

 Navigation

 	
 index

 	
 next |

 	borg 0.6 documentation

Borg

Contents:

	Introducing borg
	About

	License

	Installing borg
	Installing system dependencies

	Creating an installation environment

	Installing borg

	Using borg
	Assembling a portfolio of subsolvers

	Collecting solver performance data

	Generating instance feature information

	Training a portfolio solver

	Running the trained portfolio solver

	Contributions and development
	Obtaining the project source code

	Building documentation

	API reference
	borg module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

Introducing borg

About

Modern heuristic solvers can tackle difficult computational problems, but each
solver performs well only on certain tasks. An algorithm portfolio uses
empirical knowledge—past experience of each solver’s behavior—to run the
best solvers on each task.

The borg project includes a practical algorithm portfolio for decision
problems, a set of tools for algorithm portfolio development, and a research
platform for the application of statistical models and decision-theoretic
reasoning to the algorithm portfolio setting.

The project web site is:

http://nn.cs.utexas.edu/pages/research/borg/

The best description of the research surrounding the borg project can be found
in the PhD dissertation [http://nn.cs.utexas.edu/?silverthorn:dissertation]
of the primary author [http://www.cs.utexas.edu/~bsilvert/].

License

Borg is provided under the non-copyleft open-source “MIT” license. The complete
legal notice can be found in the included LICENSE file.

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

Installing borg

The installation process for borg is similar to that for other Python-based
projects. Its installation involves three major steps, described in detail
below:

	installing any missing system-level dependencies;

	installing virtualenv and creating an installation environment; and

	installing borg and its required Python dependencies.

These instructions assume a bash shell on a Linux system.

Installing system dependencies

A reasonably complete development environment is required to compile borg and
its dependencies. That includes at least:

	Python >= 2.6

	compilers: gcc, gfortran, and g++

	devel packages for
	Python

	linear algebra libraries: BLAS, LAPACK, and/or ATLAS

Most, if not all, of these packages are common dependencies, and should already
be installed on a typical development machine.

Verifying Python >= 2.6

Make sure that you’re using a recent Python version by running:

$ python --version

and checking that it reports at least “Python 2.6”. Users on ancient platforms
will likely need to install a local version of a more recent Python, as in the
instructions for CentOS below.

Building Python on CentOS 5.4

CentOS 5.4, unfortunately, does not provide a modern version of Python. The
recommended solution is to install one into a user-owned local directory,
assumed to be ~/local in the instructions that follow.

Download, unpack, build, and install Python 2.6:

$ wget http://www.python.org/ftp/python/2.6.6/Python-2.6.6.tar.bz2
$ tar jxvf Python-2.6.6.tar.bz2
$ cd Python-2.6.6
$./configure --prefix=$HOME/local/
$ make
$ make install

Add ~/local/bin to the beginning of your path:

$ export PATH=~/local/bin:$PATH

Note that compiling a full Python system may require additional system
dependencies, e.g., development packages for ncurses and zlib.

Creating an installation environment

The recommended approach to installing borg and its dependencies is to do so
inside a “virtualenv”, a self-contained local Python environment constructed
with the virtualenv tool [http://www.virtualenv.org/].

Obtaining virtualenv

The virtualenv tool may already be installed (try running “virtualenv” in your
shell). If not, you may be able to install it using the system package manager.
If you are using Ubuntu, for example, install it by performing:

$ sudo apt-get install python-virtualenv

If your system package manager does not include it, or you do not have system
root access, you will need to download and use a local copy according to the
instructions [http://www.virtualenv.org/en/latest/#installation] in the
virtualenv documentation.

Creating an environment

Start by creating a virtual environment (“virtualenv”) in some directory; we
will assume ~/borg-venv:

$ virtualenv --no-site-packages ~/borg-venv

The --no-site-packages flag isolates the virtualenv from Python packages
installed globally.

Using the environment

Next, “activate” the virtualenv to use its Python installation in the current
shell session:

$ source ~/borg-venv/bin/activate

Running python with this environment activated will use the local
interpreter ~/borg-venv/bin/python.

