

Welcome to Buildout’s documentation!

Contents:

	Buildout, an automation tool written in and extended with Python
	Repeatability

	Componentization

	Automation

	Learning more

	Additional resources

	Getting started with Buildout
	First steps

	Installing software

	Generating configuration and custom scripts

	Version control

	More than just a package installer

	Repeatability

	Python development projects

	Where to go from here?

	Buildout Topics
	History, motivation, and Python packaging

	Staying DRY with value substitutions, extending, and macros

	Automatic installation of part dependencies

	Optimizing buildouts with shared eggs and download caches

	Bootstrapping

	Buildout extensions

	Writing Buildout recipes

	Meta-recipes

	Reference
	The Buildout command line

	Buildout configuration options

	Configuration file syntax

Buildout, an automation tool written in and extended with Python

Buildout is a tool for automating software assembly.

	Run build tools to build software.

	Apply software and templates to generate configuration files and scripts.

	Applicable to all software phases, from development to production deployment.

	Based on core principles:

	Repeatability

	Componentization

	Automation

Repeatability

It’s important that given a project configuration, two checkouts of the
configuration in the same environment (operating system, Python
version) should produce the same result, regardless of their history.

For example, if someone has been working on a project for a long time,
and has committed their changes to a version control system, they
should be able tell a colleague to check out their project and run
buildout and the resulting build should have the same result as the
build in the original working area.

Componentization

We believe that software should be self-contained, or at least, that
it should be possible. The tools for satisfying the software
responsibilities should largely reside within the software project
itself.

Some examples:

	Software services should include tools for monitoring them.
Operations, including monitoring is a software responsibility,
because the creators of the software are the ones who know best how
to assess whether it is operating correctly.

It should be possible, when deploying production software, for the
software to configure the monitoring system to monitor the software.

	Software should provide facilities to automate its configuration.
It shouldn’t be necessary for people to create separate
configuration whether it be in development or deployment (or stages
in between).

Automation

Software deployment should be highly automated. It should be possible
to checkout a project with a single simple command (or two) and get a
working system. This is necessary to achieve the goals of
repeatability and componentization and generally not to waste people’s
time.

Learning more

Learn more:

	Getting started

	Topics

	Reference

Additional resources

	Issue tracker

	https://github.com/buildout/buildout/issues

	Mailing list

	You can ask questions on the Python Distutils-SIG
mailing list, https://mail.python.org/mailman/listinfo/distutils-sig

	Github repository

	https://github.com/buildout/buildout

	Contributing

	Join the buildout-development google group,
https://groups.google.com/forum/#!forum/buildout-development to
discuss ideas and submit pull requests against the buildout
repository [https://github.com/buildout/buildout].

Getting started with Buildout

Note

In the Buildout documentation, we’ll use the word
buildout to refer to:

	The Buildout software

We’ll capitalize the word when we do this.

	A particular use of Buildout, a directory having a Buildout
configuration file.

We’ll use lower case to refer to these.

	A buildout section in a Buildout configuration (in a
particular buildout).

We’ll use a lowercase fixed-width font for these.

First steps

The easiest way to install Buildout is with pip:

pip install zc.buildout

To use Buildout, you need to provide a Buildout configuration. Here is
a minimal configuration:

[buildout]
parts =

By default, Buildout looks for a file named buildout.cfg to find its configuration.
The configuration hereabove is thus stored in buildout.cfg.

A minimal (and useless) Buildout configuration has a buildout section
with a parts option. If we run Buildout:

buildout

Four directories are created:

	bin

	A directory to hold executables.

	develop-eggs

	A directory to hold develop egg links. More about these later.

	eggs

	A directory that hold installed packages in egg 1 format.

	parts

	A directory that provides a default location for installed parts.

Buildout configuration files use an INI syntax [https://en.wikipedia.org/wiki/INI_file] 2.
Configuration is arranged in sections, beginning with section names in square
brackets. Section options are names, followed by equal signs, followed
by values. Values may be continued over multiple lines as long as the
continuation lines start with whitespace.

Buildout is all about building things and the things to be built are
specified using parts. The parts to be built are listed in the
parts option. For each part, there must be a section with the same
name that specifies the software to build the part and provides
parameters to control how the part is built.

Installing software

In this tutorial, we’re going to install a simple web server.
The details of the server aren’t important. It just provides a useful
example that illustrates a number of ways that Buildout can make
things easier.

We’ll start by adding a part to install the server software. We’ll
update our Buildout configuration to add a bobo part:

[buildout]
parts = bobo

[bobo]
recipe = zc.recipe.egg
eggs = bobo

We added the part name, bobo to the parts option in the
buildout section. We also added a bobo section with two
options:

	recipe

	The standard recipe option names the software component that
will implement the part. The value is a Python distribution
requirement, as would be used with pip. In this case, we’ve
specified zc.recipe.egg [https://pypi.org/project/zc.recipe.egg/] which is the name of
a Python project that provides a number of recipe implementations.

	eggs

	A list of distribution requirements, one per
line. 3 (The name of this option is
unfortunate, because the values are requirements, not egg names.)
Listed requirements are installed, along with their dependencies. In
addition, any scripts provided by the listed requirements (but not
their dependencies) are installed in the bin directory.

If we run this:

buildout

Then a number of things will happen:

	zc.recipe.egg will be downloaded and installed in your eggs
directory.

	bobo and its dependencies will be downloaded and installed. (bobo
is a small Python database server.)

After this, the eggs directory will look something like:

$ ls -l eggs
total 0
drwxr-xr-x 4 jim staff 136 Feb 23 09:01 WebOb-1.7.1-py2.7.egg
drwxr-xr-x 9 jim staff 306 Feb 23 09:10 bobo-2.3.0-py2.7.egg

	A bobo script will be installed in the bin directory:

$ ls -l bin
total 8
-rwxr-xr-x 1 jim staff 391 Feb 23 09:10 bobo

This script is used to run a bobo server [http://bobo.readthedocs.io/en/latest/reference.html#the-bobo-server].

Generating configuration and custom scripts

The bobo program doesn’t daemonize itself. Rather, it’s meant to
be used with a dedicated daemonizer like zdaemon [https://pypi.org/project/zdaemon] or supervisord [http://supervisord.org/]. We’ll use a recipe to set up zdaemon [https://pypi.org/project/zc.zdaemonrecipe]. Our Buildout
configuration becomes:

[buildout]
parts = bobo server

[bobo]
recipe = zc.recipe.egg
eggs = bobo

[server]
recipe = zc.zdaemonrecipe
program =
 ${buildout:bin-directory}/bobo
 --static /=${buildout:directory}
 --port 8200

Here we’ve added a new server part that uses zc.zdaemonrecipe.
We used a program option to define what program should be run.
There are a couple of interesting things to note about this option:

	We used variable substitutions:

	${buildout:directory}

	Expands to the full path of the buildout directory.

	${buildout:bin-directory}

	Expands to the full path of the buildout’s bin directory.

Variable substitution provides a way to access Buildout settings and
share information between parts and avoid repetition.

See the reference to see what buildout settings
are available.

	We spread the program over multiple lines. A configuration value
can be spread over multiple lines as long as the continuation lines
begin with whitespace.

The interpretation of a value is up to the recipe that uses it. The
zc.zdaemonrecipe recipe combines the program value into a single
line.

If we run Buildout:

buildout

	The zc.zdaemonrecipe recipe will be downloaded and installed in
the eggs directory.

	A server script is added to the bin directory. This script
is generated by the recipe. It can be run like:

bin/server start

to start a server and:

bin/server stop

to stop it. The script references a zdaemon configuration file
generated by the recipe in parts/server/zdaemon.conf.

	A zdaemon configuration script is generated in
parts/server/zdaemon.conf that looks something like:

<runner>
 daemon on
 directory /Users/jim/t/0214/parts/server
 program /Users/jim/t/0214/bin/bobo --static /=/Users/jim/t/0214 --port 8200
 socket-name /Users/jim/t/0214/parts/server/zdaemon.sock
 transcript /Users/jim/t/0214/parts/server/transcript.log
</runner>

<eventlog>
 <logfile>
 path /Users/jim/t/0214/parts/server/transcript.log
 </logfile>
</eventlog>

The details aren’t important, other than the fact that the
configuration file reflects part options and the actual buildout
location.

Version control

In this example, the only file that needs to be checked into version
control is the configuration file, buildout.cfg. Everything else
is generated. Someone else could check out the project, and get the
same result 4.

More than just a package installer

The example shown above illustrates how Buildout is more than just a
package installer such as pip. Using Buildout recipes, we can
install custom scripts and configuration files, and much more. For
example, we could use configure and make [https://pypi.org/project/zc.recipe.cmmi] to install non-Python
software from source, we could run JavaScript builders, or do anything
else that can be automated with Python.

Buildout is a simple automation framework. There are hundreds of
recipes to choose from 5 and writing new
recipes is easy.

Repeatability

A major goal of Buildout is to provide repeatability. But what does
this mean exactly?

If two buildouts with the same configuration are built in the same
environments at the same time, they should produce the same result,
regardless of their build history.

That definition is rather dense. Let’s look at the pieces:

Buildout environment

A Buildout environment includes the operating system and the Python
installation Buildout is run with. The more a buildout depends on its
environment, the more variation is likely between builds.

