.letsencrypt.org/directory
 email: example@example.com
 privateKeySecretRef:
 name: letsencrypt-prod
 dns01:
 providers:
 - name: azure
 azuredns:
 # Service principal clientId (also called appId)
 clientID: AZURE_SERVICE_PRINCIPAL_ID
 # A secretKeyRef to a service principal ClientSecret (password)
 # ref: https://docs.microsoft.com/en-us/azure/container-service/kubernetes/container-service-kubernetes-service-principal
 clientSecretSecretRef:
 name: AZUREDNS_SECRET_KEY_NAME
 key: CLIENT_SECRET
 # Azure subscription Id
 subscriptionID: AZURE_SUBSCRIPTION_ID
 # Azure AD tenant Id
 tenantID: AZURE_TENANT_ID
 # ResourceGroup name where dns zone is provisioned
 resourceGroupName: AZURE_RESOURCE_GROUP
 hostedZoneName: AZURE_DNS_ZONE_NAME

Cloudflare

cloudflare:
 email: my-cloudflare-acc@example.com
 apiKeySecretRef:
 name: cloudflare-api-key-secret
 key: api-key

Google CloudDNS

clouddns:
 project: my-project
 serviceAccountSecretRef:
 name: prod-clouddns-svc-acct-secret
 key: service-account.json

Amazon Route53

route53:
 region: eu-west-1

 # optional if ambient credentials are available; see ambient credentials documentation
 accessKeyID: AKIAIOSFODNN7EXAMPLE
 secretAccessKeySecretRef:
 name: prod-route53-credentials-secret
 key: secret-access-key

Cert-manager requires the following IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "route53:GetChange",
 "Resource": "arn:aws:route53:::change/*"
 },
 {
 "Effect": "Allow",
 "Action": "route53:ChangeResourceRecordSets",
 "Resource": "arn:aws:route53:::hostedzone/*"
 },
 {
 "Effect": "Allow",
 "Action": "route53:ListHostedZonesByName",
 "Resource": "*"
 }
]
}

The route53:ListHostedZonesByName statement can be removed if you specify
the optional hosted zone ID (spec.acme.dns01.providers[].hostedZoneID) on
the Issuer resource. You can further tighten this policy by limiting the hosted
zone that cert-manager has access to (replace arn:aws:route53:::hostedzone/*
with arn:aws:route53:::hostedzone/DIKER8JPL21PSA, for instance).

DigitalOcean

This provider uses a Kubernetes Secret Resource to work. In the
following example, the secret will have to be named digitalocean-dns
and have a subkey access-token with the token in it.

To create a Personnal Access Token, see DigitalOcean documentation [https://www.digitalocean.com/docs/api/create-personal-access-token/].
Handy direct link: https://cloud.digitalocean.com/account/api/tokens/new

digitalocean:
 tokenSecretRef:
 name: digitalocean-dns
 key: access-token

HTTP01 Challenge Provider

In order to allow HTTP01 challenges to be solved, we must enable the HTTP01
challenge provider on our Issuer resource.

This is done through setting the http01 field on the issuer.spec.acme
stanza. Cert-manager will then attempt to solve ACME HTTP-01 challenges by
using Ingress resources

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: example-issuer
spec:
 acme:
 email: user@example.com
 server: https://acme-staging-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 name: example-issuer-account-key
 http01: {}

Note

Let’s Encrypt does not support issuing wildcard certificates with HTTP-01 challenges.
To issue wildcard certificates, you must use the DNS-01 challenge.

How HTTP01 validations work

Todo

Write a full description of how HTTP01 challenge validation works

Extra options

The HTTP01 Issuer supports a number of additional options.
For full details on the range of options available, read the
reference documentation [https://cert-manager.readthedocs.io/en/latest/reference/api-docs/index.html#acmeissuerhttp01config-v1alpha1].

servicePort

In rare cases it might be not possible/desired to use NodePort as type for the
http01 challenge response service, e.g. because of Kubernetes limit
restrictions. To define which Kubernetes service type to use during challenge
response specify the following http01 config:

http01:
 # Valid values are ClusterIP and NodePort
 serviceType: ClusterIP

By default type NodePort will be used when you don’t set http01 or when you set
serviceType to an empty string. Normally there’s no need to change this.

Debugging failing Orders

This guide is still in the process of being written.

Please check the Order resource reference docs to
understand how to debug ACME Orders & Challenges when you are having issues.

Common problems

Todo

fill in this section with a new header for each issue that we see
commonly occurring.

Backing up and restoring

If you need to uninstall cert-manager, or transfer your installation to a new
cluster, you can backup all of cert-manager’s configuration in order to
later re-install.

Backing up

To backup all of your cert-manager configuration resources, run:

kubectl get -o yaml \
 --all-namespaces \
 issuer,clusterissuer,certificates,orders,challenges > cert-manager-backup.yaml

If you are transferring data to a new cluster, you may also need to copy across
additional Secret resources that are referenced by your configured Issuers,
such as:

CA Issuers

	The root CA Secret referenced by issuer.spec.ca.secretName

Vault Issuers

	The token authentication Secret referenced by
issuer.spec.vault.auth.tokenSecretRef

	The approle configuration Secret referenced by
issuer.spec.vault.auth.appRole.secretRef

ACME Issuers

	The ACME account private key Secret referenced by issuer.acme.privateKeySecretRef

	Any Secrets referenced by DNS providers configured under the
issuer.acme.dns01.providers field

Restoring

In order to restore your configuration, you can simply kubectl apply the
files created above after installing cert-manager.

kubectl apply -f cert-manager-backup.yaml

If you have migrated from an old cluster, you will need to make sure to run a
similar kubectl apply command to restore your Secret resources too.

