

Bugzilla Documentation

	1. About This Documentation

	2. User Guide

	3. Installation and Maintenance Guide

	4. Administration Guide

	5. Integration and Customization Guide

	6. WebService API Reference

	7. Localization Guide

2. User Guide

	2.1. Creating an Account

	2.2. Filing a Bug
	2.2.1. Reporting a New Bug

	2.2.2. Clone an Existing Bug

	2.3. Understanding a Bug
	2.3.1. Flags

	2.4. Editing a Bug
	2.4.1. Attachments

	2.4.2. Flags

	2.4.3. Time Tracking

	2.4.4. Life Cycle of a Bug

	2.5. Finding Bugs
	2.5.1. Quicksearch

	2.5.2. Simple Search

	2.5.3. Advanced Search

	2.5.4. Custom Search

	2.5.5. Bug Lists

	2.6. Reports and Charts
	2.6.1. Reports

	2.6.2. Charts

	2.7. Pro Tips
	2.7.1. Autolinkification

	2.7.2. Comments

	2.8. User Preferences
	2.8.1. General Preferences

	2.8.2. Email Preferences

	2.8.3. Saved Searches

	2.8.4. Account Information

	2.8.5. API Keys

	2.8.6. Permissions

	2.9. Installed Extensions

2.1. Creating an Account

If you want to use a particular installation of Bugzilla, first you need to
create an account. Ask the administrator responsible for your installation
for the URL you should use to access it. If you're test-driving Bugzilla,
you can use one of the installations on
Landfill [http://landfill.bugzilla.org/].

The process of creating an account is similar to many other websites.

	On the home page, click the New Account link in the header.
Enter your email address, then click the Send
button.

Note

If the New Account link is not available, this means that the
administrator of the installation has disabled self-registration.
Speak to the administrator to find out how to get an account.

	Within moments, you should
receive an email to the address you provided, which contains your
login name (generally the same as the email address), and a URL to
click to confirm your registration.

	Once you confirm your registration, Bugzilla will ask you your real name
(optional, but recommended) and ask you to choose a password. Depending
on how your Bugzilla is configured, there may be minimum complexity
requirements for the password.

	Now all you need to do is to click the Log In
link in the header or footer,
enter your email address and the password you just chose into the
login form, and click the Log in button.

You are now logged in. Bugzilla uses cookies to remember you are
logged in, so, unless you have cookies disabled or your IP address changes,
you should not have to log in again during your session.

2.2. Filing a Bug

2.2.1. Reporting a New Bug

Years of bug writing experience has been distilled for your
reading pleasure into the
Bug Writing Guidelines [http://landfill.bugzilla.org/bugzilla-tip/page.cgi?id=bug-writing.html].
While some of the advice is Mozilla-specific, the basic principles of
reporting Reproducible, Specific bugs and isolating the Product you are
using, the Version of the Product, the Component which failed, the Hardware
Platform, and Operating System you were using at the time of the failure go a
long way toward ensuring accurate, responsible fixes for the bug that bit you.

Note

If you want to file a test bug to see how Bugzilla works,
you can do it on one of our test installations on
Landfill [http://landfill.bugzilla.org/]. Please don't do it on anyone's
production Bugzilla installation.

The procedure for filing a bug is as follows:

	Click the New link available in the header or footer
of pages, or the File a Bug link on the home page.

	First, you have to select the product in which you found a bug.

	You now see a form where you can specify the component (part of
the product which is affected by the bug you discovered; if you have
no idea, just select General if such a component exists),
the version of the program you were using, the operating system and
platform your program is running on and the severity of the bug (if the
bug you found crashes the program, it's probably a major or a critical
bug; if it's a typo somewhere, that's something pretty minor; if it's
something you would like to see implemented, then that's an enhancement).

	You also need to provide a short but descriptive summary of the bug you found.
"My program is crashing all the time" is a very poor summary
and doesn't help developers at all. Try something more meaningful or
your bug will probably be ignored due to a lack of precision.
In the Description, give a detailed list of steps to reproduce
the problem you encountered. Try to limit these steps to a minimum set
required to reproduce the problem. This will make the life of
developers easier, and the probability that they consider your bug in
a reasonable timeframe will be much higher.

Note

Try to make sure that everything in the Summary is also in the
Description. Summaries are often updated and this will ensure your original
information is easily accessible.

	As you file the bug, you can also attach a document (testcase, patch,
or screenshot of the problem).

	Depending on the Bugzilla installation you are using and the product in
which you are filing the bug, you can also request developers to consider
your bug in different ways (such as requesting review for the patch you
just attached, requesting your bug to block the next release of the
product, and many other product-specific requests).

	Now is a good time to read your bug report again. Remove all misspellings;
otherwise, your bug may not be found by developers running queries for some
specific words, and so your bug would not get any attention.
Also make sure you didn't forget any important information developers
should know in order to reproduce the problem, and make sure your
description of the problem is explicit and clear enough.
When you think your bug report is ready to go, the last step is to
click the Submit Bug button to add your report into the database.

