

Bugzilla Documentation

	1. About This Documentation

	2. User Guide

	3. Installation and Maintenance Guide

	4. Administration Guide

	5. Integration and Customization Guide

	6. WebService API Reference

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

1. About This Documentation

This is the documentation for version 5.0 of Bugzilla, a bug-tracking
system from Mozilla. Bugzilla is an enterprise-class piece of software
that tracks millions of bugs and issues for thousands of organizations around
the world.

The most current version of this document can always be found on the
Bugzilla website [http://www.bugzilla.org/docs/].

1.1. Evaluating Bugzilla

If you want to try out Bugzilla to see if it meets your needs, you can do so
on Landfill [https://landfill.bugzilla.org/bugzilla-4.4-branch/], our test
server. The Bugzilla FAQ [https://wiki.mozilla.org/Bugzilla:FAQ] may also
be helpful, as it answers a number of questions people sometimes have about
whether Bugzilla is for them.

1.2. Getting More Help

If this document does not answer your questions, we run a
Mozilla forum [https://www.mozilla.org/about/forums/#support-bugzilla]
which can be accessed as a newsgroup, mailing list, or over the web as a
Google Group. Please
search it [https://groups.google.com/forum/#!forum/mozilla.support.bugzilla]
first, and then ask your question there.

If you need a guaranteed response, commercial support is
available [http://www.bugzilla.org/support/consulting.html] for Bugzilla
from a number of people and organizations.

1.3. Document Conventions

This document uses the following conventions:

Warning

This is a warning—something you should be aware of.

Note

This is just a note, for your information.

A filename or a path to a filename is displayed like this:
/path/to/filename.ext

A command to type in the shell is displayed like this:
command --arguments

A sample of code is illustrated like this:

First Line of Code
Second Line of Code
...

This documentation is maintained in
reStructured Text [http://docutils.sourceforge.net/docs/user/rst/quickstart.html] format using
the Sphinx [http://www.sphinx-doc.org/] documentation system. It has
recently been rewritten, so it undoubtedly has bugs. Please file any you find, in
the Bugzilla Documentation [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla;component=Documentation]
component in Mozilla’s installation of Bugzilla. If you also want to make a
patch, that would be wonderful. Changes are best submitted as diffs, attached
to a bug. There is a Style Guide to help you write any
new text and markup.

1.4. License

Bugzilla is free [http://www.gnu.org/philosophy/free-sw.html] and
open source [http://opensource.org/osd] software, which means (among other
things) that you can download it, install it, and run it for any purpose
whatsoever without the need for license or payment. Isn’t that refreshing?

Bugzilla’s code is made available under the
Mozilla Public License 2.0 [http://www.mozilla.org/MPL/2.0/] (MPL),
specifically the variant which is Incompatible with Secondary Licenses.
However, again, if you only want to install and run Bugzilla, you don’t need
to worry about that; it’s only relevant if you redistribute the code or any
changes you make.

Bugzilla’s documentation is made available under the
Creative Commons CC-BY-SA International License 4.0 [https://creativecommons.org/licenses/by-sa/4.0/],
or any later version.

1.5. Credits

The people listed below have made significant contributions to the
creation of this documentation:

Andrew Pearson,
Ben FrantzDale,
Byron Jones,
Dave Lawrence,
Dave Miller,
Dawn Endico,
Eric Hanson,
Gervase Markham,
Jacob Steenhagen,
Joe Robins,
Kevin Brannen,
Martin Wulffeld,
Matthew P. Barnson,
Ron Teitelbaum,
Shane Travis,
Spencer Smith,
Tara Hernandez,
Terry Weissman,
Vlad Dascalu,
Zach Lipton.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2. User Guide

	2.1. Creating an Account

	2.2. Filing a Bug
	2.2.1. Reporting a New Bug

	2.2.2. Clone an Existing Bug

	2.3. Understanding a Bug
	2.3.1. Flags

	2.4. Editing a Bug
	2.4.1. Attachments

	2.4.2. Flags

	2.4.3. Time Tracking

	2.4.4. Life Cycle of a Bug

	2.5. Finding Bugs
	2.5.1. Quicksearch

	2.5.2. Simple Search

	2.5.3. Advanced Search

	2.5.4. Custom Search

	2.5.5. Bug Lists

	2.6. Reports and Charts
	2.6.1. Reports

	2.6.2. Charts

	2.7. Pro Tips
	2.7.1. Autolinkification

	2.7.2. Comments

	2.8. User Preferences
	2.8.1. General Preferences

	2.8.2. Email Preferences

	2.8.3. Saved Searches

	2.8.4. Account Information

	2.8.5. API Keys

	2.8.6. Permissions

	2.9. Installed Extensions

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.1. Creating an Account

If you want to use a particular installation of Bugzilla, first you need to
create an account. Ask the administrator responsible for your installation
for the URL you should use to access it. If you’re test-driving Bugzilla,
you can use one of the installations on
Landfill [http://landfill.bugzilla.org/].

The process of creating an account is similar to many other websites.

	On the home page, click the New Account link in the header.
Enter your email address, then click the Send
button.

Note

If the New Account link is not available, this means that the
administrator of the installation has disabled self-registration.
Speak to the administrator to find out how to get an account.

	Within moments, you should
receive an email to the address you provided, which contains your
login name (generally the same as the email address), and a URL to
click to confirm your registration.

	Once you confirm your registration, Bugzilla will ask you your real name
(optional, but recommended) and ask you to choose a password. Depending
on how your Bugzilla is configured, there may be minimum complexity
requirements for the password.

	Now all you need to do is to click the Log In
link in the header or footer,
enter your email address and the password you just chose into the
login form, and click the Log in button.

You are now logged in. Bugzilla uses cookies to remember you are
logged in, so, unless you have cookies disabled or your IP address changes,
you should not have to log in again during your session.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.2. Filing a Bug

2.2.1. Reporting a New Bug

Years of bug writing experience has been distilled for your
reading pleasure into the
Bug Writing Guidelines [http://landfill.bugzilla.org/bugzilla-tip/page.cgi?id=bug-writing.html].
While some of the advice is Mozilla-specific, the basic principles of
reporting Reproducible, Specific bugs and isolating the Product you are
using, the Version of the Product, the Component which failed, the Hardware
Platform, and Operating System you were using at the time of the failure go a
long way toward ensuring accurate, responsible fixes for the bug that bit you.

Note

If you want to file a test bug to see how Bugzilla works,
you can do it on one of our test installations on
Landfill [http://landfill.bugzilla.org/]. Please don’t do it on anyone’s
production Bugzilla installation.

The procedure for filing a bug is as follows:

	Click the New link available in the header or footer
of pages, or the File a Bug link on the home page.

	First, you have to select the product in which you found a bug.

	You now see a form where you can specify the component (part of
the product which is affected by the bug you discovered; if you have
no idea, just select General if such a component exists),
the version of the program you were using, the operating system and
platform your program is running on and the severity of the bug (if the
bug you found crashes the program, it’s probably a major or a critical
bug; if it’s a typo somewhere, that’s something pretty minor; if it’s
something you would like to see implemented, then that’s an enhancement).

	You also need to provide a short but descriptive summary of the bug you found.
“My program is crashing all the time” is a very poor summary
and doesn’t help developers at all. Try something more meaningful or
your bug will probably be ignored due to a lack of precision.
In the Description, give a detailed list of steps to reproduce
the problem you encountered. Try to limit these steps to a minimum set
required to reproduce the problem. This will make the life of
developers easier, and the probability that they consider your bug in
a reasonable timeframe will be much higher.

Note

Try to make sure that everything in the Summary is also in the
Description. Summaries are often updated and this will ensure your original
information is easily accessible.

	As you file the bug, you can also attach a document (testcase, patch,
or screenshot of the problem).

	Depending on the Bugzilla installation you are using and the product in
which you are filing the bug, you can also request developers to consider
your bug in different ways (such as requesting review for the patch you
just attached, requesting your bug to block the next release of the
product, and many other product-specific requests).

	Now is a good time to read your bug report again. Remove all misspellings;
otherwise, your bug may not be found by developers running queries for some
specific words, and so your bug would not get any attention.
Also make sure you didn’t forget any important information developers
should know in order to reproduce the problem, and make sure your
description of the problem is explicit and clear enough.
When you think your bug report is ready to go, the last step is to
click the Submit Bug button to add your report into the database.

2.2.2. Clone an Existing Bug

Bugzilla allows you to “clone” an existing bug. The newly created bug will
inherit most settings from the old bug. This allows you to track similar
concerns that require different handling in a new bug. To use this, go to
the bug that you want to clone, then click the Clone This Bug
link on the bug page. This will take you to the Enter Bug
page that is filled with the values that the old bug has.
You can then change the values and/or text if needed.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.3. Understanding a Bug

The core of Bugzilla is the screen which displays a particular
bug. Note that the labels for most fields are hyperlinks;
clicking them will take you to context-sensitive help on that
particular field. Fields marked * may not be present on every
installation of Bugzilla.

	Summary:

	A one-sentence summary of the problem, displayed in the header next to
the bug number.

	Status (and Resolution):

	These define exactly what state the bug is in—from not even
being confirmed as a bug, through to being fixed and the fix
confirmed by Quality Assurance. The different possible values for
Status and Resolution on your installation should be documented in the
context-sensitive help for those items.

	Alias:

	A unique short text name for the bug, which can be used instead of the
bug number.

	Product and Component:

	Bugs are divided up by Product and Component, with a Product
having one or more Components in it.

	Version:

	The “Version” field usually contains the numbers or names of released
versions of the product. It is used to indicate the version(s) affected by
the bug report.

	Hardware (Platform and OS):

	These indicate the computing environment where the bug was
found.

	Importance (Priority and Severity):

	The Priority field is used to prioritize bugs, either by the assignee,
or someone else with authority to direct their time such as a project
manager. It’s a good idea not to change this on other people’s bugs. The
default values are P1 to P5.

The Severity field indicates how severe the problem is—from blocker
(“application unusable”) to trivial (“minor cosmetic issue”). You
can also use this field to indicate whether a bug is an enhancement
request.

	*Target Milestone:

	A future version by which the bug is to
be fixed. e.g. The Bugzilla Project’s milestones for future
Bugzilla versions are 4.4, 5.0, 6.0, etc. Milestones are not
restricted to numbers, though—you can use any text strings, such
as dates.

	Assigned To:

	The person responsible for fixing the bug.

	*QA Contact:

	The person responsible for quality assurance on this bug.

	URL:

	A URL associated with the bug, if any.

	*Whiteboard:

	A free-form text area for adding short notes and tags to a bug.

	Keywords:

	The administrator can define keywords which you can use to tag and
categorise bugs—e.g. crash or regression.

	Personal Tags:

	Unlike Keywords which are global and visible by all users, Personal Tags
are personal and can only be viewed and edited by their author. Editing
them won’t send any notifications to other users. Use them to tag and keep
track of sets of bugs that you personally care about, using your own
classification system.

	Dependencies (Depends On and Blocks):

	If this bug cannot be fixed unless other bugs are fixed (depends
on), or this bug stops other bugs being fixed (blocks), their
numbers are recorded here.

Clicking the Dependency tree link shows
the dependency relationships of the bug as a tree structure.
You can change how much depth to show, and you can hide resolved bugs
from this page. You can also collapse/expand dependencies for
each non-terminal bug on the tree view, using the [-]/[+] buttons that
appear before the summary.

	Reported:

	The person who filed the bug, and the date and time they did it.

	Modified:

	The date and time the bug was last changed.

	CC List:

	A list of people who get mail when the bug changes, in addition to the
Reporter, Assignee and QA Contact (if enabled).

	Ignore Bug Mail:

	Set this if you want never to get bugmail from this bug again. See also
Email Preferences.

	*See Also:

	Bugs, in this Bugzilla, other Bugzillas, or other bug trackers, that are
related to this one.

	Flags:

	A flag is a kind of status that can be set on bugs or attachments
to indicate that the bugs/attachments are in a certain state.
Each installation can define its own set of flags that can be set
on bugs or attachments. See Flags.

	*Time Tracking:

	This form can be used for time tracking.
To use this feature, you have to be a member of the group
specified by the timetrackinggroup parameter. See
Time Tracking for more information.

	Orig. Est.:

	This field shows the original estimated time.

	Current Est.:

	This field shows the current estimated time.
This number is calculated from Hours Worked
and Hours Left.

	Hours Worked:

	This field shows the number of hours worked.

	Hours Left:

	This field shows the Current Est. -
Hours Worked.
This value + Hours Worked will become the
new Current Est.

	%Complete:

	This field shows what percentage of the task is complete.

	Gain:

	This field shows the number of hours that the bug is ahead of the
Orig. Est..

	Deadline:

	This field shows the deadline for this bug.

	Attachments:

	You can attach files (e.g. test cases or patches) to bugs. If there
are any attachments, they are listed in this section. See
Attachments for more information.

	Additional Comments:

	You can add your two cents to the bug discussion here, if you have
something worthwhile to say.

2.3.1. Flags

Flags are a way to attach a specific status to a bug or attachment,
either + or -. The meaning of these symbols depends on the name of
the flag itself, but contextually they could mean pass/fail,
accept/reject, approved/denied, or even a simple yes/no. If your site
allows requestable flags, then users may set a flag to ? as a
request to another user that they look at the bug/attachment and set
the flag to its correct status.

A set flag appears in bug reports and on “edit attachment” pages with the
abbreviated username of the user who set the flag prepended to the
flag name. For example, if Jack sets a “review” flag to +, it appears
as Jack: review [+].

A requested flag appears with the user who requested the flag prepended
to the flag name and the user who has been requested to set the flag
appended to the flag name within parentheses. For example, if Jack
asks Jill for review, it appears as Jack: review [?] (Jill).

You can browse through open requests made of you and by you by selecting
My Requests from the footer. You can also look at open requests
limited by other requesters, requestees, products, components, and flag names.
Note that you can use ‘-‘ for requestee to specify flags with no requestee
set.

2.3.1.1. A Simple Example

A developer might want to ask their manager,
“Should we fix this bug before we release version 2.0?”
They might want to do this for a lot of bugs,
so they decide to streamline the process. So:

	The Bugzilla administrator creates a flag type called blocking2.0 for bugs
in your product. It shows up on the Show Bug screen as the text
blocking2.0 with a drop-down box next to it. The drop-down box
contains four values: an empty space, ?, -, and +.

	The developer sets the flag to ?.

	The manager sees the blocking2.0
flag with a ? value.

	If the manager thinks the feature should go into the product
before version 2.0 can be released, they set the flag to
+. Otherwise, they set it to -.

	Now, every Bugzilla user who looks at the bug knows whether or
not the bug needs to be fixed before release of version 2.0.

2.3.1.2. About Flags

Flags can have four values:

	?

	A user is requesting that a status be set. (Think of it as ‘A question is being asked’.)

	-

	The status has been set negatively. (The question has been answered no.)

	+

	The status has been set positively.
(The question has been answered yes.)

	_

	unset actually shows up as a blank space. This just means that nobody
has expressed an opinion (or asked someone else to express an opinion)
about the matter covered by this flag.

2.3.1.3. Flag Requests

If a flag has been defined as requestable, and a user has enough
privileges to request it (see below), the user can set the flag’s status to
?. This status indicates that someone (a.k.a. “the requester”) is asking
someone else to set the flag to either + or -.

If a flag has been defined as specifically requestable,
a text box will appear next to the flag into which the requester may
enter a Bugzilla username. That named person (a.k.a. “the requestee”)
will receive an email notifying them of the request, and pointing them
to the bug/attachment in question.

If a flag has not been defined as specifically requestable,
then no such text box will appear. A request to set this flag cannot be made
of any specific individual; these requests are open for anyone to answer. In
Bugzilla this is known as “asking the wind”. A requester may ask the wind on
any flag simply by leaving the text box blank.

2.3.1.4. Attachment Flags

There are two types of flags: bug flags and attachment flags.

Attachment flags are used to ask a question about a specific
attachment on a bug.

Many Bugzilla installations use this to
request that one developer review another
developer’s code before they check it in. They attach the code to
a bug report, and then set a flag on that attachment called
review to
review? reviewer@example.com.
reviewer@example.com is then notified by email that
they have to check out that attachment and approve it or deny it.

For a Bugzilla user, attachment flags show up in three places:

	On the list of attachments in the Show Bug
screen, you can see the current state of any flags that
have been set to ?, +, or -. You can see who asked about
the flag (the requester), and who is being asked (the
requestee).

	When you edit an attachment, you can
see any settable flag, along with any flags that have
already been set. The Edit Attachment
screen is where you set flags to ?, -, +, or unset them.

	Requests are listed in the Request Queue, which
is accessible from the My Requests link (if you are
logged in) or Requests link (if you are logged out)
visible on all pages.

2.3.1.5. Bug Flags

Bug flags are used to set a status on the bug itself. You can
see Bug Flags in the Show Bug and Requests
screens, as described above.

Only users with enough privileges (see below) may set flags on bugs.
This doesn’t necessarily include the assignee, reporter, or users with the
editbugs permission.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.4. Editing a Bug

2.4.1. Attachments

Attachments are used to attach relevant files to bugs - patches, screenshots,
test cases, debugging aids or logs, or anything else binary or too large to
fit into a comment.

You should use attachments, rather than comments, for large chunks of plain
text data, such as trace, debugging output files, or log files. That way, it
doesn’t bloat the bug for everyone who wants to read it, and cause people to
receive large, useless mails.

You should make sure to trim screenshots. There’s no need to show the
whole screen if you are pointing out a single-pixel problem.

Bugzilla stores and uses a Content-Type for each attachment
(e.g. text/html). To download an attachment as a different
Content-Type (e.g. application/xhtml+xml), you can override this
using a ‘content_type’ parameter on the URL, e.g.
&content_type=text/plain.

Also, you can enter the URL pointing to the attachment instead of
uploading the attachment itself. For example, this is useful if you want to
point to an external application, a website or a very large file.

It’s also possible to create an attachment by pasting text directly in a text
field; Bugzilla will convert it into an attachment. This is pretty useful
when you are copying and pasting, to avoid the extra step of saving the text
in a temporary file.

2.4.2. Flags

To set a flag, select either + or - from the drop-down
menu next to the name of the flag in the Flags list. The meaning
of these values are flag-specific and thus cannot be described in this
documentation, but by way of example, setting a flag named review
+ may indicate that the bug/attachment has passed review, while
setting it to - may indicate that the bug/attachment has failed
review.

To unset a flag, click its drop-down menu and select the blank value.
Note that marking an attachment as obsolete automatically cancels all
pending requests for the attachment.

If your administrator has enabled requests for a flag, request a flag
by selecting ? from the drop-down menu and then entering the
username of the user you want to set the flag in the text field next to the
menu.

2.4.3. Time Tracking

Users who belong to the group specified by the timetrackinggroup
parameter have access to time-related fields. Developers can see
deadlines and estimated times to fix bugs, and can provide time spent
on these bugs. Users who do not belong to this group can only see the deadline
but not edit it. Other time-related fields remain invisible to them.

At any time, a summary of the time spent by developers on bugs is
accessible either from bug lists when clicking the Time Summary
button or from individual bugs when clicking the Summarize time
link in the time tracking table. The summarize_time.cgi
page lets you view this information either per developer or per bug
and can be split on a month basis to have greater details on how time
is spent by developers.

As soon as a bug is marked as RESOLVED, the remaining time expected
to fix the bug is set to zero. This lets QA people set it again for
their own usage, and it will be set to zero again when the bug is
marked as VERIFIED.

2.4.4. Life Cycle of a Bug

The life cycle of a bug, also known as workflow, is customizable to match
the needs of your organization (see Workflow).
The image below contains a graphical representation of
the default workflow using the default bug statuses. If you wish to
customize this image for your site, the
diagram file
is available in Dia’s [http://www.gnome.org/projects/dia]
native XML format.

[image: ../_images/bzLifecycle.png]

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.5. Finding Bugs

Bugzilla has a number of different search options.

Note

Bugzilla queries are case-insensitive and accent-insensitive when
used with either MySQL or Oracle databases. When using Bugzilla with
PostgreSQL, however, some queries are case sensitive. This is due to
the way PostgreSQL handles case and accent sensitivity.

2.5.1. Quicksearch

Quicksearch is a single-text-box query tool. You’ll find it in
Bugzilla’s header or footer.

Quicksearch uses
metacharacters to indicate what is to be searched. For example, typing

foo|bar

into Quicksearch would search for “foo” or “bar” in the
summary and status whiteboard of a bug; adding

:BazProduct

would search only in that product.

You can also use it to go directly to a bug by entering its number or its
alias.

2.5.2. Simple Search

Simple Search is good for finding one particular bug. It works like internet
search engines - just enter some keywords and off you go.

2.5.3. Advanced Search

The Advanced Search page is used to produce a list of all bugs fitting
exact criteria. You can play with it on
Landfill [http://landfill.bugzilla.org/bugzilla-tip/query.cgi?format=advanced].

Advanced Search has controls for selecting different possible
values for all of the fields in a bug, as described above. For some
fields, multiple values can be selected. In those cases, Bugzilla
returns bugs where the content of the field matches any one of the selected
values. If none is selected, then the field can take any value.

After a search is run, you can save it as a Saved Search, which
will appear in the page footer. If you are in the group defined
by the “querysharegroup” parameter, you may share your queries
with other users; see Saved Searches for more details.

2.5.4. Custom Search

Highly advanced querying is done using the Custom Search feature
of the Advanced Search page.

The search criteria here further restrict the set of results
returned by a query, over and above those defined in the fields at the top
of the page. It is thereby possible to search for bugs
based on elaborate combinations of criteria.

The simplest custom searches have only one term. These searches
permit the selected field
to be compared using a
selectable operator to a
specified value. Much of this could be reproduced using the standard
fields. However, you can then combine terms using “Match ANY” or “Match ALL”,
using parentheses for combining and priority, in order to construct searches
of almost arbitrary complexity.

There are three fields in each row (known as a “term”) of a custom search:

	Field:
the name of the field being searched

	Operator:
the comparison operator

	Value:
the value to which the field is being compared

The list of available fields contains all the fields defined for a bug,
including any custom fields, and then also some pseudofields like
Assignee Real Name, Days Since Bug Changed,
Time Since Assignee Touched and other things it may be useful to
search on.

There are a wide range of operators available, not all of which may make
sense for a particular field. There are various string-matching operations
(including regular expressions), numerical comparisons (which also work for
dates), and also the ability to search for change information—when a field
changed, what it changed from or to, and who did it. There are special
operators for is empty and is not empty, because
Bugzilla can’t tell the difference between a value field left blank on
purpose and one left blank by accident.

You can have an arbitrary number of rows, and the dropdown box above them
defines how they relate—Match ALL of the following separately,
Match ANY of the following separately, or Match ALL of
the following against the same field. The difference between the first and
the third can be illustrated with a comment search. If you have a search:

Comment contains the string "Fred"
Comment contains the string "Barney"

then under the first regime (match separately) the search would return bugs
where “Fred” appeared in one comment and “Barney” in the same or any other
comment, whereas under the second (match against the same field), both strings
would need to occur in exactly the same comment.

2.5.4.1. Advanced Features

If you click Show Advanced Features, then more capabilities appear.
You can negate any row with a checkbox (see below) and also group lines of the
search with parentheses to determine how different search terms relate. Within
each bracketed set, you get the choice of combining them using ALL (i.e. AND)
or ANY (i.e. OR).

2.5.4.2. Negation

At first glance, negation seems redundant. Rather than
searching for:

NOT (summary contains the string "foo")

one could search for:

summary does not contain the string "foo"

However, the search:

CC does not contain the string "@mozilla.org"

would find every bug where anyone on the CC list did not contain
“@mozilla.org” while:

NOT (CC contains the string "@mozilla.org")

would find every bug where there was nobody on the CC list who
did contain the string. Similarly, the use of negation also permits
complex expressions to be built using terms OR’d together and then
negated. Negation permits queries such as:

NOT ((product equals "Update")
 OR
 (component equals "Documentation")
)

to find bugs that are neither
in the Update product or in the Documentation component
or:

NOT ((commenter equals "%assignee%")
 OR
 (component equals "Documentation")
)

to find non-documentation bugs on which the assignee has never commented.

2.5.4.3. Pronoun Substitution

Sometimes, a query needs to compare a user-related field
(such as Reporter) with a role-specific user (such as the
user running the query or the user to whom each bug is assigned). For
example, you may want to find all bugs that are assigned to the person
who reported them.

When the Custom Search operator is either equals or
notequals, the value can be “%reporter%”, “%assignee%”,
“%qacontact%”, or “%user%”. These are known as “pronouns”. The user pronoun
refers to the user who is executing the query or, in the case
of whining reports, the user who will be the recipient
of the report. The reporter, assignee, and qacontact
pronouns refer to the corresponding fields in the bug.

This feature also lets you search by a user’s group memberships. If the
operator is either equals, notequals or
anyexact, you can search for
whether a user belongs (or not) to the specified group. The group name must be
entered using “%group.foo%” syntax, where “foo” is the group name.
So if you are looking for bugs reported by any user being in the
“editbugs” group, then you can use:

reporter equals "%group.editbugs%"

2.5.5. Bug Lists

The result of a search is a list of matching bugs.

The format of the list is configurable. For example, it can be
sorted by clicking the column headings. Other useful features can be
accessed using the links at the bottom of the list:

	Long Format:

	this gives you a large page with a non-editable summary of the fields
of each bug.

	XML (icon):

	get the buglist in an XML format.

	CSV (icon):

	get the buglist as comma-separated values, for import into e.g.
a spreadsheet.

	Feed (icon):

	get the buglist as an Atom feed. Copy this link into your
favorite feed reader. If you are using Firefox, you can also
save the list as a live bookmark by clicking the live bookmark
icon in the status bar. To limit the number of bugs in the feed,
add a limit=n parameter to the URL.

	iCalendar (icon):

	Get the buglist as an iCalendar file. Each bug is represented as a
to-do item in the imported calendar.

	Change Columns:

	change the bug attributes which appear in the list.

	Change Several Bugs At Once:

	If your account is sufficiently empowered, and more than one bug
appears in the bug list, this link is displayed and lets you easily make
the same change to all the bugs in the list - for example, changing
their assignee.

	Send Mail to Bug Assignees:

	If more than one bug appear in the bug list and there are at least
two distinct bug assignees, this links is displayed which lets you
easily send a mail to the assignees of all bugs on the list.

	Edit Search:

	If you didn’t get exactly the results you were looking for, you can
return to the Query page through this link and make small revisions
to the query you just made so you get more accurate results.

	Remember Search As:

	You can give a search a name and remember it; a link will appear
in your page footer giving you quick access to run it again later.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.6. Reports and Charts

As well as the standard buglist, Bugzilla has two more ways of
viewing sets of bugs. These are the reports (which give different
views of the current state of the database) and charts (which plot
the changes in particular sets of bugs over time).

2.6.1. Reports

A report is a view of the current state of the bug database.

You can run either an HTML-table-based report, or a graphical
line/pie/bar-chart-based one. The two have different pages to
define them but are close cousins - once you’ve defined and
viewed a report, you can switch between any of the different
views of the data at will.

Both report types are based on the idea of defining a set of bugs
using the standard search interface and then choosing some
aspect of that set to plot on the horizontal and/or vertical axes.
You can also get a form of 3-dimensional report by choosing to have
multiple images or tables.

So, for example, you could use the search form to choose “all
bugs in the WorldControl product” and then plot their severity
against their component to see which component had had the largest
number of bad bugs reported against it.

Once you’ve defined your parameters and hit Generate Report,
you can switch between HTML, CSV, Bar, Line and Pie. (Note: Pie
is only available if you didn’t define a vertical axis, as pie
charts don’t have one.) The other controls are fairly self-explanatory;
you can change the size of the image if you find text is overwriting
other text, or the bars are too thin to see.

2.6.2. Charts

A chart is a view of the state of the bug database over time.

Bugzilla currently has two charting systems - Old Charts and New
Charts. Old Charts have been part of Bugzilla for a long time; they
chart each status and resolution for each product, and that’s all.
They are deprecated, and going away soon - we won’t say any more
about them.
New Charts are the future - they allow you to chart anything you
can define as a search.

Note

Both charting forms require the administrator to set up the
data-gathering script. If you can’t see any charts, ask them whether
they have done so.

An individual line on a chart is called a data set.
All data sets are organised into categories and subcategories. The
data sets that Bugzilla defines automatically use the Product name
as a Category and Component names as Subcategories,
but there is no need for you to follow that naming scheme with your own
charts if you don’t want to.

Data sets may be public or private. Everyone sees public data sets in
the list, but only their creator sees private data sets. Only
administrators can make data sets public.
No two data sets, even two private ones, can have the same set of
category, subcategory and name. So if you are creating private data
sets, one idea is to have the Category be your username.

2.6.2.1. Creating Charts

You create a chart by selecting a number of data sets from the
list and pressing Add To List for each. In the
List Of Data Sets To Plot, you can define the label that data
set will have in the chart’s legend and also ask Bugzilla to Sum
a number of data sets (e.g. you could Sum data sets representing
RESOLVED, VERIFIED and CLOSED in a
particular product to get a data set representing all the resolved bugs in
that product.)

If you’ve erroneously added a data set to the list, select it
using the checkbox and click Remove. Once you add more than one
data set, a Grand Total line
automatically appears at the bottom of the list. If you don’t want
this, simply remove it as you would remove any other line.

You may also choose to plot only over a certain date range, and
to cumulate the results, that is, to plot each one using the
previous one as a baseline so the top line gives a sum of all
the data sets. It’s easier to try than to explain :-)

Once a data set is in the list, you can also perform certain
actions on it. For example, you can edit the
data set’s parameters (name, frequency etc.) if it’s one you
created or if you are an administrator.

Once you are happy, click Chart This List to see the chart.

2.6.2.2. Creating New Data Sets

You may also create new data sets of your own. To do this,
click the create a new data set link on the
Create Chart page. This takes you to a search-like interface
where you can define the search that Bugzilla will plot. At the bottom of the
page, you choose the category, sub-category and name of your new
data set.

If you have sufficient permissions, you can make the data set public,
and reduce the frequency of data collection to less than the default
of seven days.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.7. Pro Tips

This section distills some Bugzilla tips and best practices
that have been developed.

2.7.1. Autolinkification

Bugzilla comments are plain text - so typing <U> will
produce less-than, U, greater-than rather than underlined text.
However, Bugzilla will automatically make hyperlinks out of certain
sorts of text in comments. For example, the text
http://www.bugzilla.org will be turned into a link:
http://www.bugzilla.org.
Other strings which get linkified in the obvious manner are:

	bug 12345

	bugs 123, 456, 789

	comment 7

	comments 1, 2, 3, 4

	bug 23456, comment 53

	attachment 4321

	mailto:george@example.com

	george@example.com

	ftp://ftp.mozilla.org

	Most other sorts of URL

A corollary here is that if you type a bug number in a comment,
you should put the word “bug” before it, so it gets autolinkified
for the convenience of others.

2.7.2. Comments

If you are changing the fields on a bug, only comment if
either you have something pertinent to say or Bugzilla requires it.
Otherwise, you may spam people unnecessarily with bugmail.
To take an example: a user can set up their account to filter out messages
where someone just adds themselves to the CC field of a bug
(which happens a lot). If you come along, add yourself to the CC field,
and add a comment saying “Adding self to CC”, then that person
gets a pointless piece of mail they would otherwise have avoided.

Don’t use sigs in comments. Signing your name (“Bill”) is acceptable,
if you do it out of habit, but full mail/news-style
four line ASCII art creations are not.

If you feel a bug you filed was incorrectly marked as a
DUPLICATE of another, please question it in your bug, not
the bug it was duped to. Feel free to CC the person who duped it
if they are not already CCed.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.8. User Preferences

Once logged in, you can customize various aspects of
Bugzilla via the “Preferences” link in the page footer.
The preferences are split into a number of tabs, detailed in the sections
below.

2.8.1. General Preferences

This tab allows you to change several default settings of Bugzilla.
Administrators have the power to remove preferences from this list, so you
may not see all the preferences available.

Each preference should be self-explanatory.

2.8.2. Email Preferences

This tab allows you to enable or disable email notification on
specific events.

In general, users have almost complete control over how much (or
how little) email Bugzilla sends them. If you want to receive the
maximum amount of email possible, click the Enable All
Mail button. If you don’t want to receive any email from
Bugzilla at all, click the Disable All Mail button.

Note

A Bugzilla administrator can stop a user from receiving
bugmail by clicking the Bugmail Disabled checkbox
when editing the user account. This is a drastic step
best taken only for disabled accounts, as it overrides
the user’s individual mail preferences.

There are two global options – Email me when someone
asks me to set a flag and Email me when someone
sets a flag I asked for. These define how you want to
receive bugmail with regards to flags. Their use is quite
straightforward: enable the checkboxes if you want Bugzilla to
send you mail under either of the above conditions.

If you’d like to set your bugmail to something besides
‘Completely ON’ and ‘Completely OFF’, the
Field/recipient specific options table
allows you to do just that. The rows of the table
define events that can happen to a bug – things like
attachments being added, new comments being made, the
priority changing, etc. The columns in the table define
your relationship with the bug - reporter, assignee, QA contact (if enabled)
or CC list member.

To fine-tune your bugmail, decide the events for which you want
to receive bugmail; then decide if you want to receive it all
the time (enable the checkbox for every column) or only when
you have a certain relationship with a bug (enable the checkbox
only for those columns). For example, if you didn’t want to
receive mail when someone added themselves to the CC list, you
could uncheck all the boxes in the CC Field Changes
line. As another example, if you never wanted to receive email
on bugs you reported unless the bug was resolved, you would
uncheck all boxes in the Reporter column
except for the one on the The bug is resolved or
verified row.

Note

Bugzilla adds the X-Bugzilla-Reason header to
all bugmail it sends, describing the recipient’s relationship
(AssignedTo, Reporter, QAContact, CC, or Voter) to the bug.
This header can be used to do further client-side filtering.

Bugzilla has a feature called User Watching.
When you enter one or more comma-delineated user accounts (usually email
addresses) into the text entry box, you will receive a copy of all the
bugmail those users are sent (security settings permitting).
This powerful functionality enables seamless transitions as developers
change projects or users go on holiday.

Each user listed in the Users watching you field
has you listed in their Users to watch list
and can get bugmail according to your relationship to the bug and
their Field/recipient specific options setting.

Lastly, you can define a list of bugs on which you no longer wish to receive
any email, ever. (You can also add bugs to this list individually by checking
the “Ignore Bug Mail” checkbox on the bug page for that bug.) This is useful
for ignoring bugs where you are the reporter, as that’s a role it’s not
possible to stop having.

2.8.3. Saved Searches

On this tab you can view and run any Saved Searches that you have
created, and any Saved Searches that other members of the group
defined in the querysharegroup parameter have shared.
Saved Searches can be added to the page footer from this screen.
If somebody is sharing a Search with a group they are allowed to
assign users to, the sharer may opt to have
the Search show up in the footer of the group’s direct members by default.

2.8.4. Account Information

On this tab, you can change your basic account information,
including your password, email address and real name. For security
reasons, in order to change anything on this page you must type your
current password into the Password
field at the top of the page.
If you attempt to change your email address, a confirmation
email is sent to both the old and new addresses with a link to use to
confirm the change. This helps to prevent account hijacking.

2.8.5. API Keys

API keys allow you to give a “token” to some external software so it can log
in to the WebService API as you without knowing your password. You can then
revoke that token if you stop using the web service, and you don’t need to
change your password everywhere.

You can create more than one API key if required. Each API key has an optional
description which can help you record what it is used for.

On this page, you can unrevoke, revoke and change the description of existing
API keys for your login. A revoked key means that it cannot be used. The
description is optional and purely for your information.

You can also create a new API key by selecting the checkbox under the ‘New
API key’ section of the page.

2.8.6. Permissions

This is a purely informative page which outlines your current
permissions on this installation of Bugzilla.

A complete list of permissions in a default install of Bugzilla is below.
Your administrator may have defined other permissions. Only users with
editusers privileges can change the permissions of other users.

	admin

	Indicates user is an Administrator.

	bz_canusewhineatothers

	Indicates user can configure whine reports for other users.

	bz_canusewhines

	Indicates user can configure whine reports for self.

	bz_quip_moderators

	Indicates user can moderate quips.

	bz_sudoers

	Indicates user can perform actions as other users.

	bz_sudo_protect

	Indicates user cannot be impersonated by other users.

	canconfirm

	Indicates user can confirm a bug or mark it a duplicate.

	creategroups

	Indicates user can create and destroy groups.

	editbugs

	Indicates user can edit all bug fields.

	editclassifications

	Indicates user can create, destroy and edit classifications.

	editcomponents

	Indicates user can create, destroy and edit products, components,
versions, milestones and flag types.

	editkeywords

	Indicates user can create, destroy and edit keywords.

	editusers

	Indicates user can create, disable and edit users.

	tweakparams

	Indicates user can change Parameters.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

2.9. Installed Extensions

Bugzilla can be enhanced using extensions (see Extensions). If an
extension comes with documentation in the appropriate format, and you build
your own copy of the Bugzilla documentation using makedocs.pl, then
the documentation for your installed extensions will show up here.

Your Bugzilla installation has the following extensions available (as of the
last time you compiled the documentation):

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3. Installation and Maintenance Guide

Note

If you just want to use Bugzilla,
you do not need to install it. None of this chapter is relevant to
you. Ask your Bugzilla administrator for the URL to access it from
your web browser. You may want to read the User Guide.

Bugzilla can be installed under Linux, Windows, Mac OS X, and perhaps other
operating systems. However, if you are setting it up on a dedicated machine
and you have control of the operating system to use, the Bugzilla team
wholeheartedly recommends Linux as an extremely versatile, stable, and robust
operating system that provides an ideal environment for Bugzilla. In that
case, you may want to read the Quick Start instructions.

	3.1. Quick Start (Ubuntu Linux 14.04)

	3.2. Linux

	3.3. Windows

	3.4. Mac OS X

	3.5. Web Server

	3.6. Database Server

	3.7. Essential Post-Installation Configuration

	3.8. Optional Post-Install Configuration

	3.9. Migrating From Other Bug-Tracking Systems

	3.10. Moving Bugzilla Between Machines

	3.11. Upgrading

	3.12. Backups

	3.13. Sanity Check

	3.14. Merging Accounts

	3.15. One Installation, Multiple Instances

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.1. Quick Start (Ubuntu Linux 14.04)

This quick start guide makes installing Bugzilla as simple as possible for
those who are able to choose their environment. It creates a system using
Ubuntu Linux 14.04 LTS, Apache and MySQL. It requires a little familiarity
with Linux and the command line.

3.1.1. Obtain Your Hardware

Ubuntu 14.04 LTS Server requires a 64-bit processor.
Bugzilla itself has no prerequisites beyond that, although you should pick
reliable hardware. You can also probably use any 64-bit virtual machine
or cloud instance that you have root access on.

3.1.2. Install the OS

Get Ubuntu Server 14.04 LTS [http://www.ubuntu.com/download/server]
and follow the installation instructions [http://www.ubuntu.com/download/server/install-ubuntu-server].
Here are some tips:

	Choose any server name you like.

	When creating the initial Linux user, call it bugzilla, give it a
strong password, and write that password down.

	You do not need an encrypted home directory.

	Choose all the defaults for the “partitioning” part (excepting of course
where the default is “No” and you need to press “Yes” to continue).

	Choose “install security updates automatically” unless you want to do
them manually.

	From the install options, choose “OpenSSH Server” and “LAMP Server”.

	Set the password for the MySQL root user to a strong password, and write
that password down.

	Install the Grub boot loader to the Master Boot Record.

Reboot when the installer finishes.

3.1.3. Become root

ssh to the machine as the ‘bugzilla’ user, or start a console. Then:

sudo su

3.1.4. Install Prerequisites

apt-get install git nano

apt-get install apache2 mysql-server libappconfig-perl libdate-calc-perl libtemplate-perl libmime-perl build-essential libdatetime-timezone-perl libdatetime-perl libemail-sender-perl libemail-mime-perl libemail-mime-modifier-perl libdbi-perl libdbd-mysql-perl libcgi-pm-perl libmath-random-isaac-perl libmath-random-isaac-xs-perl apache2-mpm-prefork libapache2-mod-perl2 libapache2-mod-perl2-dev libchart-perl libxml-perl libxml-twig-perl perlmagick libgd-graph-perl libtemplate-plugin-gd-perl libsoap-lite-perl libhtml-scrubber-perl libjson-rpc-perl libdaemon-generic-perl libtheschwartz-perl libtest-taint-perl libauthen-radius-perl libfile-slurp-perl libencode-detect-perl libmodule-build-perl libnet-ldap-perl libauthen-sasl-perl libtemplate-perl-doc libfile-mimeinfo-perl libhtml-formattext-withlinks-perl libgd-dev libmysqlclient-dev lynx-cur graphviz python-sphinx

This will take a little while. It’s split into two commands so you can do
the next steps (up to step 7) in another terminal while you wait for the
second command to finish. If you start another terminal, you will need to
sudo su again.