Upgrading cert-manager

This section contains information on upgrading cert-manager.
It also contains documents detailing breaking changes between cert-manager
versions, and information on things to look out for when upgrading.

Note

Before performing upgrades of cert-manager, it is advised to take a backup
of all your cert-manager resources just in case an issue occurs whilst
upgrading. You can read how to backup and restore cert-manager in the
Backing up and restoring guide.

Upgrading with Helm

If you installed cert-manager using Helm, you can easily upgrade using the Helm
CLI.

Note

Before upgrading, please read the relevant instructions at the links below
for your from and to version.

Once you have read the relevant upgrading notes and taken any appropriate
actions, you can begin the upgrade process like so - replacing
<release_name> with the name of your Helm release for cert-manager (usually
this is cert-manager) and replacing <version> with the
version number you want to install:

Install the cert-manager CustomResourceDefinition resources before
upgrading the Helm chart
kubectl apply \
 -f https://raw.githubusercontent.com/jetstack/cert-manager/<version>/deploy/manifests/00-crds.yaml

Ensure the local Helm chart repository cache is up to date
helm repo update

If you are upgrading from v0.5 or below, you should manually add this
label to your cert-manager namespace to ensure the `webhook component`_
can provision correctly.
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

helm upgrade --version <version> <release_name> stable/cert-manager

This will upgrade you to the latest version of cert-manager, as listed in the
official Helm charts repository [https://github.com/helm/charts].

Note

You can find out your release name using helm list | grep cert-manager.

Upgrading using static manifests

If you installed cert-manager using the static deployment manifests [https://github.com/jetstack/cert-manager/blob/release-0.6/deploy/manifests], you
can upgrade them in a similar way to how you first installed them.

Note

Before upgrading, please read the relevant instructions at the links below
for your from and to version.

Once you have read the relevant notes and taken any appropriate actions, you
can begin the upgrade process like so - replacing <version> with the
version number you want to install:

If you are upgrading from v0.5 or below, you should manually add this
label to your cert-manager namespace to ensure the `webhook component`_
can provision correctly.
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

kubectl apply \
 -f https://raw.githubusercontent.com/jetstack/cert-manager/<version>/deploy/manifests/cert-manager.yaml

Note

If you are running kubectl v1.12 or below, you will need to add the
--validate=false flag to your kubectl apply command above else you
will receive a validation error relating to the caBundle field of the
ValidatingWebhookConfiguration resource.
This issue is resolved in Kubernetes 1.13 onwards. More details can be found
in kubernetes/kubernetes#69590 [https://github.com/kubernetes/kubernetes/issues/69590].

	Upgrading from v0.2 to v0.3

	Upgrading from v0.3 to v0.4

	Upgrading from v0.4 to v0.5

	Upgrading from v0.5 to v0.6

Upgrading from v0.2 to v0.3

During the v0.3 release, a number of breaking changes were made that require you
to update either deployment configuration and runtime configuration (e.g. Certificate,
Issuer and ClusterIssuer resources).

After reading these instructions, you should then proceed to upgrade cert-manager
according to your deployment configuration (e.g. using helm upgrade if installing
via Helm chart, or kubectl apply if installing with raw manifests).

A brief summary:

	Supporting resources for ClusterIssuers (e.g. signing CA certificates, or
ACME account private keys) will now be stored in the same namespace as
cert-manager, instead of kube-system in previous versions (#329, @munnerz)

	Switch to ConfigMaps instead of Endpoints for leader election (#327, @mikebryant)

	Removing support for ACMEv1 in favour of ACMEv2 (#309, @munnerz)

	Removing ingress-shim and compiling it into cert-manager itself (#502, @munnerz)

	Change to the default behaviour of ingress-shim. It now generates Certificates
with the ingressClass field set instead of the ingress field. This will
mean users of ingress controllers that assign a single IP to a single Ingress (e.g.
the GCE ingress controller) will no longer work without adding a new annotation
to your ingress resource.

Supporting resources for ClusterIssuers moving into the cert-manager namespace

In the past, the cert-manager controller was hard coded to look for supplemental
resources, such as Secrets containing DNS provider credentials, in the kube-system
namespace.

We now store these resources in the same namespace as the cert-manager pod itself
runs within.

When upgrading, you should make sure to move any of these supplemental resources into
the cert-manager deployment namespace, or otherwise deploy cert-manager into kube-system
itself.

You can also change the ‘cluster resource namespace’ when deploying cert-manager:

With the helm chart: --set clusterResourceNamespace=kube-system.

Or if using the static deployment manifests, by adding the --cluster-resource-namespace
flag to the args field of the cert-manager container.

Switch to ConfigMaps instead of Endpoints for leader election

cert-manager-controller performs leader election to allow you to run ‘hot standby’
replicas of cert-manager.

In the past, we used Endpoint resources to perform this election.
The new best practice is to use ConfigMap resources in order to reduce API overhead
in large clusters.

As such, v0.3 switches us to use ConfigMap resources for leader election.