2.2.2. Clone an Existing Bug

Bugzilla allows you to "clone" an existing bug. The newly created bug will
inherit most settings from the old bug. This allows you to track similar
concerns that require different handling in a new bug. To use this, go to
the bug that you want to clone, then click the Clone This Bug
link on the bug page. This will take you to the Enter Bug
page that is filled with the values that the old bug has.
You can then change the values and/or text if needed.

2.3. Understanding a Bug

The core of Bugzilla is the screen which displays a particular
bug. Note that the labels for most fields are hyperlinks;
clicking them will take you to context-sensitive help on that
particular field. Fields marked * may not be present on every
installation of Bugzilla.

	Summary:

	A one-sentence summary of the problem, displayed in the header next to
the bug number.

	Status (and Resolution):

	These define exactly what state the bug is in—from not even
being confirmed as a bug, through to being fixed and the fix
confirmed by Quality Assurance. The different possible values for
Status and Resolution on your installation should be documented in the
context-sensitive help for those items.

	Alias:

	A unique short text name for the bug, which can be used instead of the
bug number.

	Product and Component:

	Bugs are divided up by Product and Component, with a Product
having one or more Components in it.

	Version:

	The "Version" field usually contains the numbers or names of released
versions of the product. It is used to indicate the version(s) affected by
the bug report.

	Hardware (Platform and OS):

	These indicate the computing environment where the bug was
found.

	Importance (Priority and Severity):

	The Priority field is used to prioritize bugs, either by the assignee,
or someone else with authority to direct their time such as a project
manager. It's a good idea not to change this on other people's bugs. The
default values are P1 to P5.

The Severity field indicates how severe the problem is—from blocker
("application unusable") to trivial ("minor cosmetic issue"). You
can also use this field to indicate whether a bug is an enhancement
request.

	*Target Milestone:

	A future version by which the bug is to
be fixed. e.g. The Bugzilla Project's milestones for future
Bugzilla versions are 4.4, 5.0, 6.0, etc. Milestones are not
restricted to numbers, though—you can use any text strings, such
as dates.

	Assigned To:

	The person responsible for fixing the bug.

	*QA Contact:

	The person responsible for quality assurance on this bug.

	URL:

	A URL associated with the bug, if any.

	*Whiteboard:

	A free-form text area for adding short notes and tags to a bug.

	Keywords:

	The administrator can define keywords which you can use to tag and
categorise bugs—e.g. crash or regression.

	Personal Tags:

	Unlike Keywords which are global and visible by all users, Personal Tags
are personal and can only be viewed and edited by their author. Editing
them won't send any notifications to other users. Use them to tag and keep
track of sets of bugs that you personally care about, using your own
classification system.

	Dependencies (Depends On and Blocks):

	If this bug cannot be fixed unless other bugs are fixed (depends
on), or this bug stops other bugs being fixed (blocks), their
numbers are recorded here.

Clicking the Dependency tree link shows
the dependency relationships of the bug as a tree structure.
You can change how much depth to show, and you can hide resolved bugs
from this page. You can also collapse/expand dependencies for
each non-terminal bug on the tree view, using the [-]/[+] buttons that
appear before the summary.

	Reported:

	The person who filed the bug, and the date and time they did it.

	Modified:

	The date and time the bug was last changed.

	CC List:

	A list of people who get mail when the bug changes, in addition to the
Reporter, Assignee and QA Contact (if enabled).

	Ignore Bug Mail:

	Set this if you want never to get bugmail from this bug again. See also
Email Preferences.

	*See Also:

	Bugs, in this Bugzilla, other Bugzillas, or other bug trackers, that are
related to this one.

	Flags:

	A flag is a kind of status that can be set on bugs or attachments
to indicate that the bugs/attachments are in a certain state.
Each installation can define its own set of flags that can be set
on bugs or attachments. See Flags.

	*Time Tracking:

	This form can be used for time tracking.
To use this feature, you have to be a member of the group
specified by the timetrackinggroup parameter. See
Time Tracking for more information.

	Orig. Est.:

	This field shows the original estimated time.

	Current Est.:

	This field shows the current estimated time.
This number is calculated from Hours Worked
and Hours Left.

	Hours Worked:

	This field shows the number of hours worked.

	Hours Left:

	This field shows the Current Est. -
Hours Worked.
This value + Hours Worked will become the
new Current Est.

	%Complete:

	This field shows what percentage of the task is complete.

	Gain:

	This field shows the number of hours that the bug is ahead of the
Orig. Est..

	Deadline:

	This field shows the deadline for this bug.

	Attachments:

	You can attach files (e.g. test cases or patches) to bugs. If there
are any attachments, they are listed in this section. See
Attachments for more information.

	Additional Comments:

	You can add your two cents to the bug discussion here, if you have
something worthwhile to say.

2.3.1. Flags

Flags are a way to attach a specific status to a bug or attachment,
either + or -. The meaning of these symbols depends on the name of
the flag itself, but contextually they could mean pass/fail,
accept/reject, approved/denied, or even a simple yes/no. If your site
allows requestable flags, then users may set a flag to ? as a
request to another user that they look at the bug/attachment and set
the flag to its correct status.

A set flag appears in bug reports and on "edit attachment" pages with the
abbreviated username of the user who set the flag prepended to the
flag name. For example, if Jack sets a "review" flag to +, it appears
as Jack: review [+].