If a Python installation is shared, packages installed by one
application affect other applications, including buildouts. This can
lead to unexpected errors. This is why it’s recommended to use a
virtual environment [https://virtualenv.pypa.io/en/stable/] or a
“clean python” built from source with no third-party packages
installed 6.

To limit dependence on the operating system, people sometimes install
libraries or even database servers as Buildout parts.

Modern Linux container technology (e.g. Docker [https://www.docker.com/]) makes it a lot easier to control the
environment. If you develop entirely with respect to a particular
container image, you can have repeatability with respect to that
image, which is usually good enough because the environment, defined
by the image, is itself repeatable and unshared with other
applications.

Python requirement versions

Another potential source of variation is the versions of Python
dependencies used.

Newest versions

If you don’t specify versions, Buildout will always try to get the
most recent version of everything it installs. This is a major reason
that Buildout can be slow. It checks for new versions every time it
runs. It does this to satisfy the repeatability requirement above.
If it didn’t do this, then an older buildout would likely have
different versions of Python packages than newer buildouts.

To speed things up, you can use the -N Buildout option to tell
Buildout to not check for newer versions of Python requirements:

buildout -N

This relaxes repeatability, but with little risk if there was a recent
run without this option.

Pinned versions

You can also pin required versions, and do so in two ways. You can specify them
where you list them, as in:

[bobo]
recipe = zc.recipe.egg
eggs = bobo <5.0

In this example, we’ve requested a version of bobo less than 5.0.

The more common way to pin a version is using a versions section:

[buildout]
parts = bobo server

[bobo]
recipe = zc.recipe.egg
eggs = bobo

[server]
recipe = zc.zdaemonrecipe
program =
 ${buildout:bin-directory}/bobo
 --static /=${buildout:directory}
 --port 8200

[versions]
bobo = 2.3.0

Larger projects may need to pin many versions, so it’s common to put
version requirements in their own file:

[buildout]
extends = versions.cfg
parts = bobo server

[bobo]
recipe = zc.recipe.egg
eggs = bobo

[server]
recipe = zc.zdaemonrecipe
program =
 ${buildout:bin-directory}/bobo
 --static /=${buildout:directory}
 --port 8200

Here, we’ve used the Buildout extends option to say that
configurations should be read from versions.cfg (it’s
allowed to specify several files in extend). Cconfigurations
should be read from the named file (or files) and the
configuration in the current file should override configuration in the
extended files.
To continue the example, our versions.cfg file
might look like:

[versions]
bobo = 2.3.0

We can use the update-versions-file option to ask Buildout to
maintain our versions.cfg file for us:

[buildout]
extends = versions.cfg
show-picked-versions = true
update-versions-file = versions.cfg

parts = bobo server

[bobo]
recipe = zc.recipe.egg
eggs = bobo

[server]
recipe = zc.zdaemonrecipe
program =
 ${buildout:bin-directory}/bobo
 --static /=${buildout:directory}
 --port 8200

With update-versions-file, whenever Buildout gets the newest
version for a requirement (subject to requirement constraints), it
appends the version to the named file, along with a comment saying
when and why the requirement is installed. If you later want to
upgrade a dependency, edi this file with the new version. Alternatively,
remove the entry altogether and Buildout will add a new entry the next
time it runs.

We also used the show-picked-versions to tell Buildout to tell us
when it got (picked) the newest version of a requirement.

When versions are pinned, Buildout doesn’t look for new versions of
the requirements, which can speed buildouts quite a bit. In fact, The
-N option doesn’t provide any speedup for projects whose
requirement versions are all pinned.

When should you pin versions?

The rule of thumb is that you should pin versions for a whole system,
such as an application or service. You do this because after
integration tests, you want to be sure that you can reproduce the
tested configuration.

You shouldn’t pin versions for a component, such as a library, because
doing so inhibits the ability of users of your component to integrate it
with their dependencies, which may overlap with yours. If you know
that your component only works for a specific range of versions of some dependency,
set the range in your project requirements. Don’t require
specific versions.

Unpinning versions

You can unpin a version by just removing it (or commenting it out of)
your versions section.

You can also unpin a version by setting the version to an empty
string:

[versions]
ZEO =

In an extending configuration (buildout.cfg in the example above), or
on the buildout command line.

You might do this if pins are shared between projects and you want to
unpin a requirement for one of the projects, or want to remove a pin
while using a requirement in development mode.

Buildout versions and automatic upgrade

In the interest of repeatability, Buildout can upgrade itself or its
dependencies to use the newest versions or downgrade to respect pinned
versions. This only happens if you run Buildout from a buildout’s own
bin directory.

We can use Buildout’s bootstrap command to install a local
buildout script:

buildout bootstrap

Then, if the installed script is used:

bin/buildout

Then Buildout will upgrade or downgrade to be consistent with version
requirements. See the bootstrapping topic to learn more about bootstrapping.

Python development projects

A very common Buildout use case is to manage the development of a
library or main part of an application written in Python. Buildout
facilitates this with the develop option:

[buildout]
develop = .
...

The develop option takes one or more paths to project setup.py [https://docs.python.org/3.6/distutils/setupscript.html] files or,
more commonly, directories containing them. Buildout then creates
“develop eggs” 7 for the corresponding projects.

With develop eggs, you can modify the sources and the modified sources
are reflected in future Python runs (or after reloads [https://docs.python.org/3/library/importlib.html#importlib.reload]).

For libraries that you plan to distribute using the Python packaging
infrastructure, You’ll need to write a setup file, because it’s needed
to generate a distribution.

If you’re writing an application that won’t be distributed as a
separate Python distribution, writing a setup script can feel
like overkill, but it’s useful for:

	naming your project, so you can refer to it like any Python
requirement in your Buildout configuration, and for

	specifying the requirements your application code uses, separate
from requirements your buildout might have.

Fortunately, an application setup script can be minimal. Here’s an
example:

from setuptools import setup
setup(name='main', install_requires = ['bobo', 'six'])

We suggest copying and modifying the example above, using it as
boilerplate. As is probably clear, the setup arguments used are:

	name

	The name of your application. This is the name you’ll use in
Buildout configuration where you want to refer to application
code.

	install_requires

	A list of requirement strings for Python distributions your
application depends on directly.

A minimal 8 development Buildout configuration
for a project with a setup script like the one above might look
something like this:

[buildout]
develop = .
parts = py

[py]
recipe = zc.recipe.egg
eggs = main
interpreter = py

There’s a new option, interpreter, which names an interpreter
script to be generated. An interpreter script 9
mimics a Python interpreter with its path set to include the
requirements specified in the eggs option and their (transitive)
dependencies. We can run the interpreter:

bin/py

To get an interactive Python prompt, or you can run a script with it:

bin/py somescript.py

If you need to work on multiple interdependent projects at the same
time, you can name multiple directories in the develop option,
typically pointing to multiple check outs. A popular Buildout
extension, mr.developer [https://pypi.org/project/mr.developer],
automates this process.

Where to go from here?

This depends on what you want to do. We suggest perusing the topics based on your needs and interest.

The reference section can give you important
details, as well as let you know about features not touched on here.

	1

	You may have heard bad things about eggs. This stems in
part from the way that eggs were applied to regular Python
installs. We think eggs, which were inspired by jar files [https://en.wikipedia.org/wiki/JAR_(file_format)], when used as
an installation format, are a good fit for Buildout’s goals. Learn
more in the topic on Buildout and packaging.

	2

	Buildout uses a variation (fork) of the standard
ConfigParser module and follows (mostly) the same parsing
rules.

	3

	Requirements can have whitespace
characters as in bobo <3, so they’re separated by newlines.

	4

	This assumes the same environment and that
dependencies haven’t changed. We’ll explain further in the
section on repeatability.

	5

	You can list Buildout-related software,
consisting mostly of Buildout recipes, using the
Framework :: Buildout [https://pypi.org/search/?q=&o=&c=Framework+%3A%3A+Buildout]
classifier search. These results miss recipes that don’t provide
classifier meta data. Generally you can find a recipe for a task by
searching the name of the task and the “recipe” in the package
index [https://pypi.org/].

	6

	It’s a little hypocritical to recommend installing
Buildout into an otherwise clean environment, which is why Buildout
provides a bootstrapping mechanism
which allows setting up a buildout without having to contaminate a
virtual environment or clean Python install.)

	7

	pip calls these “editable” installs [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs].

	8

	A more typical development buildout will
include at least a part to specify a test runner. A development
buildout might define other support parts, like JavaScript
builders, database servers, development web-servers and
so on.

	9

	An interpreter script is similar to the
bin/python program included in a virtual environment, except
that it’s lighter weight and has exactly the packages
listed in the eggs option and their dependencies, plus whatever
comes from the Python environment.

Buildout Topics

	History, motivation, and Python packaging
	Isolation from environment

	Python

	Buildout and packaging

	Staying DRY with value substitutions, extending, and macros
	Value substitutions

	Default and computed option values

	Sources of configuration options

	Extending configuration files

	Conditional configuration sections

	User-default configuration

	Merging, rather than overriding values

	Extending sections using macros

	Automatic installation of part dependencies

	Optimizing buildouts with shared eggs and download caches
	Shared eggs directory

	Bootstrapping
	Local bootstrapping using the bootstrap command

	Using a bootstrapping script

	Bootstrapping requires a buildout.cfg, init creates one

	Buildout extensions

	Writing Buildout recipes
	Install recipes

	Uninstall recipes

	User interaction: logging and UserError

	Testing recipes

	Documenting your recipe

	Meta-recipes
	A simple meta-recipe example

	Testing

History, motivation, and Python packaging

Isolation from environment

In the early 2000s, Zope Corporation was helping customers build
Zope-based applications. A major difficulty was helping people deploy
the applications in their own environments, which varied not just
between customers, but also between customer machines. The customer
environments, including operating system versions, libraries and
Python modules installed were not well defined and subject to change
over time.

