

Welcome to CacheControl’s documentation!

CacheControl is a port of the caching algorithms in httplib2 [https://github.com/httplib2/httplib2] for use with
the requests [http://docs.python-requests.org/] session object.

It was written because httplib2’s better support for caching is often
mitigated by its lack of thread-safety. The same is true of requests in
terms of caching.

Install

CacheControl is available from PyPI [https://pypi.python.org/pypi/CacheControl/]. You can install it with pip [http://www.pip-installer.org/]

$ pip install CacheControl

Some of the included cache storage classes have external
requirements. See Storing Cache Data for more info.

Quick Start

For the impatient, here is how to get started using CacheControl:

import requests

from cachecontrol import CacheControl

sess = requests.session()
cached_sess = CacheControl(sess)

response = cached_sess.get('http://google.com')

This uses a thread-safe in-memory dictionary for storage.

Tests

The tests are all in cachecontrol/tests and are runnable by py.test.

Disclaimers

CacheControl is relatively new and might have bugs. I have made an
effort to faithfully port the tests from httplib2 to CacheControl, but
there is a decent chance that I’ve missed something. Please file bugs
if you find any issues!

With that in mind, CacheControl has been used sucessfully in
production environments, replacing httplib2’s usage.

If you give it a try, please let me know of any issues.

Contents

	Using CacheControl
	Wrapper

	Adapter

	Use a Different Cache Store

	Storing Cache Data
	DictCache

	FileCache

	SeparateBodyFileCache

	RedisCache

	Third-Party Cache Providers

	ETag Support
	Turning Off Equal Priority Caching

	Equal Priority Caching Benefits

	Endpoint Specific Caching

	Custom Caching Strategies
	Caching Heuristics

	Best Practices

	Warning!

	Tips and Best Practices
	Timezones

	Cached Responses

	Query String Params

Indices and tables

	Index

	Module Index

	Search Page

Using CacheControl

CacheControl assumes you are using a requests.Session for your
requests. If you are making ad-hoc requests using requests.get then
you probably are not terribly concerned about caching.

There are two way to use CacheControl, via the wrapper and the
adapter.

Wrapper

The easiest way to use CacheControl is to utilize the basic
wrapper. Here is an example:

import requests
import cachecontrol

sess = cachecontrol.CacheControl(requests.Session())
resp = sess.get('http://google.com')

This uses the default cache store, a thread safe in-memory dictionary.

Adapter

The other way to use CacheControl is via a requests Transport
Adapter [http://docs.python-requests.org/en/latest/user/advanced/#transport-adapters].

Here is how the adapter works:

import requests
import cachecontrol

sess = requests.Session()
sess.mount('http://', cachecontrol.CacheControlAdapter())

resp = sess.get('http://google.com')

Under the hood, the wrapper method of using CacheControl mentioned
above is the same as this example.

Use a Different Cache Store

Both the wrapper and adapter classes allow providing a custom cache
store object for storing your cached data. Here is an example using
the provided FileCache from CacheControl:

import requests

from cachecontrol import CacheControl

NOTE: This requires filelock be installed
from cachecontrol.caches import FileCache

sess = CacheControl(requests.Session(),
 cache=FileCache('.webcache'))

The FileCache will create a directory called .webcache and store a
file for each cached request.

Storing Cache Data

CacheControl comes with a few storage backends for storing your
cache’d objects.

DictCache

The DictCache is the default cache used when no other is
provided. It is a simple threadsafe dictionary. It doesn’t try to do
anything smart about deadlocks or forcing a busted cache, but it
should be reasonably safe to use.

Also, the DictCache does not transform the request or response
objects in anyway. Therefore it is unlikely you could persist the
entire cache to disk. The converse is that it should be very fast.

FileCache

The FileCache is similar to the caching mechanism provided by
httplib2 [https://github.com/httplib2/httplib2]. It requires filelock [https://github.com/tox-dev/py-filelock] be installed as it prevents
multiple threads from writing to the same file at the same time.

