

Building Multi Tenant Applications with Django

[image: _images/book-cover-multi-tenant.jpg]

Table of Contents:

	Introduction to multi tenant applications
	What are multi tenant apps?

	The structure of this book

	The various approached to multi tenancy

	Shared database with shared schema
	The base single-tenant app

	Adding multi tenancy to models

	Identifying tenants

	Extracting tenant from request

	A detour to /etc/hosts

	Using tenant_from_request in the views

	Isolating the admin

	Shared database with isolated schema
	Limitations of shared schema and our current method

	What are database schemas?

	Managing database migrations

	Tenant separation in views

	A middleware to set schemas

	Beyond the request-response cycle

	Isolated database with a shared app server
	Multiple database support in Django

	Database routing in Django

	Per tenant database routing using middlewares

	Outside the request response cycle

	Completely isolated tenants using Docker
	Tools we will use

	Building a docker image from our app code

	Using docker-compose to run multi container, multi-tenant apps

	The final docker-compose.yaml

	Tying it all together
	Launching new tenants

	A comparison of trade-offs of various methods

	What method should I use?

	Third party apps
	Open source Django multi tenancy apps

	A tour of django-tenant-schemas

Indices and tables

	Index

	Module Index

	Search Page

Introduction to multi tenant applications

What are multi tenant apps?

Multi tenant applications allow you to serve multiple customers with one install of the application. Each customer has their data completely isolated in such an architecture. Each customer is called a tenant.

Most modern Software as a Service applications are multi tenant. Whether it is Salesforce, Freshbooks, Zoho or Wordpress, most modern cloud based applications are delivered with a multi-tenant architecture.

The structure of this book

In this book we will take a single tenant application and re-architect it to be a multi tenant application. We will use a slightly modified Django polls app as our base.

There are multiple approaches for multi tenancy. We will look at the four most common ones.

The various approached to multi tenancy

	Shared database with shared schema

	Shared database with isolated schema

	Isolated database with a shared app server

	Completely isolated tenants using Docker

Shared database with shared schema

A single database keeps every tenant’s data. A ForeignKey in the tables identifies the tenant.

Shared database with isolated schema

A single database keeps every tenant’s data. Each tenant’s data is in a separate schema within the single database. The schema identifies the tenant and data tabled do no have a FK to the tenant.

Isolated database with a shared app server

Every tenant’s data is in a separate database. The database identifies the tenant.

Completely isolated tenants using Docker

A new set of docker containers are launched for each tenant. Every tenant’s data is in a separate database (which may or may not be running in container). A set of containers identifies the tenant.

In the next four chapters, we will look at each architecture in turn. Let’s get started.

Shared database with shared schema

In this chapter, we will rebuild a slightly modified Django polls app to be multi-tenant.
You can download the code from Github [https://github.com/agiliq/building-multi-tenant-applications-with-django/tree/master/base].

The base single-tenant app

Our base project has one app called polls. The models look something like this.

from django.db import models
from django.contrib.auth.models import User

class Poll(models.Model):
 question = models.CharField(max_length=100)
 created_by = models.ForeignKey(User, on_delete=models.CASCADE)
 pub_date = models.DateTimeField(auto_now=True)

 def __str__(self):
 return self.question

class Choice(models.Model):
 poll = models.ForeignKey(Poll, related_name='choices',on_delete=models.CASCADE)
 choice_text = models.CharField(max_length=100)

 def __str__(self):
 return self.choice_text

class Vote(models.Model):
 choice = models.ForeignKey(Choice, related_name='votes', on_delete=models.CASCADE)
 poll = models.ForeignKey(Poll, on_delete=models.CASCADE)
 voted_by = models.ForeignKey(User, on_delete=models.CASCADE)

 class Meta:
 unique_together = ("poll", "voted_by")

There are a number of other files which we will look at later.

Adding multi tenancy to models

We will add another app called tenants

python manage.py startapp tenants

Create a model for storing Tenant data.

class Tenant(models.Model):
 name = models.CharField(max_length=100)
 subdomain_prefix = models.CharField(max_length=100, unique=True)

And then create a class TenantAwareModel class which other models with subclass from.

class TenantAwareModel(models.Model):
 tenant = models.ForeignKey(Tenant, on_delete=models.CASCADE)

 class Meta:
 abstract = True

Change the polls.models to subclass from TenantAwareModel.