A requested flag appears with the user who requested the flag prepended
to the flag name and the user who has been requested to set the flag
appended to the flag name within parentheses. For example, if Jack
asks Jill for review, it appears as Jack: review [?] (Jill).

You can browse through open requests made of you and by you by selecting
My Requests from the footer. You can also look at open requests
limited by other requesters, requestees, products, components, and flag names.
Note that you can use '-' for requestee to specify flags with no requestee
set.

2.3.1.1. A Simple Example

A developer might want to ask their manager,
"Should we fix this bug before we release version 2.0?"
They might want to do this for a lot of bugs,
so they decide to streamline the process. So:

	The Bugzilla administrator creates a flag type called blocking2.0 for bugs
in your product. It shows up on the Show Bug screen as the text
blocking2.0 with a drop-down box next to it. The drop-down box
contains four values: an empty space, ?, -, and +.

	The developer sets the flag to ?.

	The manager sees the blocking2.0
flag with a ? value.

	If the manager thinks the feature should go into the product
before version 2.0 can be released, they set the flag to
+. Otherwise, they set it to -.

	Now, every Bugzilla user who looks at the bug knows whether or
not the bug needs to be fixed before release of version 2.0.

2.3.1.2. About Flags

Flags can have four values:

	?

	A user is requesting that a status be set. (Think of it as 'A question is being asked'.)

	-

	The status has been set negatively. (The question has been answered no.)

	+

	The status has been set positively.
(The question has been answered yes.)

	_

	unset actually shows up as a blank space. This just means that nobody
has expressed an opinion (or asked someone else to express an opinion)
about the matter covered by this flag.

2.3.1.3. Flag Requests

If a flag has been defined as requestable, and a user has enough
privileges to request it (see below), the user can set the flag's status to
?. This status indicates that someone (a.k.a. "the requester") is asking
someone else to set the flag to either + or -.

If a flag has been defined as specifically requestable,
a text box will appear next to the flag into which the requester may
enter a Bugzilla username. That named person (a.k.a. "the requestee")
will receive an email notifying them of the request, and pointing them
to the bug/attachment in question.

If a flag has not been defined as specifically requestable,
then no such text box will appear. A request to set this flag cannot be made
of any specific individual; these requests are open for anyone to answer. In
Bugzilla this is known as "asking the wind". A requester may ask the wind on
any flag simply by leaving the text box blank.

2.3.1.4. Attachment Flags

There are two types of flags: bug flags and attachment flags.

Attachment flags are used to ask a question about a specific
attachment on a bug.

Many Bugzilla installations use this to
request that one developer review another
developer's code before they check it in. They attach the code to
a bug report, and then set a flag on that attachment called
review to
review? reviewer@example.com.
reviewer@example.com is then notified by email that
they have to check out that attachment and approve it or deny it.

For a Bugzilla user, attachment flags show up in three places:

	On the list of attachments in the Show Bug
screen, you can see the current state of any flags that
have been set to ?, +, or -. You can see who asked about
the flag (the requester), and who is being asked (the
requestee).

	When you edit an attachment, you can
see any settable flag, along with any flags that have
already been set. The Edit Attachment
screen is where you set flags to ?, -, +, or unset them.

	Requests are listed in the Request Queue, which
is accessible from the My Requests link (if you are
logged in) or Requests link (if you are logged out)
visible on all pages.

2.3.1.5. Bug Flags

Bug flags are used to set a status on the bug itself. You can
see Bug Flags in the Show Bug and Requests
screens, as described above.

Only users with enough privileges (see below) may set flags on bugs.
This doesn't necessarily include the assignee, reporter, or users with the
editbugs permission.

2.4. Editing a Bug

2.4.1. Attachments

Attachments are used to attach relevant files to bugs - patches, screenshots,
test cases, debugging aids or logs, or anything else binary or too large to
fit into a comment.

You should use attachments, rather than comments, for large chunks of plain
text data, such as trace, debugging output files, or log files. That way, it
doesn't bloat the bug for everyone who wants to read it, and cause people to
receive large, useless mails.

You should make sure to trim screenshots. There's no need to show the
whole screen if you are pointing out a single-pixel problem.

Bugzilla stores and uses a Content-Type for each attachment
(e.g. text/html). To download an attachment as a different
Content-Type (e.g. application/xhtml+xml), you can override this
using a 'content_type' parameter on the URL, e.g.
&content_type=text/plain.

Also, you can enter the URL pointing to the attachment instead of
uploading the attachment itself. For example, this is useful if you want to
point to an external application, a website or a very large file.

It's also possible to create an attachment by pasting text directly in a text
field; Bugzilla will convert it into an attachment. This is pretty useful
when you are copying and pasting, to avoid the extra step of saving the text
in a temporary file.

2.4.2. Flags

To set a flag, select either + or - from the drop-down
menu next to the name of the flag in the Flags list. The meaning
of these values are flag-specific and thus cannot be described in this
documentation, but by way of example, setting a flag named review
+ may indicate that the bug/attachment has passed review, while
setting it to - may indicate that the bug/attachment has failed
review.

To unset a flag, click its drop-down menu and select the blank value.
Note that marking an attachment as obsolete automatically cancels all
pending requests for the attachment.