3.1.5. Download Bugzilla

Get it from our Git repository:

cd /var/www/html

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla bugzilla

(where “X.X” is the 2-digit version number of the stable release of Bugzilla
that you want - e.g. 5.0)

3.1.6. Configure MySQL

The following instructions use the simple nano editor, but feel
free to use any text editor you are comfortable with.

nano /etc/mysql/my.cnf

Set the following values, which increase the maximum attachment size and
make it possible to search for short words and terms:

	Alter on Line 52: max_allowed_packet=100M

	Add as new line 32, in the [mysqld] section: ft_min_word_len=2

Save and exit.

Then, add a user to MySQL for Bugzilla to use:

mysql -u root -p -e "GRANT ALL PRIVILEGES ON bugs.* TO bugs@localhost IDENTIFIED BY '$db_pass'"

Replace $db_pass with a strong password you have generated. Write it down.
When you run the above command, it will prompt you for the MySQL root password
that you configured when you installed Ubuntu. You should make $db_pass
different to that password.

Restart MySQL:

service mysql restart

3.1.7. Configure Apache

nano /etc/apache2/sites-available/bugzilla.conf

Paste in the following and save:

ServerName localhost

<Directory /var/www/html/bugzilla>
 AddHandler cgi-script .cgi
 Options +ExecCGI
 DirectoryIndex index.cgi index.html
 AllowOverride All
</Directory>

a2ensite bugzilla

a2enmod cgi headers expires

service apache2 restart

3.1.8. Check Setup

Bugzilla comes with a checksetup.pl script which helps with the
installation process. It will need to be run twice. The first time, it
generates a config file (called localconfig) for the database
access information, and the second time (step 10)
it uses the info you put in the config file to set up the database.

cd /var/www/html/bugzilla

./checksetup.pl

3.1.9. Edit localconfig

nano localconfig

You will need to set the following values:

	Line 29: set $webservergroup to www-data

	Line 67: set $db_pass to the password for the bugs user you created
in MySQL a few steps ago

3.1.10. Check Setup (again)

Run the checksetup.pl script again to set up the database.

./checksetup.pl

It will ask you to give an email address, real name and password for the
first Bugzilla account to be created, which will be an administrator.
Write down the email address and password you set.

3.1.11. Test Server

./testserver.pl http://localhost/bugzilla

All the tests should pass. You will get warnings about deprecation from
the Chart::Base Perl module; just ignore those.

3.1.12. Access Via Web Browser

Access the front page:

lynx http://localhost/bugzilla

It’s not really possible to use Bugzilla for real through Lynx, but you
can view the front page to validate visually that it’s up and running.

You might well need to configure your DNS such that the server has, and
is reachable by, a name rather than IP address. Doing so is out of scope
of this document. In the mean time, it is available on your local network
at http://<ip address>/bugzilla, where <ip address> is (unless you
have a complex network setup) the “inet addr” value displayed when you run
ifconfig eth0.

3.1.13. Configure Bugzilla

Once you have worked out how to access your Bugzilla in a graphical
web browser, bring up the front page, click Log In in the
header, and log in as the admin user you defined in step 10.

Click the Parameters link on the page it gives you, and set
the following parameters in the Required Settings section:

	urlbase:
http://<servername>/bugzilla/ or http://<ip address>/bugzilla/

Click Save Changes at the bottom of the page.

There are several ways to get Bugzilla to send email. The easiest is to
use Gmail, so we do that here so you have it working. Visit
https://gmail.com and create a new Gmail account for your Bugzilla to use.
Then, open the Email section of the Parameters using the link
in the left column, and set the following parameter values:

	mail_delivery_method: SMTP

	mailfrom: new_gmail_address@gmail.com

	smtpserver: smtp.gmail.com:465

	smtp_username: new_gmail_address@gmail.com

	smtp_password: new_gmail_password

	smtp_ssl: On

Click Save Changes at the bottom of the page.

And you’re all ready to go. :-)

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.2. Linux

Some Linux distributions include Bugzilla and its dependencies in their
package management systems. If you have root access, installing Bugzilla on
any Linux system could be as simple as finding the Bugzilla package in the
package management application and installing it. There may be a small bit
of additional configuration required.

If you are installing your machine from scratch, Quick Start (Ubuntu Linux 14.04) may be
the best instructions for you.

3.2.1. Install Packages

Use your distribution’s package manager to install Perl, your preferred
database engine (MySQL if in doubt), and a webserver (Apache if in doubt).
Some distributions even have a Bugzilla package, although that will vary
in age.

The commands below will install those things and some of Bugzilla’s other
prerequisites as well. If you find a package doesn’t install or the name
is not found, just remove it from the list and reissue the command. If you
want to use a different database or webserver, substitute the package
names as appropriate.

3.2.1.1. Fedora and Red Hat

The following command will install Red Hat’s packaged version of Bugzilla:

yum install bugzilla httpd mysql-server

Then, you can skip to configuring your database.
It may be useful to know that Fedora stores the Bugzilla files in
/usr/share/bugzilla, so that’s where you’ll run checksetup.pl.

If you want to install a version of Bugzilla from the Bugzilla project, you
will instead need:

yum install httpd mysql-server mod_perl mod_perl-devel httpd-devel
gd-devel mysql-devel
graphviz patchutils gcc 'perl(Apache2::SizeLimit)' 'perl(Authen::Radius)'
'perl(Authen::SASL)' 'perl(Cache::Memcached)' 'perl(CGI)' 'perl(Chart::Lines)'
'perl(Daemon::Generic)' 'perl(Date::Format)' 'perl(DateTime)'
'perl(DateTime::TimeZone)' 'perl(DBI)' 'perl(Digest::SHA)' 'perl(Email::MIME)'
'perl(Email::Reply)' 'perl(Email::Sender)' 'perl(Encode)' 'perl(Encode::Detect)'
'perl(File::MimeInfo::Magic)' 'perl(GD)' 'perl(GD::Graph)'
'perl(GD::Text)' 'perl(HTML::FormatText::WithLinks)' 'perl(HTML::Parser)'
'perl(HTML::Scrubber)' 'perl(IO::Scalar)' 'perl(JSON::RPC)' 'perl(JSON::XS)'
'perl(List::MoreUtils)' 'perl(LWP::UserAgent)' 'perl(Math::Random::ISAAC)'
'perl(MIME::Parser)' 'perl(mod_perl2)' 'perl(Net::LDAP)' 'perl(Net::SMTP::SSL)'
'perl(PatchReader)' 'perl(SOAP::Lite)' 'perl(Template)'
'perl(Template::Plugin::GD::Image)' 'perl(Test::Taint)' 'perl(TheSchwartz)'
'perl(URI)' 'perl(XMLRPC::Lite)' 'perl(XML::Twig)'

If you are running RHEL6, you will have to enable the “RHEL Server Optional”
channel in RHN to get some of those packages.

If you plan to use a database other than MySQL, you will need to also install
the appropriate packages for that.

3.2.1.2. Ubuntu and Debian

apt-get install git nano

apt-get install apache2 mysql-server libappconfig-perl
libdate-calc-perl libtemplate-perl libmime-perl build-essential
libdatetime-timezone-perl libdatetime-perl libemail-sender-perl
libemail-mime-perl libemail-mime-modifier-perl libdbi-perl libdbd-mysql-perl
libcgi-pm-perl libmath-random-isaac-perl libmath-random-isaac-xs-perl
apache2-mpm-prefork libapache2-mod-perl2 libapache2-mod-perl2-dev
libchart-perl libxml-perl libxml-twig-perl perlmagick libgd-graph-perl
libtemplate-plugin-gd-perl libsoap-lite-perl libhtml-scrubber-perl
libjson-rpc-perl libdaemon-generic-perl libtheschwartz-perl
libtest-taint-perl libauthen-radius-perl libfile-slurp-perl
libencode-detect-perl libmodule-build-perl libnet-ldap-perl
libauthen-sasl-perl libtemplate-perl-doc libfile-mimeinfo-perl
libhtml-formattext-withlinks-perl libgd-dev libmysqlclient-dev lynx-cur
graphviz python-sphinx

If you plan to use a database other than MySQL, you will need to also install
the appropriate packages for that.

3.2.1.3. Gentoo

emerge -av bugzilla

will install Bugzilla and all its dependencies. If you don’t have the vhosts
USE flag enabled, Bugzilla will end up in /var/www/localhost/bugzilla.

Then, you can skip to configuring your database.

3.2.2. Perl

Test which version of Perl you have installed with:

$ perl -v

Bugzilla requires at least Perl 5.10.1.

3.2.3. Bugzilla

The best way to get Bugzilla is to check it out from git:

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla

Run the above command in your home directory, replacing “X.X” with the 2-digit
version number of the stable release of Bugzilla that you want - e.g. “4.4”.

If that’s not possible, you can
download a tarball of Bugzilla [http://www.bugzilla.org/download/].

Place Bugzilla in a suitable directory, accessible by the default web server
user (probably apache or www-data).
Good locations are either directly in the web server’s document directory
(often /var/www/html) or in /usr/local, either with a
symbolic link to the web server’s document directory or an alias in the web
server’s configuration.

Warning

The default Bugzilla distribution is NOT designed to be placed
in a cgi-bin directory. This
includes any directory which is configured using the
ScriptAlias directive of Apache.

3.2.4. Perl Modules

Bugzilla requires a number of Perl modules. You can install these globally
using your system’s package manager, or install Bugzilla-only copies. At
times, Bugzilla may require a version of a Perl module newer than the one
your distribution packages, in which case you will need to install a
Bugzilla-only copy of the newer version.

At this point you probably need to become root, e.g. by using
su. You should remain as root until the end of the install. This
can be avoided in some circumstances if you are a member of your webserver’s
group, but being root is easier and will always work.

To check whether you have all the required modules, run:

./checksetup.pl --check-modules

You can run this command as many times as necessary.

If you have not already installed the necessary modules, and want to do it
system-wide, invoke your package manager appropriately at this point.
Alternatively, you can install all missing modules locally (i.e. just for
Bugzilla) like this:

./install-module.pl --all

Or, you can pass an individual module name:

./install-module.pl <modulename>

3.2.5. Web Server

Any web server that is capable of running CGI scripts can be made to work.
We have specific configuration instructions for the following:

	Apache

3.2.6. Database Engine

Bugzilla supports MySQL, PostgreSQL, Oracle and SQLite as database servers.
You only require one of these systems to make use of Bugzilla. MySQL is
most commonly used. SQLite is good for trial installations as it requires no
setup. Configure your server according to the instructions below:

	MySQL

	PostgreSQL

	Oracle

	SQLite

3.2.7. localconfig

You should now change into the Bugzilla directory and run
checksetup.pl, without any parameters:

./checksetup.pl

checksetup.pl will write out a file called localconfig.
This file contains the default settings for a number of
Bugzilla parameters, the most important of which are the group your web
server runs as, and information on how to connect to your database.

Load this file in your editor. You will need to check/change $db_driver
and $db_pass, which are respectively the type of the database you are
using and the password for the bugs database user you have created.
$db_driver can be either mysql, Pg (PostgreSQL), Oracle or
Sqlite. All values are case sensitive.

Set the value of $webservergroup to the group your web server runs as.

	Fedora/Red Hat: apache

	Debian/Ubuntu: www-data

	Mac OS X: _www

	Windows: ignore this setting; it does nothing

The other options in the localconfig file are documented by their
accompanying comments. If you have a non-standard database setup, you may
need to change one or more of the other $db_* parameters.

Note

If you are using Oracle, $db_name should be set to
the SID name of your database (e.g. XE if you are using Oracle XE).

3.2.8. checksetup.pl

Next, run checksetup.pl an additional time:

./checksetup.pl

It reconfirms that all the modules are present, and notices the altered
localconfig file, which it assumes you have edited to your
satisfaction. It compiles the UI templates,
connects to the database using the bugs
user you created and the password you defined, and creates the
bugs database and the tables therein.

After that, it asks for details of an administrator account. Bugzilla
can have multiple administrators - you can create more later - but
it needs one to start off with.
Enter the email address of an administrator, his or her full name,
and a suitable Bugzilla password.

checksetup.pl will then finish. You may rerun
checksetup.pl at any time if you wish.

3.2.9. Success

Your Bugzilla should now be working. Check by running:

./testserver.pl http://<your-bugzilla-server>/

If that passes, access http://<your-bugzilla-server>/ in your browser -
you should see the Bugzilla front page. Of course, if you installed Bugzilla
in a subdirectory, make sure that’s in the URL.

Next, do the Essential Post-Installation Configuration.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.3. Windows

Making Bugzilla work on Windows is not more difficult than making it work on
Linux. However, fewer developers use Windows to test Bugzilla and so we would
still recommend using Linux for large sites to get better support.

3.3.1. Perl

You have two main choices to install Perl on Windows: ActivePerl and Strawberry
Perl.

The ActivePerl Windows Installer can be downloaded from the
ActiveState website [http://www.activestate.com/activeperl/downloads].
Perl will be installed by default into C:\Perl. It is not
recommended to install Perl into a directory containing a space, such as
C:\Program Files. Once the install has completed, log out and log in
again to pick up the changes to the PATH environment variable.

The Strawberry Perl Windows Installer can be downloaded from the
Strawberry Perl website [http://strawberryperl.com]. Perl will be installed
by default into C:\Strawberry.

One big advantage of Strawberry Perl over ActivePerl is that with Strawberry
Perl, you can use the usual tools available on other OSes to install missing
Perl modules directly from CPAN, whereas ActivePerl requires you to use its own
ppm tool to download pre-compiled Perl modules from ActiveState.
The modules in the ActivePerl repository may be a bit older than those on CPAN.

3.3.2. Bugzilla

The best way to get Bugzilla is to check it out from git. Download and install
git from the git website [http://git-scm.com/download], and then run:

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla C:\bugzilla

where “X.X” is the 2-digit version number of the stable release of Bugzilla
that you want (e.g. 5.0).

The rest of this documentation assumes you have installed Bugzilla into
C:\bugzilla. Adjust paths appropriately if not.

If it’s not possible to use git (e.g. because your Bugzilla machine has no
internet access), you can
download a tarball of Bugzilla [http://www.bugzilla.org/download/] and
copy it across. Bugzilla comes as a ‘tarball’ (.tar.gz extension),
which any competent Windows archiving tool should be able to open.

3.3.3. Perl Modules

Bugzilla requires a number of Perl modules to be installed. Some of them are
mandatory, and some others, which enable additional features, are optional.

If you are using ActivePerl, these modules are available in the ActiveState
repository, and are installed with the ppm tool. You can either use it
on the command line as below, or just type ppm, and you will get a GUI.
If you use a proxy server or a firewall you may have trouble running PPM.
This is covered in the
ActivePerl FAQ [http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html#ppm_and_proxies].

Install the following mandatory modules with:

ppm install <modulename>

	CGI.pm

	Digest-SHA

	TimeDate

	DateTime

	DateTime-TimeZone

	DBI

	Template-Toolkit

	Email-Sender

	Email-MIME

	URI

	List-MoreUtils

	Math-Random-ISAAC

	JSON-XS

	Win32

	Win32-API

	DateTime-TimeZone-Local-Win32

The following modules enable various optional Bugzilla features; try and
install them, but don’t worry too much to begin with if you can’t get them
installed:

	GD

	Chart

	Template-GD

	GDTextUtil

	GDGraph

	MIME-tools

	libwww-perl

	XML-Twig

	PatchReader

	perl-ldap

	Authen-SASL

	Net-SMTP-SSL

	RadiusPerl

	SOAP-Lite

	XMLRPC-Lite

	JSON-RPC

	Test-Taint

	HTML-Parser

	HTML-Scrubber

	Encode

	Encode-Detect

	Email-Reply

	HTML-FormatText-WithLinks

	TheSchwartz

	Daemon-Generic

	mod_perl

	Apache-SizeLimit

	File-MimeInfo

	IO-stringy

	Cache-Memcached

	File-Copy-Recursive

If you are using Strawberry Perl, you should use the install-module.pl
script to install modules, which is the same script used for Linux. Some of
the required modules are already installed by default. The remaining ones can
be installed using the command:

perl install-module.pl <modulename>

The list of modules to install will be displayed by checksetup.pl; see
below.

3.3.4. Web Server

Any web server that is capable of running CGI scripts can be made to work.
We have specific instructions for the following:

	Apache on Windows

	Microsoft IIS

3.3.5. Database Engine

Bugzilla supports MySQL, PostgreSQL, Oracle and SQLite as database servers.
You only require one of these systems to make use of Bugzilla. MySQL is
most commonly used, and is the only one for which Windows instructions have
been tested. SQLite is good for trial installations as it requires no
setup. Configure your server according to the instructions below:

	MySQL

	PostgreSQL

	Oracle

	SQLite

3.3.6. localconfig

You should now change into the Bugzilla directory and run
checksetup.pl, without any parameters:

checksetup.pl

checksetup.pl will write out a file called localconfig.
This file contains the default settings for a number of
Bugzilla parameters, the most important of which are the group your web
server runs as, and information on how to connect to your database.

Load this file in your editor. You will need to check/change $db_driver
and $db_pass, which are respectively the type of the database you are
using and the password for the bugs database user you have created.
$db_driver can be either mysql, Pg (PostgreSQL), Oracle or
Sqlite. All values are case sensitive.

Set the value of $webservergroup to the group your web server runs as.

	Fedora/Red Hat: apache

	Debian/Ubuntu: www-data

	Mac OS X: _www

	Windows: ignore this setting; it does nothing

The other options in the localconfig file are documented by their
accompanying comments. If you have a non-standard database setup, you may
need to change one or more of the other $db_* parameters.

Note

If you are using Oracle, $db_name should be set to
the SID name of your database (e.g. XE if you are using Oracle XE).

3.3.7. checksetup.pl

Next, run checksetup.pl an additional time:

checksetup.pl

It reconfirms that all the modules are present, and notices the altered
localconfig file, which it assumes you have edited to your
satisfaction. It compiles the UI templates,
connects to the database using the bugs
user you created and the password you defined, and creates the
bugs database and the tables therein.

After that, it asks for details of an administrator account. Bugzilla
can have multiple administrators - you can create more later - but
it needs one to start off with.
Enter the email address of an administrator, his or her full name,
and a suitable Bugzilla password.

checksetup.pl will then finish. You may rerun
checksetup.pl at any time if you wish.

3.3.8. Success

Your Bugzilla should now be working. Check by running:

testserver.pl http://<your-bugzilla-server>/

If that passes, access http://<your-bugzilla-server>/ in your browser -
you should see the Bugzilla front page. Of course, if you installed Bugzilla
in a subdirectory, make sure that’s in the URL.

If you don’t see the main Bugzilla page, but instead see “It works!!!”,
then somehow your Apache has not picked up your modifications to
httpd.conf. If you are on Windows 7 or later, this could be due to a
new feature called “VirtualStore”. This blog post [http://blog.netscraps.com/bugs/apache-httpd-conf-changes-ignored-in-windows-7.html]
may help to solve the problem.

If you get an “Internal Error…” message, it could be that
ScriptInterpreterSource Registry-Strict is not set in your
Apache configuration. Check again if it is set
properly.

Next, do the Essential Post-Installation Configuration.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.4. Mac OS X

Note

The Bugzilla team has very little Mac expertise and we’ve not been
able to do a successful install of the latest version. We got
close, though. If you’ve managed it, tell us how and we can update
these docs!

3.4.1. Install Packages

OS X 10.7 provides Perl 5.12 and Apache 2.2. Install the following additional
packages:

	git: Download an installer from
the git website [http://www.git-scm.com/downloads].

	MySQL: Download an installer from
the MySQL website [http://dev.mysql.com/downloads/mysql/].

3.4.2. Bugzilla

The best way to get Bugzilla is to check it out from git:

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla

Run the above command in your home directory, replacing “X.X” with the 2-digit
version number of the stable release of Bugzilla that you want - e.g. “4.4”.
This will place Bugzilla in the directory $HOME/bugzilla.

If that’s not possible, you can
download a tarball of Bugzilla [http://www.bugzilla.org/download/].

3.4.3. Additional System Libraries

Apple does not include the GD library with Mac OS X. Bugzilla needs this if
you want to display bug graphs, and you need to install it before you try
installing the GD Perl module.

You can use MacPorts [http://www.macports.org/], Homebrew [http://brew.sh/] or
Fink [http://sourceforge.net/projects/fink/], all of which can install common
Unix programs on Mac OS X.

If you don’t have one of the above installed already, pick one and follow the
instructions for setting it up. Then, use it to install the gd2 package
(MacPorts/Fink) or the gd package (Brew).

The package manager may prompt you to install a number of dependencies; you
will need to agree to this.

Note

To prevent creating conflicts with the software that Apple
installs by default, Fink creates its own directory tree at /sw
where it installs most of
the software that it installs. This means your libraries and headers
will be at /sw/lib and /sw/include instead
of /usr/lib and /usr/include. When the
Perl module config script for the GD module asks where your libgd
is, be sure to tell it /sw/lib.

3.4.4. Perl Modules

Bugzilla requires a number of Perl modules. On Mac OS X, the easiest thing to
do is to install local copies (rather than system-wide copies) of any ones
that you don’t already have. However, if you do want to install them
system-wide, run the below commands as root with the --global
option.

To check whether you have all the required modules and what is still missing,
run:

perl checksetup.pl --check-modules

You can run this command as many times as necessary.

Install all missing modules locally like this:

perl install-module.pl --all

3.4.5. Web Server

Any web server that is capable of running CGI scripts can be made to work.
We have specific configuration instructions for the following:

	Apache

You’ll need to create a symbolic link so the webserver can see Bugzilla:

cd /Library/WebServer/Documents

sudo ln -s $HOME/bugzilla bugzilla

In System Preferences –> Sharing, enable the
Web Sharing checkbox to start Apache.

3.4.6. Database Engine

Bugzilla supports MySQL, PostgreSQL, Oracle and SQLite as database servers.
You only require one of these systems to make use of Bugzilla. MySQL is
most commonly used on Mac OS X. (In fact, we have no reports of anyone using
anything else.) Configure your server according to the instructions below:

	MySQL

	PostgreSQL

	Oracle

	SQLite

3.4.7. localconfig

You should now change into the Bugzilla directory and run
checksetup.pl, without any parameters:

perl checksetup.pl

checksetup.pl will write out a file called localconfig.
This file contains the default settings for a number of
Bugzilla parameters, the most important of which are the group your web
server runs as, and information on how to connect to your database.

Load this file in your editor. You will need to check/change $db_driver
and $db_pass, which are respectively the type of the database you are
using and the password for the bugs database user you have created.
$db_driver can be either mysql, Pg (PostgreSQL), Oracle or
Sqlite. All values are case sensitive.

Set the value of $webservergroup to the group your web server runs as.

	Fedora/Red Hat: apache

	Debian/Ubuntu: www-data

	Mac OS X: _www

	Windows: ignore this setting; it does nothing

The other options in the localconfig file are documented by their
accompanying comments. If you have a non-standard database setup, you may
need to change one or more of the other $db_* parameters.

Note

If you are using Oracle, $db_name should be set to
the SID name of your database (e.g. XE if you are using Oracle XE).

3.4.8. checksetup.pl

Next, run checksetup.pl an additional time:

perl checksetup.pl

It reconfirms that all the modules are present, and notices the altered
localconfig file, which it assumes you have edited to your
satisfaction. It compiles the UI templates,
connects to the database using the bugs
user you created and the password you defined, and creates the
bugs database and the tables therein.

After that, it asks for details of an administrator account. Bugzilla
can have multiple administrators - you can create more later - but
it needs one to start off with.
Enter the email address of an administrator, his or her full name,
and a suitable Bugzilla password.

checksetup.pl will then finish. You may rerun
checksetup.pl at any time if you wish.

3.4.9. Success

Your Bugzilla should now be working. Check by running:

perl testserver.pl http://<your-bugzilla-server>/

If that passes, access http://<your-bugzilla-server>/ in your browser -
you should see the Bugzilla front page. Of course, if you installed Bugzilla
in a subdirectory, make sure that’s in the URL.

Next, do the Essential Post-Installation Configuration.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.5. Web Server

Bugzilla requires a web server to run CGI scripts. It supports the following:

	3.5.1. Apache

	3.5.2. Apache on Windows

	3.5.3. Microsoft IIS

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.5.1. Apache

You have two options for running Bugzilla under Apache - mod_cgi (the
default) and mod_perl. mod_perl is faster but takes more resources. You
should probably only consider mod_perl if your Bugzilla is going to be heavily
used.

These instructions require editing the Apache configuration file, which is:

	Fedora/Red Hat: /etc/httpd/conf/httpd.conf

	Debian/Ubuntu: /etc/apache2/apache2.conf

	Mac OS X: /etc/apache2/httpd.conf

Alternatively, on Debian or Ubuntu, you can instead put the below code into a
separate file in the directory /etc/apache2/sites-enabled/.

In these instructions, when asked to restart Apache, the command is:

sudo apachectl start

(or run it as root if your OS installation does not use sudo).

3.5.1.1. Securing Apache

When external systems interact with Bugzilla via webservices
(REST/XMLRPC/JSONRPC) they include the user’s credentials as part of the URL
(in the “query string”). Therefore, to avoid storing passwords in clear text
on the server we recommend configuring Apache to not include the query string
in its log files.

	Edit the Apache configuration file (see above).

	Find the following line in the above mentioned file, which defines the
logging format for vhost_combined:

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" vhost_combined

	Replace %r with %m %U.

	Restart Apache.

3.5.1.2. Apache with mod_cgi

To configure your Apache web server to work with Bugzilla while using
mod_cgi, do the following:

	Edit the Apache configuration file (see above).

	Create a <Directory> directive that applies to the location
of your Bugzilla installation. In this example, Bugzilla has
been installed at /var/www/html/bugzilla. On Mac OS X, use
/Library/WebServer/Documents/bugzilla.

<Directory /var/www/html/bugzilla>
 AddHandler cgi-script .cgi
 Options +ExecCGI +FollowSymLinks
 DirectoryIndex index.cgi index.html
 AllowOverride All
</Directory>

These instructions allow Apache to run .cgi files found within the Bugzilla
directory; instructs the server to look for a file called index.cgi
or, if not found, index.html if someone only types the directory name
into the browser; and allows Bugzilla’s .htaccess files to override
some global permissions.

On some Linux distributions you will need to enable the Apache CGI
module. On Debian/Ubuntu, this is done with:

sudo a2enmod cgi

If you find that the webserver is returning the Perl code as text rather
than executing it, then this is the problem.

3.5.1.3. Apache with mod_perl

Some configuration is required to make Bugzilla work with Apache
and mod_perl.

Note

It is not known whether anyone has even tried mod_perl on Mac OS X.

	Edit the Apache configuration file (see above).

	Add the following information, substituting where appropriate with your
own local paths.

PerlSwitches -w -T
PerlConfigRequire /var/www/html/bugzilla/mod_perl.pl

Note

This should be used instead of the <Directory> block
shown above. This should also be above any other mod_perl
directives within the httpd.conf and the directives must be
specified in the order above.

Warning

You should also ensure that you have disabled KeepAlive
support in your Apache install when utilizing Bugzilla under mod_perl
or you may suffer a
performance penalty [http://modperlbook.org/html/11-4-KeepAlive.html].

On restarting Apache, Bugzilla should now be running within the
mod_perl environment.

Please bear the following points in mind when considering using Bugzilla
under mod_perl:

	mod_perl support in Bugzilla can take up a HUGE amount of RAM - easily
30MB per httpd child. The more RAM you can get, the better. mod_perl is
basically trading RAM for speed. At least 2GB total system RAM is
recommended for running Bugzilla under mod_perl.

	Under mod_perl, you have to restart Apache if you make any manual change to
any Bugzilla file. You can’t just reload–you have to actually
restart the server (as in make sure it stops and starts
again). You can change localconfig and the params file
manually, if you want, because those are re-read every time you load a page.

	You must run in Apache’s Prefork MPM (this is the default). The Worker MPM
may not work – we haven’t tested Bugzilla’s mod_perl support under threads.
(And, in fact, we’re fairly sure it won’t work.)

	Bugzilla generally expects to be the only mod_perl application running on
your entire server. It may or may not work if there are other applications also
running under mod_perl. It does try its best to play nice with other mod_perl
applications, but it still may have conflicts.

	It is recommended that you have one Bugzilla instance running under mod_perl
on your server. Bugzilla has not been tested with more than one instance running.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.5.2. Apache on Windows

Bugzilla supports all versions of Apache 2.2.x and 2.4.x.

3.5.2.1. Installing

Download the Apache HTTP Server as a .zip archive either from the
Apache Lounge website [http://www.apachelounge.com/download] or from the
Apache Haus website [http://www.apachehaus.com/cgi-bin/download.plx].

Unzip the archive into C:\Apache24. If you move it elsewhere, then
you must edit several variables in httpd.conf, including ServerRoot
and DocumentRoot.

You must now edit the Apache configuration file C:\Apache24\conf\httpd.conf
and do the following steps:

	Uncomment LoadModule cgi_module modules/mod_cgi.so at the beginning of the
file to enable CGI support.

	Uncomment AddHandler cgi-script .cgi to register .cgi files
as CGI scripts. For this handler to work, you must create a key in the
Windows registry named HKEY_CLASSES_ROOT\.cgi\Shell\ExecCGI\Command with
the default value pointing to the full path of perl.exe with a -T
parameter. For example C:\Perl\bin\perl.exe -T if you use ActivePerl,
or C:\Strawberry\perl\bin\perl.exe -T if you use Strawberry Perl.

	Add an Alias and a Directory for Bugzilla:

Alias "/bugzilla/" "C:/bugzilla/"
<Directory "C:/bugzilla">
 ScriptInterpreterSource Registry-Strict
 Options +ExecCGI +FollowSymLinks
 DirectoryIndex index.cgi index.html
 AllowOverride All
 Require all granted
</Directory>

Warning

The above block takes a simple approach to access control and is
correct for Apache 2.4. For Apache 2.2, replace Require all granted
with Allow from all. If you have other access control
requirements, you may need to make further modifications.

You now save your changes and start Apache as a service. From the Windows
command line (cmd.exe):

C:\Apache24\bin>httpd.exe -k install

That’s it! Bugzilla is now accessible from http://localhost/bugzilla.

3.5.2.2. Apache Account Permissions

By default Apache installs itself to run as the SYSTEM account. For security
reasons it’s better the reconfigure the service to run as an Apache user.
Create a new Windows user that is a member of no groups, and reconfigure
the Apache2 service to run as that account.

Whichever account you are running Apache as, SYSTEM or otherwise, needs write
and modify access to the following directories and all their subdirectories.
Depending on your version of Windows, this access may already be granted.

	C:\Bugzilla\data

	C:\Apache24\logs

	C:\Windows\Temp

Note that C:\Bugzilla\data is created the first time you run
checksetup.pl.

3.5.2.3. Logging

Unless you want to keep statistics on how many hits your Bugzilla install is
getting, it’s a good idea to disable logging by commenting out the
CustomLog directive in the Apache config file.

If you don’t disable logging, you should at least disable logging of “query
strings”. When external systems interact with Bugzilla via webservices
(REST/XMLRPC/JSONRPC) they include the user’s credentials as part of the URL
(in the query string). Therefore, to avoid storing passwords in clear text
on the server we recommend configuring Apache to not include the query string
in its log files.

	Find the following line in the Apache config file, which defines the
logging format for vhost_combined:

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" vhost_combined

	Replace %r with %m %U.

(If you have configured Apache differently, a different log line might apply.
Adjust these instructions accordingly.)

3.5.2.4. Using Apache with SSL

If you want to enable SSL with Apache, i.e. access Bugzilla from
https://localhost/bugzilla, you need to do some extra steps:

	Edit C:\Apache24\conf\httpd.conf and uncomment these lines:

	LoadModule ssl_module modules/mod_ssl.so

	LoadModule socache_shmcb_module modules/mod_socache_shmcb.so

	Include conf/extra/httpd-ssl.conf

	Create your .key and .crt files using openssl.exe
provided with Apache:

C:\Apache24\bin>openssl.exe req -x509 -nodes -days 730 -newkey rsa:2048 -keyout server.key -out server.crt

openssl.exe will ask you a few questions about your location and
your company name to populate fields of the certificate.

	Once the key and the certificate for your server are generated, move them
into C:\Apache24\conf so that their location matches the
SSLCertificateFile and SSLCertificateKeyFile variables defined in
C:\Apache24\conf\extra\httpd-ssl.conf (which you don’t need to
edit).

Note

This process leads to a self-signed certificate which will generate
browser warnings on first visit. If your Bugzilla has a public DNS
name, you can get a cert from a CA which will not have this problem.

3.5.2.5. Restart Apache

Finally, restart Apache to pick up the changes, either from the Services
console or from the command line:

C:\Apache24\bin>httpd.exe -k restart

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.5.3. Microsoft IIS

Bugzilla works with IIS as a normal CGI application. These instructions assume
that you are using Windows 7 or Windows 10. Procedures for other versions are
probably similar.

Begin by starting Internet Information Services (IIS) Manager.
Start –> Administrators Tools –>
Internet Information Services (IIS) Manager. Or run the command:

inetmgr

3.5.3.1. Create a New Application

Expand your Server until the Default Web Site shows
its children.

Right-click Default Web Site and select
Add Application from the menu.

Unde Alias, enter the alias for the website. This is the path
below the domain where you want Bugzilla to appear.

Under Physical Path, enter the path to Bugzilla,
C:\Bugzilla.

When finished, click OK.

3.5.3.2. Configure the Default Document

Click on the Application that you just created. Double-click on
Default Document, and click Add underneath the
Actions menu.

Under Name, enter index.cgi.

All other default documents can be removed for this application.

Warning

Do not delete the default document from the Default Website.

3.5.3.3. Add Handler Mappings

Ensure that you are at the Default Website. Under IIS,
double-click Handler Mappings. Under Actions, click
Add Script Map. You need to do this twice.

For the first one, set the following values (replacing paths if necessary):

	Request Path: *.pl

	Executable: C:\Perl\bin\perl.exe "%s" %s

	Name: Perl Script Map

At the prompt select Yes.

Note

The ActiveState Perl installer may have already created an entry for
.pl files that is limited to GET,HEAD,POST. If so, this mapping should
be removed, as Bugzilla’s .pl files are not designed to be run via a web
server.

For the second one, set the following values (replacing paths if necessary):

	Request Path: *.cgi

	Executable: C:\Perl\bin\perl.exe "%s" %s

	Name: CGI Script Map

At the prompt select Yes.

3.5.3.4. Bugzilla Application

Ensure that you are at the Bugzilla Application. Under IIS,
double-click Handler Mappings. Under Actions, click
Add Script Map.

Set the following values (replacing paths if necessary):

	Request Path: *.cgi

	Executable: C:\Perl\bin\perl.exe -x"C:\Bugzilla" -wT "%s" %s

	Name: Bugzilla

At the prompt select Yes.

Now it’s time to restart the IIS server to take these changes into account.
From the top-level menu, which contains the name of your machine, click
Restart under Manage Server. Or run the command:

iisreset

3.5.3.5. Enable Rewrite Rules for REST

REST URLs are usually of the form http://…/bugzilla/rest/version [http://.../bugzilla/rest/version] instead of
http://…/bugzilla/rest.cgi/version [http://.../bugzilla/rest.cgi/version]. To let IIS redirect rest/ URLs to rest.cgi,
you need to download and install the
URL Rewrite extension for IIS [http://www.iis.net/downloads/microsoft/url-rewrite].
Direct download links are available at the bottom of the page for both x86 and
x64 Windows.

Once installed, you open the IIS Manager again and go to your Bugzilla
Application. From here, double-click URL Rewrite. Then click
Add Rule(s) under the Actions menu and click
Blank rule in the Inbound rules section.

Fill the fields as follows. Other fields do not need to be edited.

	Name: REST

	Pattern: ^rest/(.*)$

	Rewrite URL: rest.cgi/{R:1}

There is no need to restart IIS. Changes take effect immediately.

3.5.3.6. Common Problems

	Bugzilla runs but it’s not possible to log in

	You’ve probably configured IIS to use ActiveState’s ISAPI DLL – in other
words you’re using PerlEx, or the executable IIS is configured to use is
PerlS.dll or Perl30.dll.

Reconfigure IIS to use perl.exe.

	IIS returns HTTP 502 errors

	You probably forgot the -T argument to perl when configuring the
executable in IIS.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.6. Database Server

Bugzilla requires a database to store its data. We recommend either MySQL or
PostgreSQL for production installations. Oracle 10 should work fine, but very
little or no testing has been done with Oracle 11 and 12. SQLite is easy to
configure but, due to its limitations, it should only be used for testing
purposes and very small installations.

	3.6.1. MySQL

	3.6.2. PostgreSQL

	3.6.3. Oracle

	3.6.4. SQLite

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.6.1. MySQL

You need MySQL version 5.0.15 or higher.

It’s possible to test which version of MySQL you have installed with:

mysql -V

3.6.1.1. Installing

Windows

Download the MySQL 32-bit or 64-bit MSI installer from the
MySQL website [http://www.mysql.com/downloads/mysql/] (~28 MB).

MySQL has a standard Windows installer. It’s ok to select a Typical MySQL
install (the default). The rest of this documentation assumes assume you
have installed MySQL into C:\mysql. Adjust paths appropriately if not.

Linux/Mac OS X

The package install instructions given previously should have installed MySQL
on your machine, if it didn’t come with it already. Run:

mysql_secure_installation

and follow its advice.

If you did install MySQL manually rather than from a package, make sure the
server is started when the machine boots.

3.6.1.2. Add a User

You need to add a new MySQL user for Bugzilla to use. Run the mysql
command-line client and enter:

GRANT SELECT, INSERT,
UPDATE, DELETE, INDEX, ALTER, CREATE, LOCK TABLES,
CREATE TEMPORARY TABLES, DROP, REFERENCES ON bugs.*
TO bugs@localhost IDENTIFIED BY '$DB_PASS';

FLUSH PRIVILEGES;

You need to replace $DB_PASS with a strong password you have chosen.
Write that password down somewhere.

The above command permits an account called bugs
to connect from the local machine, localhost. Modify the command to
reflect your setup if you will be connecting from another
machine or as a different user.

3.6.1.3. Change Configuration

To change MySQL’s configuration, you need to edit your MySQL
configuration file, which is:

	Red Hat/Fedora: /etc/my.cnf

	Debian/Ubuntu: /etc/mysql/my.cnf

	Windows: C:\mysql\bin\my.ini

	Mac OS X: /etc/my/cnf

Allow Large Attachments and Many Comments

By default on some systems, MySQL will only allow you to insert things
into the database that are smaller than 1MB.

Bugzilla attachments
may be larger than this. Also, Bugzilla combines all comments
on a single bug into one field for full-text searching, and the
combination of all comments on a single bug could in some cases
be larger than 1MB.

We recommend that you allow at least 16MB packets by
adding or altering the max_allowed_packet parameter in your MySQL
configuration in the [mysqld] section, so that the number is at least
16M, like this (note that it’s M, not MB):

[mysqld]
Allow packets up to 16M
max_allowed_packet=16M

Allow Small Words in Full-Text Indexes

By default, words must be at least four characters in length
in order to be indexed by MySQL’s full-text indexes. This causes
a lot of Bugzilla-specific words to be missed, including “cc”,
“ftp” and “uri”.

MySQL can be configured to index those words by setting the
ft_min_word_len param to the minimum size of the words to index.

[mysqld]
Allow small words in full-text indexes
ft_min_word_len=2

3.6.1.4. Permit Attachments Table to Grow Beyond 4GB

This is optional configuration for Bugzillas which are expected to become
very large, and needs to be done after Bugzilla is fully installed.

By default, MySQL will limit the size of a table to 4GB.
This limit is present even if the underlying filesystem
has no such limit. To set a higher limit, run the mysql
command-line client and enter the following, replacing $bugs_db
with your Bugzilla database name (which is bugs by default):

USE $bugs_db;

ALTER TABLE attachments AVG_ROW_LENGTH=1000000, MAX_ROWS=20000;

The above command will change the limit to 20GB. MySQL will have
to make a temporary copy of your entire table to do this, so ideally
you should do this when your attachments table is still small.