We realized that we needed to insulate ourselves from the customer
environments 1 to have any chance of
predictable success.

We decided to provide our own Python builds into which we
installed the application. These were automated with make [https://en.wikipedia.org/wiki/Make_(software)]. Customers would
receive tar [https://en.wikipedia.org/wiki/Tar_(computing)] files,
expand them and run make. We referred to these as “build outs”.

Python

Later, as the applications we were building became more complex, some
of us wanted to be able to use Python, rather than make, to automate
deployments. In 2005, we created an internal prototype that used
builds defined using ConfigParser-formatted configuration files [https://docs.python.org/2/library/configparser.html]. File
sections described things to be built and there were a few built-in
build recipes and eventually facilities for implementing custom
recipes.

By this time, we were hosting most of the applications we were
building, but we were still building Python and critical libraries
ourselves as part of deployment, to isolate ourselves from system
Python and library packages.

After several months of successful experience with the prototype, we
decided to build what became zc.buildout based on our experience,
making a recipe framework a main idea.

Buildout and packaging

Around this time, setuptools and easy_install [https://en.wikipedia.org/wiki/Setuptools] were released, providing
automated download and installation of Python packages and their
dependencies. Because we built large applications, this was
something we’d wanted for some time and had even begun building a
package manager ourselves. Part of the rationale for creating a new
Buildout version, beyond the initial prototype, was to take advantage of
the additional automation that setuptools promised.

Initially, we tried to leverage the easy_install command
2, but the goals of easy_install and
Buildout were at odds. easy_install sought to make it easy for
humans to install and upgrade packages manually, in an ad hoc manner.
While it installed dependencies, it didn’t upgrade them. It didn’t
provide ways of managing an installation as a whole. Buildout, on the
other hand, was all about automation and repeatability.

To achieve Buildout’s goals, it was necessary to interact with
setuptools at a much lower level and to write quite a bit more
packaging logic than planned.

Eggs

Setuptools defined a packaging format, eggs [http://peak.telecommunity.com/DevCenter/PythonEggs], used for
package distribution and installation. Their design was based on Java
jar files [https://en.wikipedia.org/wiki/JAR_(file_format)], which
bundle software together with supporting resources, including
meta-data.

Eggs presented a number of challenges, and have a bad reputation as a
result:

	As an installation format:

	They needed to be added to the Python path. The easy_install
command did this by generating complex .pth files [https://docs.python.org/2/library/site.html]. This often
led to hard to diagnose bugs and frustration.

	By default, eggs were installed as zip files [https://en.wikipedia.org/wiki/Zip_(file_format)]. Software
development tools used by most Python developers
3 made working with zip files difficult. Also,
importing from zip files was much slower on Unix-like systems.

	As a distribution format, eggs names carry insufficient meta data
to distinguish incompatible builds of extensions on Linux.

Buildout uses eggs very differently

Script generation

When Buildout generates a script, it’s usually generating a wrapper
script. Python package distributions define scripts in two ways,
via entry points [https://setuptools.readthedocs.io/en/latest/setuptools.html#automatic-script-creation],
or as scripts [https://docs.python.org/2/distutils/setupscript.html#installing-scripts]
in a separate scripts area of the distribution.

Entry points are meta data that define a main function to be run
when a user invokes a generated script. Entry points make it easier
to control how a script is run, including what version of Python is
used and the Python path. Initially, Buildout only supported
installing entry-point-based scripts.

The older way of packaging scripts is harder to deal with, because
Buildout has to edit scripts to use the correct Python installation
and to set the Python path.

Buildout doesn’t use .pth files. Instead, when Buildout generates
a script, it generates a Python path that names the eggs needed, and
only the eggs needed, for a particular script based on its
requirements. When Buildout is run, scripts are regenerated if
versions of any of their dependencies change. Scripts defined by
different parts can use different versions, because they have
different Python paths. Changing a version used often requires only
updating the path generated for a script.

Buildout’s approach to assembling applications should be familiar to
anyone who’s worked with Java applications, which are assembled the
same way, using jars and class paths.

Buildout uses eggs almost exclusively as an installation format
4, in a way that leverages eggs’ strengths. Eggs provide
Buildout with the ability to efficiently control which dependencies a
script uses, providing repeatability and predictability.

	1

	Ultimately, we moved to a model where we
hosted software ourselves for customers, because we needed control
over operation, as well as installation and upgrades, and because
with the technology of the time, we still weren’t able to
sufficiently insulate ourselves from the customers’ environments.

	2

	The zc.buildout.easy_install module
started out as a thin wrapper around the easy_install
command. Although it has (almost) nothing to do with the
easy_install command today, its name has remained, because it
provides some public APIs.

	3

	Java tools have no problem working with zip
files, because of the prominence of jar files, which like eggs, use
zip format.

	4

	Buildout always unzips eggs into ordinary directories,
by default.

Staying DRY with value substitutions, extending, and macros

A buildout configuration is a collection of sections, each holding a
collection of options. It’s common for option values to be repeated
across options. For examples, many file-path options might start
with common path prefixes. Configurations that include clients and
servers might share server-address options. This topic presents
various ways you can reuse option values without repeating yourself.

Value substitutions

When supplying values in a configuration, you can include values from
other options using the syntax:

${SECTION:OPTION}

For example: ${buildout:directory} refers to the value of the
directory option in the in the buildout section of the
configuration. The value of the referenced option will be substituted
for the referencing text.

You can simplify references to options in the current section by omitting the
section name. If we wanted to use the buildout directory
option from within the buildout section itself, we could use
${:directory}. This convenience is especially useful in
macros, which we’ll discuss later in this topic.

There’s a special value that’s also useful in macros, named
_buildout_section_name_, which has the name of the current
section. We’ll show how this is used when we discuss macros.

Default and computed option values

Many sections have option values that can be used in substitutions
without being defined in a configuration.

The buildout section, where settings for the buildout as a whole
are provided has many default option values. For example, the
directory where scripts are installed is configurable and the value is
available as ${buildout:bin-directory}. See the Buildout
options reference for a
complete list of Buildout options that can be used in substitutions.

Many recipes also have options that have defaults or that are computed and
are available for substitutions.

Sources of configuration options

Configuration option values can come from a number of sources (in
increasing precedence):

	software default values

	These are defined by buildout and recipe sources.

	user default values

	These are set in per-user default configuration files and override default values.

	options from one or more configuration files

	These override user defaults and each other, as described below.

	option assignments in the buildout command line

	These override configuration-file options.

Extending configuration files

The extends option in a buildout
section can be used to extend one or more configuration files. There
are a number of applications for this. For example, common options for
a set of projects might be kept in a common base configuration. A
production buildout could extend a development buildout, or they could
both extend a common base.

The option values in the extending configuration file override those
in the files being extended. If multiple configurations are named in
the extends option (separated by whitespace), then the
configurations are processed in order from left/top to right/bottom,
with the later (right/bottom) configurations overriding earlier
(left/top) ones. For example, in:

extends = base1.cfg base2.cfg
 base3.cfg

The options in the configuration using the extends option override the
options in base3.cfg, which override the options in base2.cfg,
which override the options in base1.cfg.

Base configurations may be extended multiple times. For example, in
the example above, base1.cfg might, itself, extend base3.cfg,
or they might both extend a common base configuration. Of course, cycles
are not allowed.

Configurations may be named with URLs in the extends option, in
which case they may be downloaded from remote servers. See The
extends-cache buildout option.

When a relative path is used in an extends option, it’s interpreted
relative to the path of the extending configuration.

Conditional configuration sections

Sometimes, you need different configuration in different environments
(different operating systems, or different versions of Python). To
make this easier, you can define environment-specific options by
providing conditional sections:

[ctl]
suffix =

[ctl:windows]
suffix = .bat

In this tiny example, we’ve defined a ctl:suffix option that’s
.bat on Windows and an empty string elsewhere.

A conditional section has a colon and then a Python expression after
the name. If the Python expression result is true, the section
options from the section are included. If the value is false, the
section is ignored.

Some things to note:

	If there is no exception, then options from the section are
included.

	Sections and options can be repeated. If an option is repeated, the
last value is used. In the example above, on Windows, the second
suffix option overrides the first. If the order of the sections
was reversed, the conditional section would have no effect.