If your administrator has enabled requests for a flag, request a flag
by selecting ? from the drop-down menu and then entering the
username of the user you want to set the flag in the text field next to the
menu.

2.4.3. Time Tracking

Users who belong to the group specified by the timetrackinggroup
parameter have access to time-related fields. Developers can see
deadlines and estimated times to fix bugs, and can provide time spent
on these bugs. Users who do not belong to this group can only see the deadline
but not edit it. Other time-related fields remain invisible to them.

At any time, a summary of the time spent by developers on bugs is
accessible either from bug lists when clicking the Time Summary
button or from individual bugs when clicking the Summarize time
link in the time tracking table. The summarize_time.cgi
page lets you view this information either per developer or per bug
and can be split on a month basis to have greater details on how time
is spent by developers.

As soon as a bug is marked as RESOLVED, the remaining time expected
to fix the bug is set to zero. This lets QA people set it again for
their own usage, and it will be set to zero again when the bug is
marked as VERIFIED.

2.4.4. Life Cycle of a Bug

The life cycle of a bug, also known as workflow, is customizable to match
the needs of your organization (see Workflow).
The image below contains a graphical representation of
the default workflow using the default bug statuses. If you wish to
customize this image for your site, the
diagram file
is available in Dia's [http://www.gnome.org/projects/dia]
native XML format.

[image: ../_images/bzLifecycle1.png]

2.5. Finding Bugs

Bugzilla has a number of different search options.

Note

Bugzilla queries are case-insensitive and accent-insensitive when
used with either MySQL or Oracle databases. When using Bugzilla with
PostgreSQL, however, some queries are case sensitive. This is due to
the way PostgreSQL handles case and accent sensitivity.

2.5.1. Quicksearch

Quicksearch is a single-text-box query tool. You'll find it in
Bugzilla's header or footer.

Quicksearch uses
metacharacters to indicate what is to be searched. For example, typing

foo|bar

into Quicksearch would search for "foo" or "bar" in the
summary and status whiteboard of a bug; adding

:BazProduct

would search only in that product.

You can also use it to go directly to a bug by entering its number or its
alias.

2.5.2. Simple Search

Simple Search is good for finding one particular bug. It works like internet
search engines - just enter some keywords and off you go.

2.5.3. Advanced Search

The Advanced Search page is used to produce a list of all bugs fitting
exact criteria. You can play with it on
Landfill [http://landfill.bugzilla.org/bugzilla-tip/query.cgi?format=advanced].

Advanced Search has controls for selecting different possible
values for all of the fields in a bug, as described above. For some
fields, multiple values can be selected. In those cases, Bugzilla
returns bugs where the content of the field matches any one of the selected
values. If none is selected, then the field can take any value.

After a search is run, you can save it as a Saved Search, which
will appear in the page footer. If you are in the group defined
by the "querysharegroup" parameter, you may share your queries
with other users; see Saved Searches for more details.

2.5.4. Custom Search

Highly advanced querying is done using the Custom Search feature
of the Advanced Search page.

The search criteria here further restrict the set of results
returned by a query, over and above those defined in the fields at the top
of the page. It is thereby possible to search for bugs
based on elaborate combinations of criteria.

The simplest custom searches have only one term. These searches
permit the selected field
to be compared using a
selectable operator to a
specified value. Much of this could be reproduced using the standard
fields. However, you can then combine terms using "Match ANY" or "Match ALL",
using parentheses for combining and priority, in order to construct searches
of almost arbitrary complexity.

There are three fields in each row (known as a "term") of a custom search:

	Field:
the name of the field being searched

	Operator:
the comparison operator

	Value:
the value to which the field is being compared

The list of available fields contains all the fields defined for a bug,
including any custom fields, and then also some pseudofields like
Assignee Real Name, Days Since Bug Changed,
Time Since Assignee Touched and other things it may be useful to
search on.

There are a wide range of operators available, not all of which may make
sense for a particular field. There are various string-matching operations
(including regular expressions), numerical comparisons (which also work for
dates), and also the ability to search for change information—when a field
changed, what it changed from or to, and who did it. There are special
operators for is empty and is not empty, because
Bugzilla can't tell the difference between a value field left blank on
purpose and one left blank by accident.

You can have an arbitrary number of rows, and the dropdown box above them
defines how they relate—Match ALL of the following separately,
Match ANY of the following separately, or Match ALL of
the following against the same field. The difference between the first and
the third can be illustrated with a comment search. If you have a search:

Comment contains the string "Fred"
Comment contains the string "Barney"

then under the first regime (match separately) the search would return bugs
where "Fred" appeared in one comment and "Barney" in the same or any other
comment, whereas under the second (match against the same field), both strings
would need to occur in exactly the same comment.

2.5.4.1. Advanced Features

If you click Show Advanced Features, then more capabilities appear.
You can negate any row with a checkbox (see below) and also group lines of the
search with parentheses to determine how different search terms relate. Within
each bracketed set, you get the choice of combining them using ALL (i.e. AND)
or ANY (i.e. OR).