Note

If you have set the setting in Bugzilla which allows large
attachments to be stored on disk, the above change does not affect that.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.6.2. PostgreSQL

Test which version of PostgreSQL you have installed with:

psql -V

You need PostgreSQL version 8.03.0000 or higher.

If you install PostgreSQL manually rather than from a package, make sure the
server is started when the machine boots.

3.6.2.1. Add a User

You need to add a new user to PostgreSQL for the Bugzilla
application to use when accessing the database. The following instructions
assume the defaults in localconfig; if you
changed those, you need to modify the commands appropriately.

On most systems, to create a user in PostgreSQL, login as the root user, and
then switch to being the postgres (Unix) user:

su - postgres

As the postgres user, you then need to create a new user:

createuser -U postgres -dRSP bugs

When asked for a password, provide one and write it down for later reference.

The created user will not be a superuser (-S) and will not be able to create
new users (-R). He will only have the ability to create databases (-d).

3.6.2.2. Permit Access

Edit the file pg_hba.conf which is
usually located in /var/lib/pgsql/data/. In this file,
you will need to add a new line to it as follows:

host all bugs 127.0.0.1 255.255.255.255 md5

This means that for TCP/IP (host) connections, allow connections from
‘127.0.0.1’ to ‘all’ databases on this server from the ‘bugs’ user, and use
password authentication (‘md5’) for that user.

Now, you will need to stop and start PostgreSQL fully. (Do not use any
‘restart’ command, due to the possibility of a change to
postgresql.conf.)

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.6.3. Oracle

Warning

Bugzilla supports Oracle, but none of the current developers run
it. Your mileage may vary.

You need Oracle version 10.02.0 or later.

3.6.3.1. Create a New Tablespace

You can use the existing tablespace or create a new one for Bugzilla.
To create a new tablespace, run the following command:

CREATE TABLESPACE bugs
DATAFILE '*$path_to_datafile*' SIZE 500M
AUTOEXTEND ON NEXT 30M MAXSIZE UNLIMITED

Here, the name of the tablespace is ‘bugs’, but you can
choose another name. $path_to_datafile is
the path to the file containing your database, for instance
/u01/oradata/bugzilla.dbf.
The initial size of the database file is set in this example to 500 Mb,
with an increment of 30 Mb everytime we reach the size limit of the file.

3.6.3.2. Add a User to Oracle

The user name and password must match what you set in localconfig
($db_user and $db_pass, respectively). Here, we assume that
the user name is ‘bugs’ and the tablespace name is the same
as above.

CREATE USER bugs
IDENTIFIED BY "$db_pass"
DEFAULT TABLESPACE bugs
TEMPORARY TABLESPACE TEMP
PROFILE DEFAULT;
-- GRANT/REVOKE ROLE PRIVILEGES
GRANT CONNECT TO bugs;
GRANT RESOURCE TO bugs;
-- GRANT/REVOKE SYSTEM PRIVILEGES
GRANT UNLIMITED TABLESPACE TO bugs;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO bugs;

3.6.3.3. Configure the Web Server

If you use Apache, append these lines to httpd.conf
to set ORACLE_HOME and LD_LIBRARY_PATH. For instance:

SetEnv ORACLE_HOME /u01/app/oracle/product/10.2.0/
SetEnv LD_LIBRARY_PATH /u01/app/oracle/product/10.2.0/lib/

When this is done, restart your web server.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.6.4. SQLite

Warning

Due to SQLite’s concurrency
limitations [http://sqlite.org/faq.html#q5] we recommend SQLite only for
small and development Bugzilla installations.

Once you have SQLite installed, no additional configuration is required to
run Bugzilla.

The database will be stored in $BUGZILLA_HOME/data/db/$db_name, where
$db_name is the database name defined in localconfig.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.7. Essential Post-Installation Configuration

Bugzilla is configured in the Administration Parameters. Log in with the
administrator account you defined in the last checksetup.pl run,
then click Administration in the header, and then
Parameters. You will see the different parameter sections
down the left hand side of the page.

3.7.1. Parameters

There are a few parameters which it is very important to define (or
explicitly decide not to change).

The first set of these are in the Required Settings section.

	urlbase: this is the URL by which people should access
Bugzilla’s front page.

	sslbase: if you have configured SSL on your Bugzilla server,
this is the SSL URL by which people should access Bugzilla’s front page.

	ssl_redirect: Set this if you want everyone to be redirected
to use the SSL version. Recommended if you have set up SSL.

	cookiepath: Bugzilla uses cookies to remember who each user is.
In order to set those cookies in the correct scope, you may need to set a
cookiepath. If your Bugzilla is at the root of your domain, you don’t need
to change the default value.

You may want to put your email address in the maintainer
parameter in the General section. This will then let people
know who to contact if they see problems or hit errors.

If you don’t want just anyone able to read your Bugzilla, set the
requirelogin parameter in the User Authentication
section, and change or clear the createemailregexp parameter.

3.7.2. Email

Bugzilla requires the ability to set up email. You have a number of choices
here. The simplest is to get Gmail or some other email provider to do the
work for you, but you can also hand the mail off to a local email server,
or run one yourself on the Bugzilla machine.

Bugzilla’s approach to email is configured in the Email section
of the Parameters.

3.7.2.1. Use Another Mail Server

This section corresponds to choosing a mail_delivery_method of
SMTP.

This method passes the email off to an existing mail server. Your
organization may well already have one running for their internal email, and
may prefer to use it for confidentiality reasons. If so, you need the
following information about it:

	The domain name of the server (Parameter: smtpserver)

	The username and password to use (Parameters: smtp_username and
smtp_password)

	Whether the server uses SSL (Parameter: smtp_ssl)

	The address you should be sending mail ‘From’ (Parameter:
mailfrom)

If your organization does not run its own mail server, you can use the
services of one of any number of popular email providers.

Gmail

Visit https://gmail.com and create a new Gmail account for your Bugzilla to
use. Then, set the following parameter values in the “Email” section:

	mail_delivery_method: SMTP

	mailfrom: new_gmail_address@gmail.com

	smtpserver: smtp.gmail.com:465

	smtp_username: new_gmail_address@gmail.com

	smtp_password: new_gmail_password

	smtp_ssl: On

3.7.2.2. Run Your Own Mail Server

This section corresponds to choosing a mail_delivery_method of
Sendmail.

Unless you know what you are doing, and can deal with the possible problems
of spam, bounces and blacklists, it is probably unwise to set up your own
mail server just for Bugzilla. However, if you wish to do so, some guidance
follows.

On Linux, any Sendmail-compatible MTA (Mail Transfer Agent) will
suffice. Sendmail, Postfix, qmail and Exim are examples of common
MTAs. Sendmail is the original Unix MTA, but the others are easier to
configure, and therefore many people replace Sendmail with Postfix or
Exim. They are drop-in replacements, so Bugzilla will not
distinguish between them.

If you are using Sendmail, version 8.7 or higher is required. If you are
using a Sendmail-compatible MTA, it must be compatible with at least version
8.7 of Sendmail.

On Mac OS X 10.3 and later, Postfix [http://www.postfix.org/]
is used as the built-in email server. Postfix provides an executable
that mimics sendmail enough to satisfy Bugzilla.

On Windows, if you find yourself unable to use Bugzilla’s built-in SMTP
support (e.g. because the necessary Perl modules are not available), you can
use Sendmail with a little application called
sendmail.exe [http://glob.com.au/sendmail/], which provides
sendmail-compatible calling conventions and encapsulates the SMTP
communication to another mail server. Like Bugzilla, sendmail.exe
can be configured to log SMTP communication to a file in case of problems.

Detailed information on configuring an MTA is outside the scope of this
document. Consult the manual for the specific MTA you choose for detailed
installation instructions. Each of these programs will have their own
configuration files where you must configure certain parameters to
ensure that the mail is delivered properly. They are implemented
as services, and you should ensure that the MTA is in the auto-start
list of services for the machine.

If a simple mail sent with the command-line mail program
succeeds, then Bugzilla should also be fine.

3.7.2.3. Troubleshooting

If you are having trouble, check that any configured SMTP server can be
reached from your Bugzilla server and that any given authentication
credentials are valid. If these things seem correct and your mails are still
not sending, check if your OS uses SELinux or AppArmor. Either of these
may prevent your web server from sending email. The SELinux boolean
httpd_can_sendmail [http://selinuxproject.org/page/ApacheRecipes#Allow_the_Apache_HTTP_Server_to_send_mail]
may need to be set to True.

If all those things don’t help, activate the smtp_debug parameter
and check your webserver logs.

3.7.3. Products, Components, Versions and Milestones

Bugs in Bugzilla are categorised into Products and, inside those Products,
Components (and, optionally, if you turn on the useclassifications
parameter, Classifications as a level above Products).

Bugzilla comes with a single Product, called “TestProduct”, which contains a
single component, imaginatively called “TestComponent”. You will want to
create your own Products and their Components. It’s OK to have just one
Component inside a Product. Products have Versions (which represents the
version of the software in which a bug was found) and Target Milestones
(which represent the future version of the product in which the bug is
hopefully to be fixed - or, for RESOLVED bugs, was fixed. You may also want
to add some of those.

Once you’ve created your own, you will want to delete TestProduct (which
will delete TestComponent automatically). Note that if you’ve filed a bug in
TestProduct to try Bugzilla out, you’ll need to move it elsewhere before it’s
possible to delete TestProduct.

Now, you may want to do some of the Optional Post-Install Configuration.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.8. Optional Post-Install Configuration

Bugzilla has a number of optional features. This section describes how
to configure or enable them.

3.8.1. Recurring Tasks

Several of the below features require you to set up a script to run at
recurring intervals. The method of doing this varies by operating system.

3.8.1.1. Linux

Run:

crontab -e

This should bring up the crontab file in your editor. Add the relevant
cron line from the sections below in order to enable the corresponding
feature.

3.8.1.2. Windows

Windows comes with a Task Scheduler. To run a particular script, do the
following:

	Control Panel –> Scheduled Tasks –>
Add Scheduled Task

	Next

	Browse

	Find perl.exe (normally C:\Perl\bin\perl.exe)

	Give the task a name, such as “Bugzilla <scriptname>”

	Request the task be performed at your desired time and interval

	If you’re running Apache as a user, not as SYSTEM, enter that user
here. Otherwise you’re best off creating an account that has write access
to the Bugzilla directory and using that

	Tick “Open Advanced Properties..” and click Finish

	Append the script name to the end of the “Run” field. eg
C:\Perl\bin\perl.exe C:\Bugzilla\<scriptname>

	Change “start in” to the Bugzilla directory

3.8.2. Bug Graphs

If you have installed the necessary Perl modules, as indicated by
checksetup.pl, you can ask Bugzilla to regularly collect statistics
so that you can see graphs and charts.

On Linux, use a cron line as follows:

5 0 * * * cd <your-bugzilla-directory> && ./collectstats.pl

On Windows, schedule the collectstats.pl script to run daily.

After two days have passed you’ll be able to view bug graphs from
the Reports page.

3.8.3. Whining

Users can configure Bugzilla to annoy them at regular intervals, by having
Bugzilla execute saved searches at certain times and emailing the results to
the user. This is known as “Whining”. The details of how a user configures
Whining is described in Whining, but for it to work a Perl script must
be executed at regular intervals.

On Linux, use a cron line as follows:

*/15 * * * * cd <your-bugzilla-directory> && ./whine.pl

On Windows, schedule the whine.pl script to run every 15 minutes.

3.8.4. Whining at Untriaged Bugs

It’s possible for bugs to languish in an untriaged state. Bugzilla has a
specific system to issue complaints about this particular problem to all the
relevant engineers automatically by email.

On Linux, use a cron line as follows:

55 0 * * * cd <your-bugzilla-directory> && ./whineatnews.pl

On Windows, schedule the whineatnews.pl script to run daily.

3.8.5. Dependency Graphs

Bugzilla can draw graphs of the dependencies (depends on/blocks relationships)
between bugs, if you install a package called graphviz.

3.8.5.1. Linux

Put the complete path to the dot command (from the graphviz
package) in the webdotbase parameter. E.g. /usr/bin/dot.

3.8.5.2. Windows

Download and install Graphviz from
the Graphviz website [http://www.graphviz.org/Download_windows.php]. Put
the complete path to dot.exe in the webdotbase parameter,
e.g. C:\Program Files (x86)\Graphviz2.38\bin\dot.exe.

3.8.6. Documentation

Bugzilla has extensive documentation and help, written in
reStructured Text [http://sphinx-doc.org/rest.html]
format. A generic compiled copy exists on
bugzilla.readthedocs.org [https://bugzilla.readthedocs.org/], and
Help links point to it by default. You can also build and use
a local copy of the documentation, for instance because you have added Bugzilla
extensions which come with documentation, or because your users don’t have
Internet access from their machines.

Bugzilla will automatically detect that you’ve compiled the documentation
and link to it in preference to the copy on the Internet. Don’t forget to
recompile it when you upgrade Bugzilla or install new extensions.

3.8.6.1. Linux

	Install Sphinx [http://sphinx-doc.org/]. Most Linux distros have it in
a package named python-sphinx.

	Then go to your Bugzilla directory and run:

docs/makedocs.pl

3.8.6.2. Windows

	Download and install Python [https://www.python.org/downloads/].
Both Python 2.7 and 3.x will work. Adding python to the PATH
environment variable, as suggested by the Python installer, will make your
life easier.

	Install Sphinx [http://sphinx-doc.org/]. Run cmd.exe and type:

pip install sphinx

	Then go to your C:\bugzilla\docs directory and run:

makedocs.pl

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.9. Migrating From Other Bug-Tracking Systems

Bugzilla has a framework you can use for migrating from other bug-tracking
systems - Bugzilla::Migrate [https://www.bugzilla.org/docs/5.0/en/html/integrating/api/Bugzilla/Migrate.html].
It provides the infrastructure you will need,
but requires a module to be written to define the specifics of the system you
are coming from. One exists for
Gnats [https://www.gnu.org/software/gnats/]. If you write one for a
popular system, please share your code with us.

Alternatively, Bugzilla comes with a script, importxml.pl, which
imports bugs in Bugzilla’s XML format. You can see examples of this format
by clicking the XML link at the bottom of a bug in a running
Bugzilla. You would need to read the script to see how it handles errors,
default values, creating non-existing values and so on.

Bugzilla::Migrate is preferred if possible.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.10. Moving Bugzilla Between Machines

Sometimes it’s necessary to take a working installation of Bugzilla and move
it to new hardware. This page explains how to do that, assuming that you
have Bugzilla’s webserver and database on the same machine, and you are moving
both of them.

You are advised to install the same version of Bugzilla on the new
machine as the old machine - any upgrade you also need to
do can then be done as a separate step. But if you do install a newer version,
things should still work.

	Shut down your Bugzilla by loading the front page, going to
Administration | Parameters | General
and putting some explanatory text into the shutdownhtml parameter.

	Make a backup of the bugs database.

	On your new machine, install Bugzilla using the instructions at
Installation and Maintenance Guide. Look at the old machine if you need to know what values
you used for configuring e.g. MySQL.

	Copy the data directory and the localconfig file from the
old Bugzilla installation to the new one.

	If anything about your database configuration changed (location of the
server, username, password, etc.) as part of the move, update the
appropriate variables in localconfig.

	If the new URL to your new Bugzilla installation is different from the old
one, update the urlbase parameter in data/params.json
using a text editor.

	Copy the database backup file from your old server to the new one.

	Create an empty bugs database on the new server. For MySQL, that would
look like this:

mysql -u root -p -e "CREATE DATABASE bugs DEFAULT CHARACTER SET utf8;"

	Import your backup file into your new bugs database. Again, for MySQL:

mysql -u root -p bugs < $BACKUP_FILE_NAME

If you get an error about “packet too large” or “MySQL server has gone
away”, you need to adjust the max_allowed_packet setting in
your my.cnf file (usually /etc/my.cnf) file to match or
exceed the value configured in the same file in your old version of MySQL.

If there are any errors during this step, you have to work out what
went wrong, and then drop the database, create it again using the step
above, and run the import again.

	Run checksetup.pl to make sure all is OK.
(Unless you are using a newer version of Bugzilla on your new server, this
should not make any changes.)

./checksetup.pl

	Activate your new Bugzilla by loading the front page on the new server,
going to Administration | Parameters |
General and removing the text from the shutdownhtml
parameter.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11. Upgrading

You can upgrade Bugzilla from any version to any later version in one go -
there is no need to pass through intermediate versions unless you are changing
the method by which you obtain the code along the way.

Warning

Upgrading is a one-way process. You cannot “downgrade” an
upgraded Bugzilla. If you wish to revert to the old Bugzilla
version for any reason, you will have to restore your system
from a backup. Those with critical data or large installations may wish
to test the upgrade on a development server first, using a copy of the
production data and configuration.

Bugzilla uses the Git version control system to store its code. A modern
Bugzilla installation consists of a checkout of a stable version of the code
from our Git repository. This makes upgrading much easier. If this is
already true of your installation, see Upgrading with Git.

Before Git, we used to use Bazaar and, before that, CVS. If your installation
of Bugzilla consists of a checkout from one of those two systems, you need to
upgrade in three steps:

	Upgrade to the latest point release of your current Bugzilla version.

	Move to Git while staying on exactly the same release.

	Upgrade to the latest Bugzilla using the instructions for Upgrading with Git.

See Migrating from Bazaar or Migrating from CVS as appropriate.

Some Bugzillas were installed simply by downloading a copy of the code as
an archive file (“tarball”). However, recent tarballs have included source
code management system information, so you may be able to use the Git, Bzr
or CVS instructions.

If you aren’t sure which of these categories you fall into, to find out which
version control system your copy of Bugzilla recognizes, look for the
following subdirectories in your root Bugzilla directory:

	.git: you installed using Git - follow Upgrading with Git.

	.bzr: you installed using Bazaar - follow Migrating from Bazaar.

	CVS: you installed using CVS - follow Migrating from CVS.

	None of the above: you installed using an old tarball - follow
Migrating from a Tarball.

It is also possible, particularly if your server machine does not have and
cannot be configured to have access to the public internet, to upgrade using
a tarball. See Upgrading with a Tarball.

Whichever path you use, you may need help with
Upgrading a Customized or Extended Bugzilla.

	3.11.1. Upgrading with Git

	3.11.2. Migrating from Bazaar

	3.11.3. Migrating from CVS

	3.11.4. Migrating from a Tarball

	3.11.5. Upgrading with a Tarball

	3.11.6. Upgrading a Customized or Extended Bugzilla

Bugzilla can automatically notify administrators when new releases are
available if the upgrade_notification parameter is set.
Administrators will see these notifications when they access the Bugzilla home
page. Bugzilla will check once per day for new releases. If you are behind a
proxy, you may have to set the proxy_url parameter accordingly. If
the proxy requires authentication, use the
http://user:pass@proxy_url/ syntax.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11.1. Upgrading with Git

Upgrading to new Bugzilla releases is very simple, and you can upgrade
from any version to any later version in one go - there is no need for
intermediate steps. There is a script named checksetup.pl included
with Bugzilla that will automatically do all of the database migration
for you.

Bugzilla is now hosted on Github, but we used to be hosted on git.mozilla.org.
If you got the code from git.mozilla.org, you need to point your
checkout at Github instead. To find out, run:

git remote -v

If you see “git.mozilla.org” anywhere in the output, then run:

git remote set-url origin https://github.com/bugzilla/bugzilla

This change will only ever need to be done once.

3.11.1.1. Before You Upgrade

Before you start your upgrade, there are a few important
steps to take:

	Read the
Release Notes [http://www.bugzilla.org/releases/] of the version you’re
upgrading to and all intermediate versions, particularly the “Notes for
Upgraders” sections, if present. They may make you aware of additional
considerations.

	Run the Sanity Check on your installation. Attempt to fix all
warnings that the page produces before you start, or it’s
possible that you may experience problems during your upgrade.

	Work out how to back up your Bugzilla entirely, and
how to restore from a backup if need be.

Customized Bugzilla?

If you have modified the code or templates of your Bugzilla,
then upgrading requires a bit more thought and effort than the simple process
below. See Choosing a Customization Method for a discussion of the various methods of
code customization that may have been used.

The larger the jump you are trying to make, the more difficult it
is going to be to upgrade if you have made local code customizations.
Upgrading from 4.2 to 4.2.1 should be fairly painless even if
you are heavily customized, but going from 2.18 to 4.2 is going
to mean a fair bit of work re-writing your local changes to use
the new files, logic, templates, etc. If you have done no local
changes at all, however, then upgrading should be approximately
the same amount of work regardless of how long it has been since
your version was released.

If you have made customizations, you should do the upgrade on a test system
with the same configuration and make sure all your customizations still work.
If not, port and test them so you have them ready to reapply once you do
the upgrade for real.

You can see if you have local code customizations using:

git diff

If that comes up empty, then run:

git log | head

and see if the last commit looks like one made by the Bugzilla team, or
by you. If it looks like it was made by us, then you have made no local
code customizations.

3.11.1.2. Starting the Upgrade

When you are ready to go:

	Shut down your Bugzilla installation by putting some explanatory text
in the shutdownhtml parameter.

	Make all necessary backups.
THIS IS VERY IMPORTANT. If anything goes wrong during the upgrade,
having a backup allows you to roll back to a known good state.

3.11.1.3. Getting The New Bugzilla

In the commands below, $BUGZILLA_HOME represents the directory
in which Bugzilla is installed. Assuming you followed the installation
instructions and your Bugzilla is a checkout of a stable branch,
you can get the latest point release of your current version by simply doing:

cd $BUGZILLA_HOME

git pull

If you want to upgrade to a newer release of Bugzilla, then you will
additionally need to do:

git checkout release-X.X-stable

where “X.X” is the 2-digit version number of the stable version you want to
upgrade to (e.g. “4.4”).

Note

Do not attempt to downgrade Bugzilla this way - it won’t work.

If you have local code customizations, git will attempt to merge them. If
it fails, then you should implement the plan you came up with when you
detected these customizations in the step above, before you started the
upgrade.

3.11.1.4. Upgrading the Database

Run checksetup.pl. This will do everything required to convert
your existing database and settings to the new version.

cd $BUGZILLA_HOME

./checksetup.pl

Warning

For some upgrades, running checksetup.pl on a large
installation (75,000 or more bugs) can take a long time,
possibly several hours, if e.g. indexes need to be rebuilt. If this
length of downtime would be a problem for you, you can determine
timings for your particular situation by doing a test upgrade on a
development server with the production data.

checksetup.pl may also tell you that you need some additional
Perl modules, or newer versions of the ones you have. You will need to
install these, either system-wide or using the install-module.pl
script that checksetup.pl recommends.

3.11.1.5. Finishing The Upgrade

	Reactivate Bugzilla by clear the text that you put into the
shutdownhtml parameter.

	Run another Sanity Check on your
upgraded Bugzilla. It is recommended that you fix any problems
you see immediately. Failure to do this may mean that Bugzilla
may not work entirely correctly.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11.2. Migrating from Bazaar

The procedure to migrate to Git is as follows. The idea is to switch version
control systems without changing the version of Bugzilla you are using,
to minimise the risk of conflict or problems. Any upgrade can then
happen as a separate step.

The old bzr.mozilla.org server has been decommissioned. This may not
be a problem but, in some cases, running some of the commands below will
make bzr attempt to contact the server and time out. If and
only if that happens to you, you will need to switch to the new server,
as follows. Enter your Bugzilla directory and run:

bzr info

and look at the Location: section of the output.
If it says “light checkout root” then run:

bzr -Ossl.cert_reqs=none switch https://bzr.bugzilla.org/bugzilla/$VERSION

Alternatively, if it says “branch root” or “checkout root” then run:

bzr -Ossl.cert_reqs=none pull --remember https://bzr.bugzilla.org/bugzilla/$VERSION

Replace $VERSION with the two-digit version number of your current
Bugzilla, e.g. “4.2” (see below for how to find that).

3.11.2.1. Download Code from Git

First, you need to find what version of Bugzilla you are using. It should be
in the top right corner of the front page but, if not, open the file
Bugzilla/Constants.pm in your Bugzilla directory and search for
BUGZILLA_VERSION.

Then, you need to download an additional copy of your current version of
Bugzilla from the git repository, and place it in a separate directory
alongside your existing Bugzilla installation (which we will assume is in a
directory called bugzilla).

To do this, you will need a copy of the git program. All Linux
distributions have it; search your package manager for “git”. On Windows or
Mac OS X, you can
download the official build [http://www.git-scm.com/downloads].

Once git is installed, run these commands to pull a copy of Bugzilla:

git clone https://github.com/bugzilla/bugzilla bugzilla-new

cd bugzilla-new

git checkout release-$VERSION

Replace $VERSION with the three-digit version number of your current Bugzilla,
e.g. “4.2.2”. (If the the final digit would have been a 0, omit it - so use
“4.4” for the first release in the 4.4 series.)

You will get a message about a ‘detached HEAD’. Don’t worry; your head is
still firmly attached to your shoulders.

3.11.2.2. Save Any Local Customizations

Go into your original Bugzilla directory and run this command:

bzr diff > patch.diff

If you have made customizations to your Bugzilla, and you made them by
changing the Bugzilla code itself (rather than using the Extension system),
then patch.diff will have significant content. You will want to keep a copy
of those changes by keeping a copy of this file and any files referenced in it
by “Only in” lines. If the file has zero size or only insignificant content,
you haven’t made any local customizations of this sort.

3.11.2.3. Shut Down Bugzilla

At this point, you should shut down Bugzilla to make sure nothing changes
while you make the switch. Go into the administrative interface and put an
appropriate message into the shutdownhtml parameter, which is in the
“General” section of the administration parameters. As the name implies, HTML
is allowed.

This would be a good time to make Backups. We shouldn’t be affecting
the database, but you can’t be too careful.

3.11.2.4. Copy Across Data and Modules

Copy the contents of the following directories from your current installation
of Bugzilla into the corresponding directory in bugzilla-new/:

lib/
data/
template/en/custom (may or may not exist)

You also need to copy any extensions you have written or installed, which are
in the extensions/ directory. The command bzr status extensions/ should help you work out what you added, if anything.

Lastly, copy the following file from your current installation of Bugzilla
into the corresponding place in bugzilla-new/:

localconfig

This file contains your database password and access details. Because your
two versions of Bugzilla are the same, this should all work fine.

3.11.2.5. Reapply Local Customizations

If your patch.diff file was zero sized, you can
jump to the next step. Otherwise, you have to apply the patch to your new
installation. If you are on Windows and you don’t have the patch
program, you can download it from
GNUWin [http://gnuwin32.sourceforge.net/packages/patch.htm]. Once
downloaded, you must copy patch.exe into the Windows directory.

Copy patch.diff into the bugzilla-new directory and then do:

patch -p0 --dry-run < patch.diff

The patch should apply cleanly because you have exactly the same version of
Bugzilla in both directories. If it does, remove the --dry-run and
rerun the command to apply it for real. If it does not apply cleanly, it is
likely that you have managed to get a Bugzilla version mismatch between the
two directories.

3.11.2.6. Swap The New Version In

Now we swap the directories over, and run checksetup.pl to confirm that all
is well. From the directory containing the bugzilla and
bugzilla-new directories, run:

mv bugzilla bugzilla-old

mv bugzilla-new bugzilla

cd bugzilla

./checksetup.pl

Running checksetup.pl should not result in any changes to your database at
the end of the run. If it does, then it’s most likely that the two versions
of Bugzilla you have are not, in fact, the same.

3.11.2.7. Re-enable Bugzilla

Go into the administrative interface and clear the contents of the
shutdownhtml parameter.

3.11.2.8. Test Bugzilla

Use your Bugzilla for several days to check that the switch has had no
detrimental effects. Then, if necessary, follow the instructions in
Upgrading with Git to upgrade to the latest version of Bugzilla.

3.11.2.9. Rolling Back

If something goes wrong at any stage of the switching process (e.g. your
patch doesn’t apply, or checksetup doesn’t complete), you can always just
switch the directories back (if you’ve got that far) and re-enable Bugzilla
(if you disabled it) and then seek help. Even if you have re-enabled Bugzilla,
and find a problem a little while down the road, you are still using the same
version so there would be few side effects to switching the directories back
a day or three later.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11.3. Migrating from CVS

The procedure to migrate to Git is as follows. The idea is to switch version
control systems without changing the version of Bugzilla you are using,
to minimise the risk of conflict or problems. Any upgrade can then
happen as a separate step.

3.11.3.1. Download Code from Git

First, you need to find what version of Bugzilla you are using. It should be
in the top right corner of the front page but, if not, open the file
Bugzilla/Constants.pm in your Bugzilla directory and search for
BUGZILLA_VERSION.

Then, you need to download an additional copy of your current version of
Bugzilla from the git repository, and place it in a separate directory
alongside your existing Bugzilla installation (which we will assume is in a
directory called bugzilla).

To do this, you will need a copy of the git program. All Linux
distributions have it; search your package manager for “git”. On Windows or
Mac OS X, you can
download the official build [http://www.git-scm.com/downloads].

Once git is installed, run these commands to pull a copy of Bugzilla:

git clone https://github.com/bugzilla/bugzilla bugzilla-new

cd bugzilla-new

git checkout release-$VERSION

Replace $VERSION with the three-digit version number of your current Bugzilla,
e.g. “4.2.2”. (If the the final digit would have been a 0, omit it - so use
“4.4” for the first release in the 4.4 series.)

You will get a message about a ‘detached HEAD’. Don’t worry; your head is
still firmly attached to your shoulders.

3.11.3.2. Save Any Local Customizations

Go into your original Bugzilla directory and run this command:

cvs diff -puN > patch.diff

If you have made customizations to your Bugzilla, and you made them by
changing the Bugzilla code itself (rather than using the Extension system),
then patch.diff will have significant content. You will want to keep a copy
of those changes by keeping a copy of this file and any files referenced in it
by “Only in” lines. If the file has zero size or only insignificant content,
you haven’t made any local customizations of this sort.

3.11.3.3. Shut Down Bugzilla

At this point, you should shut down Bugzilla to make sure nothing changes
while you make the switch. Go into the administrative interface and put an
appropriate message into the shutdownhtml parameter, which is in the
“General” section of the administration parameters. As the name implies, HTML
is allowed.

This would be a good time to make Backups. We shouldn’t be affecting
the database, but you can’t be too careful.

3.11.3.4. Copy Across Data and Modules

Copy the contents of the following directories from your current installation
of Bugzilla into the corresponding directory in bugzilla-new/:

lib/
data/
template/en/custom (may or may not exist)

You also need to copy any extensions you have written or installed, which are
in the extensions/ directory. The command cvs status extensions/ should help you work out what you added, if anything.

Lastly, copy the following file from your current installation of Bugzilla
into the corresponding place in bugzilla-new/:

localconfig

This file contains your database password and access details. Because your
two versions of Bugzilla are the same, this should all work fine.

3.11.3.5. Reapply Local Customizations

If your patch.diff file was zero sized, you can
jump to the next step. Otherwise, you have to apply the patch to your new
installation. If you are on Windows and you don’t have the patch
program, you can download it from
GNUWin [http://gnuwin32.sourceforge.net/packages/patch.htm]. Once
downloaded, you must copy patch.exe into the Windows directory.

Copy patch.diff into the bugzilla-new directory and then do:

patch -p0 --dry-run < patch.diff

The patch should apply cleanly because you have exactly the same version of
Bugzilla in both directories. If it does, remove the --dry-run and
rerun the command to apply it for real. If it does not apply cleanly, it is
likely that you have managed to get a Bugzilla version mismatch between the
two directories.

3.11.3.6. Swap The New Version In

Now we swap the directories over, and run checksetup.pl to confirm that all
is well. From the directory containing the bugzilla and
bugzilla-new directories, run:

mv bugzilla bugzilla-old

mv bugzilla-new bugzilla

cd bugzilla

./checksetup.pl

Running checksetup.pl should not result in any changes to your database at
the end of the run. If it does, then it’s most likely that the two versions
of Bugzilla you have are not, in fact, the same.

3.11.3.7. Re-enable Bugzilla

Go into the administrative interface and clear the contents of the
shutdownhtml parameter.

3.11.3.8. Test Bugzilla

Use your Bugzilla for several days to check that the switch has had no
detrimental effects. Then, if necessary, follow the instructions in
Upgrading with Git to upgrade to the latest version of Bugzilla.

3.11.3.9. Rolling Back

If something goes wrong at any stage of the switching process (e.g. your
patch doesn’t apply, or checksetup doesn’t complete), you can always just
switch the directories back (if you’ve got that far) and re-enable Bugzilla
(if you disabled it) and then seek help. Even if you have re-enabled Bugzilla,
and find a problem a little while down the road, you are still using the same
version so there would be few side effects to switching the directories back
a day or three later.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11.4. Migrating from a Tarball

The procedure to migrate to Git is as follows. The idea is to switch without
changing the version of Bugzilla you are using, to minimise the risk of
conflict or problems. Any upgrade can then happen as a separate step.

3.11.4.1. Download Code from Git

First, you need to find what version of Bugzilla you are using. It should be
in the top right corner of the front page but, if not, open the file
Bugzilla/Constants.pm in your Bugzilla directory and search for
BUGZILLA_VERSION.

Then, you need to download an additional copy of your current version of
Bugzilla from the git repository, and place it in a separate directory
alongside your existing Bugzilla installation (which we will assume is in a
directory called bugzilla).

To do this, you will need a copy of the git program. All Linux
distributions have it; search your package manager for “git”. On Windows or
Mac OS X, you can
download the official build [http://www.git-scm.com/downloads].

Once git is installed, run these commands to pull a copy of Bugzilla:

git clone https://github.com/bugzilla/bugzilla bugzilla-new

cd bugzilla-new

git checkout release-$VERSION

Replace $VERSION with the three-digit version number of your current Bugzilla,
e.g. “4.2.2”. (If the the final digit would have been a 0, omit it - so use
“4.4” for the first release in the 4.4 series.)

You will get a message about a ‘detached HEAD’. Don’t worry; your head is
still firmly attached to your shoulders.

3.11.4.2. Save Any Local Customizations

Go into your original Bugzilla directory and run this command:

diff -ru -x data -x lib -x docs -x .git -x CVS -x .cvsignore -x .bzr -x .bzrignore -x .bzrrev ../bugzilla-new . > ../patch.diff

If you have made customizations to your Bugzilla, and you made them by
changing the Bugzilla code itself (rather than using the Extension system),
then patch.diff will have significant content. You will want to keep a copy
of those changes by keeping a copy of this file and any files referenced in it
by “Only in” lines. If the file has zero size or only insignificant content,
you haven’t made any local customizations of this sort.

3.11.4.3. Shut Down Bugzilla

At this point, you should shut down Bugzilla to make sure nothing changes
while you make the switch. Go into the administrative interface and put an
appropriate message into the shutdownhtml parameter, which is in the
“General” section of the administration parameters. As the name implies, HTML
is allowed.

This would be a good time to make Backups. We shouldn’t be affecting
the database, but you can’t be too careful.

3.11.4.4. Copy Across Data and Modules

Copy the contents of the following directories from your current installation
of Bugzilla into the corresponding directory in bugzilla-new/:

lib/
data/
template/en/custom (may or may not exist)

You also need to copy any extensions you have written or installed, which are
in the extensions/ directory. Copy across any subdirectories which do not exist
in your new install.

Lastly, copy the following file from your current installation of Bugzilla
into the corresponding place in bugzilla-new/:

localconfig

This file contains your database password and access details. Because your
two versions of Bugzilla are the same, this should all work fine.

3.11.4.5. Reapply Local Customizations

If your patch.diff file was zero sized, you can
jump to the next step. Otherwise, you have to apply the patch to your new
installation. If you are on Windows and you don’t have the patch
program, you can download it from
GNUWin [http://gnuwin32.sourceforge.net/packages/patch.htm]. Once
downloaded, you must copy patch.exe into the Windows directory.

Copy patch.diff into the bugzilla-new directory and then do:

patch -p0 --dry-run < patch.diff

The patch should apply cleanly because you have exactly the same version of
Bugzilla in both directories. If it does, remove the --dry-run and
rerun the command to apply it for real. If it does not apply cleanly, it is
likely that you have managed to get a Bugzilla version mismatch between the
two directories.

3.11.4.6. Swap The New Version In

Now we swap the directories over, and run checksetup.pl to confirm that all
is well. From the directory containing the bugzilla and
bugzilla-new directories, run:

mv bugzilla bugzilla-old

mv bugzilla-new bugzilla

cd bugzilla

./checksetup.pl

Running checksetup.pl should not result in any changes to your database at
the end of the run. If it does, then it’s most likely that the two versions
of Bugzilla you have are not, in fact, the same.

3.11.4.7. Re-enable Bugzilla

Go into the administrative interface and clear the contents of the
shutdownhtml parameter.

3.11.4.8. Test Bugzilla

Use your Bugzilla for several days to check that the switch has had no
detrimental effects. Then, if necessary, follow the instructions in
Upgrading with Git to upgrade to the latest version of Bugzilla.

3.11.4.9. Rolling Back

If something goes wrong at any stage of the switching process (e.g. your
patch doesn’t apply, or checksetup doesn’t complete), you can always just
switch the directories back (if you’ve got that far) and re-enable Bugzilla
(if you disabled it) and then seek help. Even if you have re-enabled Bugzilla,
and find a problem a little while down the road, you are still using the same
version so there would be few side effects to switching the directories back
a day or three later.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11.5. Upgrading with a Tarball

If you are unable (or unwilling) to use Git, another option is to obtain a
tarball of the latest version from our website and upgrade your Bugzilla
installation using that.

Without a source code management system to help you, the process may be
trickier.

3.11.5.1. Before You Upgrade

Before you start your upgrade, there are a few important
steps to take:

	Read the
Release Notes [http://www.bugzilla.org/releases/] of the version you’re
upgrading to and all intermediate versions, particularly the “Notes for
Upgraders” sections, if present. They may make you aware of additional
considerations.

	Run the Sanity Check on your installation. Attempt to fix all
warnings that the page produces before you start, or it’s
possible that you may experience problems during your upgrade.

	Work out how to back up your Bugzilla entirely, and
how to restore from a backup if need be.

Customized Bugzilla?

If you have modified the code or templates of your Bugzilla,
then upgrading requires a bit more thought and effort than the simple process
below. See Choosing a Customization Method for a discussion of the various methods of
code customization that may have been used.

The larger the jump you are trying to make, the more difficult it
is going to be to upgrade if you have made local code customizations.
Upgrading from 4.2 to 4.2.1 should be fairly painless even if
you are heavily customized, but going from 2.18 to 4.2 is going
to mean a fair bit of work re-writing your local changes to use
the new files, logic, templates, etc. If you have done no local
changes at all, however, then upgrading should be approximately
the same amount of work regardless of how long it has been since
your version was released.

If you have made customizations, you should do the upgrade on a test system
with the same configuration and make sure all your customizations still work.
If not, port and test them so you have them ready to reapply once you do
the upgrade for real.

As you are using a tarball and not an SCM, it’s not at all easy to see if
you’ve made local code customizations. You may have to use institutional
knowledge, or download a fresh copy of your current version of Bugzilla
and compare the two directories. If you find that you have, you’ll need
to turn them into a patch file, perhaps by diffing the two directories,
and then reapply that patch file later. If you are customizing Bugzilla
locally, please consider
rebasing your install on top of git.

3.11.5.2. Getting The New Bugzilla

Download a copy of the latest version of Bugzilla from the
Download Page [http://www.bugzilla.org/download/] into a separate
directory (which we will call bugzilla-new) alongside your existing
Bugzilla installation (which we will assume is in a directory called
bugzilla).

3.11.5.3. Copy Across Data and Modules

Copy the contents of the following directories from your current installation
of Bugzilla into the corresponding directory in bugzilla-new/:

lib/
data/
template/en/custom (may or may not exist)

You also need to copy any extensions you have written or installed, which are
in the extensions/ directory. Bugzilla ships with some extensions,
so again if you want to know if any of the installed extensions are yours,
you may have to compare with a clean copy of your current version. You can
disregard any which have a disabled file - those are not enabled.

Lastly, copy the following file from your current installation of Bugzilla
into the corresponding place in bugzilla-new/:

localconfig

This file contains your database password and access details.