In addition to the normal built-ins, the expression has access to
global variables that make common cases short and descriptive as shown
below

	Name

	Value

	sys

	sys module

	os

	os module

	platform

	platform module

	re

	re module

	python2

	True if running Python 2

	python3

	True if running Python 3

	python26

	True if running Python 2.6

	python27

	True if running Python 2.7

	python32

	True if running Python 3.2

	python33

	True if running Python 3.3

	python34

	True if running Python 3.4

	python35

	True if running Python 3.5

	python36

	True if running Python 3.6

	sys_version

	sys.version.lower()

	pypy

	True if running PyPy

	jython

	True if running Jython

	iron

	True if running Iron Python

	cpython

	True if not running PyPy, Jython, or Iron Python

	sys_platform

	str(sys.platform).lower()

	linux

	True if running on Linux

	windows

	True if running on Windows

	cygwin

	True if running on Cygwin

	solaris

	True if running on Solaris

	macosx

	True if running on Mac OS X

	posix

	True if running on a POSIX-compatible system

	bits32

	True if running on a 32-bit system.

	bits64

	True if running on a 64-bit system.

	little_endian

	True if running on a little-endian system

	big_endian

	True if running on a big-endian system

Expressions must not contain either the # or the ; character.

User-default configuration

A per-user default configuration may be defined in the default.cfg
file in the .buildout subdirectory of a user’s home directory
(~/.buildout/default.cfg on Mac OS and Linux). This configuration
is typically used to set up a shared egg or cache directory, as in:

[buildout]
eggs-directory = ~/.buildout/eggs
download-cache = ~/.buildout/download-cache
abi-tag-eggs = true

See the section on optimizing buildouts with shared eggs and
download caches for an explanation of the options
used in the example above.

Merging, rather than overriding values

Normally, values in extending configurations override values in
extended configurations by replacing them, but it’s also possible to
augment or trim overridden values. If += is used rather than
=, the overriding option value is appended to the original. So,
for example if we have a base configuration, buildout.cfg:

[buildout]
parts =
 py
 test
 server
...

And a production configuration prod.cfg, we can add another part,
monitor, like this:

[buildout]
extends = buildout.cfg
parts += monitor
...

In this example, we didn’t have to repeat (or necessarily know) the
base parts to add the monitor part.

We can also subtract values using -=, so if we wanted to exclude
the test part in production:

[buildout]
extends = buildout.cfg
parts += monitor
parts -= test
...

Something to keep in mind is that this works by lines. The +=
form adds the lines in the new data to the lines of the
old. Similarly, -= removes lines in the overriding option from the
original lines. This is a bit delicate. In the example above,
we were careful to put the base values on separate lines, in
anticipation of using -=.

Merging values also works with option assignments provided via the
buildout command line. For example, if
you want to temporarily use a development version of another project, you can augment the
buildout develop option on the command-line
when running buildout:

buildout develop+=/path/to/other/project

Although, if you’ve pinned the version of that project, you’ll need to
unpin it, which you can also do on the command-line:

buildout develop+=/path/to/other/project versions:projectname=

Extending sections using macros

We can extend other sections in a configuration as macros by naming
then using the < option. For example, perhaps we have to create
multiple server processes that listen on different ports. We might
have a base server section, and some sections that use it as a
macro:

[server]
recipe = zc.zdaemonrecipe
port = 8080
program =
 ${buildout:bin-directory}/serve
 --port ${:port}
 --name ${:_buildout_section_name_}

[server1]
<= server
port = 8081

[server2]
<= server
port = 8082

In the example above, the server1 and server2 sections use the
server section, getting its recipe and program options.
The resulting configuration is equivalent to:

[server]
recipe = zc.zdaemonrecipe
port = 8080
program =
 ${buildout:bin-directory}/serve
 --port ${:port}
 --name ${:_buildout_section_name_}

[server1]
recipe = zc.zdaemonrecipe
port = 8081
program =
 ${buildout:bin-directory}/serve
 --port ${:port}
 --name ${:_buildout_section_name_}

[server2]
recipe = zc.zdaemonrecipe
port = 8082
program =
 ${buildout:bin-directory}/serve
 --port ${:port}
 --name ${:_buildout_section_name_}

Value substitutions in the base section are applied after its
application as a macro, so the substitutions are applied using data
from the sections that used the macro (using the < option).

You can extend multiple sections by listing them in the < option
on separate lines, as in:

[server2]
<= server
 monitored
port = 8082

If multiple sections are extended, they’re processed in order, with
later ones taking precedence. In the example above, if both
server and monitored provided an option, then the value from
monitored would be used.

A section that’s used as a macro can extend another section.

Automatic installation of part dependencies

Buildout parts are requested by the parts option of the
buildout section, but a buildout may install additional parts that
are dependencies of the named parts. For example, in

[buildout]
develop = .
parts = server

[server]
=> app
recipe = zc.zdaemonrecipe
program = ${buildout:bin-directory}/app ${config:location}

[app]
recipe = zc.recipe.egg
eggs = myapp

[config]
recipe = zc.recipe.deployment:configuration
text = port 8080

the server part depends on the app part to
install the server software and on the config part to provide the
server configuration.

The config part will be installed before the server part
because it’s referenced in a value substitution. The value
substitution makes the config part a dependency of the server
part.

The server part has the line:

=> app

This line 1, uses a feature that’s new in zc.buildout
2.9. It declares that the app part is a dependency of the
server part. The server part doesn’t use any information from the
app part, so it has to declare the dependency explicitly. It
could have declared both dependencies explicitly:

=> app config

Dependency part selection serves separation of concerns. The
buildout parts option reflects the requirements of a buildout as a
whole. If a named part depends on another part, that’s the concern of
the named part, not of the buildout itself.

	1

	The => syntax is a convenience. It’s
based on the mathematical symbol for implication. It’s a short
hand for:

<part-dependencies> = app

Multiple parts may be listed and spread over multiple lines, as
long as continuation lines are indented.

Optimizing buildouts with shared eggs and download caches

Most users should have this user-default configuration containing option settings that make
Buildout work better:

[buildout]
eggs-directory = ~/.buildout/eggs
download-cache = ~/.buildout/download-cache
abi-tag-eggs = true

You might be wondering why these settings aren’t the default, if
they’re recommended for everyone. They probably should be the
default, and perhaps will be in version 3 of buildout. Making them
the default now might break existing buildouts.

Shared eggs directory

You can save a lot of time and disk space by sharing eggs between
buildouts. You can do this by setting the eggs-directory option,
as shown above. This will override the default value for this option
which puts eggs in the eggs buildout subdirectory. By sharing
eggs, you can avoid reinstalling the same popular packages in each
and every buildout that uses them.

ABI tag eggs

If you use a shared eggs directory, it’s a good idea to set the
abi-tag-eggs option to true. This causes eggs to be
segregated by ABI tag [https://www.python.org/dev/peps/pep-0425/#abi-tag]. This has two
advantages:

	If you alternate between Python implementations (PyPy versus C
Python) or between build configurations (normal versus debug), ABI
tagging eggs will avoid mixing incompatible eggs.

	ABI tagging eggs makes Buildout run faster. Because ABI tags
include Python version information, eggs for different Python
versions are kept separate, causing the shared eggs directory for a
given Python version to be smaller, making it faster to search for
installed eggs.

Download cache

When buildout installs distributions, it has to download them first.
Specifying a download-cache option in your user-default
configuration causes the download to be
cached. This can be helpful when multiple installations might be
performed for a source distribution.

Some recipes download information. For example, a number of recipes
download non-Python source archives and user configure, and make to
install them. Most of these recipes can leverage a download cache to
avoid downloading the same information over and over.

Bootstrapping

Bootstrapping a buildout gives its own buildout script,
independent of its Python environment. There are 2 reasons you might use this:

	Enable automatic Buildout upgrade (or downgrade).

	If the buildout script is local to the buildout, then Buildout
will check for newest versions of Buildout and its dependencies
that are consistent with any version pins and install any that are
different, in which case, it restarts to use the new versions.

Doing automatic upgrades allows buildouts to be more independent of
their environments and more repeatable.

Using a local buildout script may be necessary for a project that
pins the version of Buildout itself and the pinned version is
different from the version in the Python environment.

	Avoid modifying the python environment.

	From a philosophical point of view, Buildout has tried to be
isolated from its environment, and requiring the Python environment
to be modified, by installing Buildout, was inconsistent.

Before virtualenv [https://virtualenv.pypa.io/en/stable/]
existed, it might not have been possible to modify the environment
without building Python from source.

Unfortunately, doing this requires using a bootstrap script.

Local bootstrapping using the bootstrap command

You can use the bootstrap command of a
buildout script installed in your Python environment to boostrap
the buildout in the current directory:

buildout bootstrap

If you have any other buildouts that have local buildout scripts, you
can use their buildout scripts:

/path/to/some/buildout/bin/buildout bootstrap

In this case, the buildout being bootstrapped will have the same
Python environment as the buildout that was used to bootstrap it.

Using a bootstrapping script

If you download:

https://bootstrap.pypa.io/bootstrap-buildout.py

And then run it:

python bootstrap-buildout.py

It will download the software needed to run Buildout and install it in
the current directory.

This has been the traditional approach to bootstrapping Buildout.
It was the best approach for a long time because the pip and
easy_install commands usually weren’t available. In the early
days, if easy_install was installed, it was likely to have an
incompatible version of setuptools, because Buildout and setuptools
were evolving rapidly, sometimes in lock step.

This approach fails from time to time, due to changes in setuptools or
the package index [https://pypi.org/] and has been a
source of breakage when automated systems depended on it.