2.5.4.2. Negation

At first glance, negation seems redundant. Rather than
searching for:

NOT (summary contains the string "foo")

one could search for:

summary does not contain the string "foo"

However, the search:

CC does not contain the string "@mozilla.org"

would find every bug where anyone on the CC list did not contain
"@mozilla.org" while:

NOT (CC contains the string "@mozilla.org")

would find every bug where there was nobody on the CC list who
did contain the string. Similarly, the use of negation also permits
complex expressions to be built using terms OR'd together and then
negated. Negation permits queries such as:

NOT ((product equals "Update")
 OR
 (component equals "Documentation")
)

to find bugs that are neither
in the Update product or in the Documentation component
or:

NOT ((commenter equals "%assignee%")
 OR
 (component equals "Documentation")
)

to find non-documentation bugs on which the assignee has never commented.

2.5.4.3. Pronoun Substitution

Sometimes, a query needs to compare a user-related field
(such as Reporter) with a role-specific user (such as the
user running the query or the user to whom each bug is assigned). For
example, you may want to find all bugs that are assigned to the person
who reported them.

When the Custom Search operator is either equals or
notequals, the value can be "%reporter%", "%assignee%",
"%qacontact%", or "%user%". These are known as "pronouns". The user pronoun
refers to the user who is executing the query or, in the case
of whining reports, the user who will be the recipient
of the report. The reporter, assignee, and qacontact
pronouns refer to the corresponding fields in the bug.

This feature also lets you search by a user's group memberships. If the
operator is either equals, notequals or
anyexact, you can search for
whether a user belongs (or not) to the specified group. The group name must be
entered using "%group.foo%" syntax, where "foo" is the group name.
So if you are looking for bugs reported by any user being in the
"editbugs" group, then you can use:

reporter equals "%group.editbugs%"

2.5.5. Bug Lists

The result of a search is a list of matching bugs.

The format of the list is configurable. For example, it can be
sorted by clicking the column headings. Other useful features can be
accessed using the links at the bottom of the list:

	Long Format:

	this gives you a large page with a non-editable summary of the fields
of each bug.

	XML (icon):

	get the buglist in an XML format.

	CSV (icon):

	get the buglist as comma-separated values, for import into e.g.
a spreadsheet.

	Feed (icon):

	get the buglist as an Atom feed. Copy this link into your
favorite feed reader. If you are using Firefox, you can also
save the list as a live bookmark by clicking the live bookmark
icon in the status bar. To limit the number of bugs in the feed,
add a limit=n parameter to the URL.

	iCalendar (icon):

	Get the buglist as an iCalendar file. Each bug is represented as a
to-do item in the imported calendar.

	Change Columns:

	change the bug attributes which appear in the list.

	Change Several Bugs At Once:

	If your account is sufficiently empowered, and more than one bug
appears in the bug list, this link is displayed and lets you easily make
the same change to all the bugs in the list - for example, changing
their assignee.

	Send Mail to Bug Assignees:

	If more than one bug appear in the bug list and there are at least
two distinct bug assignees, this links is displayed which lets you
easily send a mail to the assignees of all bugs on the list.

	Edit Search:

	If you didn't get exactly the results you were looking for, you can
return to the Query page through this link and make small revisions
to the query you just made so you get more accurate results.

	Remember Search As:

	You can give a search a name and remember it; a link will appear
in your page footer giving you quick access to run it again later.

2.6. Reports and Charts

As well as the standard buglist, Bugzilla has two more ways of
viewing sets of bugs. These are the reports (which give different
views of the current state of the database) and charts (which plot
the changes in particular sets of bugs over time).

2.6.1. Reports

A report is a view of the current state of the bug database.

You can run either an HTML-table-based report, or a graphical
line/pie/bar-chart-based one. The two have different pages to
define them but are close cousins - once you've defined and
viewed a report, you can switch between any of the different
views of the data at will.

Both report types are based on the idea of defining a set of bugs
using the standard search interface and then choosing some
aspect of that set to plot on the horizontal and/or vertical axes.
You can also get a form of 3-dimensional report by choosing to have
multiple images or tables.

So, for example, you could use the search form to choose "all
bugs in the WorldControl product" and then plot their severity
against their component to see which component had had the largest
number of bad bugs reported against it.

Once you've defined your parameters and hit Generate Report,
you can switch between HTML, CSV, Bar, Line and Pie. (Note: Pie
is only available if you didn't define a vertical axis, as pie
charts don't have one.) The other controls are fairly self-explanatory;
you can change the size of the image if you find text is overwriting
other text, or the bars are too thin to see.

2.6.2. Charts

A chart is a view of the state of the bug database over time.

Bugzilla currently has two charting systems - Old Charts and New
Charts. Old Charts have been part of Bugzilla for a long time; they
chart each status and resolution for each product, and that's all.
They are deprecated, and going away soon - we won't say any more
about them.
New Charts are the future - they allow you to chart anything you
can define as a search.

Note

Both charting forms require the administrator to set up the
data-gathering script. If you can't see any charts, ask them whether
they have done so.

An individual line on a chart is called a data set.
All data sets are organised into categories and subcategories. The
data sets that Bugzilla defines automatically use the Product name
as a Category and Component names as Subcategories,
but there is no need for you to follow that naming scheme with your own
charts if you don't want to.