...

class Poll(TenantAwareModel):
 # ...

class Choice(TenantAwareModel):
 # ...

class Vote(TenantAwareModel):
 # ...

Identifying tenants

There are many approaches to identify the tenant. One common method is to give each tenant their own subdomain. So if you main website is

www.example.com

And each of the following will be a separate tenant.

	thor.example.com

	loki.example.com

	potter.example.com

We will use the same method in the rest of the book. Our Tenant model has subdomain_prefix which will identify the tenant.

We will use polls.local as the main domain and <xxx>.polls.local as tenant subdomain.

Extracting tenant from request

Django views always have a request which has the Host header. This will contain the full subdomain the tenant is using.
We will add some utility methods to do this. Create a utils.py and add this code.

from .models import Tenant

def hostname_from_request(request):
 # split on `:` to remove port
 return request.get_host().split(':')[0].lower()

def tenant_from_request(request):
 hostname = hostname_from_request(request)
 subdomain_prefix = hostname.split('.')[0]
 return Tenant.objects.filter(subdomain_prefix=subdomain_prefix).first()

Now wherever you have a request, you can use tenant_from_request to get the tenant.

A detour to /etc/hosts

To ensure that the <xxx>.polls.local hits your development machine, make sure you add a few entries to your /etc/hosts

(If you are on windows, use C:\Windows\System32\Drivers\etc\hosts). My file looks like this.

...
127.0.0.1 polls.local
127.0.0.1 thor.polls.local
127.0.0.1 potter.polls.local

Also update ALLOWED_HOSTS your settings.py. Mine looks like this: ALLOWED_HOSTS = ['polls.local', '.polls.local'].

Using tenant_from_request in the views

Views, whether they are Django function based, class based or a Django Rest Framework view have access to the request.
Lets take the example of polls.views.PollViewSet to limit the endpoints to tenant specific Poll objects.

from tenants.utils import tenant_from_request

class PollViewSet(viewsets.ModelViewSet):
 queryset = Poll.objects.all()
 serializer_class = PollSerializer

 def get_queryset(self):
 tenant = tenant_from_request(self.request)
 return super().get_queryset().filter(tenant=tenant)

Isolating the admin

Like the views we need to enforce tenant isolation on the admin. We will need to override two methods.

	get_queryset: So that only the current tenant’s objects show up.

	save_model: So that tenant gets set on the object when the object is saved.

With the changes, your admin.py looks something like this.

@admin.register(Poll)
class PollAdmin(admin.ModelAdmin):
 fields = ["question", "created_by", "pub_date"]
 readonly_fields = ["pub_date"]

 def get_queryset(self, request, *args, **kwargs):
 queryset = super().get_queryset(request, *args, **kwargs)
 tenant = tenant_from_request(request)
 queryset = queryset.filter(tenant=tenant)
 return queryset

 def save_model(self, request, obj, form, change):
 tenant = tenant_from_request(request)
 obj.tenant = tenant
 super().save_model(request, obj, form, change)

With these changes, you have a basic multi-tenant app. But there is a lot more to do as we will see in the following chapters.

The code for this chapter is available at https://github.com/agiliq/building-multi-tenant-applications-with-django/tree/master/shared-db

Shared database with isolated schema

Limitations of shared schema and our current method

In the previous chapter we used a ForeignKey to separate the tenants. This method is simple
but limited due to the following:

	Weak separation of tenant’s data

	Tenant isolation code is intermixed with app code

	Duplication of code

Weak separation of tenant’s data

Because each tenant’s data stays in the same schema, there is no way to limit access to a single tenant’s data at the DB level.

Tenant isolation code is intermixed with app code

You need to litter your code with .filter(tenant=tenant) every time you access the database. For example in your ViewSet you would be doing this:

def get_queryset(self):
 tenant = tenant_from_request(self.request)
 return super().get_queryset().filter(tenant=tenant)

If you even miss a filter, you would be mixing data from two tenants. This will be a bad security bug.

Duplication of code

The tenant separation code of getting the tenant from the request and filtering on it is all over your codebase, rather than a central location.