3.11.5.4. Swap The New Version In

Now we swap the directories over. From the directory containing the
bugzilla and bugzilla-new directories, run:

mv bugzilla bugzilla-old

mv bugzilla-new bugzilla

cd bugzilla

3.11.5.5. Upgrading the Database

Run checksetup.pl. This will do everything required to convert
your existing database and settings to the new version.

cd $BUGZILLA_HOME

./checksetup.pl

Warning

For some upgrades, running checksetup.pl on a large
installation (75,000 or more bugs) can take a long time,
possibly several hours, if e.g. indexes need to be rebuilt. If this
length of downtime would be a problem for you, you can determine
timings for your particular situation by doing a test upgrade on a
development server with the production data.

checksetup.pl may also tell you that you need some additional
Perl modules, or newer versions of the ones you have. You will need to
install these, either system-wide or using the install-module.pl
script that checksetup.pl recommends.

3.11.5.6. Finishing The Upgrade

	Reactivate Bugzilla by clear the text that you put into the
shutdownhtml parameter.

	Run another Sanity Check on your
upgraded Bugzilla. It is recommended that you fix any problems
you see immediately. Failure to do this may mean that Bugzilla
may not work entirely correctly.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.11.6. Upgrading a Customized or Extended Bugzilla

If your Bugzilla has been customized or uses extensions, you will need to
make your customizations or extensions work with your new version of Bugzilla.
If this is the case, you are particularly strongly recommended to do a test
upgrade on a test system and use that to help you port forward your
customizations.

If your extension came from a third party, look to see if an updated version
is available for the version of Bugzilla you are upgrading to. If not, and
you want to continue using it, you’ll need to port it forward yourself.

If you are upgrading from a version of Bugzilla earlier than 3.6 and have
extensions for which a newer version is not available from an upstream source,
then you need to convert them. This is because the extension format changed
in version 3.6. There is a file called extension-convert.pl in the
contrib directory which may be able to help you with that.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.12. Backups

3.12.1. Database

Here are some sample commands you could use to backup
your database, depending on what database system you’re
using. You may have to modify these commands for your
particular setup. Replace the $VARIABLEs with appropriate values for your
setup.

3.12.1.1. MySQL

mysqldump --max-allowed-packet=32M -u $USERNAME -p $DATABASENAME > backup.sql

The value for max-allowed-packet should be the value you’ve set in
your MySQL configuration file, and should be larger than the
largest attachment in your database. See the
mysqldump documentation [http://dev.mysql.com/doc/mysql/en/mysqldump.html]
for more information on mysqldump.

3.12.1.2. PostgreSQL

pg_dump --no-privileges --no-owner -h localhost -U $USERNAME > bugs.sql

3.12.2. Bugzilla

The Bugzilla directory contains some data files and configuration files which
you would want to retain. A simple recursive copy will do the job here.

cp -rp $BUGZILLA_HOME /var/backups/bugzilla

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.13. Sanity Check

Over time it is possible for the Bugzilla database to become corrupt
or to have anomalies. This could happen through manual database
administration outside of the Bugzilla user interface, or from some
other unexpected event. Bugzilla includes a “Sanity Check” that
can perform several basic database checks, and repair certain problems or
inconsistencies.

To run a Sanity Check, log in as an Administrator and click the
Sanity Check link in the admin page. Any problems that are found
will be displayed in red letters. If the script is capable of fixing a
problem, it will present a link to initiate the fix. If the script cannot
fix the problem it will require manual database administration or recovery.

Sanity Check can also be run from the command line via the perl
script sanitycheck.pl. The script can also be run as
a cron job. Results will be delivered by email to an address
specified on the command line.

Sanity Check should be run on a regular basis as a matter of
best practice.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.14. Merging Accounts

Sometimes, users create a second account, perhaps because they don’t realise
they can change the email address associated with their original account.
And then, once they discover this, they don’t want to abandon the history
associated with either account.

The best way forward in this case would be to merge one of their accounts
into the other one, so it looked like the target account had done all the
actions of both. In Bugzilla’s contrib directory, there is a script
called merge-users.pl. While code in this directory is not officially
supported by the Bugzilla team, this script may be useful to you in
solving the above problem.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

3.15. One Installation, Multiple Instances

This is a somewhat specialist feature; if you don’t know whether you need it,
you don’t. It is useful to admins who want to run many separate instances of
Bugzilla from a single installed codebase.

This is possible by using the PROJECT environment variable. When accessed,
Bugzilla checks for the existence of this variable, and if present, uses
its value to check for an alternative configuration file named
localconfig.<PROJECT> in the same location as
the default one (localconfig). It also checks for
customized templates in a directory named
<PROJECT> in the same location as the
default one (template/<langcode>). By default
this is template/en/default so PROJECT’s templates
would be located at template/en/PROJECT.

To set up an alternate installation, just export PROJECT=foo before
running checksetup.pl for the first time. It will
result in a file called localconfig.foo instead of
localconfig. Edit this file as described above, with
reference to a new database, and re-run checksetup.pl
to populate it. That’s all.

Now you have to configure the web server to pass this environment
variable when accessed via an alternate URL, such as virtual host for
instance. The following is an example of how you could do it in Apache,
other Webservers may differ.

<VirtualHost 12.34.56.78:80>
 ServerName bugzilla.example.com
 SetEnv PROJECT foo
</VirtualHost>

Don’t forget to also export this variable before accessing Bugzilla
by other means, such as repeating tasks like those above.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4. Administration Guide

For those with admin privileges, Bugzilla can be administered using
the Administration link in the header. The administrative
controls are divided into several sections:

	4.1. Parameters
	4.1.1. Required Settings

	4.1.2. General

	4.1.3. Administrative Policies

	4.1.4. User Authentication

	4.1.5. Attachments

	4.1.6. Bug Change Policies

	4.1.7. Bug Fields

	4.1.8. Graphs

	4.1.9. Group Security

	4.1.10. LDAP

	4.1.11. RADIUS

	4.1.12. Email

	4.1.13. Query Defaults

	4.1.14. Shadow Database

	4.1.15. Memcached

	4.1.16. User Matching

	4.1.17. Advanced

	4.2. Default Preferences

	4.3. Users
	4.3.1. Creating Admin Users

	4.3.2. Searching For Users

	4.3.3. Modifying Users

	4.3.4. Creating New Users

	4.3.5. Deleting Users

	4.3.6. Impersonating Users

	4.4. Classifications, Products, Components, Versions, and Milestones
	4.4.1. Classifications

	4.4.2. Products

	4.4.3. Components

	4.4.4. Versions

	4.4.5. Milestones

	4.5. Flags
	4.5.1. Flag Properties

	4.5.2. Deleting a Flag

	4.6. Custom Fields
	4.6.1. Adding Custom Fields

	4.6.2. Editing Custom Fields

	4.6.3. Deleting Custom Fields

	4.7. Field Values
	4.7.1. Viewing/Editing Legal Values

	4.7.2. Deleting Legal Values

	4.8. Workflow

	4.9. Groups and Security
	4.9.1. Creating Groups

	4.9.2. Editing Groups and Assigning Group Permissions

	4.9.3. Assigning Users to Groups

	4.9.4. Assigning Group Controls to Products

	4.10. Keywords

	4.11. Whining
	4.11.1. The Event

	4.11.2. Whining Schedule

	4.11.3. Whining Searches

	4.11.4. Saving Your Changes

	4.12. Quips

	4.13. Installed Extensions

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.1. Parameters

Bugzilla is configured by changing various parameters, accessed
from the Parameters link, which is found on the Administration
page. The parameters are divided into several categories,
accessed via the menu on the left.

4.1.1. Required Settings

The core required parameters for any Bugzilla installation are set
here. urlbase is always required; the other parameters should be
set, or it must be explicitly decided not to
set them, before the new Bugzilla installation starts to be used.

	urlbase

	Defines the fully qualified domain name and web
server path to this Bugzilla installation.
For example, if the Bugzilla query page is
http://www.foo.com/bugzilla/query.cgi,
the urlbase should be set
to http://www.foo.com/bugzilla/.

	ssl_redirect

	If enabled, Bugzilla will force HTTPS (SSL) connections, by
automatically redirecting any users who try to use a non-SSL
connection. Also, when this is enabled, Bugzilla will send out links
using sslbase in emails instead of urlbase.

	sslbase

	Defines the fully qualified domain name and web
server path for HTTPS (SSL) connections to this Bugzilla installation.
For example, if the Bugzilla main page is
https://www.foo.com/bugzilla/index.cgi,
the sslbase should be set
to https://www.foo.com/bugzilla/.

	cookiepath

	Defines a path, relative to the web document root, that Bugzilla
cookies will be restricted to. For example, if the
urlbase is set to
http://www.foo.com/bugzilla/, the
cookiepath should be set to
/bugzilla/. Setting it to / will allow all sites
served by this web server or virtual host to read Bugzilla cookies.

4.1.2. General

	maintainer

	Email address of the person
responsible for maintaining this Bugzilla installation.
The address need not be that of a valid Bugzilla account.

	utf8

	Use UTF-8 (Unicode) encoding for all text in Bugzilla. Installations where
this parameter is set to off should set it to on only
after the data has been converted from existing legacy character
encodings to UTF-8, using the
contrib/recode.pl script.

Note

If you turn this parameter from off to on,
you must re-run checksetup.pl immediately afterward.

	shutdownhtml

	If there is any text in this field, this Bugzilla installation will
be completely disabled and this text will appear instead of all
Bugzilla pages for all users, including Admins. Used in the event
of site maintenance or outage situations.

	announcehtml

	Any text in this field will be displayed at the top of every HTML
page in this Bugzilla installation. The text is not wrapped in any
tags. For best results, wrap the text in a <div>
tag. Any style attributes from the CSS can be applied. For example,
to make the text green inside of a red box, add id=message
to the <div> tag.

	upgrade_notification

	Enable or disable a notification on the homepage of this Bugzilla
installation when a newer version of Bugzilla is available. This
notification is only visible to administrators. Choose disabled
to turn off the notification. Otherwise, choose which version of
Bugzilla you want to be notified about: development_snapshot is the
latest release from the master branch, latest_stable_release is the most
recent release available on the most recent stable branch, and
stable_branch_release is the most recent release on the branch
this installation is based on.

4.1.3. Administrative Policies

This page contains parameters for basic administrative functions.
Options include whether to allow the deletion of bugs and users,
and whether to allow users to change their email address.

	allowbugdeletion

	The pages to edit products and components can delete all associated bugs when you delete a product (or component). Since that is a pretty scary idea, you have to turn on this option before any such deletions will ever happen.

	allowemailchange

	Users can change their own email address through the preferences. Note that the change is validated by emailing both addresses, so switching this option on will not let users use an invalid address.

	allowuserdeletion

	The user editing pages are capable of letting you delete user accounts. Bugzilla will issue a warning in case you’d run into inconsistencies when you’re about to do so, but such deletions still remain scary. So, you have to turn on this option before any such deletions will ever happen.

	last_visit_keep_days

	This option controls how many days Bugzilla will remember that users have visited specific bugs.

4.1.4. User Authentication

This page contains the settings that control how this Bugzilla
installation will do its authentication. Choose what authentication
mechanism to use (the Bugzilla database, or an external source such
as LDAP), and set basic behavioral parameters. For example, choose
whether to require users to login to browse bugs, the management
of authentication cookies, and the regular expression used to
validate email addresses. Some parameters are highlighted below.

	auth_env_id

	Environment variable used by external authentication system to store a unique identifier for each user. Leave it blank if there isn’t one or if this method of authentication is not being used.

	auth_env_email

	Environment variable used by external authentication system to store each user’s email address. This is a required field for environmental authentication. Leave it blank if you are not going to use this feature.

	auth_env_realname

	Environment variable used by external authentication system to store the user’s real name. Leave it blank if there isn’t one or if this method of authentication is not being used.

	user_info_class

	Mechanism(s) to be used for gathering a user’s login information. More than one may be selected. If the first one returns nothing, the second is tried, and so on. The types are:

	CGI: asks for username and password via CGI form interface.

	Env: info for a pre-authenticated user is passed in system environment variables.

	user_verify_class

	Mechanism(s) to be used for verifying (authenticating) information gathered by user_info_class. More than one may be selected. If the first one cannot find the user, the second is tried, and so on. The types are:

	DB: Bugzilla’s built-in authentication. This is the most common choice.

	RADIUS: RADIUS authentication using a RADIUS server. Using this method requires additional parameters to be set. Please see RADIUS for more information.

	LDAP: LDAP authentication using an LDAP server. Using this method requires additional parameters to be set. Please see LDAP for more information.

	rememberlogin

	Controls management of session cookies.

	on - Session cookies never expire (the user has to login only once per browser).

	off - Session cookies last until the users session ends (the user will have to login in each new browser session).

	defaulton/defaultoff - Default behavior as described above, but user can choose whether Bugzilla will remember their login or not.

	requirelogin

	If this option is set, all access to the system beyond the front page will require a login. No anonymous users will be permitted.

	webservice_email_filter

	Filter email addresses returned by the WebService API depending on if the user is logged in or not. This works similarly to how the web UI currently filters email addresses. If requirelogin is enabled, then this parameter has no effect as users must be logged in to use Bugzilla anyway.

	emailregexp

	Defines the regular expression used to validate email addresses
used for login names. The default attempts to match fully
qualified email addresses (i.e. ‘user@example.com’) in a slightly
more restrictive way than what is allowed in RFC 2822.
Another popular value to put here is ^[^@]+, which means ‘local usernames, no @ allowed.’

	emailregexpdesc

	This description is shown to the user to explain which email addresses are allowed by the emailregexp param.

	emailsuffix

	This is a string to append to any email addresses when actually sending mail to that address. It is useful if you have changed the emailregexp param to only allow local usernames, but you want the mail to be delivered to username@my.local.hostname.

	createemailregexp

	This defines the (case-insensitive) regexp to use for email addresses that are permitted to self-register. The default (.*) permits any account matching the emailregexp to be created. If this parameter is left blank, no users will be permitted to create their own accounts and all accounts will have to be created by an administrator.

	password_complexity

	Set the complexity required for passwords. In all cases must the passwords be at least 6 characters long.

	no_constraints - No complexity required.

	mixed_letters - Passwords must contain at least one UPPER and one lower case letter.

	letters_numbers - Passwords must contain at least one UPPER and one lower case letter and a number.

	letters_numbers_specialchars - Passwords must contain at least one letter, a number and a special character.

	password_check_on_login

	If set, Bugzilla will check that the password meets the current complexity rules and minimum length requirements when the user logs into the Bugzilla web interface. If it doesn’t, the user would not be able to log in, and will receive a message to reset their password.

4.1.5. Attachments

This page allows for setting restrictions and other parameters
regarding attachments to bugs. For example, control size limitations
and whether to allow pointing to external files via a URI.

	allow_attachment_display

	If this option is on, users will be able to view attachments from their browser, if their browser supports the attachment’s MIME type. If this option is off, users are forced to download attachments, even if the browser is able to display them.

If you do not trust your users (e.g. if your Bugzilla is public), you should either leave this option off, or configure and set the attachment_base parameter (see below). Untrusted users may upload attachments that could be potentially damaging if viewed directly in the browser.

	attachment_base

	When the allow_attachment_display parameter is on, it is possible for a malicious attachment to steal your cookies or perform an attack on Bugzilla using your credentials.

If you would like additional security on attachments to avoid this, set this parameter to an alternate URL for your Bugzilla that is not the same as urlbase or sslbase. That is, a different domain name that resolves to this exact same Bugzilla installation.

Note that if you have set the cookiedomain parameter, you should set attachment_base to use a domain that would not be matched by cookiedomain.

For added security, you can insert %bugid% into the URL, which will be replaced with the ID of the current bug that the attachment is on, when you access an attachment. This will limit attachments to accessing only other attachments on the same bug. Remember, though, that all those possible domain names (such as 1234.your.domain.com) must point to this same Bugzilla instance. To set this up you need to investigate wildcard DNS.

	allow_attachment_deletion

	If this option is on, administrators will be able to delete the contents
of attachments (i.e. replace the attached file with a 0 byte file),
leaving only the metadata.

	maxattachmentsize

	The maximum size (in kilobytes) of attachments to be stored in the database. If a file larger than this size is attached to a bug, Bugzilla will look at the maxlocalattachment parameter to determine if the file can be stored locally on the web server. If the file size exceeds both limits, then the attachment is rejected. Setting both parameters to 0 will prevent attaching files to bugs.

Some databases have default limits which prevent storing larger attachments in the database. E.g. MySQL has a parameter called max_allowed_packet [http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html], whose default varies by distribution. Setting maxattachmentsize higher than your current setting for this value will produce an error.

	maxlocalattachment

	The maximum size (in megabytes) of attachments to be stored locally on the web server. If set to a value lower than the maxattachmentsize parameter, attachments will never be kept on the local filesystem.

Whether you use this feature or not depends on your environment. Reasons to store some or all attachments as files might include poor database performance for large binary blobs, ease of backup/restore/browsing, or even filesystem-level deduplication support. However, you need to be aware of any limits on how much data your webserver environment can store. If in doubt, leave the value at 0.

Note that changing this value does not affect any already-submitted attachments.

4.1.6. Bug Change Policies

Set policy on default behavior for bug change events. For example,
choose which status to set a bug to when it is marked as a duplicate,
and choose whether to allow bug reporters to set the priority or
target milestone. Also allows for configuration of what changes
should require the user to make a comment, described below.

	duplicate_or_move_bug_status

	When a bug is marked as a duplicate of another one, use this bug status.

	letsubmitterchoosepriority

	If this is on, then people submitting bugs can choose an initial priority for that bug. If off, then all bugs initially have the default priority selected here.

	letsubmitterchoosemilestone

	If this is on, then people submitting bugs can choose the Target Milestone for that bug. If off, then all bugs initially have the default milestone for the product being filed in.

	musthavemilestoneonaccept

	If you are using Target Milestone, do you want to require that the milestone be set in order for a user to set a bug’s status to IN_PROGRESS?

	commenton*

	All these fields allow you to dictate what changes can pass
without comment and which must have a comment from the
person who changed them. Often, administrators will allow
users to add themselves to the CC list, accept bugs, or
change the Status Whiteboard without adding a comment as to
their reasons for the change, yet require that most other
changes come with an explanation.
Set the “commenton” options according to your site policy. It
is a wise idea to require comments when users resolve, reassign, or
reopen bugs at the very least.

Note

It is generally far better to require a developer comment
when resolving bugs than not. Few things are more annoying to bug
database users than having a developer mark a bug “fixed” without
any comment as to what the fix was (or even that it was truly
fixed!)

	noresolveonopenblockers

	This option will prevent users from resolving bugs as FIXED if
they have unresolved dependencies. Only the FIXED resolution
is affected. Users will be still able to resolve bugs to
resolutions other than FIXED if they have unresolved dependent
bugs.

4.1.7. Bug Fields

The parameters in this section determine the default settings of
several Bugzilla fields for new bugs and whether
certain fields are used. For example, choose whether to use the
Target Milestone field or the Status Whiteboard field.

	useclassification

	If this is on, Bugzilla will associate each product with a specific
classification. But you must have editclassification permissions
enabled in order to edit classifications.

	usetargetmilestone

	Do you wish to use the Target Milestone field?

	useqacontact

	This allows you to define an email address for each component,
in addition to that of the default assignee, that will be sent
carbon copies of incoming bugs.

	usestatuswhiteboard

	This defines whether you wish to have a free-form, overwritable field
associated with each bug. The advantage of the Status Whiteboard
is that it can be deleted or modified with ease and provides an
easily searchable field for indexing bugs that have some trait in
common.

	use_see_also

	Do you wish to use the See Also field? It allows you mark bugs
in other bug tracker installations as being related. Disabling this field
prevents addition of new relationships, but existing ones will continue to
appear.

	defaultpriority

	This is the priority that newly entered bugs are set to.

	defaultseverity

	This is the severity that newly entered bugs are set to.

	defaultplatform

	This is the platform that is preselected on the bug entry form.
You can leave this empty; Bugzilla will then use the platform that the
browser is running on as the default.

	defaultopsys

	This is the operating system that is preselected on the bug entry form.
You can leave this empty; Bugzilla will then use the operating system
that the browser reports to be running on as the default.

	collapsed_comment_tags

	A comma-separated list of tags which, when applied to comments, will
cause them to be collapsed by default.

4.1.8. Graphs

Bugzilla can draw graphs of bug-dependency relationships, using a tool called
dot (from the GraphViz project [http://graphviz.org/]) or a web
service called Web Dot. This page allows you to set the location of the binary
or service. If no Web Dot server or binary is specified, then dependency
graphs will be disabled.

	webdotbase

	You may set this parameter to any of the following:

	A complete file path to dot (part of GraphViz), which will
generate the graphs locally.

	A URL prefix pointing to an installation of the Web Dot package, which
will generate the graphs remotely.

	A blank value, which will disable dependency graphing.

The default value is blank. We recommend using a local install of
dot. If you change this value to a web service, make certain that
the Web Dot server can read files from your Web Dot directory. On Apache
you do this by editing the .htaccess file; for other systems the
needed measures may vary. You can run checksetup.pl to
recreate the .htaccess file if it has been lost.

	font_file

	You can specify the full path to a TrueType font file which will be used
to display text (labels, legends, …) in charts and graphical reports.
To support as many languages as possible, we recommend to specify a
TrueType font such as Unifont which supports all printable characters in
the Basic Multilingual Plane. If you leave this parameter empty, a default
font will be used, but its support is limited to English characters only
and so other characters will be displayed incorrectly.

4.1.9. Group Security

Bugzilla allows for the creation of different groups, with the
ability to restrict the visibility of bugs in a group to a set of
specific users. Specific products can also be associated with
groups, and users restricted to only see products in their groups.
Several parameters are described in more detail below. Most of the
configuration of groups and their relationship to products is done
on the Groups and Product pages of the
Administration area.
The options on this page control global default behavior.
For more information on Groups and Group Security, see
Groups and Security.

	makeproductgroups

	Determines whether or not to automatically create groups
when new products are created. If this is on, the groups will be
used for querying bugs.

	chartgroup

	The name of the group of users who can use the ‘New Charts’ feature. Administrators should ensure that the public categories and series definitions do not divulge confidential information before enabling this for an untrusted population. If left blank, no users will be able to use New Charts.

	insidergroup

	The name of the group of users who can see/change private comments and attachments.

	timetrackinggroup

	The name of the group of users who can see/change time tracking information.

	querysharegroup

	The name of the group of users who are allowed to share saved
searches with one another. For more information on using
saved searches, see Saved Searches.

	comment_taggers_group

	The name of the group of users who can tag comments. Setting this to empty disables comment tagging.

	debug_group

	The name of the group of users who can view the actual SQL query generated when viewing bug lists and reports. Do not expose this information to untrusted users.

	usevisibilitygroups

	If selected, user visibility will be restricted to members of
groups, as selected in the group configuration settings.
Each user-defined group can be allowed to see members of selected
other groups.
For details on configuring groups (including the visibility
restrictions) see Editing Groups and Assigning Group Permissions.

	or_groups

	Define the visibility of a bug which is in multiple groups. If
this is on (recommended), a user only needs to be a member of one
of the bug’s groups in order to view it. If it is off, a user
needs to be a member of all the bug’s groups. Note that in either
case, a user’s role on the bug (e.g. reporter), if any, may also
affect their permissions.

4.1.10. LDAP

LDAP authentication is a module for Bugzilla’s plugin
authentication architecture. This page contains all the parameters
necessary to configure Bugzilla for use with LDAP authentication.

The existing authentication
scheme for Bugzilla uses email addresses as the primary user ID and a
password to authenticate that user. All places within Bugzilla that
require a user ID (e.g assigning a bug) use the email
address. The LDAP authentication builds on top of this scheme, rather
than replacing it. The initial log-in is done with a username and
password for the LDAP directory. Bugzilla tries to bind to LDAP using
those credentials and, if successful, tries to map this account to a
Bugzilla account. If an LDAP mail attribute is defined, the value of this
attribute is used; otherwise, the emailsuffix parameter is appended to
the LDAP username to form a full email address. If an account for this address
already exists in the Bugzilla installation, it will log in to that account.
If no account for that email address exists, one is created at the time
of login. (In this case, Bugzilla will attempt to use the “displayName”
or “cn” attribute to determine the user’s full name.) After
authentication, all other user-related tasks are still handled by email
address, not LDAP username. For example, bugs are still assigned by
email address and users are still queried by email address.

Warning

Because the Bugzilla account is not created until the first time
a user logs in, a user who has not yet logged is unknown to Bugzilla.
This means they cannot be used as an assignee or QA contact (default or
otherwise), added to any CC list, or any other such operation. One
possible workaround is the bugzilla_ldapsync.rb
script in the contrib
directory. Another possible solution is fixing bug 201069 [https://bugzilla.mozilla.org/show_bug.cgi?id=201069].

Parameters required to use LDAP Authentication:

	user_verify_class (in the Authentication section)

	If you want to list LDAP here,
make sure to have set up the other parameters listed below.
Unless you have other (working) authentication methods listed as
well, you may otherwise not be able to log back in to Bugzilla once
you log out.
If this happens to you, you will need to manually edit
data/params.json and set user_verify_class to
DB.

	LDAPserver

	This parameter should be set to the name (and optionally the
port) of your LDAP server. If no port is specified, it assumes
the default LDAP port of 389.
For example: ldap.company.com
or ldap.company.com:3268
You can also specify a LDAP URI, so as to use other
protocols, such as LDAPS or LDAPI. If the port was not specified in
the URI, the default is either 389 or 636 for ‘LDAP’ and ‘LDAPS’
schemes respectively.

Note

In order to use SSL with LDAP, specify a URI with “ldaps://”.
This will force the use of SSL over port 636.
For example, normal LDAP ldap://ldap.company.com, LDAP over
SSL ldaps://ldap.company.com, or LDAP over a UNIX
domain socket ldapi://%2fvar%2flib%2fldap_sock.

	LDAPstarttls

	Whether to require encrypted communication once a normal LDAP connection
is achieved with the server.

	LDAPbinddn [Optional]

	Some LDAP servers will not allow an anonymous bind to search
the directory. If this is the case with your configuration you
should set the LDAPbinddn parameter to the user account Bugzilla
should use instead of the anonymous bind.
Ex. cn=default,cn=user:password

	LDAPBaseDN

	The location in
your LDAP tree that you would like to search for email addresses.
Your uids should be unique under the DN specified here.
Ex. ou=People,o=Company

	LDAPuidattribute

	The attribute
which contains the unique UID of your users. The value retrieved
from this attribute will be used when attempting to bind as the
user to confirm their password.
Ex. uid

	LDAPmailattribute

	The name of the
attribute which contains the email address your users will enter
into the Bugzilla login boxes.
Ex. mail

	LDAPfilter

	LDAP filter to AND with the LDAPuidattribute for filtering the list of
valid users.

4.1.11. RADIUS

RADIUS authentication is a module for Bugzilla’s plugin
authentication architecture. This page contains all the parameters
necessary for configuring Bugzilla to use RADIUS authentication.

Note

Most caveats that apply to LDAP authentication apply to RADIUS
authentication as well. See LDAP for details.

Parameters required to use RADIUS Authentication:

	user_verify_class (in the Authentication section)

	If you want to list RADIUS here,
make sure to have set up the other parameters listed below.
Unless you have other (working) authentication methods listed as
well, you may otherwise not be able to log back in to Bugzilla once
you log out.
If this happens to you, you will need to manually edit
data/params.json and set user_verify_class to
DB.

	RADIUS_server

	The name (and optionally the port) of your RADIUS server.

	RADIUS_secret

	The RADIUS server’s secret.

	RADIUS_NAS_IP

	The NAS-IP-Address attribute to be used when exchanging data with your
RADIUS server. If unspecified, 127.0.0.1 will be used.

	RADIUS_email_suffix

	Bugzilla needs an email address for each user account.
Therefore, it needs to determine the email address corresponding
to a RADIUS user.
Bugzilla offers only a simple way to do this: it can concatenate
a suffix to the RADIUS user name to convert it into an email
address.
You can specify this suffix in the RADIUS_email_suffix parameter.
If this simple solution does not work for you, you’ll
probably need to modify
Bugzilla/Auth/Verify/RADIUS.pm to match your
requirements.

4.1.12. Email

This page contains all of the parameters for configuring how
Bugzilla deals with the email notifications it sends. See below
for a summary of important options.

	mail_delivery_method

	This is used to specify how email is sent, or if it is sent at
all. There are several options included for different MTAs,
along with two additional options that disable email sending.
Test does not send mail, but instead saves it in
data/mailer.testfile for later review.
None disables email sending entirely.

	mailfrom

	This is the email address that will appear in the “From” field
of all emails sent by this Bugzilla installation. Some email
servers require mail to be from a valid email address; therefore,
it is recommended to choose a valid email address here.

	use_mailer_queue

	In a large Bugzilla installation, updating bugs can be very slow because Bugzilla sends all email at once. If you enable this parameter, Bugzilla will queue all mail and then send it in the background. This requires that you have installed certain Perl modules (as listed by checksetup.pl for this feature), and that you are running the jobqueue.pl daemon (otherwise your mail won’t get sent). This affects all mail sent by Bugzilla, not just bug updates.

	smtpserver

	The SMTP server address, if the mail_delivery_method
parameter is set to SMTP. Use localhost if you have a local MTA
running; otherwise, use a remote SMTP server. Append “:” and the port
number if a non-default port is needed.

	smtp_username

	Username to use for SASL authentication to the SMTP server. Leave
this parameter empty if your server does not require authentication.

	smtp_password

	Password to use for SASL authentication to the SMTP server. This
parameter will be ignored if the smtp_username
parameter is left empty.

	smtp_ssl

	Enable SSL support for connection to the SMTP server.

	smtp_debug

	This parameter allows you to enable detailed debugging output.
Log messages are printed the web server’s error log.

	whinedays

	Set this to the number of days you want to let bugs go
in the CONFIRMED state before notifying people they have
untouched new bugs. If you do not plan to use this feature, simply
do not set up the whining cron job described
in the installation instructions, or set this value to “0” (never whine).

	globalwatchers

	This allows you to define specific users who will
receive notification each time any new bug in entered, or when
any existing bug changes, subject to the normal groupset
permissions. It may be useful for sending notifications to a
mailing list, for instance.

4.1.13. Query Defaults

This page controls the default behavior of Bugzilla in regards to
several aspects of querying bugs. Options include what the default
query options are, what the “My Bugs” page returns, whether users
can freely add bugs to the quip list, and how many duplicate bugs are
needed to add a bug to the “most frequently reported” list.

	quip_list_entry_control

	Controls how easily users can add entries to the quip list.

	open - Users may freely add to the quip list, and their entries will immediately be available for viewing.

	moderated - Quips can be entered but need to be approved by a moderator before they will be shown.

	closed - No new additions to the quips list are allowed.

	mybugstemplate

	This is the URL to use to bring up a simple ‘all of my bugs’ list
for a user. %userid% will get replaced with the login name of a
user. Special characters must be URL encoded.

	defaultquery

	This is the default query that initially comes up when you access
the advanced query page. It’s in URL-parameter format.

	search_allow_no_criteria

	When turned off, a query must have some criteria specified to limit the number of bugs returned to the user. When turned on, a user is allowed to run a query with no criteria and get all bugs in the entire installation that they can see. Turning this parameter on is not recommended on large installations.

	default_search_limit

	By default, Bugzilla limits searches done in the web interface to returning only this many results, for performance reasons. (This only affects the HTML format of search results—CSV, XML, and other formats are exempted.) Users can click a link on the search result page to see all the results.

Usually you should not have to change this—the default value should be acceptable for most installations.

	max_search_results

	The maximum number of bugs that a search can ever return. Tabular and graphical reports are exempted from this limit, however.

4.1.14. Shadow Database

This page controls whether a shadow database is used. If your Bugzilla is
not large, you will not need these options.

A standard large database setup involves a single master server and a pool of
read-only slaves (which Bugzilla calls the “shadowdb”). Queries which are not
updating data can be directed to the slave pool, removing the load/locking
from the master, freeing it up to handle writes. Bugzilla will switch to the
shadowdb when it knows it doesn’t need to update the database (e.g. when
searching, or displaying a bug to a not-logged-in user).

Bugzilla does not make sure the shadowdb is kept up to date, so, if you use
one, you will need to set up replication in your database server.

If your shadowdb is on a different machine, specify shadowdbhost
and shadowdbport. If it’s on the same machine, specify
shadowdbsock.

	shadowdbhost

	The host the shadow database is on.

	shadowdbport

	The port the shadow database is on.

	shadowdbsock

	The socket used to connect to the shadow database, if the host is the
local machine.

	shadowdb

	The database name of the shadow database.

4.1.15. Memcached

	memcached_servers

	If this option is set, Bugzilla will integrate with Memcached [http://www.memcached.org/]. Specify one or more servers, separated by
spaces, using hostname:port notation (for example:
127.0.0.1:11211).

	memcached_namespace

	Specify a string to prefix each key on Memcached.

4.1.16. User Matching

The settings on this page control how users are selected and queried
when adding a user to a bug. For example, users need to be selected
when assigning the bug, adding to the CC list, or
selecting a QA contact. With the usemenuforusers parameter, it is
possible to configure Bugzilla to
display a list of users in the fields instead of an empty text field.
If users are selected via a text box, this page also
contains parameters for how user names can be queried and matched
when entered.

	usemenuforusers

	If this option is set, Bugzilla will offer you a list to select from (instead of a text entry field) where a user needs to be selected. This option should not be enabled on sites where there are a large number of users.

	ajax_user_autocompletion

	If this option is set, typing characters in a certain user fields
will display a list of matches that can be selected from. It is
recommended to only turn this on if you are using mod_perl;
otherwise, the response will be irritatingly slow.

	maxusermatches

	Provide no more than this many matches when a user is searched for.
If set to ‘1’, no users will be displayed on ambiguous
matches. This is useful for user-privacy purposes. A value of zero
means no limit.

	confirmuniqueusermatch

	Whether a confirmation screen should be displayed when only one user matches a search entry.

4.1.17. Advanced

	cookiedomain

	Defines the domain for Bugzilla cookies. This is typically left blank.
If there are multiple hostnames that point to the same webserver, which
require the same cookie, then this parameter can be utilized. For
example, If your website is at
https://bugzilla.example.com/, setting this to
.example.com/ will also allow
attachments.example.com/ to access Bugzilla cookies.

	inbound_proxies

	When inbound traffic to Bugzilla goes through a proxy, Bugzilla thinks that the IP address of the proxy is the IP address of every single user. If you enter a comma-separated list of IPs in this parameter, then Bugzilla will trust any X-Forwarded-For header sent from those IPs, and use the value of that header as the end user’s IP address.

	proxy_url

	If this Bugzilla installation is behind a proxy, enter the proxy
information here to enable Bugzilla to access the Internet. Bugzilla
requires Internet access to utilize the
upgrade_notification parameter. If the
proxy requires authentication, use the syntax:
http://user:pass@proxy_url/.

	strict_transport_security

	Enables the sending of the Strict-Transport-Security header along with HTTP responses on SSL connections. This adds greater security to your SSL connections by forcing the browser to always access your domain over SSL and never accept an invalid certificate. However, it should only be used if you have the ssl_redirect parameter turned on, Bugzilla is the only thing running on its domain (i.e., your urlbase is something like http://bugzilla.example.com/), and you never plan to stop supporting SSL.

	off - Don’t send the Strict-Transport-Security header with requests.

	this_domain_only - Send the Strict-Transport-Security header with all requests, but only support it for the current domain.

	include_subdomains - Send the Strict-Transport-Security header along with the includeSubDomains flag, which will apply the security change to all subdomains. This is especially useful when combined with an attachment_base that exists as (a) subdomain(s) under the main Bugzilla domain.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.2. Default Preferences

Each user of Bugzilla can set certain preferences about how they want
Bugzilla to behave. Here, you can say whether or not each of the possible
preferences is available to the user and, if it is, what the default value
is.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.3. Users

4.3.1. Creating Admin Users

When you first run checksetup.pl after installing Bugzilla, it will
prompt you for the username (email address) and password for the first
admin user. If for some reason you delete all the admin users,
re-running checksetup.pl will again prompt you for a username and
password and make a new admin.

If you wish to add more administrative users, add them to the “admin” group.

4.3.2. Searching For Users

If you have editusers privileges or if you are allowed
to grant privileges for some groups, the Users link
will appear in the Administration page.

The first screen is a search form to search for existing user
accounts. You can run searches based either on the user ID, real
name or login name (i.e. the email address, or just the first part
of the email address if the emailsuffix parameter is set).
The search can be conducted
in different ways using the listbox to the right of the text entry
box. You can match by case-insensitive substring (the default),
regular expression, a reverse regular expression
match (which finds every user name which does NOT match the regular
expression), or the exact string if you know exactly who you are
looking for. The search can be restricted to users who are in a
specific group. By default, the restriction is turned off.

The search returns a list of
users matching your criteria. User properties can be edited by clicking
the login name. The Account History of a user can be viewed by clicking
the “View” link in the Account History column. The Account History
displays changes that have been made to the user account, the time of
the change and the user who made the change. For example, the Account
History page will display details of when a user was added or removed
from a group.

4.3.3. Modifying Users

Once you have found your user, you can change the following
fields:

	Login Name:
This is generally the user’s full email address. However, if you
have are using the emailsuffix parameter, this may
just be the user’s login name. Unless you turn off the
allowemailchange parameter, users can change their
login names themselves (to any valid email address).

	Real Name: The user’s real name. Note that
Bugzilla does not require this to create an account.

	Password:
You can change the user’s password here. Users can automatically
request a new password, so you shouldn’t need to do this often.
If you want to disable an account, see Disable Text below.

	Bugmail Disabled:
Mark this checkbox to disable bugmail and whinemail completely
for this account. This checkbox replaces the data/nomail file
which existed in older versions of Bugzilla.

	Disable Text:
If you type anything in this box, including just a space, the
user is prevented from logging in and from making any changes to
bugs via the web interface.
The HTML you type in this box is presented to the user when
they attempt to perform these actions and should explain
why the account was disabled.
Users with disabled accounts will continue to receive
mail from Bugzilla; furthermore, they will not be able
to log in themselves to change their own preferences and
stop it. If you want an account (disabled or active) to
stop receiving mail, simply check the
Bugmail Disabled checkbox above.

Note

Even users whose accounts have been disabled can still
submit bugs via the email gateway, if one exists.
The email gateway should not be
enabled for secure installations of Bugzilla.

Warning

Don’t disable all the administrator accounts!

	<groupname>:
If you have created some groups, e.g. “securitysensitive”, then
checkboxes will appear here to allow you to add users to, or
remove them from, these groups. The first checkbox gives the
user the ability to add and remove other users as members of
this group. The second checkbox adds the user himself as a member
of the group.

	canconfirm:
This field is only used if you have enabled the “unconfirmed”
status. If you enable this for a user,
that user can then move bugs from “Unconfirmed” to a “Confirmed”
status (e.g.: “New” status).

	creategroups:
This option will allow a user to create and destroy groups in
Bugzilla.

	editbugs:
Unless a user has this bit set, they can only edit those bugs
for which they are the assignee or the reporter. Even if this
option is unchecked, users can still add comments to bugs.

	editcomponents:
This flag allows a user to create new products and components,
modify existing products and components, and destroy those that have
no bugs associated with them. If a product or component has bugs
associated with it, those bugs must be moved to a different product
or component before Bugzilla will allow them to be destroyed.

	editkeywords:
If you use Bugzilla’s keyword functionality, enabling this
feature allows a user to create and destroy keywords. A keyword
must be removed from any bugs upon which it is currently set
before it can be destroyed.

	editusers:
This flag allows a user to do what you’re doing right now: edit
other users. This will allow those with the right to do so to
remove administrator privileges from other users or grant them to
themselves. Enable with care.

	tweakparams:
This flag allows a user to change Bugzilla’s Params
(using editparams.cgi.)

	<productname>:
This allows an administrator to specify the products
in which a user can see bugs. If you turn on the
makeproductgroups parameter in
the Group Security Panel in the Parameters page,
then Bugzilla creates one group per product (at the time you create
the product), and this group has exactly the same name as the
product itself. Note that for products that already exist when
the parameter is turned on, the corresponding group will not be
created. The user must still have the editbugs
privilege to edit bugs in these products.

4.3.4. Creating New Users

4.3.4.1. Self-Registration

By default, users can create their own user accounts by clicking the
New Account link at the bottom of each page (assuming
they aren’t logged in as someone else already). If you want to disable
this self-registration, or if you want to restrict who can create their
own user account, you have to edit the createemailregexp
parameter in the Configuration page; see
Parameters.

4.3.4.2. Administrator Registration

Users with editusers privileges, such as administrators,
can create user accounts for other users:

	After logging in, click the “Users” link at the footer of
the query page, and then click “Add a new user”.