Note

Note that you can install this dependency automatically with pip
by requesting the filecache extra:

pip install cachecontrol[filecache]

Here is an example using the FileCache:

import requests
from cachecontrol import CacheControl
from cachecontrol.caches.file_cache import FileCache

sess = CacheControl(requests.Session(),
 cache=FileCache('.web_cache'))

The FileCache supports a forever flag that disables deleting from
the cache. This can be helpful in debugging applications that make
many web requests that you don’t want to repeat. It also can be
helpful in testing. Here is an example of how to use it:

forever_cache = FileCache('.web_cache', forever=True)
sess = CacheControl(requests.Session(), forever_cache)

SeparateBodyFileCache

This is similar to FileCache, but far more memory efficient, and therefore recommended if you expect to be caching large downloads.
FileCache results in memory usage that can be 2× or 3× of the downloaded file, whereas SeparateBodyFileCache should have fixed memory usage.

The body of the request is stored in a separate file than metadata, and streamed in and out.

It requires filelock [https://github.com/tox-dev/py-filelock] be installed as it prevents multiple threads from writing to the same file at the same time.

Note

You can install this dependency automatically with pip
by requesting the filecache extra:

pip install cachecontrol[filecache]

Here is an example of using the cache:

import requests
from cachecontrol import CacheControl
from cachecontrol.caches SeparateBodyFileCache

sess = CacheControl(requests.Session(),
 cache=SeparatedBodyFileCache('.web_cache'))

SeparateBodyFileCache supports the same options as FileCache.

RedisCache

The RedisCache uses a Redis database to store values. The values are
stored as strings in redis, which means the get, set and delete
actions are used. It requires the redis [https://github.com/andymccurdy/redis-py] library to be installed.

Note

Note that you can install this dependency automatically with pip
by requesting the redis extra:

pip install cachecontrol[redis]

The RedisCache also provides a clear method to delete all keys in a
database. Obviously, this should be used with caution as it is naive
and works iteratively, looping over each key and deleting it.

Here is an example using a RedisCache:

import redis
import requests
from cachecontrol import CacheControl
from cachecontrol.caches.redis_cache import RedisCache

pool = redis.ConnectionPool(host='localhost', port=6379, db=0)
r = redis.Redis(connection_pool=pool)
sess = CacheControl(requests.Session(), RedisCache(r))

This is primarily a proof of concept, so please file bugs if there is
a better method for utilizing redis as a cache.

Third-Party Cache Providers

	cachecontrol-django [https://github.com/glassesdirect/cachecontrol-django] uses Django’s caching mechanism.

	cachecontrol-uwsgi [https://github.com/etene/cachecontrol-uwsgi] uses uWSGI’s caching framework.

ETag Support

CacheControl’s support of ETags is slightly different than
httplib2. In httplib2, an ETag is considered when using a cached
response when the cache is considered stale. When a cached response is
expired and it has an ETag header, httplib2 issues the next request with
the appropriate If-None-Match header. We’ll call this behavior a Time
Priority cache as the ETag support only takes effect when the time has
expired.

In CacheControl the default behavior when an ETag is sent by the
server is to cache the response. We’ll refer to this pattern as a
Equal Priority cache as the decision to cache is either time base or
due to the presense of an ETag.

The spec is not explicit what takes priority when caching with both
ETags and time based headers. Therefore, CacheControl supports the
different mechanisms via configuration where possible.

Turning Off Equal Priority Caching

The danger in Equal Priority Caching is that a server that returns
ETag headers for every request may fill up your cache. You can disable
Equal Priority Caching and utilize a Time Priority algorithm like
httplib2.

import requests
from cachecontrol import CacheControl

sess = CacheControl(requests.Session(), cache_etags=False)

This will only utilize ETags when they exist within the context of
time based caching headers. If a response has time base caching
headers that are valid along with an ETag, we will still attempt to
handle a 304 Not Modified even though the cached value as
expired. Here is a simple example.

Server response
GET /foo.html
Date: Tue, 26 Nov 2013 00:50:49 GMT
Cache-Control: max-age=3000
ETag: JAsUYM8K

On a subsequent request, if the cache has expired, the next request
will still include the If-None-Match header. The cached response
will remain in the cache awaiting the response.

Client request
GET /foo.html
If-None-Match: JAsUYM8K

If the server returns a 304 Not Modified, it will use the stale
cached value, updating the headers from the most recent request.

Server response
GET /foo.html
Date: Tue, 26 Nov 2013 01:30:19 GMT
Cache-Control: max-age=3000
ETag: JAsUYM8K

If the server returns a 200 OK, the cache will be updated
accordingly.