Note

The rest of the documentation assumes that you are operating with this
environment activated.

Leaving the environment

The virtualenv can be later deactivated with:

$ deactivate

Installing borg

We can now install borg and its dependencies into this environment.

Installing the numpy dependency

Due to limitations in Python packaging, the numpy package must be installed
first. Use

$ pip install numpy

to download, compile, and install numpy in the local environment. This may
take a few minutes.

Installing borg and other dependencies

You should now be able to run

$ pip install borg

to download and install the latest release of borg from PyPI [https://pypi.python.org/pypi], as well its
dependencies.

Note

Some of the borg dependencies, especially cython, numpy, scipy,
and scikit-learn, are complex libraries that may take ten minutes or more
to install from source using pip.

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

Using borg

This chapter walks through the basic steps in using borg:

	assembling solvers for some problem domain together into a “portfolio”;

	collecting performance data for each solver in that portfolio;

	training a single portfolio solver to make solver execution decisions; and

	running that portfolio solver on instances of the domain.

Assembling a portfolio of subsolvers

The first step in building a portfolio solver is to assemble its constituent
solvers for the problem domain. We will often refer to these constituent
solvers as “subsolvers”, since they are wrapped by an outer “portfolio solver”.

These subsolvers must be selected and prepared for execution, and then borg
must be configured to execute them and to interpret their output. Here, we will
build a portfolio solver for the SAT problem [http://www.satisfiability.org/].

Fetching SAT solver binaries

In this example, we will build a simple portfolio consisting of several solvers
from the 2011 SAT competition [http://www.satcompetition.org/2011/]. Much of
the data from these competitions can be accessed at

http://www.satcompetition.org/

including static binaries of the solvers entered into the competition. Let’s
download these and unpack them:

$ wget http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz
$ tar zxvf SAT2011-static-binaries.tar.gz

Warning

This tarball is 125MiB compressed, and may take some time to download.

After unpacking, we find the solvers under SAT2011/bin/static and
information about how to execute them inside
SAT2011/bin/static/CommandLines.txt.

Selecting solvers to use

While a portfolio solver can be a useful tool, it still requires significant
domain knowledge to select the solvers to include in the portfolio. In this
example, we will simply select three of the best-performing solvers from the
2009 SAT competition [http://www.satcompetition.org/2009/] and the 2010 SAT
race [http://baldur.iti.uka.de/sat-race-2010/]:

	cryptominisat (Mate Soos),

	clasp (Martin Gebser, Benjamin Kaufmann, and Torsten Schaub), and

	TNM (Wanxia Wei and Chu Min Li).

This selection follows the lead of the ppfolio tool, a basic parallel
portfolio that performed well in the 2011 competition. More information is
available in its documentation [http://www.cril.univ-artois.fr/~roussel/ppfolio/].

Since ppfolio has helpfully packaged these solvers for the 2011
competition, we can access them inside the
SAT2011/bin/static/main/sat11-11-roussel/bin directory. Let’s make a
symlink to that directory with

$ ln -s SAT2011/bin/static/main/sat11-11-roussel/bin ppfolio-bin

so that we can access it more easily later.

Constructing a solver suite

We will now write a configuration file that allows borg to execute these SAT
solvers by name. In borg, a collection of named solvers is referred to as a
“suite”.

A suite configuration file is simply a Python module that establishes how to
execute each solver. Here is a configuration file for the suite of solvers
selected above:

import borg

domain = borg.get_domain("sat")
commands = {
 "cryptominisat": ["{root}/ppfolio-bin/cryptominisat", "--randomize={seed}", "{task}"],
 "clasp": ["{root}/ppfolio-bin/clasp", "--seed={seed}", "{task}"],
 "TNM": ["{root}/ppfolio-bin/TNM", "{task}", "{seed}"],
 }
solvers = borg.make_solvers(borg.domains.sat.solvers.SAT_SolverFactory, __file__, commands)

We will call this file suite_sat_ppfolio.py.