During the upgrade, you should first scale your cert-manager-controller deployment
to 0 to ensure no other replicas of cert-manager are running when the new v0.3
deployment starts:

kubectl scale --namespace <deployment-namespace> --replicas=0 deployment <cert-manager-deployment-name>

Removing support for ACMEv1 in favour of ACMEv2

The ACME v2 specification is now in production with Let’s Encrypt.
In order to support this new spec, which includes support for wildcard certificates,
we have removed support for the v1 protocol altogether.

If you have any ACME Issuer or ClusterIssuer resources, you should update the
server fields of these to the new ACMEv2 endpoints.

For example, if you have a Let’s Encrypt production issuer, you should update the
server URL:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
...
spec:
 acme:
 # server: https://acme-v01.api.letsencrypt.org/directory
 server: https://acme-v02.api.letsencrypt.org/directory # we switch 'v01' to 'v02'

Removing ingress-shim and compiling it into cert-manager itself

In v0.3 we removed the ingress-shim component and instead now compile in its
functionality into the main cert-manager binary.

This change also introduces a change to the way you configure default Issuers
and ClusterIssuers at deployment time.

The deployment documentation has been updated accordingly, but instead of setting
ingressShim.extraArgs={--default-issuer-name=letsencrypt-pod} there are
now dedicated Helm chart fields:

--set ingressShim.defaultIssuerName=letsencrypt-prod \
--set ingressShim.defaultIssuerKind=ClusterIssuer

Change to the default behaviour of ingress-shim

In the past, when using ingress-shim, we set the ingress field on the Certificate
resource to trigger cert-manager to edit the specified Ingress resource to solve
the challenge.

The alternate option is to set the ingressClass field, which causes cert-manager
to create temporary Ingress resources to solve the challenge. This behaviour provides
better compatibility with ingress controllers like nginx-ingress [https://github.com/kubernetes/ingress-nginx].

In v0.3 we have changed the default behaviour of ingress-shim to set the ingressClass
field instead of ingress.

This will cause validations for ingress controllers like ingress-gce [https://github.com/kubernetes/ingress-gce] to fail without
additional configuration in your Ingress resources annotations.

Add the follow annotation to your Ingress resources if you are using the GCE ingress
controller, in addition to the usual ingress-shim annotation(s):

certmanager.k8s.io/acme-http01-edit-in-place: "true"

Upgrading from v0.3 to v0.4

There are no special notes or considerations when upgrading from v0.3 to v0.4.

Upgrading from v0.4 to v0.5

Version 0.5 of cert-manager introduces a new ‘webhook’ component, which is used
by the Kubernetes apiserver to validate our CRD resource types.

This should help in future to reduce errors caused by misconfigured Certificate
and Issuer resources.

When upgrading from a previous release using Helm, it is essential that
you perform one extra step before upgrading.

Disabling resource validation on the cert-manager namespace

Before upgrading, you should add the certmanager.k8s.io/disable-validation: "true"
label to the cert-manager namespace.

This will allow the system resources that cert-manager requires to bootstrap
TLS to be created in its own namespace.

Upgrading from v0.5 to v0.6

Warning

If you are upgrading from a release older than v0.5, please read the
Upgrading from older versions using Helm note at the bottom of this
document!

The upgrade process from v0.5 to v0.6 should be fairly seamless for most users.
As part of the new release, we have changed how we ship the
CustomResourceDefinition resources that cert-manager needs in order to operate
(as well as introducing two new CRD types).

Depending on the way you have installed cert-manager in the past, your upgrade
process will slightly vary:

Upgrading with the Helm chart

If you have previously deployed cert-manager v0.5 using the Helm installation
method, you will now need to perform one extra step before upgrading.

Due to issues with the way Helm handles CRD resources in Helm charts, we have
now moved the installation of these resources into a separate YAML manifest
that must be installed with kubectl apply before upgrading the chart.

You can follow the regular upgrade guide as
usual in order to upgrade from v0.5 to v0.6.

Upgrading with static manifests

The static manifests have moved into the deploy/manifests directory for
this release.

We now also no longer ship different manifests for different configurations, in
favour of a single cert-manager.yaml file which should work for all
Kubernetes clusters from Kubernetes v1.9 onwards.

You can follow the regular upgrade guide as
usual in order to upgrade from v0.5 to v0.6.

Upgrading from older versions using Helm

If you are upgrading from a version older than v0.5 and
have installed with Helm, you will need to perform a fresh installation of
cert-manager due to issues with the Helm upgrade process.
This will involve the removal of all cert-manager custom resources.
This will not delete the Secret resources being used by your apps.

Before upgrading you will need to:

	Read and follow the backup guide to create a
backup of your configuration.

	Delete the existing cert-manager Helm release (replacing ‘cert-manager’ with
the name of your Helm release):

Uninstall the Helm chart
$ helm delete --purge cert-manager

Ensure the cert-manager CustomResourceDefinition resources do not exist:
$ kubectl delete crd \
 certificates.certmanager.k8s.io \
 issuers.certmanager.k8s.io \
 clusterissuers.certmanager.k8s.io

	Perform a fresh install (as per the
installation guide):

Install the cert-manager CRDs
$ kubectl apply \
 -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.6/deploy/manifests/00-crds.yaml

Update helm repository cache
$ helm repo update

Install cert-manager
$ helm install \
 --name cert-manager \
 --namespace cert-manager \
 --version v0.6.2 \
 stable/cert-manager

	Follow the steps in the restore guide to
restore your configuration.