It’s also possible that this approach will stop being supported.
Buildout’s bootstrapping script relies on setuptools’ bootstrap
script, which was used to bootstrap easy_install. Now that pip is
ubiquitous, there’s no reason to bootstrap easy_install and
setuptools’ bootstrapping script exists solely to support Buildout.
At some point, that may become too much of a maintenance burden, and
there may not be Buildout volunteers motivated to create a new
bootstrapping solution.

Bootstrapping requires a buildout.cfg, init creates one

Normally, when bootstrapping, the local directory must have a
buildout.cfg file.

If you don’t have one, you can use the init command instead:

buildout init

This can be used with the bootstrapping script as well:

python bootstrap-buildout.py init

This creates an empty Buildout configuration:

[buildout]
parts =

If you know you’re going to use some packages, you can supply
requirements on the command line after init:

buildout init bobo six

In which case it will generate and run a buildout that uses them. The
command above would generate a buildout configuration file:

[buildout]
parts = py

[py]
recipe = zc.recipe.egg
interpreter = py
eggs =
 bobo
 six

This can provide an easy way to experiment with a package without
adding it to your Python environment or creating a virtualenv.

Buildout extensions

Buildout has a mechanism that can be used to extend it in low-level
and often experimental ways. Use the extensions option in the
buildout section to use an existing extension. For example, the
buildout.wheel extension [https://github.com/buildout/buildout.wheel] provides support for
Python wheels [http://pythonwheels.com/]:

[buildout]
extensions = buildout.wheel
...

Some other examples of extensions can be found in the standard
package index [https://pypi.org/search/?q=&o=&c=Framework+%3A%3A+Buildout+%3A%3A+Extension].

Writing Buildout recipes

There are two kinds of buildout recipes: install and
uninstall. Install recipes are by far the most common. Uninstall
recipes are very rarely needed because most install recipes add files and
directories that can be removed by Buildout.

Install recipes

Install recipes are typically implemented with classes and have 3
important parts:

	A constructor (typically, __init__) initializes a recipe object.

The constructor plays a very important role, because it may update
the configuration data it’s passed, making information available to
other parts and controlling whether a part will need to be
re-installed.

The constructor performs the first of two phases of recipe work, the
second phase being the responsibility of either the install or
update methods.

	The install method installs new parts.

	The update method updates previously installed parts. It’s
often an empty method or an alias for install.

Buildout phases

When buildout is run using the default install command, parts are installed in several phases:

	Parts are initialized by calling their recipe constructors. This may
cause part configuration options to be updated, as described below.

	Part options are compared to part options from previous runs
1.

	Parts from previous runs that are no longer part of the buildout
are uninstalled.

	Parts from previous runs whose options have changed are also
uninstalled.

	Parts are either installed or updated.

install() is called on new parts or old parts that were uninstalled.

update() is called on old parts whose configuration hasn’t changed.

Initialization phase: the constructor

The constructor is passed 3 arguments:

	buildout

	The buildout configuration

The buildout configuration is a mapping from section names to
sections. Sections are mappings from option names to values. The
buildout configuration allows the recipe to access configuration
data in much the same way as configuration files use value
substitutions.

	name

	The name of the section the recipe was used for

	options

	The part options

This is a mapping object and may be written to to save derived
configuration, to provide information for use by other part
recipes, or for value substitutions.

Nothing should be installed in this phase.

If the part being installed isn’t new, options after calling the
constructor are compared to the options from the previous Buildout
run. If they are different, then the part will be uninstalled and then
re-installed by calling the install method, otherwise, the update
method will be called.

Install or update phase

In this phase, install() or update() is called, depending on
whether the part is new or has new configuration.

This is the phase in which the part does its work. In addition to
affecting changes, these methods have some responsibilities that can
be a little delicate:

	If an error is raised, it is the responsibility of the recipe to
undo any partial changes.

	If the recipe created any files or directories, the recipe should
return their paths. Doing so allows Buildout to take care of
removing them if the part is uninstalled, making a separate
uninstall recipe unnecessary.

To make these responsibilities easier to cope with, the option
object passed to the constructor has a helper function, created.
It should be passed one or more paths just before they are created and
returns a list of all of the paths passed as well as any earlier paths
created. If an exception is raised, any files or directories created
will be removed automatically. When the recipe returns, it can just
return the result of calling created() with no arguments.

Example: configuration from template recipe

In this example, we’ll show a recipe that creates a configuration file
based on a configuration string computed using value substitutions
2. A sample usage:

[buildout]
develop = src
parts = server

[config]
recipe = democonfigrecipe
port = 8080
contents =
 <zeo>
 address ${:port}
 </zeo>
 <mappingstorage>
 </mappingstorage>

[server]
recipe = zc.zdaemonrecipe
program = runzeo -C ${config:path}

Some things to note about this example:

	The config part uses the recipe whose source code we’ll show
below. It has a port option, which it uses in its contents
option. It could as easily have used options from other sections.

	The server part uses ${config:path} to get the path to the
configuration file generated by the config part. The path
option value will be computed by the recipe for use in other parts,
as we’ve seen here.

	We didn’t have to list the config part in the buildout parts
option. It’s added automatically by virtue of
its use in the server part.

	We used the develop option to specify a src directory
containing our recipe. This allows us to use the recipe locally
without having to build a distribution file.

If we were to run this buildout, a parts/config file would be
generated:

<zeo>
 address 8080
</zeo>
<mappingstorage>
</mappingstorage>

as would a zdaemon configuration file, parts/server/zdaemon.conf, like:

<runner>
 daemon on
 directory /sample/parts/server
 program runzeo -C /sample/parts/config
 socket-name /sample/parts/server/zdaemon.sock
 transcript /sample/parts/server/transcript.log
</runner>

<eventlog>
 <logfile>
 path /sample/parts/server/transcript.log
 </logfile>
</eventlog>

Here’s the recipe source, src/democonfigrecipe.py:

import os

class Recipe:

 def __init__(self, buildout, name, options):
 options['path'] = os.path.join(
 buildout['buildout']['parts-directory'],
 name,
)
 self.options = options

 def install(self):
 self.options.created(self.options['path'])
 with open(self.options['path'], 'w') as f:
 f.write(self.options['contents'])
 return self.options.created()

 update = install

The constructor computes the path option. This is then available
for use by the server part above. It’s also used later in the
install method. We use
buildout['buildout']['parts-directory'] to get the buildout parts
directory. This is equivalent to using ${buildout:parts-directory}
in the configuration. The parts directory is the standard place for
recipes to create files or directories. If a recipe uses the parts
directory, it should create only one file or directory whose name is
the part name, which is passed in as the name argument to the
constructor.

The constructor saves the options so that the data and created
method are available in install.

The install method calls the option object’s created method
before creating a file. The order is important, because if the
file-creation fails partially, the file will be removed automatically.
The recipe itself doesn’t need an exception handler. The configuration
file is then written out. Finally, the created method is called
again 3 to return the list of created files (one, in
this case).

The update method is just an alias for the install method. We
could have used an empty method, however running install again makes
sure the file contents are as expected, overwriting manual changes, if
any.

Like the install method, the update method returns any paths
it created. These are merged with values returned by the install or
update in previous runs.

For this recipe to be usable, we need to make it available as a
distribution 4, so we need to create a setup
script, src/setup.py:

from setuptools import setup

setup(
 name='democonfigrecipe',
 version='0.1.0',
 py_modules = ['democonfigrecipe'],
 entry_points = {"zc.buildout": ["default=democonfigrecipe:Recipe"]},
)

The setup script specifies a name and version and lists the module to
be included.

The setup script also uses an entry_points option. Entry points
provide a miniature component systems for setuptools [https://setuptools.readthedocs.io/en/latest/setuptools.html#extensible-applications-and-frameworks].
A project can supply named components of given types. In the example
above, the type of the component is "zc.buildout", which is the
type used for Buildout recipes. A single components named default
is provided. The component is named as the Recipe attribute of
the democonfigrecipe module. When you specify a recipe in the
recipe option, you name a recipe requirement, which names a
project, and optionally provide a recipe name. The default name is
default. Most recipe projects provide a single recipe component
named default.

If we removed the server part from the configuration, the
two configuration files would be removed, because Buildout recorded
their paths and would remove them automatically.

Uninstall recipes

Uninstall recipes are very rarely needed, because most recipes just
install files and Buildout can handle those automatically.

An uninstall recipe is just a function that takes a name and an
options mapping. One of the few packages with an uninstall recipe is
zc.recipe.rhrc [https://github.com/zopefoundation/zc.recipe.rhrc/blob/master/src/zc/recipe/rhrc/__init__.py#L183].
The uninstall function there provides the uninstall recipe.
Here’s a highly simplified version:

def uninstall(name, options):
 os.system('/sbin/chkconfig --del ' + name)

This was used with a recipe that installed services on older Red Hat
Linux servers. When the part was uninstalled, it needed to run
/sbin/chkconfig to disable the service. Uninstall recipes don’t
need to return anything.

Like install recipes, uninstall recipes need to be registered using
entry points, using the type zc.buildout.uninstall as can be seen
in the zc.recipe.rhrc setup script [https://github.com/zopefoundation/zc.recipe.rhrc/blob/master/setup.py#L23].

User interaction: logging and UserError

Recipes communicate to users through logging and errors. Recipes can
log information using the Python logging library and messages will be
displayed according to buildout’s verbosity setting.

Errors that a user can potentially correct should be reported by
raising zc.buildout.UserError exceptions with error messages as
arguments.