In this chapter, we will rearchitect our code to use Shared database with isolated schema, which will fix most of these limitations.

What are database schemas?

Schemas in database are a way to group objects. Postgres documentation defines schema as

A database contains one or more named schemas, which in turn contain tables. Schemas also contain other kinds of named objects, including data types, functions, and operators. The same object name can be used in different schemas without conflict; for example, both schema1 and myschema may contain tables named mytable.

For the rest of the chapter, we will be using Postgres. We will be using one schema per tenant.

We need some way to keeping a mapping on tenants to schemas. There are a number of ways you could do it, for example by keeping a table in public schema to map tenant urls to schemas. In this chapter, for simplicity, we will keep a simple map of tenant urls to schemas.

Add this to your utils.py

def get_tenants_map():
 return {
 "thor.polls.local": "thor",
 "potter.polls.local": "potter",
 }

Now when we get a request to thor.polls.local we need to read from the schema thor, and when we get a request to potter.polls.local we need to read from schema potter.

Managing database migrations

manage.py migrate is not schema aware. So we will need to subclass this command so that tables are created in all the schemas. Create the folder structure for a new command following the usual django convention [https://docs.djangoproject.com/en/2.0/howto/custom-management-commands/]. Then add a file named migrate_schemas in there.

from django.core.management.commands.migrate import Command as MigrationCommand

from django.db import connection
from ...utils import get_tenants_map

class Command(MigrationCommand):
 def handle(self, *args, **options):
 with connection.cursor() as cursor:
 schemas = get_tenants_map().values()
 for schema in schemas:
 cursor.execute(f"CREATE SCHEMA IF NOT EXISTS {schema}")
 cursor.execute(f"SET search_path to {schema}")
 super(Command, self).handle(*args, **options)

To understand what we are doing here, you need to know a few Postgres queries.

	CREATE SCHEMA IF NOT EXISTS potter creates a new schema named potter.

	SET search_path to potter set the connection to use the given schema.

Now when you run manage.py migrate_schemas it loops over the our tenants map, then creates a schema for that tenant and runs the migration for the tenant.

Tenant separation in views

Lets add a few utility methods which will allow us to get and set the schema. Add the following functions to your utils.py.

def hostname_from_request(request):
 # split on `:` to remove port
 return request.get_host().split(':')[0].lower()

def tenant_schema_from_request(request):
 hostname = hostname_from_request(request)
 tenants_map = get_tenants_map()
 return tenants_map.get(hostname)

def set_tenant_schema_for_request(request):
 schema = tenant_schema_from_request(request)
 with connection.cursor() as cursor:
 cursor.execute(f"SET search_path to {schema}")

Now we can separate the tenants in the views using these functions.

apiviews.py
...
from tenants.utils import set_tenant_schema_for_request

class PollViewSet(viewsets.ModelViewSet):
 queryset = Poll.objects.all()
 serializer_class = PollSerializer

 def get_queryset(self):
 set_tenant_schema_for_request(self.request)
 tenant = tenant_from_request(self.request)
 return super().get_queryset().filter(tenant=tenant)

 def destroy(self, request, *args, **kwargs):
 set_tenant_schema_for_request(self.request)
 poll = Poll.objects.get(pk=self.kwargs["pk"])
 if not request.user == poll.created_by:
 raise PermissionDenied("You can not delete this poll.")
 return super().destroy(request, *args, **kwargs)

...

admin.py
...
from tenants.utils import tenant_schema_from_request

@admin.register(Poll)
class PollAdmin(admin.ModelAdmin):
 fields = ["question", "created_by", "pub_date"]
 readonly_fields = ["pub_date"]

 def get_queryset(self, request, *args, **kwargs):
 set_tenant_schema_for_request(self.request)
 queryset = super().get_queryset(request, *args, **kwargs)
 tenant = tenant_from_request(request)
 queryset = queryset.filter(tenant=tenant)
 return queryset

 def save_model(self, request, obj, form, change):
 set_tenant_schema_for_request(self.request)
 tenant = tenant_from_request(request)
 obj.tenant = tenant
 super().save_model(request, obj, form, change)

A middleware to set schemas

Our naive approach to separate the tenants suffers from a few problems:

	set_tenant_schema_for_request(self.request) is duplicated everywhere

	Any third party code, including Django’s, ORM accesses will fail because they will try to access the objects from the public schema, which is empty.