	Fill out the form presented. This page is self-explanatory.
When done, click “Submit”.

Note

Adding a user this way will not
send an email informing them of their username and password.
While useful for creating dummy accounts (watchers which
shuttle mail to another system, for instance, or email
addresses which are a mailing list), in general it is
preferable to log out and use the New Account
button to create users, as it will pre-populate all the
required fields and also notify the user of her account name
and password.

4.3.5. Deleting Users

If the allowuserdeletion parameter is turned on (see
Parameters) then you can also delete user accounts.
Note that, most of the time, this is not the best thing to do. If only
a warning in a yellow box is displayed, then the deletion is safe.
If a warning is also displayed in a red box, then you should NOT try
to delete the user account, else you will get referential integrity
problems in your database, which can lead to unexpected behavior,
such as bugs not appearing in bug lists anymore, or data displaying
incorrectly. You have been warned!

4.3.6. Impersonating Users

There may be times when an administrator would like to do something as
another user. The sudo feature may be used to do
this.

Note

To use the sudo feature, you must be in the
bz_sudoers group. By default, all
administrators are in this group.

If you have access to this feature, you may start a session by
going to the Edit Users page, Searching for a user and clicking on
their login. You should see a link below their login name titled
“Impersonate this user”. Click on the link. This will take you
to a page where you will see a description of the feature and
instructions for using it. After reading the text, simply
enter the login of the user you would like to impersonate, provide
a short message explaining why you are doing this, and press the
button.

As long as you are using this feature, everything you do will be done
as if you were logged in as the user you are impersonating.

Warning

The user you are impersonating will not be told about what you are
doing. If you do anything that results in mail being sent, that
mail will appear to be from the user you are impersonating. You
should be extremely careful while using this feature.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.4. Classifications, Products, Components, Versions, and Milestones

Bugs in Bugzilla are classified into one of a set of admin-defined Components.
Components are themselves each part of a single Product. Optionally, Products
can be part of a single Classification, adding a third level to the hierarchy.

4.4.1. Classifications

Classifications are used to group several related products into one
distinct entity.

For example, if a company makes computer games,
they could have a classification of “Games”, and a separate
product for each game. This company might also have a
Common classification, containing products representing units of
technology used in multiple games, and perhaps an Other classification
containing a few special products that represent items that are not actually
shipping products (for example, “Website”, or “Administration”).

The classifications layer is disabled by default; it can be turned
on or off using the useclassification parameter
in the Bug Fields section of Parameters.

Access to the administration of classifications is controlled using
the editclassifications system group, which defines
a privilege for creating, destroying, and editing classifications.

When activated, classifications will introduce an additional
step when filling bugs (dedicated to classification selection), and they
will also appear in the advanced search form.

4.4.2. Products

Products usually represent real-world shipping products.
Many of Bugzilla’s settings are configurable on a per-product basis.

When creating or editing products the following options are
available:

	Product

	The name of the product

	Description

	A brief description of the product

	Open for bug entry

	Deselect this box to prevent new bugs from being
entered against this product.

	Enable the UNCONFIRMED status in this product

	Select this option if you want to use the UNCONFIRMED status
(see Workflow)

	Default milestone

	Select the default milestone for this product.

	Version

	Specify the default version for this product.

	Create chart datasets for this product

	Select to make chart datasets available for this product.

It is compulsory to create at least one component in a product, and
so you will be asked for the details of that too.

When editing a product you can change all of the above, and there is also a
link to edit Group Access Controls; see Assigning Group Controls to Products.

4.4.2.1. Creating New Products

To create a new product:

	Select Administration from the footer and then
choose Products from the main administration page.

	Select the Add link in the bottom right.

	Enter the details as outlined above.

4.4.2.2. Editing Products

To edit an existing product, click the “Products” link from the
“Administration” page. If the useclassification parameter is
turned on, a table of existing classifications is displayed,
including an “Unclassified” category. The table indicates how many products
are in each classification. Click on the classification name to see its
products. If the useclassification parameter is not in use, the table
lists all products directly. The product table summarizes the information
defined when the product was created. Click on the product name to edit these
properties, and to access links to other product attributes such as the
product’s components, versions, milestones, and group access controls.

4.4.2.3. Adding or Editing Components, Versions and Target Milestones

To add new or edit existing Components, Versions, or Target Milestones
to a Product, select the “Edit Components”, “Edit Versions”, or “Edit
Milestones” links from the “Edit Product” page. A table of existing
Components, Versions, or Milestones is displayed. Click on an item name
to edit the properties of that item. Below the table is a link to add
a new Component, Version, or Milestone.

For more information on components, see Components.

For more information on versions, see Versions.

For more information on milestones, see Milestones.

4.4.2.4. Assigning Group Controls to Products

On the Edit Product page, there is a link called
Edit Group Access Controls. The settings on this page
control the relationship of the groups to the product being edited.

Group Access Controls are an important aspect of using groups for
isolating products and restricting access to bugs filed against those
products. For more information on groups, including how to create, edit,
add users to, and alter permission of, see Groups and Security.

After selecting the “Edit Group Access Controls” link from the “Edit
Product” page, a table containing all user-defined groups for this
Bugzilla installation is displayed. The system groups that are created
when Bugzilla is installed are not applicable to Group Access Controls.
Below is description of what each of these fields means.

Groups may be applicable (i.e. bugs in this product can be associated
with this group), default (i.e. bugs in this product are in this group
by default), and mandatory (i.e. bugs in this product must be associated
with this group) for each product. Groups can also control access
to bugs for a given product, or be used to make bugs for a product
totally read-only unless the group restrictions are met. The best way to
understand these relationships is by example. See
Common Applications of Group Controls for examples of
product and group relationships.

Note

Products and Groups are not limited to a one-to-one relationship.
Multiple groups can be associated with the same product, and groups
can be associated with more than one product.

If any group has Entry selected, then the
product will restrict bug entry to only those users
who are members of all the groups with
Entry selected.

If any group has Canedit selected,
then the product will be read-only for any users
who are not members of all of the groups with
Canedit selected. Only users who
are members of all the Canedit groups
will be able to edit bugs for this product. This is an additional
restriction that enables finer-grained control over products rather
than just all-or-nothing access levels.

The following settings let you
choose privileges on a per-product basis.
This is a convenient way to give privileges to
some users for some products only, without having
to give them global privileges which would affect
all products.

Any group having editcomponents
selected allows users who are in this group to edit all
aspects of this product, including components, milestones,
and versions.

Any group having canconfirm selected
allows users who are in this group to confirm bugs
in this product.

Any group having editbugs selected allows
users who are in this group to edit all fields of
bugs in this product.

The MemberControl and
OtherControl are used in tandem to determine which
bugs will be placed in this group. The only allowable combinations of
these two parameters are listed in a table on the “Edit Group Access Controls”
page. Consult this table for details on how these fields can be used.
Examples of different uses are described below.

4.4.2.5. Common Applications of Group Controls

The use of groups is best explained by providing examples that illustrate
configurations for common use cases. The examples follow a common syntax:
Group: Entry, MemberControl, OtherControl, CanEdit,
EditComponents, CanConfirm, EditBugs, where “Group” is the name
of the group being edited for this product. The other fields all
correspond to the table on the “Edit Group Access Controls” page. If any
of these options are not listed, it means they are not checked.

Basic Product/Group Restriction

Suppose there is a product called “Bar”. You would like to make it so that only
users in the group “Foo” can enter bugs in the “Bar” product. Additionally,
bugs filed in product “Bar” must be visible only to users in “Foo” (plus, by
default, the reporter, assignee, and CC list of each bug) at all times.
Furthermore, only members of group “Foo” should be able to edit bugs filed
against product “Bar”, even if other users could see the bug. This arrangement
would achieved by the following:

Product Bar:
foo: ENTRY, MANDATORY/MANDATORY, CANEDIT

Perhaps such strict restrictions are not needed for product “Bar”. Instead,
you would like to make it so that only members of group “Foo” can
enter bugs in product “Bar”, but bugs in “Bar” are not required to be
restricted in visibility to people in “Foo”. Anyone with permission
to edit a particular bug in product “Bar” can put the bug in group “Foo”, even
if they themselves are not in “Foo”.

Furthermore, anyone in group “Foo” can edit all aspects of the components of
product “Bar”, can confirm bugs in product “Bar”, and can edit all fields of
any bug in product “Bar”. That would be done like this:

Product Bar:
foo: ENTRY, SHOWN/SHOWN, EDITCOMPONENTS, CANCONFIRM, EDITBUGS

General User Access With Security Group

To permit any user to file bugs against “Product A”,
and to permit any user to submit those bugs into a
group called “Security”:

Product A:
security: SHOWN/SHOWN

General User Access With A Security Product

To permit any user to file bugs against product called “Security”
while keeping those bugs from becoming visible to anyone
outside the group “SecurityWorkers” (unless a member of the
“SecurityWorkers” group removes that restriction):

Product Security:
securityworkers: DEFAULT/MANDATORY

Product Isolation With a Common Group

To permit users of “Product A” to access the bugs for
“Product A”, users of “Product B” to access the bugs for
“Product B”, and support staff, who are members of the “Support
Group” to access both, three groups are needed:

	Support Group: Contains members of the support staff.

	AccessA Group: Contains users of product A and the Support group.

	AccessB Group: Contains users of product B and the Support group.

Once these three groups are defined, the product group controls
can be set to:

Product A:
AccessA: ENTRY, MANDATORY/MANDATORY
Product B:
AccessB: ENTRY, MANDATORY/MANDATORY

Perhaps the “Support Group” wants more control. For example,
the “Support Group” could be permitted to make bugs inaccessible to
users of both groups “AccessA” and “AccessB”.
Then, the “Support Group” could be permitted to publish
bugs relevant to all users in a third product (let’s call it
“Product Common”) that is read-only
to anyone outside the “Support Group”. In this way the “Support Group”
could control bugs that should be seen by both groups.
That configuration would be:

Product A:
AccessA: ENTRY, MANDATORY/MANDATORY
Support: SHOWN/NA
Product B:
AccessB: ENTRY, MANDATORY/MANDATORY
Support: SHOWN/NA
Product Common:
Support: ENTRY, DEFAULT/MANDATORY, CANEDIT

Make a Product Read Only

Sometimes a product is retired and should no longer have
new bugs filed against it (for example, an older version of a software
product that is no longer supported). A product can be made read-only
by creating a group called “readonly” and adding products to the
group as needed:

Product A:
ReadOnly: ENTRY, NA/NA, CANEDIT

Note

For more information on Groups outside of how they relate to products
see Groups and Security.

4.4.3. Components

Components are subsections of a Product. E.g. the computer game
you are designing may have a “UI”
component, an “API” component, a “Sound System” component, and a
“Plugins” component, each overseen by a different programmer. It
often makes sense to divide Components in Bugzilla according to the
natural divisions of responsibility within your Product or
company.

Each component has a default assignee and, if you turned it on in the Parameters,
a QA Contact. The default assignee should be the primary person who fixes bugs in
that component. The QA Contact should be the person who will ensure
these bugs are completely fixed. The Assignee, QA Contact, and Reporter
will get email when new bugs are created in this Component and when
these bugs change. Default Assignee and Default QA Contact fields only
dictate the default assignments;
these can be changed on bug submission, or at any later point in
a bug’s life.

To create a new Component:

	Select the Edit components link
from the Edit product page.

	Select the Add link in the bottom right.

	Fill out the Component field, a
short Description, the
Default Assignee, Default CC List,
and Default QA Contact (if enabled).
The Component Description field may contain a
limited subset of HTML tags. The Default Assignee
field must be a login name already existing in the Bugzilla database.

4.4.4. Versions

Versions are the revisions of the product, such as “Flinders
3.1”, “Flinders 95”, and “Flinders 2000”. Version is not a multi-select
field; the usual practice is to select the earliest version known to have
the bug.

To create and edit Versions:

	From the “Edit product” screen, select “Edit Versions”.

	You will notice that the product already has the default
version “undefined”. Click the “Add” link in the bottom right.

	Enter the name of the Version. This field takes text only.
Then click the “Add” button.

4.4.5. Milestones

Milestones are “targets” that you plan to get a bug fixed by. For
example, if you have a bug that you plan to fix for your 3.0 release, it
would be assigned the milestone of 3.0.

Note

Milestone options will only appear for a Product if you turned
on the usetargetmilestone parameter in the “Bug Fields” tab of
the Parameters page.

To create new Milestones and set Default Milestones:

	Select “Edit milestones” from the “Edit product” page.

	Select “Add” in the bottom right corner.

	Enter the name of the Milestone in the “Milestone” field. You
can optionally set the “sortkey”, which is a positive or negative
number (-32768 to 32767) that defines where in the list this particular
milestone appears. This is because milestones often do not
occur in alphanumeric order; for example, “Future” might be
after “Release 1.2”. Select “Add”.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.5. Flags

If you have the editcomponents permission, you can
edit Flag Types from the main administration page. Clicking the
Flags link will bring you to the Administer
Flag Types page. Here, you can select whether you want
to create (or edit) a Bug flag or an Attachment flag.

The two flag types have the same administration interface, and the interface
for creating a flag and editing a flag have the same set of fields.

4.5.1. Flag Properties

	Name

	This is the name of the flag. This will be displayed
to Bugzilla users who are looking at or setting the flag.
The name may contain any valid Unicode characters except commas
and spaces.

	Description

	The description describes the flag in more detail. It is visible
in a tooltip when hovering over a flag either in the Show Bug
or Edit Attachment pages. This field can be as
long as you like and can contain any character you want.

	Category

	You can set a flag to be visible or not visible on any combination of
products and components.

Default behaviour for a newly created flag is to appear on all
products and all components, which is why __Any__:__Any__
is already entered in the Inclusions box.
If this is not your desired behaviour, you must either set some
exclusions (for products on which you don’t want the flag to appear),
or you must remove __Any__:__Any__ from the Inclusions box
and define products/components specifically for this flag.

To create an Inclusion, select a Product from the top drop-down box.
You may also select a specific component from the bottom drop-down box.
(Setting __Any__ for Product translates to
“all the products in this Bugzilla”.
Selecting __Any__ in the Component field means
“all components in the selected product.”)
Selections made, press Include, and your
Product/Component pairing will show up in the Inclusions box on the right.

To create an Exclusion, the process is the same: select a Product from the
top drop-down box, select a specific component if you want one, and press
Exclude. The Product/Component pairing will show up in the
Exclusions box on the right.

This flag will appear and can be set for any
products/components appearing in the Inclusions box
(or which fall under the appropriate __Any__).
This flag will not appear (and therefore cannot be set) on
any products appearing in the Exclusions box.
IMPORTANT: Exclusions override inclusions.

You may select a Product without selecting a specific Component,
but you cannot select a Component without a Product. If you do so,
Bugzilla will display an error message, even if all your products
have a component by that name. You will also see an error if you
select a Component that does not belong to the selected Product.

Example: Let’s say you have a product called
Jet Plane that has thousands of components. You want
to be able to ask if a problem should be fixed in the next model of
plane you release. We’ll call the flag fixInNext.
However, one component in Jet Plane is
called Pilot, and it doesn’t make sense to release a
new pilot, so you don’t want to have the flag show up in that component.
So, you include Jet Plane:__Any__ and you exclude
Jet Plane:Pilot.

	Sort Key

	Flags normally show up in alphabetical order. If you want them to
show up in a different order, you can use this key set the order on each flag.
Flags with a lower sort key will appear before flags with a higher
sort key. Flags that have the same sort key will be sorted alphabetically.

	Active

	Sometimes you might want to keep old flag information in the
Bugzilla database but stop users from setting any new flags of this type.
To do this, uncheck active. Deactivated
flags will still show up in the UI if they are ?, +, or -, but
they may only be cleared (unset) and cannot be changed to a new value.
Once a deactivated flag is cleared, it will completely disappear from a
bug/attachment and cannot be set again.

	Requestable

	New flags are, by default, “requestable”, meaning that they
offer users the ? option, as well as +
and -.
To remove the ? option, uncheck “requestable”.

	Specifically Requestable

	By default this box is checked for new flags, meaning that users may make
flag requests of specific individuals. Unchecking this box will remove the
text box next to a flag; if it is still requestable, then requests
cannot target specific users and are open to anyone (called a
request “to the wind” in Bugzilla). Removing this after specific
requests have been made will not remove those requests; that data will
stay in the database (though it will no longer appear to the user).

	Multiplicable

	Any flag with Multiplicable:guilabel: set (default for new flags
is ‘on’) may be set more than once. After being set once, an unset flag
of the same type will appear below it with “addl.” (short for
“additional”) before the name. There is no limit to the number of
times a Multiplicable flags may be set on the same bug/attachment.

	CC List

	If you want certain users to be notified every time this flag is
set to ?, -, or +, or is unset, add them here. This is a comma-separated
list of email addresses that need not be restricted to Bugzilla usernames.

	Grant Group

	When this field is set to some given group, only users in the group
can set the flag to + and -. This
field does not affect who can request or cancel the flag. For that,
see the Request Group field below. If this field
is left blank, all users can set or delete this flag. This field is
useful for restricting which users can approve or reject requests.

	Request Group

	When this field is set to some given group, only users in the group
can request or cancel this flag. Note that this field has no effect
if the Grant Group field is empty. You can set the
value of this field to a different group, but both fields have to be
set to a group for this field to have an effect.

4.5.2. Deleting a Flag

When you are at the Administer Flag Types screen,
you will be presented with a list of Bug flags and a list of Attachment
Flags.

To delete a flag, click on the Delete link next to
the flag description.

Warning

Once you delete a flag, it is gone from
your Bugzilla. All the data for that flag will be deleted.
Everywhere that flag was set, it will disappear,
and you cannot get that data back. If you want to keep flag data,
but don’t want anybody to set any new flags or change current flags,
unset active in the flag Edit form.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.6. Custom Fields

Custom Fields are fields defined by the administrator, in addition to those
which come with Bugzilla by default. Custom Fields are treated like any other
field—they can be set in bugs and used for search queries.

Administrators should keep in mind that
adding too many fields can make the user interface more complicated and
harder to use. Custom Fields should be added only when necessary and with
careful consideration.

Note

Before adding a Custom Field, make sure that Bugzilla cannot already
do the desired behavior. Many Bugzilla options are not enabled by
default, and many times Administrators find that simply enabling
certain options that already exist is sufficient.

Administrators can manage Custom Fields using the
Custom Fields link on the Administration page. The Custom
Fields administration page displays a list of Custom Fields, if any exist,
and a link to “Add a new custom field”.

4.6.1. Adding Custom Fields

To add a new Custom Field, click the “Add a new custom field” link. This
page displays several options for the new field, described below.

The following attributes must be set for each new custom field:

	Name:
The name of the field in the database, used internally. This name
MUST begin with cf_ to prevent confusion with
standard fields. If this string is omitted, it will
be automatically added to the name entered.

	Description:
A brief string used as the label for this Custom Field.
That is the string that users will see, and it should be
short and explicit.

	Type:
The type of field to create. There are
several types available:

	Bug ID:

	A field where you can enter the ID of another bug from
the same Bugzilla installation. To point to a bug in a remote
installation, use the See Also field instead.

	Large Text Box:

	A multiple line box for entering free text.

	Free Text:

	A single line box for entering free text.

	Multiple-Selection Box:

	A list box where multiple options
can be selected. After creating this field, it must be edited
to add the selection options. See
Viewing/Editing Legal Values for information about
editing legal values.

	Drop Down:

	A list box where only one option can be selected.
After creating this field, it must be edited to add the
selection options. See
Viewing/Editing Legal Values for information about
editing legal values.

	Date/Time:

	A date field. This field appears with a
calendar widget for choosing the date.

	Sortkey:
Integer that determines in which order Custom Fields are
displayed in the User Interface, especially when viewing a bug.
Fields with lower values are displayed first.

	Reverse Relationship Description:
When the custom field is of type Bug ID, you can
enter text here which will be used as label in the referenced
bug to list bugs which point to it. This gives you the ability
to have a mutual relationship between two bugs.

	Can be set on bug creation:
Boolean that determines whether this field can be set on
bug creation. If not selected, then a bug must be created
before this field can be set. See Filing a Bug
for information about filing bugs.

	Displayed in bugmail for new bugs:
Boolean that determines whether the value set on this field
should appear in bugmail when the bug is filed. This attribute
has no effect if the field cannot be set on bug creation.

	Is obsolete:
Boolean that determines whether this field should
be displayed at all. Obsolete Custom Fields are hidden.

	Is mandatory:
Boolean that determines whether this field must be set.
For single and multi-select fields, this means that a (non-default)
value must be selected; for text and date fields, some text
must be entered.

	Field only appears when:
A custom field can be made visible when some criteria is met.
For instance, when the bug belongs to one or more products,
or when the bug is of some given severity. If left empty, then
the custom field will always be visible, in all bugs.

	Field that controls the values that appear in this field:
When the custom field is of type Drop Down or
Multiple-Selection Box, you can restrict the
availability of the values of the custom field based on the
value of another field. This criteria is independent of the
criteria used in the Field only appears when
setting. For instance, you may decide that some given value
valueY is only available when the bug status
is RESOLVED while the value valueX should
always be listed.
Once you have selected the field that should control the
availability of the values of this custom field, you can
edit values of this custom field to set the criteria; see
Viewing/Editing Legal Values.

4.6.2. Editing Custom Fields

As soon as a Custom Field is created, its name and type cannot be
changed. If this field is a drop-down menu, its legal values can
be set as described in Viewing/Editing Legal Values. All
other attributes can be edited as described above.

4.6.3. Deleting Custom Fields

Only custom fields that are marked as obsolete, and that have never
been used, can be deleted completely (else the integrity
of the bug history would be compromised). For custom fields marked
as obsolete, a “Delete” link will appear in the Action
column. If the custom field has been used in the past, the deletion
will be rejected. Marking the field as obsolete, however, is sufficient
to hide it from the user interface entirely.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.7. Field Values

Legal values for the operating system, platform, bug priority and
severity, and custom fields of type Drop Down and
Multiple-Selection Box (see Custom Fields),
as well as the list of valid bug statuses and resolutions, can be
customized from the same interface. You can add, edit, disable, and
remove the values that can be used with these fields.

4.7.1. Viewing/Editing Legal Values

Editing legal values requires admin privileges.
Select “Field Values” from the Administration page. A list of all
fields, both system and Custom, for which legal values
can be edited appears. Click a field name to edit its legal values.

There is no limit to how many values a field can have, but each value
must be unique to that field. The sortkey is important to display these
values in the desired order.

When the availability of the values of a custom field is controlled
by another field, you can select from here which value of the other field
must be set for the value of the custom field to appear.

4.7.2. Deleting Legal Values

Legal values from Custom Fields can be deleted, but only if the
following two conditions are respected:

	The value is not set as the default for the field.

	No bug is currently using this value.

If any of these conditions is not respected, the value cannot be deleted.
The only way to delete these values is to reassign bugs to another value
and to set another value as default for the field.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.8. Workflow

The bug status workflow—which statuses are valid transitions from which
other statuses—can be customized.

You need to begin by defining the statuses and resolutions you want to use
(see Field Values). By convention, these are in all capital letters.

Only one bug status, UNCONFIRMED, can never be renamed nor deleted. However,
it can be disabled entirely on a per-product basis (see Classifications, Products, Components, Versions, and Milestones).
The status referred to by the duplicate_or_move_bug_status parameter, if
set, is also undeletable. To make it deletable,
simply set the value of that parameter to a different status.

Aside from the empty value, two resolutions, DUPLICATE and FIXED, cannot be
renamed or deleted. (FIXED could be if we fixed
bug 1007605 [https://bugzilla.mozilla.org/show_bug.cgi?id=1007605].)

Once you have defined your statuses, you can configure the workflow of
how a bug moves between them. The workflow configuration
page displays all existing bug statuses twice: first on the left for the
starting status, and on the top for the target status in the transition.
If the checkbox is checked, then the transition from the left to the top
status is legal; if it’s unchecked, that transition is forbidden.

The status used as the duplicate_or_move_bug_status parameter
(normally RESOLVED or its equivalent) is required to be a legal transition
from every other bug status, and so this is enforced on the page.

The “View Comments Required on Status Transitions” link below the table
lets you set which transitions require a comment from the user.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.9. Groups and Security

Groups allow for separating bugs into logical divisions.
Groups are typically used
to isolate bugs that should only be seen by certain people. For
example, a company might create a different group for each one of its customers
or partners. Group permissions could be set so that each partner or customer would
only have access to their own bugs. Or, groups might be used to create
variable access controls for different departments within an organization.
Another common use of groups is to associate groups with products,
creating isolation and access control on a per-product basis.

Groups and group behaviors are controlled in several places:

	The group configuration page. To view or edit existing groups, or to
create new groups, access the “Groups” link from the “Administration”
page. This section of the manual deals primarily with the aspect of
group controls accessed on this page.

	Global configuration parameters. Bugzilla has several parameters
that control the overall default group behavior and restriction
levels. For more information on the parameters that control
group behavior globally, see Group Security.

	Product association with groups. Most of the functionality of groups
and group security is controlled at the product level. Some aspects
of group access controls for products are discussed in this section,
but for more detail see Assigning Group Controls to Products.

	Group access for users. See Assigning Users to Groups for
details on how users are assigned group access.

Group permissions are such that if a bug belongs to a group, only members
of that group can see the bug. If a bug is in more than one group, only
members of all the groups that the bug is in can see
the bug. For information on granting read-only access to certain people and
full edit access to others, see Assigning Group Controls to Products.

Note

By default, bugs can also be seen by the Assignee, the Reporter, and
everyone on the CC List, regardless of whether or not the bug would
typically be viewable by them. Visibility to the Reporter and CC List can
be overridden (on a per-bug basis) by bringing up the bug, finding the
section that starts with Users in the roles selected below...
and un-checking the box next to either ‘Reporter’ or ‘CC List’ (or both).

4.9.1. Creating Groups

To create a new group, follow the steps below:

	Select the Administration link in the page footer,
and then select the Groups link from the
Administration page.

	A table of all the existing groups is displayed. Below the table is a
description of all the fields. To create a new group, select the
Add Group link under the table of existing groups.

	There are five fields to fill out. These fields are documented below
the form. Choose a name and description for the group. Decide whether
this group should be used for bugs (in all likelihood this should be
selected). Optionally, choose a regular expression that will
automatically add any matching users to the group, and choose an
icon that will help identify user comments for the group. The regular
expression can be useful, for example, to automatically put all users
from the same company into one group (if the group is for a specific
customer or partner).

Note

If User RegExp is filled out, users whose email
addresses match the regular expression will automatically be
members of the group as long as their email addresses continue
to match the regular expression. If their email address changes
and no longer matches the regular expression, they will be removed
from the group. Versions 2.16 and older of Bugzilla did not automatically
remove users whose email addresses no longer matched the RegExp.

Warning

If specifying a domain in the regular expression, end
the regexp with a “$”. Otherwise, when granting access to
“@mycompany.com”, access will also be granted to
‘badperson@mycompany.com.cracker.net’. Use the syntax,
‘@mycompany.com$’ for the regular expression.

	After the new group is created, it can be edited for additional options.
The “Edit Group” page allows for specifying other groups that should be included
in this group and which groups should be permitted to add and delete
users from this group. For more details, see Editing Groups and Assigning Group Permissions.

4.9.2. Editing Groups and Assigning Group Permissions

To access the “Edit Groups” page, select the
Administration link in the page footer,
and then select the Groups link from the Administration page.
A table of all the existing groups is displayed. Click on a group name
you wish to edit or control permissions for.

The “Edit Groups” page contains the same five fields present when
creating a new group. Below that are two additional sections, “Group
Permissions” and “Mass Remove”. The “Mass Remove” option simply removes
all users from the group who match the regular expression entered. The
“Group Permissions” section requires further explanation.

The “Group Permissions” section on the “Edit Groups” page contains four sets
of permissions that control the relationship of this group to other
groups. If the usevisibilitygroups parameter is in use (see
Parameters) two additional sets of permissions are displayed.
Each set consists of two select boxes. On the left, a select box
with a list of all existing groups. On the right, a select box listing
all groups currently selected for this permission setting (this box will
be empty for new groups). The way these controls allow groups to relate
to one another is called inheritance.
Each of the six permissions is described below.

	Groups That Are a Member of This Group

	Members of any groups selected here will automatically have
membership in this group. In other words, members of any selected
group will inherit membership in this group.

	Groups That This Group Is a Member Of

	Members of this group will inherit membership to any group
selected here. For example, suppose the group being edited is
an Admin group. If there are two products (Product1 and Product2)
and each product has its
own group (Group1 and Group2), and the Admin group
should have access to both products,
simply select both Group1 and Group2 here.

	Groups That Can Grant Membership in This Group

	The members of any group selected here will be able add users
to this group, even if they themselves are not in this group.

	Groups That This Group Can Grant Membership In

	Members of this group can add users to any group selected here,
even if they themselves are not in the selected groups.

	Groups That Can See This Group

	Members of any selected group can see the users in this group.
This setting is only visible if the usevisibilitygroups parameter
is enabled on the Bugzilla Configuration page. See
Parameters for information on configuring Bugzilla.

	Groups That This Group Can See

	Members of this group can see members in any of the selected groups.
This setting is only visible if the usevisibilitygroups parameter
is enabled on the the Bugzilla Configuration page. See
Parameters for information on configuring Bugzilla.

4.9.3. Assigning Users to Groups

A User can become a member of a group in several ways:

	The user can be explicitly placed in the group by editing
the user’s profile. This can be done by accessing the “Users” page
from the “Administration” page. Use the search form to find the user
you want to edit group membership for, and click on their email
address in the search results to edit their profile. The profile
page lists all the groups and indicates if the user is a member of
the group either directly or indirectly. More information on indirect
group membership is below. For more details on User Administration,
see Users.

	The group can include another group of which the user is
a member. This is indicated by square brackets around the checkbox
next to the group name in the user’s profile.
See Editing Groups and Assigning Group Permissions for details on group inheritance.

	The user’s email address can match the regular expression
that has been specified to automatically grant membership to
the group. This is indicated by “*” around the check box by the
group name in the user’s profile.
See Creating Groups for details on
the regular expression option when creating groups.

4.9.4. Assigning Group Controls to Products

The primary functionality of groups is derived from the relationship of
groups to products. The concepts around segregating access to bugs with
product group controls can be confusing. For details and examples on this
topic, see Assigning Group Controls to Products.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.10. Keywords

The administrator can define keywords which can be used to tag and
categorise bugs. For example, the keyword “regression” is commonly used.
A company might have a policy stating all regressions
must be fixed by the next release—this keyword can make tracking those
bugs much easier. Keywords are global, rather than per product.

Keywords can be created, edited, or deleted by clicking the “Keywords”
link in the admin page. There are two fields for each keyword—the keyword
itself and a brief description. Currently keywords cannot be marked obsolete
to prevent future usage.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.11. Whining

Whining is a feature in Bugzilla that can regularly annoy users at
specified times. Using this feature, users can execute saved searches
at specific times (e.g. the 15th of the month at midnight) or at
regular intervals (e.g. every 15 minutes on Sundays). The results of the
searches are sent to the user, either as a single email or as one email
per bug, along with some descriptive text.

Warning

Throughout this section it will be assumed that all users are members
of the bz_canusewhines group, membership in which is required in order
to use the Whining system. You can easily make all users members of
the bz_canusewhines group by setting the User RegExp to “.*” (without
the quotes).

Also worth noting is the bz_canusewhineatothers group. Members of this
group can create whines for any user or group in Bugzilla using an
extended form of the whining interface. Features only available to
members of the bz_canusewhineatothers group will be noted in the
appropriate places.

Note

For whining to work, a special Perl script must be executed at regular
intervals. More information on this is available in Whining.

Note

This section does not cover the whineatnews.pl script.
See Whining at Untriaged Bugs for more information on
The Whining Cron.

4.11.1. The Event

The whining system defines an “Event” as one or more queries being
executed at regular intervals, with the results of said queries (if
there are any) being emailed to the user. Events are created by
clicking on the “Add new event” button.

Once a new event is created, the first thing to set is the “Email
subject line”. The contents of this field will be used in the subject
line of every email generated by this event. In addition to setting a
subject, space is provided to enter some descriptive text that will be
included at the top of each message (to help you in understanding why
you received the email in the first place).

The next step is to specify when the Event is to be run (the Schedule)
and what searches are to be performed (the Searches).

4.11.2. Whining Schedule

Each whining event is associated with zero or more schedules. A
schedule is used to specify when the search (specified below) is to be
run. A new event starts out with no schedules (which means it will
never run, as it is not scheduled to run). To add a schedule, press
the “Add a new schedule” button.

Each schedule includes an interval, which you use to tell Bugzilla
when the event should be run. An event can be run on certain days of
the week, certain days of the month, during weekdays (defined as
Monday through Friday), or every day.

Warning

Be careful if you set your event to run on the 29th, 30th, or 31st of
the month, as your event may not run exactly when expected. If you
want your event to run on the last day of the month, select “Last day
of the month” as the interval.

Once you have specified the day(s) on which the event is to be run, you
should now specify the time at which the event is to be run. You can
have the event run at a certain hour on the specified day(s), or
every hour, half-hour, or quarter-hour on the specified day(s).

If a single schedule does not execute an event as many times as you
would want, you can create another schedule for the same event. For
example, if you want to run an event on days whose numbers are
divisible by seven, you would need to add four schedules to the event,
setting the schedules to run on the 7th, 14th, 21st, and 28th (one day
per schedule) at whatever time (or times) you choose.

Note

If you are a member of the bz_canusewhineatothers group, then you
will be presented with another option: “Mail to”. Using this you
can control who will receive the emails generated by this event. You
can choose to send the emails to a single user (identified by email
address) or a single group (identified by group name). To send to
multiple users or groups, create a new schedule for each additional
user/group.

4.11.3. Whining Searches

Each whining event is associated with zero or more searches. A search
is any saved search to be run as part of the specified schedule (see
above). You start out without any searches associated with the event
(which means that the event will not run, as there will never be any
results to return). To add a search, press the “Add a search” button.

The first field to examine in your newly added search is the Sort field.
Searches are run, and results included, in the order specified by the
Sort field. Searches with smaller Sort values will run before searches
with bigger Sort values.

The next field to examine is the Search field. This is where you
choose the actual search that is to be run. Instead of defining search
parameters here, you are asked to choose from the list of saved
searches (the same list that appears at the bottom of every Bugzilla
page). You are only allowed to choose from searches that you have
saved yourself (the default saved search, “My Bugs”, is not a valid
choice). If you do not have any saved searches, you can take this
opportunity to create one (see Bug Lists).

Note

When running searches, the whining system acts as if you are the user
executing the search. This means that the whining system will ignore
bugs that match your search but that you cannot access.

Once you have chosen the saved search to be executed, give the search a
descriptive title. This title will appear in the email, above the
results of the search. If you choose “One message per bug”, the search
title will appear at the top of each email that contains a bug matching
your search.

Finally, decide if the results of the search should be sent in a single
email, or if each bug should appear in its own email.

Warning

Think carefully before checking the “One message per bug” box. If
you create a search that matches thousands of bugs, you will receive
thousands of emails!

4.11.4. Saving Your Changes

Once you have defined at least one schedule and created at least one
search, go ahead and “Update/Commit”. This will save your Event and make
it available for immediate execution.

Note

If you ever feel like deleting your event, you may do so using the
“Remove Event” button in the upper-right corner of each Event. You
can also modify an existing event, so long as you “Update/Commit”
after completing your modifications.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.12. Quips

Quips are small user-defined messages (often quotes or witty sayings) that
can be configured to appear at the top of search results. Each Bugzilla
installation has its own specific quips. Whenever a quip needs to be
displayed, a random selection is made from the pool of already existing quips.

Quip submission is controlled by quip_list_entry_control
parameter. It has several possible values: open, moderated, or closed.
In order to enable quips approval you need to set this parameter to
“moderated”. In this way, users are free to submit quips for addition,
but an administrator must explicitly approve them before they are
actually used.

In order to see the user interface for the quips, you can
click on a quip when it is displayed together with the search
results. You can also go directly to the quips.cgi URL
(prefixed with the usual web location of the Bugzilla installation).
Once the quip interface is displayed, the “view and edit the whole
quip list” link takes you to the quips administration page, which
lists all quips available in the database.

Next to each quip there is a checkbox, under the
“Approved” column. Quips that have this checkbox checked are
already approved and will appear next to the search results.
The ones that have it unchecked are still preserved in the
database but will not appear on search results pages.
User submitted quips have initially the checkbox unchecked.

Also, there is a delete link next to each quip,
which can be used in order to permanently delete a quip.

Display of quips is controlled by the display_quips
user preference. Possible values are “on” and “off”.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

4.13. Installed Extensions

Bugzilla can be enhanced using extensions (see Extensions). If an
extension comes with documentation in the appropriate format, and you build
your own copy of the Bugzilla documentation using makedocs.pl, then
the documentation for your installed extensions will show up here.

Your Bugzilla installation has the following extensions available (as of the
last time you compiled the documentation):

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5. Integration and Customization Guide

You may find that Bugzilla already does what you want it to do, you just
need to configure it correctly. Read the Administration Guide sections
carefully to see if that’s the case for you. If not, then this chapter
explains how to use the available mechanisms for integration and customization.

	5.1. Customization FAQ

	5.2. Languages

	5.3. Skins

	5.4. Templates
	5.4.1. Template Directory Structure

	5.4.2. Choosing a Customization Method

	5.4.3. How To Edit Templates

	5.4.4. Template Formats and Types

	5.4.5. Particular Templates

	5.5. Extensions
	5.5.1. Adding A New Page to Bugzilla

	5.5.2. Altering Data On An Existing Page

	5.5.3. Adding New Fields To Bugs

	5.5.4. Adding New Fields To Other Things

	5.5.5. Adding Admin Configuration Panels

	5.5.6. Adding User Preferences

	5.5.7. Altering Who Can Change What

	5.5.8. Checking Syntax

	5.6. APIs
	5.6.1. Core Module API

	5.6.2. Ad-Hoc APIs

	5.6.3. XML-RPC

	5.6.4. JSON-RPC

	5.6.5. REST

	5.6.6. BzAPI/BzAPI-Compatible REST

	5.6.7. REST v2

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5.1. Customization FAQ

How do I…

	…add a new field on a bug?

	Use Custom Fields or, if you just want new form fields on bug entry
but don’t need Bugzilla to track the field seperately thereafter, you can
use a custom bug entry form.

	…change the name of a built-in bug field?

	Edit the relevant value in the template
template/en/default/global/field-descs.none.tmpl.

	…use a word other than ‘bug’ to describe bugs?

	Edit or override the appropriate values in the template
template/en/default/global/variables.none.tmpl.

	…call the system something other than ‘Bugzilla’?

	Edit or override the appropriate value in the template
template/en/default/global/variables.none.tmpl.

	…alter who can change what field when?

	See Altering Who Can Change What.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5.2. Languages

Bugzilla’s templates can be localized, although it’s a big job [https://wiki.mozilla.org/Bugzilla:L10n:Guide]. If you have
a localized set of templates for your version of Bugzilla, Bugzilla can
support multiple languages at once. In that case, Bugzilla honours the user’s
Accept-Language HTTP header when deciding which language to serve. If
multiple languages are installed, a menu will display in the header allowing
the user to manually select a different language. If they do this, their
choice will override the Accept-Language header.

Many language templates can be obtained from
the localization section of the Bugzilla website [http://www.bugzilla.org/download.html#localizations]. Instructions
for submitting new languages are also available from that location. There’s
also a list of localization teams [https://wiki.mozilla.org/Bugzilla:L10n:Localization_Teams]; you might
want to contact someone to ask about the status of their localization.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5.3. Skins

Bugzilla supports skins - ways of changing the look of the UI without altering
its underlying structure. It ships with two - “Classic” and “Dusk”. You can
find some more listed
on the wiki [https://wiki.mozilla.org/Bugzilla:Addons#Skins], and there
are a couple more which are part of
bugzilla.mozilla.org [https://github.com/mozilla-bteam/bmo].
However, in each
case you may need to check that the skin supports the version of Bugzilla
you have.

To create a new custom skin, make a directory that contains all the same CSS
file names as skins/standard/, and put your directory in
skins/contrib/. Then, add your CSS to the appropriate files.

After you put the directory there, make sure to run checksetup.pl so
that it can set the file permissions correctly.