Buildout will display these as user errors, rather than printing a
trace back.

Testing recipes

The recipe API is fairly simple and standard unit-testing approaches
can be used. We’ll use a helper class,
zc.buildout.testing.Buildout 5 to
provide a minimal buildout environment.

Let’s write a test for our configuration recipe. We need to verify that:

	The recipe generates a path option.

	The recipe generates a file in the correct place.

	The recipe returns the path it created from install.

We create a testdemoconfigrecipe.py file containing our tests:

import os
import shutil
import tempfile
import unittest
import zc.buildout.testing

class RecipeTests(unittest.TestCase):

 def setUp(self):
 self.here = os.getcwd()
 self.tmp = tempfile.mkdtemp(prefix='testdemoconfigrecipe-')
 os.chdir(self.tmp)
 self.buildout = buildout = zc.buildout.testing.Buildout()
 self.config = 'some config text\n'
 buildout['config'] = dict(contents=self.config)
 import democonfigrecipe
 self.recipe = democonfigrecipe.Recipe(
 buildout, 'config', buildout['config'])

 def tearDown(self):
 os.chdir(self.here)
 shutil.rmtree(self.tmp)

 def test_path_option(self):
 buildout = self.buildout
 self.assertEqual(os.path.join(buildout['buildout']['parts-directory'],
 'config'),
 buildout['config']['path'])

 def test_install(self):
 buildout = self.buildout
 self.assertEqual(self.recipe.install(), [buildout['config']['path']])
 with open(buildout['config']['path']) as f:
 self.assertEqual(self.config, f.read())

if __name__ == '__main__':
 unittest.main()

In the setUp method, we created a temporary directory and changed
to it. This is useful to make sure we have a clean working
directory. We clean it up in the tearDown method.

Our test uses zc.buildout so that we can use the
zc.buildout.testing.Buildout helper class. We did this so we’d
have a more realistic environment, but of course, we could have
stubbed this out ourselves. Because we’re using zc.buildout in
our test, we’ll add it as a test dependency in our setup script:

from setuptools import setup

setup(
 name='democonfigrecipe',
 version='0.1.0',
 py_modules = ['democonfigrecipe', 'testdemoconfigrecipe'],
 entry_points = {"zc.buildout": ["default=democonfigrecipe:Recipe"]},
 extras_require = dict(test=['zc.buildout >=2.9']),
)

Here, we defined an “extra” requirement. These are additional
dependencies needed to support optional features. In this case, we’re
providing an optional test feature. (We specified that we want at
least version 2.9, because we’re depending on some testing-support
refinements that were added in zc.buildout 2.9.0.)

We’ll write a development buildout to run our tests with:

[buildout]
develop = src
parts = py

[py]
recipe = zc.recipe.egg
eggs = democonfigrecipe [test]
interpreter = py

Running Buildout with this gives is an interpreter script that we can
run our tests with. The script will make sure that zc.buildout
and our recipe can be imported.

To run our tests:

bin/py src/testdemoconfigrecipe.py

In this example, we’ve tried to keep things simple and as free from
external requirements as possible.

More realistically:

	You’d probably arrange your recipe in a Python package rather than
as a top-level module and a top-level testing module.

	You might use a test runner like nose or pytest. There are recipes
that can help set this up [https://pypi.org/search/?q=test+runner+buildout+recipe].
We just used the test runner built into unittest.

zc.buildout.testing reference

The zc.buildout.testing module provides an API that can be used when
writing recipe tests. This API is documented below.

Many of the functions documented below take a path argument as
multiple arguments. These are joined using os.path.join. This is
more convenient than having to call os.path.join before calling the
functions.

	Buildout()

	A class you can use to create buildout and sections objects in your tests

This is a subclass of the main object used to run buildout. Its
constructor takes no arguments. You can add data to it by setting
section names to dictionaries:

buildout['config'] = dict(contents=self.config)

To get an options object to pass to your recipe, just ask for it back:

buildout['config']

See the recipe example above.

	cat(*path)

	Display the contents of a file. The file path is provided as one or
more strings, to be joined with os.path.join.

On Windows, if the file doesn’t exist, the function will try
adding a ‘-script.py’ suffix. This helps to work around a
difference in script generation on windows.

	clear_here()

	Remove all files and directories in the current working directory.

New in buildout 2.9

	eqs(got, *expected)

	Compare a collection with a collection given as multiple
arguments.

Both collections are converted to and compared as sets. If the
sets are the same, then no output is returned, otherwise a tuple
of extras is returned, so, for example:

>>> eqs([1, 2, 3], 3, 1, 2)
>>> eqs([1, 2, 3], 1, 2, 4) == ({3}, {4})
True

New in buildout 2.9

	ls(*path)

	List the contents of a directory. The directory path is provided as one or
more strings, to be joined with os.path.join.

	mkdir(*path)

	Create a directory. The directory path is provided as one or
more strings, to be joined with os.path.join.

	system(command, input='')

	Execute a system command with the given input passed to the
command’s standard input. The output (error and regular output
combined into a single string) from the command is returned.

	read(*path)

	Read text from a file at the given path. The file path is
provided as one or more strings, to be joined with os.path.join.

If no path is given, the 'out' is used.

New in buildout 2.9

	remove(*path)

	Remove a directory or file. The path is provided as one or
more strings, to be joined with os.path.join.

	rmdir(*path)

	Remove a directory. The directory path is provided as one or
more strings, to be joined with os.path.join.

	run_buildout_in_process(command='buildout')

	Run Buildout in a multiprocessing.Process [https://docs.python.org/3/library/multiprocessing.html#process-and-exceptions].
The command is must be a buildout command string, starting with ‘buildout’.
You can provide additional arguments, as in 'buildout -v'.

Some extra options are added to the command to prevent network
access when running the command. Any distribution the buildout
needs must already be available for import. So, for example, if
you want to use some recipe, include it in your rest dependencies.

All output from the buildout run is captured in the file named out.

This is useful for integration tests or tests of recipes that
interact intimately with buildout or other recipes.

New in buildout 2.9

	write(*path_and_contents)

	Create a file. The file path is provided as one or more strings,
to be joined with os.path.join. The last argument is the file contents.

Documenting your recipe

Please, don’t use your doctests to document your recipe. (We did that
a lot and it didn’t turn out well.) Just write straightforward
documentation that explains to users how to use your recipe.

If you have examples, however, considering testing them using manuel [https://pythonhosted.org/manuel/]. You can see examples of how to
do that by looking at the source of this topic [https://raw.githubusercontent.com/buildout/buildout/master/doc/topics/writing-recipes.rst].
Otherwise, it’s very easy to end up with mistakes in your examples.

	1

	Configuration data from previous runs are saved in a
buildout’s installed database, typically saved in a generated .installed.cfg file.

	2

	There are a variety of template recipes that
provide different features, like using template files and
supporting various template engines. Don’t re-use the example here.

	3

	Unfortunately, returning the result of calling
created() is boilerplate. Future versions of buildout won’t
require this return [https://github.com/buildout/buildout/issues/357].

	4

	Even though we aren’t distributing the
recipe in this example, we still need to create a develop
distribution so that Buildout can
find the recipe and its meta data.

	5

	We’re relying on some refinements
made to the helper class in zc.buildout 2.9.

Meta-recipes

Buildout recipes provide reusable Python modules for common
configuration tasks. The most widely used recipes tend to provide
low-level functions, like installing eggs or software distributions,
creating configuration files, and so on. The normal recipe framework
is fairly well suited to building these general components.

Full-blown applications may require many, often tens, of parts.
Defining the many parts that make up an application can be tedious and
often entails a lot of repetition. Buildout provides a number of
mechanisms to avoid repetition, including merging of configuration
files and macros, but these, while useful to an extent, don’t scale
very well. Buildout isn’t and shouldn’t be a programming language.

Meta-recipes allow us to bring Python to bear to provide higher-level
abstractions for buildouts.

A meta-recipe is a regular Python recipe that primarily operates by
creating parts. A meta recipe isn’t merely a high level recipe. It’s
a recipe that defers most or all of it’s work to lower-level recipes by
manipulating the buildout database.

A presentation at PyCon 2011 [http://blip.tv/pycon-us-videos-2009-2010-2011/pycon-2011-deploying-applications-with-zc-buildout-4897770]
described early work with meta recipes.

A simple meta-recipe example

Let’s look at a fairly simple meta-recipe example. First, consider a
buildout configuration that builds a database deployment:

[buildout]
parts = ctl pack

[deployment]
recipe = zc.recipe.deployment
name = ample
user = zope

[ctl]
recipe = zc.recipe.rhrc
deployment = deployment
chkconfig = 345 99 10
parts = main

[main]
recipe = zc.zodbrecipes:server
deployment = deployment
address = 8100
path = /var/databases/ample/main.fs
zeo.conf =
 <zeo>
 address ${:address}
 </zeo>
 %import zc.zlibstorage
 <zlibstorage>
 <filestorage>
 path ${:path}
 </filestorage>
 </zlibstorage>

[pack]
recipe = zc.recipe.deployment:crontab
deployment = deployment
times = 1 2 * * 6
command = ${buildout:bin-directory}/zeopack -d3 -t00 ${main:address}

This buildout doesn’t build software. Rather it builds configuration
for deploying a database configuration using already-deployed
software. For the purpose of this document, however, the details are
totally unimportant.