Equal Priority Caching Benefits

The benefits of equal priority caching is that you have two orthogonal
means of introducing a cache. The time based cache provides an
effective way to reduce the load on requests that can be eventually
consistent. Static resource are a great example of when time based
caching is effective.

The ETag based cache is effective for working with documents that are
larger and/or need to be correct immediately after changes. For
example, if you exported some data from a large database, the file
could be 10 GBs. Being able to send an ETag with this sort of request
an know the version you have locally is valid saves a ton of bandwidth
and time.

Likewise, if you have a resource that you want to update, you can be
confident there will not be a lost update [http://www.w3.org/1999/04/Editing/] because you have local
version that is stale.

Endpoint Specific Caching

It should be pointed out that there are times when an endpoint is
specifically tailored for different caching techniques. If you have a
RESTful service, there might be endpoints that are specifically meant
to be cached via time based caching techniques where as other
endpoints should focus on using ETags. In this situation it is
recommended that you use the CacheControlAdapter directly.

import requests
from cachecontrol import CacheControlAdapter
from cachecontrol.caches import RedisCache

using django for an idea on where you might get a
username/password.
from django.conf import settings

a function to return a redis connection all the instances of the
app may use. this allows updates to the API (ie PUT) to invalidate
the cache for other users.
from myapp.db import redis_connection

create our session
client = sess.Session(auth=(settings.user, settings.password))

we have a gettext like endpoint. this doesn't get updated very
often so a time based cache is a helpful way to reduce many small
requests.
client.mount('http://myapi.foo.com/gettext/',
 CacheControlAdapter(cache_etags=False))

here we have user profile endpoint that lets us update information
about users. we need this to be consistent immediately after a user
updates some information because another node might handle the
request. It uses the global redis cache to coordinate the cache and
uses the equal priority caching to be sure etags are used by default.
redis_cache = RedisCache(redis_connection())
client.mount('http://myapi.foo.com/user_profiles/',
 CacheControlAdapter(cache=redis_cache))

Hopefully this more indepth example reveals how to configure a
requests.Session to better utilize ETag based caching vs. Time
Priority Caching.

Custom Caching Strategies

There are times when a server provides responses that are logically
cacheable, but they lack the headers necessary to cause CacheControl
to cache the response. The HTTP Caching Spec [http://tools.ietf.org/html/rfc7234] does allow for caching systems
to cache requests that lack caching headers. In these situations, the
caching system can use heuristics to determine an appropriate amount
of time to cache a response.

By default, in CacheControl the decision to cache must be explicit by
default via the caching headers. When there is a need to cache
responses that wouldn’t normally be cached, a user can provide a
heuristic to adjust the response in order to make it cacheable.

For example when running a test suite against a service, caching all
responses might be helpful speeding things up while still making real
calls to the API.

Caching Heuristics

A cache heuristic allows specifying a caching strategy by adjusting
response headers before the response is considered for caching.

For example, if we wanted to implement a caching strategy where every
request should be cached for a week, we can implement the strategy in
a cachecontrol.heuristics.Heuristic.

import calendar
from cachecontrol.heuristics import BaseHeuristic
from datetime import datetime, timedelta
from email.utils import parsedate, formatdate

class OneWeekHeuristic(BaseHeuristic):

 def update_headers(self, response):
 date = parsedate(response.headers['date'])
 expires = datetime(*date[:6]) + timedelta(weeks=1)
 return {
 'expires' : formatdate(calendar.timegm(expires.timetuple())),
 'cache-control' : 'public',
 }

 def warning(self, response):
 msg = 'Automatically cached! Response is Stale.'
 return '110 - "%s"' % msg

When a response is received and we are testing for whether it is
cacheable, the heuristic is applied before checking its headers. We
also set a warning header [http://tools.ietf.org/html/rfc7234#section-5.5] to communicate why
the response might be stale. The original response is passed into the
warning header in order to use its values. For example, if the
response has been expired for more than 24 hours a Warning 113 [http://tools.ietf.org/html/rfc7234#section-5.5.4] should be used.

In order to use this heuristic, we pass it to our CacheControl
constructor.

from requests import Session
from cachecontrol import CacheControl

sess = CacheControl(Session(), heuristic=OneWeekHeuristic())
sess.get('http://google.com')
r = sess.get('http://google.com')
assert r.from_cache

The google homepage specifically uses a negative expires header and
private cache control header to avoid caches. We’ve managed to work
around that aspect and cache the response using our heuristic.