A solver suite is required to provide two top-level variables:

	domain, which must be an instance of a class such as
borg.domains.sat.Satisfiability that allows borg to parse
instances of the problem domain, compute features on those instances, and
determine basic properties of “answers” to instances of the domain; and

	solvers, a dictionary that maps arbitrary solver names (e.g., “minisat”)
to instances of a solver factory class, such as
borg.domains.sat.solvers.SAT_SolverFactory, that allow borg to
initiate solver runs on problem instances and to understand their output.

borg includes support for the output formats of various common solver
types. In this case, the class
borg.domains.sat.solvers.SAT_SolverFactory supports the typical output
format of SAT competition entries.

Collecting solver performance data

The second step is to collect subsolver performance data for use in training.
Each subsolver in the portfolio is run on each problem instance in the training
set, often multiple times.

Gathering training instances

In this example, we will collect such data for the ppfolio suite on a small set
of instances from the SAT2011 competition. Unfortunately, doing so requires
downloading the entire set of instances from the competition:

$ mkdir benchmarks
$ cd benchmarks
$ wget http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-SelectedBenchmarks.tar
$ tar xvf SAT11-Competition-SelectedBenchmarks.tar

Warning

This tarball is 1.7GiB compressed, and may take some time to download.

The archive contains a huge number of individually compressed instances. For
now, we will train our portfolio on a small subset of those instances. The
easiest way to create such a subset is simply to symlink or copy the relevant
instances into a common location—here, into a new directory named “selected”:

$ mkdir selected
$ cd selected
$ cp ../SAT11/random/large/unif-k3-r4.2-v10000* .
$ cp ../SAT11/application/fuhs/AProVE11/* .
$ bunzip2 *.bz2

We have now pulled together an arbitrarily selected set of 20 instances to use
as our training set.

Executing solvers repeatedly

Borg can use an HTCondor [http://research.cs.wisc.edu/htcondor/] or
IPython.parallel [http://ipython.org/ipython-doc/dev/parallel/index.html]
cluster to execute solvers repeatedly and collect training data. For this
experiment, set up a local IPython cluster by running:

$ ipcluster start -n 2

In this invocation, the ipcluster script will launch two engines for parallel
processing. The value of the “-n” argument can be bumped up if you have more
cores.

Note

If you do not have access to a cluster, StarCluster [http://star.mit.edu/cluster/] and other projects let you easily run one
on EC2 [http://aws.amazon.com/ec2/]—but you will pay for it.

The borg run_solvers tool collects run duration data. By default, it uses the
local IPython cluster. To invoke it, specify the portfolio configuration above
(in this case, “suite_sat_ppfolio.py”), the directory containing the set of
benchmarks on which to execute the solver suite (in this case,
“benchmarks/selected”), and the run duration cutoff in seconds (in this case,
300 seconds).

$ python -m borg.tools.run_solvers suite_sat_ppfolio.py benchmarks/selected/ 300

Warning

Solver run data collection is extremely expensive in general. For example,
even though this suite of solvers and collection of benchmark instances are
both quite restricted, this set of runs will take a substantial amount of
time—12 hours or more—to complete using one or two cores.

File format: subsolver run records

Run records are typically stored in CSV files with the suffix .runs.csv.
The full suffix can be modified through the “-suffix” flag to run_solvers,
among other borg tools.

The following columns are expected in the following order:

	solver

	Unique name of the solver.

	budget

	Budget allotted to the run, in CPU seconds.

	cost

	Computational cost of the run, in CPU seconds.

	succeeded

	Did the solver succeed on this run?

	answer

	Base64-encoded gzipped pickled answer returned by the solver on this run,
if any.

Generating instance feature information

Portfolios typically use domain-specific information about a given problem
instance to make better solver execution decisions.

Borg’s “get_features” tool collects such information for the domains that
it supports. The set of features collected is built into borg.