Rather than crafting the configuration above every time, we can write
a meta-recipe that crafts it for us. We’ll use our meta-recipe as
follows:

[buildout]
parts = ample

[ample]
recipe = com.example.ample:db
path = /var/databases/ample/main.fs

The idea here is that the meta recipe allows us to specify the minimal
information necessary. A meta-recipe often automates policies and
assumptions that are application and organization dependent. The
example above assumes, for example, that we want to pack to 3
days in the past on Saturdays.

So now, let’s see the meta recipe that automates this:

class Recipe:

 def __init__(self, buildout, name, options):

 buildout.parse('''
 [deployment]
 recipe = zc.recipe.deployment
 name = %s
 user = zope
 ''' % name)

 buildout['main'] = dict(
 recipe = 'zc.zodbrecipes:server',
 deployment = 'deployment',
 address = 8100,
 path = options['path'],
 **{
 'zeo.conf': '''
 <zeo>
 address ${:address}
 </zeo>

 %import zc.zlibstorage

 <zlibstorage>
 <filestorage>
 path ${:path}
 </filestorage>
 </zlibstorage>
 '''}
)

 buildout.parse('''
 [pack]
 recipe = zc.recipe.deployment:crontab
 deployment = deployment
 times = 1 2 * * 6
 command =
 ${buildout:bin-directory}/zeopack -d3 -t00 ${main:address}

 [ctl]
 recipe = zc.recipe.rhrc
 deployment = deployment
 chkconfig = 345 99 10
 parts = main
 ''')

 def install(self):
 pass

 update = install

The meta recipe just adds parts to the buildout. It does this by
setting items and calling the parse method. The parse
method just takes a string in buildout configuration syntax. It’s
useful when we want to add static, or nearly static part data. The
setting items syntax is useful when we have non-trivial computation
for part data.

The order that we add parts is important. When adding a part, any
string substitutions and other dependencies are evaluated, so the
referenced parts must be defined first. This is why, for example, the
pack part is added after the main part.

Note that the meta recipe supplied an integer for one of the
options. In addition to strings, it’s legal to supply integer values.

There are a few things to note about this example:

	The install and update methods are empty.

While not required, this is a very common pattern for meta
recipes. Most meta recipes, simply invoke other recipes.

	Setting a buildout item or calling parse, adds any sections with
recipes as parts.

	An exception will be raised if a section already exists.

Testing

Now, let’s test our meta recipe. We’ll test it without actually
running buildout. Rather, we’ll use a specialized buildout provided by
the zc.buildout.testing module.

>>> import zc.buildout.testing
>>> buildout = zc.buildout.testing.Buildout()

The testing buildout is intended to be passed to recipes being
tested:

>>> _ = Recipe(buildout, 'ample', dict(path='/var/databases/ample/main.fs'))

After running the recipe, we should see the buildout database
populated by the recipe:

>>> buildout.print_options(base_path='/sample-buildout')
[ctl]
chkconfig = 345 99 10
deployment = deployment
parts = main
recipe = zc.recipe.rhrc
[deployment]
name = ample
recipe = zc.recipe.deployment
user = zope
[main]
address = 8100
deployment = deployment
path = /var/databases/ample/main.fs
recipe = zc.zodbrecipes:server
zeo.conf =

 <zeo>
 address 8100
 </zeo>

 %import zc.zlibstorage

 <zlibstorage>
 <filestorage>
 path /var/databases/ample/main.fs
 </filestorage>
 </zlibstorage>

[pack]
command = /sample-buildout/bin/zeopack -d3 -t00 8100
deployment = deployment
recipe = zc.recipe.deployment:crontab
times = 1 2 * * 6

Reference

The Buildout command line

A Buildout execution is of the form:

buildout [buildout-options] [assignments] [command [command arguments]]

Assignments take the form section:option=value and override (or
augment) options in configuration files. For example, to pin a
version of ZEO you could use versions:ZEO=4.3.1. The section
defaults to the buildout section. So, for example: parts=test
sets the buildout section parts option.

Command-line assignments can use += and -= to
merge values with existing values

Buildout command-line options

	-c config_file

	Specify the path (or URL) to the buildout configuration file to be used.
This defaults to the file named buildout.cfg in the current
working directory.

	-D

	Debug errors. If an error occurs, then the post-mortem debugger
will be started. This is especially useful for debugging recipe
problems.

	-h, --help

	Print basic usage information and exit.

	-N

	Run in non-newest mode. This is equivalent
to the command-line assignment newest=false.

	-q

	Decrease the level of verbosity. This option can be used multiple
times.

Using a single -q suppresses normal output, but still shows
warnings and errors.

Doubling the option -qq (or equivalently -q -q) suppresses
normal output and warnings.

Using the option more than twice suppresses errors, which is a bad idea.

	-t socket_timeout

	Specify the socket timeout in seconds. See the
socket-timeout option for details.

	-U

	Don’t use user-default configuration.

	-v

	Increase the level of verbosity. This option can be used multiple
times.

At the default verbosity, buildout prints messages about significant
activities. It also prints warning and error messages.

At the next, “verbose”, level (-v), it prints much
more information. In particular, buildout will show when and why
it’s installing specific distribution versions.

At the next, “debugging”, level, -vv (or equivalently -v
-v), buildout prints low-level debugging information, including a
listing of all configuration options, including: default options,
computed options and the results of value substitutions and macros.

Using this option more than twice has no effect.

	--version

	Print buildout version number and exit.

Buildout commands

annotate

Display the buildout configuration options, including their values and
where they came from. Try it!

buildout annotate

Increase the verbosity of the output to display all steps that compute the final values used by buildout.

buildout -v annotate

Pass one or more section names as arguments to display annotation only for the given sections.

buildout annotate versions

bootstrap

Install a local bootstrap script. The bootstrap command
doesn’t take any arguments.

See Bootstrapping for information on why
you might want to do this.

init [requirements]

Generate a Buildout configuration file and bootstrap the resulting buildout.

If requirements are given, the generated configuration will have a
py part that uses the zc.recipe.egg recipe to install the
requirements and generate an interpreter script that can import them.
It then runs the resulting buildout.

See Bootstrapping for examples.

install

Install the parts specified in the buildout configuration. This is
the default command if no command is specified.

setup PATH SETUP-COMMANDS

Run a setuptools-based setup script to build a distribution.

The path must be the path of a setup script [https://docs.python.org/3.6/distutils/setupscript.html] or of a
directory containing one named setup.py. For example, to create a
source distribution using a setup script in the current directory:

buildout setup . sdist

This command is useful when the Python environment you’re using
doesn’t have setuptools installed. Normally today, setuptools is
installed and you can just run setup scripts that use setuptools directly.

Note that if you want to build and upload a package to the standard
package index [https://pypi.org] you should consider
using zest.releaser [https://pypi.org/project/zest.releaser],
which automates many aspects of software release including checking
meta data, building releases and making version-control tags.

Buildout configuration options

The standard buildout options are shown below. Values of options with
defaults shown can be used in value substitutions.

	abi-tag-eggs

	A flag (true/false) indicating whether the eggs directory should be
divided into subdirectories by ABI tag [https://www.python.org/dev/peps/pep-0425/#abi-tag]. This may be
useful if you use multiple Python builds with different build
options or different Python implementations. It’s especially
useful if you switch back and forth between PyPy and C Python.

	allow-hosts, default: ‘*’

	Specify which hosts (as globs) you’re willing to download
distributions from when following dependency links.

	allow-picked-versions, default: ‘true’

	Indicate whether it should be possible to install requirements whose
versions aren’t pinned <pinned-versions>.

	allow-unknown-extras, default: ‘false’

	Specify whether requirements that specify an extra not provided by
the target distribution should be allowed. When this is false, such
a requirement is an error.

	bin-directory, default: bin

	The directory where generated scripts should be installed. If this
is a relative path, it’s evaluated relative to the buildout
directory.

	develop

	One or more (whitespace-separated) paths to distutils setup scripts [https://docs.python.org/3.6/distutils/setupscript.html] or (more
commonly) directories containing setup scripts named setup.py.

See: Python development projects.

	develop-eggs-directory, default: ‘develop-eggs’

	The directory where develop eggs should be installed. If this is a
relative path, it’s evaluated relative to the buildout directory.

	directory, default: directory containing top-level buildout configuration

	The top of the buildout. Other directories specified (or
defaulting) with relative paths are created relative to this directory.

	download-cache

	An optional directory in which to cache downloads. Python
distributions are cached in the dist subdirectory of this
directory. Recipes may also cache downloads in this directory, or
in a subdirectory.

This is often set in a User-default configuration to share a cache between buildouts.
See the section on Optimizing buildouts with shared eggs and
download caches.

If the value is a relative path and doesn’t contain value
substitutions, it’s interpreted relative to the directory containing
the configuration file that defined the value. (If it contains value
substitutions, and the result is a relative path, then it will be
interpreted relative to the buildout directory.)

	eggs-directory, default: ‘eggs’

	The directory where eggs are installed.

This is often set in a User-default configuration to share eggs between buildouts.
See the section on Optimizing buildouts with shared eggs and
download caches.