Both of these can be fixed by using a middleware.
We will set the schema in the middleware before any view code comes in play, so any ORM code will pull and write the data from the tenant’s schema.

Create a new middleware like this:

from tenants.utils import set_tenant_schema_for_request

class TenantMiddleware:
 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 set_tenant_schema_for_request(request)
 response = self.get_response(request)
 return response

And add it to your settings.MIDDLEWARES

MIDDLEWARE = [
 # ...
 'tenants.middlewares.TenantMiddleware',
]

Beyond the request-response cycle

We have one more change to make before we are done. You can not use manage.py createssuperuser or any Django command, as manage.py will try to use the public schema, and there are no tables in the public schema.

Middleware is only used in the request-response cycle and does not come into play when you run a command.
Therefore we need another place to hook our set_tenant_schema_for_request.
To do this, create a new file tenant_context_manage.py. This is similar to manage.py, with a few minor changes.

#!/usr/bin/env python
import os
import sys

if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pollsapi.settings")
 try:
 from django.core.management import execute_from_command_line
 except ImportError as exc:
 raise ImportError(
 "Couldn't import Django. Are you sure it's installed and "
 "available on your PYTHONPATH environment variable? Did you "
 "forget to activate a virtual environment?"
) from exc
 from django.db import connection
 args = sys.argv
 schema = args[1]
 with connection.cursor() as cursor:

 cursor.execute(f"SET search_path to {schema}")

 del args[1]
 execute_from_command_line(args)

This allows setting the tenant schema, which is passed as first argument before running the command.

We will be able to use it like this. python tenant_context_manage.py thor createsuperuser.

With this, you can login to any tenant’s admin, create some objects, and view the API endpoints. Here is what the polls api endpoint looks like for me.

[image: _images/polls-isolated-schema.png]
In the next chapter we will look at separating the tenants to their own databases.

The code for this chapter is available at https://github.com/agiliq/building-multi-tenant-applications-with-django/tree/master/isolated-schema

Isolated database with a shared app server

In the previous chapter we used schemas to separate each tenant’s data. In this chapter we will keep each tenant’s data in a separate DB.
For this chapter we will use sqlite, though any DB supported by Django will suffice. Our core architecture will be quite similar to the previous chapter, where we

	Used request header to find the tenant

	Created a mapping of tenants to schemas

	Set the tenant specific schema in middleware

In this chapter, we will

	Use request header to find the tenant

	Create a mapping of tenants to databases

	Set the tenant specific database in middleware.

Let’s get rolling.

Multiple database support in Django

Django has descent support for a multi DB apps. You can specify multiple databases in your settings like this.

DATABASES = {
 "default": {"ENGINE": "django.db.backends.sqlite3", "NAME": "default.db"},
 "thor": {"ENGINE": "django.db.backends.sqlite3", "NAME": "thor.db"},
 "potter": {"ENGINE": "django.db.backends.sqlite3", "NAME": "potter.db"},
}

Then, if you want to read Polls from the thor db, you can use Poll.objects.using('thor').all().

This sort of works. But if we had to use using everywhere, the code duplication would quickly make our code unmanageable.
We need a central place to define which database the tenant’s DB requests should go to. Enter Django database routers.

Database routing in Django

Django allows hooking into the database routing process using the DATABASE_ROUTERS settings.

DATABASE_ROUTERS take a list of classes which must implement a few methods. A router class looks like this.

class CustomRouter:

 def db_for_read(self, model, **hints):
 return None

 def db_for_write(self, model, **hints):
 return None

 def allow_relation(self, obj1, obj2, **hints):
 return None

 def allow_migrate(self, db, app_label, model_name=None, **hints):
 return None

However, none of the methods in a Router class take request as an argument, which means there is no way for a router to call tenant_db_from_request. So we will need a way to pass the tenant data to the router.

Per tenant database routing using middlewares

We will use a middleware to calculate the DB to use. We will also need some way to pass it to the router.
We are going to use a threadlocal variable to do this.

What are threadlocal variables?