After you have installed the new skin, it will show up as an option in the
user’s Preferences, on the General tab. If you would
like to force a particular skin on all users, just select that skin in the
Default Preferences in the Administration UI, and
then uncheck “Enabled” on the preference, so users cannot change it.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5.4. Templates

Bugzilla uses a system of templates to define its user interface. The standard
templates can be modified, replaced or overridden. You can also use template
hooks in an extension to add or modify the
behaviour of templates using a stable interface.

5.4.1. Template Directory Structure

The template directory structure starts with top level directory
named template, which contains a directory
for each installed localization. Bugzilla comes with English
templates, so the directory name is en,
and we will discuss template/en throughout
the documentation. Below template/en is the
default directory, which contains all the
standard templates shipped with Bugzilla.

Warning

A directory data/template also exists;
this is where Template Toolkit puts the compiled versions (i.e. Perl code)
of the templates. Do not directly edit the files in this
directory, or all your changes will be lost the next time
Template Toolkit recompiles the templates.

5.4.2. Choosing a Customization Method

If you want to edit Bugzilla’s templates, the first decision
you must make is how you want to go about doing so. There are three
choices, and which you use depends mainly on the scope of your
modifications, and the method you plan to use to upgrade Bugzilla.

	You can directly edit the templates found in template/en/default.

	You can copy the templates to be modified into a mirrored directory
structure under template/en/custom. Templates in this
directory structure automatically override any identically-named
and identically-located templates in the
template/en/default directory. (The custom directory does
not exist by default and must be created if you want to use it.)

	You can use the hooks built into many of the templates to add or modify
the UI from an extension. Hooks generally don’t go away
and have a stable interface.

The third method is the best if there are hooks in the appropriate places
and the change you want to do is possible using hooks. It’s not very easy
to modify existing UI using hooks; they are most commonly used for additions.
You can make modifications if you add JS code which then makes the
modifications when the page is loaded. You can remove UI by adding CSS to hide
it.

Unlike code hooks, there is no requirement to document template hooks, so
you just have to open up the template and see (search for Hook.process).

If there are no hooks available, then the second method of customization
should be used if you are going to make major changes, because it is
guaranteed that the contents of the custom directory will not be
touched during an upgrade, and you can then decide whether
to revert to the standard templates, continue using yours, or make the effort
to merge your changes into the new versions by hand. It’s also good for
entirely new files, and for a few files like
bug/create/user-message.html.tmpl which are designed to be entirely
replaced.

Using the second method, your user interface may break if incompatible
changes are made to the template interface. Templates do change regularly
and so interface changes are not individually documented, and you would
need to work out what had changed and adapt your template accordingly.

For minor changes, the convenience of the first method is hard to beat. When
you upgrade Bugzilla, git will merge your changes into the new
version for you. On the downside, if the merge fails then Bugzilla will not
work properly until you have fixed the problem and re-integrated your code.

Also, you can see what you’ve changed using git diff, which you
can’t if you fork the file into the custom directory.

5.4.3. How To Edit Templates

Note

If you are making template changes that you intend on submitting
back for inclusion in standard Bugzilla, you should read the relevant
sections of the
Developers’ Guide [http://www.bugzilla.org/docs/developer.html].

Bugzilla uses a templating system called Template Toolkit. The syntax of the
language is beyond the scope of this guide. It’s reasonably easy to pick up by
looking at the current templates; or, you can read the manual, available on
the Template Toolkit home page [http://www.template-toolkit.org].

One thing you should take particular care about is the need
to properly HTML filter data that has been passed into the template.
This means that if the data can possibly contain special HTML characters
such as <, and the data was not intended to be HTML, they need to be
converted to entity form, i.e. <. You use the html filter in the
Template Toolkit to do this (or the uri filter to encode special
characters in URLs). If you forget, you may open up your installation
to cross-site scripting attacks.

You should run ./checksetup.pl after editing any templates. Failure
to do so may mean either that your changes are not picked up, or that the
permissions on the edited files are wrong so the webserver can’t read them.

5.4.4. Template Formats and Types

Some CGI’s have the ability to use more than one template. For example,
buglist.cgi can output itself as two formats of HTML (complex and
simple). Each of these is a separate template. The mechanism that provides
this feature is extensible - you can create new templates to add new formats.

You might use this feature to e.g. add a custom bug entry form for a
particular subset of users or a particular type of bug.

Bugzilla can also support different types of output - e.g. bugs are available
as HTML and as XML, and this mechanism is extensible also to add new content
types. However, instead of using such interfaces or enhancing Bugzilla to add
more, you would be better off using the WebService API Reference to integrate with
Bugzilla.

To see if a CGI supports multiple output formats and types, grep the
CGI for get_format. If it’s not present, adding
multiple format/type support isn’t too hard - see how it’s done in
other CGIs, e.g. config.cgi.

To make a new format template for a CGI which supports this,
open a current template for
that CGI and take note of the INTERFACE comment (if present.) This
comment defines what variables are passed into this template. If
there isn’t one, I’m afraid you’ll have to read the template and
the code to find out what information you get.

Write your template in whatever markup or text style is appropriate.

You now need to decide what content type you want your template
served as. The content types are defined in the
Bugzilla/Constants.pm file in the contenttypes
constant. If your content type is not there, add it. Remember
the three- or four-letter tag assigned to your content type.
This tag will be part of the template filename.

Save your new template as
<stubname>-<formatname>.<contenttypetag>.tmpl.
Try out the template by calling the CGI as
<cginame>.cgi?format=<formatname>. Add &ctype=<type> if the type is
not HTML.

5.4.5. Particular Templates

There are a few templates you may be particularly interested in
customizing for your installation.

	index.html.tmpl:

	This is the Bugzilla front page.

	global/header.html.tmpl:

	This defines the header that goes on all Bugzilla pages.
The header includes the banner, which is what appears to users
and is probably what you want to edit instead. However the
header also includes the HTML HEAD section, so you could for
example add a stylesheet or META tag by editing the header.

	global/banner.html.tmpl:

	This contains the banner, the part of the header that appears
at the top of all Bugzilla pages. The default banner is reasonably
barren, so you’ll probably want to customize this to give your
installation a distinctive look and feel. It is recommended you
preserve the Bugzilla version number in some form so the version
you are running can be determined, and users know what docs to read.

	global/footer.html.tmpl:

	This defines the footer that goes on all Bugzilla pages. Editing
this is another way to quickly get a distinctive look and feel for
your Bugzilla installation.

	global/variables.none.tmpl:

	This allows you to change the word ‘bug’ to something else (e.g. “issue”)
throughout the interface, and also to change the name Bugzilla to something
else (e.g. “FooCorp Bug Tracker”).

	list/table.html.tmpl:

	This template controls the appearance of the bug lists created
by Bugzilla. Editing this template allows per-column control of
the width and title of a column, the maximum display length of
each entry, and the wrap behaviour of long entries.
For long bug lists, Bugzilla inserts a ‘break’ every 100 bugs by
default; this behaviour is also controlled by this template, and
that value can be modified here.

	bug/create/user-message.html.tmpl:

	This is a message that appears near the top of the bug reporting page.
By modifying this, you can tell your users how they should report
bugs.

	bug/process/midair.html.tmpl:

	This is the page used if two people submit simultaneous changes to the
same bug. The second person to submit their changes will get this page
to tell them what the first person did, and ask if they wish to
overwrite those changes or go back and revisit the bug. The default
title and header on this page read “Mid-air collision detected!” If
you work in the aviation industry, or other environment where this
might be found offensive (yes, we have true stories of this happening)
you’ll want to change this to something more appropriate for your
environment.

	bug/create/create.html.tmpl and bug/create/comment.txt.tmpl:

	You may not wish to go to the effort of creating custom fields in
Bugzilla, yet you want to make sure that each bug report contains
a number of pieces of important information for which there is not
a special field. The bug entry system has been designed in an
extensible fashion to enable you to add arbitrary HTML widgets,
such as drop-down lists or textboxes, to the bug entry page
and have their values appear formatted in the initial comment.

An example of this is the guided bug submission form [http://landfill.bugzilla.org/bugzilla-tip/enter_bug.cgi?product=WorldControl;format=guided].
The code for this comes with the Bugzilla distribution as an example for
you to copy. It can be found in the files
create-guided.html.tmpl and comment-guided.html.tmpl.

A hidden field that indicates the format should be added inside
the form in order to make the template functional. Its value should
be the suffix of the template filename. For example, if the file
is called create-guided.html.tmpl, then

<input type="hidden" name="format" value="guided">

is used inside the form.

So to use this feature, create a custom template for
enter_bug.cgi. The default template, on which you
could base it, is
default/bug/create/create.html.tmpl.
Call it custom/bug/create/create-<formatname>.html.tmpl, and
in it, add form inputs for each piece of information you’d like
collected - such as a build number, or set of steps to reproduce.

Then, create a template based on
default/bug/create/comment.txt.tmpl, and call it
custom/bug/create/comment-<formatname>.txt.tmpl.
It needs a couple of lines of boilerplate at the top like this:

[% USE Bugzilla %]
[% cgi = Bugzilla.cgi %

Then, this template can reference the form fields you have created using
the syntax [% cgi.param("field_name") %]. When a bug report is
submitted, the initial comment attached to the bug report will be
formatted according to the layout of this template.

For example, if your custom enter_bug template had a field:

<input type="text" name="buildid" size="30">

and then your comment.txt.tmpl had:

[% USE Bugzilla %]
[% cgi = Bugzilla.cgi %]
Build Identifier: [%+ cgi.param("buildid") %]

then something like:

Build Identifier: 20140303

would appear in the initial comment.

This system allows you to gather structured data in bug reports without
the overhead and UI complexity of a large number of custom fields.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5.5. Extensions

One of the best ways to customize Bugzilla is by using a Bugzilla
Extension. Extensions can modify both the code and UI of Bugzilla in a way
that can be distributed to other Bugzilla users and ported forward to future
versions of Bugzilla with minimal effort. We maintain a
list of available extensions [https://wiki.mozilla.org/Bugzilla:Addons]
written by other people on our wiki. You would need to
make sure that the extension in question works with your version of Bugzilla.

Or, you can write your own extension. See the Bugzilla Extension
documentation [https://www.bugzilla.org/docs/5.0/en/html/integrating/api/Bugzilla/Extension.html]
for the core documentation on how to do that. It would make sense to read
the section on Templates. There is also a sample extension in
$BUGZILLA_HOME/extensions/Example/ which gives examples of how to
use all the code hooks.

This section explains how to achieve some common tasks using the Extension APIs.

5.5.1. Adding A New Page to Bugzilla

There are occasions where it’s useful to add a new page to Bugzilla which
has little or no relation to other pages, and perhaps doesn’t use very much
Bugzilla data. A help page, or a custom report for example. The best mechanism
for this is to use page.cgi and the page_before_template hook.

5.5.2. Altering Data On An Existing Page

The template_before_process hook can be used to tweak the data displayed
on a particular existing page, if you know what template is used. It has
access to all the template variables before they are passed to the templating
engine.

5.5.3. Adding New Fields To Bugs

To add new fields to a bug, you need to do the following:

	Add an install_update_db hook to add the fields by calling
Bugzilla::Field->create (only if the field doesn’t already exist).
Here’s what it might look like for a single field:

my $field = new Bugzilla::Field({ name => $name });
return if $field;

$field = Bugzilla::Field->create({
 name => $name,
 description => $description,
 type => $type, # From list in Constants.pm
 enter_bug => 0,
 buglist => 0,
 custom => 1,
});

	Push the name of the field onto the relevant arrays in the bug_columns
and bug_fields hooks.

	If you want direct accessors, or other functions on the object, you need to
add a BEGIN block to your Extension.pm:

BEGIN {
 *Bugzilla::Bug::is_foopy = \&_bug_is_foopy;
}

...

sub _bug_is_foopy {
 return $_[0]->{'is_foopy'};
}

	You don’t have to change Bugzilla/DB/Schema.pm.

	You can use bug_end_of_create, bug_end_of_create_validators, and
bug_end_of_update to create or update the values for your new field.

5.5.4. Adding New Fields To Other Things

If you are adding the new fields to an object other than a bug, you need to
go a bit lower-level. With reference to the instructions above:

	In install_update_db, use bz_add_column instead

	Push on the columns in object_columns and object_update_columns
instead of bug_columns.

	Add validators for the values in object_validators

The process for adding accessor functions is the same.

You can use the hooks object_end_of_create,
object_end_of_create_validators, object_end_of_set_all, and
object_end_of_update to create or update the values for the new object
fields you have added. In the hooks you can check the object type being
operated on and skip any objects you don’t care about. For example, if you
added a new field to the products table:

sub object_end_of_create {
 my ($self, $args) = @_;
 my $class = $args->{'class'};
 my $object = $args->{'object'};
 if ($class->isa('Bugzilla::Product') {
 [...]
 }
}

You will need to do this filtering for most of the hooks whose names begin with
object_.

5.5.5. Adding Admin Configuration Panels

If you add new functionality to Bugzilla, it may well have configurable
options or parameters. The way to allow an administrator to set those
is to add a new configuration panel.

As well as using the config_add_panels hook, you will need a template to
define the UI strings for the panel. See the templates in
template/en/default/admin/params for examples, and put your own
template in template/en/default/admin/params in your extension’s
directory.

You can access param values from Templates using:

[% Param('param_name') %]

and from code using:

Bugzilla->params->{'param_name'}

5.5.6. Adding User Preferences

To add a new user preference:

	Call add_setting('setting_name', ['some_option', 'another_option'],
'some_option') in the install_before_final_checks hook. (The last
parameter is the name of the option which should be the default.)

	Add descriptions for the identifiers for your setting and choices
(setting_name, some_option etc.) to the hash defined in
global/setting-descs.none.tmpl. Do this in a template hook:
hook/global/setting-descs-settings.none.tmpl. Your code can see the
hash variable; just set more members in it.

	To change behaviour based on the setting, reference it in templates using
[% user.settings.setting_name.value %]. Reference it in code using
$user->settings->{'setting_name'}->{'value'}. The value will be one of
the option tag names (e.g. some_option).

5.5.7. Altering Who Can Change What

Companies often have rules about which employees, or classes of employees,
are allowed to change certain things in the bug system. For example,
only the bug’s designated QA Contact may be allowed to VERIFY the bug.
Bugzilla has been
designed to make it easy for you to write your own custom rules to define
who is allowed to make what sorts of value transition.

By default, assignees, QA owners and users
with editbugs privileges can edit all fields of bugs,
except group restrictions (unless they are members of the groups they
are trying to change). Bug reporters also have the ability to edit some
fields, but in a more restrictive manner. Other users, without
editbugs privileges, cannot edit
bugs, except to comment and add themselves to the CC list.

Because this kind of change is such a common request, we have added a
specific hook for it that Extensions can call. It’s called
bug_check_can_change_field, and it’s documented in the Hooks
documentation [https://www.bugzilla.org/docs/5.0/en/html/integrating/api/Bugzilla/Hook.html#bug_check_can_change_field].

5.5.8. Checking Syntax

It’s not immediately obvious how to check the syntax of your extension’s
Perl modules, if it contains any. Running checksetup.pl might do
some of it, but the errors aren’t necessarily massively informative.

perl -Mlib=lib -MBugzilla -e 'BEGIN { Bugzilla->extensions; } use Bugzilla::Extension::ExtensionName::Class;'

(run from $BUGZILLA_HOME) is what you need.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

5.6. APIs

Bugzilla has a number of APIs that you can call in your code to extract
information from and put information into Bugzilla. Some are deprecated and
will soon be removed. Which one to use? Short answer: the
REST WebService API v1
should be used for all new integrations, but keep an eye out for version 2,
coming soon.

The APIs currently available are as follows:

5.6.1. Core Module API

Most of the core Bugzilla modules have extensive documentation inside the modules
themselves. You can view the POD documentation [https://www.bugzilla.org/docs/5.0/en/html/integrating/api/index.html] to help with
using the core modules in your extensions.

5.6.2. Ad-Hoc APIs

Various pages on Bugzilla are available in machine-parseable formats as well
as HTML. For example, bugs can be downloaded as XML, and buglists as CSV.
CSV is useful for spreadsheet import. There should be links on the HTML page
to alternate data formats where they are available.

5.6.3. XML-RPC

Bugzilla has an XML-RPC API [https://www.bugzilla.org/docs/5.0/en/html/integrating/api/Bugzilla/WebService/Server/XMLRPC.html].
This will receive no further updates and will be removed in a future version
of Bugzilla.

Endpoint: /xmlrpc.cgi

5.6.4. JSON-RPC

Bugzilla has a JSON-RPC API [https://www.bugzilla.org/docs/5.0/en/html/integrating/api/Bugzilla/WebService/Server/JSONRPC.html].
This will receive no further updates and will be removed in a future version
of Bugzilla.

Endpoint: /jsonrpc.cgi

5.6.5. REST

Bugzilla has a REST API which is the currently-recommended API
for integrating with Bugzilla. The current REST API is version 1. It is stable,
and so will not be changed in a backwardly-incompatible way.

This is the currently-recommended API for new development.

Endpoint: /rest

5.6.6. BzAPI/BzAPI-Compatible REST

The first ever REST API for Bugzilla was implemented using an external proxy
called BzAPI [https://wiki.mozilla.org/Bugzilla:BzAPI]. This became popular
enough that a BzAPI-compatible shim on top of the (native) REST API has been
written, to allow code which used the BzAPI API to take advantage of the
speed improvements of direct integration without needing to be rewritten.
The shim is an extension which you would need to install in your Bugzilla.

Neither BzAPI nor this BzAPI-compatible API shim will receive any further
updates, and they should not be used for new code.

5.6.7. REST v2

The future of Bugzilla’s APIs is version 2 of the REST API, which will take
the best of the current REST API and the BzAPI API. It is still under
development.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6. WebService API Reference

This Bugzilla installation has the following WebService APIs available
(as of the last time you compiled the documentation). Documentation for
the deprecated XML-RPC and JSON-RPC APIs is also available.

	6.1. Core API v1
	6.1.1. General
	6.1.1.1. Basic Information

	6.1.1.2. Common Data Types

	6.1.1.3. Authentication

	6.1.1.4. Useful Parameters

	6.1.2. Attachments
	6.1.2.1. Get Attachment

	6.1.2.2. Create Attachment

	6.1.2.3. Update Attachment

	6.1.3. Bugs
	6.1.3.1. Get Bug

	6.1.3.2. Bug History

	6.1.3.3. Search Bugs

	6.1.3.4. Create Bug

	6.1.3.5. Update Bug

	6.1.4. Bug User Last Visited
	6.1.4.1. Update Last Visited

	6.1.4.2. Get Last Visited

	6.1.5. Bugzilla Information
	6.1.5.1. Version

	6.1.5.2. Extensions

	6.1.5.3. Timezone

	6.1.5.4. Time

	6.1.5.5. Parameters

	6.1.5.6. Last Audit Time

	6.1.6. Classifications
	6.1.6.1. Get Classification

	6.1.7. Comments
	6.1.7.1. Get Comments

	6.1.7.2. Create Comments

	6.1.7.3. Search Comment Tags

	6.1.7.4. Update Comment Tags

	6.1.8. Components
	6.1.8.1. Create Component

	6.1.9. Bug Fields
	6.1.9.1. Fields

	6.1.9.2. Legal Values

	6.1.10. Flag Types
	6.1.10.1. Get Flag Type

	6.1.10.2. Create Flag Type

	6.1.10.3. Update Flag Type

	6.1.11. Groups
	6.1.11.1. Create Group

	6.1.11.2. Update Group

	6.1.11.3. Get Group

	6.1.12. Products
	6.1.12.1. List Products

	6.1.12.2. Get Product

	6.1.12.3. Create Product

	6.1.12.4. Update Product

	6.1.13. Users
	6.1.13.1. Login

	6.1.13.2. Logout

	6.1.13.3. Valid Login

	6.1.13.4. Create User

	6.1.13.5. Update User

	6.1.13.6. Get User

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1. Core API v1

	6.1.1. General
	6.1.1.1. Basic Information

	6.1.1.2. Common Data Types

	6.1.1.3. Authentication

	6.1.1.4. Useful Parameters

	6.1.2. Attachments
	6.1.2.1. Get Attachment

	6.1.2.2. Create Attachment

	6.1.2.3. Update Attachment

	6.1.3. Bugs
	6.1.3.1. Get Bug

	6.1.3.2. Bug History

	6.1.3.3. Search Bugs

	6.1.3.4. Create Bug

	6.1.3.5. Update Bug

	6.1.4. Bug User Last Visited
	6.1.4.1. Update Last Visited

	6.1.4.2. Get Last Visited

	6.1.5. Bugzilla Information
	6.1.5.1. Version

	6.1.5.2. Extensions

	6.1.5.3. Timezone

	6.1.5.4. Time

	6.1.5.5. Parameters

	6.1.5.6. Last Audit Time

	6.1.6. Classifications
	6.1.6.1. Get Classification

	6.1.7. Comments
	6.1.7.1. Get Comments

	6.1.7.2. Create Comments

	6.1.7.3. Search Comment Tags

	6.1.7.4. Update Comment Tags

	6.1.8. Components
	6.1.8.1. Create Component

	6.1.9. Bug Fields
	6.1.9.1. Fields

	6.1.9.2. Legal Values

	6.1.10. Flag Types
	6.1.10.1. Get Flag Type

	6.1.10.2. Create Flag Type

	6.1.10.3. Update Flag Type

	6.1.11. Groups
	6.1.11.1. Create Group

	6.1.11.2. Update Group

	6.1.11.3. Get Group

	6.1.12. Products
	6.1.12.1. List Products

	6.1.12.2. Get Product

	6.1.12.3. Create Product

	6.1.12.4. Update Product

	6.1.13. Users
	6.1.13.1. Login

	6.1.13.2. Logout

	6.1.13.3. Valid Login

	6.1.13.4. Create User

	6.1.13.5. Update User

	6.1.13.6. Get User

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.1. General

This is the standard REST API for external programs that want to interact
with Bugzilla. It provides a REST interface to various Bugzilla functions.

6.1.1.1. Basic Information

Browsing

If the Accept header of a request is set to text/html (as it is by an
ordinary web browser) then the API will return the JSON data as a HTML
page which the browser can display. In other words, you can play with the
API using just your browser to see results in a human-readable form.
This is a good way to try out the various GET calls, even if you can’t use
it for POST or PUT.

Data Format

The REST API only supports JSON input, and either JSON or JSONP output.
So objects sent and received must be in JSON format.

On every request, you must set both the Accept and Content-Type HTTP
headers to the MIME type of the data format you are using to communicate with
the API. Content-Type tells the API how to interpret your request, and
Accept tells it how you want your data back. Content-Type must be
application/json. Accept can be either that, or
application/javascript for JSONP. In the latter`case, add a callback
parameter to name your callback.

Parameters may also be passed in as part of the query string for non-GET
requests and will override any matching parameters in the request body.

Example request which returns the current version of Bugzilla:

GET /rest/version HTTP/1.1
Host: bugzilla.example.com
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "version" : "4.2.9+"
}

Errors

When an error occurs over REST, an object is returned with the key error
set to true.

The error contents look similar to:

{
 "error": true,
 "message": "Some message here",
 "code": 123
}

6.1.1.2. Common Data Types

The Bugzilla API uses the following various types of parameters:

	type

	description

	int

	Integer.

	double

	A floating-point number.

	string

	A string.

	email

	A string representing an email address. This value, when returned,
may be filtered based on if the user is logged in or not.

	date

	A specific date. Example format: YYYY-MM-DD.

	datetime

	A date/time. Timezone should be in UTC unless otherwise noted.
Example format: YYYY-MM-DDTHH24:MI:SSZ.

	boolean

	true or false.

	base64

	A base64-encoded string. This is the only way to transfer
binary data via the API.

	array

	An array. There may be mixed types in an array. [and] are
used to represent the beginning and end of arrays.

	object

	A mapping of keys to values. Called a “hash”, “dict”, or “map” in
some other programming languages. The keys are strings, and the
values can be any type. { and } are used to represent the
beginning and end of objects.

Parameters that are required will be displayed in bold in the parameters
table for each API method.

6.1.1.3. Authentication

Some methods do not require you to log in. An example of this is
Get Bug. However, authenticating yourself allows you to see
non-public information, for example, a bug that is not publicly visible.

There are two ways to authenticate yourself:

API Keys

You can specify Bugzilla_api_key or simply api_key as an argument to
any call, and you will be logged in as that user if the key is correct and has
not been revoked. You can set up an API key by using the ‘API Key’ tab in the
Preferences pages.

Login and Password

You can specify Bugzilla_login and Bugzilla_password or simply
login and password respectively, as arguments to any call, and you will
be logged in as that user if your credentials are correct.

	name

	type

	description

	Bugzilla_login

	string

	A user’s login name.

	Bugzilla_password

	string

	That user’s password.

	Bugzilla_restrictlogin

	boolean

	If true, then your login will only be
valid for your IP address.

The Bugzilla_restrictlogin option is only used when you have also
specified Bugzilla_login and Bugzilla_password.

There is also a deprecated method of authentication described below that will be
removed in the version after Bugzilla 5.0.

Bugzilla Tokens

You can use Login to log in as a Bugzilla user. This issues a
token that you must then use in future calls. Just use the value for token
and pass as either Bugzilla_token or simply token as arguments to an
API call.

	name

	type

	description

	Bugzilla_token

	string

	You can specify this as argument to any call,
and you will be logged in as that user if the
token is correct. This is the token returned
when calling Login mentioned
above.

An error is thrown if you pass an invalid token; you will need to log in again
to get a new token.

Also starting with Bugzilla 5.0, login cookies are no longer returned by
Login due to security concerns.

6.1.1.4. Useful Parameters

Many calls take common arguments. These are documented below and linked from
the individual calls where these parameters are used.

Including Fields

Many calls return an array of objects with various fields in the objects. (For
example, Get Bug returns a list of bugs that have fields like
id, summary, creation_time, etc.)

These parameters allow you to limit what fields are present in the objects, to
improve performance or save some bandwidth.

include_fields: The (case-sensitive) names of fields in the response data.
Only the fields specified in the object will be returned, the rest will not be
included. Fields should be comma delimited.

Invalid field names are ignored.

Example request to Get User:

GET /rest/user/1?include_fields=id,name

would return something like:

{
 "users" : [
 {
 "id" : 1,
 "name" : "user@domain.com"
 }
]
}

Excluding Fields

exclude_fields: The (case-sensitive) names of fields in the return value. Thefields specified will not be included in the returned hashes. Fields should
be comma delimited.

Invalid field names are ignored.

Specifying fields here overrides include_fields, so if you specify a
field in both, it will be excluded, not included.

Example request to Get User:

GET /rest/user/1?exclude_fields=name

would return something like:

{
 "users" : [
 {
 "id" : 1,
 "real_name" : "John Smith"
 }
]
}

Some calls support specifying “subfields”. If a call states that it supports
“subfield” restrictions, you can restrict what information is returned within
the first field. For example, if you call Get Product with an
include_fields of components.name, then only the component name would be
returned (and nothing else). You can include the main field, and exclude a
subfield.

There are several shortcut identifiers to ask for only certain groups of
fields to be returned or excluded:

	value

	description

	_all

	All possible fields are returned if this is specified in
include_fields.

	_default

	Default fields are returned if include_fields is empty or
this is specified. This is useful if you want the default
fields in addition to a field that is not normally returned.

	_extra

	Extra fields are not returned by default and need to be manually
specified in include_fields either by exact field name, or adding
_extra.

	_custom

	Custom fields are normally returned by default unless this is added
to exclude_fields. Also you can use it in include_fields if
for example you want specific field names plus all custom fields.
Custom fields are normally only relevant to bug objects.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.2. Attachments

The Bugzilla API for creating, changing, and getting the details of attachments.

6.1.2.1. Get Attachment

This allows you to get data about attachments, given a list of bugs and/or
attachment IDs. Private attachments will only be returned if you are in the
appropriate group or if you are the submitter of the attachment.

Request

To get all current attachments for a bug:

GET /rest/bug/(bug_id)/attachment

To get a specific attachment based on attachment ID:

GET /rest/bug/attachment/(attachment_id)

One of the below must be specified.

	name

	type

	description

	bug_id

	int

	Integer bug ID.

	attachment_id

	int

	Integer attachment ID.

Response

{
 "bugs" : {
 "1345" : [
 { (attachment) },
 { (attachment) }
],
 "9874" : [
 { (attachment) },
 { (attachment) }
],
 },
 "attachments" : {
 "234" : { (attachment) },
 "123" : { (attachment) },
 }
}

An object containing two elements: bugs and attachments.

The attachments for the bug that you specified in the bug_id argument in
input are returned in bugs on output. bugs is a object that has integer
bug IDs for keys and the values are arrays of objects as attachments.
(Fields for attachments are described below.)

For the attachment that you specified directly in attachment_id, they
are returned in attachments on output. This is a object where the attachment
ids point directly to objects describing the individual attachment.

The fields for each attachment (where it says (attachment) in the
sample response above) are:

	name

	type

	description

	data

	base64

	The raw data of the attachment, encoded as Base64.

	size

	int

	The length (in bytes) of the attachment.

	creation_time

	datetime

	The time the attachment was created.

	last_change_time

	datetime

	The last time the attachment was modified.

	id

	int

	The numeric ID of the attachment.

	bug_id

	int

	The numeric ID of the bug that the attachment is
attached to.

	file_name

	string

	The file name of the attachment.

	summary

	string

	A short string describing the attachment.

	content_type

	string

	The MIME type of the attachment.

	is_private

	boolean

	true if the attachment is private (only visible
to a certain group called the “insidergroup”,
false otherwise.

	is_obsolete

	boolean

	true if the attachment is obsolete, false
otherwise.

	is_patch

	boolean

	true if the attachment is a patch, false
otherwise.

	creator

	string

	The login name of the user that created the
attachment.

	flags

	array

	Array of objects, each containing the information
about the flag currently set for each attachment.
Each flag object contains items descibed in the
Flag object below.

Flag object:

	name

	type

	description

	id

	int

	The ID of the flag.

	name

	string

	The name of the flag.

	type_id

	int

	The type ID of the flag.

	creation_date

	datetime

	The timestamp when this flag was originally created.

	modification_date

	datetime

	The timestamp when the flag was last modified.

	status

	string

	The current status of the flag such as ?, +, or -.

	setter

	string

	The login name of the user who created or last
modified the flag.

	requestee

	string

	The login name of the user this flag has been
requested to be granted or denied. Note, this field
is only returned if a requestee is set.

6.1.2.2. Create Attachment

This allows you to add an attachment to a bug in Bugzilla.

Request

To create attachment on a current bug:

POST /rest/bug/(bug_id)/attachment

{
 "ids" : [35],
 "is_patch" : true,
 "comment" : "This is a new attachment comment",
 "summary" : "Test Attachment",
 "content_type" : "text/plain",
 "data" : "(Some base64 encoded content)",
 "file_name" : "test_attachment.patch",
 "obsoletes" : [],
 "is_private" : false,
 "flags" : [
 {
 "name" : "review",
 "status" : "?",
 "requestee" : "user@bugzilla.org",
 "new" : true
 }
]
}

The params to include in the POST body, as well as the returned
data format, are the same as below. The bug_id param will be
overridden as it it pulled from the URL path.

	name

	type

	description

	ids

	array

	The IDs or aliases of bugs that you want to add this
attachment to. The same attachment and comment will be
added to all these bugs.

	data

	base64

	The content of the attachment. You must encode it in
base64 using an appropriate client library such as
MIME::Base64 for Perl.

	file_name

	string

	The “file name” that will be displayed in the UI for
this attachment and also downloaded copies will be
given.

	summary

	string

	A short string describing the attachment.

	content_type

	string

	The MIME type of the attachment, like text/plain
or image/png.

	comment

	string

	A comment to add along with this attachment.

	is_patch

	boolean

	true if Bugzilla should treat this attachment as a
patch. If you specify this, you do not need to specify
a content_type. The content_type of the
attachment will be forced to text/plain. Defaults
to false if not specified.

	is_private

	boolean

	true if the attachment should be private
(restricted to the “insidergroup”), false if the
attachment should be public. Defaults to false if
not specified.

	flags

	array

	Flags objects to add to the attachment. The object
format is described in the Flag object below.

Flag object:

To create a flag, at least the status and the type_id or name must
be provided. An optional requestee can be passed if the flag type is requestable
to a specific user.

	name

	type

	description

	name

	string

	The name of the flag type.

	type_id

	int

	The internal flag type ID.

	status

	string

	The flags new status (i.e. “?”, “+”, “-” or “X” to clear a
flag).

	requestee

	string

	The login of the requestee if the flag type is requestable to
a specific user.

Response

{
 "ids" : [
 "2797"
]
}

	name

	type

	description

	ids

	array

	Attachment IDs created.

6.1.2.3. Update Attachment

This allows you to update attachment metadata in Bugzilla.

Request

To update attachment metadata on a current attachment:

PUT /rest/bug/attachment/(attachment_id)

{
 "ids" : [2796],
 "summary" : "Test XML file",
 "comment" : "Changed this from a patch to a XML file",
 "content_type" : "text/xml",
 "is_patch" : 0
}

	name

	type

	description

	attachment_id

	int

	Integer attachment ID.

	ids

	array

	The IDs of the attachments you want to update.

	name

	type

	description

	file_name

	string

	The “file name” that will be displayed in the UI for this
attachment.

	summary

	string

	A short string describing the attachment.

	comment

	string

	An optional comment to add to the attachment’s bug.

	content_type

	string

	The MIME type of the attachment, like text/plain
or image/png.

	is_patch

	boolean

	true if Bugzilla should treat this attachment as a
patch. If you specify this, you do not need to specify a
content_type. The content_type of the attachment
will be forced to text/plain.

	is_private

	boolean

	true if the attachment should be private (restricted
to the “insidergroup”), false if the attachment
should be public.

	is_obsolete

	boolean

	true if the attachment is obsolete, false
otherwise.

	flags

	array

	An array of Flag objects with changes to the flags. The
object format is described in the Flag object below.

Flag object:

The following values can be specified. At least the status and one of
type_id, id, or name must be specified. If a type_id or name matches
a single currently set flag, the flag will be updated unless new is specified.

	name

	type

	description

	name

	string

	The name of the flag that will be created or updated.

	type_id

	int

	The internal flag type ID that will be created or updated.
You will need to specify the type_id if more than one
flag type of the same name exists.

	status

	string

	The flags new status (i.e. “?”, “+”, “-” or “X” to clear a
flag).

	requestee

	string

	The login of the requestee if the flag type is requestable
to a specific user.

	id

	int

	Use ID to specify the flag to be updated. You will need to
specify the id if more than one flag is set of the same
name.

	new

	boolean

	Set to true if you specifically want a new flag to be
created.

Response

{
 "attachments" : [
 {
 "changes" : {
 "content_type" : {
 "added" : "text/xml",
 "removed" : "text/plain"
 },
 "is_patch" : {
 "added" : "0",
 "removed" : "1"
 },
 "summary" : {
 "added" : "Test XML file",
 "removed" : "test patch"
 }
 },
 "id" : 2796,
 "last_change_time" : "2014-09-29T14:41:53Z"
 }
]
}

attachments (array) Change objects with the following items:

	name

	type

	description

	id

	int

	The ID of the attachment that was updated.

	last_change_time

	datetime

	The exact time that this update was done at, for this
attachment. If no update was done (that is, no fields
had their values changed and no comment was added)
then this will instead be the last time the
attachment was updated.

	changes

	object

	The changes that were actually done on this
attachment. The keys are the names of the fields that
were changed, and the values are an object with two
items:

	added: (string) The values that were added to this
field. Possibly a comma-and-space-separated list
if multiple values were added.

	removed: (string) The values that were removed from
this field.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.3. Bugs

The REST API for creating, changing, and getting the details of bugs.

This part of the Bugzilla REST API allows you to file new bugs in Bugzilla and
to get information about existing bugs.

6.1.3.1. Get Bug

Gets information about particular bugs in the database.

Request

To get information about a particular bug using its ID or alias:

GET /rest/bug/(id_or_alias)

You can also use Search Bugs to return more than one bug at a time
by specifying bug IDs as the search terms.

GET /rest/bug?id=12434,43421

	name

	type

	description

	id_or_alias

	mixed

	An integer bug ID or a bug alias string.

Response

{
 "faults": [],
 "bugs": [
 {
 "assigned_to_detail": {
 "id": 2,
 "real_name": "Test User",
 "name": "user@bugzilla.org",
 "email": "user@bugzilla.org"
 },
 "flags": [
 {
 "type_id": 11,
 "modification_date": "2014-09-28T21:03:47Z",
 "name": "blocker",
 "status": "?",
 "id": 2906,
 "setter": "user@bugzilla.org",
 "creation_date": "2014-09-28T21:03:47Z"
 }
],
 "resolution": "INVALID",
 "id": 35,
 "qa_contact": "",
 "version": "1.0",
 "status": "RESOLVED",
 "creator": "user@bugzilla.org",
 "cf_drop_down": "---",
 "summary": "test bug",
 "last_change_time": "2014-09-23T19:12:17Z",
 "platform": "All",
 "url": "",
 "classification": "Unclassified",
 "cc_detail": [
 {
 "id": 786,
 "real_name": "Foo Bar",
 "name": "foo@bar.com",
 "email": "foo@bar.com"
 },
],
 "priority": "P1",
 "is_confirmed": true,
 "creation_time": "2000-07-25T13:50:04Z",
 "assigned_to": "user@bugzilla.org",
 "flags": [],
 "alias": [],
 "cf_large_text": "",
 "groups": [],
 "op_sys": "All",
 "cf_bug_id": null,
 "depends_on": [],
 "is_cc_accessible": true,
 "is_open": false,
 "cf_qa_list_4": "---",
 "keywords": [],
 "cc": [
 "foo@bar.com",
],
 "see_also": [],
 "deadline": null,
 "is_creator_accessible": true,
 "whiteboard": "",
 "dupe_of": null,
 "target_milestone": "---",
 "cf_mulitple_select": [],
 "component": "SaltSprinkler",
 "severity": "critical",
 "cf_date": null,
 "product": "FoodReplicator",
 "creator_detail": {
 "id": 28,
 "real_name": "hello",
 "name": "user@bugzilla.org",
 "email": "namachi@netscape.com"
 },
 "cf_free_text": "",
 "blocks": []
 }
]
}

bugs (array) Each bug object contains information about the bugs with valid
ids containing the following items:

These fields are returned by default or by specifying _default in
include_fields.

	name

	type

	description

	actual_time

	double

	The total number of hours that this bug has
taken so far. If you are not in the time-tracking
group, this field will not be included in the
return value.

	alias

	array

	The unique aliases of this bug. An empty array
will be returned if this bug has no aliases.

	assigned_to

	string

	The login name of the user to whom the bug is
assigned.

	assigned_to_detail

	object

	An object containing detailed user information
for the assigned_to. To see the keys included
in the user detail object, see below.

	blocks

	array

	The IDs of bugs that are “blocked” by this bug.

	cc

	array

	The login names of users on the CC list of this
bug.

	cc_detail

	array

	Array of objects containing detailed user
information for each of the cc list members.
To see the keys included in the user detail
object, see below.

	classification

	string

	The name of the current classification the bug
is in.

	component

	string

	The name of the current component of this bug.

	creation_time

	datetime

	When the bug was created.

	creator

	string

	The login name of the person who filed this bug
(the reporter).

	creator_detail

	object

	An object containing detailed user information
for the creator. To see the keys included in the
user detail object, see below.

	deadline

	string

	The day that this bug is due to be completed, in
the format YYYY-MM-DD.

	depends_on

	array

	The IDs of bugs that this bug “depends on”.

	dupe_of

	int

	The bug ID of the bug that this bug is a
duplicate of. If this bug isn’t a duplicate of
any bug, this will be null.

	estimated_time

	double

	The number of hours that it was estimated that
this bug would take. If you are not in the
time-tracking group, this field will not be
included in the return value.

	flags

	array

	An array of objects containing the information
about flags currently set for the bug. Each flag
objects contains the following items

	groups

	array

	The names of all the groups that this bug is in.

	id

	int

	The unique numeric ID of this bug.

	is_cc_accessible

	boolean

	If true, this bug can be accessed by members of
the CC list, even if they are not in the groups
the bug is restricted to.

	is_confirmed

	boolean

	true if the bug has been confirmed. Usually
this means that the bug has at some point been
moved out of the UNCONFIRMED status and into
another open status.

	is_open

	boolean

	true if this bug is open, false if it
is closed.

	is_creator_accessible

	boolean

	If true, this bug can be accessed by the
creator of the bug, even if they are not a
member of the groups the bug is restricted to.

	keywords

	array

	Each keyword that is on this bug.

	last_change_time

	datetime

	When the bug was last changed.

	op_sys

	string

	The name of the operating system that the bug
was filed against.

	platform

	string

	The name of the platform (hardware) that the bug
was filed against.

	priority

	string

	The priority of the bug.

	product

	string

	The name of the product this bug is in.

	qa_contact

	string

	The login name of the current QA Contact on the
bug.

	qa_contact_detail

	object

	An object containing detailed user information
for the qa_contact. To see the keys included in
the user detail object, see below.

	remaining_time

	double

	The number of hours of work remaining until work
on this bug is complete. If you are not in the
time-tracking group, this field will not be
included in the return value.

	resolution

	string

	The current resolution of the bug, or an empty
string if the bug is open.

	see_also

	array

	The URLs in the See Also field on the bug.

	severity

	string

	The current severity of the bug.

	status

	string

	The current status of the bug.

	summary

	string

	The summary of this bug.

	target_milestone

	string

	The milestone that this bug is supposed to be
fixed by, or for closed bugs, the milestone that
it was fixed for.

	update_token

	string

	The token that you would have to pass to the
process_bug.cgi page in order to update this
bug. This changes every time the bug is updated.
This field is not returned to logged-out users.

	url

	string

	A URL that demonstrates the problem described in
the bug, or is somehow related to the bug report.

	version

	string

	The version the bug was reported against.

	whiteboard

	string

	The value of the “status whiteboard” field on
the bug.