Data sets may be public or private. Everyone sees public data sets in
the list, but only their creator sees private data sets. Only
administrators can make data sets public.
No two data sets, even two private ones, can have the same set of
category, subcategory and name. So if you are creating private data
sets, one idea is to have the Category be your username.

2.6.2.1. Creating Charts

You create a chart by selecting a number of data sets from the
list and pressing Add To List for each. In the
List Of Data Sets To Plot, you can define the label that data
set will have in the chart's legend and also ask Bugzilla to Sum
a number of data sets (e.g. you could Sum data sets representing
RESOLVED, VERIFIED and CLOSED in a
particular product to get a data set representing all the resolved bugs in
that product.)

If you've erroneously added a data set to the list, select it
using the checkbox and click Remove. Once you add more than one
data set, a Grand Total line
automatically appears at the bottom of the list. If you don't want
this, simply remove it as you would remove any other line.

You may also choose to plot only over a certain date range, and
to cumulate the results, that is, to plot each one using the
previous one as a baseline so the top line gives a sum of all
the data sets. It's easier to try than to explain :-)

Once a data set is in the list, you can also perform certain
actions on it. For example, you can edit the
data set's parameters (name, frequency etc.) if it's one you
created or if you are an administrator.

Once you are happy, click Chart This List to see the chart.

2.6.2.2. Creating New Data Sets

You may also create new data sets of your own. To do this,
click the create a new data set link on the
Create Chart page. This takes you to a search-like interface
where you can define the search that Bugzilla will plot. At the bottom of the
page, you choose the category, sub-category and name of your new
data set.

If you have sufficient permissions, you can make the data set public,
and reduce the frequency of data collection to less than the default
of seven days.

2.7. Pro Tips

This section distills some Bugzilla tips and best practices
that have been developed.

2.7.1. Autolinkification

Bugzilla comments are plain text - so typing <U> will
produce less-than, U, greater-than rather than underlined text.
However, Bugzilla will automatically make hyperlinks out of certain
sorts of text in comments. For example, the text
http://www.bugzilla.org will be turned into a link:
http://www.bugzilla.org.
Other strings which get linkified in the obvious manner are:

	bug 12345

	bugs 123, 456, 789

	comment 7

	comments 1, 2, 3, 4

	bug 23456, comment 53

	attachment 4321

	mailto:george@example.com

	george@example.com

	ftp://ftp.mozilla.org

	Most other sorts of URL

A corollary here is that if you type a bug number in a comment,
you should put the word "bug" before it, so it gets autolinkified
for the convenience of others.

2.7.2. Comments

If you are changing the fields on a bug, only comment if
either you have something pertinent to say or Bugzilla requires it.
Otherwise, you may spam people unnecessarily with bugmail.
To take an example: a user can set up their account to filter out messages
where someone just adds themselves to the CC field of a bug
(which happens a lot). If you come along, add yourself to the CC field,
and add a comment saying "Adding self to CC", then that person
gets a pointless piece of mail they would otherwise have avoided.

Don't use sigs in comments. Signing your name ("Bill") is acceptable,
if you do it out of habit, but full mail/news-style
four line ASCII art creations are not.

If you feel a bug you filed was incorrectly marked as a
DUPLICATE of another, please question it in your bug, not
the bug it was duped to. Feel free to CC the person who duped it
if they are not already CCed.

2.7.2.1. Markdown

Markdown is a structured plain-text format which lets you write comments that
have more styling than plain text. For example, you may use Markdown for
making a part of your comment look italic or bold in the generated HTML.
Bugzilla supports most of the structures defined by
standard Markdown [http://daringfireball.net/projects/markdown/basics],
but does not support inline images and inline HTML. For a complete
reference on supported Markdown structures, please see the
syntax help [https://landfill.bugzilla.org/bugzilla-tip/page.cgi?id=markdown.html] link
next to the Markdown checkbox for new comments.

To use the Markdown feature, make sure that Enable Markdown
support for comments is set to on
in your User Preferences and that you also check the Use
Markdown for this comment option below the comment box when you want to
submit a new comment which uses Markdown.

2.8. User Preferences

Once logged in, you can customize various aspects of
Bugzilla via the "Preferences" link in the page footer.
The preferences are split into a number of tabs, detailed in the sections
below.

2.8.1. General Preferences

This tab allows you to change several default settings of Bugzilla.
Administrators have the power to remove preferences from this list, so you
may not see all the preferences available.

Each preference should be self-explanatory.

2.8.2. Email Preferences

This tab allows you to enable or disable email notification on
specific events.

In general, users have almost complete control over how much (or
how little) email Bugzilla sends them. If you want to receive the
maximum amount of email possible, click the Enable All
Mail button. If you don't want to receive any email from
Bugzilla at all, click the Disable All Mail button.

Note

A Bugzilla administrator can stop a user from receiving
bugmail by clicking the Bugmail Disabled checkbox
when editing the user account. This is a drastic step
best taken only for disabled accounts, as it overrides
the user's individual mail preferences.

There are two global options -- Email me when someone
asks me to set a flag and Email me when someone
sets a flag I asked for. These define how you want to
receive bugmail with regards to flags. Their use is quite
straightforward: enable the checkboxes if you want Bugzilla to
send you mail under either of the above conditions.