Threadlocal variables are variables which you need to be accessible during the whole life-cycle of the thread, but you don’t want it to be accessible or to leak between threads.
threadlocal variables are discouraged in Django but they are a clean way for us to pass the data down the stack to the routers.

You create a threadlocal variable at the top of the module like this _threadlocal = threading.local().

If you are using Python 3.7, you can also use contextvars instead of threadlocal variables.

The middleware class

With this discussion, our middleware class looks like this:

import threading

from django.db import connections
from .utils import tenant_db_from_request

THREAD_LOCAL = threading.local()

class TenantMiddleware:
 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 db = tenant_db_from_request(request)
 setattr(THREAD_LOCAL, "DB", db)
 response = self.get_response(request)
 return response

def get_current_db_name():
 return getattr(THREAD_LOCAL, "DB", None)

def set_db_for_router(db):
 setattr(THREAD_LOCAL, "DB", db)

We have also added a few utility methods.

Now use these in your settings.py.

MIDDLEWARE = [
 # ...
 "tenants.middlewares.TenantMiddleware",
]
DATABASE_ROUTERS = ["tenants.router.TenantRouter"]

Outside the request response cycle

Our requests requests are now tenant aware, but we still need to run a few commands to finish our setup.

	We need to run migrations for all our databases

	We need to create a superuser to access the admin and create some objects

Most Django commands take a --database=db_name option, to specify which DB to run the command against. We can run the migrations like this.

python manage.py migrate --database=thor
python manage.py migrate --database=potter

However not all commands are multi-db aware, so it worthwhile writing a tenant_context_manage.py.

#!/usr/bin/env python
import os
import sys

from tenants.middlewares import set_db_for_router

if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pollsapi.settings")
 try:
 from django.core.management import execute_from_command_line
 except ImportError as exc:
 raise ImportError(
 "Couldn't import Django. Are you sure it's installed and "
 "available on your PYTHONPATH environment variable? Did you "
 "forget to activate a virtual environment?"
) from exc
 from django.db import connection

 args = sys.argv
 db = args[1]
 with connection.cursor() as cursor:
 set_db_for_router(db)
 del args[1]
 execute_from_command_line(args)

It is slightly modified version of manage.py which takes the dbname as the first argument. We can run like this.

python tenant_context_manage.py thor createsuperuser --database=thor

With this we can add some Poll objects from the admin, and look at the API. It look like this.

[image: _images/isolated-db.png]
In the next chapter, we will look at separating the tenants in their own docker containers. The code for this chapter is available at https://github.com/agiliq/building-multi-tenant-applications-with-django/tree/master/isolated-db

Completely isolated tenants using Docker

Until this chapter we have separated the tenant data, but the app server has been common between tenants.
In this chapter, we will complete the separation using Docker, each tenant app code runs it own container and the tenant.

Tools we will use

	Docker to build the app code image and run the containers

	Docker-compose to define and run the containers for each tenant

	Nginx to route the requests to correct tenant container

	A separate Postgres database (Running inside a docker container) for each tenant

	A separate app server (Running inside a docker container) for each tenant

Building a docker image from our app code

As the first step we need to convert our app code to Docker image. Create a file named Dockerfile, and add this code.

FROM python:3
ENV PYTHONUNBUFFERED 1
RUN mkdir /code
WORKDIR /code

Install requirements
ADD requirements.txt /code/
RUN pip install -r requirements.txt

ADD . /code/
We will specify the CMD in docker-compose.yaml

With this, run docker build . -t agiliq/multi-tenant-demo, to create an image and tag it as agiliq/multi-tenant-demo.

Using docker-compose to run multi container, multi-tenant apps

As in our previous chapters, we will have two tenants thor and potter at urls potter.polls.local and thor.polls.local.