Best Practices

Cache heuristics are still a new feature, which means that the support
is somewhat rudimentary. There likely to be best practices and common
heuristics that can meet the needs of many use cases. For example, in
the above heuristic it is important to change both the expires and
cache-control headers in order to make the response cacheable.

If you do find a helpful best practice or create a helpful heuristic,
please consider sending a pull request or opening a issue.

Expires After

CacheControl bundles an ExpiresAfter heuristic that is aimed at
making it relatively easy to automatically cache responses for a
period of time. Here is an example

import requests
from cachecontrol import CacheControlAdapter
from cachecontrol.heuristics import ExpiresAfter

adapter = CacheControlAdapter(heuristic=ExpiresAfter(days=1))

sess = requests.Session()
sess.mount('http://', adapter)

The arguments are the same as the datetime.timedelta
object. ExpiresAfter will override or add the Expires header and
override or set the Cache-Control header to public.

Last Modified

CacheControl bundles an LastModified heuristic that emulates
the behavior of Firefox, following RFC7234. Roughly stated,
this sets the expiration on a page to 10% of the difference
between the request timestamp and the last modified timestamp.
This is capped at 24-hr.

import requests
from cachecontrol import CacheControlAdapter
from cachecontrol.heuristics import LastModified

adapter = CacheControlAdapter(heuristic=LastModified())

sess = requests.Session()
sess.mount('http://', adapter)

Site Specific Heuristics

If you have a specific domain that you want to apply a specific
heuristic to, use a separate adapter.

import requests
from cachecontrol import CacheControlAdapter
from mypkg import MyHeuristic

sess = requests.Session()
sess.mount(
 'http://my.specific-domain.com',
 CacheControlAdapter(heuristic=MyHeuristic())
)

In this way you can limit your heuristic to a specific site.

Warning!

Caching is hard and while HTTP does a reasonable job defining rules
for freshness, overriding those rules should be done with
caution. Many have been frustrated by over aggressive caches, so
please carefully consider your use case before utilizing a more
aggressive heuristic.

Tips and Best Practices

Caching is hard! It is considered one of the great challenges of
computer science. Fortunately, the HTTP spec helps to navigate some
pitfalls of invalidation using stale responses. Below are some
suggestions and best practices to help avoid the more subtle issues
that can crop up using CacheControl and HTTP caching.

If you have a suggestion please create a new issue in github [https://github.com/ionrock/cachecontrol/issues/] and let folks know
what you ran into and how you fixed it.

Timezones

It is important to remember that the times reported by a server may or
may not be timezone aware. If you are using CacheControl with a
service you control, make sure any timestamps are used consistently,
especially if requests might cross timezones.

Cached Responses

We’ve done our best to make sure cached responses act like a normal
response, but there are aspects that are different for somewhat
obvious reasons.

	Cached responses are never streaming

	Cached responses have None for the raw attribute

Obviously, when you cache a response, you have downloaded the entire
body. Therefore, there is never a use case for streaming a cached
response.

With that in mind, you should be aware that if you try to cache a very
large response on a network store, you still might have some latency
tranferring the data from the network store to your
application. Another consideration is storing large responses in a
FileCache. If you are caching using ETags and the server is
extremely specific as to what constitutes an equivalent request, it
could provide many different responses for essentially the same data
within the context of your application.

Query String Params

If you are caching requests that use a large number of query string
parameters, consider sorting them to ensure that the request is
properly cached.

Requests supports passing both dictionaries and lists of tuples as the
param argument in a request. For example:

requests.get(url, params=sorted([('foo', 'one'), ('bar', 'two')]))

By ordering your params, you can be sure the cache key will be
consistent across requests and you are caching effectively.

Release Notes

0.13.1

	Support for old serialization formats has been removed.

	Move the serialization implementation into own method.

	Drop support for Python older than 3.7.

0.13.0

YANKED

The project has been moved to the PSF [https://github.com/psf] organization.

	Discard the strict attribute when serializing and deserializing responses.

	Fix the IncompleteRead error thrown by urllib3 2.0.

	Remove usage of utcnow in favor of timezone-aware datetimes.

	Remove the compat module.

	Use Python’s unittest.mock library instead of mock.

	Add type annotations.

	Exclude the tests directory from the wheel.

0.12.14

	Revert the change “switch lockfile to filelock” to fix the compatibility issue.