	Verify that your Issuers and Certificate resources are ‘Ready’:

$ kubectl get clusterissuer,issuer,certificates --all-namespaces
NAMESPACE NAME READY SECRET AGE
cert-manager cert-manager-webhook-ca True cert-manager-webhook-ca 1m
cert-manager cert-manager-webhook-webhook-tls True cert-manager-webhook-webhook-tls 1m
example-com example-com-tls True example-com-tls 11s

Reference documentation

This section contains detailed reference documentation about cert-manager’s
types and how it operates. It also includes some simple example configurations
in order to help users activate advanced functionality of cert-manager.

Step by step user guides and tutorials can be found in the
tutorials section.

Contents:

	Certificates
	Certificate Duration and Renewal Window

	Orders
	Debugging Order resources

	Challenges
	Challenge lifecycle

	Challenge scheduling

	Debugging Challenge resources

	Troubleshooting failing challenges

	Issuers
	Namespacing

	Ambient Credentials

	Supported Issuer types

	ClusterIssuers

	API documentation

Certificates

cert-manager has the concept of ‘Certificates’ that define a desired X.509
certificate. A Certificate is a namespaced resource that references an
Issuer or ClusterIssuer for information on how to obtain the certificate.

A simple Certificate could be defined as:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: acme-crt
spec:
 secretName: acme-crt-secret
 dnsNames:
 - foo.example.com
 - bar.example.com
 acme:
 config:
 - ingressClass: nginx
 domains:
 - foo.example.com
 - bar.example.com
 issuerRef:
 name: letsencrypt-prod
 # We can reference ClusterIssuers by changing the kind here.
 # The default value is Issuer (i.e. a locally namespaced Issuer)
 kind: Issuer

This Certificate will tell cert-manager to attempt to use the Issuer
named letsencrypt-prod to obtain a certificate key pair for the
foo.example.com and bar.example.com domains. If successful, the
resulting key and certificate will be stored in a secret named
acme-crt-secret with keys of tls.key and tls.crt respectively.
This secret will live in the same namespace as the Certificate resource.

The dnsNames field specifies a list of Subject Alternative Names [https://en.wikipedia.org/wiki/Subject_Alternative_Name] to be
associated with the certificate. If the commonName field is omitted, the
first element in the list will be the common name.

The referenced Issuer must exist in the same namespace as the Certificate.
A Certificate can alternatively reference a ClusterIssuer which is
non-namespaced.

Certificate Duration and Renewal Window

cert-manager Certificate resources also support custom validity durations and
renewal windows.

Important: The backend service implementation can choose to generate a
certificate with a different validity period than what is requested in the
issuer.

Although the duration and renewal periods are specified on the Certificate
resources, the corresponding Issuer or ClusterIssuer must support this.

The table below shows the support state of the different backend services used
by issuer types:

	Issuer

	Description

	ACME

	Only ‘renewBefore’ supported

	CA

	Fully supported

	Vault

	Fully supported (although the requested duration must be lower
than the configured Vault role’s TTL)

	Self Signed

	Fully supported

The default duration for all certificates is 90 days and the default renewal
windows is 30 days. This means that certificates are considered valid for 3
months and renewal will be attempted within 1 month of expiration.

The duration and renewBefore parameters must be given in the golang parseDuration string format [https://golang.org/pkg/time/#ParseDuration].

Example Usage

Here an example of an issuer specifying the duration and renewal window.

The certificate from the previous section is extended with a validity period of
24 hours and to begin trying to renew 12 hours before the certificate
expiration.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: example
spec:
 secretName: example-tls
 duration: 24h
 renewBefore: 12h
 dnsNames:
 - foo.example.com
 - bar.example.com
 issuerRef:
 name: my-internal-ca
 kind: Issuer

Orders

Order resources are used by the ACME issuer to manage the lifecycle of an ACME
‘order’ for a signed TLS certificate.

When a Certificate resource is created that references an ACME issuer,
cert-manager will create an Order resource in order to obtain a signed
certificate.

As an end-user, you will never need to manually create an Order resource.
Once created, an Order cannot be changed. Instead, a new Order resource must be
created.

Debugging Order resources

In order to debug why a Certificate isn’t being issued, we can first run
kubectl describe on the Certificate resource we’re having issues with:

$ kubectl describe certificate example-com

...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Generated 1m cert-manager Generated new private key
 Normal OrderCreated 1m cert-manager Created Order resource "example-com-1217431265"

We can see here that Certificate controller has created an Order resource to
request a new certificate from the ACME server.

Orders are a useful source of information when debugging failures issuing ACME
certificates. By running kubectl describe order on a particular order,
information can be gleaned about failures in the process:

$ kubectl describe order example-com-1248919344

...
Reason:
State: pending
URL: https://acme-v02.api.letsencrypt.org/acme/order/41123272/265506123
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 1m cert-manager Created Challenge resource "example-com-1217431265-0" for domain "test1.example.com"
 Normal Created 1m cert-manager Created Challenge resource "example-com-1217431265-1" for domain "test2.example.com"

Here we can see that cert-manager has created two Challenge resources in order
to fulfil the requirements of the ACME order to obtain a signed certificate.

You can then go on to run
kubectl describe challenge example-com-1217431265-0 to further debug the
progress of the Order.