Custom fields:

Every custom field in this installation will also be included in the
return value. Most fields are returned as strings. However, some field types have
different return values.

Normally custom fields are returned by default similar to normal bug fields or
you can specify only custom fields by using _custom in include_fields.

Extra fields:

These fields are returned only by specifying _extra or the field name in
include_fields.

	name

	type

	description

	tags

	array

	Each array item is a tag name. Note that tags are
personal to the currently logged in user and are not the same as
comment tags.

User object:

	name

	type

	description

	id

	int

	The user ID for this user.

	real_name

	string

	The ‘real’ name for this user, if any.

	name

	string

	The user’s Bugzilla login.

	email

	string

	The user’s email address. Currently this is the same value as
the name.

Flag object:

	name

	type

	description

	id

	int

	The ID of the flag.

	name

	string

	The name of the flag.

	type_id

	int

	The type ID of the flag.

	creation_date

	datetime

	The timestamp when this flag was originally created.

	modification_date

	datetime

	The timestamp when the flag was last modified.

	status

	string

	The current status of the flag.

	setter

	string

	The login name of the user who created or last
modified the flag.

	requestee

	string

	The login name of the user this flag has been
requested to be granted or denied. Note, this field
is only returned if a requestee is set.

Custom field object:

You can specify to only return custom fields by specifying _custom or the
field name in include_fields.

	Bug ID Fields: (int)

	Multiple-Selection Fields: (array of strings)

	Date/Time Fields: (datetime)

6.1.3.2. Bug History

Gets the history of changes for particular bugs in the database.

Request

To get the history for a specific bug ID:

GET /rest/bug/(id)/history

To get the history for a bug since a specific date:

GET /rest/bug/(id)/history?new_since=YYYY-MM-DD

	name

	type

	description

	id

	mixed

	An integer bug ID or alias.

	new_since

	datetime

	A datetime timestamp to only show history since.

Response

{
 "bugs": [
 {
 "alias": [],
 "history": [
 {
 "when": "2014-09-23T19:12:17Z",
 "who": "user@bugzilla.org",
 "changes": [
 {
 "added": "P1",
 "field_name": "priority",
 "removed": "P2"
 },
 {
 "removed": "blocker",
 "field_name": "severity",
 "added": "critical"
 }
]
 },
 {
 "when": "2014-09-28T21:03:47Z",
 "who": "user@bugzilla.org",
 "changes": [
 {
 "added": "blocker?",
 "removed": "",
 "field_name": "flagtypes.name"
 }
]
 }
],
 "id": 35
 }
]
}

bugs (array) Bug objects each containing the following items:

	name

	type

	description

	id

	int

	The numeric ID of the bug.

	alias

	array

	The unique aliases of this bug. An empty array will be returned
if this bug has no aliases.

	history

	array

	An array of History objects.

History object:

	name

	type

	description

	when

	datetime

	The date the bug activity/change happened.

	who

	string

	The login name of the user who performed the bug change.

	changes

	array

	An array of Change objects which contain all the changes that
happened to the bug at this time (as specified by when).

Change object:

	name

	type

	description

	field_name

	string

	The name of the bug field that has changed.

	removed

	string

	The previous value of the bug field which has been
deleted by the change.

	added

	string

	The new value of the bug field which has been added
by the change.

	attachment_id

	int

	The ID of the attachment that was changed.
This only appears if the change was to an attachment,
otherwise attachment_id will not be present in this
object.

6.1.3.3. Search Bugs

Allows you to search for bugs based on particular criteria.

Request

To search for bugs:

GET /rest/bug

Unless otherwise specified in the description of a parameter, bugs are
returned if they match exactly the criteria you specify in these
parameters. That is, we don’t match against substrings–if a bug is in
the “Widgets” product and you ask for bugs in the “Widg” product, you
won’t get anything.

Criteria are joined in a logical AND. That is, you will be returned
bugs that match all of the criteria, not bugs that match any of
the criteria.

Each parameter can be either the type it says, or a list of the types
it says. If you pass an array, it means “Give me bugs with any of
these values.” For example, if you wanted bugs that were in either
the “Foo” or “Bar” products, you’d pass:

GET /rest/bug?product=Foo&product=Bar

Some Bugzillas may treat your arguments case-sensitively, depending
on what database system they are using. Most commonly, though, Bugzilla is
not case-sensitive with the arguments passed (because MySQL is the
most-common database to use with Bugzilla, and MySQL is not case sensitive).

In addition to the fields listed below, you may also use criteria that
is similar to what is used in the Advanced Search screen of the Bugzilla
UI. This includes fields specified by Search by Change History and
Custom Search. The easiest way to determine what the field names are and what
format Bugzilla expects is to first construct your query using the
Advanced Search UI, execute it and use the query parameters in they URL
as your query for the REST call.

	name

	type

	description

	alias

	array

	The unique aliases of this bug. An empty array will
be returned if this bug has no aliases.

	assigned_to

	string

	The login name of a user that a bug is assigned to.

	component

	string

	The name of the Component that the bug is in. Note
that if there are multiple Components with the same
name, and you search for that name, bugs in all
those Components will be returned. If you don’t want
this, be sure to also specify the product argument.

	creation_time

	datetime

	Searches for bugs that were created at this time or
later. May not be an array.

	creator

	string

	The login name of the user who created the bug. You
can also pass this argument with the name
reporter, for backwards compatibility with
older Bugzillas.

	id

	int

	The numeric ID of the bug.

	last_change_time

	datetime

	Searches for bugs that were modified at this time
or later. May not be an array.

	limit

	int

	Limit the number of results returned. If the limit
is more than zero and higher than the maximum limit
set by the administrator, then the maximum limit will
be used instead. If you set the limit equal to zero,
then all matching results will be returned instead.

	offset

	int

	Used in conjunction with the limit argument,
offset defines the starting position for the
search. For example, given a search that would
return 100 bugs, setting limit to 10 and
offset to 10 would return bugs 11 through 20
from the set of 100.

	op_sys

	string

	The “Operating System” field of a bug.

	platform

	string

	The Platform (sometimes called “Hardware”) field of
a bug.

	priority

	string

	The Priority field on a bug.

	product

	string

	The name of the Product that the bug is in.

	resolution

	string

	The current resolution–only set if a bug is closed.
You can find open bugs by searching for bugs with an
empty resolution.

	severity

	string

	The Severity field on a bug.

	status

	string

	The current status of a bug (not including its
resolution, if it has one, which is a separate field
above).

	summary

	string

	Searches for substrings in the single-line Summary
field on bugs. If you specify an array, then bugs
whose summaries match any of the passed substrings
will be returned. Note that unlike searching in the
Bugzilla UI, substrings are not split on spaces. So
searching for foo bar will match “This is a foo
bar” but not “This foo is a bar”. ['foo', 'bar'],
would, however, match the second item.

	tags

	string

	Searches for a bug with the specified tag. If you
specify an array, then any bugs that match any of
the tags will be returned. Note that tags are
personal to the currently logged in user.

	target_milestone

	string

	The Target Milestone field of a bug. Note that even
if this Bugzilla does not have the Target Milestone
field enabled, you can still search for bugs by
Target Milestone. However, it is likely that in that
case, most bugs will not have a Target Milestone set
(it defaults to “—” when the field isn’t enabled).

	qa_contact

	string

	The login name of the bug’s QA Contact. Note that
even if this Bugzilla does not have the QA Contact
field enabled, you can still search for bugs by QA
Contact (though it is likely that no bug will have a
QA Contact set, if the field is disabled).

	url

	string

	The “URL” field of a bug.

	version

	string

	The Version field of a bug.

	whiteboard

	string

	Search the “Status Whiteboard” field on bugs for a
substring. Works the same as the summary field
described above, but searches the Status Whiteboard
field.

	quicksearch

	string

	Search for bugs using quicksearch syntax.

Response

The same as Get Bug.

6.1.3.4. Create Bug

This allows you to create a new bug in Bugzilla. If you specify any
invalid fields, an error will be thrown stating which field is invalid.
If you specify any fields you are not allowed to set, they will just be
set to their defaults or ignored.

You cannot currently set all the items here that you can set on enter_bug.cgi.

The WebService interface may allow you to set things other than those listed
here, but realize that anything undocumented here may likely change in the
future.

Request

To create a new bug in Bugzilla.

POST /rest/bug

{
 "product" : "TestProduct",
 "component" : "TestComponent",
 "version" : "unspecified",
 "summary" : "'This is a test bug - please disregard",
 "alias" : "SomeAlias",
 "op_sys" : "All",
 "priority" : "P1",
 "rep_platform" : "All"
}

Some params must be set, or an error will be thrown. These params are
marked in bold.

Some parameters can have defaults set in Bugzilla, by the administrator.
If these parameters have defaults set, you can omit them. These parameters
are marked (defaulted).

Clients that want to be able to interact uniformly with multiple
Bugzillas should always set both the params marked required and those
marked (defaulted), because some Bugzillas may not have defaults set
for (defaulted) parameters, and then this method will throw an error
if you don’t specify them.

	name

	type

	description

	product

	string

	The name of the product the bug is being filed
against.

	component

	string

	The name of a component in the product above.

	summary

	string

	A brief description of the bug being filed.

	version

	string

	A version of the product above; the version the
bug was found in.

	description

	string

	(defaulted) The initial description for this bug.
Some Bugzilla installations require this to not be
blank.

	op_sys

	string

	(defaulted) The operating system the bug was
discovered on.

	platform

	string

	(defaulted) What type of hardware the bug was
experienced on.

	priority

	string

	(defaulted) What order the bug will be fixed in by
the developer, compared to the developer’s other
bugs.

	severity

	string

	(defaulted) How severe the bug is.

	alias

	array

	One or more brief aliases for the bug that can be
used instead of a bug number when accessing this bug.
Must be unique in all of this Bugzilla.

	assigned_to

	string

	A user to assign this bug to, if you don’t want it
to be assigned to the component owner.

	cc

	array

	An array of usernames to CC on this bug.

	comment_is_private

	boolean

	If set to true, the description is private,
otherwise it is assumed to be public.

	groups

	array

	An array of group names to put this bug into. You
can see valid group names on the Permissions tab of
the Preferences screen, or, if you are an
administrator, in the Groups control panel. If you
don’t specify this argument, then the bug will be
added into all the groups that are set as being
“Default” for this product. (If you want to avoid
that, you should specify groups as an empty
array.)

	qa_contact

	string

	If this installation has QA Contacts enabled, you
can set the QA Contact here if you don’t want to
use the component’s default QA Contact.

	status

	string

	The status that this bug should start out as. Note
that only certain statuses can be set on bug
creation.

	resolution

	string

	If you are filing a closed bug, then you will have
to specify a resolution. You cannot currently
specify a resolution of DUPLICATE for new
bugs, though. That must be done with
Update Bug.

	target_milestone

	string

	A valid target milestone for this product.

	flags

	array

	Flags objects to add to the bug. The object format
is described in the Flag object below.

Flag object:

To create a flag, at least the status and the type_id or name must
be provided. An optional requestee can be passed if the flag type is requestable
to a specific user.

	name

	type

	description

	name

	string

	The name of the flag type.

	type_id

	int

	The internal flag type ID.

	status

	string

	The flags new status (i.e. “?”, “+”, “-” or “X” to clear flag).

	requestee

	string

	The login of the requestee if the flag type is requestable
to a specific user.

In addition to the above parameters, if your installation has any custom
fields, you can set them just by passing in the name of the field and
its value as a string.

Response

{
 "id" : 12345
}

	name

	type

	description

	id

	int

	This is the ID of the newly-filed bug.

6.1.3.5. Update Bug

Allows you to update the fields of a bug. Automatically sends emails
out about the changes.

Request

To update the fields of a current bug.

PUT /rest/bug/(id_or_alias)

{
 "ids" : [35],
 "status" : "IN_PROGRESS",
 "keywords" : {
 "add" : ["funny", "stupid"]
 }
}

The params to include in the PUT body as well as the returned data format,
are the same as below. You can specify the ID or alias of the bug to update
either in the URL path and/or in the ids param. You can use both and they
will be combined so you can edit more than one bug at a time.

	name

	type

	description

	id_or_alias

	mixed

	An integer bug ID or alias.

	ids

	array

	The IDs or aliases of the bugs that you want to modify.

All following fields specify the values you want to set on the bugs you are
updating.

	name

	type

	description

	alias

	object

	These specify the aliases of a bug that can be
used instead of a bug number when acessing this
bug. To set these, you should pass a hash as the
value. The object may contain the following
items:

	add (array) Aliases to add to this field.

	remove (array) Aliases to remove from this
field. If the aliases are not already in the
field, they will be ignored.

	set (array) An exact set of aliases to set
this field to, overriding the current value.
If you specify set, then add and
remove will be ignored.

You can only set this if you are modifying a
single bug. If there is more than one bug
specified in ids, passing in a value for
alias will cause an error to be thrown.

For backwards compatibility, you can also
specify a single string. This will be treated as
if you specified the set key above.

	assigned_to

	string

	The full login name of the user this bug is
assigned to.

	blocks

	object

	(Same as depends_on below)

	depends_on

	object

	These specify the bugs that this bug blocks or
depends on, respectively. To set these, you
should pass an object as the value. The object
may contain the following items:

	add (array) Bug IDs to add to this field.

	remove (array) Bug IDs to remove from this
field. If the bug IDs are not already in the
field, they will be ignored.

	set (array of) An exact set of bug IDs to
set this field to, overriding the current
value. If you specify set, then add
and remove will be ignored.

	cc

	object

	The users on the cc list. To modify this field,
pass an object, which may have the following
items:

	add (array) User names to add to the CC
list. They must be full user names, and an
error will be thrown if you pass in an invalid
user name.

	remove (array) User names to remove from
the CC list. They must be full user names, and
an error will be thrown if you pass in an
invalid user name.

	is_cc_accessible

	boolean

	Whether or not users in the CC list are allowed
to access the bug, even if they aren’t in a group
that can normally access the bug.

	comment

	object

	A comment on the change. The object may contain
the following items:

	body (string) The actual text of the
comment. For compatibility with the parameters
to Create Comments, you can also call
this field comment, if you want.

	is_private (boolean) Whether the comment is
private or not. If you try to make a comment
private and you don’t have the permission to,
an error will be thrown.

	comment_is_private

	object

	This is how you update the privacy of comments
that are already on a bug. This is a object,
where the keys are the int ID of comments
(not their count on a bug, like #1, #2, #3, but
their globally-unique ID, as returned by
Get Comments and the value is a
boolean which specifies whether that comment
should become private (true) or public
(false).

The comment IDs must be valid for the bug being
updated. Thus, it is not practical to use this
while updating multiple bugs at once, as a single
comment ID will never be valid on multiple bugs.

	component

	string

	The Component the bug is in.

	deadline

	date

	The Deadline field is a date specifying when the
bug must be completed by, in the format
YYYY-MM-DD.

	dupe_of

	int

	The bug that this bug is a duplicate of. If you
want to mark a bug as a duplicate, the safest
thing to do is to set this value and not set
the status or resolutio fields. They will
automatically be set by Bugzilla to the
appropriate values for duplicate bugs.

	estimated_time

	double

	The total estimate of time required to fix the
bug, in hours. This is the total estimate, not
the amount of time remaining to fix it.

	flags

	array

	An array of Flag change objects. The items needed
are described below.

	groups

	object

	The groups a bug is in. To modify this field,
pass an object, which may have the following
items:

	add (array) The names of groups to add.
Passing in an invalid group name or a group
that you cannot add to this bug will cause an
error to be thrown.

	remove (array) The names of groups to
remove. Passing in an invalid group name or a
group that you cannot remove from this bug
will cause an error to be thrown.

	keywords

	object

	Keywords on the bug. To modify this field, pass
an object, which may have the following items:

	add (array) The names of keywords to add
to the field on the bug. Passing something that
isn’t a valid keyword name will cause an error
to be thrown.

	remove (array) The names of keywords to
remove from the field on the bug. Passing
something that isn’t a valid keyword name will
cause an error to be thrown.

	set (array) An exact set of keywords to set
the field to, on the bug. Passing something
that isn’t a valid keyword name will cause an
error to be thrown. Specifying set
overrides add and remove.

	op_sys

	string

	The Operating System (“OS”) field on the bug.

	platform

	string

	The Platform or “Hardware” field on the bug.

	priority

	string

	The Priority field on the bug.

	product

	string

	The name of the product that the bug is in. If
you change this, you will probably also want to
change target_milestone, version, and
component, since those have different legal
values in every product.

If you cannot change the target_milestone
field, it will be reset to the default for the
product, when you move a bug to a new product.

You may also wish to add or remove groups, as
which groups are
valid on a bug depends on the product. Groups
that are not valid in the new product will be
automatically removed, and groups which are
mandatory in the new product will be automaticaly
added, but no other automatic group changes will
be done.

Note

Users can only move a bug into a product if
they would normally have permission to file
new bugs in that product.

	qa_contact

	string

	The full login name of the bug’s QA Contact.

	is_creator_accessible

	boolean

	Whether or not the bug’s reporter is allowed
to access the bug, even if they aren’t in a group
that can normally access the bug.

	remaining_time

	double

	How much work time is remaining to fix the bug,
in hours. If you set work_time but don’t
explicitly set remaining_time, then the
work_time will be deducted from the bug’s
remaining_time.

	reset_assigned_to

	boolean

	If true, the assigned_to field will be
reset to the default for the component that the
bug is in. (If you have set the component at the
same time as using this, then the component used
will be the new component, not the old one.)

	reset_qa_contact

	boolean

	If true, the qa_contact field will be reset
to the default for the component that the bug is
in. (If you have set the component at the same
time as using this, then the component used will
be the new component, not the old one.)

	resolution

	string

	The current resolution. May only be set if you
are closing a bug or if you are modifying an
already-closed bug. Attempting to set the
resolution to any value (even an empty or null
string) on an open bug will cause an error to be
thrown.

Note

If you change the status field to an open
status, the resolution field will automatically
be cleared, so you don’t have to clear it
manually.

	see_also

	object

	The See Also field on a bug, specifying URLs to
bugs in other bug trackers. To modify this field,
pass an object, which may have the following
items:

	add (array) URLs to add to the field. Each
URL must be a valid URL to a bug-tracker, or
an error will be thrown.

	remove (array) URLs to remove from the
field. Invalid URLs will be ignored.

	severity

	string

	The Severity field of a bug.

	status

	string

	The status you want to change the bug to. Note
that if a bug is changing from open to closed,
you should also specify a resolution.

	summary

	string

	The Summary field of the bug.

	target_milestone

	string

	The bug’s Target Milestone.

	url

	string

	The “URL” field of a bug.

	version

	string

	The bug’s Version field.

	whiteboard

	string

	The Status Whiteboard field of a bug.

	work_time

	double

	The number of hours worked on this bug as part
of this change.
If you set work_time but don’t explicitly
set remaining_time, then the work_time
will be deducted from the bug’s remaining_time.

You can also set the value of any custom field by passing its name as
a parameter, and the value to set the field to. For multiple-selection
fields, the value should be an array of strings.

Flag change object:

The following values can be specified. At least the status and one of
type_id, id, or name must be specified. If a type_id or
name matches a single currently set flag, the flag will be updated unless
new is specified.

	name

	type

	description

	name

	string

	The name of the flag that will be created or updated.

	type_id

	int

	The internal flag type ID that will be created or updated.
You will need to specify the type_id if more than one
flag type of the same name exists.

	status

	string

	The flags new status (i.e. “?”, “+”, “-” or “X” to clear a
flag).

	requestee

	string

	The login of the requestee if the flag type is requestable
to a specific user.

	id

	int

	Use ID to specify the flag to be updated. You will need to
specify the id if more than one flag is set of the same
name.

	new

	boolean

	Set to true if you specifically want a new flag to be
created.

Response

{
 "bugs" : [
 {
 "alias" : [],
 "changes" : {
 "keywords" : {
 "added" : "funny, stupid",
 "removed" : ""
 },
 "status" : {
 "added" : "IN_PROGRESS",
 "removed" : "CONFIRMED"
 }
 },
 "id" : 35,
 "last_change_time" : "2014-09-29T14:25:35Z"
 }
]
}

bugs (array) This points to an array of objects with the following items:

	name

	type

	description

	id

	int

	The ID of the bug that was updated.

	alias

	array

	The aliases of the bug that was updated, if this bug
has any alias.

	last_change_time

	datetime

	The exact time that this update was done at, for
this bug. If no update was done (that is, no fields
had their values changed and no comment was added)
then this will instead be the last time the bug was
updated.

	changes

	object

	The changes that were actually done on this bug. The
keys are the names of the fields that were changed,
and the values are an object with two keys:

	added (string) The values that were added to
this field, possibly a comma-and-space-separated
list if multiple values were added.

	removed (string) The values that were removed
from this field, possibly a
comma-and-space-separated list if multiple values
were removed.

Currently, some fields are not tracked in changes: comment,
comment_is_private, and work_time. This means that they will not
show up in the return value even if they were successfully updated.
This may change in a future version of Bugzilla.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.4. Bug User Last Visited

6.1.4.1. Update Last Visited

Update the last-visited time for the specified bug and current user.

Request

To update the time for a single bug id:

POST /rest/bug_user_last_visit/(id)

To update one or more bug ids at once:

POST /rest/bug_user_last_visit

{
 "ids" : [35,36,37]
}

	name

	type

	description

	id

	int

	An integer bug id.

	ids

	array

	One or more bug ids to update.

Response

[
 {
 "id" : 100,
 "last_visit_ts" : "2014-10-16T17:38:24Z"
 }
]

An array of objects containing the items:

	name

	type

	description

	id

	int

	The bug id.

	last_visit_ts

	datetime

	The timestamp the user last visited the bug.

6.1.4.2. Get Last Visited

Request

Get the last-visited timestamp for one or more specified bug ids or get a
list of the last 20 visited bugs and their timestamps.

To return the last-visited timestamp for a single bug id:

GET /rest/bug_user_last_visit/(id)

To return more than one specific bug timestamps:

GET /rest/bug_user_last_visit/123?ids=234&ids=456

To return just the most recent 20 timestamps:

GET /rest/bug_user_last_visit

	name

	type

	description

	id

	int

	An integer bug id.

	ids

	array

	One or more optional bug ids to get.

Response

[
 {
 "id" : 100,
 "last_visit_ts" : "2014-10-16T17:38:24Z"
 }
]

An array of objects containing the following items:

	name

	type

	description

	id

	int

	The bug id.

	last_visit_ts

	datetime

	The timestamp the user last visited the bug.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.5. Bugzilla Information

These methods are used to get general configuration information about this
Bugzilla instance.

6.1.5.1. Version

Returns the current version of Bugzilla. Normally in the format of X.X or
X.X.X. For example, 4.4 for the initial release of a new branch. Or
4.4.6 for a minor release on the same branch.

Request

GET /rest/version

Response

{
 "version": "4.5.5+"
}

	name

	type

	description

	version

	string

	The current version of this Bugzilla

6.1.5.2. Extensions

Gets information about the extensions that are currently installed and enabled
in this Bugzilla.

Request

GET /rest/extensions

Response

{
 "extensions": {
 "Voting": {
 "version": "4.5.5+"
 },
 "BmpConvert": {
 "version": "1.0"
 }
 }
}

	name

	type

	description

	extensions

	object

	An object containing the extensions enabled as keys.
Each extension object contains the following keys:

	version (string) The version of the extension.

6.1.5.3. Timezone

Returns the timezone in which Bugzilla expects to receive dates and times on the API.
Currently hard-coded to UTC (“+0000”). This is unlikely to change.

Request

GET /rest/timezone

{
 "timezone": "+0000"
}

Response

	name

	type

	description

	timezone

	string

	The timezone offset as a string in (+/-)XXXX (RFC 2822) format.

6.1.5.4. Time

Gets information about what time the Bugzilla server thinks it is, and
what timezone it’s running in.

Request

GET /rest/time

Response

{
 "web_time_utc": "2014-09-26T18:01:30Z",
 "db_time": "2014-09-26T18:01:30Z",
 "web_time": "2014-09-26T18:01:30Z",
 "tz_offset": "+0000",
 "tz_short_name": "UTC",
 "tz_name": "UTC"
}

	name

	type

	description

	db_time

	string

	The current time in UTC, according to the Bugzilla
database server.

Note that Bugzilla assumes that the database and the
webserver are running in the same time zone. However,
if the web server and the database server aren’t
synchronized or some reason, this is the time that
you should rely on or doing searches and other input
to the WebService.

	web_time

	string

	This is the current time in UTC, according to
Bugzilla’s web server.

This might be different by a second from db_time
since this comes from a different source. If it’s any
more different than a second, then there is likely
some problem with this Bugzilla instance. In this
case you should rely on the db_time, not the
web_time.

	web_time_utc

	string

	Identical to web_time. (Exists only for
backwards-compatibility with versions of Bugzilla
before 3.6.)

	tz_name

	string

	The literal string UTC. (Exists only for
backwards-compatibility with versions of Bugzilla
before 3.6.)

	tz_short_name

	string

	The literal string UTC. (Exists only for
backwards-compatibility with versions of Bugzilla
before 3.6.)

	tz_offset

	string

	The literal string +0000. (Exists only for
backwards-compatibility with versions of Bugzilla
before 3.6.)

6.1.5.5. Parameters

Returns parameter values currently used in this Bugzilla.

Request

GET /rest/parameters

Response

Example response for anonymous user:

{
 "parameters" : {
 "maintainer" : "admin@example.com",
 "requirelogin" : "0"
 }
}

Example response for authenticated user:

{
 "parameters" : {
 "allowemailchange" : "1",
 "attachment_base" : "http://bugzilla.example.com/",
 "commentonchange_resolution" : "0",
 "commentonduplicate" : "0",
 "cookiepath" : "/",
 "createemailregexp" : ".*",
 "defaultopsys" : "",
 "defaultplatform" : "",
 "defaultpriority" : "--",
 "defaultseverity" : "normal",
 "duplicate_or_move_bug_status" : "RESOLVED",
 "emailregexp" : "^[\\w\\.\\+\\-=']+@[\\w\\.\\-]+\\.[\\w\\-]+$",
 "emailsuffix" : "",
 "letsubmitterchoosemilestone" : "1",
 "letsubmitterchoosepriority" : "1",
 "mailfrom" : "bugzilla-daemon@example.com",
 "maintainer" : "admin@example.com",
 "maxattachmentsize" : "1000",
 "maxlocalattachment" : "0",
 "musthavemilestoneonaccept" : "0",
 "noresolveonopenblockers" : "0",
 "password_complexity" : "no_constraints",
 "rememberlogin" : "on",
 "requirelogin" : "0",
 "urlbase" : "http://bugzilla.example.com/",
 "use_see_also" : "1",
 "useclassification" : "1",
 "usemenuforusers" : "0",
 "useqacontact" : "1",
 "usestatuswhiteboard" : "1",
 "usetargetmilestone" : "1",
 }
}

A logged-out user can only access the maintainer and requirelogin
parameters.

A logged-in user can access the following parameters (listed alphabetically):

	allowemailchange

	attachment_base

	commentonchange_resolution

	commentonduplicate

	cookiepath

	defaultopsys

	defaultplatform

	defaultpriority

	defaultseverity

	duplicate_or_move_bug_status

	emailregexpdesc

	emailsuffix

	letsubmitterchoosemilestone

	letsubmitterchoosepriority

	mailfrom

	maintainer

	maxattachmentsize

	maxlocalattachment

	musthavemilestoneonaccept

	noresolveonopenblockers

	password_complexity

	rememberlogin

	requirelogin

	search_allow_no_criteria

	urlbase

	use_see_also

	useclassification

	usemenuforusers

	useqacontact

	usestatuswhiteboard

	usetargetmilestone

A user in the tweakparams group can access all existing parameters.
New parameters can appear or obsolete parameters can disappear depending
on the version of Bugzilla and on extensions being installed.
The list of parameters returned by this method is not stable and will
never be stable.

6.1.5.6. Last Audit Time

Gets the most recent timestamp among all of the events recorded in the audit_log
table.

Request

To get most recent audit timestamp for all classes:

GET /rest/last_audit_time

To get the the most recent audit timestamp for the Bugzilla::Product class:

GET /rest/last_audit_time?class=Bugzilla::Product

	name

	type

	description

	class

	array

	The class names are defined as Bugzilla::<class_name>" such as
Bugzilla:Product`` for products.

Response

{
 "last_audit_time": "2014-09-23T18:03:38Z"
}

	name

	type

	description

	last_audit_time

	string

	The maximum of the at_time from the audit_log.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.6. Classifications

This part of the Bugzilla API allows you to deal with the available
classifications. You will be able to get information about them as well as
manipulate them.

6.1.6.1. Get Classification

Returns an object containing information about a set of classifications.

Request

To return information on a single classification using the ID or name:

GET /rest/classification/(id_or_name)

	name

	type

	description

	id_or_name

	mixed

	An Integer classification ID or name.

Response

{
 "classifications": [
 {
 "sort_key": 0,
 "description": "Unassigned to any classifications",
 "products": [
 {
 "id": 2,
 "name": "FoodReplicator",
 "description": "Software that controls a piece of hardware that will create any food item through a voice interface."
 },
 {
 "description": "Silk, etc.",
 "name": "Spider Secretions",
 "id": 4
 }
],
 "id": 1,
 "name": "Unclassified"
 }
]
}

classifications (array) Each object is a classification that the user is
authorized to see and has the following items:

	name

	type

	description

	id

	int

	The ID of the classification.

	name

	string

	The name of the classification.

	description

	string

	The description of the classificaion.

	sort_key

	int

	The value which determines the order the classification is
sorted.

	products

	array

	Products the user is authorized to
access within the classification. Each hash has the
following keys:

Product object:

	name

	type

	description

	name

	string

	The name of the product.

	id

	int

	The ID of the product.

	description

	string

	The description of the product.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.7. Comments

6.1.7.1. Get Comments

This allows you to get data about comments, given a bug ID or comment ID.

Request

To get all comments for a particular bug using the bug ID or alias:

GET /rest/bug/(id_or_alias)/comment

To get a specific comment based on the comment ID:

GET /rest/bug/comment/(comment_id)

	name

	type

	description

	id_or_alias

	mixed

	A single integer bug ID or alias.

	comment_id

	int

	A single integer comment ID.

	new_since

	datetime

	If specified, the method will only return comments
newer than this time. This only affects comments
returned from the ids argument. You will always be
returned all comments you request in the
comment_ids argument, even if they are older than
this date.

Response

{
 "bugs": {
 "35": {
 "comments": [
 {
 "time": "2000-07-25T13:50:04Z",
 "text": "test bug to fix problem in removing from cc list.",
 "bug_id": 35,
 "count": 0,
 "attachment_id": null,
 "is_private": false,
 "tags": [],
 "creator": "user@bugzilla.org",
 "creation_time": "2000-07-25T13:50:04Z",
 "id": 75
 }
]
 }
 },
 "comments": {}
}

Two items are returned:

bugs This is used for bugs specified in ids. This is an object,
where the keys are the numeric IDs of the bugs, and the value is
a object with a single key, comments, which is an array of comments.
(The format of comments is described below.)

Any individual bug will only be returned once, so if you specify an ID
multiple times in ids, it will still only be returned once.

comments Each individual comment requested in comment_ids is
returned here, in a object where the numeric comment ID is the key,
and the value is the comment. (The format of comments is described below.)

A “comment” as described above is a object that contains the following items:

	name

	type

	description

	id

	int

	The globally unique ID for the comment.

	bug_id

	int

	The ID of the bug that this comment is on.

	attachment_id

	int

	If the comment was made on an attachment, this will be
the ID of that attachment. Otherwise it will be null.

	count

	int

	The number of the comment local to the bug. The
Description is 0, comments start with 1.

	text

	string

	The actual text of the comment.

	creator

	string

	The login name of the comment’s author.

	time

	datetime

	The time (in Bugzilla’s timezone) that the comment was
added.

	creation_time

	datetime

	This is exactly same as the time key. Use this
field instead of time for consistency with other
methods including Get Bug and
Get Attachment.

For compatibility, time is still usable. However,
please note that time may be deprecated and removed
in a future release.

	is_private

	boolean

	true if this comment is private (only visible to a
certain group called the “insidergroup”), false
otherwise.

6.1.7.2. Create Comments

This allows you to add a comment to a bug in Bugzilla.

Request

To create a comment on a current bug.

POST /rest/bug/(id)/comment

{
 "comment" : "This is an additional comment",
 "is_private" : false
}

	name

	type

	description

	id

	int

	The ID or alias of the bug to append a comment to.

	comment

	string

	The comment to append to the bug. If this is empty
or all whitespace, an error will be thrown saying that you
did not set the comment parameter.

	is_private

	boolean

	If set to true, the comment is private, otherwise it is
assumed to be public.

	work_time

	double

	Adds this many hours to the “Hours Worked” on the bug.
If you are not in the time tracking group, this value will
be ignored.

Response

{
 "id" : 789
}

	name

	type

	description

	id

	int

	ID of the newly-created comment.

6.1.7.3. Search Comment Tags

Searches for tags which contain the provided substring.

Request

To search for comment tags:

GET /rest/bug/comment/tags/(query)

Example:

GET /rest/bug/comment/tags/spa

	name

	type

	description

	query

	string

	Only tags containg this substring will be returned.

	limit

	int

	If provided will return no more than limit tags.
Defaults to 10.

Response

[
 "spam"
]

An array of matching tags.

6.1.7.4. Update Comment Tags

Adds or removes tags from a comment.

Request

To update the tags comments attached to a comment:

PUT /rest/bug/comment/(comment_id)/tags

Example:

{
 "comment_id" : 75,
 "add" : ["spam", "bad"]
}

	name

	type

	description

	comment_id

	int

	The ID of the comment to update.

	add

	array

	The tags to attach to the comment.

	remove

	array

	The tags to detach from the comment.

Response

[
 "bad",
 "spam"
]

An array of strings containing the comment’s updated tags.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.8. Components

This part of the Bugzilla API allows you to deal with the available product
components. You will be able to get information about them as well as manipulate
them.

6.1.8.1. Create Component

This allows you to create a new component in Bugzilla. You must be authenticated
and be in the editcomponents group to perform this action.

Request

To create a new component:

POST /rest/component

{
 "product" : "TestProduct",
 "name" : "New Component",
 "description" : "This is a new component",
 "default_assignee" : "dkl@mozilla.com"
}

Some params must be set, or an error will be thrown. These params are
shown in bold.

	name

	type

	description

	name

	string

	The name of the new component.

	product

	string

	The name of the product that the component must
be added to. This product must already exist, and
the user have the necessary permissions to edit
components for it.

	description

	string

	The description of the new component.

	default_assignee

	string

	The login name of the default assignee of the
component.

	default_cc

	array

	Each string representing one login name of the
default CC list.

	default_qa_contact

	string

	The login name of the default QA contact for the
component.

	is_open

	boolean

	1 if you want to enable the component for bug
creations. 0 otherwise. Default is 1.

Response

{
 "id": 27
}

	name

	type

	description

	id

	int

	The ID of the newly-added component.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.9. Bug Fields

The Bugzilla API for getting details about bug fields.

6.1.9.1. Fields

Get information about valid bug fields, including the lists of legal values
for each field.

Request

To get information about all fields:

GET /rest/field/bug

To get information related to a single field:

GET /rest/field/bug/(id_or_name)

	name

	type

	description

	id_or_name

	mixed

	An integer field ID or string representing the field name.

Response

{
 "fields": [
 {
 "display_name": "Priority",
 "name": "priority",
 "type": 2,
 "is_mandatory": false,
 "value_field": null,
 "values": [
 {
 "sortkey": 100,
 "sort_key": 100,
 "visibility_values": [],
 "name": "P1"
 },
 {
 "sort_key": 200,
 "name": "P2",
 "visibility_values": [],
 "sortkey": 200
 },
 {
 "sort_key": 300,
 "visibility_values": [],
 "name": "P3",
 "sortkey": 300
 },
 {
 "sort_key": 400,
 "name": "P4",
 "visibility_values": [],
 "sortkey": 400
 },
 {
 "name": "P5",
 "visibility_values": [],
 "sort_key": 500,
 "sortkey": 500
 }
],
 "visibility_values": [],
 "visibility_field": null,
 "is_on_bug_entry": false,
 "is_custom": false,
 "id": 13
 }
]
}

field (array) Field objects each containing the following items:

	name

	type

	description

	id

	int

	An integer ID uniquely identifying this field in this
installation only.

	type

	int

	The number of the fieldtype. The following values are
defined:

	0 Field type unknown

	1 Single-line string field

	2 Single value field

	3 Multiple value field

	4 Multi-line text value

	5 Date field with time

	6 Bug ID field

	7 See Also field

	8 Keywords field

	9 Date field

	10 Integer field

	is_custom

	boolean

	true when this is a custom field, false
otherwise.

	name

	string

	The internal name of this field. This is a unique
identifier for this field. If this is not a custom
field, then this name will be the same across all
Bugzilla installations.

	display_name

	string

	The name of the field, as it is shown in the user
interface.

	is_mandatory

	boolean

	true if the field must have a value when filing
new bugs. Also, mandatory fields cannot have their
value cleared when updating bugs.

	is_on_bug_entry

	boolean

	For custom fields, this is true if the field is
shown when you enter a new bug. For standard fields,
this is currently always false, even if the field
shows up when entering a bug. (To know whether or not
a standard field is valid on bug entry, see
Create Bug.

	visibility_field

	string

	The name of a field that controls the visibility of
this field in the user interface. This field only
appears in the user interface when the named field is
equal to one of the values is visibility_values.
Can be null.

	visibility_values

	array

	This field is only shown when visibility_field
matches one of these string values. When
visibility_field is null, then this is an empty
array.

	value_field

	string

	The name of the field that controls whether or not
particular values of the field are shown in the user
interface. Can be null.

	values

	array

	Objects representing the legal values for
select-type (drop-down and multiple-selection)
fields. This is also populated for the
component, version, target_milestone,
and keywords fields, but not for the product
field (you must use get_accessible_products for
that). For fields that aren’t select-type fields,
this will simply be an empty array. Each object
contains the items described in the Value object
below.

Value object:

	name

	type

	description

	name

	string

	The actual value–this is what you would specify for
this field in create, etc.

	sort_key

	int

	Values, when displayed in a list, are sorted first by
this integer and then secondly by their name.

	visibility_values

	array

	If value_field is defined for this field, then
this value is only shown if the value_field is
set to one of the values listed in this array. Note
that for per-product fields, value_field is set
to product and visibility_values will reflect
which product(s) this value appears in.

	is_active

	boolean

	This value is defined only for certain
product-specific fields such as version,
target_milestone or component. When true, the value
is active; otherwise the value is not active.

	description

	string

	The description of the value. This item is only
included for the keywords field.

	is_open

	boolean

	For bug_status values, determines whether this
status specifies that the bug is “open” (true)
or “closed” (false). This item is only included
for the bug_status field.

	can_change_to

	array

	For bug_status values, this is an array of
objects that determine which statuses you can
transition to from this status. (This item is only
included for the bug_status field.)

Each object contains the following items:

	name: (string) The name of the new status

	comment_required: (boolean) true if a comment
is required when you change a bug into this status
using this transition.