0.12.13

	Discard the strict attribute when serializing and deserializing responses.

	Fix the IncompleteRead error thrown by urllib3 2.0.

	Exclude the tests directory from the wheel.

0.12.11

	Added new variant of FileCache, SeparateBodyFileCache, which uses less memory by storing the body in a separate file than metadata, and streaming data in and out directly to/from that file. Implemented by [Itamar Turner-Trauring](https://pythonspeed.com), work sponsored by [G-Research](https://www.gresearch.co.uk/technology-innovation-and-open-source/).

0.12.7

	Dropped support for Python 2.7, 3.4, 3.5.

	Reduced memory usage when caching large files.

0.12.0

Rather than using compressed JSON for caching values, we are now using
MessagePack (http://msgpack.org/). MessagePack has the advantage that
that serialization and deserialization is faster, especially for
caching large binary payloads.

0.11.2

This release introduces the cachecontrol.heuristics.LastModified
heuristic. This uses the same behaviour as many browsers to base expiry on the
Last-Modified header when no explicit expiry is provided.

0.11.0

The biggest change is the introduction of using compressed JSON rather
than pickle for storing cached values. This allows Python 3.4 and
Python 2.7 to use the same cache store. Previously, if a cache was
created on 3.4, a 2.7 client would fail loading it, causing an invalid
cache miss. Using JSON also avoids the exec call used in pickle,
making the cache more secure by avoiding a potential code injection
point. Finally, the compressed JSON is a smaller payload, saving a bit
of space.

In order to support arbitrary binary data in the JSON format, base64
encoding is used to turn the data into strings. It has to do some encoding dances
to make sure that the bytes/str types are correct, so please open
a new issue if you notice any issues.

This release also introduces the
cachecontrol.heuristics.ExpiresAfter heuristic. This allows passing
in arguments like a datetime.timedelta in order to configure that
all responses are cached for the specific period of time.

0.10.0

This is an important release as it changes what is actually
cached. Rather than caching requests’ Response objects, we are now
caching the underlying urllib3 response object. Also, the response
will not be cached unless the response is actually consumed by the user.

These changes allowed the reintroduction of .raw support.

Huge thanks goes out to @dstufft for these excellent patches and
putting so much work into CacheControl to allow cached responses to
behave exactly as a normal response.

	FileCache Updates (via @dstufft [https://github.com/dstufft])

	files are now hashed via sha-2

	files are stored in a namespaced directory to avoid hitting os
limits on the number of files in a directory.

	use the io.BytesIO when reading / writing (via @alex [https://github.com/alex])

	#19 [https://github.com/ionrock/cachecontrol/pull/19] Allow for
a custom controller via @cournape [https://github.com/cournape]

	#17 [https://github.com/ionrock/cachecontrol/pull/17] use
highest protocol version for pickling via @farwayer [https://github.com/farwayer]

	#16 [https://github.com/ionrock/cachecontrol/pull/16] FileCache:
raw field serialization via @farwayer [https://github.com/farwayer]

0.9.3

	#16 [https://github.com/ionrock/cachecontrol/pull/16]: All
cached responses get None for a raw attribute.

	#13 [https://github.com/ionrock/cachecontrol/pull/13] Switched
to md5 encoded keys in file cache (via @mxjeff [http://github.com/mxjeff])

	#11 [http://github.com/ionrock/cachecontrol/pull/11] Fix
timezones in tests (via @kaliko [http://github.com/kaliko])

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to CacheControl’s documentation!

 		
 Using CacheControl

 		
 Wrapper

 		
 Adapter

 		
 Use a Different Cache Store

 		
 Storing Cache Data

 		
 DictCache

 		
 FileCache

 		
 SeparateBodyFileCache

 		
 RedisCache

 		
 Third-Party Cache Providers

 		
 ETag Support

 		
 Turning Off Equal Priority Caching

 		
 Equal Priority Caching Benefits

 		
 Endpoint Specific Caching

 		
 Custom Caching Strategies

 		
 Caching Heuristics

 		
 Best Practices

 		
 Expires After

 		
 Last Modified

 		
 Site Specific Heuristics

 		
 Warning!

 		
 Tips and Best Practices

 		
 Timezones

 		
 Cached Responses

 		
 Query String Params

_static/file.png

_static/minus.png

_static/plus.png