Once an Order is successful, you should see an event like the following:

$ kubectl describe order example-com-1248919344

...
Reason:
State: valid
URL: https://acme-v02.api.letsencrypt.org/acme/order/41123272/265506123
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 72s cert-manager Created Challenge resource "example-com-1217431265-0" for domain "test1.example.com"
 Normal Created 72s cert-manager Created Challenge resource "example-com-1217431265-1" for domain "test2.example.com"
 Normal OrderValid 4s cert-manager Order completed successfully

If the Order is not completing successfully, you can debug the challenges
for the Order by running kubectl describe on the Challenge resource.

For more information on debugging Challenge resources, read the
challenge reference docs.

Challenges

Challenge resources are used by the ACME issuer to manage the lifecycle of an
ACME ‘challenge’ that must be completed in order to complete an ‘authorization’
for a single DNS name/identifier.

When an Order resource is created, the order controller will create
Challenge resources for each DNS name that is being authorized with the ACME
server.

As an end-user, you will never need to manually create a Challenge resource.
Once created, a Challenge cannot be changed. Instead, a new Challenge resource
must be created.

Challenge lifecycle

After a Challenge resource has been created, it will be initially queued for
processing.
Processing will not begin until the challenge has been ‘scheduled’ to start.
This scheduling process prevents too many challenges being attempted at once,
or multiple challenges for the same DNS name being attempted at once.
For more information on how challenges are scheduled, read the
challenge scheduling section.

Once a challenge has been scheduled, it will first be ‘synced’ with the ACME
server in order to determine its current state. If the challenge is already
valid, its ‘state’ will be updated to ‘valid’, and also set
status.processing = false to ‘unschedule’ itself.

If the challenge is still ‘pending’, the challenge controller will ‘present’
the challenge using the configured solver, one of HTTP01 or DNS01.
Once the challenge has been ‘presented’, it will set status.presented=true.

Once ‘presented’, the challenge controller will perform a ‘self check’ to
ensure that the challenge has ‘propagated’ (i.e. the authoritve DNS servers
have been updated to respond correctly, or the changes to the ingress resources
have been observed and in-use by the ingress controller).

If the self check fails, cert-manager will retry the self check with a fixed
10 second retry interval. Challenges that do not ever complete the self check
will continue retrying until the user intervenes.

Once the self check is passing, the ACME ‘authorization’ associated with this
challenge will be ‘accepted’ (TODO: add link to accepting challenges section of
ACME spec).

The final state of the authorization after accepting it will be copied across
to the Challenge’s status.state field, as well as the ‘error reason’ if
an error occurred whilst the ACME server attempted to validate the challenge.

Once a Challenge has entered the valid, invalid, expired or
revoked state, it will set status.processing=false to prevent any
further processing of the ACME challenge, and to allow another challenge to be
scheduled if there is a backlog of challenges to complete.

Challenge scheduling

Instead of attempting to process all challenges at once, challenges are
‘scheduled’ by cert-manager.

This scheduler applies a cap on the maximum number of simultaneous challenges
as well as disallows two challenges for the same DNS name and solver type
(http-01 or dns-01) to be completed at once.

The maximum number of challenges that can be processed at a time is 60 as of
ddff78 [https://github.com/jetstack/cert-manager/blob/ddff78f011558e64186d61f7c693edced1496afa/pkg/controller/acmechallenges/scheduler/scheduler.go#L31-L33].

Debugging Challenge resources

In order to determine why an ACME Certificate is not being issued, we can debug
using the ‘Challenge’ resources that cert-manager has created.

In order to determine which Challenge is failing, you can run
kubectl get challenges:

$ kubectl get challenges

NAME STATE DOMAIN REASON AGE
example-com-1217431265-0 pending example.com Waiting for dns-01 challenge propagation 22s

This shows that the challenge has been presented using the DNS01 solver
successfully and now cert-manager is waiting for the ‘self check’ to pass.

You can get more information about the challenge by using kubectl describe:

$ kubectl describe challenge example-com-1217431265-0

...
Status:
 Presented: true
 Processing: true
 Reason: Waiting for dns-01 challenge propagation
 State: pending
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Started 19s cert-manager Challenge scheduled for processing
 Normal Presented 16s cert-manager Presented challenge using dns-01 challenge mechanism

Progress about the state of each challenge will be recorded either as Events
or on the Challenge’s status block (as shown above).

Troubleshooting failing challenges

Todo

add section describing common issues and resolutions when challenges are
failing

Issuers

Issuers (and ClusterIssuers) represent a
certificate authority from which signed x509 certificates can be obtained, such
as Let’s Encrypt [https://letsencrypt.org]. You will need at least one Issuer or ClusterIssuer in
order to begin issuing certificates within your cluster.

An example of an Issuer type is ACME. A simple ACME issuer could be defined as:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:
 name: letsencrypt-prod
 namespace: edge-services
spec:
 acme:
 # The ACME server URL
 server: https://acme-v02.api.letsencrypt.org/directory
 # Email address used for ACME registration
 email: user@example.com
 # Name of a secret used to store the ACME account private key
 privateKeySecretRef:
 name: letsencrypt-prod
 # Enable HTTP01 validations
 http01: {}

This is the simplest of ACME issuers - it specifies no DNS-01 challenge
providers. HTTP-01 validation can be performed through using Ingress
resources by enabling the HTTP-01 challenge mechanism (with the http01: {}
field).
More information on configuring ACME Issuers can be found here.

Namespacing

An Issuer is a namespaced resource, and it is not possible to issue
certificates from an Issuer in a different namespace. This means you will need
to create an Issuer in each namespace you wish to obtain Certificates in.