We can use this tool to collect feature information from the set of
selected benchmarks:

python -m borg.tools.get_features sat benchmarks/selected/

Like the run_solvers tool, get_features uses the local IPython cluster by
default.

File format: instance features

Instance features are stored in CSV files with the suffix .features.csv.
The first column must be cost, the computational cost of feature
computation, in CPU seconds. The remaining columns are domain-specific, one per
feature.

Training a portfolio solver

This section will walk you through the process of training a borg portfolio.

At this point we have both a suite of subsolvers and a set of training data.
The third and penultimate step in constructing a borg portfolio is fitting a
predictive model to these data. Use the “train” tool to fit a model:

$ python -m borg.tools.train borg-sat-ppofolio.model.pickle borg-mix+class solvers/pb/portfolio.py tasks/pb/categorized/dec-smallint-lin

This process can take ten minutes or more, depending on the amount of training
data and the nubmer of subsolvers. It will write a portfolio model (of type
“borg-mix+class”) to the file “pb-model.pickle”.

Finally, we need to calibrate the solver to the local execution environment,
since the machines used to collect training data may be faster or slower than
the machine on which you’re running the portfolio. Every collection of training
data includes a “calibration” directory, which contains a problem instance, a
SOLVER_NAME file, and a runs file with the ”.runs.train.csv” suffix. This
directory stores runs made by a single solver (that named in SOLVER_NAME), on a
single instance, on the machine(s) used for training data.

To collect runs using the same solver on the local machine, run

$ python -m borg.tools.run_solvers solvers/pb/portfolio.py tasks/pb/calibration/ 120 -r 9 -suffix .local.runs.csv -only_solver $(cat tasks/pb/calibration/SOLVER_NAME)

which will make 9 runs and store them in the corresponding “<instance>.local.runs.csv” file.

Then compute the local machine calibration factor with:

$ python -m borg.tools.get_calibration tasks/pb/calibration/normalized-cache-ibm-q-unbounded.Icl2arity.ucl.opb.{local,train}.runs.csv

The ratio that it prints can be used as a value for the “–speed” parameter to
the “solve” tool discussed below.

Running the trained portfolio solver

Now let’s solve the same calibration using the full portfolio, with

$ python -m borg.tools.solve --speed 1.0 borg-pb.model.pickle solvers/pb/portfolio.py tasks/pb/calibration/normalized-cache-ibm-q-unbounded.Icl2arity.ucl.opb

changing the speed parameter given the output of the “get_calibration” tool
above.

Borg will parse the instance, compute instance features, condition its internal
model, and run a sequence of solvers—replanning as necessary. In this case,
it should quickly solve the instance with its first solver run.

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

Contributions and development

If you are interested in modifying, contributing to, or basing your own project
on top of borg, this chapter provides a bit of documentation on doing so.

Obtaining the project source code

The suggested way to download the project source is to use git [http://git-scm.com/], which will simplify acquiring future updates and
making local changes. Assuming that git is installed, clone the two
relevant repositories from github [https://github.com/]:

$ git clone git@github.com:borg-project/cargo.git
$ git clone git@github.com:borg-project/borg.git

If git is not installed and cannot be installed, tarball snapshots of the
source trees can be downloaded from github’s web interface; see the borg and
cargo repositories under the borg project github page [https://github.com/borg-project].

Building documentation

The borg documentation can be generated in various formats from its
reStructuredText source. The sphinx tool is used to drive this process.
It can be installed as usual via pip, with:

$ pip install sphinx

$ cd borg/docs
$ make html

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

API reference

	borg module
	Submodules
	borg.expenses module
	Members

	borg.solver_io module
	Members

	Members

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

 	API reference

borg module

Submodules

	borg.expenses module
	Members

	borg.solver_io module
	Members

Members

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	borg 0.6 documentation

 	API reference

 	borg module

borg.expenses module

Members

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	borg 0.6 documentation

 	API reference

 	borg module

borg.solver_io module

Members

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	borg 0.6 documentation

Index

 Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		borg 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Bryan Silverthorn.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