The architecture looks something like this:

 +---------------------------+ +---------------------+
 | | | |
 | | | |
 +---->| Thor App Server +------------> Thor DB |
 | | | | |
+----------------------------+ | | | | |
| | | +---------------------------+ +---------------------+
| | |
| | |
| +-------+
| Nginx |
| | +---------------------------+ +----------------------+
+------+					
			Potter App Server +-----------> Potter DB		
+----------------------------+ | | | | |
 +----->| | | |
 +---------------------------+ +----------------------+

The containers we will be running are

	One nginx container

	2 App servers, one for each tenant

	2 DB servers, one for each tenant

	Transient containers to run manage.py migrate

The final docker-compose.yaml

With our architecture decided, our docker-compose.yaml looks like this

version: '3'

services:
 nginx:
 image: nginx:alpine
 volumes:
 - ./nginx.conf:/etc/nginx/nginx.conf
 ports:
 - "8080:80"
 depends_on:
 - thor_web
 - potter_web

 # Thor
 thor_db:
 image: postgres
 environment:
 - POSTGRES_PASSWORD=thor
 - POSTGRES_USER=thor
 - POSTGRES_DB=thor
 thor_web:
 image: agiliq/multi-tenant-demo
 command: python3 manage.py runserver 0.0.0.0:8000
 volumes:
 - .:/code
 depends_on:
 - thor_db
 environment:
 - DATABASE_URL=postgres://thor:thor@thor_db/thor

 thor_migration:
 image: agiliq/multi-tenant-demo
 command: python3 manage.py migrate
 volumes:
 - .:/code
 depends_on:
 - thor_db
 environment:
 - DATABASE_URL=postgres://thor:thor@thor_db/thor

 # Potter
 potter_db:
 image: postgres
 environment:
 - POSTGRES_PASSWORD=potter
 - POSTGRES_USER=potter
 - POSTGRES_DB=potter
 potter_web:
 image: agiliq/multi-tenant-demo
 command: python3 manage.py runserver 0.0.0.0:8000
 volumes:
 - .:/code
 depends_on:
 - potter_db
 environment:
 - DATABASE_URL=postgres://potter:potter@potter_db/potter

 potter_migration:
 image: agiliq/multi-tenant-demo
 command: python3 manage.py migrate
 volumes:
 - .:/code
 depends_on:
 - thor_db
 environment:
 - DATABASE_URL=postgres://potter:potter@potter_db/potter

Let’s look at each of the components in detail.

Nginx

The nginx config in our docker-compose.yaml looks like this,

nginx:
 image: nginx:alpine
 volumes:
 - ./nginx.conf:/etc/nginx/nginx.conf
 ports:
 - "8080:80"
 depends_on:
 - thor_web
 - potter_web

And nginx.conf look like this

events {
 worker_connections 1024;
}

http {
 server {
 server_name potter.polls.local;
 location / {
 proxy_pass http://potter_web:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 }
 }

 server {
 server_name thor.polls.local;
 location / {
 proxy_pass http://thor_web:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 }
 }
}

In our nginx config, we are doing a proxypass to appropriate container,
using proxy_pass http://potter_web:8000;, based on the host header.
We also need to set the Host header, so Django can enforce its ALLOWED_HOSTS.

DB and the App containers

Let’s look at the app containers we have launched for thor. We will launch similar containers for tenants.

thor_db:
 image: postgres
 environment:
 - POSTGRES_PASSWORD=thor
 - POSTGRES_USER=thor
 - POSTGRES_DB=thor
thor_web:
 image: agiliq/multi-tenant-demo
 command: python3 manage.py runserver 0.0.0.0:8000
 volumes:
 - .:/code
 depends_on:
 - thor_db
 environment:
 - DATABASE_URL=postgres://thor:thor@thor_db/thor

We are launching a standard postgres container with customized DB name and credentials. We are then running our Django code and passing the
credentials as DB name to he container using DATABASE_URL environment variable. Our app set the db connection using dj_database_url.config()
which reads from DATABASE_URL.

Running migrations and creating a superuser

We want to run our migrations for each DB as part of the deployment process, we will add container which does this.

thor_migration:
 image: agiliq/multi-tenant-demo
 command: python3 manage.py migrate
 volumes:
 - .:/code
 depends_on:
 - thor_db
 environment:
 - DATABASE_URL=postgres://thor:thor@thor_db/thor

This container will terminate as soon as migrations are done.

We also need to create a superuser. You can do this by docker exec ing to the running app containers.

Do this docker exec -it <containet_name> bash. (You can get the container name by running docker ps). Now you have a bash shell inside the container. Create your superuser in the usual way using manage.py createsuperuser.