If you want to create a single issuer than can be consumed in multiple
namespaces, you should consider creating a ClusterIssuer
resource. This is almost identical to the Issuer resource, however is
non-namespaced and so it can be used to issue Certificates across all namespaces.

Ambient Credentials

Some API clients are able to infer credentials to use from the environment they
run within. Notably, this includes cloud instance-metadata stores and
environment variables.
In cert-manager, the term ‘ambient credentials’ refers to such credentials.
They are always drawn from the environment of the ‘cert-manager-controller’
deployment.

Example Usage

If cert-manager is deployed in an environment with ambient AWS credentials,
such as with a kube2iam [https://github.com/jtblin/kube2iam] role, the following ClusterIssuer would make use of
those credentials to perform the ACME DNS01 challenge with route53.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: letsencrypt-prod
spec:
 acme:
 server: https://acme-v02.api.letsencrypt.org/directory
 email: user@example.com
 privateKeySecretRef:
 name: letsencrypt-prod
 dns01:
 providers:
 - name: route53
 route53:
 region: us-east-1

It is important to note that the route53 section does not specify any
accessKeyID or secretAccessKeySecretRef. If either of these are
specified, ambient credentials will not be used.

When are Ambient Credentials used

Ambient credentials are supported for the ‘route53’ ACME DNS01 challenge
provider.

They will only be used if no credentials are supplied, even if the supplied
credentials are invalid.

By default, ambient credentials may be used by ClusterIssuers, but not regular
issuers. The --issuer-ambient-credentials and
--cluster-issuer-ambient-credentials=false flags on cert-manager may be
used to override this behavior.

Note that ambient credentials are disabled for regular Issuers by default to
ensure unprivileged users who may create issuers cannot issue certificates
using any credentials cert-manager incidentally has access to.

Supported Issuer types

cert-manager has been designed to support pluggable Issuer backends. The
currently supported Issuer types are:

	Name

	Description

	ACME

	Supports obtaining certificates from an ACME server, validating with
HTTP01 or DNS01

	CA

	Supports issuing certificates using a simple signing keypair, stored
in a Secret in the Kubernetes API server

	Vault

	Supports issuing certificates using HashiCorp Vault.

	Self signed

	Supports issuing self signed certificates

Each Issuer resource is of one, and only one type. The type of an Issuer is
inferred by which field it specifies in its spec, such as spec.acme
for the ACME issuer, or spec.ca for the CA based issuer.

ClusterIssuers

ClusterIssuers are a resource type similar to Issuers.
They are specified in exactly the same way, but they do not belong to a single
namespace and can be referenced by Certificate resources from multiple different
namespaces.

They are particularly useful when you want to provide the ability to obtain
certificates from a central authority (e.g. Letsencrypt, or your internal CA)
and you run single-tenant clusters.

The docs for Issuer resources apply equally to ClusterIssuers.

You can specify a ClusterIssuer resource by changing the kind attribute of
an Issuer to ClusterIssuer, and removing the metadata.namespace attribute:

apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:
 name: letsencrypt-prod
spec:
...

We can then reference a ClusterIssuer from a Certificate resource by setting
the spec.issuerRef.kind field to ClusterIssuer:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: my-certificate
 namespace: my-namespace
spec:
 secretName: my-certificate-secret
 issuerRef:
 name: letsencrypt-prod
 kind: ClusterIssuer
 ...

When referencing a Secret resource in ClusterIssuer resources (eg apiKeySecretRef) the Secret needs to be in the same namespace as the cert-manager controller pod. You can optionally override this by using the --cluster-resource-namespace argument to the controller.

For more information on configuring Issuer resources, see the Issuers
reference documentation.

API documentation

Development documentation

	Develop with minikube

	Running end-to-end tests

	Contributing DNS01 providers

	DCO Sign off

	Release process

	Generating Documentation

Develop with minikube

Minikube is a tool to quickly provision a local Kubernetes cluster on many
platforms. It can be used to test and develop cert-manager. This guide will
walk you through getting started using Minikube for development.

Start minikube

First, run minikube, and configure your local kubectl command to work with minikube; minikube typically does this automatically.

Check your locally installed minikube version
$ minikube version
minikube version: v0.25.0

Start a local cluster
$ minikube start --extra-config=apiserver.Authorization.Mode=RBAC

Verify it works. This should output a local apiserver IP
$ kubectl cluster-info

Create a cluster role binding so Tiller has cluster-admin access rights
$ kubectl create clusterrolebinding default-admin --clusterrole=cluster-admin --serviceaccount=kube-system:default

Install helm
$ helm init

Install local development tools

You will need the following tools to build cert-manager:

	Bazel [https://docs.bazel.build/versions/master/install.html]

	Docker [https://store.docker.com/search?type=edition&offering=community] (and enable for non-root user)

These instructions have only been tested on Linux; Windows and MacOS may
require further changes.

If you need to add dependencies, you will additionally need:

	Git [https://git-scm.com/downloads]

	Mercurial [https://www.mercurial-scm.org/]

You can then run bazel run //hack:update-deps to regenerate any
dependencies, and bazel build :images to build the docker images.

Build a dev version of cert-manager

Configure your local docker client to use the minikube docker daemon
$ eval "$(minikube docker-env)"

Build cert-manager binaries and docker images. Full output omitted for brevity
$ make build
Successfully tagged quay.io/jetstack/cert-manager-controller:build

Deploy that version with helm

Install our freshly built cert-manager image
$ helm install \
 --set image.tag=build \
 --set image.pullPolicy=Never \
 --name cert-manager \
 ./contrib/charts/cert-manager

From here, you should be able to do whatever manual testing or development you wish to.