If you'd like to set your bugmail to something besides
'Completely ON' and 'Completely OFF', the
Field/recipient specific options table
allows you to do just that. The rows of the table
define events that can happen to a bug -- things like
attachments being added, new comments being made, the
priority changing, etc. The columns in the table define
your relationship with the bug - reporter, assignee, QA contact (if enabled)
or CC list member.

To fine-tune your bugmail, decide the events for which you want
to receive bugmail; then decide if you want to receive it all
the time (enable the checkbox for every column) or only when
you have a certain relationship with a bug (enable the checkbox
only for those columns). For example, if you didn't want to
receive mail when someone added themselves to the CC list, you
could uncheck all the boxes in the CC Field Changes
line. As another example, if you never wanted to receive email
on bugs you reported unless the bug was resolved, you would
uncheck all boxes in the Reporter column
except for the one on the The bug is resolved or
verified row.

Note

Bugzilla adds the X-Bugzilla-Reason header to
all bugmail it sends, describing the recipient's relationship
(AssignedTo, Reporter, QAContact, CC, or Voter) to the bug.
This header can be used to do further client-side filtering.

Bugzilla has a feature called User Watching.
When you enter one or more comma-delineated user accounts (usually email
addresses) into the text entry box, you will receive a copy of all the
bugmail those users are sent (security settings permitting).
This powerful functionality enables seamless transitions as developers
change projects or users go on holiday.

Each user listed in the Users watching you field
has you listed in their Users to watch list
and can get bugmail according to your relationship to the bug and
their Field/recipient specific options setting.

Lastly, you can define a list of bugs on which you no longer wish to receive
any email, ever. (You can also add bugs to this list individually by checking
the "Ignore Bug Mail" checkbox on the bug page for that bug.) This is useful
for ignoring bugs where you are the reporter, as that's a role it's not
possible to stop having.

2.8.3. Saved Searches

On this tab you can view and run any Saved Searches that you have
created, and any Saved Searches that other members of the group
defined in the querysharegroup parameter have shared.
Saved Searches can be added to the page footer from this screen.
If somebody is sharing a Search with a group they are allowed to
assign users to, the sharer may opt to have
the Search show up in the footer of the group's direct members by default.

2.8.4. Account Information

On this tab, you can change your basic account information,
including your password, email address and real name. For security
reasons, in order to change anything on this page you must type your
current password into the Password
field at the top of the page.
If you attempt to change your email address, a confirmation
email is sent to both the old and new addresses with a link to use to
confirm the change. This helps to prevent account hijacking.

2.8.5. API Keys

API keys allow you to give a "token" to some external software so it can log
in to the WebService API as you without knowing your password. You can then
revoke that token if you stop using the web service, and you don't need to
change your password everywhere.

You can create more than one API key if required. Each API key has an optional
description which can help you record what it is used for.

On this page, you can unrevoke, revoke and change the description of existing
API keys for your login. A revoked key means that it cannot be used. The
description is optional and purely for your information.

You can also create a new API key by selecting the checkbox under the 'New
API key' section of the page.

2.8.6. Permissions

This is an informational page which outlines your current
permissions on this installation of Bugzilla.

A complete list of available permissions in a default install of Bugzilla is
below. Your administrator may have defined other permissions. Only users with
the editusers permission can change the permissions of other users.

	admin

	User is an administrator, which (in normal circumstances) means they can
do anything.

	tweakparams

	Permits user to change administration Parameters, and
to enable, disable and change the default value of
General Preferences.

	bz_sudoers

	Permits user to impersonate and perform actions as other users. This is
useful for admins to reproduce problems with Bugzilla, such as permissions
problems, that other users see.

	bz_sudo_protect

	Indicates user cannot be impersonated by other users who have the
bz_sudoers permission.

	creategroups

	Permits user to create, delete and edit permission groups.

	editclassifications

	Permits user to create, delete and edit classifications.

	editcomponents

	Permits user to create, delete and edit products, components,
versions, milestones and flag types.

This capability can also be given on a per-product basis.

	editkeywords

	Permits user to create, delete and edit keywords.

	editusers

	Permits user to create, disable and edit users.

	canconfirm

	Permits user to confirm a bug (move it from UNCONFIRMED to
another status).

This permission is only used if you are using the UNCONFIRMED status in
any products. The editbugs permission implies this permission.

This capability can also be given on a per-product basis.

	editbugs

	Permits user to edit all fields on a bug. Without this permission, users
can only edit bugs where they are the reporter or the assignee, or add
comments.

This capability can also be given on a per-product basis.

	bz_canusewhines

	Permits user to configure whine reports to be sent to themselves.

	bz_canusewhineatothers

	Permits user to configure whine reports to be sent to other users.

	bz_quip_moderators

	Permits user to moderate the list of quips (pithy sayings at the top of
bug lists).

2.9. Installed Extensions

Bugzilla can be enhanced using extensions (see Extensions). If an
extension comes with documentation in the appropriate format, and you build
your own copy of the Bugzilla documentation using makedocs.pl, then
the documentation for your installed extensions will show up here.