You can now access the thor tenant as thor.polls.local:8080 and potter at potter.polls.local:8080. After adding a Poll, my tenant looks like this.

[image: _images/polls-isolated-docker.png]
The code for this chapter is available at https://github.com/agiliq/building-multi-tenant-applications-with-django/tree/master/isolated-docker

Tying it all together

Launching new tenants

In the previous chapters, we have worked with a hardcoded list, of two tenants, thor and potter. Our code looked like this

code-block:: python

	def get_tenants_map():

	return {“thor.polls.local”: “thor”, “poter.polls.local”: “potter”}

In a real scenario, you will need to launch tenants, so the list of tenants can’t be part of the code. To be able to launch new tenants, we will create a Tenant model.

code-block:: python

	class Tenant(models.Model):

	name = models.CharField(max_length=100)
schema_name = models.CharField(max_length=100)
subdomain = models.CharField(max_length=1000, unique=True)

And your get_tenants_map will change to:

code-block:: python

	def get_tenants_map():

	return dict(Tenant.objects.values_list(“subdomain”, “schema_name”))

You would need to make similar changes for a multi DB setup, or orchestrate launching new containers and updating nginx config for multi container setup.

A comparison of trade-offs of various methods

Until now, we had looked at four different ways of doing multi tenancy, each with some set of trade-offs.

Depending upon how many tenants you have, how many new tenants you need to launch, and your customization requirements, one of the four architectures will suit you.

	Method

	Isolation

	Time to
launch new tenants

	Django DB
Compatibility

	Shared DB and Schema

	Low

	Low

	High (Supported in all DBs)

	Isolated Schema

	Medium

	Low

	Medium (DB must support schema)

	Isolated DB

	High

	Medium

	High (Supported in all DBs)

	Isolated using docker

	Complete

	Medium

	High (Supported in all DBs)

What method should I use?

While each method has its pros and cons, for most people, Isolated Schema with shared database is the best method.
It provides strong isolation guarantees, customizability with minimal time to launch new tenants.

Third party apps

Open source Django multi tenancy apps

There are number of third party Django apps which add multi tenancy to Django.

Some of them are

	Django multitenant: https://github.com/citusdata/django-multitenant (Shared SChema, Shared DB, Tables have tenant_id)

	Django tenant schemas: https://github.com/bernardopires/django-tenant-schemas (Isolated Schemas, shared DB)

	Django db multitenant: https://github.com/mik3y/django-db-multitenant (Isolated DB)

We will look in detail at Django tenant schemas, which is our opinion is the most mature of the Django multi tenancy solutions.

A tour of django-tenant-schemas

Install django-tenant-schemas using pip. pip install django-tenant-schemas. Verify the version of django-tenant-schemas that got installed.

$ pip freeze | grep django-tenant-schemas
django-tenant-schemas==1.9.0

We will start from our non tenant aware Polls app and add multi tenancy using django-tenant-schemas.

Create a new database, and make sure your Django app picks up the new DB by updating the DATABASE_URL environment var.

Update your settings to use the tenant-schemas DATABASE_BACKEND and tenant-schemas DATABASE_ROUTERS

DATABASES["default"]["ENGINE"] = "tenant_schemas.postgresql_backend"
...
DATABASE_ROUTERS = ("tenant_schemas.routers.TenantSyncRouter",)

The postgresql_backend will ensure that the connection has the correct tenant set, and the TenantSyncRouter
will ensure that the migrations run correctly.

Then create a new app called tenants with manage.py startapp, and create a new Client model

from tenant_schemas.models import TenantMixin

class Client(TenantMixin):
 name = models.CharField(max_length=100)

In your settings, change the middleware and set the TENANT_MODEL.

TENANT_MODEL = "tenants.Client"
...

MIDDLEWARE = [
 "tenant_schemas.middleware.TenantMiddleware",
 # ...
]

tenant-schemas comes with the concept of SHARED_APPS and TENANT_APPS.
The apps in SHARED_APPS have their tables in public schema, while the apps in TENANT_APPS have their tables in tenant specific schemas.