If the value is a relative path and doesn’t contain value
substitutions, it’s interpreted relative to the directory containing
the configuration file that defined the value. (If it contains value
substitutions, and the result is a relative path, then it will be
interpreted relative to the buildout directory.)

	executable, default: sys.executable, read-only

	The full path to the Python executable used to run the buildout.

	extends

	The names, separated by whitespace, of one or more configurations
that the configuration containing the extends option should
extend. The names may be file paths, or
URLs. If they are relative paths, they are interpreted relative to
the configuration containing the extends option.

	extends-cache

	An optional directory to cache remote configurations in. Remote
configuration is configuration specified using a URL in an
extends option or as the argument to the
-C buildout command-line option. How the
extends-cache behaves depends on the buildout mode:

	Mode

	Behavior

	install-from-cache or
offline

	Configuration is retrieved
from cache if possible. If
configuration isn’t cached,
the buildout fails.

	non-newest

	Configuration is retrieved
from cache if possible. If
configuration isn’t cached,
then it is downloaded
and saved in the cache.

	Default
(newest)

	Configuration is downloaded
and saved in the cache, even
if it is already cached, and
the previously cached value
is replaced.

If the value is a relative path and doesn’t contain value
substitutions, it’s interpreted relative to the directory containing
the configuration file that defined the value. (If it contains value
substitutions, and the result is a relative path, then it will be
interpreted relative to the buildout directory.)

	find-links, default: ‘’

	Extra locations to search for distributions to download.

These may be file paths or URLs. These may name individual
distributions or directories containing
distributions. Subdirectories aren’t searched.

	index

	An alternate index location.

This can be a local directory name or an URL. It can be a flat
collection of distributions, but should be a “simple” index, with
subdirectories for distribution project names [https://packaging.python.org/distributing/#name] containing
distributions for those projects.

If this isn’t set, then https://pypi.org/simple/ is used.

	install-from-cache, default: ‘false’

	Enable install-from-cache mode.

In install-from-cache mode, no network requests should be made.

It’s a responsibility of recipes to adhere to this. Recipes that
would need to download files may use the download cache.

The original purpose of the install-from-cache mode was to support
source-distribution of buildouts that could be built without making
network requests (mostly for security reasons).

This mode may only be used if a download-cache is specified.

	installed, default: ‘.installed.cfg’

	The name of the file used to store information about what’s installed.

Buildout keeps information about what’s been installed so it can
remove files created by parts that are removed and so it knows
whether to update or install new parts from scratch.

If this is a relative path, then it’s interpreted relative to the
buildout directory.

	log-format, default: ‘’

	Format [https://docs.python.org/3/library/logging.html#formatter-objects]
to use for log messages.

If log-format is blank, the default, Buildout will use the format:

%(message)s

for its own messages, and:

%(name)s: %(message)s

for the root logger 1.

If log-format is non-blank, then it will be used for the root logger
1 (and for Buildout’s messages).

	newest, default: ‘true’

	If true, check for newer distributions. If false, then only look
for distributions when installed distributions don’t satisfy requirements.

The goal of non-newest mode is to speed Buildout runs by avoiding
network requests.

	offline, default: ‘false’

	If true, then offline mode is enabled.

Warning

Offline mode is deprecated.

Its purpose has evolved over time and the end result doesn’t make
much sense, but it is retained (indefinitely) for backward
compatibility.

If you think you want an offline mode, you probably want either
the non-newest mode or the
install-from-cache mode instead.

In offline mode, no network requests should be made. It’s the
responsibility of recipes to adhere to this. Recipes that would
need to download files may use the download
cache.

No distributions are installed in offline mode. If installed
distributions don’t satisfy requirements, the the buildout will
error in offline mode.

	parts-directory, default: ‘parts’

	The directory where generated part artifacts should be installed. If this
is a relative path, it’s evaluated relative to the buildout
directory.

If a recipe creates a file or directory, it will normally create it
in the parts directory with a name that’s the same as the part name.

	prefer-final, default: ‘true’

	If true, then only final distribution releases [https://www.python.org/dev/peps/pep-0440/#final-releases] will be
used unless no final distributions satisfy requirements.

	show-picked-versions, default: ‘false’

	If true, when Buildout finds a newest distribution for a
requirement that wasn’t pinned <pinned-versions>, it will print
lines it would write to a versions configuration if the
update-versions-file option was used.

	socket-timeout, default: ‘’

	Specify a socket timeout 2, in seconds, to use when
downloading distributions and other artifacts. If non-blank, the
value must be a positive non-zero integer. If left blank, the socket
timeout is system dependent.

This may be useful if downloads are attempted from very slow
sources.

	update-versions-file, default: ‘’

	If non-blank, this is the name of a file to write versions to when
selecting a distribution for a requirement whose version wasn’t
pinned <pinned-versions>. This file, typically versions.cfg,
should end with a versions section (or whatever name is
specified by the versions option).

	use-dependency-links, default: true

	Distribution meta-data may include URLs, called dependency links, of
additional locations to search for distribution dependencies. If
this option is set to false, then these URLs will be ignored.

	versions, default ‘versions’

	The name of a section that contains version pins.

Configuration file syntax

Buildout configurations use an INI file format [https://en.wikipedia.org/wiki/INI_file].

A configuration is a collection of named sections containing named
options.

Section names

A section begins with a section and, optionally, a condition in
square braces ([and]).

A name can consist of any characters other than whitespace, square
braces, curly braces ({ or }), pound signs (#), colons
(:) or semi-colons (;). The name may be surrounded by leading
and trailing whitespace, which is ignored.

An optional condition is separated from the name by a colon and is a
Python expression. It may not contain a pound sign or semi-colon. See
the section on conditional sections for
an example and more details.

A comment, preceded by a pound sign or semicolon may follow the
section name, as in:

[buildout] # This is the buildout section

Options

Options are specified with an option name followed by an equal sign
and a value:

parts = py

Option names may have any characters other than whitespace, square
braces, curly braces, equal signs, or colons. There may be and
usually is whitespace between the name and the equal sign and the name
and equal sign must be on the same line. Names starting with <
are reserved for Buildout’s use.

Option values may contain any characters. A consequence of this is
that there can’t be comments in option values.

Option values may be continued on multiple lines, and may contain blank lines:

parts = py

 test

Whitespace in option values

Trailing whitespace is stripped from each line in an option value.
Leading and trailing blank lines are stripped from option values.

Handling of leading whitespace and blank lines internal to values
depend on whether there is data on the first line (containing the
option name).

	data on the first line

	Leading whitespace is stripped and blank lines are omitted.

The resulting option value in the example above is:

py
test

	no data on the first line

	Internal blank lines are retained and common leading white space is stripped.

For example, the value of the option:

code =
 if x == 1:
 y = 2 # a comment

 return

is:

if x == 1:
 y = 2 # a comment

 return

Special “implication” syntax for the <part-dependencies> option

An exception to the normal option syntax is the use of => as a
short-hand for the <part-dependencies> option:

=> part1 part2
 part3

This is equivalent to:

<part-dependencies> = part1 part2
 part3

and declares that the named parts are dependencies of the part in
which this option appears.

Comments and blank lines

Lines beginning with pound signs or semi-colons (# or ;) are
comments:

This is a comment
; This too

As mentioned earlier, comments can also appear after section names.

Blank lines are ignored unless they’re within option values that only
have data on continuation lines.

	1(1,2)

	Generally, the root logger format is used for all
messages unless it is overridden by a lower-level logger.

	2

	This timeout reflects how long to wait on
individual socket operations. A slow request may take much longer
than this timeout.

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Buildout’s documentation!

 		
 Buildout, an automation tool written in and extended with Python

 		
 Repeatability

 		
 Componentization

 		
 Automation

 		
 Learning more

 		
 Additional resources

 		
 Getting started with Buildout

 		
 First steps

 		
 Installing software

 		
 Generating configuration and custom scripts

 		
 Version control

 		
 More than just a package installer

 		
 Repeatability

 		
 Buildout environment

 		
 Python requirement versions

 		
 Buildout versions and automatic upgrade

 		
 Python development projects

 		
 Where to go from here?

 		
 Buildout Topics

 		
 History, motivation, and Python packaging

 		
 Isolation from environment

 		
 Python

 		
 Buildout and packaging

 		
 Staying DRY with value substitutions, extending, and macros

 		
 Value substitutions

 		
 Default and computed option values

 		
 Sources of configuration options

 		
 Extending configuration files

 		
 Conditional configuration sections

 		
 User-default configuration

 		
 Merging, rather than overriding values

 		
 Extending sections using macros

 		
 Automatic installation of part dependencies

 		
 Optimizing buildouts with shared eggs and download caches

 		
 Shared eggs directory

 		
 Bootstrapping

 		
 Local bootstrapping using the bootstrap command

 		
 Using a bootstrapping script

 		
 Bootstrapping requires a buildout.cfg, init creates one

 		
 Buildout extensions

 		
 Writing Buildout recipes

 		
 Install recipes

 		
 Uninstall recipes

 		
 User interaction: logging and UserError

 		
 Testing recipes

 		
 Documenting your recipe

 		
 Meta-recipes

 		
 A simple meta-recipe example

 		
 Testing

 		
 Reference

 		
 The Buildout command line

 		
 Buildout command-line options

 		
 Buildout commands

 		
 Buildout configuration options

 		
 Configuration file syntax

 		
 Section names

 		
 Options

 		
 Comments and blank lines