Your Bugzilla installation has the following extensions available (as of the
last time you compiled the documentation):

Writing Bugzilla Documentation

The Bugzilla documentation uses
reStructured Text (reST) [http://docutils.sourceforge.net/rst.html],
as extended by our documentation compilation tool,
Sphinx [http://sphinx-doc.org/]. This document is a reST document for
demonstration purposes. To learn from it, you need to read it in reST form.

When you build the docs, this document gets built (at least in
the HTML version) as a standalone file, although it isn't as useful in that
form because some of the directives discussed are invisible or change when
rendered.

The Sphinx documentation [http://sphinx-doc.org/latest/rest.html]
gives a good introduction to reST and the Sphinx-specific extensions. Reading
that one immediately-linked page should be enough to get started. Later, the
inline markup section [http://sphinx-doc.org/latest/markup/inline.html]
is worth a read.

Bugzilla's particular documentation conventions are as follows:

Block Directives

Chapter headings use the double-equals, page title headings the #, and then
the three other levels are headings within a page. Every heading should be
preceded by an anchor, with a globally-unique name with no spaces. Now, we
demonstrate the available heading levels we haven't used yet:

Third Level Heading

Fourth Level Heading

Fifth Level Heading

(Although try not to use headings as deep as the 5th level.)

Make links to anchors like this: Third Level Heading. It'll pick up the
following heading name automatically and use it as the link text. Don't use
standard reST internal links like uniqueanchorname - they don't work
across files.

Comments are done like this:

Other block types:

Note

This is just a note, for your information. Like all double-dot
blocks, follow-on lines need to be indented.

Warning

This is a warning of a potential serious problem you should be
aware of.

Use both of the above block types sparingly. Consider putting the information
in the main text, omitting it, or (if long) placing it in a subsidiary file.

Todo

This is some documentation-related task that still needs doing.
This is useful for short-term todos during development; however,
consider filing a bug for todos which will persist longer.

Code gets highlighted using Pygments. Choose the highlighter at the top of
each file using:

You can change the highlighter for a particular block by introducing it like
this:

This is some Perl code
print "Hello";

There is a
list of all available lexer names [http://pygments.org/docs/lexers/]
available. We currently use console, perl, and sql. none is
also a valid value.

Use 4-space indentation, except where a different value is better so that
things line up. So normally two spaces for bulleted lists, and 3 spaces
for .. blocks.

Inline Directives

Warning

Remember that reST does not support nested inline markup. So you
can't have a substitution inside a link, or bold inside italics.

	A filename or a path to a filename:
/path/to/variable-bit-of-path/filename.ext

	A command to type in the shell:
command --arguments

	A parameter name:
shutdownhtml

	A parameter value:
DB

	A group name:
editbugs

	A bug field name:
Summary

	Any string from the UI:
Administration

	A specific BMO bug:
bug 201069 [https://bugzilla.mozilla.org/show_bug.cgi?id=201069]

 _images/RTD1.png
Sign Up

Already have an account? Then please sign in.

Usemame:
E-mail:

Password:

Password (again):

SignUp»

_images/RTD10.png
Recent Builds

Build Version:

Triggered »¢ version 5.0 (htm

Failed ve:

Passed version 5.0 (htm

_images/RTD4.png
Project Details

To import a project, start by entering a few details about
configured if you select Edit advanced project options.

bugzilla-ad-CD

Repository URL:
ode. sf.net/p/frenchmozilla/code
Ho:

documentation repository URL

Repository type:

Mercurial

Edit advanced project options:

Next

_images/RTD5.png
Project Extra Details

Here are a few more project options that you may need to configure.

Description:

mmm | B I

BEs &8

Traduction francaise de la documentation de gugzilla

The reStructuredText description of the project

Documentation typ

Sphinx Html ~|

Type of documentation you are building. More info.

Languag:

French -

The language the project documentation is rendered in. Note: this affects your project's URL.
Programming Languag

The primary programming language the project s written in.

Project homepage:

The project's homepage

Canonical URL:

URL that documentation is expected to serve from

Tags:

A comma-separated list of tags.

Previous H inish ‘

_images/RTD2.png
Ready to share your documentation?

You don't have any project ou can start building documentation

by importing one. Not sur

Getting Started Guide to learn

locumenting your projet

out

Want to try a demo? Import our own demo project.

Import a Project

_images/RTD3.png
Import a Project

Import a project, using one of the methods below. The project will be adde
built for the first time.

From GitHub

Once your account is connected to your GitHub account, you will be able t
public GitHub repositories. Connect to Github to import your first repositor

From Bitbucket

Once your account is connected to your Bitbucket account, you will be abl
your public Bitbucket repositories. Connect to Bitbucket to import your fir

Manually Import

Public repositories can be imported manually from anywhere.

Manually Import Project

_images/RTD6.png
Projects >

bugzilla-ad-CD

=2

20 23 X

_images/RTD7.png
S S S Ll
BUGZILLA 4 0 26195938075 Public n
50 a72ee7os60c Public n

_images/RTD8.png
Editing 5.0

Active:

Privacy Level:

Public R

Level of privacy for this Version

Tags:
A comma-separated list of tags.

Save

_images/RTD9.png