SHARED_APPS = ["tenant_schemas", "tenants"]

TENANT_APPS = [
 "django.contrib.admin",
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "rest_framework",
 "rest_framework.authtoken",
 "polls",
]

INSTALLED_APPS = SHARED_APPS + TENANT_APPS

We are almost done. We need to

	Run the migrations in the public schema

	Create the tenants and run migrations in all the tenant schemas

	Create a superuser in tenant schemas

tenant-schemas has the migrate_schemas which replaces the migrate command.
It is tenant aware and will sync SHARED_APPS to public schema, and TENANT_APPS to tenant specific schemas.

Run python manage.py migrate_schemas --shared to sync the public tables.

The run a python shell using python manage.py shell, and create the two tenants, using

Client.objects.create(name="thor",
 schema_name="thor", domain_url="thor.polls.local")
Client.objects.create(name="potter",
 schema_name="potter", domain_url="potter.polls.local")

This will create the schemas in the table and run the migrations. You now need to create the superuser in the tenant schema so that you can access the admin.
The tenant_command command allow running any Django command in the context of any tenant.

 python manage.py tenant_command createsuperuser

And we are done. We can now access the tenant admins, create polls and view the tenant specific API endpoints.

The code for this chapter is available at https://github.com/agiliq/building-multi-tenant-applications-with-django/tree/master/tenant-schemas-demo .

Index

 _images/polls-isolated-schema.png
ApiRoot / Poll List

Poll List [oerons Jf cer -]

GET /polls/

HTTP 200 0K
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

u,

Who is the best avenger?",

2018-07-04T17:09: 20.9451432",
1

Rawdata HTMLform

Question

Createdby shabda

POST

_static/ajax-loader.gif

_images/isolated-db.png
Poll List

GET /polls/

HTTP 200 0K
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

0,
‘What is the weight of an unladen swallow?",

2018-07-05T11:20: 5. 6052472",
1

reated_by"

(=] =L

Rawdata HTMLform

Question

Createdby shabda

POST

_images/polls-isolated-docker.png
ApiRoot / Poll List

Poll List [oerons Jf cer -]

GET /polls/

HTTP 200 0K
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

[

{
u,
"Who is the best avenger?",
"2018-07-06T18:09: 50.2793752",
“created_by": 1
¥

Rawdata HTMLform

Question

Createdby shabda

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/book-cover-multi-tenant.jpg
— BUILDING =
MULTI TENANT
APPLICATIONS
= Will——=
DJANGO

django| & python

nav.xhtml

 Table of Contents

 		
 Building Multi Tenant Applications with Django

 		
 Introduction to multi tenant applications

 		
 What are multi tenant apps?

 		
 The structure of this book

 		
 The various approached to multi tenancy

 		
 Shared database with shared schema

 		
 Shared database with isolated schema

 		
 Isolated database with a shared app server

 		
 Completely isolated tenants using Docker

 		
 Shared database with shared schema

 		
 The base single-tenant app

 		
 Adding multi tenancy to models

 		
 Identifying tenants

 		
 Extracting tenant from request

 		
 A detour to /etc/hosts

 		
 Using tenant_from_request in the views

 		
 Isolating the admin

 		
 Shared database with isolated schema

 		
 Limitations of shared schema and our current method

 		
 Weak separation of tenant’s data

 		
 Tenant isolation code is intermixed with app code

 		
 Duplication of code

 		
 What are database schemas?

 		
 Managing database migrations

 		
 Tenant separation in views

 		
 A middleware to set schemas

 		
 Beyond the request-response cycle

 		
 Isolated database with a shared app server

 		
 Multiple database support in Django

 		
 Database routing in Django

 		
 Per tenant database routing using middlewares

 		
 What are threadlocal variables?

 		
 The middleware class

 		
 Outside the request response cycle

 		
 Completely isolated tenants using Docker

 		
 Tools we will use

 		
 Building a docker image from our app code

 		
 Using docker-compose to run multi container, multi-tenant apps

 		
 The final docker-compose.yaml

 		
 Nginx

 		
 DB and the App containers

 		
 Running migrations and creating a superuser

 		
 Tying it all together

 		
 Launching new tenants

 		
 A comparison of trade-offs of various methods

 		
 What method should I use?

 		
 Third party apps

 		
 Open source Django multi tenancy apps

 		
 A tour of django-tenant-schemas

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