6.1.9.2. Legal Values

DEPRECATED Use ‘’Fields’’ instead.

Tells you what values are allowed for a particular field.

Request

To get information on the values for a field based on field name:

GET /rest/field/bug/(field)/values

To get information based on field name and a specific product:

GET /rest/field/bug/(field)/(product_id)/values

	name

	type

	description

	field

	string

	The name of the field you want information about.
This should be the same as the name you would use in
Create Bug, below.

	product_id

	int

	If you’re picking a product-specific field, you have to
specify the ID of the product you want the values for.

Resppnse

{
 "values": [
 "P1",
 "P2",
 "P3",
 "P4",
 "P5"
]
}

	name

	type

	description

	values

	array

	The legal values for this field. The values will be sorted
as they normally would be in Bugzilla.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.10. Flag Types

This part of the Bugzilla API allows you to get and create bug and attachment
flags.

6.1.10.1. Get Flag Type

Get information about valid flag types that can be set for bugs and attachments.

Request

To get information about all flag types for a product:

GET /rest/flag_type/(product)

To get information about flag_types for a product and component:

GET /rest/flag_type/(product)/(component)

{
 "bug": [
 {
 "is_multiplicable": false,
 "is_requesteeble": false,
 "values": [
 "X",
 "?",
 "+",
 "-"
],
 "id": 11,
 "type": "bug",
 "is_active": true,
 "description": "Blocks the next release",
 "name": "blocker"
 },
 {
 "is_requesteeble": false,
 "is_multiplicable": false,
 "is_active": true,
 "description": "Regression found?",
 "name": "regression",
 "id": 10,
 "type": "bug",
 "values": [
 "X",
 "?",
 "+",
 "-"
]
 },
],
 "attachment": [
 {
 "is_requesteeble": true,
 "is_multiplicable": true,
 "name": "review",
 "is_active": true,
 "description": "Review the patch for correctness and applicability to the problem.",
 "type": "attachment",
 "id": 1,
 "values": [
 "X",
 "?",
 "+",
 "-"
]
 },
 {
 "name": "approval",
 "description": "Approve the patch for check-in to the tree.",
 "is_active": true,
 "values": [
 "X",
 "?",
 "+",
 "-"
],
 "type": "attachment",
 "id": 3,
 "is_multiplicable": false,
 "is_requesteeble": false
 }
]
}

You must pass a product name and an optional component name. If the product or
component names contains a / character, up will need to url encode it.

	name

	type

	description

	product

	string

	The name of a valid product.

	component

	string

	An optional valid component name associated with the
product.

Response

An object containing two items, bug and attachment. Each value is an
array of objects, containing the following items:

	name

	type

	description

	id

	int

	An integer ID uniquely identifying this flag type.

	name

	string

	The name for the flag type.

	type

	string

	The target of the flag type which is either bug
or attachment.

	description

	string

	The description of the flag type.

	values

	array

	String values that the user can set on the flag type.

	is_requesteeble

	boolean

	Users can ask specific other users to set flags of
this type.

	is_multiplicable

	boolean

	Multiple flags of this type can be set for the same
bug or attachment.

6.1.10.2. Create Flag Type

Create a new flag type. You must be authenticated and be in the editcomponents
group to perform this action.

Request

POST /rest/flag_type

{
 "name" : "feedback",
 "description" : "This attachment needs feedback",
 "inclusions" : ["WorldControl "],
 "target_type" : "attachment"
}

Some params must be set, or an error will be thrown. The required params are
marked in bold.

	name

	type

	description

	name

	string

	The name of the new flag type.

	description

	string

	A description for the flag type.

	target_type

	string

	The new flag is either for a bug or an
attachment.

	inclusions

	array

	An array of strings or an object containing
product names, and optionally component
names. If you provide a string, the flag
type will be shown on all bugs in that
product. If you provide an object, the key
represents the product name, and the value
is the components of the product to be
included.

	exclusions

	array

	An array of strings or an object containing
product names. This uses the same format as
inclusions. This will exclude the flag
from all products and components specified.

	sortkey

	int

	A number between 1 and 32767 by which this
type will be sorted when displayed to users
in a list; ignore if you don’t care what
order the types appear in or if you want
them to appear in alphabetical order.

	is_active

	boolean

	Flag of this type appear in the UI and can
be set. Default is true.

	is_requestable

	boolean

	Users can ask for flags of this type to be
set. Default is true.

	cc_list

	array

	If the flag type is requestable, who should
receive e-mail notification of requests.
This is an array of e-mail addresses whichdo not need to be Bugzilla logins.

	is_specifically_requestable

	boolean

	Users can ask specific other users to
set flags of this type as opposed to just
asking the wind. Default is true.

	is_multiplicable

	boolean

	Multiple flags of this type can be set on
the same bug. Default is true.

	grant_group

	string

	The group allowed to grant/deny flags of
this type (to allow all users to grant/deny
these flags, select no group). Default is
no group.

	request_group

	string

	If flags of this type are requestable, the
group allowed to request them (to allow all
users to request these flags, select no
group). Note that the request group alone
has no effect if the grant group is not
defined! Default is no group.

An example for inclusions and/or exclusions:

[
 "FooProduct"
]

{
 "BarProduct" : ["C1", "C3"],
 "BazProduct" : ["C7"]
}

This flag will be added to all components of FooProduct, components C1
and C3 of BarProduct, and C7 of BazProduct.

Response

{
 "id": 13
}

	name

	type

	description

	flag_id

	int

	ID of the new FlagType object is returned.

6.1.10.3. Update Flag Type

This allows you to update a flag type in Bugzilla. You must be authenticated
and be in the editcomponents group to perform this action.

Request

PUT /rest/flag_type/(id_or_name)

{
 "ids" : [13],
 "name" : "feedback-new",
 "is_requestable" : false
}

You can edit a single flag type by passing the ID or name of the flag type
in the URL. To edit more than one flag type, you can specify addition IDs or
flag type names using the ids or names parameters respectively.

One of the below must be specified.

	name

	type

	description

	id_or_name

	mixed

	Integer flag type ID or name.

	ids

	array

	Numeric IDs of the flag types that you wish to update.

	names

	array

	Names of the flag types that you wish to update. If many
flag types have the same name, this will change all
of them.

The following parameters specify the new values you want to set for the flag
types you are updating.

	name

	type

	description

	name

	string

	A short name identifying this type.

	description

	string

	A comprehensive description of this type.

	inclusions

	array

	An array of strings or an object containing
product names, and optionally component
names. If you provide a string, the flag
type will be shown on all bugs in that
product. If you provide an object, the key
represents the product name, and the value
is the components of the product to be
included.

	exclusions

	array

	An array of strings or an object containing
product names. This uses the same format as
inclusions. This will exclude the flag
from all products and components specified.

	sortkey

	int

	A number between 1 and 32767 by which this
type will be sorted when displayed to users
in a list; ignore if you don’t care what
order the types appear in or if you want
them to appear in alphabetical order.

	is_active

	boolean

	Flag of this type appear in the UI and can
be set.

	is_requestable

	boolean

	Users can ask for flags of this type to be
set.

	cc_list

	array

	If the flag type is requestable, who should
receive e-mail notification of requests.
This is an array of e-mail addresses
which do not need to be Bugzilla logins.

	is_specifically_requestable

	boolean

	Users can ask specific other users to set
flags of this type as opposed to just
asking the wind.

	is_multiplicable

	boolean

	Multiple flags of this type can be set on
the same bug.

	grant_group

	string

	The group allowed to grant/deny flags of
this type (to allow all users to grant/deny
these flags, select no group).

	request_group

	string

	If flags of this type are requestable, the
group allowed to request them (to allow all
users to request these flags, select no
group). Note that the request group alone
has no effect if the grant group is not
defined!

An example for inclusions and/or exclusions:

[
 "FooProduct",
]

{
 "BarProduct" : ["C1", "C3"],
 "BazProduct" : ["C7"]
}

This flag will be added to all components of FooProduct,
components C1 and C3 of BarProduct, and C7 of BazProduct.

Response

{
 "flagtypes": [
 {
 "name": "feedback-new",
 "changes": {
 "is_requestable": {
 "added": "0",
 "removed": "1"
 },
 "name": {
 "removed": "feedback",
 "added": "feedback-new"
 }
 },
 "id": 13
 }
]
}

flagtypes (array) Flag change objects containing the following items:

	name

	type

	description

	id

	int

	The ID of the flag type that was updated.

	name

	string

	The name of the flag type that was updated.

	changes

	object

	The changes that were actually done on this flag type.
The keys are the names of the fields that were changed, and the
values are an object with two items:

	added: (string) The value that this field was changed to.

	removed: (string) The value that was previously set in this
field.

Booleans changes will be represented with the strings ‘1’ and ‘0’.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.11. Groups

The API for creating, changing, and getting information about groups.

6.1.11.1. Create Group

This allows you to create a new group in Bugzilla. You must be authenticated and
be in the creategroups group to perform this action.

Request

POST /rest/group

{
 "name" : "secret-group",
 "description" : "Too secret for you!",
 "is_active" : true
}

Some params must be set, or an error will be thrown. The required params are
marked in bold.

	name

	type

	description

	name

	string

	A short name for this group. Must be unique. This
is not usually displayed in the user interface, except
in a few places.

	description

	string

	A human-readable name for this group. Should be
relatively short. This is what will normally appear in
the UI as the name of the group.

	user_regexp

	string

	A regular expression. Any user whose Bugzilla username
matches this regular expression will automatically be
granted membership in this group.

	is_active

	boolean

	true if new group can be used for bugs, false
if this is a group that will only contain users and no
bugs will be restricted to it.

	icon_url

	string

	A URL pointing to a small icon used to identify the
group. This icon will show up next to users’ names in
various parts of Bugzilla if they are in this group.

Response

{
 "id": 22
}

	name

	type

	description

	id

	int

	ID of the newly-created group.

6.1.11.2. Update Group

This allows you to update a group in Bugzilla. You must be authenticated and be
in the creategroups group to perform this action.

Request

To update a group using the group ID or name:

PUT /rest/group/(id_or_name)

{
 "name" : "secret-group",
 "description" : "Too secret for you! (updated description)",
 "is_active" : false
}

You can edit a single group by passing the ID or name of the group
in the URL. To edit more than one group, you can specify addition IDs or
group names using the ids or names parameters respectively.

One of the below must be specified.

	name

	type

	description

	id_or_name

	mixed

	Integer group or name.

	ids

	array

	IDs of groups to update.

	names

	array

	Names of groups to update.

The following parameters specify the new values you want to set for the group(s)
you are updating.

	name

	type

	description

	name

	string

	A new name for the groups. If you try to set this while
updating more than one group, an error will occur, as
group names must be unique.

	description

	string

	A new description for the groups. This is what will appear
in the UI as the name of the groups.

	user_regexp

	string

	A new regular expression for email. Will automatically
grant membership to these groups to anyone with an email
address that matches this perl regular expression.

	is_active

	boolean

	Set if groups are active and eligible to be used for bugs.
true if bugs can be restricted to this group, false
otherwise.

	icon_url

	string

	A URL pointing to an icon that will appear next to the name
of users who are in this group.

Response

{
 "groups": [
 {
 "changes": {
 "description": {
 "added": "Too secret for you! (updated description)",
 "removed": "Too secret for you!"
 },
 "is_active": {
 "removed": "1",
 "added": "0"
 }
 },
 "id": "22"
 }
]
}

groups (array) Group change objects, each containing the following items:

	name

	type

	description

	id

	int

	The ID of the group that was updated.

	changes

	object

	The changes that were actually done on this group. The
keys are the names of the fields that were changed, and the
values are an object with two items:

	added: (string) The values that were added to this field,
possibly a comma-and-space-separated list if multiple values
were added.

	removed: (string) The values that were removed from this
field, possibly a comma-and-space-separated list if multiple
values were removed.

6.1.11.3. Get Group

Returns information about Bugzilla groups.

Request

To return information about a specific group ID or name:

GET /rest/group/(id_or_name)

You can also return information about more than one specific group by using the
following in your query string:

GET /rest/group?ids=1&ids=2&ids=3
GET /group?names=ProductOne&names=Product2

If neither IDs nor names are passed, and you are in the creategroups or
editusers group, then all groups will be retrieved. Otherwise, only groups
that you have bless privileges for will be returned.

	name

	type

	description

	id_or_name

	mixed

	Integer group ID or name.

	ids

	array

	Integer IDs of groups.

	names

	array

	Names of groups.

	membership

	boolean

	Set to 1 then a list of members of the passed groups names
and IDs will be returned.

Response

{
 "groups": [
 {
 "membership": [
 {
 "real_name": "Bugzilla User",
 "can_login": true,
 "name": "user@bugzilla.org",
 "login_denied_text": "",
 "id": 85,
 "email_enabled": false,
 "email": "user@bugzilla.org"
 },
],
 "is_active": true,
 "description": "Test Group",
 "user_regexp": "",
 "is_bug_group": true,
 "name": "TestGroup",
 "id": 9
 }
]
}

If the user is a member of the creategroups group they will receive
information about all groups or groups matching the criteria that they passed.
You have to be in the creategroups group unless you’re requesting membership
information.

If the user is not a member of the creategroups group, but they are in the
“editusers” group or have bless privileges to the groups they require
membership information for, the is_active, is_bug_group and user_regexp values
are not supplied.

The return value will be an object containing group names as the keys; each
value will be an object that describes the group and has the following items:

	name

	type

	description

	id

	int

	The unique integer ID that Bugzilla uses to identify this
group. Even if the name of the group changes, this ID will
stay the same.

	name

	string

	The name of the group.

	description

	string

	The description of the group.

	is_bug_group

	int

	Whether this group is to be used for bug reports or is
only administrative specific.

	user_regexp

	string

	A regular expression that allows users to be added to
this group if their login matches.

	is_active

	int

	Whether this group is currently active or not.

	users

	array

	User objects that are members of this group; only
returned if the user sets the membership parameter to
1. Each user object has the items describe in the User
object below.

User object:

	name

	type

	description

	id

	int

	The ID of the user.

	real_name

	string

	The actual name of the user.

	email

	string

	The email address of the user.

	name

	string

	The login name of the user. Note that in some situations
this is different than their email.

	can_login

	boolean

	A boolean value to indicate if the user can login into
bugzilla.

	email_enabled

	boolean

	A boolean value to indicate if bug-related mail will
be sent to the user or not.

	disabled_text

	string

	A text field that holds the reason for disabling a user
from logging into Bugzilla. If empty, then the user
account is enabled; otherwise it is disabled/closed.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.12. Products

This part of the Bugzilla API allows you to list the available products and
get information about them.

6.1.12.1. List Products

Returns a list of the IDs of the products the user can search on.

Request

To get a list of product IDs a user can select such as for querying bugs:

GET /rest/product_selectable

To get a list of product IDs a user can enter a bug against:

GET /rest/product_enterable

To get a list of product IDs a user can search or enter bugs against.

GET /rest/product_accessible

Response

{
 "ids": [
 "2",
 "3",
 "19",
 "1",
 "4"
]
}

	name

	type

	description

	ids

	array

	List of integer product IDs.

6.1.12.2. Get Product

Returns a list of information about the products passed to it.

Request

To return information about a specific type of products such as
accessible, selectable, or enterable:

GET /rest/product?type=accessible

To return information about a specific product by id or name:

GET /rest/product/(id_or_name)

You can also return information about more than one product by using the
following parameters in your query string:

GET /rest/product?ids=1&ids=2&ids=3
GET /rest/product?names=ProductOne&names=Product2

	name

	type

	description

	id_or_name

	mixed

	Integer product ID or product name.

	ids

	array

	Product IDs

	names

	array

	Product names

	type

	string

	The group of products to return. Valid values are
accessible (default), selectable, and enterable.
type can be a single value or an array of values if more
than one group is needed with duplicates removed.

Response

{
 "products": [
 {
 "id": 1,
 "default_milestone": "---",
 "components": [
 {
 "is_active": true,
 "default_assigned_to": "admin@bugzilla.org",
 "id": 1,
 "sort_key": 0,
 "name": "TestComponent",
 "flag_types": {
 "bug": [
 {
 "is_active": true,
 "grant_group": null,
 "cc_list": "",
 "is_requestable": true,
 "id": 3,
 "is_multiplicable": true,
 "name": "needinfo",
 "request_group": null,
 "is_requesteeble": true,
 "sort_key": 0,
 "description": "needinfo"
 }
],
 "attachment": [
 {
 "description": "Review",
 "is_multiplicable": true,
 "name": "review",
 "is_requesteeble": true,
 "request_group": null,
 "sort_key": 0,
 "cc_list": "",
 "grant_group": null,
 "is_requestable": true,
 "id": 2,
 "is_active": true
 }
]
 },
 "default_qa_contact": "",
 "description": "This is a test component."
 }
],
 "is_active": true,
 "classification": "Unclassified",
 "versions": [
 {
 "id": 1,
 "name": "unspecified",
 "is_active": true,
 "sort_key": 0
 }
],
 "description": "This is a test product.",
 "has_unconfirmed": true,
 "milestones": [
 {
 "name": "---",
 "is_active": true,
 "sort_key": 0,
 "id": 1
 }
],
 "name": "TestProduct"
 }
]
}

products (array) Each product object has the following items:

	name

	type

	description

	id

	int

	An integer ID uniquely identifying the product in
this installation only.

	name

	string

	The name of the product. This is a unique identifier
for the product.

	description

	string

	A description of the product, which may contain HTML.

	is_active

	boolean

	A boolean indicating if the product is active.

	default_milestone

	string

	The name of the default milestone for the product.

	has_unconfirmed

	boolean

	Indicates whether the UNCONFIRMED bug status is
available for this product.

	classification

	string

	The classification name for the product.

	components

	array

	Each component object has the items described in the
Component object below.

	versions

	array

	Each object describes a version, and has the
following items: name, sort_key and
is_active.

	milestones

	array

	Each object describes a milestone, and has the
following items: name, sort_key and
is_active.

If the user tries to access a product that is not in the list of accessible
products for the user, or a product that does not exist, that is silently
ignored, and no information about that product is returned.

Component object:

	name

	type

	description

	id

	int

	An integer ID uniquely identifying the component in
this installation only.

	name

	string

	The name of the component. This is a unique
identifier for this component.

	description

	string

	A description of the component, which may contain
HTML.

	default_assigned_to

	string

	The login name of the user to whom new bugs
will be assigned by default.

	default_qa_contact

	string

	The login name of the user who will be set as
the QA Contact for new bugs by default. Empty
string if the QA contact is not defined.

	sort_key

	int

	Components, when displayed in a list, are sorted
first by this integer and then secondly by their
name.

	is_active

	boolean

	A boolean indicating if the component is active.
Inactive components are not enabled for new bugs.

	flag_types

	object

	An object containing two items bug and
attachment that each contains an array of
objects, where each describes a flagtype. The
flagtype items are described in the Flagtype
object below.

Flagtype object:

	name

	type

	description

	id

	int

	Returns the ID of the flagtype.

	name

	string

	Returns the name of the flagtype.

	description

	string

	Returns the description of the flagtype.

	cc_list

	string

	Returns the concatenated CC list for the flagtype, as
a single string.

	sort_key

	int

	Returns the sortkey of the flagtype.

	is_active

	boolean

	Returns whether the flagtype is active or disabled.
Flags being in a disabled flagtype are not deleted.
It only prevents you from adding new flags to it.

	is_requestable

	boolean

	Returns whether you can request for the given
flagtype (i.e. whether the ‘?’ flag is available or
not).

	is_requesteeble

	boolean

	Returns whether you can ask someone specifically
or not.

	is_multiplicable

	boolean

	Returns whether you can have more than one
flag for the given flagtype in a given bug/attachment.

	grant_group

	int

	the group ID that is allowed to grant/deny flags of
this type. If the item is not included all users are
allowed to grant/deny this flagtype.

	request_group

	int

	The group ID that is allowed to request the flag if
the flag is of the type requestable. If the item is
not included all users are allowed request this
flagtype.

6.1.12.3. Create Product

This allows you to create a new product in Bugzilla.

Request

POST /rest/product

{
 "name" : "AnotherProduct",
 "description" : "Another Product",
 "classification" : "Unclassified",
 "is_open" : false,
 "has_unconfirmed" : false,
 "version" : "unspecified"
}

Some params must be set, or an error will be thrown. The required params are
marked in bold.

	name

	type

	description

	name

	string

	The name of this product. Must be globally unique
within Bugzilla.

	description

	string

	A description for this product. Allows some simple
HTML.

	version

	string

	The default version for this product.

	has_unconfirmed

	boolean

	Allow the UNCONFIRMED status to be set on bugs in
this product. Default: true.

	classification

	string

	The name of the Classification which contains this
product.

	default_milestone

	string

	The default milestone for this product. Default
‘—’.

	is_open

	boolean

	true if the product is currently allowing bugs
to be entered into it. Default: true.

	create_series

	boolean

	true if you want series for New Charts to be
created for this new product. Default: true.

Response

{
 "id": 20
}

Returns an object with the following items:

	name

	type

	description

	id

	int

	ID of the newly-filed product.

6.1.12.4. Update Product

This allows you to update a product in Bugzilla.

Request

PUT /rest/product/(id_or_name)

You can edit a single product by passing the ID or name of the product
in the URL. To edit more than one product, you can specify addition IDs or
product names using the ids or names parameters respectively.

{
 "ids" : [123],
 "name" : "BarName",
 "has_unconfirmed" : false
}

One of the below must be specified.

	name

	type

	description

	id_or_name

	mixed

	Integer product ID or name.

	ids

	array

	Numeric IDs of the products that you wish to update.

	names

	array

	Names of the products that you wish to update.

The following parameters specify the new values you want to set for the product(s)
you are updating.

	name

	type

	description

	name

	string

	A new name for this product. If you try to set this
while updating more than one product, an error will
occur, as product names must be unique.

	default_milestone

	string

	When a new bug is filed, what milestone does it
get by default if the user does not choose one? Must
represent a milestone that is valid for this product.

	description

	string

	Update the long description for these products to
this value.

	has_unconfirmed

	boolean

	Allow the UNCONFIRMED status to be set on bugs in
products.

	is_open

	boolean

	true if the product is currently allowing bugs
to be entered into it, false otherwise.

Response

{
 "products" : [
 {
 "id" : 123,
 "changes" : {
 "name" : {
 "removed" : "FooName",
 "added" : "BarName"
 },
 "has_unconfirmed" : {
 "removed" : "1",
 "added" : "0"
 }
 }
 }
]
}

products (array) Product change objects containing the following items:

	name

	type

	description

	id

	int

	The ID of the product that was updated.

	changes

	object

	The changes that were actually done on this product. The
keys are the names of the fields that were changed, and the
values are an object with two items:

	added: (string) The value that this field was changed to.

	removed: (string) The value that was previously set in this
field.

Booleans will be represented with the strings ‘1’ and ‘0’ for changed values
as they are stored as strings in the database currently.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

6.1.13. Users

This part of the Bugzilla API allows you to create user accounts, get information
about user accounts and to log in or out using an existing account.

6.1.13.1. Login

Logging in with a username and password is required for many Bugzilla
installations, in order to search for private bugs, post new bugs, etc. This
method allows you to retrieve a token that can be used as authentication for
subsequent API calls. Otherwise yuou will need to pass your login and
password with each call.

This method will be going away in the future in favor of using API keys.

Request

GET /rest/login?login=foo@example.com&password=toosecrettoshow

	name

	type

	description

	login

	string

	The user’s login name.

	password

	string

	The user’s password.

	restrict_login

	boolean

	If set to a true value, the token returned by this
method will only be valid from the IP address which
called this method.

Response

{
 "token": "786-OLaWfBisMY",
 "id": 786
}

	name

	type

	description

	id

	int

	Numeric ID of the user that was logged in.

	token

	string

	Token which can be passed in the parameters as
authentication in other calls. The token can be sent along
with any future requests to the webservice, for the duration
of the session, i.e. til Logout is called.

6.1.13.2. Logout

Log out the user. Basically it invalidates the token provided so it cannot be
re-used. Does nothing if the token is not in use. Will also clear any existing
authentication cookies the client may still have stored.

Request

GET /rest/logout?token=1234-VWvO51X69r

	name

	type

	description

	token

	string

	The user’s token used for authentication.

6.1.13.3. Valid Login

This method will verify whether a client’s cookies or current login token is
still valid or have expired. A valid username that matches must be provided as
well.

Request

GET /rest/valid_login?login=foo@example.com&token=1234-VWvO51X69r

	name

	type

	description

	login

	string

	The login name that matches the provided cookies or token.

	token

	string

	Persistent login token currently being used for
authentication.

Response

Returns true/false depending on if the current token is valid for the provided
username.

6.1.13.4. Create User

Creates a user account directly in Bugzilla, password and all. Instead of this,
you should use Offer Account by Email when possible because that makes sure
that the email address specified can actually receive an email. This function
does not check that. You must be authenticated and be in the editusers group
to perform this action.

Request

POST /rest/user

{
 "email" : "user@bugzilla.org",
 "full_name" : "Test User",
 "password" : "K16ldRr922I1"
}

	name

	type

	description

	email

	string

	The email address for the new user.

	full_name

	string

	The user’s full name. Will be set to empty if not specified.

	password

	string

	The password for the new user account, in plain text. It
will be stripped of leading and trailing whitespace. If
blank or not specified, the new created account will
exist in Bugzilla but will not be allowed to log in
using DB authentication until a password is set either
by the user (through resetting their password) or by the
administrator.

Response

{
 "id": 58707
}

	name

	type

	desciption

	id

	int

	The numeric ID of the user that was created.

6.1.13.5. Update User

Updates an existing user account in Bugzilla. You must be authenticated and be
in the editusers group to perform this action.

Request

PUT /rest/user/(id_or_name)

You can edit a single user by passing the ID or login name of the user
in the URL. To edit more than one user, you can specify addition IDs or
login names using the ids or names parameters respectively.

	name

	type

	description

	id_or_name

	mixed

	Either the ID or the login name of the user to
update.

	ids

	array

	Additional IDs of users to update.

	names

	array

	Additional login names of users to update.

	full_name

	string

	The new name of the user.

	email

	string

	The email of the user. Note that email used to
login to bugzilla. Also note that you can only
update one user at a time when changing the login
name / email. (An error will be thrown if you try to
update this field for multiple users at once.)

	password

	string

	The password of the user.

	email_enabled

	boolean

	A boolean value to enable/disable sending
bug-related mail to the user.

	login_denied_text

	string

	A text field that holds the reason for disabling a
user from logging into Bugzilla. If empty, then the
user account is enabled; otherwise it is
disabled/closed.

	groups

	object

	These specify the groups that this user is directly
a member of. To set these, you should pass an object
as the value. The object’s items are described in
the Groups update objects below.

	bless_groups

	object

	This is the same as groups but affects what groups
a user has direct membership to bless that group.
It takes the same inputs as groups.

Groups and bless groups update object:

	name

	type

	description

	add

	array

	The group IDs or group names that the user should be added to.

	remove

	array

	The group IDs or group names that the user should be removed from.

	set

	array

	Integers or strings which are an exact set of group IDs and group
names that the user should be a member of. This does not remove
groups from the user when the person making the change does not
have the bless privilege for the group.

If you specify set, then add and remove will be ignored. A group in
both the add and remove list will be added. Specifying a group that the
user making the change does not have bless rights will generate an error.

Response

	users: (array) List of user change objects with the following items:

	name

	type

	description

	id

	int

	The ID of the user that was updated.

	changes

	object

	The changes that were actually done on this user. The keys
are the names of the fields that were changed, and the values
are an object with two items:

	added: (string) The values that were added to this field,
possibly a comma-and-space-separated list if multiple values
were added.

	removed: (string) The values that were removed from this
field, possibly a comma-and-space-separated list if multiple
values were removed.

6.1.13.6. Get User

Gets information about user accounts in Bugzilla.

Request

To get information about a single user in Bugzilla:

GET /rest/user/(id_or_name)

To get multiple users by name or ID:

GET /rest/user?names=foo@bar.com&name=test@bugzilla.org
GET /rest/user?ids=123&ids=321

To get user matching a search string:

GET /rest/user?match=foo

To get user by using an integer ID value or by using match, you must be
authenticated.

	name

	type

	description

	id_or_name

	mixed

	An integer user ID or login name of the user.

	ids

	array

	Integer user IDs. Logged=out users cannot pass
this parameter to this function. If they try,
they will get an error. Logged=in users will get
an error if they specify the ID of a user they
cannot see.

	names

	array

	Login names.

	match

	array

	This works just like “user matching” in Bugzilla
itself. Users will be returned whose real name
or login name contains any one of the specified
strings. Users that you cannot see will not be
included in the returned list.

Most installations have a limit on how many
matches are returned for each string; the default
is 1000 but can be changed by the Bugzilla
administrator.

Logged-out users cannot use this argument, and
an error will be thrown if they try. (This is to
make it harder for spammers to harvest email
addresses from Bugzilla, and also to enforce the
user visibility restrictions that are
implemented on some Bugzillas.)

	limit

	int

	Limit the number of users matched by the
match parameter. If the value is greater than the
system limit, the system limit will be used.
This parameter is only valid when using the match
parameter.

	group_ids

	array

	Numeric IDs for groups that a user can be in.

	groups

	array

	Names of groups that a user can be in. If
group_ids or groups are specified, they
limit the return value to users who are in any
of the groups specified.

	include_disabled

	boolean

	By default, when using the match parameter,
disabled users are excluded from the returned
results unless their full username is identical
to the match string. Setting include_disabled to
true will include disabled users in the returned
results even if their username doesn’t fully match
the input string.

Response

	users: (array) Each object describes a user and has the following items:

	name

	type

	description

	id

	int

	The unique integer ID that Bugzilla uses to represent
this user. Even if the user’s login name changes,
this will not change.

	real_name

	string

	The actual name of the user. May be blank.

	email

	string

	The email address of the user.

	name

	string

	The login name of the user. Note that in some
situations this is different than their email.

	can_login

	boolean

	A boolean value to indicate if the user can login
into bugzilla.

	email_enabled

	boolean

	A boolean value to indicate if bug-related mail will
be sent to the user or not.

	login_denied_text

	string

	A text field that holds the reason for disabling a
user from logging into Bugzilla. If empty then the
user account is enabled; otherwise it is
disabled/closed.

	groups

	array

	Groups the user is a member of. If the currently
logged in user is querying their own account or is a
member of the ‘editusers’ group, the array will
contain all the groups that the user is a member of.
Otherwise, the array will only contain groups that
the logged in user can bless. Each object describes
the group and contains the items described in the
Group object below.

	saved_searches

	array

	User’s saved searches, each having the following
Search object items described below.

	saved_reports

	array

	User’s saved reports, each having the following
Search object items described below.

Group object:

	name

	type

	description

	id

	int

	The group ID

	name

	string

	The name of the group

	description

	string

	The description for the group

Search object:

	name

	type

	description

	id

	int

	An integer ID uniquely identifying the saved report.

	name

	string

	The name of the saved report.

	query

	string

	The CGI parameters for the saved report.

If you are not authenticated when you call this function, you will only be
returned the id, name, and real_name items. If you are authenticated
and not in ‘editusers’ group, you will only be returned the id, name,
real_name, email, can_login, and groups items. The groups
returned are filtered based on your permission to bless each group. The
saved_searches and saved_reports items are only returned if you are
querying your own account, even if you are in the editusers group.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

Writing Bugzilla Documentation

The Bugzilla documentation uses
reStructured Text (reST) [http://docutils.sourceforge.net/rst.html],
as extended by our documentation compilation tool,
Sphinx [http://sphinx-doc.org/]. This document is a reST document for
demonstration purposes. To learn from it, you need to read it in reST form.

When you build the docs, this document gets built (at least in
the HTML version) as a standalone file, although it isn’t as useful in that
form because some of the directives discussed are invisible or change when
rendered.

The Sphinx documentation [http://sphinx-doc.org/latest/rest.html]
gives a good introduction to reST and the Sphinx-specific extensions. Reading
that one immediately-linked page should be enough to get started. Later, the
inline markup section [http://sphinx-doc.org/latest/markup/inline.html]
is worth a read.

Bugzilla’s particular documentation conventions are as follows:

Block Directives

Chapter headings use the double-equals, page title headings the #, and then
the three other levels are headings within a page. Every heading should be
preceded by an anchor, with a globally-unique name with no spaces. Now, we
demonstrate the available heading levels we haven’t used yet:

Third Level Heading

Fourth Level Heading

Fifth Level Heading

(Although try not to use headings as deep as the 5th level.)

Make links to anchors like this: Third Level Heading. It’ll pick up the
following heading name automatically and use it as the link text. Don’t use
standard reST internal links like uniqueanchorname - they don’t work
across files.

Comments are done like this:

Other block types:

Note

This is just a note, for your information. Like all double-dot
blocks, follow-on lines need to be indented.

Warning

This is a warning of a potential serious problem you should be
aware of.

Use both of the above block types sparingly. Consider putting the information
in the main text, omitting it, or (if long) placing it in a subsidiary file.

Code gets highlighted using Pygments. Choose the highlighter at the top of
each file using:

You can change the highlighter for a particular block by introducing it like
this:

This is some Perl code
print "Hello";

There is a
list of all available lexer names [http://pygments.org/docs/lexers/]
available. We currently use console, perl, and sql. none is
also a valid value.

Use 4-space indentation, except where a different value is better so that
things line up. So normally two spaces for bulleted lists, and 3 spaces
for .. blocks.

Inline Directives

Warning

Remember that reST does not support nested inline markup. So you
can’t have a substitution inside a link, or bold inside italics.

	A filename or a path to a filename:
/path/to/variable-bit-of-path/filename.ext

	A command to type in the shell:
command --arguments

	A parameter name:
shutdownhtml

	A parameter value:
DB

	A group name:
editbugs

	A bug field name:
Summary

	Any string from the UI:
Administration

	A specific BMO bug:
bug 201069 [https://bugzilla.mozilla.org/show_bug.cgi?id=201069]

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Bugzilla Documentation

 		
 About This Documentation

 		
 Evaluating Bugzilla

 		
 Getting More Help

 		
 Document Conventions

 		
 License

 		
 Credits

 		
 User Guide

 		
 Creating an Account

 		
 Filing a Bug

 		
 Reporting a New Bug

 		
 Clone an Existing Bug

 		
 Understanding a Bug

 		
 Flags

 		
 Editing a Bug

 		
 Attachments

 		
 Flags

 		
 Time Tracking

 		
 Life Cycle of a Bug

 		
 Finding Bugs

 		
 Quicksearch

 		
 Simple Search

 		
 Advanced Search

 		
 Custom Search

 		
 Bug Lists

 		
 Reports and Charts

 		
 Reports

 		
 Charts

 		
 Pro Tips

 		
 Autolinkification

 		
 Comments

 		
 User Preferences

 		
 General Preferences

 		
 Email Preferences

 		
 Saved Searches

 		
 Account Information

 		
 API Keys

 		
 Permissions

 		
 Installed Extensions

 		
 Installation and Maintenance Guide

 		
 Quick Start (Ubuntu Linux 14.04)

 		
 Obtain Your Hardware

 		
 Install the OS

 		
 Become root

 		
 Install Prerequisites

 		
 Download Bugzilla

 		
 Configure MySQL

 		
 Configure Apache

 		
 Check Setup

 		
 Edit localconfig

 		
 Check Setup (again)

 		
 Test Server

 		
 Access Via Web Browser

 		
 Configure Bugzilla

 		
 Linux

 		
 Install Packages

 		
 Perl

 		
 Bugzilla

 		
 Perl Modules

 		
 Web Server

 		
 Database Engine

 		
 localconfig

 		
 checksetup.pl

 		
 Success

 		
 Windows

 		
 Perl

 		
 Bugzilla

 		
 Perl Modules

 		
 Web Server

 		
 Database Engine

 		
 localconfig

 		
 checksetup.pl

 		
 Success

 		
 Mac OS X

 		
 Install Packages

 		
 Bugzilla

 		
 Additional System Libraries

 		
 Perl Modules

 		
 Web Server

 		
 Database Engine

 		
 localconfig

 		
 checksetup.pl

 		
 Success

 		
 Web Server

 		
 Apache

 		
 Apache on Windows

 		
 Microsoft IIS

 		
 Database Server

 		
 MySQL

 		
 PostgreSQL

 		
 Oracle

 		
 SQLite

 		
 Essential Post-Installation Configuration

 		
 Parameters

 		
 Email

 		
 Products, Components, Versions and Milestones

 		
 Optional Post-Install Configuration

 		
 Recurring Tasks

 		
 Bug Graphs

 		
 Whining

 		
 Whining at Untriaged Bugs

 		
 Dependency Graphs

 		
 Documentation

 		
 Migrating From Other Bug-Tracking Systems

 		
 Moving Bugzilla Between Machines

 		
 Upgrading

 		
 Upgrading with Git

 		
 Migrating from Bazaar

 		
 Migrating from CVS

 		
 Migrating from a Tarball

 		
 Upgrading with a Tarball

 		
 Upgrading a Customized or Extended Bugzilla

 		
 Backups

 		
 Database

 		
 Bugzilla

 		
 Sanity Check

 		
 Merging Accounts

 		
 One Installation, Multiple Instances

 		
 Administration Guide

 		
 Parameters

 		
 Required Settings

 		
 General

 		
 Administrative Policies

 		
 User Authentication

 		
 Attachments

 		
 Bug Change Policies

 		
 Bug Fields

 		
 Graphs

 		
 Group Security

 		
 LDAP

 		
 RADIUS

 		
 Email

 		
 Query Defaults

 		
 Shadow Database

 		
 Memcached

 		
 User Matching

 		
 Advanced

 		
 Default Preferences

 		
 Users

 		
 Creating Admin Users

 		
 Searching For Users

 		
 Modifying Users

 		
 Creating New Users

 		
 Deleting Users

 		
 Impersonating Users

 		
 Classifications, Products, Components, Versions, and Milestones

 		
 Classifications

 		
 Products

 		
 Components

 		
 Versions

 		
 Milestones

 		
 Flags

 		
 Flag Properties

 		
 Deleting a Flag

 		
 Custom Fields

 		
 Adding Custom Fields

 		
 Editing Custom Fields

 		
 Deleting Custom Fields

 		
 Field Values

 		
 Viewing/Editing Legal Values

 		
 Deleting Legal Values

 		
 Workflow

 		
 Groups and Security

 		
 Creating Groups

 		
 Editing Groups and Assigning Group Permissions

 		
 Assigning Users to Groups

 		
 Assigning Group Controls to Products

 		
 Keywords

 		
 Whining

 		
 The Event

 		
 Whining Schedule

 		
 Whining Searches

 		
 Saving Your Changes

 		
 Quips

 		
 Installed Extensions

 		
 Integration and Customization Guide

 		
 Customization FAQ

 		
 Languages

 		
 Skins

 		
 Templates

 		
 Template Directory Structure

 		
 Choosing a Customization Method

 		
 How To Edit Templates

 		
 Template Formats and Types

 		
 Particular Templates

 		
 Extensions

 		
 Adding A New Page to Bugzilla

 		
 Altering Data On An Existing Page

 		
 Adding New Fields To Bugs

 		
 Adding New Fields To Other Things

 		
 Adding Admin Configuration Panels

 		
 Adding User Preferences

 		
 Altering Who Can Change What

 		
 Checking Syntax

 		
 APIs

 		
 Core Module API

 		
 Ad-Hoc APIs

 		
 XML-RPC

 		
 JSON-RPC

 		
 REST

 		
 BzAPI/BzAPI-Compatible REST

 		
 REST v2

 		
 WebService API Reference

 		
 Core API v1

 		
 General

 		
 Attachments

 		
 Bugs

 		
 Bug User Last Visited

 		
 Bugzilla Information

 		
 Classifications

 		
 Comments

 		
 Components

 		
 Bug Fields

 		
 Flag Types

 		
 Groups

 		
 Products

 		
 Users

_static/comment-bright.png

_static/comment-close.png

_static/bugzilla.png

_static/comment.png

_static/ajax-loader.gif

_images/bzLifecycle.png
Bugis fled bya non-empowered
userina product where the
UNCONFRMED stats s ansbled

Bug determined
to be present

UNCONFIRMED

CONFIRMED

Developeris working
onthe bug

Developer stops
workon bug

IN_PROGRESS

Fix checkedin

QA not satsfed
vith the soluion

Sug s rot able
(o9 because itis invalid)

QA verifies that
the solution werks

Bugis reopened.
e never confrm:

Fix turms out 1 be wiong

VERI

D