Deploy a new version

In general, upgrading can be done simply by running make build, and then deleting the deployed pod using kubectl delete pod.

However, if you make changes to the helm chart or wish to change the controller’s arguments, such as to change the logging level, you may also update it with the following:

helm upgrade \
 cert-manager \
 --reuse-values \
 --set extraArgs="{-v=5}"
 --set image.tag=build
 ./contrib/charts/cert-manager

Running end-to-end tests

cert-manager has an end-to-end test suite that verifies functionality against a
real Kubernetes cluster.

This document explains how you can run the end-to-end tests yourself.
This is useful when you have added or changed functionality in cert-manager and
want to verify the software still works as expected.

Requirements

Currently, a number of tools must be installed on your machine in order to
run the tests:

	bazel - As with all other development, Bazel is required to actually
build the project as well as end-to-end test framework. Bazel will also
retrieve appropriate versions of any other dependencies depending on what
‘target’ you choose to run.

	docker - We provision a whole Kubernetes cluster within Docker, and so
an up to date version of Docker must be installed. The oldest Docker version
we have tested is 17.09.

	kubectl - If you are running the tests on Linux, this step is
technically not required. For non-Linux hosts (i.e. OSX), you will need to
ensure you have a relatively new version of kubectl available on your PATH.

	An internet connection - tests require access to DNS, and optionally
Cloudflare APIs (if a Cloudflare API token is provided).

Bazel, Docker and Kubectl should be installed through your preferred means.

Run end-to-end tests

You can run the end-to-end tests by executing the following:

./hack/ci/run-e2e-kind.sh

The full suite may take up to 10 minutes to run.
You can monitor output of this command to track progress.

Contributing DNS01 providers

Steps to add a FooDNS DNS-01 provider:

	Create a new package under pkg/issuer/acme/dns/foodns.
This is where all the code to interact with the DNS providers API will live.

	Implement functions to match the solver interface (Present, CleanUp and Timeout).
Use an existing provider for reference.
Most of the cert-manager providers are based off
https://github.com/xenolf/lego, so if lego supports the DNS provider you
want to add, it’s fairly easy to copy it over and make modifications to fit
with the cert-manager codebase. Examples of the changes required:

	replace uses of github.com/xenolf/lego/acme with github.com/jetstack/cert-manager/pkg/issuer/acme/dns/util.

	replace uses of github.com/xenolf/lego/log with github.com/golang/glog.

	remove references to github.com/xenolf/lego/platform/config/env.
cert-manager does not use environment variables for internal configuration, so calls to this package should not be required.

	Add unit test coverage for this package.

	Add your provider configuration types to the API (located in pkg/apis/certmanager/v1alpha1/types.go) and regenerate code (run ./hack/update-codegen.sh).
New API types should have an associated short documentation string,
which is added to the reference API documentation (run ./hack/update-reference-docs-dockerized.sh to update the API documentation).

	Register the provider in pkg/issuer/acme/dns:

	The constructor for the provider needs adding to dnsProviderConstructors,

	solverForIssuerProvider must be updated to handle retrieving any information for the new provider (for example, fetching credentials from a secret)
and constructing a new instance of the provider.

	Add coverage for the provider to pkg/issuer/acme/dns/dns_test.go.

	Add example configuration for the new provider to docs/reference/issuers/acme/dns01/index.rst.
The more information here the better,
this example and corresponding documentation should inform users how to use and configure this backend,
as well as mentioning any nuances with using this particular provider.

	Test your provider out against a real account, and make sure you can issue a Certificate.

	Submit your new provider to cert-manager!

Things to watch out for:

	Assume that at any point the cert-manager process may restart.
Make sure values required for operations like CleanUp are not solely stored in memory.

DCO Sign off

All authors to the project retain copyright to their work. However, to ensure
that they are only submitting work that they have rights to, we are requiring
everyone to acknowledge this by signing their work.

Any copyright notices in this repo should specify the authors as “the Jetstack
cert-manager contributors”.

To sign your work, just add a line like this at the end of your commit message:

Signed-off-by: Joe Bloggs <joe@example.com>

This can easily be done with the --signoff option to git commit.
You can also mass sign-off a whole PR with git rebase --signoff master,
replacing master with the branch you are creating a pull request again if
not master.

By doing this you state that you certify the following (from https://developercertificate.org/):

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Release process

This document aims to outline the process that should be followed for cutting a
new release of cert-manager.

Minor releases

A minor release is a backwards-compatible ‘feature’ release.
It can contain new features and bugfixes.

Release schedule

We aim to cut a new minor release once per month.
The rough goals for each release are outlined as part of a GitHub milestone.
We cut a release even if some of these goals are missed, in order to keep up
release velocity.

Process

Note

This process document is WIP and may be incomplete

The process for cutting a minor release is as follows:

	Ensure upgrading document exists in docs/admin/upgrading

	Create a new release branch (e.g. `release-0.5`)

	Push it to the `jetstack/cert-manager repository

	Create a pull-request updating the Helm chart version and merge it:

	Update contrib/charts/cert-manager/README.md

	Update contrib/charts/cert-manager/Chart.yaml

	Update contrib/charts/cert-manager/values.yaml

	Update contrib/charts/cert-manager/requirements.yaml

	Update contrib/charts/cert-manager/webhook/Chart.yaml

	Update contrib/charts/cert-manager/webhook/values.yaml

	Run `helm dep update` in the contrib/charts/cert-manager directory

	Run `./hack/update-deploy-gen.sh` in the root of the repository

	Gather release notes since the previous release:

	Run `relnotes -repo cert-manager -owner jetstack release-0.5`

	Write up appropriate notes, similar to previous releases

	Submit the Helm chart changes to the upstream `helm/charts` repo:

TARGET_REPO_REMOTE=upstream \
SOURCE_REPO_REMOTE=upstream \
SOURCE_REPO_REF=release-0.5 \
GITHUB_USER=munnerz \
./hack/create-chart-pr.sh

	Iterate on review feedback (hopefully this will be minimal) and submit
changes to `master` of cert-manager, performing a rebase of release-x.y
and re-run of the `create-chart-pr.sh` script after each cycle to gather
more feedback.

	Create a new tag taken from the release branch, e.g. `v0.5.0`.

Patch releases

A patch release contains critical bugfixes for the project.
They are managed on an ad-hoc basis, and should only be required when critical
bugs/regressions are found in the release.

We will only perform patch release for the current version of cert-manager.

Once a new minor release has been cut, we will stop providing patches for the
version before it.

Release schedule

Patch releases are cut on an ad-hoc basis, depending on recent activity on the
release branch.

Process

Note

This process document is WIP and may be incomplete

Bugs that need to be fixed in a patch release should be cherry picked into the
appropriate release branch using the `./hack/cherry-pick-pr.sh` script in
this repository.

The process for cutting a patch release is as follows:

	Create a PR against the release branch to bump the chart version:

	Update contrib/charts/cert-manager/README.md

	Update contrib/charts/cert-manager/Chart.yaml

	Update contrib/charts/cert-manager/values.yaml

	Update contrib/charts/cert-manager/requirements.yaml

	Update contrib/charts/cert-manager/webhook/Chart.yaml

	Update contrib/charts/cert-manager/webhook/values.yaml

	Run `helm dep update` in the contrib/charts/cert-manager directory

	Run `./hack/update-deploy-gen.sh` in the root of the repository

	Submit the Helm chart changes to the upstream `helm/charts` repo:

TARGET_REPO_REMOTE=upstream \
SOURCE_REPO_REMOTE=upstream \
SOURCE_REPO_REF=release-0.5 \
GITHUB_USER=munnerz \
./hack/create-chart-pr.sh

	Iterate on review feedback (hopefully this will be minimal) and submit
changes to `master` of cert-manager, performing a rebase of release-x.y
and re-run of the `create-chart-pr.sh` script after each cycle to gather
more feedback.

	Gather release notes since the previous release:

	Run `relnotes -repo cert-manager -owner jetstack release-0.5`

	Write up appropriate notes, similar to previous patch releases

	Create a new tag taken from the release branch, e.g. `v0.5.1`.

Generating Documentation

The documentation is generated from reStructured Text [https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html] by Sphinx [https://www.sphinx-doc.org/]
(via Read The Docs [https://readthedocs.org/]). If you’re unfamiliar with reStructured Text [https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html],
the files typically have the extension .rst. You can find more details
in the reStructured Text Basics [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html].

Installation instructions

To install the sphinx tools, you’ll need python (and pip) installed.:

.. code-block: shell

pip install –user -r requirements.txt

Generating documentation locally

You can generate the documentation locally with the following command:

This will create documentation in the _build directory which you can
open with your browser.

Note that you do not need to add these files to your git client, as
Read The Docs will generate the HTML on the fly.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to cert-manager’s documentation!

 		
 Get started

 		
 Installing cert-manager

 		
 Webhook component

 		
 Troubleshooting installation

 		
 Tutorials

 		
 ACME Issuer Tutorials

 		
 Quick-Start using Cert-Manager with NGINX Ingress

 		
 Issuing an ACME certificate using DNS validation

 		
 Issuing an ACME certificate using HTTP validation

 		
 Migrating from kube-lego

 		
 Tasks

 		
 Setting up Issuers

 		
 Setting up ACME Issuers

 		
 Setting up CA Issuers

 		
 Setting up self signing Issuers

 		
 Setting up Vault Issuers

 		
 Issuing Certificates

 		
 Automatically creating Certificates for Ingress resources

 		
 ACME specific tasks

 		
 Issuing Certificates using ACME

 		
 DNS01 Challenge Provider

 		
 HTTP01 Challenge Provider

 		
 Debugging failing Orders

 		
 Backing up and restoring

 		
 Upgrading cert-manager

 		
 Upgrading from v0.2 to v0.3

 		
 Upgrading from v0.3 to v0.4

 		
 Upgrading from v0.4 to v0.5

 		
 Upgrading from v0.5 to v0.6

 		
 Reference documentation

 		
 Certificates

 		
 Orders

 		
 Challenges

 		
 Issuers

 		
 ClusterIssuers

 		
 API documentation

 		
 Development documentation

 		
 Develop with minikube

 		
 Running end-to-end tests

 		
 Contributing DNS01 providers

 		
 DCO Sign off

 		
 Release process

 		
 Generating Documentation

_static/ajax-loader.gif

_images/high-level-overview.png
fssuers _

Certificates

Kubernetes
Secrets

